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           SCD1 and Lipid Biosynthesis 

 Stearoyl-CoA desaturase 1 (SCD1) is an enzyme involved in the de novo lipogenesis 
of fatty acids (Fig.  7.1    ). In the fi rst step of this biosynthetic pathway, acetyl-CoA 
carboxylase converts acetyl-CoA to malonyl-CoA. Next, malonyl-CoA is converted 
into the saturated fatty acid (SFA) palmitate (C16:0), through a multiple-step process 
catalyzed by fatty acid synthase (FAS). Elongases convert palmitate into stearate 
(C18:0), the SFA substrate for SCD. Following elongation, SCD catalyzes the con-
version of stearate into the monounsaturated fatty acid (MUFA) oleate (C18:1). 
MUFAs such as oleate serve as major substrates for the synthesis of complex lipids 
such as phospholipids, cholesterol esters, and wax esters. Since SCD1 controls the 
delicate balance between SFAs and MUFAs, SCD1 plays an important role in deter-
mining the composition of fatty acids and complex lipids in the cell. An SFA to 
MUFA ratio that is either excessive or insuffi cient can lead to severe metabolic 
consequences, including atherosclerosis, obesity, and type II diabetes (Sampath 
et al.  2007 ). To study global and tissue-specifi c effects of SCD1 on these diseases, 
researchers have developed several models that have a deletion or decreased expres-
sion of SCD1. These include conditional knockout mouse models (SCD1 −/− ) or tran-
sient knockdown mouse models using antisense oligonucleotide technology (SCD1 
ASO). Inhibition of SCD1 in these models leads to an increase in SFAs such as 
stearate and a decrease in MUFAs such as oleate (Sampath et al.  2007 ). These are 
therefore very useful models to study the physiological role of SFAs and MUFAs.
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       SCD1 and Infl ammation 

 Infl ammation is a key event in the pathogenesis of many vascular diseases, including 
atherosclerosis. SCD1 may have an intriguing role in macrophage-mediated 
infl ammation. Studies on β amyloid peptide and toll-like receptor 4 (TLR4)/NF-κB 
signaling demonstrate that SCD1 inhibition accelerates infl ammation, whereas 
other studies report that SCD1 inhibition exerts no effect on infl ammation 
(Macdonald et al.  2009a ,  b ; Brown et al.  2008 ; Uryu et al.  2003 ; Liu et al.  2010 , 

  Fig. 7.1    SCD1 in de novo lipogenesis. Dietary carbohydrates such as glucose and fructose are 
major substrates of hepatic de novo lipogenesis. The carbohydrates are converted to citrate through 
glycolysis and citric acid cycle. Citrate is converted back to acetyl-CoA in the reaction of ATP 
citrate lyase (ACL). Acetyl-CoA carboxylase (ACC) catalyzes the irreversible conversion of the 
2-carbon acetyl-CoA to the 3-carbon intermediate, malonyl-CoA. Malonyl-CoA serves as the 
precursor for the endogenous synthesis of fatty acids via the fatty acid synthase (FAS) multienzyme 
complex. FAS catalyzes seven cycles of sequential condensation, reduction, and dehydration reac-
tions to form the 16-carbon saturated fatty acid (SFA), palmitate (16:0). Further elongation generally 
occurs through the actions of microsomal elongase (Elovl6) to form stearate (18:0). Cellular levels of 
stearate are regulated by a lipogenic enzyme, stearoyl-CoA desaturase, which catalyzes the conver-
sion of stearate to oleate. More than 60 % of stearate derived from foods or de novo lipogenesis is 
converted into oleate. The reaction of stearoyl-CoA desaturase involves the introduction of the 
fi rst  cis -double bond in the ∆9 position in a spectrum of saturated fatty acyl-CoAs       
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 2011 ). In studies supporting the pro-infl ammatory role of fatty acids, accumulation 
of SFAs was shown to directly induce infl ammation through TLR4 and NF-κB 
signaling (Lee et al.  2001 ,  2003a ,  b ,  2004 ). In this pathway, SFAs activate TLR4, a 
pattern-recognition receptor that plays a role in activating innate immunity and 
infl ammation (Fig.  7.2 ). TLR4 then induces NF-κB, a protein complex involved in 
cellular responses to harmful stimuli such as stress, free radicals, and toxic lipids. 
NF-κB activation increases the transcription of most enzymes in the de novo synthe-
sis of ceramides, which are sphingosines covalently linked to a fatty acid. De novo 
ceramide synthesis uses SFAs, but not unsaturated fatty acids. Therefore, an increase 
in SFAs due to SCD1 inhibition leads to ceramide accumulation. Ceramides potently 
inhibit Akt, a serine/threonine kinase that upregulates nutrient storage and inhibits 
apoptosis. Increased ceramide and the resulting Akt inhibition lead to the activation 
of pro-apoptotic pathways through enzymes such as caspase-9 (Holland et al.  2007 ; 
Summers  2006 ). This pathway seems to be differentially activated in various tissues, 
since it has been shown that stearate activates infl ammatory genes in macrophages 
but not in adipose tissue. In addition to TLR4, it has also been shown that SFAs 
induce macrophage infl ammation through TLR2 when the receptor is dimerized 

