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Abstract This chapter introduces a heuristic approach for the analysis,

architecting, and design of software-centric product platforms. The central role of

software architecture is stressed by highlighting its relationship to the analysis of

new product domains. Several case studies are used to illustrate key concepts,

including a more detailed case on the design of an object-oriented application

framework as platform for a family of products that control industrial processing

machines. Case studies and methodology are linked to important software

engineering design principles. At the end of the detailed case study, an approximate

measure of code reuse and its economic impact is presented, which can serve to

support the business case of making the significant investment required by a

software platform for a family of related products. This chapter builds on funda-

mental software engineering concepts introduced in Chap. 21.

26.1 Introduction

Each new generation of high-technology products is smarter and more sophisticated

than the previous one, mainly as a result of their advanced software features. Voice

recognition and synthesis, automated suggestions for newpurchases, smart assistants

that anticipate the user’s intention, devices that learn the user’s preferences and

lifestyle, expert systems that can perform automated diagnoses and classifications, or

predictions of the future cost of airline tickets and stock prices. All of these

technologies are manifestations of the ever-increasing complexity of software.

Software is inherently complex, and its malleability coupled with the sheer

number of degrees of freedom (DOF) of a software system (one DOF per line of

code) makes it a fragile and fertile source of product defects. However, as software
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engineering continues to mature as a discipline, new methodologies, tools,

processes, and design approaches aid in the development of more solid and robust

software technologies for this kind of products.

Mission-critical systems, in particular, require a high level of discipline and

formality during their design, implementation, and testing. It is of the utmost

importance to spend enough time analyzing and understanding the specific domain

for which the new product is targeted. Examples of mission-critical systems include

implantable medical devices, life-support equipment in hospitals, weapon systems,

avionics, spacecraft, telecommunication satellites, nuclear reactor controllers, and

automobile control computers, just to name a few. Nevertheless, the same process

and concepts can also be applied to other products like cellular phones, industrial

controllers, or consumer video equipment, where overall quality of the product is

increasingly judged by the quality of its software content.

These sophisticated products must be built on a solid foundation if they are to

perform safely and effectively, and the best way to accomplish this is to design and

implement a software platform for a family of related products, which is known in

software engineering as a domain-specific framework (Fayad and Schmidt 1997).

One of the most notable qualities of these frameworks is that their robustness is

improved every time this platform is reused to derive a new product, since the

framework constitutes a reusable reference design and a very valuable, thoroughly

tested, reusable code base.

Domain-specific application frameworks, or enterprise frameworks, are neither

easy nor cheap to develop. The task requires a dedicated team of professional

software engineers led by an architect with a deep understanding of the problem

domain andwith the experience of having previously developed several applications

in that same domain. For more information on enterprise frameworks, their

challenges, and economic justifications, the reader is referred to CACM (1997).

In this chapter, we use examples from several domains to illustrate the analysis

and design of software systems that could serve as generalized solutions, or

platforms, for families of related products.

26.2 Definitions of Framework in Software Engineering

The term “framework” is heavily used in software engineering, but it can be confusing

sometimes. For clarity, we shall define the following terms: “enterprise architecture

framework,” “software infrastructure framework,” and “family platform framework.”

26.2.1 Industry-Standard Enterprise Architecture
Framework

IEEE Standard 42010–2011, “Systems and Software Engineering: Architecture

Description” (IEEE 2011) is now an international standard that has also been

adopted by ISO and IEC. This document specifies the manner in which architecture
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descriptions of systems are organized and expressed. This includes specifications
for architecture viewpoints, architecture frameworks, and architecture description
languages for use in architecture descriptions. This standard defines the term

“architecture framework” as conventions, principles, and practices for the descrip-
tion of architectures established within a specific domain of application and/or
community of stakeholders.

One of the earliest publications on the topic of enterprise architecture

frameworks was authored by John Zachman, of IBM (Zachman 1987). The

Zachman Framework continues to be in use today, and it paved the way for

the creation of architecture frameworks for many domains, most notably for the

defense industry, e.g., DoDAF, the US Department of Defense Architecture Frame-

work standard on how to document architectures. Further discussion on architecture

frameworks is beyond the scope of this chapter, and the interested reader is referred

to Clemens et al. (2011) for an accessible overview of DoDAF and other architec-

ture frameworks. For a survey of all known architecture frameworks currently in

use, please see ISO (2011).

The main idea to remember here is that industry-standard architecture

frameworks are not executable code and refer mainly to documentation

requirements.

26.2.2 Software Infrastructure Framework

Examples of these frameworks include Microsoft Foundation Classes (MFC®),

Microsoft NET Framework®, Java EE®, and frameworks for creating graphical user

interfaces (GUI toolkits) such as Qt, Motif, Swing®, or Adobe Flash®, just to name a

few. This class of frameworks has been called by many names, including application
frameworks and architectural frameworks. These frameworks are collections of soft-

ware libraries that provide infrastructure services for other applications to use in the

form of software objects. Some notable classes provided by these frameworks are GUI

widgets, networking services, web services, e-mail, and other messaging services.

These frameworks provide executable code that is intended for general purpose,

and they can be used to build sophisticated software applications by using its high-

level functionality. However, they do not solve problems that pertain to a particular

domain or business, which is the next level up in the software abstraction scale, as

described below. A software infrastructure framework can be thought of as a

general-purpose toolbox.

26.2.3 Family Platform Framework

In this work, we refer to enterprise application framework as a former name for

family platform framework, since the term helps to make the connection with the

literature. However, we prefer to use the term family platform framework because it

is more accurate and descriptive regarding its intention and use.
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Enterprise application frameworks, or family platform frameworks, implement

solutions for a specific domain. This kind of framework is a reusable, semi-

complete application that can be specialized to produce custom applications.

They are designed for particular businesses such as data processing, telecommu-

nications, or other industrial domains. A platform framework reuses not only code

but design as well. It describes how the system is decomposed into cooperating

objects and how custom applications must be implemented based on this infrastruc-

ture. Platform frameworks are the software foundation for families of related

products, i.e., they serve as software product family platforms.

A good introduction to enterprise application frameworks can be found in the

literature (CACM 1997). For a deeper study of all that entails to embark in their

design and development, see the referenced works by Fayad et al. (1997, 1999,

2000), Schmidt and Fayad (1997), Schmidt et al. (2000), and Johnson (1997).

The term “family platform framework” specifically refers to an object-oriented

enterprise application framework that serves as the foundation for a family of

related products and that has been developed according to the specific software

architecture and design process described herein.

Later, a detailed case study is introduced to illustrate the design and imple-

mentation of a software platform for a family of industrial machines and the

economic impact of creating software family platforms. The scope of this chapter

is to present the thought process for analyzing a newly planned product family and

for mapping the results of that analysis to the family architecture and its detailed

software design.

26.3 General Architecture of Software-Intensive Products

This chapter uses, and builds on, the concepts presented in Chap. 21 on software

design principles (Morales 2013). It is recommended to read that chapter first, if the

reader is unfamiliar with some of the terms used below.

Most modern software-intensive products are embedded devices, but not neces-

sarily. As shown in the following examples, these products can be found hidden in

vehicles, in the form of high-volume consumer devices, high-cost customizable

industrial equipment, or just as pure software residing on remote servers providing

service to clients over the Internet (also known as “the cloud”).

The best way to tame the complexity of most software-intensive modern

products is with the application of the age-old principle of Divide and Conquer.
Figure 26.1 shows a typical layered architecture for software applications, based on

the LAYERS architectural pattern (Buschmann et al. 1996), which is widely used in

industry and even standardized for some applications like networking. The main

advantage of this architectural pattern is that each layer specializes in a particular

aspect of the application. Each layer is highly cohesive and is loosely coupled with

its adjacent layers. Typically, dependency among layers only flows in one direction,
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i.e., downwards. This means that upper layers can typically initiate interaction with

the lower layer at any time by requesting services through its interface.

