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Abstract The methodology proposed in this chapter aims to address the link

between the evolution of product feature relevance and the implications to product

platform and product family design. By quantifying relevant/irrelevant product

features to be included in next-generation product platform design, designers can

identify the stand-alone or platform sharing components required to achieve desired

product functionality. A data mining algorithm is introduced that uses time series

data (consisting of product features) to determine the standard, nonstandard, and
obsolete product features in the design of next-generation products. Product

features are then mapped to engineering components/modules by employing data

mining Natural Language Processing techniques that quantify the functionality

requirements that are needed for a given set of product features. The goal of this

work is to demonstrate the value of incorporating evolving product feature trends in

the market space directly into product platform and product family sharing

decisions.

6.1 Introduction

The increase in globalization and the prevalence of low-cost communication

infrastructure present ever-increasing challenges for enterprise decision makers

aiming to satisfy customer needs. In recent years, companies have had to consider

the impacts of a socially connected digital age in shaping customer preferences and

expectations in the market space (Tucker and Kim 2011a). The evolution of product

preferences in the market space can be highly dynamic and difficult to capture using

traditional customer-driven frameworks employed by design engineers. Mass cus-

tomization has been proposed as a viable approach to accommodate the diverse
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product preferences in the market space. From an engineering perspective, how-

ever, mass customization presents the added challenge of establishing design and

manufacturing processes to meet the needs of mass customization. Product family

design is an enterprise-driven strategy aimed at mitigating the added costs that arise

due to product customization. The two design strategies that have been proposed in

the product family design literature are the Bottom-Up approach and the Top-Down
approach (Simpson et al. 2001). Commonality indices proposed in the literature

investigate component/module sharing strategies for existing products within a

product family and are well suited for Bottom-Up product family design. In

Top-Down product family design, a product family emerges from an existing

market-driven need. The data mining component classification framework in this

work will enable designers to identify components that are well suited for sharing in

the product family design process through the use of large-scale market-driven

product feature preference data.

6.2 Related Work

This section presents work relevant to the three main aspects of this research: (1)

Data mining-driven product design, (2) Translating customer needs into engineer-

ing targets, and (3) Product platform and sharing decisions.

6.2.1 Data Mining-Driven Product Design

Data Mining-Driven Product Design is an emerging field of research aimed at

incorporating large-scale data in the design of next-generation products (Braha

2001). Agard and Kusiak employ data mining association rules to cluster product

functions in the design of product families (Agard and Kusiak 2004). Tucker and

Kim (2008) employ Naive Bayes Classification techniques that enable designers to

identify novel product feature combinations in a high dimensional product feature

space. Moon et al. (2006) employ data mining Fuzzy c clustering techniques as a

platform identification strategy in product family design. Data Mining techniques

have been employed by Tucker and Kim to determine the optimal product feature

combination for product family optimization (Tucker and Kim 2009; Tucker et al.

2010). Moon proposes a Data Mining framework for extracting design knowledge

for product platform and variant design (Wang 2008).

While the aforementioned data mining techniques proposed in the literature aim

to address product family design problems, they are static in nature and primarily

consider large-scale data at an instant in time, hereby omitting the changes in

product feature preferences that may occur in the market space over time. In

order to accommodate evolving product trends in the market space, Tucker and

Kim propose a temporal product feature classification algorithm that classifies
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product features as Standard, Nonstandard, or Obsolete, based on their time series

predictive power (Tucker and Kim 2011b). The classification of product compo-

nents will enable design engineers to determine when to retire certain components

(classified as obsolete in the metric), include in the design of a product platform

(classified as standard in the metric), or aid in the creation of modules for product

variants (classified as nonstandard in the metric).

6.2.2 Translating Customer Needs into Engineering Targets

Quality function deployment (QFD) is a well-established approach employed in the

design community for translating customer preference requirements into engineer-

ing design targets/functional specifications (Pullmana et al. 2002). A house of

quality (HOQ) would be designed, mapping the customer requirements into tangi-

ble engineering design targets (Bouchereau and Rowlands 2000). Customer

preferences towards certain product features can be weighted through feature

rankings acquired through surveys or focus groups (Kwong and Bai 2003). As a

result, a QFD matrix can be used to depict the interdependence between customer

requirements and the engineering metrics (EM).

The QFD model is highly dependent on the domain expert (engineers) translat-

ing the customer wants into engineering metrics. As the complexity of modern

technology increases, so does the availability of product features and customization

options. The increased product feature space (high dimensional feature space) and

the highly dynamic nature of many consumer markets today make traditional

translation of customer preferences into engineering metrics cumbersome. Further-

more, the expertise of these techniques is limited to the domain expert(s), making

the process highly dependent on a subset of the product development team. By

employing a data mining-driven approach to customer preference modeling and

then translating the knowledge gained into tangible engineering metrics, design

engineers will be able to incorporate market-driven trends during the translation of

customer wants into engineering specifications. Instead of relying on survey or

focus group feedback in an effort to quantify the evolution of product preferences in

the market space, designers can employ the data mining methodology proposed in

this chapter as a means of generating predictive models about evolving product

feature preferences that can then be used for product family optimization.

6.2.3 Product Platform and Sharing Decisions

A product platform can be defined as a set of parameters/features or components

that are shared across products within a product family (Simpson et al. 2001).

Meyer and Lehnerd provide guidelines for product platform development and

encourage companies to design products around a shared platform, rather than
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subsequent independent designs (Meyer and Lehnerd 1997). Commonality refers to
the level of sharing of components/subassemblies, processes, etc. across different

products within a family of products (Boas 2008). Commonality therefore has the

ability of reducing manufacturing and design costs (by sharing the same component

across different products), while concurrently providing the level of product

diversity expected within the market space. The trade-off between product

commonality and product diversity has been studied extensively in the literature

and is discussed in Simpson et al. (2001). de Weck highlights the challenges that

exist in determining the extent of product platforming in product family design

(Simpson et al. 2006).