  Fig. 7.2    SFAs in TLR4 signaling. SFAs directly bind and activate TLR4, resulting in infl amma-
tion.  TLR4  toll-like receptor-4,  MyD88  myeloid differentiation primary response gene-88,  IRAK-1  
interleukin-1 receptor-associated kinase 1,  TRAF6  TNF receptor-associated factor-6,  IKK  IκB 
kinase,  NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells       
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with TLR6 or TLR1. In patients with atherosclerosis, TLR4 signaling is increased 
particularly in endothelial cells and macrophages, suggesting that the TLR4-NF-κB 
pathway plays an important role in atherosclerotic lesions.

   In addition to the TLR4 studies using diets high in SFAs mentioned above, other 
studies actually inhibited SCD1 itself to see the effects of the resulting SFA accumu-
lation on infl ammation (Brown et al.  2008 ; Flowers et al.  2008 ). One of these early 
studies examining the β amyloid peptide suggested that SCD1 inhibition promotes 
infl ammation in macrophages (Uryu et al.  2003 ). Using an oligonucleotide microar-
ray analysis, SCD1 was found to be specifi cally and signifi cantly upregulated by β 
amyloid peptide (Aβ) during Aβ-induced macrophage activation. However, this 
study did not propose a mechanism explaining how SCD1 expression was correlated 
with macrophage infl ammation (Uryu et al.  2003 ). 

 The pro-infl ammatory effects of SCD1 inhibition were also confi rmed in related 
studies on toll-like receptor signaling (Brown et al.  2008 ). Using ASO-mediated 
knockdown of SCD1, a study reported that SCD1-knockdown mice demonstrated 
increases in SFA-enriched plasma lipoproteins and TLR4 hypersensitivity. SCD1 
inhibition leads to an accumulation of SFAs, which serve as ligands for TLR4 
and consequently mediate atherosclerotic progression by activating TLR4-driven 
pro- infl ammatory responses in macrophages. In addition to activating the innate 
immune response, transmembrane receptor TLR4 is highly expressed in macrophages 
present in atherosclerotic plaques and plays an important role in vascular endothelial 
cell activation, infl ammatory cytokine recruitment, and macrophage apoptosis (Brown 
et al.  2008 ). In another study, SCD1 inhibition similarly leads to TLR4 activation and 
increased atherosclerosis, but these effects appear to be reversible by dietary supple-
mentation of ω-3 polyunsaturated fatty acids (PUFAs) from fi sh oil. Using a hyperlip-
idemic mouse model, a combination of SCD1 ASO and fi sh oil treatments decreased 
both metabolic syndrome and atherosclerosis (Brown et al.  2010 ). 