In the classical structure of a layered architecture, the Infrastructure software

layer provides generic technical services that enable access to the system’s

resources, while the Domain layer encapsulates the business-specific concepts and

rules. The Application layer implements particular jobs that the software is intended

to do, but it does not include any business knowledge. It accomplishes its task by

delegating processing and coordinating cooperation between objects in the Domain

layer. The Presentation layer is typically the user interface.

Let us use an example to illustrate how this structure is applied. In an online

banking application, the Presentation layer would be implemented within the

customer’s web browser, through which she navigates the system’s functionality

and requests transactions. The Infrastructure layer would provide user authentica-

tion services, access to the bank’s databases, and encryption for a secure connection

between the bank and the customer, among many other facilities.

In the case of a fund transfer operation, for instance, the customer would enter

information through the Presentation layer (GUI), which in turn would send it down

to the Application layer. The Application layer is responsible for validating that

input and then sending it down to the Domain layer for processing. Data sent would

include the amount to be transferred, currency type, source account number, and

destination account number, and that is the end of its responsibility. The Domain

layer implements the essential business rules for the banking business, like account-

ing, for example. In accounting, one of the fundamental business rules is “Every

credit must have a matching debit”; thus, it performs the operation by modifying all

the necessary tables in the bank’s database through requests to the Infrastructure

layer, which provides these services. As each operation in the lower layers is

completed, the upper layers are notified, until the end result is finally presented

back to the customer at the top layer.

When we embark on the task of designing a platform for a product family,

maximizing software reuse is one of the main objectives. Although designing and

Computing Hardware

Domain Layer

Application Layer

OPERATING SYSTEM AND DEVICE DRIVERS

Presentation Layer

Infrastructure Layer

Fig. 26.1 Layered

architecture
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implementing a platform take time, it later pays off significantly. Maximizing code

reuse ensures that once the platform is finished, new products can be implemented

in a very short time, and it allows engineers to focus on what makes the new product

unique, i.e., they don’t have to reinvent everything with each new project.

In order to maximize code reuse, we design and implement an object-oriented

application framework to work as the Domain layer, which here we call the family
platform framework. We call it by a different name because it not only implements

the core functionality that comprises the essence of the product family as well as its

overall design philosophy but, at the same time, it imposes certain rules for the

implementation of features that differentiate individual members of the family, both

in software at the top layer and in hardware at the bottom layer. At the top, we take

the layered architecture described above and compress the Application and Presen-

tation layers into one, which we call the product-specific features. Individual
product-specific features could be optionally included or excluded in order to create

different products within the family, even though their structure and basic behavior

are dictated by the platform framework architecture.

The advantages of merging the two top layers into one will become clear with

some examples, as described later, but the main reason is that the framework takes

control over most things in the product family, and user interfaces (Presentation)

become just one more product-specific feature that must comply with the interfaces

prescribed by the platform.

At the bottom of the software layer hierarchy we have the Product Family Infra-
structure layer,which is slightly different from the classical banking example presented

above. In the case of a product family platform, the Infrastructure layer must not be

static, nor monolithic, but modular and extensible to accommodate the evolving

hardware needs of individual products within the family. This is illustrated with the

partitioned hardware layers shown in Fig. 26.2, where we can appreciate a standardized

hardware platform for the family, plus additional modules that are product specific.

Family Platform Framework

Product-Specific Features

Electronics: Product Family Computing
Platform

Mechanics: Product Family Platform

ELECTRO-MECHANICAL INTERFACE

Electronics:
Product-Specific

Features

Mechanics:
Product-Specific

Features

Product Family Infrastructure

Fig. 26.2 General

architecture for a software-

intensive product platform
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This highly cohesive domain encapsulation centered on the family platform

framework brings along a technical risk. If the platform is not designed correctly,

then the number of products that can be easily derived from the platform would not

be as prolific as expected. Investment on a product platform is justified only when it

has a long life span, consistently generating a long sequence of derived products.

Two key principles that will help us achieve a correct design of the platform are

Abstraction and Design for Change (Morales 2013).

Figure 26.2 shows a generalized layered architecture for a software-intensive

product platform, which is based on the same concepts of the LAYERS architectural
pattern, but tailored to suit the specific needs of a software platform for a family of

related products. This figure describes a platform for embedded devices more

accurately, although it also applies to software-only products if we remove the

bottom layer representing the product’s mechanisms. The key concept here is

abstraction, clearly separating concerns into specific containers that segregate

technologies and encapsulate those features that belong to the common product

platform and those that distinguish individual products in the family.

Each layer is abstracted away from the adjacent layers by means of their

interfaces. The framework exposes an Application Programming Interface (API),

which prescribes the behavior and data expected from the software modules that

comprise the Product-Specific Features’ layer. The electromechanical interface

specifies how the electronics and mechanical subsystems fit within the system in

order to interact with the external world. Compared with the reference LAYERS
architectural pattern, the operating system and device drivers’ layer, which isolates

the software from its computing platform, have been merged into the family

platform framework.

In order to design an effective and efficient product family platform, we must

make design choices related to the computing platform that will ensure software

compatibility across all derived products in the family and maximize reuse. Specif-

ically, the platform specification should prescribe a particular processor core for the

whole family, e.g., an ARM Cortex or an Intel Atom, or some other specific

processor. However, this choice does not prevent product designers from having

a rich assortment of peripherals around the processor core that can be very different

from product to product within the same family—as long as they keep the same

core. Furthermore, choosing a single operating system for the whole family makes

software reuse even easier and more cost-effective.

A successful family platform framework typically implements approximately

80 % of the functionality for each product derived from the family, and it

prescribes with precision how the remaining 20 % (product-specific features)

are to be designed and implemented. Although it sounds restrictive, it is in fact

very effective and efficient, since the enforcement of the family architecture and

its behavior encapsulated in the platform forces and enables software engineers to

follow a clear and consistent process for the implementation of derivative

products based on the platform. This phenomenon will be explained in more

detail later in this chapter.
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26.4 Domain Analysis

Deep knowledge about a product domain doesn’t come easy. The best situation is to

have previous experience designing stand-alone products for that domain before

one commits to designing a successful product family platform, or at least, to have a

multidisciplinary team of product designers and consultants with significant expe-

rience in that particular domain. The reason for this concern is related to the

technical risk mentioned above: if the product family framework is not designed

correctly, then the exercise will result in a significant expense that does not meet

expectations. This is not a typical software project and has many subtleties in

designing and building object-oriented enterprise application frameworks (Fayad

and Johnson 1999; Fayad and Schmidt 1997).

Figure 26.3 shows a UML activity diagram that describes the high-level process

for synthesizing the core essence of a product domain and incorporating that

knowledge into a new product family platform. Each step is described below.

26.4.1 Develop Product Platform Use Cases

When designing a platform for a new product family, the first thing we need to know is

a clear definition of its scope. It is necessary to specify the behavior and functionality

that these new products must exhibit in order to satisfy the needs of all stakeholders.

DesignModeling

Map Architecture Objects to Design Patterns

Complete Detailed Software Design

Architectural Code Generation

Map Knowledge to Architecture

Analyze Constraints and Adaptability

Analyze Previous Product Projects

Build Domain Knowledge Model

Survey Relevant Literature

Develop Product Family Use Cases

Refine Domain Knowledge Model

Fig. 26.3 High-level process for synthesizing a product family platform
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One of the best ways to obtain this understanding is to analyze the expected use of the

product family through use cases (Jacobson et al. 1992).