Several commonality metrics have been proposed in the literature in an effort to

quantify the effects of platform sharing decisions on product family design. For

example, Collier proposed the degree of commonality index (DCI) as a way to

measure the ratio of common components existing among products within a

product family to the total number of components (Collier 1981). A modified

version of the DCI called the total constant commonality index (TCCI) has absolute

bounds (0–1), hereby making commonality comparisons within and between prod-

uct families more quantifiable (Wacker and Trelevan 1986). The commonality

index (CI) proposed by Martin and Ishii measures the ratio of unique components

in a product family and the total components in a product family (Martin and Ishii

1996, 1997). The Percent Commonality Index (%C) measures product commonal-

ity within a shared product platform, rather than across product families using a

weighted sum of multiple variables for a total commonality scale ranging from

0 (no commonality) to 100 (complete commonality) (Siddique et al. 1998). Another

extension of the DCI called the component part commonality index (CI(C)) takes

into account factors such as the cost of each component, product volume, and

quantity per operation in determining the effects of component sharing decisions on

a product family (Jiao and Tseng 2000). The product line commonality index (PCI)

is a departure from traditional commonality indices that penalize broad product

variation and instead, penalizes products with nonunique components within a

product family (Kota et al. 2000). The generational variety index (GVI) proposed

by Martin and Ishii measures the level of redesign work needed for future iterations

of a product and helps designers determine which components may change over

time (Martin and Ishii 2002). The comprehensive metric for commonality (CMC) is

a data intensive approach to product commonality based on the components’, size,

geometry, material, manufacturing process, assembly, cost, and allowed diversity

in the family (Thevenot and Simpson 2006). Alizon et al. (2009) propose a

commonality diversity index (CDI) that compares components relating to a specific

function(s) and investigates the trade-off between commonality and diversity based

on the product family’s functional requirements. With a plethora of commonality

metrics proposed in the literature, Simpson et al. (2012) approach the product

platforming problem by proposing an integrative approach that incorporates a

market segmentation grid, the GVI, design structure matrix (DSM), commonality

indices, mathematical modeling and optimization, along with multidimensional

data visualization tools.
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The methodology proposed in this chapter aims to address the link between the

evolution of product feature relevance and the implications to product platform and

product family design. Specifically, this work aims to:

• Translate a product feature classification from the market-driven domain to the

detailed engineering domain.

• Determine the optimal product platform sharing decisions based on the market-

driven evolution of product features and customer preferences.

6.3 Methodology

The methodology proposed in this work (Fig. 6.1) aims to guide product family

design by linking Temporal Market-Driven Responses relating to product feature

trends with Engineering Design Optimization objectives such as product platforming

and commonality decisions. As presented in Sect. 6.2.3, there are well-established

metrics for evaluating commonality decisions in product family design. However,

temporal, market-driven forces are typically not included in these models.

Market-Driven Responses can be a critical design input to product family design

by quantifying the evolution of product features in the market space and identifying

product features that are Standard, Nonstandard, or Obsolete. In the proposed

methodology, the Product Domain in the Market-Driven Response step refers to

the results of a data mining-driven approach to modeling the relevant/irrelevant

product features across a wide array of products existing in that domain.

6.3.1 Level 1: Temporal Market-Driven Preferences

Level 1 of the proposed methodology is based on a knowledge discovery in

databases (KDD) framework. KDD is the umbrella term used to describe the

Fig. 6.1 Linking market-driven response with engineering design optimization
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sequential steps of Data Acquisition ! Data Selection and Cleaning ! Data
Transformation ! Data Mining/Pattern Discovery ! finally leading to the Inter-
pretation and Evaluation of the resulting model. This data-driven approach to

modeling will enable designers to understand the temporal changes in the market

space relating to product preferences and use this knowledge in the design of next-

generation product families. The sequence of the KDD steps will now be

expounded upon:

6.3.1.1 KDD Step 1: Data Acquisition

The data in the proposed methodology represents structured, time series data that

exists within a company’s database or acquired online through publicly available

customer product preference websites using automated data acquisition techniques

(Tucker and Kim 2011a). The two types of data employed in the proposed method-

ology are structured and unstructured data.

Structured data typically refers to data that can be conceptualized using an

Entity-Relationship structure and easily stored in a Database Management System

(Chen 1976). The Entity-Relationship Model is an example of the format of

structured data where the entity (e.g., product domain) is related to certain features

(e.g., product features).

Figure 6.2 is an example of time series structured data suitable for the proposed

methodology, where each column (1, P) at time ti is defined by a unique product

feature ( j). The last column containing the Class variable represents the dependent/
output variable which is influenced by the levels/values of the product features.

Examples of a class variable could be a market price segment (>$199, $99–$199,

$0–$99) or a purchasing decision (purchased, not purchased), etc. The proposed

methodology assumes that the product features ( j) can be categorical or numeric in

nature, while the class variable is considered categorical for the subsequent data

mining algorithm. In the proposed methodology, structured data will be used to

Fig. 6.2 Time series product data containing product features and class
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quantify the relevance of product features in the market space over time (Level 1:

Temporal Market-Driven Preferences), which will then help guide Product Family

decisions in Level 2 (Engineering Design Objective).

Unstructured data on the other hand refers to data that is not well suited for

DBMS due to a lack of a well-formed entity-relation model (Buneman et al. 1996).

Unstructured data primarily includes text data found in documents, web pages,

numeric values, etc. An example of unstructured data would be a product review

containing both textual and numeric information.

As can be seen in Fig. 6.3, the information contained in textual data does not

have a well-defined feature/class relation found in Fig. 6.2, hereby making tradi-

tional data mining classification algorithms ill-suited for such data. However,

unstructured data contains extremely valuable information regarding the domain

of investigation and can be mined to quantify patterns using Natural Language

Processing techniques that will be presented in the Data Mining step in the KDD

process. In the proposed methodology, Natural Language Processing will be

employed to understand the relation between product feature and component

function in Level 2 (Engineering Design Objectives).

6.3.1.2 KDD Step 2: Data Selection and Cleaning

The second step in the KDD process aims to minimize noise in the data set that may

arise due to missing data values, erroneous/ambiguous features, etc. Data selection

and cleaning techniques should be employed for each data type used in the

proposed methodology. For categorical features/class found in the structured data
in Level 1, missing/erroneous values can be addressed by either replacing them

with global constant values or the most probable values (based on the frequency of

occurrence of a particular feature/class value) (Han et al. 2011). For unstructured
data, used in Level 2 of the methodology, data selection and cleaning techniques

may include text grammatical correction processing for nonword error detection,

isolated-word error correction, and context-dependent word correction (Kukich

1992). For example, word corrections could be as straightforward as correcting

“cel phne ! cell phone” or more complex in trying to determine context and

correct “real time whether updates ! real time weather updates.”

