
Advances in
Product Family and
Product Platform
Design

Timothy W. Simpson
Jianxin (Roger) Jiao
Zahed Siddique
Katja Hölttä-Otto Editors

Methods & Applications

Advances in Product Family
and Product Platform Design

Timothy W. Simpson • Jianxin (Roger) Jiao
Zahed Siddique • Katja Hölttä-Otto

Editors

Advances in Product Family
and Product Platform Design

Methods & Applications

Editors
Timothy W. Simpson
Department of Mechanical

and Nuclear Engineering
Pennsylvania State University
University Park, PA, USA

Jianxin (Roger) Jiao
School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA, USA

Zahed Siddique
School of Aerospace

and Mechanical Engineering
University of Oklahoma
Norman, OK, USA

Katja Hölttä-Otto
Engineering Product Development
Singapore University of Technology

and Design
Singapore, Singapore

ISBN 978-1-4614-7936-9 ISBN 978-1-4614-7937-6 (eBook)
DOI 10.1007/978-1-4614-7937-6
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013945755

Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Increased product variety, decreased costs, faster time to market. The motives for

designing product platforms and developing families of products have changed

little these past three decades; however, never have companies had more imperative

to pursue platform-based product development. The rise of the BRICs

(Brazil, Russia, India, and China), the Great Recession, and the interconnected

global economy are but a few of the many factors that are causing renewed and

continued interest in product platforms and product family design. In our own

teaching, we have observed this shift as well. Shortly after our first book came

out, industry interest was primarily focused on what is a platform and what are its

potential benefits to a company, and only a few companies were aggressively

pursuing platform-based product development strategies. Now, particularly in the

last 2–3 years, industry interest has noticeably shifted to the implementation and

execution of platforms (e.g., how do we design platforms? what constitutes a good

platform? how does our platform compare to what our competitors are doing?), and

we find the majority of companies are investing significant time and resources to

develop a product platform and corresponding product family.

So what is a product family? Most generally, it is a set of products that share one

or more common “elements” (e.g., components, modules, subsystems, fabrication

processes, assembly operations) yet target a variety of different market segments.

The commonality in the family is intentional—not coincidental—and arises from

the product platform around which the family is derived. The individual product

variants can be derived from the platform by adding, substituting, or subtracting one

or more modules from the family to create a module-based product family or by

“scaling” or “stretching” the platform in one or more dimensions to realize a scale-

based product family (Jiao et al. 2007). Of course, it is never that straightforward in

practice, as different product families require different combinations of modularity

and scaling to achieve sufficient variety for the marketplace while remaining cost-

effective and competitive.

Making the case for platforming in a company remains a challenge. It requires a

different mindset than one for a single product, and most companies are not

prepared to think across multiple generations of products and long term about

v

their product lines. The concept of a “market attack plan” remains foreign to many

companies as they still have a single product mindset and overcoming the corporate

inertia to change that takes time and energy—and lots of it. A successful platform is

as much about the technical solution as it is about the financial benefits or the

organizational roadmap needed to establish and follow through on a viable platform

strategy. The traditional thinking and established practices to manage product
development often do not readily translate to platform development—a company

cannot simply substitute one word for another in an org chart or a gate review

process and expect things to go smoothly.

Cross-functional product development teams, support from upper management,

platform architecting, understanding the market, and financial planning are just as

important now as they were when we analyzed industry trends seven years ago

(Simpson et al. 2006). We have also seen that platforming in “nontraditional” areas

(e.g., software, services) continues to grow and thinking globally about platforms

has become the rule not the exception as companies seek to establish a presence in

multiple markets around the world. The variability that this creates—in customer

needs, regulations/standards, and the general business environment—can be over-

whelming, and companies need to think seriously about what platform strategy is

best for them, if any. In some cases, the added cost and complexity of platform-

based product development may lead to undesirable products; however, careful

planning and an honest assessment of the true benefits of platforming within a

company often yield exciting results.

To help companies with their platform journey—and it truly is a journey that

does not happen overnight—we present Advances in Product Family and Product
Platform Design: Methods and Applications, a follow-up to our first edition, which
is now 8 years old (Simpson et al. 2005). While the methods and tools from our first

edition are still readily applicable, numerous advances have been made, and the

applications are becoming dated and no longer reflect the variety of areas that are

now being targeted by platforms (e.g., software, services). Chapter 1 in the present

text reviews recent literature to bring the reader up to speed on the recent

developments. The remainder of the book is organized into four parts based on

the order of a typical platform development life cycle:

• Part I: Platform Planning and Strategy

• Part II: Platform Architecting and Design

• Part III: Product Family Development and Implementation

• Part IV: Applications and Case Studies

Highlights of the chapters in each part follow.

Part I: Platform Planning and Strategy

The first part of the book provides a collection of methods and tools to help plan the

platform development with given benefits in mind. Chapter 2 explores the benefits

and pitfalls of commonality and provides evidence from several in-depth case

vi Preface

http://dx.doi.org/10.1007/978-1-4614-7937-6_1
http://dx.doi.org/10.1007/978-1-4614-7937-6_2

studies on the cost savings and commonality premiums that companies were able to

achieve in a range of industries. Chapter 3 investigates the challenges of integrating

customer diversity across multiple market segments and provides methods to

coevolve market segments and product variants to realize novel product platforms

for multiple domains. Chapter 4 provides an overview of Modular Functional

Deployment, a popular method in industry to support module-based product family

design and examines the impact of different module drivers on both product and

platform architecting. Chapter 5 expands on the notion of parts reuse to the reuse of

design information and other generic assets to leverage platforms to integrate

product and production systems. Chapter 6 introduces data mining techniques to

help designers quantify the relevance (or obsolescence) of product features when

developing a platform and corresponding family of products. Finally, Chap. 7

discusses platform valuation tools and the use of options to support module

development decisions in uncertain market environments.

Part II: Platform Architecting and Design

The second part consists of eight chapters that introduce methods to help architect

the platform, including methods for architecture decomposition as well as for both

scalable and modular product platforms. Chapter 8 introduces a method to proac-

tively create a platform based on assessment of market needs followed by identifi-

cation of modules for individual product variants. Chapter 9 investigates the role of

architecture decomposition and the impact that granularity has on modularity.

Chapter 10 provides a comprehensive toolkit to support modular platform develop-

ment along with an industry example to demonstrate its application. Chapter 11

explores the challenges of simultaneously designing a product platform and a

product family and offers computational tools to optimize both at the same time.

Chapter 12 provides a one-step approach to identify the platform and design the

family of products simultaneously. Meanwhile, Chap. 13 identifies a tool chain to

link disparate methods together to support product platform architecting.

Chapter 14 describes a method for scale-based product family design using Quality

Function Deployment (QFD) to optimize the engineering characteristics of the

platform and the individual product variants. Finally, Chap. 15 offers a multi-

platform approach to balance the trade-off between commonality and individual

product performance that lies at the heart of product family design.

Part III: Product Family Development and Implementation

The third part continues to introduce methods for product platform development but

with an emphasis on the implementation and execution of the platform strategy.

Chapter 16 introduces methods and tools to support global platform design that

integrates modularity and supply chain decisions. Chapter 17 presents three tools to

support system architecting by linking functions, behaviors, and working principles

Preface vii

http://dx.doi.org/10.1007/978-1-4614-7937-6_3
http://dx.doi.org/10.1007/978-1-4614-7937-6_4
http://dx.doi.org/10.1007/978-1-4614-7937-6_5
http://dx.doi.org/10.1007/978-1-4614-7937-6_6
http://dx.doi.org/10.1007/978-1-4614-7937-6_7
http://dx.doi.org/10.1007/978-1-4614-7937-6_8
http://dx.doi.org/10.1007/978-1-4614-7937-6_9
http://dx.doi.org/10.1007/978-1-4614-7937-6_10
http://dx.doi.org/10.1007/978-1-4614-7937-6_11
http://dx.doi.org/10.1007/978-1-4614-7937-6_12
http://dx.doi.org/10.1007/978-1-4614-7937-6_13
http://dx.doi.org/10.1007/978-1-4614-7937-6_14
http://dx.doi.org/10.1007/978-1-4614-7937-6_15
http://dx.doi.org/10.1007/978-1-4614-7937-6_16
http://dx.doi.org/10.1007/978-1-4614-7937-6_17

to a variety of customer requirements. Chapter 18 discusses three methods to help

identify potential common components in a product family and visualize the

respective performance trade-offs. Chapter 19 describes several commonality

indices and investigates their ability to capture the total cost savings within the

product family. Chapter 20 investigates the implications of managing multiple

design projects during product family development and introduces a process archi-

tecture to support modular design project planning. Chapter 21 discusses the

challenges when architecting software platforms and codifies design principles to

support software reuse. Chapter 22 explores the influences and impact of human

variability on product design and identifies basic scenarios where platforming and

modularity are advantageous. Finally, Chap. 23 concludes this part with a series of

recommendations to align the product family with the manufacturing and supply

chain while stressing the importance of aligning market variety with design versa-

tility and supply chain responsiveness.

Part IV: Applications and Case Studies

The fourth part provides a series of practical examples from industry. In Chap. 24, a

modular architecture is developed for a cordless handheld vacuum cleaner using

Modular Function Deployment, which was introduced in Chap. 4. Chapter 25

investigates opportunities for commonality between different classes of ships for

the US Coast Guard. Chapter 26 discusses heuristics for architecting software-

intensive families, which are then used to develop a software platform for a family

of industrial machines. Chapter 27 uses a sequence of design tools discussed in the

book to analyze customer requirements and subsequently design a family of electric

violins. Chapter 28 examines the implications of product family design and reuse

on product life cycles with a smartphone case study. Chapter 29 describes the

application of the Generational Variety Index (Martin and Ishii 2002) to analyze

four generations of Apple’s iPhone product line. A family of leaf blowers is

designed using the proactive modular platform design method introduced in

Chap. 8. Finally, the book concludes with an Epilogue that offers future research

directions and discusses several trends shaping future applications of product

platform and product family design and development.

University Park, PA, USA Timothy W. Simpson

Atlanta, GA, USA Jianxin (Roger) Jiao

Norman, OK, USA Zahed Siddique

Singapore Katja Hölttä-Otto

viii Preface

http://dx.doi.org/10.1007/978-1-4614-7937-6_18
http://dx.doi.org/10.1007/978-1-4614-7937-6_19
http://dx.doi.org/10.1007/978-1-4614-7937-6_20
http://dx.doi.org/10.1007/978-1-4614-7937-6_21
http://dx.doi.org/10.1007/978-1-4614-7937-6_22
http://dx.doi.org/10.1007/978-1-4614-7937-6_23
http://dx.doi.org/10.1007/978-1-4614-7937-6_24
http://dx.doi.org/10.1007/978-1-4614-7937-6_4
http://dx.doi.org/10.1007/978-1-4614-7937-6_25
http://dx.doi.org/10.1007/978-1-4614-7937-6_26
http://dx.doi.org/10.1007/978-1-4614-7937-6_27
http://dx.doi.org/10.1007/978-1-4614-7937-6_28
http://dx.doi.org/10.1007/978-1-4614-7937-6_29
http://dx.doi.org/10.1007/978-1-4614-7937-6_8

References

Jiao RJ, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Simpson TW, Marion TJ, de Weck O, Holtta-Otto K, Kokkolaras M, Shooter SB (2006)

Platform-based design and development: current trends and needs in industry. In: ASME design

engineering technical conferences – design automation conference ASME, Philadelphia,

Pennsylvania, Paper No. DETC2006/DAC-99229

Simpson TW, Siddique Z, Jiao J (2005) Product platform and product family design: methods and

applications. Springer, New York, NY

Preface ix

Contents

1 A Review of Recent Literature in Product Family Design

and Platform-Based Product Development 1

Zhila Pirmoradi, G. Gary Wang, and Timothy W. Simpson

Part I Platform Planning and Strategy

2 Crafting Platform Strategy Based on Anticipated

Benefits and Costs . 49

Bruce G. Cameron and Edward F. Crawley

3 Multidisciplinary Domains Association in Product

Family Design . 71

Hoda ElMaraghy and Tarek AlGeddawy

4 Modular Function Deployment: Using Module Drivers

to Impart Strategies to a Product Architecture 91

Mark W. Lange and Andrea Imsdahl

5 Emphasizing Reuse of Generic Assets Through Integrated

Product and Production System Development Platforms 119

Hans Johannesson

6 Quantifying the Relevance of Product Feature

Classification in Product Family Design . 147

Conrad S. Tucker

7 Platform Valuation for Product Family Design 179

Seung Ki Moon and Timothy W. Simpson

xi

Part II Platform Architecting and Design

8 A Proactive Scaling Platform Design Method

Using Modularity for Product Variations . 201

Keith Hirshburg and Zahed Siddique

9 Architectural Decomposition: The Role of Granularity

and Decomposition Viewpoint . 221

Katja Hölttä-Otto, Noemi Chiriac, Dusan Lysy, and Eun Suk Suh

10 Integrated Development of Modular Product Families:

A Methods Toolkit . 245

Dieter Krause, Gregor Beckmann, Sandra Eilmus,

Nicolas Gebhardt, Henry Jonas, and Robin Rettberg

11 Solving the Joint Product Platform Selection and Product

Family Design Problem: An Efficient Decomposed

Multiobjective Genetic Algorithm with

Generalized Commonality . 271

Aida Khajavirad, Jeremy J. Michalek, and Timothy W. Simpson

12 One-Step Continuous Product Platform Planning:

Methods and Applications . 295

Achille Messac, Souma Chowdhury, and Ritesh Khire

13 Defining Modules for Platforms: An Overview

of the Architecting Process . 323

Katja Hölttä-Otto, Kevin N. Otto, and Timothy W. Simpson

14 A QFD-Based Optimization Method for Scalable

Product Platform . 343

Xinggang Luo, Jiafu Tang, and C.K. Kwong

15 Cascading Platforms for Product Family Design 367

Jiju A. Ninan and Zahed Siddique

Part III Product Family Development and Implementation

16 Global Product Family Design: Simultaneous Optimal

Design of Module Commonalization and Supply Chain

Configuration . 393

Kikuo Fujita

17 Architecture-Centric Design Approach

for Multidisciplinary Product Development 419

A.A. Alvarez Cabrera, H. Komoto, T.J. van Beek,

and T. Tomiyama

xii Contents

18 Product Family Commonality Selection

Using Optimization and Interactive Visualization 449

Ritesh Khire, Jiachuan Wang, Trevor Bailey, Yao Lin,

and Timothy W. Simpson

19 Developing and Assessing Commonality Metrics

for Product Families . 473

Michael D. Johnson and Randolph E. Kirchain

20 Managing Design Processes of Product Families

by Modularization and Simulation . 503

Qianli Xu and Roger J. Jiao

21 Design Principles for Reusable Software Product Platforms 533

Carlos O. Morales

22 Considering Human Variability When Implementing

Product Platforms . 559

Christopher J. Garneau, Gopal Nadadur, and Matthew B. Parkinson

Part IV Applications and Case Studies

23 Building, Supplying, and Designing Product Families 589

David M. Anderson

24 Modular Function Deployment Applied to a Cordless

Handheld Vacuum . 605

Fredrik Börjesson

25 Optimal Commonality Decisions in Multiple Ship Classes 625

Michael J. Corl, Michael G. Parsons, and Michael Kokkolaras

26 A Heuristic Approach to Architectural Design

of Software-Intensive Product Platforms . 647

Carlos O. Morales

27 Customer Needs Based Product Family Sizing Design:

The Viper Case Study . 683

Cassandra Sotos, Gül E. Okudan Kremer, and Gülşen Akman

28 Product Family Design and Recovery for Lifecycle 707

Minjung Kwak and Harrison Kim

29 Application of the Generational Variety Index:

A Retrospective Study of iPhone Evolution 737

Gopal Nadadur, Matthew B. Parkinson, and Timothy W. Simpson

Contents xiii

30 Designing a Lawn and Landscape Blower Family

Using Proactive Platform Design Approach 753

Keith Hirshburg and Zahed Siddique

Epilogue . 777

Timothy W. Simpson, Roger J. Jiao, Zahed Siddique,

and Katja Hölttä-Otto

References . 789

Index . 793

xiv Contents

Contributors

Gülşen Akman Kocaeli University, Kocaeli, Turkey

Tarek AlGeddawy Intelligent Manufacturing (IMS) Centre, University of

Windsor, ON, Canada

David M. Anderson Build-to-Order Consulting, Cambria, CA, USA

Trevor Bailey United Technologies Research Center, East Hartford, CT, USA

Gregor Beckmann Institute for Product Development and Mechanical

Engineering Design, Hamburg University of Technology, Hamburg, Germany

Fredrik Börjesson Modular Management USA, Inc., Bloomington, MN, USA

A.A. Alvarez Cabrera Delft University of Technology, Delft, The Netherlands

Bruce G. Cameron Massachusetts Institute of Technology, Cambridge, MA,

USA

Noemi Chiriac Department of Mechanical Engineering, University of

Massachusetts Dartmouth, North Dartmouth, MA, USA

Souma Chowdhury Department of Mechanical and Aerospace Engineering,

Syracuse University, Syracuse, NY, USA

Michael J. Corl CDR, U.S.C.G., U.S. Coast Guard Academy, New London, CT,

USA

Edward F. Crawley Massachusetts Institute of Technology, Cambridge, MA,

USA

Sandra Eilmus Institute for Product Development and Mechanical Engineering

Design, Hamburg University of Technology, Hamburg, Germany

Hoda ElMaraghy Intelligent Manufacturing (IMS) Centre, University of

Windsor, ON, Canada

xv

Kikuo Fujita Department of Mechanical Engineering, Graduate School of

Engineering, Osaka University, Osaka, Japan

Christopher J. Garneau OPEN Design Lab, The Pennsylvania State University,

University Park, PA, USA

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Nicolas Gebhardt Institute for Product Development and Mechanical

Engineering Design, Hamburg University of Technology, Hamburg, Germany

Keith Hirshburg School of Aerospace and Mechanical Engineering, University

of Oklahoma, Norman, OK, USA

Katja Hölttä-Otto Engineering Product Development, Singapore University of

Technology and Design, Singapore

Andrea Imsdahl Department of Applied Mechanical Engineering, Industrial

Engineering and Management, Royal Institute of Technology, Södertälje, Sweden

Roger J. Jiao Georgia Institute of Technology, Woodruff School of Mechanical

Engineering, Atlanta, GA, USA

Hans Johannesson Department of Product and Production Development,

Chalmers University of Technology, Gothenburg, Sweden

Michael D. Johnson Department of Engineering Technology and Industrial

Distribution, Texas A&M University, College Station, TX, USA

Henry Jonas Institute for Product Development and Mechanical Engineering

Design, Hamburg University of Technology, Hamburg, Germany

Aida Khajavirad Carnegie Mellon University, Pittsburgh, PA, USA

Ritesh Khire United Technologies Research Center, East Hartford, CT, USA

Harrison Kim Department of Industrial and Enterprise Systems Engineering,

University of Illinois at Urbana-Champaign, Urbana, IL, USA

Randolph E. Kirchain Engineering Systems Division, Massachusetts Institute of

Technology, Cambridge, MA, USA

Michael Kokkolaras McGill University, Montreal, QC, Canada

H. Komoto National Institute of Advanced Industrial Science and Technology,

Tsukuba, Ibaraki, Japan

Dieter Krause Institute for Product Development and Mechanical Engineering

Design, Hamburg University of Technology, Hamburg, Germany

Gül E. Okudan Kremer The Pennsylvania State University, University Park, PA,

USA

xvi Contributors

Minjung Kwak Department of Industrial and Information Systems Engineering,

Soongsil University, Seoul, Korea

C.K. Kwong Department of Industrial and System Engineering, Hong Kong

Polytechnic University, Hung Hom, Kowloon, Hong Kong

Mark W. Lange Department of Applied Mechanical Engineering, Industrial

Engineering and Management, Royal Institute of Technology, Södertälje, Sweden

Yao Lin United Technologies Research Center, East Hartford, CT, USA

Xinggang Luo State Key Lab of Synthetic Automation of Process Industries,

School of Information Science and Engineering, Northeastern University,

Shenyang, Liaoning, People’s Republic of China

Dusan Lysy Xerox Corporation, Webster, NY, USA

Achille Messac Bagley College of Engineering, Mississippi State University,

Mississippi State, MS, USA

Jeremy J. Michalek Carnegie Mellon University, Pittsburgh, PA, USA

Seung Ki Moon School of Mechanical and Aerospace Engineering, Nanynag

Technological University, Singapore

Carlos O. Morales Animas Corporation, Johnson & Johnson Medical Devices,

West Chester, PA, USA

Gopal Nadadur OPEN Design Lab, The Pennsylvania State University,

University Park, PA, USA

Jiju A. Ninan Schlumberger, Sugarland, TX, USA

Kevin N. Otto Singapore University of Technology and Design, Singapore

Matthew B. Parkinson OPEN Design Lab Engineering Design, Mechanical

Engineering, and Industrial Engineering, The Pennsylvania State University,

University Park, PA, USA

Michael G. Parsons University of Michigan, Ann Arbor, MI, USA

Zhila Pirmoradi Product Design and Optimization Laboratory, School of

Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada

Robin Rettberg Institute for Product Development and Mechanical Engineering

Design, Hamburg University of Technology, Hamburg, Germany

Zahed Siddique School of Aerospace and Mechanical Engineering, University of

Oklahoma, Norman, OK, USA

Timothy W. Simpson Mechanical and Nuclear Engineering, Penn State

University, University Park, PA, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA, USA

Contributors xvii

Cassandra Sotos The Pennsylvania State University, University Park, PA, USA

Eun Suk Suh Department of Industrial Engineering, Seoul National University,

Seoul, South Korea

Jiafu Tang State Key Lab of Synthetic Automation of Process Industries,

School of Information Science and Engineering, Northeastern University,

Shenyang, Liaoning, People’s Republic of China

T. Tomiyama Cranfield University, Cranfield, UK

Conrad S. Tucker Industrial Engineering and Engineering Design,

The Pennsylvania State University, University Park, PA, USA

T.J. van Beek Delft University of Technology, Delft, The Netherlands

G. Gary Wang Product Design and Optimization Laboratory, School of

Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada

Jiachuan Wang United Technologies Research Center, East Hartford, CT, USA

Qianli Xu Agency for Science, Technology and Research, Institute for Infocomm

Research, Singapore

xviii Contributors

Chapter 1

A Review of Recent Literature in Product

Family Design and Platform-Based Product

Development

Zhila Pirmoradi, G. Gary Wang, and Timothy W. Simpson

Abstract Increased demand for a greater variety of consumer products has forced

many companies to rethink their strategies to offer more product variants. For

manufacturers, producing a variety of products can satisfy this increasing demand

and help companies gain more of market share; however, increased variety can lead

to higher design and production costs as well as longer lead times for new variants.

As a result, a trade-off arises between cost-effectiveness and satisfying diverse

customer demand. Research has found that such a trade-off can be properly

managed by exploiting product family design (PFD) and platform-based product

development, an area that has been widely studied for the past two decades. New

approaches have been proposed to address different issues related to PFD and

platform development. Performance of these approaches has been assessed through

case studies and applications to different industry sectors. This chapter focuses on

reviewing the research in this field to classify recent advancements in PFD and

platform development. We identify new achievements with regard to multiple

aspects of PFD: customer involvement in design, market-driven studies, metrics

for assessing platforms and families, indices for platform and family design,

product family optimization issues, platform development issues, and, finally,

issues relevant to supporting future platform design. Through a comparison with

previous research studies, we identify ongoing challenges in this field along with

potential directions for new research.

Z. Pirmoradi • G.G. Wang (*)

Product Design and Optimization Laboratory, School of Mechatronic Systems Engineering,

Simon Fraser University, Burnaby, BC, Canada

e-mail: gary_wang@sfu.ca

T.W. Simpson

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_1,
Springer Science+Business Media New York 2014

1

mailto:gary_wang@sfu.ca

1.1 Introduction

Customers’ needs continually evolve and shift over time, and their demand for

product variety and newer versions of products has increased rapidly in recent

decades. Many companies have been attempting to provide more product variants

to satisfy the increasing demand of niche segments in the market without sacrificing

production efficiency (Berry and Pakes 2007; Jiao et al. 2007c). A trade-off quickly

emerges: satisfying this wide array of customer needs leads to more sales, but

producing this variety of products often increases costs and makes companies less

profitable. In other words, using more common features and components in pro-

duction (i.e., standardization of components) can reduce market share if products

are not sufficiently differentiated. One way to manage this confliction is mass
customization, which enables economies of scale and satisfaction of diverse

expectations concurrently (Jiao and Zhang 2005). Mass customization emerged in

the early 1990s with the objective of satisfying individual customers through

increased product variety (Pine 1993). Product family design and platform-based

product development are effective strategies to enable mass customization as they

can effectively provide variety at reduced costs (Marion et al. 2007; Park and

Simpson 2008). A product family can be considered as a set of products that

share a number of common components and functions with each product having

its unique specifications to meet demands of certain customers (Meyer and Lehnerd

1997). The common parts are usually defined as the product platform (Simpson

et al. 2005). Design and development of families of products is challenging for

many aspects. It involves selecting business strategies, considering multiple mar-

keting issues, engineering customer needs, studying customer behavior and choice-

related issues, as well as carefully considering engineering aspect of design, such as

manufacturability, technological aspects, and design support issues (i.e., modeling

and developing design information depository).

In general, the product family development process can be divided into three

stages. The first stage is to translate identified customer needs (CN) into functional

requirements (FR) for a product. The second stage deals with mapping those

requirements into proper design variables (DV) subject to potential manufacturing

constraints. The third stage is the process planning and determining process

variables, which will be followed by the supply chain platform design, and deter-

mination of proper values for logistics variables (LV) (Jiao et al. 2007c). Figure 1.1

provides an illustration of the aforementioned issues and concepts.

According to this figure, an outline of this study can be provided as follows. As

the front-end issues include customer involvement, product portfolio design, prod-

uct family positioning, and transition or mapping from customer needs to functional

requirements, these aspects will be discussed in the first section of this study. The

product family design issues include the product family configuration, product

architecture, design of families and platforms, variety in design, leveraging com-

monality and modularity, optimization of the family and platform design, and

design decision support systems. The second section in the study will address

2 Z. Pirmoradi et al.

concerns directly related to design. Finally, the back-end issues will be discussed in

the third section, including manufacturability, cost considerations, supply chain

design and management, metrics for product family and platform design, resource

allocation, redesign and flexible platform design issues, processes design, and

process platforms. Eventually, the areas of improvement and potential areas for

future research, as well as summary remarks, will be presented at the end of

this study.

Researchers have developed techniques to address these stages individually and

as a whole, and they have assessed efficiency of their developments through case

studies. Among the developments with regard to PFD, two are well known: the

top-down and the bottom-up approaches. The top-down approach focuses on

developing a family in order to fulfill a variety of customer needs. The bottom-up

approach attempts to increase production efficiency through providing solutions for

reuse of components in multiple products and redesign to develop a family based on

available products (Alizon et al. 2007).

1.2 Fundamental Concepts

The fundamental issues and concepts regarding design and development of product

families are summarized in Table 1.1. For ease of reading, they are categorized into

three sections, namely, the front-end, design and development, and back-end issues.

A novel state-of-the-art review was implemented by Jiao et al. (2007c) for research

activities before 2006. Therefore, this study focuses on published research since

that time.

Fig. 1.1 A general view of product family design and development (Jiao et al. 2007c)

1 Recent Advancements in Product Family Design 3

Table 1.1 (a) Front-end issues, (b) design and development issues, (c) back-end issues

Concept/issue Definition Examples and approaches

(a)

Product architecture A concept for describing relations

among components and

connecting the functions to the

components in a product. Plat-

form architecture describes the

logical relations between com-

mon and unique elements for

enabling highly customized

products based on customer

preferences (Xu et al. 2008)

Modular architecture: functions-
components mapping for

minimizing inter-module

interactions

Integral architecture: performance-

driven or cost-based

architectures, enabling variety,

product change, and engineering

standards (Cutherell 1996)

Product family

and platform

configuration

Approaches for selection of platform

variables versus non-platform

variables and platform configu-

ration and selection

Parametric platforms: finding opti-

mal platform parameters through

algorithms such as genetic

algorithm

Configurational platforms: module

identification through data

mining techniques, reasoning

systems, clustering approaches,

etc.

Product family

modeling and

knowledge-based

systems

Approaches for knowledge integra-

tion about product families and

platforms

Unified modeling approach, graph

grammar approach, architecture

modeling, set-based models,

parametric modeling, functional

models, configuration informa-

tion modeling, etc.

Product portfolio

positioning

Strategies to give the customers the

exact number of variants that

they need

Factor analysis, discriminant analy-

sis, perception scaling

techniques, choice set determi-

nation, discrete choice analysis,

probabilistic choice modeling

(b)

Platform Sets of components, technologies,

subsystems, processes, and

interfaces that form a structure to

develop a number of products to

maximize commonality and

minimize individual perfor-

mance deviations (Li et al. 2007)

Scalable platforms: variants can be

produced through shrinkage or

extension of scalable variables

Modular platforms: enabling prod-

uct differentiation through

adding/removing/substituting

different modules

Product platform design deals with

determination of the variables to

be shared, as well as optimal

values for both shared and

unique variables among variants

Generational platforms: enabling
consideration of possible

requirements for changing the

design over a period of time, to

allow variation of next

generations (Jiao et al. 2007c)

Variety versus

commonality

The diversity that a production sys-

tem can provide for the market.

Two main concepts are

Functional variation: driven by cus-

tomer requirements and it

(continued)

4 Z. Pirmoradi et al.

Table 1.1 (continued)

Concept/issue Definition Examples and approaches

modularity and commonality.

Modularity decomposes

components and functions into

independent groups, while com-

monality clusters the

components and functions based

on similarity or other criteria

attempts to increase variation in

functions

Technical variation: addresses issues

such as manufacturability and

costs and it tries to decrease

diversity in functions and

processes

Functional variation can be traced in

research studies focusing on

product line structuring, product

portfolio positioning, product

pricing, and portfolio optimiza-

tion. Technical variation strat-

egy, however, can be found in

areas such as design for variety,

variety reduction schemes, and

modularization (Jiao et al.

2007b)

Functional commonality/

modularity: paying attention to

the relation between customer

needs and functional

requirements

Technical commonality/modularity:

based on technical design

solutions or physical, based on

mapping of functional

requirements into design

parameters (Jiao et al. 2007b)

Design optimization Techniques and algorithms for

determining the optimal design

variable values, for specific

objectives subject to constraints

Search approaches, multi-attribute

utility analysis, preference-based

design, MDO methods, product

line design through cost

modeling, engineering design

considerations, etc.

Design support

systems

Tools for facilitating information

management and creating design

information repository

Configuration reasoning systems,

agent-based knowledge manage-

ment systems, knowledge-

intensive evaluation models,

advisory systems, web-based

customization systems, etc.

(c)

Manufacturability All concerns related to

manufacturing part of PFD,

including standardization and

commonalization of the pro-

cesses, facilities, and

technologies and controlling

manufacturing costs and process

variations that result from cus-

tomization development risks

reduction techniques

Exploiting process families/

platforms

Developing generic bill of materials

(GBOMs)

Integrating mass customization with

product life cycle management

Design for reuse

Flexible platform design

Reconfigurable system design

(Mehrabi et al. 2000)

Metrics and indices Tools that provide information about

the cost savings resulted from

commonalization compared to

quantitative benefits of

commonality

CMC, DCI, TCCI, PCI, %C, TCM,

etc. (see Sect. 1.4.1 for more

detail)

Supply chain

management

Consideration of issues related to

different PFD stages, including

Developing robust approaches to

maximize profit of the supply

(continued)

1 Recent Advancements in Product Family Design 5

While many approaches have been developed in the past decade to address PFD

and platform development issues, many challenges remain. Necessity of handling

many variables and simultaneous consideration of interdependencies among differ-

ent elements of design make PFD problems complex in nature. Research continues

in this field, and many opportunities exist for improvement. Based on the categories

and concepts introduced in this section, new developments and recent achievements

of this area are reviewed in this chapter. The literature review of each issue is

presented in subsequent sections, and identified opportunities for future research are

addressed in the closing section.

1.3 Front-End Issues in Product Family Design

As mentioned in the introduction, in the front-end of product family development,

the following issues are of interest: involving customers into product characteriza-

tion, product family positioning and market segmentation, product portfolio design,

realizing the customer needs and the required functions to meet those needs, and

eventually tools or techniques for facilitating information standardization and

leveraging the product family knowledge.

1.3.1 Product Portfolio and Product Family Positioning

While different variants in a family may call for similar technical and

manufacturing requirements, research has shown that they might not be equally

preferred by the customers (Thevenot and Simpson 2007b). Therefore, product

family positioning is vital for properly balancing the diverse customer tastes and

manufacturing costs of variation (Olewnik and Lewis 2006). The product family

positioning problem is a front-end issue that can be facilitated through market

segmentation that segments the market into different clusters, providing specific

Table 1.1 (continued)

Concept/issue Definition Examples and approaches

first stages of supply chain man-

agement to the other end, which

is delivery to customers

chain, along with minimizing

delivery time, procurement

costs, logistic and assembly

costs, etc.

Postponement Enabling late differentiation and

allowing reduced inventory and

delaying the resources commit-

ment to the final configuration of

a product as long as possible

Redesigning the family architecture

or rescheduling the master pro-

duction plan can facilitate

postponement

6 Z. Pirmoradi et al.

variants for each, and identifying opportunities for adjusting products in order to

attract more customers (Hisrich and Peters 1991). The family positioning problem

focuses on increasing variation and diversity in the offered products. Clustering is

required for this target so that the minimum possible number of variants which

cover the maximum possible customer preferences can be determined. As a result,

attention has been paid to clustering techniques such as data mining, fuzzy cluster-

ing, conjoint analysis, and heuristic search algorithms for finding matches between

customer groups and product variants.

The summary of research done in area of positioning is as follows:

• Review of fuzzy logic applications for product family development (Barajas and

Agard 2009).

• Use of engineering characteristics as segmentation variables for market segmen-

tation and product line positioning (Zhang et al. 2007).

• Use of conjoint analysis for identifying customer needs and clustering method

for segmenting customers (Kazemzadeh et al. 2009).

• Development of three indices: cost reduction, commonality percentage, and

satisfaction percentage for comparing a generic product for the whole market

with a customized product for each segment.

• Consideration of different market leveraging strategies and product line exten-

sion (Doraszelski and Draganska 2006).

• Product mix selection (Chung et al. 2008) assuming varying demand and

different priorities for customer orders.

• Use of real options (Jiao et al. 2006; Jiao 2012) to assess values of different

design options for flexible and intime action against market volatilities.

Sharman and Yassine (2007) showed that serious difficulties can arise when

using the real options for clustering, especially when the product architecture is

complex and it lacks a truly hierarchical structure. However, market conditions

play an essential role in product family and platform design decisions, and many

other factors affect the market, which affect planning and decision-making in

turn. For example, markets are affected by government policies, demographics,

and personal characteristics of customers as well as customer purchasing

behaviors and preferences, which may vary under different circumstances. There-

fore, prior assessment of all such issues is necessary for making the most reliable

decisions before development of any product family. This makes PFD even more

challenging, as it exacerbates development time and information gathering.

Meanwhile, value creation for customers and successful development of product

families/platforms depend on agile action for capturing such changing trends.

Therefore, the demand for further research and more scrutiny in this filed

continues to grow.

1 Recent Advancements in Product Family Design 7

1.3.2 Market-Driven Product Family Design

The involvement of customer preferences into engineering design decisions has

received remarkable attention recently. Mapping the customer needs into functional

requirements of products, mapping the customer requirements into different market

segments (Farrell and Simpson 2008), leveraging tools such as choice modeling for

predicting customer reactions in different situations, using quality function deploy-
ment (QFD) for translating customer requirements into design requirements

(Li et al. 2006), and other similar techniques have been helpful in product attributes

selection, family/platform configuration, and portfolio optimization to fulfill the

market demands.

A market-driven product family design approach was proposed by Kumar et al.

(2006), known as MPFD to integrate market considerations with family design

concerns in order to enable product family positioning. This approach examines the

impact of variety on different market niches and employs a demand modeling

through which the impacts of competition in different segments on market share

of each competition can be identified. Similarly, in another study the same

researchers integrated market share considerations and demand modeling for

simultaneously optimizing decisions related to platform leveraging and product

line positioning (Kumar et al. 2009). Their purpose was to overcome limitations of

past market-driven PFD studies, which have only considered production line

positioning in lieu of how a product competes with other products by the same

supplier as well as competitive products. They concluded that including perfor-

mance considerations and market considerations results in obtaining more eco-

nomic decisions.

The list of other works done with consideration of market is as follows:

• Providing suggestions for overcoming the shortcomings of previous product line

optimization models (Michalek et al. 2011).

• Exploring the strengths and limitations of discrete choice models for understand-

ing market demand and supporting mass customization (Ferguson et al. 2011).

• Using the hierarchical mixed logit model for continuous representation of

preference heterogeneities and the latent multinomial logit model for the dis-

crete representation (Sullivan et al. 2011).

• Simultaneously considering important factors from both marketing and engi-

neering domains (Luo 2011) considering the strategic reactions of incumbent

manufacturers and retailers.

Among the works done for optimizing the product portfolio, few take the

advantage of customer-perceived value; the work (Farrell and Simpson 2008) is

an example that focuses on the set of components with the highest potential for cost

savings, rather than redesigning the entire product line. More development potential

for preserving customer-perceived variety exists, as it will help in offering the

optimum number of products that is not necessarily equal to the number of market

segments as the results of the study (Michalek et al. 2011) show.

8 Z. Pirmoradi et al.

Also, most of the studies that have included market systems into product

development apply only to a single product, and there are numerous opportunities

to cover in product family design. For example, Shiau and Michalek (2009b)

studied two factors that affect design stemming from market systems: (1) the

interaction structure between manufacturer and retailer and (2) the heterogeneity

of consumer preferences in modeling. Such considerations can be applied to

product family design as well.

1.3.3 Product Family Modeling

Modeling product families and platforms can serve as a basis for prior analysis of

design, and it can play a significant role in the early stages of product family design

and platform development prior to any redesigns or design implementations. The

purpose of studies about family modeling can be identification of modules and

unique components as Zhang et al. (2006c) have proposed to decrease the effect of

module’s internal behaviors on external interactions among them to decrease

complexity of the modularized design. The applied approaches and their objectives

can be summarized as follows.

An important yet not widely addressed issue in PFD is the end-of-life

assessments for families. As the variants in a family will be taken out of the

production cycle after their life, there might be plenty of opportunities for taking

advantage of these designs and enabling economic recovery of the design for new

generations. One study tackling this issue is Kwak and Kim (2011), which assesses

the family design through a quantitative model from this perspective. Also, inte-

gration of life cycle management issues into mass customization (Zhang and Fan

2006) is to provide a multi-domain modeling of the product family architecture.

There are some other important works that are listed below:

• Integration of product family data and process family data into a framework for

product life cycle management (PLM) (Zhang et al. 2006b) to capture and reflect

diverse relationships among model components and entities.

• Knowledge management framework development (Nanda et al. 2007) for cap-

turing and translating the design information into a unified network, called

networked bill of material (NBOM), for searching, reusing, aggregating, and

analyzing design knowledge in a product family.

• Managing product variety and enabling efficient reuse of validated design and

manufacturingdata through a systematicmodeling approach (Brière-Côté et al. 2010).

• Sharing of design data definitions through an extended generic product structure

(Callahan 2006).

• Developing an assembly sequence model (Siddique and Wilmes 2007) to find

the optimal assembly sequence which required the minimum modification of

current assembly plant for adding new variants to the family based on the fact

that adding a new variant needs prior considerations of cost and feasibility.

1 Recent Advancements in Product Family Design 9

• Introducing a product family master structure (Yu and Cai 2009) to provide a

basis for information reuse in product reconfiguration, using the component-

based design structure matrix (DSM) to illustrate the hierarchical dependencies

among structures and design processes.

• Developing part relationship model (Liu and Qi 2006; Fan and Qi 2007) for

forecasting the component increase based on product proliferation through

considering the evolving nature of part relations.

• Multi-agent approach for product family modeling in conceptual design (Ostrosi

et al. 2011).

• Using a mathematical structure to serve as a basis for a product family algebra in

features modeling (Höfner et al. 2011).

According to the literature, several attempts have been made to cover different

aspects of product family design knowledge management; however, less attention

has been paid to the data on the back-end stages of PFD, for example, knowledge

and information about the supply chain (i.e., relations of different suppliers to

efficiency of the product family and developed platform) or other examinations

such as interdependencies and correlations of different stages of product family

development to each other. Such issues can contribute significantly to efficiency of

design solutions in the sense that they allow for more comprehensive considerations

prior to decision-making and they provide the possibility of wider assessments in

regard to the different stages involved in platform and family design and

development.

1.3.4 Platform and Product Family Configuration

For configuration of product family and platforms, it is necessary to decide on

which components or modules or features to be shared among the variants, and this

requires consideration of different levels of commonality/customization. A com-

prehensive framework for platform planning is proposed (Chowdhury et al. 2011),

which enables satisfying different market niches through a mathematical modeling

in designing platforms. Their framework is called Comprehensive Product Platform

Planning (CP3). Key concepts and existing approaches for configuration design

such as frame-based models, case-based reasoning, variable-oriented structure

configuration, and process-oriented assembly configuration are discussed in Zhao

et al. (2010), which proposes an approach called Product Family Extension Con-
figuration Design (PFECD). Extension theory is used in their study, which allows

analysis of adding elements/material/relations to existing products based on

existing constraints and enables managing the trade-off between mass production

and individual customization.

Appearance customization of the products has been considered as an industrial

design issue in Liu et al. (2009), which proposed a PFD DNA method to develop

new families inheriting characteristics of existing families, while creating unique

style characteristics of their own.

10 Z. Pirmoradi et al.

Since variation in the product design information can adversely affect the

efficiency of design and redesign of product families, finding ways to reduce such

variation can be helpful. Thevenot and Simpson (2007b) investigated sources of

variation when using the product line commonality index (PCI) for estimating

commonality among family members. They provide guidelines for reducing the

variation resulting from product dissection. Technology changes and changing

market opportunities can also impact the efficiency of the developed platforms;

and Rojas and Esterman (2008) developed an impact assessment process and

presented remedial suggestions for cases in which varying conditions after devel-

oping platforms might result in efficiency loss. In a reverse case, the application and

impact of platform strategy on marketing strategies, brand, and business processes

have been studied (Thomas 2012), and it has been concluded that application of

platform-based planning is important for product design.

Service family design is another application derived from PFD as defined in

Moon et al. (2007) on the basis of platform-based design principles. Their study

used the game theory to analyze different options in module selection based on

different cost strategies and under conditions with uncertain and incomplete infor-

mation. This new application can be a choice for future development of service

families. Service families can result in efficiency improvements in service sectors

due to standardization of processes, and cost savings resulted from unification of

different service activities.

1.4 Product Family Design and Development Issues

The middle stages that connect the back-end to the front-end in product family

design include all the approaches, techniques, and developments regarding the

design and realization of the chosen functionality in a family of products. In

order to facilitate design of a product family, concepts such as commonality versus

modularity or variety and approaches for optimization of the family/platform

design are fundamental. The research improvements and developments regarding

such concepts are discussed in this section.

1.4.1 Commonality Versus Variety

Leveraging commonality can lead to remarkable cost savings and higher

standardization of the product line. On the other hand, variety is desired because

more variation results in more customer groups’ coverage and satisfying specific

needs of more customers. However, variety is in conflict with commonality. Jiao

et al. (2007b) considered ten outstanding papers that have presented a view of the

cutting-edge research studies in the area of commonality and modularity manage-

ment. Among their reviewed papers, the work by Fixson can be highlighted, as it

provides a comprehensive literature review on the approaches and techniques for

1 Recent Advancements in Product Family Design 11

managing commonality and modularity in development of products and processes

(Fixson 2007). Several commonality indices have been developed to provide

insight and information about the cost savings of commonality, instead of direct

quantification of commonality benefits (Khire et al. 2008). A commonality index

can generally be defined as a metric for assessing the degree of commonality among

product family members, and it can include different parameters such as the number

of common components, component costs, and manufacturing processes (Thevenot

and Simpson 2007a). Use of such indices is usually the first stage in designing a

new product family or in analyzing an existing family (Ye et al. 2009). Table 1.2

lists the studies regarding development or application of indices for platform and

family design and configuration.

Results of comparisons among these six indices and the new CMC index by

Thevenot and Simpson (2007a) are summarized in Table 1.3. Taking more factors

Table 1.2 Main studies including commonality indices and metrics

References Subject Remarks

Thevenot

and

Simpson

(2006)

Comprehensive evaluation of the most

common commonality indices

• DCI, TCCI, PCI, %C, CI, and CI(C)

were compared based on the ease of

data collection, consistency, sensi-

tivity, and their repeatability

van Wie

et al.

(2007)

Testing the hypothesis of platform

elements being more integrated and

differentiating elements being more

modular

• The hypothesis could not be

supported

• Suggestion of the study is to increase

commonality of platform elements

and modularity of differentiating

elements

Thevenot

and

Simpson

(2007a)

Introduction of a comprehensive metric
for commonality (CMC)

• The proposed metric can capture use

ful information for design and rede-

sign of product families and resolves

the trade-off between excessive

commonality and excessive diversity

Alizon et al.

(2009a, b)

Proposal of an index that considers value

increase due to diversity (CDI)

• Commonality versus diversity index
helps designers identify the

components that need to be common

and assigns value to desired com-

monality and diversity while

penalizes both, if undesired

Alizon et al.

(2006)

Using CDI along with value analysis and

design structure matrix flow
• Extension of the design structure

matrix (DSM) to obtain a new matrix

named DSMflow, including flow

interactions between modules to

improve existing families and

increase customer satisfaction

Blecker and

Abdelkafi

(2007)

Development of total commonality
metric (TCM)

• Enabling benchmarking to provide

opportunities to redesign existing

product families

• Considering GBOM for evaluating

the overall commonality within the

family

12 Z. Pirmoradi et al.

T
a
b
le

1
.3

C
h
ar
ac
te
ri
st
ic
s
o
f
si
x
w
id
el
y
u
se
d
co
m
m
o
n
al
it
y
in
d
ic
es

In
d
ex

C
o
n
d
it
io
n
s
o
f
u
se

L
im

it
at
io
n
s

Im
p
ro
v
em

en
t
ar
ea
(s
)

D
C
I,
C
I(
C
)
•

C
o
m
p
o
n
en
t
b
as
ed

(C
I(
C
)
co
n
si
d
er
s
p
ro
ce
ss

co
m
m
o
n
al
it
y
to
o
)

•
M
o
v
in
g
b
o
u
n
d
ar
ie
s

•
C
I(
C
)
is
an

ex
te
n
si
o
n
o
f
D
C
I,
ta
k
in
g
fa
ct
o
rs

su
ch

as
p
ro
d
u
ct

v
o
lu
m
e
an
d
co
m
p
o
n
en
t
co
st
s

in
to

co
n
si
d
er
at
io
n

•
D
if
fi
cu
lt
to

in
te
rp
re
t
d
u
e
to

v
ar
y
in
g

u
p
p
er

li
m
it
fo
r
d
if
fe
re
n
t
fa
m
il
ie
s

•
D
if
fi
cu
lt
to

as
se
ss

im
p
ro
v
em

en
t

o
f
re
d
es
ig
n
s

•
N
o
t
u
se
fu
l
fo
r
la
rg
e
n
u
m
b
er

o
f
o
p
ti
o
n
s

•
C
I(
C
)
re
q
u
ir
es

co
st
es
ti
m
at
io
n
w
h
ic
h

m
ig
h
t
b
e
ch
al
le
n
g
in
g

•
T
ak
in
g
at
tr
ib
u
te
s
su
ch

as
fu
n
ct
io
n
al
it
y
,

ty
p
e
o
f
m
at
er
ia
ls
,
an
d
m
an
u
fa
ct
u
ri
n
g

p
ro
ce
ss
es

in
to

ac
co
u
n
t

•
A
ll
o
w
in
g
v
ar
ie
ty

•
Im

p
ro
v
in
g
co
st
es
ti
m
at
io
n
ap
p
ro
ac
h

T
C
C
I,
C
I

•
T
C
C
I
is
a
n
o
rm

al
iz
ed

v
er
si
o
n
o
f
th
e
D
C
I

•
C
o
m
p
o
n
en
t
b
as
ed

•
F
ix
ed

b
o
u
n
d
ar
ie
s
(0
–
1
)

•
F
o
cu
si
n
g
o
n
ly

o
n
th
e
p
er
ce
n
ta
g
e

o
f
co
m
m
o
n
/u
n
iq
u
e
co
m
p
o
n
en
ts

ra
th
er

th
an

co
st
fa
ct
o
rs

•
N
o
t
ef
fi
ci
en
t
in

h
an
d
li
n
g
la
rg
e
n
u
m
b
er

o
f
o
p
ti
o
n
s

•
W
ei
g
h
in
g
co
m
p
o
n
en
ts

•
C
o
n
si
d
er
in
g
v
ar
ie
ty

in
ad
d
it
io
n
to

co
m
m
o
n
-

al
it
y

•
U
si
n
g
m
o
re

cl
ar
ifi
ca
ti
o
n
in

cr
it
er
ia

fo
r

d
if
fe
re
n
ti
at
io
n

P
C
I,
%
C

•
C
o
m
p
o
n
en
t
b
as
ed

•
F
ix
ed

b
o
u
n
d
ar
ie
s
(0
–
1
0
0
)

•
%
C
is
ap
p
li
ca
b
le

to
p
la
tf
o
rm

co
m
m
o
n
al
it
y

m
ea
su
re
m
en
t

•
U
n
ab
le

to
ca
p
tu
re

ef
fe
ct

o
f
co
m
p
o
n
en
t

co
st
s
o
n
co
m
m
o
n
al
it
y

•
P
C
I
as
su
m
es

k
n
o
w
n
d
eg
re
e
o
f

d
if
fe
re
n
ti
at
io
n

•
B
ro
ad
en
in
g
th
e
ar
ea
s
o
f
co
n
si
d
er
at
io
n
su
ch

as
d
if
fe
re
n
ti
at
io
n
d
eg
re
e

•
C
la
ri
fy
in
g
d
if
fe
re
n
ce
s
am

o
n
g
d
if
fe
re
n
ti
at
in
g

an
d
n
o
n
-d
if
fe
re
n
ti
at
in
g
co
m
p
o
n
en
ts

C
D
I

•
F
ix
ed

b
o
u
n
d
ar
ie
s
(0
–
1
)

•
A
ss
es
si
n
g
b
o
th

co
m
m
o
n
al
it
y
an
d
d
iv
er
si
ty

•
A
ll
o
w
in
g
an
al
y
si
s
in

fu
n
ct
io
n
,
co
m
p
o
n
en
t,
an
d

fa
m
il
y
le
v
el
s

•
Ig
n
o
ri
n
g
th
e
in
fo
rm

at
io
n
ab
o
u
t

co
m
p
o
n
en
t
co
st
s,
m
at
er
ia
ls
,

an
d
p
ro
ce
ss
es

•
In
te
g
ra
ti
n
g
h
ig
h
er

ar
ch
it
ec
tu
re

le
v
el
s

•
U
si
n
g
fu
rt
h
er

cr
it
er
ia

su
ch

as
co
st
an
d

m
an
u
fa
ct
u
ri
n
g
is
su
es

C
M
C

•
F
ix
ed

b
o
u
n
d
ar
ie
s
(0
–
1
)

•
C
o
n
si
d
er
in
g
th
e
ef
fe
ct

o
f
ea
ch

co
m
p
o
n
en
t

o
n
th
e
o
v
er
al
l
co
m
m
o
n
al
it
y
le
v
el

•
A
ll
o
w
in
g
d
es
ir
ed

v
ar
ie
ty
/c
o
m
m
o
n
al
it
y

•
M
o
re

in
fo
rm

at
io
n
se
n
si
ti
v
e
th
an

o
th
er

in
d
ic
es

•
T
ak
in
g
co
m
p
o
n
en
t
p
er
fo
rm

an
ce

in
to

ac
co
u
n
t

T
C
M

•
U
si
n
g
G
B
O
M

fo
r
in
co
rp
o
ra
ti
n
g
al
l
p
o
ss
ib
le

v
ar
ia
n
ts
in
to

co
n
si
d
er
at
io
n

•
U
si
n
g
p
as
t
d
at
a
ab
o
u
t
se
le
ct
io
n
p
ro
b
ab
il
it
ie
s

o
f
v
ar
ia
n
ts

•
A
p
p
li
ca
b
le

o
n
ly

if
a
G
B
O
M

is
av
ai
la
b
le

•
D
if
fi
cu
lt
y
in

d
at
a
co
ll
ec
ti
o
n

•
B
et
te
r
fo
r
as
se
m
b
le
-t
o
-o
rd
er

sy
st
em

s

•
In
te
g
ra
ti
n
g
p
ro
ce
ss

co
m
m
o
n
al
iz
at
io
n

st
u
d
ie
s
in
to

th
e
in
d
ex

1 Recent Advancements in Product Family Design 13

into consideration brings more vulnerability into such indices, due to the increasing

dependency on information such as cost estimation. As a result, though other

indices might be misleading for large-scale family assessments, new indices also

have limitations such as inapplicability to all types of systems (e.g., modular and

scalable).

The equations representing the newly developed indices are listed in Table 1.4.

Each index should be carefully selected for use, depending on the family under

consideration or characteristics such as module orientation, cost data availability,

and assembly considerations.

1.4.2 Family and Platform Configuration and Optimization

Industry needs and essential concerns in platform design and development are

discussed by Simpson et al. (2005), considering both academic developments and

industrial cases. Their study addressed key factors for developing robust and

flexible platforms and modular architectures with standard interface. Among

these factors, formation of cross-functional development teams, along with the

ability for continuous improvement based on learned lessons, is noted.

Platform development is shown to be affected by the nature of the product

families (i.e., homogenous versus heterogeneous families and functions) and that

certain platform leveraging strategies might not be appropriate for all product

families (Alizon et al. 2010). Through a proposed metric in their study, called

homogeneity versus heterogeneity ratio (HHR), selection of a suitable platform

leveraging strategy and identification of the sufficiency of differentiation in a

family have been facilitated.

The studies in this area can be categorized into module selection, platform

selection, commonality and component sharing, optimization studies, and other

exploration studies such as comparisons and application of existing approaches.

Table 1.5 shows the studies related to platform selection, variant selection, compo-

nent sharing, and module selection.

In general, the platform configuration and portfolio optimization problems are

mostly limited to cost considerations and modularization based on criteria such as

similarity in shape or functions. More considerations can be taken into account at

the same time, in order to provide robust designs. A recent study by Emmatty and

Sarmah (2012) takes advantage of different product development methodologies

(i.e., function-based modular product architecture, platform-based design, and

design for manufacture and assembly) to reduce manufacturing costs, incorporate

customer requirements, and decrease the throughput time of development. More

research works similar to such study seem to be required in the future. Also

Simpson et al. (2012) in a recent study have proposed an integrated family design

framework, which includes a number of the family design methods developed in the

past (i.e., market segmentation grid, DSMs, GVI, commonality indices, and

14 Z. Pirmoradi et al.

T
a
b
le

1
.4

(a
)
T
h
e
C
M
C
in
d
ex
,
(b
)
th
e
C
D
I
in
d
ex
,
(c
)
th
e
T
C
I
in
d
ex

(a
)
C
M
C
¼

P
p i¼

1
n i
�ð
C
m
ax

i
�C

iÞ�
Q

4 x¼
1
f x
i

P
p i¼

1
n
i�ð

C
m
ax

i
�C

m
in

i
Þ�
Q

4 x¼
1
fm

ax
x i

(1
.1
)

p
T
h
e
to
ta
l
n
u
m
b
er

o
f
co
m
p
o
n
en
ts

C
m
in

i
T
h
e
m
in
im

u
m

to
ta
l
co
st
fo
r
co
m
p
o
n
en
t
i

n
i

T
h
e
n
u
m
b
er

o
f
p
ro
d
u
ct
s
in

th
e
p
ro
d
u
ct

fa
m
il
y
th
at

h
av
e

co
m
p
o
n
en
t
i

C
m
ax

i
T
h
e
m
ax
im

u
m

to
ta
l
co
m
p
o
n
en
t
co
st

f1
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
si
ze

an
d
sh
ap
e
to

th
e

n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

h
av
e
co
m
p
o
n
en
t
i
(n

i)

fm
ax

1
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
si
ze

an
d
sh
ap
e
to
th
e
g
re
at
es
t

p
o
ss
ib
le

p
ro
d
u
ct
s
th
at

co
u
ld

h
av
e
sh
ar
ed

co
m
p
o
n
en
t
i

w
it
h
id
en
ti
ca
l
si
ze

an
d
sh
ap
e
sc
h
em

es

f2
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
at
er
ia
ls
to

th
e
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

h
av
e
co
m
p
o
n
en
t
i
(n

i)

fm
ax

2
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
at
er
ia
ls
to

th
e
g
re
at
es
t

p
o
ss
ib
le

n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

co
u
ld

h
av
e
sh
ar
ed

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
at
er
ia
ls

f3
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
an
u
fa
ct
u
ri
n
g
p
ro
ce
ss
es

to
th
e
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

h
av
e
co
m
p
o
n
en
t
i
(n

i)

fm
ax

3
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
an
u
fa
ct
u
ri
n
g
p
ro
ce
ss
es

to
th
e
g
re
at
es
t
p
o
ss
ib
le

n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

co
u
ld

h
av
e
sh
ar
ed

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
m
an
u
fa
ct
u
ri
n
g

p
ro
ce
ss
es

f4
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
as
se
m
b
ly

an
d
fa
st
en
in
g

sc
h
em

es
to

th
e
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

h
av
e

co
m
p
o
n
en
t
i
(n

i)

fm
ax

4
i

T
h
e
ra
ti
o
o
f
th
e
g
re
at
es
t
n
u
m
b
er

o
f
p
ro
d
u
ct
s
th
at

sh
ar
e

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l
as
se
m
b
ly

an
d
fa
st
en
in
g

sc
h
em

es
to

th
e
g
re
at
es
t
p
o
ss
ib
le

n
u
m
b
er

o
f
p
ro
d
u
ct
s

th
at

co
u
ld

h
av
e
sh
ar
ed

co
m
p
o
n
en
t
i
w
it
h
id
en
ti
ca
l

as
se
m
b
ly

an
d
fa
st
en
in
g
sc
h
em

es

C
i

C
u
rr
en
t
to
ta
l
co
st
fo
r
co
m
p
o
n
en
t
i

(c
o
n
ti
n
u
ed
)

1 Recent Advancements in Product Family Design 15

T
a
b
le

1
.4

(c
o
n
ti
n
u
ed
)

(b
)
C
D
I f
am

il
y p
¼

1 F

P
F i¼

1
1 K
ij

P
K
ij

k¼
1

1 G
ik
�
P

G
ik

m
¼1

1
�

no
n

al
lo
w
ed

co
m

di
v i
kg
m

m
ax

di
v i
kg
m

�
� (1

.2
)

F
N
u
m
b
er

o
f
fu
n
ct
io
n
s
in

th
e
fa
m
il
y

no
n_

al
lo
w
ed
_
co
m
_

di
v i
k
g
m

N
o
n
-a
ll
o
w
ed

co
m
m
o
n
al
it
y
/d
iv
er
si
ty

fo
r
su
b
g
ro
u
p
g
m

k i
j

C
o
m
p
o
n
en
t
j
o
f
fu
n
ct
io
n
i

m
ax

di
v i
k
g
m

Id
ea
l
m
ax
im

u
m

d
iv
er
si
ty

fo
r
su
b
g
ro
u
p
g
m

G
ik

S
u
b
g
ro
u
p
k
o
f
co
m
p
o
n
en
ts
o
f
fu
n
ct
io
n
i

(c
)
T
C
I
¼

1 n

P
n i¼

1

Q
n h

i

k¼
1
ðN

k
Þ h i

P
n i j¼

1

w
2 ij n
i

n
o þ

A m

P
n i¼

1
/ i

Q
n h

i

k¼
1
ðN

k
Þ h i

P
m

i

j¼
1

w
2 ij

m
i

n
o
(1
.3
)

n
T
h
e
n
u
m
b
er

o
f
m
u
st
-g
en
er
ic

it
em

s
n h

i
T
h
e
n
u
m
b
er

o
f
n
o
d
es

o
n
p
at
h
h
i
fr
o
m

m
u
st
-
o
r
ca
n
-g
en
er
ic

it
em

to
en
d
p
ro
d
u
ct

m
T
h
e
to
ta
l
n
u
m
b
er

o
f
o
p
ti
o
n
ca
te
g
o
ri
es

(c
an
-g
en
er
ic

it
em

s)
ðN

k
Þ h i

T
h
e
q
u
an
ti
ty

p
er

o
p
er
at
io
n
o
f
n
o
d
e
re
q
u
ir
ed

b
y
it
s
im

m
e-

d
ia
te

p
ar
en
t
n
o
d
e
al
o
n
g
p
at
h
h i

m
i

T
h
e
n
u
m
b
er

o
f
v
ar
ia
ti
o
n
s
in

an
o
p
ti
o
n
ca
te
g
o
ry

A
T
h
e
p
ro
b
ab
il
it
y
th
at

th
e
en
d
p
ro
d
u
ct

is
eq
u
ip
p
ed

w
it
h
an

o
p
ti
o
n

h
i

T
h
e
p
at
h
in

th
e
g
en
er
ic

b
il
l
o
f
m
at
er
ia
ls
fr
o
m

n
o
d
e
i
to

en
d

p
ro
d
u
ct

/ i
T
h
e
co
n
d
it
io
n
al

p
ro
b
ab
il
it
y
th
at

th
e
en
d
p
ro
d
u
ct

is

eq
u
ip
p
ed

w
it
h
o
p
ti
o
n
ca
te
g
o
ry
,
k
n
o
w
in
g
th
at

th
e
en
d

p
ro
d
u
ct

is
eq
u
ip
p
ed

w
it
h
an

o
p
ti
o
n

16 Z. Pirmoradi et al.

Table 1.5 Studies about platform selection and design

References Subject Remarks

Fellini et al.

(2004, 2005)

Platform selection • Determination of possible component

candidates for sharing

• Formulation as relaxed combinatorial

problem with maximized component

sharing

Dai and Scott

(2007), Liu

et al. (2011)

Multiple-platform product

family design

• Using sensitivity analysis and cluster

analysis to improve cost savings due to

commonality in Dai and Scott (2007)

• Applying a modified GA algorithm to

generate alternative product family

solutions with different levels of com-

monality in Liu et al. (2011)

Ma et al. (2011) Flexible platform design • Developing design process based on flex-

ible product platform with parametric

design

Michalek et al.

(2006)

Product line profitability

maximization

• Integration of marketing and design

perspectives

• Assessing production functionality,

manufacturing costs, and performance of

market at the same time to maximize profit

of product line solution

Jiao et al. (2007e) Complex and interrelated

product family design

optimization

• Using GBOM and generic genetic algo-

rithm for finding the optimal design

alternative

• Considering the maximum customer-

perceived cost/benefit ratio

• Equipped with a hybrid-constant handling

strategy and complexity analyses

• Applicable to PFD problems with complex

data and inherent interrelationships

Jariri and Zegordi

(2008)

Platform design optimization • Developing a mathematical programming

approach using QFD

Kim et al. (2006) Integrated function module

optimization and platform

selection

Using QFD-based multi-attribute optimi-

zation model

Turner et al.

(2011)

Comparison of a top-down

platform to a bottom-up

platform

• Top-down platform: leveraging heteroge-

neous discrete choice models

• Bottom-up platform: designing a varying

number of products independently

• Simultaneous optimization of the com-

monality and preference share

Qu et al. (2011) Guidelines for product plat-

form development

Assisting platform-based product develop-

ment through discussing guidelines about:

1. Ways to establish platforms for a family of

products in a given industrial and market

context

(continued)

1 Recent Advancements in Product Family Design 17

optimization) in order to facilitate identification of commonality specifications

based on translation of customer needs.

Table 1.6 shows the studies regarding variant selection, modularization

techniques, and other studies regarding modularity.

However, more issues than module identification and component modularization

exist in the platform design areas. This field involves additional considerations such

as what components should be selected for platform formation, what are the optimal

values for platform/non-platform parameters, and what is the best level of

modularity/commonality among variants.

Platform design problems are usually split into two stages, the first dealing with

finding the values of platform variables and the second optimizing variables for

each variant in the family under desired targets subject to existing constraints (Dai

and Scott 2006). Several approaches have been developed over the past decade for

product family and platform optimization (Khajavirad et al. 2009), and forty of

them have been reviewed and classified in Simpson (2005). According to his review

and the work of Fujita (2002), platform design optimization problems are mainly

categorized into three classes: (i) a class of problems in which the platform

configuration is assumed as known and the objective is to find the optimum design

variables and product attributes for that particular configuration (i.e., parametric

optimization); (ii) a class of problems in which the objective is to select optimal

modules among a number of predetermined modules, where the module’s design is

already known (i.e., structural optimization); and (iii) a class of problems that aim

to find the platform configuration and the optimal product attributes simulta-

neously. Table 1.7 shows the studies related to optimization of families and

platforms, belonging to the first or second class. In this third class, decision can

be made on swapping any set of modules, scaling some modules to satisfy specific

requirements, or both (Li et al. 2007). Several studies have proposed approaches for

handling the problems particularly in the first two classes.

For the last class, the decision about each issue is dependent on the other, the

computational complexity is increased for such problems, and simultaneously

optimization issues will be inevitable (Khajavirad et al. 2009).

In a recent study, commonality of the baseline product which is the product from

which the other variants can be differentiated is balanced with performance of

Table 1.5 (continued)

References Subject Remarks

2. How to choose and customize the most

appropriate product platform to meet the

customer requirements

Pasche et al.

(2011)

Effects of platforms on new

product development

projects

Investigating the effects of platforms on new

product development projects

Sköld and

Karlsson

(2012)

Consideration of product

platform replacement

challenges to managers

Exploring operational challenges for man-

ager, when platforms need to be replaced

18 Z. Pirmoradi et al.

Table 1.6 Studies about variant selection, commonality, and modularity

References Subject Remarks

Zacharias and

Yassine (2008)

Variant selection • Using commonality as a performance

measure to determine the best amount of

investment on platform

Meng et al. (2007) Module identification • Multi-objective GA for identifying the

isolated components that need to enter a

module

Torstenfelt and

Klarbring

(2006, 2007)

Module optimization • Simultaneous optimization of size, shape,

and topology for reducing time to market

Yang and Wang

(2009)

Modular design process

improvement

• Considering correlations among func-

tional, structural, and behavioral aspects of

the product family, through relationship
constraint network (RCN)

Johnson and

Kirchain

(2010)

Linking commonality

metrics to cost savings

• Leveraging process-based cost models for

projecting the cost reductions of sharing

Yu et al. (2007) Partitioning architecture into

modules

• Using GA for clustering modules

Li et al. (2012) Modular architecture design • Proposing an integrated product

modularization scheme based on flow

analysis, design structure matrix (DSM),

and fuzzy clustering

Fellini et al.

(2006)

Commonality selection • Combining the two approaches developed

in Fellini et al. (2004, 2005)

• Problem size reduction in platform

selection

• Sensitivity analysis for obtaining perfor-

mance loss bounds

• Maximizing commonality among variants

and minimizing individual performance

deviations

Arciniegas and

Kim (2011)

Guidance to component

sharing

• Finding the best matches among

components, using a DSM and architecture

information

• Module definitions through two concepts:

– Impact metric (IM) for describing the

easiness of changing a component in a

given architecture

– Minimum description length (MDL)

for optimal clustering

Arciniegas and

Kim (2012)

Component sharing and

architecture optimization

• Finding optimal clustering and component

sharing strategy for case of sensitive

elements with security requirements

Agrawal et al.

(2012)

Hybrid model of component

sharing and platform

modularity

• Seeking the most profitable design which

takes advantage of both modularity and

integrality

Jiao et al. (2007a) Process platform

development

• Discussing managerial implications of

process platforms

(continued)

1 Recent Advancements in Product Family Design 19

potential differentiated variants at the same time, through a GA-based optimization

approach (Chen and Martinez 2012). This is a new look to this area, as it does not

require prior determination of specifications for the baseline product, and as a

result, it can help in a more efficient design for variants.

Recent research studies are moving toward handling the third class of problems,

often referred to as “joint product platform selection and design,” and they attempt

to provide effective optimization algorithms for problems with many variants. The

works related to issues in optimization of this class are summarized in Table 1.8.

The level of commonality has been restricted in most of these studies so that the

components should either be shared among all variants or be unique for each variant

[all-or-none, e.g., see Khire et al. (2006)]. While aimed at reducing computational

complexity, this assumption imposes limitations on the optimization problem and

sometimes results in impractical or suboptimal solutions (Thevenot andSimpson2006).

In addition to the necessity of relaxing the all-or-none commonality assumption,

there are more requirements for properly handling and solving optimization

problems of this class. For example, mixed variables impose more complexity on

the solution procedure. One solution for avoiding such complexity is to use

approximation in the continuous space.

There are still plenty of opportunities for improvement in simultaneous optimi-

zation of the platform and non-platform parameters and platform selection. For

example, including more factors into consideration offers both benefits and

limitations. It is beneficial because the obtained solutions will be more reliable

due to simultaneous consideration of all possible important factors in design, but it

adds to the complexity of the problem, and it might result in difficulties for analysis

and optimization.

Also, there are assumptions that need to be replaced by realistic conditions;

however, such considerations come at the expense of added complexity. Therefore,

development of algorithms and approaches for handling such complexity can lead to

remarkable advancements in platform configuration and optimization, particularly

for the third class of optimization problems. Tools and concepts such as GBOM, cost

models, customer satisfaction assessments, and other concepts can also be helpful in

broadening consideration and optimizing multiple objectives. Such tools can help in

obtaining robust design solutions if they are considered along with other technical

objectives such as commonality level and manufacturing flexibility.

Table 1.6 (continued)

References Subject Remarks

Seol et al. (2007) Design process

modularization

• Providing guidelines to structure the

design process and alleviating the mana-

gerial complexity associated with design

Khire et al. (2008) Comparison of commonality

selection methods

• Discussing the challenges of family opti-

mization problem formulation and design

space exploration

• Visualization is recommended for bridging

the chosen commonality to its according

performance loss

20 Z. Pirmoradi et al.

1.4.3 Metrics for Design and Assessment of Platforms

According to Scott et al. (2006), there is no consensus on the best approach or

criteria to solve problems that need commonality selection among variants of

family. Many criteria have been used to help in determination of components to

Table 1.7 Studies about optimization of families and platforms for Classes (i) and (ii)

Reference Subject Remarks

Michalek

et al.

(2006)

Product line optimization • Considering market demand and

manufacturing

• Decomposing the product line through ATC

• Considering manufacturing equipment sharing

(rather than component sharing)

Tucker and

Kim

(2008)

Product portfolio optimization • Using data mining techniques and introducing

a customer’s maximum purchasing price, for

controlling the level of engineering design

according to customers’ preferences

• Applying ATC and analytical target setting
(ATS) to maximize the profit in a product

family architecture reconfiguration problem

Belloni et al.

(2008)

Exploration of advancements

in product line optimization

for large problems

• Comparison between a vast number of current

heuristic optimization approaches

Results confirm that genetic algorithm,

simulated annealing, divide-and-conquer, and

product-swapping approach perform particu-

larly well and can obtain near-optimal

solutions even if measurement errors exist

Wäppling

et al.

(2011)

Integrated product requirement

optimization and design

optimization

• Maximizing product performance and

minimizing total costs

• Using multi-objective optimization to obtain

the best trade-off among requirement

specifications, design choices, and cost

• Integrating the product requirement specifica-

tion with the design objectives to reduce

problem complexity

Thevenot

et al.

(2007)

Product line selection through

multi-attribute utility

function

• Discussing engineering applications of the

developed model

Perez and

Linsey

(2011)

Exploring the principles of

product scaling

Six scaling principles have been identified:

• Changing the energy source

• Simplifying the system

• Changing the method

• Combining functions

• Changing the parameters

• Transferring components/features directly

from the original scale to the desired one

Ong et al.

(2006)

Design requirement

optimization

Applying multi-objective optimization struggling
GA to a cost model

1 Recent Advancements in Product Family Design 21

Table 1.8 (a) Studies about joint product platform selection and design, (b) other studies about

platform selection and configuration

Reference Subject Remarks

(a)

Freeman et al.

(2011)

Platforms’ identification among

component subspaces

• Fuzzy clustering techniques for com-

ponent grouping

Khajavirad

and

Michalek

(2008)

Platform optimization in continuous

design space

• Extending the CI by Martin and Ishii

(1996) and Martin and Ishii (1997), to

handle continuous design spaces

• Leveraging gradient-based optimiza-

tion methods

Khajavirad

and

Michalek

(2007)

Joint platform selection and design • Using (ATC) for decomposing the joint

problem

• Determining the optimal platform con-

figuration at the system level and the

individual variants at the subsystem

level

Khajavirad

and

Michalek

(2008)

Joint problem optimization • Using decomposed gradient-based

optimization

• Assumptions

– Generalized commonality

– Relaxation into continuous

design space

– Using single-stage decomposed

optimization

Khajavirad

et al.

(2007)

Joint problem optimization • Using decomposed multi-objective

genetic algorithm with generalized

commonality

• Introducing a two-dimensional com-

monality chromosome with two levels:

– The upper level finds the optimal

platform configuration

– The lower level optimizes

variants of the family

Khire et al.

(2006)

Joint platform design • Applying selection-integrated optimi-
zation method (SIO)

• Using gradient-based method

• Continuous relaxations for solving this

combinatorial problem

Luo et al.

(2008,

2009)

Simultaneous optimization

of platform and non-platform

engineering characteristics

• Maximizing overall customer satisfac-

tion through the variants and

minimizing quality loss caused by

commonality

• Proposing a single-stage linear pro-

gramming (LP) optimization approach

to solve a similar problem

(continued)

22 Z. Pirmoradi et al.

Table 1.8 (continued)

Reference Subject Remarks

Dai and Scott

(2006)

Effective product family

and platform design

• Applying three approaches to platform

design:

– Preference aggregation for

aggregating multiple objectives

into a single objective function

– Min–max method for fulfilling the

performance ranges

– Single-stage optimization of plat

form and non-platform parameters

Gao et al.

(2009)

Simultaneous optimization

of platform and non-platform

parameters

• Finding the optimal platform and

non-platform parameters in a modular-

ized scale-based platform

Moon et al.

(2008)

Platform optimization through

dynamic multi-agent system
(DMAS)

• Finding the optimal platform through

decomposing PFD tasks and assigning

them to agents via a mathematical

model

(b)

Li and Huang

(2009)

Adaptive product family design • Applying a multi-objective evolution-

ary algorithm based on non-dominated

sorting genetic algorithm (NSGA-II),

used in Khajavirad et al. (2009) and

Khire et al. (2008)

• Allowing commonality at different

levels (e.g., product, module, compo-

nent, and parameters)

• Using GBOM and IBOM for

representing the products

Li et al.

(2007)

Adaptive design of platform • Introducing an approach called inter-

woven evolutionary algorithm (IEA)

• Combining genetic operators from

genetic programming (GP) and genetic

algorithms (GA) into one evolutionary

process

• Optimizing individual structures first

and then parametric executing optimi-

zation through the GA

• Comparing the performance of this

approach to a previously developed

algorithm (Tandem Evolutionary

Algorithm by Huang et al. (2007) in

which the GA for parametric optimi-

zation was nested into GP for structural

optimization)

• It was shown that IEA outperforms

TEA in terms of computational time

and efficiency

(continued)

1 Recent Advancements in Product Family Design 23

share within a family (Arciniegas and Kim 2011). Cost considerations have been

the main concern in regard with family design and platform development, but a

number of new criteria have emerged recently to support design decisions: bill of

materials (Steva et al. 2006), platform investment (Moon et al. 2007; Zacharias and

Yassine 2007), environmental concerns (Pandey and Thurston 2008), and product

design variables (Khajavirad and Michalek 2008; Khajavirad et al. 2009).

Park and Simpson (2008) developed a cost estimation framework to consider the

effect of design decisions on activity costs. They mapped activity costs to product

family components based on an activity-based costing system (ABC) for obtaining

cost-effective product family design. Johnson and Kirchain (2009) applied a

process-based costing model to assess the economic effects of component (or

material) sharing. They showed that due to interdependencies between components

(materials), their coupling can result in remarkable savings in design.

Otto and Hölttä-Otto (2007) introduced a framework that used six metrics for

multi-criteria platform evaluation involving customer, variety, flexibility, complex-

ity, organization, and after-sale. Their proposed framework helps to guide the early

stages of platform architecture identification and was shown to be useful for

refinement of existing platforms. Also, Hölttä-Otto and de Weck (2007) assessed

the effect of technological constraints on integration of design and architecture.

They defined two metrics: (1) the nonzero fraction (NZF) that captures the degree

of sparse interrelationships between components and (2) the singular value

modularity index (SMI), which captures the degree of internal coupling.

Table 1.8 (continued)

Reference Subject Remarks

Chen and

Wang

(2008)

Multiple-platform selection • Using fuzzy clustering and a two-level

chromosome GA

• Assuming predetermined commonality

level of the platform

Khajavirad

and

Michalek

(2009)

Deterministic global optimization

of non-convex quasi-separable

MINLP problems

• Applicable to platform design

problems

• The deterministic approach is shown to

be of higher quality than the stochastic

local search approaches and of faster

convergence

Moon et al.

(2011)

Multi-objective platform

optimization

• Proposing a multi-objective particle

swarm optimization (MOPSO)

Khire and

Messac

(2008)

Adaptive design of platform • Using SIO to simultaneously identify

the adaptive design variables (those

that can be changed during later stages

of life cycle) and fixed variables

Li et al.

(2008)

Structural and parametric

optimization and

customization of platform

• Proposing an evolutionary algorithm in

platform product customization

problem

Öman and

Nilsson

(2011)

Critical constraint approach for

structural design

• Applying critical constraint method

(CCM) for optimization of structural

product families

24 Z. Pirmoradi et al.

SMI allows for analyzing the degree of modularity for any architecture independent

of subjective choices of modules. Both metrics take values between zero and one,

and they are applied to two product pairs that are functionally equivalent but

different in terms of technical constraints in their study. The results of their study

support the hypothesis of modularity dependency to technological constraints and

that some products inherently have less modularity due to technological factors.

Reviewing five main research studies about platform design under uncertainty,

Suh et al. (2007) showed that their approach for designing flexible platforms

outperformed the previous works, due to mapping uncertainty into product

attributes, design variables, physical components, and even into relevant evaluation

costs. However, assuming a single platform for all variants is one of their study

limitations for the cases with remarkable differences among variants.

A study by Blecker et al. (2006) proposed a key metrics-based approach for

controlling the adverse effect of variety-induced complexity in mass customization.

They integrated the proposed metrics into a comprehensive system, including the

component correlations for providing a better tool for controlling complexities. The

other applied criteria can be listed briefly as follows:

• Using extended QFD (Zhang et al. 2006a; Li et al. 2006) to facilitate platform

design and to develop a process model for variants with the same functions but

with different parameters.

• Developing cost model for variety analysis (Helo et al. 2009) to balance the cost

of adding variants to the BOM and the cost reduction resulting from

commonality.

• Developing a platform construction method for large-scale families (Wang et al.

2007a) with the objective of minimizing development cost and performance loss

costs.

• Developing product family evaluation graph approach (PFEG) (Ye and

Gershenson 2008) for assessing different design alternatives based on the

trade-off between commonality and variety among product attributes.

• Simultaneous consideration of commonality and variety through using redefined

indices (CMC and CDI) (Ye et al. 2009) to identify the best design alternatives

and to link marketing and engineering design decisions during PFD.

• Leveraging data mining techniques for platform and product family develop-

ment. Examples: developing a process family by identifying similarities among

existing facilities and manufacturing processes (Jiao et al. 2007a, d); developing

a PFD methodology for identifying product variant attributes (Tucker et al.

2010); mapping customer needs (CNs) to functional requirements (FRs) by

considering correlations of CNs and FRs through integration with QFD and

based on historical data (Qin and Wei 2009); leveraging decision trees for

searching design options through narrowing down the large sets of customer

preferences data into a limited number of design concepts by Tucker and Kim

(2007); and identifying and categorizing modules based on functional

hierarchies and their grouping based on level of similarity by Moon et al.

(2010), using rule mining and knowledge discovery techniques along with data

mining.

1 Recent Advancements in Product Family Design 25

• Using fuzzy clustering techniques to identify modules in product architectures

(Moon et al. 2006a); fuzzy clustering algorithm for developing functional

expressions for products and associating rule mining techniques for

investigating relation of CNs to product components in portfolio identification

(Zhong and Zhong 2006); considering customer needs and fuzzy clustering at

the same time (Xu et al. 2006) for identifying proper module partitioning

schemes that balance structural and functional relativities among the

components of a family.

• Using axiomatic design (Jiang et al. 2007) to decompose design tasks into

hierarchies of functions and structures, with the objective of minimizing

interdependencies among architecture modules.

• Platform exploration and identification (Steva et al. 2006) through combining

BOM, DSM, function diagrams, and functional-component matrices for in-depth
analysis of product sets.

In addition to assessing performance of newly developed approaches, it is useful

to study and examine previous practical instances of successful platforms. Ford’s

Model T is an example of such a platform, which was studied by Alizon et al.

(2009b) to identify success factors in customizing and developing many variants

from it. Among the factors identified by their study, the following items can be

addressed: late differentiation of the car body, development of common interfaces

among platform and variant car bodies, platform evolvement through reuse, modu-

lar design for achieving different models, scalable design, customized outsourcing

(i.e., allowing the customers to take care of assembling the customized gadgets and

involving the customer in the design process), vertical integration rather than

outsourcing to prevent complexity in platform-based production, mass customiza-

tion through using independent platforms and car bodies, complete redesign of

products in their final life cycle stages instead of tiny changes, and, finally, parallel

customization (i.e., using specialized manufacturers, for tailoring final products for

specific markets, but focusing on the core of products inside their own

manufacturing territory).

In summary, while a diverse set of metrics and criteria have been developed and

applied to commonality and component sharing decisions, it seems less attention

has been paid to the following:

• Simultaneous consideration of commonality and diversity: Though this issue is

shown to be helpful in efficient design of product variants in a family and

resolving the trade-off between commonality and diversity, it has rarely been

addressed in the studies relevant to commonality selection.

• Variation and uncertainty involvement: Very few studies have involved uncer-

tainty consideration in PDF decisions as concluded from this review. However,

research shows that many factors that affect optimality of design might change

over time and therefore uncertainty can endanger the selected design solutions

which should be taken into consideration when obtaining a robust platform.

• Correlations and dependencies: Many of the factors affecting optimal design

might be affected by one another, and such correlations may result in suboptimal

design solutions if not considered properly. They also may result in design

26 Z. Pirmoradi et al.

solutions with higher costs and performance sacrifices. This vulnerability can be

controlled through a careful consideration of possible dependencies and

correlations among the factors that affect optimality of design options.

1.4.4 Design Support Systems

One of the powerful tools for facilitating product family design, platform configu-

ration, and family redesign is design and decision support tools that allow for

integrating, sharing, browsing, reusing, and classifying design information and

knowledge. In addition, standardization and unification of design knowledge and

information pieces are possible with the aid of such tools, which results in creating

valuable resources for design improvements and for future developments.

The developed design and decision support systems mostly have exploited the

product family architecture, design structure matrix, or other relation matrices as a

basis for evaluating the dependencies, design information, and for providing

solutions and suggestions for better design options.

A comprehensive terminology for PFD processes is developed by Alizon et al.

(2007) by considering platform and family development drivers and by using two

existing platform development approaches: top-down and bottom-up development.

In their study, based on concurrent engineering principles, four processes are

proposed for facilitating product family development, with the objective of embody-

ing consistency among family development processes, and controlling additional

time and cost challenges which accompany PFD. The summary of the studies

providing techniques and approaches for assisting design is provided in Table 1.9.

1.5 Back-End Issues of Product Family Design

1.5.1 Reconfigurability of the Design

Reconfigurable system design attempts to change the configuration of a family

within an acceptable time frame and cost to meet multiple functional requirements

and to operate under varying conditions. This approach is shown to help achieve a

product family with desired diversity and commonality that can meet a limited

budget as well (Siddiqi et al. 2006).

Reconfigurable system design, flexible manufacturing, and product family

design principles were investigated by Cormier et al. (2009) in order to identify

key success factors in design for reconfigurability. More studies about

reconfigurable system design can be found in Siddiqi et al. (2006), Ferguson

et al. (2007a, b), Ferguson and Lewis (2008), Anzanello and Fogliatto (2011),

and Abdi (2012). Since reconfigurability requires considerations in large scale,

complexity comes as an expense to it; therefore, multidisciplinary design

1 Recent Advancements in Product Family Design 27

Table 1.9 Studies about design support systems and techniques

References Subject Remarks

Cutting-Decelle et al.

(2007)

Developing ISO 15531

MANDATE standard

for managing modularity

Exploiting international standards for

exchanging industrial manufacturing

management data

Williams et al. (2007) Utility-based compromise

decision support

• Proposing a Product Platform

Constructal Theory Method (PPCTM)

for enabling configuration of platforms

for customized product development

• Handling multiple commonality level,

multiple product specifications, and

inherent trade-offs between platform

extent and performance

• Handling multiple objectives and non-

uniform demand of variants

Liang and Huang

(2002)

Agent-based design support • Enabling integration of information in

complex networks for platform module

selection

Moon et al. (2006b) Multi-agent design decision

support

• Considering market mechanisms with

the objective of dismissing volatile

modules, or selecting stable ones

Nomaguchi et al.

(2006), Zha and

Sriram (2006)

Knowledge management-

oriented design support

system

• Facilitating product family architecture

design and modeling

• Providing a design repository without

redundant data

Shamsuzzoha and

Helo (2012)

Modular architecture design

assistance

• Investigate the importance of informa-

tion management for modular product

architecture

Baxter et al. (2007) Knowledge reuse

methodology

• Providing an integrated framework for

storing, retrieving, and applying the

design knowledge in early stages of

design

Liu and Özer (2009) Decision framework for

maximizing product

replacement profits

• Suggesting that product replacement

would be beneficial only if its perfor-

mance gap is above a defined threshold

• Concluding that in fast-changing

industries attempting to reduce replace-

ment costs is an essential factor for

compensating possible inefficiencies of

frequent replacements and such cost

reduction can be obtained through plat-

form development and modular design

Wang et al. (2007a) Decision support model to

assist product family

configuration

• Assessing the relations between chang-

ing parts (product variety) and life cycle

costs (LCC)

Allada et al. (2006),

Ye et al. (2009)

Product platform problem

taxonomy

• Classification and identification of

benchmark problems

Hoogeweegen et al.

(2006)

Trends assessment in multi-

player business

networking

• Using a simulation game for studying

the changing nature of business

networks when production goes toward

mass customization

(continued)

28 Z. Pirmoradi et al.

optimization (MDO) has been of interest as a solution for obtaining the desired

performance and determining optimal configuration in such systems. Ferguson

et al. (2009) developed one such MDO method for finding the core architecture

for a product family, and their proposed architecture accommodates a number of

changing design variables. In their study, an MDO approach is leveraged to

optimize a number of subsystem level variables along with some system-level ones.

Since product family configuration is affected by many external and internal

factors (i.e., customer demand, market segmentation, manufacturing capabilities,

company size, and management policies), and as it is a complex issue due to

variation of objectives over time, reconfigurability can help in obtaining design

options with desired performances. However, reconfigurability is usually

accompanied by additional costs. Therefore, developing more effective approaches

for handling contradictory objectives with consideration of constraints can result in

advancements in PFD.

1.5.2 Redesign and Design Reuse Strategies

The bottom-up approach in product family design deals with redesign of existing

variants or design reuse strategies for efficiency improvement and cost reduction.

While reuse of designs for components, modules, and functions is a common

approach used in product family and platform development, it might turn into a

risky policy when change occurs in technology, customer expectations, and conse-

quently in product life cycle.

According to a study by Shooter et al. (2007), some key factors in the success

of product family and platform development are time and cost saving by reusing

design of available components, using similar design approaches and manufacturing

processes for separate products that are produced on different platforms,

benefiting from platform development for further offerings, and deliberately

leaving opportunities for future customization. Table 1.10 summarizes the

research about reuse and redesign for platforms and product families.

Table 1.9 (continued)

References Subject Remarks

Xu et al. (2008) Family architecture evolu-

tion support

• Proposing TRIZ evolution theory of

technologies to facilitate PFA evolution

Lim et al. (2011) Ontology-based representa-

tion for design schemas

• Modeling complex interrelationships

among components and other

non-component-based information

• Proposing a faceted framework for

searching and retrieving information

of product family design

1 Recent Advancements in Product Family Design 29

Table 1.10 Studies about design reuse and redesign for platforms and families

References Subject Remarks

Thevenot and

Simpson (2006)

Development of a product fam-

ily redesign framework

• Developing the framework based on

comprehensive evaluation of six

commonality indices

• The proposed framework provides

valuable insights into the

relationships between different

leveraging strategies and resulting

levels of commonality

Suh et al. (2007) Platform redesign process

development

• Considering uncertainty and

emphasizing differentiating parts

(i.e., the unique parts which result in

variation) as potential options for

redesign or modification

• Considering such parts as

opportunities for making flexible

platforms

Yan et al. (2007),

Yan and Stewart

(2010)

Generation of design reuse

solutions

• Developing a methodology named

GeMoCURE to modularize a product

family

• Generating solutions with the greatest

possible variation and minimum

costs, time, and resources

• Applying the GeMoCURE to a num-

ber of small and medium-sized

enterprises (SMEs)

Raffaeli et al.

(2011)

Software development for

redesign decision-making

support

• Developing a software called Modu-

lar for facilitating early assessment of

feasibility, costs, and time for any

design alternative

• The proposed software is based on

multilevel representation of products

in terms of interrelated functions,

modules, assemblies, and

components

Hou et al. (2011) Research on product family

modeling for design resource

reuse

• Developing a reusable design

resources model based on generic

BOM

Ong et al. (2006) Development of product family
design reuse method (PFDR)

• Building an architecture based on

existing products

Xu et al. (2007) Product performance evaluation

from reuse perspective

• Application of the PFDR approach

Tao and Yu (2012) Incorporating reuse and

remanufacturing in product

family planning

• Taking advantage of the differences

in technological lifetime of

components and consumers’ prefer-

ence regarding the product function-

ality and quality and environmental

performance, for enhancing reuse

(continued)

30 Z. Pirmoradi et al.

In order to obtain efficient redesign, one needs reliable prior performance

assessment. However, information sufficiency is a remarkable concern of rede-

sign/reuse strategies for both performance assessment and parameter selection.

Therefore, further standardization of the design information for different families

can assure higher efficiency for these approaches.

1.5.3 Supply Chain Issues for Product Family Design

The supply chain management is of importance for design and development of

product families, in the sense that proper collaboration with external partners allows

for more variety, efficiency, and customer-oriented product offerings (Jiao et al.

2007c). The problem of supplier selection and supply chain configuration has been

studied from various aspects, including different criteria such as cost, flexible

planning of resources, and assembly time. The supply chain planning has been

considered from different perspectives as summarized in Table 1.11.

While aspects such as homogenized module allocation, overall supplier selec-

tion cost minimization, flexible supply chain design, and time to market minimiza-

tion have been tackled in regard with supply chain management for product

families, there are still opportunities to expand research on supply chain issues

Table 1.10 (continued)

References Subject Remarks

Salhieh (2007) Redesign for homogenizing

product families

• Reducing redundancies among het-

erogeneous product portfolios (with

minimum or no shared components)

• Forming homogenous families which

possess physical commonality among

the components with similar

functions or similar manufacturing

processes

Morrise et al. (2011) Design of collaborative

product

• Collaborative products are created by

recombining physical components of

two or more products temporarily for

performing additional tasks

• Benefiting from modularity and

added functionality

Kalyanasundaram

and Lewis

(2011)

Reconfiguration for

multifunctionality

• Quantifying similarities between

functions for common, similar, and

unique components among different

products

• Mapping the function information to

the components of the existing

products to derive the architecture

of the new reconfigurable product

1 Recent Advancements in Product Family Design 31

Table 1.11 Studies in regard to different aspects of supply chain for product families

References Subject Remarks

Qian (2009), Agard and

Penz (2009), Jin and

Chen (2008), Wang

et al. (2007b)

Supply chain profit maximiza-

tion, cost minimization, and

cost considerations

• Stochastic programming for

demand uncertainty (Jin and

Chen 2008)

• Including GBOM (Wang et al.

2007c)

Wang and Ning (2007) Supply chain model

development

• Standardization of components,

processes, procurements, and

products over the supply chain

Das (2011) Strategic supply chain planning • Consideration of various mar-

ket scenarios which can result

in supply uncertainty

Lamothe et al. (2006),

Khalaf et al. (2008)

Supply chain structure

optimization

• BOM optimization in Khalaf

et al. (2008)

Agard et al. (2006),

Khalaf et al. (2011)

Average assembly time

minimization

• Simultaneous design of the

assembly process and the sup-

ply chain (Khalaf et al. 2011)

Wang (2010) Outlining the desired

characteristics of a supply

chain

• Leveraging complex networks

Schönsleben(2012) Studying design-to-order

processes

Fujita et al. (2011, 2012) Integrating module

commonalization decisions

with supply chain

configuration

• Simultaneous module

commonalization and supply

chain configuration for a given

product architecture

Luo et al. (2011), Khalaf

et al. (2009)

Integrating supplier selection
and product family design

• Minimizing production and

transportation costs under time

constraints (Khalaf et al. 2009)

Shahzad and Hadj-Hamou

(2012)

Integrating supply chain and

family architecture design

for highly customized

demand

Hilletofth et al. (2010) Coordinating new product

development with supply

chain management

Marion et al. (2007) Evaluating platform common-

ality sourcing decisions

Wang and Wang (2009) Module allocation • Product family-oriented supply

chains

Sandborn et al. (2008) Studying long-term supply

chain disruption

• Considering disruption effect of

the reuse ability of parts in

platform design

Mula et al. (2010) Supply chain planning for

fuzzy demand

Trentin et al. (2011) Proposing form postponement
approaches

Georgiadis and Athanasiou

(2010), Vlachos et al.

(2007), You et al. (2010)

Capacity planning studies

32 Z. Pirmoradi et al.

for product family design and platform development. For example, different stages

of supply chain management can be involved in design decision-making: uniform

resource sharing and allocation, increasing the possibility of late differentiation,

exploiting outsourcing benefits, resource/material leveling based on

commonalities, techniques to reduce the lead times and the inventory level for

higher efficiency and cost saving, etc. Also, integration of the supply chain design

and the family design will enable more efficiency that has remarkable potential for

further investigations. One study in this regard is done by Khalaf et al. (2011),

which applies Tabu search for simultaneous design of the assembly process and

supply chain.

Capacity planning is another important issue to be tackled in the back-end stages

of product family design, which requires consideration of factors such as life cycle

assessments and technological changes for developing the next generation of

variants derived from the same family. This area seems to become of interest for

further instigation, according to the literature review of recent year studies.

Georgiadis and Athanasiou (2010) attempted to investigate capacity planning for

recovery and remanufacturing in product families, when a variant is the successor

of a previous variant. Other studies about capacity planning that have recently

emerged include effective capacity planning (Vlachos et al. 2007) and multisite

capacity, production, and distribution planning through multi-period mixed-integer

linear programming (You et al. 2010).

1.6 Future Research Directions

From this review, the following aspects can be noted as open areas for future

research:

Integration of Management and Engineering Aspects. Design of product families

and platforms requires consideration of their effect on market demand, and without

a thorough analysis and examination of market conditions, the resulting design

options may not realize the expected benefits.

A number of remarkable studies, addressing this issue particularly for single

product design, include Li and Azarm (2000, 2002) and Williams et al. (2010),

which have studied product design and development with consideration of uncer-

tainty and market competition, and Michalek et al. (2005, 2007) and Shiau and

Michalek (2009a), which have integrated market into engineering design models.

Performance assessment of design options in target market segments should be

included in product family design decision-making (Kumar et al. 2006). Proper

tools and techniques are also required for facilitating performance assessment,

which in turn dictates more research for improving this field.

Platform Divergence. A related theme emerging in the literature is the challenge of

managing commonality through product family design and development. Referred

to as platform divergence (Boas 2008), recent studies have identified the difficulties

1 Recent Advancements in Product Family Design 33

that many companies encounter (1) establishing targets for commonality in a family

and (2) enforcing those targets during the product family development process. A

recent vehicle development study at Ford exemplifies this case (Montano 2011),

and the Joint Strike Fighter provides many lessons for the challenges of this practice

(Boas 2008). Considerably more research is needed to understand the roles that

designers, engineers, and managers play to effectively address these issues.

Consideration of Dynamic Issues. Since market conditions and customer

preferences change rapidly, this dynamic issue along with its uncertainties should

be included in the design considerations (Zacharias and Yassine 2008). For exam-

ple, Shiau and Michalek (2009a) have considered the effect of competitors’

reactions on pricing new products, and such consideration can also be needed in

the product family design arena. Besides, there are parameters such as fluctuations

in demand over time, or dependency of demand on price and competitors’ offers,

which in turn affect optimal pricing policies for newly developed product variants.

Such considerations are also worth to be extended to product family design studies,

while most are just applied to single product positioning and optimization

(Michalek et al. 2006). In addition, technology changes, management policies,

supply chain management challenges, and other external factors make the product

family design problems challenging to formulate. Such dependencies are rarely

addressed in current studies. If such parameters are also considered as part of the

problem formulation, the provided design solutions can be pursued more confi-

dently. Among other dynamic factors, the simultaneous and multiple effects of

commonality and modularity on different members of supply chain can be

addressed, which is worth to be incorporated into future studies (Fixson 2007).

Standardization of Terminology. While numerous modeling approaches have

been developed for integrating information and knowledge about different aspects

of product family design, there is still a need for clear standardization of definitions,

terminology, and roles for components and elements in product families and

platforms. Such a standard system enables effective reuse of design information

and expedites future design improvements (Yan and Stewart 2010).

Robust Optimization Approaches with Less Complexity. Based on the limitations

mentioned in most of the optimization studies, computational complexity is a

challenging issue, which emerges from large-scale problems (Khajavirad et al.

2007). Approaches for obtaining global optimality are of interest among

researchers in this field, although not many achievements have been obtained

thus far, and sub-optimality is still a challenge that needs to be addressed in future

research (Khajavirad and Michalek 2008; Khajavirad et al. 2009). Another thrust is

to develop approaches to handle complex problems with discrete variables. While

some relaxation strategies have been developed and some algorithms can handle

discontinuities, most problems with similar structure (i.e., mixed variables in joint

platform problems) suffer from lack of efficient and effective optimization

methods. Also, improving the design space exploration techniques is fundamental

for improving the current state of design optimization, as coupling the design space

34 Z. Pirmoradi et al.

exploration with the optimization techniques is shown to be essential for increasing

the effectiveness of approaches to support PFD. Eventually, as integration of more

objectives (i.e., platform and family performance objectives and cost targets)

results in more efficient solutions, development of efficient algorithms for

optimizing such multi-objective high-dimensional problems is a remarkable need

in this area.

Manufacturing and Resource Constraint Consideration. Little attention has been

paid to constraints related to resource utilization, flexible manufacturing,

reconfigurability, and manufacturability (Jiao et al. 2007c, 2007d); however, PFD

involves all of the stages frommarketing studies to supply chain management. Particu-

larly, very few resource constrained studies have been done, which could result in

significant increase of the efficiency of design options (Kimura and Nielsen 2005).

Global Platform Development. Nowhere are these manufacturing and supply chain

issues more prevalent than in companies that are competing globally. Numerous

companies are struggling with the decision of whether to create a global platform

that can be customized for regional markets around the world or regional platforms

that can be more easily tailored to local markets. While user variation, competition,

and government regulations and standards drive many of these decisions, subtle

differences in cultures, brand perceptions, and market penetration must also be

taken into account given the ramifications of one’s global platform development. In

some industries, the value of “Made in the USA” carries extra weight, whereas in

others, a low price point is the key to market entry, yet the last thing a company

wants is to cannibalize its own products by creating, for example, low-cost

competitors in one market that migrate back to their high-end domestic market

(Simpson et al. 2006). One example of attempt for designing global family can be

seen in Fujita et al. (2012). Also, there are good lessons to be learned from the

automotive industry (Miller 1999; Hodges 2004), for example, but the global

market affects everyone now.

1.7 Summary

In this chapter, recent achievements and research activities in product family design

and platform-based product development have been reviewed, emphasizing

advancements that have occurred since the publication of the initial version of

Product Platform and Product Family Design:Methods and Applications (Simpson

et al. 2005). Among them, development of algorithms for handling large-scale

platform selection and optimization problems, attention toward more customer-

oriented designs and market-driven studies, advancements in incorporating past

design information and knowledge into future improvements, and increased atten-

tion to diversity as a beneficial issue with the same importance as commonality can

be addressed. However, there are still more rooms for improvement in all of these

areas and also in other less tackled ones. Issues such as uncertainty considerations,

1 Recent Advancements in Product Family Design 35

more factors’ involvement into design decisions, complexity tackling in large-scale

optimization problems, large design space exploration, flexibility and

reconfigurability, product postponement, and supply chain issues for families are

examples of areas which can be further improved in future studies about product

family design and platform development.

References

Abdi MR (2012) Product family formation and selection for reconfigurability using analytical

network process. Int J Prod Res 50(17):4908–4921

Agard B, Penz B (2009) A simulated annealing method based on a clustering approach to

determine bills of materials for a large product family. Int J Prod Econ 117(2):389–401.

doi:10.1016/j.ijpe.2008.12.004

Agard B, Cheung B, Chunda CD (2006) Selection of a module stock composition using genetic

algorithm. In: 12th IFAC symposium on information control problems in manufacturing, Saint-

Étienne, 17–19 May 2006

Agrawal T, Sao A, Fernandes KJ, Tiwari MK, Kim DY (2012) A hybrid model of component

sharing and platform modularity for optimal product family design. Int J Prod Res: 1–12.

doi:10.1080/00207543.2012.663106

Alizon F, Shooter SB, Thevenot HJ (2006) Design structure matrix flow for improving identifica-

tion and specification of modules. In: Proceedings of the ASME 2006 international design

engineering technical conferences and computers and information in engineering conference,

Philadelphia, PA, 10–13 Sept 2006

Alizon F, Khadke K, Thevenot HJ, Gershenson JK, Marion TJ, Shooter SB, Simpson TW (2007)

Frameworks for product family design and development. Concurr Eng 15:187–199.

doi:10.1177/1063293X07079326

Alizon F, Shooter SB, Simpson TW (2009a) Assessing and improving commonality and diversity

within a product family. Res Eng Des 20(4):241–253. doi:10.1007/s00163-009-0066-5

Alizon F, Shooter SB, Simpson TW (2009b) Henry Ford and the Model T: lessons for product

platforming and mass customization. Des Stud 30(5):588–605. doi:10.1016/j.

destud.2009.03.003

Alizon F, Shooter SB, Simpson TW (2010) Recommending a platform leveraging strategy based

on the homogeneous or heterogeneous nature of a product line. J Eng Des 21(1):93–110

Allada V, Choudhury AK, Pakala PK, Simpson, TW, Scott MJ, Valliyappan S (2006) Product

platform problem taxonomy: classification and identification of benchmark problems. In:

Proceedings of the ASME 2006 international design engineering technical conferences and

computers and information in engineering conference, Philadelphia, PA, 10–13 Sept 2006

Anzanello MJ, Fogliatto FS (2011) Selecting the best clustering variables for grouping mass-

customized products involving workers’ learning. Int J Prod Econ 130(2):268–276

Arciniegas AJR, Kim HM (2011) Optimal component sharing in a product family by simultaneous

consideration of minimum description length and impact metric. Eng Optim 43(2):175–192

Arciniegas AJR, Kim HM (2012) Incorporating security considerations into optimal product

architecture and component sharing decision in product family design. Eng Optim 44(1):55–74

Barajas M, Agard B (2009) The use of fuzzy logic in product family development: literature

review and opportunities. Centre interuniversitaire de recherche, CIRRELT report, CIRRELT-

2009-31

Baxter D, Gao J, Case K, Harding J, Young B, Cochrane S, Dani S (2007) An engineering design

knowledge reuse methodology using process modelling. Res Eng Des 18(1):37–48.

doi:10.1007/s00163-007-0028-8

36 Z. Pirmoradi et al.

http://dx.doi.org/10.1016/j.ijpe.2008.12.004
http://dx.doi.org/10.1080/00207543.2012.663106
http://dx.doi.org/10.1177/1063293X07079326
http://dx.doi.org/10.1007/s00163-009-0066-5
http://dx.doi.org/10.1016/j.destud.2009.03.003
http://dx.doi.org/10.1016/j.destud.2009.03.003
http://dx.doi.org/10.1007/s00163-007-0028-8

Belloni A, Freund R, Selove M, Simester D (2008) Optimizing product line designs: efficient

methods and comparisons. Manage Sci 54(9):1544–1552

Berry S, Pakes A (2007) The pure characteristics demand model. Int Econ Rev 48(4):1193–1225.

doi:10.1111/j.1468-2354.2007.00459.x

Blecker T, Abdelkafi N (2007) The development of a component commonality metric for mass

customization. IEEE Trans Eng Manage 54(1):70–85

Blecker T, Abdelkafi N, Kaluza B, Friedrich G (2006) Controlling variety-induced complexity in

mass customisation: a key metrics-based approach. Int J Mass Custom 1(2–3):272–298

Boas RC (2008) Commonality in complex product families: implications of divergence and

lifecycle offsets. Ph.D. Dissertation, Massachusetts Institute of Technology

Brière-Côté A, Rivest L, Desrochers A (2010) Adaptive generic product structure modelling for

design reuse in engineer-to-order products. Comput Ind 61(1):53–65. doi:10.1016/j.

compind.2009.07.005

Callahan S (2006) Extended generic product structure: an information model for representing

product families. J Comput Inf Sci Eng 6(3):263–275. doi:10.1115/1.2218361

Chen AL, Martinez DH (2012) A heuristic method based on genetic algorithm for the baseline-

product design. Expert Syst Appl 39(5):5829–5837

Chen CB, Wang LY (2008) A modified genetic algorithm for product family optimization with

platform specified by information theoretical approach. J Shanghai Jiaotong Univ (Sci) 13

(3):304–311. doi:10.1007/s12204-008-0304-4

Chowdhury S, Messac A, Khire RA (2011) Comprehensive product platform planning (CP3)

framework. J Mech Des 133:101004

Chung SH, Lee AHI, Kang HY, Lai CW (2008) A DEA window analysis on the product family

mix selection for a semiconductor fabricator. Expert Syst Appl 35(1–2):379–388. doi:10.1016/

j.eswa.2007.07.011

Cormier P, Van Horn D, Lewis K (2009) Investigating the use of (re)configurability to reduce

product family cost and mitigate performance losses. In: Proceedings of the ASME 2009

international design engineering technical conferences and computers and information in

engineering conference, San Diego, CA, 30 Aug–2 Sept 2009

Cutherell D (1996) Product architecture. In: Rosenau MD, Griffin A, Castellio GA, Anschuetz NF

(eds) The PDMA handbook of new product development. Wiley, New York, NY

Cutting-Decelle AF, Young RIM, Michel JJ, Grangel R, Le Cardinal J, Bourey JP (2007) ISO

15531 MANDATE: a product-process-resource based approach for managing modularity in

production management. Concurr Eng 15(2):217–235

Dai Z, Scott MJ (2006) Effective product family design using preference aggregation. J Mech Des

128(4):659–667. doi:10.1115/1.2197835

Dai Z, Scott MJ (2007) Product platform design through sensitivity analysis and cluster analysis.

J Intell Manuf 18(1):97–113. doi:10.1007/s10845-007-0011-2

Das K (2011) Integrating effective flexibility measures into a strategic supply chain planning

model. Eur J Oper Res 211(1):170–183

Doraszelski U, Draganska M (2006) Market segmentation strategies of multiproduct firms. J Ind

Econ 54(1):125–149. doi:10.1111/j.1467-6427.2006.00278.x

Emmatty FJ, Sarmah SP (2012) Modular product development through platform-based design and

DFMA. J Eng Des 23(9):696–714

Fan BB, Qi GN (2007) Modeling of production family structure and module analysis method

based on complex network. Chinese J Mech Eng 43(3):187–192

Farrell RS, Simpson TW (2008) A method to improve platform leveraging in a market segmenta-

tion grid for an existing product line. J Mech Des 130(3):031403–031411. doi:10.1115/

1.2829889

Fellini R, Kokkolaras M, Michelena N, Papalambros P, Perez-Duarte A, Saitou K, Fenyes P (2004)

A sensitivity-based commonality strategy for family products of mild variation, with applica-

tion to automotive body structures. Struct Multidiscip Optim 27(1):89–96. doi:10.1007/

s00158-003-0356-x

1 Recent Advancements in Product Family Design 37

http://dx.doi.org/10.1111/j.1468-2354.2007.00459.x
http://dx.doi.org/10.1016/j.compind.2009.07.005
http://dx.doi.org/10.1016/j.compind.2009.07.005
http://dx.doi.org/10.1115/1.2218361
http://dx.doi.org/10.1007/s12204-008-0304-4
http://dx.doi.org/10.1016/j.eswa.2007.07.011
http://dx.doi.org/10.1016/j.eswa.2007.07.011
http://dx.doi.org/10.1115/1.2197835
http://dx.doi.org/10.1007/s10845-007-0011-2
http://dx.doi.org/10.1111/j.1467-6427.2006.00278.x
http://dx.doi.org/10.1115/1.2829889
http://dx.doi.org/10.1115/1.2829889
http://dx.doi.org/10.1007/s00158-003-0356-x
http://dx.doi.org/10.1007/s00158-003-0356-x

Fellini R, Kokkolaras M, Papalambros P, Perez-Duarte A (2005) Platform selection under perfor-

mance bounds in optimal design of product families. J Mech Des 127(4):524–535.

doi:10.1115/1.1899176

Fellini R, Kokkolaras M, Papalambros P (2006) Quantitative platform selection in optimal design

of product families, with application to automotive engine design. J Eng Des 17(5):429–446

Ferguson S, Lewis K (2008) Investigating the interaction between reconfigurability and system

mass using multidisciplinary design optimization. In: 49th AIAA/ASME/ASCE/AHS/ASC

structures, structural dynamics, and materials conference, Schaumburg, IL, 7–10 Apr 2008

Ferguson S, Lewis K, Kasprzak E (2007a) Design and optimization of reconfigurable vehicle

platforms. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and

materials conference, Honolulu, HI, 23–26 Apr 2007

Ferguson S, Lewis K, de Weck O, Siddiqi A (2007b) Flexible and reconfigurable systems:

nomenclature and review. In: Proceedings of the ASME 2007 international design engineering

technical conferences and computers and information in engineering conference, Las Vegas,

NV, 4–7 Sept 2007

Ferguson S, Kasprzak E, Lewis K (2009) Designing a family of reconfigurable vehicles using

multilevel multidisciplinary design optimization. Struct Multidiscip Optim 39(2):171–186.

doi:10.1007/s00158-008-0319-3

Ferguson S, Olewnik A, Cormier P (2011) Exploring marketing to engineering information

mapping in mass customization: a presentation of ideas, challenges and resulting questions.

In: Proceedings of the ASME 2011 international design engineering technical conferences and

computers and information in engineering conference, Washington, DC, 28–31 Aug 2011

Fixson SK (2007) Modularity and commonality research: past developments and future

opportunities. Concurr Eng 15(2):85–111

Freeman D, Lim D, Garcia E, Mavris D (2011) Identification of product family platforms using

pattern recognition. In: Proceedings of the ASME 2011 international design engineering

technical conferences and computers and information in engineering conference, Washington,

DC, 28–31 Aug 2011

Fujita K (2002) Product variety optimization under modular architecture. Comput Aided Des

34(12):953–965. doi:10.1016/s0010-4485(01)00149-x

Fujita K, Amaya H, Akai R (2011) Global product family design: a mathematical model for

simultaneous decision of module commonalization and supply chain configuration. In:

Proceedings of the ASME 2011 international design engineering technical conferences and

computers and information in engineering conference, Washington, DC, 28–31 Aug 2011

Fujita K, Amaya H, Akai R (2012) Mathematical model for simultaneous design of module

commonalization and supply chain configuration toward global product family. J Intell

Manuf: 1–14. doi:10.1007/s10845-012-0641-x

Gao F, Xiao G, Simpson TW (2009) Module-scale-based product platform planning. Res Eng Des

20(2):129–141. doi:10.1007/s00163-008-0061-2

Georgiadis P, Athanasiou E (2010) The impact of two-product joint lifecycles on capacity

planning of remanufacturing networks. Eur J Oper Res 202(2):420–433

Helo P, Xu Q, Kristianto, Jiao RJ (2009) Product family design and logistics decision support

system. In: IEEE 16th international conference on industrial engineering and engineering

management, Beijing, 21–23 Oct 2009

Hilletofth P, Ericsson D, Lumsden K (2010) Coordinating new product development and supply

chain management. Int J Value Chain Manage 4(1):170–192

Hisrich RD, Peters MP (1991) Marketing decisions for new and mature products. Prentice-Hall,

Englewood Cliffs, NJ

Hodges P (2004) Issues in automotive product platform strategies. In: 2004 SAE world congress

and exhibition conference, Detroit, MI, 8 Mar 2004

Höfner P, Khedri R, Möller B (2011) An algebra of product families. Softw Syst Model

10(2):161–182. doi:10.1007/s10270-009-0127-2

38 Z. Pirmoradi et al.

http://dx.doi.org/10.1115/1.1899176
http://dx.doi.org/10.1007/s00158-008-0319-3
http://dx.doi.org/10.1016/s0010-4485(01)00149-x
http://dx.doi.org/10.1007/s10845-012-0641-x
http://dx.doi.org/10.1007/s00163-008-0061-2
http://dx.doi.org/10.1007/s10270-009-0127-2

Hölttä-Otto K, de Weck O (2007) Degree of modularity in engineering systems and products with

technical and business constraints. Concurr Eng 15(2):113–126. doi:10.1177/

1063293x07078931

Hoogeweegen MR, van Liere DW, Vervest PHM, van der Meijden LH, de Lepper I (2006)

Strategizing for mass customization by playing the business networking game. Decis Support

Syst 42(3):1402–1412. doi:10.1016/j.dss.2005.11.007

Hou S, He L, Xie H, Liu Y (2011) Research on product family modeling method for design

resource reuse. Comput Intell Syst 233:337–344

Huang GQ, Li L, Chen X (2007) A tandem evolutionary algorithm for platform product customi-

zation. J Comput Inf Sci Eng 7(2):151–159

Jariri F, Zegordi S (2008) Quality function deployment planning for platform design. Int J Adv

Manuf Technol 36(5):419–430. doi:10.1007/s00170-006-0853-3

Jiang P, Zhao X, Yang, B, Zhao L, Tan R (2007) The product family design based on axiomatic

design. In: 2007 I.E. international conference on industrial engineering and engineering

management conference, Singapore, 2–5 Dec 2007

Jiao J (2012) Product platform flexibility planning by hybrid real options analysis. IIE Trans

44(6):431–445

Jiao J, Zhang Y (2005) Product portfolio identification based on association rule mining. Comput

Aided Des 37(2):149–172. doi:10.1016/j.cad.2004.05.006

Jiao J, Kumar A, Lim C (2006) Flexibility valuation of product family architecture: a real-option

approach. Int J Adv Manuf Technol 30(1):1–9. doi:10.1007/s00170-005-0020-2

Jiao H, Zhang LF, Pokharel S (2007a) Process platform planning for variety coordination from

design to production in mass customization manufacturing. IEEE Trans Eng Manage

54(1):112–129. doi:10.1109/tem.2006.889071

Jiao J, Gershenson JK, Michalek J (2007b) Managing modularity and commonality in product and

process development. Concurr Eng Res Appl 15(2):81–83

Jiao J, Simpson TW, Siddique Z (2007c) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29. doi:10.1007/s10845-007-

0003-2

Jiao J, Zhang L, Pokharel S, He Z (2007d) Identifying generic routings for product families based

on text mining and tree matching. Decis Support Syst 43(3):866–883. doi:10.1016/j.

dss.2007.01.001

Jiao J, Zhang Y, Wang Y (2007e) A generic genetic algorithm for product family design. J Intell

Manuf 18(2):233–247. doi:10.1007/s10845-007-0019-7

Jin M, Chen R (2008) The platform configuration for product family production. In: 4th Interna-

tional conference on wireless communications, networking and mobile computing, Dalian,

19–21 Sep 2008

Johnson MD, Kirchain RE (2009) Quantifying the effects of product family decisions on material

selection: a process-based costing approach. Int J Prod Econ 120(2):653–668

Johnson MD, Kirchain RE (2010) Developing and assessing commonality metrics for product

families: a process-based cost-modeling approach. IEEE Trans Eng Manage 57(4):634–648

Kalyanasundaram V, Lewis K (2011) A function based approach for product integration. In:

Proceedings of the ASME 2011 international design engineering technical conferences and

computers and information in engineering conference, Washington, DC, 28–31 Aug 2011

Kazemzadeh R, Behzadian M, Aghdasi M, Albadvi A (2009) Integration of marketing research

techniques into house of quality and product family design. Int J Adv Manuf Technol

41(9):1019–1033. doi:10.1007/s00170-008-1533-2

Khajavirad A, Michalek J (2007) A single-stage gradient-based approach for solving the joint

product family platform selection and design problem using decomposition. In: Proceedings of

the ASME 2007 international design engineering technical conferences and computers and

information in engineering conference, Las Vegas, NV, 4–7 Sept 2007

1 Recent Advancements in Product Family Design 39

http://dx.doi.org/10.1177/1063293x07078931
http://dx.doi.org/10.1177/1063293x07078931
http://dx.doi.org/10.1016/j.dss.2005.11.007
http://dx.doi.org/10.1007/s00170-006-0853-3
http://dx.doi.org/10.1016/j.cad.2004.05.006
http://dx.doi.org/10.1007/s00170-005-0020-2
http://dx.doi.org/10.1109/tem.2006.889071
http://dx.doi.org/10.1007/s10845-007-0003-2
http://dx.doi.org/10.1007/s10845-007-0003-2
http://dx.doi.org/10.1016/j.dss.2007.01.001
http://dx.doi.org/10.1016/j.dss.2007.01.001
http://dx.doi.org/10.1007/s10845-007-0019-7
http://dx.doi.org/10.1007/s00170-008-1533-2

Khajavirad A, Michalek J (2008) A decomposed gradient-based approach for generalized

platform selection and variant design in product family optimization. J Mech Des

130(7):071101–071108. doi:10.1115/1.2918906

Khajavirad A, Michalek J (2009) A deterministic lagrangian-based global optimization approach

for quasiseparable nonconvex mixed-integer nonlinear programs. J Mech Des 131(5):051009-

1–051009-8. doi:10.1115/1.3087559

Khajavirad A, Michalek J, Simpson TW (2007) A decomposed genetic algorithm for solving the

joint product family optimization problem. In: 3rd AIAAmultidisciplinary design optimization

specialists conference, Honolulu, HI, 23–26 Apr 2007

Khajavirad A, Michalek J, Simpson TW (2009) An efficient decomposed multiobjective genetic

algorithm for solving the joint product platform selection and product family design problem

with generalized commonality. Struct Multidiscip Optim 39(2):187–201. doi:10.1007/s00158-

008-0321-9

Khalaf REH, Agard B, Penz B (2008) Greedy heuristics for determining a product family bill of

materials. In: 38th International conference on computers and industrial engineering, Beijing,

31 Oct–2 Nov 2008

Khalaf REH, Agard B, Penz B (2009) Joint design of product family and supply chain: between

diversity and standardization. Centre Interuniversitaire de Recherche, CIRRELT report,

CIRRELT-2009-32

Khalaf REH, Agard B, Penz B (2011) Simultaneous design of a product family and its related

supply chain using a Tabu Search algorithm. Int J Prod Res 49(19):5637–5656

Khire R, Messac A (2008) Selection-integrated optimization (SIO) methodology for optimal

design of adaptive systems. J Mech Des 130(10):101401–101413. doi:10.1115/1.2965365

Khire R, Messac A, Simpson TW (2006) Optimal design of product families using selection-

integrated optimization (SIO) methodology. In: 11th AIAA/ISSMO symposium on multidisci-

plinary analysis and optimization, Portsmouth, VA, 6–8 Sep 2006

Khire R, Wang J, Bailey T, Lin Y, Simpson TW (2008) Product family commonality selection

through interactive visualization. In: Proceedings of the ASME 2008 international design

engineering technical conferences and computers and information in engineering conference,

New York, NY, 3–6 Aug 2008

Kim KJ, Lee DU, Lee MS (2006) Determining product platform elements for mass customisation.

Int J Prod Qual Manage 1(1–2):168–182

Kimura F, Nielsen J (2005) A design method for product family under manufacturing resource

constraints. CIRP Ann Manuf Technol 54(1):139–142. doi:10.1016/s0007-8506(07)60068-7

Kumar D, Chen W, Simpson TW (2006) A market-driven approach to the design of platform-

based product families. In: 11th AIAA/ISSMO symposium on multidisciplinary analysis and

optimization, Portsmouth, VA, 6–8 Sep 2006

Kumar D, Chen W, Simpson TW (2009) A market-driven approach to product family design. Int J

Prod Res 47(1):71–104

Kwak M, Kim HM (2011) Assessing product family design from an end-of-life perspective. Eng

Optim 43(3):233–255

Lamothe J, Hadj-Hamou K, Aldanondo M (2006) An optimization model for selecting a product

family and designing its supply chain. Eur J Oper Res 169(3):1030–1047. doi:10.1016/j.

ejor.2005.02.007

Li H, Azarm S (2000) Product design selection under uncertainty and with competitive advantage.

J Mech Des 122(4):411–418

Li H, Azarm S (2002) An approach for product line design selection under uncertainty and

competition. J Mech Des 124(3):385–392

Li L, Huang GQ (2009) Multiobjective evolutionary optimisation for adaptive product family

design. Int J Comput Integr Manuf 22(4):299–314. doi:10.1080/09511920802014920

Li H, Liu W, Liu D (2006) The extended application quality function deployment in mass

customization. Sci Technol Manage Res 6:227–229

40 Z. Pirmoradi et al.

http://dx.doi.org/10.1115/1.2918906
http://dx.doi.org/10.1115/1.3087559
http://dx.doi.org/10.1007/s00158-008-0321-9
http://dx.doi.org/10.1007/s00158-008-0321-9
http://dx.doi.org/10.1115/1.2965365
http://dx.doi.org/10.1016/s0007-8506(07)60068-7
http://dx.doi.org/10.1016/j.ejor.2005.02.007
http://dx.doi.org/10.1016/j.ejor.2005.02.007
http://dx.doi.org/10.1080/09511920802014920

Li L, Huang GQ, Newman ST (2007) Interweaving genetic programming and genetic algorithm

for structural and parametric optimization in adaptive platform product customization. Robot

Comput Integr Manuf 23(6):650–658. doi:10.1016/j.rcim.2007.02.014

Li L, Huang GQ, Newman ST (2008) A cooperative coevolutionary algorithm for design of

platform-based mass customized products. J Intell Manuf 19(5):507–519. doi:10.1007/

s10845-008-0137-x

Li Z, Cheng Z, Feng Y, Yang J (2012) An integrated method for flexible platform modular

architecture design. J Eng Des iFirst: 1–20. doi:10.1080/09544828.2012.668614

Liang WY, Huang CC (2002) The agent-based collaboration information system of product

development. Int J Inf Manage 22(3):211–224. doi:10.1016/s0268-4012(02)00006-3

Lim SCJ, Liu Y, Lee WB (2011) A platform selection approach based on product family ontology

modeling. In: Proceedings of the ASME 2011 international design engineering technical

conferences and computers and information in engineering conference, Washington, DC,

28–31 Aug 2011

Liu H, Özer Ö (2009) Managing a product family under stochastic technological changes. Int

J Prod Econ 122(2):567–580. doi:10.1016/j.ijpe.2009.06.039

Liu F, Qi G (2006) Research on evolving rule of part relation network of product family and its

application. In: International technology and innovation conference, London, 6–7 Nov 2006

Liu S, Tang Y, Luo S (2009) A study of product family design DNA based on product style. In:

IEEE 10th international conference on computer-aided industrial design and conceptual

design, Wenzhou, 26–29 Nov 2009

Liu Z, Wong YS, Lee KS (2011) A manufacturing-oriented approach for multi-platforming

product family design with modified genetic algorithm. J Intell Manuf 22(6):891–907

Luo L (2011) Product line design for consumer durables: an integrated marketing and engineering

approach. J Market Res 48(1):128–139. doi:10.1509/jmkr.48.1.128

Luo X, Tang J, Wang D (2008) Optimization of scalable product platform using quality function

deployment. In: 2008 Chinese control and decision conference, Yantai, China, 2–4 July 2008

Luo X, Tang J, Kwong CK (2009) A product platform optimization method based on QFD. In:

IEEE 16th international conference on industrial engineering and engineering management,

Beijing, 21–23 Oct 2009

Luo X, Kwong C, Tang J, Deng S, Gong J (2011) Integrating supplier selection in optimal product

family design. Int J Prod Res 49(14):4195–4222

Ma Q, Tan R, Jiang P, Yao B, Hui X (2011) Flexible product platform based on design parameters.

Building innovation pipelines through computer-aided innovation, vol 355. Springer,

Heidelberg, pp 7–15

Marion TJ, Thevenot HJ, Simpson TW (2007) A cost-based methodology for evaluating product

platform commonality sourcing decisions with two examples. Int J Prod Res 45

(22):5285–5308

Martin MV, Ishii K (1996) Design for variety: a methodology for understanding the costs of

product proliferation. In: Proceedings of the ASME 1996 international design engineering

technical conferences and computers and information in engineering conference, Irvine, CA,

18–22 Aug 1996

Martin MV and Ishii K (1997) Design for variety: development of complexity indices and design

charts. In: Proceedings of the ASME 1997 international design engineering technical

conferences and computers and information in engineering conference, Sacramento, CA,

14–17 Sept 1997

Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems: key to future

manufacturing. J Intell Manuf 11(4):403–419. doi:10.1023/a:1008930403506

Meng X, Jiang Z, Huang GQ (2007) On the module identification for product family development.

Int J Adv Manuf Technol 35(1):26–40. doi:10.1007/s00170-006-0712-2

Meyer M, Lehnerd AP (1997) The power of product platform— building value and cost leadship.

Free Press, New York, NY

1 Recent Advancements in Product Family Design 41

http://dx.doi.org/10.1016/j.rcim.2007.02.014
http://dx.doi.org/10.1007/s10845-008-0137-x
http://dx.doi.org/10.1007/s10845-008-0137-x
http://dx.doi.org/10.1080/09544828.2012.668614
http://dx.doi.org/10.1016/s0268-4012(02)00006-3
http://dx.doi.org/10.1016/j.ijpe.2009.06.039
http://dx.doi.org/10.1509/jmkr.48.1.128
http://dx.doi.org/10.1023/a:1008930403506
http://dx.doi.org/10.1007/s00170-006-0712-2

Michalek J, Feinberg FM, Papalambros P (2005) Linking marketing and engineering product

design decisions via analytical target cascading. J Prod Innovat Manage 22(1):42–62

Michalek J, Ceryan O, Papalambros P, Koren Y (2006) Balancing marketing and manufacturing

objectives in product line design. J Mech Des 128(6):1196–1204. doi:10.1115/1.2336252

Michalek J, Feinberg FM, Adiguzel F, Ebbes P, Papalambros P (2007) Realizable product line

design optimization: coordinating marketing and engineering models via analytical target

cascading. Working paper. University of Michigan, Ann Arbor, MI

Michalek J, Ebbes P, Adigüzel F, Feinberg FM, Papalambros P (2011) Enhancing marketing with

engineering: optimal product line design for heterogeneous markets. Int J Res Market 28

(1):1–12. doi:10.1016/j.ijresmar.2010.08.001

Miller S (1999) VW sows confusion with common pattern for models that Investors worry profits

may suffer as lines compete. Wall Street Journal, New York: A25

Montano RP (2011) Platform project management: optimizing product development by actively

managing commonality. MSc Thesis, Massachusetts Institute of Technology

Moon SK, Kumara SRT, Simpson TW (2006a) Data mining and fuzzy clustering to support

product family design. In: Proceedings of the ASME 2006 international design engineering

technical conferences and computers and information in engineering conference, Philadelphia,

PA, 10–13 Sept 2006

Moon SK, Kumara SRT, Simpson TW (2006b) A multi-agent system for modular platform design

in a dynamic electronic market environment. In: Proceedings of the ASME 2006 international

design engineering technical conferences and computers and information in engineering

conference, Philadelphia, PA, 10–13 Sept 2006

Moon SK, Sim J, Shu J, Simpson TW (2007) Strategic module sharing for customized service

family design using a Bayesian game. In: IEEE international conference on service operations

and logistics, and informatics, Philadelphia, PA, 27–29 Aug 2007

Moon SK, Park J, Simpson TW, Kumara SRT (2008) A dynamic multiagent system based on a

negotiation mechanism for product family design. IEEE Trans Autom Sci Eng 5(2):234–244

Moon SK, Simpson TW, Kumara S (2010) A methodology for knowledge discovery to support

product family design. Ann Oper Res 174(1):201–218. doi:10.1007/s10479-008-0349-7

Moon SK, Park J, Simpson TW (2011) Platform strategy for product family design using particle

swarm optimization. In: Proceedings of the ASME 2011 international design engineering

technical conferences and computers and information in engineering conference, Washington,

DC, 28–31 Aug 2011

Morrise JS, Lewis K, Mattson CA, Magleby SP (2011) A method for designing collaborative

products with application to poverty alleviation. In: Proceedings of the ASME 2011 interna-

tional design engineering technical conferences and computers and information in engineering

conference, Washington, DC, 28–31 Aug 2011

Mula J, Peidro D, Poler R (2010) The effectiveness of a fuzzy mathematical programming

approach for supply chain production planning with fuzzy demand. Int J Prod Econ 128

(1):136–143

Nanda J, Thevenot HJ, Simpson TW, Stone RB, Bohm M, Shooter SB, Baader F, Calvanese D,

Mcguinness D, Nardi D (2007) Product family design knowledge representation, aggregation,

reuse, and analysis. Artif Intell Eng Des Anal Manuf 21(2):173

Nomaguchi Y, Taguchi T, Fujita K (2006) Knowledge model for managing product variety and its

reflective design process. In: Proceedings of the ASME 2006 international design engineering

technical conferences and computers and information in engineering conference, Philadelphia,

PA, 10–13 Sept 2006

Olewnik A, Lewis K (2006) A decision support framework for flexible system design. J Eng Des

17(1):75–97. doi:10.1080/09544820500274019

Öman M, Nilsson L (2011) An improved critical constraint method for structural optimization of

product families. Struct Multidiscip Optim 45(2):235–246. doi:10.1007/s00158-011-0689-9

Ong SK, Xu QL, Nee AYC (2006) Design reuse methodology for product family design. CIRP

Ann Manuf Technol 55(1):161–164. doi:10.1016/s0007-8506(07)60389-8

42 Z. Pirmoradi et al.

http://dx.doi.org/10.1115/1.2336252
http://dx.doi.org/10.1016/j.ijresmar.2010.08.001
http://dx.doi.org/10.1007/s10479-008-0349-7
http://dx.doi.org/10.1080/09544820500274019
http://dx.doi.org/10.1007/s00158-011-0689-9
http://dx.doi.org/10.1016/s0007-8506(07)60389-8

Ostrosi E, Fougères AJ, Ferney M, Klein D (2011) A fuzzy configuration multi-agent approach for

product family modelling in conceptual design. J Intell Manuf 23(6):2565–2586. doi:10.1007/

s10845-011-0541-5

Otto K, Hölttä-Otto K (2007) A multi-criteria assessment tool for screening preliminary product

platform concepts. J Intell Manuf 18(1):59–75. doi:10.1007/s10845-007-0004-1

Pandey V, Thurston D (2008) Metric for disassembly and reuse decisions: formulation and

validation. In: Proceedings of the ASME 2008 international design engineering technical

conferences and computers and information in engineering conference, New York, NY, 3–6

Aug 2008

Park J, Simpson TW (2008) Toward an activity-based costing system for product families and

product platforms in the early stages of development. Int J Prod Res 46(1):99–130

Pasche MH, Persson M, Löfsten H (2011) Effects of platforms on new product development

projects. Int J Oper Prod Manage 31(11):1144–1163. doi:10.1108/01443571111178475

Perez AG, Linsey JS (2011) Identifying product scaling principles: a tool for bioinspired design

and beyond. In: Proceedings of the ASME 2011 international design engineering technical

conferences and computers and information in engineering conference, Washington, DC,

28–31 Aug 2011

Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business

School Press, Boston, MA

Qian L (2009) Evaluate cost and time in supply chain selection under price-dependent demand for

one product family. In: IEEE/INFORMS international conference on service operations,

logistics and informatics, Chicago, IL, 22–24 July 2009

Qin Y, Wei G (2009) On mapping approach of CN to FR in product family improvement. In:

International conference on measuring technology and mechatronics automation, Zhangjiajie,

11–12 Apr 2009

Qu T, Bin S, Huang GQ, Yang H (2011) Two-stage product platform development for mass

customisation. Int J Prod Res 49(8):2197–2219

Raffaeli R, Mengoni M, Germani M (2011) An early-stage tool to evaluate the product redesign

impact. In: Proceedings of the ASME 2011 international design engineering technical

conferences and computers and information in engineering conference, Washington, DC,

28–31 Aug 2011

Rojas AJ, Esterman JM (2008) A measure of impact for platform changes. In: Proceedings of the

ASME 2008 international design engineering technical conferences and computers and infor-

mation in engineering conference, New York, NY, 3–6 Aug 2008

Salhieh SEM (2007) A methodology to redesign heterogeneous product portfolios as homoge-

neous product families. Comput Aided Des 39(12):1065–1074. doi:10.1016/j.cad.2007.07.005

Sandborn P, Prabhakar V, Eriksson B (2008) The application of product platform design to the

reuse of electronic components subject to long-term supply chain disruptions. In: Proceedings

of the ASME 2008 international design engineering technical conferences and computers and

information in engineering conference, New York, NY, 3–6 Aug 2008

Schönsleben P (2012) Methods and tools that support a fast and efficient design-to-order process

for parameterized product families. CIRP Ann Manuf Technol 61(1):179–182

Scott MJ, Arenillas J, Simpson TW, Valliyappan S, Allada V (2006) Towards a suite of problems

for comparison of product platform design methods: a proposed classification. In: Proceedings

of the ASME 2006 international design engineering technical conferences and computers and

information in engineering conference, Philadelphia, PA, 10–13 Sept 2006

Seol H, Kim C, Lee C, Park Y (2007) Design process modularization: concept and algorithm.