The scope of the use cases must remain at a high level of abstraction, where the

goal is to obtain all the scenarios in which each type of stakeholder will interact

with a generic product of this new family in order to satisfy their goals. Some

specific needs may be satisfied by one product derived from the platform, but at this

point, the analysis should be kept at the product platform level. Our goal at this

stage is to abstract the essential use cases that make up the core behavior of the

product family. An excellent manual for analyzing use cases is Cockburn (2000).

26.4.2 Survey Relevant Literature

This activity is particularly important (and indispensable) for software designers that

are newcomers to the particular domain of interest. Collect all relevant literature about

the domain, which includes books, journal publications, presentations, technical

descriptions, and specification documents for similar products that can be used as

precedents. Reliability of all sources should be confirmed, ensuring that they represent

the consensus of subject matter experts. Extract and abstract the essential knowledge

about the domain, summarizing the essential concepts in tables or some other tool.

26.4.3 Analyze Previous Product Projects

Fred Brooks said that, when designing a new kind of system, software teams will
throw one system away whether they want it or not (Brooks 1975). His argument

was in favor of using pilot projects to ensure that we can ultimately deliver exactly

the software system that we all want. There is certainly great value in having the

opportunity to perform forensic analysis of previous projects that have attempted to

solve the same problem that we are now facing, since this improves the odds that the

team will arrive at a better design the next time. However, our focus here is not on

the software design or the code. What we are looking for are abstract concepts:

those ideas that represent the essence of the kind of products for which we want to

design a platform and those characteristics, functions, and behavior that comprise

the essence of being a member of that family of products. For example, we want to

discover those essential attributes and behavior that constitutes being a smartphone,

or a pacemaker, or a human-size robot arm.

Essentially, this is still part of the information survey that began with the

relevant literature review, but now our sources are more heterogeneous and focused

on the actual product needs. We have to continue extracting and abstracting

important knowledge about the domain from these new sources and add the

most relevant concepts and relations to the compilation we started with the litera-

ture review.
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26.4.4 Build Top-Level Domain Knowledge Model

Using the knowledge derived from the literature and product information surveys,

we now build a knowledge graph (Fayad et al. 1999). Knowledge graphs are a form

of the more widely known Semantic Networks (Russell and Norvig 2009).

A knowledge graph is made up of nodes and edges. Nodes are those concepts

that appear consistently and in similar ways, in the domain knowledge survey.

These essential domain concepts are typically nouns, and each node represents an

indispensable concept for the product platform. Edges represent relations among

the different concepts, or nodes, and they are typically represented with verbs

indicating actions that one node performs on other nodes.

As an example, Fig. 26.4 shows a knowledge graph that abstracts and represents

some of the concepts and relations that could be used to design a generic product in

the mobile phone domain. Notice that the nodes represent concepts that are

indispensable for the product to be considered a mobile phone. In other words,

they constitute the essence of the product family.

The key design principles here are Separation of Concerns, Abstraction, and
Generality (Morales 2013).

26.4.5 Refine Domain Knowledge Model

Once we have collected the main concepts and relationships in the top-level domain

model, it is necessary to investigate the internal structure of each node in order to

gain a deeper understanding of the platform design needs. This refinement of the

RF TransceiverProtocol

Address Book

DTMF Generator

Call Manager

Keyboard
requests

controls

reads

encodes

cre
ates

Phone Call

operates

Fig. 26.4 Knowledge graph partially representing the mobile phone domain
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domain knowledge model reveals more information that is less abstract and more

suitable for use in the design of the product platform.

Figures 26.5 and 26.6 show the concept hierarchies for the RF Transceiver and

Protocol nodes. The white triangle denotes specialization of the root concept, similar

to inheritance in object-oriented software. The root node can be thought of as similar

to an abstract class and the leaves as similar to concrete derived classes.

26.4.6 Analyze Constraints and Adaptability

This is a critical step in the process of abstracting knowledge about a domain and

using that knowledge to design a successful product family platform that can

evolve over time and be useful to generate a prolific family of derived products.

RF Transceiver

CDMA/
FDM

TDMA MIMOOFDM

SOFDMA
CDMA/

FDD
CDMA/

TDD

Fig. 26.5 Refined knowledge graph for the RF Transceiver node in the mobile phone domain

Protocol

IPv4 PPPX.25 TCP/IP

Telephone
Protocol

ISDN

Internet Protocol

Fig. 26.6 Refined knowledge graph for the Protocol node in the mobile phone domain
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The key design principle here is Design for Change and its various forms of

expression: Change of Algorithms, Change of Data Representation, Change of
Abstract Machine, Change of Peripheral Devices, and Change of Social Environ-
ment (Morales 2013).

Each node in the knowledge graph must be analyzed for its potential need of

change in the future due to foreseeable technological progress or to enable different

features for distinct members of the product family. All anticipated changes can be

compiled in tables, supported by reference documents.

For example, let us continue using the mobile phone example, and

oversimplifying for the sake of clarity, we say that it could be anticipated that the

“RF Transceiver” node will change. This node represents the radio transmitter and

receiver used by the mobile phone to connect to Base Stations, and it could use any

of two multiplexing technologies, namely, code division multiple access (CDMA)

or time division multiple access (TDMA), depending on the target market of the

particular product. This is an indicator of the need forModularity in the implemen-

tation of this feature in the product platform. Compliance with each of these

standard technologies is also a constraint on the system.

Similarly, and oversimplifying again, we could see that the “Network Protocol”

node should be easily adaptable to work with potentially non-compatible new

technologies. Experience shows that mobile network technology evolves very

quickly, and thus, for the investment on a long-life span product platform to be

worthwhile, it should be able to adapt to these new technologies as they come along.

In this manner, we have seen three generations of mobile networks based on the

Global System for Mobile Communications (GSM), including general packet radio

service (GPRS) for second-generation networks (2G), Universal Mobile

Telecommunications System (UMTS) for third-generation networks (3G), or

Long-Term Evolution for fourth-generation networks (4G LTE). These are

examples of Constraints on the platform design and Change of Peripheral Devices.
Other concepts are not as clear-cut, however. For example, a keyboard could

have different embodiments in two products derived from the same platform. Let’s

say that one product could use a membrane keyboard driving the electronics

directly, and another could implement it as a soft keyboard on a touch screen,

driving a software device driver instead (Change of Peripherals or Change of Data
Representation). However, at the product platform level, the abstract concept of a

keyboard is exactly the same. Therefore, the actual implementation of the keyboard

in a particular product is a secondary matter. Along the same lines, the abstract

concept of an address book is exactly the same at the platform level, even though it

might be implemented as a remote web page that is accessed over the Internet or as

a local database file, which, as described above, would constitute secondary

concepts and not essential details for the platform.

The dual-tone multi-frequency (DTMF) generator can be implemented in one way

only, since it is a real function based on an international industry standard with which

every phone, regardless of its technology, must comply. This is a Constraint on the

system design. In contrast, the concept of a “Call” is completely abstract, completely

defined internally, and its representation could be unique to the product platform.
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Although the user interface is not shown in the knowledge graph, we can say

that the product platform software should be designed to represent all the concepts

of a user interface in an abstract form within the platform, e.g., using label IDs

instead of actual text strings, and anticipate a Change of Social Environment by
designing the platform is such a way that different languages can be easily

implemented through loosely coupled software components that are external to

the platform.

26.4.7 Map Knowledge to Architecture

With a greater understanding of each node and its internal structure in the domain

knowledge graph, we now proceed to find the right place for each node in

the software architecture. Figure 26.7 shows the software section of the

generalized architecture presented earlier. Assignment of each node to the appro-

priate software layer will ensure the construction of layers that have the very

important properties of high cohesion within them and low coupling between

them (Morales 2013).