Pros:
Lightweight
Vivrant4.8 inch display
4G Connectivity

Cons:
May be oversized for some
SD card does not come with the phone

Fig. 6.3 Unstructured data

of a cell phone product

review
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6.3.1.3 KDD Step 3: Data Transformation

Step 3 of the KDD process is where the data is transformed into acceptable forms

for the subsequent Data Mining/Pattern Discovery (Step 4) process. For structured
data for example, binning techniques can help smooth data values of a feature by

first sorting and placing feature values in predefined bin categories, where each bin

category can be represented by the mean of the feature values in the specific bin

(Han et al. 2011). For unstructured data, data transformation techniques may

include Stemming; a process that aims to reduce morphological variants of words

to their root form so that word variants can be mapped together (Paice 1994). For

example, the words charger and charging both have the same root word charge,
which could refer to a phone charger in product design. Data transformation

techniques will reduce the noise caused by redundant feature values or words in a

large data set.

6.3.1.4 KDD Step 4: Data Mining/Pattern Discovery

The Data Mining/Pattern Discovery step in the KDD process is where statistical/

machine learning algorithms are employed to the transformed data (from Step 3) in

order to discover novel, previously unknown knowledge about the domain of

interest. The methodology begins with Phase 1, the iterative evaluation of the

relevance of product features to the final class variable. Phase 2 presents the

classification of the product features deemed irrelevant by the data mining predic-

tive model that are then classified as Standard, Nonstandard, or Obsolete. The
subsequent product family optimization step is guided by the predictive data mining

results that are based on the temporal market-driven product preference data.

Phase 1: Iterative Feature Evaluation

The feature classification metric is modeled based on a time series decision tree

induction algorithm that captures the emerging product feature trends over time

(Tucker and Kim 2011b). Phase 1 in Fig. 6.4 sequentially tests each product

feature’s entropy (at each iteration of the algorithm) using n time-stamped data

sets. The calculation of the entropy values are used to rank each product feature’s

relevance to the class variable and also used as the test statistic to classify irrelevant
product features in phase 2 of the methodology. In this work, the term relevance is
defined as a product feature’s relationship to the class/output variable.

Given n time intervals, t1 to tn, each time interval ti contains a training data set T.
For training data set T at time ti, each of the feature is tested in order to determine

that feature’s ability to reduce the uncertainty of the class variable (please see

Fig. 6.2). There are several metrics proposed in the literature for evaluating a

feature’s relation to a class variable including the Gini Index, Gain Ratio,

154 C.S. Tucker



Likelihood-Ratio Chi-Squared Statistics, DKM Criterion, Twoing Criterion, etc.

(Maimon and Rokach 2005). The methodology proposed in this work employs the

Gain Ratio metric, although the algorithm is not limited to this metric.

TheGain Ratio is a well-established feature evaluation metric for determining the

best split of the data set at each iteration. The assumption is that both the class variable

and product features have values that aremutually exclusive of one another. Also, it is

assumed that the variables are categorical or if continuous, can be discretized using

existing statistical discretization techniques (Dougherty et al. 1995). The goal of the

feature classification algorithm is to iteratively test each product feature for its ability

to reduce the uncertainty/randomness of the class variable, generate a decision tree

model, and then classify the features that do not show up in the resulting decision

tree model as Standard, Nonstandard, or Obsolete.
Given a training data T set at time ti, each with n features (continuous or discrete)

and a class variable ci, the Gain Ratio is defined as (Quinlan 1992):

Gain RatioðXÞ ¼ EntropyðTÞ � EntropyXðTÞ
SplitðTÞ (6.1)

where:

EntropyðTÞ ¼ �
Xq

i¼1
pðciÞ � log2pðciÞ (6.2)

p (ci) represents the probability (relative frequency) of a class variable ci in the

training data set T.

q: represents the number of mutually exclusive class values within the data set.

EntropyXðTÞ ¼ �
Xj

j¼1

Tj
T
� EntropyðTjÞ (6.3)

Tj: represents a subset of the training data T that contains one of the mutually

exclusive outcomes of a product feature. For example, if product feature X is

Fig. 6.4 Data Mining model generation based on time series product feature data
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wireless connectivity containing 3 mutually exclusive outcomes (WiFi, Bluetooth,
NFC), then Tj represents all the instances in T that contain one of those outcomes.

J: represents the number of mutually exclusive outcomes for a given feature.

The denominator of the Gain Ratio metric, Split (T ) normalizes the numerator,

hereby reducing the bias of the metric towards features with a large number of

mutually exclusive outcomes (Tj).

SplitðTÞ ¼ �
Xj

j¼1

Tj

T
� log2 Tj

T
(6.4)

From time periods t1 to tn, the Gain Ratio values for each product feature are

computed and stored. A time series predictive model is then use to predict which

product feature will have the maximum Gain Ratio values at future time periods

tn+k, where k represents the length of time before the next generation of products are

to be launched (Tucker and Kim 2011b). Therefore feature Fi, appearing at the top

of the Data Mining Predictive model in Fig. 6.4, represents the product feature with

the highest predictedGain Ratio, given a history of storedGain Ratio statistics from
time periods t1 to tn. Product feature Fp at iteration 2 represents the product feature

with the highest predicted Gain Ratio, given a history stored Gain Ratio statistics

from time periods t1 to tn. The algorithm continues to partition the original data time

series data sets until a homogeneous class distribution exists for each leaf of the

Data Mining Predictive Model, as seen in Fig. 6.4. The resulting model is

represented as a decision tree, which can be read as a sequence of decision rules

by traversing down each unique path of the tree. The resulting model will help

design teams determine the specific product feature combinations that yield a

particular outcome in the market space (e.g., price).

Phase 2: Model Generation and Irrelevant Feature Classification

Once the Data Mining Predictive Model has been generated from Phase 1, Phase

2 of the methodology (Fig. 6.5) introduces a technique to classify irrelevant product
features based on the evolution of their importance to future product launches.

A challenge in traditional engineering decision support models has been the under-

standing of the relationship between product features with low model relevance and

Fig. 6.5 Phase 2: Model generation and irrelevant feature classification
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the effects on product family design decisions. Phase 2 in Fig. 6.5 overcomes these

challenges by utilizing the time history entropy values (calculated and stored at

each iteration in Phase 1) to determine the best course of action for irrelevant
product features. Product feature irrelevance is defined simply as product features

that do not show up in the resulting predictive model in Fig. 6.5. These product

features are classified as either a Standard Feature, Nonstandard Feature, or an
Obsolete Feature, with the pseudocode for the algorithm provide below (Tucker

and Kim 2011b).