Concurr Eng 15(2):175–186. doi:10.1177/1063293x07079321

Shahzad KM, Hadj-Hamou K (2012) Integrated supply chain and product family architecture

under highly customized demand. J Intell Manuf. doi:10.1007/s10845-012-0630-0

Shamsuzzoha A, Helo PT (2012) Development of modular product architecture through informa-

tion management. VINE 42(2):172–190. doi:10.1108/03055721211227200

1 Recent Advancements in Product Family Design 43

http://dx.doi.org/10.1007/s10845-011-0541-5
http://dx.doi.org/10.1007/s10845-011-0541-5
http://dx.doi.org/10.1007/s10845-007-0004-1
http://dx.doi.org/10.1108/01443571111178475
http://dx.doi.org/10.1016/j.cad.2007.07.005
http://dx.doi.org/10.1177/1063293x07079321
http://dx.doi.org/10.1007/s10845-012-0630-0
http://dx.doi.org/10.1108/03055721211227200

Sharman DM, Yassine AA (2007) Architectural valuation using the design structure matrix and

real options theory. Concurr Eng 15(2):157–173

Shiau CSN, Michalek J (2009a) Optimal product design under price competition. J Mech Des 131

(7):071003–071010. doi:10.1115/1.3125886

Shiau CSN, Michalek J (2009b) Should designers worry about market systems? J Mech Des 131

(1):011011–011019. doi:10.1115/1.3013848

Shooter S, Evans C, Simpson TW (2007) Building a better ice scraper—a case in product

platforms for the entrepreneur. J Intell Manuf 18(1):159–170. doi:10.1007/s10845-007-0010-3

Siddiqi A, de Weck O, Iagnemma K (2006) Reconfigurability in planetary surface vehicles:

modeling approaches and case study. J Brit Interp Soc 59(12):450–460

Siddique Z, Wilmes L (2007) An application of design space for assembly process reasoning to

utilize current assembly plant resources for new product family members. J Intell Manuf 18

(1):171–184. doi:10.1007/s10845-007-0013-0

Simpson TW (2005) Methods for optimizing product platforms and product families: overview

and classification. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product

family design. Springer, New York, NY, pp p133–p156

Simpson TW, Siddique Z, Jiao J (2005) Platform-based product family development. In: Simpson

TW, Siddique Z, Jiao J (eds) Product platform and product family design. Springer, New York,

NY, pp p1–p15

Simpson TW, Marion T, de Weck O, Holtta-Otto K, Kokkolaras M, Shooter SB (2006) Platform-

based design and development: current trends and needs in industry. In: Proceedings of the

ASME 2006 international design engineering technical conferences and computers and infor-

mation in engineering conference, Philadelphia, PA, 10–13 Sept 2006

Simpson TW, Bobuk A, Slingerland LA, Brennan S, Logan D, Reichard K (2012) From user

requirements to commonality specifications: an integrated approach to product family design.

Res Eng Des 23(2):141–153

Sköld M, Karlsson C (2012) Product platform replacements: challenges to managers. Int J Oper

Prod Manage 32(6):746–766

Steva ED, Rice EN, Marion TJ, Simpson TW, Stone RB (2006) Two methodologies for identifying

product platform elements within an existing set of products. In: Proceedings of the ASME

2006 international design engineering technical conferences and computers and information in

engineering conference, Philadelphia, PA, 10–13 Sept 2006

Suh E, de Weck O, Chang D (2007) Flexible product platforms: framework and case study. Res

Eng Des 18(2):67–89. doi:10.1007/s00163-007-0032-z

Sullivan E, Ferguson S, Donndelinger J (2011) Exploring heterogeneity of customer preference to

balance commonality and market coverage. In: Proceedings of the ASME 2011 international

design engineering technical conferences and computers and information in engineering

conference, Washington, DC, 28–31 Aug 2011

Tao J, Yu S (2012) Incorporating reuse and remanufacturing in product family planning. In:

Matsumoto M, Umeda Y, Masui K, Fukushige S (eds) Design for innovative value towards a

sustainable society. Springer, Heidelberg, pp 795–800. doi:10.1007/978-94-007-3010-6_162

Thevenot HJ, Simpson TW (2006) Commonality indices for product family design: a detailed

comparison. J Eng Des 17(2):99–119. doi:10.1080/09544820500275693

Thevenot HJ, Simpson TW (2007a) A comprehensive metric for evaluating component common-

ality in a product family. J Eng Des 18(6):577–598

Thevenot HJ, Simpson TW (2007b) Guidelines to minimize variation when estimating product

line commonality through product family dissection. Des Stud 28(2):175–194. doi:10.1016/j.

destud.2006.07.004

Thevenot HJ, Steva ED, Okudan GE, Simpson TW (2007) A multiattribute utility theory-based

method for product line selection. J Mech Des 129(11):1179–1184. doi:10.1115/1.2771574

Thomas E (2012) Exploring the strategic use of platform-based planning. Atlantic Mark J 1(1):3

44 Z. Pirmoradi et al.

http://dx.doi.org/10.1115/1.3125886
http://dx.doi.org/10.1115/1.3013848
http://dx.doi.org/10.1007/s10845-007-0010-3
http://dx.doi.org/10.1007/s10845-007-0013-0
http://dx.doi.org/10.1007/s00163-007-0032-z
http://dx.doi.org/10.1007/978-94-007-3010-6_162
http://dx.doi.org/10.1080/09544820500275693
http://dx.doi.org/10.1016/j.destud.2006.07.004
http://dx.doi.org/10.1016/j.destud.2006.07.004
http://dx.doi.org/10.1115/1.2771574

Torstenfelt B, Klarbring A (2006) Structural optimization of modular product families with

application to car space frame structures. Struct Multidiscip Optim 32(2):133–140.

doi:10.1007/s00158-005-0568-3

Torstenfelt B, Klarbring A (2007) Conceptual optimal design of modular car product families

using simultaneous size, shape and topology optimization. Finite Elem Anal Des 43

(14):1050–1061. doi:10.1016/j.finel.2007.06.005

Trentin A, Salvador F, Forza C, Rungtusanatham MJ (2011) Operationalising form postponement

from a decision-making perspective. Int J Prod Res 49(7):1977–1999

Tucker CS, Kim HM (2007) Product family concept generation and validation through predictive

decision tree data mining and multilevel optimization. In: Proceedings of the ASME 2007

international design engineering technical conferences and computers and information in

engineering conference, Las Vegas, NV, 4–7 Sept 2007

Tucker CS, Kim HM (2008) Optimal product portfolio formulation by merging predictive data

mining with multilevel optimization. J Mech Des 130(4):041103

Tucker CS, Kim HM, Barker DE, Zhang Y (2010) A reliefF attribute weighting and x-means

clustering methodology for top-down product family optimization. Eng Optim 42(7):593–616

Turner CS, Ferguson S, Donndelinger J (2011) Exploring heterogeneity of customer preference to

balance commonality and market coverage. In: Proceedings of the ASME 2011 international

design engineering technical conferences and computers and information in engineering

conference, Washington, DC, 28–31 Aug 2011

Van Wie M, Stone RB, Thevenot HJ, Simpson TW (2007) Examination of platform and

differentiating elements in product family design. J Intell Manuf 18(1):77–96. doi:10.1007/

s10845-007-0005-0

Vlachos D, Georgiadis P, Iakovou E (2007) A system dynamics model for dynamic capacity

planning of remanufacturing in closed-loop supply chains. Comput Oper Res 34(2):367–394

Wang Z (2010) Study on the supply chain system for the product family based on the complex

network. In: 2nd International conference on e-business and information system security,

Wuhan, 22–23 May 2010

Wang Z, Ning F (2007) Study on supply chain management for product family in mass customi-

zation. In: IEEE international conference automation and logistics, Jinan, 18–21 Aug 2007

Wang Z, Wang C (2009) Research on the collaborative allocation of general modules in product-

family-oriented supply chain in mass customization. In: International conference on e-business

and information system security, Wuhan, 23–24 May 2009

Wang L, Song B, Li X, Ng WK (2007a) A product family based life cycle cost model for part

variety and change analysis. In: International conference on engineering design, Paris, 28–31

Aug 2007

Wang WD, Qin XS, Yan XT, Tong SR, Sha QY (2007b) Developing a systematic method for

constructing the function platform of product family. In: 2007 I.E. international conference on

industrial engineering and engineering management, Singapore, 2–5 Dec 2007, pp 60–64

Wang ZH, Gu XJ, Qi GN (2007c) Research on supply chain optimization based on generic bills of

materials of product family. In: 2007 I.E. international conference on automation and logistics,

Jinan, 18–21 Aug 2007

Wäppling D, Feng X, Andersson H, Pettersson M, Lunden B, Weström J (2011) Simultaneous

requirement and design optimization of an industrial robot family using multi-objective

optimization. In: Proceedings of the ASME 2011 international design engineering technical

conferences and computers and information in engineering conference, Washington, DC,

28–31 Aug 2011

Williams CB, Allen JK, Rosen DW, Mistree F (2007) Designing platforms for customizable

products and processes in markets of non-uniform demand. Concurr Eng 15(2):201–216.

doi:10.1177/1063293x07079328

Williams N, Azarm S, Kannan P (2010) Multicategory design of bundled products for retail

channels under uncertainty and competition. J Mech Des 132(3):031003.1–031003.10

1 Recent Advancements in Product Family Design 45

http://dx.doi.org/10.1007/s00158-005-0568-3
http://dx.doi.org/10.1016/j.finel.2007.06.005
http://dx.doi.org/10.1007/s10845-007-0005-0
http://dx.doi.org/10.1007/s10845-007-0005-0
http://dx.doi.org/10.1177/1063293x07079328

Xu Y, Xiong L, Wang Y (2006) The method of module partition for product family structure with

applications. In: IEEE international conference on service operations and logistics, and infor-

matics, Shanghai, 21–23 June 2006

Xu QL, Ong SK, Nee AYC (2007) Evaluation of product performance in product family design

re-use. Int J Prod Res 45(18):4119–4141

Xu X, Gao L, Fang S (2008) Product family architecture evolution based on technology evolution

theory of TRIZ. In: 7th world congress on intelligent control and automation, Chongqing,

25–27 June 2008

Yan XT, Stewart B (2010) Developing modular product family using GeMoCURE within an SME.

Int J Manuf Res 5(4):449–463

Yan XT, Stewart B, Wang W, Tramsheck R, Liggat J, Duffy AHB, Whitfield I (2007) Developing

and applying an integrated modular design methodology within a SME. In: International

conference on engineering design, Paris, 28–31 Aug 2007

Yang Y, Wang X (2009) A modeling approach for correlation’s evolution of modular product

family. Computer-Aided Industrial Design and Conceptual Design, IEEE 10th International

Conference on CAID & CD 2009, Wenzhou, 26–29 Nov 2009

Ye X, Gershenson JK (2008) Attribute-based clustering methodology for product family design.

J Eng Des 19(6):571–586

Ye X, Thevenot HJ, Alizon F, Gershenson JK, Khadke K, Simpson TW, Shooter SB (2009) Using

product family evaluation graphs in product family design. Int J Prod Res 47(13):3559–3585

You F, Grossmann IE, Wassick JM (2010) Multisite capacity, production, and distribution

planning with reactor modifications: MILP model, bilevel decomposition algorithm versus

Lagrangean decomposition scheme. Ind Eng Chem Res 50(9):4831–4849

Yu J, Cai M (2009) Product master structure for product family. In: International conference on

management and service science, Wuhan, 16–18 Sept 2009

Yu TL, Yassine A, Goldberg D (2007) An information theoretic method for developing modular

architectures using genetic algorithms. Res Eng Des 18(2):91–109. doi:10.1007/s00163-007-

0030-1

Zacharias N, Yassine A (2007) Platform investment decisions in product family design. In:

Proceedings of the ASME 2007 international design engineering technical conferences and

computers and information in engineering conference, Las Vegas, NV, 4–7 Sept 2007

Zacharias N, Yassine A (2008) Optimal platform investment for product family design. J Intell

Manuf 19(2):131–148. doi:10.1007/s10845-007-0069-x

Zha XF, Sriram RD (2006) Platform-based product design and development: a knowledge-

intensive support approach. Knowl Based Syst 19(7):524–543. doi:10.1016/j.

knosys.2006.04.004

Zhang W, Fan Y (2006) Research on domain-based generic product family architecture modeling.

In: The 6th world congress on intelligent control and automation, Dalian, 21–23 June 2006

Zhang H, Zhao W, Li G, Tan R (2006a) A process model of product platform building for the

products with the same function structure. In: Wang K, Kovacs G, Wozny M, Fang M (eds)

Knowledge enterprise: intelligent strategies in product design, manufacturing, and manage-

ment, vol 207. Springer, Boston, MA, pp 1002–1009

Zhang L, Jiao J, Helo P (2006b) Integrated product and process family data modeling for product

lifecycle management. In: IEEE international conference on industrial informatics, Singapore,

16–18 Aug 2006

Zhang W, Tor S, Britton G (2006c) Managing modularity in product family design with functional

modeling. Int J Adv Manuf Technol 30(7):579–588. doi:10.1007/s00170-005-0112-z

Zhang Y, Jiao JR, Ma Y (2007) Market segmentation for product family positioning based on

fuzzy clustering. J Eng Des 18(3):227–241

Zhao Y, Zhang M, Su N, Chen J (2010) Product family extension configuration design: the theory

and method. In: The 2nd international conference on computer and automation engineering,

Singapore, 26–28 Feb 2010

Zhong DQ, Zhong WJ (2006) Research on optimal number of suppliers based on co-opetition.

J Manage Sci China 6:52–57

46 Z. Pirmoradi et al.

http://dx.doi.org/10.1007/s00163-007-0030-1
http://dx.doi.org/10.1007/s00163-007-0030-1
http://dx.doi.org/10.1007/s10845-007-0069-x
http://dx.doi.org/10.1016/j.knosys.2006.04.004
http://dx.doi.org/10.1016/j.knosys.2006.04.004
http://dx.doi.org/10.1007/s00170-005-0112-z

Part I

Platform Planning and Strategy

Chapter 2

Crafting Platform Strategy Based

on Anticipated Benefits and Costs

Bruce G. Cameron and Edward F. Crawley

Abstract In this chapter, we introduce the benefits and penalties of commonality

(both to the customer and the manufacturer), emphasizing the need for anticipation

of divergence when estimating benefits. We highlight the importance of mapping

commonality strategy to the financial benefits, with a view to creating long-term

competitive advantage for the firm.

2.1 Introduction

Platforming, the sharing of products or processes across products, has become an

important means of cost-sharing across industrial products. Examples include

Volkswagen’s MQB platform (including VW Golf, Audi A3, and Seat Octavia)

(Pander 2012), the Joint Strike Fighter program (variants for the Air Force,

Marines, and Navy), and Black and Decker’s electric hand tools (Meyer and

Lehnerd 1997).

The use of platform over the last three decades has grown in response to market

demand for variety. Consumers have come to expect $50, $100, and $150 version of

a hand drill to choose from (Halman et al. 2003). Car buyers now enjoy bundled

option packages (Basic, Leather, SportPlus), supported by option code sheets that

could fill a book. This variety has a direct impact on the firm—for example, one

automotive model can have as many as five million possible variants, when

considering all of the offered options in combination (Cameron 2011). The process

complexity deployed to support this market variety can threaten the organization’s

survival. A recent study of wasted complexity at Proctor and Gamble identified $3

billion in savings (Wilson and Perumal 2009).

B.G. Cameron (*) • E.F. Crawley

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

e-mail: bcameron@alum.mit.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_2,
Springer Science+Business Media New York 2014

49

mailto:bcameron@alum.mit.edu

Platforming is a strategy for providing variety to the market against a reduced

cost base. When executed well, it can provide a vital competitive advantage to the

firm. Firms have cut costs by 30 % and reduced lead times by 50 % by employing

commonality (Pander 2012). The ability to bring products to market quickly and

cheap can create significant first mover advantage. However, gaining this competi-

tive advantage is not quick or cheap. The list of firms that have attempted to build

platforms and failed is long. Many firms fail to reach their commonality targets—

the Joint Strike Fighter has famously seen divergence from 80–90 % parts com-

monality down to 30–40 % parts commonality (Boas et al. 2012). A senior execu-

tive in Automotive stated his belief that learning platforming takes at least two

product lifecycles.

Sharing parts does not fundamentally create competitive advantage. Common-

ality as a strategy is only successful insofar as it enables financial advantages, be it

increased revenue or decreased cost. In fact, we will show that platforming requires

significant upfront risk, in the form of large multiproduct investments and down-

stream risk of low product differentiation—platforms can negatively affect the

firm’s brand.

We begin an examination of platform strategy by weighing the benefits and

costs. We argue that the firm’s ability to achieve a competitive advantage through

platforming is rooted in a meaningful strategy process, examining the investment

required against the downstream savings. In this chapter, we first provide a holistic

overview of the benefits. Then we examine the associated drawbacks and costs. We

review the data on divergence in commonality, to understand the potential down-

side risk. Finally, we illustrate how the choice of commonality strategy (what to

make common) should be mapped to the desired benefits to be achieved.

2.2 Trade-Offs in Platforming

The discussion of platforming and commonality as a strategy is perhaps best

illustrated in the context of trade-offs posed by this choice of strategy, as revealed

in the literature. These trade-offs arise from conserved parameters and shared

efforts—examining them provides a starting point for examining cost dynamics.

In platform development, there are a number of high-level trade-offs posed at the

beginning of the platform development (Otto and Hölttä-Otto 2007). The trade-offs

are critically related to the main architectural parameters, such as number of

variants, range of performance, sequencing of variants, and degree of commonality.

In turn, the decisions about these parameters are made about the expected markets

for the variants, whose relevant characteristics here are performance requirements,

willingness to pay, and availability/timeliness. The market “causes” the first set of

trade-offs we explore.

50 B.G. Cameron and E.F. Crawley

2.2.1 Trade-Offs Caused by the Market

Firms create multiple variants for market reasons. Customers grouped by similar

pricing and performance expectations can represent submarkets, which if served

individually can represent greater overall profit than producing a product which

serves their average expectation. Meyer and Lehnerd (1997) originally described a

process for segmenting a market using a grid tool, illustrating a number of different

strategies for spreading commonality investment across a range of product prices

and market segments.

These market-facing tensions have been framed in the literature as a trade

between variety and commonality. Ramdas (2003) segments the market

implications of variety into four categories—the dimensions of variety, the product

architecture, the degree of customization, and the timing of variety. In particular,

research on understanding the costs of variety forms an important counterpoint in

the tension between variety and commonality (MacDuffie et al. 1996; Martin et al.

1998; Du et al. 2001; Blecker and Abdelkafi 2006). Further, the trade between

closed set discrete variety (e.g., along a linear dimension of variety such as

horsepower) and the potential for mass customization has been a fruitful direction

of research (Alptekinoglu and Corbett 2008; Blecker and Abdelkafi 2007; Jiao and

Tseng 2000; Rungtusanatham and Salvador 2008). Research has begun to unpack

the underlying mechanisms which create the variety—commonality trade-off—

Rungtusanatham and Salvador (2008) note that difficulties identifying latent

needs and differentiation opportunities within marketing activities can lead to static

offerings.

Commonality strategies architected to deliver this variety in turn create the

threat of cannibalization (Sanderson and Uzumeri 1995; Kim and Chhajed 2000),

where customers with higher willingness to pay can meet their performance

requirements by buying the lower-performance product. Sanderson and Uzumeri

(1995) describe a case in the DRAM market, illustrating how sales trajectories can

show both within-platform cannibalization and generation to generation platform

cannibalization. Absent detailed customer data allowing the manufacturer to bucket

variant sales by segment, cannibalization can be weakly inferred from sales

trajectories and product introduction timing, but the quality of the inference varies.

Variants that are closely spaced are easier to platform but are at greater risk of

cannibalization. One mechanism of this cannibalization is that shared components

in the lowest cost variant may be subject to quality standards as applied to higher

performance variants. Ulrich et al. (1998) find “for low-quality segments, brand

price-premium is significantly positively correlated with the quality of the lowest

quality model in the product line” (Ramdas 2003). Viewed from the other perspec-

tive, Nelson et al. (2001) describe how overdesigning lower-level variants can place

acquisition and maintenance costs above the reach of some customers, thus decreas-

ing expected platform volume and profitability.

In addition to the threats to submarkets created by platforming, there is an

overall brand threat. Cook (1997) notes, “ironically GM’s market share relative to

Ford only began to recede in the mid 1980s as GM’s brands—Chevrolet, Pontiac,

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 51

Oldsmobile, Buick, and Cadillac—became less distinctive through the use of

common platforms and exterior stampings that reduced product differentiation”

[reproduced from de Weck (2006)]. The concept of a trade-off between perceived

product differentiation (and its effect on sales) and the benefits of platforming is a

difficult one to measure, in that brand is influenced by many factors, and the signal

from product differentiation is spread among the timings of the individual variant

introductions.

The idea of flexibility of platforms is related, in that platforms can create

opportunities for future variants, opportunities which are only revealed over time.

The existence of a relevant platform can speed time to market, and also reduces

development cost for the variant. There are existing tools for comparing flexibility’s

benefits against costs. Namely, Triantis (2000), Otto et al. (2003), Jiao et al. (2006),

and Rhodes (2010) have framed commonality as a real option.

Baldwin and Clark (2000) argue that modularity has been a central driver of

innovation and growth at an industry level, working from deep studies in the

computer industry. It is important to note that this growth did not necessarily accrue

to all firms—the final external trade-off that we note is a potential threat posed by

competitors entering value-creating segments of the market on top of the firm’s

platform.

2.2.2 Internal Trade-Offs

Thus far, we have described the trade-offs with external influences. There are also a

number of trade-offs that emerge through the development cycle. For example,

firms often desire flat development budget profiles. If the concurrent development

of the platform and all of its variants doesn’t fit under this flat budget, a common

technique is to phase variant development. Boas (2008) describes the trade-off

created between phasing development and divergence from the platform

exacerbated by the offset. Cusumano and Nobeoka (1998) describe a set of

strategies for phasing development (ranging from parallel to sequential),

highlighting how overlapping development phases, which he titles “rapid design

transfer strategy,” can strike a balance in this trade-off. Additionally, Cusumano

and Nobeoka (1998) highlight how development head count time series represent a

possible measurement of the phasing of development effort.

Insofar as platforms are large product development programs, they embody a

whole host of constraints not specific to platforms. Personnel constraints create

constraints for platforms, in that faster ramp up and ramp down times come at the

expense of challenging training and quality. Existing manufacturing facilities

constrain total capacity and inventory. Past capital equipment constrains current

production methods as well as future capital availability (Rungtusanatham and

Salvador 2008). These factors apply broadly to product development, so we do

not explore in depth here—where appropriate, they are raised below in conjunction

with specific platforming issues.

52 B.G. Cameron and E.F. Crawley

Work in the engineering literature has defined a variety of metrics, with a view to

watching one of the key state variables, the actual level of commonality. In theory,

each of the trade-offs should result in movement of an appropriately set common-

ality metric. For example, Thevenot and Simpson (2007) take manufacturing costs

into account with a commonality metric where parts are weighted by cost, building

on earlier work by Jiao and Tseng (2000).

We can sum up the internal trade-offs resulting from commonality in three key

criteria for commonality (Cameron 2011). Commonality strategies must be

grounded in technical feasibility—a concept of a design that can be expected to

span a range of performance. Commonality strategies must be financially

beneficial—commonality is a means to an end. Finally, commonality must be

organizationally possible—shared designs and co-investments in future products

must be supported by organizational structure and process.

2.3 Benefits of Commonality

Much has been written on the topic of platforming and commonality, primarily

stemming from seminal work by Utterback and Meyer (1993) and Robertson and

Ulrich (1998), although earlier work can be found from 20 years previous (Collier

1981). These early works cited a number of benefits, such as enabling future rapid

product introduction, increase model introduction rate, decreased development

cost, economies of scale in manufacturing, and faster introduction of new technol-

ogy into existing product lines. Since the early work on platforming, a broad body

of literature has grown up around the concept of platforming, but no consensus

around the list of benefits has emerged, despite several past efforts to build a list of

pros and cons—see Fisher et al. (1999).

To begin, we break the benefits of commonality into three categories:

(1) Revenue Benefits, (2) Cost Savings, and (3) Risk Benefits. Figure 2.1 shows

examples of the tangible benefits possible in each of these categories. We delve

deeper into these benefits in the remainder of this chapter.

Embedded in the notion of benefits and penalties in the management literature is

the idea that managers weigh these factors when making rational decisions. As

compared to the more quantitative literature on commonality, the diversity of

benefits in the management literature is broad by comparison and is most likely to

discuss commonality decision-making as grounded in organizational structure.

As a potential frame of reference, van Maanen’s organizational decision-making

separates decisions into rational strategic, political, and cultural. The rational strate-

gic frame is dominant in the management literature. However, political decisions

(the embodiment of organizational power or position) are also referenced, such as in

Cusumano’s (1998) discussion of heavyweight program managers. Cultural

decision-making is referenced in passing, such as creating a culture of reuse, but

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 53

has not been the subject of much descriptive work. We have found that decisions are

dominantly framed under investments, as discussed in the following section.

Based on the cited literature and over 30 case studies on commonality (Wicht

and Crawley 2012; Boas et al. 2012; Rhodes 2010; Cameron 2011), we have

constructed a comprehensive list of commonality benefits (see Table 2.1). We

have divided the benefits of commonality into five categories, roughly aligned in

the order in which they occur. Cost Saving benefits are listed primarily under the

phase of the product lifecycle in which they occur—Design, Manufacturing, Test-

ing, and Operations. In addition to the traditional breakdown of a product lifecycle

into Design, Manufacturing, Testing, and Operations, we have included Strategy

Benefits, to explicitly recognize that some of the benefits relate more closely to

Revenue Benefits and Risk Benefits than to Cost Savings.

It is important to note that not all of these benefits accrue to every platform.

Additionally, we have explicitly separated reuse benefits from proactive common-

ality benefits. Reuse benefits in a sense exclude prior development work from

the platform system boundary, in that future commonality was not intended

(Unintended Commonality). Proactive commonality benefits, which comprise the

majority of the table, include the initial investment and variants inside the Platform

system boundary (Intentional Commonality).

The benefits of commonality from a product family planning perspective are

primarily captured in the Strategy Phase. Recognizing that it is rare that the scope of

product families (the platform extent, the number of variants, the performance/cost

of each variant) is known entirely in advance, some of these benefits accrue due to

the uncertainty in the planning phase. For example, the firm’s flexibility to enter

niche markets once the platform has been defined represents an important strategic

benefit (Pine 1993; Meyer and Lehnerd 1997). By contrast, within the originally

forecast platform scope, platforms can help companies reduce their time to market

(Clark and Fujimoto 1991; Meyer et al. 1997), as less overall design, test, and

manufacturing work is required overall to bring several variants to market.

Commonality:
Sharing components or processes

across products

Enter
Markets

Reduced
Risk

Cost
Savings

Shared
Development

Cost

Common
Testing

Procedures

Production
Economies of

Scale

Amortized
Fixed Costs

Reduced
Inventory

(Robertson 1998)

Deploy new
technologies

Enter Niche
Markets

Reduced Time
to Market

Lower
technology

risk

Higher quality
production

Reduced
downtime

from sparing

Revenue
Benefits

Risk
Benefits

Cost Savings

Fig. 2.1 Three benefits of commonality: (1) market benefits, (2) cost savings, and (3) risk benefits

54 B.G. Cameron and E.F. Crawley

T
a
b
le

2
.1

L
is
t
o
f
co
m
m
o
n
al
it
y
b
en
efi
ts
(N

o
te
:
th
e
b
en
efi
ts
ar
e
n
o
t
ca
u
sa
l
o
r
as
su
re
d
,
b
u
t
ra
th
er

th
e
p
o
te
n
ti
al
to

ac
h
ie
v
e
th
e
b
en
efi
t
h
as

b
ee
n
sh
o
w
n
to

ex
is
t)

P
h
as
e

B
en
efi
t

R
at
io
n
al
e

R
ef
er
en
ce
s

S
tr
at
eg
y

E
n
ab
le

fa
st
er

v
ar
ia
n
t
ti
m
e
to

m
ar
k
et

T
h
e
co
m
m
o
n
p
o
rt
io
n
o
f
th
e
d
es
ig
n
h
as

al
re
ad
y
b
ee
n
b
u
il
t,

so
o
n
ly

th
e
u
n
iq
u
e
p
o
rt
io
n
h
as

to
b
e
d
es
ig
n
ed

C
la
rk

an
d
F
u
ji
m
o
to

(1
9
9
1
),

M
ey
er

et
al
.
(1
9
9
7
)

E
n
te
r
n
ic
h
e
m
ar
k
et
s

D
es
ig
n
in
g
u
n
fo
re
ca
st
v
ar
ia
n
ts
o
n
to
p
o
f
th
e
co
m
m
o
n
p
la
t-

fo
rm

en
ab
le
s
th
e
fi
rm

to
re
co
g
n
iz
e
an
d
en
te
r
m
ar
k
et
s

as
th
ey

ap
p
ea
r

P
in
e
(1
9
9
3
)
M
ey
er

an
d
L
eh
n
er
d

(1
9
9
7
),
R
o
b
er
ts
o
n
an
d
U
lr
ic
h

(1
9
9
8
)

D
ep
lo
y
n
ew

te
ch
n
o
lo
g
ie
s

T
im

e
an
d
co
st
to

d
ep
lo
y
te
ch
n
o
lo
g
ie
s
is
re
d
u
ce
d
w
h
er
e

in
te
rf
ac
es

to
th
e
p
la
tf
o
rm

ar
e
id
en
ti
ca
l.

M
ey
er

(1
9
9
7
),
Ji
ao

et
al
.
(2
0
0
7
)

L
o
w
er

te
ch
n
o
lo
g
y
ri
sk

In
cr
ea
se
d
in
v
es
tm

en
t
in

co
m
m
o
n
te
ch
n
o
lo
g
y
(c
an

al
so

b
e
a
h
ig
h
er

ri
sk
)

M
ey
er

an
d
L
eh
n
er
d
(1
9
9
7
)

D
es
ig
n

S
h
ar
ed

d
ev
el
o
p
m
en
t
co
st
(i
n
te
n
d
ed

co
m
m
o
n
al
it
y
)

R
ed
u
ce
d
en
g
in
ee
ri
n
g
ef
fo
rt
re
q
u
ir
ed

fo
r
la
te
r
v
ar
ia
n
ts

M
ey
er

(1
9
9
7
),
H
o
an
d
L
i
(1
9
9
7
),

Jo
h
n
so
n
an
d
K
ir
ch
ai
n
(2
0
1
0
)

R
eu
se

o
f
al
re
ad
y
d
es
ig
n
ed

co
m
p
o
n
en
ts
an
d
sy
st
em

s
(u
n
in
-

te
n
d
ed

co
m
m
o
n
al
it
y
)

D
es
ig
n
ef
fo
rt
d
o
es

n
o
t
n
ee
d
to

b
e
re
p
ea
te
d

U
lr
ic
h
an
d
E
ll
is
o
n
(1
9
9
9
)

R
eu
se

o
f
p
ro
v
en

te
ch
n
o
lo
g
ie
s

R
ed
u
ce
s
te
ch
n
o
lo
g
y
ri
sk

an
d
m
it
ig
at
io
n
co
st

R
o
b
er
ts
o
n
an
d
U
lr
ic
h
(1
9
9
8
)

M
an
u
fa
ct
u
re

S
h
ar
ed

to
o
li
n
g

T
o
o
li
n
g
co
st
ca
n
b
e
sp
re
ad

o
v
er

m
o
re

p
ro
d
u
ct
s

L
eh
n
er
d
(1
9
8
7
),
P
ar
k
an
d

S
im

p
so
n
(2
0
0
5
)

L
ea
rn
in
g
cu
rv
e
b
en
efi
ts

F
ew

er
h
o
u
rs
/u
n
it
re
q
u
ir
ed

P
ar
k
an
d
S
im

p
so
n
(2
0
0
5
)

E
co
n
o
m
ie
s
o
f
sc
al
e
in

m
an
u
fa
ct
u
ri
n
g

E
n
ab
le
s
m
o
v
em

en
t
to

h
ig
h
er

v
o
lu
m
e
m
et
h
o
d
s

R
o
b
er
ts
o
n
an
d
U
lr
ic
h
(1
9
9
8
),

K
ri
sh
n
an

an
d
G
u
p
ta

(2
0
0
1
)

B
u
lk

p
u
rc
h
as
in
g

D
is
co
u
n
ts
fr
o
m

su
p
p
li
er
s
fo
r
la
rg
er

o
rd
er
s
o
f
sa
m
e
p
ar
t

R
o
b
er
ts
o
n
an
d
U
lr
ic
h
(1
9
9
8
),

S
im

p
so
n
(2
0
0
4
)

R
ed
u
ce
d
in
v
en
to
ry

L
o
w
er

sa
fe
ty

st
o
ck

le
v
el
s
d
u
e
to

d
em

an
d
ag
g
re
g
at
io
n

C
o
ll
ie
r
(1
9
8
1
),
B
ak
er
et
al
.(
1
9
8
6
)

R
ed
u
ce
d
q
u
al
it
y
ex
p
en
se

F
ix
ed

q
u
al
it
y
ex
p
en
se
s
sp
re
ad

o
v
er

la
rg
er

v
o
lu
m
e

S
an
d
er
so
n
an
d
U
zu
m
er
i
(1
9
9
5
)

F
le
x
ib
il
it
y
in

v
ar
ia
n
t
v
o
lu
m
es

(f
o
r
a

fi
x
ed

p
la
tf
o
rm

ex
te
n
t)

E
n
ab
le
s
th
e
fi
rm

to
ad
ju
st
to

v
ar
ia
n
t
d
em

an
d
ch
an
g
es

S
u
ár
ez

et
al
.
(1
9
9
1
),
R
o
b
er
ts
o
n

an
d
U
lr
ic
h
(1
9
9
8
)

(c
o
n
ti
n
u
ed
)

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 55

T
a
b
le

2
.1

(c
o
n
ti
n
u
ed
)

P
h
as
e

B
en
efi
t

R
at
io
n
al
e

R
ef
er
en
ce
s

T
es
ti
n
g
an
d

co
m
m
is
si
o
n
in
g

R
ed
u
ce
d
te
st
in
g
an
d
co
m
m
is
si
o
n
in
g

ti
m
e

L
ea
rn
in
g
in

te
st
p
ro
ce
d
u
re
s
fo
r
la
te
r
v
ar
ia
n
ts

P
ar
k
an
d
S
im

p
so
n
(2
0
0
5
)

S
h
ar
ed

te
st
in
g
eq
u
ip
m
en
t

T
es
ti
n
g
eq
u
ip
m
en
t
ca
n
b
e
sp
re
ad

o
v
er

m
o
re

p
ro
d
u
ct
s

R
o
b
er
ts
o
n
an
d
U
lr
ic
h
(1
9
9
8
),

P
ar
k
an
d
S
im

p
so
n
(2
0
0
5
)

R
ed
u
ce
d
ex
te
rn
al

te
st
in
g
/c
er
ti
fi
ca
ti
o
n

R
eu
se

o
f
ty
p
e
ce
rt
ifi
ca
te
s
o
r
re
g
u
la
to
ry

ap
p
ro
v
al

R
o
th
w
el
l
an
d
G
ar
d
in
er

(1
9
9
0
),

S
ab
b
ag
h
(1
9
9
6
)

O
p
er
at
io
n

R
ed
u
ce
d
su
st
ai
n
in
g
en
g
in
ee
ri
n
g

N
u
m
b
er

o
f
p
ar
ts
to

b
e
su
st
ai
n
ed

is
re
d
u
ce
d

F
ix
so
n
(2
0
0
6
)

D
ec
re
as
ed

fi
x
ed

co
st
s
fr
o
m

sh
ar
ed

fa
ci
li
ti
es

S
h
ar
in
g
o
f
fa
ci
li
ty

co
st
ac
ro
ss

m
o
re

p
ro
d
u
ct
s

F
ix
so
n
(2
0
0
6
)

D
ec
re
as
ed

o
p
er
at
o
r
tr
ai
n
in
g

O
p
er
at
o
r
le
ar
n
in
g
o
n
co
m
m
o
n
p
ar
ts
re
d
u
ce
s
tr
ai
n
in
g

H
al
m
an

et
al
.
(2
0
0
3
)

E
co
n
o
m
ie
s
o
f
sc
al
e
in

o
p
er
at
io
n
s

M
o
v
e
to

h
ig
h
er

v
o
lu
m
e
o
p
er
at
in
g
p
ro
ce
d
u
re
s

H
al
m
an

et
al
.
(2
0
0
3
)

B
u
lk

p
u
rc
h
as
in
g
o
f
co
n
su
m
ab
le
s

D
is
co
u
n
ts
fr
o
m

su
p
p
li
er
s
fo
r
la
rg
er

o
rd
er

o
f
sa
m
e
p
ar
ts

R
o
b
er
ts
o
n
an
d
U
lr
ic
h
(1
9
9
8
),

S
im

p
so
n
(2
0
0
4
)

D
ec
re
as
ed

v
ar
ia
b
le

co
st
s
d
u
e
to

m
o
re

ef
fi
ci
en
t
lo
g
is
ti
cs

an
d
sp
ar
in
g

R
ed
u
ce
d
in
v
en
to
ry

fo
r
o
p
er
at
io
n
s

C
o
ll
ie
r
(1
9
8
1
),
B
ak
er
et
al
.(
1
9
8
6
)

S
lo
w
er

re
p
la
ce
m
en
t
ra
te

fo
r
sp
ar
es

(h
ig
h
er

q
u
al
it
y
)

F
ew

er
sp
ar
es

m
u
st
b
e
p
u
rc
h
as
ed

S
an
d
er
so
n
an
d
U
zu
m
er
i
(1
9
9
5
)

F
le
x
ib
il
it
y
in

o
p
er
at
io
n
s

A
b
il
it
y
to

sw
it
ch

o
p
er
at
in
g
st
af
f
b
et
w
ee
n
p
ro
d
u
ct
s

H
al
m
an

et
al
.
(2
0
0
3
)

S
h
ar
ed

in
sp
ec
ti
o
n
s/
re
cu
rr
in
g
re
g
u
-

la
to
ry

co
m
p
li
an
ce

L
o
w
er

co
st
an
d
le
ss

ti
m
e
re
q
u
ir
ed

fo
r
re
g
u
la
to
ry

co
m
p
li
an
ce

R
o
th
w
el
l
an
d
G
ar
d
in
er

(1
9
9
0
),

S
ab
b
ag
h
(1
9
9
6
)

56 B.G. Cameron and E.F. Crawley

In the design phase, commonality primarily acts to reduce the number of

engineering hours required to produce a variant (Ho and Li 1997; Johnson and

Kirchain 2010). Intuitively, this can be understood as engineers producing fewer

unique parts. However, as seen under Costs of Commonality, common parts

often take more time to design, so the effort required must be carefully sized.

In addition to producing fewer parts, design hours are reduced when effort in

product definition (requirements and goal setting) can be reused, when design

analysis methodologies can be reapplied to slightly different parts or

environments, and when challenges in the initial variant design inform design

strategies for unique parts on later variants. The reduction in engineering effort is

primarily measured in engineering head count or engineering hours. While these

may appear to be easily applied summary measures, the realities of accounting for

reduced head count on a subsequent variant as traceable to early design effort can

be complex to track (Ben-Arieh and Qian 2003).

In the manufacturing phase, commonality impacts many different departments

involved in coordinating manufacturing. On the physical manufacturing line,

platforms can enable the firm to move to higher volume manufacturing methods,

such as from operator-assisted sheet-metal bending to fully automated operations.

This is typically referred to as economies of scale, in reference to the idea that

higher volumes allow new capital equipment to be amortized across higher volumes

(Krishnan and Gupta 2001). This should be contrasted with learning curves on the

manufacturing line, the idea that the labor portion of the manufacturing cost shrinks

as assemblers find more efficient ways to complete the task and reduce quality

expense when the resulting efficiency causes fewer defects, particularly when the

platform is designed to the higher quality variant (Desai et al. 2001). Off the

physical line, the purchasing department stands to gain leverage with increasing

volume of common parts, and the supply chain department can stock fewer parts, as

the aggregation of demand from different products for the same common parts

lowers the safety stock that needs to be carried. Fixson (2006) notes that a number

of supporting costs reductions are also achieved under commonality through lower

product support activities, highlighting that commonality can have positive

externalities on corporate overhead.

Benefits in testing and commissioning result from learning curves during

repeated tests, amortized capital expenditure, and the potential for direct reuse of

regulatory compliance tests. In the transportation and aviation markets, these

benefits can be significant—reuse of an aircraft type certificate can save years in

time to market.

Benefits in the operation phases are analogous to the benefits in the prior four

phases. Table 2.2 shows a mapping of operation benefits to previous benefits, with

the type indicated as a general categorization of the benefit.

Operations raise an important question about who benefits from commonality.

For an aircraft manufacturer, which does not operate the products it produces, the

benefits of commonality in operations will accrue to the operating carrier.

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 57

For example, airlines that operate Airbus A319, A320, and A321 aircraft can

leverage the common glass cockpit instruments for shared training savings and

the corresponding flexibility in pilot assignment (Brüggen and Klose 2010). While

these savings will not accrue to the aircraft manufacturer directly, commonality is

often used as a sales and marketing strategy. If the aircraft manufacturer can

produce convincing calculations of fleet savings in operations from commonality

of new aircraft with the operating carrier’s existing fleet, commonality can be used

as a sales advantage to boost units sold.

Having now identified the benefits of commonality, it is important to ask the

question how big the benefits are. Our research (Cameron 2011) suggests that the

benefits vary widely across industries, depending on the cost structure, clock-speed,

and number of competitors. Well-executed commonality strategies can produce

15–50 % savings, while poorly executed platforms can add cost and overhead to

products. To help understand which benefits are most likely to dominate, Fig. 2.2

illustrates two broad firm cost structures.

Table 2.2 Comparison of analogies to operations benefits

Phase Type Benefit Operations Analogy

Design Non-recurring

labor

Shared development cost

(intended commonality)

Reduced sustaining

engineering

Non-recurring

labor

Reuse of already designed

components and systems

(unintended commonality)

Technology

reuse

Reuse of proven technologies

Manufacture Capital Shared tooling Decreased fixed costs

from shared facilities

Capital Economies of scale in

manufacturing

Economies of scale

in operations

Volume Learning curve benefits

Volume Bulk purchasing Bulk purchasing of

consumables

Volume Reduced inventory Decreased variable costs

due to more efficient

logistics and sparing

Quality Reduced quality expense Slower replacement rate

for spares (higher quality)

Flexibility Flexibility in variant volumes

(for a fixed platform extent)

Flexibility in operations

Testing and

commissioning

Non-recurring

labor

Reduced testing and

commissioning time

Decreased operator training

Non-recurring

labor

Reduced external testing/

certification

Shared inspections/recurring

regulatory compliance

Capital Shared testing equipment

58 B.G. Cameron and E.F. Crawley

2.3.1 Industries Dominated by Development Cost

Two criteria emerge in industries with large development cost (and typically low

production volumes). The first criterion is that the saved development labor can

either be productively placed elsewhere or it can be cut. It is typical to employ

large-salaried workforces in several of the industries studied (e.g., Aerospace,

Heavy Equipment). If the reduced head count required for later variants is not

productively redeployed, the firm will not save any money. Challenges redeploying

were found in organizations with high product-to-product walls and those with very

dissimilar product lines.

The second criterion is that the business model does not depend on cost-plus (or

similar) contracts. A number of Aerospace and Transport firms operate, or have

historically operated, under design-for-fee contracts, which make it difficult to

charge higher margins on later designs. This contract structure is often coupled

with the practice of modifying scope or requirements (as previously discussed),

which also inhibits development cost savings.

2.3.2 Industries Dominated by Manufacturing Cost

We propose the following three possible criteria, each of which can individually

create a financially beneficial platform, although there are many possible strategies

targeting individual benefits.

• Criteria 1—Significant learning curves are possible. This typically implies direct

labor is a significant fraction of total lifecycle cost and also that volumes are

sufficiently large to reach these learning curves. Platforms where only 1–2 %

Labor mobility?

How broadly is overhead shared?

Shape of supplier price-volume curve?

Economies of scale

Bulk Purchasing

Development Cost Manufacturing Cost
Shared Development,
Shared Testing

Learning CurvesHow steep is the learning curve?

Purchased Capital Labor

Purchased Capital Labor

Purchased Capital Labor

Development Cost Manufacturing Cost

Dominated by Development Cost

Dominated by Manufacturing Cost

Fig. 2.2 Illustration of conceptual model of commonality benefits

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 59

learning curves from aggregating volumes can be achieved are unlikely to merit

platform investment. Similarly, industries where configuration complexity is

likely to swamp learning benefits are unlikely to retain benefits.

• Criteria 2—Strong bulk purchasing discounts are available. In industries that

purchase a large fraction of product cost, as in Automotive, platforming will

only be beneficial if there is a strong potential for a discount. If the firm cannot

aggregate over sufficiently large volumes, or the suppliers have monopolies, it

will be difficult to achieve a meaningful discount. In an Automotive case we

conducted, several subsystems did not have sufficient visibility into their

supplier’s cost structure in order to assess whether a discount could be achieved.

• Criteria 3—Investments in economies of scale and capital equipment will outlast

the platform. Particularly in industries that are capital intensive, if the industry

clock-speed dictates new manufacturing methods on short cycles, it will be

challenging to invest. This is potentially the situation in semiconductor

manufacturing, although Boas (2008) illustrates how, from the perspective of

the manufacturer of the capital equipment (as opposed to the purchaser and

user), there are sufficient projections to merit platform investment.

2.4 Costs of Commonality

The costs of commonality are widespread and must be carefully considered before

engaging in a multiproduct strategy. Fundamentally, any commonality strategy

involves significant upfront investment, in order to define the platform and create

the common components. However, there are a number of costs and drawbacks that

occur through the different lifecycle phases, each of which poses a risk to the

successful execution of this strategy. Unrealized costs and unanticipated challenges

have derailed many platforms in our experience.

We have divided the costs and drawbacks of commonality into five categories, as

with the benefits, and they are summarized in Table 2.3. This list includes both

direct, quantifiable costs and broader strategic drawbacks, which are difficulty to

indirectly cost but represent real challenges all platforms will face. Each cost and

drawback is labeled as recurring or nonrecurring with respect to additional variants.

For example, the design premium is a nonrecurring cost, in that it is invested once at

the beginning of the program, and can be leveraged on each variant. By contrast, the

capability penalty (defined as the over-performance and cost compromises of

commonality with other variants) is a recurring cost, in that it affects each variant.

Not all of these costs are expected in all commonality projects—for example,

commonality may reduce the labor content in assembly, rather than increase it. This

is not to say that these costs are small or easily mitigated. Most execution

challenges in common programs manifest as cost problems at some point, whether

it be in underestimated commonality premiums in design phases or in

pro-divergence arguments based on reducing the unit cost during manufacturing.

Creating realistic projections of these costs is a competitive advantage for firms

which successfully employ commonality strategies, as these projections enable the

60 B.G. Cameron and E.F. Crawley

Table 2.3 Commonality drawbacks, costs, and risks (Note: the costs do not materialize univer-

sally; rather, the potential for costs to exist has been demonstrated, and the third column provides

guidance on whether the cost recurs with each successive variant within the original platform

extent or the individual cost behavior will vary by platform)

Phase Drawbacks and costs Recurring? References

Strategy Constraining future investment

to platform extent

NR Henderson and Clark

(1990), Halman et al.

(2003)

Development plan risk from shared

components

R Henderson and Clark

(1990)

Brand risk from lack of differentiation R Kim and Chhajed (2000),

Jans et al. (2008)

Risk of cannibalization R Sanderson and Uzumeri

(1995), Kim and

Chhajed (2000)

Risk of monopoly by common

system provider

R Swift (1995), Burke et al.

(2007)

Design Investigating technical and economic

feasibility

NR Ulrich and Eppinger

(2004)

Design premium for satisfying

multiple needs

NR Halman et al. (2003),

Ulrich and Eppinger

(2004)

Costs of integration R Erixon and Ostgren

(1993), Du et al.

(2001)

Commonality management overhead R Muffatto (1999),

Sundgren (1999)

Manufacture Increased cost of common items due

to capability penalty (materials

cost and labor cost)

R Krishnan and Gupta

(2001), Nobelius and

Sundgren (2002)

Increased complexity of configuration

management on the manufacturing

line

R Thonemann and Brandeau

(2000)

Carrying costs of production assets

with higher than necessary initial

capacity (offset development)

NR Thonemann and Brandeau

(2000)

Commonality management overhead R Muffatto (1999),

Sundgren (1999)

Testing and

commissioning

Cost of creating more capable test

environments

NR Halman et al. (2003)

Operation Risk of common part failure,

affecting multiple products

R Meyer and Lehnerd

(1997), Halman et al.

(2003)

Increased complexity of operating

a multi-purpose item

R de Weck (2003)

Carrying costs of operating assets

with higher than necessary initial

capacity (offset development)

NR Meyer and Lehnerd

(1997)

Commonality management overhead R Muffatto (1999),

Sundgren (1999)

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 61

firm trade investment against the potential return and also to plan for appropriate

management resources in design, manufacturing, and testing.

Past research (Ulrich and Eppinger 2004; Halman et al. 2003; Cameron 2013)

suggests that the upfront investment in platforms can be multiples of an individual

product design effort. If a platform of three products costs $200 million compared

with three individual products at $100 million each, the savings are significant

($100 million), but the initial investment is still twice the size of a typical develop-

ment program. We define this initial investment as the commonality premium—the

ratio of platform development cost to a single product development cost. Ulrich and

Eppinger (2004) suggest 2�–10� as the premium. A subsystem-level study

(Cameron 2011) in the context of a 3-case study of low-volume capital-intensive

manufacturing firms indicates that the system premiums ranged from 12 % to 50 %

for three platform in transportation, with subsystem premiums as high as 200 % (3�
a single product subsystem development program).

These costs do accrue evenly to all products on a platform. For example, the upfront

variant is likely to pay most of the commonality premium, unless the platform is

explicitly structured to share investment (Meyer et al. 1997). Savings from amortized

capital equipment are more likely to accrue to later variants. This imbalance implies

that tensions will arise between variants—some variants will create investments that

they will not be able to recover themselves. Therefore, in addition to the necessity of

weighing the costs of platforming against the benefits, it is important to create a

platform perspective on costs.Without a platform perspective, individual variants will

systematically reject the compromises and additional costs inherent in a platform

strategy in favor of lower-entropy, individualized design.

Figure 2.3 illustrates how some of these costs can be projected on to individual

variants, which are arranged for a vertical platform strategy (economy to luxury

products). The position of the product within the platform extent (the performance

range spanned by the variants) determines which of the benefits it stands to gain, as

well as which of the costs it may have preferred not to shoulder. For example, the

low performance variant typically aims to minimize unit cost to provide the lowest

Recurring:
Too expensive

or
over-designed

Non-Recurring:
Too many

design
iterations

Performance
compromise

Non-Recurring Engineering Non-Recurring Supplier Platform Management

Reduced Engineering Bulk Purchasing Spread fixed costsPlatform
Perspective

Variant
Perspective

Financial transfers
among variants

R&D Cost Allocation Designation of
platform authority

Management
Levers?

Low Medium High

Fig. 2.3 Arguments raised by variants that can lead to variants suboptimizing the platform

62 B.G. Cameron and E.F. Crawley

possible entry price into the market (de Weck 2006) and will therefore attempt to

reject common components with heavy capability penalties or hooks for expensive

options. Figure 2.3 illustrates the most common source of complaint for each

variant in the platform extent.

2.5 Planning for Divergence

Despite significant investments and planning efforts, many platforms tend to realize

less commonality than intended, a phenomena we call “divergence.” This phenom-

enon appears to affect platforms across industries, ranging from automotive to

semiconductor capital equipment as summarized in Table 2.4. There is a large

body of work on developing commonality metrics (Wacker and Treleven 1986;

Siddique et al. 1998; Jiao and Tseng 2000; Thevenot and Simpson 2006), but

descriptive studies tracking commonality indices over time are just beginning to

emerge (Fixson 2007). A widely cited example is the Joint Strike Fighter, a military

aircraft designed with three variants, which was intended to share 80–90 % parts

commonality across all three variants. Through development and early production

phases, commonality fell sharply to 30–40 % parts shared (Boas et al. 2012).

The magnitude of this phenomenon is not static across industries or platforms.

Some platforms see minimal erosion of targets, while others face strong pressure to

move towards unique designs. Our understanding of the challenges would suggest

that divergence varies much more strongly in response to a firm’s management

capabilities than in response to the market in which the firm operates.

Boas et al. (2012) illustrate that divergence is not necessarily an entirely

negative phenomena. For example, an optimistically scoped platform would benefit

by moving to more achievable commonality level, potentially seeing reductions in

development budget and schedule. Likewise, beneficial divergence can occur in the

face of unanticipated technological progress or when market requirements change

during the design process. Ramdas and Randall (2008) find that uniquely designed

components have higher component reliability, eschewing the design compromises

associated with commonality.

However, there are also negative implications from divergence. Any movement

to lower commonality levels implies more unique content, which will require

design work, manufacturing planning, and operational constraints. In addition to

the incremental work implied, divergence reduces the extent of the cost synergies

on which many platforms were founded (Cameron 2011).

Divergence results from a number of imbalances that recur in most platforms.

These imbalances occur in time, resources, volumes, and markets. Almost all

platforms contain some degree of time offset, where one variant is designed and

manufactured before others. This lead variant has a strong influence on the plat-

form, often shouldering the design of many of the common parts. Difficulty

understanding the future needs of latter variants can cause the lead to skew the

common design closer to its needs, thus creating an opportunity for divergence

when latter variants inherit the skewed parts. Similar imbalance in development

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 63

T
a
b
le

2
.4

R
es
ea
rc
h
d
at
a
ca
te
g
o
ri
za
ti
o
n
o
f
o
b
se
rv
ed

d
iv
er
g
en
ce

to
g
et
h
er

w
it
h
th
e
ra
n
g
e
o
f
o
ff
se
ts
,
re
p
ro
d
u
ce
d
fr
o
m

B
o
as

et
al
.
(2
0
1
2
)

A
u
to
m
o
ti
v
e

M
il
it
ar
y
ai
rc
ra
ft

C
o
m
m
er
ci
al

ai
rc
ra
ft

B
u
si
n
es
s
je
ts

P
ri
n
ti
n
g
p
re
ss

C
o
m
m
.
sa
te
ll
it
e

S
em

ic
o
n
d
u
ct
o
r

ca
p
it
al

eq
u
ip
.

D
iv
er
g
en
ce

H
ig
h

H
ig
h

M
o
d
er
at
e

L
o
w

M
o
d
er
at
e

H
ig
h

M
o
d
er
at
e

O
ff
se
t
as

%
o
f
d
ev
el
o
p
m
en
t
ti
m
e

1
0
0
%

(2
4
m
o
n
th
s)

1
0
%

(6
m
o
n
th
s)

2
5
–
2
8
0
%

0
–
1
2
5
%

7
5
–
2
5
0
%

0
–
1
7
0
%

0
–
1
3
0
%

64 B.G. Cameron and E.F. Crawley

budgets, expected production volumes, and perceived customer importance also

creates opportunities for divergence.

Making strong decisions in the face of divergence is the result of understanding

the differential impact on the benefits and costs of commonality. We’ve already

established that all divergence has a near-term cost, due to implied unique design

work, and a long-term cost, due to reduced synergies. However, the downstream

positive revenue implications may dwarf the near- and long-term cost of

divergence.

For example, consider a rail manufacturer attempting to produce a platform

locomotive, spanning three national operating voltages. If one of those national

markets changes voltages to double its existing specification, the rail manufacturer

should weight the relevant implications on costs and benefits. Modifying the

platform to include new operating voltage may significantly increase the common-

ality premium, as the design may need to be reworked. Additionally, it may raise

the cost of manufacturing for all locomotives due to the capability penalty. By

contrast, the manufacturer can consider diverging, creating a new locomotive

targeted at one market, and reducing the existing platform specification to two

voltages. This implies that there will be a lower bulk purchasing effect for the

platform, because common components will not be spread across three national

markets. This decision would create additional design work for the new locomotive,

but it may also reduce the commonality premium for the platform, as fewer design

constraints are levied. The rail manufacturer will need to weigh these costs and

benefits against the revenue implications of the decision. They may in fact sell more

locomotives in the remaining two national markets if they can pass the reduced

commonality capability penalty on to the consumer in the form of a lower price.

Our research suggests that the firm’s ability to weigh the options in a divergence

decision represents a key competitive advantage for firms. Cameron (2011)

illustrates the mechanisms by which divergence led to failed investment returns

on large platforms. By contrast, firms like Volkswagen, which has pursued multiple

product platforms, are continuing to achieve cost savings on the order of 30 % and

lead time reductions on the order of 50 % (Pander 2012).

Having now illustrated that divergence opportunities need to be carefully

weighed, we must ask the question of whether upfront planning should anticipate

divergence. We have already illustrated that commonality planners should include

sizeable commonality premiums in design phases, and we have identified down-

stream potential savings in supply chain, manufacturing, testing, and operations.

Our research suggests that estimating realistic commonality benefits is a firm

competence. One Automotive firm we worked with kept detailed variant cost

estimation models, which would project the design work required to produce a

derivative (such as a long wheelbase model), as a function of the binned magnitude

of changes and the complexity of the host platform.

Should platform managers actively slash projected savings and inflate common-

ality premiums to account for divergence? Should they assume an “average diver-

gence” factor? We have not seen evidence in industry that this is an effective

practice, beyond the standard practices of planning for program manager reserves

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 65

and estimating schedule risk. Rather, the approach followed by successful firms has

been to keenly question commonality plans, attempting to pare the design down to

retain feasible commonality levels. Recast in another light, stretch goals are an

important practice, but they should be used incrementally rather than radically as

applied to platforms.

2.6 Choosing a Platform Strategy

The choice of what to make common is at the heart of any platform strategy.

Fundamentally, this choice must be grounded in technical reality. For example, it

must be feasible to use the same water valve in three different radiators. However,

the choice of platform strategy must be grounded in, and clearly traceable to, a set

of financial advantages. This implies some degree of coordination between techni-

cal and financial decisions. For example, aggregating water valve purchasing across

the firm to establish supplier orders of 10,000 rather than orders of 1,000 may

enable a strong bulk purchasing discount.

In this section, we identify some of the canonical commonality strategies, and we

compare them against the associated benefits. In parallel with this analysis, it is

important to conduct themarket research andplanning to establishdifferentiation across

the product family, but for the purpose of linearity, this is not discussed in detail here.

Table 2.5 lists a subset of the available platforming strategies, arranged from low

commonality planning effort at the top to high commonality planning effort at the

bottom. For alternative categorizations of commonality strategies, see Robertson

and Ulrich (1998) and Park and Simpson (2005).

We can see from this list that pervasive commonality strategies tend to target

development benefits but invest significantly up front in order to achieve this

benefit. Lower-order strategies, which tend to be organization-wide rather than

platform-wide (Labro 2004), are more likely to cite bulk purchasing and inventory

charges. Separate from the question of whether commonality is technically feasible,

it is important that the platform manager align the firm’s commonality strategy with

its cost structure. For example, if consolidating all the low-cost components from

the firm’s three product lines would double the effective volume purchased from the

firm’s steel supplier, the question remains whether the steel supplier would offer a

discount at this volume. If the steel supplier can only make meaningful changes to

cost structure based on 10� volume, then the investment in consolidating low-cost

components is unlikely to bear out. Farrell and Simpson (2010) offer a methodo-

logical step in this direction, using activity-based costing to understand how

consolidation of components impacts manufacturing economies.

In terms of challenges, diffuse low-order commonality strategies clearly face

greater coordination challenges and specifically are more likely to face funding

challenges. Higher order commonality strategies are more likely to face “execution”

challenges, in terms of holding off unplanned customization (Wortmann, et al. 1997).

These challenges will create divergence opportunities in all cases, whether they

66 B.G. Cameron and E.F. Crawley

manifest as product managers lobbying for exemption from high coordination costs

shared via overhead or variants attempting to shirk high integration costs by moving

to unique solutions. Astute program managers will also recognize that these

challenges will be increasingly back-end loaded on platform timelines for higher

order commonality strategies, while lower-order strategieswill facemore challenges

upfront in aggregating diffuse product teams into ordered component strategies.

This representation of commonality strategies does not capture the complexity

of the product architecture (Baldwin and Clark 2000)—it does not represent the

modularity of the platform, the intended servicing functions, or the organizational

implications. However, it does showcase the necessity of matching commonality

strategy to an expectation of cost and benefit. Firms that attempt to commonalize as

much as possible, without regard for expected benefits and implied costs, will find

themselves incurring almost all of the commonality cost categories listed here and

almost certainly swamping the expected benefits.

Table 2.5 Platform strategies arranged from low forward planning (top) to high forward planning

(bottom)

Strategy Applicability Benefit Challenges

Reactive reuse (Siddique

and Repphun 2001)

Low planning

ability

Development High risk of optimal

solutions

Low R&D

spending

Tooling Potential for missed

benefits

Low cost components

(Labro 2004)

Flat component

curve

Bulk purchasing Hard to define fixed cost

savings

Low planning

ability

Inventory Assumes labor mobility

across products

Building blocks (Fisher

et al. 1999)

Stable

architecture

Bulk Purchasing Challenging to synchro-

nize development

High overhead Inventory Difficult to fund R&D

Non-differentiating

subsystems

Stable

architecture

Development Managing stable

interfaces

Testing Enabling differentiating

features

High cost components

(Boas 2008)

Steep component

curve

Testing Risk of high integration

costs

High R&D spend Economies of

scale

Degradation to reactive

reuse

Backbone/common architecture

(Halman et al. 2003)

Low clockspeed Development Risk to development

savings—

customization

High R&D spend Economies of

scale

Does not imply testing

savings

Commonality culture

(Boas 2008)

High planning

ability

Development High coordination costs

High R&D spend Inventory

Divergence data is binned from low to high, where low represents small changes, such as moving

from 80 % of parts shared to 77 % of parts shared, and high represents changes on the order of

decreases by 50 % (half of the intended common parts became unique parts). Not all calendar

offsets (number of months) can be given due to confidentiality concerns (Boas et al. 2012)

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 67

References

Alptekinoglu A, Corbett CJ (2008) Mass customization vs. mass production: variety and price

competition. Manuf Ser Oper Manage 10:204–217

Baker KRM, Magazine J, Nuttle HLW (1986) The effect of commonality on safety stock in a

simple inventory model. Manage Sci 32:982–988

Baldwin CY, Clark KB (2000) Design rules, vol 1: the power of modularity, 1st edn. TheMIT Press

Ben-Arieh D, Qian L (2003) Activity-based cost management for design and development stage.

Int J Prod Econ 83:169–183

Blecker T, Abdelkafi N (2006) Complexity and variety in mass customization systems: analysis

and recommendations. Manage Decision 44:908–929

Blecker T, Abdelkafi N (2007) The development of a component commonality metric for mass

customization. IEEE Trans Eng Manage 54:70–85

Boas R (2008) Commonality in complex product families: implications of divergence and

lifecycle offsets. Ph.D. Thesis, MIT ESD

Boas R, Cameron B, Crawley EF (2012) Divergence and lifecycle offsets in product families with

Commonality. Syst Eng. doi:10.1002/sys.21223

Bremner R (1999) Cutting edge platforms. Financial Times Automotive World, September

Brüggen A, Klose L (2010) How fleet commonality influences low-cost airline operating perfor-

mance: empirical evidence. J Air Transp Manage 16:299–303

Burke GJ, Carrillo JE, Vakharia AJ (2007) Single versus multiple supplier sourcing strategies. Eur

J Oper Res 182:95–112

Cameron BG (2011) Costing commonality: evaluating the impact of platform divergence on

internal investment returns. Thesis, Massachusetts Institute of Technology. http://dspace.mit.

edu/handle/1721.1/68511

Cameron BG, Crawley EF (2013) No panacea for platforms: challenges in product families.

California Management Review, in process

Clark KB, Fujimoto T (1991) Product development performance: strategy, organization, and

management in the world auto industry. Harvard Business Press

Collier DA (1981) The Measurement and operating benefits of component part commonality.

Decision Sci 12(1):85–96

Cook HE (1997) Product management: value, quality, cost, price, profits, and organization.

Chapman & Hall

Cusumano MA, Nobeoka K (1998) Thinking beyond lean: how multi-project management is

transforming product development at Toyota and other companies. Free

de Weck OL (2006) Determining product platform extent. In: Simpson TW, Siddique Z, Jiao J

(eds) Product platform and product family design: methods and applications. Springer Verlag

de Weck (2003) In: Proceedings of DETC’03 2003 ASME design engineering technical

conferences September 2–6, Chicago, Illinois USA

Desai P, Kekre S, Radhakrishnan S, Srinivasan K (2001) Product differentiation and commonality

in design: balancing revenue and cost drivers. Manage Sci 47:37–51

Du X, Jiao J, Tseng MM (2001) Architecture of product family: fundamentals and methodology.

Concurr Eng 9:309–325

Erixon G, Ostgren B (1993) Synthesis and evaluation tool for modular designs. In: International

conference on engineering design, pp 898–905

Farrell RS, Simpson TW (2010) Improving cost effectiveness in an existing product line using

component product platforms. Int J Prod Res 48:3299–3317

Fisher M, Ramdas K, Ulrich K (1999) Component sharing in the management of product variety:

a study of automotive braking systems. Manage Sci 45:297–315

Fixson S (2006) A roadmap for product architecture costing. Springer

Fixson SK (2007) Modularity and commonality research: past developments and future

opportunities. Concurr Eng 15(2):85–111

Halman JIM, Hofer AP, van Vuuren W (2003) Platform-driven development of product families:

linking theory with practice. J Prod Innovat Manage 20:149–162

68 B.G. Cameron and E.F. Crawley

http://dx.doi.org/10.1002/sys.21223
http://dspace.mit.edu/handle/1721.1/68511
http://dspace.mit.edu/handle/1721.1/68511

Henderson RM, Clark KB (1990) Architectural innovation: the reconfiguration of existing product

technologies and the failure of established firms. Adm Sci Q 35:9–30

Ho J, Li J (1997) Progressive engineering changes in multi-level product structures. Omega

25:585–594

Jans R, Degraeve Z, Schepens L (2008) Analysis of an industrial component commonality

problem. Eur J Oper Res 186(2):801–811

Jiao J, Tseng MM (2000) Understanding product family for mass customization by developing

commonality indices. J Eng Des 11:225–243

Jiao J, Kumar A, Lim CM (2006) Flexibility valuation of product family architecture: a real-option

approach. Int J Adv Manuf Technol 30:1–9

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18:5–29

Johnson MD, Kirchain R (2010) Developing and assessing commonality metrics for product

families: a process-based cost-modeling approach. IEEE Trans Eng Manage 57:634–648

Kim K, Chhajed D (2000) Commonality in product design: cost saving, valuation change and

cannibalization. Eur J Oper Res 125:602–621

Krishnan V, Gupta S (2001) Appropriateness and impact of platform-based product development.

Manage Sci 47:52–68

Labro E (2004) The cost effects of component commonality: a literature review through a

management-accounting lens. Manuf Ser Oper Manage 6:358

Larson PD, Kulchitsky JD (1998) Single sourcing and supplier certification: performance and

relationship implications. Indus Market Manage 27:73–81

Lehnerd AP (1987) Revitalizing the manufacture and design of mature global products. National

Academy Press, Washington, DC

MacDuffie JP, Sethuraman K, Fisher ML (1996) Product variety and manufacturing performance:

evidence from the international automotive assembly plant study. Manage Sci 42:350–369

Martin M, Hausman W, Ishii K (1998) Design for variety. In: Ho T-H, Tang CS (eds) Product

variety management. International series in operations research and management science, vol

10. Springer US, pp 103–122

Meyer MH (1997) Revitalize your product lines through continuous platform renewal. Res

Technol Manage 40:17–28

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. Free

Meyer MH, Mugge PC (2001) Make platform innovation drive enterprise growth. Res Technol

Manage 44:25–39

Meyer MH, Tertzakian P, Utterback JM (1997) Metrics for managing research and development in

the context of the product family. Manage Sci 43(1):88–111

Muffatto M (1999) Platform strategies in international new product development. Int J Oper Prod

Manage 19:449–460

Nelson SA, Parkinson MB, Papalambros PY (2001) Multicriteria optimization in product platform

design. ASME J Mech Des 123:199–204

Nobelius D, Sundgren N (2002) Managerial issues in parts sharing among product development

projects: a case study. J Eng Technol Manage 19:59–73

Otto K, Hölttä-Otto K (2007) A multi-criteria assessment tool for screening preliminary product

platform concepts. J Intell Manuf 18:59–75

Otto K, Tang V, Seering W (2003) Establishing quantitative economic value for features and

functionality of new products and new services. In: Belliveau P, Griffin A, Somermeyer S (eds)

PDMA Toolbook II, pp 297–330. http://hdl.handle.net/1721.1/3821

Pander J (2012) Neues Konstruktionssytem Bei VW: Gleich Ist Gut. Der Spiegel

Park J, Simpson TW (2005) Development of a production cost estimation framework to support

product family design. Int J Prod Res 43:731–772

Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business

School Press

2 Crafting Platform Strategy Based on Anticipated Benefits and Costs 69

http://hdl.handle.net/1721.1/3821

Pine J, Ii P,VictorB,BoyntonAC(1993)Makingmass customizationwork.HarvBusRev71:108–119

Ramdas K (2003) Managing product variety: an integrative review and research directions. Prod

Oper Manage 12:79–101

Ramdas K, Randall T (2008) Does component sharing help or hurt reliability? An empirical study

in the automotive industry. Manage Sci 54:922–938

Ramdas K, Fisher M, Ulrich K (2003) Managing variety for assembled products: modeling

component systems sharing. Manuf Ser Oper Manage 5:142–156

Rhodes R (2010) Application and management of commonality within NASA systems. Master’s

Thesis, MIT, Cambridge, MA

Robertson D, Ulrich K (1998) Planning for product platforms. Sloan Manage Rev 39:19–32

Rothwell R, Gardiner P (1990) Robustness and product design families. In: Oliver M (ed) Design

management: a handbook of issues and methods, vol 3. Basil Blackwell, Cambridge, MA, pp

279–292

Rungtusanatham MJ, Salvador F (2008) From mass production to mass customization: hindrance

factors, structural inertia, and transition hazard. Prod Oper Manage 17:385–396

Sabbagh K (1996) 21st century jet: the making and marketing of the Boeing 777, vol 162. Scribner.

http://www.getcited.org/pub/103309083

Sanderson S, Uzumeri M (1995) Managing product families: the case of the Sony walkman. Res

Policy 24:761–782

Siddique Z, Repphun B (2001) Estimating cost savings when implementing a product platform

approach. Concurr Eng 9(4):285–294

Siddique Z, Rosen DW, Wang N (1998) On the applicability of product variety design concepts to

automotive platform commonality. In: ASME design engineering technical conference,

DETC1998/DTM, vol 5661

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18:3–20

Suárez FF, Cusumano MA, Fine CH (1991) Flexibility and performance: a literature critique and

strategic framework. MIT Sloan School White Paper 3298-91-BPS

Sundgren N (1999) Introducing interface management in new product family development. J Prod

Innovat Manage 16:40–51

Swift CO (1995) Preferences for single sourcing and supplier selection criteria. J Bus Res 32:105–111

Thevenot H, Simpson TW (2006) Commonality indices for product family design: a detailed

comparison. J Eng Des 17(2):99–119

Thevenot HJ, Simpson TW (2007) A comprehensive metric for evaluating component common-

ality in a product family. J Eng Des 18:577–598

Thonemann UW, Brandeau ML (2000) Optimal commonality in component design. Oper Res

48(1):1–19

Triantis AJ (2000) Real options and corporate risk management. J Appl Corp Fin 13:64–73

Ulrich KT, Ellison DJ (1999) Holistic customer requirements and the design-select decision.

Manage Sci 641–658

Ulrich KT, Eppinger SD (2000) Product design and development. Irwin McGraw-Hill, Boston

Ulrich KT, Eppinger SD (2004) Product design and development. McGraw-Hill/Irwin, Boston

Ulrich K, Randall T, Fisher M, Reibstein D (1998) Managing product variety. In: Ho T-H, Tang

CS (eds) Product variety management. International series in operations research and manage-

ment science, vol 10. Springer US, pp 177–205

Utterback JM, Meyer MH (1993) The product family and the dynamics of core capability. Sloan

Manage Rev 34:29–47

Wacker JG, Treleven M (1986) Component part standardization: an analysis of commonality

sources and indices. J Oper Manage 6:219–244

Wicht AC, Crawley EF (2012) Relieving joint pain: planning government acquisition of complex

common systems. Def Acquis Ref J 19:221–248

Wilson S, Perumal A (2009) Waging war on complexity costs. McGraw-Hill

Wortmann JC, Muntslag DR, Timmermans PJM (1997) Customer-driven Manufacturing.

Chapman & Hall

70 B.G. Cameron and E.F. Crawley

http://www.getcited.org/pub/103309083

Chapter 3

Multidisciplinary Domains Association

in Product Family Design

Hoda ElMaraghy and Tarek AlGeddawy

Abstract This chapter presents an innovative new model for integrating the

diversity of market segments requirements with the design of product families

and platforms for achieving mass customization. It is hypothesized that the rela-

tionship between product design features, product functionalities, and customer

requirements domains is analogous to species co-speciation in nature. Each “Mar-

ket Species” represents the needs of a market segment in the customer domain,

satisfied by a group of product functionalities that are associated with a group of

product components forming the corresponding “product Species” (variant) in the

physical domain. Co-speciation is studied in biology using the reconciliation of

cladogram trees, which result from cladistic analysis of the studied species

characteristics. Cladistics is used in this work to build products platform and

modules which correspond to the common regional requirements of the market.

Design Structural Matrices are used to capture the relationships between the three

domains, while liaison graphs help avoid infeasible combinations of product

components and infer possible components integration. This model is useful in

products mass customization applications, where delayed product differentiation is

a prerequisite, as it allows synchronizing the differentiation points in different

domains to maximize the benefit from commonality of requirements, functions,

and components.

3.1 Product Variety Management

Variety in product design arises due to the diverse needs of customers in different

market segments. Since neither markets are homogeneous nor demands for

products are stable or predictable, companies seek to increase their market share

H. ElMaraghy (*) • T. AlGeddawy

Intelligent Manufacturing (IMS) Centre, University of Windsor, ON, Canada

e-mail: hae@uwindsor.ca

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_3,
Springer Science+Business Media New York 2014

71

mailto:hae@uwindsor.ca

and profits by targeting many market segments. This leads to increasing product

variety through design and production. In addition, product components variety

always exists, which can be seen in both complex products such as automobiles and

airplanes as well as simple products such as light bulbs. Since most products consist

of modules, subassemblies, components, and parts, the effect of this variety

propagates downwards across the different assembly levels of each product variant.

Proliferation of product variation and the consequential variety levels across

products structure affect all related manufacturing activities, specifically design

and processing in manufacturing (Lee and Billington 1994; ElMaraghy 2009). In

order to mitigate the negative effects of increased variety, many companies seek a

measure of commonality by grouping their products into families and developing

platform-based product variants to help increase their products variety and meet the

diverse customer needs while achieving economy of scale (Jiao et al. 2007).

From the engineering perspective, a product family is designed to address

customer requirements such that product variants can be both technologically

feasible and desired by the market. Martin and Ishii (2002) defined design for

variety (DFV) as a series of structured methodologies to help design teams reduce

the impact of variety on the life-cycle costs of a product. They identified common-

ality as a prerequisite to establishing a product family architecture in addition to

sharing a common platform. Commonality is part of the solution which reduces the

complexity of product variants design and development in an environment

characterized by frequent changes and short product life cycles. A product platform

is a set of common elements (parts, components, processes, sequences, etc.)

embodying the underlying core technology from which a stream of derivative

products can be efficiently derived and launched (Simpson 2004). Product

platforms accelerate product development, reduce product development costs,

increase product reliability, increase variety, reduce managerial complexity, and

enhance business strategy flexibility (Muffatto and Roveda 2000). Modular design

is often associated with product platform design where products are composed of

modules of structural elements with identifiable functions. Components of product

modules are strongly interconnected, but they are weakly connected to components

in other modules (Pandremenos et al. 2009). Modular design architecture supports

the development of new products quickly using alternative modules or module

instances. Common modules shared by more than one product variant reduce

design time and cost (Ulrich and Tung 1991). A module is changed and replaced

to differentiate the main product into different variants (Jose and Tollenaere 2005).

In this chapter, it is hypothesized that the dependency of the design features and

customer domains requirements is analogous to the co-speciation process that takes

place in nature between two coexisting groups of different species. Each market

segment is akin to a species, the needs of which form its genetic structure. Such

needs must be satisfied by product features which in turn form the genetic structure

of the corresponding product variants. Co-speciation is studied in biology using the

reconciliation of cladogram trees, which result from cladistic analysis of the studied

species characteristic data. It is proposed to use cladistics similarly to build product

components modules that correspond to the common regional requirements of

72 H. ElMaraghy and T. AlGeddawy

certain markets, albeit heterogeneous. Commonality indices and measures were

used in literature for assessing either the overall modularity in a family of products

or the commonality of a component across a family of products or a set of modules.

They include the relative modularity measure (Gershenson et al. 1999) and the

singular value modularity index (Hölttä-Otto and de Weck 2007). Unlike the

presented cladistics model, such commonality assessments are used to redesign

and improve existing products design. Commonality indices also play a fundamen-

tal role in evaluating alternate design solutions for product families. This chapter

introduces a model which integrates market analysis, design, and manufacturing to

design the most economical family of products to manufacture. It maximizes

common components among product variants, meets customer requirements in

the targeted market segments, and helps plan the assembly of the product family

using a biological analogy.

3.2 Biological Association Analogy

The world of artifacts in manufacturing includes many constituents, e.g., market

segments, product variants, and production systems, which interact and develop

over time. They behave like species that adapt to changes, affect each other, and

evolve over time into new species in a manner akin to biological coevolution.

In nature, interspecies interactions result in co-speciation schemes where specia-

tion events are coupled. Analogously, in the world of artifacts, it is hypothesized

that the effect of a single change in one of these constituents on others can be

anticipated.

Cladistics, a classification tool extensively used in Biology (Hennig 1966,

republished in 1999; Kitching et al. 1998), is used to reveal the evolution hypothesis

and speciation scheme of a studied group of entities. Cladistics was first introduced

to propose evolution hypotheses to product design in ElMaraghy et al. (2008).

The proposed technique was applied to features of automobile engine blocks

extracted from historical data and used to study their evolution and plan their future

design development. This was followed by introducing the hypotheses and model

that govern the mechanism of products and manufacturing systems coevolution

(AlGeddawy and ElMaraghy 2010). The coevolution is examined by reconciling

the pair of cladograms, known as tanglegrams, representing the evolution of belt

tensioners and their assembly lines and to compare their changes. Such technique

is also followed in biology to study the reciprocal coevolution of species in

nature (Page 2003).

In the products design domain, the biological coevolution analogy can be

observed. The degree of homogeneity of customer requirements affects the choice

between integral and modular product design architectures. Designers and

engineers must find the right balance between the simplicity, commonality, inte-

gration, and core processes evident in dedicated non-adaptable product platforms

and the higher complexity, larger investments associated with more modularity

3 Multidisciplinary Domains Association in Product Family Design 73

better customer satisfaction and sustainability through adaptation characterizing

evolving product families and changeable manufacturing systems. The unified

commonality pattern in Fig. 3.1 illustrates a recurrent foot print which relates the

different constituents of manufacturing such as different market segments, different

product variants, and different process plans. Such patterns are the interspecies

co-speciation cladograms which support the proposed coevolution hypothesis.

Identifying the market, product, and process cladograms leads to the desired unified

design co-development model which links customer requirements in a market

segment with product variants that satisfy them. Cladistics is usually used in

Biology to study the evolution of living beings by plotting their evolution path

and presenting their classification tree (Kitching et al. 1998). This powerful compu-

tational analysis results in a useful graphical clustering representation called clado-

gram. It shows how different entities can be grouped based on the commonality and

differentiation of their characters. This ability is exploited in this research for

Fig. 3.1 Multidisciplinary dependency between domains in product family design

74 H. ElMaraghy and T. AlGeddawy

hierarchically clustering market segments, product variants and process plans

according to their commonality and showing the different differentiation points

in the design and process plan of the product variants along the process flow

shown in Fig. 3.1.

The associated product family design (APFD) model with market segments and

process plans has been developed in (ElMaraghy and AlGeddawy 2012). It consists

of five steps in Fig. 3.2: (1) functional analysis of customer requirements of each

market segment, (2) structural analysis of product design to investigate all needed

components, (3) reduction analysis of the components to be integrated into

subassemblies, (4) design analysis for generating possible product variants designs

for each market segments, and finally (5) modularity analysis to develop the best

product variants which maximize modularity. The main objective of this new

model is to develop a product variant for each market segment that (a) fulfills all

its customer requirements, (b) maximizes the potential product components

modules among variants, and (c) uses a common platform per product family.

3.2.1 Market Analysis

The diversity of market requirements is the main driver for having product design

variants to address those different needs. As a preliminary step before further

product design and modeling, manufacturers must identify target market segments

that possess unique combinations of customer requirements to be translated into

unique product variants design. There are many reasons for market segmentation

and customer differentiation that can be used by manufacturers to leverage their

product variant designs and meet market needs. Customer type, level of product

performance, product price discrimination, different local customers taste, regional

Fig. 3.2 An IDEF0 representation of the APFD model

3 Multidisciplinary Domains Association in Product Family Design 75

norms and standards, etc. are but some sources of requirements diversity and

product design variation in Fig. 3.3. Identification of targeted market segments is

followed by recognizing the requirements of each segment. Few methods can be

used to analyze customer requirements, such as quality function deployment

(QFD) (Suther and Sharkey 1994), Utility functions, and design structure matrices

(DSM) (Browning 2001).

The introduced APFD model uses 0–1 element DSMs to only show the existence

of dependency relationships between the analyzed entities. These relationships are

between two different sets of components, not between the same set of components

as in the conventional DSM methods. For the design of a family of water boiling

kettles in Fig. 3.4, the manufacturer identified four kettle market segments:

(1) basic, (2) home, (3) office, and (4) business with different performance,

appearance, and user interface. Table 3.1 shows the combinations of customer

requirements suitable for each market segment. This is referred to as customer

requirements matrix (R).

3.2.2 Functional Analysis

The first step of the APFD model is to conduct product functional analysis and

construct a design structure matrix to relate the customer requirements in the

identified market segments and the directly associated product components referred

to in this model as “primary components.” Simple dependency relationships

Fig. 3.3 Possible sources of market segmentation

76 H. ElMaraghy and T. AlGeddawy

(existence or non-existence) are used. The DSM for market segments and kettles

primary components is shown in Table 3.2. Four primary components are

identified: the container, base, unit control, and control parameters input unit.

Each product component has different variants/instances which may/may not

exist simultaneously in the same product. In nature, this type of components

classification is referred to as additive vs. nonadditive characters. Additive

characters can be added simultaneously even if they are of the same type. Nonaddi-

tive characters are mutually exclusive. For kettles, variants of all components

are nonadditive (i.e., they do not coexist). For example, only one On–Off switch,

rheostat, or electronic board can exist as a control unit. Some customer requirements

correspond to more than one entry row, which means that alternative means exist to

achieve these requirements. For example, any of three alternate control units can

be used to achieve unattended kettle operation.

3.2.3 Structural Analysis

After defining the primary product components needed to achieve the product

functions corresponding to each market segment, the APFD model considers the

next component levels. The product design structural analysis recognizes the

relationships between primary components and other product components. This

step may be repeated as many times as needed for all existing bill-of-materials

(BOM) levels, until all components of all levels are connected by DSMs. Kettles

secondary component level is connected to their primary components and presented

in the form of a DSM in Table 3.3.

Fig. 3.4 One variant

instance of the kettles

product family

3 Multidisciplinary Domains Association in Product Family Design 77

T
a
b
le

3
.1

C
u
st
o
m
er

re
q
u
ir
em

en
ts
fo
r
th
e
d
if
fe
re
n
t
se
g
m
en
ts
o
f
th
e
k
et
tl
es

p
ro
d
u
ct

fa
m
il
y

R
eq
u
ir
em

en
ts

T
ar
g
et
ed

te
m
p
er
at
u
re

H
u
m
an

in
te
rf
er
en
ce

F
re
ed
o
m

o
f
m
o
v
em

en
t

In
d
ic
at
o
rs

A
es
th
et
ic
s

S
eg
m
en
ts

B
o
il

S
p
ec
ifi
c

A
tt
en
d
ed

U
n
at
te
n
d
ed

F
ix
ed

M
o
v
ab
le

A
co
u
st
ic

V
is
u
al

D
is
p
la
y

R
eg
u
la
r

F
an
cy

B
as
ic

�
�

�
�

�
H
o
m
e

�
�

�
�

�
O
ffi
ce

�
�

�
�

�
B
u
si
n
es
s

�
�

�
�

�

78 H. ElMaraghy and T. AlGeddawy

T
a
b
le

3
.2

D
S
M

o
f
cu
st
o
m
er

re
q
u
ir
em

en
ts
an
d
p
ri
m
ar
y
co
m
p
o
n
en
ts
o
f
th
e
k
et
tl
es

C
o
m
p
o
n
en
ts

C
o
n
ta
in
er

B
as
e

C
o
n
tr
o
l

P
ar
am

et
er
s
in
p
u
t

R
eq
u
ir
em

en
ts

P
la
st
ic

w
it
h

w
h
is
tl
e

P
la
st
ic

w
it
h

si
d
e
w
in
d
o
w

M
et
al

A
tt
ac
h
ed

D
et
ac
h
ed

O
n
–
O
ff

sw
it
ch

R
h
eo
st
at

E
le
ct
ro
n
ic

b
o
ar
d

K
n
o
b

P
an
el

T
ar
g
et
ed

te
m
p
er
at
u
re

B
o
il

S
p
ec
ifi
c

�
�

�
�

H
u
m
an

in
te
rf
er
en
ce

A
tt
en
d
ed

U
n
at
te
n
d
ed

�
�

�
F
re
ed
o
m

o
f

m
o
v
em

en
t

F
ix
ed

�
M
o
v
ab
le

�
In
d
ic
at
o
rs

A
co
u
st
ic

�
V
is
u
al

�
D
is
p
la
y

�
A
es
th
et
ic
s

R
eg
u
la
r

�
�

F
an
cy

�

3 Multidisciplinary Domains Association in Product Family Design 79

3.2.4 Design Feasibility and Variant Generation

The APFD model generates all possible components combinations of product

variants in order to investigate all potentials for modularity. Equation 3.1 is used to

generate a matrix containing all possible product variants components combinations

for all designated market segments based on the previously developed DSMs.

P ¼ R � πNi Di � C (3.1)

where:

P is the possible combinations (Variants) of product components

R is the customer requirements matrix

Di is the DSM of components of level i and next components level

C is the list of all product components primary and secondary is element-wise

product operator

Some components combinations may exist under several market segments (i.e.,

repeated). Also, some of product components cannot mutually exist. Consequently,

the resulting P matrix should be refined to remove repeated and infeasible

components combinations represented by matrix P rows. In the family of kettles,

the initial product variants are 4 for basic, 6 for home, 12 for office, and 24 for

business market segments, for a total of 46 possible variants. However, some of

these variants are repeated (identical), while others are not feasible due to the

presence of nonadditive components in the same variant. After removing all

redundant and infeasible variants, the number of unique feasible product variants

is reduced to 8 variants in Fig. 3.5. Those variants are the possible feasible designs

that can be used to establish the family of kettles which include only one variant for

each market segment.

Table 3.3 DSM of primary and secondary components in the kettles example

Secondary

Heating coil Feedback unit

Primary Side Bottom Condenser tube Thermocouple

Container Whistle

Window

Metal

Base Attached �
�

Detached �
Control Switch �

Rheostat

Board �
Input Knob

Panel

80 H. ElMaraghy and T. AlGeddawy

3.2.5 Modularity Analysis

3.2.5.1 Cladistics

The APFD model searches for the best product variants under all market segments

to maximize components modularity and identifies common components platforms.

Parsimony analysis using cladistics (Hennig 1966, republished in 1999, Kitching

et al. 1998) is used to arrange the studied product variants in a hierarchal classifica-

tion tree. It minimizes the information content by identifying common components

and placing them on the top branches of the tree. These common components are

the possible components modules of the studied product variants.

Cladistics analysis results in a tree graph called cladogram in Fig. 3.6, which

groups different entities based on their shared components (not based on similarity

indices). AlGeddawy and ElMaraghy (2011) divided the process of cladogram

construction into two steps: (1) cladistic tree topology construction, resulting in a

binary tree where only two branches exist at any of the nodes, and (2) entities

arrangement at tree terminals. This sequential two-step process simplifies the

optimization of cladogram construction and makes it possible to add extra

constraints or performance metrics such as precedence constraints, adjacency

preferences, and assembly cost. These constraints or metrics are manufacturing

related and are not needed in the classical cladograms construction used in biology.

Fig. 3.5 All possible unique feasible kettles variants

3 Multidisciplinary Domains Association in Product Family Design 81

The objective of the developed modified cladogram construction process is to

obtain the most parsimonious data representation with minimum information con-

tent. This is referred to as the cladogram length, which is the number of characters

appearing on the branches of the cladistic tree.

3.2.5.2 Identifying Product Modules and Platforms

The cladistic analysis in the developed APFD model can be illustrated using the

four product variants A, B, C, and D shown in Fig. 3.6. They have a total of seven

components which are not present in all entities (variants). The table in Fig. 3.6

shows the combination of components that exist in each one. The total number of all

existing components in that family of products is 14 which is the upper value of the

cladogram length (i.e., number of components showing on its branches), while

the lower value is 7 which is the number of different components. The resulting

cladogram has a length of 8 components representing a reduction of 6 (14 � 8 ¼ 6)

from the worst case. The cladogram length is not equal to 7 (lower value) because

there is data conflict, since component 5 appears twice. The objective of a clado-

gram construction procedure is to minimize such conflicts.

If no additional constraints or considerations exist, then the resulting cladogram

presents a perfect modularity map for this family of products. The components on

higher tree branches can potentially be grouped into separate modules such as

Fig. 3.6 Use of cladistics to identify product modules

82 H. ElMaraghy and T. AlGeddawy

components 3 and 4, which will be a shared module in products A, D, and C. If

component(s) exist at the root of the cladogram tree, which is the top most arc, then

it becomes a candidate for being the base for the product family platform for further

assembly, since it is common to all products, e.g., component 1 exists in products

A, B, C, and D and appears at the root of the cladistic tree.

3.2.6 Process Planning for Product family

The unconstrained cladogram construction for a product family reveals the com-

plete commonality map of the studied variants. However, for a group of

components to form a module, connectivity between them must be present. Product

components connectivity is represented in this APFD model by the adjacency

constraints derived from their liaison graph. Consequently, the cladogram construc-

tion method has been modified to take into considerations such constraints.

A liaison graph is a network graph representation of an assembly where nodes

represent product components and arcs represent user-defined relations between

assembled product components called “liaisons,” which generally include physical

contact between parts (De Fazio and Whitney 1987).

Liaison graphs were mostly used for assembly process planning, optimizing

assembly sequence, and generating precedence constraints for a single product

variant (Sukhan 1994; Laperriere and ElMaraghy 1996; Xing et al. 2007).

Dong et al. (2006) used those graphs for disassembly sequence planning. Tseng

et al.(2008) used liaison graphs to improve modularity in a single product variant.

In the APFD model, liaison graphs, in association with cladogram construction, are

used to establish a master assembly process plan for the whole family of the studied

set of products. In the kettles example, the liaison graph, comprising all existing

components in those kettles and their adjacency relationships, is shown in Fig. 3.7.

Fig. 3.8 illustrates the search for product modules and the process plans using

cladogram construction. The input data is divided into two types: (1) product

related including components combinations of product variants, combinations of

product variants, and liaison graph and (2) cladogram related including tree

Fig. 3.7 Liaison graph of the

family of kettles

3 Multidisciplinary Domains Association in Product Family Design 83

topology and products arrangement at cladogram terminals. Components 1, 2, and

3, in the resulting cladogram, shown in Fig. 3.8, form a module according to the

given liaison graph. Consequently, the cladogram length is reduced from 13 sepa-

rate components to 10 components and 1 module which exist in products C and E.

Since the most common components in those products reside at the top of the

cladogram and the less common ones towards the terminals of the tree, the

cladogram in this form indicates the sequence of the product assembly processes

that should be followed to take full advantage of the components commonality and

modularity. Fig. 3.8 presents a directed tree drawn over the obtained cladogram.

The directed tree in fact represents the master assembly process plan for that family

of products. The resulting process plan follows the product family architecture and

utilizes identified commonality as well as form postponement and delayed product

differentiation strategies. The tree also serves as a schematic for the physical

assembly process/system arrangement and clearly identifies the products differen-

tiation points where work-in-process (WIP) buffers can be placed at stations

represented by corresponding tree nodes. The final product variant identities are

apparent at the terminals of the resulting cladogram tree/assembly process plan.

Fig. 3.8 Using cladistics for modules identification and process planning

84 H. ElMaraghy and T. AlGeddawy

3.2.7 APFD Model Algorithm

The implementation of the APFD model and its algorithms for enhancing products

modularity, components clustering, defining product families, and simultaneously

deriving the product family process plan using the new method of cladogram

construction are outlined as follows:

Algorithm for Modularity Promotion and Process Planning

1. Acquire:

T_cladogram topology T,

A_product variants terminal arrangement,

V_product variants combinations,

C_components of product variants {C: c¼1 component exists in product

variant, else c¼0},
L_Connectivity relationships

2. Nmin very large positive integer. Initiate optimization. Nmin is the minimum

cladogram length

3. Cij Ø. Initiate the set Cij that will contain product components of level i, and

position j, i¼1,. . .n, j¼1,. . .n+1-i
4. Cnj CVjAj. Determine components at nodes Xnj by placing associated

Components CVjAj with each product in combination V and arrangement A to

position j of level n, j¼1,. . .n
5. i ¼ n-1. Consider next level

6. j ¼ 1. Consider 1st node in the current level

7. If Xij 6¼ 0: Xij ∈ T. A node exists at position j in level i for topology T

Then Cij Ci-1 j \ Ci-1j+1. Search for common components at current node

8. Eij |Cij |-|L Cij |. Calculate information content at current node after integra-

tion and modularization.

9. If Eij¼0 then let Eij¼1
10. j j+1. Proceed to the next node in the current level

11. If j ¼ i+1

Then Go to step 12. All nodes of current level are tested

Otherwise repeat from step 7

12. i i �1. Proceed to the next upper level

13. If i ¼ 0

Then Go to 14. All levels are tested

Otherwise repeat from step 6

14. N ∑∨ i,j Eij. Calculate cladogram length

15. If N<Nmin

Then:

• Nmin ¼ N

• Store T and A as best layout

16. Repeat from 1 until all required T and A are tested

3 Multidisciplinary Domains Association in Product Family Design 85

The previous algorithm embodies the evaluation function and the required

constraints necessary to obtain the potential product modules and product family

platforms as well as the directed cladogram tree and the product family master

assembly process plan. Any meta-heuristic search technique may be used in the

solution algorithm, since the evaluation function is separate from the search

process.

In the kettles example, for 4 market segments, there exist 4�1! ¼ 6 cladogram

topologies and 4! ¼ 24 product arrangements at the cladogram terminals, in addi-

tion to 2 product variants for each segments, which results in 2 � 2 � 2 � 2 ¼ 16

variants combinations. The total number of possible solutions in the solution space

is 6 � 24 � 16 ¼ 2,304. This is a very modest solution space size that could be

fully enumerated and evaluated in a fraction of a second on a 3.3 GHz processor.

The resulting directed cladogram tree indicates the product modularity map and

master process plan of the family of kettles (see Fig. 3.9). It represents a complete

modularity map of all members of the kettles family with the most economical

selection of product variants from all possible feasible variants. It maximizes the

number of common components and modules without sacrificing customer

requirements pertaining to each market segment. Kettle variants 1.2, 2.2, 3.2, and

4.2 were selected to serve each of the identified market segments. Container (2),

board (8), and thermocouple (14) are grouped into a single module which exists in

variants 2.2 and 3.2. This grouping was allowed under the constraints expressed in

the liaison graph shown in Fig. 3.7. The board (8) and thermocouple (14) are also

repeated in variant 4.2, but they cannot be combined into one module, since they are

Fig. 3.9 Kettles design

platform and master process

plan representation

86 H. ElMaraghy and T. AlGeddawy

not adjacent according to the liaison graph. The coil (12) appears to exist in all

kettle variants and resides at the top of the cladogram; hence, it can serve as the

family platform. Since only 4 variants were selected from the possible 8 variants,

some components could be abandoned, such as the switch (6), rheostat (7), knob

(9), side coil (11), and condenser (13).

3.3 Discussions and Conclusions

The heterogeneity of market segments and their customer requirements increases

the complexity of product design and challenges facing companies to satisfy those

requirements and plan the efficient production of many product variants. Families,

modular products, and platforms design were proposed in research and in practice

to manage variety in products and variation in their components. The problem of

designing a set of product variants that meets market specifications and satisfy

customer requirements of the designated market segments must also consider the

possibility and potential of grouping components into modules in order to decrease

both the design and production complexity due to products variety and reduce the

cost of their assembly. The architectural and functional relationships between

product components greatly affect the design process and the feasibility of product

variants configurations.

This chapter introduced the notion of co-development between market segments

and products design, where common requirements are associated with the common

components of product family at the high level of their architecture. The common

components serve as shared modules in multiple product variants. The introduced

novel APFD model was shown to satisfy customer requirements of a given market,

find the best modular product family design, and take components architectural

constraints into account using DSMs and liaison graphs. Components existence

commonality is used to minimize components redundancy and duplicate production

steps and their associated cost. The use of DSMs mapped the relationships between

the different design domains of customer requirements, product functions, and

different components. Liaison graphs were effectively used to modify the used

cladogram construction technique, and strengthen the choice of components

modules, and reduce information content and components redundancy.

The APFD model was demonstrated and applied to a case study of a family of

kettles design targeting four different market segments. The model identified the

best product variants which satisfy all customer requirements in each market

segment while maximizing components commonality, identifying family platform

and modules, and presenting a master process plan for the entire kettles family. The

resulting cladogram graphically represents a modularity map showing potential

modules that can be shared across many variants as well as a directed tree graph

showing a master assembly process plan for the whole kettles family. The

constructed cladogram also shows a number of differentiation points that are used

3 Multidisciplinary Domains Association in Product Family Design 87

as a base for applying form postponement and delayed product differentiation and

later for assembly system layout planning.

Novel and useful results of this research are as follows: (1) a new method for

products platform design for multi-domain, multi-segment products based on a

co-development hypothesis inspired by natural coevolution between species, (2) a

new method for generating the “master assembly process plan” for all members of

the studied product, and (3) a new technique for defining the schematic layout of the

physical assembly processes/stations for the family of products with clear product

variants differentiation points.

References

AlGeddawy T, ElMaraghy H (2010) Co-evolution hypotheses and model for manufacturing

planning. CIRP Ann Manuf Techn 59(1):445–448

AlGeddawy T, ElMaraghy H (2011) Design of single assembly line for the delayed differentiation

of product variants. Flex Serv Manuf J 22(3):163–182

Browning TR (2001) Applying the design structure matrix to system decomposition and integra-

tion problems: a review and new directions. IEEE Trans Eng Manag 48(3):292–306

De Fazio TL, Whitney DE (1987) Simplified generation of all mechanical assembly sequences.

IEEE J Robot Autom 3(6):640–658

Dong T, Zhang L, Tong R, Dong J (2006) A hierarchical approach to disassembly sequence

planning for mechanical product. Int J Adv Manuf Technol 30(5–6):507–520

ElMaraghy H (2009) Changing and evolving products and systems – models and enablers, chapter

two. In: ElMaraghy H (ed) Changeable and reconfigurable manufacturing systems. Springer,

London, pp 25–45

ElMaraghy H, AlGeddawy T (2012) New dependency model and biological analogy for

integrating product design for variety with market requirements. J Eng Des 23

(10–11):719–742

ElMaraghy H, AlGeddawy T, Azab A (2008) Modelling evolution in manufacturing: a biological

analogy. CIRP Ann Manuf Technol 57(1):467–472

Gershenson JK, Prasad GJ, Allamneni S (1999) Modular product design: a life-cycle view. J

Integrated Des Process Sci 3(4):13–26

Hennig W. (1966, republished in 1999) Phylogenitic systematics. Urbana: University of Illinois

Press

Hölttä-Otto K, de Weck O (2007) Degree of modularity in engineering systems and products with

technical and business constraints. Concurrent Engineering 15(2):113–126

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Jose A, Tollenaere M (2005) Modular and platform methods for product family design: literature

analysis. J Int Manuf 16(3):371–390

Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladisitcs: the theory and practice of

parsimony analysis, 2nd edn. Oxford University Press, Oxford, The Systematics Association

Laperriere L, ElMaraghy HA (1996) GAPP: a generative assembly process planner. J Manuf Syst

15(4):282–293

Lee H, Billington C (1994) Designing products and processes for postponement. In: Dasu S,

Eastman C (eds) Management of design: engineering and management perspectives. Kluwer

Academic Publishers, Boston

Martin M, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

88 H. ElMaraghy and T. AlGeddawy

Muffatto M, Roveda M (2000) Developing product platforms: analysis of the development

process. Technovation 20(11):617–630

Page RDM (2003) Tangled trees : phylogeny, cospeciation, and coevolution. University of

Chicago Press, Chicago

Pandremenos J, Paralikas J, Salonitis K, Chryssolouris G (2009) Modularity concepts for the

automotive industry: a critical review. CIRP J Manuf Sci Tech 1(3):148–152

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf: AIEDAM 18(1):3–20

Sukhan L (1994) Subassembly identification and evaluation for assembly planning. IEEE Trans

Syst Man Cybern 24(3):493–503

Suther TW, Sharkey A, (1994) Customer requirements research: providing input to quality

function deployment. In: Computing and control division colloquium on customer driven

quality in product design. IEE, London, UK

Tseng H-E, Chang C-C, Li J-D (2008) Modular design to support green life-cycle engineering.

Expert Syst Appl 34:2524–2537

Ulrich K, Tung K (1991) Fundamentals of product modularity. Issues in design manufacturing/

integration. ASME 39(1):73–79

Xing Y, Chen G, Lai X, Jin S, Zhou J (2007) Assembly sequence planning of automobile body

components based on liaison graph. Assemb Autom 27(2):157–164

3 Multidisciplinary Domains Association in Product Family Design 89

Chapter 4

Modular Function Deployment: Using

Module Drivers to Impart Strategies

to a Product Architecture

Mark W. Lange and Andrea Imsdahl

Abstract Products reflect the needs of many different entities. People such as

end-users and re-sellers, regulating bodies of authority, and individuals within

manufacturing and engineering provide statements as “voices” that impact the

physical structure of a product in different ways. A company establishes a strategy

to realize the product that responds to these “voices.” There are various approaches

to capturing a singular “voice of x” when realizing a product architecture. Modular

function deployment differs from other architecture methods by providing a holistic

approach to capturing multiple “voices” as a company strategy through the use of

Module Drivers. This approach is demonstrated by actual industrial examples that

explore the flexibility of Module Drivers applied in the creation of a conceptual

modular product architecture.

4.1 Introduction

To compete in today’s global marketplace, many companies are utilizing product

families to increase variety, improve customer satisfaction, shorten lead-times, and

reduce costs (Simpson et al. 2006).

Product families and synonymously, product platforms and product

architectures, are showing themselves to be a tactic of enabling strategic objectives.

The industrial community is reporting on the successes achieved through the

systematic application of product architecture that support the idea of how useful

product architectures are for enabling strategic intent. There is a relationship

between a product family and the product development. The product development

process is the tactical vehicle to convey the business strategy or strategic objectives

M.W. Lange (*) • A. Imsdahl

Department of Applied Mechanical Engineering, Industrial Engineering

and Management, Royal Institute of Technology, SE-151 81, Södertälje, Sweden

e-mail: mlange@kth.se

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_4,
Springer Science+Business Media New York 2014

91

mailto:mlange@kth.se

of improving customer satisfaction, shorten lead-times, and reduce costs through

the application of a product family.

Devising a means to model the relationship between the product development

process and strategic business objectives would make it easier to explain how

industrial companies could benefit from a modular product architecture. Naturally,

the model needs to be adaptable not only for different business strategies driven by

a product type or industry, but also adaptable to strategies that evolve with product

maturity and new market emergence.

Modular function deployment (MFD) (Ericsson and Erixon 1999) is the method

Modular Management uses to illustrate the relationship between product architec-

ture and strategic objectives with the use of Module Drivers. Our suggestion is that

by using Module Drivers, strategy can be imparted on the product architecture.

In the following sections, this topic will be developed. First, a brief study of

product platform strategy and its role in the development of product architectures

will position the development of our approach. Then a model of how Module

Drivers impart strategy is constructed and explained. Based on our extensive

database of modular product platforms, the model will be demonstrated using a

number of industrial product architecture results. Finally, we will discuss some

insights learned from the model’s application and directions of continued research.

4.2 Background

4.2.1 Strategy and Tactics in Product Development

There is an inherent relationship between strategy and tactics, particularly in product

development. Where strategy is the idea of an objective that can be realized through

the application of a plan, tactics is then the execution and assessment of the outcome of

that plan. For example, strategy is found in the idea of selecting between three product

development approaches to tactically develop a product platform, as described in

Hölttä and Salonen (2003). However, joining the idea of a strategic objective with the

tactical outcome is often inferred, even when the evidence of strategy can be found

in the tactical results, like when describing how product platforms are being

tactically leveraged by market strategies, from Marion and Simpson (2006).

However, let us take note of the observation that product platforms and product

families are being utilized to realize several business objectives; increase variety,

improve customer satisfaction, shorten lead-times, and reduce costs. The strategy of

a business is not to realize a product platform; product platforms and product

families are a tactical means to operating a business.

When we talk about business strategy, we are referring to how businesses are

managed (Treacy and Wiersema 1995). For example, a business strategy is based

on an idea of what is the company going to promise its customers and then it

develops a plan to bring the fulfillment of the promise to the customers, which

should be an activity in a product planning process (Bowman 2006). Treacy and

92 M.W. Lange and A. Imsdahl

Wiersema call the first part of a business strategy the Value Proposition and the

second part the Value-Driven Operating Model. These two parts are combined to

form the desired way of managing a business, the Value Discipline. There are three

Value Disciplines available to a business strategy: Product Leadership, Operational

Excellence, and Customer Intimacy as shown in Fig. 4.1. Typically, a business will

pick one of these value propositions as its main focus and then seek to reach a

minimum level with the other two (Nightingale and Srinivasan 2011).

4.2.2 Module as a Tactical Vehicle

In reviewing the literature on product platforms, product families, and product

architectures, the concept of a module appears regularly as a tactical vehicle in new

product development. The concept of amodule has been labeled as a “system partition”

(Christopher 1964), “structural element” (Baldwin and Clark 2000), “chunk” (Ulrich

and Eppinger 2008) or “building block” (Vos 2001). Definitions for these concepts

typically reference at least one of the following three key conceptual attributes:

(a) What the module contains-responding to a Voice of Customer perspective that

the module will contain a function bearing technical solution that is identified as

benefiting the customer?

(b) What the physical limits of the module are – representing the Voice of Engi-

neering in its need to manufacture modules so that they properly fit together?

(c) Why the module exists-reflecting the Voice of Business in configuring a

product variant using the module?

Fig. 4.1 The value

disciplines abstractly

represented in a three-

dimensional space

4 Modular Function Deployment 93

MFD however promotes a definition of a modular that reflects all three voices by

stating that a module is a functional building block with specified interfaces, driven
by company-specific reasons (Erixon 1998).

4.2.3 Modular Function Deployment

Since 1996, Modular Management has provided the service of developing

modular product architectures using a systematic method called MFD. At the

start of every MFD project, a core project team is identified. It is essential for the

core team to be cross-functional, which has been clarified by Kono and Lynn

(2007) and Wheelwright and Clark (1995). Cross-functional teams are comprised

of representatives that personify their area of responsibility and experience,

respectively, as the Voice of Customer, Voice of Engineer, and Voice of Busi-

ness. Collectively, these personas are referred to as “Voices of X”, or “VoX.”

Cross-functional teams are flexible with a strong project focus. They also bring a

breadth of knowledge which can yield an integrated system solution that is not

always achievable in functional or departmental teams.

These “Voices of X” are the spoken and unspoken needs, expectations,

preferences, and wants of the people who constitute a given entity. Voice of

Customer is a key input for product definition and the setting of a product’s value

proposition. This voice is typically represented by the sales and/or marketing

function. Voice of Engineering collects inputs from engineering, manufacturing,

aftermarket, etc. for the execution of the value-driven process to design an appro-

priate product for the customer. A company’s engineering, research and design, and

manufacturing functions define this voice. Voice of Business are shareholders,

corporate officers, or others involved in corporate governance who determine

which value discipline is crucial to the success of not only the product but the

business as a whole. Project manager, platform manager, and product managers

represent the Voice of Business for a MFD project.

MFD organizes the product data, information, and knowledge gathered by the

core team into a collection of matrices known as the product management map

(PMM), shown illustrated in Fig. 4.2. Each voice is captured in a different matrix to

generate the modular product architecture. Iterations are necessary at each step to

manage the trade-offs between the different voices.

MFD is composed of five basic steps (Erixon 1998), illustrated in Fig. 4.3. The

first step is represented in the quality function deployment (QFD) matrix that

clarifies the customer requirements (aka customer value statements) by mapping

them against the product properties. Product properties are measureable and con-

trollable entities that allow specification of the product demanded by the customer.

QFD captures the Voice of Customer and allows it to influence the design of the

product at the proper level of abstraction.

The functional requirements of the product are established with the use a form of

functional decomposition. Functional decomposition is then utilized to define the

94 M.W. Lange and A. Imsdahl

technical solutions. Technical solutions are the embodiment of the product

properties. If necessary a Pugh process can be used to evaluate and evolve technical

solutions based on evaluation criteria (i.e., product properties) generated in step 1 of

MFD in addition to internal considerations such as part number count and produc-

tion goals. The results of these decisions are modeled in a Design Property Matrix,

first presented in Nilsson (1998), which documents the relationship between prod-

uct properties and technical solutions. DPM then becomes the representation of the

Voice of Engineering.

Step three highlights a unique attribute of Modular Function Deployment.

Unlike other architecting approaches, MFD incorporates a company’s strategic

intent into the product design. Module Drivers are the mechanism used to indicate

Fig. 4.3 Modular function deployment, adapted from Erixon (1998)

Fig. 4.2 Product management map (PMM), where the module indication matrix (MIM) and

Module Drivers are the objects of this article

4 Modular Function Deployment 95

the strategic reason a module should be created. There are 12 Module Drivers which

cover the entire life cycle of a product. A driver is applied to a technical solution in

the module indication matrix (MIM) to impart the strategy the company has for a

Technical Solution being the foundation of a module. Clustering the MIM and

DPM, module concepts are generated therefore capturing the Voice of Business.

The module concepts are evaluated in step four by considering how the modules

will be physically joined together using standardized module interfaces. Interfaces

represent an agreement or contract (Baldwin and Clark 2000) between modules in a

product architecture. Evaluation of the interfaces is vital to ensure flexibility of the

product assortment as well as allowing for concurrent engineering. The Modular

Function Deployment process considers seven basic types of interfaces. An inter-

face can be defined as an attachment, transfer, spatial, command and control, field,

environmental, and user. An interface matrix documents the interface type and

facilitates the analysis of interfaces.

Finally step 5 improves on the module concept with DFX approaches, for

example, Design for Manufacturing and Assembly, depending on the company

value-driven operating model. Module specifications are written for each module

containing market requirements, technical information, and business strategy. MFD

is not a replacement for component level design improvements. Detail design of the

components encapsulated in a module is still required and guided by the module

specifications.

4.2.4 Module Drivers

Early during the development of Modular Function Deployment, research was

conducted in industry to determine the heuristics product designers applied when

creating modules by contacting a number of companies who promoted their

products as modular. The resultant 12 heuristics were reported by Östgren (1994)

and called “Module Drivers.” Module Drivers are found to cover the entire product

life cycle from introduction to growth, maturing, and decline. Module Drivers also

cover a wide spectrum of “Voices of X” as the product moves through its life cycle,

as illustrated in Fig. 4.4. This coverage ensures that all stakeholders in the product

have a voice as well as a way to document their particular strategic intent. Because

Module Drivers are seen as generic heuristics, a project team may introduce new or

modified heuristics which are company specific such as financial caps, geographical

constraints, governmental regulations, etc.

The “Voice of Customer” reflects the need that a product platform embodies

variance. Variation should be contained in as few areas of the product as possible to

be managed effectively and minimize disruptions to the whole product when

introducing new variants. Delaying variation adaptation as long as possible in the

production chain decreases lead times, improves supply chain, and lowers overall

costs. Two Module Drivers are available to describe the Voice of Customer

variance in the product architecture:

96 M.W. Lange and A. Imsdahl

• “Different Specification” is used to impart the strategic need for technical

performance variance in the product platform. Language and culture demands

can change the label for the concept of the Module Driver to be referred to as

“Technical Specification.”

• “Styling” imparts the strategic need for brand-driven appearance variance in the

product platform.

Concerns with product planning and design are spoken through the “Voice of

Engineering.” Engineering addresses the needs to manage modules of the architec-

ture that will or will not change during the platform’s lifetime in addition to

modules that will go through a technology shift based on changing customer

demands. There are three Module Drivers to address engineering perspectives:

• “Carry Over” imparts strategies of technology reuse across generations of the

product platform.

• “Technical Evolution” imparts the strategic development of technology driven

by external forces outside the company. Language and culture demands can also

re-label the concept of this driver as “Technology Push.”

• “Planned Design Changes” imparts company internal strategies to launch new

products, meet changing customer requirements, or decrease product costs. An

alternative name for the driver is “Planned Development.”

Fig. 4.4 Module Drivers positioned along a product life cycle stream

4 Modular Function Deployment 97

The “Voice of Manufacturing” strives to maintain a consistent, effective, and

efficient manufacturing process. Two Module Drivers that strengthen this approach

are the following:

• “Common Unit” imparts the strategy that a required function must have the same

physical form in principally every product variant.

• “Process and/or Organization” imparts the strategy that there is a suitable

collection of technology-driven work content for a manufacturing cell or work

group to support a uniquely efficient process.

“Voice of Quality” seeks to improve the manufactured quality of a product.

Increasing quality decreases the loss from warranty and product liabilities by

decreasing quality feedback time. To address this concern, the following Module

Drive is applied.

• “Separate Testability” or “Separate Testing” imparts strategies where functions

can be tested independently of the product.

“Voice of Supply Chain” provides manufacturing with the raw material and

components it needs to build the product a customer desires. At times it will be

critical for an outside vendor to provide a company with standard modules or black

box modules. Black box modules are modules in which a vendor takes total

responsibility in terms of development, manufacture, and quality assurance. Typi-

cally, vendors of black box modules are specialists in a given technology, and a

company can leverage this expertise with the use of this Module Driver:

• “Supplier Availability” imparts strategies for outsourcing “black box” technol-

ogy in a module. Alternatively, this driver is re-labeled as “Strategic Supplier” or

“Strategic Supplier Available.”

The addition of non-factory accessories, parts, service, or upgrades refers to the

“Voice of Aftermarket.” This stage of the life cycle occurs once the product has

been released to the marketplace. Sometimes, these services are offered by the

company that manufactures the product and other times these services are made

possible by an unrelated entity. The following three Module Drivers support this

Voice of X:

• “Service and Maintenance” imparts strategies where service on a product in the

field is an important customer value. The driver is also known as serviceability.

• “Upgrading” imparts strategies that will extend product life or improve product

performance.

• “Recycling” imparts strategies that enable codes regarding the disposal of

hazardous as well as homogenous materials.

The concept of a design strategy represented as a Module Driver for selected

product life cycles is not limited to just these 12 Module Drivers. Additional drivers

can be added to this generic set depending on the industry and product type. An

example of the addition of a Module Driver can be found for the medical industry

that develops and markets test equipment that is required to certify sub-systems

with the Food and Drug Administration for products sold in the US market. A

98 M.W. Lange and A. Imsdahl

product architecture developed for a company in this industry may well use a

“Regulations Compliant” Module Driver. A similar Module Driver is also useful

in the specialty vehicle industries that develop motor vehicles for over-the-road use

in Europe and North America, because road certification is different in Europe

contra North America.

4.3 Approach

4.3.1 Imparting Strategy with Module Drivers

Module Drivers are the information objects used to bridge the business strategy

with the product architecture, and often several Module Drivers are applied to

indicate several strategic objectives. There are combinations of Module Drivers that

are compatible, which allow them to work together to enhance a module’s strategy.

For example, two objectives for creating a product platform are to shorten lead

times and reduce costs. The compatible pair of Common Unit and Carry Over

addresses both of these goals in a single module. By carrying over the module, lead

times are reduced since no time is spent on redesigning or updating the module from

one product generation to the next. Common Unit modules are typically high

volume modules and therefore attain a sourcing discount. Together the drivers

create a coherent strategy.

A second compatible set of drivers is Service and Maintenance and Separate

Testability. Service and Maintenance modules are structured in such a way when

the module stops functioning, it can be removed from the product in its entirety and

replaced with a fully functional new module. If the module is also Separate

Testability, service can be conducted on the dysfunctional module to discover if

the module can be repaired. This combination improves customer satisfaction and

reduces cost by preventing extended downtimes.

Separate Testability is also compatible with Supplier Availability. Since Sup-

plier Availability modules are black box engineered by the supplier, companies can

verify the quality of these modules by testing them prior to assembly. This shortens

lead times and reduces costs.

There are also conflicting drivers. These are Module Driver combinations whose

strategies are mutually exclusive. Both Technical Evolution and Planned Design

Change state that the content of the module will change over time, where the

content of Carry Over modules will not change over time. With differing

perspectives on time, Technical Evolution and Planned Design Change should

not be used in conjunction with Carry Over for any given module.

Styling and Different Specification are drivers which indicate high variance

modules. Common Unit on the other hand is a driver for modules where there is

no variance. These drivers have conflicting strategies and should not be used in

combination with each other.

4 Modular Function Deployment 99

The last set of conflicting drivers is Technical Evolution and Process and/or

Organization. Technical Evolution modules have content that is evolving due to

external sources. Process and/or Organization modules reuse a specific

manufacturing process. The idea of reuse and change conflicts with each other

and should not be combined in the same module.

To illustrate the application of Module Drivers, imagine a laptop. A laptop is a

collection of modules each with its own strategy. Take the screen for example.

Screens are offered in sizes ranging from 12 in. to 17 in. Each size offers a

distinguishable performance to the customer. In contrast to the laptop, an iPad® is

currently only available in one screen size. The screen, as a module, has therefore

been imparted with the Common Unit driver as a business strategy.

Another example of Different Specification is the battery. A battery offered in a

laptop can be available in two different performance levels: regular life and

extended/heavy duty life. Depending on a consumer’s use of the laptop, say

someone who travels on a plane regularly, they would buy a battery with extended

life so that during a flight they can work for hours without having to recharge. On

the other hand, someone who only checks e-mail and surfs the web for an hour or so

at night has their needs met with a regular life battery. Therefore battery supports

Different Specification to meet the needs of both customers.

Battery packs found in a typical laptop can be replaced in the event the battery

will no longer hold a charge. This capability would be imparted by the Service and

Maintenance driver for a business strategy. However, consider the current genera-

tion of e-readers and tablets. If the battery in these devices no longer charges, the

battery in the unit cannot be replaced by the consumer. This reflects a business

strategy for the product architecture that does not include Service and Maintenance

on the battery.

The laptop and e-readers/tablets use their case as a style design element in the

architecture. Apple® has trademarked the iPad® white case with clean simple lines.

It is the look that Apple® has become known for. With the introduction of the

iPhone, iPads now also come in black. Similarly, laptops allow a customer to

purchase a case in any color of the rainbow. This choice is imparted by applying

the Styling driver.

The hinge, USB, and power button are all examples of Common Unit and Carry

Over. Each of these modules has a single module variant that is used across the

entire platform of laptops. Regardless if laptop has a 15” screen with regular battery

life or a 17” screen with extended battery life, the hinge, USB, and power button

will always be the same. While the presence of these modules is essential to the

function of a laptop, none bring a tremendous amount of value to the customer. And

none will be undergoing a technology shift during the lifetime of the platform.

Therefore these modules also embody a Carry Over strategy.

Similar to the hinge, USB, and power button a laptops latch is also a Common

Unit. It too comes in a single module variant used across all models of the product

platform. Unlike the previous modules, the latch is not carried over from one

product generation to the next. Instead the latch is part of the style of the laptop

100 M.W. Lange and A. Imsdahl

case. As industrial engineers update the form of the laptop the latch will change.

Therefore, the strategy of the latch is Common Unit and Styling.

Laptop microprocessors are a technology that laptop manufacturers typically do

not design for themselves. The microprocessor is an example of black box engi-

neering. The laptop manufacturers would be unable to produce the laptop without

the microprocessor supplier. This is a strategic relationship between the companies

and therefore a Supplier Availability module.

With a limited number of microprocessor manufacturers, there is a significant

amount of competition to produce the fastest, most reliable microprocessor.

Microprocessors are rapidly changing to exceed the expectation of customers. To

stay in line with the latest technology laptop, companies decide if they want

to enable their product architecture to handle these constant changes. If they

want to offer their customers the best of what is available from the external sources,

the microprocessor will also become a Technical Evolution module.

Webcams are becoming more common in laptops and tablets. For the laptop

producer, the webcam will be a Technical Evolution module. However, within this

webcam, there is a chip that is being developed to capture images in ever increasing

resolutions. For the chip manufacture, this technical solution with be imparted with

the driver Planned Design Change.

If a laptop company designs their own hard drives, it may be advantageous for

them to increase aftermarket sales with an Upgrading strategy. Allowing a customer

to transition from a 250 GB hard drive to a 500 GB or even a 1 TB hard drive as

their storage needs change. The customer will not have to buy a new laptop to

gain the extra storage, and the company will still maintain the sales revenue by

selling the higher capacity hard drive.

Hard drives require a clean room environment during their assembly. Any

particles that are introduced may interfere and destroy the operation of the hard

drive’s intricate componentry. Process and/or Organization would collect the

components into a module for an efficient, high quality process.

The final module is the motherboard. This module employs both Separate

Testability and Recycling. Motherboards are an expensive and integral component

of a laptop. Separate Testability offers quality feedback prior to the assembly of the

motherboard to the case. In the event of a quality issue, the impact is contained to

the motherboard only. No additional modules will need to be scraped.

Motherboards contain materials that require special handling at the end of life of

a laptop. The ability to remove the motherboard from the rest of the machine

ensures that that module will be disposed of properly. This strategy is enabled by

the Recycling driver.

4.3.2 Aligning Module Drivers to Value Disciplines

As information objects used to bridge business strategy with a product architecture,

the application of Module Drivers impart business strategies that align with the

Different Value Disciplines.

4 Modular Function Deployment 101

Product Leadership companies are creative, commercialize their products quickly,

and constantly try to outdo themselves. The value proposition for a product leader is to

offer their customers the best product imaginable. The Module Drivers that substan-

tiate the value proposition are Technical Evolution and Planned Design Change.

Product leaders are constantly reinventing themselves. They are not concerned if

the changes are external or internal. They will lead the market regardless.

Customer Intimacy companies rely on building customer loyalty. These

companies are not directly focused on a product that a market segment wants.

Instead they are interested in the product a specific customer wants. The value

proposition for Customer Intimacy is selling the best total solution from product to

services. Different Specification, Styling, Service and Maintenance, and Upgrading

all increase a company’s ability to offer the total package to a customer. Different

Specification and Styling manage the customer specified variance, where Service/

Maintenance and Upgrading manage the services provided once the customer has

purchased the product. These drivers manage the total solution.

Operational Excellence companies are not service or product innovators. They

do not build profound relationships with their customers. The value proposition for

an operationally excellent organization is to provide their customers the best priced

products with the least inconvenience. The Module Drivers that reinforce the

proposition are Carry Over, Common Unit, Process and/or Organization, Separate

Testability, Supplier Availability, and Recycling. Each of these drivers’ aides a

manufacturing company in focusing on streamlining processes, reducing set-up

times, and strengthening the supply chain. Reducing the cost of producing a product

enables an attractive price point being offered to the customer with superior

customer service.

The alignment of the Module Drivers to the Value Disciplines, as discussed, is

shown in Fig. 4.5 by treating each Value Discipline as an Eulerian circle. These

Fig. 4.5 Value disciplines

shown with the aligned

Module Drivers

102 M.W. Lange and A. Imsdahl

alignments can be adjusted if the business strategy of company varies from the

generic model. An example is found in the Module Driver for Recycling.

One business strategy might place the Recycling driver along the Customer

Intimacy to impart the idea that the module can be recycled by the end user as

part of a “green” strategy. Another business strategy might place the Module

Driver along the Operational Excellence to impart the idea of material purity

in the module.

4.3.3 Illustrating the Module Driver Profile

During step 3 of a Module Function Deployment program, a project team completes

the Module Indication Matrix by assigning Module Drivers to the Technical

Solutions selected to be included in the architecture or platform using a scale of

9, 3, or 1. A score of 9 when applying a Module Driver represents a strong strategic

interest, a 3 has a medium level of interest and a 1 has little strategic interest (but

there is enough to make a difference). The scoring data is recorded in a database

tool called product architecture lifecycle management (PALMA).

Each application of Modular Function Deployment that results in a module

system is captured in a PALMA database that allows the results of the first three

steps to be presented as a set of three linked two-dimensional matrices, also called

the PMM, shown in Fig. 4.6. For this approach, we will extract the third matrix for

examination, the Module Indication Matrix that illustrates the relationships

between the modules and the Module Drivers.

After discussion with the company, the Module Drivers are sorted into a

company specific Value Discipline that follows the general definitions, as

illustrated in Fig. 4.3. These same alignments are performed on the Module Drivers

in the Module Indication Matrix. Aligning the Module Drivers to the strategic axes

offers a unique ability analyze the Module Driver profile for the product platform

and establish the existence of alignment between the corporate strategy, i.e., value

discipline and the project team strategy. The Module Driver profile is the unique

combination of Module Drivers and can be found on modules as well as on a whole

architecture.

In the first iteration of a Module Indication Matrix, it is difficult for the project

team to commit to a single driver. Typically different voices are in conflict over the

strategic intent of the module. Marketing would prefer to have a module with a high

number of variants that change with each product generation, but manufacturing

wants to standardize on a single solution that remains unchanged. In some cases, the

project team views their corporate strategy differently than upper management.

Many engineering teams believe that they are product leaders when in reality the

organization has a strong focus on Operational Excellence. Multiple iterations on

the Module Indication Matrix are required to reconcile these conflicts and simplify

the strategy.

4 Modular Function Deployment 103

Allowing only a primary and possibly a secondary strategy reduces the com-

plexity of a module’s design and simplifies the Module Driver profile. Think of it in

terms of driving a car; would you want more than one person driving a car? A

copilot comes in handy but add a backseat driver and the ride can become problem-

atic. As with driving a car, multiple Module Drivers lead to complications in the

management of the architecture. Harmonizing a module’s strategy is critical to

the longevity and success of the product platform. Module Drivers capture all the

voices but a decision is needed to indicate which voices are most important to

the company as a whole.

Based on the Module Driver profile given for each indicated module, a count is

made of the unique Module Driver profiles for each Value Discipline space and

intersection. As shown in Fig. 4.7, there are only seven different spaces in which a

unique Module Driver profile will appear. Depending on the application of the

Module Drivers to a module it will appear in one of the seven spaces.

To support communication with the project team, a diagram is created that

illustrates where the modules, having unique Module Driver profiles, appear in

the Value Discipline spaces and intersections. An evaluation of the number of these

modules and the scoring for the Module Driver profiles is performed to qualitatively

understand if the stated business strategy is reflected from the distribution shown in

the diagram.

An evaluation of the module system shown in Fig. 4.8 would indicate a business

strategy strongly aligned with the Product Leadership Value Discipline with a weak

Fig. 4.6 Screenshot of the PALMA application that shows the Module Indication Matrix

104 M.W. Lange and A. Imsdahl

alignment to the Customer Intimacy Value Discipline. This would suggest that the

product platform will release a steady stream of new product variants, built on an

established range of product. A product platform would have to have a very flexible

and agile manufacturing process representing very little invested capital, for exam-

ple, a service product.