In general, the Product Family Infrastructure layer should provide access to the

physical resources of the system, the Family Platform Framework layer should

encapsulate all the system behavior and functionality that does not change from

product to product, and the top layer should encapsulate those features that distin-

guish each product from the rest of the family.

In the mobile phone example, it is clear that abstract keyboard and RF Trans-

ceiver refer to physical resources and, therefore, belong in the Infrastructure layer.

The call manager, phone call objects, Internet session objects, protocol handlers,

address book, and DTMF generator all belong specifically to the mobile phone

domain, i.e., in the family platform framework. Note that none of the nodes in the

top-level knowledge graph is actually mapped to the Product-Specific Features

layer directly, but as revealed by the Constraints and Adaptability analysis above,

some of the nodes have deeper hierarchies where some of the sub-nodes are

expected to change over time or change from product to product in the family. In

other words, some of the sub-nodes should be allocated to the top layer where they

Family Platform Framework

Product-Specific Features

Product Family Infrastructure

Fig. 26.7 Layered software

architecture for a product

family platform

26 A Heuristic Approach to Architectural Design of Software 659



function as product differentiators. Those sub-nodes that are not expected to

change, regardless of the particular product instance, should be allocated to the

family platform framework to be encapsulated. The best way to produce a robust

arrangement of software objects is to use a catalog of best design practices and

time-proven solutions known as design patterns (Gamma et al. 1995).

26.4.8 Map Architecture Objects to Design Patterns

The Constraints and Adaptability analysis guides the selection of the best design

pattern for each case. For example, some of the classic design patterns from

Gamma et al. (1995) are the following: “Bridge,” which decouples an abstraction

from its implementation so that both can vary independently; “Proxy,” which

provides a surrogate for another object in order to control access to it; and

“Strategy,” which defines the interface for a family of algorithms, encapsulating

them and making them interchangeable. After the landmark work of Gamma,

Helm, Johnson, and Vlissides, many other books on design patterns have been

published. Some of them are new catalogs of design solutions for software in

general, and some others are aimed at particular domains (e.g., Johnson 1992;

Buschmann et al. 1996; Schmidt et al. 2000; Fowler 2002; Douglass 2002, 2011;

Alur et al. 2003; Daigneau 2011).

As an example, let us assume that our family of smartphones has a built-in image

enhancement tool designed to improve the quality of images taken with the phone’s

built-in camera. A digital image is represented in software as a matrix of pixels with

color values. Users can perform automatic or manual enhancements on a single

image by running image filters to enhance sharpness, contrast, modify color satura-

tion, or exposure (brightness). Since this is a feature that all products in the family

will have, these image-enhancing mechanisms will be allocated to the Family

Platform Framework layer. All image filters operate as convolutions on the original

image and produce a new image as output, with modified values on each pixel

according to the requested operation. Figure 26.8 shows a UML class diagram that

implements a family of image processing algorithms according to the “Strategy”

design pattern (Gamma et al. 1995).

26.4.9 Complete Detailed Software Model Design

Applying design patterns is only the beginning of detailed software design. Design

patterns are coarse-grain building blocks, but each software system has nuances and

peculiar concepts that need to be represented in detail, as well as the interconnec-

tion among design pattern structures.

The ever-increasing complexity of each new generation of high-technology

products requires the use of appropriate tools to handle it and enable designers to
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look at the system from different perspectives. Abstraction is the strongest feature

of model-based development, also known as Model-Driven Architecture (MDA).

By slicing the system into distinct perspectives that show its structure, dynamic

behavior, interfaces, and internal states, designers can develop a complex system

that maintains consistency and correctness throughout the product development

life cycle. The Unified Modeling Language, or UML, was specifically developed

for this purpose. For more detailed presentations, the reader is referred to the

following: Fowler (2003), Booch et al. (1998), Rumbaugh et al. (1998), and

OMG UML (2011).

26.4.10 Architectural Code Generation

An additional benefit of modern software modeling tools based on UML is that most

of them provide code generation facilities, as well as two-way code engineering. We

use the term architectural code generation to refer to the automatic generation of

source code in an industry-standard programming language like C++, Java, C#, or

any other. This automatically generated code typically includes all software

interfaces defined as properties and methods of a class, as well as processor and

project-specific header files. Since the Object Management Group (OMG) released

the new specification for UML 2.0, executable models are now possible, and code

generated automatically also includes source code that implements state machine

behavior directly from UML State Diagrams (also known as Statecharts).

Two-way code engineering tools allow software developers to maintain the

software model and source code synchronized by having the tool automatically

update the code every time the model is changed. Likewise, it can also update the

model whenever the source code is modified, e.g., when a function parameter

changes name or data type.

Process(in Original : Image) : Image

depth : int

ImageFilter

Contrast

Image

Sharpness Saturation

ImageCanvas

1 *
+

+

Fig. 26.8 An image processing feature for a family of mobile smartphones based on the Strategy

design pattern
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26.5 Case Study: Software Platform for a Family

of Industrial Machines

26.5.1 System Overview

We now present a more detailed case study from an actual project to illustrate the

design of a software platform for a product family. Here, we review the

characteristics of the system and the design decisions that made it a successful

platform. The purpose of this system was to serve as a generalized solution that

addresses the specific requirements of a family of products in the industrial auto-

mation and test domain.

The main purpose of this platform is to provide the software foundation for a

family of automated machines that are used in industrial manufacturing and test.

Typical applications of this product family are stand-alone units, or cells, that are

integrated into fully automated or semiautomated manufacturing lines. Many of

these cells include one or more robots for product handling, machine vision systems

for robot guidance and automated visual inspection, general-purpose digital and

analog inputs and outputs and programmable power supplies, waveform generators,

current and voltage meters, and other instrumentation equipment. The same robots,

digital cameras, power supplies, and meters can be used across many different

projects, for example, assembling handheld blood glucose meters, testing miniature

endoscopy equipment, calibrating vibrating mirrors, or simultaneously performing

functional tests on a batch of two hundred computer hard drives. Below we take a

closer look at some of the most important aspects of this design.

26.5.1.1 High-Level Organization

A major design goal for this system was to serve as a solid, reusable product

platform, applicable in a variety of automated test and industrial automation

solutions. In general, its implementation is extendable through external and inter-

changeable software components.

Software components conforming to the interface specified by this framework

will, as a consequence, be reusable components as well, which may be stored in a

company repository for use in future projects. This component-based approach to

software development enables consistent reuse of the components described below.

PATF Engine

PATF stands for production automation and test framework. The PATF engine

component encapsulates the general operations and algorithms required by most

applications in this domain, including but not limited to sequencing of operations,
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manage requests to and from external devices, manage internal data representation,

system configuration, basic interaction with the user, interaction with external

software components representing devices under test (DUT), and basic database

management using a default format that may be overridden or translated by an

external software component (see below). The engine provides two main classes:

first, we have the Scheduler class, a singleton (Gamma et al. 1995) responsible for

assembling the software system at run-time and for orchestrating overall execution.

Then, we have the TaskProcessor class, implemented according to the Command
Processor design pattern (Buschmann et al. 1996). This class provides an arbitrary

number of TaskProcessor instances that are responsible for executing the

procedures prescribed within AppSequence classes.

ActiveDevices

These software components are more than just device drivers. They not only

implement communication and control over ActiveDevices, but they also include

graphical user interfaces and persistent configuration facilities for each

ActiveDevice. This set of software components becomes part of a common library

of extendable components for use in future projects. These components may be

initially built by implementing minimum functionality and then incrementally

extend their services, while complying with the ActiveDevice interface as specified

by the platform.