Start: Iteration j ¼ 1

1. If predicted Gain Ratio of Feature Fi is not the highest, Feature Fi is considered
irrelevant

2. Employ Mann–Kendall (MK) trend test for Feature Fi

a. If MK τ is negative (with p-value < alpha), irrelevant classification
¼ Standard

b. Else If MK τ is positive (with p-value < alpha), irrelevant classification
¼ Obsolete

c. Else If MK τ is positive/negative (with p-value > alpha), irrelevant classifi-
cation ¼ Nonstandard

3. While data set/subset does not contain a homogeneous class

a. Split the data set into subsets based on the number of mutually exclusive
values of the feature with the highest Gain Ratio from Step 2

b. j ¼ j + 1 and revert to Step 2 for each data subset

4. End Tree, Classify Irrelevant Feature Fi based on highest variable value (SF

t¼1,. . .,n; NF t¼1,. . .,n; OFt¼1,. . .,n)

In order to classify product features, the emerging predictive power of each

product feature must be quantified over time (i.e., each product feature’s relevance

to the class variable over time as seen in Fig. 6.5). This is achieved by employing

the nonparametric Mann–Kendall trend test, mathematically represented as

(Kendall and Gibbons 1990):

τ ¼ S
1
2
nðn� 1Þ (6.5)

where

S ¼
Xn�1

i¼1

Xn

j¼jþ1
sgnðxj � xiÞ (6.6)

n: represents the total number of time series data points

xj: represents the data point one time step ahead

xi: represents the current data point
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sgn ¼
1 if ðxj � xiÞ > 0

0 if ðxj � xiÞ ¼ 0

�1 if ðxj � xiÞ < 0

8<
: (6.7)

TheMann–Kendall beginswith a null hypothesis of no trend and rejects or does not

reject the null hypothesis based on the resulting p-value and level of significance (α).
The product feature classification framework relies on the results of the

Mann–Kendal trend test to quantify the magnitude of the relationship between a

given product feature and the output (class) variable. The 3 product feature classi-

fication categories are provided below with an application example in Fig. 6.6,

illustrating the how the product feature classification could be used to guide

enterprise level product family design decisions.

Standard Feature (SF)

A feature Fs is defined as standard if it does not show up in the final decision tree

model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy statistics

using data from t1,. . .tn (acquired at each iteration of the model generation process)

reveal a monotonically decreasing trend. The Mann–Kendall trend detection test is

used as the statistical measure to detect trends. If a monotonically decreasing trend

is detected by the Mann–Kendall trend test, this means that despite Feature Fs’s

absence from the decision tree model in Fig. 6.5, it is consistently gaining relevance

over time and should therefore be considered as a candidate to be included in the

Fig. 6.6 Examples of product feature classification in consumer electronics
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product platform decision in Level 2 of the methodology (Engineering Design

Optimization level). The Mann–Kendall would return a negative τ and a p-value

below the significance level (α).
A binary variable (SF) is defined for the Standard Feature classification that

represents the results of the Mann–Kendall trend test at each iteration j. That is, if
the Mann–Kendall trend test determines that product feature Fs has a monotonically

decreasing entropy trend at iteration j, the binary variable (SF) assumes a value of 1,

otherwise 0. Each iteration of the Standard Feature classification SFj is weighted

based on the number of supporting instances in the data set (Tj/T)

SFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
SFj � Tj

T

� �
(6.8)

A product feature with a Standard classification could be considered for the

product platform integration during the product family design process. The engi-

neering components providing the functionality for this product feature could be

shared across multiple products within the product family. For example, Fig. 6.6

shows 2 product features that were integrated into the 1st-generation Xbox platform:

Internal Hard Drive and a DVD player. Other video game manufacturers such as

Sega opted not to include DVD player functionality as a standard product feature in

their video game platform (Sega Dreamcast) which contributed to the failure of the

system, and ultimately the company as a whole (Aoyama and Izushi 2003). Under-

standing when to make product features standard (part of the product platform) or

nonstandard (modular design that can be replaced/removed) is extremely critical to

market success as will be seen in the following classification definitions.

Nonstandard Feature (NF)

A feature Fn is defined as Nonstandard if it does not show up in the final decision

tree model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy

statistics using data from t1,. . .tn (acquired at each iteration of the model generation

process) reveal no discernible trend pattern. The Mann–Kendall trend detection test

is used as the statistical measure to detect trends. If no discernible trend is detected

by the Mann–Kendall trend test, this means that despite Feature Fn’s absence from

the decision tree model in Fig. 6.5, Feature Fn exhibits inconsistent relevance

patterns through time and should therefore be investigated during the detailed

Engineering Design process (Level 2 of the methodology). The Mann–Kendall

trend test would return a p-value above the significance level (α) (which would

mean that we do not reject the null hypothesis of no trend). A binary variable (NF)
is defined for the Nonstandard Feature classification that represents the results of

the Mann–Kendall trend test at each iteration j. That is, if the Mann–Kendall trend

test determines that product feature Fi has no discernible entropy trend at iteration j,
the binary variable (NF) assumes a value of 1, otherwise 0. Each iteration of the

Nonstandard Feature classification NFj is weighted based on the number of

supporting instances in the data set (Tj/T ).
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NFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
NFj � Tj

T

� �
(6.9)

As opposed to having product variants share the same component addressing a

given Nonstandard product feature, designers should avoid component sharing

decisions within a product family, and instead develop unique components for

each product variant in the product family. The engineering components providing

the functionality for this product feature could therefore subsequently be replaced,

upgraded, or removed altogether if the product feature eventually becomes obsolete

in the market space. Figure 6.6 shows 2 product features of the 2nd-generation

Xbox (Xbox 360) that had a modular design that was not shared between product

variants within a product family: HD-DVD player and Removable External Hard
Drive. During the video game console wars in the mid-2000s, two competing media

formats were in direct competition with one another: the Blu-ray and HD-DVD
(Brookey 2007). With the uncertainty of a clear winner in the market space,

Microsoft opted for a modular add-on HD-DVD device (see Fig. 6.6) that could

seamlessly integrate with the Xbox 360 product variants in the market space if High

Definitionmedia consumptionwas desired by consumers. The add-onHD-DVDwas

discontinued soon after it was clear that Sony’s Blu-ray format had won the next-

generation media platform wars (Daidj et al. 2010), making the HD-DVD modular

device for the Xbox 360,Obsolete. IfMicrosoft hadmade the decision early on in the

Xbox 360 product design process to integrate the HD-DVD player into the product

platform, shared across multiple product variants, an entire redesign of the Xbox

360 system may have resulted after the HD-DVD product feature failed in the

market space. The Removable External Hard Drive also allowed different variants

of the Xbox 360 to have different storage capacities (20 GB, 60 GB, 120 GB, etc.),

allowing greater customization in the market space, while keeping the core

Xbox 360 relatively unchanged (Microsoft Inc. 2007; Farkas 2009).