4.4 Demonstrations

Since 1996 Modular Management has been building a database that contains more

than 100 modular product architectures that have applied Modular Function

Deployment to develop a modular product platform. The products range from

microwaves to motor vehicles.

Fig. 4.8 Value Discipline

spaces shown with a set of

modules arranged according

to their unique Module

Driver profiles

Fig. 4.7 Value Discipline

spaces in which Module

Driver profiles will appear

for a module system

4 Modular Function Deployment 105

To sort this list by product types the North American Industry Classification

System (NAICS) was used. The expectation was that all Module Function Deploy-

ment projects would be for companies classified within the manufacturing sector;

however, only 90 % of the projects were classified as manufacturing. Looking

further, the remaining 10 % of companies had a main business practice which lent

itself to other NAICS codes but contained a branch dedicated to manufacturing. The

distribution of products is shown in Fig. 4.9.

In the following sections, four demonstrations of Modular Function Deployment

are taken from this database. Each case represents a unique situation that was

illustrated using the unique application of Module Drivers to impart a business

strategy to the product architecture.

4.4.1 Riding-Machine Platform

The company in this demonstration has for over 50 years had a major focus on the

Customer Intimacy Value Discipline with a minor interest in Operational Excel-

lence. The demonstration of Modular Function Deployment for this company

represents a whole vehicle platform execution; over 200 different Technical

Solutions were addressed in the integration of 30 different product lines into a

Fig. 4.9 NAICS distribution of industries that have applied Module Function Deployment

106 M.W. Lange and A. Imsdahl

single product platform. The 30 different product lines were manufactured on no

less than five different production lines in one factory and a minimum of two

production lines in separate satellite factory. With the appearance of each new

generation of product, a new production line was established to support that

product. Furthermore, as each new generation of product was introduced, the

previous generation of product was retained, including any related service and

support systems. Many of the product variants were further customized after they

left their respective production line.

There were two strategic objectives in applying modularity to a new product

platform. The first was a technology strategy to reduce engineering effort within

individual product lines by eliminating duplicate and competitive Technical

Solutions that were used to fulfill the same Customer Value. The outcome expected

was not just a reduction in engineering effort but also an increase in product

configurability of product variants. The second was a manufacturing strategy to

reduce the number of different product lines by establishing a module system that

embodied more Customer Value driving variance.

Execution of step 3 of Modular Function Deployment was performed in two

iterations with the first focused on imparting the project team member’s current

perception of the business strategy to all the Technical Solutions considered for the

product platform, the data of which is shown in Fig. 4.12 and then illustrated for

group discussion and evaluation in Fig. 4.10.

1 unique Module Driver profiles for
2 different Technical Solutions

2 unique Module Driver profiles for
3 different Technical Solutions

2 unique Module Driver profiles for
7 different Technical Solutions

22 unique Module Driver profiles for
39 different Technical Solutions

22 unique Module Driver profiles for
65 different Technical Solutions

3 unique Module Driver profiles for
8 different Technical Solutions

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.10 The Module Indication Matrix showing the initial scoring of Module Drivers for the

riding-machine platform Technical Solutions

4 Modular Function Deployment 107

The second iteration was a review of the results of the first phase, with the added

procedural requirement of reducing the number of applied Module Drivers to a

maximum of two per Technical Solution and then integrating functionally

related Technical Solutions into strategic modules, the data of which is shown

in Fig. 4.13 and then illustrated for group discussion and evaluation in Fig. 4.11.

This requirement was driven by the desired alignment of the product architecture to

only two Value Disciplines; primary Customer Intimacy and secondary Operational

Excellence.

From the results of the first phase, of the 125 different Technical Solutions

considered for the product platform, over 100 were identified as belonging to two or

more value disciplines, in particular the intersection of Customer Intimacy and

Operational Excellence and secondarily with 39 of these Technical Solutions

acquiring a Module Driver profile that spanned over all three value disciplines.

This effect of applying the Module Drivers is quite common and reflects the fact

that the team members have not negotiated the tactical means of imparting the

desired business strategy in a product platform. A resolution is reached by

decomposing the Technical Solution into those parts that correspond best to a

single value discipline or by aggregating the Technical Solution into a broader

function to emphasize the importance of a single value discipline.

2 unique Module Driver profiles for
4 different Modules

3 unique Module Driver profiles for
5 different Modules

3 unique Module Driver profiles for
7 different Modules

7 unique Module Driver profiles for
23 different Modules

2 unique Module Driver profiles for
3 different Modules

11 unique Module Driver profiles
for 27 different Modules

10 unique Module Driver profiles for
21 different Modules

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.11 Final distribution of unique Module Driver profiles across the Value Disciplines for the

technical solutions of a riding-machine platform

108 M.W. Lange and A. Imsdahl

Fig. 4.12 The Module

Indication Matrix showing

the initial scoring of Module

Drivers for the riding-

machine platform modules

4 Modular Function Deployment 109

The platform resulted in 90 modules with roughly equal numbers on the OE (21),

OE + CI (27) and CI (23) value disciplines, which accounts for about 80 % of the

module system of the product platform. This was a dramatic improvement in

understanding the needs of realizing the business strategy; product variance was

desired, but there were still issues in the manufacturing of technology that need to

be resolved to improve the performance of the product platform.

Fig. 4.13 Final distribution

of unique Module Driver

profiles across the Value

Disciplines for the modules

of a riding-machine platform

110 M.W. Lange and A. Imsdahl

4.4.2 Building Air Conditioning System

The products in the building air conditioning system (BACS) market compose a

landscape that has changed little over the last 75 years. Technology in the market

has remained consistent forcing competitors to find other way to differentiate

themselves from each other. As regions of the world are beginning to develop,

opportunities for market growth are also developing particularly in the Middle East

and Africa.

The project demonstrated here was looking to capture a part of this growing

market. An additional challenge posed to the team was global regulations had led to

the ban of a domestically used refrigerant. To seize the market opportunity, the

BACS company needed to convert their existing product to the new refrigerant in

the shortest amount of time possible. To achieve this goal, the platform was going to

need to be focused on the value discipline of Operational Excellence.

The first iteration of the platform (see Fig. 4.14 and Fig. 4.15) identified

219 modules with 21 unique Module Driver profiles. 37 % of the modules were

located wholly in Operational Excellence. 12 % appeared in the overlap between

Customer Intimacy and Operational Excellence. 2 % were entirely Customer

Intimacy. 7 % showed up as Product Leadership and Customer Intimacy. Another

2 % was completely Product Leadership. The remaining 39 % appeared at the

intersection of all three value disciplines.

2 unique Module Driver profiles for
4 different Technical Solutions

8 unique Module Driver profiles for
16 different Technical Solutions

2 unique Module Driver profiles for
86 different Technical Solutions

2 unique Module Driver profiles for
4 different Technical Solutions

4 unique Module Driver profiles for
27 different Technical Solutions

3 unique Module Driver profiles for
82 different Technical Solutions

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.14 Initial Module Driver profiles for building air conditioning system Technical Solutions

4 Modular Function Deployment 111

To enable the program objective of launching the platform in a truncated lead

time, the platform requires a strategy with an emphasis on Operational Excellence.

With the initial distribution, there was a large disconnect between business strategy

and team strategy. The initial distribution showed 37 % of the modules were

exclusively Operational Excellence. This was not a high enough percentage to

attain the quick product launch requested by management. Management realigned

the team and gave them the goal of 80 % Operational Excellence.

After the realignment of the team, a second iteration of the MIM was generated.

The result was 51 modules with 13 unique profiles. The new distribution had 71 %

Operational Excellence, 18 % Customer Intimacy and Operational Excellence, 8 %

Product Leadership and Customer Intimacy, and 4 % Product Leadership. The

updated profiles were closer to the goals outlined by management (see Fig. 4.16

and Fig. 4.17).

Fig. 4.15 Initial Module Driver scoring for building air conditioning system Technical Solutions

112 M.W. Lange and A. Imsdahl

2 unique Module Driver profiles for
2 different Modules

4 unique Module Driver profiles for
4 different Modules

3 unique Module Driver profiles for
9 different Modules

4 unique Module Driver profiles for
36 different Modules

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.16 Final distribution of unique Module Driver profiles across the Value Disciplines for the

module system of the building air conditioning system

Fig. 4.17 Final Modular Indication Matrix for the modules for the building air conditioning

system platform

4 Modular Function Deployment 113

4.4.3 Construction Equipment Accessory

Modular Function Deployment is often applied to physical products that result in a

module system assembled using mechanical fastening systems. This demonstration

shows a product module system that is assembled using welding processes.

The company behind this demonstration has an established 20-year manufacturing

strategy that includes outsourcing of the entire product, sub-systems, or accessories to

any available regional manufacturer. The availability of “strategic suppliers” allows

this company to compete with region-based third-party providers of the same acces-

sory. Furthermore, there is a clearly stated marketing strategy of not desiring to be

perceived as a Product Leader on the market, instead they intend on providing a total

construction equipment solution that satisfies the needs any customer that purchases

equipment.

The product platform is composed of 14 unique Module Driver profiles

representing 21 different modules. The scoring is summarized in Fig. 4.18. The

Module Driver profiles are distributed in the Value Disciplines shown in Fig. 4.19.

The Module Driver profile for the modules in this product platform illustrates a

strong desire by the client to deliver product variants from efficient manufacturing

processes. 19 of the identified modules are positioned over the Value Discipline of

Fig. 4.18 The Module Indication Matrix showing the scoring of Module Drivers for the modules

of the construction equipment accessory

114 M.W. Lange and A. Imsdahl

Customer Intimacy, yet 18 of these modules are located in the intersection of either

the Value Discipline of Operational Excellence (12 different modules) or Product

Leadership (6 different modules).

In practice, this strategy is difficult to implement. On one hand, manufacturing

processes are best optimized when there is very little or no variance, and on the

other hand, variance is required to fulfill customer needs. The compromise is to

establish regional manufacturing lines that are optimized for the range of variants

that are needed for a regional consumer.

4.4.4 Cell Phone

One of the earliest applications of Modular Function Deployment was on a mobile

phone, more commonly referred to as a cell phone. The client for this demonstration

has a well-developed manufacturing strategy that promotes a highly automated cell-

based manufacturing system intended to product large volumes of product for

delivery to a variety of different global markets. After the execution of Modular

Function Deployment, 12 different strategic modules were established for the

4 unique Module Driver profiles for
6 different Modules

1 unique Module Driver profile for
1 Module

6 unique Module Driver profiles for
12 different Modules

2 unique Module Driver profiles for
2 different Modules

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.19 Distribution of unique Module Driver profiles across the Value Disciplines for the

module system of a construction equipment accessory

4 Modular Function Deployment 115

product platform, which are shown in with their scoring from the Module Indication

Matrix in Fig. 4.20.

From the distribution of the unique Module Driver profiles shown in Fig 4.21,

the product architecture reflects the manufacturing strategy of the client. Of the

12 modules identified for the platform, 10 of those modules are directly aligned to

the Operational Excellence Value Discipline.

All of the Module Drivers, as defined, were utilized and produced eight unique

combinations for the 12 different Modules in the platform. Notice that nine of

these 10 modules have acquired the Common Unit Module Driver, indicating

that these modules will be used in every product variant configured from the

module system. Notice also that four of this set of 12 Operational Excellence

Modules is contributing to the Product Leadership Value Discipline; Two

modules driven by Planned Design Changes and two modules driven by

Technology Evolution.

If one should emphasize the importance of responding to the strategy of

providing product variance, notice that three of the 12 modules are aligned with

the Customer Intimacy Value Discipline, where only one is clearly aligned with the

Module Drivers for Styling plus Upgrading. This is the module intended to carry the

greatest variance in the platform. However, there is also performance variance

indicated using the Different Specification Module Driver for the two remaining

modules.

Fig. 4.20 The Module Indication Matrix showing the scoring of Module Drivers for the modules

of the cell phone

116 M.W. Lange and A. Imsdahl

4.5 Conclusions

Industrial companies are applying product architectures to realize business

objectives. In this chapter, the concept of a business strategy represented as a

Value Discipline has been integrated with Modular Function Deployment’s Module

Drivers to show where in a product platform that a project team has imparted the

business strategy. Using this approach during the execution of Modular Function

Deployment, it has been possible for project teams to discern the strategic intent

their decisions have made in selection of modules by reviewing the distribution

over the seven different Value Discipline spaces using the Module Driver profiles.

Sometimes, there are often a great number of tough decisions that need to be

made by project teams. Ensuring that the team remains focused on a primary and

secondary Value Disciplines requires careful review of the application of Module

Drivers and iterating on results in order to impart the desired business strategy. This

makes the application of Modular Function Deployment a unique approach to the

development of a modular product platform; it can be applied to devise module-

based product architecture (the tactic), and it can be applied to explain the objective

of the module-based architecture (the strategic).

3 unique Module Driver profiles for
3 different Modules

1 unique Module Driver profile for
1 Module

1 unique Module Driver profile for
1 Module

1 unique Module Driver profile for
1 Modules

2 unique Module Driver profiles for
6 different Modules

Customer
Intimacy

Product
Leadership

Operational
Excellence

Fig. 4.21 Distribution of unique Module Driver profiles across the Value Disciplines for the

module system of a cell phone

4 Modular Function Deployment 117

References

Baldwin CY, Clark KB (2000) Design rules: vol 1, the power of modularity. MIT Press,

Cambridge, MA

Bowman D (2006) Effective product platform planning in the front end. In: Simpson TW,

Siddique Z, Jiao J (eds) Product platform and product family design; methods and applications.

Springer Science + Business Media, New York, NY

Christopher A (1964) Notes on the synthesis of form. Harvard University Press, Cambridge, MA

Ericsson A, Erixon G (1999) Controlling design variants: modular product platforms. Society of

Manufacturing Engineers, Dearborn, MI

Erixon G (1998) Modular function deployment – a method for product modularization. Doctoral

Thesis, The Royal Institute of Technology, Department of Manufacturing Systems, Stockholm,

Sweden

Hölttä KMM, Salonen MP (2003) Comparing three modularity methods. In: Proceedings of

ASME design engineering technical conferences, Chicago IL, 2–6 Sept 2003

Kono T, Lynn L (2007) Strategic New Product Development in the Global Economy. Palgrave

Macmillan, New York, NY

Marion TJ, Simpson TW (2006) Platform leveraging strategies and market segmentation.

In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product family design; methods

and applications. Springer Science + Business Media, New York, NY

Nightingale DJ, Srinivasan J (2011) Beyond the lean revolution: achieving successful and sustain-

able enterprise transformation. American Management Association, New York, NY

Nilsson P (1998) The chart of modular function deployment, 4thWorkshop on product structuring,

Delft University of Technology, 22–23 Oct 1998

Östgren B (1994) Modularisation of the product gives effects in the entire production. Licentiate

Thesis, The Royal Institute of Technology, Department of Manufacturing Systems, Stockholm,

Sweden

Simpson TW, Siddique Z, Jiao RJ (2006) Product platform and product family design; methods

and applications. Springer Science + Business Media, New York, NY

Treacy M, Wiersema F (1995) The discipline of market leaders. Addison-Weasley Publishing,

Reading, MA

Ulrich KT, Eppinger SD (2008) Product design and development. McGraw-Hill, New York, NY

Vos JAWM (ed) (2001) Module and system design in flexibility automated assembly. DUP

Science, Netherlands, p 23, Chap. 2

Wheelwright SC, Clark KB (1995) The Product Development Challenge: Competing through

Speed, Quality, and Creativity. Harvard Business School Press, Boston, MA

118 M.W. Lange and A. Imsdahl

Chapter 5

Emphasizing Reuse of Generic Assets

Through Integrated Product and Production

System Development Platforms

Hans Johannesson

Abstract Solutions from a part-based platform are inflexible to reuse in develop-

ment situations as they are not allowed to be changed per definition. To use a number

of such unchanged parts in new design context is problematic as related designs in

the new context will be constrained. If changes are made, the initial platform

intentions are violated, and economic scale benefits based on commonality may be

lost. Furthermore, modifications made may result in unexpected consequences if the

initial intentions and context are not properly understood. A more fruitful approach

to support carryover without these drawbacks is to reuse design information

containing not only final solutions but also their design rationales together with

other kinds of generic assets. This is important for companies that cannot adopt a

pure part-based platform approach but still want to achieve customization and

economies of scale by efficient and effective reuse of other assets.

5.1 Background

The main driving force for platform-based development and manufacturing is the

opportunity to combine customization with economies of scale. By doing this, it is

possible to produce a new product variant without having to develop all of its parts,

just the ones that are variant-specific. The rest can be carried over from existing

products or from a common core of parts in a product family or even multiple

families of different brands—the product platform. Although much has been gained

with this strategy, it has its limitations. Reuse of only ready designed parts threatens

to restrain further development as they per definition are not allowed to be changed,

and too much commonality threatens the products’ differentiation within a product

offer, i.e., solutions from a part-based platform are inflexible to reuse. To carryover

H. Johannesson (*)

Department of Product and Production Development, Chalmers University of Technology,

SE-412 96 Gothenburg, Sweden

e-mail: hansj@chalmers.se

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_5,
Springer Science+Business Media New York 2014

119

mailto:hansj@chalmers.se

a number of such parts to another design context is also problematic. If it is done,

necessary modifications may lead to necessary changes of a relatively large number

of other parts in the original platform, and then the economic scale benefits may be

lost. Furthermore, modifications made may result in unexpected consequences if

the initial intentions and context are not properly understood. A more fruitful

approach that can support carryover without these drawbacks is to reuse design

information described on higher levels of abstraction containing not only final

solutions but also their design rationales and design histories. This kind of approach

would also support reuse of other kinds of knowledge-based assets. The scope of a

platform and use of its assets could then be extended beyond clean-cut configure-to-

order and carryover of parts to reuse of a variety of different assets on different

levels of maturity and in different development scenarios. This is important for

companies that cannot adopt a pure part-based platform approach but still want to

achieve customization and economies of scale benefits by efficient and effective

reuse of other assets.

Researchers who have recognized the potential advantages of platform-based

approaches have described and proposed different frameworks, methods, and

mathematical tools to define and make use of such approaches in different industrial

settings (e.g., Jose and Tollenaere 2005; Simpson 2004; Simpson et al. 2005). A

well-known industrial example from Black and Decker is reported by Meyer and

Lehnerd (1997) and Simpson (1998). Another industrial example described by, for

example, Prencipe (1998) is from Rolls Royce. Standardization and modularization

are also ways to increase reuse of resources aimed at economies of scale. A number

of publications, (e.g., Baldwin and Clark 2000; Ericsson and Erixon 1999), discuss

different techniques for standardization and modularization in this context.

The content of the platform and how this content is developed and described are

crucial for the simultaneous optimization of both reuse and design variety as well as

for data, information, and knowledge sharing. As already indicated, a platform

based on parts that are already designed has severe shortcomings regarding flexi-

bility. More abstract and easily configurable platform descriptions have therefore

been proposed. van Veen (1991) proposes a generic bill of material (BOM) to

provide possibilities for the description of large varieties of product types and

structures. The idea is to define product data on a level of sets of product types,

rather than defining individual product types. Erens (1996) applied and explored

this concept further when developing product families and synthesizing product

variants. In line with these ideas, Claesson (2006) has proposed a platform descrip-

tion approach based on autonomous configurable systems, so-called configurable

components (CCs).

Reuse can benefit from product descriptions that are information-rich, i.e.,

descriptions that contain additional explicit information besides the resulting

design. With information describing the reasoning behind the design and issues

considered, referred to as the why-information, it is more likely that the design can

be used and reused in accordance with what it was designed for. Why-information
can bridge gaps between distances both in time and in space. Bridging distances in

time means to inform about the design intent, both now and later. It also covers an

120 H. Johannesson

understanding how to modify the design without accidentally losing wanted

behavior and, more fundamentally, how to dare to make any changes at all, instead

of having to remake the complete design. Bridging distances in space deals with use in

multiple contexts (i.e., use in another product than the one primarily intended), aswell

as concurrent activities where multiple organizations are involved simultaneously.

Collaboration between partners in a supply chain, as between an original equip-

ment manufacturer (OEM) and its suppliers, has increased in recent years to

become a natural part of the activity of any company that develops complex

products. The main reason for this is that a company needs to focus on its core

activities while allowing other actors to complement its shortcomings in specialized

areas where suppliers can produce less expensive and better products. The products

developed by suppliers have also grown over time to become complete complex

systems which only need to be attached to the final product at the buyers’ plant. All

this puts new demands on the suppliers’ own product development capabilities and

involvement in the buyers’ product development process.

For a supplier that is delivering customized subsystem solutions to multiple

OEM companies or other higher-tier customers, a platform-based product develop-

ment approach becomes as important as it is for an OEM. Both need a product

platform which can be configured to deliver customized variants to several

customers. An OEM delivers instantiated product variants to end customers,

while a supplier, in a business-to-business relationship with an OEM, delivers

customized subsystems which may require further customization by the OEM to

fulfill its end customers’ needs.

Suppliers’ systems have become larger with greater influence on the quality and

impression made of end products. Collaborative development, with information and

knowledge exchange between suppliers and OEMs, has therefore become essential.

Consequently, there is a growing need for new methods and tools to support the

exchange of information and knowledge between collaborating partners in supply

chains. Knowledge-based platforms have potential to support such exchange.

5.2 Platforms in Industrial Contexts

Reuse of components and interfaces has enabled large cost savings. This is the reason

why product platforms have been increasingly important for many companies in

recent years. Platforms enable enterprises to rapidly provide new product variants

(Meyer and Lehnerd 1997; Halman et al. 2003) to respond to market changes. This

facilitates more customer-oriented offers. As mentioned, platforms enable economy

of scale benefits in production and efficient utilization of the resources of an enter-

prise. Building a platform can be seen as an evolutionary process where companies

continuously have to renew their product families and, eventually, their platform to

adapt to changing market needs (Meyer and Lehnerd 1997).

There are several ways to describe what a platform is. Different researchers do

not define platforms and how they relate to adjacent concepts such as product

5 Integrated Product and Production System Development Platforms 121

families, modules, and brands in the same way (Halman et al. 2003). Simpson

(Simpson et al. 2001) define product platforms as a set of parameters, features, and/

or components which remain constant for several products within a given product

family. In this definition, product families are described as groups of related

products that share common features, components, and subsystems, all of which

can be combined to satisfy various market niches. Variants are configured by

combining common components with variant-specific ones. Although this way of

describing platforms is shared by many companies, it does have shortcomings.

Besides the previously mentioned inflexibility problem, the inclusion of other

resources such as manufacturing and organizational assets, as well as methods

and IT tools in such platform definitions is difficult. A wider scope when studying

platforms is exemplified by Robertson and Ulrich (1998). They describe a platform

as a collection of assets, components, processes, knowledge people, and

relationships that are shared by a set of products. Another way of looking at

platforms is as architectures controlled by design (Gershenson et al. 2006),

characterized by common structures, scaled variables, and variable structures,

which can support more than one product. This view expresses the need to

exchange parts or components and also to scale products to suit certain customer

segments. Still another view focuses basic architectures that comprise subsystems

or modules with interfaces between them (Meyer and Lehnerd 1997). Here the need

for interfaces between interacting systems is emphasized.

Platforms are, according to Jiao et al. (2006), designed for either functional

variety or technical variety. The first aims to satisfy diverse customer needs, while

the second aims to reduce the in-house variety. Each approach requires its own

strategy to address the two divergent advantages searched for in platform develop-

ment, i.e., variety to enable customization or reduction of unique parts to gain

economies of scale.

Many companies define a product platform as the common resources within a

single product family. Other companies, such as companies in the automotive

industry, are more likely to consider platforms that can carry multiple product

families across different brands or across product generations (see Fig. 5.1). Here

platform A may be the “small car platform” within a big automotive enterprise

producing cars of different brands, whereas platform B and platform C could be the

“medium-size and large-size platforms” for the companies within that enterprise

(Wahl et al. 2010).

In a supply chain there is an OEM at the top producing for the consumer market.

This OEM is at the same time an industrial customer buying components and

subsystems from its suppliers. For an OEM producing for the consumer market, a

broader platform carrying all families and brands, as shown in Fig. 5.2, would be

the goal to aim for. Similarly, a supplier, delivering several variants of basically the

same components and subsystems to its different customers, would benefit from the

same platform approach (see Fig. 5.3).

122 H. Johannesson

5.3 An Integrated Platform Approach

Companies that have adopted the idea of platform-based development run different

kinds of product development processes depending of the level of maturity of the

project outcomes. Characterization of maturity is done more or less formal in

different industrial settings. In the aerospace industry, maturity (or Technology

Readiness Level) is related to the NASA TRL scale (Mankins 1995), and this scale

has now also been recognized within other business areas. Technology develop-

ment projects, on low TRL levels (TRL 1–6), are run to learn more about and

prepare new technologies for application in regular product development projects.

It is a way to reduce risk in regular product development projects where

Fig. 5.1 Product platforms carrying multiple product families of different brands

Fig. 5.2 One product platform carrying multiple product families of different brands

5 Integrated Product and Production System Development Platforms 123

significantly bigger resources are allocated than in technology development

projects. The start maturity level in product development projects can differ from

acceptable (TRL 6 in aerospace) in product industrialization projects, to high (TRL
7–8 in aerospace) in engineering-change/engineer-to-order projects, and finally to

more or less complete (TRL 8–9 in aerospace) in pure variant configuration

projects. In all product development projects where the outcome is expected to be

ready for production, the expected maturity of the outcome is high (TRL 8–9). In

the aerospace industry TRL 9 indicates that experience has been gathered

concerning operational use of the technology in an application.

In companies practicing product variant configuration, an important part of

product development projects is to prepare the developed products for configura-

tion. This means to describe the design result in such a way that it can be handled by

a configuration system that can configure a master model with bandwidth to

different variant instances within the allowed bandwidth. The configuration process
itself, when giving variant specifying parameter values as input to the configurator

system and automatically generate a variant, can be seen as a configure-to-order
process that delivers a description of a highly mature (TRL 8–9) product variant to

be produced and delivered to a specific customer.

All three kinds of above indicated development processes, technology develop-

ment, product development, and product variant configuration, have outcomes that

of course describe the developed technologies, products, or product variants but,

following the idea of Lean product development (Kennedy et al. 2008), another

important outcome is the learning that has taken place during the processes. Both

kinds of outcomes add important knowledge value that should be properly taken

care of, managed, maintained, and made available for effective and efficient reuse.

This is the background for the Development Knowledge Platform approach pro-

posed by the Systems Engineering & PLM group within Wingquist Laboratory at

Chalmers University of Technology (WQL Chalmers) shown in Fig. 5.4.

Fig. 5.3 One supplier platform carrying multiple product families for different customers

124 H. Johannesson

According to Mahmoud-Jouini and Lenfle (2010) the benefits from adopting a

platform approach are such that the question no longer is whether to invest in a

platform or not, but how to design it. The reusable knowledge gained in the

different development processes is the basis for establishing a platform for further

development, i.e., the Development Knowledge Platform in Fig. 5.4. How such a

platform should be designed depends on the business environment of the individual

company, its role in that environment and its product offerings. These prerequisites

can vary substantially between, for example, an OEM company in the automotive

business, which is mass-producing complex system products for the private con-

sumer market, and a sub-supplier in the aerospace business providing low volumes

of extremely customized high-tech subsystem solutions to a very limited number of

highly qualified industrial customers. A concept for a platform aimed for the latter

category has been proposed in research collaboration between WQL Chalmers and

an aerospace sub-supplier company. The company is a supplier of subsystems to the

aeroengine manufacturers with whom they perform collaborative product

development.

The case company offers extremely customized subsystem solutions in low

volumes to industrial customers that control the overall product architecture. A

consequence of this is that reuse of ready designed components or modules, with

fixed interfaces, is not an option. One customer would not accept direct carryover of

a solution used by a competitor. The ambition is therefore instead to achieve scale

benefits by reuse of more generic assets like adaptable system design concepts and

Fig. 5.4 Development processes and the Development Knowledge Platform

5 Integrated Product and Production System Development Platforms 125

different kinds of methodologies and technologies mastered by the company

(Berglund et al. 2008; Högman et al. 2009). The concept development platform

therefore consists of:

• A technology platform, where product technologies, manufacturing

technologies, design methodologies, manufacturing methodologies, supporting

IT-based tools, and other product and production matters of interest, which have

been explored to different maturity levels, are stored and managed for further

product development support.

• An integrated product and production system family platform from which

product and production system variants can be efficiently and effectively

adapted within a defined bandwidth.

In Fig. 5.5, the development platform (lower right) and its related development

processes (left) can be seen. The upper gray part symbolizes a system derivative

resulting from a derivative development project where the platform has been used.

Technology development process projects are initiated in order to fulfill experi-

enced needs for change and improvement. These could, for example, be foreseen in

existing product plans, trigged by competitors’ product launches, or driven by new

technological breakthroughs. Figure 5.5 shows that input to technology develop-

ment (entering to the left in the process model) can be both new external knowl-

edge and knowledge already existing in the platform. Note that the technology

process model symbol intends to show that many different technology develop-

ment projects can be executed simultaneously. The result from a technology

development project, i.e., new enhanced knowledge on an increased level of

maturity compared to the input knowledge, is fed to the technology platform for

future reuse.

The input to an integrated product and production system development process

project can come both from the technology platform and the product and production

system platform depending on the aim of the specific system development project.

This could, for example, be to make use of new technology in an existing or new

Fig. 5.5 Development processes and development concept platform

126 H. Johannesson

system platform or to further develop it to extend its bandwidth without introducing

new technology. The result is to be fed to both the technology and the product and

production system platforms (although maybe in different versions). It is a contri-

bution to a new system platform or an upgrading of an already existing system

platform in terms of either bandwidth, maturity, or both.

Input to a system derivative development process project comes from the

configurable product and production system platform together with system variant

defining input parameter values. The aim of this process is to effectively and

efficiently create a system derivative solution fulfilling specific functional as well

as nonfunctional requirements within the bandwidth of the platform system. If the

request falls within the bandwidth, this should be a matter of pure configuration. If

not, the system descriptions in the platform are reused and adapted (engineered) in

order to fulfill stated requirements. A prerequisite for this is platform systems

descriptions, on acceptable to high maturity levels (TRL 6–9), that are configurable

within specified bandwidths. The result of the derivative development process can

be a proposed system solution to be given to a customer or to be used in different

development activities of other stakeholders. It should also be fed to the technology

platform as a highly mature system solution for potential future reuse.

5.4 Platform Descriptions and Platform System Models

In this section, tentative approaches to describe and model the contents of technol-

ogy and product and production system platforms, as described in Fig. 5.5, are

discussed. The approaches have been developed in research collaboration with both

OEM and sub-supplier companies active in the automotive and aerospace

businesses.

5.4.1 Technology Platforms

As stated above, a technology platform can contain product technologies,

manufacturing technologies, design methods, manufacturing methods, supporting

IT-based tools, and other product- and production-related matters of interest, which

are important to reuse in technology as well as product and production system

development. The maturity of different technologies managed in the technology

platform can vary from very low to complete. The level of maturity is furthermore

application dependent, meaning that the same technology can be completely

verified and validated for one certain application, whereas it might be low for

another where the consequences of its applicability are not yet fully understood.

When describing the technologies in the platform, with the aim to support reuse, it

is important not only to describe the technology as such but also all experiences

made of its application so far. This means applications in different scenarios with

5 Integrated Product and Production System Development Platforms 127

references to existing products, previous projects, in-house experts, and PLM

repositories. With this information available, a potential user of a certain technol-

ogy will have access to all previous experiences made of that technology in the

company. This enables him/her to better understand the technology and its

limitations in different scenarios and also what new knowledge that might be

needed and what adaptions that have to be made in his/her new application.

A Wiki-based approach has been adopted to create a portal, or entrance, to the

technology platform (Bergsjö 2011; Corin Stig and Bergsjö 2011). Anyone

involved in development activities within the company has access to this portal.

This means that anyone can check in and have access to technology information on

a first general or basic level. Here you can read what is presented and you can also

make comments, ask questions, and make propositions regarding the described

technologies. Referenced information, e.g., to certain projects, customer

applications, or certain parts of the PLM repository, that is more or less classified

will require certain access codes which are given to authorized users.

The technologies in the platform are divided into four categories: design

solutions, engineering methods, manufacturing methods, and test and control

methods as shown in Fig. 5.6. Within each category, each technology is described

on an overall level on electronic A3-sheets following the Lean product development

approach (see Fig. 5.7).

Fig. 5.6 Technology platform portal (redrawn from screenshot)

128 H. Johannesson

5.4.2 Product and Production System Platforms

As stated above, a product and production system platform is an integrated system

family platform from which product and production system variants can be effi-

ciently and effectively adapted within a defined bandwidth. It is here assumed that

the products that are to be developed, as well as the production facilities that are to

materialize them, are multi-technological systems consisting of different kinds of

hardware (e.g., mechanical, fluid, electronic) and software subsystems. All systems

are interacting with each other and the surrounding environment in different ways

during the different phases of their life cycles.

The main aim of this kind of a platform is that it should be a sufficiently

information-rich and adaptable knowledge source that will enable effective and

efficient generation of quality assured system variants within certain constraining

limits or bounds—the bandwidth. The bounds could be of both functional (related

to what the system and its parts can do) and nonfunctional nature (related to what

the system and its parts shall be). The systems described in the platform should be

developed to a maturity level so that they could be reused:

• For new development of platform systems aimed for original or new settings

• For extension of original platform bandwidth in engineer-to-order settings

• For ordered configuration of quality assured variants within the platform

bandwidth

Fig. 5.7 Example of a robust tolerance design technology A3-sheet (redrawn from screenshot)

5 Integrated Product and Production System Development Platforms 129

In order to handle these different requirements, a more abstract approach to

describe the elements of the platforms has been chosen. The description, where the

platform elements are modeled as autonomous, generic, configurable systems

called configurable components (CC), was proposed by Claesson (2006). The

approach is based on systems theory principles (Hitchins 2003) and design theory

(Andreasen 1998; Hubka 1997). A system description, which is a model of a whole

system family, contains information about both the system solution itself, the

means to compose system variants and also its underlying requirements and

motivations, i.e., its design rationale.

5.4.2.1 Theoretical Background

In general, designing comprises a number of different activities, where each activity

contributes to the creation of design information. The activities include:

• Defining the design problem to be solved

• Finding a design solution to the problem

• Designing a production process that can materialize the design as parts

According to Roozenburg and Eekels (1995) the core of designing is the

transition of a functional description of a product to the description of its form.

This can be expressed when it is known what functions the design should deliver.

Normally, neither the design nor how it is to be used is known. Figure 5.8 can

exemplify the situation with knowledge of wished functionality and absence of the

design and how to use it. Here, the design process goes from right to left (in other

words, in the opposite direction of the arrows). The reasoning from function to form

is reasoning where very little is given and very much is asked. It is an open process

that allows for many good solutions. It is also inherently non-deductive; it cannot be
grasped in an equation. The designer’s skills and knowledge play a central role

during the reasoning. The result of this reasoning can be described as design

Fig. 5.8 Function as a combination of extensive properties (e.g., weight) and mode and condition

of use, whereas extensive properties result from geometrical form and intensive properties (e.g.,

material density) which in turn are consequences of so-called physiochemical form

130 H. Johannesson

decisions documented in a product model. Deduction is the opposite where some

kind of formula, which can be combined with some premises to find the solution,

might be given.

Different design projects have different design goals, and different design

approaches use different modes of reasoning. A supportive design model should

support them all. A configurable component-based product platform model has the

potential to provide much of this support.

Two technical system characteristics are of special interest:

• Synergy, often expressed as the whole is greater than the sum of the parts, which
implies that the complete behavior of a system cannot be predicted by the

behavior of its parts.

• Encapsulation—a system is delimited by its system boundary, with which the

surrounding environment interacts, both through stimuli and response.

Hubka and Eder (1988) presented the theory of technical systems (TTS). At its

core, it aims to provide a comprehensive theory to classify and categorize the

information of technical systems into ordered sets of statements. For the proposed

platform element description approach, the TTS concept of transformation and the

different domains used to represent different aspects of a technical system are

especially interesting. Technical systems are the principal means by which a

transformation is achieved. The technical system exists only to realize a transfor-

mation from input to output. A combination of input and the system’s internal states

define the system’s output as well as which internal state it will adopt.

Hubka and Eder present five abstract models of technical systems: purpose,

process structure, function structure, organ structure, and component structure.

Andreasen (1998) then proposed the theory of domains (ToD), based on Hubka

and Eder’s theory of technical systems. The model consists of four views: process

domain, function domain, organ domain, and the component domain. The original

ToD has been modified over the years. The chromosome product model (Mortensen

1999) is a generic structure based on the theory of domains.

Models like those referred above, containing more information than just the

resulting design, are fundamental in any product development that has reached at

least some degree of complexity. In his thesis, Andersson (2003) presents how the

design intent, the design rationale, and the design history are related. The three

concepts are explained as follows:

• Design intent forms the underlying reason why a certain artifact exists, where the

design intent can be seen as the relationship between the intended behavior and

the structure designed to realize the intended behavior, thus answering the

question why things are.
• Design rationale includes not only the reason behind a design decision (the

intent), but also the justifications for the decision, the other alternatives consid-

ered, the trade-offs evaluated, and the argumentation that led to that decision

(Lee 1997). Thus, design rationale, in a post-decisional perspective, answers the

question, why things are, and why things are the way they are.

5 Integrated Product and Production System Development Platforms 131

• Design history also includes, besides design intent and rationale, the recorded

process of the design process, describing . . .how the artifact came into being.
This includes, among other things, the resources allocated and the actual prog-

ress of the design.

The function-means method is a systematic way of finding design solutions that

fulfill functional requirements. The function-means model (or function-means tree,

F-M tree) describes both requirements and solutions, and it has the advantage of

being supported by a systematic design approach. A function-means model is a

hierarchical model of one particular system, which is decomposed in subordinate

subsystems.

The F-M tree is also a representation of Hubka’s law, which states that “The

primary functions of a machine system are supported by a hierarchy of subordinate

functions, which are determined by the chosen means (organs).” The model that has

evolved over time was originally developed by Tjalve (1976) and Andreasen

(1980). In an analogy to the F-M tree, axiomatic design (Suh 1990) describes the

zigzagging between functional requirements (FR) and design parameters (DP). The

zigzagging points out the fact that a requirement cannot be decomposed into other

requirements without identifying intermediate solutions (i.e., DPs).

Schachinger and Johannesson (2000) enhanced the function-means tree method

by adding the abilities to describe more types of relationships and to separate

functional requirements from nonfunctional requirements, constraints (C) as

illustrated in Fig. 5.9. Function-means trees for a jet engine subsystem are shown

in Fig. 5.15 (without constraints and linked external models/documents).

In this research the enhanced function-means tree is used as a backbone in a

system’s design rationale. This is in turn seen as a formalized description of a

specification of a technical system. In axiomatic design terminology this descrip-

tion exists in the functional and physical domains. It is therefore assumed that its

function domain parts (FRs and Cs) also can be mapped on its customer needs

counterparts in the customer domain. How that mapping is achieved is outside the

scope of this research.

Functional requirements are here defined as what a product, or an element of a

product, actively or passively shall do in order to contribute to a certain purpose by

creating internal or external effects. In this sense, they motivate the downright

existence of a specific solution. The means, organs or design solutions1 (DS), are

the physical (e.g., components or features) or nonphysical (e.g., service or software)

entities that can possibly fulfill a specific functional requirement. The role of the

nonfunctional requirements (referred to here as constraints) is to delimit the

allowed solution space for the functional requirements-driven design solutions. In

contrast to functional requirements, constraints do not have specifically allocated

design solutions.

1Means are renamed from “design parameter” to “design solution.” One reason is to make the

word “parameter” free, usable in parameterized designs.

132 H. Johannesson

An organism is an example of an entity where the whole is more than the sum of

its parts. More specifically speaking, the behavior of a system depends on its

subsystems and their interactions. This additional contribution, the so-called emer-

gent properties (Checkland 1981), cannot be attributed to any specific part of the

system. Rather, they emerge only when the system as a whole is considered.

Hitchins (2003) expresses this clearly when he states:

“The properties, capabilities, and behaviors of a system derive from its parts, from

interactions between those parts, and from interactions with other systems.”

A key factor in successfully handling complex systems is to sometimes deal with

a limited number of a system’s parts at a time, instead of with the complete system.

Decomposition is a way of limiting the task. However, it has its drawbacks.

Hitchins describes how decomposition will make the parts lose their interactions,

thereby losing their context. Elaboration and encapsulation, on the other hand, look

at the parts in situ and in context, thus maintaining their interactions. This can be

exemplified with IDEF0-modeling where an overall system encapsulates

subsystems which in turn encapsulate their subsystems and so on. Elaboration

then means moving down in such a hierarchy focusing more details. Encapsulation

can be compared to moving up in the hierarchy while placing containers around sets

of entities. The container does not cut the interactions, as decomposition does.

Instead, they remain intact. Encapsulation conceals unnecessary details and reduces

the perceived complexity of the system, as shown in Fig. 5.10. The elaboration-

encapsulation concept is central in the configurable component modeling approach

which is described in the next section.

Fig. 5.9 Extended function-means tree

5 Integrated Product and Production System Development Platforms 133

5.4.2.2 The Configurable Component Concept

A design can be totally described by either one configurable component or one

configurable component composed using other configurable components, which in

turn may be composed using other configurable components and so on. The latter

scenario can support a decentralized organizational setup where a designer is

responsible for his/her level of granularity of the design within an organization.

A configurable component needs to be referred to by multiple different

compositions who are using it for realization of a system instance. Such references

may cross product as well as company boundaries. This requires that each

configurable component should be as self-contained as possible. It also requires

that parameters that describe variability should be expressed in a terminology

relevant for the configurable component itself.

A number of successive compositions can be perceived as a structure. For such a

structure to exist, there must be a method capable of traversing a number of

configurable components and presenting them as a structure. Such a traverse may

start with any configurable component.

The configurable component has some constructs that can be regarded as basic—

encapsulation, variability, and composition. Encapsulation will conceal the internal

structure of the configurable component for the outside environment. Access is

gained through interfaces, which make selected parts of the internal content avail-

able. Variability (in other words, the ability to represent a number of similar

variants of a design or system with one configurable component) is achieved by

parameters. Different types of parameters are used to describe different aspects of

the variability: design parameters, performance parameters, and variant parameters.

Design parameters are controlled directly by the designer, whereas performance

parameters are a consequence of the design. Finally, variant parameters are used as

Fig. 5.10 Two alternative elaborations and encapsulations (Hitchins 2003)

134 H. Johannesson

a convenient way of defining sets of design parameter values. A specific variant, a

configuration, is achieved by giving values to the parameters of the configurable

component. Composition is the ability of a configurable component to compose

itself using other systems (also modeled as configurable components) to fulfill its

purpose. Because both the using (parent) system and the used (child) systems are

configurable and the child will be dependent on the parent’s configuration, methods

are needed to select the correct configurations.

A configurable component is an autonomous configurable system family model

of encapsulated combined subsystem families with different purposes (i.e., it has

multi-functionality). A product platform, carrying a number of product variants,

can thus be achieved by a number of such configurable components. The different

members (or possible system variants) that can be carried by the platform are

determined by the bandwidths (variation ranges) of the involved configurable

components.

Claesson (2006) made the first coherent presentation of the configurable compo-

nent concept. It was created to deal with the automotive industry’s challenge of

combining customer demands of individualized products with company demands of

economy of scale. The need for a more capable product description that could be

used by all engineering disciplines, in cross-functional teamwork during the com-

plete product life cycle, was also identified and addressed. The approach was first

applied within the Saab Automobile Company when the second generation of the

Saab 9-3 was developed and produced.

In Fig. 5.11 the basic constructs and internal resources encapsulated in a

configurable component are illustrated (Gedell et al. 2008; Johannesson and Gedell

2009; Gedell 2011). The system family, represented by the CC, is described by its

design rational (DR) with its governing functional requirements (FR), nonfunc-

tional requirements [constraints (C)], and linked design solutions (DS) in enhanced

function-means tree structures. Interactions (IA) and interfaces (I/F) are special

design solutions handling the systems interactions with its environment. All internal

objects are parameterized and associated with parameters and parameter values.

They are coupled to variant parameters (VPs) in the control interface (CI) and

design rules in order to achieve variability (bandwidth). Composition methods

(rules), described within the composition set (CS), enable the CC to use other

CCs and instantiate composition elements (CEs) that will correspond to its design

solutions (DSs) prescribed in the design rationale (DR).

In order for a configurable component to benefit from the function-mean model’s

advantages, the function-means model must be adapted and applied in such a way

that it can represent multiple similar designs realized by combined systems with

different purposes. It must also be extended with methods to relate the combined

systems’ variability ranges (bandwidths) to each other as constraints in a using

(parent) CC will be imposed on a used (child) CC.

For each required function, a design solution with required sub-requirements and

corresponding sub-solutions [i.e., a function-means tree (here, a FR-DS structure)]

is developed. All such FR-DS structures, enhanced with decomposed system

constraints, together constitute the design rationale (DR) of the system modeled

5 Integrated Product and Production System Development Platforms 135

as a configurable component. Instead of being a function-means tree with one

FR-root, the DR is seen as a collection of embedded function-means models with

multiple starting points. The top design solution, which is the configurable compo-

nent itself, represents the complete design (see Fig. 5.11).

Sub-requirements and sub-solutions are useful when designers, developing a

system platform, are to define a configurable component’s composition (in other

words, to identify other configurable components to be used in a composition).

If a set of sub-requirements and sub-solutions match corresponding items in the

Fig. 5.11 A configurable component and its composition

136 H. Johannesson

DR of an existing CC (see Fig. 5.11), it is a perfect choice. An icu-relation

(is_composed_using) between the using (parent) CC and the used (child) CC will

then be created. As a result the using CC will be able to transfer instantiated variant

parameter values (VPVs) to the used CC for its variant instantiation. A configured

variant of the used CC is then available as a composition element (CE) in the using

CC’s composition set (CS). If no such candidate can be found, the identified

sub-requirements and sub-solutions can constitute a plea for further or new devel-

opment of a CC-modeled system family to be used.

5.5 A Platform Life Cycle Management

Software Environment

For the purpose of building CC models of configurable system families a software

tool, Configurable Component Modeler (CCM) (Edholm et al. 2009, 2010a), has

been created. The underlying idea is that CCM shall be an aiding tool for system

family design including both system modeling and knowledge retrieval. It shall also

act as host for the system family descriptions defining a CC-based product and

production system platform. All the CC features are to be modeled, and the three

reuse scenarios indicated in Sect. 5.4.2, new development, bandwidth extension,

and variant configuration, are to be supported. CCM can be described as a platform

modeling and configuration (PMC) system which is to be a part of a PLM environ-

ment together with PDM, CAD/CAE, RM, and other software tools in a service-

oriented architecture (SOA) (Wahl et al. 2010; Levandowski et al. 2011a) as shown

in Fig. 5.12.

Fig. 5.12 Platform PLM architecture

5 Integrated Product and Production System Development Platforms 137

With the chosen approach a complete product platform description will be

carried by a number of software tools integrated in a PLM environment, e.g.:

1. A platform modeling and configuration (PMC) system

2. A PDM system

3. CAE systems like CAD, FEM, and MBS

4. A requirement management (RM) system

The PMC and the PDM systems are mandatory parts of the architecture. The

PMC system, which is the user interface system for product variant configuration as

well as for platform design and development, contains the configurable CC system

family models defining a platform. In order to fully define a configured instance, the

CC models need to link relevant instance related part models and documents

managed in the PDM system to their contained objects and relations. This is done

with methods linked to the objects and relations in the CC models. The CCM

software provides the ability to create such methods that facilitate communication

with other software systems.

The role of the PDM system is to be a carrier and manager of the parts,

documents, and information belonging to the product platform. It is furthermore a

carrier and manager of the information identifying all product models in different

PLM systems belonging to the platform. Those are, for example, CAD models,

FEM models, and MBS models but also RM and PMC models. Finally the PDM

system has its role as process work-flow manager.

The design rationale models in the CC structures are carrying the knowledge

about the origin of each CC. They explain what the subsystems configured by the

CCs should do and be, how the solutions are realized, and why they are realized the

way they are. The functional requirements (FRs) and constraints (Cs) contained in

these models originate from the product platform specifications. If these are avail-

able as RMmodels in requirement management systems, appropriate links should be

established between the RM models and the PMC models for traceability reasons.

Such links could be realized by using CCMmethods linking FR and C objects in the

CC models to corresponding requirement items in the RM system models. So far no

such RM models have been available, and no such links have been established. The

necessary input to the created design rationale models has been elicited from

requirement documents and interviews with experienced engineering designers.

In order to configure product instances that contain, for example, hardware

components that are configured in size and shape, the CCs in the PMC system

must refer to CAE systems containing configurable hardware models.

Parameterized CAD models are such examples. Here generic geometry models,

with rules governing the geometric configuration, are stored in CAD system

database. The administration of the CAD models is handled by the PDM system.

By using a method, a CC object in the PMC system can identify a model in the PDM

system and call it in the CAD system. The instantiated parameters that have been

generated in the PMC system and govern the configuration of the parametric CAD

model are then transferred to the CAD system, and the parametric CAD model is

instantiated. In a similar manner other CAE systems, used for analysis and simula-

tion of product properties, are linked to the PMC and PDM systems.

138 H. Johannesson

5.6 An Industrial Case Study

An exploratory case study has been ongoing at WQL Chalmers together with an

aeroengine subsystem supplier since 2007 (Levandowski et al. 2011b). The com-

pany supplies subsystems to all big aeroengine manufacturers worldwide.

Examples of such systems are turbine exhaust cases (TEC) as shown in Fig. 5.13.

A TEC is a subsystem found in the rare of jet aeroengines. It has two main

functions, to guide the flow of the hot exhaust gases and to provide the attachments

needed to mount the engine to the airplane wing structure. It is subjected to very

high structural as well as thermal loads.

Historically structures like the TEC have been manufactured as castings. These

have been highly customized and designed more or less from scratch for each

customer. The possibility to reuse previous results has been very limited, and the

development lead times have been long. A new concept, fabricated structures, has
been adopted in order to increase reuse possibilities and shorten lead times. With

this concept a TEC is a welded assembly of components, and in this case study, a

product platform in the form of a configurable system family has been created for

fabricated TECs. The CC-based approach described above has been adopted for this

purpose. For realization of product variants, the product platform makes use of

modeling, analysis, and manufacturing methods retrieved from a technology plat-

form organized as described previously.

The TEC family system is defined by a TEC CC, a guide vane CC and an inner

ring CC. Instances of the three are shown in Fig. 5.14. The TEC CC uses the vane

CC and the inner ring CC to compose system variants of itself.

The principal design rationales (DRs) for the three CCs are shown without

modeled constraints (Cs) and linked documents and models to the different DR

objects (as shown in Fig. 5.9) in Fig. 5.15. Note that the TEC DR has two FR roots.

The different functional requirements (FRs) on the TEC system and its parts, as

well as the design solutions (DSs) derived to fulfill these requirements, are modeled

Fig. 5.13 Turbine exhaust

case—TEC

5 Integrated Product and Production System Development Platforms 139

as objects in function-means structure models in the DRs. A gray arrow from an FR

to a DS represents an is_solved_by relation, and a black arrow from a DS to an FR a

requires_function relation.

Functional requirement-related (FR) properties are gas flow rate Q and engine

mass m. Nonfunctional requirement or constraints related properties are gas tem-

perature T and gas pressure p. Design solution-related (DS) characteristics, or

solution defining parameters, are number of vanes N, type of vanes A/B, and TEC

diameters Douter/Dinner. The bandwidth of the modeled TEC system family is

defined by the allowed variation ranges of these requirement-related properties

and design solution-related characteristics.

Within the bandwidth the TEC system platform should be able to provide valid

TEC variant solutions of different dimensions, vane structures, and number of

vanes. To explore this, as well as for the purposes of exploring knowledge retrieval

for new platform development and bandwidth extension, a TEC platform PLM

software architecture, shown in Fig. 5.16, is built in the referred case study

(Levandowski et al. 2011b).

The CCM software plays the role as PMC system and the commercial software

shareAspace as PDM system in the TEC platform, as described in the previous

chapter. For geometric modeling, and for hosting generic parameterized models

defining the geometries of the design solutions (DSs) in the design rationales, the

CAD system Siemens NX7 is used.

As this platform has platform elements with configurable geometric interfaces,

the geometric robustness and tolerance allocation are optimized for each interface

instance. For this purpose, the engineering method Robust Tolerance Design
(Edholm et al. 2010b) has been adopted from the technology platform.

The commercial software RD&T is used to execute the method. Other engineering

Fig. 5.14 TEC system CC

images with instance

examples (relation

icu¼is_composed_using)

140 H. Johannesson

F
R

: D
ire

ct
flo

w

F
R

: D
ire

ct
flo

w
 a

xi
al

ly

F
R

: C
ar

ry
en

gi
ne

lo
ad

F
R

: C
on

ne
ct

ou
te

r
to

 v
an

e
ne

ig
hb

or

F
R

: C
on

ne
ct

to
 in

ne
r

rin
g

F
R

: C
on

ne
ct

ou
te

r
to

 v
an

e
ne

ig
hb

or

F
R

: P
ro

vi
de

at
ta

ch
m

en
ts

D
S

: I
nn

er
rin

g
st

ru
ct

ur
e

D
S

: I
nn

er
st

ru
ct

ur
e

in
te

rf
ac

e

D
S

: V
an

e
in

te
rf

ac
e

A
F

R
: A

tta
ch

va
ne

s

In
ne

r
rin

g
D

R
V

an
e

D
R

T
E

C
 D

R

F
R

: A
tta

ch
in

ne
r

sy
st

em
st

ru
ct

ur
e

F
R

: C
on

ne
ct

in
ne

r
to

 v
an

e
ne

ig
hb

or

F
R

: G
ui

de
flo

w

“B
an

dw
id

th
”

“Q
m

in
”≤

 Q
 ≤

“Q
m

ax
”

“Q
”

m
3 /s

,
“p

”
P

a,
“T

”
°C

If
Q

 >
 Q

3

“m
”

kg

If
Q

 >
 Q

3

“Q
”

m
3 /s

,
“p

”
P

a,
“T

”
°C

“Q
”

m
3 /s

,
“p

”
P

a,
“T

”
°C

“p
m

in
”≤

 p
 ≤

“p
m

ax
”

“T
m

in
”≤

 T
 ≤

“T
m

ax
”

“m
m

in
”≤

 m
 ≤

“m
m

ax
”

“B
an

dw
id

th
”

“Q
m

in
”≤

 Q
 ≤

“Q
m

ax
”

“p
m

in
”≤

 p
 ≤

“p
m

ax
”

“T
m

in
”≤

 T
 ≤

“T
m

ax
”

“B
an

dw
id

th
”

“Q
3”

≤
Q

 ≤
“Q

m
ax

”
“p

m
in

”≤
 p

 ≤
“p

m
ax

”

“T
m

in
”≤

 T
 ≤

“T
m

ax
”

“m
m

in
”≤

 m
 ≤

“m
m

ax
”

F
R

:
E

st
ab

lis
h

ce
nt

er
hu

b

D
S

: G
ui

de
va

ne
sy

st
em

D
S

: I
nn

er
rin

g

D
S

: F
lo

w
gu

id
e

st
ru

ct
ur

e

D
S

: W
in

g
at

ta
ch

m
en

t
st

ru
ct

ur
e

D
S

: O
ut

er
va

ne
in

te
rf

ac
e

A

D
S

: O
ut

er
va

ne
in

te
rf

ac
e

B

D
S

: I
nn

er
va

ne
in

te
rf

ac
e

A

D
S

: V
an

e
pr

of
ile

 B

D
S

: V
an

e
pr

of
ile

 A

D
S

: I
nn

er
va

ne
in

te
rf

ac
e

B

F
ig
.
5
.1
5

T
E
C
sy
st
em

d
es
ig
n
ra
ti
o
n
al
es

5 Integrated Product and Production System Development Platforms 141

methods, adopted form the technology platform and used for analysis and simula-

tion of TEC instance properties, are methods for analysis of pressure loss, buckling

load, thermal stress, and shear compliance. These analyses are executed by the

commercial software system ANSYS Workbench.
In the presented state the TEC platform can be used for TEC variant configura-

tion governed by solution parameters. Parameter values specified within the band-

width will result in a configured variant ready for property analysis with the

described methods. Comparisons between different variants’ properties, and choice

of best variant within the design solution bandwidth, can be made. Specification of

input parameter values outside the bandwidth will result in a message that the input

values are invalid and that no TEC variant can be configured.

Ongoing development is focused on implementing the possibility to use func-

tional and nonfunctional property values, requirement parameter values, as input to
variant configuration in CCM. With this in place it will be possible to specify

variants to be configured in terms of required properties. An available design

solution space, defined by a requirement fulfillment bandwidth, can then be

explored in order to find functionally valid solutions. It can also be used to identify

needs for bandwidth extension or redesign of the platform based on reuse of

knowledge contained in the existing platform system family CC models.

5.7 Conclusions

The view put forward by Robertson and Ulrich (1998) of a platform as a source for

reuse of assets in a wide sense, not limited to a collection of common parts, has been

adopted in the research at WQL Chalmers. With this approach to platforms, it is

possible to address a wide range of needs appearing in different industrial settings.

CCMCCM

CC VPI

CS

CRS

I/F

FR

Ca, Cb, ...Cn

DS

FRFRFR

DSDSDS

DR

Fig. 5.16 TEC platform system software architecture

142 H. Johannesson

Mandatory needs like simultaneous economies of scale and customization benefits,

motivating most platform efforts, can of course be met with this approach. In

addition other needs like development support across all phases of the platform

life cycle and collaboration support in the supply chain can also be fulfilled.

Development support across life cycle phases is enabled by letting platforms

contain information and knowledge of different levels of maturity. This can be

achieved by using TRL classification of technology platform elements in the

technology platform as well as of alternative design solutions (DSs) in the product

and production system platform elements. A platform can then provide support

from early conceptual development stages (low TRL levels) when potential

solutions should be allowed to be incomplete, incompatible, and inconsistent to

the operative product variant configuration stage (TRL 9) when the reused infor-

mation must be complete, compatible, and consistent (Gedell et al. 2011). An

important key to supply-chain collaboration support is the use of generic, autono-

mous, and configurable system families as platform elements. This makes it

possible for a supplier to rapidly respond to a customers’ request by means of

system variant configuration or an effective and efficient re-engineering effort

(Wahl et al. 2010).

More abstract, generic, and configurable platform elements counteract platform

degradation as the concept as such, with its modular architecture, effectively

enables addition of system families and system family bandwidth extensions. A

consequence of this could be that a platform of this kind would never be obsolete as

it is continually upgraded with new technologies and new system family solutions.

It might live forever as a key knowledge source for product and production system

development in a manufacturing company. The research on platform based product

and product system development at WQL Chalmers continues along these lines.

Acknowledgments The presented research is carried out at the Wingquist Laboratory VINN

Excellence Centre within the Area of Advance – Production at Chalmers, supported by the

Swedish Governmental Agency for Innovation Systems (VINNOVA). The support is gratefully

acknowledged.

Appendix

Acronym Complete wording Explanation

BOM Bill of material A listing of parts/components/subsystems contained in a

system product

C Constraint A requirement limiting the design solution space

CCM Configurable Compo-

nent Modeler

A software for modeling CCs and CC structures

CC Configurable

component

A configurable system family model

(continued)

5 Integrated Product and Production System Development Platforms 143

(continued)

Acronym Complete wording Explanation

CE Composition element An object within a CC enabling the CC to compose a variant

of itself by configuring and using (incorporating) a variant

of another CC

CI Control interface The interface used to give input (set variant parameter values)

to a CC

CS Composition set The set of composition elements within a CC

DR Design rationale A description of a design solution and its governing

requirements

DS Design solution A design concept fulfilling one (and only one) specific

governing functional requirement

F-M tree Function-means tree A hierarchical integrated function and design solution model

FR Functional requirement A requirement specifying a wanted behavior of a product

IA Interaction An interaction between two interacting technical systems

I/F Interface A feature in a technical system interacting with its counter-

part in another technical system

icb is constrained by A causal relation between (from–to) a DS and a C

iib is influenced by A secondary causal relation between (from–to) an FR and a

DS

ipmb is partly met by A causal relation between (from–to) a C and a DS

isb is solved by A primary causal relation between (from–to) an FR and a DS

iw interacts with A causal relation between two different DSs

PMC Platform modeling

and configuration

rf requires function A causal relation between (from–to) a DS and an FR

TEC Turbine exhaust case A subsystem in an aeroengine

ToD Theory of domains

TRL Technology readiness

level

A measure of maturity for use of technical solutions

VP Variant parameter A parameter used to specify a specific system variant

VPV Variant parameter

value

TTS Theory of technical

systems

References

Andersson F (2003) The dynamics of requirements and product concept management. Disserta-

tion, Chalmers University of Technology

Andreasen MM (1980) Syntesemetoder på Systemgrundlag – Bidrag till konstruktionsteori (in

Danish). Dissertation, Lund University

Andreasen MM (1998) The theory of domains. In: Proceedings of the workshop understanding

function and function-to-form evolution, Cambridge

Baldwin CY, Clark KB (2000) Design rules: the power of modularity. MIT Press, Cambridge, MA

Berglund F, Bergsjö D, Högman U, Khadke K (2008) Platform strategies for a supplier in the

aircraft engine industry. ASME DETC2008-49526

144 H. Johannesson

Bergsjö D (2011) Process and IT support for technology platform development and use. In:

Proceedings of IAMOT 2011, Miami Beach, FL

Checkland P (1981) Systems thinking, systems practice. Wiley, Chichester

Claesson A (2006) A configurable component framework supporting platform-based product

development. Dissertation, Chalmers University of Technology

Corin Stig D, Bergsjö D (2011) Means for internal knowledge reuse in pre-development – the

technology platform approach. In: Proceedings of ICED 2011, Copenhagen, Denmark

Edholm P, Lindquist Wahl A, Johannesson H, Söderberg R (2009) Knowledge-based configura-

tion of integrated product and process platforms. ASME DETC2009-86540

Edholm P, Levandowski C, Johannesson H, Söderberg R (2010a) Applied CC configuration in

PDM/CAD environment. In: Proceedings of INTECH 2010, Prague, Czech Republic

Edholm P, Johannesson H, Söderberg R (2010b) Geometry interactions in configurable platform

models. In: Proceedings of design 2010, Dubrovnik, Croatia, pp 195–204. ISBN/ISSN:

978-953-7738-07-05

Erens FJ (1996) The synthesis of variety: developing product families. Dissertation, Eindhoven

University of Technology

Ericsson A, Erixon G (1999) Controlling design variants: modular product platforms. Society of

Manufacturing Engineers, Dearborn, MI

Gedell S (2011) Efficient means for platform-based development – emphasizing integrated

information-rich system models. Dissertation, Chalmers University of Technology

Gedell S, Johannesson H, Holmberg L (2008) Design rationale for efficient product platform

development – a systematic configurable component approach. In: Proceedings of TMCE

2008, Izmir, Turkey

Gedell S, Claesson A, Johannesson H (2011) Integrated product and production model – issues on

completeness, consistency and compatibility. In: Proceedings of ICED 2011, Copenhagen,

Denmark

Gershenson JK, Khadke KN, Lai X (2006) A research roadmap for robust product family design.

Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological

University, Houghton, MI

Halman J, Hofer AP, van Vuuren W (2003) Platform-driven development of product families:

linking theory with practice. J Innov Manage 20:149–162

Hitchins DK (2003) Advanced systems – thinking, engineering, and management. Artech House,

Norwood, MA

Högman U, Bergsjö D, AnemoM, Persson H (2009) Exploring the potential of applying a platform

formulation at supplier level – the case of Volvo Aero Corporation. In: Proceedings of ICED

2009, Stanford, CA, pp 227–238

Hubka V (1997) Principles of engineering design. Heurista, Zurich

Hubka V, Eder WE (1988) Theory of technical systems – a total concept theory for engineering

design. Springer, Berlin

Jiao JR, Simpson TW, Siddique Z (2006) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Johannesson H, Gedell S (2009) Knowledge based configurable product platform models. In:

Piller FT, Tseng MM (eds) Handbook of research in mass customization and personalization,

vol 1. World Scientific, Singapore, pp 357–375

Jose A, Tollenaere M (2005) Modular and platform methods for product family design: literature

analysis. J Intell Manuf 16:371–390

Kennedy MN, Minnock E, Harmon K (2008) Ready, set, dominate. The Oaklea, Richmond, VA

Lee J (1997) Design rationale systems: understanding the issues. IEEE Expert 12(3):78–85

Levandowski C, Edholm P, Ekstedt F, Carlson JS, Söderberg, Johannesson H (2011a) PLM

architecture for optimization of geometrical interfaces in a product platform. ASME

DETC11-47801

5 Integrated Product and Production System Development Platforms 145

Levandowski C, Corin Stig D, Bergsjö D, Forslund A, Högman U, Söderberg R, Johannesson H

(2011b) An integrated approach to technology platform and product platform development.

Concurrent Engineering March 2013 21:65–83, first published on December 12, 2012

doi:10.1177/1063293X12467808

Mahmoud-Jouini SB, Lenfle S (2010) Platform re-use lessons from the automotive industry. Int

J Oper Prod Manage 30(1):98–124

Mankins JC (1995) Technology readiness levels: a white paper. Advanced Concepts Office, Office

of Space Access and Technology, NASA

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. The Free Press, NY

Mortensen NH (1999) Design modeling in a designer’s workbench – contribution to a design

grammar. Dissertation, Technical University of Denmark

Prencipe A (1998) Modular design and complex product systems: facts, promises and questions.

Complex Product Systems, Publication No. 47

Robertson D, Ulrich K (1998) Planning for product platforms. Sloan Manage Rev 39(4):19–31

Roozenburg NFM, Eekels J (1995) Product design: fundamentals and methods. Wiley, Chichester

Schachinger P, Johannesson H (2000) Computer modeling of design specifications. J Eng Des 11

(4):317–329

Simpson TW (1998) A concept exploration method for product family design. Dissertation,

Georgia Institute of Technology

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18(1):3–20

Simpson TW, Maier JRA, Mistree F (2001) Product platform design. Res Eng Des 13(1):2–22

Simpson TW, Siddique Z, Jiao RJ (2005) Product platform and product family design: methods

and application. Springer, New York

Suh NP (1990) The principles of design. Oxford University Press, New York

Tjalve E (1976) Systematic design of industrial products – tools for the design engineer (in

Danish). Akademisk Forlag, Copenhagen

van Veen EA (1991) Modeling product structures by generic bills-of-material. Dissertation,

Eindhoven University of Technology

Wahl A, Gedell S, Johannesson H (2010) Supply-chain product development collaboration using

configurable product platform models. ASME DETC2010-28014

146 H. Johannesson

Chapter 6

Quantifying the Relevance of Product

Feature Classification in Product

Family Design

Conrad S. Tucker

Abstract The methodology proposed in this chapter aims to address the link

between the evolution of product feature relevance and the implications to product

platform and product family design. By quantifying relevant/irrelevant product

features to be included in next-generation product platform design, designers can

identify the stand-alone or platform sharing components required to achieve desired

product functionality. A data mining algorithm is introduced that uses time series

data (consisting of product features) to determine the standard, nonstandard, and
obsolete product features in the design of next-generation products. Product

features are then mapped to engineering components/modules by employing data

mining Natural Language Processing techniques that quantify the functionality

requirements that are needed for a given set of product features. The goal of this

work is to demonstrate the value of incorporating evolving product feature trends in

the market space directly into product platform and product family sharing

decisions.

6.1 Introduction

The increase in globalization and the prevalence of low-cost communication

infrastructure present ever-increasing challenges for enterprise decision makers

aiming to satisfy customer needs. In recent years, companies have had to consider

the impacts of a socially connected digital age in shaping customer preferences and

expectations in the market space (Tucker and Kim 2011a). The evolution of product

preferences in the market space can be highly dynamic and difficult to capture using

traditional customer-driven frameworks employed by design engineers. Mass cus-

tomization has been proposed as a viable approach to accommodate the diverse

C.S. Tucker (*)

Industrial Engineering and Engineering Design, The Pennsylvania State University,

University Park, PA, USA

e-mail: cst14@psu.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_6,
Springer Science+Business Media New York 2014

147

mailto:cst14@psu.edu

product preferences in the market space. From an engineering perspective, how-

ever, mass customization presents the added challenge of establishing design and

manufacturing processes to meet the needs of mass customization. Product family

design is an enterprise-driven strategy aimed at mitigating the added costs that arise

due to product customization. The two design strategies that have been proposed in

the product family design literature are the Bottom-Up approach and the Top-Down
approach (Simpson et al. 2001). Commonality indices proposed in the literature

investigate component/module sharing strategies for existing products within a

product family and are well suited for Bottom-Up product family design. In

Top-Down product family design, a product family emerges from an existing

market-driven need. The data mining component classification framework in this

work will enable designers to identify components that are well suited for sharing in

the product family design process through the use of large-scale market-driven

product feature preference data.

6.2 Related Work

This section presents work relevant to the three main aspects of this research: (1)

Data mining-driven product design, (2) Translating customer needs into engineer-

ing targets, and (3) Product platform and sharing decisions.

6.2.1 Data Mining-Driven Product Design

Data Mining-Driven Product Design is an emerging field of research aimed at

incorporating large-scale data in the design of next-generation products (Braha

2001). Agard and Kusiak employ data mining association rules to cluster product

functions in the design of product families (Agard and Kusiak 2004). Tucker and

Kim (2008) employ Naive Bayes Classification techniques that enable designers to

identify novel product feature combinations in a high dimensional product feature

space. Moon et al. (2006) employ data mining Fuzzy c clustering techniques as a

platform identification strategy in product family design. Data Mining techniques

have been employed by Tucker and Kim to determine the optimal product feature

combination for product family optimization (Tucker and Kim 2009; Tucker et al.

2010). Moon proposes a Data Mining framework for extracting design knowledge

for product platform and variant design (Wang 2008).

While the aforementioned data mining techniques proposed in the literature aim

to address product family design problems, they are static in nature and primarily

consider large-scale data at an instant in time, hereby omitting the changes in

product feature preferences that may occur in the market space over time. In

order to accommodate evolving product trends in the market space, Tucker and

Kim propose a temporal product feature classification algorithm that classifies

148 C.S. Tucker

product features as Standard, Nonstandard, or Obsolete, based on their time series

predictive power (Tucker and Kim 2011b). The classification of product compo-

nents will enable design engineers to determine when to retire certain components

(classified as obsolete in the metric), include in the design of a product platform

(classified as standard in the metric), or aid in the creation of modules for product

variants (classified as nonstandard in the metric).

6.2.2 Translating Customer Needs into Engineering Targets

Quality function deployment (QFD) is a well-established approach employed in the

design community for translating customer preference requirements into engineer-

ing design targets/functional specifications (Pullmana et al. 2002). A house of

quality (HOQ) would be designed, mapping the customer requirements into tangi-

ble engineering design targets (Bouchereau and Rowlands 2000). Customer

preferences towards certain product features can be weighted through feature

rankings acquired through surveys or focus groups (Kwong and Bai 2003). As a

result, a QFD matrix can be used to depict the interdependence between customer

requirements and the engineering metrics (EM).

The QFD model is highly dependent on the domain expert (engineers) translat-

ing the customer wants into engineering metrics. As the complexity of modern

technology increases, so does the availability of product features and customization

options. The increased product feature space (high dimensional feature space) and

the highly dynamic nature of many consumer markets today make traditional

translation of customer preferences into engineering metrics cumbersome. Further-

more, the expertise of these techniques is limited to the domain expert(s), making

the process highly dependent on a subset of the product development team. By

employing a data mining-driven approach to customer preference modeling and

then translating the knowledge gained into tangible engineering metrics, design

engineers will be able to incorporate market-driven trends during the translation of

customer wants into engineering specifications. Instead of relying on survey or

focus group feedback in an effort to quantify the evolution of product preferences in

the market space, designers can employ the data mining methodology proposed in

this chapter as a means of generating predictive models about evolving product

feature preferences that can then be used for product family optimization.

6.2.3 Product Platform and Sharing Decisions

A product platform can be defined as a set of parameters/features or components

that are shared across products within a product family (Simpson et al. 2001).

Meyer and Lehnerd provide guidelines for product platform development and

encourage companies to design products around a shared platform, rather than

6 Quantifying Product Feature Classification in Product Family Design 149

subsequent independent designs (Meyer and Lehnerd 1997). Commonality refers to
the level of sharing of components/subassemblies, processes, etc. across different

products within a family of products (Boas 2008). Commonality therefore has the

ability of reducing manufacturing and design costs (by sharing the same component

across different products), while concurrently providing the level of product

diversity expected within the market space. The trade-off between product

commonality and product diversity has been studied extensively in the literature

and is discussed in Simpson et al. (2001). de Weck highlights the challenges that

exist in determining the extent of product platforming in product family design

(Simpson et al. 2006).

Several commonality metrics have been proposed in the literature in an effort to

quantify the effects of platform sharing decisions on product family design. For

example, Collier proposed the degree of commonality index (DCI) as a way to

measure the ratio of common components existing among products within a

product family to the total number of components (Collier 1981). A modified

version of the DCI called the total constant commonality index (TCCI) has absolute

bounds (0–1), hereby making commonality comparisons within and between prod-

uct families more quantifiable (Wacker and Trelevan 1986). The commonality

index (CI) proposed by Martin and Ishii measures the ratio of unique components

in a product family and the total components in a product family (Martin and Ishii

1996, 1997). The Percent Commonality Index (%C) measures product commonal-

ity within a shared product platform, rather than across product families using a

weighted sum of multiple variables for a total commonality scale ranging from

0 (no commonality) to 100 (complete commonality) (Siddique et al. 1998). Another

extension of the DCI called the component part commonality index (CI(C)) takes

into account factors such as the cost of each component, product volume, and

quantity per operation in determining the effects of component sharing decisions on

a product family (Jiao and Tseng 2000). The product line commonality index (PCI)

is a departure from traditional commonality indices that penalize broad product

variation and instead, penalizes products with nonunique components within a

product family (Kota et al. 2000). The generational variety index (GVI) proposed

by Martin and Ishii measures the level of redesign work needed for future iterations

of a product and helps designers determine which components may change over

time (Martin and Ishii 2002). The comprehensive metric for commonality (CMC) is

a data intensive approach to product commonality based on the components’, size,

geometry, material, manufacturing process, assembly, cost, and allowed diversity

in the family (Thevenot and Simpson 2006). Alizon et al. (2009) propose a

commonality diversity index (CDI) that compares components relating to a specific

function(s) and investigates the trade-off between commonality and diversity based

on the product family’s functional requirements. With a plethora of commonality

metrics proposed in the literature, Simpson et al. (2012) approach the product

platforming problem by proposing an integrative approach that incorporates a

market segmentation grid, the GVI, design structure matrix (DSM), commonality

indices, mathematical modeling and optimization, along with multidimensional

data visualization tools.

150 C.S. Tucker

The methodology proposed in this chapter aims to address the link between the

evolution of product feature relevance and the implications to product platform and

product family design. Specifically, this work aims to:

• Translate a product feature classification from the market-driven domain to the

detailed engineering domain.

• Determine the optimal product platform sharing decisions based on the market-

driven evolution of product features and customer preferences.

6.3 Methodology

The methodology proposed in this work (Fig. 6.1) aims to guide product family

design by linking Temporal Market-Driven Responses relating to product feature

trends with Engineering Design Optimization objectives such as product platforming

and commonality decisions. As presented in Sect. 6.2.3, there are well-established

metrics for evaluating commonality decisions in product family design. However,

temporal, market-driven forces are typically not included in these models.

Market-Driven Responses can be a critical design input to product family design

by quantifying the evolution of product features in the market space and identifying

product features that are Standard, Nonstandard, or Obsolete. In the proposed

methodology, the Product Domain in the Market-Driven Response step refers to

the results of a data mining-driven approach to modeling the relevant/irrelevant

product features across a wide array of products existing in that domain.

6.3.1 Level 1: Temporal Market-Driven Preferences

Level 1 of the proposed methodology is based on a knowledge discovery in

databases (KDD) framework. KDD is the umbrella term used to describe the

Fig. 6.1 Linking market-driven response with engineering design optimization

6 Quantifying Product Feature Classification in Product Family Design 151

sequential steps of Data Acquisition ! Data Selection and Cleaning ! Data
Transformation ! Data Mining/Pattern Discovery ! finally leading to the Inter-
pretation and Evaluation of the resulting model. This data-driven approach to

modeling will enable designers to understand the temporal changes in the market

space relating to product preferences and use this knowledge in the design of next-

generation product families. The sequence of the KDD steps will now be

expounded upon:

6.3.1.1 KDD Step 1: Data Acquisition

The data in the proposed methodology represents structured, time series data that

exists within a company’s database or acquired online through publicly available

customer product preference websites using automated data acquisition techniques

(Tucker and Kim 2011a). The two types of data employed in the proposed method-

ology are structured and unstructured data.

Structured data typically refers to data that can be conceptualized using an

Entity-Relationship structure and easily stored in a Database Management System

(Chen 1976). The Entity-Relationship Model is an example of the format of

structured data where the entity (e.g., product domain) is related to certain features

(e.g., product features).

Figure 6.2 is an example of time series structured data suitable for the proposed

methodology, where each column (1, P) at time ti is defined by a unique product

feature (j). The last column containing the Class variable represents the dependent/
output variable which is influenced by the levels/values of the product features.

Examples of a class variable could be a market price segment (>$199, $99–$199,

$0–$99) or a purchasing decision (purchased, not purchased), etc. The proposed

methodology assumes that the product features (j) can be categorical or numeric in

nature, while the class variable is considered categorical for the subsequent data

mining algorithm. In the proposed methodology, structured data will be used to

Fig. 6.2 Time series product data containing product features and class

152 C.S. Tucker

quantify the relevance of product features in the market space over time (Level 1:

Temporal Market-Driven Preferences), which will then help guide Product Family

decisions in Level 2 (Engineering Design Objective).

Unstructured data on the other hand refers to data that is not well suited for

DBMS due to a lack of a well-formed entity-relation model (Buneman et al. 1996).

Unstructured data primarily includes text data found in documents, web pages,

numeric values, etc. An example of unstructured data would be a product review

containing both textual and numeric information.

As can be seen in Fig. 6.3, the information contained in textual data does not

have a well-defined feature/class relation found in Fig. 6.2, hereby making tradi-

tional data mining classification algorithms ill-suited for such data. However,

unstructured data contains extremely valuable information regarding the domain

of investigation and can be mined to quantify patterns using Natural Language

Processing techniques that will be presented in the Data Mining step in the KDD

process. In the proposed methodology, Natural Language Processing will be

employed to understand the relation between product feature and component

function in Level 2 (Engineering Design Objectives).

6.3.1.2 KDD Step 2: Data Selection and Cleaning

The second step in the KDD process aims to minimize noise in the data set that may

arise due to missing data values, erroneous/ambiguous features, etc. Data selection

and cleaning techniques should be employed for each data type used in the

proposed methodology. For categorical features/class found in the structured data
in Level 1, missing/erroneous values can be addressed by either replacing them

with global constant values or the most probable values (based on the frequency of

occurrence of a particular feature/class value) (Han et al. 2011). For unstructured
data, used in Level 2 of the methodology, data selection and cleaning techniques

may include text grammatical correction processing for nonword error detection,

isolated-word error correction, and context-dependent word correction (Kukich

1992). For example, word corrections could be as straightforward as correcting

“cel phne ! cell phone” or more complex in trying to determine context and

correct “real time whether updates ! real time weather updates.”

Pros:
Lightweight
Vivrant4.8 inch display
4G Connectivity

Cons:
May be oversized for some
SD card does not come with the phone

Fig. 6.3 Unstructured data

of a cell phone product

review

6 Quantifying Product Feature Classification in Product Family Design 153

6.3.1.3 KDD Step 3: Data Transformation

Step 3 of the KDD process is where the data is transformed into acceptable forms

for the subsequent Data Mining/Pattern Discovery (Step 4) process. For structured
data for example, binning techniques can help smooth data values of a feature by

first sorting and placing feature values in predefined bin categories, where each bin

category can be represented by the mean of the feature values in the specific bin

(Han et al. 2011). For unstructured data, data transformation techniques may

include Stemming; a process that aims to reduce morphological variants of words

to their root form so that word variants can be mapped together (Paice 1994). For

example, the words charger and charging both have the same root word charge,
which could refer to a phone charger in product design. Data transformation

techniques will reduce the noise caused by redundant feature values or words in a

large data set.

6.3.1.4 KDD Step 4: Data Mining/Pattern Discovery

The Data Mining/Pattern Discovery step in the KDD process is where statistical/

machine learning algorithms are employed to the transformed data (from Step 3) in

order to discover novel, previously unknown knowledge about the domain of

interest. The methodology begins with Phase 1, the iterative evaluation of the

relevance of product features to the final class variable. Phase 2 presents the

classification of the product features deemed irrelevant by the data mining predic-

tive model that are then classified as Standard, Nonstandard, or Obsolete. The
subsequent product family optimization step is guided by the predictive data mining

results that are based on the temporal market-driven product preference data.

Phase 1: Iterative Feature Evaluation

The feature classification metric is modeled based on a time series decision tree

induction algorithm that captures the emerging product feature trends over time

(Tucker and Kim 2011b). Phase 1 in Fig. 6.4 sequentially tests each product

feature’s entropy (at each iteration of the algorithm) using n time-stamped data

sets. The calculation of the entropy values are used to rank each product feature’s

relevance to the class variable and also used as the test statistic to classify irrelevant
product features in phase 2 of the methodology. In this work, the term relevance is
defined as a product feature’s relationship to the class/output variable.

Given n time intervals, t1 to tn, each time interval ti contains a training data set T.
For training data set T at time ti, each of the feature is tested in order to determine

that feature’s ability to reduce the uncertainty of the class variable (please see

Fig. 6.2). There are several metrics proposed in the literature for evaluating a

feature’s relation to a class variable including the Gini Index, Gain Ratio,

154 C.S. Tucker

Likelihood-Ratio Chi-Squared Statistics, DKM Criterion, Twoing Criterion, etc.

(Maimon and Rokach 2005). The methodology proposed in this work employs the

Gain Ratio metric, although the algorithm is not limited to this metric.

TheGain Ratio is a well-established feature evaluation metric for determining the

best split of the data set at each iteration. The assumption is that both the class variable

and product features have values that aremutually exclusive of one another. Also, it is

assumed that the variables are categorical or if continuous, can be discretized using

existing statistical discretization techniques (Dougherty et al. 1995). The goal of the

feature classification algorithm is to iteratively test each product feature for its ability

to reduce the uncertainty/randomness of the class variable, generate a decision tree

model, and then classify the features that do not show up in the resulting decision

tree model as Standard, Nonstandard, or Obsolete.
Given a training data T set at time ti, each with n features (continuous or discrete)

and a class variable ci, the Gain Ratio is defined as (Quinlan 1992):

Gain RatioðXÞ ¼ EntropyðTÞ � EntropyXðTÞ
SplitðTÞ (6.1)

where:

EntropyðTÞ ¼ �
Xq

i¼1
pðciÞ � log2pðciÞ (6.2)

p (ci) represents the probability (relative frequency) of a class variable ci in the

training data set T.

q: represents the number of mutually exclusive class values within the data set.

EntropyXðTÞ ¼ �
Xj

j¼1

Tj
T
� EntropyðTjÞ (6.3)

Tj: represents a subset of the training data T that contains one of the mutually

exclusive outcomes of a product feature. For example, if product feature X is

Fig. 6.4 Data Mining model generation based on time series product feature data

6 Quantifying Product Feature Classification in Product Family Design 155

wireless connectivity containing 3 mutually exclusive outcomes (WiFi, Bluetooth,
NFC), then Tj represents all the instances in T that contain one of those outcomes.

J: represents the number of mutually exclusive outcomes for a given feature.

The denominator of the Gain Ratio metric, Split (T) normalizes the numerator,

hereby reducing the bias of the metric towards features with a large number of

mutually exclusive outcomes (Tj).

SplitðTÞ ¼ �
Xj

j¼1

Tj

T
� log2 Tj

T
(6.4)

From time periods t1 to tn, the Gain Ratio values for each product feature are

computed and stored. A time series predictive model is then use to predict which

product feature will have the maximum Gain Ratio values at future time periods

tn+k, where k represents the length of time before the next generation of products are

to be launched (Tucker and Kim 2011b). Therefore feature Fi, appearing at the top

of the Data Mining Predictive model in Fig. 6.4, represents the product feature with

the highest predictedGain Ratio, given a history of storedGain Ratio statistics from
time periods t1 to tn. Product feature Fp at iteration 2 represents the product feature

with the highest predicted Gain Ratio, given a history stored Gain Ratio statistics

from time periods t1 to tn. The algorithm continues to partition the original data time

series data sets until a homogeneous class distribution exists for each leaf of the

Data Mining Predictive Model, as seen in Fig. 6.4. The resulting model is

represented as a decision tree, which can be read as a sequence of decision rules

by traversing down each unique path of the tree. The resulting model will help

design teams determine the specific product feature combinations that yield a

particular outcome in the market space (e.g., price).

Phase 2: Model Generation and Irrelevant Feature Classification

Once the Data Mining Predictive Model has been generated from Phase 1, Phase

2 of the methodology (Fig. 6.5) introduces a technique to classify irrelevant product
features based on the evolution of their importance to future product launches.

A challenge in traditional engineering decision support models has been the under-

standing of the relationship between product features with low model relevance and

Fig. 6.5 Phase 2: Model generation and irrelevant feature classification

156 C.S. Tucker

the effects on product family design decisions. Phase 2 in Fig. 6.5 overcomes these

challenges by utilizing the time history entropy values (calculated and stored at

each iteration in Phase 1) to determine the best course of action for irrelevant
product features. Product feature irrelevance is defined simply as product features

that do not show up in the resulting predictive model in Fig. 6.5. These product

features are classified as either a Standard Feature, Nonstandard Feature, or an
Obsolete Feature, with the pseudocode for the algorithm provide below (Tucker

and Kim 2011b).

Start: Iteration j ¼ 1

1. If predicted Gain Ratio of Feature Fi is not the highest, Feature Fi is considered
irrelevant

2. Employ Mann–Kendall (MK) trend test for Feature Fi

a. If MK τ is negative (with p-value < alpha), irrelevant classification
¼ Standard

b. Else If MK τ is positive (with p-value < alpha), irrelevant classification
¼ Obsolete

c. Else If MK τ is positive/negative (with p-value > alpha), irrelevant classifi-
cation ¼ Nonstandard

3. While data set/subset does not contain a homogeneous class

a. Split the data set into subsets based on the number of mutually exclusive
values of the feature with the highest Gain Ratio from Step 2

b. j ¼ j + 1 and revert to Step 2 for each data subset

4. End Tree, Classify Irrelevant Feature Fi based on highest variable value (SF

t¼1,. . .,n; NF t¼1,. . .,n; OFt¼1,. . .,n)

In order to classify product features, the emerging predictive power of each

product feature must be quantified over time (i.e., each product feature’s relevance

to the class variable over time as seen in Fig. 6.5). This is achieved by employing

the nonparametric Mann–Kendall trend test, mathematically represented as

(Kendall and Gibbons 1990):

τ ¼ S
1
2
nðn� 1Þ (6.5)

where

S ¼
Xn�1

i¼1

Xn

j¼jþ1
sgnðxj � xiÞ (6.6)

n: represents the total number of time series data points

xj: represents the data point one time step ahead

xi: represents the current data point

6 Quantifying Product Feature Classification in Product Family Design 157

sgn ¼
1 if ðxj � xiÞ > 0

0 if ðxj � xiÞ ¼ 0

�1 if ðxj � xiÞ < 0

8<
: (6.7)

TheMann–Kendall beginswith a null hypothesis of no trend and rejects or does not

reject the null hypothesis based on the resulting p-value and level of significance (α).
The product feature classification framework relies on the results of the

Mann–Kendal trend test to quantify the magnitude of the relationship between a

given product feature and the output (class) variable. The 3 product feature classi-

fication categories are provided below with an application example in Fig. 6.6,

illustrating the how the product feature classification could be used to guide

enterprise level product family design decisions.

Standard Feature (SF)

A feature Fs is defined as standard if it does not show up in the final decision tree

model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy statistics

using data from t1,. . .tn (acquired at each iteration of the model generation process)

reveal a monotonically decreasing trend. The Mann–Kendall trend detection test is

used as the statistical measure to detect trends. If a monotonically decreasing trend

is detected by the Mann–Kendall trend test, this means that despite Feature Fs’s

absence from the decision tree model in Fig. 6.5, it is consistently gaining relevance

over time and should therefore be considered as a candidate to be included in the

Fig. 6.6 Examples of product feature classification in consumer electronics

158 C.S. Tucker

product platform decision in Level 2 of the methodology (Engineering Design

Optimization level). The Mann–Kendall would return a negative τ and a p-value

below the significance level (α).
A binary variable (SF) is defined for the Standard Feature classification that

represents the results of the Mann–Kendall trend test at each iteration j. That is, if
the Mann–Kendall trend test determines that product feature Fs has a monotonically

decreasing entropy trend at iteration j, the binary variable (SF) assumes a value of 1,

otherwise 0. Each iteration of the Standard Feature classification SFj is weighted

based on the number of supporting instances in the data set (Tj/T)

SFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
SFj � Tj

T

� �
(6.8)

A product feature with a Standard classification could be considered for the

product platform integration during the product family design process. The engi-

neering components providing the functionality for this product feature could be

shared across multiple products within the product family. For example, Fig. 6.6

shows 2 product features that were integrated into the 1st-generation Xbox platform:

Internal Hard Drive and a DVD player. Other video game manufacturers such as

Sega opted not to include DVD player functionality as a standard product feature in

their video game platform (Sega Dreamcast) which contributed to the failure of the

system, and ultimately the company as a whole (Aoyama and Izushi 2003). Under-

standing when to make product features standard (part of the product platform) or

nonstandard (modular design that can be replaced/removed) is extremely critical to

market success as will be seen in the following classification definitions.

Nonstandard Feature (NF)

A feature Fn is defined as Nonstandard if it does not show up in the final decision

tree model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy

statistics using data from t1,. . .tn (acquired at each iteration of the model generation

process) reveal no discernible trend pattern. The Mann–Kendall trend detection test

is used as the statistical measure to detect trends. If no discernible trend is detected

by the Mann–Kendall trend test, this means that despite Feature Fn’s absence from

the decision tree model in Fig. 6.5, Feature Fn exhibits inconsistent relevance

patterns through time and should therefore be investigated during the detailed

Engineering Design process (Level 2 of the methodology). The Mann–Kendall

trend test would return a p-value above the significance level (α) (which would

mean that we do not reject the null hypothesis of no trend). A binary variable (NF)
is defined for the Nonstandard Feature classification that represents the results of

the Mann–Kendall trend test at each iteration j. That is, if the Mann–Kendall trend

test determines that product feature Fi has no discernible entropy trend at iteration j,
the binary variable (NF) assumes a value of 1, otherwise 0. Each iteration of the

Nonstandard Feature classification NFj is weighted based on the number of

supporting instances in the data set (Tj/T).

6 Quantifying Product Feature Classification in Product Family Design 159

NFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
NFj � Tj

T

� �
(6.9)

As opposed to having product variants share the same component addressing a

given Nonstandard product feature, designers should avoid component sharing

decisions within a product family, and instead develop unique components for

each product variant in the product family. The engineering components providing

the functionality for this product feature could therefore subsequently be replaced,

upgraded, or removed altogether if the product feature eventually becomes obsolete

in the market space. Figure 6.6 shows 2 product features of the 2nd-generation

Xbox (Xbox 360) that had a modular design that was not shared between product

variants within a product family: HD-DVD player and Removable External Hard
Drive. During the video game console wars in the mid-2000s, two competing media

formats were in direct competition with one another: the Blu-ray and HD-DVD
(Brookey 2007). With the uncertainty of a clear winner in the market space,

Microsoft opted for a modular add-on HD-DVD device (see Fig. 6.6) that could

seamlessly integrate with the Xbox 360 product variants in the market space if High

Definitionmedia consumptionwas desired by consumers. The add-onHD-DVDwas

discontinued soon after it was clear that Sony’s Blu-ray format had won the next-

generation media platform wars (Daidj et al. 2010), making the HD-DVD modular

device for the Xbox 360,Obsolete. IfMicrosoft hadmade the decision early on in the

Xbox 360 product design process to integrate the HD-DVD player into the product

platform, shared across multiple product variants, an entire redesign of the Xbox

360 system may have resulted after the HD-DVD product feature failed in the

market space. The Removable External Hard Drive also allowed different variants

of the Xbox 360 to have different storage capacities (20 GB, 60 GB, 120 GB, etc.),

allowing greater customization in the market space, while keeping the core

Xbox 360 relatively unchanged (Microsoft Inc. 2007; Farkas 2009).

Obsolete Feature (OF)

A feature Fo is defined as obsolete if it does not show up in the final decision tree

model (as seen in Fig. 6.5) and subsequent tests of the times series Entropy statistics

using data from t1,. . .tn (acquired at each iteration of the model generation process)

reveal a monotonically increasing trend. The Mann–Kendall trend detection test is

used as the statistical measure to detect trends. If a monotonically increasing trend

is revealed by the Mann–Kendall trend test, this means that despite Feature Fo’s

absence from the decision tree model in Fig. 6.5, it is consistently losing relevance

over time and should therefore be investigated during the detailed Engineering

Design process in Step 3. The Mann–Kendall trend test would return a positive τ
and a p-value below the significance level (α). A binary variable (OF) is defined for
the Obsolete Feature classification that represents the value results of the

Mann–Kendall trend test at each iteration j. That is, if the Mann–Kendall trend

test determines that product feature Fo has a monotonically increasing entropy trend

160 C.S. Tucker

at iteration j, the binary variable (OF) assumes a value of 1, otherwise 0. Each

iteration of the Obsolete Feature classification OFj is weighted based on the number

of supporting instances in the data set (Tj/T).

OFðt ¼ 1; . . . ; nÞ ¼
Xj

j¼1
OFj � Tj

T

� �
(6.10)

The final classification of a feature (that does not show up in the decision tree

model in Phase 2 of Fig. 6.5) is achieved by summing across all iterations of each of

the feature classification variables (Standard, Nonstandard, and Obsolete) and

selecting the variable with the highest value.

A product feature with an Obsolete classification indicates that it has little

market-driven significance over time. The engineering components providing the

functionality for this product feature can be considered candidate components to

be removed in next-generation product designs. Figure 6.6 shows 1 product feature

that was initially part of the 1st-generation Xbox platform, characterized as Obso-
lete in the 2nd-generation Xbox platform. The 2nd-generation Xbox platform

(Xbox 360) launched in 2005 without an internal hard drive, making this product

feature obsolete to the Xbox 360 platform. Microsoft opted for modular hard drives

(External HD in Fig. 6.6) that could be replaced or upgraded at a certain price

(Farkas 2009). This enabled Microsoft to discontinue an obsolete component (the

internal hard drive), while creating a product family of Xbox 360 s that served

different consumer market segments based on the technical capabilities of the Xbox

360 platform [platforms came with no External Hard Drive, 20 GB External Hard

Drive and 100 GB Hard Drive (Farkas 2009)].

The methodology proposed in this chapter aims to address the link between the

evolution of product feature relevance and the implications to product platform and

product family design. Specifically, this work aims to:

• Translate a product feature classification from the market-driven domain to the

detailed engineering domain.

• Determine the optimal product platform sharing decisions based on the market-

driven evolution of product features and customer preferences.

6.3.2 Level 2: Engineering Design Optimization

6.3.2.1 Mapping Product Feature Space to Engineering Design Space

From the resulting Data Mining Predictive Model from Level 1 of the methodology,

product features will either:

1. Be part of the predictive model and therefore considered relevant product

features.

6 Quantifying Product Feature Classification in Product Family Design 161

2. Be omitted from the predictive model and be classified as:

(a) Standard

(b) Nonstandard

(c) Obsolete

Level 2 of the product feature classification framework plays a vital role in

mapping market-driven, product feature preference trends to engineering design

specifications. The ability of a product family to address market-driven demand is

highly dependent on the evolution of product feature preferences over time. While

component commonality decisions in product family design aim to provide the

optimal configuration of product platforms within a product portfolio, mathematical

models often omit evolving product feature preferences in the market space, hereby

increasing the risk of product failure when launched. Unlike individually designed

products, the market failure of a product family (e.g., due to an unwanted product

feature) could result in the redesign of an entire product family (as opposed to just a

single product) due to the components shared between product variants. In many

real life scenarios, the characteristics of the product feature space (as defined by the

customer) significantly differs from the technical characteristics of the engineering

product design space. For example, a large-scale data set containing product

preference data may contain a product feature such as 8 h battery life. For the
same product feature however, the technical components used to achieve such

functionality of a product’s feature would be described by more technical terms

such as 60 Whr 6-Cell Lithium-Ion Battery (Dell Inc. 2012).
The aim is to first map the Standard, Nonstandard, and Obsolete product feature

classifications to the Functions of a component(s) in a product family, as shown in

Fig. 6.7. The Standard classification includes all features included in the Data

Mining Model, in addition to the SF irrelevant feature classifications. The Non-
standard classification includes all features classified as NF, and the Obsolete
classification includes all features classified as OF. It is important to note that a

feature can have one and only one classification.

The textual descriptions of each product feature will then be compared with the

textual description of all functions in a product family to determine which

components functions are providing the market-driven product preferences. Each

component function Fi existing in a product family is assumed to be defined by a

synonym set {s1,s2,. . .,ss} that describes its technical purpose to the product/prod-

uct family as a whole. A product feature-function matrix is then created as

Table 6.1.

Latent Semantic Analysis is employed to make semantic comparison between

the vector of terms characterizing a product feature and those of a product function.

LSA not only compares the original vector of textual terms but also their semantic
meaning and makes the assumption that terms with similar meanings will occur

close to each other. Therefore, despite the fact that a product feature term “charge”

and the product function “battery” are not identically the same, LSA may quantify

the related meaning between the two.

Table 6.1 can be represented by one of two vectors

162 C.S. Tucker

• Semantic term vector (each row of Table 6.1):

tTi ¼ ½ci;1 . . . ci;n� (6.11)

• Product feature-function Comparison (each column of Table 6.1):

fj ¼

C1;j

:
:
:

Cm;j

2
66664

3
77775

(6.12)

Fig. 6.7 Component function identification

Table 6.1 Product feature-function comparison matrix

Product feature P Product function 1 . . . Product function F

Term 1 C1,1 C1,2 . . . C1,n

Term 2 C2,1 C2,2 . . . C2,n

⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . ⋮
⋮ ⋮ ⋮ . . . ⋮
Term T Cm,1 Cm,2 . . . Cm,n

6 Quantifying Product Feature Classification in Product Family Design 163

Table 6.1 can be defined as X, where ci,j represents the frequency/occurrence of a
particular term in the description of either a product feature or product function.

X ¼
c1;1 � � � c1;n

..

. . .
. ..

.

cm;1 � � � cm;n

2
64

3
75 (6.13)

The singular value decomposition (SVD) of X can therefore be represented as

(Deerwester et al. 1990):

X ¼ T0S0D
0
0 (6.14)

where

X: is the term (t) by function/feature (f) matrix (i.e., X ¼ t � f)
T0: represents the term (t) by rank (m) matrix, having orthogonal, unit-length

columns (T0’T0 ¼ I)
S0: is the diagonal matrix of singular values (m � m)
D0: is the rank (m) by function (f) matrix, having orthogonal, unit-length columns

(D0’D0 ¼ I) (i.e., D0 ¼ m � f)
m: is the rank of X ð� minðt; dÞÞ

LSA therefore provides lower-dimension estimates of the original high-

dimension space which then enables a comparison of the semantic meaning

(beyond just simple term matching) between a product feature and a product’s

function using similarity metrics such as cosine similarity (Tucker and Kang 2012).
Once the market-driven product features have been mapped to specific product

functions using SVD, a detailed function-component analysis must be performed. A

component-function matrix representation is used to quantify the relationships/

interactions between components. A majority of the literature reviewed in this

work typically focus on component sharing optimization within and between a

family of products. By employing the market-driven product feature classification

methodology presented in the previous section, engineering design decisions relat-

ing to product family optimization can be guided by emerging product preferences

in the market space. The DSM has been employed extensively in the design

community to represent interactions among products/processes in a design process

(Browning 2001). Examples of interactions captured by the DSM framework

include Spatial (associations relating to the physical location of elements), Energy
(energy transfer/exchange between elements), Information (data/signal exchanges

between elements), and Material (material exchange between elements) (Pimmler

and Eppinger 1994).

The first step is to determine which functions of a product relate to specific

component(s). There may be some components that perform more than one specific

function, even across product variants as can be seen in Fig. 6.8. For example,

unlike the 60 Whr 6-Cell Lithium-Ion Battery that supplies electrical energy to a

164 C.S. Tucker

product as its function, other components such as a DVD super drive component

provides multiple functions such as reading media, recording media, and erasing

media. Each of these would be considered a unique function of this component.

Atomicity is a desired property of the functional decomposition process. It is

assumed that designers have a database of components with their individual

functions; therefore, the component-function relationship in Table 6.2 will ensure

that design teams understand the interactions among components within a product

variant and across product variants existing in a product family.

where

1: represents a component critical to achieving a specific function

0: represents a component that is complimentary to achieving a specific function

The product family optimization problem can be solved using a quasi-separable,
bi-level optimization model, where the coordination level handles the shared

variables (components common to the system) and the product platform level

handles the individual product variant optimization problems (each with local

objective functions such as cost minimization) (Kim et al. 2003; Tosserams et al.

2006). three binary feature classification variables are included in the objective

function to help guide the optimization problem. The Standard Feature (SF),
Nonstandard Feature (NF), and Obsolete Feature (OF) are modeled as follows.

Fig. 6.8 Function-component analysis in a product family

Table 6.2 Component-

function interaction matrix
Function 1 Function 2 . . . Function N

Component 1 1

Component 2 1

. . . 0

Component m 0

6 Quantifying Product Feature Classification in Product Family Design 165

Optimization Level 1: Product Family Sharing Level

Minimize

εy (6.15)

Subject to:

g1 : SFp �
X

k2Q yp � y
Eng
p;k

���
���
2

2
� εy � 0 (6.16)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

SFp: binary variable for Standard Feature classification (1 if the product feature is

deemed relevant by the Data Mining Predictive Model and 0 otherwise).

yp: linking variable at the product family sharing level that maintains consistency

between k product variant values. The component or variable yp corresponds to

function-component map for the specific product feature p.
yp,k

Eng: the shared variable/component value associated with product variant k
providing product feature p. This is constant at each iteration in the above

formulation that is subsequently updated at the product variant optimization

level after each iteration.

k: the kth candidate product variant that has been identified for component sharing.

Q: the total number of products attempting to share design variables/components

yp,k
Eng.

εy: deviation tolerance between linking variables that is minimized in the objective

function.

Optimization Level 2: Product Variant Optimization Level

Minimize

FðxÞVariantk ¼ fk þ yUp � yp;k

���
��� (6.17)

Subject to:

gkðxk ; yp;kÞ � 0 (6.18)

hkðxk ; yp;kÞ ¼ 0 (6.19)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

NSp: binary variable for Nonstandard Feature classification (1 if the product feature
is classified as Nonstandard Feature by the Data Mining Predictive Model

and 0 otherwise).

166 C.S. Tucker

OFp: binary variable for Obsolete Feature classification (1 if the product feature

is classified as an Obsolete Feature by the Data Mining Predictive Model

and 0 otherwise).

fk: local product design objective function (s).

gk: inequality design constraints.

hk: equality design constraints.

xk: design variables local to product variant k. xk is a function of the product feature
variables NSp and OFp. NSp and OFp are presented here in a general form as the

mathematical formulation and inclusion in the optimization model will be highly

dependent on the structure of the product family model.

yp
U: linking variable target value cascaded down to the Level 2 from Level 1; a
constant value at each iteration that is subsequently updated with each successful

iteration.

yp,k: linking variable at Level 2 that attempts to match the target linking variable

value yp
U used to achieve the product feature p.

k: the kth candidate product variant that has been identified for component sharing.

For each unique product feature that is included in the product family optimiza-

tion model has to satisfy the equality constraint:H1: SFp + NSp + OFp ¼ 1,

indicating a single state during the product family optimization model (variable/

component sharing, module, or exclusion from the optimization model).

6.4 Case Study of a Family of Aerodynamic

Particle Separators

Particulate Matter (PM)/particle pollution is a complex mixture of very small

particles such as acids, organic chemicals, metals, soil, or dust particles (US EPA

2012). Severe health problems can be caused to the heart, lungs, and other organs

when PM sizes are 10 μm in diameter or smaller.

Aerodynamic particle separators are devices developed to separate Particulate

Matter from the clean air stream, typically by employing centrifugal forces on the

particles (Zhang 2005). The case study presented in this methodology is based on an

aerodynamic particle separator market segment including applications such as

agriculture, industrial, and manufacturing processes. The global market for air

cleaning technologies has exceeded $7 Billion and continues to rise (Parker

2006). The diverse operating conditions and preferences of customers make product

standardization a challenge. Customized solutions for aerodynamic particle

separators are typically used to solve the wide range of market segments (Fig. 6.9).

This case study aims to investigate the feasibility of employing the proposed

Data Mining-Driven product family design methodology to help:

• Quantify the evolution of product feature characteristics over time.

• Develop a Data Mining predictive model of relevant product features for future
product family designs.

6 Quantifying Product Feature Classification in Product Family Design 167

• Classify product features as Standard, Nonstandard, or Obsolete.
• Investigate how product feature classification influences product family sharing

and optimization decisions.

For more details regarding this case study, please see references Barker (2008)

and Tucker et al. (2010).

6.4.1 Level 1: Temporal Market-Driven Preferences

Table 6.3 above presents a snapshot of the structure of the data set for the

aerodynamic particle separator for one instant in time (ti), where:

Q: air flow rate (m3/s)

ΔPmax: maximum allowable change in pressure drop/airflow restriction (Pa)

Lmax: total allowable length of the system (m)

AFmax: maximum allowable face area perpendicular to air flow direction (m2)

Nmax: maximum number of aerodynamic particle separator units in one module (#)

F(dp): particle size distribution (%)

ρp: particle density (kg/m3)

Tair: air temperature (
�
C)

Pair: air pressure (kPa)

Fig. 6.9 Aerodynamic particle separator market segments [adapted from (Barker 2008)]

Table 6.3 Sample data set for aerodynamic particle separator

Product features Environmental features

Class

variable

Q Delta pmax L max AF max N max F(dp) Rho_p Tair Pair Efficiency

3 2259 0.16 1.2 27 MMD_35-

GSD_1.9

2181 142 138 85–90 %

1 923 0.02 0.76 27 A1 2977 218 94 85–90 %

1 753 0.53 0.01 37 A4 2022 279 118 85–90 %

3 2082 0.69 0.13 10 Limestone 2133 50 130 85–90 %

4 2890 0.64 1.01 44 MMD_10-

GSD_1.8

2714 473 199 85–90 %

168 C.S. Tucker

The data set contains nine features relating to the aerodynamic particle separator

(five of which are related to the physical design of the system while the remaining

four are related to the environmental conditions that the system will perform under).

The product features will help guide the product family optimization process by

suggesting candidate components for sharing or displacement. The Environmental

Features will serve as the design constraints of the model. The class variable here
is Efficiency which is defined as the total amount of particulate matter that a system

is able to separate from clean air.

The data in Table 6.3 is mined for emerging product feature trends in the market

space by quantifying the relevance of product features over time. A Data Mining

predictive model is generated that helps guide Level 2 of the product family design

methodology: Engineering Design Optimization.

6.4.2 Level 2: Engineering Design Optimization

The aerodynamic particle separator has a fan system downstream (attached to the

radius r3 in Fig. 6.10) and operates by pulling contaminated air from upstream into

the system. The contaminated air (composed of clean air and particulate matter)

enters the vane section (Fig. 6.10) causing the particles to rotate based on the angle

of the vane section (Barker 2008). The straight section in Fig. 6.10 is designed to

increase the separation (centripetal acceleration and inertia) between the particulate

matter and the clean air. The clean air particles enter the converging region of

the particle separator, leaving the particulate matter to collect in the storage bunker

in Fig. 6.10.

Figure 6.10 presents 2 approaches to the product family design, Scale based and
Module based. Scale-based product family is where a product platform is

“stretched” or “shrunk” in one or more dimensions in order to satisfy a market

need (Simpson et al. 2006). Design/scaling variables are formulated in the product

Fig. 6.10 Uniflow aerodynamic particle separator design [Augmented from Tucker et al. (2010)]

6 Quantifying Product Feature Classification in Product Family Design 169

family optimization model to achieve such scalability. Module-based product

family design on the other hand creates product variants by adding, replacing, or

substituting one or more functional modules from a product platform. A product

architecture is considered modular if there is a clearly defined mapping of func-

tional elements to physical structures (1-1 or many-1) (Simpson et al. 2006).

The design objectives of each aerodynamic product variant will be influenced by

the market-driven Data Mining model. For scale-based product family design, the

efficiency of the system can be influenced by altering (stretching or shrinking) the
design variables that make up the physical system (such as length of straight region,

inner and outer radii, etc.)

The optimization approach (module vs. scale based) is left up to the design team

based on the technical resources and available mathematical models.

Optimization Level 1: Product Family Sharing Level

The Product Family Sharing Level will coordinate the component sharing among

product variants of the aerodynamic particle separator by minimizing the tolerance

deviation variable of each shared component.

Minimize

εy (6.20)

Subject to:

g1 : SFp �
X

k2Q yp � y
Eng
p;k

���
���
2

2
�εy � 0 (6.21)

Here,

p: product feature from the market-driven Data Mining Predictive Model.

SFp: binary variable for Standard Feature classification (1 if the product feature is

deemed relevant by the Data Mining Predictive Model and 0 otherwise).

yp: linking variable at the product family sharing level that maintains consistency

between k product variant values. The component or variable yp corresponds to

function-component map for the specific product feature p.
yp,k

Eng: the shared variable/component value associated with product variant k
providing product feature p.

k: the kth candidate aerodynamic particle separator product variant

Q: The total number of products attempting to share design variables/components

yp,k
Eng.

εy: deviation tolerance between linking variables that is minimized in the objective

function.

Optimization Level 2: Aerodynamic Particle Separator Variants

The engineering design model for the aerodynamic particle separator can be

mathematically represented as:

170 C.S. Tucker

kth Aerodynamic Particle Separator

Minimize:

FðxÞvariantðkÞ ¼ Costk � ξk þ yUp � yp;k

���
��� (6.22)

where

ζ x; dpi
� � ¼ 1� exp

ρpd
2
piCcQtanðαÞLs
9ηðr22 � r21Þ

 !
� exp ρpd

2
piCcðV2

t GtðxÞ þ V2
z GrðxÞ

ηVz

 !

(6.23)

ξk ¼
XN

i¼1
ζðx; dpiÞ � FðdpiÞ (6.24)

Here,

ξk: efficiency of aerodynamic particle separator variant k

yp
U: linking variable target value cascaded down to the Level 2 from Level 1; a
constant value at each iteration that is subsequently updated with each successful

iteration

yp,k: linking variable at Level 2 that attempts to match the target linking variable

value yp
U used to achieve the product feature p

k: the kth candidate product variant that has been identified for component sharing

Cc: Cunningham slip correction factor

dpi : diameter of particle i), μm
F(dp): particle size distribution
Gt(x): efficiency model geometric relationship between design variables, tangential

acceleration

Gr(x): efficiency model geometric relationship between design variables, radial

acceleration

ρp: particle density, kg/m
3

η: air viscosity, Pa∙s or kg∙m/s

Q: air flow rate, m3/s

Vt: tangential velocity of particle mixture

Vz: axial velocity of particle mixture

r1: inner tube radius
r2: inner tube radius
α: vane discharge angle
LS: maximum pressure drop

Subject to:

gkðxk ; yp;kÞ � 0 (6.25)

hkðxk ; yp;kÞ ¼ 0 (6.26)

6 Quantifying Product Feature Classification in Product Family Design 171

6.5 Results and Discussion

6.5.1 Level 1: Temporal Market-Driven Preferences

Figure 6.11 presents the Data Mining Predictive Model based on the temporal

market-driven preferences relating to the aerodynamic particle separator. The

results in Fig. 6.11 can be interpreted by traversing down each individual branch

in the tree until a class variable (Efficiency) is reached (rectangular box). The ovals

in Fig. 6.11 represent the product feature that is deemed relevant to predicting the

market preferences for aerodynamic particle separator efficiency.

Four unique paths can be attained based on the results in Fig. 6.11:

• Lmax > 0.49 then efficiency > 85–90 %

• Lmax < 0.49 and Q > 3 and Delta_pmax > 1560 then efficiency > 95 %

• Lmax < 0.49 and Q > 3 and Delta_pmax < 1560 then efficiency > 90–95 %

• Lmax < 0.49 and Q < ¼3 then efficiency > 85–90 %

Figure 6.11 also provides designers with the appropriate product feature classi-

fication (Standard, Nonstandard, and Obsolete) of all product features existing in

the market space. The next step is to quantify the relationship between product

features and product function so that designers can understand how evolving

market-driven preferences guide next-generation product platform and product

family design decisions.

Lmax

85-90 (53.0)

85-90 (19.0/1.0)

90-95 (13.0) >95 (14.0)

Delta_pmax

Q

<= 0.49

<= 1560

<= 3 > 3

> 0.49

> 1560

Fig. 6.11 Results from the data mining predictive model [attained using Weka 3.6.6

(Frank et al. 2010)]

172 C.S. Tucker

6.5.2 Level 2: Engineering Design Optimization

Mapping Product Feature Space to Engineering Design Space: Table 6.4 presents

the result, employing Latent Semantic Analysis to quantify the relationship

between the market-driven product feature space and the product family design

space. As described in Sect. 6.2.2, the textual description of each product feature is

compared with the functional description of each product module/component

providing this function. Table 6.4 represents the similarity of a product feature to

a component function as measured on a 0–1 scale, where values closer to 1 indicate

a stronger relationship to the functionality of the product component/module, while

0 represents a weaker relationship. As can be seen from Table 6.4, the product

features are strongly coupled across the entire product architecture. Such insight

will help designers understand the market effects of adding, removing, or replacing

specific functionality relating to a product. For an Obsolete product feature classifi-
cation, designers would need to ensure that the removal of a particular component/

module does not have negative market demand implications. The results in

Table 6.4 are consistent with the absence of an Obsolete product feature classifica-
tion from the Data Mining model in Fig. 6.11. The Standard and Nonstandard
product classifications from Fig. 6.11 support the findings from Table 6.4,

indicating that all product features are relevant to market success at this time.

The challenge arises when designers are trying to optimize product family sharing

and platforming decisions, which will now be guided by the product feature

preference trends in the market space.

Figure 6.12 presents the results from the Data Mining-Driven Product Design

methodology. The resulting product feature classifications from Fig. 6.11 helps

guide the product family design process by first quantifying the functional

relationships between product features and product design variables (Table 6.4)

and then suggesting candidate modules/components for sharing decisions. In

Fig. 6.12, the vane component is considered a candidate for commonality across

product variants due to its relation to the product features deemed relevant by the

Table 6.4 Mapping product features of the aerodynamic particle separator to the engineering

design space

Product features

Aerodynamic particle separator design space

Vane section Straight region Converging region

Q 0.76 0.71 0.72

Δpmax 0.48 0.5 0.47

Lmax 0.45 0.46 0.43

Afmax 0.86 0.82 0.78

Nmax 0.49 0.55 0.52

F(dp) 0.35 0.5 0.47

ρp 0.35 0.5 0.45

Tair 0.55 0.52 0.57

Pair 0.63 0.59 0.62

6 Quantifying Product Feature Classification in Product Family Design 173

Data Mining Predictive model in Fig. 6.11. The Nonstandard product feature

suggests modularity in the design of product variants by including multiple indi-

vidual products that are housed in a design case. This modularity approach will

enable enterprise decision makers to quickly address market needs by increasing/

decreasing the number of units housed in a casing in an attempt to meet emerging

customer preferences. The Nonstandard product feature classification means that

there is volatility in the market space, wherein a product may have to undergo

modifications (modular or scalable) in the future. Figure 6.12 reveals that of the

4 product segments suggested by the market space, the designers can only satisfy

the performance requirements of 3 of those markets, as Product Variant 2’s design

(Target efficiency > 95 %) is infeasible at the engineering design level. Such

design insights enable design teams to focus on developing a product portfolio

that both capitalizes on product standardization through guided commonality

decisions, and at the same time, providing customized solutions to the market

that meet customer expectations (efficiency requirements).

6.6 Conclusions

This chapter introduces a market-driven, product family design framework based

on product feature classification framework as it relates to engineering component

selection and product family design. Product features are classified as Standard,
Nonstandard, or Obsolete, with a given classification having different implications

in the product family design process. A component-function matrix is presented to

quantify the relationships and interactions among components as it relates to

Fig. 6.12 Results from data mining-driven product family design

174 C.S. Tucker

product specific features. By employing Natural Language Processing techniques,

the product feature space can be mapped to the engineering design space for

optimal product platform decisions that incorporate market-driven objective. The

methodology aims to aid design teams in the efficient modeling of customer

preferences and designing of subsequent product portfolios.

References

Agard B, Kusiak A (2004) Data-mining-based methodology for the design of product families. Int

J Prod Res 42:2955–2969

Alizon F, Shooter S, Simpson T (2009) Assessing and improving commonality and diversity

within a product family. Res Eng Des 20:241–253. doi:10.1007/s00163-009-0066-5

Aoyama Y, Izushi H (2003) Hardware gimmick or cultural innovation? Technological, cultural,

and social foundations of the Japanese video game industry. Res Pol 32:423–444. doi:10.1016/

S0048-7333(02)00016-1

Barker D (2008) Development of an optimization design platform for aerodynamic particle

separators. MS, University of Illinois at Urbana-Champaign

Boas RC (2008) Commonality in complex product families: implications of divergence and

lifecycle offsets. Thesis, Massachusetts Institute of Technology

Bouchereau V, Rowlands H (2000) Methods and techniques to help quality function deployment

(QFD). Benchmark Int J 7:8–20. doi:10.1108/14635770010314891

Braha D (2001) Data mining for design and manufacturing. Kluwer Academic Publishers, The

Netherlands, P.O. Box 17, 3300 AA Dordrecht

Brookey RA (2007) The format wars. Convergence 13:199–211. doi:10.1177/1354856507075245

Browning TR (2001) Applying the design structure matrix to system decomposition and integra-

tion problems: a review and new directions. IEEE Trans Eng Manag 48:292–306. doi:10.1109/

17.946528

Buneman P, Davidson S, Hillebrand G, Suciu D (1996) A query language and optimization

techniques for unstructured data. SIGMOD Rec 25:505–516. doi: http://doi.acm.org/

10.1145/235968.233368

Chen PP (1976) The entity-relationship model – toward a unified view of data. ACM Trans

Database Syst 1:9–36

Collier D (1981) The measurement and operating benefits of component part commonality. Decis

Sci 12(1):85–96

Daidj N, Grazia C, Hammoudi A (2010) Introduction to the non-cooperative approach to coalition

formation: the case of the Blu-Ray/HD-DVD standards’ war. J Media Econ 23:192–215.

doi:10.1080/08997764.2010.527206

Deerwester S, Dumais ST, Furnas GW et al (1990) Indexing by latent semantic analysis. J Am Soc

Inform Sci 41:391–407

Dell Inc. (2012) DELL 60WHr 6-Cell Lithium-Ion Battery for Dell Inspiron 14z (1470)/15z (1570)

Laptops: Laptop Accessories | Dell. http://http://accessories.us.dell.com/sna/productdetail.aspx?

c=us&l=en&s=bsd&cs=04&sku=312-0823. Accessed 1 Feb 2012

Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of continu-

ous features. In: Proceedings of the 12th international conference on machine learning (ICML-

1995), San Francisco, CA

Farkas BG (2009) The Xbox 360 pocket guide. Pearson Education, Upper Saddle River, NJ

Frank E, Hall M, Holmes G et al (2010) Weka-a machine learning workbench for data mining. In:

Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Berlin,

pp 1269–1277

Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

6 Quantifying Product Feature Classification in Product Family Design 175

http://dx.doi.org/10.1007/s00163-009-0066-5
http://dx.doi.org/10.1016/S0048-7333(02)00016-1
http://dx.doi.org/10.1016/S0048-7333(02)00016-1
http://dx.doi.org/10.1108/14635770010314891
http://dx.doi.org/10.1177/1354856507075245
http://dx.doi.org/10.1109/17.946528
http://dx.doi.org/10.1109/17.946528
http://doi.acm.org/
http://dx.doi.org/10.1145/235968.233368
http://dx.doi.org/10.1080/08997764.2010.527206
http://http://accessories.us.dell.com/sna/productdetail.aspx?c=us&l=en&s=bsd&cs=04&sku=312-0823
http://http://accessories.us.dell.com/sna/productdetail.aspx?c=us&l=en&s=bsd&cs=04&sku=312-0823

Jiao J, Tseng MM (2000) Understanding product family for mass customization by developing

commonality indices. J Eng Des 11:225–243

Kendall M, Gibbons JD (1990) Rank correlation methods, 5th edn. A Charles Griffin Title, London

Kim HM, Michelena NF, Papalambros PY (2003) Target cascading in optimal system design.

Trans ASME J Mech Des 125:474–480

Kota S, Sethuraman K, Miller R (2000) A metric for evaluating design commonality in product

families. ASME J Mech Des 122(4):403–410

Kukich K (1992) Techniques for automatically correcting words in text. ACM Comput Surv

24:377–439. doi:10.1145/146370.146380

Kwong CK, Bai H (2003) Determining the importance weights for the customer requirements in

QFD using a fuzzy AHP with an extent analysis approach. IIE Trans 35:619–626. doi:10.1080/

07408170304355

Martin M, Ishii K (1996) Design for variety: a methodology for understanding the costs of product

proliferation. In: ASME design engineering technical conferences and computers in engineer-

ing conference – design theory and methodology, ASME, Irvine, CA, 18–22 Aug. Paper no.

96-DETC/DTM-1610

Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Maimon O, Rokach L (2005) Data mining and knowledge discovery handbook, 1st edn. Springer,

Berlin

Martin MV, Ishii K (1997) Design for variety: development of complexity indices and design

charts. Advances in design automation, ASME, Paper No. DETC97/DFM-4359

Meyer MH, Lehnerd AP (1997) The power of product platforms. Free Press, Boston

Microsoft Inc. (2007) Microsoft unveils xbox 360 elite. http://www.microsoft.com/en-us/news/

press/2007/mar07/03-27xbox360elitepr.aspx. Accessed 21 Jul 2012

Moon SK, Kumara SRT, Simpson TW (2006) Data mining and fuzzy clustering to support product

family design. In: Proceedings of the ASME design automation conference

Paice CD (1994) An evaluation method for stemming algorithms. In: Proceedings of the 17th

annual international ACM SIGIR conference on Research and development in information

retrieval. Springer, New York, NY, pp 42–50

Parker PM (2006) The 2007-2012 world outlook for dust collection and other air purification

equipment and parts for cleaning incoming air. ICON Group International, San Diego, CA

Pimmler TU, Eppinger SD (1994) Integration analysis of product decompositions. http://dspace.

mit.edu/handle/1721.1/2514. Accessed 29 Jan 2012

Pullmana ME, Mooreb WL, Wardellb DG (2002) A comparison of quality function deployment

and conjoint analysis in new product design. J Prod Innov Manag 19:354–364

Quinlan JR (1992) C4.5: programs for machine learning, 1st edn. Morgan Kaufmann, San

Francisco

Siddique Z, Rosen DW, Wang N (1998) on the applicability of product variety design concepts to

automotive platform commonality. In: Design theory and methodology, ASME, Atlanta, GA,

Sept 1998. Pap. No DETC98DTM-5661

Simpson T, Maier J, Mistree F (2001) Product platform design: method and application. Res Eng

Des 13:2–22. doi:10.1007/s001630100002

Simpson TW, Siddique Z, Jiao J (2006) Product platform and product family design: methods and

applications. Birkhäuser, New York, NY

Simpson T, Bobuk A, Slingerland L et al (2012) From user requirements to commonality

specifications: an integrated approach to product family design. Res Eng Des 23:141–153.

doi:10.1007/s00163-011-0119-4

Thevenot HJ, Simpson TW (2006) Commonality indices for product family design: a detailed

comparison. J Eng Des 17(2):99–119

Tosserams S, Etman LFP, Rooda JE (2006) An augmented Lagrangian decomposition method for

quasi-separable problems in MDO. Struct Multidisc Optim 34(3):211–227

176 C.S. Tucker

http://dx.doi.org/10.1145/146370.146380
http://dx.doi.org/10.1080/07408170304355
http://dx.doi.org/10.1080/07408170304355
http://www.microsoft.com/en-us/news/press/2007/mar07/03-27xbox360elitepr.aspx
http://www.microsoft.com/en-us/news/press/2007/mar07/03-27xbox360elitepr.aspx
http://dspace.mit.edu/handle/1721.1/2514
http://dspace.mit.edu/handle/1721.1/2514
http://dx.doi.org/10.1007/s001630100002
http://dx.doi.org/10.1007/s00163-011-0119-4

Tucker C, Kang S (2012) A bisociative design framework for knowledge discovery across

seemingly unrelated product domains. In: 2012 ASME international design engineering tech-

nical conferences

Tucker CS, Kim HM (2008) Optimal product portfolio formulation by merging predictive data

mining with multilevel optimization. Trans ASME J Mech Des 130:991–1000

Tucker CS, Kim HM (2009) Data-driven decision tree classification for product portfolio design

optimization. J Comput Inform Sci Eng 9:041004 doi: 10.1115/1.3243634

Tucker C, Kim H (2011a) Predicting emerging product design trend by mining publicly available

customer review data. In: Proceedings of the 18th international conference on engineering

design (ICED11), vol. 6. pp 43–52

Tucker CS, Kim HM (2011b) Trend mining for predictive product design. ASME J Mech Des 133

Tucker CS, Kim HM, Barker DE, Zhang Y (2010) A ReliefF attribute weighting and X-means

clustering methodology for top-down product family optimization. Eng Optim 42:593–616

US EPA O (2012) Particulate matter | air & radiation | US EPA. http://www.epa.gov/pm/.

Accessed 22 Jul 2012

Wacker JG, Trelevan M (1986) Component part standardization: an analysis of commonality

sources and indices. J Oper Manag 6(2):219–244

Wang J (2008) Encyclopedia of data warehousing and mining, 2nd edn. IGI Global, Hershey, PA

Weka (2012) Weka 3 – data mining with open source machine learning software in java. http://

www.cs.waikato.ac.nz/ml/weka/. Accessed 24 Jul 2012

Zhang Y (2005) Indoor air quality engineering. CRC, Boca Raton, FL

6 Quantifying Product Feature Classification in Product Family Design 177

http://dx.doi.org/10.1115/1.3243634
http://www.epa.gov/pm/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Chapter 7

Platform Valuation for Product

Family Design

Seung Ki Moon and Timothy W. Simpson

Abstract The valuation of a product increases flexibility in decision-making for

developing new products or redesigning existing products and affects product life

cycles. Strategic adaptability is essential in capitalizing on future investment

opportunities and responding properly to market trends in a dynamic environ-

ment. To identify the valuation of a platform in a product family, we investigate

strategic module-based platform design using market-based decision-making.

The objective of this chapter is to propose a financial model to evaluate design

valuation for a platform based on market mechanisms in an uncertain market

environment. Real options analysis is applied to value options related to

introducing new modules as a platform in a product family. In the proposed

model, we use design quality that is determined by customers’ preferences and

performance utilities for products. To demonstrate implementation of the pro-

posed model, we use a case study and numerical analysis involving a family of

mobile products.

7.1 Introduction

Product family design allows innovative companies to create customized product

roadmaps, to manage designers and component partners, and to develop the next

generation of products based on platform strategies (Cronin 2010). By sharing and

reusing assets such as components, processes, information, and knowledge across a

S.K. Moon (*)

School of Mechanical and Aerospace Engineering, Nanynag Technological University,

Singapore 639798, Singapore

e-mail: skmoon@ntu.edu.sg

T.W. Simpson

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_7,
Springer Science+Business Media New York 2014

179

mailto:skmoon@ntu.edu.sg

family of products, companies can efficiently develop a set of differentiated

economic offerings while also improving the flexibility and responsiveness of

product development (Simpson 2004). Product family design is a way to achieve

cost-effective mass customization by allowing highly differentiated products to be

developed from a common platform while targeting products to distinct market

segments (Shooter et al. 2005).

In uncertain market environments, the valuation of a product increases flexi-

bility in decision-making for developing new products or redesigning existing

products and affects product life cycles (Bollen 1999). Design has reflected the

requirement changes that are caused by customers’ preferences, technologies,

economic situations, company’s strategies, and competitive moves. Strategic

adaptability is essential in capitalizing on future investment opportunities and

responding properly to market trends in a dynamic environment (Smit and

Trigeorgis 2004).

Market-based product design can consider various and dynamic market

environments by capturing dynamic factors, such as customer needs and trends,

companies’ strategies, regulations, resources, and technologies in product design.

To identify the valuation of a platform in a product family, we investigate strategic

module-based platform design using market-based decision-making. The value of

products depends on market segmentation strategies that are identified by informa-

tion derived from the relationship between customer needs and functional

requirements. Real options valuation provides a rigorous analysis that can be

applied to develop a financial model for valuing, managing, and optimally

exercising options (Longstaff and Schwartz 2001). Real options analysis is a

decision-making method to evaluate design strategies that are affected by

company’s decision, competitors’ action, and new technologies (Smit and

Trigeorgis 2004).

The objective of this chapter is to propose a financial model to evaluate design

valuation for a platform based on market mechanisms in an uncertain market

environment. The proposed model is to facilitate product family design strategies

that will maximize the expected profit under uncertain constrains, such as demand,

customers’ preferences, and regulations. Real options analysis is applied to value

modules related to a platform in a product family. In the proposed model, we use

design quality that is determined by customers’ preferences and performance

utilities for products.

The remainder of this chapter is organized as follows. Section 7.2 reviews

related literature and background for product family design and market-based

design approaches. Section 7.3 describes the proposed financial model to evaluate

product family design. Section 7.4 gives a case study and numerical analysis for

design valuation involving a family of mobile products. Closing remarks and future

work are presented in Sect. 7.5.

180 S.K. Moon and T.W. Simpson

7.2 Literature Review and Background

7.2.1 Product Family Design

A product family is a group of related products based on a product platform,

facilitating mass customization by providing a variety of products for different

market segments cost-effectively (Simpson et al. 2005). A successful product family

depends on how well the trade-offs between the economic benefits and performance

losses incurred from having a platform are managed. A well-defined platform

reduces production costs by improving economies of scale and reducing the number

of different components that are used (Simpson et al. 2005; Moon et al. 2008).

Simpson et al. (2001) introduced a method to optimize a platform by

minimizing performance loss and maximizing commonality based on a scale-

based product family design approach. Johannesson and Claesson (2005) described

a configurable product platform design process and model using an operative

product structure and a hierarchical function-mean tree to capture parameters

describing design information such as rules, variants, requirements, and product

configuration possibilities. Thevenot et al. (2007) developed the design of com-

monality and diversity method (DCDM) to provide designers with

recommendations for both the functional and component levels by the inherent

trade-off between commonality and diversity during product family and platform

development. Moon et al. (2008) introduced a market-based negotiation mecha-

nism to support product family design by determining an appropriate platform

level that represents the number of common modules using a dynamic multi-agent

system in an electronic market environment. Zacharias and Yassine (2008) pro-

posed a mathematical model for developing and evaluating modular product

families to provide maximum market coverage by integrating a conceptual design

approach, a product development cost model, an economic model. Moon and

McAdams (2009) introduced a method for developing a universal product family

through a game theoretic approach in a dynamic market environment by extending

concepts from product family design to universal design. Johnson and Kirchain

(2011) used a generative cost model to investigate development lead time and costs

that can have significant effects on technology choice and lead to substantial cost

savings in product families. Rojas Arciniegas and Kim (2012) developed a meth-

odology to identify a set of components containing sensitive information related to

security concerns using clustering optimization, while considering component

sharing and optimal architecture for a family of products.