Independent ancillary software components describing the current application-

specific details include:

1. Application sequence component. Library file that contains code for the

application-specific functions or sequence of operations. This component

encompasses the main differences that distinguish each product in the family

derived from this platform.

2. System configuration Component. Executable file responsible for launching the

PATF engine and customizing it for a particular application.

3. Application-Specific GUI Component. Required software component that

defines application-specific GUI labels and panels.

4. DutCollection. Optional software component that implements application-

specific computation algorithms for devices under test (DUT). Examples are

DUT product-specific communications protocols, decision-making algorithms,

parameter limits testing, and data-exchange protocol translators.

5. External DB controller. Optional software component that implements interfaces

for a specific database, for example, interfacing with remote database servers,

generating files that are compatible with other applications likeMicrosoft Excel®

or Word® processors, and exchanging data with other applications.

Figure 26.9 is a UML component diagram that shows the main software

components of the PATF platform and their mapping to the corresponding archi-

tectural layers of the framework.
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26.5.1.2 High-Level System Behavior

The proposed domain abstraction classifies operation modes of all automated

industrial machines as being either manual mode or automatic mode. The system’s

behavior is driven by a finite state machine, and under these two operation modes,

there are six top-level system states. Figure 26.10 shows these states and the events

that cause transitions between them.

Manual Mode

This mode is used for initializing the machine, modifying operational parameters,

and for performing manually controlled operations like jogging a robot, for

example. Safety devices are of utmost importance in industrial automation

machines, as they play a critical role in preventing operators from getting injured

by the machine. In manual mode, however, these safety devices are overridden to

enable a qualified technician to perform certain operations that require full control

over the machine, as is the case of machine troubleshooting or other maintenance

operations. This operation mode is hard coded into the system’s engine, but before

entering this mode, users are authenticated and only allowed in if they carry the

Product-Specific Features

App Sequence GUI PanelsDUT Collection

Task Processor GUI Subjects

Observers

Scheduler

ActiveDevice(1) ActiveDevice(2) ActiveDevice(n)ActiveDevice(3)

Product Family Infrastructure

Family Platform Framework

User ManagementSync Objects Active Device Container

Fig. 26.9 Software components and architecture of the PATF product family platform
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proper credentials, as determined by the User Management component. All safety

device signals are ignored and the machine is allowed to run, although displaying

a warning message on the user interface through the main GUI component.

Automatic Mode

This is the normal operation mode of this type of machines. In contrast to manual

mode, all system devices and subsystems are engaged, and a built-in safety moni-

toring system watches for incoming alarms from input/output signals configured as

safety devices and automatically calls an emergency shutdown procedure when

flagged. Automatic mode also allows users to perform maintenance operations

where full speed and safety device enforcement are required, for example, robot

coordinate system calibration or product load and unload.

MANUAL_OPS MANUAL_IDLE

AUTO_IDLEAUTO_PRODUCTION AUTO_SEQUENCE

AUTO_MODE

MANUAL_MODE

MANUAL_SETUP

PATF System

start end

power_on

go_ops

go_idle

go_idle go_idle

go_sequence

go_idle

go_setup

go_manualgo_auto

shutdown

go_production

Fig. 26.10 PATF system state diagram
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26.5.2 Relevant Design Decisions in PATF

Let us review the most important design decisions that were put into this frame-

work. A significant feature is that this software application gets assembled at

run-time as opposed to compile time. This is possible due to a clear Separation of
Concerns and Modularity. As shown in Fig. 26.9, software components are com-

piled separately into multiple executables, not as a monolithic application. At the

binary level, they are completely decoupled and independent, establishing their

relationships and dependencies during execution only. This means that each soft-

ware component in the Product Family Infrastructure and Family Platform Frame-

work layers is always reused in binary form, not linked as source code libraries at

compile time.

Another aspect of significance is that the architecture implements an Abstraction
of the domain in the shape of behavior, as shown in Fig. 26.10, imposing Generality
in the behavior of all derived products while still allowing limited customization

through the use of externally defined configuration algorithms for each state and

substate, which will be explained in more detail later.

The most relevant features, however, revolve around the principle of Design for
Change, which enables the construction of a wide variety of products. Although

they all belong to the same family and share similar characteristics, they can also be

applied to a wide range of dissimilar applications across many industries. A more

detailed presentation of these features follows below.

26.5.2.1 Design for Change

For the purpose of illustrating the application of the principle of Design for Change
(Morales 2013), we now discuss some of the Evolvability, Reusability, and Antici-
pation of Change features that went into the design of the PATF software product

platform.

Product Family Infrastructure Layer

Among several needed flexibility features that were observed during the

Constraints and Adaptability analysis performed for this project, it was noted that

most industrial automated cells would use robots, machine vision, and instrumen-

tation equipment in a consistent manner. The differences between applications were

limited to the specific settings and configuration for each infrastructure device, and

the sequence of actions that were needed to assemble one product, or test some

other. For that reason, all of these components (robots, cameras, instruments, etc.)

were packaged as black-box reusable components called ActiveDevices.

ActiveDevices were designed to be implemented in two parts: an ActiveX control
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and an ActiveX EXE (Microsoft 1994). Both ActiveX components are reused in

binary form regardless of the application in which they are used.

Configuration for each ActiveDevice is performed by reading an INI text file

containing parameter values for a particular application. When software engineers

produce a new application based on the PATF platform, they configure their

Infrastructure layer by executing a simple operation of “drag and drop” of ActiveX

controls onto the “ActiveDevice Container,” as illustrated in Fig. 26.14, later in this

chapter.

As will be seen later on, this approach allowed code reuse of the Product Family

Infrastructure layer to reach 100 % across all products in the family.

Family Platform Framework Layer

It was also observed during the Constraints and Adaptability analysis that a single

graphical user interface based on the state machine of Fig. 26.10 could satisfy the

needs of all applications in the industrial automation domain, as long as it provided

a way to include general-purpose panels in which derived software products could

display customized information based on their particular application. This design

problem required the provision of a mechanism that could insert customized panels

into the Main GUI at run-time.

The solution was to implement the GUI completely as part of the platform

framework so it would be reusable in binary form (black box) and add a separate

product-specific feature called “GUI panels.” Reusing the GUI along with the

system state machine and its related User Management component with its own

database represented a major contribution to the overall code reuse ratio, which will

be elaborated on later in this chapter.

The family platform framework also supplies generic “Subject” objects which

can be instantiated from a GUI panel to work together with an “Observer” object.

Observers are described in the next section.

As mentioned previously, the main difference among members of the product

family is the sequence of operations they perform on their physical resources to

assemble products using a robot and machine vision or the sequence of events when

generating electrical stimuli to their devices under test (DUT) on which they

perform automated measurements and apply pass/fail criteria. Therefore, a funda-

mental flexibility need for the platform was the ability to execute one or more

simultaneous tasks in a multithreaded environment, effectively implementing an

explicit Separation of Concerns (Morales 2013). This was achieved by having the

platform framework provide generic “Task Processor” objects that would take

algorithms encapsulated in a generic object whose class was defined externally,

i.e., as a product-specific feature. Thus, a sample application would define a

sequence of events for moving a robot about its work cell, operating its gripper,

and controlling its speed and joint position, all in a single class of type

AppSequence (see below).
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Multiple Task Processors can run simultaneously either independently or

collaborating through Sync objects (also provided by the platform framework)

which enable processors to exchange messages and data, as well as performing a

rendezvous that may lead them to alternate paths of execution based on their data

exchange, e.g., a test station sending Pass/Fail results to the robot handling the

product, which can then drop the product off into a reject bin or pack it into a

shipping box, for instance.