 Although the mechanisms by which SFAs induce TLR4 have yet to be elucidated, 
one putative explanation is that SFAs change lipid and protein composition of micro-
domains on raft membranes. Changes in membrane composition will affect TLR 
signaling since activated TLR4 is thought to translocate to these domains. SFAs will 
allow for easier TLR4 traffi cking to domains, while PUFAs will disturb lipid compo-
sition and raft order thus interfering with TLR4 recruitment to rafts. As seen in the 
study using SCD1 ASO and fi sh oil-derived ω-3 PUFAs, dual therapy of SCD1 inhibi-
tors and other anti-infl ammatory agents may be effective in reducing both metabolic 
syndrome and atherosclerosis (Brown et al.  2010 ). Although TLR4 antagonists appear 
to be a putative treatment for atherosclerotic progression in mice models, the role 
of TLR4 in human atherosclerosis has been debated. Therefore, further studies will 
be required to determine whether TLR4 activation is necessary for SFA-induced 
atherosclerosis and whether these results can be applied clinically. 

 In contrast to the Aβ and TLR4 studies, others reported that SCD1 inhibition 
exerts no effect on infl ammation. A recent study compared peritoneal macrophages 
from SCD1-defi cient mice and wild-type mice but reported no differences between 
groups when the macrophages were treated with LPS (Liu et al.  2010 ). In a similar 
study using peritoneal macrophages from SCD1-defi cient mice, macrophage 
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infl ammation also did not differ from the control, although infl ammatory changes 
in the skin and plasma were observed (MacDonald et al.  2009b ). One plausible 
explanation for this discrepancy may be due to the presence of more than one 
SCD isoform. SCD2 is more highly expressed in macrophages than SCD1 and 
therefore might be compensating for the low expression of SCD1 in macrophages. 
The expression of SCD1 and SCD2 in different cell types may be responsible for 
differences in infl ammatory responses (Liu et al.  2010 ,  2011 ; Liu and Ntambi  2009 ). 
Although it is well-known that SCD1 defi ciency exerts harmful pro-infl ammatory 
effects in several cell types including skin and β-cells (Zheng et al.  1999 ; Flowers 
et al.  2007 ), the role of SCD1 in macrophage infl ammation is still ambiguous. 
Further investigation will be necessary to determine the complex regulation of 
SCD1 in macrophage infl ammation.  

    SCD and ER Stress 

 A second method by which SCD1 inhibition and SFAs promote lipid-related 
diseases is by inducing stress in the endoplasmic reticulum (ER), a central organelle 
for protein processing and lipid synthesis (Fig.  7.3 ). ER stress is an accumulation of 
misfolded or unfolded proteins in the endoplasmic reticulum due to adverse condi-
tions such as ischemia, hypoxia, heat shock, oxidative stress, or depletion of stored ER 
calcium. ER stress triggers a restorative/corrective pathway known as the unfolded 
protein response (UPR), which attempts to restore proper ER function. The UPR 
alleviates ER stress through three main compensatory mechanisms: (1) decreasing 
the load of proteins that enter the ER by suppressing translation, (2) raising protein-
folding capacity by increasing the number of available chaperones, or (3) increasing 
degradation of misfolded proteins through a ubiquitin-proteasome pathway. If all 
three compensatory mechanisms fail and homeostasis cannot be reestablished, 
prolonged ER stress and UPR activation can trigger apoptosis. The UPR comprises 
three branches mediated by ER-resident transmembrane proteins: PKR-like ER 
kinase (PERK), inositol requiring enzyme 1 (IRE1), and activating transcription fac-
tor-6 (ATF6). These three ER-resident signaling proteins are activated either by bind-
ing to a protein chaperone called BiP or by directly sensing the presence of misfolded 
proteins in the ER lumen. Following activation, these ER-resident proteins induce 
downstream effectors such as XBP-1 (X-box binding protein 1) and CHOP (C/EBP-
homologous protein) (Flowers et al.  2007 ; Tabas and Ron  2011 ; Walter and Ron  2011 ).