7.2.2 Market-Based Design Approaches

In engineering design and product development, market-based design approaches

can provide the ability of investigating additional flexibility and strategic value.

7 Platform Valuation for Product Family Design 181

Game theoretic approaches have been applied to model strategic relationships

between designers for sharing design knowledge and solving design problems.

Real option analysis has offered a natural framework to evaluate the valuation of

product design by utilizing managerial flexibility in the valuation process (Gamba

and Fusari 2009; Brach 2003).

Xiao et al. (2002) applied game theoretic approaches and design capability

indices to model the relationships between engineering teams that were described

as cooperative, noncooperative, and leader/follower protocols and facilitate

collaborative decision-making during a product realization process. Fernandez

et al. (2005) proposed a framework for establishing and managing collaborative

design spaces by combining elements of cooperative and noncooperative behav-

ior and formulating strategic and extensive games with utility theory. Kopin and

Wilbur (2005) introduced a Bayesian game to model cost sharing in uncertain

and incomplete information that were related to producer and consumer

attributes such as nature, production costs, players and information, and

preferences. Jiao et al. (2006) identified four types of real options based on

European options for product family design and developed a valuation frame-

work to evaluate the options of configuration inherent in design using financial

analysis. Ford and Sobek (2005) applied real options concepts to product devel-

opment processes for managing uncertainty through flexibility impacts project

behavior, performance, and value. Gamba and Fusari (2009) described a stochas-

tic dynamic framework for valuing the contribution of modularization process

and modular operations in the design of systems using real options. Kumar et al.

(2009) proposed a market-driven product family design methodology to deter-

mine an optimal product offering and platform level strategy based on the

estimated demand model in market segmentation grids by evaluating the impact

of the variability of products and development cost. Shiau and Michalek (2009)

introduced an approach based on Stackelberg game to solve a product design

optimization problem for profit maximization under short-run price competition.

The proposed approach considered Nash and Stackelberg conditions as design

constraints to reflect competitor pricing reactions. Moon et al. (2011) developed

a method for designing customized families of services using game theory to

model module sharing and decide strategic solutions for selecting modules in

dynamic market environments. A coalitional game was employed to model

potential module sharing and determine which modules used in the platform

provide the most benefit. Jiao (2012) utilized a hybrid real options valuation

approach to evaluate the flexibility of product platforms for improving platform

planning and investment by integrating product-related options and project-

related options under endogenous and exogenous uncertainties. In the next

section, the proposed financial model for evaluating the valuation of platform

design is discussed in detail.

182 S.K. Moon and T.W. Simpson

7.3 A Financial Model for Platform Design Valuation

In this chapter, we propose a financial model to investigate design strategies based

on the value of the platform design using real option analysis.

7.3.1 Product Family Architecture

The basic idea of modular design is to organize products as a set of distinct

modules that can be designed independently and develop a variety of products

through the combination and standardization of modules (Ramesh et al. 2002).

We assume that a product can be decomposed into modules that provide specific

functions, and functions are achieved by the combination of the modules’ design

variables.

Suppose that a product family consists of l products, F ¼ ðP1;P2; . . . ;PlÞ and a

product, i, consists of mi modules, Pi ¼ ðxi;1; xi;2; . . . ; xi;mi
Þ, where xi;j is a module j

in product i and consists of a vector of length nm, xi;j ¼ ðxi;j;1; xi;j;2; . . . ; xi;j;nmÞ. The
individual scalar components xi,j,k (k ¼ 1, 2,. . ., nm) of a module xi;j are called

design variables. Each module can be achieved by alternative instances. Let bj be an
instance of module j (bj ¼ 1, 2,. . ., B) and M be a module instance matrix for the

instances of modules in a product family. By introducing a module instance matrix

M, the product family is represented as

PF ¼ MX (7.1)

where M is defined as

Mi;j ¼ bj if module j is used in a product i
0 otherwise

�
(7.2)

In the module instance matrix, if modules are designed by the same instance

(i.e., common modules), then the number of bj is the same. And, the large number of

bj indicates the number of alternatives in module j. Based on the proposed product

family architecture, a module instance matrix can be represented as

M ¼ M11 M12

M21 M22

� �
(7.3)

where M11 and M21 are matrixes for common modules, because the common

modules should be included in both products. M12 and M22 can be a matrix for

unique or variant modules in a product family.

7 Platform Valuation for Product Family Design 183

7.3.2 Company’s Profit Model and Platform Strategy Cost

We use sales profits to evaluate company’s profit. We assume that the price of a

product is determined by the company based on product quality. The product

quality can be represented as functions desired by customers. Then, the profit of

product i, πi, can be formulated based on sales price, product cost, and demand as

follows:

πi ¼ ðSi � CiÞDi (7.4)

where Si is the sales price of product i, Ci is the product cost of product i, and Di is

the sales quantity of product i. In product family design, product cost depends on

platform strategies and design quality. Generally, product cost can be determined

by total expected product volume, material cost, direct labor, production resource

usage, tooling and capitalization costs, system cost (overhead or indirect costs), and

development costs (Magrab 1997). Based on the proposed product architecture as

mentioned in Sect. 7.3.1, product cost for product i is represented by

Ci ¼ MiL
0
iX

0
i (7.5)

where Mi is a module instance matrix for product i,Li is a vector of module costs for

product i, and Xi is module design variables in product i. The module instance

matrix is generated by a feasible set of products and includes a platform strategy to

satisfy product requirements in a product family. In product family level, product

cost using a platform strategy, sy, can be represented as

CðsyÞ ¼ MðsyÞLX (7.6)

where MðsyÞ is a module instance matrix when sy is used for product family design.

The different platform strategies are constructed by combining the different

modules into common and variant modules.

To develop platform strategies based on common modules, we introduce an

expected strategy cost that represents additional costs for developing a new platform

for a product family. Such costs could come from redesigning components, creating

convenient interfaces, or having some components essentially overdesigned for the

most of the product family such that it works sufficiently for one specific product.

Let A be a set of strategies for increasing the platform level, and let cpðsyÞ be the

expected platform strategy cost for strategy syðy ¼ 1; 2; . . . ;AÞ. Then, the expected
platform strategy cost can be calculated as follows (Moon et al. 2008):

cpðsyÞ ¼ η�
P
i2I

Ca
i

f ðIÞ � r
(7.7)

184 S.K. Moon and T.W. Simpson

whereCa
i is the additional design cost of product i associated with the new platform,

η is a factor for overhead cost, and f ðIÞ is a strategy weight function as follows:

f ðIÞ ¼ 1; if a module is unique

I; otherwise

�
(7.8)

and r is a volume penalty factor related to product sales quantity. Hence, the

expected total product family cost, EC, for the product family using platform

strategy, sy, can be calculated by

ECðsyÞ ¼
X
i2I

Ci þ cpðsyÞ (7.9)

where Ci is the product cost of product i. For a given set of products, the value of

cpðsyÞ varies depending on the strategy for platform design. The expected platform

strategy cost function will be used to determine a platform for a product family and

can be developed by various cost functions based on products’ characteristics and/

or company’s strategy in product family development. The next section introduces

a financial model for evaluating platform design valuation using real options.

7.3.3 A Financial Model

We propose a financial model to evaluate the valuation of product family design

using real options analysis in an uncertain market environment. A company tries

to maximize profit by identifying module valuation when new platform design

for a product family will be introduced into markets. In the proposed financial

model, demand can be represented as the source of uncertainty and volatility in

a market. We assume that the demand follows a Geometric Wiener Process and

has drift, μ, for the demand changing (Kamrad and Ritchken 1991). The drift is

defined as

μ ¼ r � σ2

2
(7.10)

where r is the riskless rate and σ is the instantaneous volatility. Let u be the rate of

moving up, d be the rate of moving down, and ud ¼ 1. The demand can move up,

move down, or state constant at time t. The probabilities of movements for the

demand at time t can be obtained as follows (Kamrad and Ritchken 1991):

p1 ¼ 1

2λ2
þ μ

ffiffiffiffiffi
Δt

p

2λσ
(7.11)

7 Platform Valuation for Product Family Design 185

p2 ¼ 1� 1

λ2
(7.12)

p3 ¼ 1

2λ2
� μ

ffiffiffiffiffi
Δt

p

2λσ
(7.13)

where Δt is the length of each time interval and λ � 1. If λ ¼ 1, p2 ¼ 0, and the

movements of the demand become a binominal model (Cox et al. 1979).

We consider a profit model for a single product. We assume that the demand, Dt,

during time interval, t, is a variable in company’s profit function. Let S be the sales

price and C be the production cost. We assume that the sales price and the

production cost are determined by the company. The production cost is represented

as row materials, labors, logistics, assemblies, financial issues, and regulation.

Profit, Vsp, for a product in time interval t can be defined as

VspðtÞ ¼ ðS� CÞDðtÞ (7.14)

Otherwise, we consider a platform that is applied to a product. Let di be the rate
of changing demand related to design quality for the product and v be the rate of

variable production cost savings if the platform is applied to a product family. The

demand of the product is affected by design quality related to customers’

preferences. Let Ap be the additional cost of introducing a platform per time

interval. The additional cost is represented as the research and implementation

costs of the new design. The profit per time interval t for the family product can be

calculated as

VfpðtÞ ¼ Sð1þ diÞDðtÞ � ð1� vÞð1þ diÞCDðtÞ � Ap (7.15)

Then, the net benefit from the platform design, Nt, for introducing a platform

during time interval t can be represented as the maximum of the difference between

0 and two profit Eqs. (7.13) and (7.14):

Nt ¼ maxð0; diSDt þ ðv� di þ vdiÞCDt � ApÞ (7.16)

Interpreting Eq. (7.15), positive values of the net benefit represent an advantage

of the family design over single product design. If the net benefit is zero, the

company selects a single product to maximize the profit. The net benefit is affected

by the volatility rate, the changing demand rate, the saving cost of family design,

and the additional cost. To evaluate the valuation of platform design with respect to

customers’ preferences and family design, sensitive analysis will be performed. In

this research, we use a lattice approach to solve the problem (Brach 2003). When

λ ¼ 1, the valuation of a platform can be calculated by the value of call option

based on the net benefit as follows:

186 S.K. Moon and T.W. Simpson

Fðt;NtÞ ¼ pNu
t þ ð1� pÞNd

t

ð1þ rtf ÞΔt
(7.17)

Where p is a risk natural probability and rtf is a risk-free interest rate at time t, Nu
t is

the net benefit of achieving the best case scenario with probability p at time t, and

Nd
t is the net benefit of achieving the worst case scenario with probability (1 � p) at

time t. Figure 7.1 shows the binomial tree for assessing the call option.

7.3.4 Design Quality

In product design, customers’ preference may vary based on specific functional

requirements. Functional preference information can help develop market segmen-

tation for a product family by identifying an initial platform based on core common

functions. The division of a market into homogenous groups of consumers’ prefer-

ence is known as market segmentation (Meyer and Lehnerd 1997). Because a

market segment provides guidelines for determining and directing customer

requirements, it can be used to identify the criteria for designing a product family

more accurately (Longstaff and Schwartz 2001). The basic development strategy

within any product family is to leverage the product platform across products that

target multiple market segments. In the initial phase, customers are classified into

groups based on their characteristics and preferences. Products are also clustered as

groups based on potential suitability for the customers. To evaluate and measure

performance of a product, we propose a quality metric that is positively related to

product quality, customer preference, and price. In this chapter, we introduce two

quality levels to determine the performance of a product (1) marginal quality and (2)

full quality. The marginal quality is defined as the level of quality that satisfies

minimum functional requirements for customers to perform a job through a product.

Customers have zero preference if the service quality of the product is below the

marginal quality. The full quality is represented as the level of quality that satisfies

maximum functional requirements for customers to pay the price for purchasing a

product. The marginal and full qualities are determined by functions depending on

customers’ preferences in market segments. Figure 7.2 shows two design quality

functions of a product for different customers’ groups. In between marginal and full

qualities, customers have various preferences related to product’s quality.

p

1-p

Nt-1

Nu
t

Nd
t

Fig. 7.1 Call option

valuation in the binomial tree

7 Platform Valuation for Product Family Design 187

We assume that the quality of a product is represented by customers’ preference.

To determine the value of customers’ reference related to the product quality, Qp,

we assume that customers in the market are categorized into two homogenous

customers, normal and specific groups. The value of the preference, U(Qp), can be

represented by a utility function as follows:

UðQpÞ ¼
0; if Qp � QM

fn;qðQpÞþfs;qðQsÞ
2

; if QM < Qp � QN
F

1þfs;qðQpÞ
2

; if QN
F < Qp � QS

F

1; if QS
F < Qp

8>><
>>:

(7.18)

where QM is the marginal quality of a product,QN
F is the full quality of a product for

a normal customer group,QS
F is the full quality of a product for a specific customer

group, fn;q is a normal quality function, and fs;q is a specific quality function. The

specific quality represents the interaction of product functions: it is a measure that

indicates what requirements are needed to make product functions for the specific

customer group. In this chapter, the design quality allows us to explore how a

particular product platform can best be used to develop a family that provides high

qualities to customer groups through the estimation of demand.

In general, market demands can be affected by the quality and price of a product

(Krishnan and Zhu 2006). To determine the expected demands for introducing

new design at a specific time, we can use the expected preference value and

demographics (potential customers) in market segmentation grids that are covered

by a product (Moon and McAdams 2009). Based on the expected demand, we can

estimate the expected increasing demand rate of a specific product for applying to

the proposed financial model. In the next section, the proposed financial model is

applied to determine the valuation of a platform strategy using a case study

involving a family of mobile products.

Quality

Preference

Full quality
for group 2

Marginal
quality

Quality function for group 1

Quality function for group 2

Full quality
for group 1

Fig. 7.2 Relationship between preference and quality for a product

188 S.K. Moon and T.W. Simpson

7.4 Case Study

To demonstrate and validate the proposed model, a family of mobile products

consisting of N73, N76, N78-1, and N79-1 is investigated from the Nokia N70

phone family as shown in Fig. 7.3. The Nokia N70 series family products provide a

good example of common and variant functions for vision accessibilities as shown

in Table 7.1. These products offer the opportunity to create a product family with

the vision features as common functions that constitute the product platform. Since

the accessible features of the mobile product family are considered as functions for

modules or components, the products can be applied to case studies related to

universal product family design (Moon and McAdams 2009).

The objective in this case study is to determine the valuation of a new platform

strategy in uncertain market environments. The platform design strategy is

represented by accessible modules to support persons with vision limitations due

to ageing and disabilities. This case study focuses on introducing a new product

platform through the addition of accessible modules. Benefit of the proposed

product platform is based on the maximum valuation of the proposed additional

modules. We also perform sensitivity analysis for the valuation of the platform

design strategy with respect to different parameters that reflect the proposed

financial model.

Fig. 7.3 Nokia N70 series

products (Nokia 2008)

Table 7.1 Vision accessible features for four products (http://www.nokiaaccessibility.com)

Vision features N73 N76 N78-1 N79-1

F1 Tactile key markers Yes No Yes Yes

F2 Standard key layouts Yes Yes Yes Yes

F3 Key feedback—tactile Yes Yes Yes Yes

F4 Key feedback—audible Yes Yes Yes Yes

F5 Audible identification of keys—when pressed No No No No

F6 Audible identification of keys—feedback Yes Yes Yes Yes

F7 Adjustable font style No Yes Yes No

F8 Adjustable character size No Yes Yes Yes

F9 Display characteristics (color display) Yes Yes Yes Yes

7 Platform Valuation for Product Family Design 189

http://www.nokiaaccessibility.com/

7.4.1 Market Analysis and Platform Strategy

Figure 7.4 shows current market segmentation grids for the mobile products with

respect to vision features and market prices. The products have different vision

accessibility features and market prices depending on market segments. For exam-

ple, N73 covers no vision impairment and low price market. In Table 7.2, we can

consider F2, F3, F4, F6, and F9 as common modules for the phone family. And, F1,

F7, and F8 are considered as variant modules.

In this chapter, the company wants to maximize profits by introducing a new

platform as accessible modules for the family of mobile products. We facilitate

function configuration for developing platform design strategies by identifying

relationships between functions and market segments at a conceptual design

phase. Using Feature and Component Matrix, we can determine the relationship

between vision features and components as shown in Table 7.2. We consider that a

cell phone consists of 11 components (Holtta-Otto and De Weck 2007). Among the

components, we assume that a main board includes a program for supporting all

features.

To develop a new platform consisting of common modules and variant modules,

we need to determine valuation of the variant modules (F1, F7, and F8). The

valuation of modules can help decide which modules are included to a new platform

for increasing benefits and accessible features in product family design. Table 7.3

shows configuration strategies that consist of the variant modules for the phone

product family. To determine the expected strategy cost as mentioned in Sect. 7.3.2,

we considered the number of components that are related to vision features and use

a unit additional cost, Ca , for each component. For example, since the tactile key

marker is related to two components, upper case and keypad, the additional cost of

the tactile key marker is 2 Ca: We assume that a factor of overhead cost and a

Fig. 7.4 Market segmentation grids for the four products

190 S.K. Moon and T.W. Simpson

T
a
b
le

7
.2

F
ea
tu
re

an
d
co
m
p
o
n
en
t
m
at
ri
x
fo
r
th
e
p
ro
d
u
ct
s

V
is
io
n

fe
at
u
re
s

P
o
w
er

co
n
v
er
te
r

P
o
w
er

ca
b
le

U
p
p
er

ca
se

L
o
w
er

ca
se

S
p
ea
k
er

D
is
p
la
y

u
n
it

K
ey
p
ad

M
ic
ro
p
h
o
n
e

A
n
te
n
n
a

M
ai
n

b
o
ar
d

B
at
te
ry

C
o
m
p
o
n
en
t
#

F
1

�
�

2

F
2

�
�

�
3

F
3

�
�

�
3

F
4

�
�

�
�

4

F
5

�
�

�
�

4

F
6

�
�

�
�

4

F
7

�
�

�
�

4

F
8

�
�

�
�

4

F
9

�
�

�
�

4

7 Platform Valuation for Product Family Design 191

volume penalty factor are 2 and 1, respectively. The expected strategy cost for the

product family can be calculated by Eq. (7.7). Table 7.3 shows the results of the

expected strategy cost for the platform strategies.

In the vision impairment point of view, Table 7.4 shows a comparison of current

market segments and the expected market segments for new platform design

strategies. For example, if N73 includes additional features, F1 and F7, as a

platform strategy (S1), its expected market segments will cover no and mild

segments for the vision impairment.

7.4.2 Identify Design Quality

Based on the platform design strategies, the expected design qualities for the

products can be calculated by the value of preference as mentioned in Sect. 7.3.3.

We assume that the design quality of a product is depended on the number of vision

features in the product. We consider customers with vision impairment as the

specific group. Figure 7.5 shows the functions of design quality for two customer

groups. The marginal quality was determined by the number of common vision

features. The full quality of the normal group was determined by the design quality

of N73, while the full quality of the specific group was the maximum number of

vision features.

Table 7.5 shows the expected design qualities of the products with respect to

vision features. The expected preference values of the products for the platform

strategies are calculated by Eq. (7.18). For example, the expected design quality

Table 7.3 The expected additional strategy cost for the platform strategies

Strategy

Additional component design cost

Expected additional strategy costN73 N76 N78-1 N79-1 Total

S1-F1F7 4Ca 2Ca – 4Ca 10Ca 5Ca

S2-F1F8 4Ca 2Ca – – 6Ca 3Ca

S3-F7F8 8Ca – – 4Ca 12Ca 6Ca

S4-F1F7F8 8Ca 2Ca – 4Ca 14Ca 7Ca

Table 7.4 Comparison to current market segments and the expected market segments

Platform strategy N73 N76 N78-1 N79-1

Current No Mild Moderate Mild

S1 No, mild Mild Moderate Mild, moderate

S2 No, mild Mild Moderate Mild

S3 No, mild, moderate Mild Moderate Mild, moderate

S4 No, mild, moderate Mild, moderate Moderate Mild, moderate

192 S.K. Moon and T.W. Simpson

of N73 in S1 is 0.75, because the number of vision features for N73 is 7 (F1, F2,

F3, F4, F6, F7, and F9) and the expected preference value of 7 vision features is

0.75 (0.5 for the specific group and 1 for the normal group). Therefore, we can

expect that demand for the mobile products with accessible features will be

depended on the number of persons with vision limitations due to age and

disabilities.

7.4.3 Numerical Analysis

To evaluate the valuation of the vision features, S4 was selected for applying to

numerical analysis based on the proposed financial model. We assume that the

expected demands for the products are determined by the result of market analysis

and the amount of total demands for the cell phone products is 400,000. We assume

that the total time horizon for the problem is 10 years and the time interval is 1 year.

According to the market analysis in Sects. 7.4.1 and 7.4.2, we assume that the

expected demand of the mobile product with accessible features is increased.

Suppose that the problem parameters at the current time (t ¼ 0) in the case study

are as follows:

Number of Vision Features

Preference
Quality function for the normal group

Quality function for the
specific group

95 6 8
N73

95 6 7 8
N78-1N76

N79-1

1

0

Fig. 7.5 Preference and design quality for the products

Table 7.5 The expected

design qualities of the

products

Strategy N73 N76 N78-1 N79-1

Current 0.625 0.75 0.875 0.75

S1 0.75 0.875 0.875 0.875

S2 0.75 0.875 0.875 0.75

S3 0.875 0.75 0.875 0.875

S4 0.875 0.875 0.875 0.875

7 Platform Valuation for Product Family Design 193

S ¼$400 (average sales price for mobile products)

C ¼$320 (average production cost for mobile products)

D0 ¼400,000 (demand at t ¼ 0)

Ap ¼$7 per a product (additional cost when Ca is $1)

r ¼5 % (riskless rate)

σ ¼10 % (volatility)

u ¼1.0226 (the rate of move up)

d ¼0.9729 (the rate of move down)

di ¼3 % (the rate of the expected increasing demand rate)

v ¼2 % (the rate of cost saving for product family)

rtf ¼5 % (the rate of a risk-free interest at time t)

We assume that λ ¼ 1. Then, the probabilities of movements for the demand

can be calculated by Eqs. (7.10) and (7.12). Therefore, p1 ¼ 0.5712 (move up) and

p3 ¼ 0.4288 (move down). Using a lattice approach, the valuation of real option for

vision accessible modules is estimated to be $805200.5. This value is represented as

the expected worth of introducing additional accessible modules as a platform for

the family of the mobile phones for 10 years. A binomial lattice with 10 time steps

and 66 nodes is generated to estimate the valuation of the module as shown in

Fig. 7.6. Since the valuation of F1, F7, and F8 are depended on the redesign cost,

Ca, additional vision features for a new platform can be selected by design

constraints related to development cost for the features.

We performed sensitivity analysis to investigate the behavior of the estimated

option value against chaining system parameters such as the rate of cost saving for

product family, the volatility of demand, and the rate of the expected increasing

demand. Figure 7.7 shows the effect of the rate of cost saving for product family on

Year
1 2 3 4 5 6 7 8 9 10

1605369.1
1508309.3

1413394.6 1413396.9
1320577.5 1320579.8

1229811.8 1229814.0 1229816.1
1141052.0 1141054.1 1141056.3

1054253.9 1054255.9 1054258.0 1054260.1
969374.0 969376.0 969378.1 969380.1

886370.0 886372.0 886374.0 886376.0 886378.0
805200.5 805202.4 805204.4 805206.3 805208.3

725826.7 725828.6 725830.5 725832.4 725834.3
648207.1 648209.0 648210.9 648212.7

572303.0 572304.8 572306.6 572308.4
498076.2 498078.0 498079.8

425489.9 425491.7 425493.4
354507.8 354509.5

285094.3 285096.0
217214.9

150835.7

Fig. 7.6 Option value for additional accessible modules in the binomial lattice

194 S.K. Moon and T.W. Simpson

the estimated option value. While the rate of the cost saving increases, the option

value increases linearly. Figure 7.8 shows the estimated option value against the

volatility of demand. The estimated option value is dropped with an increasing rate

while the volatility increases. Figure 7.9 presents the estimated option value versus

the rate of the increasing demand that occurs with customers’ preferences and

demographic trend. Design quality gives positive effects on the option value.

Through the case study, we demonstrate that the proposed valuation model

for a module could be used to determine a design strategy for maximizing profits

by valuing the module in the family of products. The proposed model can provide

a quantitative method to facilitate family design in an uncertain market

environment.

0

2000

4000

6000

8000

10000

12000

0 0.02 0.04 0.06 0.08 0.1

O
pt

io
n

va
lu

e
(t

ho
us

an
d

$)

The rate of cost saving for product family design

Option value vs. Cost saving for family design

Fig. 7.7 The estimated option value versus the rate of cost saving for family design

650

680

710

740

770

800

830

0 0.2 0.4 0.6 0.8 1

O
pt

io
n

va
lu

e
(t

ho
us

an
d

$)

Volatility of demand

Option value vs. Demand Volatility

Fig. 7.8 The estimated option value versus volatility of demand

7 Platform Valuation for Product Family Design 195

7.5 Closing Remarks and Future Work

In this research, we presented a valuation financial model to evaluate design value

based on real options analysis in an uncertain market environment. Real options

analysis was applied to evaluate the expected worth of introducing new modules as

a platform in a product family. Modular product architecture was used to allow a

range of trade-offs in determining the specific configuration for a platform at a

conceptual design phase. To evaluate and measure design quality of a product, we

proposed a preference function using customers’ preferences and performance

utilities for products.

The proposed financial model can facilitate design strategies that will maximize

the expected profit under uncertain constrains, such as demands, demographic

trends, and regulations. In a case study, we have applied the proposed model to

determine the valuation of accessible modules for a platform in a family of mobile

products in an uncertain market environment. We also performed sensitivity analy-

sis to investigate the behavior of the estimated option value against changing

system parameters such as the volatility of demand, the rate of the expected

increasing demand, and the rate of cost saving for product family.

Since the proposed financial model is focused on modular product families,

module configuration issues will be considered as real options analysis for

introducing interfaces between modules in product family design. To improve the

proposed model, we need to develop a method to better reflect the benefit of family

design, social issues, and government regulation. Additionally, since the production

cost are sensitive to the valuation of options, future research efforts will be focused

on improving production cost models in an uncertain market environment. Also, the

proposed method will be compared to other decision-making methods for deter-

mining a design strategy in a product family.

0

500

1000

1500

2000

2500

3000

3500

0 0.02 0.04 0.06 0.08 0.1

O
pt

io
n

va
lu

e
(t

ho
us

an
d

$)

The Rate of Increasing Demand

Option value vs. Increasing Demand

Fig. 7.9 The estimated option value versus the rate of increasing demand

196 S.K. Moon and T.W. Simpson

References

Bollen NPB (1999) Real options and product life cycles. Manag Sci 45(5):670–684

Brach MA (2003) Real options in practice. Wiley, Hoboken, NJ

Cox J, Ross S, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 3

(2):229–263

Cronin MJ (2010) Smart products, smarter services: strategies for embedded control. Cambridge

University Press, New York, NY

Fernandez MG, Panchal JH, Allen JK, Mistree F (2005) Concise interactions and effective

management of shared design spaces – moving beyond strategic collaboration towards

co-design. In: Proceedings of ASME international design engineering technical conference

& computers and information in engineering conference, 24–25 Sept, Long Beach, CA, Paper

No. DETC2005-85381

Ford DN, Sobek DKI (2005) Adapting real options to new product development by modeling the

second toyota paradox. IEEE Trans Eng Manag 52(3):175–185

Gamba A, Fusari N (2009) Valuing modularity as a real option. Manag Sci 55(11):1877–1896

Holtta-Otto K, De Weck O (2007) Degree of modularity in engineering systems and products with

technical and business constraints. Concurr Eng Res Appl 15(2):113–126

Jiao J (2012) Product platform flexibility planning by hybrid real options analysis. IIE Trans 44

(6):431–445

Jiao J, Lim CM, Kumar A (2006) Real options identification and valuation for the financial

analysis of product family design. Proc Inst Mech Eng B: J Eng Manuf 220(6):929–939

Johannesson H, Claesson A (2005) Systematic product platform design: a combined function-

means and parametric modeling approach. J Eng Des 16(1):25–43

Johnson MD, Kirchain RE (2011) The importance of product development cycle time and cost in

the development of product families. J Eng Des 22(2):87–112

Kamrad B, Ritchken P (1991) Multinomial approximating models for options with K state

variables. Manag Sci 37(12):1640–1652

Kopin V, Wilbur D (2005) Bayesian serial cost sharing. Math Soc Sci 49(2):201–220

Krishnan V, Zhu W (2006) Designing a family of development-intensive products. Manag Sci 52

(6):813–825

Kumar D, Chen W, Simpson TW (2009) A market-driven approach to product family design. Int J

Prod Res 47(1):71–104

Longstaff F, Schwartz E (2001) Valuing american options by simulation: simple least-squares

approach. Rev Financ Stud 14(1):113–147

Magrab EB (1997) Integrated product and process design and development: the product realization

process. CRC, Boca Raton, NY

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. The Free Press, New York, NY

Moon SK, Mcadams DA (2009) A design method for developing a universal product family in a

dynamic market environment. In: Proceedings of the design engineering technical conferences

and computers and information in engineering conference, Aug 30–Sept 2, San Diego,

CA. ASME, Paper No.: DETC2009-86784

Moon SK, Park J, Simpson TW, Kumara SRT (2008) A dynamic multi-agent system based on a

negotiation mechanism for product family design. IEEE Trans Autom Sci Eng 5(2):234–244

Moon SK, Shu J, Simpson TW, Kumara SRT (2011) A module-based service model for mass

customization: service family design. IIE Trans 43(3):153–163

Nokia (2008) http://www.nokiausa.com

Ramesh B, Tiwana A, Mohan K (2002) Supporting information product and service families with

traceability. Lect Notes Comput Sci 2290:353–363

Rojas Arciniegas AJ, Kim HM (2012) Incorporating security considerations into optimal product

architecture and component sharing decision in product family design. Eng Optim 44(1):55–74

7 Platform Valuation for Product Family Design 197

http://www.nokiausa.com/

Shiau CN, Michalek JJ (2009) Optimal product design under price competition. J Mech Des 131

(7):071003:1–071003:10

Shooter SB, Simpson TW, Kumara SRT, Stone RB, Terpenny JP (2005) Toward an information

management infrastructure for product family planning and platform customization. Int J Mass

Custom 1(1):134–155

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18(1):3–20

Simpson TW, Maier JRA, Mistree F (2001) Product platform design: method and application. Res

Eng Des 13(1):2–22

Simpson TW, Siddique Z, Jiao J (2005) Product platform and product family design: methods and

applications. Springer, New York, NY

Smit HTJ, Trigeorgis L (2004) Strategic investment: real options and games. Princeton University

Press, Princeton, NJ

Thevenot HJ, Alizon F, Simpson TW, Shooter SB (2007) An index-based method to manage the

tradeoff between diversity and commonality during product family design. Concurr Eng: Res

Appl 15(2):127–139

Xiao A, Zeng S, Allen JK, Rosen DW, Mistree F (2002) Collaborating multidisciplinary decision

making using game theory and design capability indices. In: Proceedings of the 9th AIAA/

ISSMO symposium on multidisciplinary analysis and optimization, 4–6 Sept, Atlanta, GA

Zacharias NA, Yassine AA (2008) Optimal platform investment for product family design. J Intell

Manuf 19(2):131–148

198 S.K. Moon and T.W. Simpson

Part II

Platform Architecting and Design

Chapter 8

A Proactive Scaling Platform Design Method

Using Modularity for Product Variations

Keith Hirshburg and Zahed Siddique

Abstract To be competitive in the current business environment, a company or

engineering firm must be able to produce new products or designs in the market-

place with better quality and greater customization than both their national and

international competitors. These business entities must also be able to accomplish

this at a more strenuous pace than their competitors to capture the largest market

share. In this chapter, a scaling, small product, proactive platform design method
using modularity (PPM) for product variations is presented to assist the company or

firm in achieving the highest competitive result. In Chap. 30, we also present a case

study to demonstrate how this method can be effectively instituted in a proactive

product design. Even though this method and case study are directed to small

product family development, any product family design with commonality can

benefit from using these ideas to improve the design process.

8.1 Introduction

To bring a set of products to the market in an intelligent and economical way, a

company must use an orderly and defined process to design and manufacture

these products. Companies are striving to deliver greater quality, more varieties,

faster response, more innovative designs, and lower prices (Bower and Hout

1988; Stalk and Hout 1990). New models are introduced in the market more

frequently, while the number of mass-produced models is decreasing (Schile and

Goldhar 1989). Although different researchers (Bower and Hout 1988; Hirsch and

Thoben 1997; Hollins and Pugh 1990; McDermott and Stock 1994; Wheelwright

K. Hirshburg • Z. Siddique (*)

School of Aerospace and Mechanical Engineering, University of Oklahoma,

Norman, OK 73019, USA

e-mail: zsiddique@ou.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_8,
Springer Science+Business Media New York 2014

201

http://dx.doi.org/10.1007/978-1-4614-7937-6_30
mailto:zsiddique@ou.edu

and Clark 1992) have highlighted different reasons for family of products, there is

a consensus that for companies to survive in the current global market, they must

move towards a platform-based customization or family of products.

Companies are being faced with the challenge of providing as much variety

as possible for the market (external) with as little variety as possible between

products (internal). One of the key elements in product family is the product

platform. “A product platform is a collection of the common elements, espe-

cially the underlying core technology, implemented across a range of products”

(McGrath 1995). One way to achieve this is by developing the product platform

carefully and then using different modules to provide product variety. This

approach requires configuration rationalization of the platform and the product

family. Configuration design involves determining which modules are in the

product, what are the components in the modules, and relationships among the

components and modules. A well-defined product platform is required to

support family of products. The approach advocated in this chapter, and by

many strategic marketing/management researchers and designers/engineers

alike, is to design and develop a family of products with as much commonality

between products as possible with minimal compromise in quality and

performance.

Focusing product strategy at the platform level simplifies the product develop-

ment process because there are fewer platforms than products and major platform

decisions are only made every few years. “A clear platform strategy leverages the

resulting products, enabling them to be deployed rapidly and consistently”

(McGrath 1995). A platform approach encourages a long-term view of the product

strategy. Implementing commonality to develop platforms for a set of similar

products requires product configuration reasoning to determine the product plat-

form and then to identify the portfolio associated with the platform.

Review of the traditional individual product engineering design process

reveals an insufficiency, that is, the current process does not take into account

reusing the design or parts of the design to create other similar products or

solutions. Currently in the last few decades, as companies became more com-

petitive, and the markets became more segmented, the product designers need

an efficient approach to design a family of products. This method requires a

company to design products at a more aggressive pace, provide more variety to

customers, while increasing design and manufacturing efficiency and reducing

financial burden on the company. Consequently, the overall objective of this

chapter is to develop a method for product family design through using a

scalable platform and modular product family while using concurrent team-

work, human-involved design negotiation with mathematical optimization, and

design for manufacturing. We also investigate changes and extensions to

existing individual product design processes to accommodate design of product

families.

202 K. Hirshburg and Z. Siddique

8.2 Related Work

A product family is a general group of related products that are created off of single

or multiple platforms (Simpson et al. 2006). Put another way a product family is an

approach “to obtain the biggest set of products through the most standardized set of

base components and production processes” (Siddique and Rosen 1999). The

product family attempts to fulfill most or all of the customer niches in a certain

market(s). Examples of product families range from Black-N-Decker drills to light

SUVs made by the automobile manufacturers. Other terms associated with product

families are product line and product group. Product family design can be described

as “a conceptual structure and overall logical organization” that is used to create a

family of products through utilizing commonality achieved from providing a

“generic umbrella” to extend product line structure (Jiao et al. 2007).

A product platform can be defined as a set of common components, modules,

processes, and assets from which a stream of derivative products can be efficiently

developed and launched (Meyer and Lehnerd 1997; Robertson and Ulrich 1998).

Extended further the platform can be identified in physical and nonphysical terms,

meaning actual knowledge can be considered a platform instead of just designed

components. In this chapter a platform will be considered as the common

components, modules, and interfaces that are involved in driving the performance

of a family.

A proactive platform is a top-down approach, meaning that a company

strategically creates a product line “based on a platform and its derivatives”

(Simpson et al. 2006). A company performs proactive platform design by designing

the platform components from the beginning to work in conjunction with each other

that makes a base for the product line. This design would not try to create a platform

from existing products or components. An example of a top-down approach is the

design of the product family of Walkman, created by Sony Corporation (Sanderson

and Uzumeri 1997). A reactive design, the bottom-up approach, is a platform

design process where a company takes an existing set of distinct products and

tries to consolidate them into using a single set of components (Simpson et al.

2006). Currently, there is a need for a proactive approach to product family design

that can utilize tools that have already been developed by researchers.

Modular architecture is a product architecture defined by a one-to-one or one-to-

multiple construction of functional elements (Simpson et al. 2006). In product

family there are three main types of modularity: functional modularity, technical

modularity, and physical modularity. Integral product architecture is defined by

having a complex or coupled mapping of functional elements to physical structures

or interfaces (Simpson et al. 2006). A scale-based or parametric product family is

based on a platform that stretches or shrinks to create different products in the product

family. This stretching or shrinking can be a single component of the platform,

a few components, or even the entire platform to create the different products of the

family. GAM (Lu and Zuhua 2006) is a method for designing a platform through the

use of a genetic algorithm to find the components of the platform from a list of

design variables.

8 Scaling and Pro-Active Platform Design 203

Design affordance is a design process of allowing and disallowing certain

conditions, variables, and aspects, when conducting a design process. Original

design of a complex system starts from the view at the system level and then is

decomposed in subsystems and finally down to the component level. Design

affordance seeks to understand the system as a whole in terms of functions,

interactions, reactions, and even emotions. Affordance means “what it provides,

offers, or furnishes to a user or to another product” (Maier 2008). The product

family is designed by limiting or boosting the affordances. Gonzalez-Zugasti et al.

(2000) present a method for designing a product family through the use of an

interactive team-based negotiation of components. This method’s inputs are (1) the

requirements for the product family, (2) the variables, (3) whether the variables are

common, (4) and the interrelationship of the variables. This method computes a

platform using basic optimization and then the designer can create variants of this

platform to suit the individual product needs. Varieties in many products are based

on functionality; hence, an approach is needed that uses modularity as a mean to

support family products.

8.3 Proactive Platform Design Method Using Modularity

The proposed PPM design method for creating a scaling, small product, and

proactive platform, using modularity for product variations, is comprised of five

steps to conceive a product family from an initial concept. The steps are (1) market

research, (2) product family planning, (3) target function strategy, (4) platform

design, and (5) modularity construction. These five phases are shown in Fig. 8.1.

8.3.1 Step 1: Market Research

Market research and analysis for a potential product is necessary for a design team

to be aware of all the metrics concerning a product’s performance and the impor-

tance of these features to offer an optimized product line to the customers (Stobart

1994). Distributing a product line that fails to meet the customer demands will

create a lower than desired sales volume in the present and will also “negatively

affect future sales” for the company by damaging the company’s brand name

(Stobart 1994). Associated sub-steps are:

Identify customer needs: To be able to determine the customer needs, the design

teamwill need to research the different market segments surrounding the product line’s

main purpose or function. The market segment can be designated by viewing existing

products that relate to the product line’s base function and determining logically where

the product lineup fits. The determination of the market segment can be performed

by thinking broadly and working towards a more defined market segment.

204 K. Hirshburg and Z. Siddique

The result of narrowing down the market segment leads to a more defined set of

customer demands, but the consequence to narrowing the market segment will

also reduce the sales volume for the product line. A trade-off must be decided

between achieving a large amount of total sales and the ability of the products in

the product line to fit the needs of a specific set of customers. After narrowing down

from a broad market focus, a preliminary main customer segment group should be

chosen and the design team should begin accumulating information on the customers

of these common segments. This can be accomplished by performing a review of the

customers and a review of the competition in these segments. A review of the

customers of the market segment is difficult, time-consuming, and statistically

non-exact process (Mendenhall and Sincich 2007). To determine the customer

needs directly, the team can interview the customers in person or over the phone.

A less direct interview can be accomplished through feedback of company’s previ-

ous products, Internet polls, or email polls. Direct interviews provide less biased

information due to people having to put forth less effort and reason to give the

company information (Campbell 1974). The direct interview methods usually result

in a normal curve for replies if the polls have a large enough population (Mendenhall

and Sincich 2007). Less direct feedback methods result in a greater amount of bias.

These biases result from the feedback volunteered by customers who appreciate the

product in the upper extreme or who dislike the product in the lower extreme.

Initial Concept, Ideal, or Product

Market Research
Identify & Graph Customer Needs

Identify & Graph Competitors
Market Volume Analysis

Market Rules and Regulations

Product Family Planning
Determine optimal set of products

Future of the product family

Target Function Strategy
Creates the function structure of each market target

Find concepts for each function

Platform Design
Uses an algorithm to identify and isolate possible platform components

Team negotiation adds/removes components to platform
Mathematical models scale the platform for different products

Platform is optimized for manufacturing and assembly by the Lucas method
Manufacturing tooling is improved by process flow

Modularity Construction
Designs each component outside of the platform on a module basis

Create Models of each component
Creates the optimal products to meet the market targets

Perform Design for Manufacturing Optimization
Design Manufacturing Tooling for each component

Manufacture and Distribute Product

Fig. 8.1 Outline of the

design method

8 Scaling and Pro-Active Platform Design 205

This indirect feedback method usually results in a reverse normal curve

(Mendenhall and Sincich 2007). The indirect feedback method with a large

population highlights what features are required in the product family and what

features should be left out. The interviewee rates each feature on the interview

form with a scale that ranges from the feature that is not important in consideration

for buying the product to the feature being extremely influential on the purchase.

The information can be organized visually and analyzed to determine the

importance of the features. Two graphs should be created, one for the direct

interview method and one for the indirect polling method. By overlapping the

two graphs, the design features that are most important in the product offerings can

be determined by identifying repeated peaks.

Identify competitors: Competitors first need to be identified (Clark and

Montgomery 1999) to perform a review of how the competition fulfills the market

demand. This can be accomplished by identifying products offered in the market

segments and then researching the product features, the quality of the features, how

the product performs these features, and how many of these products are purchased.

For each product being researched, consumer/user evaluation is gathered using a

survey. The consumer/user survey uses four categories to evaluate features:

• Metric A determines if the competitor’s product includes the selected feature.

• Metric B describes the quality and durability of the selected feature.

• Metric C is the performance metric and is used to gauge how well the feature

performs in the product.

• Metric D is the population metric and is the number of products that are sold per

year by the specific competitor.

Metrics A through D are used to calculate the valuation of the feature from the

product and are shown in Eq. (8.1).

Feature Value ¼ Afeature � Bquality�1

4
� Cperformance�1

4
� Damount (8.1)

After all the competing products in the market have been evaluated, the calcu-

lated feature values are compiled to visualize how the competing products match

the customer demands, using Eq. (8.2).

Total Feature Value ðfeaturexÞ ¼
Xi

n¼1
featurexð Þi (8.2)

Using the compiled scores of the features, the market demands can be compared

to the features offered by the competitors. Statistical methods can be applied to gain

a more defined edge over the competition in the market segment. After the primary

market segments have been researched, the team should decide if reaching market

segments outside of the selected ones can benefit revenues, without degrading the

product line. These outer market segments might be incorporated into the product

line by leveraging a variation of the platform. The outside markets could be

206 K. Hirshburg and Z. Siddique

potentially reached by the initial product offering or by a future variation of the

platform released at a later date. Investigation into other segments can be accom-

plished by repeating the same process of research in the main segments.

Market volume analysis: Market volume analysis can be used to determine the

number of products needed to meet the customer demands and the number of

products currently on the market. Volume analysis should not only cover the total

amount of products to be sold but also find the relationship between price and

number of units that can be sold at that price. The market volume analysis is used to

help decide how many and the price of units for each variation.

Rules and regulation bodies: Along with the laws and regulations involving patents
and other information about the designs, there are also laws regulating how these

products perform. Each market segment will have sets of regulations that it may

have to follow. Some examples of regulatory bodies are the EPA and OSHA, but

there are many other agencies and regulations that may need to be researched and

followed. All rules and regulations should be researched for each market segment

for the product line, before the product is designed. Proactive research in this area

will have a large cost reduction, compared to researching retroactively.

8.3.2 Step 2: Product Family Planning

The objective of product family planning is not just to plan an optimal product line

for the instance it is released but also to plan out the future offerings, variations, and

upgrades to the products, until the next generation of the platform product family

can be released. The associated sub-steps are described next.

Optimal set of products: To create an optimal set of products, the team must first

convert the product qualitative features of the marketing process into quantitative

features the product can be designed from. This is accomplished by converting the

generic qualitative feature into a measureable quantitative feature. The conversion

can be accomplished by using well-established methods such as quality function

deployment. The optimal set of products, also known as the market targets, can be

created by using a specific selection of quantitative features needed to create the

performance demands of the target. This set of products should fulfill all of the

major requirements in the market segments and should be the products the team is

attempting to produce in the product family. If the amount of features and details of

the features become too complex, the optimal product line can be selected by a

genetic optimizing algorithm.

Future of the family: The success of the product family depends on how it is

leveraged over time until the next generation of the product family can be designed

and manufactured. A large part of the planning for the future is determining the time

length between product family generations. This time between generations is

dependent upon the market competitor’s generational length and the capabilities

8 Scaling and Pro-Active Platform Design 207

of the design team’s company. Product life cycles can be as long as 10 years in the

example of Sony and its PlayStation systems or as short as a year as is found in

some cell phone product families. To find the market average for the product life

cycle, the team will need to research when each product of the competitor’s was

first released and when the product was replaced by the next generation of product.

If the product gets replaced by a product, with only a small amount of upgrades, it

should not be considered a new generation. After finding the average product life

cycle of the competitors, the team should plan on matching this life cycle or even

trying for a longer product life cycle. Longer product life cycle usually results in

product line generation being more profitable. In certain cases sales will trail off for

the longer the cycle because of market saturation or newer models from competitors

being available in the market. Falling sales are due to the product line not fulfilling

the customer needs as well as the competitor’s new products, and this can lead to a

damaging of the companies brand name. After the product life cycle has been

determined, the product release dates should be decided upon to keep the customer

segment interested in the company, to allow for the marketing department to have

new products to market, and to provide transition time between the generations.

A basic example of a planned time leveraging of a small product family is shown

in Fig. 8.2.

8.3.3 Step 3: Function Strategy

The function strategy is the road map for the product family design process and is

composed of function structures for each of the products in the family. The first step

is to create function structures for each of the market targets to provide an outline of

the functions included in each product. A function structure is the mapping of the

different flows of material, energy, and information within a design. A full creation

of a function structure should be a road map to demonstrate what needs to be

designed. Even though it presents what needs to be designed, it does not provide

how the product should be designed. For each process defined in the function

structure, the process can be extrapolated into a component(s) of the platform or

a modular component(s) in the product variants. At this stage, each process should

be isolated and named for use in both the platform design process and the

non-platform design process.

8.3.4 Step 4: Platform Design

All metrics that can be used to describe the performance of a product family are

influenced largely by a base number of components, known as the platform.

Choosing an optimal set of components and then optimizing those components

need to be accomplished to produce a product line that is successful in the current

competitive environment. Sub-steps are:

208 K. Hirshburg and Z. Siddique

Determining platform components: To determine platform components, the func-

tion structure needs to be broken down for each of the market targets into its

components, which are placed in a matrix. This matrix logs the functions in rows

and places the details of the function in columns under component name, market

target, component function, scalable, standard part, and modifiable. After all these

inputs are entered into the matrix, an algorithm (see Fig. 8.3) identifies and isolates

all possible platform components. This is accomplished through the use of multiple

processes. Components that do not have the flexibility to be modified without

adversely affecting the performance of the product are considered nonmodifiable.

The first process of the algorithm identifies all components that are nonmodifiable

Initial Product Offering (Generation 1, Year 0)

Product A Product B Product C

Product D
Year 1.5

Additional Variants Released (Generation 1)

Product E
Year 2 Product F

Year 2.25

Generation Two (Year 4)

Small Product Upgrades, Transition Products (Generation 1)

Product C version 2
Year 3

Product A version 2
Year 3.5

Fig. 8.2 A time-leveraged example of a generic product plan

8 Scaling and Pro-Active Platform Design 209

but found in 75 % (this percentage can be increased or decreased based on the

product. A higher percentage will result in lower commonality) of the market

targets and places these components into the platform with removing the leftover

nonmodifiable components from being considered for the platform. The second

process identifies all components that are off-the-shelf/standard parts and are found

in 75 % of the market targets and isolates them. The process then places these

components into the platform and removes the remaining standard parts from being

considered for the platform. The third process identifies all the components that

share a function with at least 75 % of the market targets. These identified

components are isolated and placed into the platform consideration components

Identifying and Isolating Algorithm

Input all components in the
formatted spread sheet

Identify all components that are non-
modifiable, non-standard parts, and are
found in 75% of the function structures

Possible Platform
components

Create two lists, one list of the
identified components, and the master

list of components.

Master list of
components.

Remove all non-modifiable parts from
the master list.

Edit one of
master list.

(1) Identify all components that are
standard parts, and are found in 75% of
the function structures.
(2) Place all identified components in
the platform components list.
(3) Remove all standard parts from the
master list.

Edit two of
master list.

Edit one of
Possible Platform

components

(1) Identify all components that have
the same function, and are found in
75% of the function structures.
(2) Place all identified components in
the platform components list.
(3) Delete master list.

Edit two of
Possible Platform

components

(1) Remove all duplicate components.
(2) Calculate percentage of use in
family of each component and label
them.
(3) Label all scalable components in
the platform components list.
(4) Label all 100% use components as
permanent platform components.
(5) Label all non 100% use
components as possible platform
components.

Labeled Platform
Data

Fig. 8.3 Identifying and isolating algorithm

210 K. Hirshburg and Z. Siddique

and remove all the function components that did not meet this percentage. The last

process evaluates the collection of platform components and removes the duplicates

and then calculates the exact percentage use in the targets for each component.

After this evaluation, the process tags all components with 100 % use as permanent

platform components and labels the rest with a possible platform component tag.

Finally the process highlights all scalable components for easy identification.

After the use of the algorithm, the team will need to decide which of the possible

platform components should be included in the platform, and this can be done by

using a negotiation model. After the algorithm and the team negotiation, the

platform components are confirmed and the team can continue to designing,

modeling, and optimizing the platform.

Platform design modeling: The platform has been selected and now it needs to be

designed and modeled. The platform components should be broken into two

categories: components that will be scaled and components that will not be scaled.

The design entails creating models using the requirements and functions. In the

design of scaled components, the restrictions should be modeled using both the

maximum and minimum dimensions required to produce the maximum and mini-

mum performances. These multiple dimensional models are designed so the

non-scaled components in platform and the non-platform components can be

designed within potential space restrictions. The designers should design the scaled

component’s CAD models with true flexibility for on-the-fly changes. Non-scaled

connections must be designed to remain static during the on-the-fly changes to

allow for connectivity in all scales. The static connections to the non-scaled

components will allow for modularity in the connections for the non-scaled and

the non-platform components.

Platform optimization: Platform optimization is the modifying of the scales,

dimensions, and properties of the platform components to achieve the desired

performance. The optimization of the scaled platform components can be accom-

plished using existing optimization approaches to determine the optimal set of

scales (Simpson 2004). For the non-scaled components, the use of FEA and CFD

analysis should be all that’s needed. The designers should repeat platform design

modeling and scaling (Fig. 8.4) for different scaling components and modules.

Design for manufacturing improvement on the platform: Improving the platform

for manufacturing is important since the platform will be manufactured for each of

the products produced. Any waste or underperformance will be repeated many

times over, so any improvement found from being thorough in the design and

redesign of components for manufacturing is very important. The manufacturability

and assemblability of the platform components are improved by following the

Lucas method, which is a method based on a difficulty value assessment instead

of recording time of assembly as in the Boothroyd and Dewhurst method. The

Lucas method assigns values to three processes: functional analysis, feeding analy-

sis, and fitting analysis which leads to an assessment on the assembly of the product.

The efficiency of the design is analyzed through functional analysis by providing a

8 Scaling and Pro-Active Platform Design 211

Platform Design

Is it a scaling component?

Design component with all controlling dimensions
flexible enough to allow for real-time scaling and

dimension changingDesign the components with
static dimensions

Perform FEA, CFD and other
analysis on components to

evaluate their design

Did the design pass the
analysis?

Static Component Finished

Perform scaling optimization using an algorithm
powered by performance describing equations.

Create assemblies of the total platform for each scale

Scale 1 Scale 2 Scale ‘n’

Perform FEA, CFD and other
analysis on the platform to

evaluate if the scale meets the
market target

Do the scales meet the
market targets?

Redefine the
performance

equations to reflect
the extra analysis

Platform Designed and Optimized

No Yes

YesNo

Fig. 8.4 Platform design modeling and scaling flow process

212 K. Hirshburg and Z. Siddique

percentage of essential components of the product (parts that are deemed to be

essential to the product’s function; parts that are not essential to the product’s

function include fastening and locating). The calculation of functional analysis is

shown in Eq. (8.3):

Functional Efficiency ¼
P

essential componentsP
essential componentsþP non essential components

(8.3)

The handling of components, during assembly, is analyzed using feeding analy-

sis and is shown in Eq. (8.4). In the feeding analysis, the problems associated with

the handling of the part are scored using an appropriate table. For each part, the

individual feeding index is scored. Similarly fitting ratio is calculated [Eq. (8.5)].

Feeding Ratio ¼
P

Part Feeding IndicesP
essential components

(8.4)

Fitting Ratio ¼
P

Part Fitting IndicesP
essential components

(8.5)

The fitting ratio is used to analyze the insertion of the component into the

products during assembly. The Lucas manufacturing analysis is an assessment on

the complexity and cost of the manufacturing by performing analysis on many

different metrics. The manufacturing cost is calculated using Eq. (8.6):

Manufacturing Cost Index ¼ CC � CMP � CS � CT or CFð Þ � PC þ V � CMT �WC

(8.6)

where CC ¼ complexity factor, CMP ¼ material factor, CS ¼ minimum section,

CT ¼ tolerance factor, CF ¼ finish factor, PC ¼ processing cost, V ¼ volume

(cubic millimeters), CMT ¼ material cost, WC ¼ waste coefficient.

The Lucas method uses seven steps to improve the manufacturability and

assembly of the platform. Step one involves the specification of the platform, step

two is the design of the platform, step three is the functional analysis, step four is the

feeding analysis, step five is the fitting analysis, step six is the assessment of the

assembly analyses, and step seven is the assembly analysis.

Manufacturing tooling design: Since the platform is the backbone of the product

family, the platform design must incorporate the manufacturing tooling. The

platform is the largest contributor to product quality and performance, and it is

advisable to have the platform manufactured in-house to have better control over

the manufacturing. The only two exceptions to in-house manufacturing of platform

components would be fasteners and other off-the-shelf components or with using an

experienced partner that is committed to manufacturing the platform to the exact

8 Scaling and Pro-Active Platform Design 213

design specifications. A great reduction in manufacturing time and considerable

tooling cost can be achieved by improving the tool passes. A tool pass operation

that is not optimized leads to wasted time, incorrect tolerances, and accelerated tool

wear. Optimizing a machining operation involves optimizing the machine time and

tool wear for volume, surface, and finishing operations.

Dies for injection molding should be designed with easy access to the created

part, low amount of lost material in the mold, and proper cooling to allow for

repeated moldings and to create parts with near-optimal tolerances to eliminate the

need for post-processing. The process for optimizing an injection molding, mold-

ing, and forging operation involves six assessments. The six assessments are the

following: does the die provide easy access to the part, is excessive material wasted

in the die, does the design have proper cooling, can the component be created with

better tolerances, and does the part need post-processing?

Nonphysical component platform: The nonphysical component platform is the

sharing of guidelines or styling quos throughout the product lineup. A well-defined

platform will involve multiple nonphysical platform entities. The nonphysical

platforms can be reused in future products for the company to make the design

processes easier. The reuse of nonphysical platform can lead to having the

products carry a distinct look that adds to the brand identity. A very important

non-component platform item is the fasteners. All fasteners should be of the same

type, and if at all possible, use the same tool for assembly and reassembly after

maintenance or repair work will be more efficient.

8.3.5 Step 5: Modularity Construction

Modularity construction is a phase to design the non-platform components of the

product line. The use of modularity in the design of the products leads to the ability

to provide product variations of the product line.

Module design of components: Modularity is the one-to-one mapping of the

connections used by components in a product. This requires all non-platform

components to use modular connections when connecting to the platform and to

other components. To allow for greater customization in the design of the product,

each component should be designed using only its particular details and not the

details of the whole product. The particular details would include the input, output,

and behavior of the component instead of the requirements of the entire product.

Designing the components to work with a particular interface and a set of low-level

details will allow for greater customization and the ability to upgrade single

components without being forced to redesign the entire product.

Component design modeling: Component design modeling is a restricted single-

product design process. The restrictions on the design process are the behavior of

the component from the function structure, the interface of the component, and the

214 K. Hirshburg and Z. Siddique

sizing constraints derived from the platform and market research. The specification

definition for Ullman’s design process would not be the entire product, but the

purpose and behavior of the component being designed (Ullman 2002). The

customers of the component are all components that will be interfacing with

it. The customer requirements of the components are what the component is

required to perform and the restrictions on how the component can perform. The

competitors of the product are the similar components produced in other company’s

products. The competitor’s should be evaluated for their positives and negatives.

The design process of the components of the different product variants is found in

Fig. 8.5. The component design process is repeated for each different component in

the product line that is not a platform component.

Creating the market targets: With the components designed, the market targets can

be created by selecting a scaled platform and adding certain components to produce

the necessary performance. If the created product’s performance does not match the

market targets, the integration of the components needs to be checked for correctness

and the underperforming components need to be identified. The underperforming

components may need to be redesigned, or it means reaching the market targets is

not possible within the product constraints.

Manufacturing improvements for optional components and products: The

manufacturability and assembly of the product are improved by following a

modified Lucas method that is applied to each component to the product. The

Lucas method is modified by performing the Lucas manufacturing analysis after

each step of the assembly analyses. The modification of the standard Lucas method

disallows an extreme removal of components and lessens the chance of complexity

in the components. The modified Lucas approach (Fig. 8.6) validates a component

design or forces a component redesign that is optimized for assembly onto the

platform or onto other components.

Component manufacturing tooling design: In most cases the small products will be

made using multiple materials, with a mix of different components. Some

components will be manufactured in-house and some components will be

outsourced. For in-house manufactured parts, the tooling design is important to

reduce manufacturing waste.

Production volume costing: There are three major factors to the cost of

manufacturing the product: labor cost, material cost, and machine cost. Making

these factors as cheap as possible will in turn make the product more profitable to

produce and cheaper for the consumer to purchase. This is a feedback loop that

contributes to the economic success of the product line. To lower the material costs,

the manufacturing of the components should be designed to waste as little material

as possible and to create as few defects as possible. If the manufacturing facility is

located in a cheap area of labor, emphasis should be placed on accuracy and quality

of manufacturing instead of automation. If the cost of labor is high, the

manufacturing process should include as much automation as possible. The cost

of production also includes several types of indirect costs known as overhead.

8 Scaling and Pro-Active Platform Design 215

G
en

er
at

e
co

nc
ep

ts
G

en
er

at
e

pr
od

uc
t

E
va

lu
at

e
co

nc
ep

ts

E
va

lu
at

e
pe

rf
or

m
an

ce

E
st

im
at

e
co

st

D
ec

om
po

se
 i
nt

o
su

bs
ys

te
m

s

C
om

m
un

ic
at

e
co

nc
ep

t
in

fo
rm

at
io

n

U
pd

at
e

pl
an

s

Su
bp

ro
bl

em

T
er

m
in

at
e

C
on

ce
pt

A
pp

ro
va

l

D
es

ig
n

fo
r

m
an

uf
ac

tu
re

D
es

ig
n

fo
r

as
se

m
bl

y

C
om

m
un

ic
at

e
pr

od
uc

t
in

fo
rm

at
io

n

D
ec

om
po

se
 i
nt

o
co

m
po

ne
nt

s
D

es
ig

n
re

vi
ew

R
el

ea
se

 f
or

pr
od

uc
ti
on

T
er

m
in

at
e

Su
bp

ro
bl

em

E
va

lu
at

e
pr

od
uc

t

E
ng

in
ee

ri
ng

sp
ec

if
ic

at
io

ns

C
o

n
ce

p
tu

al
 D

es
ig

n
P

ro
d

u
ct

 D
ev

el
o

p
m

en
t

(M
ar

ke
t

R
es

ea
rc

h
)

In
de

nt
ify

 M
ar

ke
t N

ee
ds

(
3.

1
M

ar
ke

t R
es

ea
rc

h
)

S
pe

cs
 a

re
: B

eh
av

io
r

an
d

P
ur

po
se

C
us

to
m

er
s

ar
e:

 P
la

tfo
rm

 a
nd

In
te

rf
ac

ed
 C

om
po

ne
nt

s
R

eq
ui

re
m

en
ts

: F
un

ct
io

n
&

R
es

tr
ic

tio
ns

C
om

pe
tit

or
s:

 id
en

tic
al

 fu
nc

tio
n

in
co

m
pe

tit
or

s
pr

od
uc

ts

S
pe

ci
fic

at
io

ns
(

3.
3

F
un

ct
io

n
S

tr
uc

tu
re

s
)

P
ro

je
ct

 D
ef

in
in

g
an

d
P

la
nn

in
g

(
3.

2
P

ro
du

ct
 F

am
ily

 P
la

nn
in

g
)

(P
ro

d
u

ct
 F

am
ily

 P
la

n
n

in
g

)

(F
un

ct
io

n
S

tr
uc

tu
re

s)

F
ig
.
8
.5

M
o
d
ifi
ed

v
er
si
o
n
o
f
U
ll
m
an
’s

d
es
ig
n
p
ro
ce
ss

u
se
d
to

cr
ea
te

th
e
p
ro
d
u
ct

co
m
p
o
n
en
ts

216 K. Hirshburg and Z. Siddique

Examples of overhead include permits, building maintenance, design costs, and

marketing costs. Total cost to manufacture a product line is the addition of

material cost, labor cost, machine cost, and indirect cost. Total cost to manufacture

a product line is:

Total Cost ¼
X

Material Costþ
X

Labor Costþ
X

Machine Cost

þ
X

Indirect Cost (8.7)

Modified Lucas Method

Evaluate the
Functional

Analysis of the
product.

Is the Functional efficiency
above 60% or the set efficiency?

Perform Lucas
Manufacturing

Analysis of
components

Perform Lucas
Manufacturing

Analysis of
components

Evaluate the
Feeding Analysis

of the product.

Is the Functional efficiency
above 60% or the set efficiency?

Perform Lucas
Manufacturing

Analysis of
components

Perform Lucas
Manufacturing

Analysis of
components

Evaluate the
Fitting Analysis of

the product.

Is the Functional efficiency
above 60% or the set efficiency?

Perform Lucas
Manufacturing

Analysis of
components

Perform Lucas
Manufacturing

Analysis of
components

Component Optimized By Modified Lucas
Method

YES NO

NO

NO

YES

YES

Fig. 8.6 Process flow chart for the modified Lucas method

8 Scaling and Pro-Active Platform Design 217

Cost per product can be calculated as:

Cost per Product ¼
P

productAPn
i¼0 producti

� Total Costð Þ (8.8)

8.4 Concluding Remarks

The presented design method is for a scaling, small product, proactive platform

design, using modularity for product variations. The method begins with

performing market research through direct and indirect customer interviews and

also through evaluations of current competitor’s products. The method then takes

the results from the research and provides steps for planning of the whole product

generation from initial offerings to variants and finally updates of the products.

With the products planned, the method is used to create function structures to

describe each of the products and to identify the components needed to create the

functions. The method then utilizes an algorithm to identify and isolate components

common in all or most of the structures and then uses team negotiation to select and

design a platform for driving the entire product family. The method also highlights

the Lucas method as an optimizer for both assembly and manufacturing of the

platform, suggesting a means for optimizing the manufacturing tooling of

the platform. Following the design of the platform, the next step is to design the

non-platform components using David Ullman’s mechanical design process in a

modular mapping to drive variation and ensure ease of integration. Along with the

design of the non-platform components, the Lucas method and manufacturing

tooling design are used to improve the product. Using the discussed steps, a design

team can proactively create a viable and competitive product family offering.

In Chap. 30 a family of landscaping blower vacuums case study is presented

using the described design method. The case study provides an example of both

direct and indirect interviewing for the market research and an example of a

competitor analysis of the market segment using both Stihl and Echo competitors.

Furthermore, the case study provides analysis on what the customer base demands

and created market targets and product variants to meet these demands. The case

study concludes with CAD models provided for the main market target products.

References

Bower JL, Hout T (1988) Fast cycle capability for competitive power. Harv Bus Rev 66:110–118

Campbell SK (1974) Flaws and fallacies in statistical thinking. Prentice Hall, Englewood

Cliffs, NJ

Clark BH, Montgomery DB (1999) Managerial identification of competitors. J Market 63:67–83

218 K. Hirshburg and Z. Siddique

http://dx.doi.org/10.1007/978-1-4614-7937-6_30

Gonzalez-Zugasti JP, Otto KN, Baker JD (2000) A method for architecting product platforms. Res

Eng Des 12:61–72

Hirsch B, Thoben KD (1997) Why customer driven manufacturing. In: Wortmann JC, Muntslag

DR, Timmermans PJM (eds) Customer driven manufacturing. Chapman and Hall, New York,

pp 33–44

Hollins B, Pugh S (1990) Successful product design. Butterworths, Boston, MA

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18:5–29

Lu Z, Zuhua J (2006) A genetic algorithm for scale-based product platform planning. In: Jiao L

et al (eds) ICNC. LNCS, vol 4221. Springer, Berlin, pp 676–685

McGrath ME (1995) Product strategy for high- technology companies. Irwin Professional Pub-

lishing, New York

Maier JR (2008) Rethinking design theory. Mech Eng 130:34–37

McDermott CM, Stock GN (1994) The use of common parts and designs in high-tech industries: a

strategic approach. Prod Inv Manage J 35:65–68

Mendenhall W, Sincich T (2007) Statistics for engineering and the sciences, 5th edn. Prentice Hall,

Upper Saddle River

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. Free Press, New York

Robertson D, Ulrich K (1998) Planning for product platforms. Sloan Manage Rev 39:19–31

Sanderson SW, Uzumeri M (1997) Managing product families. Irwin, Chicago

Schile T, Goldhar JD (1989) Product variety and time based manufacturing and business manage-

ment: achieving competitive advantage through CIM. Manuf Rev 2:32–42

Siddique Z, Rosen DW (1999) Product platform design: a graph grammar approach. In: ASME

design engineering technical conference. ASME, Las Vegas, NV, pp 1–12

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18:3–20

Simpson TW, Siddique Z, Jiao J (2006) Platform-based product family development. In Product

platform and product family design methods and applications. Springer Science, New York,

pp 1–15

Stalk GJ, Hout T (1990) Competing against time. Free Press, New York

Stobart P (1994) Brand power. NYU Press, New York

Ullman DG (2002) Mechanical design process. McGraw Hill, Columbus

Wheelwright SC, Clark KB (1992) Revolutionizing product development: quantum leaps in

speed, efficiency and quality. Free Press, New York

8 Scaling and Pro-Active Platform Design 219

Chapter 9

Architectural Decomposition: The Role

of Granularity and Decomposition Viewpoint

Katja Hölttä-Otto, Noemi Chiriac, Dusan Lysy, and Eun Suk Suh

Abstract Before any platform development, one must create the representation of

the products’ architectures. Typically, one would start by decomposing the existing

or proposed systems into smaller subsystems or modules. This is a critical step since

the remainder of the platform development will depend on the choices made at the

decomposition phase. This chapter will discuss how to decompose a product

architecture. Specifically we will address the decomposition choices such as level

of granularity and different decomposition viewpoints and how they affect the final

resulting architecture.

9.1 Introduction

Architectural decomposition is the decomposing of a product or a set of products

into smaller subsystems and eventually components. These lower-level subsystems

and their interactions form the product architecture. This is the common starting

point for all of product platform development, specifically for module-based plat-

form development. For example, Fellini et al. (2006) discuss how the commonality

choices for product families are done using a step-by-step process, where after

K. Hölttä-Otto (*)

Engineering Product Development, Singapore University of Technology

and Design, Singapore 138682, Singapore

e-mail: Katja_Otto@sutd.edu.sg

N. Chiriac

Department of Mechanical Engineering, University of Massachusetts Dartmouth,

North Dartmouth, MA, USA

D. Lysy

Xerox Corporation, Webster, NY, USA

E.S. Suh

Department of Industrial Engineering, Seoul National University, Seoul, South Korea

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_9,
Springer Science+Business Media New York 2014

221

mailto:Katja_Otto@sutd.edu.sg

designing the individual products, the second step is identifying the components

that can be shared. These components are results of a decomposition. Similar

choices are needed before platform concept evaluation (Hölttä-Otto and Otto 2005).

Further, Thevenot and Simpson’s (2005) method to calculate commonality of

platformed products starts by decomposing the products into smaller subsystems or

components. Key decisions that are made in this step are related to what is

considered a component. Is it the entire power board, for example, or each individ-

ual component on it? Or, is it partial geometry of an injection mold (such as in many

power tools) or the entire resulting part? Is it the gears or the transmission or maybe

the entire power train? These choices are also needed for platform optimization

whether it was optimizing the variety based on modules or attributes, for example

Fujita (2005).

There are some methods that allow module decisions at varying levels of

granularity (Hölttä-Otto et al. 2008), but even for that, a careful decomposition is

of benefit.

9.2 Representation of an Architecture

There are multiple ways of representing product architecture. Some of the common

types include a functional model (Pahl and Beitz 1996; Stone et al. 2000; Otto and

Wood 2001) a network model (Sosa et al. 2007), or a design structure matrix (DSM)

(Steward 1981; Browning 2001) that will be briefly reviewed here.

A functional model is an abstract model of what the product does. It is a block

diagram of the product’s functions and their interrelationships. The functions are

represented as boxes in the diagram (Fig. 9.1a). Each function interacts with the

other functions via the so-called flows. These can be material, energy, or informa-

tion flows. These are represented as different types of directional arrows between

the boxes. For example, in Fig. 9.1a, function e1 could be importing electrical

energy (solid arrow). This electrical energy is then acted upon function e2, which

also receives information (dashed arrow) from function e7. Functional models are

widely used in product platform development (Dahmus et al. 2001; Hölttä and Otto

2005; Hölttä-Otto et al. 2008).

Another similar way to represent an architecture is the use of network diagrams.

In these diagrams the elements of the product or system form the nodes of the

network. Any interaction among the elements is denoted by an arc. The arcs are often

bidirectional but can also be unidirectional similar to functional models. Many

authors of recent complex system works prefer the use of networks to represent

the system architecture (Baldwin and Woodard 2008; Sosa et al. 2011). Another

difference between the two is that only functional models incorporate the external

aspects of the system in the model represented as incoming and outgoing arrows.

Both of the above representations can be converted into a matrix form.

A common matrix used in architecture is a DSM. The rows and columns of the

matrix can be functions, components, teams, or tasks of the system. In product

222 K. Hölttä-Otto et al.

platform development, a component matrix is often most relevant (Browning

2001). Figure 9.1c is an asymmetrical DSM illustrating a system identical to the

one in Fig. 9.1a. The direction of the arrows is translated in the matrix using the

following logic: Since element e1 feeds into element e2, the column e1 will have a

“1” on row e2. Often any interaction, energy, material, or information is also

actively received by the following element, and thus, one could think all

interactions should be bidirectional. A DSM for this case is shown in Fig. 9.1d.

Any representation can be converted to the other one. In this example, there is a

one-to-one mapping from functions to components, and thus, the elements in the

functional model and the other three models are the same. This does not have to be

the case. In this chapter the symmetrical component DSM is used. Before getting

into the guidelines for architectural decomposition, we will review other past work

in the area.

9.3 Background

The most common approach in product and system architecture development

usually involves decomposition of the product, or a family of products, into

subsystems. These subsystems are likely to consist of other yet smaller subsystems

e1 e2 e3

e4 e5

e6

e7

e1 e2 e3

e4 e5

e6

e7

e1 e2 e3 e4 e5 e6 e7

e1

11e2

e3 1 1

e4 1

e5 1

e6 1

e7

e1 e2 e3 e4 e5 e6 e7

e1 1

e2 1 1 1 1

e3 1 1 1

e4 1 1

e5 1 1

e6 1

e7 1

a b

c d

Fig. 9.1 Examples of architectural representation (a) Functional model, (b) network, (c)

asymmetrical DSM and (d) symmetrical DSM

9 Architecture Decomposition 223

as they are decomposed further. The process continues until the whole system is

decomposed into small components (Pimmler and Eppinger 1994; Helmer et al.

2010; Chiriac et al. 2011a).

Some guidelines toward architectural decompositions exist. In project manage-

ment, use of a work breakdown structure is common. Decomposing a project to

tasks of approximately 2,500 person hours is typical (Hölttä-Otto and Magee 2006),

but no clear guideline on the granularity is given. Typical rule is to reach

a “manageable” level (Haugan 2002; Miller 2008). In system architecture literature,

Tilstra et al. (2009) identify the problem and hint in their early work that there

might be benefits to specific levels of granularity. In general, it has been assumed

that there is a right way of system decomposition. Usually the process is driven by

the designer’s perception and knowledge to conceptually decompose the system

into a multilevel hierarchy of interacting subsystems/components. It is assumed that

people familiar with the system will decompose the system in an identical manner.

In reality, this is not likely. It is more likely that two different teams will have

different system decompositions.

Products and systems are often decomposed following hierarchical structured

decomposition. When decomposing a system, it is advantageous to decide a priori

the complexity and size of the subsystems (Ariyo 2008). The multilevel hierarchical

tree structure is directly affected by how “parts (small chunks/subassemblies) are

classified into wholes (big chunks/assemblies)” (Ariyo 2008).

One approach to hierarchical decomposition is to use the functional basis as

a guide (Otto and Wood 2001). This approach is developed for the functional

model-type architectural representation and is often applied to products of low to

medium complexity. Top-down decomposition of a complex system is more often

done by gradually decomposing the system into chunks, major functions, or major

systems. The first level of decomposition is represented by these big chunks,

functions, or major systems. Each individual chunk, function, or major system is

decomposed in smaller chunks/subfunctions or components/subsystems, forming

the second level of decomposition and so on until the entire system is decomposed.

This stage represents the last level of decomposition which is formed of individual

components or functions only.

9.4 Choices in Decomposition

As discussed above and will be shown quantitatively later, it is not trivial to

decompose a product or a system for architectural analysis and further platform

development. The choices will have an effect on the rest of the platform develop-

ment process. Two of the critical issues to be considered during the process are the

chosen level of granularity and the decomposition viewpoint used.

224 K. Hölttä-Otto et al.

9.4.1 Level of Granularity

The terms decomposition, system hierarchy, and level of granularity are used

throughout the systems engineering literature, but what is lacking is the analysis

of how the decomposition or level of granularity affects the results and thus the

conclusions of the architectural analysis. In fact, there is no literature that shows

empirical or theoretical work on how to properly decompose or define the level of

granularity for architectural analysis and platform development. This is especially

problematic in complex system development, as opposed to simple product devel-

opment, since complex systems can have multiple possible levels of granularity.

The term “level of granularity,” in this chapter, is used to describe the “grain size,”

i.e., the size and the detail of the system elements after system decomposition.

To better illustrate the concept of granularity, Fig. 9.2 shows a partial hierarchical

decomposition of a vehicle system as well as three consecutive levels of granular-

ity. As it can be seen in Fig. 9.2, the grain size of the system elements decreases as

the level of granularity increases.

Some questions arise: Which of these levels of granularity should one use for

defining modules for platforms? Does it matter which level one chooses? This is

explored later in this chapter.

9.4.2 Decomposition Viewpoint

The other issue to consider is the lens through which one looks when decomposing

a product. Team or personal past experience, education, discipline, reason for

modularization, and platform development all affect the viewpoint from which

the architecture is decomposed. When tearing down competitors’ products for

benchmarking reasons or in typical student projects, the natural approach is to

Granularity 3

Granularity 2

Granularity 1

Granularity 0 Vehicle

BodyChassis

Engine Controls …

…

Valve
train

Crank
train …

Power
train

Power
train

Fig. 9.2 Three levels of granularity of a vehicle

9 Architecture Decomposition 225

follow the disassembly of the product when recording the subsystems of the

product. An equally valid approach would be to develop serviceable modules

based on service expertise and thus separate controls from the mechanical parts

of the system and serviceable parts from non-serviceable parts, for example.

Another also equally valid approach could be to identify the main functions of

the product and then decompose based on the function of each subsystem. There are

surely other types of approaches, but these three are introduced here: assembly,

functional, and service-based viewpoints to decomposition.

9.4.3 Assembly Decomposition

Assembly decomposition, as the name indicates, is based on the actual physical

assembly, or disassembly, of the system. In practice, the system decomposition is

achieved by disassembling the system virtually or by an actual teardown, depending

on the scale of the system. A bill of materials (BOM) is a good starting point for this

type of decomposition. Using this approach the system is first analyzed by

identifying assemblies or chunks that can be easily removed from the system.

The DSM for the first level of decomposition is populated by these big chunks

and by mapping the connections between the chunks. If a smaller chunk seems to be

attached to another, both should be kept together. Using this approach to decompo-

sition, the removed chunks may not have an identity of their own: They can include

components or chunks that perform different functions. With each big chunk that is

decomposed further, a new level of decomposition is being defined.

9.4.4 Functional Decomposition

To decompose a complex system using a functional decomposition approach, the

main subfunctions of the system need to be identified. The DSM for the first level of

decomposition is populated by these subfunctions and by mapping the flows. Then,

as these subfunctions are further decomposed into their subfunctions, another level

of decomposition is revealed and the process continues until the desired level of

decomposition is reached or until the system is decomposed into single components.

While not the goal, in practice the functions often follow the engineering

disciplines of the company. For example, in a printing system, the so-called

NOHAD (noise, ozone, heat, air, dust) functions are considered a function since

those areas are covered by specific engineering specialties. Another way of grouping

those same functions could be to group those with the other functions they are

attached to. For example, fusing function could entail a cooling function in it, since

cooling itself is not a function of the printer but a supporting function for the fusing

process (that produces a lot of heat).We do not take standwhich way is better, but we

would like the reader to acknowledge that even within this one decomposition

viewpoint, there are still alternative equally correct ways to decompose the system.

226 K. Hölttä-Otto et al.

9.4.5 Service-Based Decomposition

The service-based decomposition directly relies on the corporation’s own system

description in their service manual. In the making of that manual, the system has

been decomposed based on the service aspects of each system. A typical service

manual consists of chapters on each high-level subsystem. All these chapters form

the DSM for the first level of decomposition. Each of these chapters is further

divided into subsections about the subsystems. All the subsections form the second

level of decomposition DSM.

For example, there are 12 chapters in an Audi’s service manual dedicated to the

high-level subsystems. These chapters represent the first level of decomposition of

a system using the service-based decomposition approach. Then each of these

chapters has subsections about the subsystems. The second level of decomposition

is represented by the subsections.

Figure 9.3 shows the 12 chapters for the high-level subsystems on the left, and it

shows the subsections for the chapter one corresponding to the engine on the right.

The initial subsystems 1–12 on the left form the first level of granularity. For the

second level of granularity, each of these subsystems is decomposed further—

engine into nine further subsystems, for example.

9.5 Effect of Level of Granularity on Product Modularity

Now that we have introduced what we mean by granularity and viewpoint, it is time

to show the effect they have on product platform development, specifically on

degree of product modularity. Let us begin by describing the metrics we use in

this work.

Fig. 9.3 Service manual for an Audi

9 Architecture Decomposition 227

9.5.1 Metrics Used

The first metric is developed by Guo and Gershenson (2004). We call it MG&G,

as shown in Eq. (9.1). It is chosen since it matches well with the definition of

modularity used in this and other system architecture works. This metric measures

the intra- and inter-module connectivity in a modularity matrix. The metric

calculates modularity by subtracting the average inter-module connectivity from

the average intra-module connectivity. In doing that it rewards for tightly coupled

modules and penalizes for connections in between the modules. It is normalized in

respect to the size of the system. Themetric can receive values ranging from�1 to 1.

Negative values are obtained when there is more connectivity in between

the modules rather than within the modules. If all modules were fully populated

(which is unlikely in real systems), the metric would vary from 0 to 1, 0 indicating an

integral and 1 a modular system.

MG&G ¼
PM
k¼1

Pmk
i¼nk

Pmk
j¼nk

Rij

ðmk�nkþ1Þ2 �
PM
k¼1

Pmk
i¼nk

�Pnk�1

j¼1

Rijþ
PN

j¼mkþ1

Rij

�

ðmk�nkþ1ÞðN�mkþnk�1Þ

M
(9.1)

where

nk is the index of the first component in the kth module

mk is the index of the last component in the kth module

M is the total number of modules in the product

N is the total number of components in the product

Rij is the value of the ith row and jth column element in the matrix

We also use the minimum description length (MDL) metric by Yu et al. (2005).

Their metric [Eq. (9.2)] uses an information theoretic approach to calculating the

coupling complexity of a matrix. In addition to providing an alternative way of

addressing connectivity within and outside a module, this metric also considers

potential buses in its calculation.

MDL ¼ 1

3
nclognn þ lognn

Xnc
i¼1

cli

 !
þ 1

3
S1 þ 1

3
S2 (9.2)

where

nc is the number of modules

nn is the number of rows (or columns) in the DSM

cli is the size of module i

Yu et al. (2005) provide a good tutorial on the metric, but in essence, S1 is the

number of unpopulated cells that are in a module or on a bus, and S2 is the number

of populated cells in between the modules and buses. The terms S1 and S2 thus

describe the additional information needed to describe the DSM beyond describing

228 K. Hölttä-Otto et al.

simply the number and size of modules and buses. The above equation is simplified

from the original version by substituting equal weights for all terms in the overall

equation. A more modular matrix will result in a minimized description length.

There is no upper or lower limit for this metric.

The two metrics are more independent of the coupling density than other metrics

(Hölttä-Otto et al. 2012). While coupling density does affect system modularity

since a denser matrix is likely more integral, it is a more interesting problem to

focus on arrangement of the couplings and not the amount of coupling within the

architecture. Further, calculation of simple density of the matrix will give the same

results as any metric that is proportional to it.

9.5.2 Effect of Granularity

To show how the level of granularity affects product modularity, we generated a

series of idealized matrices at two levels of granularity. A set of idealized matrices

are created by varying the size of the matrices and the number of modules. The

other set of idealized matrices have the location of the connections varied without

changing the size and the number of modules.

Idealized DSM matrices at two levels of granularity were created as shown in

Fig. 9.4. For idealized modular matrices, the modules were fully populated while

1 1

1 1

1

1 1

1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Fig. 9.4 Fully modular

(above) and integral (below)
systems at two levels of

granularity

9 Architecture Decomposition 229

leaving the rest of the matrix empty. The ideally integral matrices, on the other

hand, were created by populating the cells outside the modules and leaving the cells

inside the modules empty. This allows for moving of the connections to create

alternative architectures without changing the coupling density of the matrix. We

generated two variants for each idealized matrix. One sample variant for the ideally

modular and ideally integral matrix from Fig. 9.4 is shown in Fig. 9.5.

A total of eight sets of four matrices were created: four sets of ideally modular

and its three slightly more integral variants and four sets of ideally integral and its

three slightly more modular variants. The approach is explained in more detail by

Chiriac et al. (2011a). Table 9.1 shows the results for all sets created.

Figures 9.6 and 9.7 show the results graphically for the set 1 of the matrices. It is

immediately evident that the measured level of modularity is different at two levels

of granularity for the same system. In many cases the difference in the level of

modularity between the two levels of granularity is more than the difference from

one variant to the other. Of course this can be problematic in development of a

modular platform where measuring a desired level of change in modularity may not

produce consistent results due to the differences in the overall product decomposi-

tion. Especially in case of the integral variant, the difference in the level of

modularity is dwarfed by the difference in the level of modularity between the

two levels of granularity.

On the positive side, as can be observed in Figs. 9.6 and 9.7, the change from one

variant to the other is always monotonic: Each slightly less modular variant is

1 1

1

1 1

1 1

1 1

1 1 1

1 1 1

1 1

1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Fig. 9.5 A slightly more

integral variant of the ideal

matrix (above) and a slightly

more modular version of the

ideally integral matrix

(below)

230 K. Hölttä-Otto et al.

T
a
b
le

9
.1

R
es
u
lt
s
fo
r
th
e
id
ea
li
ze
d
m
at
ri
ce
s
at

tw
o
le
v
el
s
o
f
g
ra
n
u
la
ri
ty

G
ra
n
u
la
ri
ty

1
G
ra
n
u
la
ri
ty

2

S
et

M
et
ri
c

Id
ea
ll
y
m
o
d
u
la
r

V
ar
ia
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

Id
ea
ll
y
m
o
d
u
la
r

V
ar
ia
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

M
o
d
u
la
r
v
ar
ia
n
ts

1
M

G
&
G

1
.0
0

0
.7
6

0
.6
2

0
.4
9

1
.0
0

0
.7
9

0
.6
8

0
.5
8

M
D
L

1
5
.0
5

1
8
.1
7

2
0
.8
4

2
3
.5
0

2
0
.9
7

2
4
.9
7

2
7
.6
4

3
0
.3
0

2
M

G
&
G

1
.0
0

0
.6
6

0
.4
2

0
.1
8

1
.0
0

0
.7
5

0
.5
5

0
.2
9

M
D
L

1
1
.0
0

1
3
.6
7

1
6
.3
3

1
9
.0
0

1
6
.1
4

2
0
.1
4

2
2
.8
1

2
8
.1
4

3
M

G
&
G

1
.0
0

0
.5
6

0
.1
1

�0
.3
3

1
.0
0

0
.7
1

0
.4
2

0
.2
7

M
D
L

4
.0
0

5
.3
3

6
.6
7

8
.0
0

8
.4
2

1
1
.0
9

1
3
.7
6

1
5
.0
9

4
M

G
&
G

1
.0
0

0
.7
1

0
.4
1

0
.1
2

1
.0
0

0
.8
4

0
.5
3

0
.1
1

M
D
L

1
3
.2
9

1
7
.2
9

2
1
.2
9

2
5
.2
9

2
0
.3
1

2
4
.3
1

3
2
.3
1

4
4
.3
1

G
ra
n
u
la
ri
ty

1
G
ra
n
u
la
ri
ty

2

S
et

M
et
ri
c

Id
ea
ll
y
in
te
g
ra
l

V
ar
ia
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

Id
ea
ll
y
in
te
g
ra
l

V
ar
ia
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

In
te
g
ra
l
v
ar
ia
n
ts

1
M

G
&
G

�0
.3
9

�0
.1
2

0
.0
6

0
.2
2

�0
.5
2

�0
.2
9

�0
.1
3

0
.0
3

M
D
L

6
9
.4
5
4

6
1
.2
3

5
3

4
4
.7
7

1
7
9
.0
5

1
5
9
.5

1
3
9
.9

1
2
0
.3

2
M

G
&
G

�0
.6
1

�0
.2
7

�0
.0
3

0
.3
1

�0
.7
1

�0
.4
6

�0
.2
6

0
.0
0

M
D
L

1
4
1
.6
7

1
2
3

1
0
4
.3

8
5
.6
7

3
0
6
.5

2
7
4
.8

2
5
3
.7

2
1
1
.5

3
M

G
&
G

�0
.3
3

0
.1
1

0
.5
6

1
.0
0

�0
.7
1

�0
.4
2

�0
.1
3

0
.0
2

M
D
L

2
4

1
7
.3
3

1
0
.6
7

4
1
0
1
.0
3

8
3
.3
9

6
5
.7
5

5
6
.9
3

4
M

G
&
G

�0
.7
6

�0
.4
7

�0
.1
7

0
.1
2

�0
.8
3

�0
.6
7

�0
.3
5

0
.0
7

M
D
L

2
4
7
.0
3

2
1
6
.5

1
0
9
.4

1
5
5
.3

5
4
2
.9
3

5
0
8
.5

4
3
9
.6

3
3
6
.2

9 Architecture Decomposition 231

correctly recognized as a slightly less modular variant by both metrics at both levels

of granularity. This is true for all sets. Similarly, the choice of which connections

are changed does not alter the results (Chiriac et al. 2011a). The practical implica-

tion of this is that if the system is decomposed and analyzed at one level of

granularity, the architectural change can be detected correctly if the new matrix is

analyzed at the same level of granularity. The same applies for the integral variants

as well when using the MG&G metric. The MDL, however, can be calculated in two

different ways for the integral variants. If the mostly filled rows are considered

buses, i.e., a fully integral matrix is full of buses, the value for MDL remains

constant for the integral variants and is thus not useful in this particular case.

However, one can also ignore the bus-like properties of an almost full matrix and

calculate the MDL relative to an ideally modular matrix. These results are shown in

this chapter. Ideally integral matrices constructed the way done here are not

common in practice, and thus, MDL would vary from variant to other in real life

no matter which way the MDL was calculated. This is also the case for the case

study example as shown later in this chapter.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
MG&G for idealized matrices

MG&G Gran 1

MG&G Gran 2

Fig. 9.6 Modularity

of sample set 1 matrices

calculated using MG&G

(1 is ideally modular)

10

30

50

70

90

110

130

150

170

190
MDL for idealized matrices

MDL Gran 1

MDL Gran2

Increasing level of assumed modularity

Fig. 9.7 Modularity

of sample set 1 matrices

calculated using MDL

(lowest number is the

ideally modular matrix)

232 K. Hölttä-Otto et al.

We conclude that the analysis of modularity at two different levels of granularity

can yield different results. While the level of modularity changes with the level of

granularity, the direction of change stays the same, and thus, when making changes

to a system, a level of granularity is likely appropriate as long as is consistent within

the same development project. This is encouraging as within any single project with

the same person doing the architectural analysis, the analysis results are not

sensitive to the DSM building approach.

9.5.3 Effect of Viewpoint

In addition to granularity, the other decision to be made during decomposition is the

approach, or viewpoint, taken (Chiriac et al. 2011b). System decomposition is

affected by many factors. For one, how experts define parts of the system as

independent subsystems or modules is affected by their discipline and whether

the parts are made in-house or not. For example, an engine on an airplane is

typically an outsourced system. This can result in the airplane system experts to

treat the engine as a lower-level module that is not decomposed further even though

the engine is quite an elaborate system on its own. Similarly, mechanical engineers

tend to bundle all or most of a product’s electronics into a single-module “control”

or function “control system,” whereas the same system would be viewed very

differently by electrical or software engineers.

As opposed to idealized matrices, the effect of the viewpoint is best shown via an

example and case study.

9.5.4 Case Study: Joint Effect of Granularity and Viewpoint

The chosen system is a Xerox DocuColor™ 250. It is a multifunction printing

system from Xerox Corporation (Fig. 9.8). It is a complex system that consists of

thousands of physical parts, complex electronics, and control architecture and many

lines of software code to control the printing process. The planning, design, and

manufacturing of the printing system involved collaborations between several

organizations within the company, including business units for assessing product

feasibility in target markets, engineering unit for product architecture design and

testing, and manufacturing units for efficient production of the product. In addition,

collaboration with many subject matter experts from a wide variety of disciplines

was required to successfully design and launch the final product due to the com-

plexity of the printing process, paper handling, and image quality control.

For the printing system, examples of three high-level (granularity 1) subsystems

include the duplex automatic document feeder (DADF—scanning and paper feed-

ing device on top of the printing engine), the printing engine (xerographs),

and paper trays (Fig. 9.8). The xerographic printing engine (Fig. 9.9 in the middle)

9 Architecture Decomposition 233

is part of the core competence of the company. It consists of many key subsystems.

Each subsystem could be further decomposed into level three subsystems or even

further.

The paper trays (Fig. 9.9 far right) refer to the compartments where the paper is

fed into the printer. Comparing the elements at any level of granularity quickly

shows that the systems are of very different levels of complexity. For example, the

intermediate transfer belt (ITB) module, a subsystem whose core function is to

transfer the image to the paper, is a much more complex system than the tray

modules that consist only of a few plastic parts and rollers. The ITB module can be

further decomposed in two more modules: the ITB belt and the ITB module drawer.

Many modules/components within the ITB module drawer facilitate the image

transfer. There are sensors, drives, cleaning mechanisms, and transfer rolls, just

to name a few.

It is easy to see that the choice of level of granularity, or even how to decompose

the system to the different levels of granularity, is not obvious, as often assumed in

literature.

Fig. 9.9 DADF module, xerographics module, and trays module

Granularity 3

Granularity 2

Granularity 1

Granularity 0 Printing system

TraysDADF

Toner
Drawer … …

…

… … …

Xero-
graphics

ITB

Fig. 9.8 Xerox DocuColor 250 used is the case study

234 K. Hölttä-Otto et al.

This printing system was decomposed from the three different viewpoints

introduced earlier: assembly, functional, and service-based decomposition. In the

assembly decomposition, an actual teardown of the product was performed. In the

beginning of the teardown, the system was visually inspected to identify how covers

and other identifiable chunks or subassemblies are attached to one another. Most of

the components, except for the electrical and software connections, were attached

either by screws or hinges. During the teardown all the connections were recorded

and pictures of the printing system were taken before, during, and after a chunk was

removed. The teardown started by removing all the covers and grouping those

under one module named covers in the DSM. The teardown then continued on by

removal of big chunks loosely attached to the rest of the product. Such big chunks

constitute, for example, the paper trays, the DADF, and the xerographic drawers.

All the big chunks and the covers define the DSM for the first level of decomposi-

tion. For the second level of decomposition, each chunk was further decomposed

into smaller chunks. The final two architectures were approved by system experts.

The two DSMs are shown below. Figure 9.10 represents the DSM for the first level

of granularity from an assembly point of view. Figure 9.11 shows the matrix at the

second level of granularity.

The printing system was also decomposed from the functional point of view.
This was done in close collaboration with the system experts. For the first level of

decomposition, we divided the printing system into its main functions. The main

functions are electrical, controls, drives, fusing, and marking. Each of these was

further decomposed to subfunctions and/or supporting functions. The resulting

DSMs can be seen in Figs. 9.12 and 9.13.

Finally, for the service-based decomposition, the Xerox service manual for the

system was followed. The first level of decomposition consists of the chapters on

each high-level subsystem. The second level of decomposition consists of each

subsection in each of the chapters on a high-level subsystem. The resulting DSM for

the service-based decomposition is shown in Fig. 9.14 for the first level of granu-

larity and in Fig. 9.15 for the second level of granularity. Both matrices were

approved, again, by system experts.

As an example for the service-based decomposition, the first level of granularity

for DocuColor 250 has 15 large subsystems or modules. After the system is

decomposed into subsystems, all the connections are identified. Spatial, material,

electrical, and information connections are used to populate the DSM. All the

connections are identified as one in DSM regardless of their nature.

To simulate a potential architectural change in the system, a more modular

matrix was created by removing the connection between the IBT module and the

tray module and leaving them both connected to the control unit module rather than

being connected to each other. The shaded (yellow) connections indicate the

changes made to the original system in Fig. 9.14 at the first level of decomposition.

In the variant, those cells are unpopulated, but they were populated in the original

system.

For the second level of granularity, the major subsystems/modules were

decomposed into smaller subsystems. Some of the subsystems remain the same as

9 Architecture Decomposition 235

in the first level of granularity due to their “smaller size” by trying to avoid one

system to be more decomposed than the other.

The variant at the second level of granularity (shaded connections in Fig. 9.15)

underwent the same architectural changes as the variant at the first level of

granularity.

D
A

D
F

IIT R
O

S

4
T

O
N

E
R

 C
A

R
T

R
ID

G
E

S

D
IS

P
E

N
S

E
 U

N
IT

D
IR

E
C

T
 P

IP
E

 A
S

S
E

M
B

LY

D
E

V
E

LO
P

E
R

/D
R

U
M

 D
R

A
W

E
R

IB
T

 D
R

A
W

E
R

T
M

T
 D

R
A

W
E

R

4
T

R
A

Y
S

T
R

A
Y

S

T
R

A
Y

 1
 -

 4
 F

E
E

D
 U

N
IT

S

T
R

A
Y

 5
 B

Y
P

A
S

S

O
C

T

IN
V

E
R

T
E

R
 U

N
IT

M
C

U
/C

O
N

T
R

O
L

U
N

IT
 D

O
O

R

F
U

S
E

R
 E

X
H

A
U

S
T

 F
A

N
 A

S
S

E
M

B
LY

V
-T

R
A

N
S

P
O

R
T

 F
A

N

T
O

N
E

R
 V

E
N

T
 A

S
S

E
M

B
LY

C
C

 F
A

N
 D

U
C

T
 A

S
S

E
M

B
LY

4
E

X
IT

 F
U

N
 A

S
S

E
M

B
LY

R
E

A
R

 C
O

O
LI

N
G

 F
A

N

M
A

IN
 L

V
P

S

A
C

 D
R

IV
E

 P
W

B

IIT
 L

V
P

S

2N
D

 B
T

R
LV

P
S

T
/A

 D
R

IV
E

 M
O

T
O

R

P
R

E
 R

E
G

IS
T

R
A

T
IO

N
 M

O
T

O
R

F
U

S
E

R
 M

O
T

O
R

M
A

IN
 D

R
IV

E

4
D

R
U

M
 M

O
T

O
R

S

D
E

V
E

LO
P

E
R

 M
O

T
O

R
 Y

M
C

 A
S

S
E

M
B

LY

K
 S

O
C

O
R

T
R

O
N

 A
S

S
E

M
B

LY
 M

O
T

O
R

4
T

O
N

E
R

 C
A

R
T

R
ID

G
E

 M
O

T
O

R
S

W
A

S
T

E
 B

O
T

T
LE

JO
IN

T
 L

E
V

E
LE

R
 A

S
S

E
M

B
LY

C
O

V
E

R
S

C
H

A
S

S
IS

1 1

11 1

1 11 1

1 1

1 1

1

1 11 11

1 11

1 1

1 1

1

1

1

1 11 111

11

11

1

1 11 1

1 111 1

1

1 1 11 11 1 11 1 1 1

1

1 11

11

11

11

1

11

1

1

11

11

11

1

11 1 1

1

1

1

1

1

1

1

1

1 11 1

11 1 11 1 11

11 1 11

111 1

1

11 11 1 11

1 11

11

11

1

1

1

11

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1 1 1

1

1
1 1 1 1 1

1 11 1 1

1 11 1 1 11 1

1 1 1

1 1

1

1

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1
1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

11 1

11 1

1

11 1

11

1 1

1 1

1 1 1 1 1 1 1

1 1

1 1

1

1

1

1

1

1

1

1

1 1

1
1

11

1

1

1

1

1

1

1

1

1

1

1 1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 11 11 1 11 1

1 1 1 1

1

1 11 111

1 111

11

11

1

111 1 1 1 11 1 1 11 11 1 1 1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

Fig. 9.10 DSM for the assembly viewpoint DSM at the first level of granularity

236 K. Hölttä-Otto et al.

Even before applying the equations, it is obvious how different each of the three

pairs of matrices representing the same printing system is. The size of the DSM at

the first level of granularity varies from a 15 x 15 matrix to a 38 x 38 matrix and at

the second level of granularity, from a 27 x 27 matrix to an 80 x 80 matrix. Beyond

the size of the matrix, there are also other significant differences between the

matrices created from the different viewpoints. For example, the electrical

components of the system are grouped differently in each of the viewpoints. For

the functional and service-based viewpoint, at the first level of granularity, the

electrical components are grouped into a 2 x 2 functional module of powering and

controlling subsystems and a single service cluster (electrical/control), respectively.

The same one or two modules are actually distributed around the printing system

Fig. 9.11 DSM for the assembly viewpoint DSM at the second level of granularity. Close-up of

the upper left corner shown in detail

9 Architecture Decomposition 237

such that the main drive is one module and the main control unit another, and in

addition, there is a third module, another power board. The same components are

grouped in three ways. The modules at the first level of granularity can be further

divided into subsystems for the second level of granularity. The difference in how

the electrical and control-related components are grouped into modules is very

different at the second level of granularity. The 2 x 2 functional module becomes

three modules similar to those identified for the assembly level at the first level of

granularity, whereas the single service module is decomposed into a 11 x 11

module. The three assembly modules are also further decomposed into larger

modules since all the boards consist of very distinct boards that are attached to

one another.

Using Eqs. (9.1) and (9.2), we calculate the degree of modularity of the printing

system and its two hypothetical variants at two levels of granularity. This was done

for all DSMs of all viewpoints, and the results are shown in Fig. 9.16 in normalized

form. Looking at the effect of the decomposition viewpoints, we find that using the

MG&G metric, the same system is considered close to integral (functional viewpoint

at granularity 1) and a quite modular (assembly viewpoint at granularity 2)

D
A

D
F

IIT R
O

S

M
ar

ki
ng

T
M

T

F
us

in
g

W
A

S
T

E

T
R

A
Y

 1
-4

T
R

A
Y

 5

O
C

T

IN
V

E
R

T
E

R
 U

N
IT

N
O

H
A

D

D
R

IV
E

S

P
O

W
E

R
 U

N
IT

C
O

N
T

R
O

L
U

N
IT

C
H

A
S

S
IS

1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1 1 1

1 1

1

1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1 1 1 1

1

1 1 1 1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1 1

1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1 1

1

1

1

1

1

1 1
1 1 1 1

1

1

1 1

1 1

1

1

1

1

1 1

1 1 1

1 1 1

1 1

1

1

1

1

1

Fig. 9.12 DSM for the

function-based architecture

of the printing system at the

first level of granularity

238 K. Hölttä-Otto et al.

system and everything in between. The other metric, MDL, gives almost the

opposite results: The printing system seems relatively modular from the functional

viewpoint at the first level of granularity and mostly integral from the assembly

point of view at the second level of granularity. It is obvious that a single number on

modularity will not tell a full story.

While it is troubling to see the tremendous range of possible degrees of

modularity for a single system, there still is a way to use modularity analysis.

Table 9.2 highlights the detailed example of the service-based decomposition.

D
A

D
F

IIT R
O

S
Y

M

R
O

S
C

K

T
O

N
E

R
 D

R
A

W
E

R

D
R

U
M

/D
E

V
E

LO
P

E
R

 D
R

A
W

E
R

IB
T

T
M

T

F
U

S
E

R

W
A

S
T

E
 B

O
T

T
LE

JO
IN

T
 L

E
V

E
LE

R
 B

O
X

 A
S

S
E

M
B

LY

T
R

A
Y

 1

T
R

A
Y

 2

T
R

A
Y

 3

T
R

A
Y

 4

T
R

A
Y

 5

O
C

T

IN
V

E
R

T
E

R
 T

R
A

N
S

P
O

R
T

 1

IN
V

E
R

T
E

R
 T

R
A

N
S

P
O

R
T

 2

N
O

H
A

D

M
A

IN
 D

R
IV

E

P
O

W
E

R
 U

N
IT

C
O

N
T

R
O

L
U

N
IT

U
P

P
E

R
 C

H
A

S
S

IS

U
P

P
E

R
 B

A
C

K
 P

A
N

E
L

LO
W

E
R

 C
H

A
S

S
IS

LO
W

E
R

 B
A

C
K

 P
A

N
E

L

1 1

1 1 1

1

1

1

1 1

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

11 1

1 1

1 1

1 1

1 1

1 1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1 1

11 1

1 1

1 1

1 1

1 1

1 1

1

1

11

1

1

1

1

1 1

1

1

1

1111

1

1 1 1 11

1 1 1 1 1

1 1 1 1

1 1 1

1

1

1 1 1

1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 11 1

1 1 1 11

1 1

1 1

1

11

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1

1

1

1 1

1 1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

11 1 1 1

1

1

11 1

11 1

11 1

11 1

11 1

1 1

1 1

1 1

1

1 1

1 1

1 1

1 1

11 1

1 1

1 1

1 1 1 1

1 1

1 1

1 1

1 1

1

1 1

1 1

1

11

111

1 1 1 1

1

1

Fig. 9.13 DSM for the function-based architecture of the printing system at the first level of

granularity

9 Architecture Decomposition 239

A variant was created by moving a connection between the trays and xerographic

such that the information is relayed via the control unit instead (shaded/yellow cells

in Figs. 9.14 and 9.15). This is an attempt to make the architecture more modular.

Each of the metrics was applied to calculate the effect of this change. We find that

the change in the level of modularity is far greater from one level of granularity to

the other than from the original to the variant architecture. This again is of concern,

but similarly as in case of the idealized matrices, we find that although there is a

discrepancy in the overall degree of modularity for the system when looked at

different levels of granularity, the direction of change, e.g., improved modularity

(or integrality), can be detected the same regardless of the level of granularity used.

According to both metrics, the hypothetical printing system where that one connec-

tion was changed is more modular than the original system. MG&G is closer to one

and MDL is smaller. However, due to the large effect of the level of granularity and

decomposition viewpoint, it is clear that decision regarding both needs to be made

carefully during the decomposition.

Fig. 9.14 Variant of the

printing system at the first

level of decomposition from

the service-based viewpoint

240 K. Hölttä-Otto et al.

9.6 Conclusions and Recommendations

We have demonstrated how the choices on the viewpoint and level of granularity

during architectural decomposition impact the resulting product architectural rep-

resentation and thus the architectural analysis, specifically degree of modularity.

We show that the difference from one viewpoint to the other or from a level of

granularity to the other is greater than the effect of an architectural change that is

Fig. 9.15 Variant of the printing system at the second level of decomposition from the service-

based viewpoint. Close-up of the upper left corner shown in detail

9 Architecture Decomposition 241

being measured. While this is of concern, we also find that any architectural change

is detected the same by all viewpoints and at either level of granularity. This results

in our recommendation to calculate the change in degree of modularity rather than

an absolute value of modularity. It is important to record well how the decomposi-

tion was done, from what viewpoint, and to what level of granularity, ideally

including details on how all decomposition decisions are made. This is especially

important in product family development, since a product platform often supports

multiple products and over a long period of time. It is, therefore, unlikely that the

person performing the architectural decompositions is always the same or

remembers exactly what he or she did the last time.

References

Ariyo OO (2008) Hierarchical decompositions for complex product representation. In: Interna-

tional design conference, Cavtat, Croatia

Baldwin CY, Woodard CJ (2008) The architecture of platforms: a unified view. Retrieved from,

Available at SSRN: http://ssrn.com/abstract¼1265155

Fig. 9.16 Level of modularity of the Xerox printing system for each viewpoint and at two levels

of granularity (metrics are normalized and MDL inversed such that for both metrics closer to

1 means more modular)

Table 9.2 Modularity of the original DocuColor 250 and its variant

from the service-based decomposition viewpoint

Granularity 1 Granularity 2

Original Variant Original Variant

MG&G 0.51 0.52 0.54 0.55

MDL 456 415 2730 2722

242 K. Hölttä-Otto et al.

http://ssrn.com/abstract=1265155
http://ssrn.com/abstract=1265155

Browning TR (2001) Applying the design structure matrix to system decomposition and integration

problems: a review and new directions. IEEE Trans Eng Manag 48:292–306

Chiriac N, Hölttä-Otto K, Suh E, Lysy D (2011a) Level of modularity at different levels of system

granularity. ASME J Mech Des 133:101007

Chiriac N, Hölttä-Otto K, Suh E, Lysy D (2011b) Three approaches to complex system decompo-

sition. In: Proceedings of the 13th international dependency and structure modelling confer-

ence, Cambridge, MA

Dahmus JB, Gonzalez-Zugasti JP, Otto KN (2001) Modular product architecture. Des Stud 22(5):

409–424

Fellini R, Kokkolaras M, Papalambros P (2006) Commonality decisions in product family design.

In: Simpson T, Siddique Z, Jiao J (eds) Product platform and product family design: methods

and applications (1st edn. 2005. Corr. 2nd printing ed.). Springer, New York

Fujita K (2005) Product variety optimization. In: Simpson T, Siddique Z, Jiao J (eds) Product

platform and product family design: methods an applications. Springer, New York, NY

Guo F, Gershenson JK (2004) A comparison of modular product design methods on improvement

and iteration. In: ASME design engineering technical conferences, Salt Lake City, UT

Haugan GT (2002) Project planning and scheduling. Management Concepts, Vienna, VA

Helmer R, Yassine A, Meier C (2010) Systematic module and interface definition using compo-

nent design structure matrix. J Eng Des 21:647–675

Hölttä K, Otto K (2005) Incorporating design effort complexity measures in product architectural

design and assessment. Des Stud 26:445–564

Hölttä-Otto K, Magee CL (2006) Estimating factors affecting project task size in product

development-an empirical study. IEEE Trans Eng Manag 53:86–94

Hölttä-Otto K, Otto K (2005) Platform concept evaluation. In: Simpson T, Siddique Z, Jiao J (eds)

Product platform and product family design. Springer, New York

Hölttä-Otto K, Tang V, Otto K (2008) Analyzing module commonality for platform design using

dendrograms. Res Eng Des 19:127–141

Hölttä-Otto K, Chiriac N, Suh ES, Lysy D (2012) Comparative analysis of coupling modularity

metrics. J Eng Des 23:10–11

Miller DP (2008) Building a project work breakdown structure: visualizing objectives,

deliverables, activities, and schedules. CRC, Boca Raton, FL

Otto K, Wood K (2001) Product design: techniques in reverse engineering, systematic design, and

new product development. Prentice-Hall, New York NY

Pahl G, Beitz W (1996) Engineering design: a systematic approach. Springer, New York, NY

Pimmler T, Eppinger S (1994) Integration analysis of product decomposition. In:Minneapolis: ASME

design engineering technical conferences-6th international conference on design methodology

Sosa M, Eppinger SD, Rowles CM (2007) A network approach to define modularity of

components in complex products. J Mech Des 129:118–1129

Sosa M, Mihm J, Browning T (2011) Degree distribution and quality in complex engineered

systems. J Mech Des 133:101008

Steward DT (1981) The design structure system: a method for managing the design of complex

systems. IEEE Trans Eng Manag 28:71–74

Stone RB, Wood KL, Crawford RH (2000) A heuristic method for identifying modules in product

architectures. Des Stud 21:5–31

Thevenot HJ, Simpson TW (2005) Commonality indices for assessing product families. In:

Simpson T, Siddique Z, Jiao J (eds) Product platform and product family design. Springer,

New York

Tilstra AH, Seepaersad CC, Wood KL (2009) Analysis of product flexibility for future evolution

based on design guidelines and a high-definition design structure matrix. In: Design engineer-

ing technical conferences, ASME, San Diego, CA

Yu TL, Yassine A, Goldberg DE (2005) An information theoretic method for developing modular

architectures using genetic algorithms. University of Illinois, Department of General Engineer-

ing. Urbana-Champlain, Illinois Genetic Algorithms Laboratory IlliGAL

9 Architecture Decomposition 243

Chapter 10

Integrated Development of Modular Product

Families: A Methods Toolkit

Dieter Krause, Gregor Beckmann, Sandra Eilmus, Nicolas Gebhardt,

Henry Jonas, and Robin Rettberg

Abstract An integrated approach for developing modular product families was

developed at the PKT Institute to create individualized products for globally

marketable prices. The integrated PKT-approach for developing modular product

families aims to generate maximum external product variety, using the lowest

possible internal process and component variety. Based on existing methods for

reducing internal variety, the approach provides a toolkit of combinable method

units. Tailored support is provided by this toolkit for specific needs and situations of

companies facing the challenge of reducing internal variety. Several industrial case

studies demonstrate how the use of one method unit or the combination of several

method units supports the development of modular product families during specific

corporate challenges and aims. The first section describes the challenges being

addressed by the integrated PKT-approach. A survey of research fields dealing with

these challenges is presented in the second section. A product family example is

presented to demonstrate the state-of-the-art methods and the method units from the

integrated PKT-approach. Their application in industrial projects is shown in Sect.

10.7, which is followed by the future prospects for enhancing the integrated

PKT-approach.

10.1 Modular Product Families for Modern

Market Situations

The extent that a product meets the challenges of modern market situations is

determined during product development. Markets are influenced by megatrends

like globalization and individualization leading to conflicting customer

requirements for low prices and personalized products.

D. Krause (*) • G. Beckmann • S. Eilmus • N. Gebhardt • H. Jonas • R. Rettberg

Institute for Product Development and Mechanical Engineering Design, Hamburg University

of Technology, Denickestraße 17, 21073 Hamburg, Germany

e-mail: Krause@tuhh.de

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_10,
Springer Science+Business Media New York 2014

245

mailto:Krause@tuhh.de

This conflict necessitates two separate product development strategies. On the

one hand, the aim is to develop mass-market products to offer competitive prices

through large quantities of standardized products. On the other hand, a high number

of individualized products is one successful way of meeting individual customer

requirements. In product development, the strategy for developing modular product

families is ideal for combining advantages, such as individual customer demands,

with low costs to be well prepared for the future.

The aim of developing a modular product structure for a product family is to

maintain the external variety required by the market and reduce internal variety

within the company. By doing this, the associated complexity of corporate pro-

cesses in product development can be handled, reduced, or avoided. A major

advantage of this strategy is the large number of standard modules derived that

contribute to cost reduction with better utilization of economies of scale and

learning curve results, especially in procurement, manufacturing, and assembly.

Modular structures enable processes to be parallelized, for example, to develop

different modules in parallel or to test or produce them separately.

10.2 Research on Reduction of Internal Variety

There is helpful support in the literature for reducing the internal variety of product

families. Support primarily originates from the fields variety-oriented product
design, product modularization, and product platforms, which are presented in

this section. The basic and underlying principles of these approaches have been

partly modified, adapted, or combined with new methods to form the integrated

PKT-approach (Sects. 10.5 and 10.6) (Krause and Eilmus 2011).

Methods of variety-oriented product design focus on reducing internal variety of

parts and components. An example of a methodical approach of variety-oriented

product development is given by (Franke et al. 2002). They provide a framework for

a variety-oriented development process, including references to several other methods

that support the specific steps. Themethod Design for Variety byMartin and Ishii aims

to derive a product platform as a robust base for future product variants (Martin and

Ishii 2002; Martin 1999). Using indexes, components are identified which might be

subject to change in future product modifications. Certain design principles are utilized

to minimize the amount of changes necessary. Caesar and Schuh propose the Variety

Mode and Effect Analysis (VMEA), which presents a cost-oriented design method

for mass production (Caesar 1991). It supports the optimization of external and

internal variety.

Based on these methods and further literature research, the ideal variety-oriented

product structure was summarized as having four main attributes (Kipp 2012):

• Clear differentiation between standard components and variant components.

• Reduction of the variant components to the carrier of differentiating properties.

• One-to-one mapping between differentiating properties and variant components.

• Minimal degree of coupling of variant components to other components.

246 D. Krause et al.

These attributes define the underlying principles in the method unit Design for

Variety within the integrated PKT-approach.

During product modularization the degree of modularity has to be adapted to the

corporate strategy. An adequate product modularization can yield many benefits for

exploitation. Basically, a module is a group of components that exhibits stronger

inner couplings than external ones. The modularity of a product can be defined as a

gradual characteristic given by a set of five gradual attributes, which are common-

ality, combinability, function binding, interface standardization, and loose coupling

of components (Salvador 2007; Blees 2011). Factors taken into account when

defining the modules can be technical-functional relations or strategic aspects

(Jiao et al. 2007).

An approach purely based on modularization by technical-functional relations is

the Modular Design Methodology by Stone. A set of heuristics is used within this

method to identify modules based on functions and their connecting flows (Stone

1997). Pimmler and Eppinger present the Integration Analysis Methodology—

another approach based on technical-functional aspects—but use the Design Struc-

ture Matrix (DSM) and an algorithm that derives the optimal modularization

(Pimmler and Eppinger 1994). Extending the idea of the DSM to several domains

(e.g., development teams), Structural Complexity Management uses the Multiple-

Domain Matrix (MDM) and provides a generic approach for analyzing and design-

ing complex systems (Lindemann et al. 2009). An example of modularization by

strategic aspects is the Modular Function Deployment (MFD, Erixon 1998), from

where the module drivers of the integrated PKT-approach have been adapted.

A practical application study is presented in Sect. 10.4 including the Integration

Analysis Methodology and Modular Function Deployment.

An important strategy for structuring product families is the product platform,
which can be seen as a common base of components, processes, knowledge as well

as persons or relations. It provides a base for the designer to derive product variants

efficiently so that faster market entries can be accomplished (Meyer and Lehnerd

1997). A higher number of standard parts can enable economies of scale at the same

time (Jiao et al. 2007). Simpson proposes the Product Platform Concept Exploration

Method (PPCEM)—an approach focusing on scalable product platforms (Simpson

et al. 2006)—whereas configurational approaches focus on deriving variants by

adding optional or individual configuration modules, such as the Platform Planning

Process by Robertson and Ulrich (Robertson and Ulrich 1998).

10.3 Example of a Product Family

The simplified example of a family of herbicide spraying system is used to

demonstrate the use of tools and methods. The MANKAR-Roll family by Mantis

ULV consists of Ultra Low Volume (ULV) spraying systems that enable

eco-efficient distribution of herbicides. The existing product families consist of

12 actively advertised variants as well as 24 additional variants provided on special

10 Integrated Methods Toolkit for Modular Product Families 247

request (Fig.10.1, Blees et al. 2010). For example, these variants adjust the spraying

systems to the individual application conditions of the customers. Different

applications at in-row cultivations or public places, for example, are supported by

different spray widths or sizes of wheels.

10.4 Needs in the Development of Modular

Product Families

The development of modular product families is still seen as a major challenge by

our industrial partners; to understand why, research on needs and how they are met

by existing methods was carried out. Theories in the literature were studied and

supplemented by practical application of individual methods. The practical part

included industrial case studies as well as workshops with industrial practitioners

and engineering design students applying and comparing different methodical tools

to the herbicide spraying system example.

Figure 10.2 shows how the Design Structure Matrix (Pimmler and Eppinger

1994; Eppinger and Browning 2012) is applied to the herbicide spraying system.

Spatial, energetic, informatics, and material couplings between all components are

allocated. The matrix is then re-sorted so that the couplings are shifted to the

diagonal. This forms clusters that indicate possible modules. The DSM is a power-

ful tool in understanding the technical-functional conditions for a modular

structure.

The Module Indication Matrix (MIM) as a tool within MFD (Erixon 1998) deals

with product-strategic module drivers, describing the strategic reasons why

components should be integrated into modules. Figure 10.3 shows an example of

the MIM applied to the family of herbicide spraying systems. Here the components

Fig. 10.1 Product variants of the product family of herbicide spraying system MANKAR-Roll

(Blees et al. 2010)

248 D. Krause et al.

are allocated to the module drivers that they are affected by. Modules are

designated as components sharing similar module drivers or module driver patterns.

Experiences in workshops and case studies showed that method users appreciate

and need the support that both tools (DSM and MIM) provide in understanding

technical-functional and product-strategic module drivers. However, when working

with matrix-based approaches, product-related visualizations that enable more

intuitive perception are missing. The methods give no direct indication of how to

reduce component variety within the product family.

Fig. 10.2 Example of a DSM for the family of herbicide spraying systems (Krause et al. 2013)

10 Integrated Methods Toolkit for Modular Product Families 249

10.5 Integrated PKT-Approach for Developing

Modular Product Families

Based on needs in the development of modular product families, as described in

Sect. 10.4, the following aims were set for the integrated PKT-approach:

• Integration of technical-functional and product-strategic approaches.

• Adaption of established ideas and tools.

• Inclusion of design for variety approaches, indicating design solutions, and

reducing component variety.

• Product family-related visualizations for every design aspect.

• Fostering of team discussion.

• Flexibility of tailored support to corporate situations.

To achieve these objectives, the integrated PKT-approach offers a set of method

units (Sect. 10.6) to develop modular product families. These units are structured

according to their application into:

Fig. 10.3 Example of a MIM for the family of herbicide spraying systems (Krause et al. 2013)

250 D. Krause et al.

• The product view

• The lightweight design view

• The process view (Fig. 10.4)

The product view aims to reduce the internal product variety, while the external

variety (from the customer’s perspective) remains unaffected. The method units

Design for Variety and Life Phases Modularization consider optimizations at the

product family level, while the units Product Program Planning and Development
of Modular Product Programs investigate whole product programs to achieve

broader synergy effects.

Method units of the process view take the effects of product structures on

corporate processes (e.g., order fulfillment and assembly) into account. To provide

support for development of products driven by mass reduction needs, the integrated

PKT-approach contains the lightweight design view on product family develop-

ment. These method units are under development (Sect. 10.8), and this chapter

focuses on the product view.

The integrated PKT-approach provides several specialized visualization tools

for communication, documentation, and decision-making. The tools visualize only

the information that is necessary for answering a specific question. The investigated

information could be properties, functions, working principles, components, and

relationships between all those. Achieving acceptance in industrial practice, user-

friendly application, relevance of results, and ease of visualization in everyday

engineering design practice is a high priority. For example, the developed Module
Interface Graph (MIG, Fig. 10.5) is used to represent the spatial arrangement,

Fig. 10.4 Integrated PKT-approach incorporating three views of product family development

10 Integrated Methods Toolkit for Modular Product Families 251

module boundaries, mark variant, or optional components and to develop module

interfaces within a product family. Compared to 3D CAD data, it provides a

simplified 2D view that additionally includes the flows, e.g., fluid flow or electrical

power. Including the simplified spatial dimensions of the real product in MIG

ensures that technical and functional aspects are continuously present during

product family development. At the same time further product information are

deliberately left out in order to simplify the illustration and to emphasis the relevant

contents (Blees 2011). The MIG is well accepted by the industrial partners—

especially compared to other product family models like function structures—and

is an efficient tool for discussion between different departments (e.g., R&D and

Marketing, Blees et al. 2010).

10.6 Method Units

Several method units use the tools of the integrated PKT-approach to fulfill specific

aims (Fig. 10.6). These method units are described in this section.

Their application in industrial cases and their combination to fulfill specific

corporate needs are presented in the next section.

10.6.1 Design for Variety

Design for Variety aims to bring the product families closer to the ideal of a variety-

oriented product structure, as presented in Sect. 10.2. In the first step of the method,

the external market-based and internal company varieties of the product family are

analyzed. A Tree of External Variety (TEV) aids analysis of the external variety

Fig. 10.5 Optimized Module Interface Graph (MIG, left) of a herbicide spraying system product

family (Blees 2011)

252 D. Krause et al.

(Fig. 10.7). This tree visualizes the selection process of the customer by linking

variant product properties relevant to customers and the offered product variants.

Internal variety is analyzed at the levels of functions, working principles, and

components. The variety of functions is shown in an enhanced Product Family
Functional structure (PFS) that makes representation of variant and optional

functions possible. The variety of working principles is determined from sketches,

where the necessary variance of the functional elements is marked in color. The

Module Interface Graph (MIG) is used to visualize and analyze the variety of

components and connecting flows (Figs. 10.5 and 10.7).

Visual tools of the PKT-approach

D
es

ig
n

fo
r V

ar
ie

ty

Li
fe

 P
ha

se
M

od
ul

ar
iz

at
io

n

Pr
od

uc
t P

ro
gr

am
m

Pl
an

in
g

D
ev

el
op

m
en

t o
f

m
od

ul
ar

 P
ro

du
ct

Pr
og

ra
m

m
s

Tree of Variety (TEV)

Product Family Functional structure (PFS)

Module Interface Graph (MIG)

Variety Allocation Model (VAM)

Module Process Chart (MPC)

Program Structuring Model (PSM)

Carryover Assignment Plan (CAP)

Carryover Chart (COC)

Fig. 10.6 Visual tools of the integrated PKT-approach and their application by method units

Fig. 10.7 Tools for the analysis of product variety

10 Integrated Methods Toolkit for Modular Product Families 253

All relevant information required to carry out design for variety when preparing

constructive proposals is visualized in the Variety Allocation Model (VAM). The

connections between the levels demonstrate the allocations between differentiating

properties, functions, working principles, and components (Fig. 10.8). In this way,

VAM allows analysis of the degree of fulfillment of the four ideal characteristics.

For variant conformity, any weak points in the design can be identified at all levels

of abstraction. Thus, VAM is the basis for solution finding and selection of

solutions in the methodical unit design for variety.

The result of this methodical unit is a newly designed set of components with an

increased number of standard parts. Multiplication effects of the variance are

avoided, with the result that each component is required in only a small number

of variants. The simplified allocation structure between components and

differentiating properties simplifies the variant configuration. These benefits were

achieved by using the VAM as a tool to optimize product structure using a product’s

differentiating properties, functions, and working principles. By considering

differentiating properties as well as functions and working principles, the methodi-

cal unit enriches the field of existing approaches with a method that aligns a market-

oriented view with a function-oriented one.

10.6.2 Life Phases Modularization

Life Phases Modularization transfers the results of design for variety for each

relevant product life phase to a continual module structure, while checking consis-

tency and adjustment. Product family structure requirements can be better met by

considering different product family structures for individual phases. In Life Phases

Fig. 10.8 Applying the Variety Allocation Model (VAM) as a tool to optimize the product family

of herbicide spraying systems (Kipp 2012)

254 D. Krause et al.

Modularization the life phases are considered as the phases that each produced

item physically runs trough. In order to emphasize the difference to the product

life cycle describing introduction, growth, maturity, and decline of product

generations, the term product life phases is used. The procedure is divided into

the following steps:

1. Development of a technical-functional modularization

2. Development of modularizations for all relevant other product life phases

3. Combination of modularizations

4. Derivation of the modular product family structure

The starting point is the technical-functional modularization of the product

development phase. Modules are provided that are largely decoupled to reduce

the complexity of the development task and allow parallel development of modules.

Technical-functional approaches, such as that described by Stone (Stone 1997), can

be applied at this step. The development of modularization perspectives for all

relevant product life phases is made by module drivers associated with individual

life phases. For instance, the production phase is mapped by the module driver

“Separate Testing” (Fig. 10.9).

The module drivers are a concept known from Modular Function Deployment

(Sect. 10.4, Erixon 1998) that has been supplemented with concrete

specifications to develop modules. In the module driver “Separate Testing,”

the tests carried out demonstrate the product-specific specifications. In network

diagrams, these specifications are linked to the components of the product.

Reservoir

Filter

Shut-off valve

Pump

Battery

Charge socket

Fuse

Main switch

Handhold

Telescopic tube

Base frame

Product
development Procurement Production Sales End product Use

Recycling and
disposal

Module drivers
Technical-
functional
module drivers

Modular
sourcing

Seperate
testing

Differentia-
ting
attributes

Service/
Mainte-
nance

Material
recycling

Landfill

Testing
module:
fuid flow

Testing
module:
polarity

Fig. 10.9 The Module Process Chart (MPC) as a tool for allocating module drivers and module

driver specifications to modules (Blees 2011)

10 Integrated Methods Toolkit for Modular Product Families 255

The preparation of modules is made by grouping the components that relate to a

common module driver specification into one module. Subsequent to the devel-

opment of modular product family structures for the individual life phases, the

modularizations are visualized in an MIG to check consistency between life

phases and find conflicts. It was found that the same module structure cannot be

realized for all life phases because of the contradictory criteria. It is important

that the module structures of the individual phases are adapted and continuous

but not 100 % congruent. For assembly, it may be advantageous to install a

module that is as large as possible. For purchase, it may be necessary to buy this

module in the form of smaller modules from different suppliers which, in a well-

adapted structure, must not be contradictory. The Module Process Chart (MPC)
transparently combines the various perspectives of different life phases and

makes the coordination process more clear (Fig. 10.9). Finally, the product

family structure can be derived.

10.6.3 Product Program Planning

The method unit Product Program Planning (Jonas et al. 2012) consists of two

major phases (Fig. 10.10). In the first phase, scenarios for the future composition of

the product program are elaborated. The starting point is an analysis of the current

condition of the program. MIGs and a TEV are used to describe the product

families. For an economical and structural analysis of the program, a graphical

representation called the Program Structuring Model (PSM, shown in Fig. 10.12) is

Fig. 10.10 Procedure of the method unit Product Program Planning (Jonas et al. 2012)

256 D. Krause et al.

used. To develop future scenarios for the program, internal and external trend

factors are investigated, each considering product and stakeholder perspectives.

Based on these analyses, scenarios are elaborated in a workshop unit and visualized

by the PSM, step 1.3 in Fig. 10.10.

In the second phase, strategic carryover components are conceptualized for each

scenario. In this step, all components are compared by their properties in order to

develop concepts for carryover use. The whole program is then visualized using the

Carryover Assignment Plan (CAP, shown in Fig. 10.13), which contains all

products and components showing their prospected carryover concepts.

The outcomes of the method are MIGs for all conceptualized product families

that show components and carryover concepts, as well as a TEV that shows the new

component concepts versus market variety offered. These outcomes are used as the

input for the subsequent development phases Design for Variety (Sect. 10.6.1) and

Life Phases Modularization (Sect. 10.6.2).

10.6.4 Development of Modular Product Programs

Reducing internal variety in a company can be achieved by developing modular

product families but even by aligning a modular strategy across the whole product

program. The aim of this method unit is to support this alignment within an existing

corporate product program (Eilmus et al. 2011; Krause et al. 2013).

The methods named in Sect. 10.2, as well as the integrated PKT-approach, aim

to reduce internal variety in product families at both product and process levels.

Additionally, many companies expend effort on reducing internal variety over the

whole product program, using various strategies for carryover of parts, components,

or modules. As many market-driven factors still force differentiation, the potential

for carryover often remains more at the level of standard parts rather than whole

modules. In reducing internal variety, the development of module families is a

solution not for standardization but for developing modules as a family of common

module variants. In this context, commonality is understood not merely as the reuse

of components but as any effect that makes a module seem identical to a specific

system (Andreasen et al. 2004). Bringing the ideas of product family development

and carryover across product families together, two major areas of action required

become apparent. The first is product family oriented and deals with the develop-

ment of modular product families based on modular systems or platforms to

enhance commonality within a product family (displayed as diagonal arrows in

Fig. 10.11). The second area of action focuses on a carryover-oriented search for

modules with similar functions and customer-related differentiation properties to

transfer them to a module family to increase commonality across product families

(displayed as horizontal arrows in Fig. 10.11).

The extent to which these two areas of actions are relied on by a company is

determined by choosing a corporate product structure strategy. This can be done

by concentrating on the product family that will lead to good adaption of the

10 Integrated Methods Toolkit for Modular Product Families 257

modules to the product family specific requirements (Fig. 10.11, left). This then

allows efficient variant deduction, as the standard components of the product

family can be designed as a platform reused in each product variant. By

concentrating on a carryover-oriented view, modules are designed that enable

reuse across product families (Fig. 10.11, right). This fosters high lot sizes and

allows free configuration as the modules are not optimized to a specific product

family. A balanced strategy is the development of a product family-oriented

modular system focusing on commonality within and across product families

with the same efforts (Fig. 10.11, middle).

Having defined a corporate strategy, Design for Variety and Life Phases

Modularization are used to develop modular product families and module families.

An example of the development of module families is shown in Sect. 10.7.3. The

Carryover Chart (CoC) shows the potential for carryover of parts, components, and

modules between product families.

10.7 Industrial Case Studies

The methodical tools of the integrated PKT-approach were used in several indus-

trial case studies that combined the method units according to corporate focus and

project aims. The case studies are of workshop-based projects to integrate the

product knowledge, the experience, and creativity of the industrial partners

involved. Four of these case studies are presented to show the application of the

methodical toolkit.