Product-Specific Features Layer

The top layer of the product family architecture houses those features that make

individual members of the family truly distinct from each other. The platform

framework imposes what is known as inversion of control (Morales 2013). This

means that all software components in the top layer must comply with the

interfaces, protocols, and types expected by the platform framework underneath

it. For that reason, this layer consists mostly of code templates. In other words, code

reuse in the Product-Specific Features layer is white box. Form is imposed by the

software platform, but content is completely determined by the application at hand,

i.e., the specific product being implemented.

Whereas Task Processors are generic objects that will execute any task

encapsulated in an AppSequence object, the AppSequence class is the product-

specific complement to Task Processors. The software family platform specifica-

tion prescribes some special requirements for the content of these classes, e.g.,

initialization sequences and exit sequences, but the new application is otherwise

completely free to define the sequence of actions on ActiveDevices, to perform any

calculations to determine results using external libraries if needed, to exchange data

and synchronization points with other sequences (rendezvous), and to update the

user interface at any time. During initialization, AppSequences receive references

to the ActiveDevice and GUI panel containers in order to have access to the

system’s resources, and each sequence object announces to the Scheduler with

what other AppSequences it needs to collaborate during execution.

GUI panels are plain object containers, which get modified and configured at

design-time. All GUI elements like text boxes, list boxes, labels, buttons, tab

containers, and frames that are needed by the application can be added freely

without any other restriction but the real estate available, which cannot be modified.

The number of panels available at run-time is also configured at design-time, being

a minimum of one and a maximum of eight. Panels that are not used are hidden at

run-time, and users can select which GUI panel is displayed by clicking a button on

the screen, independently of the current state of the system (Fig. 26.10).

AppSequences can access any GUI widget through the object reference to the

container they all have.

Observers are also reused as code templates, and they are typically used to

update the contents of GUI panels in an asynchronous manner. Subject and

Observer objects are implemented according to the Observer design pattern
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(Gamma et al. 1995), and as described in the referenced book, each Observer

subscribes to its corresponding subject during initialization. Subjects are typically

updated by AppSequences.

DUT Collection is just another code template that provides a multithreaded

execution environment for a collection of application-specific objects defined by

a free-form class representing devices under test.

Final Product Test Example

Further elaborating on the discussion of Separation of Concerns as it relates to the

implementation of AppSequences, we now present a concrete example to clarify

and show how this approach helps to isolate the truly application-dependent

features from the common product family functionality.

Figure 26.11 depicts a robotic cell application where we have a robot arm (1)

with a gripper to pick up a finished product from the input feeder (2) and take it to

an electrical functional test station (4) in the first step of the process. If the electrical

test fails, the robot takes the product to a rejection chute (3) that guides the scrapped

product to a bin and then picks up a new part from the input feeder. If the product

passes the test, it continues in the process and is then taken to a machine vision

station (5) for final cosmetic inspection. The visual inspection station consists of a

digital camera and its illumination system. If the product fails the visual inspection,

the robot takes the product to a tray (6) that is used to ship a batch of rejected

products to an external rework station when it’s full. If the product passes the visual

inspection, then the robot packs the product in the shipping container (7).

This cell is required to keep the count of defective products, count of products

sent for rework, and count of good products packed in shipping containers. Addi-

tionally, it is required to store the detailed results of all electrical and visual tests,

Electrical Test
Station

(4)

(1) Visual Inspection
Station

(5)

Rejection
Bin
(3)

Rework
Tray
(6)

Shipping
Container

(7)

New Product
Feeder

(2)

Fig. 26.11 A robotic cell

based on the PATF product

platform
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associate them with the serial number of each product and compute statistical

results, and process capability of the robotic cell.

The controlling software for this cell would be implemented as follows:

1. A new class named RobotSequence is derived from the AppProductSequence

class (see Fig. 26.13) to implement the sequence of actions required to control

the robot’s movements to and from each position in the robot cell, according to

the scenario described above.

2. Another class named ElectricalTestSequence, also derived from the concrete

class AppProductSequence, is implemented to execute all the electrical tests at

station (4) and to determine the final Pass/Fail result, based on the measurements

from each product tested. This class must include a rendezvous point that is

exchanged with RobotSequence to stop the robot at the electrical test station and

pass in the test result, so the robot can proceed to either drop the product in the

rejection chute (3) or continue on to the next test station (5). Measurement

instruments are all ActiveDevices, as described above.

3. The third sequence class, called VisualInspectionSequence, is implemented with

the image processing algorithms that are needed to perform the cosmetic inspec-

tion. These image processing functions are called from an external library

acquired from a third party that specializes in machine vision algorithms. The

sequence also handles digital inputs and outputs to control the illumination

system. This class also implements a rendezvous point to synchronize with

RobotSequence, stopping the robot in front of the camera and exchanging data

representing the inspection results, upon which RobotSequence reacts subse-

quently by placing the product either on the rework tray or in the shipping box.

4. The fourth sequence class is implemented to keep track of the rework tray and

automatically swap a full tray with an empty one using a mechanical actuator

without having to interfere with the other components of the robot cell. This

sequence does not need to synchronize with the robot because they are

completely asynchronous and independent. The swapping action is indirectly

triggered as the consequence of having the robot place a product in the last

available spot on the tray.

5. A Subject object is instantiated and assigned an object of type ProductCount, which

holds the current counts of products tested, rejected, reworked, and shipped.

6. Another Subject object is instantiated and assigned an object of type

TestResults, which holds all the electrical parameter measurements for each

product, plus the cumulative statistical results and metrics.

7. Two Observer objects are created based on the Observer class template. Each of

them subscribes to its corresponding Subject objects: ProductCount or

TestResults. Each observer is responsible for updating its own GUI panel,

which is assigned to them at run-time.

Notice how convenient it is to focus on just one thing at a time (Separation of
Concerns) when implementing a new application based on the PATF platform,

even one as simplified as this example. This advantage becomes more evident as the

complexity of the application increases. Additionally, this approach enables teams
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to divide and conquer the complexity of the problem and to distribute programming

work among team members without affecting the system’s consistency, resulting in

shorter development times.

26.5.2.2 Run-Time System Composition

One of the great benefits of creating a software platform for a family of products is

code reuse. Black-box code reuse, in particular, has additional side benefits includ-

ing robustness, known quality and reliability, and software maturity that improves

with each new product that is implemented using the family platform.

Software can be reused in binary form if a multitude of compiled software

components are assembled into a customized application at run-time. This is

achieved through object composition, as described below. Figure 26.12 is a UML

Object Collaboration Diagram showing a partial view of the run-time structure of a

generic application built on the PATF product family platform. During

initialization, the Main application instantiates the Scheduler, which is the orches-

trator of a PATF application, and a chain of events is triggered, at the end of which

the whole application is composed and ready to run.

The sequence of events during start-up is roughly as follows:

1. Main application starts, indicating a number of parameters and resource

locations for the framework’s use. Scheduler is instantiated, who takes control

over the execution and suspends Main. From that point on, Scheduler is respon-
sible for instantiating all the necessary objects and assembling them into a

complete working application.

2. Scheduler instantiates MainGUI, which in turn instantiates GUIPanels and

UserManagement. The latter component is responsible for providing user

authentication services to MainGUI and can use a local database, a remote

SCH : Scheduler

TP1 : TaskProcessor

TP2 : TaskProcessor

Task1 : AppSequence

Task2 : AppSequence

GUI : MainGUI

P1 : GUIpanel P2 : GUIpanel

UDB : UserManagement

Main : PATFapp

Ob1 : Observer Ob2 : Observer Ob3 : Observer

S1 : Subject S2 : Subject S3 : Subject

ADC : ActiveDeviceContainer

AD1 : ActiveDevice

AD2 : ActiveDevice

Fig. 26.12 Partial view of the PATF run-time structure (object collaboration)
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database connection, or delegate requests to a corporate user repository, details

of which are completely hidden from MainGUI.
3. Once MainGUI is up and running, Scheduler instantiates the ActiveDevice-

Container object, which in turn instantiates all its children components, i.e., all

theActiveDevices available to the system in a particular application. At this point,

the application objects are all fully assembled in memory, and the systemwaits in

the MANUAL_IDLE state (see Fig. 26.10) for user input about the next action.