   Recent studies have shown that abnormal lipid metabolism activates ER stress and 
prolonged UPR in atherosclerotic plaques. In normal, healthy cells, macrophages 
transport lipoprotein-cholesterol to the ER, where the cholesterol is esterifi ed 
(Scull and Tabas  2011 ). However, in atherosclerotic lesions, this process is interrupted 
and massive amounts of free cholesterol accumulate. SCD can regulate intracellular 
free cholesterol levels, since its product oleate is a preferred substrate for choles-
teryl ester synthesis. SCD1 −/−  mice have higher levels of free cholesterol in the skin, 
liver, and aorta compared to wild-type mice. In addition to this increase in free 
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cholesterol, lesion exposure to SFAs such as stearic acid induces ER stress, leading 
to macrophage apoptosis in atherosclerotic plaques (Anderson et al.  2012 ). Several 
ER stress transducers and their downstream effectors have been implicated in the 
development of atherosclerosis. However, better understanding of the molecular 
mechanisms behind this induction is required. Expanding knowledge of how lipids 
induce ER stress and atherosclerosis may lead to better treatment of atherosclerosis 
and associated vascular calcifi cation. 

  Fig. 7.3    ER stress signaling. Upon accumulation of unfolded proteins and lipids such as SFAs in 
the ER, three ER stress sensors are activated and initiate signal transduction events that control cell 
survival or death.  PERK  PKR-like ER kinase,  IRE1  inositol requiring enzyme 1,  ATF6  activating 
transcription factor-6,  eIF2α  eukaryotic translation initiation factor 2α,  ATF4  activating transcrip-
tion factor-4,  CHOP  C/EBP-homologous protein,  Ocn  Osteocalcin,  Osx  Osterix,  uXBP-1  unspliced 
X-box binding protein 1,  sXBP-1  spliced X-box binding protein 1,  TRAF2  TNF receptor- associated 
factor 2,  JNK  Jun N-terminal kinase,  Bax  Bcl-2-associated X protein,  Bak  Bcl-2 homologous 
antagonist/killer,  S1P  site-1 protease,  S2P  site-2 protease       
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 The PERK branch of the UPR is activated by SCD1 inhibition and the resulting 
accumulation of stearate (Masuda et al.  2012 ). In this UPR branch, PERK oligomer-
izes and phosphorylates itself before phosphorylating the α subunit of eukaryotic 
initiation factor 2 (eIF2). Phosphorylation of this α subunit renders eIF2α inactive, 
resulting in the inhibition of 80S ribosomal assembly and translation as well as a 
reduction in the protein load entering the ER. Although most protein translation is 
reduced when eIF2α is phosphorylated, translation of activating transcription 
factor- 4 (ATF4) increases because ATF4 possesses upstream open reading frames 
that are bypassed only when eIF2α is phosphorylated. ATF4 activates its targets 
including the pro-apoptotic CHOP and proteins involved in osteoblast differentia-
tion such as Osteocalcin (Ocn) and Osterix (Osx) (Masuda et al.  2012 ). During 
prolonged ER stress, CHOP induces apoptosis through BH3-only proteins, Bcl-2-
associated X protein (Bax), and Bcl-2 homologous antagonist/killer (Bak). Using in 
vitro models, our group has previously shown that SCD1 inhibition increases stearate, 
leading to increased ATF4 and CHOP expression through the PERK-eIF2α pathway. 
We found that stearate most potently induces vascular calcifi cation in preference to 
other fatty acids. ATF4 knockdown inhibits stearate-induced vascular calcifi cation. 
We therefore concluded that UPR activation of the PERK-eIF2α-ATF4 branch 
contributes to stearate-mediated vascular calcifi cation (Masuda et al.  2012 ). 