Fig. 10.11 Product structure strategies and their focus on commonality within and across product

families (Eilmus et al. 2011)

258 D. Krause et al.

10.7.1 Planning a Program of Water Measurement Devices

10.7.1.1 Initial Situation and Objectives

An industrial case study that demonstrates Product Program Planning according to

Sect. 10.6.3 is presented here. The case study ismodified for confidentiality reasons; the

subject is an existing product program of measurement systems for water quality used

in various applications ranging from the chemical industry to waste water treatment.

10.7.1.2 Procedure and Application of Methods Toolkit

Figure 10.12 shows the present program structure as well as important scenarios

that have been developed using step 1 of the method.

In Scenario 1, an expiring of the flow measurement systems has been prospected

due to the very uncertain development of its market niche. This will lead to elimina-

tion of this unprofitable product family. It is still meaningful to offer a product that

can cover this niche since it can act as an opener for system sales. Therefore, “New 1”

will be aligned to the low water product line, which then has to perform a flow

measurement option. It has also been identified that there is a need for a low-cost

product in the low water depth segment. Therefore, “New 2” is proposed to be

Fig. 10.12 Scenarios for water measurement devices visualized by the Program Structuring

Model (PSM) (Jonas et al. 2012)

10 Integrated Methods Toolkit for Modular Product Families 259

introduced. Development costs shall be kept to aminimum. To avoid poaching by the

dry applications, it should be clearly positioned in the low depth segment.

Scenario 2 eliminates only the basic flow measurement system, as for the

premium one, it still gives market potential. In this aspect, it is contradictory to

Scenario 1. Regarding the low water applications, a high growth of the digital

interface units is prospected. Still no standardized protocol has yet established on

the market; therefore, it is not possible to predict which type of interface will grow.

It is proposed to hold flexibility here in order to react to a possible technology push.

Figure 10.13 shows the common Carryover Assignment Plan (CAP) for both

scenarios; therefore, it serves directly for the resulting program plan.

Selected product concepts are shown by their MIGs in Fig. 10.14. The premium

low water device is equipped with the carryover mainboard, carryover display, the

Fig. 10.13 Carryover Assignment Plan (CAP)of water measurement devices (Jonas et al. 2012)

D

New 1 New 2

D

D
M

HL
HD

HL
HR

HR

Basic Deep waterPremium Low water

SL

M

Di

IG

M

Di

IG

D
SL

CM

D

M

Water

CM: Current Measurement
HL: Housing Low water
HR: Housing Remote
HD: Housing Deep water
IG: Interface Gateway

D: Detector
Di: Display
M: Mainboard
SL: Sensor loggerSink/source

Optional

Electrical energy
Water flow
Information

Fig. 10.14 Examples for new product concepts of water measurement devices visualized by

Module Interfaces Graphs (MIG) (Jonas et al. 2012)

260 D. Krause et al.

decoupled interface gateway (previously realized by the additional chipset),

standardized sensor logger, and the optional remote detector. “New 1” is based

on the remote housing and the mainboard of the low water devices. “New 2” is

based on the premium low water device and enhanced by a flow measurement

module. It can serve the desired market niche but has relatively low development

and production costs due to the high carryover share. The basic deep water device is

now equipped with the proposed carryover mainboard.

10.7.1.3 Results

Involving the different stakeholders in product planning, scenarios for the future

structure of the product program have been developed and merged into a final

strategy. Visualized by the Carryover Assignment Plan, a broad component share

over the program has been conceptualized and forms the input for the subsequent

development phases.

10.7.2 Development of a Family of Gas Inlet Valves

10.7.2.1 Initial Situation and Objectives

The combined use of Design for Variety and Life Phase Modularization
(Sects. 10.6.1 and 10.6.2) was accomplished in a product family development

project for gas inlet valves. The valves meet the special standards for vacuum

applications that had to be taken into account throughout the project. The main task

was to meet the existing customer needs with one new product family while

reducing the internal variety currently covered by five families of valves.

10.7.2.2 Procedure and Application of Methods Toolkit

The customer needs and the current product families were analyzed in the Tree of

External Variety (TEV, Fig. 10.15), which forms the basis for the first level of the

VAM (Fig. 10.16). To analyze the function building in the VAM’s second level and

to derive the corresponding working principles for the third level, a product family

function structure was generated. The MIG is used to visualize internal component

variety, building the VAM’s fourth level (Fig. 10.17, left). By analyzing the VAM,

requirements for design solutions for components, working principles, and functions

were identified to converge the product structure with the ideal of a variety-oriented

product structure, as described in Sect. 10.2. TheVAMwas used for solution finding.

A variety-oriented concept of a product family was derived, which was then

optimized along the product life phases. This step aims to meet the requirements

of a modular product structure for all product life phases and was performed with the

10 Integrated Methods Toolkit for Modular Product Families 261

help of the MPC (Fig. 10.9). For every life phase, an optimal modularization was

documented, compared to the designated modularizations across the whole product

life, and adjusted to derive a life phase-oriented modular concept.

10.7.2.3 Results

Needed components are reduced by 52 %, including the components the company

has to hold in stock to build any possible variant of the family. Furthermore, the

number of common components could be doubled, while the variant components

Fig. 10.15 Tree of External Variety (TEV) of the existing gas inlet valve families (Eilmus

et al. 2012)

Fig. 10.16 Variety Allocation Model (VAM) of the existing gas inlet valves (left) and the new

product family (right) (Eilmus et al. 2012)

262 D. Krause et al.

are minimized by 81 %. As these components are also physically connected, a

product platform was created: all product variants can thus be configured by adding

the variant and optional modules to the platform (Fig. 10.18).

10.7.3 A Family of Control Devices for Industrial Trucks

10.7.3.1 Initial Situation and Objectives

In developing several product families of industrial trucks in separate organiza-

tional units, the production company is faced with increasing internal variety due to

increasing external variety caused by global market situations. The development of

module families is one way to reduce internal variety in the product program. To

do this, the method unit Development of Modular Product Programs (Sect. 10.6.4)
is applied to adapt tools and procedures of Design for Variety (Sect. 10.6.1) and

Life Phases Modularization (Sect. 10.6.2) at the level of separate modules to

reduce variety by configuring these modules from the same set of components.

The control device is a module used in each product family of industrial trucks.

Different functions are displayed in each variant according to the variety of

functions of the industrial trucks, which is why 15 hardware variants of control

devices were used in total. The project aim was to reduce the module variants by

keeping the variety needed for proper function in each industrial truck variant.

Fig. 10.17 Module Interface Graphs (MIG) of the existing gas inlet valves (left) and the new

product family (right) (Eilmus et al. 2012)

10 Integrated Methods Toolkit for Modular Product Families 263

10.7.3.2 Procedure and Application of Methods Toolkit

As the variety of modules is strongly influenced by the variant properties required by

the customers in the industrial trucks, the external variety of the control devices ismuch

higher than in a similarly complex product that is not part of a much larger product.

In the control device, the high external variety gives little scope for

standardization of hardware over all variants, as analyzed using the VAM

(Fig. 10.19, right: couplings of properties between first and second level due to

Fig. 10.18 Case study results for the gas inlet valve family

Fig. 10.19 Detail of the Variety Allocation Model (VAM) of the existing control device family

(left) and the new concept (right) (Eilmus et al. 2011)

264 D. Krause et al.

strong coupling of the devices to the properties of the industrial trucks). Because

of this, a thorough analysis of potential for commonalities through component

standardization among single variants is conducted using the Carryover Chart

(Fig. 10.20), used as an additional tool in parallel with the VAM.

The Carryover Chart (CoC) shows the potential for commonalities (Fig. 10.20,

left) and how this potential was exploited by carryover parts for some or all of the

configuration variants, Mini, Medium, and Maxi (Fig. 10.20, right). These three

variants were then analyzed for each life phase, collecting the conditions for

common processes of the module variants or their individual components and

transferring them to requirements for the embodiment design, e.g., design of

common interfaces with the industrial trucks or interfaces with equipment used in

the individual life phases.

10.7.3.3 Results

The 15 existing variant components are converted into the three modules Mini,

Medium, and Maxi, which allows further optional functions when combined with

the forth module: a numerical keypad. Each of the six product families uses one

of the three variants as the basic control device. Some product families offer

another variant as an optional high-end control device. The number of module

variants was reduced by 73 % (Fig. 10.21). The modules have less than

20 components in total, a reduction by more than 75 %. The share of carryover

parts, i.e., components that show no variance, increased from 1 to 29 %. The

customer-required variety can be offered with less internal product variety, which

means less induced process variety.

Fig. 10.20 Carryover Chart (CoC) of differentiation properties (left) and parts (right) of the

control device family (Eilmus et al. 2011)

10 Integrated Methods Toolkit for Modular Product Families 265

10.8 Perspectives on the PKT Methods Toolkit

Various completed and ongoing projects, such as the case studies described here

(Sect. 10.7), have demonstrated the success of applying product family develop-

ment methods. The challenge of reducing internal variety could be efficiently

handled using these methods. However, case-specific new aspects of product family

development have become apparent, for example, process complexity induced by

the product variety in product family development. This is considered in the new

method unit Design for Supply Chain Requirements (Brosch and Krause 2011),

which is included in the process view of the integrated PKT-approach together with

the units Modularization for Assembly (Halfmann et al. 2011) and Design for
Ramp-up (Elstner and Krause 2011). The method unitModular Lightweight Design
(Gumpinger and Krause 2011) contributes to the third view of the PKT-approach.

It offers the ability to judge the effects of a chosen product structure on the overall

system weight of the product family, e.g., in aviation and supports the reduction in

fleet weight. These methods expand the integrated PKT-approach but are not

discussed in this book. Efficient adaptability of existing tools is subject of further

research. Aim is to adapt and expand existing methods to fit into existing company

processes and solve various rising challenges of industry. Therefore, methods and

tools of the integrated PKT-approach are consolidated and collected in a methodical

toolkit (Fig. 10.22). This toolkit allows case-specific combination and adaption of

the evaluated methods and tools to provide answers to new challenges on common

ground. Method units within the toolkit require defined interfaces to allow

combinability and ensure efficient knowledge transfer. Knowledge management

strategies will be used to improve communication between method units and

knowledge transfer between the development team and the rest of the company.

Besides, enhancement and standardization of continuous product visualization

models across the units of the toolkit is subject of current research.

The future use of a consolidated toolkit is planned to start with an analysis of the

initial situation and the definition of project objectives. Predefined method units

could be selected and adapted according to the specific project requirements of

Fig. 10.21 Case study results of the control device family (Eilmus et al. 2011)

266 D. Krause et al.

industrial partners. Serial and parallel applications should be possible to ensure

problem-specific continuous support, e.g., provided by the different visualizations.

After optimizing the product families, achievement of objectives can be evaluated.

The broader aim of the application of a methods toolkit is to improve the applica-

bility of existing methods and tools.

10.9 Conclusions

Reducing internal variety is a challenge that touches all life phases of a product

family, particularly product development. The proposed methods toolkit with

combinable method units provides tailored support to various corporate situations.

Fig. 10.22 Visualization tools and application of the integrated PKT-approach and future appli-

cation of the methods toolkit

10 Integrated Methods Toolkit for Modular Product Families 267

Therefore, branch-specific points of action can be addressed efficiently, as applica-

tion in different fields of industry has shown. The branch-specific knowledge,

experience, and creativity of a company’s engineers are integrated using graphical

tools to foster discussion and exchange of concepts. This is also supported by

incorporating the method units into workshop-based procedures, focusing on inter-

disciplinary exchange within the company. In ten case studies, a reduction in

components of about 46 % on average was achieved. Even more significant is the

75 % reduction in variant components achieved. In the coming years, further

research on several toolkits will be performed to improve and enhance the

integrated PKT-approach.

References

Andreasen MM, Mortensen NH, Harlou U (2004) Multi-product development: new models and

concepts. In: Meerkamm H (ed) Design for X – Beiträge zu 21. DfX-Symposium, Erlangen

Blees C (2011) Eine Methode zur Entwicklung modularer Produktfamilien. Dissertation, Hamburg

University of Technology, TuTech Verlag Hamburg, Hamburger Schriftenreihe Produktent-

wicklung und Konstruktionstechnik, Band 3

Blees C, Kipp T, Beckmann G, Krause D (2010) Development of modular product families:

integration of design for variety and modularization. In: Dagman A, Söderberg R (eds)

Proceedings of norddesign, Gothenburg, 2010

Brosch M, Krause D (2011) Complexity from the perspective of the design for supply chain

requirements. In: Blecker T (ed) Proceedings of the 2nd conference on the interdependencies

between new product development and supply chain management (GIC-PRODESC), Mailand

Caesar C (1991) Kostenorientierte Methodik für variantenreiche Serienprodukte – Variant Mode

and Effects Analysis (VMEA). Fortschritt-Berichte VDI, Aachen

Eilmus S, Beckmann G, Krause D (2011) Modulare Produktstrukturen methodisch in

Unternehmen umsetzen – Entwicklung von Standardumfängen und Integration von

Erfahrungswissen. In: Paetzold K (ed) Design for X – Beiträge zum 22. DfX-Symposium,

Tutzing

Eilmus S, Gebhardt N, Rettberg R, Krause D (2012) Evaluating a methodical approach for

developing modular product families in industrial case studies. 12th international design

conference – design 2012, Dubrovnik, pp 837–846

Elstner S, Krause D (2011) Assessment of the ramp-up capability from the perspective of product

development. In: Blecker T (ed) Proceedings of the 2nd conference on the interdependencies

between new product development and supply chain management (GIC-PRODESC), Mailand

Eppinger SD, Browning T (2012) Design structure matrix methods and applications. MIT Press

Ltd., Cambridge

Erixon G (1998) Modular function deployment: a method for product modularisation. Disserta-

tion, The Royal Institute of Technology, Stockholm

Franke HJ, Hesselbach J, Burkhard H, Firchau NL (2002) Variantenmanagement. HanserVerlag,

Germany

Gumpinger T, Krause D (2011) Development of modular product families under consideration of

lightweight design. In: Culley SJ (ed) Proceedings of the 18th international conference on

engineering design (ICED 11), Copenhagen

Halfmann N, Elstner S, Krause D (2011) Product and process evaluation in the context of

modularization for assembly. In: Culley SJ (ed) Proceedings of the 18th international confer-

ence on engineering design (ICED 11), Copenhagen

268 D. Krause et al.

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18:5–29

Jonas H, Gebhardt N, Krause D (2012) Towards a strategic development of modular product

programs. 12th international design conference – design 2012, Dubrovnik, pp 959–968

Kipp T (2012) Methodische Unterstützung der variantengerechten Produktgestaltung. Disserta-

tion, Hamburg University of Technology, TuTech Verlag Hamburg, Hamburger Schriftenreihe

Produktentwicklung und Konstruktionstechnik, Band 4

Krause D, Eilmus S (2011) Methodical support for the development of modular product families.

In: Birkhofer H (ed) The future of design methodology, 1st edn. Springer, Berlin

Krause D, Eilmus S, Jonas H (2013) Developing Modular Product Families with Perspectives for

the Product Program. Smart Product Engineering - 23rd CIRP Design Conference, Springer,

Bochum, pp 543–552

Lindemann U, Maurer M, Braun T (2009) Structural complexity management: an approach for the

field of product design. Springer, Berlin

Martin M (1999) Design for variety: a methodology for developing product platform architectures.

Dissertation, Stanford University

Martin M, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Meyer M, Lehnerd AP (1997) The power of product platform – building value and cost leadership.

Free Press, New York

Pimmler TU, Eppinger SD (1994) Integration analysis of product decompositions. In: Proceedings

of the 6th design theory and methodology conference, New York, pp 343–351

Robertson D, Ulrich K (1998) Planning for product platforms. Sloan Manag Rev 39(4):19–31

Salvador F (2007) Toward a product system modularity construct: literature review and reconcep-

tualization. IEEE Trans Eng Manag 54(2):219–240

Simpson TW, Siddique Z, Jiao J (2006) Product platform and product family design. Springer,

New York

Stone RB (1997) Towards a theory of modular design. Dissertation, The University of Texas

10 Integrated Methods Toolkit for Modular Product Families 269

Chapter 11

Solving the Joint Product Platform Selection

and Product Family Design Problem: An

Efficient Decomposed Multiobjective Genetic

Algorithm with Generalized Commonality

Aida Khajavirad, Jeremy J. Michalek, and Timothy W. Simpson

Abstract Product family optimization involves not only specifying the platform

from which the individual product variants will be derived but also optimizing the

platform design and the individual variants. Typically these steps are performed

separately, but we propose an efficient decomposed multiobjective genetic algo-

rithm to jointly determine optimal platform selection, platform design, and variant

design in product family optimization. The approach addresses limitations of

prior restrictive component sharing definitions by introducing a generalized

two-dimensional commonality chromosome to enable sharing components among

subsets of variants. To solve the resulting high-dimensional problem in a single

stage efficiently, we exploit the problem structure by decomposing it into a

two-level genetic algorithm, where the upper level determines the optimal platform

configuration while each lower level optimizes one of the individual variants. The

decomposed approach improves scalability of the all-in-one problem dramatically,

providing a practical tool for optimizing families with more variants. The proposed

approach is demonstrated by optimizing a family of electric motors. Results

indicate that decomposition results in improved solutions under comparable

computational cost, and generalized commonality produces families with increased

component sharing under the same level of performance.

An earlier version of this chapter appeared in A. Khajavirad, J.J. Michalak, and T.W. Simpson

(2009) “An Efficient Decomposed Multiobjective Genetic Algorithm for Solving the Joint Product

Platform Selection and Product Family Design Problem with Generalized Commonality”,

Structural and Multidisciplinary Optimization, 39(2):187–201 (# AIAA 2009), reprinted with

permission.

A. Khajavirad • J.J. Michalek (*)

Carnegie Mellon University, Pittsburgh, PA, USA

e-mail: jmichalek@cmu.edu

T.W. Simpson

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_11,
Springer Science+Business Media New York 2014

271

mailto:jmichalek@cmu.edu

11.1 Introduction

A product family is a group of related products (i.e., variants) that are derived from

a common set of components, modules, and/or subsystems called product platforms
to satisfy a variety of market niches. Designing a family of products is a difficult

task that embodies all of the challenges of product design while adding the

complexity of coordinating the design of multiple products in an effort to increase

commonality across the variants without drastically compromising their individual

performance (Simpson et al. 2001). This challenge manifests early in the design

process wherein designers must not only specify the platform configuration—also

referred to as platform variable selection or platform selection (Khire et al. 2006)—
but also optimize the design of the platform as well as the individual variants

derived from the platform.

Resolving the inherent tradeoff between platform commonality and distinct

variant performance is paramount: Increasing the degree of commonality among

products generally reduces total cost, but it can also compromise the ability of each

variant to fully achieve the desired characteristics making it distinct and attractive

to different market segments. The broad problem of product family design involves

many issues, such as supply chain management, manufacturing investment, esti-

mation of cost structures, and market positioning (de Weck 2005). We focus here

on developing an improved optimization algorithm for solving the joint product

family platform selection and design problem by mapping the tradeoff between

increased component commonality among variants vs. achievement of distinct,

exogenous performance targets for each product. The aforementioned issues

could be integrated within the proposed framework through appropriate modifica-

tion of objective functions and problem formulation.

In the next section, we review related optimization-based research that has

sought to address this tradeoff, and in Sect. 11.3 we describe our novel

multiobjective genetic algorithm (MOGA)-based approach for solving the joint

product family platform selection and variant design problem with generalized

commonality. In Sect. 11.4, the structure of the product family problem is exploited

to decompose the all-in-one formulation into a two-level MOGA, which improves

its search efficiency and scalability dramatically by reducing the search space of

each sub-GA and enabling use of parallel processing. In Sect. 11.5, an example

involving the design of a family of electric motors is presented and optimized, and

the effects of decomposition and commonality generalization and also the com-

plexity of the proposed method with respect to the number of variants are

investigated. Closing remarks and future work are discussed in Sect. 11.6.

272 A. Khajavirad et al.

11.2 Review of Related Literature

11.2.1 Classification: Product Family Optimization

Numerous optimization approaches have been developed within the engineering

design community during the past decade to solve the product family design

problem. Simpson (2005) reviews and classifies 40 such approaches from the

literature. In many of these approaches, product platforms are known or specified

a priori, i.e., before performing the optimization, whereas in other instances,

platform selection is determined during optimization (i.e., the platform is specified

a posteriori) In a similar manner, Fujita (2002) classified product family optimiza-

tion problems into three classes (see Fig. 11.1): In Class I problems (boxes 1 and 2),

product attributes are optimized under a fixed platform configuration (i.e., the

platform is known a priori); Class II problems (boxes 3 and 4) find the optimal

module selection from predefined sets of modules (i.e., the design of each module is

known a priori); and finally, in Class III problems (boxes 5 and 6) the product

attributes and platform configuration are optimized simultaneously. It is this Class

III, a posteriori problem that we refer to as the joint product family platform
selection and design problem (or the joint problem for short) in that it involves

determining the optimal combination of (1) platform variable selection, (2) plat-
form design, and (3) variant design. Each of these decisions is generally dependent

on the others (it is typically not possible to know the optimal platform without first

knowing the variant design, and vice versa); so Classes I and II problems cannot

generally offer optimality with respect to the full problem. Thus, we focus our

attention on approaches to address the Class III joint problem.

In Fig. 11.1, the classification of methods is further refined by adding the

dimension of restricted vs. generalized commonality: Methods that employ

Platform Selection Varia
nt D

esign

C
o

m
m

o
n

al
it

y
R

es
tr

ic
te

d
 G

en
er

al
iz

ed

Fixed

Variable Varia
ble

Fixed

C
la

ss
 I

C
la

ss
 I

II C
la

ss
 I

I

1

2

3

4

5

6

Fig. 11.1 Classification of

product family optimization

formulations

11 Joint Product Platform Selection and Product Family Design 273

restricted commonality limit the commonality definition to all-or-none component

sharing; that is, a component can either be common within the entire family or be

distinct among all variants. A generalized commonality formulation avoids this

restriction and allows for component sharing within subsets of the variants. The

restricted definition is a simplifying assumption that is typically employed to

decrease computational complexity; however, it imposes significant limitations

that are often not observed in product family design practice (Thevenot and

Simpson 2006). Therefore, there is a need for an approach capable of solving the

joint problem using generalized commonality (box 6) for practical product family

applications with a reasonable computational cost.

11.2.2 Prior Approaches to Solving the Joint Problem

Most of the previous a posteriori optimization methods reviewed by Simpson

(2005) avoid the high computational cost of the joint problem by dividing it into

multiple stages; that is, instead of addressing a Class III problem directly, in the first

stage the optimal platform configuration is found followed by a Class I problem to

find the variant design using the fixed platform found in the first stage. However,

since platform selection and variant design are not independent, the two-stage

approaches have been shown to lead to suboptimal solutions (Messac et al.

2002); therefore, single-stage approaches are preferred for optimality.

Single-stage Class III problems typically employ commonality restrictions to

reduce computational cost (box 5) (Simpson and D’Souza 2004; Hassan et al. 2004;

Khire et al. 2006) and, therefore, suffer from suboptimality due to the unrealistic

simplifying assumptions. Fujita and Yoshida (2001) addressed generalized com-

monality for the joint problem (box 6) by hybridizing GA, branch and bound, and

sequential quadratic programming (SQP) to determine platform configuration,

direction of similarities, and variant design, respectively. The approach may be

well suited to convex problems; however, for non-convex problems, it may gener-

ate suboptimal solutions due to local search in the fitness evaluation. Moreover, the

nesting of optimization algorithms leads to high computational costs. Khajavirad

and Michalek (2007) proposed a decomposed approach that relaxes the combinato-

rial platform selection variables to the continuous space and solves the generalized

joint problem (box 6) through a sequence of relaxations. While the proposed

method is computationally efficient, it suffers from the same problem of

suboptimality for non-convex problems due to combining a heuristic (relaxation

to continuous space) and a local search optimization method.

In brief, a single-stage optimization approach for solving the joint product

family platform selection and design problem with generalized commonality

(box 6) is needed that can solve practical problems under reasonable computational

costs without employing local search methods that assume problem convexity.

274 A. Khajavirad et al.

11.2.3 Decomposition Approaches

An approach to reducing computational cost of the optimization problems with

special structures is to decompose the all-in-one formulation into a set of interre-

lated subproblems such that solving and coordinating the individual subproblems is

faster or more robust than optimizing the full problem all-in-one. The hierarchical

structure of product families can be exploited in this way. Fujita (2002)

decomposed the Class III product family optimization problem into module com-

bination and module attribute optimization subproblems and solved subproblems in

nested loops. Kokkolaras et al. (2002) applied analytical target cascading (ATC) for

decomposing a Class I problem by allocating each individual product design to a

separate subproblem and imposing commonality decisions by introducing

subsystems with multiple parents. Michalek et al. (2006) also applied ATC to

decompose a line of products including market demand and manufacturing data;

however, the approach considered only manufacturing equipment sharing and did

not allow for component commonality among variants. Finally, Khajavirad and

Michalek (2007) introduced a two-level ATC-based decomposition scheme for

solving the joint problem through a sequence of continuous relaxations; however,

the approach is intended for convex formulations where design variables are

continuous and gradients are available. Hence, a decomposition approach based

on a non-gradient global search algorithm could avoid assumptions of convexity,

continuity, or gradient availability, broadening the scope of applicability for many

practical product family problems.

11.3 Proposed MOGA Approach

In this chapter, we introduce a powerful new MOGA formulation for determining

the Pareto front representing the tradeoff between commonality and individual

variant performance in the Class III joint product family problem with generalized

commonality. The underlying algorithm for our MOGA code is the elitist

non-dominated sorting GA (NSGA-II) introduced by Deb et al. (2000) which has

been shown to be capable of finding a well-converged and well-distributed set of

Pareto optimal solutions in a reasonable computational time for many problems.

However, in order to apply the original NSGA-II code to the joint problem, we have

modified the chromosome representation, crossover, and mutation operators as

described in the sections that follow.

11 Joint Product Platform Selection and Product Family Design 275

11.3.1 Chromosome Representation

We generalize the augmented chromosome representation of Simpson and D’Souza

(2004) to relax the all-or-none component sharing restriction so that platform

variables can be shared among any subset of variants. This generalization is

achieved by introducing two parallel chromosomes for each individual in the

MOGA population (see Fig. 11.2): (1) a two-dimensional commonality chromo-
some that defines the platform configuration and allows for component sharing

among subsets of products and (2) a one-dimensional design variable chromosome
that contains design variables of all variants in the family. Hence, in a product

family with p products, each defined by n components,1 the commonality chromo-

some is a two-dimensional matrix with p rows and n columns, and the design

variable chromosome contains np genes. The commonality chromosome is

generated so that genes can take any integer value between 1 and p, where equal

integer values indicate that the corresponding components are common.2 An

example of this representation for a product family with three products and six

components is shown in Fig. 11.2.

311313P3

332322P2

121321P1

c4x53c3c2x23x13c4x52x42c2c1x12x61x51c3c2c1x11

m1 m2 m3 m4 m5 m6
m1 is distinct in each product.
m2 is shared between 1st and 2nd products.
m3 is shared among all products.
m4 is shared between 1st and 3rd products.
m5 is distinct in each product.
m6 is shared between 2nd and 3rd products.

Commonality chromosome

Design Variable Values for
Product 1

Design Variable Values for
Product 2

Design Variable Values for
Product 3

Design variable chromosome

x11 x12 x13 x14 x15 x16 x21 x22 x23 x24 x25 x26 x31 x32 x33 x34 x35 x36

a

b

Fig. 11.2 Two parallel chromosomes for each product family in the MOGA population (pi: ith
product, mj: jth component, xij: jth component of ith product)

1 Here, without loss of generality, we assume each component is represented by a single design

variable (i.e., gene); however, the algorithm is applicable to the case which each component

includes different number of design variables.
2 In our discussion, we assume that all products include the same number of components as

candidates for commonality. However, this representation can be modified to include a general

case in which any subset of components may be absent in a variant by setting the corresponding

gene in the 2D chromosome to a distinct integer number (e.g., zero) and omitting those genes from

the design variable chromosome of that variant. In addition, for the components that are only

present in p0 < p products, their commonality genes can take any integer value between 1 and p0.

276 A. Khajavirad et al.

11.3.2 Consistency Constraints

The proposed algorithm ensures that the two chromosomes remain consistent

during the evolution using consistency constraints, which are classified into two

groups: design consistency and commonality consistency. The design consistency

constraints ensure that the design variables are consistent with the commonality

chromosome: For each set of components identified as common by the commonal-

ity chromosome, the corresponding gene values for each individual variant are

replaced by the average value3 within the set (see Fig. 11.3a). The commonality

consistency constraint ensures that the commonality chromosome is consistent with

the design chromosomes at each iteration: if all component genes’ values for any

subset of products differ by less than the maximum user-defined tolerance4 as a

result of the crossover or mutation operators, the corresponding genes in the

commonality chromosome are modified accordingly (see Fig. 11.3b).5

23

2

23

223

321

123

x32x31x22x12x11 x33x32x31x23x22x21x13x12x11
x33x32x31x23x22x21x13x12x11

2
x31x11 +

3
x32x22x12 ++

εxx ≤− 3323

23

2

23

223

321

123

323

32

23

323

321

123

a b

Fig. 11.3 Consistency constraints: (a) design consistency and (b) commonality consistency

3 In case of discrete variables, the average value should be further rounded to the closest discrete

level. Moreover, this constraint can be imposed using other strategies such as generating a random

number in the upper level and sending it to the lower levels.
4 The user-defined tolerance for considering two design variables to be equal should be set using

knowledge about the problem, including the physical interpretation of the variable values and

knowledge about the sensitivity of performance to the value of these variables. Thus, setting of the

user-tolerance is necessarily case-specific.
5 It should be noted that the commonality consistency constraints are only imposed for finding the

optimal solution faster, and the method can identify optimal solutions without these constraints

as well.

11 Joint Product Platform Selection and Product Family Design 277

11.3.3 Crossover Operators

Due to the 2D configuration of the commonality chromosome, a two-dimensional
binary crossover operator was applied, which is a direct extension of the one-point
crossover operator to two dimensions. In this operator, two random integer numbers

are generated in the range of (1, p) and (1, n) to select crossover sites along p and n,
where p and n again represent the number of products and components in each

product, respectively. These two random numbers are used to divide the common-

ality chromosome into four quadrants. Then, a third random integer number, in the

range of [1–4], is generated to decide which quadrant is to be interchanged (see

Fig. 11.4). The crossover type applied to the design variable chromosome is the

default operator used in the original NSGA-II code, which is simulated binary
crossover (Deb 2001).

11.3.4 Mutation Operators

The mutation operator is designed to mutate the platform configuration of the

product family to increase the searching quality of the GA for exploring various

levels of commonality. First, for each component, a random number is generated

(0 � rnd1 � 1). If its value is less than the user-specified mutation probability (pm),
then the corresponding component is mutated. In mutation, a new random number

is generated (0 � rnd2 � 1). If its value is less than 0.5, then that component is set

as distinct in each product and is mutated according to the polynomial mutation
operator. Otherwise, the component is made common among all products by first

being mutated in each variant and then being replaced by its average value over all

products followed by a rounding strategy in case of discrete variables (see

Fig. 11.5). After applying crossover and mutation operators, the algorithm modifies

both chromosomes according to the consistency constraints.

434234

114123

213312

324321

232131

142423

343213

142412

Parent 1

Parent 2

2nd Quadrants
Interchanged

232131

112423

213213

322412

Offspring 1

434234

144123

343312

144321

Offspring 2

Fig. 11.4 Two-dimensional

binary crossover operator

278 A. Khajavirad et al.

11.3.5 Commonality Objective Function

In order to have the MOGA find the optimal platform configuration, an objective

function for measuring the commonality of each family of products is added to the

set of performance objective functions. Several metrics for measuring the common-

ality degree in product families have been proposed reflecting various commonality

benefits based on company’s focus and standpoint. Khajavirad andMichalek (2007)

argue that the commonality index (CI), introduced by Martin and Ishii (1996), is

currently the best proxy for capturing the trend of cost savings due to component

commonality relative to prior metrics used in product family optimization,6 and we

adopt it as the commonality objective function. CI ranges between 0 and 1 and is a

measure of unique parts; that is, a higher value indicates the whole product family

was made with a fewer number of unique parts: for a product family with p products
each with n components, CI can be found as follows:

CI ¼ 1� u� n

nðp� 1Þ (11.1)

323

321

123

323

321

123

rnd1 ≤ Pm

rnd2 ≤ 0.5 rnd2 > 0.5

x33x32x31x23x22xxx12x11 x33x32x31x23x22x21x13x12x11

323

221

123

323

221

123

x33x23 x33x32x31x23x22x21x13x12x11

x′13 x′23 x′33

323

321

323

323

321

323

3
x′33x′23x′13 ++

x33x32x31x23x22x21x13x12x11

Fig. 11.5 Mutation operators (x0ij ¼ f(xij), where f is polynomial mutation operator and x0ij is
mutated value of xij)

6 To estimate the tooling cost savings more precisely, CI should be reformulated to include

coefficients representing the amount of cost saving due to sharing each component; however,

this extension has no effect on the optimization approach, and all coefficients are assumed to be

equal in this chapter.

11 Joint Product Platform Selection and Product Family Design 279

where u represents the total number of distinct components in the product family.

By defining Ni as the number of distinct integers for the ith component in the

commonality chromosome, Eq. (11.1) can be reformulated as follows:

CI ¼ 1�
Pn
i¼1

ðNi � 1Þ
nðp� 1Þ (11.2)

Using this definition, the commonality objective function can be calculated

using only the commonality chromosome while the product performance-related

objectives are evaluated using each design variable chromosome; this is the key

feature that enables decomposition of the proposed MOGA, as discussed next.

11.4 Decomposition and Parallelization of the MOGA

Aforementioned modifications to the original NSGA-II code make it convenient for

optimizing the joint product family problem with generalized commonality; how-

ever, this algorithm is still only practical for problems with a relatively small

number of components and variants. The commonality generalization also

increases this complexity, making the all-in-one algorithm inefficient in dealing

with high-dimensional problems. To address this scalability limitation, we propose

a decomposition of the original formulation (see Fig. 11.6). The new method

involves allocating the commonality chromosome to an upper-level GA and

decomposing the design variable chromosome into its product variants, where

each variant is allocated to one of the lower-level sub-GAs. In addition, the

consistency constraints are imposed to all subproblems.

The general structure of the proposed model is shown in Fig. 11.7. The steps of

the algorithm proceed as follows:

1. Initialization: Initial populations are generated (randomly or by another

approach) in the upper-level and lower-level GAs independently. Next,

according to the consistency constraints, both commonality and design variable

chromosomes send the required data7 to lower- and upper-level GAs,

respectively.

2. Fitness calculation: The commonality metric, Eq. (11.2), and individual variant

performance objectives are calculated in the upper- and lower-level GAs,

respectively. The upper-level GA sends the commonality metric of each popu-

lation member to all lower-level GAs, which are included in the fitness function

of the corresponding individual in each sub-GA in addition to the product

7Data exchange necessary to enforce consistency constraints is handled through Message Passing

Interface (MPI) library. Details of the implementation and a copy of the code are available through

the authors or at http://www.cmu.edu/me/ddl.

280 A. Khajavirad et al.

http://www.cmu.edu/me/ddl

Fig. 11.6 Allocating the two parallel chromosome representations to a two-level MOGA (pi: ith
product, mj: jth component, xij: jth component of the ith product)

Fig. 11.7 Decomposed MOGA model for product family design

11 Joint Product Platform Selection and Product Family Design 281

performance objectives. Each lower-level GA also returns performance

deviations to the upper-level GA, which are then summed across variants to

form the overall performance objective functions.

3. Crossover and mutation: Using the aforementioned crossover and mutation

operators, offspring populations are generated in all GAs independently. Cross-

over and mutation operators at each subproblem are the same as the sequential

version except that the tasks are divided among different processors. For exam-

ple, the upper-level GA applies the two-dimensional binary crossover operator

to the commonality chromosome, while lower-level GAs use simulated binary

crossover. In case of mutation, the upper-level GA determines which

components should be mutated, i.e., which variables should become common

or distinct among the products, and passes this data to the lower-level GAs so

that they can mutate the individuals accordingly. After all offspring populations

are generated, they are modified according to the consistency constraints, and

each lower-level GA passes back the fitness value for its corresponding perfor-

mance objective(s).

4. Replacement: The upper-level GA combines the parent and offspring population

and applies non-dominated sorting with respect to the commonality level and

overall performance objectives to select the best half as the new generation that

will define the new population in all (upper- and lower-level) GAs.

5. Iteration and termination: If the generation number is equal to the maximum

generation number, then the algorithm is terminated; otherwise, go to Step 2.

Using the proposed decomposition scheme, the dimensionality of each lower-

level GA remains constant regardless of the number of variants in the product

family; this is the key feature making the decomposed approach scalable. However,

this improved scalability is still limited by the size of commonality chromosome in

that it grows linearly as number of variants increases; these desirable and adverse

effects are further quantified in Sect. 11.5.5. In the all-in-one GA, selection of

product families from the population is made with respect to the overall fitness

value of those families; in contrast, the decomposed GA involves (1) selection of

design variable chromosomes based on their sub-fitness values for producing

offspring and (2) coordination of the sub-GAs after each generation to select the

subset of product families from the joint parent-offspring population that will

advance to the next generation. The commonality value for the entire family is

also included as an additional objective function for each sub-GA which is only

used for non-dominated sorting of the population prior to selection; however, since

each sub-GA explores within the search space of an individual variant and selects

on the basis of that sub-fitness value, the search quality enhances significantly and

each lower-level GA can carry over features of high-performing subsets of the full

product family chromosome to the offspring population.

While searching for high-quality individual variants in lower levels, the upper

level selects the next generation members with respect to the overall family

objectives by applying non-dominated sorting with respect to the commonality

level and the overall performance value (formed by summing the sub-performances

calculated at lower levels). Therefore, although the search for optimal platform

282 A. Khajavirad et al.

configuration and variant design are performed in separate GAs, the aforemen-

tioned replacement scheme applied in each generation in the upper level

differentiates the proposed method from multistage methods that find the optimal

platform and variant design in separate stages. Finally, due to the parallel nature of

this decomposed method, each sub-GA can be executed on a separate processor

using the MPI library (Pacheco 1997) for sending and receiving data among nodes

during evolution.8 Hence, in addition to the improved performance due to decom-

position, it is possible to achieve further reductions in computational time using

parallel processing.

11.5 Demonstration: Universal Electric Motor Family

The universal electric motor family example was first created by Simpson et al.

(1999, 2001) and has since been applied as a case study by various researchers to

compare the efficiency of proposed approaches with existing ones. In this example,

the goal is to design a scaled-based product family of universal electric motors that

satisfy a variety of torque requirements using common platforms. Hence, the

optimization process involves selecting the platform and scaled design variables

and their corresponding values so that the range of torque requirements is satisfied

while the commonality among the motors is maximized, individual motor weight is

minimized, and individual motor efficiency is maximized. The detailed analysis

including all equations relating the motor design variables to the output parameters

can be found in Simpson et al. (1999, 2001).

Based on this formulation, the design of a single motor involves eight design

variables (see Table 11.1), two equality and four inequality constraints (see

Table 11.2), treating mass minimization and power maximization as the two

objectives. However, as opposed to other physical components which can be shared

for reducing tooling cost, any current value (within the initial range) could be drawn

from the motor based on other motor characteristics and constraints. Hence, the

current is written as a function of other variables using the power equality con-

straint9 rather than being an independent variable and therefore is not considered for

component sharing. Hence, the number of design variables is reduced to 7 for each

8 It should be noted that the parallelization method applied herein is the direct benefit of the

proposed decomposition scheme and should not be confused with general types of parallel GAs

(e.g., fine-grain, coarse-grain, and master–slave models), which are derived from the evolutionary

nature of the GA and are independent of the specific problem being solved. Generic parallel GAs

could additionally be used to solve subproblems in the proposed decomposition if the optimization

of an individual product is too complex for a single GA or if further speedup is desired, but we do

not pursue this possibility here.
9 Power equality constraint is a second-order equation as a function of current and has two positive

roots if any. Therefore, the roots are compared with respect to feasibility and objective value and

the better one is picked as the current value.

11 Joint Product Platform Selection and Product Family Design 283

motor, and the power equality constraint is replaced by two inequality constraints

representing the lower and upper bounds for current.

11.5.1 Product Family Objective Functions

To demonstrate the tradeoff between commonality and individual performance as

well as to visualize the Pareto curves conveniently, the three objectives introduced

in Akundi et al. (2005) were reduced to two objectives by combining the two

performance objectives into one using a fixed weighted sum:

f1 ¼
X10
i¼1

w1ηi þ w2ð1� mi
�Þ

f2 ¼ CI (11.3)

in which ηi and mi
� represent efficiency and the normalized mass (mass of each

motor has been normalized by dividing it over the maximum allowable: mmax ¼ 2

kg) for the ith motor, respectively, and w1 and w2 are the weight coefficients,

which are assumed to be equal (w1 ¼ w2 ¼ 0.5) in this chapter. Moreover, all

constraints are handled using the constraint-dominated approach (Deb 2001).10

Table 11.1 Design variables and bounds for universal electric motor example

Definition Lower bound Upper bound

Wire turns on the armature: Nc 100 1,500

Wire turns on each field pole: Ns 1 500

Armature wire area (mm2): Awa 0.01 1.00

Field wire area (mm2): Awf 0.01 1.00

Radius of the motor (mm): ro 10 100.0

Thickness of the stator (mm): t 0.50 100.0

Stack length of the motor (mm): L 1.0 100.0

Current drawn by the motor (Amp): I 0.1 6.0

Table 11.2 Design constraints for universal electric motor example

1. Torque (Nm) ¼ {0.05, 0.1, 0.125, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.5}

2. Power (W) ¼ 300 (for all motors)

3. Feasible geometry for all motors: t < ro
4. Maximum magnetizing intensity for each motor: M � 5,000 Amp � turns/m

5. Maximum mass of the each motor: Mass � 2 kg

6. Minimum efficiency of each motor: η � 15 %

10 Since GAs are generally inefficient for handling equality constraints directly and need a large

population size for finding feasible solutions, the torque equality constraint has been implemented

using an adaptive coefficient strategy in the constrained dominated approach.

284 A. Khajavirad et al.

11.5.2 Decomposition

To compare the efficiency of the decomposed approach relative to the all-in-one

formulation, the electric motor family was optimized using the restricted represen-

tation for commonality genes suggested by Simpson and D’Souza (2004) using

several alternative decomposition schemes. First, the product family was

decomposed into ten lower-level GAs, each optimizing a single product. A popula-

tion size of 2,500 and maximum generation number of 800 were used. This

parameter tuning was verified by running the same code using larger values for

population size and maximum generation number, resulting in negligible improve-

ment for the Pareto curves. Next, the same problem was solved using three

alternative schemes: (1) five sub-GAs, each containing two motors; (2) two

sub-GAs, each with five motors; and (3) the all-in-one formulation for all ten

motors. The estimated Pareto curves are plotted in Fig. 11.8. Since we are interested

in finding the benefit of decomposition in producing better results for the same

computational cost, the same population size and maximum generation number

(which implies the same number of function evaluations) was applied in all four

cases.

As can be seen from Fig. 11.8, the all-in-one formulation cannot find a well-

distributed optimal front; it produces only the high-commonality portion of the

curve in that this region has a lower dimensionality. By increasing the number of

sub-GAs (the extent of decomposition), the Pareto curve moves toward the optimal

front, and best results are obtained for the most decomposed case.

Performance

C
om

m
on

al
it
y

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

10 sub-GAs

2 sub-GAs

5 sub-GAsall-in-one

Fig. 11.8 Pareto fronts of the electric motor family for different decomposition schemesusing

all-or-none commonality

11 Joint Product Platform Selection and Product Family Design 285

While we focus here on results from the universal electric motor example, the

trends observed in this case study are also consistent with results we obtained

applying the proposed decomposition to the family of three general aviation aircraft

(GAA) examined in Simpson and D’Souza (2004). Specifically, the Pareto set

obtained through decomposition is significantly superior to that obtained without

decomposition (see Fig. 11.9) indicating the robustness of the proposed approach to

solve families with different number of variants and components. Details of the

GAA case study can be found in Khajavirad et al. (2007).

11.5.3 Generalization

As described in previous sections, using restricted all-or-none commonality defini-

tion results in a loss of the benefit of component sharing among subsets of products,

which is frequently applied in practice. The scalability benefit of decomposition is

even more critical for addressing this generalized case: Since adding the

two-dimensional chromosome along with the design variable chromosome and

searching through all possible platform configurations adds to the complexity of

the algorithm dramatically, the all-in-one formulation becomes impractical even for

smaller numbers of products. For example, in the GAA case study with only three

variants (Khajavirad et al. 2007), the all-in-one code failed to generate good results

for the generalized case (see Fig. 11.9). This will be demonstrated numerically in

Sect. 11.5.5.

Therefore, in order to show the benefit of generalized commonality, the all-in-

one formulation was decomposed to ten sub-GAs, each optimizing an individual

variant. The population size and maximum generation number are 3,000 and 1,400,

respectively, which were verified as before.

Performance

C
om

m
on

al
it
y

0.94 0.95 0.96 0.97 0.98 0.99
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decomposed

all-in-one

Fig. 11.9 Pareto fronts of

GAA family for decomposed

and all-in-one

formulationsusing

generalized commonality

286 A. Khajavirad et al.

The Pareto frontier for the generalized commonality is depicted in Fig. 11.10 and

compared with the all-or-none case using the same decomposition scheme. As can

be seen from the figure, relaxing the all-or-none restriction to generalized common-

ality among subsets of products improves the product family performance dramati-

cally and allows an average 30 % of increased component sharing for the

comparable level of performance leading to significant tooling cost savings.

In addition, to demonstrate the concept of generalized commonality, platform

configurations for the three labeled points of the Pareto frontier are listed in

Table 11.3. The numbers indicate the number of variants that share each component

(1’s are omitted). For instance, the notation {5, 2} indicates one design is shared

among five variants while another design is common between two variants and the

remaining three have distinct components. The presence of several sub-platforms

for most of the components shows the importance of the generalization and also the

efficiency of our new chromosome representation for capturing this feature.

Performance

C
om

m
on

al
it
y

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

I

Generalized II

IIIall-or-none

Fig. 11.10 Pareto fronts of the electric motor family for the generalized and all-or-

nonecommonality definitions

Table 11.3 Platform

configuration of points on the

Pareto frontier in Fig. 11.10

Modules I II III

Nc 10 2, 4 2, 2

Ns 10 3, 7 4, 2, 2, 2

Awa 10 9 5

Awf 4, 4 4 4

ro 5, 5 7 4

T 6 5, 2 4

L 10 2, 4 2, 2

11 Joint Product Platform Selection and Product Family Design 287

11.5.4 Complexity of the Decomposition Scheme

To investigate the scalability of the proposed decomposition compared to the all-in-

one problem, the electric motor example has been solved for different numbers of

products. Pareto frontiers for 2, 4, 6, 8, and 10 variants are depicted in Fig. 11.11.

Two graphs are shown for each case: The left hand shows the evolution of the

decomposed algorithm, and the right hand compares the decomposed algorithm to

the all-in-one approach. Specifically, the left hand graphs show the estimated Pareto

front for several different values of MaxGen,11 the maximum number of

generations. Convergence was assumed when the average performance

case III: 6 products, population size=2500

case IV: 8 products, population size=3000

Performance
0.63 0.64 0.65 0.66 0.67

0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=600

MaxGen=200

MaxGen=400

MaxGen=800

Performance

C
om

m
on

al
it
y

C
om

m
on

al
it
y

C
om

m
on

al
it
y

C
om

m
on

al
it
y

0.655 0.66 0.665 0.67 0.675
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-II

AIO-I

Performance
0.63 0.64 0.65 0.66 0.67

0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=400

MaxGen=800

MaxGen=1000

MaxGen=600

Performance
0.65 0.66 0.67

0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-II

AIO-I

Fig. 11.11 Scalability of the proposed decomposition method versus the all-in-one problem

11 Because of dynamic penalty function parameters for constraint handling that depend on the

MaxGen parameter, the algorithm was restarted in each case from the same starting point.

288 A. Khajavirad et al.

case I: 2 products, population size=1500

Performance
0.65 0.66 0.67 0.68 0.69

0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=600

MaxGen=400

MaxGen=200

MaxGen=100

Performance

C
om

m
on

al
ity

C
om

m
on

al
ity

0.65 0.66 0.67 0.68 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

case II: 4 products, population size=2500

C
om

m
on

al
ity

C
om

m
on

al
ity

Performance
0.64 0.65 0.66 0.67 0.68 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=200

MaxGen=400

MaxGen=600 MaxGen=800

Performance
0.67 0.675 0.68 0.685 0.69

0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

case V: 10 products, population size=3000
Performance

C
om

m
on

al
ity

0.64 0.65 0.66 0.670

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=800

MaxGen=1400

MaxGen=1200

MaxGen=1000

Performance

C
om

m
on

al
ity

0.655 0.66 0.665 0.67 0.675
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

Fig. 11.11 (continued)

11 Joint Product Platform Selection and Product Family Design 289

improvement between two consecutive 200-generation steps was less than 1 %. The

right hand graphs compare the converged estimated Pareto front from the

decomposed MOGA to two all-in-one cases: (1) AIO-I represents the results of

running the all-in-one algorithm for an equal number of function evaluations, and

(2) AIO-II represents the results of running the all-in-one algorithm until it is within

1 % of the decomposed solution or has executed more than the maximum allowed

function evaluations,12 whichever is less. Meanwhile, Fig. 11.12 compares the

computational cost required to achieve convergence for both the decomposed and

the all-in-one algorithms. Error bars represent the 200-generation steps within

which the 1 % convergence criteria were achieved.

As can be observed from Figs. 11.11 and 11.12, as the number of variants in the

family increases, the computational requirements increase exponentially for both

methods. In the full decomposition scheme, increasing the number of variants has

no effect on the size of each sub-GA; however, the 2D commonality chromosome

size does grow, acting as the limiting factor for the algorithm scalability. This

adverse effect could be seen in Fig. 11.12 by comparing the decomposed curve with

the linear case. However, the relative benefit of decomposition over the all-in-one

approach increases substantially as the number of variants increases, supporting

improved scalability and the ability to solve larger problems than possible without

decomposition.

number of products

R
el

at
iv

e
co

m
pu

ta
ti
on

al
 c

os
t

2 4 6 8 10
0

20

40

60

80

100

120

Decomposed

all-in-one

Linear

Fig. 11.12 Complexity of the proposed method as a function of the number of variants (Relative

computational cost for p products = No. of function evaluations for p products / No. of function

evaluations for optimizing a single product)

12We set the maximum allowed number of function evaluations to twice the number of function

evaluations required for solving the 10 product case using the decomposed algorithm.

290 A. Khajavirad et al.

11.5.5 Parallelization

As shown in previous sections, decomposing the initial “all-in-one” formulation

enhances the search quality of each sub-GA and decreases the total computational

cost dramatically. Moreover, in order to further reduce the computational time, the

decomposed approach can be parallelized by running each sub-GA on a separate

processor and using the MPI library for exchanging data among different nodes.

Total execution time of the parallel codes can be divided into three main parts:

computation time, communication time (i.e., time for exchanging data among

processors), and idle time (e.g., synchronization time). Hence, the final speedup

depends on how these three factors change by increasing the number of processors,

which is problem specific. In our decomposition scheme, the computational time

for each sub-GA is inversely proportional to the number of sub-GAs. This is due to

the fact that the number of genes in each sub-GA chromosome is inversely

proportional to the total number of sub-GAs and the MOGA operators act on

each gene separately. However, increasing the number of processors increases the

communication and idle time. Hence, parallelization is beneficial for cases in which

the computation time is the dominant part of the total execution time, which in the

case of GAs is determined by the computational cost of the fitness calculation

phase.

The computation, communication, and total execution time for one generation of

the motor example are listed in Table 11.4 for 2, 5, and 10 sub-GAs (3, 6, and

11 processors), respectively. The reported times are the maximum time value

among all the sub-GAs, i.e., the communication time and idle time are combined.

As can be seen from the table, since each electric motor analysis (i.e., fitness

calculation) involves only a number of analytic equations, and as result a very

low computational cost (1.7 � 10�6 s), total execution time is dominated by the

communication time which is increased by increasing the number of processors.

Hence, the total execution time is increased by increasing the number of processors.

However, as can be found from Table 11.4, the computation time is reduced

considerably by increasing the number of processors, and the communication

time is negligible for cases involving time-consuming product-level simulations.

Hence, parallelization is not recommended for the motor example; however, for

more computationally intensive applications, a high speedup can be achieved

through parallel processing.

Table 11.4 Parallelization times for the motor example using various decomposition schemes

Decomposition scheme

Time per generation (s)

Computation time

Communication

and idle time Total execution time

2 sub-GAs (3 processors) 0.178 1.84 2.081

5 sub-GAs (6 processors) 0.081 3.38 3.461

10 sub-GAs (11 processors) 0.045 4.39 4.435

11 Joint Product Platform Selection and Product Family Design 291

11.6 Conclusions and Future Work

We introduced a new single-stage approach for solving the joint product family

optimization problem using a unique decomposed MOGA formulation with a

generalized commonality chromosome. The augmented chromosome representa-

tion introduced by Simpson and D’Souza (2004) was generalized to address

component sharing among subsets of products. In order to improve the scalability

of the proposed approach, the original all-in-one MOGA was decomposed into a

novel two-level optimization problem in which the upper-level GA finds the

optimal platform configuration while each lower-level GA optimizes a subset of

products in the family. The proposed approach was demonstrated by optimizing a

family of universal electric motors.

The effect of decomposition degree on the quality of estimated optimal fronts

under fixed computational cost was investigated by solving the restricted common-

ality case using different decomposition schemes. The most decomposed case

outperformed other schemes and found a well-converged and well-distributed

optimal curve with a relatively low computational cost. Next, the same example

was solved using the generalized commonality definition for the most decomposed

case. Results show that the generalized commonality representation improves the

optimal points dramatically, dominates all solutions of the all-or-none algorithm,

and captures the tradeoff between commonality and performance more effectively.

These trends are consistent with a second case study of a family of three general

aviation aircraft, thus supporting generalizability of the empirical results. Finally,

the complexity of the decomposition scheme in terms of number of variants was

examined by solving families with different numbers of products; results show the

proposed decomposition improves the scalability of the all-in-one problem signifi-

cantly, extending the applicability of the optimization algorithm to families with

more variants. More scalable algorithms could be explored by investigating

alternatives to the proposed 2D commonality chromosome for representing the

generalized component sharing.

In conclusion, common restrictions of commonality to degrees of all-or-none

may significantly limit the quality of the resulting solutions and the ability to take

full advantage of commonality options. Thus, we recommend that all-or-none

restrictions be used only when the firm is truly uninterested in generalized com-

monality for reasons of logistics, etc. Secondly, the proposed decomposition is

significantly more efficient than all-in-one approaches, and it is able to generate

evenly distributed Pareto curves. We see no disadvantage to the decomposed

approach, and we recommend the approach for future work in product line and

product family optimization. In addition, for cases in which the fitness calculation

phase (i.e., the product-level simulation) involves high computational cost, a high

speedup can be achieved by running the decomposed approach on a parallel

machine.

For futurework,we intend to examine deterministic global optimization approaches

to solve the joint product family problem (Khajavirad and Michalek 2008)

292 A. Khajavirad et al.

and compare the true optimal front with those found using popular heuristics and

local solvers in product family optimization literature quantifying the benefits

and limitations of each group. In addition, current objectives for commonality

and deviation from exogenous performance targets used in this chapter, which are

the standard in product family optimization, are somewhat artificial and limited

proxies for the benefits of commonality and differentiation. Future work aims to

introduce methods for quantifying cost benefits of commonality and revenue

benefits of differentiation in a heterogeneous marketplace in order to make the

most profitable tradeoff in product family planning and design (Kumar et al. 2006;

Michalek et al. 2006).

Acknowledgments This work is supported in part by the Pennsylvania Infrastructure Technology

Alliance, a partnership of Carnegie Mellon, Lehigh University, and the Commonwealth of

Pennsylvania’s Department of Community and Economic Development (DCED). Dr. Simpson

acknowledges support from the National Science Foundation under CAREER Award

No. DMI-0133923. Any opinions, findings, and conclusions or recommendations presented in

this chapter are those of the authors and do not necessarily reflect the views of the sponsors.

References

Akundi S, Simpson TW, Reed PM (2005) Multi-objective design optimization for product

platform and product family design using genetic algorithms. In: ASME design engineering

technical conferences, Long Beach, CA

de Weck O (2005) Determining product platform extent. In: Simpson TW, Siddique Z, Jiao J (eds)

Product platform and product family design: methods and applications. Springer, New York,

pp 241–301

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II. In: Parallel problem solving from nature

VI conference, Paris, France, pp 849–858 http://link.springer.com/chapter/10.1007%2F3-540-

45356-3_83

Fujita K (2002) Product variety optimization under modular architecture. Comput Aid Des 34

(12):953–965

Fujita K, Yoshida H (2001) Product variety optimization: simultaneous optimization of module

combination and module attributes. In: ASME design engineering technical conferences –

design automation conference, Pittsburgh, PA

Hassan R, de Weck O, Springmann P (2004) Architecting a communication satellite product line.

In: 22nd AIAA international communications satellite systems conference and exhibit,

Monterey, CA

Khajavirad A, Michalek JJ (2007) A decomposed approach for solving the joint product family

platform selection and design problem with generalized commonality. ASME J Mech Des

130:71–101

Khajavirad A, Michalek JJ (2008) A deterministic Lagrangian-based global optimization approach

for large scale decomposable problems. In: ASME international design engineering technical

conferences and computers and information in engineering conference, ASME, New York

Khajavirad A, Michalek JJ, Simpson TW (2007) A decomposed genetic algorithm for solving the

joint product family optimization problem. In: 3rd AIAAmultidisciplinary design optimization

specialists conference, Honolulu, HI

11 Joint Product Platform Selection and Product Family Design 293

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F3-540-45356-3_83
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F3-540-45356-3_83

Khire RA, Messac A, Simpson TW (2006) Optimal design of product families using selection-

integrated optimization (SIO) methodology. In: 11th AIAA/ISSMO symposium on multidisci-

plinary analysis and optimization, Portsmouth, VA

Kokkolaras M, Fellini R, Kim HM, Michelena NF, Papalambros PY (2002) Extension of the target

cascading formulation to the design of product families. Struct Multidiscip Optim 24:293–301

Kumar D, Chen W, Simpson TW (2006) A market-driven approach to the design of platform-

based product families. In: AIAA/ISSMO multidisciplinary analysis and optimization confer-

ence, Portsmouth, VA

Martin M, Ishii K (1996) Design for variety: a methodology for understanding the costs of product

proliferation. In: Design theory and methodology, Irvine, CA

Messac A, Martinez MP, Simpson TW (2002) Effective product family design using physical

programming. Eng Optim 34:245–261

Michalek JJ, Ceryan O, Papalambros PY, Koren Y (2006) Balancing marketing and manufacturing

objectives in product line design. J Mech Des 128(6):1196–1204

Pacheco P (1997) Parallel programming with MPI. Morgan Kaufmann, Sanfrancisco, CA

Simpson TW (2005) Methods for optimizing product platforms and product families: overview

and classification. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product

family design: methods and applications. Springer, New York, pp 133–156

Simpson TW, D’Souza BS (2004) Assessing variable levels of platform commonality within a

product family using a multiobjective genetic algorithm. Concurr Eng Res Appl 12:119–129

Simpson TW, Maier JRA, Mistree F (1999) A product platform concept exploration method for

product family design. In: Design theory and methodology, Las Vegas, NV

Simpson TW, Maier JRA, Mistree F (2001) Product platform design: method and application. Res

Eng Des 13:2–22

Thevenot HJ, Simpson TW (2006) Commonality indices for product family design: a detailed

comparison. J Eng Des 17:99–119

294 A. Khajavirad et al.

Chapter 12

One-Step Continuous Product Platform

Planning: Methods and Applications

Achille Messac, Souma Chowdhury, and Ritesh Khire

Abstract This chapter presents two methodologies, Selection-Integrated

Optimization (SIO) and Comprehensive Product Platform Planning (CP3), which

convert the inherently combinatorial product family optimization problem into

continuous optimization problems. These conversions enable one-step product

family optimization without presuming the choice of platform and scaling design

variables. Such approaches also enable taking full advantage of continuous optimi-

zation methods.

12.1 Introduction

In developing a successful product family, designers must translate the qualitative

leveraging strategies into useful customer requirements to guide platform-based

product development (Simpson et al. 2006). To this end, the engineering design

community has developed and employed effective quantitative methods over the

last two decades. The majority of these quantitative methods use some form of

Portions of this paper appeared in S. Chowdhury, A.Messac, and R. A. Khire (2011) Comprehensive

Product Platform Planning (CP^3) Framework, ASME Journal of Mechanical Design, 133(11),

Paper No. 101004 (# ASME 2011), reprinted with permission.

A. Messac (*)

Bagley College of Engineering, Mississippi State University, Mississippi State,

MS 39762, USA

e-mail: messac@bagley.msstate.edu

S. Chowdhury

Department of Mechanical and Aerospace Engineering, Syracuse University,

Syracuse, NY 13244, USA

R. Khire

United Technologies Research Center, East Hartford, CT 06118, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_12,
Springer Science+Business Media New York 2014

295

mailto:messac@bagley.msstate.edu

numerical optimization. A classification of these quantitative methods and a brief

description of each class of methods are provided in the book-chapter by Simpson

(2006). In this chapter, product platform planning refers to such quantitative design
of a family of products.

Among the optimization-based product family design (PFD) methods, the class

of methods that promises to avoid suboptimal solutions is the single-stage approach
with platform variables determined during optimization (Khire et al. 2006). A brief

summary of this class of methods is provided in the book-chapter by Simpson

(2006). The quantification of the product design is generally a continuous process,

whereas the platform identification is inherently a discrete process. The simulta-

neous (1) identification of platform and scaling design variables and (2) determina-

tion of the corresponding variable values are a challenging task (Khajavirad and

Michalek 2008). The likely presence of complex nonlinear system functions further

adds to this challenge. Powerful mixed-discrete nonlinear optimization methods

need to be employed to address this challenge. As discussed in the book-chapter by

Simpson (2006), genetic algorithms (GA) are suitable for this purpose.

An effective GA-based product family design method was developed by

Khajavirad et al. (2009). In this GA-based method, a decomposition solution

strategy is developed using the binary non-sorting genetic algorithm-II (NSGA-

II) (Deb et al. 2002). This method provides flexibility in allowing the formation of a

platform whenever a design variable (value) is shared by more than one product,

and not necessarily all products in the family. This strategy eliminates the “all or
none” restriction (Simpson 2006). The significant computational expense of the

binary GA approach, especially in the case of large-scale problems, is addressed

using a parallelized sub-GA solution strategy. Similar flexibility in platform crea-

tion is also presented by Chen and Wang (2008). The latter paper presents a PFD

method that uses a 2-level chromosome genetic algorithm (2-LCGA) and proposes

an information theoretical approach that incorporates fuzzy clustering and

Shannon’s entropy to identify platform design variables. However, in this method,

the process of platform creation precedes performance optimization of the product

family. Consequently, the method developed by Chen and Wang (2008) exhibits

the limiting attributes of the “two-step” approach. Another GA-based product

family design method was presented by Jiao et al. (2007a), in which a generic

method was developed to address various product family design scenarios. This

method also included a hybrid constraint-handling technique to address complex

and distinguishing constraints at different stages along the evolutionary process.

The efficiency of the method developed by Jiao et al. (2007a) was illustrated by

applying it to design a family of electric motors.

Product family design is a complex combinatorial optimization problem, which

is also known to be intractable or NP-hard (Jiao et al. 2007b). The presence of

discrete (integer) design variables appreciably increases the burden on the applied

optimization method, particularly when one is dealing with large-scale real-life

products (e.g., automobiles) and/or a large number of product variants (e.g., electric

motors). In addition, the choice of optimization algorithms becomes limited when

solving such a mixed-discrete optimization problem. Hence, an effective

296 A. Messac et al.

continuous approximation of the single-step platform planning model could be

expected to provide a welcome reprieve in this scenario. In the recent years, two

such promising methods have been reported, which:

• Develop a tractable continuous approximation of the one-step product platform

planning problem.

• Solve the approximated problem using standard continuous optimization

methods.

This chapter presents the development of the two one-step continuous PFD
approaches: (1) the Selection-Integrated Optimization [SIO (Khire 2006)] and (2)

the Comprehensive Product Platform Planning [CP3 (Chowdhury et al. 2011)].

Section 12.2 provides the formulations of the integrated product platform planning

models in these two approaches. Section 12.3 presents the continuous optimization

strategies developed and implemented in these two approaches. Section 12.4

discusses the results from the application of these approaches to design families

of universal electric motors. Closing remarks are offered in Sect. 12.5.

12.2 Integrated Product Planning Models

12.2.1 Selection-Integrated Optimization (SIO) Model

The SIO method, introduced by Khire and Messac (2008), solves a continuous

approximation of the product family design problem. A penalty function is

formulated to represent the lack of commonality among products. Subsequently,

product family optimization is performed by implementing the Variable-
Segregating Mapping-Function (VSMF) scheme in the order shown in Fig. 12.1.

The motivation of the SIO methodology is to eliminate a significant source of

suboptimality involved in the adaptive system optimization (or product family

design) procedure caused by the separation of the (1) selection and (2) optimization

processes. The next section discusses the development of the VSMF strategy and

Typical product family optimization problem

Define Variable-Segregating
Mapping-Function (VSMF)

Integrate VSMF in product family
optimization problem

Optimal design of product family

Fig. 12.1 Main steps

in the application of SIO

methodology in PFD

12 One-Step Continuous Product Platform Planning 297

how it is implemented within the SIO framework to create and optimize a continuous

approximation of the product family design problem.

The example of the universal electric motor family is used to illustrate the

formulation and the application of the SIO method. As seen from the book-chapter

by Simpson (2006), the design configuration of the motor changes to satisfy

different output torque requirements. For the motor, a change in the design config-

uration involves the scaling of the following design variables: cross-sectional area

of the armature (Awa), cross-sectional area of the field pole wire (Awf), number of

wire turns on each field pole (Ns), number of wire turns on the armature (Nc), stack

length of the motor (L), radius of the stator (r0), and thickness of the stator (t). The
scaling of these design variables is likely to incur an additional manufacturing cost

because of factors such as complex tooling requirements. These additional factors

contribute to the penalty, which is measured in terms of the difference in the values
of the above scaling variables.

12.2.1.1 Penalty Function Formulation

The penalty function measure is applicable mostly in the case of scale-based

product families; it is defined in terms of the design variables. Reducing the penalty

function seeks to increase the commonality among the products in a family.

Mathematically, the penalty function, fpen, is expressed as the summation of ratios

of the standard deviation and mean values of each design variable within the

product family, as given by

fpen ¼ σx1
μx1

þ σx2
μx2

þ � � � þ σxn
μxn

(12.1)

where n is the number of design variables that participate in platform planning, the

parameter σxi represents the standard deviation of the generic ith design variable

across all the product variants, and μxi represents the mean of the generic ith design

variable across all the product variants. In the case of the motor family, the penalty

function is therefore expressed as

fpen ¼ σAwa

μAwa

þ σAws

μAwf

þ σNs

μNs

þ σNc

μNc

þ σL
μL

þ σr0
μr0

þ σt
μt

(12.2)

where the subscripts indicate which variable the standard deviation and the mean

parameters are associated with—e.g., σL represents the standard deviation of the

motor stack length across all the motor variants and μL represents the mean of

the motor stack length across all the motor variants. It is important to note that this

penalty function can be further advanced by incorporating weights for the terms

corresponding to each design variable (a weighted sum). The minimization of the

above penalty function results in the minimization of the standard deviations, which

encourages the design variables to become a part of the platform.

298 A. Messac et al.

12.2.1.2 SIO Problem Formulation

In the bi-objective problem for the electric motor product family (with N motor

variants), the performance and the penalty objective functions are combined into an

aggregate objective function (AOF). The optimization problem is formulated as

Min w1 fperðXÞ þ w2fpenðXÞ
subject to

TkðXÞ ¼ Tk
rq

Pk
outðXÞ ¼ 300 N=m

Mk
totalðXÞ � 2 kg

HkðXÞ � 5000 Amp:turns=m

ηkðXÞ � 0:15

ro
k

tk
� 1

Xk ¼ Nc Ns Awa Awf ro t L I½ �T
8 k ¼ 1; 2; . . . ; N

(12.3)

where Tk , Pk
out , Mk

total , H
k , and ηk , respectively, represent the torque, the power

output, the total mass, the magnetization intensity, and the efficiency of the kth
motor; w1 and w2 are the weights for the performance and the penalty objectives,

respectively; and fper is the overall performance objective of the family. In the case

of the motor family, Khire (2006) used the average of the individual motor

efficiencies as the performance objective:

fper ¼ �
XN
i¼1

ηi
N

(12.4)

12.2.2 Comprehensive Product Platform
Planning (CP3) Model

Several existing PFD methodologies [including recent methods (Chen and Wang

2008)] do not readily represent the platform planning process by a mathematical

model that is independent of the optimization process. In other words, the models are

formulated such that a particular class of optimization algorithms must be leveraged

to effectively optimize the PFD. The development of generalized models of the

platform planning process would provide the leverage to choose from different

classes of optimization algorithms to solve the problem; this choice practically

depends on the complexity of the concerned system and the user’s experience with

12 One-Step Continuous Product Platform Planning 299

particular optimization methods. Moreover, a generalized mathematical model can

facilitate helpful investigation of the underlying mathematics (complex and combi-

natorial) of product platform planning.

Existing PFD models also tend to make a clear distinction between scale-based

and module-based product families. From Table 8 in the book-chapter by Simpson

(2006), it can be seen that a majority of the existing PFD methods are reported to be

suitable for “either scale-based or module-based” product families. The scale-

based PFD methods assume that each product is comprised of all the design

variables involved in the family; as a result, these methods do not readily apply

to modular product families. On the other hand, typical modular PFD methods often

cannot readily account (without platform/scaling assumptions) for the simultaneous

presence of modular and scalable product attributes. The simultaneous presence of

modular and scalable product attributes is common for complex real-life systems/

products—e.g., in a laptop, the DVD drive can have both modular (DVD,

DVD-RW, Blue-ray Disc) and scalable (drive speeds ¼ 1�, 2�, . . ., N�
1.35 MB/s) properties.

The Comprehensive Product Platform Planning (CP3) method, developed by

Chowdhury et al. (2011), formulates a generalized model that is (1) independent of

the eventual solution strategy and (2) seeks to avoid traditional distinctions between

modular and scalable families. This model not only allows effective design optimi-

zation of product families but also promotes further investigation of the underlying

processes in product platform planning, e.g., (1) how sensitive are the commonality

indices to the number of product variants in each platform and (2) how the

production volume of each product variant affects optimal product platform

planning. Other important features of the CP3 model are:

• This model avoids the “all or none” restriction (Simpson 2006); this approach

thus allows the formation of subfamilies.

• This model facilitates simultaneous (1) selection of platform/scaling design

variables and (2) optimization of the physical design of the product variants.

• This model yields a mixed-integer nonlinear programming problem (MINLP)

for the optimization process.

In the subsequent sections, the formulation of the CP3 model is presented and is

followed by an illustration of this model using the example of a representative “4

products-5 variables” family. This section is concluded with the definition of the

overall optimization problem yielded by the CP3 model.

12.2.2.1 Formulation of the CP
3
Model

The CP3 model is founded on the concept of a mixed-integer nonlinear equality

constraint (Chowdhury et al. 2011). This formulation is illustrated using a repre-

sentative family of two products that are comprised of three design variables

each. Table 12.1 shows the variables involved in this example. For a design

variable, xkj , in Table 12.1, the superscript (k) and the subscript (j) represent the

300 A. Messac et al.

product number and the variable number, respectively. The binary-integer variables

(represented by λ) given in Table 12.1 are defined as

λ12j ¼ 1; if x1j ¼ x2j

0; otherwise

(
(12.5)

Hence, the λ variables determine the commonality among products, with respect

to the system design variables. The general MINLP problem, formulated to repre-

sent the design optimization of the product family example (shown in Table 12.1),

is given by

Max fperfðYÞ
Min fcostðYÞ
s:t: λ121 x11 � x21

� �2 þ λ122 x12 � x22
� �2 þ λ123 x13 � x23

� �2 ¼ 0

giðXÞ � 0; i ¼ 1; 2; ::::; p

hiðXÞ ¼ 0; i ¼ 1; 2; ::::; q

Y ¼ x11; x12; x13; x21; x22; x23; λ121 ; λ122 ; λ123
� �

X ¼ x11; x12; x13; x21; x22; x23
� �

λ121 ; λ122 ; λ123
� � 2 B : B ¼ 0; 1f g

(12.6)

and where fperf and fcost are the objective functions that represent the performance

and the cost of the product family, respectively. In Eq. (12.6),gi andhi, respectively,
represent the inequality and equality constraints related to the physical design of the

product. The first equality constraint in Eq. (12.6), which involves the generic

parameters λklj ; is termed the commonality constraint. This constraint can be

represented in a compact matrix format as

x11 x21 x12 x22 x13 x23
� �

λ111 �λ121 0 0 0 0

�λ211 λ221 0 0 0 0

0 0 λ112 �λ122 0 0

0 0 �λ212 λ222 0 0

0 0 0 0 λ113 �λ123
0 0 0 0 �λ213 λ223

2
666666664

3
777777775

x11
x21
x12
x22
x13
x23

2
666666664

3
777777775
¼ 0

(12.7)

Table 12.1 A representative family of two products (# ASME 2011), reprinted with permission

Physical design variable Product 1 Product 2 Integer variables

1st variable x11 x21 λ121
2nd variable x12 x22 λ122
3rd variable x13 x23 λ123

12 One-Step Continuous Product Platform Planning 301

This formulation can be extended to a general product family, comprising N
products and n design variables, as given by

XTΛ X ¼ 0

Λ ¼

P
k 6¼1

λ1k1 � � � �λ1N1 0 0 0 0 0 0 0 0

..

. ..
. ..

.
0 0 0 0 0 0 0 0

�λN11 � � � P
k 6¼N

λNk1 0 0 0 0 0 0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
. P

k 6¼1

λ1kj � � � �λ1Nj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
. �λN1j � � � P

k 6¼N

λNkj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 0 0 0 0 0
P
k 6¼1

λ1kn � � � �λ1Nn

0 0 0 0 0 0 0 0 ..
. ..

. ..
.

0 0 0 0 0 0 0 0 �λN1n � � � P
k 6¼N

λNkn

2
66666666666666666666666666666666666664

3
77777777777777777777777777777777777775

k ¼ 1; 2; :::::; N

X ¼ x11 x21 � � � xN1 � � � x1j x2j � � � xNj � � � x1n x2n � � � xNn
� �T

(12.8)

The matrix Λ is called the commonality constraint matrix. This matrix is a

symmetric block diagonal matrix, where the jth block corresponds to the jth design

variable. An explicit representation of each block of the Λ matrix is given by

Λj ¼

P
k 6¼1

λ1kj �λ12j � � � �λ1lj � � � �λ1Nj

�λ21j
P
k 6¼2

λ2kj � � � �λ2lj � � � �λ2Nj

..

. ..
. ..

. ..
. ..

. ..
.

�λl1j �λl2j � � � P
k 6¼l

λlkj � � � �λlNj

..

. ..
. ..

. ..
. ..

. ..
.

�λN1j �λN2j � � � �λNlj � � � P
k 6¼N

λNkj

2
666666666666666664

3
777777777777777775

(12.9)

302 A. Messac et al.

The commonality constraint matrix can be derived from the generalized com-

monality matrix λ that is expressed as

λ ¼

λ111 � � � λ1N1 0 0 0 0 0 0 0 0

..

. ..
. ..

.
0 0 0 0 0 0 0 0

λN11 � � � λNN1 0 0 0 0 0 0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
.

λ11j � � � λ1Nj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
.

λN1j � � � λNNj
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 0 0 0 0 0 λ11n � � � λ1Nn

0 0 0 0 0 0 0 0 ..
. ..

. ..
.

0 0 0 0 0 0 0 0 λN1n � � � λNNn

2
666666666666666666666666666664

3
777777777777777777777777777775

λklj|{z}
k 6¼l

¼ 1; if λkkj ¼ λllj ¼ 1 and xlj ¼ xkj
0; otherwise

(

λkkj ¼ 1; if jth variable is included in product-k

0; if jth variable is NOT included in product-k

�

(12.10)

It can be observed from Eq. (12.10) that the commonality matrix is also a

symmetric block diagonal matrix. The off-diagonal elements of the commonality

matrix (λklj) are called the commonality variables in the remainder of this chapter.

The diagonal elements of the commonality matrix (λkkj) determine whether the jth

variable is included in product-k. This commonality matrix definition is similar to

that presented by Khajavirad and Michalek (2008). Every block of the constraint

commonality matrix can be expressed as a function of the corresponding common-

ality matrix block:

Λj ¼ fcon λj
� �

(12.11)

In typically modular product families, different products might comprise different

types and different numbers of modules. Each module is comprised of a particular set

of design variables that are also known as module attributes; these attributes may be

shared by more than one module in a complex system. Consequently, different

products can be comprised of physically different sets of design variables. In order

12 One-Step Continuous Product Platform Planning 303

to address a modular product family design, a product platform planning model

should account for the inclusion, the exclusion, and the substitution of design

variables. These three possibilities can be captured by the novel commonality matrix.

In this context, one of the following three distinct scenarios can occur:

1. The jth design variable is required in product-k; consequently, λkkj ¼ 1 would be

known a priori (fixed).

2. The jth design variable is not required for product-k; consequently, λkkj ¼ 0would

be known a priori (fixed).

3. Inclusion of the jth design variable is optional for product-k; the corresponding

λkkj element is allowed to be determined during the course of product family

optimization (treated as a variable).

If the third scenario occurs, the CP3 model does not make any prior assumptions

regarding the attribute values or whether a module (or the corresponding attributes)

is shared by multiple products (forms a platform or not). If the first scenario occurs,

the module attributes themselves may scale among the products that must include

them. The commonality matrix blocks representing the scaling design variables

(attributes included in all product variants) should have the diagonal elements fixed

at one. Therefore, careful specification/management of the diagonal elements of the

commonality matrix automatically addresses the modularity/scalability properties

of the design variables, without imposing limiting distinctions. This model allows a

coherent consideration of the likely combination of scaling and modular attributes

in a product family, which is uniquely helpful.

To further explain the helpful capability of the CP3 model to flexibly address

combined modular-scaling families, a family of laptops example is considered.

Three laptops (a 15 in., a 13 in., and a netbook) are being designed, and the

manufacturer decides that the 15 in. will have a DVD drive, the 13 in. might/

might not have a DVD drive (based on the ensuing overall product cost), and the

netbook will not have a DVD drive (due to space constraints). A key constituent

design variable of the DVD-drive module is the drive speed/data rate that is a

scaling attribute: e.g., “1� or 2� 1.35 MB/s.” In this case, the “3 � 3” commonal-

ity matrix block corresponding to this design variable (drive speed/data rate) can be

expressed as

λDVD ¼
1 λ12 0

λ21 λ22 0

0 0 0

2
4

3
5 (12.12)

where the order of the products is [15 in., 13 in., netbook] and the commonality

variables λ12, λ21, and λ22 are to be determined during optimization. This common-

ality matrix formulation (Eq. 12.10) thus provides a generalized product platform

planning model, which can address a wide variety of product families without

making limiting distinctions between scalable and modular attributes.

304 A. Messac et al.

It is helpful to note that factors, such as (1) the product-module architecture and

(2) the availability of module options in a modular family, demand additional

considerations which are not explicitly addressed by the current CP3 model. For

example, in the case of laptops, technologically differing/substitutable types of

DVD drives are commercially available: e.g., DVD, DVD-RW, and Blue-ray Disc.

Although, these DVD-drive options have the same drive-speed attribute, the com-

monality representation in the CP3 model would not readily apply if two laptop

variants were to use two different DVD-drive types. Moreover, the modules in a

product are often not independent of each other from a design and/or operation

perspective; in that case, inclusions/exclusion/substitution of modules can be mutu-

ally dependent (e.g., web camera and microphone), which leads to dependent

commonality matrix blocks. Such “module interdependency” that can be defined

within the conceived product architecture is not addressed by the current CP3

model. Appropriate considerations of the underlying product architecture and

module options should further advance the applicability of the CP3 model and are

considered a key area for future research.

12.2.2.2 Representative Illustration of the CP3 Model

The proposed CP3 model is illustrated using an example of a product family

comprising four products. The entire family has an exhaustive set of five different

variables. It is helpful at this point to provide a careful definition of a generalized

product platform—“A product platform is said to be created when more than one
product variant in a family share a particular design variable.” In this case

“sharing a design variable between two products” can be defined as the products

having the same value of the concerned design variable. Table 12.2 shows the

platform plan of the sample product family. Each uppercase letter in Table 12.2,

except the “�” symbol, represents a platform. Blocks in Table 12.2, displaying

similar letters, imply that the corresponding products are members of a particular

variable-based platform. A block displaying the “�” symbol represents

non-platform (scaling) design variable values, which implies that the corresponding

design variable value is not shared by more than one product. Blocks without any

specified symbol/letter (blank) imply that the particular variable is not included in

the corresponding product.

Table 12.2 Sample product platform plan for a family of four products and five variables

Physical design variables Product 1 Product 2 Product 3 Product 4

1st variable (x1) A A A A

2nd variable (x2) � � � �
3rd variable (x3) B B C C

4th variable (x4) � � �
5th variable (x5) D � D

12 One-Step Continuous Product Platform Planning 305

A product platform plan, as shown in the example (in Table 12.2), entails

classifying design variables (in the entire family) into the following three

categories:

1. Platform design variable: A design variable that is shared by all the different

kinds of products in the family, e.g., variable x1 in Table 12.2.

2. Sub-platform design variable: A design variable that is shared by a particular

subset of the different kinds of products in the family, leading to subfamily, e.g.,

variable x5 in Table 12.2. Sub-platforms may also lead to multiple subfamilies

with respect to a design variable, e.g., variable x3 in Table 12.2.

3. Non-platform design variable: A design variable that is not shared by more than

one product in the family, e.g., variables x2 and x4 in Table 12.2.

The diagonal blocks of the commonality matrix, corresponding to each design

variable for the product family illustrated in Table 12.2, are given by

λ1 ¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2
6664

3
7775; λ2 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; λ3 ¼

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

2
6664

3
7775;

λ4 ¼

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; λ5 ¼

1 0 0 1

0 1 0 0

0 0 0 0

1 0 0 1

2
6664

3
7775 (12.13)

The corresponding five diagonal blocks of the commonality constraint matrix (Λ),
determined from the commonality matrix, are given by

Λ1 ¼

3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 �1

�1 �1 �1 3

2
6664

3
7775; Λ1 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; Λ1 ¼

1 �1 0 0

�1 1 0 0

0 0 1 �1

0 0 �1 1

2
6664

3
7775;

Λ1 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; Λ1 ¼

1 0 0 �1

0 0 0 0

0 0 0 0

�1 0 0 1

2
6664

3
7775

(12.14)

306 A. Messac et al.

12.2.2.3 The Generalized MINLP Problem

The generalized MINLP problem for a family ofN products, comprising a global set

of n design variables, can be expressed as

Max fperfðYÞ
Min fcostðYÞ
subject to

XTΛ X ¼ 0

giðXÞ � 0; i ¼ 1; 2; ::::; p

hiðXÞ ¼ 0; i ¼ 1; 2; ::::; q

Λ ¼ fcon λð Þ
Y ¼ X; λf g
X ¼ x11 x21 � � � xN1 � � � x1j x2j � � � xNj � � � x1n x2n � � � xNn

� �T

λklj 2 B : B ¼ 0; 1f g
k; l ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ; n

(12.15)

and where the matrices Λ and λ are given by Eqs. 12.8 and 12.10, respectively. It is

helpful to note that, although the matrix λ is a variable for the MINLP problem,

certain diagonal elements (λkkl) are known a priori (see Sect. 12.2).

12.3 One-Step Continuous Optimization Frameworks

12.3.1 Product Family Design Using Selection-Integrated
Optimization (SIO)

The SIO method was introduced by Khire and Messac (2008) primarily to solve the

optimization of adaptive systems. The Variable-Segregating Mapping Function

(VSMF) provides a continuous approximation of the discrete problem posed by

adaptive systems. In adaptive system optimization, the objective is to minimize the

change/variation in the design variables while maximizing the overall system

performance. The analogy between adaptive system design and product family

design is evident (Khire 2006). A product family design problem can therefore be

reformulated into a similar problem, where the penalty function to be minimized

represents the overall variance in the design variables in the product family.

In conventional two-step PFD approaches, if the difference in the values of a

design variable (among the product variants), Δxk , is smaller than a prespecified

12 One-Step Continuous Product Platform Planning 307

threshold difference (Fellini et al. 2005), Δxthk ; the corresponding design variable

ðΔxk) is fixed across all product variants (a platform variable); otherwise, it is made

scalable. Figure 12.2 provides a graphical representation of this mapping.

The conventional mapping is not continuous and therefore is not suitable for

tractable application of gradient-based algorithms or other standard continuous

optimization strategies. More importantly, the threshold value (Δxthk) is usually

heuristically chosen, which again introduces a source of suboptimality. The

Variable-Segregating Mapping Function (VSMF) overcomes these two issues.

The VSMF facilitates the automatic segregation of the platform variables from

the scaling design variables. By including the VSMF in the optimization problem,

the SIO methodology segregates the design variables in the course of the optimiza-

tion process.

12.3.1.1 Variable-Segregating Mapping Functions (VSMF)

The Variable-Segregating Mapping Function (VSMF) is a family of continuous

functions that progressively approximates the discontinuous mapping shown in

Fig. 12.2. A generic VSMF is defined for all design variables. Details of the VSMF

are provided in Fig. 12.3b. The VSMF is defined in terms of two normalized and

nondimensional variables: (1) Δxact , representing actual variation, and (2) Δxmap ,

representing mapped variation. In the case of PFD, variation represents the differ-

ence between the highest and the lowest values of a design variable among the

product variants.

The VSMF is defined such that it satisfies the following properties:

1. It is a monotonically increasing smooth function (continuous first derivative).

2. The threshold value is set at Δxact ¼ 1, at point a in Fig. 12.3b.

3. At Δxact ¼ 0 (point O), Δxmap ¼ 0.

4. At Δxact ¼ 1 (point b), Δxmap ¼ 1.

O

Make Δx=0
(Fixed)

Keep Δx= Δx
(Adaptive)

a= Δx th Actual Δx

M
ap

pe
d

Δx

Threshold
value
of Δx

b

c45°
Fig. 12.2 Selecting design

variables to be fixed

(platform) or made adaptive

(scalable)

308 A. Messac et al.

5. For Δxact � 0 (segment b–c), Δxmap ¼ Δxact.
6. The VSMF contains a point s betweenΔxact ¼ 0 andΔxact ¼ 1; this point has an

interesting and important property, which is discussed next.

The point s divides the VSMF into two parts, depicted by O-s and s-b in

Fig. 12.3b. The coordinates of point s are governed by a special parameter α as

given by

s ¼ 0:5 2� αð Þ; 0:5α½ � (12.16)

By varying α between 1 and 0, a family of VSMFs can be obtained—a property

exploited for segregating the fixed from the adaptive design variables. It is impor-

tant to note that α is not a design variable in the SIO methodology and is instead a

VSMF parameter that facilitates the progressive approximation of the discreteness

involved in the design variable selection process. For α ¼ 1, the VSMF follows the

straight line O-a1-b-c in Fig. 12.3b. If the value of α is progressively lowered

towards zero, point s travels from point a1 to point a, thereby causing the VSMF to

progressively approximate the original discontinuous mapping depicted by O-a-b-c

in Fig. 12.3b. This progression bears a significant similarity to homotopy-based

approaches (Watson and Haftka 1989).

The point s can be called the separating point. Based on this point, Khire (2006)
proposed the following segregation criterion:

if lim
α!0

Δxk
� �

map
� 0:5; then xk is fixed (12.17)

where 0:5α is the coordinate of the separating point s along the vertical axis, which

vanishes as α goes to zero. If the condition in Eq. (12.17) is not satisfied, then the

design variable (xk) is considered to be a scaling variable.

Adaptive system optimization

Maximize Performance

Penalty

Design variables

Constraints

design variables are

segregated using

mapping function.

Minimize

With respect to

Subject to

Such that

O =(0,0) a =(1,0)

a b

(actual)

(mapped)

s = (0.5(2−α), 0.5α)

c = (10,10)

b = (1,1)

a1= (0.5,0.5)

Δxmap

Δxact

Fig. 12.3 Application of the SIO method for PFD. (a) Overall formulation. (b) Graphical

representation of VSMF

12 One-Step Continuous Product Platform Planning 309

12.3.1.2 Implementation of VSMF in SIO-Based PFD

In order to implement VSMF, the penalty function is redefined as

�f pen ¼ ΔAwa

� �
map

� 0:5α
h i

þ ΔAwf

� �
map

� 0:5α
h i

þ ΔNs

� �
map

� 0:5α
h i

þ ΔNs

� �
map

� 0:5α
h i

þ ΔL
� �

map
� 0:5α

h i
þ Δr0

� �
map

� 0:5α
h i

þ Δt
� �

map
� 0:5α

h i
(12.18)

where each variable with the bar overhead represents the mapped variation in the

corresponding motor design variable. The above defined penalty objective function

is used as one of the objectives in the bi-objective PFD problem presented in

Eq. (12.3), with the design variables modified according to the VSMF:

~x1; ~x2 . . . ; ~x7ð Þ ¼ VSMF α; x1; x2; . . . ; x7ð Þ (12.19)

For the k th variable, the VSMF-based modification defined in Eq. (12.19) is

performed using the following set of expressions:

Δxk ¼ xmax
k � xmin

k

where

xmax
k ¼ max x1k ; x

2
k ; . . . ; x

10
k

� �
; xmin

k ¼ min x1k ; x
2
k ; . . . ; x

10
k

� �
(12.20)

Δxk
� �

act
¼ Δxk

Δxkð Þth
(12.21)

~xik ¼ xmin
k þ

Δxk
� �

map

Δxk
� �

act

xik � xmin
k

� �
(12.22)

In Eq. (12.21), Δxkð Þth is the threshold value of the kth variable, which can be

defined as

Δxkð Þth ¼ 2Δx�k ¼ 2 xmax�
k � xmin�

k

� �
(12.23)

where xmax�
k and xmin�

k , respectively, represent the highest and the lowest values of the

kth variable among the ten motor variants, after each product has been individually

optimized for maximum performance. In Eq. (12.22), Δxk
� �

map
is estimated from

Δxk
� �

act
using the generic VSMF mapping, as defined in the previous section.

In SIO-based PFD, the optimal product platform plan is obtained by an iterative

solution process, where the bi-objective optimization problem (given by Eq. 12.3)

is solved at each iteration. The value of α is lowered by 0.1 at the beginning of each
iteration except the first one (i.e., Δα ¼ 0:1), starting with α ¼ 0:9 and ending at

α ¼ 0:1 (i.e., ten iterations). The optimization solution from the previous iteration is

310 A. Messac et al.

used as the starting guess for the design variables in the current iteration, which are

subsequently modified using the VSMF. The process of identifying platform and

scaling variables using the VSMF-based SIO method is illustrated in Fig. 12.4.

In Fig. 12.4, the stars show the typical locations of the optimal solutions obtained

from each repetition of the optimization problem. As shown in Fig. 12.4a, as the

value of α is lowered in each repetition, the design variables that are going to be

fixed (platform) move closer to segment O-a0 on their corresponding VSMFs.

We note that on segment O-a0, the mapped change in the design variable is zero

and therefore represents a fixed design variable. Also, with each repetition, the

scaling design variables move closer to or further than point b (see Fig. 12.4b).

Hence, the SIO methodology segregates the platform variables from the scaling

variables within the optimization process, thereby allowing the optimality of the

resulting product family design.

12.3.2 Comprehensive Product Platform Planning (CP3)
Optimization

The combination of binary variables (λklj) and continuous design variables (x
kl
j) in the

CP3 model presents a classical mixed-integer problem. The presence of a high

number of binary commonality variables ðλklj Þ in the platform planning model

demands extensive computational resources. A new Platform Segregating Mapping

Function (PSMF) is proposed to convert the mixed-integer problem into a tractable

continuous optimization problem. Unlike the VSMF mapping the PSMF mapping

avoids the “all or none” assumption. Particle Swarm Optimization (PSO) was

subsequently implemented by Chowdhury et al. (2011) to solve the continuous

optimization problem.

Fig. 12.4 Segregation of design variable using generic VSMF (# ASME 2011), reprinted with

permission. (a) Segregation of platform variables. (b) Segregation of scaling variables

12 One-Step Continuous Product Platform Planning 311

12.3.2.1 Platform Segregating Mapping Function (PSMF)

Prior to the investigation of this new solution methodology, the commonality

constraint (from Eq. 12.8) is reformulated as

XTΛX � ε (12.24)

where ε is the aggregate tolerance specified to allow for platform creation.

A careful analysis of the modified commonality constraint (Eq. 12.24) indicates

that, for any two products k and l, a commonality matrix variable (λklj) is a decreasing

function of the squares of the corresponding design variable difference: Δxklj ¼
xkj � xlj

			
			. At the same time, the design variable differences between various pairs of

products are often not independent of each other. A function that can represent

the commonality between two products (k and l) with respect to a particular design

variable (j) is similar to the function that relates the commonality variable, λklj ;

to the design variables xkj and xlj. This function must have the following properties:

1. The function must be continuous (defined at Δxklj ¼ 0) and well behaved.

2. The function must have a maximum at Δxklj ¼ 0 and must then decrease when

Δxklj increases (asymptotically tending to zero).

3. These functions, collectively, must allow a coherent consideration of the

commonalities between various pairs of products with respect to a particular

design variable.

A set of Gaussian distribution functions, collectively called the Platform

Segregating Mapping Function (PSMF), is developed to approximate the relation-

ship between the commonality variables and the corresponding physical design

variables. The required properties listed above are inherent in this set of Gaussian

distribution functions. Interestingly, each Gaussian function in the set also provides

a measure of the probability (pjkl) of the jth design variable to be shared between

product-k and product-l. It is helpful to note that other functions that have similar

properties can also be implemented to construct the PSMF. The PSMF that relates

product-k and product-l with respect to the jth design variable is given by

λklj ¼ a exp �
xkj � xlj

 �2

2σj2

0
B@

1
CA (12.25)

where the coefficient a is assumed to be equal to 1. In Eq. (12.25), the design

variable value (xlj) serves as the mean of the Gaussian kernel, and the parameter σj
represents the standard deviation of the Gaussian kernel for the jth design variable.

This standard deviation can be determined by specifying the full width at one-tenth
maximum (Δx10) as expressed by

312 A. Messac et al.

σ ¼ Δx10
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 10

p ; where p xlj 	 Δx10

 �

¼ 1

10
(12.26)

where pðxÞ represents the probability at x. Subsequently, the commonality matrix

can be expressed as

λ ¼ PSMFðXÞ (12.27)

A representative plot of the PSMF for a particular design variable (jth variable,

normalized), in a sample family of five products, is shown in Fig. 12.5. In this

figure, the design variable for product-k, xkj , can be mapped onto the Gaussian kernel

of any other product- l (where l 6¼ k), yielding the corresponding commonality

variable, λklj . By providing a pairwise representation of commonality among

products, the PSMF mapping allows a product platform to be formed whenever a

design variable value is the same across more than one product. It can be readily

observed that this set of distribution functions (PSMF) provides a unique represen-

tation of the product commonalities by converting an essentially combinatorial

problem into a tractable continuous problem. This representation can also be used

to further investigate the underlying mathematics of product platform planning.

In the CP3 optimization, initially, an optimal design that maximizes performance

is obtained separately for each product variant in the family. The optimized design

variable values, thus determined, are used to set a modified range, Δxj; for the
application of the PSMF on each design variable (jth design variable), similar to

the approach in the SIO technique (Khire and Messac 2008). This modified range is

used to evaluate the full width at one-tenth maximum (Δx10ð Þj) for the jth design

variable, using

Δx10ð Þj ¼ Δx10 � Δxj; Δx10 2 0; 1½ � (12.28)

Fig. 12.5 Platform

segregating mapping

function (PSMF) for a

sample 5-product family

(# ASME 2011), reprinted

with permission

12 One-Step Continuous Product Platform Planning 313

where Δx10 represents the normalized full width at one-tenth maximum, which is

explicitly specified during the execution of the algorithm.

The CP3 model is solved using a sequence of Nstage Particle Swarm

Optimizations (PSOs), with decreasing values (in a geometric progression) of the

parameter Δx10 . This multistage optimization results in sharper Gaussian kernels

with every subsequent stage, rendering a progressively rigorous application of the

commonality constraint; this process is illustrated in Fig. 12.6. This figure shows a

five-stage application of the PSMF, with the specified initial and final normalized

full width at one-tenth maximum (Δx10
max ¼ 1:0 and Δx10

min ¼ 0:1). In the final

stage, design variable values (e.g., xkj and xlj) residing within the same Gaussian

kernel (sharp dome in Fig. 12.6) would practically indicate that the corresponding

products (product-k and product-l) share the jth design variable.

Optimization is performed on the approximated MINLP problem to minimize a

simplified weighted sum of the performance and the cost objectives. The modified

optimization problem is defined as

Max w1 fperðXÞ þ 1� w1ð Þ �fcostðXÞð Þ
subject to

XTΛX � ε

giðXÞ � 0; i ¼ 1; 2; ::::; p

hiðXÞ ¼ 0; i ¼ 1; 2; ::::; q

Λ ¼ fcon λð Þ
λ ¼ PSMFðXÞ
X ¼ x11 x21 � � � xN1 � � � x1j x2j � � � xNj � � � x1n x2n � � � xNn

� �T

λklj 2 B : B ¼ 0; 1f g
(12.29)

Fig. 12.6 Five consecutive

stages of PSMF application

for the commonality between

two products (k and l) with
respect to the jth design

variable

314 A. Messac et al.

In this problem definition, a value of 0.5 is used for the objectiveweightw1, and the

term PSMFðXÞ is given by Eq. (12.25). The objective fper is given by Eq. (12.4), and
the objective fcost is evaluated using a cost decay function. This cost decay function

accounts for the volume of production; details of the cost decay function can be found

in the paper by Chowdhury et al. (2011). As is well known, the weighted-summethod

entails certain limitations associated with non-convex Pareto frontiers. Importantly,

we note that the CP3 optimization approach can be implemented using other

powerful methods that aggregate multiple objectives into one objective such as

Physical Programming (Messac et al. 2002a, b). The process of application of the

PSMF technique using PSO is summarized by the pseudocode in Fig. 12.7.

12.3.2.2 Choice of Optimization Algorithm

The optimization process in the CP3 method is performed using an effective varia-

tion of the standard Particle Swarm Optimization (PSO) algorithm. Particle Swarm

Optimization is one of the most popular heuristic optimization algorithms,

introduced by Kennedy and Eberhart (1995). Conceptually, the search characte-

ristics of PSOmimic the natural collectivemovement of animals, such as bird flocks,

bee swarms, and fish schools. In the recent literature, PSO has been used to address

various aspects of product family design (Yadav et al. 2008; Moon et al. 2011).

It is however important to note that neither the optimization of the CP3 model

nor the application of the PSMF-based solution strategy is restricted to the use of

the PSO algorithm. Owing to the generic formulation of the PFD process provided

by the CP3 model, the approximated continuous optimization problem obtained

using the PSMF technique can also be solved using other standard algorithms,

such as the sequential quadratic programming (SQP), the real-coded NSGA-II

Fig. 12.7 Pseudocode for the application of PSMF using the PSO algorithm

12 One-Step Continuous Product Platform Planning 315

algorithm (Deb et al. 2002), the strength Pareto evolutionary algorithm (SPEA:

Zitzler et al. 2004), the differential evolution algorithm (Price et al. 2005), and the

single-objective modified predator–prey (MPP) algorithm (Chowdhury and

Dulikravich 2010).

Population-based heuristic algorithms are however preferable in this case, since

the commonality constraint is expected to be multimodal. Heuristic algorithms,

such as NSGA-II (Deb et al. 2002) and MPP (Chowdhury et al. 2009), are typically

useful for multi-objective optimization; these algorithms can be leveraged to

explore a bi-objective optimization scenario with performance and cost as separate

objectives. The original MINLP problem yielded by the CP3 model can also be

directly solved using typical MINLP solvers such as branch and bound and cutting

plane techniques or using binary genetic algorithms (e.g., bin-NSGA-II). However,

solving the MINLP problem directly may prove to be unreasonably challenging and

computationally expensive owing to the high dimensionality of the commonality

variables.

12.4 Application to Family of Electric Motors

12.4.1 Application of the SIO Method

The SIO method was applied by Khire (2006) to design a family of ten electric

motors that satisfies ten different torque requirements, as specified in the book-

chapter by Simpson (2006). Sequential quadratic programming (SQP) was used to

perform the optimization. The SIO method converged to a product family design in

which the variables Awa, Awf , Ns, Nc, L, and t were shared by all the motors (i.e.,

platform variables) and the variable r0 scaled across the family (scaling variable).

The design variable values of the ten motors in the optimized family are provided in

Table 12.3 [reported by Khire (2006)]. In this table, the ith motor is depicted by

M-i; the variables Awf and Awf are expressed in mm2; the variables L, r0, and t are
expressed in cm; and the variable I is expressed in Amp.

The overall platform plan of the motors obtained by the SIO method is similar to

that obtained using the two-stage method [described in Sect. 3.3 of the book-chapter

by Simpson (2006)]. Motor designers have confirmed that varying the stator radius

is indeed one of the most effective ways of achieving torque variations among

motor variants. However, varying stack length is generally more cost effective from

a manufacturing perspective according to Black and Decker [Sect. 3.3 of the book-

chapter by Simpson (2006)].

Khire (2006) also provided an investigation of the robustness of the SIO

methodology; application of the method was analyzed for different starting values

of the VSMF parameter, α , and for different values of its specified increment

between iterations (Δα). Khire (2006) concluded that in order to save computation

time, it is advisable to start at α ¼ 0:9 and terminate the iteration once the trend of

316 A. Messac et al.

design variable segregation is observed. The value of Δαmust be selected such that

it fulfills two criteria: (1) convergence of the solution and (2) manageability of

the computation cost. Based on numerical experimentation, a favorable range for

the Δα value between 0.06 and 0.1 was suggested by Khire (2006). It is helpful to

note that the suggestions regarding the values of initialα andΔα (presented here) are
particularly applicable for the family of motors and hence are not necessarily

universal.

12.4.2 Application of the CP3 Method

The CP3 method was applied by Chowdhury et al. (2011) to design the same family

of ten electric motors (with ten different torque requirements) as specified in the

book-chapter by Simpson (2006). Initially, optimization is performed on each motor

individually (using PSO), in order to maximize the individual motor efficiencies

subjected only to the physical design constraints (specified in Eq. 12.3). A new set of

variable limits is determined from the highest and the lowest values of each

optimized design variable, among the ten motors. The new design variable limits

are used to execute step 4 to step 9 of the pseudocode given in Fig. 12.7.

The optimized platform plan obtained for the motor family is illustrated in

Table 12.4. Each uppercase letter in Table 12.4 represents a platform; blocks

in Table 12.4, displaying similar letters, imply that the corresponding products

are members of a particular platform (that share the corresponding design variable).

A block displaying the “�” symbol represents a scaling design variable value,

thereby implying that the corresponding design variable value is not shared by more

than one product. The efficiencies of the motors in the optimized family are also

provided in Table 12.4.

Ten sub-platforms are formed in the motor family. The design of Motor-10 is

observed to be completely unique (no variable sharing with other motors). On the

other hand, Motor-3 shares the maximum number of variables with one or more

other motors. None of the design variables are shared across all the products.

The thickness of the stator exhibits a strong platform property—Motor-1 and

Table 12.3 Design variable values of the optimized motor family (obtained by SIO) (Khire 2006)

Var. M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10

Nc 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500

Ns 165.1 165.1 165.1 165.1 165.1 165.1 165.1 165.1 165.1 165.1

Awf 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141 0.141

Awa 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362 0.362

r0 4.574 4.734 4.809 4.879 5.008 5.123 5.225 5.315 5.394 5.523

t 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.433

L 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06

I 3.119 3.21 3.257 3.304 3.401 3.499 3.599 3.701 3.805 4.018

η 0.836 0.812 0.801 0.789 0.767 0.745 0.725 0.705 0.686 0.649

12 One-Step Continuous Product Platform Planning 317

Motor-3 have the same stator thickness, and Motor-2 and Motor-4 to Motor-9 have

the same stator thickness. The number of wire turns on each field pole is different for

each motor, making it a typical scaling variable.

12.4.3 Comparison of CP3 and SIO Results

The optimal motor family produced by SIO offered significantly higher degree of

commonality than that produced by CP3. On the other hand, the efficiencies of the

ten individual motors are higher in the case of the family yielded by CP3. It is

helpful to note that the SIO and the CP3 involve different commonality objectives.

Hence, a direct comparison of the performances of these two methods is not

feasible.

A comparison of their results can however be made if the commonality in the

final optimized motor families is represented in terms of the standard commonality

index [CI (Martin and Ishii 1996)], which is mathematically defined as

CI ¼ 1� u�max nkð Þ
PN
k¼1

nk �max nkð Þ
(12.30)

where u represents the actual number of unique parts in the entire product family

and nk represents the number of parts in the kth product. The “�max nkð Þ” term is

included in the definition to ensure that the CI varies between 0 and 1. According to

this definition:

• When the product variants in a family are identical (i.e., all parts are shared

among all products), the value of CI is a maximum of 1.

• When the product variants are completely different from each other (i.e., no

parts are shared among the product variants), the value of CI is a minimum

of zero.

Table 12.4 Optimized platform plan of universal electric motors (obtained by CP3) (# ASME

2011), reprinted with permission

Var. M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10

Nc – – – – – – A – A –

Ns – – – – – – – – – –

Awf C D C C D C – E E –

Awa – – B – – – B – – –

r0 F G F – – – G – – –

t H I H I I I I I I –

L – J J – – – – J – –

η 0.875 0.857 0.834 0.898 0.901 0.864 0.831 0.657 0.727 0.731

318 A. Messac et al.

In the case of the motor family, each motor variant comprises seven variables

that participate in platform planning, i.e., nk ¼ 7. For the optimized motor family

obtained by the SIO method, the actual number of unique parts (u) is 16. The actual
number of unique parts (u) in the optimized motor family obtained by the CP3

method is 52. In order to facilitate easy comparison, the results of the optimized

motor families obtained by the two methods are summarized in Table 12.5.

It is observed from Table 12.5 that the average motor efficiency of the optimized

family obtained by CP3 is approximately 9 % higher than that obtained by SIO.

On the other hand, the commonality (in terms of CI) in the optimized motor family

obtained by SIO is three times of that obtained by CP3. Hence, the optimized motor

families obtained by the two methods are trade-off solutions with respect to each

other. It is also important to note that both methods use an aggregate objective

function, in which the performance objective has a weight of 0.5 (the second

objective being different); if lower weights are used for the performance objective,

the resulting total number of unique parts (in the optimized family) is expected to

decrease in both methods.

Overall, it is evident that since the CP3 method is not restricted by the “all or
none” assumption (as seen from the results in Table 12.4), it is applicable to a wider

variety of commercial product families (compared to SIO). An “all or none”
approach would also demand a higher compromise of the product performances

to achieve commonality among products, which was the case when the SIO method

was applied. However, the optimization involved in the SIO method is more

tractable than that involved in the CP3 method, since the latter yields multimodal

commonality constraints; this attribute makes SIO relatively easier to implement.

Therefore SIO can be a particularly useful product family design method in cases

where the user desires to have an “all or none” platform plan.

12.5 Closing Remarks

Quantitative design of product families should be an integral part of the entire

concept-to-shelf process for a line of products. Unfortunately, the planning of

product platforms and the quantification of the individual product attributes are

often a complex and system-dependent mathematical problem—involving a mix of

integer and continuous variables and highly nonlinear functions. Simplification

of the product platform planning process and the development of generic protocols

Table 12.5 Comparison of the optimized motor families obtained by the SIO and the CP3

methods

Method

Average motor

efficiency

Actual number

of unique parts

Commonality

index (CI)

SIO 0.7515 16 6/7

CP3 0.8175 52 2/7

12 One-Step Continuous Product Platform Planning 319

are therefore necessary to take the quantitative PFD approaches from research labs

to industrial applications.

This chapter summarizes the formulation of twomethods that seek to develop and

solve a more tractable continuous approximation of the PFD problem. The

Selection-Integrated Optimization (SIO) method uses a continuous mapping func-

tion to quantify the tendency of a variable to become common among products.

An optimization-based iterative process is used to simultaneously segregate the

design variables into platform and scaling types and quantify the optimal variable

values. Similarly, the Comprehensive Product Platform Planning (CP3) method uses

a set of continuous kernel functions to map each design variable’s tendency towards

commonality for each pair of products (in the family). Together with the mapping

scheme, Particle Swarm Optimization is implemented through an iterative process

to segregate the design variables into platform and scaling types. The pairwise

mapping strategy allows the CP3 method to avoid the “all or none” assumption.

More importantly, the CP3 method formulates a generic product platform planning
model—one that can be solved using any standard continuous optimization method.

The conversion of a complex PFD problem into a tractable continuous form

helps the designer better exploit the potential of quantitative optimization. We

encourage interested researchers to build on the foundation laid down by these

two PFD methods and develop more comprehensive (yet tractable) one-step

approaches that can be readily applied to a wider variety of problems.

Acknowledgements This work has been supported by the National Science Foundation under

Awards no. CMMI 0946765 and CMMI 1100948. Any opinions, findings, conclusions, and

recommendations presented in this chapter are those of the authors and do not reflect the views

of the National Science Foundation.

References

Chen C, Wang LA (2008) Modified genetic algorithm for product family optimization with

platform specified by information theoretical approach. J Shanghai Jiaotong Univ (Sci)

13:304–311

Chowdhury S, Dulikravich GS (2010) Improvements to single-objective constrained

predator–prey evolutionary optimization algorithm. Struct Multidiscip Optim 41:541–554

Chowdhury S, Dulikravich GS, Moral RJ (2009) Modified predator–prey algorithm for

constrained and unconstrained multi-objective optimisation. Int J Math Model Numer Optim

1:1–38

Chowdhury S, Messac A, Khire R (2011) Comprehensive product platform planning framework.

ASME J Mech Des (special issue on Designing Complex Engineered Systems) 133:101004-

1–101004-15

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: Nsga-II. IEEE Trans Evol Comput 6:182–197

Fellini R, Kokkolaras M, Papalambros PY, Perez-Duarte A (2005) Platform selection under

performance bounds in optimal design of product families. ASME J Mech Des 127:524–535

Jiao J, Zhang Y, Wang Y (2007a) A generic genetic algorithm for product family design. J Intell

Manuf 18:233–237

320 A. Messac et al.

Jiao J, Simpson TW, Siddique Z (2007b) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18:5–29

Kennedy J, Eberhart RC (1995) Particle swarm optimization. IEEE Int Conf Neural Netw

4:1942–1948

Khajavirad A, Michalek JJ (2008) A decomposed gradient-based approach for generalized plat-

form selection and variant design in product family optimization. ASME J Mech Des

130:071101-1–071101-8

Khajavirad A, Michalek JJ, Simpson TW (2009) An efficient decomposed multiobjective genetic

algorithm for solving the joint product platform selection and product family design problem

with generalized commonality. Struct Multidiscip Optim 39:187–201

Khire R (2006) Selection-integrated optimization (SIO) methodology for adaptive systems and

product family optimization. PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY

Khire R, Messac A (2008) Selection-integrated optimization (sio) methodology for optimal design

of adaptive systems. ASME J Mech Des 130:101401-1–101401-13

Khire R, Messac A, Simpson TW (2006) Optimal design of product families using selection

integrated optimization (SIO) Methodology. In: 11th AIAA/ISSMO multidisciplinary analysis

and optimization conference, AIAA-2006-6924, Portsmouth, VA, September

Martin M, Ishii K (1996) Design for variety: a methodology for understanding the costs of product

proliferation. In: ASME design engineering technical conferences and computers in engineer-

ing conference, ASME, Irvine, CA, 96-DETC/DTM-1610

Messac A, Martinez MP, Simpson TW (2002a) Effective product family design using physical

programming. Eng Optim 124:245–261

Messac A, Martinez MP, Simpson TW (2002b) Introduction of a product family penalty function

using physical programming. ASME J Mech Des 124:164–172

Moon SK, Park KJ, Simpson TW (2011) Platform strategy for product family design using particle

swarm optimization. In: ASME 2011 international design engineering technical conferences,

Washington, DC

Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global

optimization, 1st edn. Springer, New York

Simpson TW (2006) Methods for optimizing product platforms and product families. In: Simpson

TW, Siddique Z, Jiao J (eds) Product platform and product family design. Springer, New York,

pp 133–156

Simpson TW, Siddique Z, Jiao RJ (2006) Platform-based product family development. In:

Simpson TW, Siddique Z, Jiao RJ (eds) Product platform and product family design. Springer,

New York, pp 1–15

Watson LT, Haftka RT (1989) Modern homotopy methods in optimization. Comput Meth Appl

Mech Eng 74:289–305

Yadav SR, Dashora Y, Shankar R, Chen FTS, Tiwari MK (2008) An interactive particle swarm

optimisation for selecting a product family and designing its supply chain. Int J Comput Appl

Technol 31:168–186

Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization.

In: Metaheuristics for multiobjective optimisation. Springer, Berlin, pp 3–37

12 One-Step Continuous Product Platform Planning 321

Chapter 13

Defining Modules for Platforms:

An Overview of the Architecting Process

Katja Hölttä-Otto, Kevin N. Otto, and Timothy W. Simpson

Abstract Product platforms have shown to provide significant cost and time

savings while still allowing companies to offer a variety of products. As a result,

a multitude of methods have been developed to design product platforms. These

methods, however, have been developed independent of one another, and it can

be daunting to try to compare the methods and understand which approach might be

suitable when or how the methods might interlink, if at all. In this chapter, we

review the platform architecting process and tie together several approaches

introduced both in this book and the existing literature. A family of unmanned

ground vehicles (UGVs) is used as an illustrative example to demonstrate several of

these approaches and their integration.

13.1 Introduction

A product platform is a collection of common assets that are shared across a product

family, often over product generations. These assets can be anything from a

manufacturing line to common system models. A modular platform is a type of

platform where the common shared assets are modules. Modules, on the other hand,

are typically subassemblies of products that have an easily identifiable function.

K. Hölttä-Otto (*)

Engineering Product Development, Singapore University of Technology and Design,

Singapore 138682, Singapore

e-mail: Katja_Otto@sutd.edu.sg

K.N. Otto

Singapore University of Technology and Design, Singapore, Singapore

T.W. Simpson

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_13,
Springer Science+Business Media New York 2014

323

mailto:Katja_Otto@sutd.edu.sg

Such modules are ideally tightly connected within the module but loosely

connected to the rest of the product.

Product platforming has become a common approach to develop product

families, and generations of products, in a cost-effective manner. The sharing of

assets across the platform products brings cost savings and many operational

benefits in manufacturing, logistics, and quality control, for example. Furthermore,

since each product is based on a set of common modules, developing additional

variants or a new version of past products is easier, since only the variant or updated

module will need to be designed.

Over the years there has been active work in developing methods to define these

modules for product families: methods to map requirements of a family to a set of

products; methods to define the common or unique platform modules; methods to

optimize variety, cost, commonality, or other parameters; methods to evaluate

platforms; etc. Figure 13.1 shows multiple types of methods and how they can be

situated in the overall platform development process from defining customer needs

and market segments down to architectural module sizing or architectural down

selection. Each method has typically been developed independently of other

methods, and it is not clear if and how these methods could be used jointly.

Commonality
Assignment

Heuristics
Hierarchical
clustering

Commonality
metric Optimization

Manual Match to
Segmentation

Component
Alternatives

Define Market
Segments

Market Attack
Plan

Manual Planning

Customer Needs

Market
segmentation grid

KJ Qualitative
Cluster Analysis

Market Data
Cluster Analysis

VOC & KJ Skip

System Requirements
Definition

Worst Case
Condition AnalysisHouse of Quality

Functional
Requirements

Requirements to
Functions

Manual
Function

Component
Matrix methods

Generic System
Architecture

Function Block
Diagrams

Skip

Module Boundary
Definitions

Manual
Hierarchical
Clustering DSM Clustering

Module Function
heuristics

Architecture
Roadmap

Technology
Roadmap Matching Skip

Architectural
Module Sizing

Multi-Product
MDO Trade Studies

Roadmap Robustness
MDO Trade Studies

Systems Block
Diagrams

Manual
Categories

Manual Definition of
Component Requirements

Manual Definition

Architecture
Downselection

Multi-Product
Scoring Charts

Multi-Product MDO
Trade Studies

Skip (Consider only
one Architecture)

S
equence

Alternatives

Fig. 13.1 Architecting steps and possible methods and techniques

324 K. Hölttä-Otto et al.

In this chapter we link multiple methods discussed in this book and in the broader

literature into a logical, structured process. We do this by presenting a step-by-step

approach to transition requirements to a final platform using and referring to

relevant methods along the way. The goal in this chapter is to show how the various

alternative approaches and methods to platforming can contribute to the overall

goal of developing a successful product family.

The rest of this chapter discusses a platform development process in the order

shown in Fig. 13.1. This is a prescription for a logical sequence of steps to apply in

order, with multiple alternatives at each step as indicated in Fig. 13.1. We do not

assert this is the only sequence one can take through these steps; in general, one can

find design problems where alternative orders are appropriate. However, Fig. 13.1

is logical and a useful starting point for any firm or stakeholder new to the platform-

based development. In each of the next sections, we discuss the various methods

suitable for the steps as well as show an illustrative example. We end with a chapter

summary and list of implications for platform design.

13.2 Market Segment Definition and Market Attack Plan

The start of a product development effort should entail defining the population of

customers and applications for the product(s). Typically this starts with an obser-

vation of a perceived need in an application domain and extension into exploring

the range of different market geographies and demographics that have potential

similarities in needs. Market segmentation helps identify potential clusters of

customers with similar needs, which enables designing products for each market

segment, rather than one product to meet all the vastly different needs.

Initially, one can define a wide range of characteristics upon which to subdivide

a population of potential customers, such as applications, geographic boundaries,

and demographics. However, one will also find that many such distinctions are

artificial and that there is no real difference in customer needs between several over-

partitioned divisions of the population. For each smallest partition of the popula-

tion, one can conduct surveys of customer demographics, use applications, or even

customer needs analysis to establish clear distinctions amongst the population.

Clustering these results into internally homogeneous and externally heterogeneous

groups helps form clear market segments.
The simplest approach to identifying these clusters of similar customers is to

manually cluster on characteristics such as use or business application as market

segments. For example, defense-related applications form a different segment than

commercial applications, and geographic/regional variations may lead to distinct

segmentation. Other options could be use of standard clustering methods, such as

hierarchical clustering, or more advanced methods such as fuzzy clustering (Moon

et al. 2006; Zhang et al. 2007). While we recommend more rigorous approaches in

both this and further steps, a simpler and quicker method is sometimes desired.

Regardless of the clustering method chosen, no differences in results can indicate

13 Defining Modules for the Architecture Process 325

over-partitioning of the market. Unfortunately this is not always obvious, and

establishing differences in markets and targeted products is a profitable area of study.

Throughout this chapter, a family of unmanned ground vehicles (UGVs) for

explosive ordnance disposal is used as an example. UGVs have civilian and

military applications, and many systems exist in the market (see Fig. 13.2). Smaller

UGVs may provide one-time use to detonate an explosive remotely once it has been

located in the field (i.e., the UGV may be destroyed along with the ordnance) while

larger UGVs may perform additional functions such as sensing, defusing, or

disposing the ordnance, allowing for repeated use and multiple missions.

The primary benefit of UGVs is reducing casualty risk of ordnance disposal

regardless of whether it is civilian or military; however, there are many potential

applications for UGVs. Partitioning these potential applications can lead to a form

of market segmentation. For example, one could partition the UGV user population

into the following applications:

1. Explosive abatement—ordnance detection, disabling, and disposal

2. Hazardous sites—hazard sensing and locating in unhealthy environments

3. Combat—providing attack capability for high-risk missions

4. Reconnaissance—providing site observations and intelligence

5. Target and decoy—providing a target that simulates an enemy vehicle

6. Civil and commercial—UGVs for commercial transport

Meanwhile, the range and autonomy of the UGVs can provide a second axis to

categorize potential customer segments:

1. Micro, line of sight

2. Small remote operated, 2-mi. range

3. Tactical remote operated, 50-mi. range

4. Long endurance autonomous, 100-mi. range

The resulting matrix of these two categories (application versus range) defines a

set of different potential market segments for UGVs. This follows the product

Fig. 13.2 Examples of existing unmanned ground vehicles

326 K. Hölttä-Otto et al.

market matrix approach advocated by Kotler and Keller (2009) and Meyer and

Lehnerd (2000). In their approach the rows of the matrices correspond to market

segments and the columns to product segments, which helps designers identify how

platform components may be leveraged across multiple segments (see Fig. 13.3).

Several of these segments may be identical in terms of specific customer needs;

however, this can be determined later when customer interviews and analyses are

conducted.

Given a market segmentation, a decision must be made about how to “attack” the

market over time. The corresponding market attack plan determines whether new

products are offered simultaneously to all segments in parallel or rolled out sequen-

tially over time to different market segments. Key considerations are the addressable

market size of each segment and the degree of difference among the segments [see

Chaps. 2 and 3 in Simpson et al. (2005)].

To develop the market attack plan for our UGV product family example, we

consider the weight, speed, range, and lift capacity requirements for different

potential segments within a product market matrix defined by applications versus

range. Over 50 different potential applications were identified in the matrix based

on type of ordnance, functionality (e.g., dig, detonate, diffuse), location of opera-

tion, etc. (Simpson et al. 2012). The UGV market segmentation matrix was then

Fig. 13.3 Platform

leveraging strategies

[adapted from Meyer

and Lehnerd (2000)]

13 Defining Modules for the Architecture Process 327

manually clustered into three homogeneous segments to be consistent with current

systems in the market. Three “performance tiers” were identified corresponding to

small, medium, and large UGVs based on weight. Therefore, the columns are

segmented into small, medium, and large UGVs in the market segmentation matrix

for the UGV example, and the rows are divided into explosion abatement, hazard-

ous sites, and reconnaissance applications.

Based on this segmentation, a vertical leveraging strategy may be possible as

illustrated by the solid vertical arrow in Fig. 13.4. This would enable a new family

of UGVs to be developed and scaled up for this initial segment, with platform

modules created to satisfy requirements for the small, medium, and large UGVs.

In the future, the platform could be extended by leveraging these modules horizon-

tally to other market segments as shown by the dashed arrows in Fig. 13.4.

We note that one can often associate vertical leveraging to scalable platforms
where different sizes of the same modules and components are used. Meanwhile,

horizontal leveraging can be generally associated with swappable modules where a
common subset of core modules is reused across different products that are

differentiated by integrating the core with swappable unique modules thereby

providing different functionality. Successful platforms often utilize a combination

of scaling and modularity to attack the different market segments in a strategic and

cost-effective manner.

13.3 Customer Needs Gathering

Given the list of market segments and a strategy for attack based on the addressable

market and their differences, a set of testable, measurable requirements is needed to

“design to.” The requirements must be based on what the customer seeks in the

product. In platform development project, the objective is to create several products

for different segments, each with different needs that drive the individual product

differences. Therefore, customer needs may be gathered for each individual product

separately. In other words the intended variety in the product family is designed first

before defining what the common modules in a modular platform should be.

There are well-established methods to gather customer needs such as voice of the
customer (VOC) (Griffin and Hauser 1993; Churchill and Iacobucci 2004).

Fig. 13.4 Planned market

strategy for the UGVs

328 K. Hölttä-Otto et al.

Here, interviews are conducted with randomly sampled people from each market

segment and questioned over how they use the product. This elicits qualitative and

quantitative need statements which they seek from the product.

For the UGV example, the customer requirements were gathered from multiple

requirements working groups that met over a period of about 2 years. Each group

was comprised of representatives from different branches of the military and

included senior personnel, ordnance disposal experts, and technicians involved

with logistics, maintenance, and support.

For each “segment” in the market segmentation grid in Fig. 13.4, requirements

were defined (e.g., weight, range, speed, manipulator length), and threshold and

objective values were identified for each requirement. The threshold value is the

minimum value that must be met in order to satisfy a requirement while the

objective value provides a target that users would like to achieve. Threshold and

objective values were defined for the small, medium, and large UGVs, which were

used to define the system requirements as discussed next.

13.4 System Requirements Definition

Once the customer needs for each market segment and corresponding product

variant are clearly defined, the next step is to define quantitative verifiable system

requirements for each product variant. Again, there are well-established methods

for this step, including the House of Quality (Hauser and Clausing 1988). Another

option is to define the worst-case operating conditions and define the system

specifications for those cases. Perhaps the simplest option for this step is to convert

the customer needs into system requirements similar to target value setting as

described by Ulrich and Eppinger (2004) or requirement definition following the

INCOSE guidelines (INCOSE 2010). Regardless of what method is used, at the end

of this step, quantified system requirements have been identified to which provide

design targets to ensure each variant is capable of satisfying the customer needs in

its corresponding market segment.

Table 13.1 gives an example of the system requirements that were defined for the

UGV example following the customer needs analysis. Threshold and objective

values for each requirement are defined for each weight class. This information

can be used to help identify common, variant, and unique requirements, i.e., those

that are the same (identical) among all three UGVs, those that are similar but vary

slightly from one UGV to the next, and those that are unique to a specific UGV. For

example, some of the maneuvering, sensing, and communication requirements are

the same for each UGV; however, the range and payload requirements vary for each

weight class. Finally, the manipulator, reach, drag/roll/push, and large object

requirements are unique to each UGV, with no requirements defined for the small

UGV when that capability is not present (e.g., large object pickup).

Once a specification list is completed for each product variant, it is a key

milestone as it defines what the engineers should design to. Therefore, it should be

13 Defining Modules for the Architecture Process 329

checked for various considerations. One important factor is completeness against the

customer need list. Each customer need should be covered by an associated

requirement—meeting the requirement will ensure satisfaction on the customer

need. A second important consideration is conflictmanagement among requirements.

Customers will want high performance and low cost. Definition of the target cost and

the minimum performance level defines how these conflicting goals are to be

simultaneously met by the design team. Such conflicts in the requirements should

be highlighted and tracked as risk items, particularly when they cross platform

considerations. That is, some product variants are low cost and low performance

andmight be in the same platform as a high-cost high-performance variant. Platforms

across conflicting requirements in this way can be difficult to engineer, and exclusion

of one or the other variant from the platform may be warranted.

Next, a function-based approach or a component-based approach can be used to

start to develop the platform architecture for the family. To define a platform, the

function-based approach takes a more general view to define common functions

independent of the form. The component-based approach, on the other hand, makes

use of a priori knowledge, however acquired or assumed, of the most relevant

components needed. If the function-based approach is used, that approach is

followed by mapping function to form, i.e., defining the components as part of

Table 13.1 System requirement areas and corresponding UGV activities and functions

Requirement Activities Functions

Range (ft) Travel to desired location Provide propulsion

Travel home Store power

Slope climb (�) Travel to desired location Support weight

Travel home Support loads

Maneuver width (in.) (Constraint)

On-board volume (in3) Carry payload Store payload

On-board weight (lb) Support loads

Drag/roll/push (lb) Move object Provide propulsion

Move obstacle

Horizontal reach (in.) Reach for object Allow DoF (manip)

Vertical high reach (in.) Reach for object Allow DoF (manip)

Sensing type Observe surroundings Sense environment

Video vert. high reach (in.) Capture object Allow DoF (location)

Video horiz. reach (�) Capture object Allow DoF (orientation)

Large obj pickup length (in.) Grasp object Couple sample

Large obj pickup width (in.) Grasp object Couple sample

Large obj pickup height (in.) Grasp object Couple sample

Lift capacity (lb) List object Support loads

Tool precision Use tool

Tool size (in3) (Constraint)

Tool weight (lb)

Communication range (ft) Follow instructions Transmit/process inform

Send data Control operation

Transmit commands/data

Remote control operation

330 K. Hölttä-Otto et al.

embodiment design. Therefore, in the end both approaches lead to the same result

though the function-based approach perhaps considers a broader set of alternatives.

In this chapter we introduce and demonstrate both approaches.

13.5 Functional Requirements Definition

A functional requirement is a requirement to exhibit a certain functional behavior,

i.e., to do something. A constraint is a nonfunctional requirement such as weight

requirement. Defining functional requirements is discussed extensively in Otto and

Wood (2001). In this chapter, we follow their suggested process of taking the

customer needs and separating those into functions and constraints, then listing

the customer activities of the desired system, using those activities to form a

functional model, and finally comparing the resulting functional model with the

original customer needs. This process results in understanding what, as opposed to

how, the system should do to achieve the customer needs.

In the interest of space, we have listed the activities next to the corresponding

customer requirements in Table 13.1. On a typical mission, a UGVwould travel to a

desired location, observe and record the surroundings, and collect objects or act on

objects as instructed and communicated back home. The supporting functions for

these basic customer activities include moving the camera and manipulators up,

down, and horizontally. Since this is an existing family of robots, our choice of

functions was influenced by the existing configuration of the robot family. This will

result in a similarity between the embodiment of this functional model and the

design created using the component-based approach. The resulting functional

model is shown in Fig. 13.5. Table 13.1 shows how this functional model meets

the customer requirements.

Transmit/
process

information

Control
operation

Allow DoF
(manip)

Allow DoF
(location)

Allow DoF
(orientation)

Couple
sample

Sense
environment

Store
payload

Transmit
commands/

data

(remote)
Control

operations

Provide
propulsion

2x

Support
weight 2x

Store power

Support
loads

Fig. 13.5 Functional model of a UGV

13 Defining Modules for the Architecture Process 331

13.6 Component-Based Approach

Components can be defined either directly from system requirements or by

mapping functions, as defined in the previous step, to form part of the system

embodiment phase (Pahl and Beitz 1996). There are at least two well-established

methods that have incorporated the mapping of requirements to components. In

Martin and Ishii’s (2000) Design for Variety method, they extend the House of

Quality to create a function-component matrix for calculating the Generational
Variety Index (GVI) for each subsystem. A key step in this matrix is to map the

engineering requirements into subsystems, or components, in order to identify how

much effort is needed to redesign a component if there was a change in a specific

requirement. Subsystems with a high GVI value will undergo significant redesign in

order to satisfy the range of customer needs while low GVI values indicate

components that will remain relatively stable across the family. Figure 13.6

shows the GVI values for the UGV example (Simpson et al. 2012). As seen, the

manipulator and chassis will vary substantially within the family (i.e., high GVI

values) while cameras and OCU (Operator Control Unit) will have little variation.

Requirement C
ha

ss
is

B
at

te
ry

T
ra

ck
s

C
om

m
un

ic
at

io
n

bo
x

E
le

ct
ro

ni
cs

 b
ox

M
an

ip
ul

at
or

G
ri
pp

er

C
am

er
as

P
ay

lo
ad

 b
ay

A
nt

en
na

e

O
C

U

Range (feet) 6 6

Slope Climb (deg) 3 3 1

Maneuver width (in) 3 3 3

On board vol (in^3) 6 3 6

On board wt (lb) 6 3 6

Drag/Roll/Push (lb) 6 3 6 6 6

Horiz reach (in) 6 3 9 1

Vert high reach (in) 1 9 1

Sensing type 3

Video vert high reach (in) 1 9 1

Large Obj Pickup (length) 3 6

Large Obj Pickup (width) 3 6

Large Obj Pickup (height) 3 6

Lift capac (lb) 6 9 3

Tool precision 1 6 1 1

Tool size (in^3) 3 6

Tool wt (lb) 3 6

Comm range (ft) 3 6 6

GVI Values 38 9 12 13 6 58 48 1 15 12 4

Subsystem

Fig. 13.6 Generational

variety index for UGV

example (Simpson et al.