All applications built on top of the PATF platform behave according to the state

machine shown in Fig. 26.10. When the user requests a change of state, the state

machine executes the sequence of actions specified in the AppStateSequence class

corresponding to that state. Figure 26.13 shows a UML class diagram partially

showing the structure of AppSequences, with a faint reference to the robot cell

example described above.

As shown in Fig. 26.13, there are two subclasses derived from the abstract class

AppSequence: one that defines the actions the system must take during a state

transition (AppStateSequence) and one that defines the actions to be taken while the
system remains in that state (AppProductSequence). There are eight AppState-
Sequences that are expected by Scheduler, and therefore, they must be implemented

by the new product application. These eight classes correspond to each of the

low-level system states shown in Fig. 26.10, plus Initialization and Shutdown.
Each AppStateSequenceclass launches one or more AppProductSequences as

required to be run in their corresponding state. AppSequences can be executed in

either Concurrent or Sequential mode, and AppSequences may spawn other

AppSequences in either execution mode. Once children sequences terminate, the

parent terminates too. This scheme enables product designers to implement

dynamic system behaviors of arbitrary complexity.

+RunStep(in nStep : int) : int

+ClientID : int
+Abort : bool
+Message : char
+SyncPoints : CollectionSyncPoints
+ADcontainer : ActiveDeviceContainer
+Panel : GUIpanel

AppProductSequence

AppSequence

+Execute() : int

+ProcessList : char
+CurrentProcess : int

AppStateSequence

RobotSequence ElectricalTestSequenceSeqAutoProduction SeqManualSetup

CollectionSyncPoints

+SyncName : char
+SeqName : char
+SeqClientID : int
+PartnerSeqID : int
+SyncData : char
+SyncStep : int

SyncPoint

1

*

Fig. 26.13 Partial class diagram showing the structure of application sequences in PATF
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When an AppProductSequence object starts, it is responsible for attaching

themselves to Subject objects so they can post the information that is to be displayed

on GUI panels after any transformations are made by the corresponding Observer
objects.

SyncPoint objects are instantiated by each AppProductSequence object that

needs to rendezvous with another AppProductSequence. When execution of a

sequence reaches the SyncSteppoint, the SyncPoint object is handed over to Sched-
uler, who takes the request and puts the sequence to sleep until its advertised partner
PartnerSeqID is ready for rendezvous. At that point, the dormant sequence is

awaken, and Scheduler swaps the SyncPoint objects and sends them back to the

partner sequences, thus enabling information exchange between the partners, as

described in the robot cell example above.

Run-time object composition as described above maximizes code reuse in binary

form, thus ensuring that a more solid product is implemented in a very short time

with great technical and economic benefits, as shown in the study of code reuse

presented in the next section.

26.6 Code Reuse in Product Platforms

Vs. Traditional Approach

The PATF product family platform was implemented and initially tested on three

different applications within the field of automated industrial manufacturing and

testing. More than twenty different products have been implemented and deployed

since then.

The first application, System A, is an automated assembly cell for building

microelectromechanical system (MEMS) devices. This task requires very high

precision, high performance, and high flexibility. It includes a vision-guided

SCARA robot, multiple servo-controlled linear actuators, and a range of other

industrial automation devices.

The second application, System B, uses the same type of robot in a completely

different robot cell platform for automatically testing the same MEMS devices. In

this case, the system features multiple automated part feeders that enable uninter-

rupted operation. This system uses high-precision optical and instrumentation

equipment and performs a series of mathematically intensive calculations.

The third application, System C, is a manual version of the robotic tester, using

the same optical equipment and mathematical algorithms but manual part handling,

interactive operation, and a different set of operator safety policies.

26.6.1 Implementation

The system was implemented to run on a Microsoft Windows® platform using

Microsoft COM technology. Active objects were implemented as multithreaded

COM servers (Microsoft 1994), which produce native code for faster execution.
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In order to simplify the use of ActiveDevices, these components were

implemented in two parts: an ActiveX control and an ActiveX EXE executable.

The ActiveX control can be dragged and dropped onto an object container, which in

turn instantiates an out-of-process COM server in a way that becomes transparent to

the application programmer. Figure 26.14 shows a UML deployment diagram with

the code components required to implement System A, described above. Similar

structures were used to implement Systems B and C.

Software components represented with white symbols are reusable in binary

form across multiple applications, and shaded symbols (top row) represent

components that must be modified with application-specific code. Therefore, the

set of software components that comprise an instance of the system architecture

described herein is divided in two subsets according to their relation to the custom

application: They are either dependent or independent.

26.6.2 Application-Independent Components

Components represented in the UML deployment diagram of Fig. 26.9 are directly

mapped from high-level classes in the system architecture. Notice that virtually

every software components in the Product Family Infrastructure layer are reusable

in executable form. The only exception is ActiveDevice_Container, which is

discussed below.
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Fig. 26.14 System deployment diagram
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All of the components in the Family Platform Framework layer are also reusable

in binary form across multiple applications, with the sole exception of the

Subject_Observer component, which is also discussed below.

From an economical point of view, components that are reusable in binary form

are very valuable assets for an organization, since they are designed, developed, and

tested once and can then be used in many future applications using the same devices

abstracted by these software components.

26.6.3 Application-Dependent Components

As naturally expected, most of the components in the top layer (product-specific

features) must be customized to fit the target application. Nevertheless, these

components are developed based on code templates, where more than 60 % of

the source code is reused, with the exception of App_Sequence, which only reuses a

code skeleton or, in other words, just the interface.

Going back to ActiveDevice_Container, there is virtually no code required in

this component, since its only purpose is to package the selected ActiveDevice

components into a single compiled component.

As its name hints, Subject_Observer serves objects of two types: Subject and

Observer. There is only one class for Subject, which requires no customization

whatever. It is reused at the source code level as is. On the other hand, an Observer

class is supplied as an example and code template, which then has to be copied and

modified to fit the application at hand. For customization, a typical Observer class

requires modifying or writing less than 100 lines of code.

The case for GUI_Panels is very similar, although most of the modifications are

related to user interface objects, like command buttons, data grids, data-bound

controls, and labels.

Finally, we get to the executable program CustomApp, which in fact is only a

generic name for this component. This program has the sole task of instantiating the

System Scheduler with the main settings for the user interface. This is a template

project that requires customizing <10 lines of code. In practice, this program is

usually compiled with the application name, for instance, RobotCell.exe. Once

instantiated, the System Scheduler takes over, and from that point on, CustomApp

is actually relegated to the background.

26.6.4 Evaluation

We now set to evaluate the impact of this approach to software architecture in terms

of code reuse and programmer productivity. At the time this project was completed,

a survey of the literature on software reuse metrics was made (Chidamber and

Kemerer 1994; Price and Demurjian 1997; Price et al. 2001; Washizaki et al. 2003;
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Devanbu et al. 1996; Chen et al. 1995; Ferri et al. 1997; Cardino et al. 1997). The

objective was to find an appropriate technique that would reflect the benefits

derived from reusing enterprise frameworks, where reuse includes both design

and executable code. Most proposed metrics addressed class structure, complexity,

and static relations that use source code files and other fine-grain elements as inputs.

The coarse-grain modularity and functionality of an enterprise framework lay

beyond the scope of such metrics. Our conclusion was that new metrics were

needed, such that the influence of reusing design, architecture, and other system

features located at higher levels of abstraction are also taken into account.