Obsolete Feature (OF)

A feature Fo is defined as obsolete if it does not show up in the final decision tree

model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy statistics

using data from t1,. . .tn (acquired at each iteration of the model generation process)

reveal a monotonically increasing trend. The Mann–Kendall trend detection test is

used as the statistical measure to detect trends. If a monotonically increasing trend

is revealed by the Mann–Kendall trend test, this means that despite Feature Fo’s

absence from the decision tree model in Fig. 6.5, it is consistently losing relevance

over time and should therefore be investigated during the detailed Engineering

Design process in Step 3. The Mann–Kendall trend test would return a positive τ
and a p-value below the significance level (α). A binary variable (OF) is defined for
the Obsolete Feature classification that represents the value results of the

Mann–Kendall trend test at each iteration j. That is, if the Mann–Kendall trend

test determines that product feature Fo has a monotonically increasing entropy trend
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at iteration j, the binary variable (OF) assumes a value of 1, otherwise 0. Each

iteration of the Obsolete Feature classification OFj is weighted based on the number

of supporting instances in the data set (Tj/T ).

OFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
OFj � Tj

T

� �
(6.10)

The final classification of a feature (that does not show up in the decision tree

model in Phase 2 of Fig. 6.5) is achieved by summing across all iterations of each of

the feature classification variables (Standard, Nonstandard, and Obsolete) and

selecting the variable with the highest value.

A product feature with an Obsolete classification indicates that it has little

market-driven significance over time. The engineering components providing the

functionality for this product feature can be considered candidate components to

be removed in next-generation product designs. Figure 6.6 shows 1 product feature

that was initially part of the 1st-generation Xbox platform, characterized as Obso-
lete in the 2nd-generation Xbox platform. The 2nd-generation Xbox platform

(Xbox 360) launched in 2005 without an internal hard drive, making this product

feature obsolete to the Xbox 360 platform. Microsoft opted for modular hard drives

(External HD in Fig. 6.6) that could be replaced or upgraded at a certain price

(Farkas 2009). This enabled Microsoft to discontinue an obsolete component (the

internal hard drive), while creating a product family of Xbox 360 s that served

different consumer market segments based on the technical capabilities of the Xbox

360 platform [platforms came with no External Hard Drive, 20 GB External Hard

Drive and 100 GB Hard Drive (Farkas 2009)].

The methodology proposed in this chapter aims to address the link between the

evolution of product feature relevance and the implications to product platform and

product family design. Specifically, this work aims to:

• Translate a product feature classification from the market-driven domain to the

detailed engineering domain.

• Determine the optimal product platform sharing decisions based on the market-

driven evolution of product features and customer preferences.

6.3.2 Level 2: Engineering Design Optimization

6.3.2.1 Mapping Product Feature Space to Engineering Design Space

From the resulting Data Mining Predictive Model from Level 1 of the methodology,

product features will either:

1. Be part of the predictive model and therefore considered relevant product

features.
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2. Be omitted from the predictive model and be classified as:

(a) Standard

(b) Nonstandard

(c) Obsolete

Level 2 of the product feature classification framework plays a vital role in

mapping market-driven, product feature preference trends to engineering design

specifications. The ability of a product family to address market-driven demand is

highly dependent on the evolution of product feature preferences over time. While

component commonality decisions in product family design aim to provide the

optimal configuration of product platforms within a product portfolio, mathematical

models often omit evolving product feature preferences in the market space, hereby

increasing the risk of product failure when launched. Unlike individually designed

products, the market failure of a product family (e.g., due to an unwanted product

feature) could result in the redesign of an entire product family (as opposed to just a

single product) due to the components shared between product variants. In many

real life scenarios, the characteristics of the product feature space (as defined by the

customer) significantly differs from the technical characteristics of the engineering

product design space. For example, a large-scale data set containing product

preference data may contain a product feature such as 8 h battery life. For the
same product feature however, the technical components used to achieve such

functionality of a product’s feature would be described by more technical terms

such as 60 Whr 6-Cell Lithium-Ion Battery (Dell Inc. 2012).
The aim is to first map the Standard, Nonstandard, and Obsolete product feature

classifications to the Functions of a component(s) in a product family, as shown in

Fig. 6.7. The Standard classification includes all features included in the Data

Mining Model, in addition to the SF irrelevant feature classifications. The Non-
standard classification includes all features classified as NF, and the Obsolete
classification includes all features classified as OF. It is important to note that a

feature can have one and only one classification.

The textual descriptions of each product feature will then be compared with the

textual description of all functions in a product family to determine which

components functions are providing the market-driven product preferences. Each

component function Fi existing in a product family is assumed to be defined by a

synonym set {s1,s2,. . .,ss} that describes its technical purpose to the product/prod-

uct family as a whole. A product feature-function matrix is then created as

Table 6.1.

Latent Semantic Analysis is employed to make semantic comparison between

the vector of terms characterizing a product feature and those of a product function.

LSA not only compares the original vector of textual terms but also their semantic
meaning and makes the assumption that terms with similar meanings will occur

close to each other. Therefore, despite the fact that a product feature term “charge”

and the product function “battery” are not identically the same, LSA may quantify

the related meaning between the two.

Table 6.1 can be represented by one of two vectors
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• Semantic term vector (each row of Table 6.1):

tTi ¼ ½ci;1 . . . ci;n� (6.11)

• Product feature-function Comparison (each column of Table 6.1):

fj ¼

C1;j

:
:
:

Cm;j

2
66664

3
77775 (6.12)

Fig. 6.7 Component function identification

Table 6.1 Product feature-function comparison matrix

Product feature P Product function 1 . . . Product function F

Term 1 C1,1 C1,2 . . . C1,n

Term 2 C2,1 C2,2 . . . C2,n

⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . ⋮
Term T Cm,1 Cm,2 . . . Cm,n
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Table 6.1 can be defined as X, where ci,j represents the frequency/occurrence of a
particular term in the description of either a product feature or product function.