2012)

332 K. Hölttä-Otto et al.

An alternative method is Modular Function Deployment (MFD) (Ericsson and

Erixon 1999), which creates a similar Product Property Matrix to identify platform
modules (see Chaps. 4 and 24 for details and examples of MFD). Chapters 14 and

15 discuss QFD approaches to support platform optimization.

If existing products are available for analysis, an alternative approach for

creating this matrix is to decompose the products into subsystems and components

and then use a DSM, or Design Structure Matrix (Steward 1981; Eppinger et al.

1994; Browning 2001) to help identify modules. A component-based DSM for the

UGV family is presented next in reference to the defining of a generic system

architecture.

13.7 Generic System Platform Architecture Definition

A platform forms the base for a set of product variants; thus, the platform architec-

ture should encompass all the variant architectures that intend to support. A simple

way to create such a “generic” architecture for the platform is to create an architec-

ture for each of the variants and merge them together. The variant architectures can

be created using functional modeling or a component-based approach.

The functional modeling approach has benefit of being intuitive and visual,

particularly for more complex block diagrams. In the functional approach (Pahl

and Beitz 1996; Otto and Wood 2001), the recommended approach is to build each

individual functional model and then merge these models into a generic platform

architectural model. In the UGV example, the functional model in Fig. 13.5 is

already a generic functional model since the individual UGVs differ in performance

levels, not functionality, in the vertically leveraged scalable platform. For example,

while each model may have a different size manipulator or camera, all of the UGVs

have these components to perform common tasks of reaching/grasping objects and

observing their surroundings, i.e., the functions are the same.

Rather than the functional block diagram approach, another possibility is to

work with matrix methods and functions to extend the Generational Variety Index

and Modular Function Deployment methods introduced in the previous section.

Both methods can be used to map functions to components and thereby define

modules, without explicitly defining a generic platform architecture. Module defi-

nition is discussed in more detail in the next section.

Finally, one can forgo the functional approach altogether and work directly with

components, using the component-based Design Structure Matrix (DSM) approach.

This avoids difficulties of thinking functionally but thereby also limits the space of

design solutions to the components at hand. For demonstration, this component-

based DSM approach is used for the UGV example (see Fig. 13.7). For the UGV

example, the DSM is constructed using a teardown disassembly approach to system

decomposition (Chiriac et al. 2011). In this case, four UGVs were disassembled;

13 Defining Modules for the Architecture Process 333

http://dx.doi.org/10.1007/978-1-4614-7937-6_4
http://dx.doi.org/10.1007/978-1-4614-7937-6_24
http://dx.doi.org/10.1007/978-1-4614-7937-6_14
http://dx.doi.org/10.1007/978-1-4614-7937-6_15

their subsystems or components were identified and then recorded to create the

component-based DSM shown in Fig. 13.7. This DSM represents the “generic”

platform architecture for the UGV family, which can now be used for module

definition as discussed next.

13.8 Module Boundary Definition

There are many methods to define modules (Gershenson et al. 2004; Simpson 2004;

Simpson et al. 2006). Some common methods include modularity heuristics (Stone

et al. 2000; Zamirowski and Otto 1999), heuristic identification of commonalities

using a modularity matrix (Dahmus et al. 2001), Modular Function Deployment

(Ericsson and Erixon 1999) to identify modules by importance of components, and

finally various numerical heuristic methods that operate on a DSM and cluster its

elements into modules (Helmer et al. 2010; Yu et al. 2005; Yu et al. 2007). Most

clustering algorithms include a measure to decide when to conclude the clustering,

i.e., when the desired degree of modularity is achieved. Thebeau (2001) developed

a measure to minimize connections outside modules whereas Yu et al. (2005) use an

information theoretic approach to minimize the information needed to describe the

connectivity between modules. Excellent reviews of both coupling and similarity

modularity can be found elsewhere (Gershenson et al. 2004; Guo and Gershenson

2003). Hierarchical clustering can also be used to define modules, either based on

the product requirements, component specifications (Hölttä-Otto et al. 2008), or

in conjunction with another method that defines a metric, such as Modular Function

Deployment (see Chaps. 4 and 24).

For the UGV example, we continue with both the functional model and the DSM

to demonstrate alternative approaches to module boundary definition. First, using

the functional model as a starting point, we use the module heuristics (Stone et al.

2000) to identify potential modules in the system architecture. As seen in Fig. 13.8,

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Chassis x x x x x
2 Battery
3 Flipper x x
4 Main track x x
5 Communication box x x
6 Electronics box x x x x x x x x x x
7 Manipulator x x
8 Mast x x x
9 Head x x x

10 Gripper x
11 Cameras x x
12 Payload Bay x x
13 Antenna x x
14 OCU x

Fig. 13.7 Unclustered DSM

for the UGV platform

334 K. Hölttä-Otto et al.

http://dx.doi.org/10.1007/978-1-4614-7937-6_4
http://dx.doi.org/10.1007/978-1-4614-7937-6_24

we identify multiple potential modules using the branching flow heuristic (blue

dashed lines) as well as a transmission type module and a dominant flow module

(both in red). The function structure is at a relatively high abstraction level, and thus

the modules, for most part, include only one abstracted function. The modules

defined in this approach are sensible and occur in current UGVs on the market. We

note that if the system were to be decomposed to a further level of granularity, we

would identify additional module candidates—such as all the separate drives

(within the “Allow DoF” function) as conversion-transmission modules. We refer

the reader to Chap. 9 for more discussion on the level of granularity and its impact

on module identification.

Another approach to define module boundaries is to cluster the component DSM

developed in Fig. 13.7. There are many clustering algorithms available (see http://

www.dsmweb.org), but manual clustering is sufficient for the UGV example.

Figure 13.9 shows the clustered DSM for the original UGV architecture in

Fig. 13.7. This partitioning results in two bus modules (for the chassis and electron-

ics), two 3 � 3 modules (for communications and observation), and multiple

modules that consist of a single component (for specific functionality, e.g., manip-

ulator). Again, if the system was decomposed further, a larger DSM with larger

modules would be created to identify modules within modules. For this system, one

can compare Figs. 13.8 and 13.9 and see there is essentially the same result

obtained. Both methods resulted in compounded components into a module, and

both methods identified the chassis and electronics as buses (isolated modules with

many parallel connections).

Transmit/
process

information

Control
operations

Allow DoF
(manip)

Allow DoF
(location)

Allow DoF
(orientation)

Couple
sample

Sense
environment

Store
payload

Transmit
commands/

data

(remote)
Control

operations

Provide
propulsion

2x

Support
weight 2x

Store power

Support
loads

Fig. 13.8 Module definition using module heuristics

13 Defining Modules for the Architecture Process 335

http://dx.doi.org/10.1007/978-1-4614-7937-6_9
http://www.dsmweb.org/
http://www.dsmweb.org/

13.9 Architecture Roadmap

A platform should also support multiple product generations over time. A good way

to design for future product variants is to plan for technology evolution. This can be

done in several ways. In some methods such as MFD (Ericsson and Erixon 1999),

this is taken into the account during module boundary definition. For example, in

MFD a modularity rule states that if a component or subassembly is expected to

evolve over time, it should be separated into a module. This concept generalizes

into the idea of technology roadmapping (Albright 2002; Suh et al. 2010). In

general, a technology roadmap is a plan to develop products in the future using

technology that is not yet fully developed. Despite the incompleteness, the past

trends allow for future prediction of expected performance. A common technology

forecast is Moore’s law (Allan et al. 2002; Edenfeld et al. 2004) or similar

performance improvement curves in, for example, telecommunication (Willyard

and McClees 1987), printers (Ulrich and Eppinger 2004), and power transmission

(Daima and Oliverb 2008).

In product platform design, such roadmaps are done at the module level, where

each module is scrutinized for future evolution and strategically roadmapped. The

system architecture of such modules now and into the future remains fixed, until

the modules change so radically an entirely new platform is required (Suh et al.

2010). The module update cycle is usually faster than the platform redesign cycle.

For example for our UGV case, we consider the generic product architecture and

the current modules sizes, and we can create a plan for evolving (or not evolving)

the modules over time based on this. For example, we expect mobility technology

(i.e., provide propulsion, support weight modules) to remain relatively constant in

the near future, and thus there is no plan to evolve this module on a roadmap. The

battery technology (i.e., store power module) and computing platform and embed-

ded controls software (e.g., controls module), on the other hand, are expected to

improve over time, and each UGV will need to be redesigned and upgraded as the

1 6 2 13 5 14 3 4 7 8 9 11 10 12
1 Chassis x x x x x
6 Electronics box x x x x x x x x x x
2 Battery

13 Antenna x x
5 Communication box x x

14 OCU x
3 Flipper x x
4 Main track x x
7 Manipulator x x
8 Mast x x x
9 Head x x x

11 Cameras x x
10 Gripper x
12 Payload Bay x x

Fig. 13.9 Clustered DSM

for the UGV family

336 K. Hölttä-Otto et al.

technology evolves. For example, battery energy per unit cost or per unit weight

continually improves, and one can project increased stored energy expectations

every 2 years. Comparing this against stored energy levels needed to achieve

increased power loads of improving other modules (e.g., larger power train motors,

increased imaging cameras, longer range communication) defines the point in time

where it is useful to upgrade the battery module to higher power. Having such a

roadmap will prevent the platform for hindering evolution and improvements as

technology changes and new technologies are developed.

13.10 Commonality Assignment

The next step is to decide how many sizes of each module are needed, given the

number of product variants and the modularity boundaries identified for the

components. The maximum number of instances for any module is the number of

product variants if every instance needs to be unique to every product variant (e.g.,

the chassis may be unique to the small, medium, and large UGVs). Conversely, the

minimum number of instances for any module is one, i.e., one module that is

common on all of the variants (e.g., the same camera on every UGV). Reality

usually lies in between those two extremes where module instances may vary

slightly across different subsets of products (e.g., the manipulator on the medium

UGV may have two articulating segments while the large UGV may have three).

The Generational Variety Index (see Sect. 13.6) provides a starting point for

commonality assignment. Low GVI values will not require much redesign within

the product family; therefore, a single module may suffice for this component.

Meanwhile, high GVI values require significant redesign indicating that multiple

modules will be needed to achieve the range of requirements for the family. For the

UGV example, a subsequent analysis of each pair of UGVs (e.g., small and

medium, medium and large, and large and small) was conducted to translate the

GVI recommendations in Fig. 13.6 to parametric variation needed in each subsys-

tem. Through this analysis we sought to identify potential opportunities for scaling,

for example, the chassis in one or more dimensions based on the threshold and

objective values for each UGV pair even though the chassis will vary across each

weight class. The final recommendations for commonality in key subsystems are

listed in Table 13.2 where a “c” indicates where common settings may be used

across two or more UGVs, e.g., chassis height can be common to all three UGVS,

but only the small and medium have common chassis length and width based on the

threshold and objective requirements.

In the approach outlined here, the determination of how many module sizes are

needed is separated from the task of actually sizing each module. In Table 13.2,

different sizes are shown for each of the product variants (small, medium, large),

though the actual sizes of the modules is not yet determined. All that has been

defined is the commonality. Further, for each architecture alternative, the allocation

of Table 13.2 will change. Choice of module boundaries affects the choices of

13 Defining Modules for the Architecture Process 337

number of module sizes. Mathematical models of the UGV performance could be

combined with optimization algorithms to determine the best settings for each

module and each parameter in the family, using these recommendations as a

starting point. This is discussed in the next section; meanwhile, in Chap. 18 Khire

et al. discuss how optimization can be used for commonality selection in more

detail, and Simpson et al. (2012) provide additional details on the UGV example.

13.11 Architectural Module Sizing and Down Selection

At this point, there is a small set of alternative architecture platform concepts, each

complete with a modularity scheme to implement the set of product variants.

However, the modules have not been sized nor assessed for performance capability

to correctly operate in each supported product variant. Since the module sizes are

not yet known, the performance of each product variant as instantiated in each

platform concept is not known. These must be computed or estimated before a

down selection can be made amongst the platform concepts.

To do this, we now create equations of the requirements in terms of module

sizing variables. For example, we can describe batteries with energy storage

capacity, size, weight, etc. Using such variables, we can derive UGV system

level equations of the UGV top speed, overall mass, climbing angle, etc. We term

the module variables with x, UGV system responses with y, and the equations

with f.
Given targets on each system responses y for each product variant, the shared

modules can be sized for best sizes x. This is repeated for each platform architecture

alternative, thereby quantifying their performance (on all variants) and allowing a

well determined platform down selection.

Table 13.2 Recommendations for subsystem commonality (Simpson et al. 2012)

Subsystem Design parameters Small Medium Large

Chassis Length c c

Width c c

Height c c c

Mobility Wheels/tracks c c c

Wheel/track diameter

Wheel/track width

Batteries Length c c c

Width c c c

Mass c c c

Manipulators Outer arm radius c c

Arm segment length c c

Number of links c c

338 K. Hölttä-Otto et al.

http://dx.doi.org/10.1007/978-1-4614-7937-6_18

For the UGV example, Table 13.3 shows the module sizes for one instance of the

platform to achieve at least 80 % effectiveness across all of the requirements in each

market segment. Table 13.3 is different for each alternative platform architecture,

and a concept selection matrix can be used to rank each. The actual sizing of

modules is, however, generally a nontrivial analysis. Typically, trade-off analyses

are done and visualized for the non-dominated combinations of module variables

that are for the Pareto frontier. Amongst this set, combinations can be sorted using

judgment or a value-based gauge of the performance criteria. Methods to accom-

plish this are discussed by Khire et al. in Chap. 18, and more details on the trade-

offs in the UGV family are discussed by Simpson et al. (2012).

13.12 Summary

Methods and tools to support product platform design have advanced remarkably

over the past decade, and there is no single path to architecting a product platform.

Some methods are more suitable for an approximate approach to get fast results,

while others are better suited for more sophisticated analysis; however, most fall

somewhere in between these two extremes.

Looking back at Fig. 13.1, we can see how one of the shortest paths to a platform

is to build a DSM directly from components of existing products or from customer

requirements using quality function deployment, for example, and then simply

clustering the DSM to form modules. This is most likely suitable for a redesign

of an existing family for more efficient variety and commonality ratio. For a more

fundamental overhaul of a product platform, or a clean sheet design of a new

product platform, other combinations of methods are likely more productive. Use

of function-based methods helps abstract the problem and can lead to better

solutions than simple reconfiguration of components.

Table 13.3 Module sizes for a UGV family (Simpson et al. 2012)

Subsystem Design parameters Small Medium Large

Chassis Length 0.56 0.59 0.66

Width 0.23 0.22 0.30

Height 0.32 0.33 0.34

Mobility Wheels/tracks Tracks Tracks Tracks

Wheel/track diameter 0.26 0.26 0.26

Wheel/track width 0.03 0.03 0.13

Batteries Length 0.11 0.11 0.11

Width 0.06 0.06 0.06

Mass 1.40 1.40 1.40

Manipulators Outer arm radius 0.02 0.02 0.02

Arm segment length 0.57 0.52 0.31

Number of links 3 3 3

13 Defining Modules for the Architecture Process 339

http://dx.doi.org/10.1007/978-1-4614-7937-6_18

Overall, we do not recommend or promote any one particular method over

another nor even espouse the sequence through the methods as shown. Rather our

goal has been to provide a reference for linking all of the different modular product

platform development methods out there and in this book, along with where to find

more information on these methods.

References

Albright RE (2002) Roadmapping for global platform products: product development and man-

agement association. Visions Magazine 26(4):19–22

Allan A, Edenfeld D, Joyner WJ, Kahng A, Rodgers M, Zorian Y (2002) 2001 technology

roadmap for semiconductors. Computer 35(1):42–53

Browning TR (2001) Applying the design structure matrix to system decomposition and integra-

tion problems: a review and new directions. IEEE Trans Eng Manag 48(3):292–306

Chiriac N, Hölttä-Otto K, Suh E, Lysy D (2011) Three approaches to complex system decomposi-

tion. In: 13th international dependency and structure modelling conference, DSM’11,

Cambridge, MA

Churchill GA, Iacobucci D (2004) Marketing research: methodological foundations, 9th edn.

South-Western College Publishing, ISBN: 0324201605

Dahmus JB, Gonzalez-Zugasti JP, Otto KN (2001) Modular product architecture. Des Stud

22(5):409–424

Daima TU, Oliverb T (2008) Implementing technology roadmap process in the energy services

sector: a case study of a government agency. Technol Forecast Soc Change 75(5):687–720

Edenfeld D, Kahng A, Rodgers M, Zorian Y (2004) 2003 technology roadmap for semiconductors.

Computer 37(1):47–56

Eppinger S, Whitney D, Smith R, Gebala D (1994) A model-based method for organizing tasks in

product development. Res Eng Des 6(1):1–13

Ericsson A, Erixon G (1999) Controlling design variants: modular product platforms. ASME

Press, New York

Gershenson JK, Prasad JK, Zhang Y (2004) Product modularity: measures and design methods.

J Eng Des 15(1):33–51

Guo F, Gershenson JK (2003) Comparison of modular measurement methods based on consis-

tency analysis and sensitivity analysis. In: ASME 2003 design engineering technical

conferences, Chicago, IL. ASME, Paper No. DETC2003/DTM-48634

Griffin A, Hauser JR (1993) The voice of the customer. Market Sci 12(1):1–27

Hauser JR, Clausing D (1988) The house of quality. Harv Bus Rev 66(3):63–73

Helmer R, Yassine A, Meier C (2010) Systematic module and interface definition using compo-

nent design structure matrix. J Eng Des 21(6):647–675

Hölttä-Otto K, Tang V, Otto K (2008) Analyzing module commonality for platform design using

dendrograms. Res Eng Des 19(2):127–141

INCOSE (2010) INCOSE systems engineering handbook v3.2. International Council on Systems

Engineering. http://www.incose.org/

Kotler P, Keller KL (2009) Marketing management. Prentice Hall, Upper Saddle River

Martin M, Ishii K (2000) Design for variety: developing standardized and modularized product

platform architecture. Res Eng Des 13(4):213–235

Meyer MH, Lehnerd AP (2000) The power of product platforms. The Free Press, New York, NY

Moon SK, Kumara SR, Simpson TW (2006) Data mining and fuzzy clustering to support product

family design. In: ASME design engineering technical conferences – design automation

conference, Philadelphia, PA. ASME, Paper No. DETC2006/DAC-99287

340 K. Hölttä-Otto et al.

http://www.incose.org/

Otto K, Wood K (2001) Product design: techniques in reverse engineering, systematic design, and

new product development. Prentice-Hall, New York, NY

Pahl G, Beitz W (1996) Engineering design: a systematic approach. Springer, New York, NY

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 10(1):3–20

Simpson TW, Siddique Z, Jiao J (2005) Product platform and product family design: methods and

applications. Springer, New York, NY

Simpson TW, Marion T, de Weck O, Holtta-Otto K, Shooter SB (2006) Platform-based design and

development: current trends and needs in industry. In: ASME 2006 international design

engineering technical conferences, Philadelphia, PA. Paper No. DETC2006/DAC-99229

Simpson TW, Brennan S, Slingerland LA, Bobuk A, Logan D, Reichard K (2012) From user

requirements to commonality specifications: an integrated approach to product family design.

Res Eng Des 23(2):141–153

Steward DT (1981) The design structure system: a method for managing the design of complex

systems. IEEE Trans Eng Manag 28(3):71–74

Stone RB, Wood KL, Crawford RH (2000) A heuristic method for identifying modules in product

architectures. Des Stud 21(1):5–31

Suh ES, Furst MR, Mihalyov KJ, de Weck O (2010) Technology infusion for complex systems: a

framework and case Study. Syst Eng 13(2):186–203

Thebeau RE (2001) Knowledge management of system interfaces and interactions for product

development process. System design & management program. M.S. Thesis, Massachusetts

Institute of Technology, Cambridge, MA

Ulrich KT, Eppinger SD (2004) Product design and development, 3rd edn. McGrw-Hill, New

York, NY

Willyard CH, McClees CW (1987) Motorola’s technology roadmap process. Res Manag

30(5):13–19

Yu TL, Yassine A, Goldberg DE (2005) An information theoretic method for developing modular

architectures using genetic algorithms. University of Illinois, Department of General Engineer-

ing. Urbana-Champlain: Illinois Genetic Algorithms Laboratory IlliGAL

Yu TL, Yassine AA, Goldberg DE (2007) An information theoretic method for developing

modular architectures using genetic algorithms. Res Eng Des 18(2):91–109

Zamirowski EJ, Otto KN (1999) Identifying product family architecture modularity using function

and variety heuristics. In: ASME design engineering technical conferences – 11th international

conference on design theory and methodology, Las Vegas, NV. ASME, Paper No. DETC99/

DTM-8760

Zhang Y, Jiao J, Ma Y (2007) Market segmentation for product family positioning based on fuzzy

clustering. J Eng Des 18(3):227–241

13 Defining Modules for the Architecture Process 341

Chapter 14

A QFD-Based Optimization Method

for Scalable Product Platform

Xinggang Luo, Jiafu Tang, and C.K. Kwong

Abstract In order to incorporate customer into the early phase of the product

development cycle and to better satisfy customers’ requirements, this research

adopts quality function deployment (QFD) for optimal design of scalable product

platform and product family. A five-step QFD-based method is proposed to deter-

mine the optimal values for platform engineering characteristics (ECs) and

non-platform ECs of the products within a product family. First of all, the houses

of quality (HoQs) for all product profiles are developed and a QFD-based optimi-

zation approach is used to determine the optimal ECs for each product profile.

Sensitivity analysis is performed for each EC with respect to overall customer

satisfaction (OCS). Based on the obtained sensitivity indices of ECs, a mathemati-

cal model is established to simultaneously optimize the values of the platform and

the non-platform ECs. Finally, by comparing and analyzing the optimal solutions

with different number of platform ECs, the ECs with which the worst OCS loss can

be avoided are selected as platform ECs. An illustrative example is used to

demonstrate the feasibility of this method. A comparison between the proposed

method and a two-step approach is conducted on the example.

X. Luo (*) • J. Tang

State Key Lab of Synthetic Automation of Process Industries, School of Information

Science and Engineering, Northeastern University, Shenyang, Liaoning 110004,

People’s Republic of China

e-mail: xgluo@mail.neu.edu.cn

C.K. Kwong

Department of Industrial and System Engineering, Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_14,
Springer Science+Business Media New York 2014

343

mailto:xgluo@mail.neu.edu.cn

14.1 Introduction

Nowadays, the growing demand for diversified and personalized products has

imposed a necessity on manufacturing companies to provide a large variety of

products in order to guarantee customer satisfaction. To achieve this, many

companies are using platform-based product development to realize families of

products with sufficient variety to meet customers’ demands while keeping costs

relatively low (Thevenot and Simpson 2006). Actually, product platform technol-

ogy offers a multitude of benefits, such as increased flexibility and responsiveness,

reduced development time and system complexity, reduced development and

production costs, and improved ability to upgrade products (Simpson et al. 2006).

Developing a product family is a creative activity that involves designers

drawing upon numerous types of information, including both product–customer

requirements and design developments in related fields (Lin et al. 2008). In recent

years, the necessity to better satisfy customer’s need is emphasized by more and

more industries, resulting in prevailing of the concept of market-pull strategies for

product development (Tang et al. 2002). In current highly competitive and dynamic

marketplaces, only effective customer-driven strategies on product development

are able to assist a company to gain a prominent competitive edge over its

competitors; therefore, designers are responsible for generating customer-driven

products to maximize customer satisfaction (Khoo et al. 2002).

A widely used customer-driven methodology for new product development is

quality function deployment (QFD) (Hauser and Clausing 1988). QFD helps the

product development team systematically relate the customer attributes that repre-

sent the overall customer concerns to the design requirements and thus aims at the

satisfaction of the customer’s need at the very beginning of product design (Karsak

et al. 2003).

A number of methodologies for optimal design of product family based on

scalable product platform have been proposed in published research papers.

A brief review of these papers is given in Sect. 14.2. One can see that the objectives

of these methodologies are to maximize performance of product family, balance

commonality and distinctiveness of product platform, minimize total engineering

cost, and maximize profit or revenue from the market. In this research, we aim at

maximizing the overall customer satisfaction (OCS) towards a product family by

applying QFD methodology. The intent of applying QFD is to incorporate customer

into the early phase of the product development cycle for product family through

marketing surveys and interviews and to assume the achievement of customer-

required quality (Wang 1999). The main contribution of this research is that it

introduces the product quality criterion OCS into the optimization process of

product platform and product family design by integrating QFD method.

The rest of this chapter is organized as follows. Section 14.2 reviews the relevant

literature on product platform optimization and QFD. Section 14.3 specifies the

main procedures and the key steps of the QFD-based optimization method.

344 X. Luo et al.

Section 14.4 illustrates a case study to empirically verify the feasibility and

effectiveness of the method. The characteristics of this method, limitations, and

some future research potentials are discussed in Sect. 14.5.

14.2 Related Work

In this section, some literature highly related to this study is briefly reviewed under

the two classes: optimization for scalable product platform and quality function

deployment.

14.2.1 Optimization for Scalable Product Platform

A product platform is defined as a set of common components, modules, or parts

from which a stream of derivative products can be efficiently developed and

launched (Meyer and Lehnerd 1997). Meanwhile, products that share a common

product platform but have specific features and functionality to satisfy different sets

of customers form a product family (Meyer and Utterback 1993). In general, there

are two kinds of product families (Simpson et al. 2006): one is module-based (or

configurable) product family wherein product family members are instantiated by

adding, substituting, and/or removing one or more functional modules from the

platform and another one is a scalable (or parametric) product family, in which

several key engineering characteristics (ECs) are used to scale the product platform

to form a variety of products.

A large quantity of research papers have been published on design of product

family and platform, emphasizing on different perspectives such as customer

engineering, product family positioning, platform optimization, business strategy,

manufacturing and production, information technology, and general management.

Discussion and classification of these research papers can be found in the recent

survey papers by Jiao et al. (2007), Simpson (2004), and Fujita (2002). In this

research, we only concern the optimization of scalable product platform; hence we

narrow the review of this section accordingly.

In design of scalable platform, all members share a parametric description, i.e.,

they are described by the same ECs, but the ECs may take on different instantiated

values for different product profiles (a product profile is a member of a specified

product family). The objective of the optimization is to help designers to determine

the best EC settings for a product platform and the product profiles. Generally, the

design and optimization of scalable product platform include the following main

stages (Dai and Scott 2007):

1. Platform configuration, i.e., how to identify which ECs should be taken as

platform ECs.

14 QFD-Based Optimization for Scalable Product Platform 345

2. Determine the appropriate values for the selected platform ECs.

3. Determine the optimal values for the non-platform ECs of the product profiles,

where 2 and 3 are combined into one in some approaches.

One of the first systematic design methods for scalable product platforms is the

Product Platform Concept Exploration Method (PPCEM) proposed by Simpson

et al. (1999). In PPCEM, a compromise Decision Support Problem (DSP) is used to

model the necessary constraints and goals for product platform. The model is a

multi-objective one and eventually a set of conflicting goals with minimal loss in

performance is achieved. Conner et al. (1999) develop the Variety Tradeoff Evalu-

ation Method (PVTEM) for product platform optimization. Similar to PPCEM,

PVTEM assesses the appropriate product family trade-offs using the commonality

and performance indices.

Moore et al. (1999) apply conjoint analysis to help designing product platforms

by bringing together demand-side forecasting methods with supply-side cost

estimates. Their empirical research further shows the importance of consideration

of commonality of products. However, the details of the optimization process and

models are not provided in the paper. Based on PPCEM, Nayak et al. (2002) present

the Variation-Based Platform Design Method (VBPDM), which uses variation-

based modeling to accommodate flexible design specifications to integrate the

selection of common or platform parameters and the scale factors as part of the

commonality and performance trade-off. Messac et al. (2002) propose using physi-

cal programming and PPCEM to design product families. The physical program-

ming method formulates the optimization problem in terms of physically

meaningful terms and parameters and hence facilitates trade-off analysis and

decision making during product family design. Fellini et al. (2004) suggest a

two-stage methodology for making commonality decisions based on the individual

optima and sensitivity analysis of functional requirements. Their methodology uses

the first-order information obtained from individual design optimizations to com-

pute a metric for performance deviations. Different from the optimization

approaches targeted at product performance goals, Kumar et al. (2006) propose

the Market-Driven Product Family Design (MPED) methodology to model the

optimization of product platform with considering product-line positioning. Nested

logit choice rule is used in their model to simulate consumer behavior in a multi-

segment market with competitive products. Dai and Scott (2007) propose a six-step

method which incorporates sensitivity analysis and cluster analysis to solve the

platform configuration problem and to achieve the value settings for platform and

non-platform ECs. Williams et al. (2007) develop a Product Platform Constructal

Theory Method (PPCTM) to help designers to systematically manage modularity

and commonality in development of platforms while handling issues of multiple

levels of commonality, multiple product specifications, and the inherent trade-offs

between platform extent and performance. Their PPCTM is able to handle multiple

design objectives and nonuniform demand in a market by infusing the utility-based

compromise Decision Support Problem and demand modeling techniques.

346 X. Luo et al.

However, all the abovementioned methods for scalable product platform do not

consider the metric of product quality in the design optimization process. This

research will fill this gap by integrating QFD into the design optimization of

scalable product platform.

14.2.2 Quality Function Deployment

The basic concept of QFD is to utilize a set of charts called the houses of quality

(HoQ) (Hauser and Clausing 1988) to translate customer requirements (CRs) into

ECs and subsequently into parts, characteristics, process plans, and manufacture

operations. A house of quality typically contains information on “what to do”

(whats), “how to do it” (hows), the integration of this information (relationships

between CRs and ECs and among ECs), and benchmarking data (Kim et al. 2000).

Based upon the information contained in a HoQ, the target values for the ECs of a

product can be determined to achieve a high level of OCS. Because we propose a

QFD-based approach to achieve the optimal values for platform and non-platform

ECs, here we only briefly review the QFD literature related to the following two

aspects (1) setting target ECs values and (2) product family and platform.

Regarding setting target EC values, although the amount of literature on QFD is

vast, there are only a few research papers focusing on systematic procedures for

setting the target EC values.

The first prescriptive modeling approach is given by Wassermann (1993), who

formulates the QFD planning process as a linear programming model to select the

mix of design features with the highest level of customer satisfaction. Moskowitz

and Kim (1997) propose a QFD-based decision support prototype for optimizing

product designs based upon an integrated mathematical programming approach.

Fung et al. (1998) suggest a fuzzy QFD model to facilitate the design decision on

target values for ECs with the use of a fuzzy rule base. Park and Kim (1998) present

an integrated decision model for selecting the optimal ECs by using a modified

HoQ. Kim et al. (2000) propose a fuzzy multi-criteria modeling approach for QFD

planning using fuzzy linear models with symmetric triangular fuzzy number

coefficients. Tang et al. (2002) and Fung et al. (2002) consider a fuzzy formulation

combined with a genetic-based interactive approach to QFD planning and develop

fuzzy optimization models to determine target values of ECs with financial consid-

eration. Chen et al. (2005) utilize a fuzzy expected value operator to model QFD

planning in a fuzzy environment and further propose an approach for determining

the target values of ECs with the help of two fuzzy expected value models.

On the other hand, most of the research papers related to QFD focus on the

design and manufacturing processes of a particular product; only a few of them

concern QFD in design of product family and platform.

Among these exceptions, Cohen (1995) suggests a planning matrix used for

strategic goal setting, through which the impact of the product family members on

14 QFD-Based Optimization for Scalable Product Platform 347

meeting needs determines the priorities of the product family members. Erixon

et al. (1996) propose using QFD to clarify the customer requirements and

modularize a product. Martin and Ishii (2002) apply a modified QFD structure to

generate a Generational Variety Index (GVI) for a product platform. Their approach

is a two-phase QFD translation (1) translating the subjective customer requirements

into quantifiable engineering specifications and (2) translating the engineering

metrics to the components used in the design. Hsiao and Liu (2005) introduce a

modified QFD in the three-stage product family design methodology, in which the

matrix only lists the differences in customer requirements rather than common

requirements, in order to identify crucial and meaningful design changes from the

perspective of customers. Kim et al. (2006) apply a QFD-based multi-attribute

optimization model for calculating the sensitivity indices when determining

the product platform elements. Jariri and Zegordi (2007) establish a QFD-based

mathematical programming model to identify the proper subsystem for each plat-

form system. These systems can be chosen from several commercially available

alternatives, and the decision variables of their model are the percents of alternatives

in each system.

14.2.3 Commonality Indices

A commonality index is a metric to measure the degree of commonality within a

product family based on different parameters such as the number of common

components, the component costs, and the manufacturing processes (Thevenot

and Simpson 2006). The larger a commonality index is, the more components

and manufacturing processes a product family shares and the more cost is possible

to be saved for a company. Introduction of the six commonly used commonality

indices (Degree of Commonality Index, Total Constant Commonality Index, The

Product Line Commonality Index, Percent Commonality Index, Commonality

Index, Component Part Commonality Index) and their comparison can be found

in Thevenot and Simpson’s research paper (Thevenot and Simpson 2006).

14.3 A Method for Product Platform Optimization

Based on QFD

In this section, a five-step QFD-based method is proposed to determine the rational

number of platform ECs and the optimal values of platform and non-platform ECs.

The procedure of the proposed method is explained in Sect. 14.3.1. Some key steps

of the method including modeling of the optimization problem and sensitivity

analysis are explained in Sects. 14.3.2–14.3.4.

348 X. Luo et al.

14.3.1 Procedure

The flow of the QFD-based method for product platform optimization is shown in

Fig. 14.1. The five steps of the proposed method are explained as follows:

Step 1: Develop a HoQ for each product profile. This mainly involves identifying

and prioritizing CRs; generating ECs; determining relationships between CRs

and ECs, and correlations among ECs; and conducting competition

benchmarking of competitive products (Madu 2006). The HoQs of the products

in a family have the same house structure, house roof (ECs correlation matrix),

and binary relationships between CRs and ECs, but their benchmarking scores of

the existing products (representing the customer perception of the competitors’

product and the firm’s existing products on CRs) and the CRs–ECs relationship

matrix (in which an element represents the quantitative level of strength of the

relationship between a CR and a EC) may be different from each other.

Step 2: Determine the optimal values of ECs for each product profile. A QFD-based

optimization method can be applied to achieve the optimal values of ECs of a

product profile. In light of the HoQs established in Step 1, the optimization

model described in Sect. 14.3.2 is solved individually for each product in the

family.

Step 3: Perform sensitivity analysis for each EC. Sensitivity analysis described in

Sect. 14.3.3 is carried out to calculate the global sensitivity index (SI) of an

EC. After the global SIs of all ECs are computed, sort the ECs into a queue

according to their global SIs in ascending order. The ECs in forepart of the queue

are inclined to be platform ECs because relatively little customer satisfaction is

lost as a result of commonization. Leave the number of platform ECs as a

variable for determination in the subsequent steps. Put the first element of the

queue into U.
Step 4: Optimization of platform and non-platform ECs. By applying the

QFD-based optimization model described in Sect. 14.3.4, for a given set of

Develop a HoQ for each product profile

Determine the optimal values of ECs for each
product profile individually

Perform sensitivity analysis for each EC and
obtain the sorted ECs queue

Optimization of platform and non-platform ECs
for all possible number of platform ECs

Determine the number of platform ECs and obtain
the optimal platform and non-platform ECs

Fig. 14.1 Flow

of the proposed method

14 QFD-Based Optimization for Scalable Product Platform 349

platform ECs U, the optimal values for product platform ECs and other

non-platform ECs for product profiles are obtained at the same time.

Step 5: Put the next element into U and perform Step 4; repeat this process until all

ECs are appended into U. Compare and analyze the optimal solutions with

different number of platform ECs, and determine the number of platform ECs

with which the worst OCS loss can be avoided. In Sect. 14.4, we show an

example of determination of the number of platform ECs.

14.3.2 Determine the Optimal Values of ECs
for Each Product Profile

Optimization approaches based on QFD (Fung et al. 1998; Kim et al. 2000; Tang

et al. 2002) can be applied to determine the optimal ECs for each product profile.

Assume that in this step, all the work related to construction of the HoQ has been

accomplished. Suppose that in a product, mCRs denoted by cri (i ¼ 1, 2,. . ., m) and
nECs denoted by ecj (j ¼ 1, 2,. . ., n) are being considered. The mCRs can be

determined by a market survey conducted by the producing company. The available

methods include focus group, individual interviews, listening and watching, and

using existing information. On the other hand, the nECs are selected by the

company’s technicians or product development team. Usually the ECs can be

generated from the current product standards or selected by ensuring through

cause-effect analysis that the ECs are the first-order causes for the CRs (Akao 1990).

Let xj be the normalized target value of ecj and yi be the customer perception of

the degree of achievement of cri; the functional relationship between yi and ECs can
be expressed as

yi ¼ fiðx1; x2; . . . ; xnÞ (14.1)

On the other hand, there are correlations among the ECs. The functional rela-

tionship between xj and other ECs can be expressed as

xj ¼ gjðx1; . . . ; xj�1; xjþ1; . . . ; xnÞ (14.2)

Let S be the degree of OCS to the product; the process of determining xj
(j ¼ 1,2,. . .,n) in QFD can be formulated as an optimization problem as follows:

max S ¼ hðy1; y2; . . . ; ymÞ (14.3)

subject to

yi ¼ fiðx1; x2; . . . ; xnÞ; ði ¼ 1; 2; . . . ;mÞ (14.4)

350 X. Luo et al.

xj ¼ gjðx1; . . . ; xj�1; xjþ1; . . . ; xnÞ; ðj ¼ 1; 2; . . . ; nÞ (14.5)

where h is a function for mapping yi (i ¼ 1,2,. . .,m) to S. The determination of fi,gj;
and h are described in Sect. 14.3.4, where the joint optimization model uses the

similar functions. Although these functions can be in complex forms, in this

research we consider them as linear forms for simplicity.

By applying this optimization model, the optimal values of ECs for each product

profile can be found individually.

14.3.3 Sensitivity Analysis for Determining Platform ECs

Based on the achieved optimal values of ECs, sensitivity analysis can be performed

for each EC with respect to OCS. The metric of sensitivity, called sensitivity index

(SI), is measured as the ratio of the change in OCS to the change in an EC. In light

of the calculation formula provided by Dai and Scott (2007), the SI of ecj for a
selected product profile, called local SI, can be calculated as follows:

SIxj ¼
ðS� � S�x�

j
þΔxj

Þ þ ðS� � S�x�
j
�Δxj

Þ
2Δxj

(14.6)

where x�j is the optimal value of xj obtained in Sect. 14.3.2; Δxj is a very small

number so that a first-order Taylor expansion can be used to approximate the first

derivative of a curve; S� is the value of objective function of the optimal solution,

i.e., the maximal degree of OCS for this selected product profile; and S�x�j þΔxj
and

S�x�
j
�Δxj

are the new optimal S when x�j is changed to x�j þ Δxj and x�j � Δxj ,

respectively. Note that other ECs, i.e., xj0 (j
0 ¼ 1; 2; . . . ; j� 1; jþ 1; . . . ; n), may

have new values when x�j is changed.
After the local SIs of ecj for all product profiles are calculated according to

Eq. (14.6), the global SI of ecj can be determined as the weighted average of these

local SIs. Actually, the global SI of ecj indicates how sensitive the OCS is to

changes in xj . In other words, a low global SI of ecj means that relatively little

customer satisfaction will be lost if xj is adjusted to a common value for a group of

product profiles. Therefore, all those ECs with low global SIs are regarded as

possible platform ECs. Based on the obtained global SIs, the platform ECs can be

worked out by using clustering analysis (Dai and Scott 2007) or heuristic methods.

Clustering analysis may be hierarchical clustering or k-means clustering and a

widely used tool providing these functions is software SPSS. In the process of

clustering analysis, the ECs with the lower global SIs are grouped into a cluster as

platform ECs, while the ECs with the higher global SIs are grouped into another

cluster as non-platform ECs. Heuristic methods, on the other hand, aim at finding a

14 QFD-Based Optimization for Scalable Product Platform 351

threshold value for platform ECs so that the ECs with global SIs lower than the

threshold are recognized as platform ECs and the other ECs as non-platform ECs.

Simple heuristic methods to determine the threshold value include averaging global

SIs of all ECs or weighted-sum technique. It should be noted that, however, the

determination of platform ECs is a trial-and-error step and human interaction is

involved in the process (Fellini et al. 2004). In this research we propose a method

with considering the number of platform ECs as a variable, which is described in

Steps 3, 4, and 5 in Sect. 14.3.1.

For each determined platform EC, the EC values of the product profiles are

usually grouped into one group or several groups; in each group, a shared value is

used for this EC as a result of commonization. The groups of EC values can be

determined by using hierarchical clustering analysis. The optimal values of an EC

of the product profiles are distributed with different density along the range of

EC values. In the process of clustering, those product profiles with closer EC values

are grouped into a cluster so that less customer satisfaction loss occurs from the

commonization of EC values. The total number of clusters is then determined by

observing the agglomerative result of clustering analysis. Similar to the determina-

tion of platform ECs, this is also a trial-and-error step: if the results are unsatisfac-

tory, a new set of clusters may be explored.

14.3.4 Optimization of Platform and Non-platform ECs

The next step is to set the appropriate values for platform ECs and to determine the

optimal values of other non-platform ECs for each product profile. A QFD-based

optimization model is established to set the optimal values for these platform and

non-platform ECs at the same time.

14.3.4.1 Problem Definition

Suppose that in a company, there are K product profiles denoted by pvk (k ¼ 1,

2,. . .,K). Note that the number of product profiles (K) is given as a priori. A product

profile is similar to other product profiles in functions and structures. Therefore,

the same cri (i ¼ 1, 2,. . ., m) and ecj (j ¼ 1, 2,. . ., n) are considered for all of the

product profiles.

In order to establish a product platform for these product profiles, sensitivity

analysis and clustering analysis are performed to select the platform ECs and to

determine the groups of EC values for each platform EC in advance. After these

analysis processes are completed, suppose that the set of the indices of the deter-

mined platform ECs is denoted by U; for each ecj0 ðj0 2 UÞ, there are nj0 groups of
target values of ecj0 (i.e., there are K target values of ecj0 corresponding to the K
product profiles, and they are grouped intonj0 groups); and for the lth (l ¼ 1,2,. . .,nj0)

352 X. Luo et al.

group, the set of the indices of the corresponding product profiles is denoted by

Vj0lðVj01 [Vj02 [. . . [Vj0nj0 ¼ f1; 2; . . .Kg). In the lth (l ¼ 1,2,. . ., nj0) group, a

shared value of ecj0 denoted by x̂j0l is to be determined to replace all values of ecj0

in the lth group.

For instance, a family of products has five product profiles (K ¼ 5) and four ECs

(EC1, EC2, EC3, and EC4). After clustering analysis, EC3 and EC4 are selected as

platform ECs (U ¼ f3; 4g). The optimal values of EC3 of the five product profiles

are very close and they are clustered into one group (n3 ¼ 1, V31 ¼ f1; 2; 3; 4; 5g).
The optimal values of EC4 are clustered into two groups: the first two product

profiles are in a group and the others are in the other group (n4 ¼ 2, V41 ¼ f1; 2g,
andV42 ¼ f3; 4; 5g). There are three shared ECs required to be determined (x̂31, x̂41,
and x̂42).

Let xkj be the normalized target value of ecj of pvk, y
k
i be the customer perception

of the degree of achievement of cri of pvk, f
k
i be the functional relationship between

yki and ECs of pvk, andg
k
j be the functional relationship between ecj and other ECs of

pvk. The goal of the optimization problem is to determine the target value of ECs of

product profiles with the objective of maximizing the average degree of customer

satisfaction.

The optimization model of the problem can be formulated as

max S0 ¼
XK
k¼1

hðyk1; yk2; . . . ; ykmÞ=K (14.7)

subject to

yki ¼ f ki ðxk1; xk2; . . . ; xknÞ; ði ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;KÞ (14.8)

xkj ¼ gkj ðxk1; . . . ; xkj�1; x
k
jþ1; . . . ; x

k
nÞ; ðj ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;KÞ (14.9)

xk
0
j0 ¼ x̂j0l; ð8k0 2 Vj0l; l ¼ 1; 2; . . . ; nj0 ; j

0 2 UÞ (14.10)

x̂Lj0l � x̂j0l � x̂Uj0l; ð8k0 2 Vj0l; l ¼ 1; 2; . . . ; nj0 ; j
0 2 UÞ (14.11)

where x̂Lj0l and x̂Uj0l are the lower and upper bound of x̂j0l , respectively. Additional

product platform constraints may be added to the above formulation as appropriate.

14.3.4.2 Objective Function

The objective function of the model represents the average value of the degree of

customer satisfaction to all product profiles. On the other hand, for a particular

14 QFD-Based Optimization for Scalable Product Platform 353

product profile, pvk, hðyk1; yk2; . . . ; ykmÞ can be obtained by aggregating the degrees of
customer satisfaction with individual CRs (Chen et al. 2004):

hðyk1; yk2; . . . ; ykmÞ ¼
Xm
i¼1

wk
i siðyki Þ (14.12)

where wk
i is the scaled relative importance of cri of pvk (0 � wk

i � 1;
Pm
i¼1

wk
i ¼ 1)

and si is an individual value function on cri. For each CR of pvk (k ¼ 1, 2,. . .,K), yki
(i ¼ 1, 2,. . ., m) can be assigned as a numerical value to indicate the degree of

satisfaction of cri in comparison with the competitors. This numerical value can be

chosen from a positive scale [a,b] (e.g., 1–5). Therefore, siðyki Þ can be scaled in

such a way that siðymin
i Þ ¼ 0 and siðymax

i Þ ¼ 1 and can be configured as

siðyki Þ ¼ ðyki � ymin
i Þ=ðymax

i � ymin
i Þ (14.13)

and hence hðyk1; yk2; . . . ; ykmÞ can be rewritten as follows:

hðyk1; yk2; . . . ; ykmÞ ¼
Xm
i¼1

wk
i ðyki � ymin

i Þ=ðymax
i � ymin

i Þ (14.14)

and thushðyk1; yk2; . . . ; ykmÞ is also a value between 0 and 1, with 0 being the worst and
1 the best. Therefore, the objective function of the model can be expressed as

S0 ¼
XK
k¼1

Xm
i¼1

wk
i ðyki � ymin

i Þ=ðymax
i � ymin

i Þ=K (14.15)

14.3.4.3 Constraints

In the aforementioned model, constraint (14.10) ensures that in any group for each

platform EC, all values of ECs are the same and equal to a shared value. Constraint

(14.11) confines the bound of the shared value in each group. Constraint (14.8)

describes the functional relationship between yki and ECs of pvk. A commonly used

method to formulate this functional relationship is to use regression-based methods

to estimate the parameters of this functional relationship (Kim et al. 2000; Fung

et al. 2002; Tang et al. 2002). Usually, for simplicity, this functional relationship

can be considered as a linear function as follows:

yki ¼ ai;0 þ ai;1x
k
1 þ ai;2x

k
2 þ . . .þ ai;nx

k
n (14.16)

354 X. Luo et al.

where Ai ¼ ðai;0; ai;1; ai;2; . . . ; ai;nÞ is a vector of coefficients to be estimated. These

coefficients can also be further defined as fuzzy parameters to represent the inherent

fuzziness in QFD.

Because a HoQ provides effective information on the basic relationships

between CRs and ECs, relationships among ECs, and the benchmarking set, such

information can be used as the base for estimation. For example, from the matrices

of HoQ, one can notice that some ECs may not have any relationship with a CR; this

indicates that the coefficients corresponding to these ECs in Eq. (14.16) can be set

to zero directly. Suppose that there are H competitors involved in HoQ and Xk
h

¼ ðxk1;h; xk2;h; . . . ; xkn;hÞT (h ¼ 1, 2, . . ., H) is the real-valued input vector of the

normalized target values of ECs of the hth competitor; the set of data points for

the regression can be defined as

P ¼ fðXk
h; y

k
i;hÞjh ¼ 1; 2; . . . ;Hg (14.17)

where yki;h is the degree of customer satisfaction of the hth competitor on cri.

By using these data points, the coefficients in Eq. (14.16) can be estimated via

least-square regression technique.

Similarly, constraint (14.9) describing the functional relationship between ecj
and other ECs can also be formulated as a linear function by using the regression-

based method.

The optimization model established in this section is a standard linear program-

ming one and can be solved by any linear programming software package. Due to the

high efficiency of simplex algorithm, the computation time for solving the model is

tolerable even for large-scale problem. However, if there are large quantities of

product profiles, the work related to construct the optimization model (such as

developing HoQs of product profiles and performing regression and sensitivity

analysis) may be tedious and time-consuming. It would be a good idea to develop

a software package to automatically establish HoQs, perform regression, and gener-

ate SIs for large-scale applications.

14.4 Case Study and Analysis

14.4.1 Case Description

An example of an industrial pincers, which is a product of an oil equipment

corporation in Jiangsu province, China, is introduced in this section to illustrate

the application of the proposed method. The pincers as shown in Fig. 14.2 is a

scalable product, i.e., a similar product can be developed by scaling the values of

one or more ECs of an existing product. These two products have similar functions

and structures, but their performances vary to satisfy different requirements

14 QFD-Based Optimization for Scalable Product Platform 355

of customers. The corporation has a series of pincers products with various sizes,

including pincers A, B, C, D, and E. In order to reduce the cost of design and

manufacturing, the corporation is planning to reduce variety in products and

develop a product platform for the pincers.

According to the survey in the marketplace, four major CRs are identified to

represent the biggest concern of the customers of the pincers. They are “strong

clamping force” (CR1), “long durability” (CR2), “light weight” (CR3), and “low

cost” (CR4). In light of the engineer’s design experiences of the product, four ECs

are identified, i.e., “size of clamping head” (EC1), “length of handle” (EC2),

“diameter of pivot” (EC3), and “thickness of antirust coat” (EC4). Four main

competitors of the corporation, Co1, Co2, Co3, and Co4, are considered. The binary

relationship between CRs and ECs, the correlation among ECs, and technical

measure data collected from the corporation and the main competitors of pincers

A are illustrated in HoQ in Fig. 14.3. The roof of the HoQ with black dots indicates

that EC1 and EC2 have correlations with each other. The middle part of the HoQ

with black dots shows the relationship between the CRs and ECs. The left part of

the HoQ shows the weights of CRs. The lower part of the HoQ shows the ECs

values of the products. The right part of the HoQ shows the benchmarking infor-

mation of the products. Since most of the information in HoQ is the same for

pincers product A, B, C, D, and E (e.g., the relationship between the CRs and ECs),

the HoQs of pincers B, C, D, and E are not provided. However, the different

information in HoQ, i.e., the engineering measures and benchmarking information

of pincers B, C, D, and E, are provided in Table 14.1.

14.4.2 Computational Results

The coefficients of the relationship functions and correlation functions are obtained

by using the least-square regression method provided in Microsoft Excel software

package. The calculation results are listed in Table 14.2. Based on the parameters in

HoQs and the coefficients, five QFD-based optimization models are established for

pincers, A, B, C, D, and E, respectively. Software ILOG CPLEX is applied to solve

Fig. 14.2 Schematic

diagram of an industrial

pincers

356 X. Luo et al.

these linear programming models. The obtained optimal values of the ECs are listed

in Table 14.3.

Sensitivity analysis is performed at the optimal point for each EC. The local SIs

and the global SIs of the ECs calculated according to Eq. (14.6) are given in

Table 14.4.

Following the steps described in Sect. 14.3.1, we sort the ECs as {EC3, EC4,

EC1, EC2} according to the global SIs in ascending order. By setting the number of

platform ECs as 0, 1, 2, 3, and 4, respectively, the corresponding optimization

models for maximizing the average degree of OCS are established. Again software

ILOG CPLEX is applied to solve the linear programming models. Figure 14.4

shows the calculated maximal OCS and OCS loss with different number of platform

ECs. One can see that the worst OCS loss (0.083) occurs when the number of

platform ECs is shifted from two to three, which implies that setting the number of

platform ECs as two is rational in order to avoid this OCS loss. Therefore, EC3 and

EC4 are identified as platform ECs.

From Fig. 14.4 it can be observed that if EC3 and EC4 which have relatively low

global SIs are selected as platform ECs, only 0.005 OCS is lost due to

commonization. On the other hand, if EC1 and EC2 which have relatively high

global SIs are set as platform ECs, 0.107 OCS is lost, which is much higher than that

of EC3 and EC4. This result empirically shows the feasibility of the sensitivity

analysis in the optimization process.

ECs EC1 EC2 EC3 EC4

EC1

EC2

EC3

EC4

C
or

re
la

ti
on

Benchmark information

CRs Weights Relation Ours Co1 Co2 Co3 Co4 Min Max

CR1 0.35 2.7 4.5 4.2 3.6 3.1 1 5

CR2 0.3 3.5 2.6 3.1 4.6 2.5 1 5

CR3 0.15 4.1 3.4 3.5 3.7 3.9 1 5

CR4 0.2 2.1 2.5 2.0 0.2 3.2 1 5

Units mm mm mm µm 50.6 58.8 57.4 56.4 51.4 Satisf.(%)

Ours 185 860 24 40

Co1 198 890 28 20

Co2 195 885 27 30

Co3 192 875 26 60

Co4 188 865 25 20

Min 180 850 20 20

Max 220 950 40 60 E
ng

in
ee

ri
ng

 M
ea

su
re

s

Fig. 14.3 HoQ of pincers A

14 QFD-Based Optimization for Scalable Product Platform 357

As shown in Table 14.3, the optimal values of EC3of pincers A, B, C, D, and E

are the same. Apparently, they can be grouped into one group. On the other hand,

the values of EC4 are different from each other and clustering analysis is required.

The result is that the values of EC4 are clustered into two groups: one group

includes pincers A and B and the other includes pincers C, D, and E. The

corresponding optimal values of the platform and non-platform ECs are listed in

Table 14.5.

In the computation process, many optimization models are required to be

established as described in Sect. 14.3. To help the reader better understand the

modeling, the ILOG CPLEX code corresponding to the model in Sect. 14.3.4.1 and

result of Table 14.5 is given as an example as follows:

Table 14.1 Engineering measures and benchmarking information of Pincers B, C, D, and E

Engineering measures in HoQ Benchmarking information in HoQ

ECs EC1 EC2 EC3 EC4

CR1 CR2 CR3 CR4

Satisf

(Units) (mm) (mm) (mm) (μm) (%)

Pincers B Ours 225 960 24 40 2.8 3.5 4.1 2.5 54.3

Co1 238 990 28 20 4.6 2.6 3.4 2.5 59.4

Co2 235 985 27 30 4.2 3.1 3.5 2.2 59.3

Co3 232 975 26 60 3.8 4.6 3.7 1.1 62.2

Co4 228 965 25 20 3.2 2.5 3.9 3.2 52.6

Min 220 950 20 20

Max 260 1,050 40 60

Pincers C Ours 305 1,060 24 40 2.3 3.5 4.1 3 52.4

Co1 318 1,090 28 20 4.3 2.6 3.4 3 59.5

Co2 315 1,085 27 30 3.9 3.1 3.5 2.7 59.1

Co3 312 1,075 26 60 3.4 4.7 3.7 1.6 61.5

Co4 308 1,065 25 20 2.7 2.5 3.9 3.7 51.1

Min 300 1,050 20 20

Max 340 1,150 40 60

Pincers D Ours 345 1,160 36 40 2.7 3.6 3.9 2.8 54.2

Co1 358 1,190 32 20 4.7 2.7 3.2 2.9 62.5

Co2 355 1,185 33 30 4.3 3.1 3.3 2.6 61.1

Co3 352 1,175 34 60 3.8 4.3 3.5 1.5 60.4

Co4 348 1,165 35 20 3.1 2.8 3.7 3.6 55

Min 340 1,250 20 20

Max 380 1,250 40 60

Pincers E Ours 385 1,260 24 40 2.8 3.1 4.1 3.4 54.4

Co1 398 1,290 28 20 4.5 2.6 3.4 3.1 61.8

Co2 395 1,285 27 30 4.2 2.8 3.5 3 60.8

Co3 392 1,275 26 60 3.7 3.7 3.7 2.3 60.6

Co4 388 1,265 25 20 3.1 2.5 3.9 3.8 54.6

Min 380 1,250 20 20

Max 420 1,350 40 60

358 X. Luo et al.

Table 14.2 The calculated coefficients for the pincers

Product EC Intercept x1 x2 x3 x4

Pincers (A–E) x1 0.04 1.02

x2 �0.03 0.98

Pincers A y1 2.02 2.67 3.25

y2 2.37 �0.08 0.56 2.13

y3 4.32 �0.9 �1.3

y4 3.84 �1.1 �1.85 �0.38 �2.78

Pincers B y1 2.22 2.37 3.25

y2 2.37 �0.08 0.56 2.13

y3 4.32 �0.9 �1.3

y4 3.84 �1.1 �1.85 �0.38 �1.82

Pincers C y1 1.62 2.67 3.75

y2 2.37 �0.08 0.56 2.16

y3 4.32 �0.9 �1.3

y4 4.34 �1.1 �1.85 �0.38 �1.82

Pincers D y1 2.05 2.37 3.93

y2 2.37 �0.08 0.56 1.53

y3 4.12 �0.9 �1.3

y4 4.34 �1.1 �1.85 �0.38 �1.82

Pincers E y1 2.12 2.87 2.75

y2 2.37 �0.08 0.56 1.23

y3 4.32 �0.9 �1.3

y4 4.34 �1.1 �1.55 �0.38 �1.22

Table 14.3 The optimal values of the ECs for the product profiles

Product EC1 EC2 EC3 EC4 Satisf. (%)

A 201.10 898.29 40.00 34.29 63.2

B 240.91 997.34 40.00 42.27 66.4

C 322.12 1100.81 40.00 51.10 69.8

D 359.84 1195.20 40.00 54.75 67.0

E 401.35 1298.93 40.00 60.00 68.6

Average 67.0

Table 14.4 The calculated sensitivity indices of ECs

Sensitivity index (SI) EC1 EC2 EC3 EC4

Local SI Product A 0.139 0.143 0.023 0.021

Product B 0.112 0.143 0.023 0.069

Product C 0.139 0.187 0.023 0.071

Product D 0.112 0.203 0.023 0.024

Product E 0.156 0.115 0.023 0.031

Global SI 0.132 0.158 0.023 0.043

14 QFD-Based Optimization for Scalable Product Platform 359

//ILOG CPLEX code:
int nCRs¼. . .;//number of CRs;
int nECs¼. . .;//number of ECs;
int nPPs¼. . .;//number of product profiles

range rCRs¼1..nCRs;
range rECs¼1..nECs;
range rRegEffis¼1..nECs+1;//coefficients of the regression
formulation (plus constant column)
range rPPs¼1..nPPs;

float w[rPPs][rCRs]¼. . .;//weights of CRs
float y_max¼. . .;//maximal value of y;
float y_min¼. . .;//minimal value of y;

float fRelaECs[rPPs][rECs][rRegEffis]¼. . .;//co-relationship
of ECs
float fRelaCRs2ECs[rPPs][rCRs][rRegEffis]¼. . .;//relationship
between CRs to ECs

dvar float+x[rPPs][rECs];//normalized target value of ECs
dvar float+y[rPPs][rCRs];//customer perception of the degree
of achievement of CRs
dvar float+x_h[rECs];//shared value of ECs

0.67 0.67 0.665
0.582

0.558

0 0.005
0.083

0.024
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 1 2 3 4

O
C

S

Number of platform ECs

Maximal OCS OCS LossFig. 14.4 The maximal OCS

and OCS loss with different

number of platform ECs

Table 14.5 The optimal

solution achieved by

the proposed approach

Product EC1 EC2 EC3 EC4 Satisf. (%)

A 201.10 898.29 40.00 34.29 63.2

B 240.91 997.34 40.00 34.29 65.0

C 322.12 1100.81 40.00 51.10 69.8

D 359.84 1195.20 40.00 51.10 66.7

E 401.35 1298.93 40.00 51.10 67.9

Average 66.5

360 X. Luo et al.

maximize//objective function: instantiation of Eq. (14.7)
sum(p in rPPs)

sum (i in rCRs)
w[p][i]*((y[p][i]-y_min)/(y_max-y_min)/nPPs);

constraint c1;//relationship between CRs and ECs: instan-
tiation of Eq. (14.8)
constraint c2;;//corelationship among ECs: instantiation
of Eq. (14.9)
constraint c3;//shared EC constraint: instantiation of Eq.
(14.10)
constraint c4;//shared EC constraint: instantiation of Eq.
(14.10)
constraint c5;//shared EC constraint: instantiation of Eq.
(14.10)
constraint c6;//confine the bound of y
constraint c7;//confine the bound of x

subject to
{

c1¼forall(p in rPPs)
forall(i in rCRs)

y[p][i]¼¼fRelaCRs2ECs[p][i][1]+sum(j in 2..nECs
+1) (x[p][j-1]*fRelaCRs2ECs[p][i][j]);

c2¼forall(p in rPPs)
forall(j in rECs:j<¼2)

x[p][j]¼¼fRelaECs[p][j][1]+sum (j1 in 2..nECs
+1) (x[p][j1-1]*fRelaECs[p][j][j1]);

c3¼forall(p in rPPs)
x[p][3]¼¼x_h[1];

c4¼forall(p in rPPs:p<¼2)
x[p][4]¼¼x_h[2];

c5¼forall(p in rPPs:p>2)
x[p][4]¼¼x_h[3];

c6¼forall(p in rPPs)
forall(i in rCRs)
{

y[p][i]>¼1.0;
y[p][i]<¼5.0;

}
c7¼forall(p in rPPs)

forall(j in rECs)
x[p][j]<¼1.0;

}

14 QFD-Based Optimization for Scalable Product Platform 361

One can see from Table 14.3 that the average degree of customer satisfaction to

all product profiles is 67.0 % if the optimal ECs are obtained individually for each

product profiles. However, when the values of platform ECs are confined to the

shared values accordingly, the average degree of customer satisfaction is declined

to 66.5 % as shown in Table 14.5. This indicates that 0.5 % degree of customer

satisfaction is lost due to the commonization of the product platform. Figure 14.5

depicts the comparison result of these two different modes on degree of customer

satisfaction for each pincers. The loss of customer satisfaction is mainly caused by

the pincers B, D, and E because their ECs are forced to change to the shared values.

14.4.3 Advantages Over a Two-Stage Approach

Some product platform design approaches use two-stage optimization. For exam-

ple, the values of platform ECs are determined heuristically, and then the

non-platform ECs of each product profile are optimally instantiated. However,

two-stage approaches may not produce the best overall performance of a product

family because the optimization is partitioned into two or more stages (Messac et al.

2002). For comparison, we calculated the platform ECs heuristically according to

the weighed-sum method provided by Dai and Scott (2007) as follows:

x̂j0l ¼
X
k02Vj0 l

xk
0
j0 � SIk

0
j0

0
@

1
A
, X

k02Vj0 l

SIk
0

j0 ; ðl ¼ 1; 2; . . . ; nj0 ; j
0 2 UÞ (14.18)

54

56

58

60

62

64

66

68

70

72

Product A Product B Product C Product D Product E

D
eg

re
e

of
 S

at
is
f.

(%
)

Mode1: Optimize each product variant individually (No platform)

Mode2: Optimize the platform and non-platform ECs simultaneously

Mode3: Set the values of platform ECs heuristically, then optimize non-platform ECs

Fig. 14.5 Comparison of Mode 1, Mode 2, and Mode 3

362 X. Luo et al.

where SIk
0

j0 is the local SI of the j0 th EC of the k0 th product profile. By applying

Eq. (14.18) with the optimal values of ECs in Table 14.3 and the local SIs in

Table 14.4, the common value of the EC3 is calculated as 40.0 and the common

values of EC4 for the first and the second group are calculated as 40.43 and 53.98,

respectively. Then the obtained platform ECs are set as given parameters, and

the optimal non-platform ECs for each product profile are obtained by solving the

optimization model. The result of this approach is listed in Table 14.6. One can see

that the average degree of customer satisfaction of this approach is 65.9 %, which is

0.96 % lower than that of the single-stage approach. A detailed comparison on each

product profile between these two approaches is also given in Fig. 14.5. The

comparison results show that, based on the data of this case, simultaneously

optimizing platform and non-platform ECs yields better solutions although it may

cause a very few increase on computation time.

14.5 Discussions and Conclusions

Determination of the optimal target values for the platform and non-platform ECs is

an important activity in product platform design process. In this paper, a five-step

QFD-based optimization method is presented with a view to achieving a high level

of overall customer satisfaction. By using the method proposed in this paper, the

optimal solution for the problem can be achieved with the maximal average degree

of customer satisfaction of all product profiles, and thus the total quality loss of

the product family due to commonization is minimized.

In addition, our approach can be categorized as a kind of single-stage optimiza-

tion approach, which seeks to optimize product platform and corresponding family

of products simultaneously (Simpson 2004). Compared with two-stage approaches,

single-stage approach expectedly yields improvements in the overall performance

of the product family (Messac et al. 2002). The comparison results based on the

case data in Sect. 14.4.3 also show that our approach has a higher average degree of

customer satisfaction. The main disadvantage of a single-stage approach is the

higher dimensionality of the optimization formulation. Nevertheless, the optimiza-

tion model in proposed approach is a linear programming one; thus the computation

time is tolerable.

Table 14.6 The optimal

solution achieved by a

two-stage approach

Product EC1 EC2 EC3 EC4 Satisf. (%)

A 195.23 883.91 40.00 40.43 59.4

B 240.91 997.34 40.00 40.43 66.1

C 320.32 1096.38 40.00 53.98 68.9

D 359.84 1195.20 40.00 53.98 66.9

E 401.35 1298.93 40.00 53.98 68.1

Average 65.9

14 QFD-Based Optimization for Scalable Product Platform 363

One limitation of the proposed approach is that for large-scale problem in which

a large quantity of product profiles are involved, the quantum of the work for

developing HoQs of product profiles and performing the regression may increase

considerably. Therefore, an interactive software package is suggested to be devel-

oped to automatically establish HoQs, perform parameters regression, and generate

SIs for large-scale applications. Although in theory the proposed method can be

used for general-type scalable product platform, experiments for very complex

products or systems are not performed so far. Therefore, the applicability of the

propose method for very complex products or systems is not verified.

Another limitation is that in this research we only consider the linear forms of

f, g, and h in the optimization models. However, they can be in complex nonlinear

forms in practical scenario. One of our research potentials is to build these nonlinear

relationships by using appropriate approximation methods based on existing prod-

uct data and to establish corresponding optimization models.

Acknowledgments This research was financially supported by the National Science Foundation

of China (NSFC Proj. 71171039, 61273204, and 71021061) and the Fundamental Research Funds

for Central Universities (Proj. N110204005).

References

Akao Y (1990) Quality function deployment: integrating customer requirements into product

design. Productivity Press, Cambridge, MA

Chen Y, Tang J, Fung RYK, Ren Z (2004) Fuzzy regression-based mathematical programming

model for quality function deployment. Int J Prod Res 42:1009–1027

Chen Y, Fung RYK, Tang J (2005) Fuzzy expected value modelling approach for determining

target values of engineering characteristics in QFD. Int J Prod Res 43:3583–3604

Cohen L (1995) Quality function deployment: how to make QFD work for you. Addison-Wesley,

New York, NY

Conner C, de Kroon JP, Mistree F (1999) A product variety tradeoff evaluation method for a

family of cordless drill transmissions. In: 1999 ASME design technical conference, Las Vegas,

Nevada, Paper No. DETC99/DAC-8625

Dai ZH, Scott MJ (2007) Product platform design through sensitivity analysis and cluster analysis.

J Intell Manuf 18:97–113

Erixon G, Von YA, Arnstrom A (1996) Modularity: the basis for product and factory

reengineering. Ann CIRP 45:1–4

Fellini R, Kokkolaras M, Michelena N, Papalambros P, Saitou K, Perez-Duarte A, Fenyes P (2004)

A sensitivity based commonality strategy for family products of mild variation, with applica-

tion to automotive body structures. Struct Multidiscip Optim 27:89–96

Fujita K (2002) Product variety optimization under modular architecture. Comput Aided Des

34:953–965

Fung RYK, Popplewell K, Xie J (1998) An intelligent hybrid system for customer requirements

analysis and product attribute targets determination. Int J Prod Res 36:13–34

Fung RYK, Tang JF, Tu YL, Wang DW (2002) Product design resources optimization using a

non-linear fuzzy quality function deployment model. Int J Prod Res 40:585–599

Hauser JR, Clausing D (1988) The house of quality. Harv Bus Rev 66:63–73

Hsiao SW, Liu E (2005) A structural component-based approach for designing product family.

Comput Ind 56:13–28

364 X. Luo et al.

Jariri F, Zegordi SH (2007) Quality function deployment planning for platform design. Int J Adv

Manuf Technol 36:419–430. doi:10.1007/s00170-006-0853-3

Jiao JX, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18:5–29

Karsak EE, Sozer S, Emre AS (2003) Product planning in quality function deployment using a

combined analytic network process and goal programming approach. Comput Ind Eng

44:171–190

Khoo LP, Chen CH, YanW (2002) An investigation on a prototype customer-oriented information

system for product concept development. Comput Ind 49:157–174

Kim KJ, Moskowitz H, Dhingra A, Evans G (2000) Fuzzy multicriteria models for quality function

deployment. Eur J Oper Res 121:504–518

Kim KJ, Lee DU, Lee MS (2006) Determining product platform elements for mass customization.

Int J Prod Qual Manag 1:168–182

Kumar D, Chen W, Simpson TW (2006) A market-driven approach to the design of platform-

based product families. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization

conference 200–224, Portsmouth, VA

Lin MC,Wang CC, Chen MS, Chang CA (2008) Using AHP and TOPSIS approaches in customer-

driven product design process. Comput Ind 59:17–31

Madu CN (2006) House of quality (QFD) in a minute. Chi Publishers, Fairfield, CT

Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13:213–235

Messac A, Martinez MP, Simpson TW (2002) Effective product family design using physical

programming. Eng Optim 34:245–261

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. Free Press, New York, NY

Meyer MH, Utterback JM (1993) The product family and the dynamics of core capability. Sloan

Manage Rev 34:29–47

Moore WL, Louviere JJ, Verma R (1999) Using conjoint analysis to help design product

platforms. J Prod Innov Manag 16:27–39

Moskowitz H, Kim KJ (1997) QFD optimizer: a novice friendly quality function deployment

decision support system for optimizing product design. Comput Ind Eng 33:641–655

Nayak RU, Chen W, Simpson TW (2002) A variation-based method for product family design.

Eng Optim 34:65–81

Park T, Kim KJ (1998) Determination of an optimal set of design requirements using house of

quality. J Oper Manag 16:469–581

Simpson TW (2004) Product platform design and customization: status and promise, artificial

intelligence for engineering design. Anal Manuf 18:3–20

Simpson TW, Maier JRA, Mistree F (1999) A product platform concept exploration method for

product family design. Design theory and methodology – DTM’99, Las Vegas, Nevada,

ASME, Paper No.DETC99/DTM-8761

Simpson TW, Siddique Z, Jiao RJ (2006) Product platform and product family design: methods

and applications. Springer, New York, NY

Tang JF, Fung RYK, Xu BD, Wang DW (2002) A new approach to quality function deployment

planning with financial consideration. Comput Oper Res 29:1447–1463

Thevenot HJ, Simpson TW (2006) Commonality indices for product family design-a detailed

comparison. J Eng Des 17:99–119

Wang J (1999) Fuzzy outranking approach to prioritize design requirements in quality function

deployment. Int J Prod Res 37:899–916

Wassermann GS (1993) On how to prioritize design requirements during the QFD planning

process. IIE Trans 25:59–65

Williams CB, Allen JK, Rosen DW, Mistree F (2007) Designing platforms for customizable

products in markets with non-uniform demand. Concurrent Eng: Res Appl 15:106–201

14 QFD-Based Optimization for Scalable Product Platform 365

http://dx.doi.org/10.1007/s00170-006-0853-3

Chapter 15

Cascading Platforms for Product

Family Design

Jiju A. Ninan and Zahed Siddique

Abstract Product family design is a trade-off between distinctiveness of products

in the family and commonality between them. Increasing the commonality of

components can lead to loss of performance of product variants. Saving in cost

comes at the expense of performance of products. Therefore selection of

components to be standardized across the family and their configuration is a critical

step in the design of product families. A common approach to the product family

design is to treat it as a design optimization problem so that trade-off decisions

between commonality and performance can be performed. In this chapter we

present a scale-based multi-platform optimization approach. The approach uses

systematic relaxation to increase leverage among multiple platforms and provide

increase in performance for family members supported by the platform. The three

stages involved in the approach are (1) single platform, (2) platform evaluation, and

(3) platform relaxation. The Black and Decker universal motor family is used to

demonstrate the approach.

15.1 Introduction

Product development enterprises normally offer a range of products varying from

low cost-low performance to high cost-high performance products to serve different

market segments. Traditionally, the product varieties were individually designed

and manufactured to suit the requirements of the particular market segment.

J.A. Ninan

Schlumberger, Sugarland, TX, USA

Z. Siddique (*)

School of Aerospace and Mechanical Engineering, University

of Oklahoma, Norman, OK 73019, USA

e-mail: zsiddique@ou.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_15,
Springer Science+Business Media New York 2014

367

mailto:zsiddique@ou.edu

Each product, in a family, had different components, even though they served the

same or similar functions. The products in a family lacked commonality among the

different products, resulting in high cost in design, manufacturing, and inventory.

These costs can be reduced or eliminated by sharing components and parts among

the different family members. Companies are moving towards using platforms to

support families, as a result of these advantages. Based on the product

differentiating factors, product families can be classified as (1) modular product

families—wherein product family members are instantiated by adding, substituting,

and/or removing one or more functional modules from the product platform and (2)

scalable product families—wherein scaling variables are used to “stretch” or

“shrink” the product platform in one or more dimensions to obtain the different

product variants.

The trade-off between performance and commonality is one of the main

concerns in determining a product platform for a set of similar products. Designers

need to balance the commonality of the products in the family with the individual

distinctiveness of each product in the family. Normally a product family design

process includes (1) designing the platform and (2) designing the individual product

variants from the platform. Therefore, product family design should focus on the

design of the entire family and platform, as well as the individual products. Several

researchers have treated the design of product families as a design optimization

problem (see Sect. 15.2). The advantage of this methodology is that designers can

maintain a balance between commonality and cost. The platform and family

members can simultaneously be optimized for performance, cost, and commonality

during product design.

Based on the number of stages involved in the design process, product family

optimization methods can be categorized as single-stage and multistage design

optimization. Single-stage approaches seek to simultaneously optimize the product

platform and corresponding products in the family of, while multistage approaches

optimize the platform first and then instantiate the individual products from the

platform. Single-stage optimization usually requires only one optimization run, but

the size of the optimization problem increases tremendously as the number of

parameters and number of products in the family increases. Multistage optimization

breaks the larger problem into smaller subproblems. They require at least one

optimization run for determination of the platform, and “n” optimization runs to

leverage the “n” products in the family from the platform.

A product family can be supported using a single platform, which may cause

poor performance of individual product family members. Hence, a single platform

might not be sufficient to successfully leverage all of the products in the family

(Dai and Scott 2007). In multi-platform, the products are leveraged from two or

more platforms so that the loss of performance due to commonalization can be

reduced. In multi-platform design, the challenges are to find (1) the minimum

number of platforms that can serve the family of products with minimal loss of

performance, (2) the platform from which each product is leveraged from, and

(3) which parameters constitute the platform parameters for each platform. In a

multi-platform approach, one of the drawback is that the platforms can be

368 J.A. Ninan and Z. Siddique

unrelated, increasing the cost in design, manufacturing, assembly, etc. Hence, a

multi-platform approach that explicitly tries to ensure some level of commonality

among platforms can be more efficient. The approach presented in this chapter

combines the single and multi-platform approach to systematically relax a single

platform into multi-platforms, which are related through a set of common

parameters, to increase performance of the family. The systematic relaxation of

parameters allows different platforms to maintain commonality among them.

The inputs to the relaxation formulation are the parametric description of the

products, constraints related to performance of products, and underlying mathemati-

cal models relating the product parameters to constraints and objectives. The pro-

posed approach consists of three stages (Fig. 15.1):

1. Single platform stage

2. Platform evaluation stage

3. Platform relaxation stage

The starting point for the proposed approach is a product family based on a

single platform optimization. The products are designed assuming that a single

platform is sufficient to scale all the products in the family. In the second stage, the

resulting product family from the first stage is evaluated. The loss of performance

due to commonality for each product or the family as a whole is evaluated. Family

members, optimized individually for performance, are used as the benchmark for

comparison. In the platform relaxation stage, the single platform parameters are

systematically relaxed and explored to increase performance of selected family

members. The objective of systematic platform parameter relaxation ensures com-

monality among the first and the succeeding platforms while generating improved

products.

Product Family
Specifications

Mathematical
Model

Single Platform Stage

Evaluation Stage

Platform Relaxation Stage

Product
Platforms

Product Instances
and Performances

Fig. 15.1 Platform

relaxation method inputs

and outputs

15 Cascading Platforms for Product Family Design 369

15.2 Literature Review

Several researchers have used optimization approaches to design family of products

to arrive at a suitable a product platform and also product varieties. Optimization

approaches are used to perform trade-offs between commonality (the underlying

platform) and the performance of the product variants. Researchers have studied the

effect of commonality on individual product performances such as cost, efficiency,

strength, and reliability of the product variants. A comprehensive review and

classification of product family optimization methods was presented by Simpson

(2006). Belloni et al. (2008) compared heuristic optimization approaches for

product line design problems. Some of the product platform and family optimiza-

tion approaches are highlighted next.

Simpson (1998) developed the Product Platform Concept Exploration Method

(PPCEM), which is a multistage method for design of scale-based product families.

The formulation returns the optimized product platform and the product family

instances. Variation-Based Methodology for Product Family Design (VBPDM)

(Nayak et al. 2002) is an extension to PPCEM. In VBPDM the platform and scale

variables are identified in the optimization formulation. Nelson et al. (2001)

presented a multi-criteria optimization model to determine trade-off decisions in

product family designs. The authors demonstrated how to generate the Pareto set in

case of product family design, where each product family member has different

objective functions. Product Family Penalty Function using Physical Programming

(PFPF) developed by Messac et al. (2002) uses physical programming (Messac

1996) for product family design. The difference between PFPF and PPCEM is that

in PPCEM, the scale variables of the product family needs to be known prior.

Dai and Scott (2007) presented a method for product family design using cluster

analysis and sensitivity analysis. They presented a multi-platform design method,

where design variables may be shared among variants using any possible combina-

tion of subsets. A drawback of the suggested method is that as the problem size

increases, the complexity of the problem will also tremendously increase. Simpson

and D’Souza (2004) presented a product family design approach using genetic

algorithm to simultaneously design the family of products while considering

varying levels of commonality within the product family.

Fellini et al. (2006) proposed an approach for obtaining desired level of

commonality through problem size reduction in platform selection and then

maximizing commonality among variants, while minimizing individual perfor-

mance deviations. Khire et al. (2006) presented a method to specify the platform

configuration and optimize the design of the platform and the individual variants by

choosing design variable values while maintaining commonality defined in the

platform configuration. Khajavirad and Michalek (2007) presented a decomposed

gradient-based approach to jointly determine the optimal selection of components

to be shared across product variants and the optimal values for design variables that

define those components. Moon et al. (2011) presents a multi-objective particle

swarm optimization (MOPSO) approach to select the best platform design strategy

370 J.A. Ninan and Z. Siddique

from a set of Pareto-optimal solutions based on commonality and design variation

within the product family. Gao et al. (2009) presented a three-step approach for

finding the optimal values of platform and non-platform parameters in a modular

scale-based platform.

15.3 Platform Relaxation for Multi-platform Design:

Overall Approach

The platform relaxation method is a three-stage design process (Fig. 15.1). The first

stage is to identify a common platform that can support the entire family of products

(single platform stage). The performance of the family members is then evaluated

by comparing them with the benchmarks using predetermined criteria. Benchmark

products are optimized individually (without commonality) with the same specifi-

cation as the corresponding family member. Family members that perform

inadequately, compared to the benchmark, are segregated and separated out from

the current platform. This stage is referred to as the evaluation stage. In the last

stage, the parameters of the initial platform are relaxed systematically to arrive at a

new platform to support the set of products separated out. Relaxing or cascading the

platforms helps to attain commonality between different platforms to achieve

higher cost savings. The resulting products, supported by the relaxed platform,

are again evaluated and the platform is again cascaded if necessary. The design

process is iterative and is continued until all members of the product family have

acceptable performance.

The specifications of the product family members and the underlying mathemat-

ical model are provided by the designer. The mathematical model usually

comprises of bounds and constraints on the design parameters and parametric

relation among design parameters and responses. The platform relaxation method

returns the parameter values of product family members, configuration of different

platforms, platform from which each product is leveraged, performance of product

family members, and their performance loss due to commonality. In scale-based

product family architecture (Table 15.1), each product instance P1, P2,. . .Pm of the

family can be uniquely and completely described by the same set of product

parameters x1, x2,. . .xn. These parameters describe the attributes of the physical

components present in the products. If the value of any of the parameters is constant

throughout the family (in case of single platform) or a subset of products (in case of

multi-platform), the parameter is said to be a platform parameter. The product

parameters related to the entire product family are defined as xij, which indicates the
ith parameter for the jth product. The entire family of products is then a set of design

parameters (x). The design task is to find the value of the parameters in x that results
in a product family with maximum commonality and minimal loss in performance.

Y is the set of platform commonality variables corresponding to the product

parameters X. PP is the set of product platforms used to leverage the products.

15 Cascading Platforms for Product Family Design 371

Initially the number of platforms required is unknown. Xpk is the set of variables for

each platform. Nk represents the number of platform parameters in each platform.

The steps associated with the platform relaxation method and associated optimiza-

tion formulations are discussed in the following subsections.

15.3.1 Single Platform Stage

The starting point for the platform relaxation method is determining the entire

product family using a single platform, where platform parameters have the same

value for all the products in the family. There are two possible formulations that

have been widely used to determine the single platform (1) platform specified and

(2) non-platform specified. In platform-specified approach, the designer specifies

the platform parameters. The aim of the optimization formulation is to arrive at an

optimum x (_x) which enforces commonality of specified platform parameters

throughout the family and also minimizes the loss of performance due to common-

ality. In the non-platform-specified formulation (Table 15.2), the aim is to explore

different levels of commonality and perform trade-off between commonality and

Table 15.1 General steps in platform relaxation method

PF ¼ {p1, p2,. . ., pm}
Y ¼ {y1, y2,. . ., yn}
PP ¼ {ppk| ppk is the set of product platforms from which the family is derived}

PP ¼ {pp1, pp2,. . ., ppf}
Pck ¼ {ppck|ppck is the set of products considered for leveraging from the platform “k”}
Xpk ¼ {xpk|xpk is the set of platform parameters for platform “k”}
Cik is the set of platform parameter values in platform “k” (if i∈xpk)
Nk ¼ Cardinality of xpk

1. Single platform stage
1. Execute “individual optimization formulation”

2. k ¼ 1

3. Pc1 ¼ PF, Pc1’ ¼ ∅
4. Execute “platform-specified/non-platform-specified formulation”

5. k ¼ k + 1

2. Evaluation stage
6. Δj ¼ fbenchmark;jðw1z1 þ w2z2 þ � � � þ wnznÞ�ffamily;jðw1z1 þ w2z2 þ � � � þ wnznÞ8j 2 Pck�1

Case 1: All Δj values < η; Pck ¼ {}; Goto 9

Case 2: Some Δj values < η & other Δj values > η then (a)/(b)

(a) Include products with Δj values > η in Pck+1; k ¼ k + 1; Goto 7

(b) Include all products in Pck; Goto 7

Case 3: No Δj values < η;Pck ¼ Pck-1; Goto 7

3. Cascading stage
7. Execute “Platform Relaxation Formulation”

8. Goto 6:

9. End

372 J.A. Ninan and Z. Siddique

loss of performance of family members to arrive at a suitable product platform and

leverage the product family members using the platform.

In both instances, platform commonality can be modeled mathematically for the

family by

xij ¼ xijþ1 j; j 6¼ m if i 2 xp (15.1)

where xp is the set of platform variables. As mentioned earlier to represent sharing

of parameters, a set of binary decision variable (0, 1) corresponding to each product

parameter are utilized. These platform commonality decision parameters are

represented by yi.

yi ¼ 1when the parameter is a platform parameter

0when the parameter is a scale parameter

�

yi parameters can be used to turn on/off the commonality of corresponding

parameters. In the platform-specified formulation, yi values of platform parameters

are set to 1 to enforce commonality. In non-platform-specified formulation,

Table 15.2 General formulation for non-platform specified optimization

Indices

j ¼ Product family members, j∈J, J ¼ {1,2,3,.,m}
t ¼ Product Constraints, t∈T, T ¼ {1,2,3,.,s}

l ¼ System goals, l∈L, L¼ {1,2,3,.,p}

Variables

xij is the parameter ‘i’ in product ‘j’

y1, y2, . . ., yn are the commonality parameters corresponding to each parameter in I
G1g is the target goal of objective 1 for product j

d+1j is the positive deviation of the first goal for jth product

d�1j is the negative deviation of the first goal for jth product

w1j is the weights for the deviation variables d1j
+/� in the objective function

wi is the weights for the commonality parameters in the objective function

Objective
Pp
l¼1

Pm
j¼1

f wlj; d
�
lj ; d

þ
lj

� �
�Pn

i¼1

wiyi

Subject to

xlowerij � xij � xupperij ;8i 2 I and 8j 2 J Bounds on the design variable

yi ¼ 1 when xi is a platform

0 when xi is not a platform

�

gt(x) ¼ 0, t ¼ 1,2,. . .., s Constraint relating to individual products

xij � xijþ1

� �
yi ¼ 0 8 i 2 I and j 2 J; j 6¼ mCommonality constraints

y2i � yi 0 8 i 2 I Constraints for converting yi to continuous variables

AljðxÞ þ d�lj þ dþlj ¼ Glj 8l 2 L and j 2 J; Objectives transformed to system goals

d�lj ; d
þ
lj � 0; d�lj � dþlj ¼ 0 8l 2 L and j 2 J; Non negativity of deviation variables

15 Cascading Platforms for Product Family Design 373

yi helps to explore levels of commonality by activating or deactivating platform

commonality for different parameters. The commonality is maximized through

trade-offs between maximum number of platform parameters and performance

loss for family members. In this chapter we use the non-platform-specified

design formulation. The general form of the non-platform-specified formulation

is shown in Table 15.2. g(X) are the constraints that need to be satisfied by each

product; li and ui represent the lower and upper bounds of the product parameters xi.
The number of platform counter “k” is set to 1 for the single platform stage.

In the single platform stage, Pc1 includes all the products in the family (Pc1 ¼ PF,
Pc1’ ¼ ∅).

A goal programming model is adopted to consider multiple objectives for

product family design. In goal programming the target values are identified for

each objective, and the deviation of actual objective value from the targets is

captured using deviation variables. Deviation variables dþlj and d�lj are the positive
and negative deviation of actual attainment Alj (x) from the target Glj. Both d

þ
lj and

d�lj are constrained to have only nonnegative value.

If AljðxÞ � GljðunderachievementÞ then d�lj > 0 and dþlj ¼ 0

If AljðxÞ � GljðoverachievementÞ then dþlj > 0 and d�lj ¼ 0

and if AljðxÞ ¼ Gljðexactly satisfiedÞ then d�lj ¼ 0 and dþlj ¼ 0

(15.2)

When values larger than target are undesirable, the positive deviations are

minimized in the objective function and vice versa. To keep the actual values

close to target, both negative and positive deviations are minimized. The term
Pn
i¼1

wiyi maximizes the number of platform parameters. Different terms in the

objective function are weighted so that all of them are given equal priority while

optimization is performed.

15.3.2 Evaluation Stage

The benchmarks for the evaluation stage are determined through optimizing the

family members individually, subject to design, and performance requirements of

corresponding product instance. The formulations (Table 15.3) are run indepen-

dently, corresponding to each product in the family. The individual optimum

corresponds to the best performance that can be achieved subject to requirements

of the products.

In the evaluation stage products leveraged from the platform are compared

against the benchmark products. Let z1, z2, . . ., zp be the performance measures

considered in the objective function; z1j, z2j, . . ., zpj be their value for product

“j”; and z�1j; z
�
2j; . . . ::; z

�
pj be the value of their corresponding benchmark.

374 J.A. Ninan and Z. Siddique

The performance of the products is Δj ¼ � N1z1j � N1z
�
1j

� �
� N2z2j � N2z

�
2j

� �
. . .

� Npzpj � Npz
�
pj

� �
: Here N1, N2,. . ., Np are the factors used to normalize the

performances for comparison. Depending on the nature of each desired perfor-

mance measure, the following sign conventions are used for each of the factors in

the function:

For positive valued targets: when performance higher than target is desired and the

performance measure obtained for product “j” is higher than target, a negative

sign is assigned, and when performance is lower than target, a positive sign is

assigned.

For negative valued targets: when performance higher than target is desired and the

performance measure obtained for product “j” is higher than target, a negative

sign is assigned, and if the performance measure obtained for product “j” is

lower than target, a negative sign is assigned.

When the performance measure is desired to be exactly equal to the target, a

positive sign is assigned. Δj values are calculated for each product leveraged from

the current platform. After Δj is calculated, the following cases represent the

possible scenarios:

Case 1—All Δj values < jηj: If all the products have performance within the

acceptable limits, |η|, then further iterations or platforms are not required, and

the platform relaxation method is considered to be complete.

Case 2—Some Δj values < jηj: If some of the products satisfy the product perfor-

mance criteria, while others do not, the designer has two possible options (a)

include products with acceptable performance (Δj values < jηj) to be leveraged

from the current platform, separate the nonconforming (Δj values < jηj) to be

leveraged from relaxed platform. The platform count is now incremented by 1 to

k ¼ k + 1, and then the platform relaxation formulation is repeated with the

nonconforming products. (b) Include both conforming and the nonconforming

products and relaxed platform Pck�1 further. The choice between options (a) or

(b) is dependent on the cost burden of developing another platform and the

manufacturing processes involved.

Case 3—No Δj values < jηj; Pck ¼ Pck�1: If none of the products are conforming,

then the only option is to relax the platform further till conforming products are

attained.

Table 15.3 Individual

optimization of product

instances

Given: Mathematical model

Product constraints

Minimize f(w1z1,w2z2,.,wnzn)

Subject to: gt(X) � 0 8r∈R
li � xi � ui8i∈I

(formulation repeated ‘m’ times for m products)

15 Cascading Platforms for Product Family Design 375

The threshold value influences the number of products that will be retained in the

current platform. Changing the threshold value will change the platform leveraging

approach. It is assumed that the designer specifies a reasonable threshold value for

loss of performance.

15.3.3 Relaxation Stage

In this stage only the nonconforming products, separated during evaluation stage, is

considered. Let pck be the set of products being considered for leveraging from the

platform “k” (Table 15.4). Let xpk denote the platform parameters for the current

platform ppk. The idea is to arrive at a new platform ppk+1, which consists

of platform parameters xpk+1 formed by relaxing one of the platform parameters

in xpk to scalable parameter (xpk+1 � xpk). The value of platform parameters in xpk+1
is held same as that of xpk.

The platform relaxation formulation starts from the previous platform, with all

the platform parameters from the previous platform (ppk�1) held initially to the

previous platform (Cik�1) values by applying the following constraints:

xij � Cik�1

� �
yi ¼ 0; 8i 2 xpk�1 and 8j ¼ pck (15.3)

Here Cik�1 corresponds to the value of platform parameters in the previous plat-

form. Value of yi parameters is held to 1 for Cik�1. The objective of the formulation

is to improve the performance of the products by relaxing the previous platform.

The relaxation formulation is used to select a platform parameter that when

converted to a scale parameter minimizes the deviation of performance. To achieve

this two constraints are introduced:

X
y3i � Nk�1 � 1; 8 i 2 xpk�1 (15.4)

Table 15.4 General platform relaxation formulation

Minimize Pp
l¼1

Pm
j¼1

f wlj; d
�
lj ; d

þ
lj

� �

Subject to xlowerij � xij � xupperij ;8i 2 I and 8j 2 pck Bounds on the design variable

yi ¼ 1 when xi is a platform

0 when xi is not a platform

�

gt(x) ¼ 0, t ¼ 1,2,. . ..,s Individual products constraints

xij � Cik�1

� �
yi ¼ 0 8i 2 xpk�1 and 8j 2 pck Commonality constraintsP

y3i � Nk�1 � 1; 8i 2 xpk�1 Relaxation constraintsP
yi � Nk�1 � 1; 8i 2 xpk�1

AljðxÞ þ d�lj þ dþlj ¼ Glj 8l 2 L and j 2 J;Objectives transformed to system goals

d�lj ; d
þ
lj � 0; d�lj � dþlj ¼ 0 8l 2 L and j 2 J;Non negativity of deviation variables

376 J.A. Ninan and Z. Siddique

X
yi � Nk�1 � 1; 8 i 2 xpk�1 (15.5)

Here Nk�1 is the number of platform parameters in the previous platform; the

formulation selects one of the parameters that can be converted to scale parameters.

To satisfy the above constraints, only (Nk�1 � 1) number of yi parameters are equal

to 1, and the remaining yi parameters have a value of 0. This constraint also ensures

that yi accepts only discrete, 0 or 1 value and no value in between. The objective

function in this case is minimization of deviation parameters.

15.4 Universal Electric Motor Case Study

Universal electric motors are capable of operating on alternating current (AC) and

direct current (DC). They deliver more torque for a given current than any other

types of AC motors (Chapman 1991). The high-performance characteristics of the

universal motor, coupled with their flexibility, have led to a wide variety of

applications, especially in household appliances, where they are found in, e.g.,

electric drills and saws, blenders, vacuum cleaners, and sewing machines (Veinott

and Martin 1986).

As shown in Fig. 15.2, a universal electric motor is composed of an armature

and a field, which are also referred to as the motor and stator, respectively. The

armature consists of a metal shaft and slats (armature poles) around which wire is

wrapped longitudinally as many as 1,000 times. The field consists of a hollow

cylinder within which the armature rotates. The field also has wire wrapped

longitudinally around interior metal slats (field poles) as many as 100 times.

In order to reduce cost, size, and weight, the motor that satisfies its performance

requirements with the least overall mass and highest efficiency is considered to be

the most desirable. The design objective is to design a family of ten universal

electric motors that satisfy a variety of torque and power requirements and is

supported using platform(s). Different varieties scaled from the platform(s) will

meet specific requirements.

The product parameters for the electric motors are (1) number of turns in the

armature, (2) number of turns in the field, (3) area of the armature, (4) area of the

field wire, (5) radius of the motor, (6) thickness of the stator, (7) current drawn by

the motor, and (8) stack length. The current is varied in each motor by using

electrical resistors. There is no manufacturing advantage by holding current as a

platform. Moreover, varying the current can help to achieve different power

requirements without having to vary other parameters that affect the manufacturing

process. Torque requirements for individual electric motors are T ¼ {0.05, 0.10,

0.125, 0.15, 0.30, 0.25, 0.30, 0.35, 0.40, and 0.5}. The constraint on magnetizing

intensity ensures that the magnetic flux intensity within each motor does not exceed

the physical flux carrying capacity of the steel. The constraint on feasible geometry

ensures that the thickness of the stator does not exceed the radius of the stator since

15 Cascading Platforms for Product Family Design 377

the thickness is measured from the outside of the motor inward. The required output

power is taken as 300 W, and the ten torques values range from 0.05 to 0.5.

There are two goals for each motor (1) efficiency and (2) mass, with targets of

79 % and 0.5 kg, respectively. A lower bound of 15 % on efficiency and an upper

bound of 2.0 kg for mass are imposed for each product within the product family.

The design requirements, range of possible values for product parameters, and the

constraints related to the product family as introduced by Simpson et al. (2001) are

shown in Table 15.4. In this case study, application of platform relaxation method

for designing scale-based product families supported by multiple platforms is

demonstrated. The platform relaxation method returns the configuration of the

platform(s) from which each motor is leveraged, value of platform parameters,

value of scale parameters for each motor, and performance of each motor.

The general steps of platform relaxation method, introduced in the previous

section, are used for the design of electric motor product family. The three stages

are explained in the following subsections. The general steps in the method are

shown in Table 15.1. The product family PF consists of ten electric motors {P1, P2,

. . ., P10} with torque requirements of {0.05, 0.10, 0.125, 0.15, 0.30, 0.25, 0.30,

0.35, 0.40, and 0.5} (Fig. 15.2). There are eight design parameters that describe

Name Requirement

Torque T={0.05, 0.10, 0.125, 0.15, 0.30, 0.25, 0.30,
0.35, 0.40, 0.5}

Power = 300 W

Magnetizing Intensity, H

Feasible geometry Radius of motor > thickness of stator

Efficiency of each motor > 0.15

Mass of each motor <2.0 Kg

< 5000 A.turns/m

Fig. 15.2 Requirements for the universal electric motor product family, adapted from Simpson

et al. (2001)

378 J.A. Ninan and Z. Siddique

each product in the family; hence, there are eight platform commonality parameters

in the set Y. These parameters are y1, y2, . . ., y8 corresponding to the product

parameters x1, x2, . . ., x8. The design objective is to find the optimum value of X

for the product instances which results in minimum performance loss due to

commonality, while maximizing commonality.

15.4.1 Single Platform Stage

In the single platform stage, all the products are considered for leveraging, hence

Pc1 ¼ PF ¼ P1, P2,. . ., P10. The single platform optimization formulation is used

to arrive at a platform that can be used to leverage all the products in the family. The

single platform formulation for the universal motor family is shown in Table 15.5.

In this chapter, the universal electric motor case study is treated as a

non-platform-specified case. In single platform optimization, a holistic view of

the entire product family is adopted to determine a suitable single platform while

simultaneously optimizing the platform and the product instances for maximum

commonality and minimum loss of performance due to commonality. The objective

function consists of minimizing the undesirable negative deviation of efficiency of

each motor and positive deviation of mass for each motor and maximizing the

number of platform parameters.

The platform commonality constraints are initially introduced as continuous

variables (0 � yi � 1). Integerizing constraints are then used to force the formula-

tion to accept only values of 0 or 1 (binary) for the yi parameters. This allows the

formulation to evaluate the model for values in between while moving to optimum

values. This is required for the formulation to be implemented in a gradient-based

optimization method. The commonality constraints are used to ensure that platform

variables take the same value and scale variables take different value for different

products in the family.

The model consists of 128 design variables and 180 constraints. The formulation

was implemented in VRAND® Visual DOC®, a commercially available nonlinear

optimization tool. Table 15.6 shows the results obtained from single platform

optimization formulation. The formulation returned a platform consisting of

parameters x2, x3, x4, x6, x8 with values of 70, 0, 38, 0.34, 5.91, and 1.62,

respectively. Now the number of platform counter is incremented by a value of

1, but first the evaluation of products is performed.

15.4.2 Platform Evaluation Stage

During the single platform stage, all product family members are individual

optimized to serve as benchmarks for evaluation. The results for individually

optimized universal motors, subject to the requirements and considering no

commonality between them, are shown in Table 15.7.

15 Cascading Platforms for Product Family Design 379

The formulation (Table 15.5) uses a goal programming model to address the

multi-objective (target efficiency, target mass) nature of the problem. The deviation

of the actual efficiency and mass of the motor is captured using deviation variables

d
þ=�
1 þ d

þ=�
2 , respectively. In the objective function the undesirable negative

deviation of efficiency and positive deviation of mass (d�1 and dþ2) are minimized.

Here x1, x2,. . ., x8 correspond to the design parameters, which are number of

turns in the armature, number of turns in the field, area of the armature, area of the

Table 15.5 Single platform formulation applied to universal electric motor family

Variables
xij ¼ Product parameters in K for each family member j
yj ¼ Platform commonality variables

d�Eff ;j¼ Negative deviation of Goal 1 (efficiency > 0.70) from the target for product j

dþEff ;j¼ Positive deviation of Goal 1 (Efficiency > 0.70) from the target for product j

d�Mass;j¼ Negative deviation of Goal 2 (efficiency > 0.50) from the target for product j

dþMass;j¼ Positive deviation of Goal 2 (efficiency > 0.50) from the target for product j

Ej ¼ Efficiency of motor j Mj ¼ Mass of motor j

Objective:z ¼ P10
j¼1 d

�
Eff ;j þ

P10
j¼1 d

þ
Mass;j �

P
yi

Subject to:

(1) Bounds on the design variable

100 � x1j � 1,500 turns 1 � x2j � 500 turns 0.01 � x3j � 1 mm2 0.01 � x4j � 1 mm2

1 � x5j � 1 cm 0.5 � x6j � 10 mm 1 � x7j � 6 amps 0 � x8j � 10 cm

1 � yj � 1 where 8j∈J and 8i∈I

(2) Magnetic intensity of each motor less than 5, 000 A turns/m
2x2jx7ð Þ

π 2x5jþx6jð Þ=2þ 2 2x5j�x6j�0:007ð Þþ2�0:007ð Þ � 5000

(3) Feasible geometry: x6j < x5j
(4) Mass of motor (M) < 2.0 kg

πdsteelx7jðx25j � ðx5j � x6jÞ2Þ þ πdsteelx7jðx25j � ðx5j � x6j � lgapÞ2Þð2x7j
þ 4ðx5j � x6j � lgapÞÞx1jx3j þ 2x7j þ 4

�
x5j � x6j
� �

2x2jx4j
� �� �

dcopper � 2:0kg

(5) Efficiency (E) > 0.15

1

115x7j
113x7j �

μrx1j 2x7j þ 4 x5j � x6j � lgap
� �� �
x3j

��
þ

2μrx2j 2x7j þ 4 x5j � x6j
� �� �

x3j

�
x27j

�
� 0:15

(6) Torque requirement for individual motors
ðx1jx2jx27jÞ

π 0:000175

x7jμ0 x5j�x6j�lgapð Þþ
0:000175
x7jμ0μr

þ
π 2x5jþx6jð Þ
4μ0μr x6j x7j

� � ¼ t 2 T

T ¼ {0.05,0.10,0.125,0.15,0.20,0.25,0.30,0.35,0.40,0.50}

(7) Platform commonality constraints: xij � xijþ1

� �
yi ¼ 0 8i 2 I & 8j 2 J; j 6¼ m

(8) Integerizing constraints: y2i � yi ¼ 0

(9) Deviation of efficiency from target (70 %):
Ej

0:7 þ d�Eff ;j þ dþEff ;j ¼ 1:0 8 j 2 J

Deviation of actual mass from target mass (0.5 kg):
Mj

0:5 þ d�Mass;j þ dþMass;j ¼ 1:0 8j 2 J

(10) Deviation variables:d�Eff ;j; d
þ
Eff ;j � 0; d�Mass;j; d

þ
Mass;j � 0

380 J.A. Ninan and Z. Siddique

T
a
b
le

1
5
.6

R
es
u
lt
s
fr
o
m

th
e
si
n
g
le

p
la
tf
o
rm

fo
rm

u
la
ti
o
n

M
o
to
r

1
2

3
4

5
6

7
8

9
1
0

X
1

9
4
4
.9
6

1
,0
7
8
.6
1

1
,0
8
5
.4
1

1
,0
8
8
.6
5

1
,0
9
4
.5
8

1
,1
0
0
.4
4

1
,1
0
1
.9
0

1
,1
0
2
.5
7

1
,1
0
0
.5
6

1
,1
2
3
.7
8

X
2

7
0

7
0

7
0

7
0

7
0

7
0

7
0

7
0

7
0

7
0

X
3

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

X
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

X
5

1
.7
2

2
.1
5

2
.4
0

2
.6
2

2
.9
9

3
.2
5

3
.3
6

3
.4
1

3
.4
6

3
.3
2

X
6

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

X
7

3
.0
4

3
.2
8

3
.4
5

3
.6
0

3
.9
7

4
.3
3

4
.7
1

5
.0
8

5
.3
7

6
.0
0

X
8

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

E
ffi
ci
en
cy

0
.8
1

0
.7
2

0
.7
0

0
.6
9

0
.6
6

0
.6
3

0
.5
8

0
.5
5

0
.4
9

0
.4
3

M
as
s

0
.3
5

0
.5
1

0
.5
4

0
.5
7

0
.5
9

0
.6
6

0
.7
0

0
.7
4

0
.7
6

0
.7
7

15 Cascading Platforms for Product Family Design 381

field wire, radius of the motor, thickness of the stator, current drawn by the motor,

and stack length. The individual optima correspond to the best performance that can

be achieved for each universal motor in the family. The performances of individu-

ally optimized motors serve as benchmarks to determine the loss of performance for

the family members supported by the identified common platform.

The benchmark for efficiencies and mass obtained after individual optimization

for the product instances are 81.7, 72, 70.5, 70, 63.5, 59.0, 56.4, 54.8, 50.8, and

45.4 % and 0.33, 0.39, 0.415, 0.45, 0.5, 0.56, 0.63, 0.694, 0.733, and 0.78 kg,

respectively. The magnetizing intensity for all motors is within the allowable limit

of 5,000 A turns/m. After establishing the benchmarks the number of platforms

counter “k” is initiated.
The function used to evaluate the performance of products leveraged from the

platform is

Δj ¼ � N1
j 	 Efficiency�j � N1

j 	 Efficiencyj

� �

� N2
j 	Mass�j � N2

j 	Massj

� �
(15.6)

Here N1
j and N2

j are the corresponding scaling factors that can be used to scale the

corresponding benchmark performances to 1. The sign conventions introduced in

Sect. 15.3.2 are used to assign positive or negative signs to the value of Δj obtained

from the equation. Efficiency�j , Mass�j are the normalized benchmark values for

motors, and Efficiencyj, Massj are the efficiency and mass of the motors leveraged

using the platform. Table 15.8 shows the evaluation of products leveraged from

platform 1. The limiting Δj value was decided as 0.2. Motors 1, 5, 6, 7, 8, 9, and

10 show loss of performance within acceptable limits. The motors with perfor-

mance loss due to commonality higher than 0.125 (motors 2, 3, and 4) were

separated out to be leveraged from a second platform.

Table 15.7 Results from individual optimization

Motor

1 2 3 4 5 6 7 8 9 10

X1 1,019 1,020 1,021 1,021 1,029 1,011 1,024 1,021 1,020 1,022

X2 57 65 69 75 66 57.4 61 54 58 54

X3 0.256 0.215 0.214 0.225 0.218 0.201 0.229 0.218 0.239 0.248

X4 0.272 0.258 0.255 0.251 0.217 0.201 0.232 0.238 0.234 0.243

X5 2.06 2.24 2.24 2.22 2.16 5.49 2.23 2.29 2.37 2.49

X6 5.94 5.72 5.71 5.69 5.56 4.84 5.43 5.55 5.56 5.52

X7 3.19 3.62 3.72 3.73 4.1 2.38 5.62 5.36 5.13 5.82

X8 1.2 1.47 1.65 1.84 2.32 2.3 2.5 2.8 3.12 3.1

Mag intensity 3,543 3,160 4,817 4,981 5,000 5,000 5,000 5,000 5,000 5,000

Efficiency 0.817 0.72 0.705 0.7 0.635 0.59 0.564 0.548 0.508 0.454

Mass 0.33 0.39 0.415 0.45 0.5 0.56 0.63 0.694 0.733 0.78

382 J.A. Ninan and Z. Siddique

T
a
b
le

1
5
.8

E
v
al
u
at
io
n
o
f
p
ro
d
u
ct
s
le
v
er
ag
ed

fr
o
m

p
la
tf
o
rm

E
ffi
ci
en
cy

(n
o
rm

al
iz
ed
)

W
ei
g
h
t
(n
o
rm

al
iz
ed
)

Δ
T
o
ta
l

F
ea
si
b
il
it
y

W
ei
g
h
t

B
en
ch

F
am

il
y

Δ
E
ff

W
ei
g
h
t

B
en
ch

F
am

il
y

Δ
M
as
s

M
o
to
r
1

1
.2
2
4
0

1
.0
0
0
0

0
.9
9
1
4

0
.0
0
8
6

3
.0
3
0
3

1
.0
0
0
0

1
.0
7
2
7

0
.0
7
2
7

0
.0
8
1
3

Y

M
o
to
r
2

1
.3
8
8
9

1
.0
0
0
0

1
.0
0
5
6

�0
.0
0
5
6

2
.5
6
4
1

1
.0
0
0
0

1
.3
0
5
1

0
.3
0
5
1

0
.2
9
9
6

N

M
o
to
r
3

1
.4
1
8
4

1
.0
0
0
0

0
.9
9
2
9

0
.0
0
7
1

2
.4
0
9
6

1
.0
0
0
0

1
.3
0
8
4

0
.3
0
8
4

0
.3
1
5
5

N

M
o
to
r
4

1
.4
2
8
6

1
.0
0
0
0

0
.9
8
1
4

0
.0
1
8
6

2
.2
2
2
2

1
.0
0
0
0

1
.2
6
2
2

0
.2
6
2
2

0
.2
8
0
8

N

M
o
to
r
5

1
.5
7
4
8

1
.0
0
0
0

1
.0
4
0
9

�0
.0
4
0
9

2
.0
0
0
0

1
.0
0
0
0

1
.1
8
4
0

0
.1
8
4
0

0
.1
4
3
1

Y

M
o
to
r
6

1
.6
9
4
9

1
.0
0
0
0

1
.0
6
1
0

�0
.0
6
1
0

1
.7
8
5
7

1
.0
0
0
0

1
.1
7
6
8

0
.1
7
6
8

0
.1
1
5
8

Y

M
o
to
r
7

1
.7
7
3
0

1
.0
0
0
0

1
.0
3
3
7

�0
.0
3
3
7

1
.5
8
7
3

1
.0
0
0
0

1
.1
1
1
1

0
.1
1
1
1

0
.0
7
7
4

Y

M
o
to
r
8

1
.8
2
4
8

1
.0
0
0
0

1
.0
0
1
8

�0
.0
0
1
8

1
.4
4
0
9

1
.0
0
0
0

1
.0
6
2
0

0
.0
6
2
0

0
.0
6
0
1

Y

M
o
to
r
9

1
.9
6
8
5

1
.0
0
0
0

0
.9
5
4
7

0
.0
4
5
3

1
.3
6
4
3

1
.0
0
0
0

1
.0
3
5
5

0
.0
3
5
5

0
.0
8
0
7

Y

M
o
to
r
1
0

2
.2
0
2
6

1
.0
0
0
0

0
.9
5
3
7

0
.0
4
6
3

1
.2
8
2
1

1
.0
0
0
0

0
.9
9
1
0

�0
.0
0
9
0

0
.0
3
7
3

Y

15.4.3 Platform Relaxation Stage

In this stage only the nonconforming products from the platform evaluation stage

are considered. The general platform relaxation formulation presented previously is

applied to motors 2, 3, and 4; the optimization formulation for the universal motor

family is shown in Table 15.9. The objective function in this case consists of

minimization of positive deviation in mass from the target and negative deviation

of efficiency. The bounds on the design variables are same as single platform

formulation.

All yi parameters associated with the scale parameters in the previous platform

are given a value of 0 to hold them as scale parameters. All the platform parameters

are initiated as platform parameters and held to the value obtained from the

previous platform (constraints 2 and 3). There were five platform parameters in

platform 1. The relaxation formulation selects a platform parameter from these five

platform parameters and converts it to scale parameters so that motors with

acceptable performance can be identified.

The remaining four platform parameters will have the same value as platform 1.

This is achieved by using constraint 4 (Table 15.9). The constraint can only be

satisfied if four of the yi parameters have a value of 1 and the remaining one 0. This

constraint restricts the continuous yi parameters to accept only binary values and

also helps in selecting the best four platform parameters from the initial five

platform parameters. All the remaining constraints are same as single platform

formulation, except that they are only applied to the concerned motors 2, 3, and 4.

Table 15.10 shows the values of product parameters and product performances

obtained from the platform relaxation formulation. Parameter X2 was converted

from a platform parameter to a scaling parameter.

Significant improvement can be seen in efficiency of the motors but at the

expense of mass of the motors (Table 15.11). Efficiency of motors 2, 3, and 4 is

higher than the benchmark motors. Since efficiency is a higher target (positive

valued in this case), a negative sign is assigned, and since the mass of motors are

higher than benchmark, which is undesirable, a positive sign is assigned to combine

the values. The combined value, ΔTotal, for the three motors is 0.0581, 0.0941, and

0.1105, which is less than the allowed value of 0.2. Hence, further cascading is not

necessary. Table 15.12 shows the combined parameter values and performance of

motors derived from platforms 1 and 2.

The platform leveraging strategy for the universal electric motor family is shown

in Fig. 15.3, which relates the platform from which each product family member is

leveraged and the configuration of each platform in terms of platform parameters

and scale parameters.

384 J.A. Ninan and Z. Siddique

T
a
b
le

1
5
.9

P
la
tf
o
rm

re
la
x
at
io
n
fo
rm

u
la
ti
o
n
ap
p
li
ed

to
u
n
iv
er
sa
l
el
ec
tr
ic

m
o
to
r
fa
m
il
y

M
in
im
iz
e
P

j¼
2
;3
;4
f

d
þ M
as
s;
j

�
� þ

P
j¼

2
;3
;4
f

d
� E
ff
;j

�
�

S
ub
je
ct

to

(1
)
B
o
u
n
d
s
o
n
th
e
d
es
ig
n
v
ar
ia
b
le
s
in

1
0
0
�

x 1
j
�

1
,5
0
0
tu
rn
s

1
�

x 2
j
�

5
0
0
tu
rn
s

0
.0
1
�

x 3
j
�

1
m
m

2
0
.0
1
�

x 4
j
�

1
m
m

2

1
�

x 5
j
�

1
cm

0
.5

�
x 6

j
�

1
0
m
m

1
�

x 7
j
�

6
am

p
s

0
�

x 8
j
�

1
0
cm

(2
)
P
la
tf
o
rm

co
m
m
o
n
al
it
y
d
ec
is
io
n
v
ar
ia
b
le
s

y 1
,y
5
,y
7
¼

0
,
0
�

y 2
,y
3
,y
4
,y
6
,y
8
�

1

(3
)
P
la
tf
o
rm

co
m
m
o
n
al
it
y
co
n
st
ra
in
ts
(C
as
ca
d
in
g
)

(x
2
j
�

7
0
)y

2
¼

0
(x

3
j
�

0
.2
8
)y

3
¼

0
(x

4
j
�

0
.3
4
)y

4
¼

0

(x
6
j
�

5
.9
1
)y

5
¼

0
(x

8
j
�

1
.6
2
)y

8
¼

0

(4
)
C
as
ca
d
in
g
co
n
st
ra
in
ts

P
y3 i

�
4
an
d
P

y i
�

4
i
¼

2
,3
,4
,6
,8

(5
)
M
ag
n
et
ic

in
te
n
si
ty

o
f
ea
ch

m
o
to
r
le
ss

th
an

5
,0
0
0
A
tu
rn
s/
m

2
x 2

jx
7

ð
Þ

π
2
x 5

jþ
x 6

j
ð

Þ=2
þ

2
2
x 5

j�
x 6

j�
0
:0
0
7

ð
Þþ

2
�0
:0
0
7

ð
Þ�

5
0
0
0

(6
)
F
ea
si
b
le

g
eo
m
et
ry
:
x 6

j
<

x 5
j
j
¼

2
,3
,4

(7
)
M
as
s
o
f
m
o
to
r
(M

)
<

2
.0

k
g

π
d s

te
el
x 7

jðx
2 5
j
�
ðx 5

j
�
x 6

jÞ2
Þþ

π
d s

te
el
x 7

jðx
2 5
j
�
ðx 5

j
�
x 6

j
�
l g
ap
Þ2 Þ

ð2
x 7

j
þ
4
ðx 5

j
�
x 6

j
�
l g
ap
ÞÞx

1
jx

3
j
þ
ðð2

x 7
j
þ
4
x 5

j
�
x 6

j

�
� 2

x 2
jx

4
j

�
� Þd

co
p
p
er
�

2
:0
kg

(8
)
E
ffi
ci
en
cy

(E
)
>

0
.1
5

1
1
1
5
x 7

j
1
1
3
x 7

j

�
μ r
x 1

j
2
x 7

jþ
4

x 5
j�

x 6
j�

l g
a
p

ð
Þ

ð
Þ

x 3
j

þ
2
μ r
x 2

j
2
x 7

jþ
4

x 5
j�

x 6
j

ð
Þ

ð
Þ

x 3
j

�
� x2 7

j� �
0
:1
5

(9
)
T
o
rq
u
e
re
q
u
ir
em

en
t
fo
r
in
d
iv
id
u
al

m
o
to
rs

ðx 1
jx

2
jx

2 7
jÞ

π
0
:0
0
0
1
7
5

x 7
jμ
0

x 5
j�

x 6
j�

l g
a
p

ð
Þþ

0
:0
0
0
1
7
5

x 7
jμ
0
μ r

þ
π

2
x 5
jþ

x 6
j

ð
Þ

4
μ 0

μ r
x 6
jx
7
j

�
�

¼
0
:1
0
;0
:1
2
5
;0
:1
5
;0
:2
0

f
g

(1
0
)
D
ev
ia
ti
o
n
o
f
ac
tu
al

ef
fi
ci
en
cy

fr
o
m

ta
rg
et

ef
fi
ci
en
cy

(7
0
%
)

E
j

0
:7
þ
d
� E
ff
;j
�
d
þ E
ff
;j
¼

1
:0

j
¼

2
,3
,4

(1
1
)
D
ev
ia
ti
o
n
o
f
ac
tu
al

m
as
s
fr
o
m

ta
rg
et

m
as
s
(0
.5

k
g
)

M
j

0
:5
þ
d
� M
as
s;
j
�
d
þ M
as
s;
j
¼

1
:0

15 Cascading Platforms for Product Family Design 385

15.5 Conclusions

A single platform, in most cases, is insufficient to design a family of products while

using platform approach. Single platform approach assumes that when a component

or a product parameter is shared, it is shared across all products in the family. As the

number of products in the family increases or the portfolio of different products

varies considerably, a single platform approach may lead to product family

members with inferior performance. In a multi-platform approach, the family

members are leveraged from more than one platform so that products with minimal

loss of performance can be achieved. Cost efficiency of single platform design may

be higher compared to multi-platform design as an increase in number of platforms

will lead to increase in cost of the derived product family. In a multi-platform

design it is therefore necessary to design the family of products using optimum

number of platforms. Also in case of multi-platform design, the combination of

products that are leveraged from each platform and the configuration of each

platform leading to a family of products with minimal loss of performance need

to be determined.

The platform relaxation method is a multi-platform optimization method for the

design of scalable product families. The inputs to the formulation are (1) the

specification of the product family members, (2) the underlying mathematical

model that related the product parameters to performances, and (3) the identifica-

tion of platform parameters (optional). The platform relaxation method takes a

holistic view of the entire product family design process. The mathematical model

developed for single platform design is capable of representing both the product

platform and the product variants. During the single platform stage of the design

process, both the platform and the product variants are simultaneously optimized.

Trade-off is performed between the number of platform parameters and the loss of

performance due to commonality to arrive at the optimum platform and the

optimum product instances. The platform relaxation method converts the binary

Table 15.10 Optimum design variables and performances obtained from the relaxation

formulations

Motor

1 2 3 4 5 6 7 8 9 10

X1 – 1,018.00 1,021.00 1,500.00 – – – 1,102.57 – –

X2 – 78 86 69 – – – 70 – –

X3 – 0.28 0.28 0.28 – – – 0.28 – –

X4 – 0.34 0.34 0.34 – – – 0.34 – –

X5 – 2.15 2.29 2.00 – – – 3.41 – –

X6 – 5.91 5.91 5.91 – – – 5.91 – –

X7 – 3.27 3.32 3.64 – – – 5.08 – –

X8 – 1.62 1.62 1.62 – – – 1.62 – –

Eff. – 0.80 0.78 0.72 – – – 0.55 – –

Mass – 0.46 0.50 0.57 – – – 0.74 – –

386 J.A. Ninan and Z. Siddique

T
a
b
le

1
5
.1
1

E
v
al
u
at
io
n
o
f
p
ro
d
u
ct
s
le
v
er
ag
ed

fr
o
m

p
la
tf
o
rm

2

E
ffi
ci
en
cy

(n
o
rm

al
iz
ed
)

W
ei
g
h
t
(n
o
rm

al
iz
ed
)

Δ
T
o
ta
l

F
ea
si
b
il
it
y

W
ei
g
h
t

B
en
ch

F
am

il
y

Δ
E
ff

W
ei
g
h
t

B
en
ch

F
am

il
y

Δ
M
as
s

M
o
to
r
2

1
.3
8
8
9

1
.0
0
0
0

1
.1
1
1
1

�0
.1
1
1
1

2
.5
6
4
1

1
.0
0
0
0

1
.1
6
9
2

0
.1
6
9
2

0
.0
5
8
1

Y

M
o
to
r
3

1
.4
1
8
4

1
.0
0
0
0

1
.1
0
6
4

�0
.1
0
6
4

2
.4
0
9
6

1
.0
0
0
0

1
.2
0
4
8

0
.2
0
4
8

0
.0
9
8
4

Y

M
o
to
r
4

1
.4
2
8
6

1
.0
0
0
0

1
.0
2
2
9

�0
.0
2
2
9

2
.2
2
2
2

1
.0
0
0
0

1
.1
3
3
3

0
.1
3
3
3

0
.1
1
0
5

Y

15 Cascading Platforms for Product Family Design 387

T
a
b
le

1
5
.1
2

C
o
m
b
in
ed

re
su
lt
s
fo
r
P
la
tf
o
rm

s
1
an
d
2

M
o
to
r

1
2

3
4

5
6

7
8

9
1
0

X
1

9
4
4
.9
6

1
,0
1
8
.0
0

1
,0
2
1
.0
0

1
,5
0
0
.0
0

1
,0
9
4
.5
8

1
,1
0
0
.4
4

1
,1
0
1
.9
0

1
,1
0
2
.5
7

1
,1
0
0
.5
6

1
,1
2
3
.7
8

X
2

7
0

7
8

8
6

6
9

7
0

7
0

7
0

7
0

7
0

7
0

X
3

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

0
.2
8

X
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

0
.3
4

X
5

1
.7
2

2
.1
5

2
.2
9

2
.0
0

2
.9
9

3
.2
5

3
.3
6

3
.4
1

3
.4
6

3
.3
2

X
6

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

5
.9
1

X
7

3
.0
4

3
.2
7

3
.3
2

3
.6
4

3
.9
7

4
.3
3

4
.7
1

5
.0
8

5
.3
7

6
.0
0

X
8

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

1
.6
2

E
ff
.

0
.8
1

0
.8
0

0
.7
8

0
.7
2

0
.6
6

0
.6
3

0
.5
8

0
.5
5

0
.4
9

0
.4
3

M
as
s

0
.3
5

0
.4
6

0
.5
0

0
.5
1

0
.5
9

0
.6
6

0
.7
0

0
.7
4

0
.7
6

0
.7
7

388 J.A. Ninan and Z. Siddique

platform commonality parameters to continuous parameters to enable the formula-

tion to be implemented in a gradient-based optimization method. The model is

constrained mathematically to accept only binary values in the end for the platform

commonality parameters. The formulation developed is easy to implement in

gradient-based optimization methods.

Relaxation of platform parameters is used to leverage the family when multiple

platforms are required. During relaxation, one of the platform parameters is relaxed

to a scale parameter so that products with lesser loss of performance can be

identified. This reduces the number of platform parameters from the previous

platform, which in turn can lead to products with better performances. In

the platform relaxation method, the modeling approach is similar to that of single

platform formulation. The platform, product instances, and platform commonality

are modeled in the relaxation formulation. Both single platform and relaxation

formulations initially convert the MINLP to a continuous problem and then con-

strain the solution to discrete spaces. In case of the relaxation formulation,

constraints are simultaneously used to select the platform parameters and also to

constraint the model to accept only binary values for commonality parameters.

In the platform relaxation method, the number of platforms required to support

the platform is not modeled as part of the formulation. Instead the initial platform is

relaxed until all the products with acceptable loss of performance are leveraged.

The number of platforms required to support the family depends on the threshold

value of the acceptable loss of performance, due to commonality and the path

chosen by the designer after the evaluation of products. Since the platform relaxa-

tion method uses the single platform and cascades it to generate the subsequent

platforms, the approach maintains a relation between the product platforms which

can lead to commonality within the different platforms. An evaluation function is

used to determine the loss of performance of the product family members due to

commonality. If the loss of performance due to commonality for any of the products

in the family is greater than a user specified value, a multi-platform approach

is used.

Platform relaxation method does not require the identification of platform

parameters by the designer; however, it gives the designer the flexibility of being

able to specify the platform. The outputs from the method are (1) the different

product platforms and the products that are supported by the platforms and (2) the

product family instances and their performances. Other secondary information like

Platform I

Platform Parameter

X3 X8X4

Platform II P4

P5

P3P2

Scale Parameter

X7X6
P6 P7 P8 P9 P10P1X2

X3 X4 X7X6 X8

State Variable

Platform I

Platform Parameter

X3X1 X8X4

Platform II P4

P5

P3P2

Scale Parameter

X5 X7X6
P6 P7 P8 P9 P10P1X2

X3X1 X4X5 X7X6X2 X8

State Variable

Fig. 15.3 Platform relaxation strategy for universal electric motor case study

15 Cascading Platforms for Product Family Design 389

loss of performance due to commonality in comparison to benchmarks and the best

possible performance of products can be obtained from the formulation. As evident

from earlier discussions, the method is comprised of different stages. The method is

only applicable towards scalable product families, wherein each product instance in

the family can be completely described by the same set of product parameters.

Hence, the method will fall under the category of multistage, non-platform-

specified, scale-based product family design method.

References

Belloni A, Freund R, Selove M, Simester D (2008) Optimizing product line designs: efficient

methods and comparisons. Manag Sci 54(9):1544–1552

Chapman SJ (1991) Electric machinery fundamentals. McGraw-Hill, New York, NY

Dai Z, Scott M (2007) Product platform design through sensitivity analysis and cluster analysis.

J Intell Manuf 18(1):97–113

Fellini R, Kokkolaras M, Papalambros PY (2006) Quantitative platform selection in optimal

design of product families, with application to automotive engine design. J Eng Des

17(5):429–446

Gao F, Xiao G, Simpson T (2009) Module-scale-based product platform planning. Res Eng Des

20(2):129–141

Khajavirad A, Michalek JJ (2007) An extension of the commonality index for product family

optimization. In: Proceedings of the ASME IDETC/CIE conference 2007, DETC2007-35605

Khire R, Messac A, Simpson TW (2006) Optimal design of product families using selection-

integrated optimization (SIO) methodology. In: 11th AIAA/ISSMO symposium on multidisci-

plinary analysis and optimization, 6–8 Sept 2006, Portsmouth, VA, AIAA-2006-6924

Messac A (1996) Physical programming: effective optimization for computational design. AIAA J

34(1):149–158

Messac A, Martinez MP, Simpson TW (2002) A penalty function for product family design using

physical programming. ASME J Mech Des 124(2):164–172

Moon SK, Park K, Simpson TW (2011) Platform strategy for product family design using particle

swarm optimization. In: Proceedings of the ASME 2011 international design engineering

technical conferences and computers and information in engineering conference IDETC/

CIE, Washington, DC, USA, 28–31 Aug 2011. DETC2011-48060

Nayak RU, Chen W, Simpson TW (2002) A variation-based method for product family design.

Eng Optim 34(1):65–81

Nelson S, Parkinson M, Papalambros P (2001) Multi criteria optimization in product family

design. J Mech Des 123:199–204

Simpson TW (1998) A concept exploration method for product family design. Ph.D. Dissertation,

G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,

Atlanta, GA

Simpson T (2006) Methods for optimizing product platforms and product families. In: Simpson T,

Siddique Z, Jiao JR (eds) Product platform and product family design. Springer, New York,

NY, pp 133–156

Simpson TW, D’Souza B (2004) Assessing variable levels of platform commonality within a

product family using a multi-objective genetic algorithm. Concur Eng: Res Appl 12

(2):119–130

Simpson TW, Maier JRA, Mistree F (2001) Product platform design: method and application. Res

Eng Des 13(1):2–22

Veinott CG, Martin JE (1986) Fractional and subfractional horsepower electric motors. McGraw-

Hill, New York, NY

390 J.A. Ninan and Z. Siddique

PART III

Product Family Development
and Implementation

Chapter 16

Global Product Family Design: Simultaneous

Optimal Design of Module Commonalization

and Supply Chain Configuration

Kikuo Fujita

Abstract Global product family design is the problem in which product variants

and supply chain configuration are simultaneously designed. It has become a

significant concern of manufacturing industries under globalization. In this chapter,

simultaneous design of module commonalization and supply chain configuration is

formulated as a multi-objective mixed-integer programming problem under the

criteria on quality, cost, and delivery. Then, an optimization algorithm for obtaining

Pareto optimal solutions is configured by using a neighborhood cultivation genetic

algorithm and simplex method, and a clustering technique of such Pareto solutions

is introduced with a principal component analysis method for investigating the

optimality and compromise in global product family design. Finally, some numeri-

cal case studies are demonstrated.

16.1 Introduction

Product family and platform design have become an essentially important concept

for meeting with the demands on mass customization (Pine 1993) and enhancing

the product performance (Simpson et al. 2005; Jiao et al. 2007). On the other hand,

as design and manufacturing have become worldwide under the globalization, not

only the markets but also allocations of various levels of factories are spread over

An earlier version of this chapter appeared in K. Fujita, K. Nasu, Y. Ito, and Y. Nomaguchi, (2012)

Global Product Family Design: Multi-Objective Optimization and Design Concept Exploration,

ASMEDesign Engineering Technical Conferences - Design Automation Conference, Chicgao, IL,

ASME, Paper No. DETC2012/DAC-70858 (# ASME 2012), reprinted with permission.

K. Fujita (*)

Department of Mechanical Engineering, Graduate School of Engineering,

Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

e-mail: fujita@mech.eng.osaka-u.ac.jp

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_16,
Springer Science+Business Media New York 2014

393

mailto:fujita@mech.eng.osaka-u.ac.jp

the globe. The simultaneous design of product variants and supply chain configura-

tion (Simchi-Levi et al. 1999) has become a new and relevant standpoint toward the

next level of the optimality in product design and development. Such a design

situation is called “global product family design” (Fujita et al. 2012a, b). The

context of global product family is not only complicated under various factors

and their interactions but also vague in strategic decision making. It is difficult to

identify the optimal design only with numerate supports. Toward any literate

supports, the framework of design concept exploration is something promising

(Obayashi and Sasaki 2003; Fujita et al. 2011). In design concept exploration,

after a large set of Pareto optimal solutions are generated typically with multi-

objective genetic algorithms (Deb 2001), they are categorized into a small set of

clusters for identifying their conceptual meanings.

This chapter discusses multi-objective optimization and design concept explo-

ration for enhancing global product family design. In the following sections,

Sect. 16.2 reviews their backgrounds. Section 16.3 develops a multi-objective

mixed-integer formulation for the simultaneous design of module commonalization

and supply chain configuration. Section 16.4 configures an optimization algorithm

for obtaining Pareto optimal solutions by using a neighborhood cultivation genetic

algorithm. It also reports an application of the principal component analysis method

for analyzing the tendencies of Pareto solutions. Then, Sect. 16.5 demonstrates

some numerical case studies for ascertaining the validity and promise of the

proposed mathematical model and optimal design techniques toward the excellence

in global product family design.