In the case of application frameworks,we think that reuse of architectural design is a

major factor in the success of deployed applications using it.Whenarchitectural design

is reused, the design phase of the software development cycle is greatly simplified,

reducing it to a mapping of the application’s specific requirements to the different

components offered by the standardized architecture, which results in a well-known

system organization that streamlines the implementation phase and enhances the

quality of the final product. This effect includes important engineering labor savings,

which should be quantified in order to take this important benefit into consideration.

26.6.5 Methodology

Given this situation, we opted for an informal and simple pragmatic approach to

measuring the impact of framework reuse and carry a soft evaluation by using

historical data from comparable projects previously completed by the same soft-

ware development team.

Table 26.1 shows a list of projects previously developed and their respective

software development cost in man-hours. All listed applications are very similar

robotic cells for automated manufacturing. They all integrate the same robot, the

same machine vision system, the same servomotors for linear motion, and other

industrial automation tools. Their main difference is that each machine builds a

different product. Projects A, B, C, and D were developed using the traditional

approach to software development. Project E was implemented using the PATF

product family platform. With this information as our starting point, we took the

number of engineering hours that were required to design, implement, test, and

debug the previous projects and then compared it to the effort required to

Table 26.1 Summary of

product family optimization

methods evaluated in study

Projects with similar

applications

Total engineering

hours

Project A 3,030

Project B 2,290

Project C 2,225

Project D 1,530

Project E (using PATF) 384
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implement a brand new application using the PATF platform. Please note that this

table does not include the effort required to design, develop, and implement the

platform itself (3,800 h). However, this overhead cost is included in the final

evaluation shown in Table 26.5.

26.6.6 Results

Let us now characterize the PATF platform and its reusable code base, as fully

implemented in the completed product family platform or enterprise framework.

26.6.6.1 Code Reusability

Table 26.2 shows the PATF black-box reuse profile, which lists software

components that are reused in binary (executable) form. The total number of

shipped source instruction lines (SSI) is given as an indicator of the component’s

size and cost. This is later used as a reference point when quantifying labor savings.

Since these components are reused without any changes, the total black-box reuse

ratio is 100 %.

Table 26.3 shows the PATF white-box reuse profile. It presents the source code

reuse ratio for components that are reused as project and code templates. These

templates have to be modified to suit the new application at hand. Naturally, all

application-specific code components show low source code reuse ratios. Never-

theless, the overall white-box reuse ratio reaches 20 %, which accounts mostly for

abstract classes, type libraries, and other PATF interface elements.

Table 26.4 summarizes the PATF Compound Reuse Profile, which comprises

both black-box and white-box reuse ratios, yielding a net shipped code reuse of

more than 90 %.

Table 26.2 PATF black-box reuse profile (Project E)

Component SSI RSI Reuse (%)

Scheduler 112,963 112,963 100

Processor 15,961 15,961 100

Main GUI 18,046 18,046 100

User management 14,584 14,584 100

ActiveDevice robot 110,864 110,864 100

ActiveDevice DIO 12,449 12,449 100

ActiveDevice DMM 12,170 12,170 100

ActiveDevice vision 14,762 14,762 100

ActiveDeviceDeviceNet 16,842 16,842 100

ActiveDevice servo 15,308 15,308 100

Total 343,949 343,949 100

Key: SSI shipped source instructions, RSI reused source instructions
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26.6.6.2 Cost Savings When Using the Platform

It is evident that a reduction in the total implementation effort translates directly

into cost savings. Looking at the previous projects, we find that the median

development effort for Projects A, B, C, and D is 2,258 man-hours, and the average

is 2,269 man-hours.

On the other hand, the total cost for the design, implementation, and test of the

PATF framework was 3,815 man-hours. Once ten applications were implemented

based on the PATF framework, the investment resulted in a unit cost of approxi-

mately 382 man-hours per system. If we add this PATF unit cost to the implemen-

tation effort for Project D and take the median as a representative cost value for

projects implemented using the traditional approach, we get the results shown in

Table 26.5.

The numbers show that projects implemented with the PATF platform cost

approximately 1/3 of what it would cost if it were developed from scratch. Like-

wise, since our cost units are man-hours, the same numbers show that the software

team gets the job done three times faster than with the traditional approach.

Table 26.3 PATF white-box reuse profile (Project E)

Component SSI RSI Reuse (%)

Subject 1,597 1,597 100

CustomApp 1,354 620 46

ActiveDevice container 1,288 425 33

GUI_Panels 2,761 863 31

AppSequence 17,620 1,621 21

Observer 2,678 366 14

Total 27,298 5,492 20

Key: SSI shipped source instructions, RSI reused source instructions

Table 26.4 PATF compound reuse profile (Project E)

Component SSI RSI Reuse (%)

Black-box reuse 343,949 343,949 100

White-box reuse 27,298 5,492 20

Total 371,247 349,441 94

Key: SSI shipped source instructions, RSI reused source instructions

Table 26.5 Comparing PATF vs. traditional approach

Software implementation technique

Total engineering

hours

Total project cost using traditional approach (median) 2,258

Total project cost using PATF as the platform (includes 10 %

of the development cost of the PATF framework itself)

766

Development cost reduction: 66 %

Productivity improvement: 295 %
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Cost savings in engineering effort are an important piece of information to

economically justify the greater investment needed to develop reusable software

architectures and code within an organization.

Keep in mind, however, that software product platforms, or enterprise applica-

tion frameworks, are hard to design and the challenge should not be taken lightly. It

requires an expert software architect with deep knowledge of the domain, supported

by a team of software professionals, and the full commitment of the organization to

make the significant investment that requires such project. Nevertheless, the payoff

of a successful software product platform is significant and rewarding in the

long term.

26.6.6.3 Other Observations

Since PATF implies that a complete set of design decisions have been made for

software developers of future projects that use it, they did not have to spend any

time at all designing their new applications.

Likewise, developers had to spend no time thinking of how to identify, create, or

abstract new modules or interfaces, since everything is fixed a priori in the frame-

work. Functional policies that are typical to most applications within the particular

domain are also implemented in the underlying design and platform. Therefore, the

only task left for them to do was to focus on the particular functional details that

made the target application unique, i.e., the specific algorithms of their new

assignment.

Due to the phenomenon of inversion of control exhibited by an application

framework, programmers are forced to write application-specific code strictly

following the guidelines and interfaces prescribed in the framework design. The

resulting code was more homogeneous and standardized across the team, as com-

pared to code produced for previous projects. This effect is an additional benefit,

since it also helps to improve the software product maintainability.

It is important to mention, however, that at the beginning, it was a difficult task

for software developers to grasp the system model and the new inverted-control

programming style where the family platform framework was in charge, not them.

Inflexibility of the interface design and the multitude of stand-alone external

components required by the system as mandatory also demanded additional

adjustments to the typical programmer mindset. Nevertheless, after the learning

period was over, programmers acknowledged the benefits of the new structured

development based on the new product platform.

26.6.6.4 Code Reuse Conclusion

In agreement with previous reports (Fayad et al. 2000; Fayad and Schmidt 1997;

Schmidt and Fayad 1997; Yassin and Fayad 1999; Poulin et al. 1993), the effect of

using a software product platform for the industrial automation and test domain was
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positive, having achieved an estimated level of executable code reusability above

90 % and cost savings of about 60 %. Productivity of software development teams

was improved, although the learning curve could be steep for some programmers.

Reusing both design and code yields multiple benefits in terms of cost, new

product development lead time, and robust quality of the production code due to

extensive testing at each new product iteration. Homogeneity and consistency

among different members of the product family makes maintenance and evolution

feasible, efficient, and cost-effective.
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