X ¼
c1;1 � � � c1;n

..

. . .
. ..

.

cm;1 � � � cm;n

2
64

3
75 (6.13)

The singular value decomposition (SVD) of X can therefore be represented as

(Deerwester et al. 1990):

X ¼ T0S0D
0
0 (6.14)

where

X: is the term (t) by function/feature ( f ) matrix (i.e., X ¼ t � f )
T0: represents the term (t) by rank (m) matrix, having orthogonal, unit-length

columns (T0’T0 ¼ I)
S0: is the diagonal matrix of singular values (m � m)
D0: is the rank (m) by function (f) matrix, having orthogonal, unit-length columns

(D0’D0 ¼ I ) (i.e., D0 ¼ m � f )
m: is the rank of X ð� minðt; dÞÞ

LSA therefore provides lower-dimension estimates of the original high-

dimension space which then enables a comparison of the semantic meaning

(beyond just simple term matching) between a product feature and a product’s

function using similarity metrics such as cosine similarity (Tucker and Kang 2012).
Once the market-driven product features have been mapped to specific product

functions using SVD, a detailed function-component analysis must be performed. A

component-function matrix representation is used to quantify the relationships/

interactions between components. A majority of the literature reviewed in this

work typically focus on component sharing optimization within and between a

family of products. By employing the market-driven product feature classification

methodology presented in the previous section, engineering design decisions relat-

ing to product family optimization can be guided by emerging product preferences

in the market space. The DSM has been employed extensively in the design

community to represent interactions among products/processes in a design process

(Browning 2001). Examples of interactions captured by the DSM framework

include Spatial (associations relating to the physical location of elements), Energy
(energy transfer/exchange between elements), Information (data/signal exchanges

between elements), and Material (material exchange between elements) (Pimmler

and Eppinger 1994).

The first step is to determine which functions of a product relate to specific

component(s). There may be some components that perform more than one specific

function, even across product variants as can be seen in Fig. 6.8. For example,

unlike the 60 Whr 6-Cell Lithium-Ion Battery that supplies electrical energy to a
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product as its function, other components such as a DVD super drive component

provides multiple functions such as reading media, recording media, and erasing

media. Each of these would be considered a unique function of this component.

Atomicity is a desired property of the functional decomposition process. It is

assumed that designers have a database of components with their individual

functions; therefore, the component-function relationship in Table 6.2 will ensure

that design teams understand the interactions among components within a product

variant and across product variants existing in a product family.

where

1: represents a component critical to achieving a specific function

0: represents a component that is complimentary to achieving a specific function

The product family optimization problem can be solved using a quasi-separable,
bi-level optimization model, where the coordination level handles the shared

variables (components common to the system) and the product platform level

handles the individual product variant optimization problems (each with local

objective functions such as cost minimization) (Kim et al. 2003; Tosserams et al.

2006). three binary feature classification variables are included in the objective

function to help guide the optimization problem. The Standard Feature (SF),
Nonstandard Feature (NF), and Obsolete Feature (OF) are modeled as follows.

Fig. 6.8 Function-component analysis in a product family

Table 6.2 Component-

function interaction matrix
Function 1 Function 2 . . . Function N

Component 1 1

Component 2 1

. . . 0

Component m 0
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Optimization Level 1: Product Family Sharing Level

Minimize

εy (6.15)

Subject to:

g1 : SFp �
X

k2Q yp � y
Eng
p;k

��� ���2
2
� εy � 0 (6.16)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

SFp: binary variable for Standard Feature classification (1 if the product feature is

deemed relevant by the Data Mining Predictive Model and 0 otherwise).

yp: linking variable at the product family sharing level that maintains consistency

between k product variant values. The component or variable yp corresponds to

function-component map for the specific product feature p.
yp,k

Eng: the shared variable/component value associated with product variant k
providing product feature p. This is constant at each iteration in the above

formulation that is subsequently updated at the product variant optimization

level after each iteration.

k: the kth candidate product variant that has been identified for component sharing.

Q: the total number of products attempting to share design variables/components

yp,k
Eng.

εy: deviation tolerance between linking variables that is minimized in the objective

function.

Optimization Level 2: Product Variant Optimization Level

Minimize

FðxÞVariantk ¼ fk þ yUp � yp;k

��� ��� (6.17)

Subject to:

gkðxk ; yp;kÞ � 0 (6.18)

hkðxk ; yp;kÞ ¼ 0 (6.19)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

NSp: binary variable for Nonstandard Feature classification (1 if the product feature
is classified as Nonstandard Feature by the Data Mining Predictive Model

and 0 otherwise).
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OFp: binary variable for Obsolete Feature classification (1 if the product feature

is classified as an Obsolete Feature by the Data Mining Predictive Model

and 0 otherwise).

fk: local product design objective function (s).

gk: inequality design constraints.

hk: equality design constraints.

xk: design variables local to product variant k. xk is a function of the product feature
variables NSp and OFp. NSp and OFp are presented here in a general form as the

mathematical formulation and inclusion in the optimization model will be highly

dependent on the structure of the product family model.

yp
U: linking variable target value cascaded down to the Level 2 from Level 1; a
constant value at each iteration that is subsequently updated with each successful

iteration.

yp,k: linking variable at Level 2 that attempts to match the target linking variable

value yp
U used to achieve the product feature p.

k: the kth candidate product variant that has been identified for component sharing.

For each unique product feature that is included in the product family optimiza-

tion model has to satisfy the equality constraint:H1: SFp + NSp + OFp ¼ 1,

indicating a single state during the product family optimization model (variable/

component sharing, module, or exclusion from the optimization model).

6.4 Case Study of a Family of Aerodynamic

Particle Separators

Particulate Matter (PM)/particle pollution is a complex mixture of very small

particles such as acids, organic chemicals, metals, soil, or dust particles (US EPA

2012). Severe health problems can be caused to the heart, lungs, and other organs

when PM sizes are 10 μm in diameter or smaller.