16.2 Global Product Family and Its Design Problem

16.2.1 Product Family Under Global Manufacturing

The concept of product family and platform brings various possibilities for meeting

with various voices of customers through the flexibility under modular architecture

(Ulrich 1995). Such voices are diverse even within a market, and their tendency

is different among various markets due to the phase of economical growth, lifestyle,

culture, etc. On the other hand, a product consists of a core module or component,

whichdominates its key features, andother subsidiarymodules and components,which

are necessary for realizing the whole functionality of a product. Among them, the

production of the formermay be restricted geographically, but one of the lattermay not

be restricted. Further, locations for producing modules or components, ones for

assembling them into products, and ones where they are consumed can be unique or

rather different. The best combination of these alternatives should be determined by

compromising various trade-offs. This poses the design problem of what we call

“global product family design” (Fujita et al. 2012a, b).

394 K. Fujita

When viewing the above standpoints on global product family as a whole, several

decisions on globality or locality are required. Its scenario can be illustrated as

shown in Fig. 16.1. That is, whether the core modules are produced at the key factory

or at distributed factories must be determined as shown in the left-hand side of the

figure. Following such a decision, the contents of core module may be affected by

the available production technology, possible scales of production resources, etc. On

the other hand, noncore modules could be produced and assembled into products at

any distributed factories if the economy of scale is relevant, for instance, when a

local market has sufficient demands and so forth, as shown in the middle of the

figure. However, various resources required for design and manufacturing activities

are linked with each other among local activities and through global operation.

The global market must be explicitly taken into consideration for achieving the

global success, as shown in the right-hand side of the figure.

16.2.2 Multi-objectiveness and Concept-Level Design

Since global product family relates to board issues, the optimality measure would

be spread over various criteria, such as cost, quality, and delivery, at least. Further,

the decision must be done in the especially early phase of design and development.

The former point is similar to the situation of multidisciplinary design optimization

(MDO). This means that multi-objective optimization must be the concern. The

latter point means that the concept-level strategic decision making must be consid-

ered over operational support through mathematical frameworks.

When viewing the history of optimal design paradigm, MDO has focused on

more complicated design problems which include different system behaviors. Such

a focus requires the techniques for efficiently obtaining a set of Pareto optimal

Global or Local Local Local Global

Volumne

Attributes

Core modules

Local market A

Local market B

Local market C

Global market

Non-core modules C

Non-core modules A

Non-core modules B

Fig. 16.1 Decisions on globality versus locality in manufacturing

16 Global Product Family Design with Supply Chain Configuration 395

solutions. Multi-objective genetic algorithms (MOGA) have become typical ones

for such purpose. Since a set of Pareto optimal solutions corresponds to a set of

relevant alternatives under the given requirements, they are effective for supporting

designer’s decision making, but they still remain as a set of meaningless snatches. It

is necessary to interpret the tendency that dominates over Pareto solutions, and such

interpretations must correspond to what we call design concepts.

Design concepts include the mapping relationship among requirements and the

contents of entities. The superior, feasible, and affordable direction of designs

should be identified with considering the compromise among various factors.

Thus, if the landscape of Pareto solutions is conceptually interpreted somehow, it

must be useful toward the excellence of global product family. The design concept

exploration is a means for such purpose (Obayashi and Sasaki 2003; Fujita et al.

2011). In the design concept exploration, a set of Pareto solutions generated by any

optimization technique are categorized into a small set of clusters by data-mining

techniques such as the self-organizing map (SOM), the principal component analy-

sis (PCA). Those paradigms have been successfully applied to multidisciplinary

optimization of aircraft design (Obayashi and Sasaki 2003; Shimizu et al. 2008) and

photovoltaic system design (Sato and Wakao 2010).

The following sections investigate an optimal design method for a class of global

product family design problems under the above standpoint.

16.3 Mathematical Model of Global Product Family Design

16.3.1 Integration of Product Family and Supply Chain

This chapter focuses on a strategy-level integrated design problem of product

family and supply chain as an instance of the design problems on global product

family (Fujita et al. 2012a). Figure 16.2 summarizes its outline, which consists of

two layers. The upper layer represents the contents of a product family (Fujita et al.

1999). That is, a product is composed of modules, and it has a fixed number of

module slots, as shown in the middle part. Each variant is configured by selecting

modules from their candidates, which is shown in the left part, for respective slots.

They are targeted to various markets, which is shown in the right part. The lower

layer represents the components of supply chain. That is, sites of module produc-

tion; ones of product production, which can be assembly operations; and ones of

product sales are geographically different and distant. How to connect them as a

network is the strategy-level problem of supply chain configuration. It is not

necessary to utilize all possible routes, and it is important to utilize cost-effective

ones. Such contents must be strategically determined within various possibilities

and restrictions. In the figure, module design and selection of module production

sites and product design and selection of product production sites are linked among

these two layers, respectively. That is, it is necessary to simultaneously solve the

396 K. Fujita

product family design problem and the supply chain configuration problem with

considering realization of product contents, merits from commonalization of

modules, flexibility in diversion of distribution network, etc.

16.3.2 Conditions for Problem Formulation

For studying the simultaneous design problem of product family design through

module commonalization and supply chain configuration, this chapter introduces

the following conditions and assumptions.

Regarding the contents of products as a product family, the following are

introduced:

1. A unique product family is considered. That is, any interaction among product

families are not considered.

2. The product is configured with a modular architecture. The contents of modules

are given as conditions. That is, each product is directly composed of a set of

modules, while any sub-modules or subassemblies are not considered.

3. A product Pi (i ¼ 1; 2; . . . ; I) has a certain number of module slots Sj ðj ¼ 1; 2;

. . . ; JÞ. Each product is configured with selecting suitable modules from their

candidates mj;k (k ¼ 1; 2; . . . ;Kj) for respective slots.

4. Arbitrary combination of modules is evenly accepted within the given

constraints.

Regarding manufacturing activities, the followings are introduced:

5. Each factory has a capability for producing various modules and products

simultaneously within its capacity.

6. The resource limitation on the company’s actions is substituted with the

constraints of module and product production volumes.

P
ro

du
ct

 fa
m

ily

Attributes

Global marketProduct family

S
up

pl
y

ch
ai

n

Module candidates
Volumne

C
ustom

ers

P
roducts

M
odules

Market
locations

Locations for
product assembly

Locations for
module production

Fig. 16.2 Integrated problem of product family and supply chain

16 Global Product Family Design with Supply Chain Configuration 397

7. Cost for module and product production is represented with the sum of fixed

cost and variable cost. Learning effects of production are not considered.

Regarding supply chain characteristics, various sites are denoted with Ml

ðl ¼ 1; 2; . . . ; LÞ. The followings are introduced:
8. The supply chain structure, i.e., sites for module production, product produc-

tion (assembly), market sales,1 and transportation among them are considered.

Any stock at any warehouses are not considered.

9. Transportation capability for each route is also restricted with the sum of

modules and products.

10. Cost for transportation is represented with variable cost. Any trade customs and

money exchanges are not considered.

Regarding the market and business circumstances, the followings are

introduced:

11. As the diversity of markets, a set of local markets are considered. They are

geographically distant, and their demand distribution patterns are different.

12. Prices of products are fixed according to the locations of respective markets.

13. The demand volumes are given, and all supplied units are sold.

14. Cost for sales is represented with fixed cost. The contents of fixed cost are

represented with the sum of one depended on sites and one depended on

module or product kinds.

15. The competition with other companies is not considered.

16. Temporal factors are not considered. For example, phenomena within a single

financial period are considered.

Further, for building a mathematical model on the above design problem,

the following assumptions are introduced:

17. The contents of decision are whether modules are produced or not, whether

products are produced or not, whether products are sold or not, and how many

they are if they are produced or sold.

18. Each disjunctive decision such as whether production or sales is performed at a

site is modeled with a 0–1 integer variable.

19. While each quantitative decision, such as production volume and transportation

volume, is primality represented with zero or positive integer, it is substituted

with nonnegative real number for reducing the scale of mathematical problem.

Under these conditions, the mathematical model becomes to be constructed with

0–1 design variables on the choice of modules and various sites and nonnegative

continuous design variables on the volumes of production and transportation, and

the criteria are defined on cost, quality, and delivery, respectively. The following

two subsections explain its details, which is developed through extending the single-

objective one (Fujita et al. 2012a) to multi-objective one (Fujita et al. 2012b).

1 For convenience, the supersuffixes, s 2 Module; t 2 Product; r 2 Market; are used on the

symbols on sites in the followings.

398 K. Fujita

16.3.3 Product Family Model

16.3.3.1 Module Production

Whether Module mj;k, which is the k th module candidate to be embedded into the

j th module slot Sj of products, is produced at Site s ðs 2 ModuleÞ or not is

determined with the following 0–1 variable:

δsj;k ¼
1 � � �Modulemj;k is produced at Site s

0 � � �Modulemj;k is not producted at Site s

(
(16.1)

On the other hand, whether Module mj;k can be produced at Site s is represented
with the following coefficient:

αsj;k ¼
1 � � �Module mj;k is produced at Site s

0 � � �Module mj;k is not producted at Site s

(
(16.2)

Since the capability of module production depends on sites, the following

constraint is assigned on the above variables:

1� αsj;k

� �
δsj;k ¼ 0 (16.3)

The production volume of Module mj;k at Site s is denoted as xs!j;k : Then,

production volume xs!j;k of Modulemj;k must satisfy the following constraint at least:

Ws
MB δ

s
j;k � ws

j;k x
s!
j;k � Ws

M αsj;k δ
s
j;k (16.4)

where the unit of this constraint is, for example, the volume of consumed materials

or the number of works, which is representative for the production capability of a

factory.ws
j;k is the coefficient,W

s
MB is the constant representing its lower bound, and

Ws
M is the constant representing its upper bound.

16.3.3.2 Module Transportation

The transportation volume of Module mj;k from Site s ðs 2 ModuleÞ to Site t ðt 2
ProductÞ is denoted as xs!t

j;k . The production volume xs!j;k of Modulemj;k at Site smust

satisfy the following constraint:

xs!j;k ¼
X
t

xs!t
j;k (16.5)

16 Global Product Family Design with Supply Chain Configuration 399

The total module transportation volume from Site s to Site t must satisfy the

following constraint:

X
j

X
k

ws!t
j;k xs!t

j;k � Ws!t
M (16.6)

where the unit of this constraint is, for example, the total weight or the total cubic

capacity, which is representative for the transportation capability of this route.ws!t
j;k

is the coefficient, and Ws!t
M is the constant representing its upper bound.

16.3.3.3 Product Production

Whether ProductPi is produced at Site t ðt 2 ProductÞ or not is determined with the

following 0–1 variable:

δt!i ¼ 1 � � � Prodcut Pi is produced at Site t

0 � � � Product Pi is not produced at Site t

(
(16.7)

On the other hand, whether ProductPi is producible at Site t or not is represented
with the following coefficient:

βti ¼
1 � � � Prodcut Pi is produced at Site t

0 � � � Product Pi is not produced at Site t

(
(16.8)

Since the capability of product production depends on sites, the following

constraint is assigned on the above variables:

ð1� βtiÞδt!i ¼ 0 (16.9)

The supply volume x!t
j;k of Modulemj;k at Site t is represented with the following

equation by using module transportation volumes xs!t
j;k ðs 2 ModuleÞ:

x!t
j;k ¼

X
s

xs!t
j;k (16.10)

If any product is not produced at Site t, it is not necessary to supply any modules

to Site t. Thus, the following constraint is imposed:

X
j

X
k

x!t
j;k ¼ 0 if

X
i

δt!i ¼ 0 (16.11)

400 K. Fujita

Whether Module mj;k is available for implementing to Product Pi or not is

represented with the following 0–1 integer coefficient (Fujita et al. 1999):

γj;k!i ¼
1 � � �Module mj;k is available for Product Pi

0 � � �Module mj;k is not available for Product Pi

(
(16.12)

The assignment volume of Modulemj;k to Product Pi is denoted as x
t
j;k!i. It must

satisfy the following constraint and relationship. That is, it must be greater than or

equal to the minimal volume Ws
PB and be less than or equal to x!t

j;k if producing

Product Pi:

Ws
PBδ

t!
i � xtj;k!i � x!t

j;k γj;k!iβ
t
iδ

t!
i (16.13)

Under the above conditions, regarding the product production, the production

volume xt!i of Product Pi must satisfy the following relationships on all module

slots Sj:

8j; xt!i ¼
X
k

xtj;k!i (16.14)

Regarding the total production volume at Site s, the sum of module production

volume xs!j;k and product production volume xs!i must satisfy the following

constraint:

X
j

X
k

ws
j;kx

s!
j;k þ

X
i

ws
i x

s!
i � Ws (16.15)

where ws
j;k and w

s
i are the coefficients, andW

s is the constant representing its upper

bound. ws
j;k is identical to one used in Eq. (16.4).

16.3.3.4 Product Transportation

The transportation volume of Product Pi from Site t ðt 2 ProductÞ to Site r ðr 2
MarketÞ is denoted as xt!r

i . This variable satisfies the following equation under the

relationship with the product production volume:

xt!i ¼
X
r

xt!r
i (16.16)

The total product transportation volume from Site t to Site r must satisfy the

following constraint:

X
i

wt!r
i xt!r

i � Wt!r
P (16.17)

16 Global Product Family Design with Supply Chain Configuration 401

where the unit of this constraint is, for example, the total weight or total cubic

capacity, which is representative for the transportation capability of this route.wt!r
i

is the coefficient and Wt!r
P is the constant representing its upper bound.

16.3.3.5 Product Sales

Whether Product Pi is sold at Site r ðr 2 MarketÞ or not is determined with the

following 0–1 variable:

δ!r
i ¼ 1 � � � Product Pi is sold at Site r

0 � � � Product Pi is not sold at Site r

(
(16.18)

If Product Pi is not sold at Site r, its supply to the corresponding market is not

necessary. Thus, the following constraint is assigned:

ð1� δ!r
i Þx!r

i ¼ 0 (16.19)

where x!r
i is the supply volume of Product Pi to Site r is represented with

the following equation by using product transportation volumes xt!r
i from Site

t ðt 2 ProductÞ:

x!r
i ¼

X
t

xt!r
i (16.20)

On the other hand, the demand and supply relationship on Product Pi at Site r is
represented as follows:

x!r
i ¼ Dr

i δ
!r
i (16.21)

where Dr
i is the potential demand volume of Product Pi at Site r. This equation is

developed under the assumption that if a product is provided to a market, the supply

volume satisfies the expected demand volume. This assumption reflects the

strategic decision making on whether a specific product is supplied to a certain

market or not.

The total sales through the whole lineup are calculated with the following

equation by using the price pri of Product Pi at Site r:

Sales ¼
X
i

X
r

pri x
!r
i (16.22)

402 K. Fujita

16.3.4 Cost Model

16.3.4.1 Fixed Costs

As fixed costs, one for module production, one for product production, one for

product sales, one for facility at site, and one for equipments depending to the kinds

of modules and products are estimated.

Equipment cost for respective modules is considered as the fixed cost for module

production CMP. It is represented with the following equation:

CMP ¼
X
j

X
k

X
s

ksMPCMPj;kδ
s
j;k (16.23)

where CMPj;k is the coefficient depending on the kinds of modules. ksMP is an

adjustment factor of module production facility cost by each site.

Equipment cost for respective products is considered as the fixed cost for product

production CPA. It is represented with the following equation:

CPA ¼
X
i

X
t

ktPACPAiδ
t!
i (16.24)

where CPAi is the coefficient depending on the kinds of products. ktPA is an

adjustment factor of product production unit cost by each site.

The sum of fundamental equipment cost CS for module and product production

per site over all sites is represented as follows with the above two kinds of δ
variables:

CS ¼
X
s

CS
s 1�

Y
j

Y
k

ð1� δsj;kÞ
Y
i

ð1� δs!i Þ
()

(16.25)

where CS
s is the coefficient that considered the difference among sites.

The fixed cost for product salesCPS is represented with the following equation as

the sum of facility cost per site and equipment cost per products:

CPS ¼
X
r

CPS
r 1�

Y
i

ð1� δ!r
i Þ

 !
þ
X
i

krPSCPSiδ
!r
i

()
(16.26)

whereCPS
r andCPSi are the coefficients depending on the locations of sites and the

kinds of modules. krPS is an adjustment factor of product sales fixed cost by

each site.

16 Global Product Family Design with Supply Chain Configuration 403

16.3.4.2 Variable Costs

As variable costs, one on module production, one on module transportation, one on

product production and one on product transportation are estimated.

The variable cost on module production cMP depends on the production volume.

It is represented with the following equation.

cMP ¼
X
j

X
k

X
s

ksmpcMPj;kx
s!
j;k (16.27)

where cMPj;k is the coefficient that considers the difference among modules. ksmp is

an adjustment factor of module production unit cost by each site.

The variable cost on module transportation cMT depends on the transportation

volume. It is represented with the following equation:

cMT ¼
X
s

X
t

ksmtcMT
s!t

X
j

X
k

cMTj;kx
s!t
j;k

 !
(16.28)

where cMTj;k and cMT
s!t are the coefficients that substitute the transportation

distance and that consider the difference among modules. ksmt is an adjustment

factor of module transportation unit cost by each site.

The variable cost on product production cPA is represented with the following

equation:

cPA ¼
X
i

X
t

ktpacPA!ix
t!
i (16.29)

where cPA!i is the coefficient that is different by products. ktpa is an adjustment

factor of product production facility cost by each site.

The variable cost on product transportation cPT is represented with the following
equation:

cPT ¼
X
t

X
r

ktptcPT
t!r

X
i

cPTix
t!r
i

 !
(16.30)

where cPTi and cPT
t!r are the coefficients that substitute the transportation distance

and that are different by products. ktpt is an adjustment factor of product transporta-

tion unit cost by each site.

404 K. Fujita

16.3.4.3 Total Cost and Profit

The profit, which is calculated as the difference between sales and cost, can be

taken as one of the objectives:

Profit ¼ Sales� CMP þ cMP þ cMT þ CPA þ cPA þ cPT þ CPSð Þ (16.31)

16.3.5 Quality Model

The quality of a product depends on all phases of manufacturing such as material,

fabrication, assembly, transportation, and delivery. While its indicator must be

based on the contents of respective products, this chapter introduces an abstracted

indicator, which is called here “quality measure,” and the range of that is ½0 : 1�.
First, when Module mj;k is produced at Site s ðs 2 ModuleÞ, its quality measure is

denoted as qsj;k . When Product Pi is assembled at Site t ðt 2 ProductÞ, the quality

measure of assembling process is denoted as qti. Under these, it is assumed that the

quality measureQt
i of ProductPi produced at Site t is represented with the following

equation:

Qt
i ¼ qti

Y
j

qsj;k

 !
(16.32)

This means that Qt
i is all product of the quality measures of implemented

modules and assembly process. Besides, if a sort of modules or products are

provided to a certain site from different sites more than two, the worst quality

measure is adopted.

The worst case Qmin of quality measures Qt
i of all products over all sites is

calculated with the following equation:

Qmin ¼ min
t;i

fQt
ig (16.33)

16.3.6 Delivery Model

Delivery of a product from an order to a customer is another important criterion

behind cost and quality in today’s manufacturing. In this chapter, production lead

time is taken as such a measure. That is, lead time for producing Modulemj;k at Site

s ðs 2 ModuleÞ is denoted as lsj;k, lead time for transporting Modulemj;k from Site s to

Site t ðt 2 ProductÞ is denoted as ls!t
m , lead time for producing Product Pi at Site t

16 Global Product Family Design with Supply Chain Configuration 405

is denoted as lti, and lead time for transporting Product Pi from Site t to Site u ðu 2
MarketÞ is denoted as lt!r

p . Then, the total lead time of Product Pi from module

production to product delivery is represented with the following equation:

Lui ¼ max
j

lsj;k þ ls!t
m

n o
þ lti þ lt!r

p (16.34)

This means that Lui is the total sum of the maximum of the sums of module

production time and module transportation time, time for assembling them into a

product, and its time to market. When more than two modules or products

are provided to a unique site, the longest lead time is taken as lsj;k and lti in the

above equation.

The worst case Lmax of the lead time of all products to be produced Lui is

calculated with the following equation:

Lmax ¼ max
u;i

fLui g (16.35)

16.3.7 Mathematical Formulation

Under the mathematical model developed in the above subsections, the optimal

design problem of simultaneous decision of module commonalization and supply

chain configuration is formulated as follows.

The design variables are the following two types:

• 0–1 integer variables on module production, product production, and product

sales, that is (δsj;k, δ
s!
i , δ!r

i)

• Nonnegative real variables on module production, module transportation, prod-

uct production, module assignment to product, and product transportation

ðxs!j;k ; xs!t
j;k ; xtj;k!i; x

t!r
i Þ

Respective design variables are restricted their domain by the following

constraints:

δsj;k 2 f0; 1g; δt!i 2 f0; 1g; δ!r
i 2 f0; 1g (16.36)

xs!j;k � 0; xs!t
j;k � 0; xtj;k!i � 0; xt!r

i � 0 (16.37)

Regarding objective functions, the expected profit, calculated with Eq. (16.31),

is to be maximized; the worst case of quality measure across all products, calculated

with Eq. (16.33), is to be maximized; and the worst case of lead time across all

products, calculated with Eq. (16.35), is to be minimized. That is, the followings are

taken as the objectives:

406 K. Fujita

max Profit
max Qmin

max Lmax

9=
; (16.38)

Regarding constraints, ones on module production capability, Eq. (16.3); ones

on production volume of respective modules, Eq. (16.4); ones on module produc-

tion volume and module transportation volume, Eq. (16.5); ones on module trans-

portation volume among respective pairs of different sites, Eq. (16.6); ones on

product production capability, Eq. (16.9); ones on product production and module

supply, Eq. (16.11); ones on module assignment to products, Eq. (16.13); ones on

product production and module supply, Eq. (16.14); ones on module and product

production volume at respective sites, Eq. (16.15); ones on product production

volume and product transportation volume, Eq. (16.16); ones on product transpor-

tation volume among respective pairs of different sites, Eq. (16.17); ones on

product supply and market sales, Eq. (16.19); and ones on product demand and

supply on respective site (market), Eq. (16.21) must be considered. Further,

Eqs. (16.36) and (16.37) must be considered.

In summary, the simultaneous design problem of module commonalization and

supply chain configuration is formulated as a multi-objective, mixed-integer pro-

gramming problem with 0–1 integer variables and nonnegative real variables.

16.4 Optimal Design Techniques for Global

Product Family

16.4.1 Multi-Objective Optimization

In general, a mixed nonlinear programming problem is combinatory hard to effi-

ciently find its optimal solution. Further, multi-objective optimization of such a

class of problems is more difficult and time consuming to find a set of relevant

alternatives.

While the above is general tendency, the optimization problem formulated in the

previous section has a specific structure. That is, if the 0–1 integer variables are

fixed into either value, the leftover problem becomes a linear programming prob-

lem, which can be solved with moderate computation cost, and the objective on

profit is only variable over continuous variables. Thus, the original problem is

divided into the upper-level subproblem, where the 0–1 integer variables are

manipulated under multiple objectives, and the lower-level subproblem, where

nonnegative real variables are manipulated under the single objective. A multi-

objective genetic algorithm (MOGA) is applied to the former, and a simplex

method is used for the latter. This hybridization enables to solve the optimization

problem with reasonable computational expense.

16 Global Product Family Design with Supply Chain Configuration 407

Among various MOGA techniques, the neighborhood cultivation GA (NCGA)

(Watanabe et al. 2002) is used for the upper-level problem. NCGA is composed of

neighborhood crossover that a pair of individuals adjoining in an objective space

are selected for crossover, the reference objective is shifted among multiple

objectives for avoiding iteration of similar mating, environmental selection is

embedded, and so forth.

In the simplex method for the lower-level subproblem, the constraints on real

variables under the 0–1 variables are considered by assigning some penalty to the

objective Eq. (16.31). If the lower-level problem does not have any feasible

solution, its infeasibility is evaluated with stack variables, and the result is fed to

the upper-level problem as the penalty. While the genetic algorithm cannot handle

constraints usually and the simplex method cannot deal with the quality of infeasi-

ble solutions, the above mechanism not only resolves these limitations but also

enables efficient optimization computation of the complicated mixed-integer pro-

gramming problem.

16.4.2 Principal Component Analysis for Clustering
Pareto Solutions

As aforementioned in Sect. 16.2.2, it is necessary that the preferences should be

identified from a set of potentially competitive solutions, which are Pareto optimal

solutions obtained by the optimization method described in the previous subsection.

The design concept exploration techniques are expected to be useful for such a

purpose (Obayashi and Sasaki 2003; Fujita et al. 2011). This chapter introduces the

principal component analysis (PCA) (Oyama et al. 2009) and its associated cluster-

ing algorithm as a data-mining technique for extracting useful information toward

such a solution. PCA is a mathematical procedure for converting a set of

observations of possibly correlated variables onto a set of values of linearly

uncorrelated variables with orthogonal transformation. It is effective for

representing complicated observations with less numbers of essential factors. In

the data mining with PCA, first the principle components are calculated with a

statistical processing technique, and dominant ones are identified by viewing its

result. Then, the observations are clustered via their principal scores up to the

dominant order of principle components with a clustering algorithm that is named

the Ward’s method (Ward 1963).

The relationship among the route information and three objective functions is

considered to be the essential factor on the characteristics of respective alternatives

in the global product family design problem. Thus, when applying the above tech-

nique to the problem, 0–1 integer variables representing route information, δsj;k;

δs!i ; δ!r
i , are used as the input data to the PCA. 0–1 integer variables are treated as

continuous variables under the nature of the PCA mechanism.

408 K. Fujita

16.5 Numerical Case Study

16.5.1 Typical Situation of Global Product Family Design

While the general meaning of global product family is described in Sect. 16.2.1,

such a situation can be found in various sectors of manufacturing. Among them, one

of automotive industries must be typical (Fujita et al. 2012a). For example, Nissan

has introduced the new models of March (called Micra in Europe), a brand name of

their world compact cars, in 2010 (Takano 2010). Before this model change, March

cars were manufactured in the Japan and England factories, because large markets

were around there. However, new models are not produced in Japan, and they are

imported from the Thailand factory to Japanese market. The reasons are compli-

cated, but the demands on compact cars are rapidly growing in emerging countries.

Nissan decided to manufacture new models at factories in Thailand, India, China,

and Mexico. According to an article found in a magazine (Takano 2010), Nissan

had revised not only the product architecture and strategies for arranging variants

over the world but also the grade of materials such as steel plates for shifting the

production bases from developed countries to emerging countries. On the other

hand, productions at the Japan factories may concentrate into other brands with

different grades. This will be not only because of the distance between factories and

major markets but also because such models essentially require high levels of

technologies and materials.

16.5.2 Contents of an Example Problem

With refereeing the situation described in the above subsection, we configure a

virtual example problem for demonstrating the effectiveness of optimal design

techniques developed in Sect. 16.4 with an image of automotive industries. In the

problem, the number of product variants is four. The number ofmodule slots is three.

The number ofmodule candidates for individual slots is 2, 2, and 3, respectively. The

number of sites for both production and sales is three. Among three sites, s1 is one of

leading industrialized countries such as Japan, s2 is one of larger developing

countries such as China, and s3 is a model of newly industrialized countries such

as Thailand. Their geographical relationship is assumed as well as the real one

among those countries. While the model described in Sect. 16.3 includes a lot of

parameters to be assigned, their outline can be summarized as shown in Table 16.1.

Its some details are assigned as shown in Tables 16.2, 16.3, 16.4, and 16.5.

Besides, the above problem is formulated with 45 0–1 integer variables and

204 real variables. When the optimization computation is performed with 1,000

individuals over 1,000 generations, the optimization computation takes about 30 h

on an ordinary personal computer.

16 Global Product Family Design with Supply Chain Configuration 409

16.5.3 Multi-Objective Optimization

The optimization method described in Sect. 16.4.1 is applied to the example

problem. Regarding the number of tentative Pareto optimal solutions, the number

is gradually increased from about 70 individuals at the 100th generation to about

Table 16.1 Outline of the example problem; differences among three sites

Sites Cost Quality

Lead

time

Market

size

Production

capacity

Transportation

capacity

s1 Higher Better Moderate Larger Moderate Larger

s2 Lower Worse Longer Larger Larger Larger

s3 Moderate Moderate Shorter Moderate Smaller Larger

Table 16.2 Price of products at respective sites psi (Yen)

s1 s2 s3

P1 1,000,000 1,000,000 1,000,000

P2 1,300,000 1,300,000 1,300,000

P3 1,600,000 1,600,000 1,600,000

P4 2,000,000 2,000,000 2,000,000

Table 16.3 Demand volume of products at respective sites Ds
i (unit)

s1 s2 s3

P1 8,000 10,000 5,000

P2 6,000 6,000 4,000

P3 5,000 5,000 3,000

P4 3,000 3,000 2,000

Table 16.4 Availability of modules for producing products, which means the possibilities of

module diversion and commonalization γj;k!i

m1;1 m1;2 m2;1 m2;2 m3;1 m3;2 m3;3

P1 1 0 1 0 1 1 1

P2 0 1 1 0 1 1 1

P3 1 1 0 1 0 1 0

P4 0 1 0 1 0 0 1

Table 16.5 Production and sales capability of respective sites

s1 s2 s3

Ws (unit) 100,000 150,000 80,000

Cs
S (� 106 Yen) 3,600 2,400 3,000

Cs
PS (� 106 Yen) 1,000 1,000 1,000

410 K. Fujita

90 individuals at the 400th to 500th generations, and finally 105 Pareto optimal

solutions are obtained at the 1,000th generation.

16.5.4 Clustering of Pareto Solutions

Figure 16.3 shows the distribution of such Pareto solutions and their clustering with

the PCA method. The solutions are categorized into eight clusters; respective plots

are marked with different symbols by categorized clusters. Part (a) shows a cross-

sectional perspective view of Pareto frontier surface, Part (b) shows their projected

perspective view in the orthogonal angle of Part (a), Part (c) shows their projection

to quality-profit section. The mathematical symbol Ci;j indicates that it is the jth
Pareto solution of the ith cluster. In the figure, it is confirmed that quality, profit, and

lead time are traded off indeed as common sense indicates. For example, the

solutions in Cluster 1 are superior in lead time but inferior in quality and profit.

Ones in Cluster 4 are superior in quality but inferior in profit. Ones in Cluster 8 are

superior in profit but inferior in quality.

0.65 0.70 0.75 0.80 0.85 0.90 0.95

80
100
120
140
160
180
200
220

a

b

c

Le
ad

tim
e[

h]

Quality

Profit [x 10 10
 Yen]

-0.5
0

1.0
1.5

2.0
2.5

0.5

C1,1

C1,2

C1,3

C2,1

C2,2

C3,2

C3,1

C2,3

C7,2

C7,3

C7,1

C6,3

C5,2

C4,2

C6,2

C6,1

C5,3

C4,3

C5,1 C4,1

C3,3

C8,2

C8,3

C8,1

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Cluster 5
Cluster 6
Cluster 7
Cluster 8

0.65

0.70

0.75

0.80

0.85

0.90

0.95

-0.5 0 0.5 1.0 1.5 2.0 2.5

Q
ua

lit
y

110

150

Leadtime = 215

140

90

C1,1

C1,3

C2,1

C3,2
C3,1

C2,3

C7,2

C7,3

C7,1

C6,3

C5,2

C4,2

C6,2

C6,1

C5,3

C4,3

C5,1

C4,1

C3,3

C8,2

C8,3

C8,1

C2,2

C1,2
80

100

120

140

160

180

200

220

Le
ad

tim
e[

h]

0.65
0.70

0.75
0.80

0.85
0.90

0.95

Quality
-0.5 0 0.5 1 1.5 2 2.5

Profit [x 1010 Yen]

Profit [x 1010 Yen]

C1,1

C1,2
C1,3

C2,1

C2,2

C3,2

C3,1

C2,3

C7,2

C7,3

C7,1

C6,3

C5,2C4,2

C6,2

C6,1

C5,3

C4,3

C5,1

C4,1

C3,3

C8,2
C8,3

C8,1

Fig. 16.3 Pareto optimal solutions and their clustering. (a) Cross-sectional perspective view. (b)

Projected perspective view. (c) Plot of solutions to quality-profit section

16 Global Product Family Design with Supply Chain Configuration 411

16.5.5 Design Concept Exploration

Figures 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, and 16.11 show the contents of the

representative solution of respective clusters. In each rectangle of each figure, icons

on module production are arranged in the left column, ones on product assembly are

arranged in the center column, ones on product sales are arranged in the right

column, and horizontal broken lines distinct them into ones at different sites. An

empty icon means that the corresponding module or product is not produced or sold

there. The lines between module production and product assembly and between

product assembly and product sales represent the transportation volume at the

respective routes with three levels of their thickness. Under these icons and lines,

the solution index and the values of three objectives are shown.

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C1,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

C1,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

C1,3
Profit
0.0740

Quality
0.677

Leadtime
93

Profit
0.442

Quality
0.670

Leadtime
95

Profit
1.07

Quality
0.663

Leadtime
124

Fig. 16.4 Representative solutions in Cluster 1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C2,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C2,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C2,3

.

Profit
0.240

Quality
0.796

Leadtime
111

Profit
0.685

Quality
0.779

Leadtime
115

Profit
1.06

Quality
0.707

Leadtime
138

Fig. 16.5 Representative solutions in Cluster 2

412 K. Fujita

The following explains the characteristics of respective clusters and associated

interpretations. In their heading, the figure number indicates the figure where the

contents of representative Pareto solutions within each cluster are illustrated.

The numbers in parentheses are the ranking of three objective functions among

eight clusters.

Cluster 1 (Fig. 16.4)—Production and assembly are performed at only Site s2 or

at Sites s1 and s2. Therefore, the scale of product deployment is quite small. While

lead time is shorter, profit and quality are inferior ðProfit : 7; Qmin : 6; Lmax : 1Þ.
Cluster 2 (Fig. 16.5)—Production and assembly are performed at Sites s2 and s3.

Therefore, the scale of product deployment is rather small. Since modules and

products are transported between Sites s2 and s3; lead time is better, where the

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C3,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C3,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C3,3
Profit
0.817

Quality
0.894

Leadtime
215

Profit
0.555

Quality
0.894

Leadtime
142

Profit
1.42

Quality
0.812

Leadtime
143

Fig. 16.6 Representative solutions in Cluster 3

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C4,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C4,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C4,3
Profit
-0.378

Quality
0.932

Leadtime
87

Profit
-0.0828

Quality
0.922

Leadtime
119

Profit
0.215

Quality
0.913

Leadtime
170

Fig. 16.7 Representative solutions in Cluster 4

16 Global Product Family Design with Supply Chain Configuration 413

distance between Sites s1 and s2 and one between Sites s2 and s3 are about half of

one of Sites s1 and s3: Quality is moderate and profit is not so good ðProfit : 6;
Qmin : 4; Lmax : 3Þ.

Cluster 3 (Fig. 16.6)—Few production are at Site s3 and the scale of product

deployment is small. The module production is arranged with a high regard for

quality, as Modules m2 and m3 that are difficult to produce are produced at Site s1,

and Modulem1 that are easy to produce are produced at Site s2. Thus, while quality

is better, profit is not so good. Further, when assembly at Site s3 is performed

supplementally, modules are transported from Site s1 to Site s3; and lead time

becomes longer ðProfit : 5; Qmin : 2; Lmax : 7Þ.
Cluster 4 (Fig. 16.7)—Production and assembly are performed only at Site s1:

Quality is the best, and lead time is very short. On the other hand, the scale of product

deployment is quite small, and profit is worst ðProfit : 8; Qmin : 1; Lmax : 2Þ.

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C5,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C5,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C5,3
Profit

1.39
Quality

0.796
Leadtime

142
Profit

1.99
Quality

0.754
Leadtime

143
Profit

2.00
Quality

0.663
Leadtime

142

Fig. 16.8 Representative solutions in Cluster 5

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C6,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C6,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C6,3

.

Profit
0.866

Quality
0.796

Leadtime
140

Profit
1.50

Quality
0.684

Leadtime
138

Profit
1.81

Quality
0.670

Leadtime
141

Fig. 16.9 Representative solutions in Cluster 6

414 K. Fujita

That is, it is necessary to enlarge the scale of product deployment for increasing

profit. However, under the constraints on production volumes, it becomes indis-

pensable to utilize all sites for module production and product assembly. Since the

product deployment depends on export and import very much, lead time becomes

deteriorated in general. As production and assembly are performed at all sites, the

products that are composed of modules produced at Site s2 are increased anyhow.

Consequently, quality has become lower, as the objective is the worst case of

quality among all products. The following clusters can be categorized into ones

with such a viewpoint.

Cluster 5 (Fig. 16.8)—The scale of product deployment is large. Modules are

produced with a high regard for quality fundamentally. Quality is not so good,

because some are produced at Site s2. However, quality is better among the last four

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C7,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C7,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C7,3
Profit

1.36
Quality

0.885
Leadtime

215
Profit

1.63
Quality

0.867
Leadtime

167
Profit

2.24
Quality

0.805
Leadtime

147

Fig. 16.10 Representative solutions in Cluster 7

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C8,1

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C8,2

s1

s2

s3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

m1,1

m2,1

m1,2

m2,2

m3,1

m3,2

m3,3

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P1

P2

P3

P4

P1

P2

P4

P3

P3

C8,3
Profit

2.26
Quality

0.714
Leadtime

160
Profit

2.27
Quality

0.692
Leadtime

144
Profit

2.28
Quality

0.656
Leadtime

144

Fig. 16.11 Representative solutions in Cluster 8

16 Global Product Family Design with Supply Chain Configuration 415

clusters that have the large scale of product deployment. Lead time is better, as

export and import between Sites s1 and s3 ðProfit : 2; Qmin : 5; Lmax : 5Þ.
Cluster 6 (Fig. 16.9)—While the scale of product deployment is large, assembly

at Site s2 is not so large, but many modules are produced at Site s2. Thus, quality is

not so good, while profit and lead time are moderate. Among the later four

clusters, profit is the worst due to smaller volume of assembly at Site s2 ðProfit : 4;
Qmin : 7; Lmax : 4Þ.

Cluster 7 (Fig. 16.10)—Under the large-scale product deployment, many

modules are produced at Site s1; and many products are assembled at Site s2:

Regarding the activities at Site s3; there are two cases that module production is

major and that product assembly is major. In both cases, quality is better, because

modules produced at Site s1 are dominant. Profit is better, since module production

that can be performed with relatively low cost is executed at Site s1; and since

product assembly that must be performed with high cost is executed at Site s2. Lead

time is the worst, since modules are transported from Site s1 to Site s3 and products

are transported from Site s3 to Site s1. This tendency does not depend on the scale of
product deployment within these clusters ðProfit : 3; Qmin : 3; Lmax : 8Þ.

Cluster 8 (Fig. 16.11)—The scale of product deployment is large, products are

assembled at Site s2; and then exported to all sites. Since module production is

arranged with a high regard for cost, profit is the best, but quality is the worst, while

lead time is worse. However, as the scale of product deployment becomes larger

within this cluster, lead time becomes moderate, since there is no export or import

between Sites s1 and s3 ðProfit : 1; Qmin : 8; Lmax : 6Þ.
The above interpretations of representative competitive solutions are enabled

through lump generation of Pareto solutions by multi-objective genetic algorithm

and their clustering by a PCA-based data-mining technique. Since those

interpretations correspond to conceptual meaning of concrete solutions and major

modes of concrete trade-offs among quality, cost, delivery, etc., they are effective

for concept-level decision making of simultaneous design of module

commonalization and supply chain configuration. That is, it can be recognized

that the scenario mentioned in Sect. 16.2.2 is realized through the proposed optimal

design techniques in designing a global product family.

16.6 Concluding Remarks

This chapter described a multi-objective formulation of a class of global product

family design problem, in which module commonalization and supply chain

configuration are simultaneously determined and its optimization algorithm by

combining the neighborhood cultivation genetic algorithm and the simplex method.

Further, this chapter explores design concepts underlying a set of Pareto optimal

416 K. Fujita

solutions obtained by using the principal component analysis-based clustering

technique. The demonstrated results indicate the possibility and promise on the

application of multi-objective optimization and design concept exploration to

the global product family design. While outcomes are restricted by various

conditions, the mathematical model of this chapter is excepted to be foundations

for rationally exploring the excellence of global product family design.

Acknowledgement The author acknowledges that computer programming and computation of

optimization examples were done by Ken Nasu, who was formerly a graduate student of Osaka

University, and Yuma Ito, who is currently a graduate student of Osaka University.

References

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

Fujita K, Sakaguchi H, Akagi S (1999) Product variety deployment and its optimization under

modular architecture and module commonalization. In: Proceedings of the 1999 ASME design

engineering technical conferences, Paper No. DETC99/DFM-8923

Fujita K, Muraoka M, Mistunaka A, Nomaguchi Y (2011) Preliminary study on design concept

exploration of truss structures by multi-objective optimization and self-organizing map. In:

Proceedings of 9th world congress on structural and multidisciplinary optimization (WCSMO-

9), Paper Code 361_2

Fujita K, Amaya H, Akai R (2012a) Mathematical model for simultaneous design of module

commonalization and supply chain configuration toward global product family. J Intell Manuf.

doi:10.1007/s10845-012-0641-x

Fujita K, Nasu K, Ito Y, Nomaguchi Y (2012b) Global product family design: multi-objective

optimization and design concept exploration. In: Proceedings of the 2012 ASME design

engineering technical conferences and computers and information in engineering conference,

Paper No. DETC2012-70858

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Obayashi S, Sasaki D (2003) Visualization and data mining of Pareto solutions using self-

organizing map. In: Proceedings of 2nd international conference on evolutionary multi-

criterion optimization, pp 796–809

Oyama A, Verburg P, Nonomura T, Fujii K (2009) Flow data mining of Pareto-optimal airfoils

using proper orthogonal decomposition. In: Proceedings of annual conference of the Japan

Society for computational engineering and science (JSCES), vol 14, pp 123–126 (in Japanese)

Pine BJ (1993) Mass customization: the New Frontier in business competition. Harvard Business

School Press, Boston, MA

Sato K, Wakao S (2010) Data mining method for battery operation optimization in photovoltaics.

IEEJ Trans Power Energy 130(3):313–319

Shimizu E, Isogai K, Obayashi S (2008) Multiobjective design study of a flapping wing power

generator. ASME J Fluids Eng 130(2):0211041–0211048

Simchi-Levi D, Kaminsky P, Simchi-Levi E (1999) Designing and managing the supply chain:

concepts, strategies, and cases. McGraw-Hill/Irwin, New York, NY

Simpson TW, Siddique Z, Jiao J (2005) Product platform and product family design: method and

applications. Springer, New York, NY

Takano N (2010) New MARCH that will be mass-produced at an emerging country, Nikkei

Monozukuri, Oct 2010 Issue, Nikkei Business Publications (in Japanese)

16 Global Product Family Design with Supply Chain Configuration 417

http://dx.doi.org/10.1007/s10845-012-0641-x

Ulrich E (1995) The role of product architecture in the manufacturing firm. Res Policy

24(3):419–440

Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statist Assoc

58(301):236–244

Watanabe S, Hiroyasu T, Miki M (2002) Neighborhood cultivation genetic algorithm for multi-

objective optimization problems. In: Proceedings of the 4th Asia-Pacific conference on

simulated evolution and learning (SEAL-2002), pp 198–202

418 K. Fujita

Chapter 17

Architecture-Centric Design Approach

for Multidisciplinary Product Development

A.A. Alvarez Cabrera, H. Komoto, T.J. van Beek, and T. Tomiyama

Abstract Managing complexity is a crucial task during the development process

of multidisciplinary complex products. To achieve an efficient and effective

development process of such a product, all the stakeholders must maintain a

common understanding of the system and mutually linked detailed information

of the product. This chapter proposes system architecture as a concept wider than

product architecture, which provides such an overview as well as information that

links various detailed information about the product. System architecture includes

not only structural elements and relations among them but also functions,

behaviors represented by working principles, and a variety of requirements. The

working principles are modeled with physical phenomena and the involved

parameters and relations among those parameters (e.g., equations). This

chapter presents three prototype tools for system architecting illustrated with

examples.

17.1 Introduction

In a previous edition of this book (Simpson et al. 2006), a platform is defined as the

collection of common elements (not necessarily product parts) which allow effi-

ciently developing and launching a series of products. The authors would like to

highlight two key concepts in such a definition:

A.A. Alvarez Cabrera • T.J. van Beek

Delft University of Technology, Delft, The Netherlands

H. Komoto

National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

T. Tomiyama (*)

Cranfield University, Cranfield, UK

e-mail: t.tomiyama@cranfield.ac.uk

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_17,
Springer Science+Business Media New York 2014

419

mailto:t.tomiyama@cranfield.ac.uk

• Deciding on commonality between products is at the core of platforming.

Platforming entails providing a generic umbrella to capture and utilize common-

ality in products including anchoring to a common process structure (Martinez

et al. 2000).

• Evaluating the efficiency of a platform is necessary to make decisions about

which elements should be made common through the platform. Growing stake-

holder awareness about several aspects of development (e.g., costs) increases the

ability to make well-informed decisions [the specific case of designers and cost

is presented in Simpson et al. (2006)].

On the one hand, answering the question of what should be common in a

platform is already a difficult matter (the purpose of this book). On the other

hand, even outside the scope of platform development, modern products are

increasingly becoming complex for a variety of reasons (Avigad et al. 2003;

Craig et al. 1999; Van Amerongen 2003; Xu and Zou 2007) including:

• The customer requirements are becoming complex reflecting severe competition

among manufacturers. These requirements may involve technically new

functions such as adaptability.

• The sheer “size” involved in modern product design is enormous. Not only the

size but also the number of stakeholders also increased.

• Increasingly more disciplines are involved, which requires careful consideration

of interactions coming from integrating subsystems.

Consequently, even products that look simple when considering the number of

parts may involve much complexity because of the scale and number of the

involved phenomena. Further complexity adds due to the production context, e.g.,

mass customization, distributed development teams, and development of product

platforms. Dealing with such complexity, and in particular with that one originated

from multidisciplinarity, has been the main driver of the proposals presented

through this chapter. These points are rarely addressed by other authors in an

applied level.

Because of the complexity-related issues described above, platform develop-

ment (or platforming) must be properly guided by a method and supported by tools.

The work presented in this chapter is an attempt to establish them. Among others,

however, the chapter focuses on “architecture” and “architecting” that are tightly

related to platform development.

“Product architecture” is traditionally understood as the mapping of function and

structure or as the fundamental structure of the product (Simpson et al. 2006,

Chap. 13, p. 308). The previous edition of this book also shows the direct influence

of the product architecture in activities including costing, measuring commonality,

platform planning or extent evaluation, product family planning, as well as an

integral part in supporting tools for platform development. Therefore, product archi-

tecture and product platforms are inseparably and mutually influencing each other.

420 A.A. Alvarez Cabrera et al.

http://dx.doi.org/10.1007/978-1-4614-7937-6_13

The proposals in this chapter consider using models of the “system architec-

ture1” as the backbone for tooling which can effectively support platforming by

addressing the key issues of determining commonality and evaluating efficiency

(highlighted at the beginning of this chapter). With that in mind, it is necessary to

provide a more precise definition of what is meant here with terms such as product

and system architecture. As shown in Fig. 17.1, product architecture is defined here

as an extended concept from the traditional definition mentioned before (consisting

largely of connectivity information). In this chapter, product architecture not only

considers the structural elements, their relations, and functionality but also takes

into account part of the rationale behind the product working principles which

explain its behavior. This is considered by modeling the phenomena through the

involved parameters and relations among those parameters (e.g., equations).

Beyond the scope of product architecture, the system architecture also considers

elements around the product and its development, such as requirements and the

different development phases, which provide a context responsible for driving and

steering the development process.

Having defined the basic concepts, it is necessary to stress that architecture is

only a conceptual construct, and, as it is the case for most other concepts, it can only

be used effectively when it is modeled. Modeling allows working with the infor-

mation by enabling to manipulate and to share it, modeling allows building tools.

Examples of models can be found within most domains such as free-body diagrams

and equations for mechanics, circuit diagrams for electrics and electronics, or value

models for economics. Such models are referred through this chapter as domain

specific. Similarly, two basic models of the architecture are used through this

chapter. The first one is the Function-Behavior-State (FBS) model (Umeda et al.

1996), which focuses on representing the product architecture (i.e., the extended

System architecture

Conceptual

Integration

Detailed

Verification

Disposal

Development
process (phases)

Product architecture
(extended)

Use cases

Rationale

etc.

Drivers
Customer
objectives

Requirements

etc.

Product architecture
(traditional)

Phenomena

Function

Relations

Structure

Fig. 17.1 Elements in product architecture and system architecture

1 In this chapter, the term of “system architecture” is used as a wider concept than just “product

architecture” to signify that the target is complex multidisciplinary systems.

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 421

definition provided here). The second one has been coined as the Architecture

Model (AM) (Alvarez Cabrera 2011), which has been conceived as an extension

of the FBS model aiming to represent the system architecture.

Another important point to define is that, due to the complexity of the models

discussed above, special attention has to be paid to the task of managing the

information at any given point in time. The experience of the authors has shown

that a big part of this task can be handled by using appropriate views which balance

between providing an overview of the system (to maintain context) while making

available the relevant information for a specific discussion (a particular analysis or

evaluation). As depicted in Fig. 17.2, views covering both levels are necessary to

address the descriptions made at different levels of detail. On the one hand, domain-

specific views are tightly related to the model they relate to, and thus become

defined (as the relevant the types of information and their relations) mostly by such

models. On the other hand, such a straightforward definition is not yet found for

overviews (this is partially addressed here).

The concept of views in models of the system architecture (called also system

architecture descriptions) is presented also in the ISO/IEC 42010 standard (IEEE

2000). The standard considers the architecture model as the aggregation of

multiple-shared views (see Fig. 17.3) addressing the concerns of relevant

stakeholders. The term “stakeholders” envelops the group of actors involved in a

development process, including customers, designers, engineers, managers, and

even their working tools. As a result, and confirming the reasoning made earlier,

these views must refer to the objects in the domain-specific models that the

stakeholders use for development and design.

This chapter tries to provide tools to integrate domain-specific methods by

integrating the execution, results, and views they can provide. The architectural

model has as goals to provide an overview of the system by facilitating common

understanding and to work as a formal basis to support development activities

O
ve

rv
ie

w
s:

 P
ar

t o
f

ar
ch

ite
ct

ur
e

m
od

el
s

System descriptions:

D
om

ai
n-

sp
ec

ifi
c

vi
ew

s:
tr

ad
iti

on
al

m
od

el
s

Model views:

Fig. 17.2 Model views in product (platform) development, adapted from Muller (2007) and

Tomiyama et al. (2007)

422 A.A. Alvarez Cabrera et al.

including the architecting activity itself (i.e., defining a system architecture). In this

context, the impact of system architecture models on product development becomes

deeper as it directly reflects on the capability of efficiently evaluating design

alternatives by providing the necessary overview and pointing out to the specific

models that hold domain-specific information.

Designing platforms may take place simultaneously with the definition of the

system architecture, implying that not much quantitative and precise information

may be available at such a design stage. With that in mind, performing analyses to

compare platform designs with less detailed (but formal) architecture-level infor-

mation becomes a necessity and will be demonstrated with an example later. It is

worth noting that this chapter does not deal with how to identify or create any given

type of architecture (e.g., modular or integral) and that the presented techniques and

models help to consider and evaluate different aspects related to platform-based

development and architecting.

The rest of this chapter is structured in three sections dedicated to show

examples following the common line of how to support development activities by

using models of the architecture. However, the examples do not share case studies

as they are a compilation of past work of the authors. The first section shows

examples of our efforts to support the architecting activity itself (i.e., architecting)

before explicitly considering other design activities. The second section presents

specific techniques to aid crucial tasks for architecting: definition of overviews and

interfaces for modularization. Those two sections make direct use of models of the

product architecture (i.e., the extended definition provided here), manipulating

Library
viewpoint

Concern Viewpoint

Model

View

Stakeholder

Environment ArchitectureSystem

Mission

has
1…*

identifies
1…*

used to cover
1…*

has source
0…1

is addressed to
1…*

is important to
1…*

has 1…*

selects
1…*

Organized
by
1…*

participates in
1…*

consists of
1…*

provides

participates in

has an

fulfills 1…*

influences
inhabits

Architectural
description

Rationale

agregates
1…*

described by

conforms to

establishes
methods for

Fig. 17.3 Conceptual model of an architectural description, adapted from IEEE (2000)

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 423

them as part of the development process. The third section is focused on explaining

how system architectures can be formally captured to accomplish the goals of

providing overview and supporting analysis and evaluation of alternatives

described in multiple domain-specific models while following a truly model-

based paradigm.

There is much related literature discussing topics such as design support,

architecting, modularization, and design automation. However, for the sake of

being practical and direct, this chapter does not aim to provide a review of such

literature. References to related work are brought when touched directly and can be

found in more detail in the cited original publications from which the three main

examples are taken. The reader can also find useful review material in Erden

et al. (2008).

17.2 Architecting Activity in Product Development

and Its Relevance to Product Platform Development

This section briefly explains the architecting activity using a development frame-

work based on a model of the product architecture. Particularly, this section

discusses the development of a product platform as a part of the architecting

activity. Furthermore, computational supports used in the architecting activity are

briefly explained.

17.2.1 Architecting Activity in Product Development

Figure 17.4 shows a product development framework from the perspective of

systems engineering known as the V-model (Forsberg and Mooz 1991). The

V-model consists of three phases, the system decomposition phase, the implemen-

tation phase, and the system integration and verification/validation phase. The first

phase concerns decomposition of design problems. In the middle phase,

corresponding solutions to the decomposed design problems are found. The last

phase concerns synthesis of design solutions. The architecting activity discussed in

the section is performed at the first phase and consists of three major tasks (Komoto

and Tomiyama 2011):

• Identification of requirements to be translated to system-level specifications

(functions) of products.

• Hierarchical decomposition of the system-level specifications to specifications

of subsystems and eventually to components.

• Definition of behaviors and structure of these subsystems and their interfaces to

meet the corresponding specifications.

424 A.A. Alvarez Cabrera et al.

After performing these tasks, components and subsystems are designed in detail

(the implementation phase) followed by validation, verification, and integration of

designed components and subsystems at the latter phase of product development.

Engineers in charge of these tasks are often called system architects. The system

architect performs these tasks in cooperation with domain experts (e.g., mechanical,

control, and software engineers). The architect should understand the properties of

such embodiments based on similar subsystems developed in past designs and

standard components in handbooks from specific aspects. Using their design expe-

rience, the architect can envision the behavior of embodiments in a given environ-

ment. He/she collects and abstracts the knowledge of domain experts about

embodiments and defines relations (interfaces) among them so they satisfy the

overall requirements as a whole.

The system architect encounters the following challenges in the architecting

activity:

• In the process of hierarchical decomposition of the system-level specifications

into lower-level specifications, the system architect should maintain consistency

among the descriptions with different terms used in the different levels of

hierarchy and domains.

• The system architect may not be able to find embodiments satisfying specific

requirements from existing subsystems. In this case, he/she has to design new

embodiment satisfying such requirements with the help of domain experts.

• Even though he/she can identify embodiments satisfying all requirements, there

are a number of possible integrations of embodiments in terms of interfaces

among them. Therefore, systematic evaluation of possible integrations is neces-

sary before an integrated system is actually built.

The first and third problems have been studied in the field of function modeling

(e.g., Umeda et al. 1996) and modularization (e.g., Erixon et al. 1996), respectively.

For instance, the study of function modeling suggested the use of abstract (sym-

bolic) descriptions to represent a design concept across engineering domains in

function development. Clustering methods have been applied to evaluation and

optimization of the modular architecture of products. However, few studies have

tackled the second problem. Next, the second problem in architecting activity is

further analyzed while considering the development of a product platform.

Fig. 17.4 Product

development based on the

V-model (Forsberg and

Mooz 1991) highlighting the

phase addressed in this

section

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 425

17.2.2 Product Platform Development
in Architecting Activity

As introduced in the previous subsection (further detailed in Fig. 17.5), the system

architect first defines the function requirements of products in a family. Some

function requirements are assigned as common in family members, while others

are uniquely given to one product type. Based on the commonality and uniqueness

of function requirements defined across product types, the system architect defines

the modular architecture of products. These modules form the basis of the product

platform. As explained above, he/she may not be able to find appropriate

embodiments to satisfy function requirements. Missing embodiments can be either

common parts or parts dedicated for a specific product. In both cases, it is inevitable

to design missing embodiments during the product development.

The previous work of the authors has developed a method to perform

architecting activity without requiring the primary definition of embodiments or

building blocks (Komoto and Tomiyama 2011). Building blocks are, e.g., machine

elements, established components, and mechanisms in mechanical design. In con-

trol design, fundamental building blocks are represented as block diagrams includ-

ing sensors, actuators, and controllers. In software design, they can be subroutines

and functions. In case of the development of a product platform, building blocks

serve as common modules or dedicated structural elements.

Fig. 17.5 Architecting

activity in product

development

426 A.A. Alvarez Cabrera et al.

Figure 17.5 shows the architecting activity in product development, which includes

a procedure necessary when existing embodiments do not satisfy all requirements.

The system architect identifies physical phenomena realizing a desired system behav-

ior (that satisfies a function requirement) together with parameters associated with the

phenomena (e.g., parameters in an equation characterizing a physical phenomenon).

These parameters constitute a network that can be divided into clusters. While a

cluster indicates an embodiment of a component or a subsystem, a set of clusters as a

whole defines a module. The system architect compares architectural options regard-

ing the organization of clusters. Multiple architectural options are derived from the

network of parameters obtained from a given set of physical phenomena. Each

physical phenomenon is defined with a subnet of entities, their parameters, and

relations among the parameters representing the physical phenomenon (e.g., the

governing equation derived from the physical phenomena). The definition is stored

in the knowledge base of computer tools used by the system architect (such as

SA-CAD explained later). An architectural option is defined as a direct sum decom-

position of the parameter set. By exhaustively searching possible direct sum

decompositions, all possible architectural options can be computed (Komoto and

Tomiyama 2011). The algorithm is explained at the end of this subsection.

The architecting activity in Fig. 17.5 becomes more complex in case of the

development of a product platform (as opposed to a single product). For instance,

some subsystems and components can be treated as common parts in the product

platform. Such common parts should be determined at the architecting activity of

products, which include function requirements realized by the common parts in

parallel.

17.2.3 Computational Support

The authors have developed a prototype Systems Architecting CAD (SA-CAD) tool

supporting the architecting activity (Komoto and Tomiyama 2010, 2011). The types

of support offered by the system are:

• Hierarchical decomposition of function requirements and definition of structural

and behavioral descriptions based on the FBS modeling (Umeda et al. 1996).

• Generation of architectural options at any level of function hierarchy (i.e.,

SA-CAD is used to define the top-level decomposition of the system to satisfy

the major function requirements as well as the decomposition of a subsystem to

satisfy the local function requirements of the subsystem).

• Visualization of a product model using diverse (functional, behavioral, geomet-

ric, and parameter level) aspect modelers.

• Consistency management of design information defined with the above aspect

modelers (Komoto and Tomiyama 2010).

SA-CAD is equipped with four aspect modelers, the FBS modeler, the physical

process modeler, the geometric modeler, and the parameter network modeler

(Fig. 17.6). Using the FBS modeler, a product is modeled in terms of abstract

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 427

concepts such as functions, physical phenomena, relations, and entities (i.e., the

elements of product architecture). The physical process modeler defines temporal

relations among physical phenomena (adding more detail to phenomena

descriptions). The geometric modeler handles geometric relations among entities

(simplifying the definition of the abundant geometric relations). The parameter

network modeler is used to define parameters of entities as well as relations among

the parameters based on the definition of physical phenomena (facilitating phenom-

ena definition and visualization). In architecting activity, the parameter network

modeler plays a major role, while the other aspect modelers are used to help the

system architect understand the model of a product from functional, behavioral, and

structural aspects.

Figure 17.7 depicts an architecting case of an air-conditioning system with

screenshots of the parameter network modeler. The detailed description of the

case is beyond the scope of this section. Figure 17.7a shows four blocks with a

hierarchical structure. These blocks indicate the air-conditioning system (airCondi-
tioningSystem) and other entities (world, room, and human). Relations between the

parameters of the air-conditioning system and those of the other entities should be

Fig. 17.6 SA-CAD to support architecting activity

428 A.A. Alvarez Cabrera et al.

specified so that the air-conditioning system can adapt itself to the variations in the

parameter values (i.e., state) of the other entities. At the beginning of the

architecting case, the air-conditioning system does not possess subsystems and

their parameters.

Figure 17.7b shows a part of the architecting activity in which some parameters

of the air-conditioning system were defined based on the initial requirement of the

system. The initial functional requirement of the system was “to increase the

comfort of human,” in which the comfort was treated as a parameter of human.
The initial requirement is evaluated according to the temperature and humidity of

room (roomT and roomHmd).

Fig. 17.7 Development of product architecture with SA-CAD

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 429

The decomposition was defined by analyzing how human perceived the comfort

under the given surroundings (i.e., room in world). SA-CAD supported the architect

by searching and displaying physical phenomena that can influence these parameters.

As shown in Fig. 17.7b, Airflow was the selected physical phenomenon to influence

the parameters. When the physical phenomenon is instantiated, parameter relations

defined in the selected phenomenon are also instantiated. In the case, the temperature

and humidity of airConditioningSystem(sysT and sysHmd) were instantiated.
Figure 17.7c shows subsystems of the air-conditioning system and their

parameters defined with the following procedure supported by SA-CAD. First,

SA-CAD searches physical phenomena influencing roomT and roomHmd, which
have been identified in advance. Among several candidate physical phenomena

(e.g., airflow), the architect chose Vipolarization and ElectricHeatGeneration to

influence the value of sysT andPhysicalAbsorption to influence the value of sysHmd.
SA-CAD generates architecting options by clustering the parameters defined

in the selected physical phenomena. Figure 17.8 depicts a screenshot of the

interface of SA-CAD in which the architect has selected a set of physical

phenomena and a clustering pattern among possible clustering patterns (i.e.,

physical decompositions). In the case, the architect selected a clustering pattern

in which three independent subsystems (absorber, heater, and evaporator) are
introduced so that they individually cause the selected physical phenomena.

The clustering pattern is one of 77 patterns generated by SA-CAD. In

Fig. 17.8, the selected clustering pattern 77 includes indices 1, 2, and 3, which

represent three independent subsystems instantiated at this stage.

Fig. 17.8 Physical phenomena search and clustering pattern generation on SA-CAD

430 A.A. Alvarez Cabrera et al.

Furthermore, the architect considered another ElectricHeatGeneration so that

the temperature of absorber (absT), which influences the value of sysHmd, can be

adjustable with heater. SA-CAD helps the architect define the additional roles of

existing subsystems with the introduction of new physical phenomena. The support

also uses the procedure to search physical phenomena and generate clustering

patterns described in the previous paragraph.

17.3 Modularization and Definition of Interfaces

Modularization is the core of many supporting techniques for product platform

development (Simpson et al. 2006). In this section modularization is addressed

by showing how several methods and tools are used together for automated

derivation of modules assuming that enough architecture-level information is

available.

Modularity and decomposition go hand in hand during product development.

In order to create appropriate modules, maintaining an overview of the interfaces

plays a critical role. These overviews are created in the process of dividing a design

task (i.e., decomposing) (Muller 2007; Tomiyama et al. 2007) as part of the effort to

manage complexity in the product and its design process (Pahl and Beitz 1996; Suh

1990; Umeda et al. 1990).

However, in industry, creating and maintaining an overview are not given

priority, and the decomposition process is not formally documented during product

development. This behavior relates to the perception that the effort investment

required by such activities will not be fully paid off later; perception which may be

true as long as the current lack of support tools in industry for such development

activities persists.

The models presented in this section are taken from the authors’ previous work

(van Beek et al. 2010; Van Beek and Tomiyama 2010). In those articles, the models

and how they are deduced are explained in more detail.

17.3.1 Workflow and Function Modeling

To formally document modularization it is necessary to have information on

functions, behavior, entities, and their relations to capture the reasoning behind

modularization. Function modeling by nature is very suitable to document the

top-down path towards modularization. Function modeling can be used to represent

the problem decomposition process (“What to do?”). Functions are connected to

phenomena (i.e., behavior). Phenomena and static relational descriptions connect

entities (“How to do it?”).

FBS allows capturing precisely that information but in practice does not

seem amenable to the user. Therefore, capturing information is taken to the level

of workflows as illustrated in Fig. 17.9a. Thus, this section approaches the

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 431

modularization problem by using a workflow model, i.e., a flowchart-type diagram

that explicitly models the intended user workflow of a future product using a simple

natural language. The workflow diagram is accessible and describes how the product

will be used in a real application setting combined with any other necessary informa-

tion (such as preparation, actions of the users, supporting devices). The idea of using

workflow models to capture functional requirements in this research was inspired by

the field of business process modeling (Van der Aalst 1998) (Figs. 17.10 and 17.11).

Workflow models contain much functional information and can be considered as

function models in disguise. The flowchart-type description is understandable for

all stakeholders, most importantly the end user, without prior training. In the case of

medical systems, for example, the end users would be physicians and nurses.

(System architects, engineers, and designers are not allowed to operate the medical

systems for patients, so they cannot obtain real use experiences.) Early validation of

these workflow models ensures consistent customer expectation and interpretation

of the design problem by the system architect. Next, the system architect develops

the workflow models into functional system decomposition and a complete

FBS model.

Fig. 17.9 (a) Simplified workflow model example. Rectangular nodes are tasks; diamond shapes
are decisions; and the rounded rectangles denote the start and end of the workflow. The task

descriptions point at system functions. (b) Example of FBS model. F function, PP physical

phenomenon, E entity, R relation. (c) The corresponding filled DSM is shown. The entries are

weighted by their path length

432 A.A. Alvarez Cabrera et al.

Once an FBS model is available (Fig. 17.9b), all entities required for

modularization are known (Fig. 17.9c). Modularization is applied to cluster

strongly connected entities into modules. For small systems, it might be possible

Clustered

DSM

F1.1

sys-

tem

F1.2.1

system

F1.2.2

system

C1 C2 C3

E1 E2 E3 E4 E5

C1 E1 1 1/3 1

C2
E2

E3 1 1 1/3

C3
E4 1 1

E5 1

a b

Fig. 17.10 (a) Shows the clustered FBS model. (b) The top row of the DSM shows the names

determined by the automatic naming algorithm. The corresponding nodes are filled with

corresponding colors in the FBS model on the left. C ¼ cluster

Fig. 17.11 (a) Automatically generated interface overview graph. (b) Automatically generated

interface spreadsheet for system “F1.2.1” (the automatically assigned name based on functional

connectivity)

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 433

to perform this task manually. For larger, complex systems this will be a very

tedious and error-prone process.

Design Structure Matrix (DSM)-based modularization with clustering

techniques (e.g., k-means clustering) has been proposed by our group and other

researchers (Baldwin and Clark 2006; Browning 2001; Danilovic and Browning

2007; Fernandez 1996; Pimmler and Eppinger 1994; van Beek et al. 2010;

Whitfield et al. 2002). The DSM is a matrix representation with a row and column

for every system entity. Off-diagonal entries in the DSM represent an interface

between the entities of the corresponding row and column. Mathematical clustering

algorithms rearrange the rows and columns such that strongly related entities are

grouped together into modules.

17.3.2 Modularization and Interfaces

The DSM is a computer- and mathematics-oriented system representation but not

aimed at manual operations. Consider a system with one hundred entities. The DSM

would have ten thousand possible entries to go over. Filling the DSM entries

manually can be an error-prone and tedious task. Therefore filling the DSM was

automated by reusing the FBS model (van Beek et al. 2010) ensuring consistency of

high level of abstraction functional models with modularization results. Addition-

ally, the subjective design task is explicitly positioned at the functional level of the

system architecting process and becomes more graphic for the architect.

The algorithm determines the number of paths from every function in the func-

tional model to every module. This gives a degree of membership of each module to

each function. Mathematically this technique comes down to DSM by Domain

MappingMatrices (DMM) (Danilovic andBrowning 2007)multiplications. Proceed-

ing from the top-down, all the modules “pick” a function. When multiple modules

pick the same function, iteration is performed and the modules have to pick a child

function. This continues until all modules pick different functions. This algorithm

abandons the need for human intervention in the modularization process. Conven-

tionally human intervention in the naming of modules was necessary to create

presentable results understandable for all stakeholders.

17.3.3 Formula Student Case

As mentioned in the previous subsection, the method and tools presented here are

especially advantageous when dealing with complex systems. For the purpose of

this book, a balance had to be found in presenting a nontrivial system and managing

the size of the figures. A shifting system of the Delft University of Technology

formula SAE car of 2010 fits these requirements.

Figure 17.12 presents the FBS model of the shifting system. The function and

phenomena nodes are colored according to membership to the different modules.

434 A.A. Alvarez Cabrera et al.

F
: D

riv
e

F
or

m
ul

a
S

tu
de

nt
 C

ar

F
: t

o
G

en
er

at
e

P
ow

er

F
: C

on
ve

rt
 P

ow
er

in
to

 c
ar

 m
ot

io
n

F
: t

o
co

nt
ro

l P
ow

er

ge
ne

ra
tio

n
F

: c
on

ve
rt

ch
em

ic
al

 e
ne

rg
y

F
: G

et
 In

pu
t

pa
ra

m
et

er
s

F
: C

al
cu

la
te

co
nt

ro
l o

ut
pu

t F
: D

riv
e

ac
tu

at
or

s

F
: D

et
er

m
in

e
F

ue
l

F
: D

et
er

m
in

e
Ig

ni
tio

n

F
: T

ra
ns

fo
rm

P
ow

er
F

: T
ra

ns
m

it
P

ow
er

F
: (

di
s)

en
ga

ge

P
ow

er
F

: T
ra

ns
m

it
P

ow
er

 to
 w

he
el

s

F
: C

lu
tc

h
po

w
er

F
: o

pe
ra

te

cl
ut

ch

F
: T

ra
ns

m
it

po
w

er

F
: C

ha
ng

e
tr

an
sf

er
 r

at
io

F
: S

hi
ft

ge
ar

F
: R

ot
at

e
ge

ar
se

le
ct

or
F

: R
et

ar
d

ig
ni

tio
n

F
: S

up
pl

y
en

er
gy

F
: M

ov
e

ge
ar

 le
ve

r

F
: (

M
an

ua
l)

sh
ift

in
g

si
gn

al
F

: L
au

nc
h

co
nt

ro
l

F
: C

on
tr

ol

sh
ift

in
g

F
: G

et
 v

eh
ic

le
sp

ee
d

F
: G

et
 e

ng
in

e
sp

ee
d

F
: D

et
er

m
in

e
sh

ift
in

g
m

om
en

t

B
: C

od
e

ex
ec

ut
io

n
B

: C
od

e
ex

ec
ut

io
n

B
:

C
lu

tc
h

B
: L

ev
er

m
ot

io
n

B
: S

ig
na

l
ou

tp
ut

B
: S

ig
na

l
ou

tp
ut

B
: S

en
so

r
R

ea
do

ut

B
: S

en
so

r
R

ea
do

ut

B
: S

ig
na

l
ou

tp
ut

B
:

C
om

bu
st

io
n

B
: S

ig
na

l
ou

tp
ut

B
: L

in
ea

r
m

ot
io

n

F
: S

to
re

en
er

gy

F
: R

el
ea

se
en

er
gy

B
: P

re
ss

ur
iz

ed

ga
s

B
: F

lu
id

flo
w

B
: S

en
so

r
re

ad
ou

t
B

: M
es

he
d

ge
ar

s

B
: P

ow
er

tr
an

sm
is

si
on

B
: M

ec
h.

po

w
er

E
:

E
ng

in
e

E
: M

ot
or

co

nt
ro

l
co

m
pu

te
r

E
:

S
pe

ed

se
ns

or

E
:

S
en

so
rs

E
:

G
ea

r
le

ve
r

E
:

G
ea

r
bo

x

E
:

C
lu

tc
h

E
:

D
riv

e
tr

ai
n

E
:

W
he

el
s

E
: S

hi
fti

ng
C

om
pu

te
r

E
:

C
O

2
ta

nk

E
: C

lu
tc

h
ac

tu
at

or
E

: S
hi

ft
ac

tu
at

or
E

:
D

riv
er

E
: S

hi
ft

B
ut

to
ns

E
:

C
lu

tc
h

ha
nd

le

E
:

M
M

co

de

E
:

S
hi

fti
ng

co
de

B
:

C
om

pu
te

B
:

C
om

pu
te

B
:

R
ot

at
io

n
B

:
D

is
pl

ac
e

B
:

D
is

pl
ac

e

B
:

S
ig

na
l

B
:

S
ig

na
l

B
:

M
ot

io
n

B
: M

ec
h.

po
w

er

B
: M

ec
h.

po
w

er

1
2

5

3
6

7
9

8
12

15

11
10

13
17

16

18
19

21
23

24
25

22
14

20
4

F
ig
.
1
7
.1
2

C
lu
st
er
ed

F
B
S
m
o
d
el

o
f
th
e
F
o
rm

u
la

S
A
E
sh
if
ti
n
g
sy
st
em

ac
co
rd
in
g
to

b
eh
av
io
ra
l
d
ep
en
d
en
ci
es

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 435

Based on the Module Strength Indicator (MSI) (Whitfield et al. 2002), the

modularization algorithm (van Beek et al. 2010) determined that a decomposition

into three modules (Fig. 17.13) minimizes the number of interfaces between

modules and maximizes the interfaces inside modules. Figure 17.13 shows the

deduced DSM which was used as the input for the modularization algorithm. The

modules are colored corresponding to Fig. 17.12.

In the spreadsheet shown in Fig. 17.14, the detailed description about the

interfaces in the shifting system is presented, while Fig. 17.15 shows an overview

of the interfaces with graphs. The first graph (Fig. 17.15a) shows the interfaces in

the shifting system when no modularization is applied. Although the shifting

system consists of just eighteen entities, many interfaces can exist. Thicker inter-

face lines denote a stronger relation between two entities.

In Fig. 17.15b the modularization is applied to the overview. Three modules are

depicted and named using the automatic naming algorithm. The names are: gener-

ate power system, transmit power system, and transform power system. The

“generate power system” module, for example, contains the engine, sensors,

motor management computer, and motor management computer code. Naming

these entities as the “generate power system” seems to fit quite well.

From Fig. 17.15b two stronger interfaces can be denoted. The first strong

interface occurs between the power generation system and the power transform

system. The second strong interface connects the transform power system to the

S
h

if
ti

n
g

 c
o

d
e

S
h

if
ti

n
g

 c
o

m
p

u
te

r

D
ri

ve
r

S
h

if
t

b
u

tt
o

n
s

S
h

if
t

ac
tu

at
o

r

C
O

2
ta

n
k

C
lu

tc
h

 h
an

d
le

C
lu

tc
h

 a
ct

u
at

o
r

G
ea

r
le

ve
r

C
lu

tc
h

G
ea

r
b

o
x

D
ri

ve
 t

ra
in

W
h

ee
ls

S
p

ee
d

 s
en

so
r

M
M

 c
o

d
e

M
o

to
r

M
an

. c
o

m
p

u
te

r

S
en

so
rs

E
n

g
in

e

5 6 7 8 10 11 12 13 9 14 15 16 17 18 1 2 3 4
Shifting code 5 1 0.6 0.2 0.2 0.2 0.2

Shifting computer 6 0.6 1 0.4 0.6 0.6 0.2 0.6 0.2 0.6 0.2
Driver 7 1

Shift buttons 8 0.6 1
Shift actuator 10 0.2 0.6 0.2 1 0.4 0.2 0.2 0.2

CO2 tank 11 1
Clutch handle 12 0.6 1

Clutch actuator 13 0.2 0.6 0.2 0.4 0.2 1 0.2 0.2
Gear lever 9 0.2 0.6 1

Clutch 14 0.2 0.6 1 0.4
Gear box 15 0.2 0.2 0.6 1 1

Drive train 16 0.2 0.2 0.6 1
Wheels 17 0.2 0.6 1

Speed sensor 18 0.2 0.6 1
MM code 1 1 0.6 0.2

Motor Man. computer 2 0.4 0.6 1 0.6 0.2
Sensors 3 0.2 1 0.6

Engine 4 0.2 0.6 0.2 1

Fig. 17.13 DSM generated using FBS model

436 A.A. Alvarez Cabrera et al.

transmit power system. This resembles the physical setup of the car’s shifting

system.

The interface graphs in Fig. 17.15 are suitable for overview, but when the system

architect or other stakeholders want to go into detail, the interface spreadsheet in

Fig. 17.14 is more appropriate. In that spreadsheet style presentation, the

stakeholders can examine what each interface line in the graphs consists of.

17.4 System Architecture Models and Their Use

in Model-Based Platform Development

This section starts by introducing one standard definition of architectural model

(or description) to explain how such a model can help obtaining an overview

of design and support model-based development, conforming what is called here

architecture-centric development. The section ends with examples demonstrating

Fig. 17.14 Part of interface specification example for the formula SAE shifting system. This sheet

represents the interface specification for the “transform power” system

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 437

how a proposed modeling language and tool have been used to obtain the previous

goals in a case study. The aforementioned points can be visualized (cf. Fig. 17.16)

as entities (boxes marked with “E”) relating to each other (labeled arrow paths) to

accomplish the mapped (dashed lines) functionality (ellipses marked with “F”).

Here, a function can be understood as an abstract goal to be achieved. This section

mainly covers the work presented in (Alvarez Cabrera 2011).

Fig. 17.15 Generated interface graphs model of the shifting system. In (a) the un-modularized

graph shows all the entities from the FBS diagram. In (b) the interface graph of the modularized

system. The naming of the nodes in (b) was determined automatically using functional connectiv-

ity information from the FBS model

438 A.A. Alvarez Cabrera et al.

17.4.1 System Architecture and Architectural Descriptions

The definition of system architecture model presented in the introduction provides a

good overview of how an architectural description must be and what it should

achieve. The basic “elements” and the functionality of a framework enabling the

use of a model of the architecture are depicted in Fig. 17.16. However, more precise

descriptions are necessary to arrive to a formal language suitable for implementing

tooling.

The architectural description must allow representing and integrating informa-

tion that, due to its varied origin and audience, covers a wide spectrum, ranging

between the objective and subjective as well as between the abstract and the

concrete. Also it must be possible to declare different types of information to

answer the generic and common questions during design (see Fig. 17.17). Under

such considerations, the authors have proposed the Architecture Modeling (AM)

Basic elements

Formal language

Modeling tool

Stakeholders

to capture architecture

to support model-based development

to provide overview

Architectural description

accesses (read/write)

created in

represented by

define modeling objects in

input information request views

E E

F

F

F

E E

E

Fig. 17.16 Overview of this section depicted using entities “E” and functions “F”

P
ar

am
et

er
sWhat will it

do?
Functions

Function
relations

Requirements

How will it do
it?

Entities

Entity
relations

Formulae

Abstract AbstractConcrete

Subjective Objective

How is it designed and by whom?

Aspects

Design tasksViews

Domain entities

Fig. 17.17 Information spectrum and design questions to be covered by architectural descriptions

and the relation to objects proposed in the AM (Alvarez Cabrera 2011)

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 439

language (Alvarez Cabrera 2011) as a base for proper architectural descriptions.

More detailed descriptions of this proposal fall out of the scope of this text, and the

reader is referred to Alvarez Cabrera (2011), but the basic conventions are provided

in Fig. 17.18 to simplify understanding future examples. Note that the same

conventions have been used in the description presented in Fig. 17.16.

17.4.2 Providing Overview of Development Activities

Returning to the standard presented in Fig. 17.3 and looking beyond the encircled

area allow recognizing that the architecture description (and not the architecture)

relates strongly to the stakeholders who represent their concerns according to their

specific viewpoints. Additionally, the models and views interrelate (not explicitly

shown in Fig. 17.3), forming together the architectural description.

The models are not simply linked to an architectural description but also

connected to each other through the architectural description in order to represent

crosscutting concerns (that can often be represented by so-called key performance

indicators).

Such representations of crosscutting concerns (i.e., the views or key perfor-

mance indicators) help a stakeholder understand the product under development by

coupling the overview of the system with the part being developed by this particular

stakeholder. However, representing such crosscutting views in a domain-specific

language dedicated only to certain stakeholders is not practical considering that the

goal is to share part of this view with other stakeholders in order to create a common

understanding.

Function

Type

Function

Type

Function

Type
function relation Type

Requirement

Type Value (Range)

Entity Entityentity relation

Parameter Value [Unit]

formula expression

Aspect
Link

Domain entity
Link

Synthesis method
Knowledge

View

User

MODEL CONVENTIONS

Fig. 17.18 Modeling conventions for objects and relations in the AM (Alvarez Cabrera 2011).

Composition connectors (diamond ends) aggregate elements of the same class, mappings (dashed
lines) relate elements of different classes, while relations (arrow ends) do it for elements of the

same class

440 A.A. Alvarez Cabrera et al.

Therefore, defining a common language and formalization play important roles

in the proposals of this section. The AM (cf. Fig. 17.18) is one example of such a

formal language. Please notice that the specification and communication groups

(respectively identified by green and red text in Fig. 17.17) constitute the extension

that allows representing the complete set of elements considered here as part of the

system architecture (see Fig. 17.1). This language to build an architectural model of

a complex multidisciplinary system should support efficiently building a model and

views, querying about the model and views, and maintaining consistency of the

views (see “request views” relation and “modeling tool” entity in Fig. 17.16). To do

so, a special supporting environment called the AM tool was developed (Alvarez

Cabrera 2011).

17.4.3 Supporting Information Reuse Through
the Model-Based Paradigm

The AM tool introduced above does more than facilitating view creation; it stores

AM instances in a digital format for easy access of other software applications. In

this way, the model becomes available for reuse by the users through both manual

and automatic means. This section presents examples in which an architectural

description is used as a starting point for analysis and reuse while keeping an

overview of the development process. The examples go about the industrial devel-

opment process of part of a printer. The part corresponds to a paper transportation

line in the printer known as the paper path. The traditional development process was

first documented (using the AM) to increase understanding of the situation.

As shown in Fig. 17.19, an “aspect” (nodes marked with an “A”) makes

reference to a common interest of a group of stakeholders and maps to the set of

models (nodes marked with “DE”) used to describe and verify properties in the

context of such an interest. The aspect handled in this scenario is the paper flow

through the engine. This aspect points to domain-specific information on the

customer functions (single/double-sided printing), customer requirements

(throughput, paper sizes), geometry (component topology), electrical components

(motor profiles), simulation (real-time behavior), and software (the timing

algorithms and embedded software). The main functionality provided by the

paper path is handling the sheets to be printed. Subfunctions include storing,

feeding, positioning, heating, and transferring sheets. The input for the timing

performance analysis tool, a MATLAB application developed in-house and

named Happy Flow (Beckers et al. 2007), contains data on the geometric distribu-

tion of the paper path, the type and position of sensors and pinches, and the various

operation modes, defined in terms of path segments through which the sheet should

be moving. Currently, this data is obtained from various disciplines (cf. Fig. 17.19):

a dedicated two-dimensional drawing is transformed into an input file by manually

indicating which parts of the drawing belong to the paper path, the location of

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 441

sensors and pinches (pairs of roller to transport papers), and the start and end point

of the path segments. Based on the latter information, the operation modes can

subsequently be defined. This is a time consuming task that only involves data

gathering and deterministic transformations. Furthermore, these steps have to be

performed after every noticeable design change.

The domain-specific models that follow the sequence described in Fig. 17.19 are

scattered. At each step, the models are made by specialists (using their own

languages and tools) based on constraints from a text document (Microsoft Word,

Visio, or Excel mostly) supplied by the previous step. After models are verified

against the input constraints, the information is summarized by hand in a text

document and handed over to the next stage. This approach has a number of

disadvantages including lack of ownership, expensive and less reliable manual

updating, and lack of overview and context.

With the understanding of the traditional process, an architecture-centric

development process was proposed and implemented as shown by the model in

Fig. 17.20.

Process characteristics data

Proces order data

Process speed requirements

Path geometric data

Path geometric data Segment activation order

Segment activation order

Speed profile

Path geometric data

Paper movement data

Excel doc. Powerpoint doc.XML docs. Excel doc.PDF doc. Matlab doc.

Data - []

Data - []

Data - []

Data - []

Data - []

Data - []

Paper path
architect

Paper path
timing

Happy
flow

Engineer
3

Engineer
2

Engineer
1

Fig. 17.19 Exchange of information in traditional development process for a paper path

442 A.A. Alvarez Cabrera et al.

This specific AM redefines the process depicted in Fig. 17.19 by specifying the

required handover between models in a parametric and reusable way. Each stake-

holder provides some part to the aspect model, and the information can be accessed

on request without manual transfer. When a shared parameter value is changed, any

engineer or tool can update their domain-specific models to the new value, keeping

the whole aspect concurrently verified. For the discussed example, a knowledge-

based tool (taking the role of the domain-specific tool) was developed to execute the

following steps:

• Generate a conceptual geometry of the paper path (wireframe in Fig. 17.21, top),

based on the component specification in the AM and a restricted set of design

and engineering rules and high-level design parameters. This assumes that the

system is composed of existing components and that the set of design rules is

complete.

• Determines the number and position of components of the paper path (small

markers in Fig. 17.21, top), depending on the current geometry and taking into

account design constraints.

• Partitions the paper path in segments (thick-colored lines in Fig. 17.21, top),

following the specific segment definition for the Happy Flow simulation tool.

• Determines segment ordering for various operation modes, which are defined

using function sequences and component mappings in the AM; see Fig. 17.22.

Paper path architect AM tool

Layout generator

KBE tool

Movement sequence generator

Happy-flow

Model transformator

Paper path architecture

Path geometry data

Process characteristics data

Process order data Process speed requirements Path geometric data Path geometric data

Segment activation order

Segment activation order Speed profilePaper movement data

1

2

3

4 5

65

6

5 67

Fig. 17.20 Model-based development process for a paper path with support from architectural

descriptions. Numbers have been added to indicate the design process sequence

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 443

• Exports component objects (sensors, pinches, etc.), domain-specific objects

(segments), and parameters (segment order, shape definition, pinch and sensor

positions) to the AM, containing all necessary data to generate the Happy Flow

input file, which in turn can perform paper movement simulations (see

Fig. 17.21, bottom).

Fig. 17.21 Generated

geometry with segments

(top) and snapshot of

resulting animation (bottom)
for the operation mode

defined in Fig. 17.22

444 A.A. Alvarez Cabrera et al.

17.5 Conclusions

The existing literature and industry experience indicate that analysis and modeling

at the architecture level is necessary for platform development, just as it is neces-

sary for complex product development. Such necessity comes from the fact that the

platforming activities revolve around managing commonality, and to achieve this

efficiently the stakeholders must maintain an overview of the product and its related

processes which simultaneously are linked to the detailed information. Difficulties

to achieve this have more than one cause, but the inherent multidisciplinarity rising

in modern product development can be identified as one of the main root causes of

such difficulties. The proposals in this chapter aim mostly to solve such problems

coming from multidisciplinarity.

With a view to supporting the platforming activities, this chapter has presented

prototype tools that allow maintaining an overview while at the same time permit

and facilitate access to detailed information for the purpose of analysis and eva-

luation. Formalization of architecture-level information has been indispensable for

the support.

As evidenced by industrial practices, proper support tools for architecting are

still not in an acceptable stage of development. Without such tools, supporting the

platforming activities is also hard to achieve. Nonetheless, this chapter has

provided several ideas which can be used as a backbone and serve as building

blocks for such tooling. These ideas include the use of architecture-level infor-

mation as a backbone as well as prototype tools and techniques to model and use

such on formation.

go into loop

send to finisher

to flipper

to close loop to duplex

1 2

34
5

to transport sheet
into flip

to transport sheet from flip
to main loop

to transport sheet to
finisher

to transport sheet through
main loop

to provide new
sheet

to print duplex, not
turned

Fig. 17.22 Definition of an operation mode in terms of function objects in the AM. Numbers have
been added to roughly indicate the printing process sequence

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 445

Architecting is deeply related to decomposition and aggregation tasks. Such

tasks are commonly performed with difficulties to maintain an overview and scarce

modeling support. The first two examples in this chapter present how such tasks can

be performed by analyzing either behavioral information at the parametric level or

at the structural relation level to form clusters. It has also been shown how the

formed clusters can be automatically assigned to meaningful information at the

functional level, facilitating the interpretation of the results.

The third example in this chapter has shown how a system architecture model

can be used to represent both the product and its relation to the development

processes. The model has also shown that this perspective is fundamental if infor-

mation from several domain-specific models is to be used to evaluate architectures.

Acknowledgement This article is based on the research work performed at Delft University of

Technology, the Netherlands, between 2006 and 2011 by the authors’ group. The authors grate-

fully acknowledge the following projects that supported the part of the research work: “Automatic

Generation of Control Software for Mechatronics Systems” (supported by the Innovation-Oriented

Research Programmed “Integral Product Creation and Realization (IOP IPCR)” of the Dutch

Ministry of Economic Affairs, Agriculture and Innovation) and “Darwin” and “Octopus” (carried

out under the responsibility of the Embedded Systems Institute in Eindhoven and partially

supported by the same ministry under the BSIK program). Philips Healthcare and Océ

Technologies were industrial partners of the Darwin and Octopus projects, respectively.

References

Alvarez Cabrera AA (2011) Architecture-centric design: modeling and applications to control

architecture generation. Dissertation, Delft University of Technology

Avigad G, Moshaiov A, Brauner N (2003) Towards a general tool for mechatronic design. In:

Proceedings of 2003 I.E. conference on control applications, 23–25 June 2003. pp 1035–1040.

doi:10.1109/cca.2003.1223153

Baldwin C, Clark K (2006) Modularity in the design of complex engineering systems. In: Braha D,

Minai AA, Bar-Yam Y (eds) Understanding complex systems, vol 14. Springer, Berlin,

pp 175–205. doi:10.1007/3-540-32834-3_9

Beckers J, Heemels W, Bukkems B, Muller G (2007) Effective industrial modeling for high-tech

systems: the example of happy flow. In: 17th annual symposium of INCOSE, San Diego, CA,

USA, 24–28 Jun 2007. INCOSE, pp 1–12

Browning TR (2001) Applying the design structure matrix to system decomposition and integra-

tion problems: a review and new directions. IEEE Trans Eng Manage 48(3):292–306

Craig K, DeVito M, Mattice M, LaVigna C, Teolis C (1999) Mechatronic integration modeling.

In: Proceedings of IEEE/ASME international conference on advanced intelligent

mechatronics, 1999. pp 1032–1037. doi:10.1109/aim.1999.803314

Danilovic M, Browning TR (2007) Managing complex product development projects with design

structure matrices and domain mapping matrices. Int J Proj Manage 25(3):300–314.

doi:10.1016/j.ijproman.2006.11.003

Erden MS, Komoto H, van Beek TJ, D’Amelio V, Echavarria E, Tomiyama T (2008) A review

of function modeling: approaches and applications. Artif Intell Eng Des Anal Manuf

22(2):147–169

Erixon G, von Yxkull A, Arnström A (1996) Modularity—the basis for product and factory

reengineering. Ann CIRP 45(1):1–6. doi:10.1016/s0007-8506(07)63005-4

446 A.A. Alvarez Cabrera et al.

http://dx.doi.org/10.1109/cca.2003.1223153
http://dx.doi.org/10.1007/3-540-32834-3_9
http://dx.doi.org/10.1109/aim.1999.803314
http://dx.doi.org/10.1016/j.ijproman.2006.11.003
http://dx.doi.org/10.1016/s0007-8506(07)63005-4

Fernandez CIG (1996) Integration analysis of product architecture to support effective team

co-location. M.Sc. Thesis, Massachusetts Institute of Technology

Forsberg K, Mooz H (1991) The relationship of system engineering to the project cycle. In:

National Council on Systems Engineering (NCOSE) and American Society for Engineering

Management (ASEM), Chattanooga, TN, 21–23 Oct 1991. pp 1–12

IEEE (2000) Systems engineering and software engineering—Recommended Practice for Archi-

tectural Description of Software-Intensive Systems. ISO/IEC 42010—IEEE-Std-1471-2000

Komoto H, Tomiyama T (2010) A system architecting tool for mechatronic systems design. Ann

CIRP 59(1):171–174. doi:10.1016/j.cirp.2010.03.104

Komoto H, Tomiyama T (2011) Multi-disciplinary system decomposition of complex

mechatronics systems. Ann CIRP 60(1):191–194. doi:10.1016/j.cirp.2011.03.102

Martinez MT, Favrel J, Ghodous P (2000) Product family manufacturing plan generation and

classification. Conc Eng 8(1):12–23. doi:10.1177/1063293x0000800102

Muller G (2007) A multidisciplinary research approach, illustrated by the Boderc project. http://

www.gaudisite.nl

Pahl G, Beitz W (1996) Engineering design: a systematic approach, 3rd edn. Springer, Berlin

Pimmler TU, Eppinger SD (1994) Integration analysis of product decompositions. Alfred P. Sloan

School of Management, Massachusetts Institute of Technology, Cambridge, MA

Simpson TW, Siddique Z, Jiao J (2006) Product platform and product family design: methods and

applications. Springer, Berlin

Suh N (1990) The principles of design. Oxford University Press, New York, NY

Tomiyama T, D’Amelio V, Urbanic J, ElMaraghy W (2007) Complexity of multi-disciplinary

design. Ann CIRP 56(1):185–188

Umeda Y, Takeda H, Tomyama T, Yoshikawa H (1990) Function, behaviour and structure.

In: Gero JS (ed) Proceedings of the 5th international conference: application of artificial

intelligence in engineering, Boston, USA, 1990. Computational Mechanics Publications,

Southampton and Springer, Berlin, pp 177–194

Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996) Supporting conceptual design

based on the function-behavior-state modeler. Artif Intell Eng Des Anal Manuf 10(4):275–288

Van Amerongen J (2003) Mechatronic design. Mechatronics 13(10):1045–1066

Van Beek TJ, Tomiyama T (2010) Combining user workflow and system functions in product

development. In: ASME conference proceedings, Montréal, Canada, 2010. pp 239–248

Van Beek TJ, Erden MS, Tomiyama T (2010) Modular design of mechatronic systems with

function modeling. Mechatronics 20(8):850–863. doi:10.1016/j.mechatronics.2010.02.002

Van der Aalst W (1998) The application of Petri nets to workflow management. J Circuit Syst

Comp 8:21–66

Whitfield R, Smith J, Duffy A (2002) Identifying component modules. In: 7th International

conference on artificial intelligence in design, Cambridge, 7 Dec 2002. pp 571–592

Xu Y, Zou H (2007) Design principles for mechatronic systems based on information content. Proc

Inst Mech Eng B J Eng Manuf 221(7):1245–1254

17 Architecture-Centric Design Approach for Multidisciplinary Product Development 447

http://dx.doi.org/10.1016/j.cirp.2010.03.104
http://dx.doi.org/10.1016/j.cirp.2011.03.102
http://dx.doi.org/10.1177/1063293x0000800102
http://www.gaudisite.nl/
http://www.gaudisite.nl/
http://dx.doi.org/10.1016/j.mechatronics.2010.02.002

Chapter 18

Product Family Commonality Selection

Using Optimization and Interactive

Visualization

Ritesh Khire, Jiachuan Wang, Trevor Bailey, Yao Lin,

and Timothy W. Simpson

Abstract High dimensionality and computational complexity are curses typically

associated with many product family design problems. In this chapter, we discuss

interactive methods that combine two traditional technologies—optimization and

visualization—to create new and powerful strategies to expedite high dimensional

design space exploration and product family commonality selection. In particular,

three different methods are compared and contrasted: (1) exhaustive search with

visualization, (2) individual product optimization with visualization, and (3) prod-

uct family optimization with visualization. Among these three, the individual

product optimization with visualization method appears to be the most suitable

one for engineering designers who do not have a strong optimization background.

This method allows designers to “shop” for the best designs iteratively, while

gaining key insight into the trade-off between commonality and individual product

performance. The study is conducted in the context of designing a product family

using an in-house, system-level simulation tool. The challenges associated with (1)

design space exploration involving mixed-type design variables and infeasibility

and (2) visualizing product family design spaces during commonality selection are

addressed. Our findings indicate a positive impact on the company’s current

approach to product family design and commonality selection.

An earlier version of this chapter appeared in R. Khire, J. Wang, T. Bailey, Y. Lin, and T. W.

Simpson (2008) Product Family Commonality Selection through Interactive Visualization, ASME

Design Engineering Technical Conferences – Design Automation Conference, New York, NY,

ASME, Paper No. DETC2008/DAC-49335 (# ASME 2008), reprinted with permission.

R. Khire (*) • J. Wang • T. Bailey • Y. Lin

United Technologies Research Center, East Hartford, CT 06118, USA

e-mail: KhireR@utrc.utc.com

T.W. Simpson

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_18,
Springer Science+Business Media New York 2014

449

mailto:KhireR@utrc.utc.com

18.1 Introduction

In many technology-focused companies, engineering practice is evolving to a state

where rigorous physics-based models are being used to analyze and verify product

design performance and reliability. Increased product complexity and competitive

pressure to accelerate product introductions to market have motivated large

companies such as Boeing, Ford, Caterpillar, and United Technologies Corporation

(UTC) to pursue rigorous analytical approaches to engineering design (Simpson

and Martins 2011). At UTC, for instance, benchmarks have shown that a commit-

ment to model-based design, analysis, and verification can provide as high as 30 %

savings in engineering costs and can also cut development time in half.

To complicate matters further, most companies now offer many of their products

as variants within a larger product family. A product platform, consisting of

common components or subsystems across the family, is typically used to generate

high profits (Meyer and Lehnerd 1997). A typical product family consists of a set of

products that have (1) some unique characteristics and (2) shared components and

modules. As such, product family optimization inherits all of the idiosyncrasies

involved with single product optimization (e.g., multiple objectives, mixed

variables), while adding coordination across the family. The latter involves addi-

tional intricacies such as making commonality decisions, significantly high

dimensionality, and combined combinatorial-attribute decision making. This

creates additional challenges (such as high computing requirements) when

physics-based models are used for design and verification of product families.

We refer the reader to work by de Weck (2005), which provides a thorough

example of the types of models needed to translate product family design decisions

into profitability for a company.

Typical steps in product family optimization include (1) defining the product

family, (2) formulating the product family optimization problem, (3) solving the

product family optimization problem, and (4) evaluating the trade-off between

different product family design alternatives and making a final decision (Simpson

2005). In this chapter, we discuss the challenges involved with formulating the

product family design problem within an industrial setting. Thereafter, we compare

and contrast three methods that focus on the last step of the aforementioned process,

i.e., evaluating the trade-off and making a final decision. While the arguments,

challenges, methods, and results discussed herein are within the context of a

specific problem, we assert that our findings are generalizable to industrial

problems of similar complexity and of comparable levels of technical difficulty.

The next section reviews challenges in product family design and optimization

and related work in this area. Section 18.3 introduces the product family design

example used in this work. Section 18.4 presents, compares, and down-selects

between the three methods that we are investigating. Section 18.5 discusses the

results from using the down-selected method. Section 18.6 offers closing remarks.

450 R. Khire et al.

18.2 Related Work in Product Family Design

As mentioned earlier, a typical product family consists of a set of products that

share common components and/or modules. There are many advantages of sharing

common components (Collier 1981), including (1) economies of scale, (2) reduced

development time, (3) reduced SKU (Stock Keeping Units), (4) reduced

manufacturing and service complexity, and (5) increased product quality due to

less part variety. From a business perspective, these advantages can be tied to

low-cost products or increased profitability of a product line. However, these

advantages must be carefully weighed against the potential disadvantages of

commonality.

Perhaps the biggest drawback to commonality is the increased potential for the

lack of product distinctiveness (Robertson and Ulrich 1998). As more components

are shared, it becomes increasingly difficult to differentiate between product

variants in the market (Miller 1999). Moreover, individual product performance

may degrade significantly due to commonality, resulting in the loss of market share

(Lutz 1998). Therefore, a product family designer must carefully balance the trade-

off between commonality and individual product differentiation.

More than 40 optimization-based approaches have been proposed to help resolve

this trade-off (Simpson 2005). These approaches can be generally categorized into

one of three product family design strategies: (1) select the platform first and then

optimize the platform and variants, (2) optimize the variants first and then select the

platform that causes the minimum performance loss with maximum commonality

savings, and (3) simultaneously select the platform while optimizing the platform

and the variants. There are advantages and disadvantages to each strategy

(Khajavirad et al. 2007). Note that strategy (1) requires a priori selection of the

platform. Typically, such selection is based on designer’s experience and, often, no

systematic processes are used during selection. On the contrary, the three methods

presented in this chapter are based on strategies (2) and (3), which provide system-

atic platform selection processes (see Sect. 18.4).

Regardless of which particular strategy is employed, product family design

optimization entails (a) exploration of product family design space and (b) ulti-

mately making a decision regarding the appropriate level of commonality in the

family, what we refer to as commonality selection. With regards to (a), involvement

of multiple products significantly increases the dimensionality and complexity of

product family design space, even for modest-sized product families (Messac et al.

2002). As shown in Fig. 18.1, design space exploration of a product family involves

not just one product model, but all the individual product models within a product

family.

Product family optimization consists of both combinatorial optimization (to

select the common components and modules that embody the platform) and

parametric optimization (to optimize both the platform and non-platform design

variables) (Fujita 2005). Working with mixed-type design variables and multiple

conflicting design objectives exacerbates the problem further, as does having

18 Product Family Commonality Selection by Optimization and Visualization 451

“black box” simulations with implicit constraints that yield many infeasible

solutions within the design space. This makes the design space discontinuous

such that it is difficult to apply traditional optimization techniques to search the

design space. We refer the reader to Chap. 12 for more discussion on this topic.

Once the design space has been explored to the best extent possible, then

designers can proceed with (b), namely, determining the appropriate level of

commonality for the product family. The challenges associated with commonality

selection are the following: (1) it involves the aforementioned trade-off between

commonality and individual product performance, which needs human preference

guidance, and (2) there are multiple valid solutions for each individual product

(Simpson et al. 2012), and commonality selection needs to examine all of the data

and make sound judgment (Slingerland et al. 2010).

What we have seen and experienced in practice, however, is that designers,

already leery about enforcing commonality (Halman et al. 2005), are all the more

hesitant to trust the optimization results, and rightly so given the challenge in

formulating an accurate optimization problem that reflects the subjectivity involved

in the trade-off between commonality and individual product performance. This

reluctance also stems from (1) an innate, albeit unfounded, belief that any com-

monality will adversely affect the product’s performance combined with (2) the

inability to view the trade-offs that are occurring within the design space. It is one

thing to visualize how an individual product performs relative to a known baseline

design, but it is much more challenging to visualize how an entire family of

products performs. Work in this area has been very limited to date (Slingerland

et al. 2010), and this motivated our study; namely, to promote commonality,

designers must be able to visualize the trade-offs that are occurring in the product

family. We propose to take this one step further by putting designers “in the loop”

Design Optimization
Combinatorial +Attribute

Product
ModelProduct

ModelProduct
ModelProduct

Model

Commonality
Selection

Multiple
Objectives

Infeasibility
Constraints

Variations
Robust design

Product
sizing

Inputs
Mixed

Continuous
integer

Categorical

Cost Model
Demand Model

Pareto
frontier

exploration

Actual or
surrogate model

Product
ModelProduct

ModelProduct
ModelProduct

Model

Scalability

Fig. 18.1 Challenges in

product family optimization:

design space exploration

452 R. Khire et al.

http://dx.doi.org/10.1007/978-1-4614-7937-6_12

during optimization process as shown in Fig. 18.2, leveraging recent research to

support “Design by Shopping” approaches to engineering design (Balling 1999;

Eddy and Lewis 2002; Stump et al. 2009; Winer and Bloebaum 2001).

An intuitive approach to make commonality decisions is to present all of the

possible solutions to designers and allow them to make commonality decisions

interactively. However, this is easier said than done, given the high dimensionality

and sheer amount of data associated with a product family. The three methods

investigated in Sect. 18.4 provide three different approaches for exploring the

design space and then visualizing it before making commonality decisions. Before

introducing the methods, however, we first introduce the example product family

design problem that has motivated our work.

18.3 Product Family Design Example

Figure 18.3 depicts the scope of the product family design example from United

Technologies Corporation (UTC) that motivated this work. Because of the proprie-

tary nature of the products being designed, we restrict ourselves to terminologies

such as UTC product and UTC product family. The family consists of 11 product

variants that are each defined by three continuous and two categorical variables.

The overall UTC product family design problem includes a total of 33 continuous

and 22 categorical variables, 23 objectives (2 objectives/product plus a commonal-

ity index), and more than a hundred constraints. The constraints are internal to the

system-level simulation model that was developed in-house to support physics-

based design and analysis. The challenges involved in solving the UTC product

family design problem are discussed next before being used to illustrate, compare,

and contrast the interactive product family design methods in Sect. 18.4.

Quantify benefits
of commonality

Visualizing family and
product level attributes

Standard work
for commonality

selection

Interactive
decision making

Human in
loop

Data
Analysis

Commonality
selection

Fig. 18.2 Challenges in

product family optimization:

commonality decision

making

18 Product Family Commonality Selection by Optimization and Visualization 453

18.3.1 UTC Product Design Space and Optimization
Algorithm

For the UTC product family problem, we consider five design variables for each

product, X1 to X5, of which three are continuous and two are categorical. Unlike

continuous variables, the numerical values of categorical variables do not have any

physical significance. For example, refrigerant temperature is a continuous vari-

able, as its value indicates hotness or coldness. On the other hand, a compressor

model number is a categorical variable, as it does not necessarily contain any

physical meaning.

Handling continuous and categorical variables simultaneously poses computa-

tional challenges for any optimization environment. Either mixed-integer nonlinear

programming (MINLP) or non-gradient-based methods can potentially be used to

solve such an optimization problem, and MINLP formulations for product family

design are being investigated (Khajavirad and Michalek 2007a). Success of MINLP

approaches in finding optimal solutions typically depends on a number of factors,

such as starting point, convexity of design space, and continuity and infeasibility

associated with the design space. The UTC product family design problem entails a

significant level of (1) discontinuity and (2) infeasibility, making it inappropriate

for MINLP methods. As such, most of the product family optimization problems

are discontinuous in nature due to discrete choices of platform and non-platform

variables.

As for the infeasibilities in the UTC product family example, they arise from

non-convergence of the system-level simulation model itself—an area of ongoing

investigation and future research. Our experience suggests that when the existing

UTC product model is randomly sampled within the design space, at best 40 % of

the samples yield feasible designs. If we extend this observation to the UTC family

of 11 products, the feasibility of the design space would be (0.4)11 ¼ 0.004 %.

Fig. 18.3 Scope of UTC

product family design

problem

454 R. Khire et al.

To put than in perspective, the initial sample size of GA algorithm will have to be at

least 25,000 to get one feasible solution. This significant infeasibility poses addi-

tional challenges to the design space exploration process, impacting the choice of

the algorithm used for optimization.

To overcome these discontinuities and infeasibilities, we selected a

non-gradient-based evolutionary algorithm for the UTC product family problem.

In particular, we use the Non-Dominated Sorting Genetic Algorithm (NSGA-II), a

popular multi-objective genetic algorithm (GA) developed by Deb (2001). NSGA-

II is robust to discontinuities in the design space and is capable of searching for

global optima. An important feature of NSGA-II is its ability to explore Pareto

frontiers, and it has been used by many researchers to solve product family optimi-

zation problems (Simpson 2005). The objectives for the UTC problem are

discussed next.

18.3.2 Objectives for the UTC Product Family

As seen in Fig. 18.3, each UTC product family involves multiple objectives.

Specifically, each product has two objectives, with a preference for maximizing

Objective 1 and minimizing Objective 2. This creates 22 objectives for the entire

product family, with the 23rd objective being the commonality index for the

product family (see Sect. 18.3.3).

Handling multiple instances of similar objectives poses a challenge for product

family design. Aggregating similar objectives into a single objective seems to be an

intuitive way of tackling the problem at hand. However, aggregation poses some

critical computational and practical challenges, such as (1) loss of individuality, (2)

handling different scales of objectives (e.g., value of Objective 1 for one of the

product variants may be in tens, whereas that for another variant may be in

thousands), and (3) handling the relative importance between different units.

Based on our observations, these critical challenges have been handled based on

ad hoc rules, which can potentially be a significant source of suboptimality.

Decomposition-based optimization strategies can be implemented to alleviate

some of these challenges, but at the expense of added computational complexity

and coordination cost (Khajavirad et al. 2007). As we see in the next section,

visualization-aided decision-making framework appears more effective than simple

objective aggregation.

18.3.3 Commonality Selection

Typically, an engineering system consists of a number of possible commonality

choices (components and modules). As such, comprehensive product family design

involves exploring potential commonality options for all these components and

18 Product Family Commonality Selection by Optimization and Visualization 455

modules. In this study, we focus on selecting only one common feature among

different UTC products, referred to as the commonality variable.

Quantifying the benefits of commonality is important for making commonality

decisions; however, quantifying the benefits of commonality is extremely difficult

in practice. Hence, commonality indices are typically used as surrogates to qualify

the resulting cost savings. A typical commonality index is a function of the number

of components/assemblies/manufacturing processes that are common across different

products in the family (Thevenot and Simpson 2006). Khajavirad and Michalek

(2007b) argue that the commonality index (CI) introduced by Martin and Ishii

(1997) captures the tooling cost savings of component commonality better than any

other commonality metric. Using this index as our starting point, our commonality

index for this product family optimization problem is expressed as a percent of the

number of different commonality variable values used in the family (see Sect. 18.4.3

for more detail). Meanwhile, in Sect. 18.4.2, we show the effectiveness of the

visualization-aided commonality selection procedure that does not rely on traditional

commonality indices.

18.4 Interactive Visualization Methods for Commonality

Selection

In this section, we discuss the three methods that we used to solve the UTC product

family problem. Table 18.1 summarizes the aspects of each method. We discuss

each method in detail in the subsections that follow.

18.4.1 Method 1 (Exhaustive + Visualization)

Figure 18.4 shows the steps used in Method 1: exhaustive sampling followed by

visualization. In this method, the design space is explored exhaustively (and

separately) for each product using a large number of sample points. The number

Table 18.1 Summary of product family optimization methods evaluated in study

Design space

exploration

Commonality

selection Advantage Disadvantage

Method 1 DOE sampling Interactive

visualization

Simple, interactive No optimality,

computationally

intensive

Method 2 Individual product

optimization

Interactive

visualization

Interactive, Pareto

optimal

Limited variety of

product families

Method 3 Product family

optimization

Formulated in

optimization

Unlimited variety in

product families

Computationally

intensive, not

interactive

456 R. Khire et al.

of sample points typically depends on factors such as (1) available time, (2)

computational resource, (3) number of design variables, and (4) prior knowledge

of the design space. Based on our experience, the first two factors dominated the

UTC product family design problem.

After exhaustive sampling, the input and output data for each product is assem-

bled into a single file location (typically an Excel spreadsheet or a text document)

for product family design. In particular, the product family data is processed to

enable commonality decisions using any of a variety of filtering tools or sorting

techniques. For example, when selecting the value of commonality variable, the

designer can successively filter different commonality variable values to identify

UTC products that share a particular variable value.

According to our experience, such text-based filtering is unfriendly and time

consuming for designers. They prefer visual tools to do this processing

interactively—such techniques are simpler, more user-friendly, and allow the

designer to explore larger design spaces with ease. Also, we found that the quality

(trade-off between the objectives) of the design selected using visualization tech-

nique is frequently superior to that obtained from the aforementioned text-based

filtering techniques. Since the specific visualization techniques are also used in

Method 2, they are discussed in the next section after introducing Method 2.

In summary, the advantages of Method 1 are that it is easy to use and it retains

many aspects of the engineer’s current design practice. While this latter point may

seem counterintuitive, it is critical when considering adoption of new techniques in

current practice. Disadvantages of this method are that exhaustive sampling may

not uniformly sample the objective space and the computational expense of the

simulation model may limit the number of samples that can be obtained. Both of

these may lead to designs that have poor trade-off between design objectives,

creating an opportunity to utilize optimization to search the design space more

efficiently as advocated in Method 2 as discussed next.

Fig. 18.4 Exhaustive product family design with visualization

18 Product Family Commonality Selection by Optimization and Visualization 457

18.4.2 Method 2 (Individual Opt + Visualization)

Method 2 is similar to Method 1 except that the exhaustive design space exploration

used in Method 1 is replaced by systematic optimization of individual products in

Method 2 to search the design space more efficiently. Figure 18.5 shows the

integration of the UTC simulation model within Engineous’ iSight environment

(Koch et al. 2002) for performing individual optimization. As discussed earlier, the

UTC product design problem includes categorical variables, which are mapped to

arithmetic variables before sending them to the system-level model, as shown in

Fig. 18.5. Next, we discuss the use of visualization for exploring the product family
design space.

18.4.2.1 Interactive Visualization

After individual optimization of all the products is completed, multidimensional

data visualization is used to perform commonality selection. For this work, we

employ the Applied Research Laboratory’s Trade Space Visualizer (ATSV), a

Java-based application that displays multidimensional data using glyph, histogram,

scatter, scatter matrix, and parallel coordinate plots (Stump et al. 2009). The ATSV

is developed entirely in Java, making it cross-platform compatible, and offers

linked views, brushing (filtering), preference shading, and Pareto filtering to help

designers “shop” for the best design, which, in this case, is the best product family

given a selected level of commonality.

In the past, ATSV has been used primarily for single product optimization. This

work extends the use of ATSV to product family optimization. As such, assembling

data from individual optimizations of different products into a single file is a part of

customizing ATSV for product family optimization. An important outcome of the

current research is the identification of product family-specific capabilities for

ATSV, such as data preprocessing for aggregating variant data.

Fig. 18.5 Optimization

of individual product

variants

458 R. Khire et al.

Figure 18.6 shows the design space for five variants in the UTC product family.

Specifically, Fig. 18.6a shows Objective 1 versus Objective 2 space for different

UTC product variants, while Fig. 18.6b shows available commonality variable

values for different variants. Interestingly, Fig. 18.6b suggests that commonality

variable can potentially be shared by all five product variants by setting its value

high. This shows the simplicity and effectiveness of multidimensional data visuali-

zation in exploring the design space for a complete product family. Also, visualiza-

tion (see Fig. 18.6) has provided high-level information to the engineering designer

regarding possible commonality choices in the family. Next, we use the common-

ality variable data shown in Fig. 18.6b for making commonality selections. The

impact of commonality selection is evaluated using the Objective 1 versus Objec-

tive 2 data shown in Fig. 18.6a.

18.4.2.2 Commonality Selection with Visualization

Figure 18.7a, c shows the effect of commonality variable values A and B on

Objective 1 and Objective 2. Also, Fig. 18.7b shows the brushing controls in

ATSV, which act as a sliding data filter to allow users to evaluate different

commonality selections.

In Fig. 18.7b, the brushing is set for the commonality variable. As the brush

slides from left to right, the designs that have the corresponding commonality

variable values are shown in colors. On the other hand, the designs with common-

ality variable values different from that selected by the brush are automatically

turned grey, as seen in Fig. 18.7a, c. Thus, by simply sliding the brush controller,

the designer can visually evaluate the effect of change in the commonality variable

value on the two objectives for all the products in the family.

Fig. 18.6 Product family design space obtained from individual optimization. (a) Efficiency

vs. cost. (b) Commonality vs. variants

18 Product Family Commonality Selection by Optimization and Visualization 459

We further explain the commonality selection with the help of Fig. 18.7a, c.

By setting the brush at Commonality A, we generate Fig. 18.7a. We can observe

that commonality variable value A can be made common between all variants of the

UTC products units. Additionally, we can also observe that commonality variable

value A results in designs that are on the Pareto frontiers of the most UTC products.

On the other hand, commonality variable value B does not result in any feasible

design for product variant 3. Hence, commonality variable value B cannot be made

common for the entire product family.

Fig. 18.7 Effect of different commonality selection. (a) Effect of commonality variable values A.

(b) Brushing control for commonality selection. (c) Effect of commonality variable values B

460 R. Khire et al.

Thus, we observe that by combining individual product optimization with

interactive visualization, we have developed a powerful method that is simple yet

effective in making commonality selection. Additional advantages of Method

2 include an improved ability to find designs with better trade-off resolution (all

objectives show simultaneous improvement) over Method 1, added flexibility while

still being moderately easy to use. A disadvantage of Method 2 is the post-

processing of the individual product data to aggregate it for visualization. Also,

there is a conflict of interest in that the optimization drives towards Pareto optimal-

ity for the individual products, while commonality selection may force you away

from these individual Pareto frontiers for the benefit of the family. Solutions

obtained from the individual optimization may not always be most appropriate

for commonality selection, which is why visualization is all the more critical at this

stage of the product family design process.

18.4.3 Method 3 (Product Family Opt + Visualization)

Within the context of the UTC product family design problem, we have also applied

two product family-based optimization techniques: (1) all-in-one approach and (2)

decomposition-based approach (Khajavirad et al. 2007). As the name implies, the

all-in-one approach takes all the inputs and outputs of each individual product

optimization problem and combines them into a large optimization problem. A

typical all-in-one optimization problem uses commonality index as an additional

objective that ties all the products together.

Formulation of the all-in-one approach for the UTC product family design

problem is shown in Fig. 18.8. Typically, an all-in-one problem scales the number

Variant k

Obj11 CommVar1

Obj1
Obj1 = ∑WkObj1k

(k = 1~11)

Commonality

CI = No. of CommVar

Design variables

Models

Responses

Objectives

Variant 1

Obj21 Objk CommVarkObjk

Obj2
Obj2 = ∑WkObj2k

(k = 1~11)

…
X1, X2, X3
X4, X5

X1, X2, X3
X4, X5

Fig. 18.8 All-in-one product family optimization

18 Product Family Commonality Selection by Optimization and Visualization 461

of design variables, constraints, and objectives based on the number of product

variants. This scaling increases the complexity of the all-in-one optimization

problem. The two objectives, Obj1 and Obj2, shown in Fig. 18.8 are obtained

from aggregating corresponding objectives from each product. The Commonality

Index (CI), in this case, is simply the number of distinct values taken by the common-

ality variable across the product family. The CI ranges from 1 to k; k indicates how
many different values of the commonality variables are used across the products,

while 1 implies that all the products share the same commonality variable value.

For the all-in-one approach, visualization techniques can also be applied to help

designers make commonality decisions. Figure 18.9 shows an illustrative scatter

plot (Obj1 vs. Obj2) for a commonality study. We want to maximize Obj1 while at

the same time minimize Obj2. Each point on Fig. 18.9 represents a possible solution

from the all-in-one optimization. Without a visualization tool, the designers were

not able to differentiate between the commonality associated with each design. By

color coding the solutions according to CI, the designers were able to see the

clustering of the solutions based on different commonality levels. In Fig. 18.9,

the color code from 1 to 7 represents different numbers of commonality variable

values needed for the UTC product family. The figure indicates that using three

values for the commonality variable, which corresponds to the green color, makes a

reasonable balance between Obj1 and Obj2. Using only one commonality variable

value across the whole family increases Obj2; see Fig. 18.9—dark blue solutions.

Fig. 18.9 Results from product family optimization

462 R. Khire et al.

There are disadvantages associated with the all-in-one approach. Since the

approach lumps all outputs together, it does not consider individual performance

explicitly, making it difficult to trade-off performance among individual products.

At the same time, typically, it is difficult to scale the problem formulation as the

number of product variants increases. Consequently, the decomposition-based

approach is an alternative approach to platform family optimization advocated by

Khajavirad et al. (2007). This approach considers each individual product perfor-

mance explicitly, which makes it flexible to accommodate individual product-

specific evaluation criteria. Khajavirad et al. (2007) also hypothesized that the

decomposition approach is likely to explore global optimality efficiently than the

all-in-one approach.

As shown in Fig. 18.10, in the decomposition-based approach, the product

family optimization problem is decomposed into two levels: (1) commonality

optimization and (2) individual optimization. The commonality optimization deter-

mines the optimal platform configuration, while each individual optimization

explores design space for each product variant. First, the commonality optimi-

zation problem communicates commonality decisions to individual optimizations.

Second, an individual optimization problem typically uses the commonality deci-

sion as additional constraints, to search for a design that optimizes product perfor-

mance. Finally, the individual optimization problems communicate corresponding

product performance back to the commonality optimization problem.

Typically, product family-based optimization approaches should be able to

handle multiple commonality assessments concurrently, for example, potential

commonalities for more than one component. According to our experience, these

approaches also require less data post-processing.

In the current phase of the research, we have developed optimization

formulations for both all-in-one and decomposition approaches. Results shown in

Fig. 18.9 were obtained by implementing this formulation on a single processor

computer, which were found to significantly inadequate from computational per-

spective. In the future, we will implement both the formulations on a parallel

computing facility, which is needed to solve the UTC product family problem.

Individual
Optimization

Variant 1

Commonality
Optimization

Individual
Optimization

Variant k

Fig. 18.10 Decomposition-

based product family

optimization

18 Product Family Commonality Selection by Optimization and Visualization 463

18.4.4 Comparison of Methods: Our Experience

This investigation of three methods had a dual purpose: (1) design a UTC product

family and (2) determine the extent to which designers would embrace/accept any

of the proposed methods. As noted in Sect. 18.2, designers have been hesitant when

it comes to commonality selection. Our tenet was that having tools to visualize (1)

the product family data, and (2) trade-offs from sharing common components,

would help overcome these fears. Although we cannot present specifics of the

product family due to its proprietary nature, we share our experiences and

observations at a relatively high level. Table 18.2 summarizes our findings, and

specific aspects of each method are discussed in the ensuing paragraphs. We note

that the comparison of these methods is based on our experience with the UTC

product family only. Because of this limited scope, our findings primarily provide

insight into the advantages and disadvantages of each method, not firm conclusions.

18.4.4.1 Discussion of Method 1

As shown in Table 18.2, Method 1 faired surprisingly well in every category, yet it

did produce poor-quality designs (poor trade-off resolution between different

objectives). As such, the designs obtained from Method 1 were substantially

inferior to those found using Method 2. Results indicate that the search

strategy—exhaustive sampling—used in Method 1 failed to explore the product

family design space sufficiently. Increasing the number of samples is an intuitive

approach to improve design space exploration. Unfortunately, such an increase is

ad hoc and may not always ensure improved design space exploration. Conse-

quently, Method 1 was less attractive compared to Method 2.

18.4.4.2 Discussion of Method 2

According to our experience, Method 2 was found to be the most attractive of all

three, which was unexpected. As shown in Table 18.2, Method 2 was found to be the

best method (and the only so far) for obtaining designs with superior trade-off resolu-

tion (all objectives show simultaneous improvement compared to other methods),

Table 18.2 Comparison of Methods 1, 2, and 3

Method 1 Method 2 Method 3

Optimal product family solution Worst Best Worst

Ease of use Best Moderate Worst

Interactive capability Best Best Moderate

Suitable for implementation Best Moderate Worst

Training required Best Moderate Worst

Versatility to product family types Moderate Moderate Best

Robustness Best Moderate Moderate

464 R. Khire et al.

which is the underlying premise of this research. Because of the visualization-aided

commonality selection, Method 2 is very interactive, which proved to be its biggest

strength. However,Method 2 does require (1) availability of optimization tool and (2) a

formal training to the designers in the use of such tools. On the positive side, for

our application, Method 2 does not require specialized computational facilities (e.g.,

parallel computing). Interestingly, once the optimization was complete, designers were

able to identify promising commonality options in a relatively short time (fewminutes)

using the visualization tools.

As we recall, Method 2 uses NSGA-II as an optimization algorithm. Typically,

NSGA-II requires customizing some of its parameters, such as population size and

number of generations. For the UTC product family design problem, significant

convergence infeasibility required a population size of 300 and at least

25 generations to generate a uniform Pareto frontier for all product variants.

Since the simulation models were not computationally expensive, we could execute

them overnight, providing new data in the morning. More computationally inten-

sive simulations will require other strategies (e.g., approximations, surrogate

models) when using individual product optimization as advocated in Method 2.

We demonstrated Method 2 on a three-objective problem (objective 1,

objective 2, and commonality). At times, the product family may involve more

than three objectives, in which case more visualization windows will have to be

investigated simultaneously. Typically, the decision-making complexity increases

rapidly with the number of objectives in any optimization problem, and so will in

the case of Method 2. However, the visualization-assisted interactive decision-

making aspect of Method 2 is expected to lower the complexity of decision making

in multi-objective design space. Extending Method 2 to problems with multiple

objectives in the future would be important to understand decision-making

complexities associated with this method.

Overall, Method 2 was found to be the most suitable because it is (1) simple yet

effective for commonality selection, (2) capable of finding product family designs,

and (3) suitable for implementing in an environment where designers have limited

knowledge of formal optimization techniques.

18.4.4.3 Discussion of Method 3

Method 3 is the most computationally intensive method of all three based on our

experience. The significant increase in computational expense can be attributed to

several factors. For instance, the convergence infeasibility of the entire product

family is nearly 100 % for the all-in-one approach, as all of the products in the

family are handled simultaneously in a single optimization problem. Thus, for this

UTC problem, Method 3 needs substantially larger population and generation sizes.

To date, population sizes of 500 running for more than 200 generations have failed

to yield an optimal solution or a solution with better trade-off resolution than

other methods. It is important to note that the computational cost of Method 3 is

a magnitude higher than that of Method 2. In the case of the decomposition strategy,

it involves solving 11 individual optimization problems in a single iteration of

18 Product Family Commonality Selection by Optimization and Visualization 465

commonality optimization. The computational cost of decomposition appears to be

even higher than all-in-one approach. Also, problem formulation and algorithm

settings require specialized training, which does not bode well for user adoption.

18.4.5 Introduction of the Pareto Band Concept

An interesting offshoot of Method 2 has been the identification of a new concept,

which we refer to as the Pareto band (see Fig. 18.11). In particular, when reviewing

the product families resulting from Method 2, we observed that the product family

solutions typically lie in a “band” around individual Pareto frontiers, and typically

not on the frontiers. The width of this band indicates the trade-off between com-

monality and performance—the larger the band, the larger the trade-off as shown in

Fig. 18.11. The concept is similar to the design bandwidth idea advocated by

Claesson and Berglund (2005). However, it works in reverse in that it is driven

by the range of solutions that is obtainable in the objective space versus the range of

bandwidth one has in the design space.

We are continuing to investigate this finding in more detail to understand its

implications better, with the most notable being a potentially new objective for

product family optimization, namely, targeting a width of this band to balance the

trade-off between commonality in the family and the individual product perfor-

mance. As such, it is our tenet that the Pareto band approach may find its application

in other fields as well, such as robust optimization of a single product.

18.5 Implications of Commonality Selection Process

After reviewing all three methods for the UTC product family design problem,

the individual product optimization plus visualization method (Method 2) appears

to be the most suitable one for adoption with UTC’s business units. The details of

the commonality decision-making process are shown in Fig. 18.12 and elaborated

as follows.

Fig. 18.11 Proposed Pareto band approach

466 R. Khire et al.

1. Build individual product models using appropriate simulation tools.

2. Integrate each model with an optimization tool.

3. Conduct individual product multiple-objective optimization. In this work

NSGA-II is chosen as the optimization algorithm.

4. Post-process results from individual optimization such that the final data file is

ready for interactive commonality selection.

5. Apply data filtering and visualization to make commonality selection.

6. Generate alternative concepts based on the desired level of commonality and

performance.

7. Compare performance of the new concepts against current baseline designs.

The designers typically need to iterate between Steps 5 and 7 until they are satisfied

with the commonality selection and the resulting product family.

By working closely with designers and applying the commonality selection

standard work for the UTC product family design, we have identified three new

product concepts. The current baseline design uses four commonality variable

values, while the new product concepts have either two or three commonality

variable values, as shown in Fig. 18.13. In Fig. 18.13, Ci represents the ith coil

and Ci + Ci indicates that the ith coil has been used twice.

The cost savings per year of the new product concepts relative to the current

baseline designs are shown in Fig. 18.14. The reported cost savings are only from

Build individual baseline models

Individual product
optimization (NSGA-II)

Optimization results
post processing

Select commonality with
interactive visualization

Integrate model with
optimization tool

Generate alternative
concepts

Compare performance
and cost savings

Decision Making

Design Space Exploration

Build individual baseline models

Individual product
optimization (NSGA-II)

Optimization results
post processing

Select commonality with
interactive visualization

Integrate model with
optimization tool

Generate alternative
concepts

Compare performance
and cost savings

Fig. 18.12 Commonality

decision-making process

18 Product Family Commonality Selection by Optimization and Visualization 467

the direct material cost savings. Additional cost savings are expected from

reduction of design/development time, qualification tests, supplier volume dis-

count, inventory management, etc.

18.6 Closing Remarks

In this chapter, we presented the product family optimization research conducted at

the United Technologies Research Center and its application to a UTC product

family. Recognizing the challenges associated with product family design with

Fig. 18.13 Commonality concepts selected using Method 2

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

1 2 3

Concepts

C
o

st
 S

av
in

g
s

(%
)

Fig. 18.14 Estimated yearly cost savings for UTC product family

468 R. Khire et al.

regard to design space exploration and commonality selection, this work combines

optimization-visualization strategies to facilitate product family design. Three

different methods are compared and contrasted, and recommendations are given

to support UTC’s current product family design.

This chapter recognizes gaps occurring in many engineering design practices,

i.e., the designer’s experience and adoption of design optimization methods.

Many times designers rely solely on their own domain knowledge to make design

decisions, rather than seeking help from optimization or other advanced design

methods. One of the rationales for such gaps is that designers typically do not have

visibility inside the result generation process of “black box” optimization methods.

Without the capability to view solutions and visualize the trade-offs, they are often

hesitant to trust such results.

The individual product optimization and interactive visualization method

(Method 2) attempts to bridge this gap by giving designers freedom to interactively

make commonality selection and, perhaps more importantly, visualize its effect on

individual product performance. As such, the method attempts to visually present

the effect of designers’ commonality selection on two key entities: (1) the gain from

commonality and (2) performance losses incurred in the variants.

To realize the complete benefits of the individual product optimization and

visualization method, the following improvements are warranted in the future:

(1) the visualization tool, which requires substantial data processing at present,

needs to be customized for visualizing the product family design space; (2) at times,

the absolute benefits and corresponding performance losses of commonality

decisions are not obvious until the designer post-processes the concepts. Develop-

ment of additional subroutines is required to eliminate the need for post-processing

outside the framework of Method 2; and (3) the interactivity only happens after

the design spaces for all the products have been explored by optimization

techniques. It would be worthwhile to explore the impact of providing the designers

access to optimization-assisted design exploration process.

We expect that by gaining such access, designers might be able to guide the

design space exploration process towards regions of interest. However, on a

cautious note, such an approach will (1) put additional burden on designers and

(2) not expose designers to the entire design space prior to decision making, which

could potentially constrain the exploration in a narrow space. As such, ATSV

currently offers visual steering capabilities to let the user guide the exploration

process for a single product (Stump et al. 2009). However, further development

work is needed to enable the aforementioned interactivity for the entire product

family. Potentially, such interactivity during individual optimization can also be

integrated within the decomposition-based approach, which could align with our

goal of developing completely interactive product family optimization approaches.

Future work also includes developing robust platform optimization approaches

that account for system variability, e.g., uncertain operating conditions, such that

the product family designs are less sensitive to these variations. Development of

robust platform optimization method would require combining robust design

methods with platform optimization approaches.

18 Product Family Commonality Selection by Optimization and Visualization 469

Acknowledgments Dr. Simpson acknowledges support from the National Foundation under

Grant No. CMMI-0620948. Any opinions, findings, and conclusions or recommendations

presented in this chapter are those of the authors and do not necessarily reflect the views of NSF.

References

Balling R (1999) Design by shopping: a new paradigm? In: Proceedings of the third world

congress of structural and multidisciplinary optimization (WCSMO-3), University at Buffalo,

Buffalo, NY, pp 295–297

Claesson A, Berglund F (2005) Design bandwidth. In: 2005 innovations in product development

conference – product families and platforms: from strategic innovation to implementation,

Cambridge, MA

Collier DA (1981) The measurement and operating benefits of component part commonality.