 A second branch of the UPR, the IRE1 branch, has also been shown to be acti-
vated by SFA accumulation (Wei et al.  2006 ). In this branch, IRE1 cleaves XBP-1, 
which then activates the transcription of UPR genes for chaperones, lipid synthesis, 
and ER-associated degradation of misfolded proteins. IRE1 can also recruit TRAF2, 
leading to the activation of caspase-12 and Jun N-terminal kinase (JNK). Apoptosis 
can then be activated either by the TRAF2-JNK pathway or by pro-apoptotic pro-
teins Bax and Bak, which are targets of IRE1 as well as CHOP (Choi et al.  2011 ). 
Our study showed that SCD1 inhibition induces the expression of other ER stress 
targets including spliced XBP-1 in vascular smooth muscle cells (Masuda et al. 
 2012 ). In studies on β cells, SFAs such as palmitate were shown to induce the IRE1 
pathway, leading to an increase in the IRE1-dependent JNK response (Ron and 
Walter  2007 ). Other studies have also confi rmed that both stearate and palmitate can 
induce the IRE1 branch of the UPR, leading to an increase in pro-apoptotic proteins 
such as caspase-3 (Wei et al.  2006 ). These changes were accompanied by increases 
in other UPR-related proteins including ATF4, CHOP, chaperone GRP78, and 
growth arrest and DNA damage-inducible protein (GADD34). Although β-cell 
ceramide synthesis has been correlated with fatty acid-induced apoptosis, this study 
showed that UPR activation by stearate and palmitate could occur independently of 
de novo ceramide synthesis. Taken together, these studies demonstrate that another 
UPR branch, the IRE1 pathway, can also mediate the effects of SFAs on apoptosis. 

 PERK and IRE1 branches of the UPR have been found to link lipotoxic signals 
to atherosclerosis and other diseases (Scull and Tabas  2011 ; Erbay et al.  2009 ). ER 
stress signaling is signifi cantly activated in animal models of atherosclerosis and 
other lipid-mediated disorders and human atherosclerotic lesions (Myoishi et al. 
 2007 ; Duan et al.  2009 ). CHOP defi ciency decreases atherosclerotic plaque lesions, 
cell death lesions, and vascular remodeling in hyperlipidemic ApoE −/−  and 
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LDLR −/−  mice (Thorp et al.  2009 ; Gao et al.  2011 ). Chemical chaperones such as 
4-phenyl butyrate and taurine-conjugated chenodeoxycholic acid were shown to 
reduce atherosclerotic lesion area, accompanied with reduced ER stress (Erbay 
et al.  2009 ). In a study examining macrophage ER stress, toxic lipids such as oxi-
dized LDL and palmitate (C16:0) induced ER stress through a macrophage lipid 
chaperone called fatty acid-binding protein-4 (aP2). Their results suggested that 
toxic lipids accumulate and upregulate aP2, which then inhibits de novo lipogenesis 
and leads to activation of UPR-mediated apoptosis (Erbay et al.  2009 ). Other stud-
ies have observed the induction of ER chaperone GRP78, PERK, and CHOP, fol-
lowing lipid accumulation in mouse and rat models on high fat diets (Brookheart 
et al.  2009 ). In rat models of nonalcoholic fatty liver disease, high SFA diets and 
prolonged ER stress have also been shown to activate caspase-3, a crucial death 
protease that mediates apoptosis. Collectively, these studies suggest that dyslipid-
emia plays a pivotal role in inducing ER stress and apoptosis. Although links 
between dyslipidemia and ER stress have been found, mechanisms by which SFAs 
induce ER stress have not been fully elucidated. Several studies have proposed 
potential mechanisms. In a study using SCD1 −/−  mice on very low fat diets, SCD1 
loss led to increases in spliced XBP-1, CHOP, and ATF3 (another ER stress-induced 
transcription factor) in the liver. In this study, Flowers et al. postulated that SCD1 
inhibition activates ER stress by altering hepatic fatty acid composition of cellular 
membranes, leading to impaired function of membrane transport proteins (Flowers 
et al.  2008 ). Another explanation attributes the effects of SFAs on ER stress to 
unsaturated fatty acid depletion, which may contribute to oxidative stress (Flowers 
et al.  2008 ). Our studies have shown that the SFA stearate must be converted to its 
CoA conjugated form (stearoyl-CoA) in order to activate ER stress and vascular 
calcifi cation (Masuda et al.  2012 ). We hypothesize that stearoyl-CoA is incorpo-
rated into an ER membrane lipid. This altered membrane composition is then sensed 
by ER stress transducers, which activate the UPR. Although current evidence links 
SCD1 defi ciency to ER stress, the necessity for defi ning mechanisms behind ER 
stress induction warrants further investigation. 