Aerodynamic particle separators are devices developed to separate Particulate

Matter from the clean air stream, typically by employing centrifugal forces on the

particles (Zhang 2005). The case study presented in this methodology is based on an

aerodynamic particle separator market segment including applications such as

agriculture, industrial, and manufacturing processes. The global market for air

cleaning technologies has exceeded $7 Billion and continues to rise (Parker

2006). The diverse operating conditions and preferences of customers make product

standardization a challenge. Customized solutions for aerodynamic particle

separators are typically used to solve the wide range of market segments (Fig. 6.9).

This case study aims to investigate the feasibility of employing the proposed

Data Mining-Driven product family design methodology to help:

• Quantify the evolution of product feature characteristics over time.

• Develop a Data Mining predictive model of relevant product features for future
product family designs.

6 Quantifying Product Feature Classification in Product Family Design 167



• Classify product features as Standard, Nonstandard, or Obsolete.
• Investigate how product feature classification influences product family sharing

and optimization decisions.

For more details regarding this case study, please see references Barker (2008)

and Tucker et al. (2010).

6.4.1 Level 1: Temporal Market-Driven Preferences

Table 6.3 above presents a snapshot of the structure of the data set for the

aerodynamic particle separator for one instant in time (ti), where:

Q: air flow rate (m3/s)

ΔPmax: maximum allowable change in pressure drop/airflow restriction (Pa)

Lmax: total allowable length of the system (m)

AFmax: maximum allowable face area perpendicular to air flow direction (m2)

Nmax: maximum number of aerodynamic particle separator units in one module (#)

F(dp): particle size distribution (%)

ρp: particle density (kg/m3)

Tair: air temperature (
�
C)

Pair: air pressure (kPa)

Fig. 6.9 Aerodynamic particle separator market segments [adapted from (Barker 2008)]

Table 6.3 Sample data set for aerodynamic particle separator

Product features Environmental features

Class

variable

Q Delta pmax L max AF max N max F(dp) Rho_p Tair Pair Efficiency

3 2259 0.16 1.2 27 MMD_35-

GSD_1.9

2181 142 138 85–90 %

1 923 0.02 0.76 27 A1 2977 218 94 85–90 %

1 753 0.53 0.01 37 A4 2022 279 118 85–90 %

3 2082 0.69 0.13 10 Limestone 2133 50 130 85–90 %

4 2890 0.64 1.01 44 MMD_10-

GSD_1.8

2714 473 199 85–90 %
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The data set contains nine features relating to the aerodynamic particle separator

(five of which are related to the physical design of the system while the remaining

four are related to the environmental conditions that the system will perform under).

The product features will help guide the product family optimization process by

suggesting candidate components for sharing or displacement. The Environmental

Features will serve as the design constraints of the model. The class variable here
is Efficiency which is defined as the total amount of particulate matter that a system

is able to separate from clean air.

The data in Table 6.3 is mined for emerging product feature trends in the market

space by quantifying the relevance of product features over time. A Data Mining

predictive model is generated that helps guide Level 2 of the product family design

methodology: Engineering Design Optimization.

6.4.2 Level 2: Engineering Design Optimization

The aerodynamic particle separator has a fan system downstream (attached to the

radius r3 in Fig. 6.10) and operates by pulling contaminated air from upstream into

the system. The contaminated air (composed of clean air and particulate matter)

enters the vane section (Fig. 6.10) causing the particles to rotate based on the angle

of the vane section (Barker 2008). The straight section in Fig. 6.10 is designed to

increase the separation (centripetal acceleration and inertia) between the particulate

matter and the clean air. The clean air particles enter the converging region of

the particle separator, leaving the particulate matter to collect in the storage bunker

in Fig. 6.10.

Figure 6.10 presents 2 approaches to the product family design, Scale based and
Module based. Scale-based product family is where a product platform is

“stretched” or “shrunk” in one or more dimensions in order to satisfy a market

need (Simpson et al. 2006). Design/scaling variables are formulated in the product

Fig. 6.10 Uniflow aerodynamic particle separator design [Augmented from Tucker et al. (2010)]
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family optimization model to achieve such scalability. Module-based product

family design on the other hand creates product variants by adding, replacing, or

substituting one or more functional modules from a product platform. A product

architecture is considered modular if there is a clearly defined mapping of func-

tional elements to physical structures (1-1 or many-1) (Simpson et al. 2006).

The design objectives of each aerodynamic product variant will be influenced by

the market-driven Data Mining model. For scale-based product family design, the

efficiency of the system can be influenced by altering (stretching or shrinking) the
design variables that make up the physical system (such as length of straight region,

inner and outer radii, etc.)

The optimization approach (module vs. scale based) is left up to the design team

based on the technical resources and available mathematical models.

Optimization Level 1: Product Family Sharing Level

The Product Family Sharing Level will coordinate the component sharing among

product variants of the aerodynamic particle separator by minimizing the tolerance

deviation variable of each shared component.

Minimize

εy (6.20)

Subject to:

g1 : SFp �
X

k2Q yp � y
Eng
p;k

��� ���2
2
�εy � 0 (6.21)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

SFp: binary variable for Standard Feature classification (1 if the product feature is

deemed relevant by the Data Mining Predictive Model and 0 otherwise).

yp: linking variable at the product family sharing level that maintains consistency

between k product variant values. The component or variable yp corresponds to

function-component map for the specific product feature p.
yp,k

Eng: the shared variable/component value associated with product variant k
providing product feature p.

k: the kth candidate aerodynamic particle separator product variant

Q: The total number of products attempting to share design variables/components

yp,k
Eng.

εy: deviation tolerance between linking variables that is minimized in the objective

function.

Optimization Level 2: Aerodynamic Particle Separator Variants

The engineering design model for the aerodynamic particle separator can be

mathematically represented as:
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kth Aerodynamic Particle Separator

Minimize:

FðxÞvariantðkÞ ¼ Costk � ξk þ yUp � yp;k

��� ��� (6.22)

where

ζ x; dpi
� � ¼ 1� exp

ρpd
2
piCcQtanðαÞLs
9ηðr22 � r21Þ

 !
� exp ρpd

2
piCcðV2

t GtðxÞ þ V2
z GrðxÞ

ηVz

 !

(6.23)

ξk ¼
XN

i¼1
ζðx; dpiÞ � FðdpiÞ (6.24)

Here,

ξk: efficiency of aerodynamic particle separator variant k

yp
U: linking variable target value cascaded down to the Level 2 from Level 1; a
constant value at each iteration that is subsequently updated with each successful

iteration

yp,k: linking variable at Level 2 that attempts to match the target linking variable

value yp
U used to achieve the product feature p

k: the kth candidate product variant that has been identified for component sharing

Cc: Cunningham slip correction factor

dpi : diameter of particle i), μm
F(dp): particle size distribution
Gt(x): efficiency model geometric relationship between design variables, tangential

acceleration

Gr(x): efficiency model geometric relationship between design variables, radial

acceleration

ρp: particle density, kg/m
3

η: air viscosity, Pa∙s or kg∙m/s

Q: air flow rate, m3/s

Vt: tangential velocity of particle mixture

Vz: axial velocity of particle mixture

r1: inner tube radius
r2: inner tube radius
α: vane discharge angle
LS: maximum pressure drop

Subject to:

gkðxk ; yp;kÞ � 0 (6.25)

hkðxk ; yp;kÞ ¼ 0 (6.26)
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6.5 Results and Discussion

6.5.1 Level 1: Temporal Market-Driven Preferences

Figure 6.11 presents the Data Mining Predictive Model based on the temporal

market-driven preferences relating to the aerodynamic particle separator. The

results in Fig. 6.11 can be interpreted by traversing down each individual branch

in the tree until a class variable (Efficiency) is reached (rectangular box). The ovals

in Fig. 6.11 represent the product feature that is deemed relevant to predicting the

market preferences for aerodynamic particle separator efficiency.

Four unique paths can be attained based on the results in Fig. 6.11:

• Lmax > 0.49 then efficiency > 85–90 %

• Lmax < 0.49 and Q > 3 and Delta_pmax > 1560 then efficiency > 95 %

• Lmax < 0.49 and Q > 3 and Delta_pmax < 1560 then efficiency > 90–95 %

• Lmax < 0.49 and Q < ¼3 then efficiency > 85–90 %

Figure 6.11 also provides designers with the appropriate product feature classi-

fication (Standard, Nonstandard, and Obsolete) of all product features existing in

the market space. The next step is to quantify the relationship between product

features and product function so that designers can understand how evolving

market-driven preferences guide next-generation product platform and product

family design decisions.

Lmax

85-90 (53.0)

85-90 (19.0/1.0)

90-95 (13.0) >95 (14.0)

Delta_pmax

Q

<= 0.49

<= 1560

<= 3 > 3

> 0.49

> 1560

Fig. 6.11 Results from the data mining predictive model [attained using Weka 3.6.6

(Frank et al. 2010)]
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6.5.2 Level 2: Engineering Design Optimization

Mapping Product Feature Space to Engineering Design Space: Table 6.4 presents

the result, employing Latent Semantic Analysis to quantify the relationship

between the market-driven product feature space and the product family design

space. As described in Sect. 6.2.2, the textual description of each product feature is

compared with the functional description of each product module/component

providing this function. Table 6.4 represents the similarity of a product feature to

a component function as measured on a 0–1 scale, where values closer to 1 indicate

a stronger relationship to the functionality of the product component/module, while

0 represents a weaker relationship. As can be seen from Table 6.4, the product

features are strongly coupled across the entire product architecture. Such insight

will help designers understand the market effects of adding, removing, or replacing

specific functionality relating to a product. For an Obsolete product feature classifi-
cation, designers would need to ensure that the removal of a particular component/

module does not have negative market demand implications. The results in

Table 6.4 are consistent with the absence of an Obsolete product feature classifica-
tion from the Data Mining model in Fig. 6.11. The Standard and Nonstandard
product classifications from Fig. 6.11 support the findings from Table 6.4,

indicating that all product features are relevant to market success at this time.

The challenge arises when designers are trying to optimize product family sharing

and platforming decisions, which will now be guided by the product feature

preference trends in the market space.

Figure 6.12 presents the results from the Data Mining-Driven Product Design

methodology. The resulting product feature classifications from Fig. 6.11 helps

guide the product family design process by first quantifying the functional

relationships between product features and product design variables (Table 6.4)

and then suggesting candidate modules/components for sharing decisions. In

Fig. 6.12, the vane component is considered a candidate for commonality across

product variants due to its relation to the product features deemed relevant by the

Table 6.4 Mapping product features of the aerodynamic particle separator to the engineering

design space

Product features

Aerodynamic particle separator design space

Vane section Straight region Converging region

Q 0.76 0.71 0.72

Δpmax 0.48 0.5 0.47

Lmax 0.45 0.46 0.43

Afmax 0.86 0.82 0.78

Nmax 0.49 0.55 0.52

F(dp) 0.35 0.5 0.47

ρp 0.35 0.5 0.45

Tair 0.55 0.52 0.57

Pair 0.63 0.59 0.62

6 Quantifying Product Feature Classification in Product Family Design 173



Data Mining Predictive model in Fig. 6.11. The Nonstandard product feature

suggests modularity in the design of product variants by including multiple indi-

vidual products that are housed in a design case. This modularity approach will

enable enterprise decision makers to quickly address market needs by increasing/

decreasing the number of units housed in a casing in an attempt to meet emerging

customer preferences. The Nonstandard product feature classification means that

there is volatility in the market space, wherein a product may have to undergo

modifications (modular or scalable) in the future. Figure 6.12 reveals that of the

4 product segments suggested by the market space, the designers can only satisfy

the performance requirements of 3 of those markets, as Product Variant 2’s design

(Target efficiency > 95 %) is infeasible at the engineering design level. Such

design insights enable design teams to focus on developing a product portfolio

that both capitalizes on product standardization through guided commonality

decisions, and at the same time, providing customized solutions to the market

that meet customer expectations (efficiency requirements).

6.6 Conclusions

This chapter introduces a market-driven, product family design framework based

on product feature classification framework as it relates to engineering component

selection and product family design. Product features are classified as Standard,
Nonstandard, or Obsolete, with a given classification having different implications

in the product family design process. A component-function matrix is presented to

quantify the relationships and interactions among components as it relates to

Fig. 6.12 Results from data mining-driven product family design
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product specific features. By employing Natural Language Processing techniques,

the product feature space can be mapped to the engineering design space for

optimal product platform decisions that incorporate market-driven objective. The

methodology aims to aid design teams in the efficient modeling of customer

preferences and designing of subsequent product portfolios.
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