 In addition to SFAs themselves, downstream products of fatty acids such as 
phospholipids have been shown to regulate ER stress. For example, previous studies 
have demonstrated that phospholipids play a role in activating ER stress (Testerink 
et al.  2009 ; Van Der Sanden et al.  2003 ; Fu et al.  2011 ). The two most abundant 
phospholipids in the ER membrane are phosphatidylcholine (PC) and phosphatidyl-
ethanolamine (PE). When lipogenesis or dietary lipid intake is increased, PC is the 
most common phospholipid component for packaging and storing lipid droplets and 
lipoproteins. In addition, SCD inhibition changes intracellular PC and PE levels 
(Dobrzyn et al.  2005 ). PC synthesis is catalyzed by choline-phosphate cytidylyl-
transferase A (PCTY1a), while PC to PE conversion is regulated by phosphatidyl-
ethanolamine N-methyl transferase (PEMT) (Fu et al.  2011 ). In ER samples isolated 
from the obese liver tissue of leptin-defi cient mice, the PC/PE ratio was higher than 
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in the control. Since the PC/PE ratio in lean controls was the same as that found in 
their diet, the increased PC/PE ratio in obese hepatic ER seemed to result from de 
novo lipogenesis rather than from dietary sources (Fu et al.  2011 ). Similar to free 
cholesterol, higher PC levels in ER membranes were shown to inhibit the activity of 
sarco/endoplasmic reticulum calcium ATPase (SERCA), a transport protein that 
maintains calcium homeostasis. Altered calcium levels caused by SERCA dysfunc-
tion impaired protein-folding chaperones such as BiP and calnexin, and thus acti-
vate ER stress. This upregulation of ER stress was evidenced by IRE1α and eIF2α 
phosphorylation, accompanied by increased expression of ER chaperones GRP78 
and GRP94. Conversely, a decreased PC/PE ratio caused by PEMT suppression also 
led to IRE1α and eIF2α phosphorylation and the induction of CHOP, homocysteine- 
inducible ER stress-inducible protein (HERP), and Der1-like domain family mem-
ber 2 (DERL2). Other studies have also implicated the role of PC in the activation 
of ER stress. The active spliced form of an IRE1 target, XBP-1, was found to be 
associated with ER expansion and increased PC synthesis in fi broblasts in vitro. 
Collectively, these studies seem to indicate that an overabundance of PC is integral 
to the development of ER stress (Testerink et al.  2009 ; Van der Sanden et al.  2003 ). 
These studies suggest that an alteration of PC/PE ratio in the ER membrane contrib-
utes to ER stress mediated by SCD inhibition and SFA overload.  

    Conclusion 

 In this chapter, we have discussed specifi c pathways by which SCD1 and its 
substrates, SFAs, contribute to infl ammation and apoptosis (Fig.  7.4    ). The SCD1 
activity is tightly regulated mostly at the transcription level. However, once this 
tight regulation is interrupted, the induction of SCD1 expression increases levels of 
oleate, which is a preferred substrate for triglyceride and cholesteryl ester synthesis. 
Conversely, substantial reduction of SCD1 increases levels of intracellular SFAs 
such as stearate and palmitate, leading to TLR4 and ER stress activation. ER stress 
is induced by abnormal ratios of lipid species such as saturated/unsaturated fatty 
acids, free/esterifi ed cholesterol, and PC/PE, leading to apoptosis frequently found 
in atherosclerotic lesions. These ratios can be regulated through the modulation of 
SCD1 activity. Thus, composition and ratio of lipid species contributing to SFA- 
mediated ER stress remain to be determined through further investigation. Turning 
to the broader perspective of disease pathology, we see that the development of 
atherosclerosis is characterized by all of these factors: abnormal lipid accumulation, 
TLR4-mediated infl ammation, and ER stress-mediated apoptosis. These factors 
clearly suggest that SCD1, its SFA substrates, and its MUFA products play a multi-
faceted role in the development of vascular diseases such as atherosclerosis and 
vascular calcifi cation.
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