Decision Sci 12(1):85–96

de Weck O (2005) Determining product platform extent. In: Simpson TW, Siddique Z, Jiao J (eds)

Product platform and product family design: methods and applications. Springer, New York,

pp 241–301

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

Eddy J, Lewis K (2002) Visualization of multi-dimensional design and optimization data using

cloud visualization. In: ASME design engineering technical conferences – design automation

conference, Montreal, QC, Canada. ASME, Paper No. DETC02/DAC-02006

Fujita K (2005) Product variety optimization. In: Simpson TW, Siddique Z, Jiao J (eds) Product

platform and product family design: methods and applications. Springer, New York,

pp 186–224

Halman JIM, Hofer AP, van Vuuren W (2005) Platform-driven development of product families:

linking theory with practice. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and

product family design: methods and applications. Springer, New York, pp 27–47

Khajavirad A, Michalek J (2007a) A single-stage gradient-based approach for solving the joint

product family platform selection and design problem using decomposition. In: ASME design

engineering technical conferences – design automation conference, Las Vegas, NV. ASME,

DETC2007/DAC-35611

Khajavirad A, Michalek J (2007b) An extension of the commonality index for product family

optimization. In: ASME design engineering technical conferences – design automation con-

ference, Las Vegas, NV. ASME, DETC2007/DAC-35605

Khajavirad A, Michalek J, Simpson TW (2007) A decomposed genetic algorithm for solving the

joint product family optimization problem. In: 3rd AIAAmultidisciplinary design optimization

specialist conference, Honolulu, HI. AIAA, AIAA-2007-1876

Koch PN, Evans JP, Powell D (2002) Interdigitation for effective design space exploration using

iSIGHT. Struct Multidiscip Optim 23(2):111–126

Lutz RA (1998) Guts: the seven laws of business that made Chrysler the world’s hottest car

company. Wiley, New York

Martin MV, Ishii K (1997) Design for variety: development of complexity indices and design

charts. Advances in design automation, Sacramento, CA. ASME, Paper No. DETC97/DFM-

4359

Messac A, Martinez MP, Simpson TW (2002) A penalty function for product family design using

physical programming. ASME J Mech Des 124(2):164–172

Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost

leadership. The Free Press, New York, NY

Miller S (1999) VW sows confusion with common pattern for models – investors worry profits

may suffer as lines compete. Wall Street J A.25

470 R. Khire et al.

Robertson D, Ulrich K (1998) Planning product platforms. Sloan Manage Rev 39(4):19–31

Simpson TW (2005) Methods for optimizing product platforms and product families: overview

and classification. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product

family design: methods and applications. Springer, New York, pp 133–156

Simpson TW, Martins JRRA (2011) Multidisciplinary design optimization for complex

engineered systems: report from a national science foundation workshop. ASME J Mech Des

133(10):101002, 10 pages

Simpson TW, Brennan S, Slingerland LA, Bobuk A, Logan D, Reichard K (2012) From user

requirements to commonality specifications: an integrated approach to product family design.

Res Eng Des 23(2):141–153

Slingerland LA, Bobuk A, Simpson TW (2010) Product family optimization using a multidimen-

sional data visualization approach. In: 13th AIAA/ISSMO multidisciplinary analysis and

optimization conference, Fort Worth, TX. AIAA, AIAA-2010-9031

Stump G, Lego S, Yukish M, Simpson TW, Donndelinger JA (2009) Visual steering commands

for trade space exploration: user-guided sampling with example. ASME J Comput Inf Sci Eng

9(4):044501, 10 pages

Thevenot HJ, Simpson TW (2006) Commonality indices for product family design: a detailed

comparison. J Eng Des 17(2):99–119

Winer EH, Bloebaum CL (2001) Visual design steering for optimization solution improvement.

Struct Optim 22(3):219–229

18 Product Family Commonality Selection by Optimization and Visualization 471

Chapter 19

Developing and Assessing Commonality

Metrics for Product Families

Michael D. Johnson and Randolph E. Kirchain

Abstract To be competitive in today’s global economy, firms must deliver more

products that are viable in the marketplace for shorter times. The use of product

families allows firms to meet these needs in a cost-competitive manner. The

determination of which components to share and which should be unique is very

important to the development of product families. Commonality metrics are

presented with the goal of assessing (at the early stages of development) the ability

of the product family to reduce costs. The methodology of process-based cost

modeling is applied to project product development, fabrication, and assembly

costs in both the standalone and shared situations. A case study of two automotive

instrument panel beams is analyzed. Linear regression analysis shows that when

compared to total cost savings, a simple piece commonality metric and a fabrication

investment-weighted metric have higher R2’s than a mass or piece cost-weighted

metric. When correlated to fixed cost savings, the fabrication investment-weighted

metric has the highest R2 (0.62) and is significant at the 0.025 level. Fixed cost

savings are proposed as the desired quantity for assessing product family efficiency.

An earlier version of this chapter appeared in M. D. Johnson and R. Kirchain (2010) Developing

and Assessing Commonality Metrics for Product Families: A Process-Based Cost-Modeling

Approach, IEEE Transactions on Engineering Management, 57(4): 634–648 (# IEEE 2010),

reprinted with permission.

M.D. Johnson (*)

Department of Engineering Technology and Industrial Distribution,

Texas A&M University, College Station, TX, USA

e-mail: johnson@entc.tamu.edu

R.E. Kirchain

Engineering Systems Division, Massachusetts Institute of Technology,

Cambridge, MA, USA

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_19,
Springer Science+Business Media New York 2014

473

mailto:johnson@entc.tamu.edu

19.1 Introduction

The goal of most firms is to deliver products that satisfy customer needs. In recent

history, most of these products have been mass-produced over a number of years.

This allowed for economies of scale in manufacturing and for development

costs and manufacturing investments to be spread over many units of production.

For many firms, market conditions have changed and made it challenging to hold to

these practices. Specifically, several authors have documented a trend toward

increased product variety and shorter product lifetimes (Pine 1991, 1993;

Schonberger 1987; Uzumeri and Sanderson 1995; von Braun 1990). These two

practices put pressure on firms to develop an increasing array of products that are

only viable in the market for a short period. Given limited resources, the importance

of development and production efficiency is increased. Although many strategies

exist to address this challenge, one that has been shown to be powerful for some

types of goods is the use of product platforms and product families (Gonzalez-

Zugasti et al. 2000; Muffatto 1999; Meyer and Lehnerd 1997; Ulrich 1995; Gupta

and Souder 1998).

A product platform is a set of subsystems from which derivative or variant

products can be developed and manufactured (Meyer and Lehnerd 1997). These

variant products combine both shared and unique components to perform a given

function. The product family is the group of variants that are derived from a given

platform (Gonzalez-Zugasti et al. 2000). Because of the scope of their impact,

platform and product family decisions occur early in the development process and

are inherently encompassing. Platforming decisions are regarded as among the most

important in the development process (Robertson and Ulrich 1998). As such, it is

critical to have an analytical measure of the effectiveness of a given product family

design decision (Jiao and Tseng 2000; Nobelius and Sundgren 2002). To be useful,

such a metric must be diagnostic (i.e., correlated to some desired quantity) and

analytically feasible against the limited information indicative of early design (even if

this information represents rough estimates). The vast majority of research into

platform-effectiveness metrics has focused on metrics of commonality (the amount

of component sharing among variants) and their correlation to cost (Fixson 2007).

This work presents a set of commonality metrics and assesses their correlation to a

particular element of their effectiveness, the cost savings resultant from component

sharing, specifically savings in development and manufacturing costs. A small-n case

study is used to explore the correlation between these metrics and cost savings and to

develop hypotheses regarding the characteristics of an ideal metric; case studies

provide benefits when developing such hypotheses (Eisenhardt 1989). The metrics

and models presented use data typically available at the early stages of the develop-

ment process. This allows for a feasible and tractable methodology.

474 M.D. Johnson and R.E. Kirchain

19.2 Commonality and Platform Literature

Several researchers have investigated the benefits and drawbacks of product

platforming and the use of product families. These benefits include reduced pro-

duction and development costs (Muffatto 1999; Meyer and Lehnerd 1997; Ulrich

1995; Gupta and Souder 1998; Park and Simpson 2008) and shortened development

time (Gonzalez-Zugasti et al. 2000; Krishnan and Gupta 2001; Muffatto 1999). The

reuse of subassemblies and components can reduce technological risk (Clark and

Fujimoto 1989; Rosenthal and Tatikonda 1992) and increase labor productivity

(MacDuffie et al. 1996). Ultimately, proper design of a product family can have

significant technological and economic advantages (Maier and Fadel 2001).

In addition to development and manufacturing cost-related benefits, several

authors have noted the operational benefits of component commonality or con-

versely of the reduction in component variety. Some of these operational benefits

are inventory related, such as decreased buffer inventory level (Tsubone et al.

1994), reduced holding costs (Vakharia et al. 1996), and risk pooling benefits

(Thonemann and Brandeau 2000; Hillier 2002). In some cases the order pooling

benefits of common components dominate their risk pooling benefits (Hillier 2002).

Other operational benefits include increased quality (McDermott and Stock 1994),

improved operational flexibility (Maskell 1991), and reduced spare parts provision-

ing costs (Kranenburg and Van Houtum 2007). Clearly, these impacts on operations

can provide important economic benefits as well. Although the analysis here is

limited to changes in development and direct manufacturing cost, the implications

of these other cost effects will be discussed qualitatively.

There can also be drawbacks to the use of a platform strategy. Common

components can lead to extensive change requirements when a widely used com-

ponent is altered (Ho and Li 1997) and cause coordination difficulties (Clark and

Fujimoto 1989). Inherently, common components reduce product variety (albeit

sometimes in ways not consumer perceivable). Nevertheless, the requirement of

reduced variety constrains the design space (Clark and Fujimoto 1989). In some

cases, this constraint leads to excess functionality (Thomas 1992), reduced perfor-

mance (Nelson et al. 2001) or client responsiveness (Oshri and Newell 2005) and

even lower perceived quality (Krishnan and Gupta 2001; Gonzalez-Zugasti et al.

2000; Yu et al. 1999; Kim and Chhajed 2001). These cost and revenue implications

of reduced variety can be serious.

Given the putative benefits of component commonality, it has been proposed and

used as a quantitative design goal (Nobelius and Sundgren 2002; Skold and

Karlsson 2007). To effectively guide design, it has been proposed that commonality

metrics should be simple and relevant (Maskell 1991). Nevertheless, despite wide-

spread recognition of the importance of mapping the relationship between com-

monality and cost (Fixson 2005; Thonemann and Brandeau 2000; Simpson et al.

2006), no widely accepted relationship has been established. Clearly, the use of

commonality metrics for assessment increases the importance of characterizing

such a relationship.

19 Commonality Metrics for Product Families 475

To establish an effective, quantitative measure of component commonality,

several researchers have proposed alternative commonality metrics and indices to

be used to guide product family design decisions. Moscato (1976) proposes a

relative commonality metric based on the ratio of actual component (or part)

commonality to maximum commonality. Collier (1981) proposes a commonality

index that relates the number of parent items to the number of distinct component

parts and shows total cost decreases with higher degrees of commonality. Guerrero

(1985) uses Collier’s commonality index and shows the benefits of commonality

given unknown demand. Wacker and Treleven (1986) propose a bounded measure

(0–1) of part commonality as well as suggesting different types of part commonality

that can be measured. Additional commonality metrics based on ratios of system

component variety are also proposed (Thomas 1992; Tsubone et al. 1994). Jiao and

Tseng (2000) add production volume and the cost of components to Collier’s

commonality index. Kota et al. (2000) develop a product line commonality index

and show that the Sony Walkman line of products performs better (according to this

index) than competitors. The SonyWalkman is an oft-cited case of superior product

family management (Sanderson and Uzumeri 1995). Martin and Ishii (1996, 1997)

use a commonality metric based on the ratio of unique components to total

components in the product family as part of their design for variety methodology.

Blecker and Abdelkafi (2007) propose a commonality metric for use in mass

customization environments. Thevenot and Simpson (2006) present a comprehen-

sive commonality metric which takes into account manufacturing process, material,

assembly scheme, and initial cost. Fixson (2007) provides an extensive review of

research in the area of commonality; as mentioned previously, the vast majority of

research into commonality relates to its effects on cost.

Given the key role of commonality decisions in the development of product

families (Alizon et al. 2007; Zacharias and Yassine 2008), it is important that the

proper metric be used when assessing alternative product family concepts. While a

universal relationship between commonality and cost has yet to be established

(Labro 2004), the goal of this work is to establish what information within a

commonality metric is most effective at mapping the link between component

commonality and resultant development and manufacturing cost savings. This is

accomplished by evaluating a set of metrics that meet the above requirements; the

evaluation criterion is the correlation of the metric to cost savings. These metrics

include a simple piece-count-based metric, component characteristic-weighted

metrics, and a version that accounts for relative production volume. Process-

based cost models of component development, fabrication, and assembly are used

to project costs in both the product family and single-variant cases. These

projections are used to explore the correlation between the metrics and the cost

savings resulting from component sharing. The cost modeling methodology and

commonality metrics are described in the next section.

476 M.D. Johnson and R.E. Kirchain

19.3 Modeling and Assessment Methods

This section presents the set metrics which were assessed and the cost modeling

methodology used to project the consequences of platformed and standalone design

alternatives. The metric assessment method is also detailed in this section.

19.3.1 Proposed Commonality Metrics

The general commonality metric proposed here (C) is defined as the ratio between

the number of components shared and the number of components that could be

shared in the given product family; in its basic form it is piece-based commonality

(CPiece). It is similar to the metric presented by Moscato (1976) in that it used a ratio

of actual commonality to maximum commonality. This ratio is calculated for each

line item in the combined bills of materials for all variant products in the family

being analyzed. These quantities are summed and then divided by the total number

of line items. This metric (and all metrics presented in this section) has a minimum

value of 0 (no commonality) and a maximum value of 1 (full commonality). This

metric is similar to the bounded version of Collier’s (1981) commonality metric

presented byWacker and Treleven (1986). Thevenot and Simpson (2006) propose a

metric with a similar commonality criterion that can also be used with a simple

nonhierarchical bill of materials; however, their metric attempts to be more com-

prehensive (by convoluting numerous component characteristics). In contrast, the

metrics explored here are more focused, allowing for a more targeted assessment of

the relationship between the metric and cost savings.

Before introducing any measure of product family commonality, it is necessary

to establish a formal definition of a part’s shared status, which will be represented

subsequently as γi. This is required because in real-world products, shared

subassemblies and components do not have to be identical. Some components

may share the majority of forming production steps, differing only because of

limited finishing operations such as trimming or drilling of holes. For the purpose

of this work, a component or assembly was considered shared if it used the same

primary forming tooling and equipment as another part in the family.

It is worth discussing this definition both in terms of its ability to be assessed at

early design stages and relative to other definitions presented in the literature.

Regarding the former, in the authors’ experience, part designers quickly learn

those design modifications that require tooling changes. As such, most would be

able to reasonably assess whether two variants will require additional tooling. Of

the other definitions for commonality presented in the literature, one comprehen-

sive scheme can be found in the work of Kota et al. (2000), who propose three

criteria by which to judge whether a component is common or not—(1) size and

shape, (2) material and process, and (3) assembly and fastening scheme. For most

cases, parts that differ in any of Kota’s three criteria will require new forming tools

and, therefore, would be considered distinct in this work. However, other than for

criteria two (i.e., differing production process), this rule will not always pertain.

19 Commonality Metrics for Product Families 477

For example, components made by a number of processes, including stamping,

extrusion, or roll forming, that differ only in one dimension can sometimes be made

using a common forming tool in combination with different trimming requirements.

In considering these differences between Kota’s definition and the one employed

here, it is important to note that the purpose of this work is to assess the economic

impact of alternative product family strategies. Since secondary processing costs

such as drilling and finishing are usually much less than major forming costs,

components that share major forming tooling are considered common. In other

cases where complexity or holding costs are being assessed, part differences such as

finishes and hole patterns might become more relevant.

Given these definitions of commonality, the simple piece-based commonality

metric evaluated in the work is calculated as:

CPiece ¼

Pd
i¼1

Pm
j¼1

γij�1

m�1

0
B@

1
CA

d
(19.1)

where γ is a binary variable: γ ¼ 1, if variant j contains component i, and γ ¼ 0,

if it does not.

The total number of product variants is m and d is the number of distinct items

in the bill of materials. One is subtracted from the sum of variants containing a

component and the total number of variants to account for the first variant that

contains this component; this allows for the resulting ratio to be the number of

variants sharing a component to the number of variants that could share that

component. This methodology can be extended to calculate the commonality of

subassemblies in a product family by replacing the component line items with

subassembly line items. An example bill of materials for a product family as well as

some key sharing calculations for this product family is shown in Table 19.1. In this

example, m ¼ 3, d ¼ 4, and CPiece is equal to 0.5 (see Table 19.2).

Table 19.1 Example bill of materials for a product family

Parts (i)
d ¼ 4

Variants (j)
m ¼ 3

ϕi

Key commonality metric intermediate

calculations

V1 V2 V3

Parts

shared

(γij)

Pm
j¼1

γij�1

m�1
ϕi

Pm
j¼1

γij�1

m�1

Pm
j¼1

PVij�PVmin

PVTot�PVmin

A X X X 5 2 1.0 5.0 1.00

B X 3 0 0.0 0.0 0.13

C X X 2 1 0.5 1.0 0.80

D X X 7 1 0.5 3.5 0.33

Production

volume

100 50 30

478 M.D. Johnson and R.E. Kirchain

Research shows that relevant commonality metrics reflect the relative production

volumes as well as some measure of cost and/or complexity of the components being

analyzed (Jiao and Tseng 2000; Wacker and Treleven 1986). Thevenot and Simpson

(2006) include piece cost variable in their commonality metric. Jiao and Tseng

(2000) also include a cost variable in their commonality metric. Their metric requires

an analysis of the hierarchical product structure to determine the number of compo-

nent parents. The following commonality metric includes a flexible weighting

parameter ϕi and can be used with a single-level combined bill of materials:

Cϕ ¼

Pd
i¼1

ϕi

Pm
j¼1

γij�1

m�1

0
B@

1
CA

Pd
i¼1

ϕi

(19.2)

where ϕi can capture the relative importance of component i, such as its mass, piece

cost, or fabrication investment. This measure will be referred to as the ϕ-weighted
commonality metric (Cϕ), with ϕ specified (e.g., Cϕ¼Mass for the mass-weighted

commonality metric). When multiple components are needed per variant, the

weighting factor is scaled by the number needed per variant. For the example

product represented by Table 19.1, Cϕ ¼ 0.56 (see Table 19.2).

While Jiao and Tseng (2000) include the volume of products in their common-

ality metric, the metric proposed below takes production volume and relative

component importance into account while maintaining simple 0 (no commonality)

and 1 (full commonality) end points:

CPV=ϕ ¼

Pd
i¼1

ϕi

Pm
j¼1

γij�1

m�1

0
B@

1
CA

Pm
j¼1

PVij�PVmin

PVTot�PVmin

0
B@

1
CA

0
B@

1
CA

Pd
i¼1

ϕi

(19.3)

Table 19.2 Calculation of four commonality metrics for the product family presented in Table 19.1

CPiece Cϕ CPV CPV=ϕ

Pd
i¼1

Pm
j¼1

γij�1

m�1

0
@

1
A

d

Pd
i¼1

ϕi

Pm
j¼1

γij�1

m�1

0
@

1
A

Pd
i¼1

ϕi

Pd
i¼1

Pm
j¼1

γij�1

m�1

0
@

1
A

Pm
j¼1

PVij�PVmin

PVTot�PVmin

0
@

1
A

0
@

1
A

d

Pd
i¼1

ϕi

Pm
j¼1

γij�1

m�1

0
@

1
A

Pm
j¼1

PVij�PVmin

PVTot�PVmin

0
@

1
A

0
@

1
A

Pd
i¼1

ϕi

0.5 0.56 0.39 0.41

19 Commonality Metrics for Product Families 479

where PVij is the production volume for variant j for component i (a unique line in
the bill of materials). PVTot is the sum of the production volumes for all variants in

the product family. PVmin is the production volume for the product family variant

that has the minimum production volume. The quantity derived using Eq. (19.3)

will be referred to subsequently as production volume/ϕ-weighted commonality

measures (CPV/ϕ). For the case where all parts are weighted equally:

ϕi ¼
1

Pd
i¼1

ϕi

8i (19.4)

Equation (19.3) collapses to provide an analogous production volume adjusted

version of the piece-based commonality metric that is referred to subsequently as

the production volume-weighted commonality metric (CPV). For the example

product represented by Table 19.1, CPV/ϕ ¼ 0.41 and CPV ¼ 0.39 (see Table 19.2).

Commonality metrics will be assessed based on their correlation with cost

savings (as measured by R2). The proposed metrics are summarized in Table 19.3

along with a brief description of each. The next section details the method used to

project costs and costs savings.

19.3.2 Cost Modeling Methodology

The purpose of the cost models used in this work is to project development and

manufacturing costs and capture the effects of component commonality on these

costs. These projections are used to assess the commonality metrics proposed

above. Much research has been conducted with the goal of trying to determine

the cost of products; this has been done for many purposes (e.g., Ulrich and Pearson

1998; Zhang and Tseng 2007; Field et al. 2007; Tu et al. 2007). Specifically, the

relationships between product and process characteristics and cost have often been

analyzed. Activity-based costing (ABC) is a widely cited method that traces costs to

Table 19.3 Descriptions of proposed commonality metrics

Metric Description

CPiece The piece-based metric is calculated using whether a part is shared

Cϕ¼Mass The mass-weighted metric is calculated based on the relative mass of a component in

relation to the sum of the mass for the entire product family

Cϕ¼Cost The cost-weighted metric is based on the fabrication cost per piece (assuming

component sharing)

Cϕ¼Invest The investment-weighted metric is based on the fabrication investment required for

a component (assuming component sharing)

CPV The production volume-weighted metric is calculated using the relative production

volumes required for each variant

CPV=ϕ¼Invest The production volume-/investment-weighted metric combines relative production

volume and fabrication investment weightings

480 M.D. Johnson and R.E. Kirchain

causal activities and processes (Angelis and Lee 1996; Cleland 2001; Cooper and

Kaplan 1988). While ABC methods have been proposed and used for predictive

purposes (e.g., Qian and Ben-Arieh 2008), they require adherence to strict

conditions (Noreen 1991). When these are not met, ABC methods can produce

significant error (Noreen and Soderstrom 1994). Given the requirement of strict

proportionality between activities and cost pools (requiring only linear cost

functions with zero intercepts) and the inability to capture dependencies between

products in ABC costing methods, which is fundamental to determining the cost

effects of sharing components (Noreen 1991), process-based cost modeling is

proposed for the projection of the cost and cost savings in this work.

Process-based cost modeling (PBCM) is an early stage, generative cost estima-

tion tool that uses various part and process characteristics to project manufacturing,

assembly, and product development costs. Process-based cost models for several

manufacturing processes exist and have been used to answer numerous research

questions around the comparison and selection of materials, processes, and

architectures (Field et al. 2007). Process-based cost models are constructed by

working backward from cost—the model’s objective—to physical parameters that

can be controlled: the model’s inputs. The modeling of cost involves (1) correlating

the effects of relevant physical parameters on the cost-determinant attributes of a

process (e.g., cycle time, equipment performance requirements), (2) relating these

processing attributes to resource requirements (e.g., kg of material, person-hours,

number of machines and/or tools), and (3) translating these requirements to a

specific cost (Kirchain and Field 2001). The relationship between physical

parameters and process characteristics is determined by using physical relationships

and/or through statistical analysis.

The inputs required for a PBCM can be broken into four main categories: part

and material related, process related, operational, and financial. A schematic of

process-based cost modeling can be seen in Fig. 19.1, which shows the three key

modeling steps leading from case description through process characteristics to

operation characteristics and finally to cost. The specifics of the models vary

depending on whether development or manufacturing costs are being projected,

but the framework is consistent. In each case the characteristics of a part or

assembly are correlated to processing characteristics (e.g., required design time or

fabrication and assembly cycle time). These processing requirements are used

along with operating conditions, such as the number of work hours and days,

to determine resource requirements (e.g., the number of person-hours for design,

Process
Model

Operations
Model

Financial
Model

Process
Characteristics

Resource
Requirements Cost

Part/Assembly
Description

Operating
Conditions

Financial
Conditions

Fig. 19.1 Schematic of process-based cost modeling

19 Commonality Metrics for Product Families 481

the number of tools or machines for manufacturing). Finally, financial conditions

(the costs of resources and interest rates) and resource requirements are used to

project total cost. These costs are allocated to individual cost categories.

The output for the development cost model consists of the development costs

for the stages under consideration. In this case these included detailed design,

a formability (or manufacturability) analysis, and the engineering required for the

fabrication and assembly processes. For the manufacturing cost models (fabrication

and assembly), output cost categories included both variable (labor, materials,

and energy) and fixed (tooling, equipment, overhead and maintenance, and build-

ing) costs. A full description of process-based cost models for development,

fabrication, and assembly is outside the scope of this work; interested readers are

directed to Fuchs et al. (2008) and Johnson and Kirchain (2009a) for a general

description and to Johnson and Kirchain (2009b) for discussion of the standalone

and shared costs presented in this work.

To evaluate the fidelity of the development model results, the model was applied

against a number of historic subassembly development projects within the same

major automaker from whom data was collected but which were distinct from the

projects on which data was collected. The historic projects had each been evaluated

and assessed an engineering effort (in person-hours) through conventional account-

ing approaches within the firm. These independent assessments were compared

against model results. All modeled results were within 20 % and most were within

10 % of the firm assessment figures. The results of the part production and assembly

models have been evaluated by comparing the resource requirements projected by

the models against the resources consumed at actual facilities. For the processes

examined in this document, this validation has been carried out across case studies

as documented in Roth and Shaw (2002), Cirincione (2008), and Kar (2007).

Because product family decisions inherently involve multiple products, explicit

rules are required for allocating common component costs. To address this need, the

following nomenclature and analytical structures were developed to analyze costs

here. Let the product family w comprise the set of variants Vw of which variant j is a
member. Each j is assumed to be a member of one and only one family, w. Let Aj be

the set of all components required to produce j. Aj is the union of Ξj, the set of

components exclusively used by j, and Zj2w, the set of components used by j as well

as at least one other variant in Vw: (Aj ¼ Ξj [Zj2w). Finally, let each component i

within the w be associated with a total production cost, Ci,Total, comprising the cost

of parts production, assembly, and/or development.

Firstly, for the product family, the costs of all variants can be determined as if

each variant were produced independently, without the benefits of sharing; this is

defined as the variant’s Standalone Cost, Xj. These costs can then be summed to

determine the cost of the entire product family assuming no sharing; this results in

the Standalone Cost of the product family. Using the above notation, it is possible to

define the simple Standalone Cost of variant j as:

StandaloneCostj ¼ Xj ¼
X
i2Aj

Ci;Total (19.5)

482 M.D. Johnson and R.E. Kirchain

The cost of a variant when including the effects of component sharing is

calculated as the production volume-weighted ratio of that variant’s cost contribu-

tion to the total cost for that part or subassembly. The shared cost (Δj) of variant j in
platform w is:

Shared Costj ¼ Δj ¼ Exclusive Costj þ Total Shared Cost� PVj

P
ljZw;l�Ajf g

PVl

Δj ¼
X
i2Ξj

Ci;Total þ
X
i2Z j2w

Ci;Total � PVj

P
ljZw; l�Ajf g

PVl

(19.6)

Here, Exclusive Cost is the sum of the costs of unique components, those that are

not shared with other variants in Vw
, and PV represents the production volume.

In aggregate, the shared cost of a variant is the sum of the costs of unique

components and shared costs for common components. These definitions and

calculations can be used for individual cost categories (i.e., development, fabrica-

tion, or assembly) or for the aggregate cost of all three categories.

As mentioned previously, the economic value of a product family strategy arises

from the assumed differential between its standalone costs and the shared costs. To

normalize this differential and give a consistent output against which commonality

metrics can be compared, the cost savings metric (S) was calculated as follows:

Sw ¼

P
k2Vw

Xj �
P
j2Vw

Δj

P
j2Vw

Xj
(19.7)

where Χj is the cost of variant j assuming that there is no sharing, the standalone

cost; Δj is the shared cost. The cost savings metric (S) provides a relevant and

objective goal against which commonality metrics can be assessed.

19.3.3 Metric Assessment Methodology

As mentioned previously the goal of this work is to map component commonality to

resultant cost savings. To do so, simple linear regression was used to assess the

relationship between the various commonality metrics and the resultant cost

savings. The fit of the linear relationship between a given metric and the projected

cost savings (S) resultant from component sharing served as the basis of metric

performance (with better fit or higher R2 signaling better metrics). In the following

section, a case study is used to explore these relationships.

19 Commonality Metrics for Product Families 483

19.4 Case Studies

19.4.1 Instrument Panel Beam Comparison

To assess alternative commonality metrics based on their relationship to cost

savings, two alternative instrument panel (IP) beam product families were analyzed

using the process-based cost modeling methodology (described in the preceding

section): (1) a tube-based steel design (common in vehicles today) and (2) a die-cast

magnesium design which affords significant parts consolidation.

The designs of both alternatives were developed with the input of designers at a

major US automotive OEM. Both are considered functionally equivalent, except for

the weight savings afforded by the magnesium design. Although representative of

designs used in a midsized sedan, these designs do not reflect components within

any specific vehicle. The steel IP beam (subsequently denoted steel IP) consisted of

a tubular structure with over two dozen brackets attached. The magnesium design

comprised a primary die-cast magnesium structure (denoted Mg IP) with two

additional unique bracket pairs. Both cases also were designed so that variants

one and two shared a larger portion (or the major component in the case of the

magnesium design) of parts between themselves than either variant one or variant

two shared with variant three. For the two cases, the three variants were assumed to

be produced at various production volumes. Table 19.4 provides general opera-

tional and financial assumptions made for the purposes of modeling manufacturing

and cost. All such inputs are representative of conditions experienced by automo-

tive manufacturers in developed countries, but do not reflect the operating

conditions of any specific firm. Table 19.5 details key processing information

about the two designs. Processing information for these parts was estimated using

the process-based models. Notably, the major die-cast part is projected to have a

production rate approximately 2–3 times slower than that of the analogous steel

components. Due to the highly proprietary nature of some data used in this work, all

cost data is disguised through normalization to protect the industrial sponsor. A

summary of the variants used in the case is shown in Table 19.6. All trends shown

are consistent and proportional to those found using un-normalized data. Compo-

nent details and commonality are shown in Tables 19.7 and 19.8. Component

sharing specifics were based on input from component designers for both cases.

The fabrication investment and per piece cost were projected using process-based

cost models described above. The investment data in Tables 19.7 and 19.8 are

normalized to a value of 1. Piece cost and investment data are shown assuming

component sharing among the three variants.

The projected per part development, fabrication, and assembly costs for variant

one of the steel and magnesium designs are presented to provide the reader with the

cost structure for the two cases. Figures 19.2, 19.3, and 19.4 show these costs for a

standalone variant one. The annual production volume is assumed to be 75,000

units per year. Figure 19.2 shows the development cost breakdown for the two

designs. In both cases, development costs are dominated by assembly engineering.

The development costs for the steel design are more than six times those of the

484 M.D. Johnson and R.E. Kirchain

magnesium design; this can be attributed to the significantly larger number of

components. The fabrication cost allocation, shown in Fig. 19.3, for the two designs

diverges. The magnesium design is dominated by material cost (due to the high

price and large portion of magnesium), while in the steel design costs are

Table 19.4 Operational and financial assumptions

Model inputs

Annual production volume 75,000 parts/year

Days per year 235 days/year

Wage (including benefits) $50/h

Unit energy cost 0.05 $/kW h

Periodic discount rate 10 %

Indirect workers/direct worker (part fabrication) 0.25

Indirect workers/line (part fabrication) 1

Building unit cost 1,200 $/m2

Product life (tooling life) 5 years

Equipment life 15 years

Building life 40 years

Equipment Nondedicated

Buildings Nondedicated

Downtimes

Hours per day 7 h/day

Worker unpaid breaks 1 h/day

Worker paid breaks 1.2 h/day

Material prices

Magnesium price $3.10/kg

Magnesium scrap price $2.30/kg

Steel sheet price $0.81/kg

Steel tube price $1.30/kg

Steel scrap price $0.10/kg

Table 19.5 Instrument panel beam processing information

Name

Manufacturing

process

Reject

rate

Trim

loss

Melt

loss

Cycle

time (s)

Steel beam parts

Upper structure A Tube bending 0.2 % 5 % 0 % 67

Upper structure B Tube bending 0.2 % 5 % 0 % 73

Lower structure 1 Tube bending 0.2 % 5 % 0 % 46

Lower structure 2 Purchased tube N/A N/A N/A N/A

Representative

bracket (34 total)

Stamping 1.0 % 20 % N/A 2

Magnesium beam parts

Beam structure A Die casting 1.0 % 2 % 3 % 142

Beam structure B Die casting 1.0 % 2 % 3 % 153

Representative

bracket (4 total)

Stamping 1.0 % 20 % N/A 2

19 Commonality Metrics for Product Families 485

apportioned more equally among the tooling, material, and other fixed cost

categories. The overall fabrication costs for the magnesium design are almost

twice those of the steel design. The assembly cost allocation is shown in

Fig. 19.4. The assembly costs in both cases are largely comprised of the equipment

(under Other Fixed) required to assemble the IP beams. Tooling and labor also

account for a large portion in both cases. The assembly cost for the steel design is

almost twice that of the magnesium design. Overall, the total projected per part cost

for the steel design is less than that of the magnesium design under the modeled

conditions.

19.4.2 Case Results

The cost models in this work are used to project costs and cost savings resulting

from shared components. The costs and commonality metrics for the analyzed

product families are calculated using the methodology presented above. In addition

to the product families containing all three variants, product families of variant

pairs are also analyzed. The data for which components are shared among product

variants are shown in Tables 19.7 and 19.8. Figure 19.5 shows the projected costs

for the steel IP design assuming no component sharing (standalone) and assuming

component sharing (shared). The results show significant cost savings in the

development and assembly cost categories for variants one and three; for variant

two cost savings are distributed among all three cost categories (due to this variant’s

low standalone production volume). Figure 19.6 shows the projected standalone

and shared costs for the magnesium product family containing all three variants. In

all three variants, the majority of cost savings arise from reduced development and

assembly costs as a result of shared components and assembly processes. This is

due to the sharing strategy and the significant portion of the fabrication cost due to

material cost.

The proposed commonality metrics were calculated for both three variant

product families as well as for the two variant product families. The results of

these calculations and the projected total and fixed cost savings for each product

Table 19.6 Summary of product variants

Production volume Unique parts Standalone cost Shared cost

Steel beam variants

Variant 1 75,000 1 $39.74 $30.31

Variant 2 25,000 1 $82.38 $37.90

Variant 3 50,000 8 $50.85 $33.02

Magnesium beam variants

Variant 1 75,000 0 $43.14 $37.80

Variant 2 25,000 2 $58.79 $40.46

Variant 3 50,000 1 $41.03 $35.27

486 M.D. Johnson and R.E. Kirchain

T
a
b
le

1
9
.7

C
o
m
p
o
n
en
t
an
d
co
m
m
o
n
al
it
y
in
fo
rm

at
io
n
fo
r
m
ag
n
es
iu
m

IP
b
ea
m

P
ar
t
n
am

e

V
ar
ia
n
t
1

(7
5
,0
0
0
)

V
ar
ia
n
t
2

(2
5
,0
0
0
)

V
ar
ia
n
t
3

(5
0
,0
0
0
)

T
o
ta
l

p
ro
d
u
ct
io
n

v
o
lu
m
e

(’
0
0
0
s)

P
ar
t

m
as
s

(k
g
)

P
ie
ce

co
st
($
)

F
ab
ri
ca
ti
o
n

in
v
es
tm

en
t

P
ie
ce

sh
ar
in
g

M
as
s

sh
ar
in
g

P
ie
ce

co
st

sh
ar
in
g

In
v
es
tm

en
t

sh
ar
in
g

P
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

In
v
es
tm

en
t/

p
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

B
ea
m st
ru
ct
u
re
—

A

X
X

1
0
0

8
.1

$
3
2
.4
7

0
.6
1
7

0
.5

4
.0
5

$
1
6
.2
4

0
.3
0
8

0
.3

0
.1
8
5

B
ea
m st
ru
ct
u
re
—

B

X
5
0

7
.3

$
2
9
.5
3

0
.2
8
9

0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

B
ra
ck
et

1
—

A

(x
2
)

X
X

2
5
0

0
.2
0

$
0
.3
5

0
.0
3
5

0
.5

0
.2

$
0
.3
5

0
.0
1
8

0
.4

0
.0
1
4

B
ra
ck
et

1
—

B

(x
2
)

X
5
0

0
.2
2

$
0
.6
6

0
.0
1
2

0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

B
ra
ck
et

2
—

A

(x
2
)

X
X

2
5
0

0
.1
5

$
0
.3
1

0
.0
3
4

0
.5

0
.1
5

$
0
.3
1

0
.0
1
7

0
.4

0
.0
1
4

B
ra
ck
et

2
—

B

(x
2
)

X
5
0

0
.1
7

$
0
.6
0

0
.0
1
2

0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

T
a
b
le

1
9
.8

C
o
m
p
o
n
en
t
an
d
co
m
m
o
n
al
it
y
in
fo
rm

at
io
n
fo
r
st
ee
l
IP

b
ea
m

P
ar
t
n
am

e

V
ar
ia
n
t
1

(7
5
,0
0
0
)

V
ar
ia
n
t
2

(2
5
,0
0
0
)

V
ar
ia
n
t
3

(5
0
,0
0
0
)

T
o
ta
l

p
ro
d
u
ct
io
n

v
o
lu
m
e

(’
0
0
0
s)

P
ar
t

m
as
s

(k
g
)

P
ie
ce

co
st

($
)

F
ab
ri
ca
ti
o
n

in
v
es
tm

en
t

P
ie
ce

sh
ar
in
g

M
as
s

sh
ar
in
g

P
ie
ce

co
st

sh
ar
in
g

In
v
es
tm

en
t

sh
ar
in
g

P
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

In
v
es
tm

en
t/

p
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

A
ir
b
ag

b
ra
ck
et

1
X

X
X

1
5
0

0
.3
4

$
0
.5
2

0
.0
3
2

1
0
.3
4

$
0
.5
2

0
.0
3
2

1
0
.0
3
2

A
ir
b
ag

b
ra
ck
et

2
X

X
X

1
5
0

0
.3
2

$
0
.5
1

0
.0
3
2

1
0
.3
2

$
0
.5
1

0
.0
3
2

1
0
.0
3
2

A
ir
b
ag

b
ra
ck
et

3
—

A

X
X

1
0
0

0
.2
6

$
0
.5
3

0
.0
2
4

0
.5

0
.1
3

$
0
.2
6

0
.0
1
2

0
.3

0
.0
0
7

A
ir
b
ag

b
ra
ck
et

3
—

B

X
5
0

0
.2
6

$
0
.7
2

0
.0
1
7

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

C
o
m
p
ar
tm

en
t

h
an
g
er

b
ra
ck
et

X
X

X
1
5
0

0
.2
5

$
0
.4
4

0
.0
3
1

1
0
.2
5

$
0
.4
4

0
.0
3
1

1
0
.0
3
1

F
u
se

b
ra
ck
et

1
X

X
X

1
5
0

0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.0
3
2

F
u
se

b
ra
ck
et

2
X

X
X

1
5
0

0
.8
1

$
0
.7
8

0
.0
3
5

1
0
.8
1

$
0
.7
8

0
.0
3
5

1
0
.0
3
5

In
n
er

d
ri
v
er
s
si
d
e

b
ra
ck
et

X
X

X
1
5
0

0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.0
3
2

In
n
er

p
as
se
n
g
er

b
ra
ck
et
—

A

X
X

1
0
0

0
.3
0

$
0
.5
6

0
.0
2
5

0
.5

0
.1
5

$
0
.2
8

0
.0
1
2

0
.3

0
.0
0
7

In
n
er

p
as
se
n
g
er

b
ra
ck
et
—

B

X
5
0

0
.3
0

$
0
.7
6

0
.0
1
7

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

L
o
w
er

b
ra
ck
et

1
X

X
X

1
5
0

0
.2
5

$
0
.4
6

0
.0
3
1

1
0
.2
5

$
0
.4
6

0
.0
3
1

1
0
.0
3
1

L
o
w
er

b
ra
ck
et

2
—

A

X
X

1
0
0

0
.0
7

$
0
.3
5

0
.0
2
1

0
.5

0
.0
4

$
0
.1
7

0
.0
1
0

0
.3

0
.0
0
6

L
o
w
er

b
ra
ck
et

2
—

B

X
5
0

0
.0
7

$
0
.4
7

0
.0
1
3

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

L
o
w
er

b
ra
ck
et

3
X

X
X

1
5
0

0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
2
8

L
o
w
er

b
ra
ck
et

4
—

A

X
7
5

0
.0
7

$
0
.3
9

0
.0
1
7

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

L
o
w
er

b
ra
ck
et

4
—

B

X
2
5

0
.0
7

$
0
.7
2

0
.0
1
0

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

L
o
w
er

b
ra
ck
et

4
—

C

X
5
0

0
.0
7

$
0
.4
7

0
.0
1
3

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

L
o
w
er

st
ee
ri
n
g

co
lu
m
n
su
p
p
o
rt

X
X

X
1
5
0

0
.2
7

$
0
.4
7

0
.0
3
2

1
0
.2
7

$
0
.4
7

0
.0
3
2

1
0
.0
3
2

L
o
w
er

st
ru
ct
u
re

1
X

X
X

1
5
0

0
.4
0

$
1
.6
6

0
.0
0
0

1
0
.4
0

$
1
.6
6

0
.0
0
0

1
0
.0
0
0

L
o
w
er

st
ru
ct
u
re

2
X

X
X

1
5
0

0
.2
5

$
0
.9
7

0
.0
0
0

1
0
.2
5

$
0
.9
7

0
.0
0
0

1
0
.0
0
0

O
u
te
r
d
ri
v
er
s
si
d
e

b
ra
ck
et

X
X

X
1
5
0

0
.2
7

$
0
.4
7

0
.0
3
2

1
0
.2
7

$
0
.4
7

0
.0
3
2

1
0
.0
3
2

R
ei
n
fo
rc
em

en
t
1

X
X

X
1
5
0

0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.0
3
2

R
ei
n
fo
rc
em

en
t
2

X
X

X
1
5
0

0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.3
0

$
0
.4
9

0
.0
3
2

1
0
.0
3
2

U
p
p
er

b
ra
ck
et

1
—

A

X
X

1
0
0

0
.7
5

$
0
.8
8

0
.0
2
8

0
.5

0
.3
8

$
0
.4
4

0
.0
1
4

0
.3

0
.0
0
8

U
p
p
er

b
ra
ck
et

1
—

B

X
5
0

0
.7
5

$
1
.1
0

0
.0
2
0

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

U
p
p
er

b
ra
ck
et

2
X

X
X

1
5
0

0
.0
7

$
0
.3
1

0
.0
1
4

1
0
.0
7

$
0
.3
1

0
.0
1
4

1
0
.0
1
4

U
p
p
er

b
ra
ck
et

3
X

X
X

1
5
0

0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
2
8

U
p
p
er

b
ra
ck
et

4
—

A

X
X

1
0
0

0
.1
0

$
0
.3
8

0
.0
2
8

0
.5

0
.0
5

$
0
.1
9

0
.0
1
4

0
.3

0
.0
0
8

U
p
p
er

b
ra
ck
et

4
—

B

X
5
0

0
.1
0

$
0
.5
2

0
.0
2
1

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

U
p
p
er

b
ra
ck
et

5
X

X
X

1
5
0

0
.7
5

$
0
.7
5

0
.0
3
5

1
0
.7
5

$
0
.7
5

0
.0
3
5

1
0
.0
3
5

U
p
p
er st
ru
ct
u
re
—

A

X
X

1
0
0

1
.9
7

$
3
.2
2

0
.0
6
7

0
.5

0
.9
8

$
1
.6
1

0
.0
3
4

0
.3

0
.0
2
0

U
p
p
er st
ru
ct
u
re
—

B

X
5
0

1
.7
9

$
2
.9
0

0
.0
3
3

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

W
ir
in
g
h
ar
n
es
s

b
ra
ck
et

1

X
X

X
1
5
0

0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
2
8

W
ir
in
g
h
ar
n
es
s

b
ra
ck
et

2

X
X

X
1
5
0

0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
2
8

W
ir
in
g
h
ar
n
es
s

b
ra
ck
et

3

X
X

X
1
5
0

0
.2
0

$
0
.4
1

0
.0
3
0

1
0
.2
0

$
0
.4
1

0
.0
3
0

1
0
.0
3
0

(c
o
n
ti
n
u
ed
)

T
a
b
le

1
9
.8

(c
o
n
ti
n
u
ed
)

P
ar
t
n
am

e

V
ar
ia
n
t
1

(7
5
,0
0
0
)

V
ar
ia
n
t
2

(2
5
,0
0
0
)

V
ar
ia
n
t
3

(5
0
,0
0
0
)

T
o
ta
l

p
ro
d
u
ct
io
n

v
o
lu
m
e

(’
0
0
0
s)

P
ar
t

m
as
s

(k
g
)

P
ie
ce

co
st

($
)

F
ab
ri
ca
ti
o
n

in
v
es
tm

en
t

P
ie
ce

sh
ar
in
g

M
as
s

sh
ar
in
g

P
ie
ce

co
st

sh
ar
in
g

In
v
es
tm

en
t

sh
ar
in
g

P
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

In
v
es
tm

en
t/

p
ro
d
u
ct
io
n

v
o
lu
m
e

sh
ar
in
g

W
ir
in
g
h
ar
n
es
s

b
ra
ck
et

4

X
X

X
1
5
0

0
.2
0

$
0
.4
1

0
.0
3
0

1
0
.2
0

$
0
.4
1

0
.0
3
0

1
0
.0
3
0

W
ir
in
g
h
ar
n
es
s

b
ra
ck
et

5

X
X

X
1
5
0

0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
7

$
0
.3
1

0
.0
2
8

1
0
.0
2
8

W
ir
in
g
h
ar
n
es
s

fu
se

b
ra
ck
et
—

A

X
X

1
0
0

0
.3
0

$
0
.5
6

0
.0
2
5

0
.5

0
.1
5

$
0
.2
8

0
.0
1
2

0
.3

0
.0
0
7

W
ir
in
g
h
ar
n
es
s

fu
se

b
ra
ck
et
—

B

X
5
0

0
.3
0

$
0
.7
6

0
.0
1
7

0
0
.0
0

$
0
.0
0

0
.0
0
0

0
0
.0
0
0

family are shown in Table 19.9. In the three variant steel design product family, the

mass- and piece cost-weighted commonality metrics are less than that of the simple

piece commonality metric. This is a result of the large number of brackets that are

shared which have low masses and piece costs. The relative fabrication investment

required for these brackets is higher; this is captured in the fabrication investment-

weighted metric which is greater than the previous simple piece-, mass-, and piece

cost-weighted metrics. The production volume-weighted commonality metric is

lower than the simple piece metric due to the majority of product family common-

ality being between the variants one and two (the low production volume variant).

The investment- and production volume-weighted metric captures both effects and

is approximately the average of the two single metrics.

In the case of the three variant magnesium design product family, the simple

piece commonality metric did not differ significantly from the mass or piece cost-

weighted metrics. The investment-weighted commonality metric for this case is

$4.89 (57.60%)
$2.90 (34.16%)

$0.15 (1.77%) $0.55 (6.48%)

$0.93 (70.45%)

$0.29 (21.97%)

$0.01 (0.76%) $0.09 (6.82%)

Steel Development Mg Development

Assembly

Fabrication

Formability

Design

Fig. 19.2 Projected standalone development costs for variant 1 of the magnesium and steel

instrument panel at 75,000 units per year

$5.83 (30.56%)

$1.20 (6.29%)

$5.47 (28.67%)

$6.58 (34.49%)

$20.33 (57.61%)

$1.82 (5.16%)

$3.40 (9.63%)

$9.74 (27.60%)

Steel Fabrication Mg Fabrication

Material

Other Variable

Tooling

Other Fixed

Fig. 19.3 Projected standalone fabrication costs for variant 1 of the magnesium and steel

instrument panel at 75,000 units per year

$1.21 (9.94%)

$2.86 (23.50%)

$3.68 (30.24%)

$4.42 (36.32%)

$0.26 (3.99%)

$1.40 (21.47%)

$1.73 (26.53%)

$3.13 (48.01%)

Steel Assembly Mg Assembly

Material

Other Variable

Tooling

Other Fixed

Fig. 19.4 Projected standalone assembly costs for variant 1 of the magnesium and steel instru-

ment panel at 75,000 units per year

19 Commonality Metrics for Product Families 491

almost 50 % higher than that of the simple piece metric. This is due to the

significant investment associated with the die-cast structures shared by variants

one and two. The production volume-weighted commonality metric is approxi-

mately a third less than that of the simple piece commonality metric. The invest-

ment/production volume metric combines the two but is closer to that of the

production volume commonality metric. This metric’s calculation penalizes the

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

Var 1-
Standalone

Var 1-
Shared

Var 2-
Standalone

Var 2-
Shared

Var 3-
Standalone

Var 3-
Shared

U
n

it
 C

o
st

Assembly

Fabrication

Development

Fig. 19.5 Projected shared and standalone costs for three steel IP beam variants

$0

$10

$20

$30

$40

$50

$60

Var 1-
Standalone

Var 1-
Shared

Var 2-
Standalone

Var 2-
Shared

Var 3-
Standalone

Var 3-
Shared

U
n

it
 C

o
st

Assembly

Fabrication

Development

Fig. 19.6 Projected shared and standalone costs for three magnesium IP beam variants

492 M.D. Johnson and R.E. Kirchain

T
a
b
le

1
9
.9

C
o
m
m
o
n
al
it
y
m
et
ri
cs

an
d
co
st
sa
v
in
g
s
fo
r
IP

b
ea
m

p
ro
d
u
ct

fa
m
il
ie
s

S
te
el

v
ar
ia
n
ts
1
,2
,

an
d
3

S
te
el

v
ar
ia
n
ts

1
an
d
2

S
te
el

v
ar
ia
n
ts

1
an
d
3

S
te
el

v
ar
ia
n
ts

2
an
d
3

M
g

v
ar
ia
n
ts
1
,
2
,

an
d
3

M
g
v
ar
ia
n
ts

1
an
d
2

M
g
v
ar
ia
n
ts

1
an
d
3

M
g
v
ar
ia
n
ts

2
an
d
3

P
ie
ce

co
m
m
o
n
al
it
y
—

C
P
ie
ce

0
.6
5

0
.9
4

0
.5
8

0
.5
8

0
.2
5

0
.2
0

0
.5
0

0
.0
0

M
as
s
co
m
m
o
n
al
it
y
—

C
ϕ
¼M

as
s

0
.5
8

0
.9
9

0
.4
4

0
.4
4

0
.2
7

0
.9
2

0
.0
4

0
.0
0

P
ie
ce

co
st
co
m
m
o
n
al
it
y
—

C
ϕ
¼C

os
t

0
.5
5

0
.9
4

0
.4
0

0
.4
0

0
.2
6

0
.8
9

0
.0
4

0
.0
0

In
v
es
tm

en
t
co
m
m
o
n
al
it
y
—

C
ϕ
¼I

nv
es
t

0
.7
1

0
.9
6

0
.6
2

0
.6
1

0
.3
4

0
.9
0

0
.0
8

0
.0
0

P
ro
d
u
ct
io
n
v
o
lu
m
e

co
m
m
o
n
al
it
y
—

C
P
V

0
.6
2

0
.9
4

0
.5
8

0
.5
8

0
.1
8

0
.2
0

0
.5
0

0
.0
0

In
v
es
tm

en
t/
p
ro
d
u
ct
io
n
v
o
lu
m
e

co
m
m
o
n
al
it
y
—

C
P
V
=
ϕ
¼I

nv
es
t

0
.6
7

0
.9
6

0
.6
2

0
.6
1

0
.2
1

0
.9
0

0
.0
8

0
.0
0

T
o
ta
l
sa
v
in
g
s

4
1
%

3
8
%

2
9
%

3
5
%

2
1
%

1
9
%

1
0
%

1
4
%

F
ix
ed

co
st
sa
v
in
g
s

4
9
%

4
5
%

3
5
%

4
0
%

3
6
%

3
3
%

1
9
%

2
3
%

19 Commonality Metrics for Product Families 493

magnesium design product family for sharing a high investment component with a

variant that is produced at a low production volume.

The steel product family containing only variants one and two has similar values

for all commonality metrics. For the other two product families, the mass- and

piece-weighted metrics are lower due to the sharing of brackets which have lower

masses and piece costs (as was the case for the three variant product family).

It should be noted for the cases with two product variants, the production

volume-weighted sharing metric collapses to the simple piece sharing metric. The

total costs savings resulting from component sharing range from 29 % to 38 %.

The two variant product families for the magnesium design demonstrate the

effects of alternative component sharing strategies. For the product family

containing variants one and two, the simple piece sharing is significantly lower

than all the other metrics (save the production volume sharing metrics to which it

collapses in this case). While this product family shares only one component, it

shares the largest component when weighted by mass, piece cost, and fabrication

investment. This is reflected in the weighted commonality metrics. The product

family containing variants one and three has a simple piece commonality metric

value of 0.5. The weighted metrics range from 0.04 to 0.15, the 0.15 value being for

the fabrication investment-weighted metric; this again is due to the significant

investment required to fabricate brackets. The total savings range from 10 % to

19 % for these product families. Notably, the product family with no component

sharing benefits from shared assembly processes (e.g., shared conveyance, robotics,

and facilities). Even when the commonality metric is zero, the gross similarity of

these products allows them to be produced on the same assembly line (albeit using

different tools). The cost savings produced by the shared assembly processes are

positive and significant because the two standalone variants are produced at rela-

tively low production volumes.

The correlations between the various commonality metrics are shown in

Table 19.10. The two-tailed significance is shown under the correlation coefficient.

The piece commonality metric is not significantly correlated with any of the

weighted metrics. It only correlates significantly with the production volume

metric; this is to be expected given that they are equal for all but the two three

variant product families (this is also true of the investment, investment/production

volume commonality metrics). The mass commonality metric correlates well with

both the piece cost and the investment commonality metrics. As seen in Table 19.7

and 19.8, mass, piece cost, and investment tend to correlate; as such, their com-

monality metrics would be correlated.

For the purpose of simple linear regression analysis, the production volume

commonality and investment and production volume commonality metrics were

excluded for the two variant product families because for the majority of product

family cases (all those containing only two variants), they match exactly the values

for the simple piece- and investment-weighted metrics, respectively. Table 19.11

shows the R2, F statistic, and significance for each correlation. The R2 for the piece

commonality and investment commonality metrics are 0.54 and 0.53, respectively

(both are significant at the 0.05 level). These metrics performed significantly better

494 M.D. Johnson and R.E. Kirchain

than the mass- or piece cost-weighted metrics in their relationship to resultant cost

savings. The underperformance of the mass- or piece cost-weighted metrics

matches well with the earlier observation that platform cost savings derived pri-

marily from changes in assembly and development costs. Both of these costs are

more closely tied to part count or complexity rather than mass or the piece costs that

it drives.

Several authors have indicated that the key cost benefit of product families

would derive from a reduction in fixed costs not, generally, from any reduction in

piece costs (Robertson and Ulrich 1998). In light of this, the authors explored the

effectiveness of the component sharing metrics in projecting fixed costs alone.

As will be discussed further, subsequently, doing this may help to resolve the

implications of component sharing even in the face of the potentially significant

variation in piece cost that can exist across different materials and production

technologies. The correlation between commonality metrics and fixed costs is

presented in Table 19.12. For the purposes of this analysis, fixed costs include the

Table 19.10 Commonality metric correlations

Mass

commonality

Piece cost

commonality

Investment

commonality

Production

volume

commonality

Investment/

production

volume

commonality

Piece

commonality—

CPiece

0.511 0.491 0.583 0.997* 0.593

(0.196) (0.217) (0.130) (0.000) (0.121)

Mass

commonality—

Cϕ¼Mass

0.999* 0.974* 0.514 0.969*

(0.000) (0.000) (0.193) (0.000)

Piece cost

commonality—

Cϕ¼Cost

0.966* 0.493 0.961*

(0.000) (0.214) (0.000)

Investment

commonality—

Cϕ¼Invest

0.581 0.992*

(0.131) (0.000)

Production

volume

commonality—

CPV

0.602

(0.114)

*Correlation is significant at 0.01 level (two-tailed); significance shown in parentheses under

correlation

Table 19.11 Regression statistics for commonality metrics and total cost savings

R2 F-stat Significance

Piece commonality 0.538 6.98 0.038

Mass commonality 0.370 3.53 0.109

Piece cost commonality 0.346 3.17 0.125

Investment commonality 0.526 6.65 0.042

19 Commonality Metrics for Product Families 495

tooling, equipment, building, and overhead and maintenance costs related to

manufacturing and development costs (since they are an upfront expenditure, not

dependent on production volume). When assessing the relationships with fixed

costs, the mass-weighted and piece cost-weighted measures have higher R2 values

than the simple piece commonality metric. Of the metrics investigated, the fabrica-

tion investment-weighted metric has the highest R2 value and is the only metric

significant at the 0.025 level. While this may seem like an expected result, as noted

above and seen in Fig. 19.7, the majority of modeled cost savings from component

sharing derived from reduced assembly and development costs. As such, this result

would indicate that the fabrication investment-weighted metric may provide even

more predictive ability than would otherwise be expected.

19.5 Discussions

One way of combating the effects of the increased product variety and decreasing

product lifetimes has been the introduction of product families. For these families to

be effective, they must be organized in a way that achieves the goals of the firm. A

number of authors have suggested that effective design performance measures

should promote product family designs that support those goals. This work has

examined the fidelity of several possible early-stage commonality measures with

the goal of reducing the overall (fabrication, assembly, and development) costs of

the product. Specifically, through the use of a case study, several metrics were

assessed to determine their relationship with the cost savings associated with

specific component sharing strategies. To obtain consistent costs, the method of

process-based cost modeling was used to project costs for families of products both

Table 19.12 Regression

statistics for commonality

metrics and fixed cost savings

R2 F-stat Significance

Piece commonality 0.377 3.64 0.105

Mass commonality 0.483 5.61 0.056

Piece cost commonality 0.468 5.27 0.061

Investment commonality 0.617 9.65 0.021

0%

20%

40%

60%

80%

100%

Steel Mg

Assembly

Fabrication

Development

Fig. 19.7 Projected cost

category savings as a portion

of total cost savings

496 M.D. Johnson and R.E. Kirchain

when produced with potential component sharing (shared cost) and in a context

where all parts are produced independently (standalone cost).

Four metrics of component commonality were compared to total and fixed cost

savings that were a result of component sharing.When considering total cost savings,

both the mass- and piece cost-weighted commonality metrics performed poorly in

relating component sharing to benefit. In contrast, the simple piece commonality

metric and the fabrication investment-weighted metric performed considerably better

in their correlation to total cost savings. Notably, the product families analyzed

included components that had relatively large masses and piece costs and, therefore,

did not benefit greatly from component sharing. This is most evident in the case of the

magnesium IP beam’s main structure, for which the costs derived from variable costs

in general, and material cost in particular, limited the amount of savings that could be

derived from component sharing. Although some might view this as a special

characteristic of the specific case of study, it does serve to highlight the distortion

that is possible from a mass or piece cost weighting scheme.

To accommodate the significant variation in piece costs across the technologies

under study, the effectiveness of the various metrics was also assessed against fixed

costs savings alone. In this comparison, the simple piece commonality metric

performed poorly. The mass- and piece cost-weighted commonality metrics

performed somewhat better. The fabrication investment-weighted commonality

metric performed well with the highest-observed R2 of 0.62 and significance at

the 0.025 level. At first, this may seem like an obvious finding: sharing parts with

the most fabrication investment provides the most opportunity for cost savings.

However, the modeled cost results indicate that the majority of savings derived

from component sharing are in the development and assembly cost categories, not

fabrication. These results suggest that a metric based on fabrication investment

savings may have explanatory value for other forms of fixed cost savings.

When developing product families, it is important to consider which types of

components are being shared and what type of product is being produced. The

exploration of metrics presented in this work suggest that assessing alternative

product family concepts based on their component sharing can provide insight

on the potential economic consequence. Furthermore, certain component sharing

metrics seem to provide more fidelity in projecting ultimate cost savings.

In particular, our results suggest that given access either to process-based cost

models of fabrication or to accounting data of sufficiently similar parts, various

product family strategies can be assessed with significantly improved insight using

a fabrication investment-weighted metric, as presented herein.

Such a metric should also make it possible to enhance the development of variant

products derived from those already in the market or under development. Ranking

component sharing targets according to fabrication investment would allow designers

to readily identify those components which would be the most valuable to share; this

should allow for a more targeted and effective component sharing strategy. This

metric also seems the most robust for those product families with a significant

percentage of variable costs. Even for such cases, the fabrication investment weight

metric should serve as an effective proxy to identify which product family concepts

would capture the greatest percentage of available cost savings.

19 Commonality Metrics for Product Families 497

In the end, our results suggest that product design managers would benefit from

encouraging their design teams to frequently evaluate platform design projects in

terms of component sharing. For high-volume production environments, a fabrica-

tion investment-weighted commonality metric like the one presented here appears

to be particularly effective. Implementing even a simple piece count metric will

require some standardized criteria by which designers can evaluate whether a

component is considered common. In the authors’ experience, designers are

reasonably effective at assessing the criteria applied herein—the need for a separate

primary forming tool. In contexts where that is not possible, managers should

consider other approaches, such as that outlined by Kota et al. (2000).

To realize the increased diagnostic value of an investment-weighted metric,

managers would also need to establish the process by which fabrication investments

are estimated (and by which these estimations are kept up-to-date). As discussed in

the literature review section, process-based cost modeling as well as several

parametric modeling approaches have proven broadly useful for estimating

investments based on project characteristics available during early design. In the

authors’ experience such models must be periodically updated, but for many

industries that need occur only every 1–2 years. Over that period, dozens, if not

hundreds, of design projects can benefit from the information provided by the

model. For most firms, that scale of benefit easily justifies the data collection and

analysis effort required to realize and maintain such a model.

It is reasonable to question whether some firms, with sufficient investment in

cost modeling capability, could simply employ such cost models to directly

(and more completely) estimate the cost consequences of a platforming project

rather than relying on a proxy metric like those investigated. The authors suspect

that such contexts exist and that individual firms should consider this possibility.

Nevertheless, there are clearly cases where proxy metrics are appropriate, primarily

to accommodate the state of knowledge of a given design team. Most notably,

a fabrication investment proxy like that explored here does not require knowledge

of integration and assembly issues that naturally can only be known once a

complete set of components are designed. Similarly, fabrication weighting obviates

the need to know information about drivers of variable costs (materials source,

labor, or energy) which tend to be much more regionally variable than their

investment analogs. In both cases, the use of the proxy metric clearly limits the

amount of additional information burden on the design team but still provides

significant explanatory information about the ultimate cost savings realizable

through effective platforming.

19.6 Limitations and Future Work

This work used process-based cost models of development, fabrication, and assem-

bly. The designs were assumed to be a posteriori (or bottom-up) designed product

families, with each variant derived from the preceding one. This work did not

498 M.D. Johnson and R.E. Kirchain

include the additional cost associated with a priori (or top-down) platform

development (Maier and Fadel 2001). Based on input from the firms from which

case data was collected, this work focused on the reduction in fixed costs afforded

by component sharing. Process-based cost models were used to project these

reductions. Other authors have suggested that product platforming can reduce

variable costs as well (Krishnan and Gupta 2001), but based on input from case

firms, these effects were viewed to be minor and were not included in this analysis.

This may not hold for all industries and should become a focus of future study.

This work also did not take into account the operational or market effects of

commonality or the related characteristic variety; other researchers have noted the

difficulty in calculating such costs (e.g., Zhang and Tseng 2007). This work

assumes that all product variants are necessary to meet market needs (given the

requirement for different IP beam sizes) and that the benefits of providing for these

needs greatly outweigh the costs of the associated variant level variety. Revenue

implications have not been considered here. Reduction in consumer-perceived

product variety due to the use of common components can impact sales and pricing

(Clark and Fujimoto 1989; Thomas 1992; Nelson et al. 2001; Oshri and Newell

2005; Krishnan and Gupta 2001; Gonzalez-Zugasti et al. 2000; Yu et al. 1999;

Kim and Chhajed 2001). Such revenue effects can easily outweigh cost benefits and

should be considered carefully. It is not clear, however, that any of the metrics

explored here could resolve the revenue effects of a given commonality decision.

The effects of commonality (the opposite of variety) on inventory costs have been

the focus of much commonality/variety research (Fixson 2007). Inclusion of inven-

tory carrying costs might enhance the performance of the piece cost commonality

metric given that piece cost is a major driver of inventory holding costs (Waters

1992). Another benefit of the reduction in variety is the reduced need for training

and setup (Fixson 2006). The inclusion of these benefits might enhance the perfor-

mance of the piece commonality metric (assuming constant training and setup

needs) or the investment commonality metric (assuming training and setup are

correlated with investment). Future work would benefit from the inclusion of a

detailed analysis to assess the costs of variety at the product variant (assembly)

level as well as the effects of the reduction in variety (at the component level) on

overall product family costs.

Finally, this work contains a limited number of cases and deals mainly with

metal-forming processes. This focused analysis was able to highlight some

promising trends but is not statistically conclusive. Future work should expand

these cases to include a larger number of variants at a wider range of production

volumes as well as alternative manufacturing processes. Along these lines, it would

be interesting to investigate cases where cost savings were dominated by other cost

categories. Notably, here platform-derived savings were mostly associated with

assembly and development. A context with relatively low part count (i.e., to reduce

assembly and development costs) and relatively high tooling investment (i.e., to

raise part production costs) would represent an important test case. A greater

number of cases would allow the two metrics that were not assessed in this work

(production volume-weighted metric and the fabrication investment/production

19 Commonality Metrics for Product Families 499

volume metric) to be analyzed. There is no reason to limit the goal of the product

family to reducing costs; these methods could also be used to limit the different

types of materials used. This could allow for the reclamation of certain types of

materials to become economically feasible and thus increase recycling and reuse.

The cost differential between a “recycling enhanced” and a baseline case could be

used along with the costs/benefits of recycling to determine a suitable strategy.

Other goals for the metrics could include distribution-related quantities such as

shipping miles or number of supplies.

References

Alizon F, Khadke K, Thevenot HJ, Gershenson JK, Marion TJ, Shooter SB, Simpson TW (2007)

Frameworks for product family design and development. Concurr Eng Res Appl 15(2):

187–199

Angelis DI, Lee C-Y (1996) Strategic investment analysis using activity based costing concepts

and analytical hierarchy process techniques. Int J Prod Res 34(5):1331–1345

Blecker T, Abdelkafi N (2007) The development of a component commonality metric for mass

customization. IEEE Trans Eng Manage 54(1):70–85

Cirincione RJ (2008) A study of optimal automotive materials choice given market and regulatory

uncertainty. Thesis (S.M.), Massachusetts Institute of Technology, Cambridge

Clark KB, Fujimoto T (1989) Lead time in automobile product development explaining the

Japanese advantage. J Eng Technol Manage 6(1):25–56

Cleland K (2001) Basic extincts. Financial management. Seven Publishing Group

Collier DA (1981) The measurement and operating benefits of component part commonality.

Decision Sci 12(1):85–96

Cooper R, Kaplan RS (1988) Measure costs right: make the right decisions. Harv Bus Rev 66(5):

96–103

Eisenhardt KM (1989) Building theories from case study research. Acad Manage Rev 14(4):

532–550

Field F, Kirchain R, Roth R (2007) Process cost modeling: strategic engineering and economic

evaluation of materials technologies. J Oper Manage 59(10):21–32

Fixson SK (2005) Product architecture assessment: a tool to link product, process, and supply

chain design decisions. J Oper Manage 23(3–4):345–369

Fixson S (2006) Effective product platform planning in the front end. In: Simpson TW,

Siddique Z, Jianxin J (eds) Product platform and product family design. Springer,

New York, pp 305–333

Fixson SK (2007) Modularity and commonality research: past developments and future

opportunities. Concurr Eng Res Appl 15(2):85–111

Fuchs ERH, Field FR, Roth R, Kirchain RE (2008) Strategic materials selection in the automobile

body: economic opportunities for polymer composite design. Compos Sci Technol 68(9):

1989–2002

Gonzalez-Zugasti JP, Otto KN, Baker JD (2000) A method for architecting product platforms. Res

Eng Des 12(2):61–72

Guerrero HH (1985) The effect of various production strategies on product structures with

commonality. J Oper Manage 5(4):395–410

Gupta AK, Souder WE (1998) Key drivers of reduced cycle time. Res Technol Manage 41(4):

38–43

Hillier MS (2002) The costs and benefits of commonality in assemble-to-order systems with a

(Q, r)-policy for component replenishment. Eur J Oper Res 141(3):570–586

500 M.D. Johnson and R.E. Kirchain

Ho C-J, Li J (1997) Progressive engineering changes in multi-level product structures. Omega

25(5):585–594

Jiao J, Tseng MM (2000) Understanding product family for mass customization by developing

commonality indices. J Eng Des 11(3):225–243

Johnson M, Kirchain R (2009a) Quantifying the effects of parts consolidation and development

costs on material selection decisions: a process-based costing approach. Int J Prod Econ

119(1):174–186. doi:10.1016/j.ijpe.2009.02.003

Johnson MD, Kirchain RE (2009b) Quantifying the effects of product family decisions on material

selection: a process-based costing approach. Int J Prod Econ 120(2):653–668

Kar AM (2007) A cost modeling approach using learning curves to study the evolution of

technology. Thesis (S.M.), Massachusetts Institute of Technology, Cambridge, MA

Kim K, Chhajed D (2001) An experimental investigation of valuation change due to commonality

in vertical product line extension. J Prod Innov Manage 18(4):219–230

Kirchain R, Field FR (2001) Process-based cost modeling: understanding the economics of

technical decisions. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ,

Mahajan S (eds) Encyclopedia of materials science & engineering, vol 2. Elsevier Science,

San Diego, CA, pp 1718–1727

Kota S, Sethuraman K, Miller R (2000) A metric for evaluating design commonality in product

families. J Mech Des 122(4):403–410

Kranenburg AA, Van Houtum GJ (2007) Effect of commonality on spare parts provisioning costs

for capital goods. Int J Prod Econ 108(1–2):221–227. doi:10.1016/j.ijpe.2006.12.025

Krishnan V, Gupta S (2001) Appropriateness and impact of platform-based product development.

Manage Sci 47(1):52–68

Labro E (2004) The cost effects of component commonality: a literature review through a

management-accounting lens. Manuf Ser Oper Manage 6(4):358–367

MacDuffie JP, Sethuraman K, Fisher ML (1996) Product variety and manufacturing performance:

evidence from the international automotive assembly plant study. Manage Sci 42(3):350–369

Maier JRA, Fadel GM (2001) Strategic decisions in the early stages of product family design.

Paper presented at the design engineering technical conference, Pittsburgh, PA, 9–12 Sept

2001

Martin MV, Ishii K (1996) Design for variety: a methodology for understanding the costs of

product proliferation. Paper presented at the ASME design engineering technical conference,

Irvine, CA, 18–22 Aug 1996

Martin MV, Ishii K (1997) Design for variety: development of complexity indices and design

charts. Paper presented at the ASME design engineering technical conference, Sacramento,

CA, 14–17 Sept 1997

Maskell BH (1991) Measurement of production flexibility. In: Performance measurement for

world class manufacturing: a model for American companies. Productivity, Cambridge, MA,

pp 171–202

McDermott CM, Stock GN (1994) The use of common parts and designs in high tech industries:

a strategic approach. Prod Inv Manage J 35(3):65–69

Meyer MH, Lehnerd AP (1997) The power of product platforms. The Free, New York

Moscato DR (1976) The application of the entropy measure to the analysis of part commonality in

a product line. Int J Prod Res 14(3):401–406

Muffatto M (1999) Introducing a platform strategy in product development. Int J Prod Econ

60–61:145–153

Nelson SA, Parkinson MB, Papalambros PY (2001) Multicriteria optimization in product platform

design. J Mech Des 123(2):199–204

Nobelius D, Sundgren N (2002) Managerial issues in parts sharing among product development

projects: a case study. J Eng Technol Manage 19(1):59–73

Noreen E (1991) Conditions under which activity-based cost systems provide relevant costs.

J Manage Accounting Res 3(Fall):159–168

Noreen E, Soderstrom N (1994) Are overhead costs strictly proportional to activity? J Accounting

Econ 17(1–2):255–278

19 Commonality Metrics for Product Families 501

http://dx.doi.org/10.1016/j.ijpe.2009.02.003
http://dx.doi.org/10.1016/j.ijpe.2006.12.025

Oshri I, Newell S (2005) Component sharing in complex products and systems: challenges,

solutions, and practical implications. IEEE Trans Eng Manage 52(2):509–521

Park J, Simpson TW (2008) Toward an activity-based costing system for product families and

product platforms in the early stages of development. Int J Prod Res 46(1):99–130

Pine BJ (1991) Paradigm shift: from mass production to mass customization. Thesis (S.M.),

Massachusetts Institute of Technology, Cambridge, MA

Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business

School Press, Boston

Qian L, Ben-Arieh D (2008) Parametric cost estimation based on activity-based costing: a case

study for design and development of rotational parts. Int J Prod Econ 113(2):805–818

Robertson D, Ulrich K (1998) Planning for product platforms. Sloan Manage Rev 39(4):19–31

Rosenthal SR, Tatikonda MV (1992) Time management in new product development: case study

findings. J Manuf Syst 11(5):359–368

Roth R, Shaw J (2002) Achieving an affordable low emission steel vehicle; an economic

assessment of ULSAB-AVC program design. Paper presented at the SAE 2002 world congress,

Detroit, MI

Sanderson S, Uzumeri M (1995) Managing product families: the case of the Sony Walkman. Res

Policy 24(5):761–782

Schonberger R (1987) Frugal manufacturing. Harvard Bus Rev 65(5):95–100

Simpson TW, Marion T, De Weck OL, Holtta-Otto K, Kokkolaras M, Shooter SB (2006)

Platform-based design and development: current trends and needs in industry. Paper presented

at the ASME international design engineering technical conference, Philadelphia, PA, USA,

10–13 Sept 2006

Skold M, Karlsson C (2007) Multibranded platform development: a corporate strategy with

multimanagerial challenges. J Prod Innov Manage 24(6):554–566

Thevenot HJ, Simpson TW (2006) A comprehensive metric for evaluating component common-

ality in a product family. Paper presented at the ASME 2006 international design engineering

technical conferences & computers and information in engineering conferences, Philadelphia,

PA, 10–13 Sept 2006

Thomas LD (1992) Functional implications of component commonality in operational systems.

IEEE Trans Syst Man Cybern 22(3):548–551

Thonemann UW, Brandeau ML (2000) Optimal commonality in component design. Oper Res

48(1):1–19

Tsubone H, Matsuura H, Satoh S (1994) Component part commonality and process flexibility

effects on manufacturing performance. Int J Prod Res 32(10):2479–2493

Tu YL, Xie SQ, Fung RYK (2007) Product development cost estimation in mass customization.

IEEE Trans Eng Manage 54(1):29–40

Ulrich K (1995) The role of product architecture in the manufacturing firm. Res Policy 24:419–440

Ulrich KT, Pearson S (1998) Assessing the importance of design through product archaeology.

Manage Sci 44(3):352–369

Uzumeri M, Sanderson S (1995) A framework for model and product family competition.

Res Policy 24(4):583–607

Vakharia AJ, Parmenter DA, Sanchez SM (1996) The operating impact of parts commonality.

J Oper Manage 14:3–18

von Braun CF (1990) The acceleration trap. Sloan Manage Rev 32(1):49–58

Wacker JG, Treleven M (1986) Component part standardization: an analysis of commonality

sources and indices. J Oper Manage 6(2):219–244

Waters DC (1992) Inventory control and management. Wiley, Chichester

Yu JS, Gonzalez-Zugasti JP, Otto KN (1999) Product architecture definition based upon customer

demands. J Mech Des 121:329–335

Zacharias NA, Yassine AA (2008) Optimal platform investment for product family design. J Intell

Manuf 19(2):131–148

Zhang M, Tseng MM (2007) A product and process modeling based approach to study cost

implications of product variety in mass customization. IEEE Trans Eng Manage 54(1):

130–144

502 M.D. Johnson and R.E. Kirchain

Chapter 20

Managing Design Processes of Product

Families by Modularization and Simulation

Qianli Xu and Roger J. Jiao

Abstract Managing multiple design projects of product family design necessitates

exploitation of commonalities among various variant projects to achieve reduced

time and cost. It is important to establish a design process architecture that captures

the relevant design process information and to model the design process so as to

integrate the logic of design process planning. This chapter describes a design

process modularization approach to establish the design process architecture and

an integrated modeling and simulation method based on Petri nets (PNs). This

framework adopts a generic variety structure of representing diverse variant design

processes. A modular design project planning architecture is structured by

identifying design process modules using a fuzzy clustering approach. Based on

the modular design process, a timed colored Petri net model is formulated to

integrate the planning logic of design process configuration, while evaluating

design project performance through simulation. Application of the proposed frame-

work in a car dashboard product family design demonstrates promising results of

design process management based on modularization and PN simulation.

This book chapter is compiled from the authors’ prior publications in ASME Journal of Mechanical

Design (DOI: 10.1115/1.3149844 & DOI: 10.1115/1.3125203) (#ASME 2008), reprinted with

permission.

Q. Xu

Agency for Science, Technology and Research, Institute for Infocomm

Research, Singapore, Singapore

R.J. Jiao (*)

Georgia Institute of Technology, Woodruff School of Mechanical

Engineering, Atlanta, GA 30332-0405, USA

e-mail: rjiao@gatech.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_20,
Springer Science+Business Media New York 2014

503

http://dx.doi.org/10.1115/1.3149844
http://dx.doi.org/10.1115/1.3125203
mailto:rjiao@gatech.edu

20.1 Introduction

Manufacturing enterprises typically manage multiple design projects where a few

product variants are developed in parallel according to customers’ requirements.

These design projects are rarely managed in isolation; rather they share common

technical information (e.g., product/process platforms), facilities (e.g., materials

and equipment), budgets, and human resources. It is essential to synchronize the

process of multiple design projects and reuse common resources so as to fully

exploit the benefits of platform-based product development. To do so, manufactures

need to deal with complicated task planning that involves a number of design

activities and resources related to the multiple product variants development

(Meier et al. 2007; Jiang et al. 2008).

This chapter focuses on the management of design process of product variants,

where a design process refers to a sequence of interrelated activities that transform

customer needs (CNs) to a complete description of products and/or production plans

(Kusiak and Wang 1993a, b). Similar to the domain mapping concept in axiomatic

design (Suh 1990), the process of product variant design can be roughly divided into

three stages as shown in Fig. 20.1. By employing a platform-based rationale, each

stage is supported by predefined platforms, such as product portfolio, product

platform, and process platform. For example, the requirement analysis stage deals

with the transformation of CNs into functional requirement (FRs). This stage can be

further decomposed into a set of design activities, including analyzing customer

orders, dispatching tasks, checking compatibility, and issuing design specifications.

The product planning stage deals with the synthesis of product configurations that

provide the product features. Typical design activities in this stage include selecting

and designing components, quality assessment, validating product with customers,

Stage Activity

Input:

Output:

Input: Functional Requirements

Output:

Input: Design Parameters

Output: Process Variables
 (Routing Plans)

+ Analyze customer order
Display tasks
Determine design specifications
Check compatibility
Check regulation
Issue design specifications

+ Select component
Design new component
Quality assessment
Validate with customer
Issue product configuration

+ Create master production plans
Place purchase order
Prepare factories
Make components
Assembly
Delivery

Product
Portfolio

Requirement
Analysis

Product
Platform
Product
Planning

Process
Platform

Production
Planning

Input&Output

Customer Needs

Functional Requirements
(Product Features)

Design Parameters
 (Product Configurations)

Fig. 20.1 A general design process of product variant

504 Q. Xu and R.J. Jiao

and issuing product configurations. In the production planning stage, the production

process variables are finalized as routing plans. This stage involves activities such as

creating master production plans, selecting suppliers, preparing factories, making

components, assembling, and delivering. Depending on the nature of the design

problem, a product variant design processmay involve all or part of the above stages.

The process perspective of product family design gives rise to two fundamental

issues, namely, (1) how to establish a design process architecture that captures

the relevant design process information and (2) how to model the design process so

as to integrate the reasoning logic of process plans and facilitate automated

decision-making. A design process architecture provides a means to capturing

the characteristics of design processes. Design information can be embedded

in the architecture for reuse in future designs. Considering that the product devel-

opment strategy adopted by a company is relatively stable, the product family

design processes may exploit the similarities and commonalities among the design

projects, which are considered as variant design projects. Such multiple design

project variants assume a number of possibilities of reusing design teams, activities

sequences, and resources (Chen and Li 2003; Yassine and Braha 2003).

For design process modeling, the objectives are (1) to capture the semantics

associated with the product variant design process and (2) to provide decision

support in the subsequent planning stage. In essence, a formal and comprehensive

modeling scheme is needed to coordinate the diversified, distributed activities

associated with the design process (Park and Cutkosky 1999). Moreover, a formal

design process model enhances analytical rigor, in the sense that structured design

process data can facilitate the application of computational techniques for reusing

design process information (Ross 1977).

To tackle these issues, this chapter proposes (1) a design process modularization

approach to establish the design process architecture and (2) an integrated modeling

and simulation method based on Petri nets (PNs). This research adopts the generic

variety structure (GVS) for representing the product variant design processes.

Accordingly, a modular architecture is build where design process modules are

identified using the fuzzy clustering approach. Based on the modular design process,

a timed colored Petri net (TCPN) model is used to integrate the reasoning logic of

process configuration and evaluate the project performance through simulation.

Themethods are applied in the design processmanagement for automobile products.

20.2 Background Review

This section gives an overview of methods and tools for representing the design

processes and developing process models for project configuration. In particular,

various design process structures are examined and their roles in supporting process

management are discussed. The establishment of modular design process structure

is of particular interest. Next, a few design process models are discussed focusing

on their roles in supporting process configurations.

20 Design Processes of Product Families 505

20.2.1 Generic Design Process Structure

Product family design involves a dynamic and flexible process where multiple

alternative roadmaps exist for developing product variants (Gonzalez-Zugasti

et al. 2001). These roadmaps represent a series of project configurations depending

on a number of unforeseen factors. Project planning is concerned with generating

project configurations in terms of the design activity sequences and resource

allocation. Subsequently, the configurations must be evaluated against certain

objective functions, such as time and cost. Typically, a configuration design

problem is characterized by the generation of solutions to satisfy a set of design

requirements, based on “a fixed, predefined set of components, where a component

is described by a set of properties and ports for connecting it to other components”

(Mittal and Frayman 1989).

Alizon et al. (2007) categorize the product family design process into four types

according to the development drivers (i.e., platform-driven and product-driven) and

the availability of product information (i.e., top-down and bottom-up). While each

type may involve design processes with distinctive objectives and information

flows, the fundamental processes are similar for multiple design projects belonging

to the same type. Thus, it is possible to develop a generic process structure shared

by multiple design projects. A generic representation has been proven to be an

effective means to describe a large number of variants with minimal data redun-

dancy. For example, the generic bill-of-material (GBOM) defines a generic product

as a set of variants that can be identified through specifying alternative values for a

set of parameters (van Veen 1992; Hegge and Wortmann 1991). The Generic Bill-

of-Material-and-Operation (GBOMO) is a data structure that unifies BOMs and

routings to accommodate a large number of product and process variants (Jiao et al.

2000). These generic variety structures mainly focus on product and production

process. A broader scope is needed for project management in the context of

product families.

20.2.2 Modular Design Projects

The concept of modular design has profound influence in engineering design. Four

types of modularity have been identified, namely, product modularity, process

modularity, organization modularity, and innovation modularity (Fixson 2007).

While the majority of reported work has focused on product modularity, the other

types of modularity are being recognized as essential design problems (Upton and

McAfee 2000; Fixson 2007). Leger and Morel (2001) propose a modular process

that allows for breaking up the monitoring process of a part of a hydropower plant

maintenance process into four subprocesses. Watanabe and Ane (2004) investigate

the relationship between product modularity and process modularity. The results

suggest that product modularity increases the processing flexibility of machines

506 Q. Xu and R.J. Jiao

and the agility of a manufacturing system. Balakrishnan and Brown (1996)

study the commonality across products and its implications to the shared set of

processing steps.

Another important issue in modular design is the identification of modules. In

general, module identification is contingent on the representation schemes. In such

a respect, modularity analysis methods have been developed based on design

structure matrices (DSMs) and domain mapping matrices (DMMs), due to their

elegant representation and support for mathematical operations. Typical

DSM-based analytical methods include partitioning (Gebala and Eppinger 1991),

clustering (Yassine and Braha 2003), banding, tearing, and sequencing (Browning

2002). A common objective of these methods is to group or reorder the DSM

elements such that information exchange within groups is maximized while that

between groups is minimized. Kusiak and Wang (1993a) propose a decomposition

method to cluster activities involved in the design process. Kusiak and Wang

(1993b) propose a triangulation algorithm which can generate a sequence of design

activities such that the number of cycles is minimized. Pimmler and Eppinger

(1994) propose the decomposition method to create architecture and teams based

on numerical DSMs and the heuristic swapping algorithm. Fernandez (1998)

proposes a clustering algorithm to find a trade-off between the costs of being inside

a cluster and the overall system benefit. Sharman et al. (2002) use design syntax and

semantics for the DSM representation. Yu et al. (2003) apply the DSM to identify

highly interactive groups of product elements and cluster them into modules. Seol

et al. (2007) develop a design process modularization method, where design

processes are restructured based on modular synthesis. However, it remains to be

addressed to model the design process of product families to deal with the process

varieties and the intrinsic similarity among them.

20.2.3 Design Process Models

Prevalent design process models include PERT (Program Evaluation and Review

Technique) (Wiest and Levy 1977), SADT (structured analysis and design tech-

nique) (Ross 1977), IDEF3 (Integrated DEFinition for Process Description Capture

Method) (Mayer et al. 1995), WBS (work breakdown structure) (Liu and Horowitz

1989), and DSM (Steward 1981). However, they fall short to capture the rich

interdependencies, priorities, and resource requirements of the design activities

(Kumar and Ganesh 1998).

Petri nets have been recognized as a valuable tool for representing and analyzing

dynamic, concurrent, asynchronous systems. Owing to the mathematical rigor and

graphical modeling flexibility, PNs are capable of behavioral property analysis,

performance evaluation, and discrete-event simulation based on the same model

(Zurawski and Zhou 1994). Recently, there is an increasing number of PN

applications in design process planning (Kumar and Ganesh 1998). Liu and

Horowitz (1989) combine PNs with AND/OR graph to describe the project

20 Design Processes of Product Families 507

breakdown structure and the specification of relationships between different project

information types. Van der Aalst and Van Hee (1996) study the potential of PNs for

constructing formal semantics, which facilitate a precise and unambiguous descrip-

tion of the behaviors of the business process. Raposo et al. (2000) develop a library

of coordination mechanisms using PNs to enable management and reuse of

workflow processes. Kao et al. (2006) propose a decision-making framework for

project portfolio management, where high-level PNs are used to capture the

workflow, and the temporal relationships of activities and resource types. Jiang

et al. (2008) propose a timed colored PNs workflow model which features a process

view for collaborative product development.

However, existing methods lack comprehensive representation schemes and

decision-making techniques that account for the complexity and flexibility of

design processes, especially when a large number of process variants are involved.

Moreover, a generic design process structure is not yet developed based on PNs.

Effective design process modeling is contingent on a clear understanding and

proper generalization of the product variant design process.

20.3 Product Variant Design Process Structure

To establish a design process architecture, this section presents a fuzzy clustering

method which facilitates the building of a GVS to capture the design process

information.

20.3.1 Design Process of Product Variants

A design process (p) of product variants is represented as a tuple: p � E; Ωh i ,
where E represents the basic elements of the process and Ω represents the relation-

ships between these elements. The elements (E) of a process consist of activity/

task (ET), actor (EA), and resource (ER), i.e., E � ET ;EA;ER
� �

. An activity is an

instance of the task that is required by the process, uses up resources, and takes

time to complete (Meredith and Mantel 2003). A task can be formally represented

as ET � IT ;OTh i , where IT and OT denote input and output messages, and a

message is an abstraction of design information, such as CNs, FRs, design

parameters (DPs), and process variables (PVs) (Suh 1990). An actor is a person

or a team responsible for carrying out the design activity. A project usually requires

the cooperation of different types of actors. A resource is a facility that is required

to carry out the activities, such as equipment, materials, and budgets. A complete

design project consists of a number of activities, actors, and resources.

The relationships between these elements are represented as a four-tuple: Ω �
Ω0;Ω1;Ω2;Ω3h i. The interdependencies and/or sequences of activities are

508 Q. Xu and R.J. Jiao

represented as Ω0 : E
T � ET, i.e., whether an activity should be carried out before

or after another activity. The correspondence between activities and actors is

represented as Ω1 : E
T � EA, i.e., who is the major actor for the activity. An actor

may be responsible for multiple activities and each activity may involve one

or more actors. Thus, there is a many-to-many mapping relation between ET and

EA . Similarly, the correspondence between activities and resources is represented

as Ω2 : E
T � ER, i.e., what resources are required for carrying out an activity.

A particular resource can be used in different activities, and an activity usually

requires multiple types of resources. Therefore, the mapping relationship between

ET and ER is many-to-many. Finally, the relationship between actors and resources

is represented as Ω3 : E
A � ER, which denotes an actor’s privilege or preference to

the resources. The multiple elements and their relationships in a design process are

illustrated in Fig. 20.2.

20.3.2 Generic Variety Structure

Based on the description of design process, a GVS is established as a hierarchical

structure. A GVS is suitable to describe design process owing to the inherent

similarities among multiple variant design processes. The characteristics of the

GVS include four aspects: (1) design process hierarchy, (2) variety parameters, (3)

generic item and indirect identification, and (4) configuration constraints. The

readers may refer to Xu and Jiao (2010) for a discussion of GVS and its

characteristics. Furthermore, the GVS adopts the concept of generic routing,

which deals with the precedence links and junctions that show the logic of process

branching. Figure 20.3 shows a GVS for representing design processes with prece-

dence relations and junctions.

The leaf node activities are connected to each other using precedence links and

junctions. These activities in combination with the sequence relations constitute a

generic routing of process varieties. The precedence links are used to restrict the

Actor
(EA)

Resource
(ER)

Activity-Actor
Relation

Activity (ET)

Activity-Resource
Relation

Actor-Resource Relation

(Ω1) (Ω2)

(Ω3)

(Ω0)

Fig. 20.2 Viewing design

processes from three

perspectives

20 Design Processes of Product Families 509

sequence of activities—an activity with a precedence link may not start until its

preceding activity is completed. At the same time, a set of junctions is defined to

represent the logic of process branching. The AND junction necessitates the parallel

operation of a few activities in relation to a single activity. The OR junction shows

the mutually compatible selective relation of a few activities, and the XOR junction

shows the mutually exclusive selective relation of a few activities. Using the above

example, two variants can be generated from the generic routing, as are shown

in Fig. 20.4.

20.4 Project Module Identification

The GVS deals with three major project elements (ET ;EA; and ER), along with their

relationships (Ω0;Ω1;Ω2 and Ω3). The relationships are denoted as DSMs

and DMMs, which are used to identify module of activities (MoAs) based on

three types of modularity. The module identification process is carried out using

the fuzzy clustering method, which employs the representation and manipulation of

the DSM and DMM.

Ei

Ei

•Aggregation/decomposition

•AND tree (a-part-of relation)

•Constituent entity
•i-th node

•Variety parameter
•X node/leaf

Binary
Instantiation

Selective
Instantiation•Generalization/specialization

•OR tree (a-kind-of relation)

Ei
X*u

•AND junction

•OR junction

•XOR junction

&

O

X

X

•Instance (variant) of E i
•u-th leaf

X

E0

E1

E2
E3

E11
E12 E31 E32

E12
E32E11-1

E11-1
A*1

E11-1
A*2

E11

E11
T*1

E11
T*2

E11

E12
T*1

E12
T*2

E12

E12
R*1

E12
R*2

E2 E2

E2
R*1

E2
R*2

E31

E 31
A*1

E31
A*2

E32

E32
T*1

E32
T*2

E32
R*1

E32
R*2

E12

E2

E32E31 E31

&X

T A R T A R

T A R

T A RT A R

•Precedence relation

Fig. 20.3 A generic structure for representing process varieties

E11 E31

E32

E2

E12

E2

E31

E32

a b

Fig. 20.4 Routing variants derived from the generic routing. (a) Routing variant I. (b) Routing

variant II

510 Q. Xu and R.J. Jiao

20.4.1 Design Structure Matrix and Domain
Mapping Matrix

Initially, the DSM is used to represent the activity dependencies, which can be derived

from directed graph that shows the interdependency and sequence relationships of the

constituent elements (Steward, 1981). Figure 20.5a shows a DSM consisting of seven

activities. An elementmij ¼ 1 indicates that activity i is dependent on activity j, while
mij ¼ 0 (shown as blank in this figure) indicates that activity i is not dependent on
activity j (Steward 1981; Eppinger et al. 1994; Chen 2005).

A DSM can be analyzed based on matrix operations, such as partitioning,

clustering, and sequencing. In modular design, matrix operations have been devel-

oped to maximize the interactions within modules and minimize interactions

between modules. By rearranging the components in the above example, three

modules are identified: module I (a, b, e), module II (c, g), and module III (d, f),

as shown in Fig. 20.5b.

A DMM is a generic form of a DSM, which captures the dependency

relationships of two distinctive sets of concepts. Thus, it does not require the row

and column of a matrix to be of identical dimension. DMMs can be used to show the

other types of relationships, i.e., activity-actor (Ω1), activities-resources (Ω2), and

actor-resource (Ω3). For example, to representΩ1, the first row and the first column

of a DMM denote the set of actors and activities, respectively. An element of the

DMM denotes whether an activity is carried out by a particular actor.

20.4.2 Fuzzy Clustering

Clustering analysis is a process of grouping a set of objects into categories of

similar objects (Jiao and Zhang 2005). Fuzzy clustering aims at creating hierarchi-

cal decomposition of a set of objects, in which similar objects are successively

grouped according to similarity levels. The procedure of fuzzy clustering for

module identification is shown in Fig. 20.6.

a b
a b c d e f g

a 1 1 1
b 1 1 1
c 1 1
d 1 1
e 1 1 1
f 1
g 1 1

a b e c g d f
a 1 1 1
b 1 1
e 1 1
c 1 1
g 1 1
d 1 1
f 1 1

Fig. 20.5 DSM for module

identification. (a) Original

DSM. (b) Clustered DSM

20 Design Processes of Product Families 511

1. Three types of relationships between project elements, namely, Ω0;Ω1; and Ω2,

are represented using binary DSMs/DMMs. Accordingly, the resulting matrices

are called D0;D1; and D2, respectively.

2. D0 is analyzed using the partitioning algorithm. A partitioning algorithm

manipulates the rows and columns of D0 and groups the objects into a block,

such that it does not contain any feedback marks. Thus, D0 is transformed into a

block triangular form, denoted as D0
0, in which each block represents a module.

This can reduce the unnecessary cyclic procedures of the design activities. Many

partitioning algorithms have been reported in literature, such as the path

searching method (Steward 1981; Gebala and Eppinger 1991), the power of

the adjacency matrix method (Warfield 1973), the reachability matrix method

(Warfield 1973; Kusiak et al. 1994), and the triangularization algorithm (Kusiak

et al. 1994). This research adopts the path search method (Steward 1981) for

partitioning D0. Figure 20.7a shows a DSM (D0) involving ten activities, which

is partitioned into D0
0 with six modules (Fig. 20.7b).

(2) Ω0 partitioning

Ω0:ET-ET

(4) Fuzzy
Clustering

Module

I

II

III

(3) Compute
Similarity(1) DSM Representation

(Partitioned DSM)
D0

D1

D2

'
0

D

Ω1:ET-EA

Ω2:ET-ER

Fig. 20.6 Fuzzy clustering for module identification

1 2 3 5 8 9 10 4 6 7

1 1

2 1 2 1

3 1 1 3

5 1 5 1

8 1 1 8

9 1 9 1

10 1 1 10

4 1 4 1

6 1 1 1 6

7 1 1 1 7

1 2 3 4 5 6 7 8 9 10

1 1

2 1 2 1

3 1 1 3

4 4 1 1

5 1 5 1

6 1 1 6 1

7 1 1 7 1

8 1 1 8

9 1 9 1

10 1 1 10

1 2 3 4 5 6 7 8 9 10

1 1

2 0 1

3 0 1 1

4 0 0 0 1

5 0 0 0 0 1

6 0 0 0 1 0 1

7 0 0 0 0 0 0 1

8 0 0 0 0 1 0 0 1

9 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 1

a b c

Fig. 20.7 DSM partitioning and similarity measure. (a) Original DSM (D0). (b) Partitioned DSM

ðD0
0Þ. (c) Similarity based on ðD0

0Þ

512 Q. Xu and R.J. Jiao

3. The similarity (sij) between each pair of activities (e.g., ET
i and E

T
j) is computed

from D0
0; D1; and D2:

sij ¼ w1s
T
ij þ w2s

A
ij þ w3s

R
ij (20.1)

where:

– sTij is the similarity based on activity sequence and is derived from D0
0, i.e.,

sTij ¼ D0
0 i; jð Þ. The subscripts i and j are the index of the activities. Using the

same example, sTij is computed as shown in Fig. 20.7c.

– sAij is the similarity measure based on actor similarity, which is derived from

D1, i.e., s
A
ij ¼ AND D1ðiÞ;D1ðjÞð Þ

OR D1ðiÞ;D1ðjÞð Þ , where D1ðiÞ and D1ðjÞ are the row vectors. The

dividend AND D1ðiÞ;D1ðjÞð Þ denotes the number of actors that appear in both

activities i and j, i.e., D1 i; kð Þ ¼ D1 j; kð Þ ¼ 1. The divisor OR D1ðiÞ;D1ðjÞð Þ
denotes the number of actors that appear in either activities, i.e., D1 i; kð Þ ¼ 1

or D1 j; kð Þ ¼ 1. For example, given the activity-actor matrix D1 (Fig. 20.8a),

the similarity measure is computed as in Fig. 20.8b.

– sRij is the similarity measure based on resource similarity, which is derived

fromD2, i.e., s
R
ij ¼ AND D2ðiÞ;D2ðjÞð Þ

OR D2ðiÞ;D2ðjÞð Þ . An example is given in Fig. 20.8c, d, where

six types of resources are involved.

1 2 3 4 5 6 7 8
1 1 1 1
2 1
3 1 1
4 1 1 1 1
5 1 1
6 1
7 1 1
8 1
9 1 1
10 1 1

1 2 3 4 5 6 7 8 9 10
1 1
2 .33 1
3 .25 0 1
4 .4 0 .5 1
5 .25 0 .33 .2 1
6 .33 0 .5 .25 .5 1
7 0 0 0 0 .33 0 1
8 0 0 0 .25 0 0 0 1
9 .67 .5 .33 .2 .33 .5 0 0 1
10 .25 .5 0 0 0 0 .3 0 .33 1

1 2 3 4 5 6
1 1 1 1
2 1
3 1 1
4 1 1 1 1
5 1
6 1
7
8 1
9 1 1
10 1

1 2 3 4 5 6 7 8 9 10
1 1
2 0 1
3 .33 0 1
4 .33 .33 0 1
5 0 0 0 0 1
6 0 .5 0 .5 0 1
7 .25 0 .67 0 .33 0 1
8 0 0 0 0 1 0 .33 1
9 .33 .33 .33 0 0 0 .25 0 1
10 1 0 0 .5 0 0 0 0 0 1

1 2 3 4 5 6 7 8 9 10
1 1
2 .08 1
3 .14 .5 1
4 .18 .08 .12 1
5 .06 0 .08 .05 1
6 .08 .12 .12 .69 .12 1
7 .06 0 .17 0 .17 0 1
8 0 0 0 .06 .75 0 .08 1
9 .25 .21 .17 .06 .08 .12 .06 0 1
10 .19 .12 0 .12 0 0 .08 0 .58 1

1 2 3 4 5 6 7 8 9 10
1 1
2 .21 1
3 .21 .5 1
4 .18 .18 .18 1
5 .07 .07 .07 .09 1
6 .18 .17 .18 .69 .12 1
7 .07 .09 .07 .09 .21 .07 1
8 .07 .07 .07 .08 .75 .07 .21 1
9 .05 .06 .02 .08 .18 .08 .17 .17 1
10 .05 .05 .01 .02 .18 .08 .17 .17 .59 1

a b c

d e f

Fig. 20.8 DSM representation and similarity computation. (a) Activity-player: D1. (b) Similarity

based on D1. (c) Activity-resource: D2. (d) Similarity based on D2. (e) Combined similarity.

(f) Fuzzy equivalence matrix

20 Design Processes of Product Families 513

4. A combined similarity measure is computed from the three types of similarity

measures. In this chapter, the weights assigned to activity sequence, actors, and

resources are w1 ¼ 0:5;w2 ¼ 0:25, and w3 ¼ 0:25, respectively. Based on the

same example, the combined similarity measures are computed using Eq. (20.1),

and the results are shown in Fig. 20.8e.

The fuzzy clustering algorithm is used to decompose the activities with respect to

the combined similarity matrix (Jiao and Zhang 2005). Given the similarity matrix

as shown in Fig. 20.8e, the fuzzy equivalence matrix is computed as shown in

Fig. 20.8f. The design activities are clustered according to different similarity

thresholds (e.g., λ ¼ 0:5; 0:2; 0:1), such that a tree structure is formed as shown in

Fig. 20.9. The bottom level MoAs are identified as 1f g; 2 3f g; 4 6f g; 5 8f g;
7f g; and 9 10f g.
The outcome of the module identification based on the fuzzy clustering is used to

construct the GVS. Once the GVS is constructed, it can be used for project planning

using the genetic algorithms presented in the next section.

20.5 Design Process Modeling by Timed Colored Petri Nets

After the design process architecture is built, the next step is to establish a model

that integrates various decision variables to generate design process configurations.

Petri nets (PNs) with time and color properties are proposed to model the design

process and provide decision support to design process planning. The application of

PNs in design process modeling requires an unambiguous, one-to-one functional

correspondence between PNs and the design process specifications. Colored tokens

are adopted to facilitate the generic representation. Moreover, to evaluate the

evolutionary characteristics of design processes, the PN model incorporates a

time property that denotes the temporal features of the design process.

20.5.1 Design Process TCPN Model

A timed colored Petri net (TCPN) model is represented as a seven-tuple:

Ψ ¼ P; T;C; I;D;mf g (20.2)

1 2 3 4 6 5 8 7 9 10

λ=0.5

λ=0.2

λ=0.1

Fig. 20.9 Activity clusters

resulted from different

similarity thresholds

514 Q. Xu and R.J. Jiao

where

– P ¼ pif g (i ¼ 1, 2, . . . , n) is a set of places, and a place pi is a buffer for holding
the actor, resource, or message required/released/created by an activity.

– T ¼ tif g (i ¼ 1, 2, . . . , m) is a set of transitions, and a transition ti denotes an
activity.

– C is a finite color set defined onP [T. C(P) is the color set related to places, and
C(T) is the color set related to transitions. The number of a colored item

associated with a place is represented as a token, λðCÞ 2 N, where N is a positive

integer.

– I : P� Tð Þ ! N is the input function that defines directed arcs from places to

transitions. If there exists an arc with color c 2 C and weight w 2 N connecting

pi to tj, then I pi � tj
� �ðcÞ ¼ w. The weight denotes the amount of tokens required

for firing a transition. The complete set of input places of a transition ðtjÞ is called
its preset, denoted as � tj � P.

– O : P� Tð Þ ! N is the output function that defines directed arcs from transitions

to places. If there exists an arc with color c 2 C and weightw 2 N connecting tj to

pi, then O pi � tj
� �ðcÞ ¼ w. A weight denotes the amount of tokens generated by

firing a transition. The complete set of output places of a transition ðtjÞ is called
its postset, denoted as tj� � P.

– D : ðTÞ ! Rþ is the firing time function that assigns a nonnegative time delay to

every transition. Rþ is a positive real number. The time delay is based on a

probability distribution function such that it is non-deterministic.

– The complete set of colored tokens in the places of a PN at a specific time τ is
called a marking, i.e., mτðcÞ : ðPÞ ! N. m0ðcÞ is called the initial marking.

20.5.1.1 TCPN Control

The behavior of the PN is dependent on the high-level features that control the

occurrence of events or execution of activities. In turn, the sequence of activities is

reflected by the flow of tokens governed by predefined rules.

1. Enabling rule. A transition tj is enabled by a marking if and only if m pið ÞðcÞ �
I pi; tj
� �ðcÞ, 8pi 2 �tj; 9c 2 C pið Þ. Moreover, to enhance the dynamic behavior of

the TCPNmodel, a dependent arc is used, whose weight is controlled by status of

particular places.

2. Firing rule. An enabled transition can fire, and as a consequence, it removes

from each input place the number of tokens equal to the weight of the input arc

and deposits in each output place the number of tokens equal to the weight of the

output arc. If transition tj fires, it is considered as active for a period of time

determined by the transition’s duration, after which a new marking is generated,

i.e., m0 pið ÞðcÞ ¼ m pið ÞðcÞ þ O pi; tj
� �ðcÞ � I pi; tj

� �ðcÞ, 8pi 2 P; 8c 2 C pið Þ.

20 Design Processes of Product Families 515

The above formulation signifies a rough correspondence between the design

process and the PNs. For example, activity (E) can be mapped onto the transition

set (T). The diverse types of tasks ðETÞ, actors ðEAÞ, and resources ðERÞ can be

represented by colors. The actual sets of actors and resources that are required for

carrying out a task corresponding to the input function I : P� Tð Þ. In this scenario,
an input place acts as a buffer for holding the colored tokens.

At the same time, the output of a task corresponds to the output function

O : P� Tð Þ, and accordingly the intermediate items are deposited into the suitable

output places upon the completion of an activity. The duration of an activity is

governed by the firing time (D). Finally, the status of the design process at any time

(τ) is recorded by the marking mτðcÞ.

Colored Tokens

Colored tokens are used to differentiate classes of input/output (e.g., CNs, FRs,

DPs, and PVs), actors (e.g., customer, executive, engineer), and resources (e.g.,

equipment, material, facility, budget).

Time Properties

Time allows for the modeling of temporal behaviors of a design process. A firing

time represents the duration of an activity which is estimated based on random

variables that follow certain distribution functions. In practice, beta distribution is

usually adopted for estimating activity duration based on relevant information

extracted from prior projects.

20.5.1.2 Variety Handling Mechanism

By using colored tokens, the structure of PNs is simplified because different

activities can be represented by the same structure as long as the functional

behaviors of the activity are the same. Figure 20.10 shows an illustrative example

of a PN representation of the design process, where mechanisms for dealing with

process varieties are handled by color and generic routing.

Two design specifications (ds1 and ds2) are hosted by place p1, representing two
product variants. Assume that each design specification is to be fulfilled by distinct

components, which can be either selected from existing component catalog

(denoted by transition t1) or designed (denoted by transition t2). If transition t2
(“design new component”) is fired, it is followed by the process of checking the

quality of newly designed component (embodied by t3). The compatibility of

components is examined in the process denoted by t4, resulting in the configuration
of product.

516 Q. Xu and R.J. Jiao

Assume that two products (Pd1 and Pd2) are to be designed and the design

specifications are given as {Pd1: ds1 ¼ a1, ds2 ¼ b1} and {Pd2: ds1 ¼ a2, ds2 ¼
b2}, respectively. Once the design specifications are loaded to place p1, they are

compared to the input functions so that a proper routing is selected. For Pd1, ds1:
a1 � a and ds2: b1 � b. Thus, design specification ds1 ¼ a1 cannot be fulfilled

using the existing component catalog. And therefore, ds1 is handled by transition t2
indicating the design of new components.

On the other hand, ds2 ¼ b1 falls within the capacity of the existing catalog, and
ds2 is dispatched to transition t1, where a designer select a component from the

Transition

t1 Select component

t2 Design new component

t3 Quality assessment

t4 Compatibility check

Place Colored token

p1 Design specification ds1; ds2

p2 Component catalog C1; C2

p3 Design engineer de

p4 Selected component C1; C2

p5 Workstation W1

p6 Component C1; C2

p7 Finished component C1; C2

p8 Product p

Input Weight

I11 ds1=a; ds2=b

I21 C1=1; C2=1

I31 de=1

I12 ds1=a; ds2=b

I32 de=1

I52 W1=1

I63 C=1; de=1; W1=1

I44 C=1

I74 C=1

Output Weight

O21 C1=1; C2=1

O31 de=1

O41 C1=1; C2=1

O62 de=1; W1=1 C1=1; C2=1;

O33 de=1

O53 W1=1

O73 C1=1; C2=1

O84 p=1

D2

p6

p4

t4

t2

p7

t3

p1

p2
t1

D1

p5

p3

D3

D4
p8

Fig. 20.10 Petri nets for representing design processes

20 Design Processes of Product Families 517

existing catalog. The TCPN model for developing Pd1 is constructed as process

variant Pc1, as shown in Fig. 20.11a. Similarly, process variant Pc2 is built as

Fig. 20.11b, where both design specifications (i.e., ds1 ¼ a2, ds2 ¼ b2) are

addressed by the component catalog.

20.5.1.3 Performance Indicators

The design process plans are evaluated using two criteria: lead time and cost. For

the lead time, this research adopts a lead time penalty function as the objective

function. Moreover, considering that cost cannot be precisely estimated at the

planning stage, the resource capacity idle rate is used to simulate the cost of product

development. The resource is considered busy when it is being occupied or con-

sumed by an activity; otherwise it is idle. For any particular type of resources, the

resource capacity idle rate is the percentage of idle time with respect to the overall

design process life cycle. In essence, the idle rate of actor and resource is a useful

indicator of the cost of product development, e.g., cost can be effectively reduced if

the system maintains a low system capacity idle rate (high capacity utilization).

The PN representation of resources using colored tokens provides a convenient

way to compute the actor/resource idle rate. An actor/resource is utilized if it is

associated with a fired transition. Hence, the amount of resource being utilized

equals to the weight of the input arc that connects the preset places and the fired

transition. Based on this observation, the utilization rate of actor/resource j at time

can be computed as

D2

p6

p4

t4

t2

p7

t3

p1

p2
t1

D1

p5

p3

D3

D4
p8

p4

t4
p1

p2
t1

D1

p3
D4

p8

a

b

Fig. 20.11 Petri nets for handling process varieties. (a) TCPN model of a design process variant

Pc1. (b) TCPN model of a design process variant Pc2

518 Q. Xu and R.J. Jiao

uj τð Þ ¼
Pm

i¼1 yi
Pni

k¼1 I
k
j τð Þ

� �

Pn
i¼1 λ

pi
j τð Þ þPm

i¼1 yi
Pni

k¼1 I
k
j τð Þ

� � (20.3)

where:

– λpij τð Þ is the number of tokens held in a place pi 2 Pð8i ¼ 1; 2; . . . ; nÞ.
– Ikj τð Þ is the weight of the input arc connecting places pk 2 �ti 8k ¼ 1; 2; . . . ; nið Þ

and transition ti 2 Tð8i ¼ 1; 2; . . . ;mÞ.
– yi is a Boolean value such that yi ¼ 1;

0;

�
if ti is activated ðfiredÞ;
otherwise:

.

20.5.2 Decision Support to Design Process Planning

Based on the TCPN formalism, a decision framework is developed which consists

of two major stages, namely, TCPN construction and TCPN deployment, as shown

in Fig. 20.12. The former involves the establishment of TCPN model based on

knowledge of the product variant design process. The latter aims at applying the

TCPN model for decision-making in design process planning.

Fig. 20.12 TCPN decision support to design process planning

20 Design Processes of Product Families 519

20.5.2.1 TCPN Construction

The procedures shown next provide general guidelines to construct the TCPN:

– Decompose design process. This step involves the decomposition of the design

process according to the design process architecture, which consists of three

elements ET, EA, and ER. Data maintained in the documentation of an enterprise

can be analyzed using such tools as DSM and WBS (Seol et al. 2007; Liu and

Horowitz 1989).

– Construct GVS. Following the concept of object-oriented modeling, the design

process is decomposed into elementary activities. Instances of activities are

characterized by specific tasks, actors, and resources.

– Identify color set. The color set can be readily extracted from the leaf nodes of

GVS. It corresponds to the definition of activity structure in terms of task, actor,

and resource.

– Identify time features. The expected durations of design activities are estimated

from documentations of prior projects.

– Construct TCPN. The activities at the leaf node of the GVS are initiated as

transitions. Next, the elements (e.g., input/output of tasks, actors, and resources)

associated with the leaf node activities are used to define places. Accordingly,

the connections between transitions and places are defined. The precedence links

and junction relations in the GVS are used to define the dependency

relationships between transitions. Places are connected to transitions based on

the request or release of actors, resources, and message. Finally, time features

are assigned to transitions considering the availability of colored tokens.

20.5.2.2 TCPN Deployment

Design process planning starts from the description of project scopes and time/

resource constraints. Next, configurations of TCPN for developing the product

variants are generated through an instantiation process, which determines the

routings of activities and the preliminary assignment of actors and resources,

represented as the initial marking of the TCPN. Design process plans are generated

and evaluated based on discrete-event simulation. Alternative plans are simulated

and the performance of these candidate solutions is evaluated based on the system

capacity idle rate (U) and the lead time penalty function (V), leading to near-

optimal solutions.

The TCPN provides a convenient means to generate design process plans

through simulation, i.e., through the analysis of behavioral properties of PNs.

While the analysis can be carried out using the reachability tree or the invariant

methods (Murata 1989), such an analysis does not give intuitive explanations of the

results. Hence, a simulation process is more appropriate for studying the evolving

status of the system. In this research, a prototype TCPN software package was

developed to implement the simulation routines.

520 Q. Xu and R.J. Jiao

20.6 Case Study

The proposed approach is implemented for the project planning of car dashboards

in an automobile company. The car dashboard is a subassembly with several basic

models and a number of customizable features. Product variants can be generated

by selecting the appropriate features, which are fulfilled by predefined product

components. In order to meet the tight schedules and reduce the product develop-

ment cost, it is necessary to coordinate the design activities belonging to multiple

projects so as to achieve favorable task concurrency and resource reuse. The design

process structure is first established using the modularization approach. Next, the

TCPN model is adopted to generate design process plans based on a comprehensive

design process model and to evaluate their performance based on simulations.

20.6.1 Design Process Modularization

Prior projects are analyzed to identify the basic design activities, actors, and

resources. A total of 23 basic activities, 10 actors, and 12 resources are identified

(Table 20.1). It is recognized that the relationships between these elements are only

Table 20.1 Activities, actors, and resources involved in car dashboard design

Content

Activity 1. Basic model selection

2. Time analysis

3. Diffuser specification

4. Ornament selection

5. Drawer selection

6. Color matching

7. Drawer geometry checking

8. Hazardous emission check

9. Visibility check

10. Specification team checking

11. Chief design engineer approval

12. Select diffuser

13. Select ornament

14. Select drawer

15. Design diffuser

16. Design ornament

17. Design drawer

18. Component interference checking

19. Geometry compatibility checking

20. Assembly simulation

21. Assembly model building

22. Assembly model rendering

23. Design specification white paper

Main actor 1. Project manager

2. Marketing staff

3. Analyst

4. Graphic designer

5. Customer

6. Interior design engineer

7. Quality engineer

8. Product planner

9. Licensed quality engineer

10. Product designer

Resource 1. Desktop

2. Laptop

3. Printer

4. CAD modeler

5. Machine

6. Wood

7. Plastic

8. Textile

9. Conference room

10. Design studio

11. Workshop

12. Manual

20 Design Processes of Product Families 521

loosely defined. For example, the actors are roughly grouped into teams

corresponding to different stages of product development. Further analysis is

required to extract the relationships so as to establish a GVS for the design projects.

The dependency relationships Ω0 between the activities are represented as a DSM

D0 (Fig. 20.13a). Similarly, the relationship between activities and actors (Ω1),

and activities and resources (Ω2), are identified as DMMs, D1 (Fig. 20.13c) and

D2 (Fig. 20.13d). Next, D0 is processed using the partitioning algorithm, resulting

in D0
0 (Fig. 20.13b). From D0

0;D1; and D2 , the pairwise similarities between

activities are computed as shown in Fig. 20.14. Next, the MoAs are identified

using the fuzzy clustering algorithm, resulting in ten MoAs that constitute the

GVS (Table 20.2).

The GVS has two layers. In the first layer, a project is roughly decomposed into

two stages, namely, requirement analysis and product design. In the second layer,

1
a c

b d

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 1
2 1 2
3 1 3
4 1 4 1

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1
2 1 1
3 1
4 1

5 1 1 5
6 1 6
7 1 1 1 1 7 1 1
8 1 1 8 1
9 1 9

1 1 1 10
1

5 1
6 1
7 1 1
8 1 1

19
10 1

11 111
11 1 1 1 12 1 1 1 1

1 13 1
1 1 14

11 15
1 16

1 1 17
1

11 1
12 1
13 1
14 1
15 1
16 1
17 1

11 18
1 19 1
1 1 20

1 21
1 1 22

1 1 23

18 1
19 1
20 1
21 1
22 11
23

10
11
12
13
14
15
16
17
18
19
20
21
22
23

10
11
12
13
14
15
16
17
18
19
20
21
22
23 11

1 2 3 4 5 6 9 7 8 10 11 13 14 16 15 12 17 18 19 20 21 22 23
1 1 1
2 1 2
3 1 3

1 2 3 4 5 6 7 8 9 10 11
11

2 1
13 1

4 1 4 1
5 1 1 5
6 1 6
9 1 9
7 1 1 1 1 1 7 1
8 1 1 8 1

10 1 1 1 10

4 1 1
5 1 1
6 1
7 1 1 1
8 1
9 1

1
11 1 11
13 1 13 1
14 1 1 14
16 1 16
15 1 1 15
12 1 1 1 1 1 1 1 1 12

1 1

1
1 1

1
1

1
1 1

1 1 117 1 1 17
18 1 18
19 1 19 1
20 1 1 20
21 1 21
22 1 1 22
23 1 1 23

1 1 1
1

1 1 1
1 1

1
1 1
1 1

Fig. 20.13 DSM representation of the relationships between project elements. (a) D0, (b) D0
0

(partitioned DSM), (c) D1 and (d) D2

522 Q. Xu and R.J. Jiao

the MoAs are defined in terms of tasks, actors, and resources. For example, market

demand analysis (E1) requires two actors, a marketing staff (h1) and customer (h4),
and one resource type, a conference room (e2). The detailed information of actors

and resources are shown in Tables 20.3 and 20.4, where the last columns show the

actor/resource instances.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 .80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .20 0 0 .20 0 .07

2 .80 1 0 0 0 0 0 0 0 0 0 .10 0 0 0 0 0 0 0 0 0 .10 .17

3 0 0 1 07 07 0 05 0 0 10 07 07 10 10 0 05 0 0 0 0 0 0 03 0 0 1 . . 0 0 0 0 0 0 0 0

4 0 0 .07 1 1 .27 .23 .10 0 .20 0 .07 0 0 0 .25 0 0 0 0 0 0 0

5 0 0 .07 1 1 .27 .23 .10 0 .20 0 .07 0 0 0 .25 0 0 0 0 0 0 0

6 0 0 0 .27 .27 1 .15 .10 0 .20 0 0 0 0 0 .20 0 0 0 0 0 0 0

7 0 0 .05 .23 .23 .15 1 .67 0 .10 0 .05 0 0 0 .14 0 0 0 0 0 .05 .05

8 0 0 0 .10 .10 .10 .67 1 .10 .10 0 0 .10 .10 .30 .17 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 .10 1 0 .20 .20 0 0 .10 .05 0 0 0 0 0 0 0

10 0 0 .10 .20 .20 .20 .10 .10 0 1 .10 0 .20 .20 0 .20 0 0 0 0 0 0 00 0 0 1 . 0 . . 0 . 0 0 0 0 0 0 0

11 0 0 .07 0 0 0 0 0 .20 .10 1 .20 .10 .10 0 0 0 0 0 0 0 0 0

12 0 .10 .07 .07 .07 0 .05 0 .20 0 .20 1 0 0 0 .05 0 0 0 0 0 .07 .07

13 0 0 .10 0 0 0 0 .10 0 .20 .10 0 1 1 .20 0 0 0 0 0 0 0 0

14 0 0 .10 0 0 0 0 .10 0 .20 .10 0 1 1 .20 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 .30 .10 0 0 0 .20 .20 1 .07 0 0 0 0 0 0 0

16 0 0 .05 .25 .25 .20 .14 .17 .05 .20 0 .05 0 0 .07 1 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .08 .24 0 0 0

18 .20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .20 0 .20 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .08 .20 1 .65 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .24 0 .65 1 0 0 0

21 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 1 0 021 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 1 0 0

22 0 .10 0 0 0 0 .05 0 0 0 0 .07 0 0 0 0 0 0 0 0 0 1 .27

23 .07 .17 0 0 0 0 .05 0 0 0 0 .07 0 0 0 0 0 0 0 0 0 .27 1

Fig. 20.14 Combined similarity between design activities

Table 20.2 Generic design process variety structure for the dashboard

Activity

Task

Actor ResourceInput Output

Requirement

analysis

Market demand

analysis

E1 cn1~cn3 cn1~cn3 h1, h4 e2

Initiate design

specifications

E2 cn1~cn3 ds1~ds3 h1, h3 e1, e3, f3

Validate compatibility E3 ds1, ds3 ds1, ds3 h2 e1, e3, f3
Check regulation E4 ds3 ds3 h2 e1, f2

Product

design

Dispatch design s

pecifications

E5 ds1~ds3 ds1~ds3 h3 e1, e3

Select component E6 ds1~ds3 pc1~pc4 h3 e1,m1~m4, f2
Design new

component

E7 ds1~ds3 pc1~pc4 h3, h5 e1,e3, f3

Quality assessment E8 pc1~pc4 pc1~pc4 h2, h5 e1,e3, f2
Check compatibility E9 pc1~pc4 pc1~pc4 h2 e1, f2
Validate product with

customer

E10 pc1~pc4 pc5 h4 e1, e2, f3

20 Design Processes of Product Families 523

Next, a generic routing of the activities is created as shown in Fig. 20.15. The

design process starts when a potential customer (h1) consults with the marketing

staff (h4), who carries out an analysis of customer’s preferences (activity E1). Based

on the customer need information (cn1, cn2, and cn3), a product planner (h3) is

Table 20.3 Input/output class (message color set) for dashboard design

Type Class Code Instance

Customer need Driving guide cn1 None, smart

Safety cn2 Basic, enhanced

Entertainment cn3 Basic, good

Functional requirement Auto parking ds1 No, yes

Audio ds2 Basic, Hi-Fi

Passive safety ds3 Basic, advanced

Product component Distance detector pc1 No, yes

Power assist pc2 No, yes

Audio system pc3 Set 1, Set 2

Air bag pc4 Basic, side

Dashboard pc5 Product

Table 20.4 Actor and resource for dashboard design

Type Class Code Instance

Actor Marketing staff h1 h*11
Quality engineer h2 h*12,h

*2
2

Product planner h3 h*13,h
*2
3

Customer h4 h*14, h
*2
4

Product designer h5 h*15

Resource Equipment Workstation e1 e*11, e
*2
1,e

*3
1

PDA e2 e*12,e
*2
2

Printer e3 e*13, e
*2
3,e

*3
3

Material Distance detector m1 m*1
1

Power assist m2 m*1
2

Audio system m3 m*1
3,m

*2
3

Air bag m4 m*1
4,m

*2
4

Facility Conference room f1 f*11, f
*2
1

Manual f2 f*12, f
*2
2

Design studio f3 f*13

E1 E2

E3

& O

E4

E5

E8

E6

E7

E9 E10

Fig. 20.15 Generic routing of the dashboard design process

524 Q. Xu and R.J. Jiao

responsible for initiating the design specifications (E2), which are technical

interpretations (ds1, ds2, and ds3) of the CNs. Among the design specifications,

ds1 (auto parking) and ds3 (passive safety) may conflict with each other, thus

necessitating an activity of compatibility validation (E3). At the same time,

ds3 (safety) is critical and must be examined against the regulations in activity

E4. Once confirmed, all design specifications are dispatched (E5) to planners, who

may either select a standard component from the component catalog (activity E6) or

design a new component (E7). Whenever E7 is involved, it is followed by a quality

assessment activity (E8), carried out by designers (h5) and quality engineers (h2).
After checking the compatibility of components (E9), the product configuration is

validated with the customer (E10) before it is issued to the production department.

20.6.2 TCPN for Design Process Simulation

The GVS is further denoted as the TCPN, as shown in Fig. 20.16. In this model,

each transition (tx) strictly corresponds to an activity (Ex), and a place is the holder

of colored tokens, representing actors, resources, or messages. For purpose of

clarity, places for holding resources are hidden in the figure. Places for holding

the actor tokens are suffixed by “ax,” such that places with identical “x” value are
multiple copies of the same place. The sets of colors for denoting message, actor,

and resource classes are defined in Tables 20.3 and 20.4.

In the TCPN model, place p0 represents the CNs within the range of product

family. Arc I0�1 (p0, t1) is a dependent arc, whose weight reflects the level of

customer needs as embodied by the content of pa4. In other words, depending on

specific demands of customers (colored token residing in pa4), the weight of arc I0�1

is assigned dynamically to reflect the changing demands. Such logic is denoted as

I0�1: cnx ¼ pa4.cnx. It provides a mechanism to ensure that only customer orders

relevant to the present product family are addressed. Subsequently, the CNs trigger

a series of design processes that is described in the GVS. As such, different routings

and actor/resource allocation schemes are realized, denoting different plans for

product variant design. Without repeating the description of entire design process,

the meaning of transitions, places, and input/output arcs is summarized

corresponding to the TCPN diagram in Fig. 20.16.

20.6.3 Design Process Planning

After the TCPN is constructed, the TCPN deployment stage is activated to embody

the product variant generation process. In this case study, two product variants,

namely, M1 and M2, are to be designed based on the requests of customers.

The expected lead times of these products are 55 and 65 days, respectively.

20 Design Processes of Product Families 525

The process of generating product variants starts with the initialization of the

TCPN model. It involves the creation of a routing plan and a preliminary assign-

ment of actors and resources to the respective places. Two alternative routings are

generated (Fig. 20.17), which differ in terms of the inclusion or exclusion of

design activities embodied by transitions t7 (i.e., designing new components) and

t8 (i.e., quality assessment). The first routing does not involve the process of

designing new components, such that all design specifications can be fulfilled by

the legacy component catalog. However, such a process appears in the second

t1 t2p0 p1 p2

pa4

pa1

pa3

t3

t4

t6

t5

t8t7

pa2

p4

pa3

p5

pa2

p6

t9

p3

t10pa3

p7

p8

p9

pa4

p10

pa5

Transition Duration

te(days) s2

t1 Market demand analysis 7 1

t2 Initiate design specifications 3 0.5

t3 Validate compatibility 3.3 0.5

t4 Check regulation 1 0.5

t5 Dispatch design specifications 4.5 0.8

t6 Select component 6.5 2

t7 Design new component 20 5.3

t8 Quality assessment 8 2.2

t9 Check compatibility 2.7 0.4

t10 Validate product with customer 6 2.6

Place Colored token

p0 Customer need cn1~3

p1 Customer need cn1~3

p2 Design specification ds1~3

p3 Design specification ds1, ds3

p4 Design specification ds3

p5 Design specification ds1~3

p6 Component pc1~4

p7 Component pc1~4

p8 Component pc1~4

p9 Component pc1~4

p10 Product p

pa1 Marketing staff h
1

pa2 Quality engineer h2

pa3 Product planner h3

pa4 Customer h4

pa5 Product designer h3

- Input arc
I0-1: cnx=pa4.cnx Ia1-1:h1=1 Ia4-1: h4=1 I1-2:cnx=ux Ia3-2:h3=1 I2-3:ds1=0; ds3=0
Ia2-3: h2=1 I2-4: ds2=0 Ia2-4: h2=1 I3-5:ds1=v1; ds3=v3 I4-5:ds2=v2 Ia3-5: h3=1
I5-6: dsx=vx Ia3-6: h3=1 I5-7: dsx=vx Ia3-7: h3=1 Ia5-7: h5=1 I7-8: dsx=vx

Ia2-8: h2=1 I6-9: pcx=wx I8-9: pcx=wx I9-10 : pcx=wx Ia4-10: h4=1

- Output arc
O1-1: cnx=ux Oa1-1: h1=1 O2-2:cnx=ux Oa3-2:h3=1 O3-3: ds1=v1; ds3=v3 Oa2-3: h2=1
O4-4: ds2=v2 Oa2-4: h2=1 O5-5: :dsx=vx Oa3-5: h3=1 O6-6: pcx=wx Oa3-6: h3=1
O7-7: pcx=wx Oa3-7: h3=1 Oa5-8: h5=1 O8-8: pcx=wx O9-9: pcx=wx Oa2-9: h2=1
O10-10: pc5=w5 Oa4-10: h4=1

(x=1,2,3; ux, vx, wxare cardinal numbers)

Fig. 20.16 Petri net for modeling the design process of the dashboard product family

526 Q. Xu and R.J. Jiao

routing, in hope of improving system resource utilization and product quality. Both

configurations are potentially capable of fulfilling the task requirements, whereas

they may lead to different performance of design process plans.

The actual design process plans are generated through the simulation process of the

TCPN.AprototypeTCPN software packagewas developed to implement the routines.

Though the simulation, the status of the system is examined and updated as the time

stamp increases. The simulation terminates when the entire planning process is

completed, which is indicated by the creation of product configurations in place p10.

20.6.4 Results and Analysis

Based on the above simulation process, two design process plans, PL1 and PL2, are
generated from the two TCPN configurations. The durations of the activities in both

plans are illustrated as the Gantt chart in Fig. 20.18. The allocation of actors and

resources is summarized in Table 20.5, where instances of actors and resources are

specified. Based on the TCPN simulation results, the performance of the two

candidate design process plans is summarized in Table 20.6, showing the average

system resource idle rates and the lead time penalty functions.

The lead times for developing two product models are 46 and 65 days in PL1, and
51 and 59 days in PL2. Assuming that the two products have the same priority, the

lead time penalty functions can be computed according to Eq. (20.3), i.e.,

V1 ¼ 0.354 and V2 ¼ 0.355. From these results, it is observed that the difference

between them is negligible, indicating that both plans confirmed approximately to

the expected time line. On the other hand, PL2 outperforms PL1 in terms of overall

system capacity utilization. In particular, the system capacity idle rates for two

t1 t2p0
p1 p2

pa4

pa1

pa3

t3

t4

t6

t5pa2

p4

pa3

p5

p6

t9

p3

t10pa3
p9

pa4

p10

t1 t2p0
p1 p2

pa4

pa1

pa3

t3

t4

t6

t5

t8t7

pa2

p4

pa3

p5

pa2

p6

t9

p3

t10pa3

p7

p8

p9

pa4

p10

pa5

Fig. 20.17 Routings of two process variants

20 Design Processes of Product Families 527

plans are 0.51 and 0.38, respectively. As shown earlier, the major structural

difference between the two TCPN configurations lies in the inclusion/exclusion

of the new component design and quality assessment process (E7 and E8). When

both product variants are designed based on existing component catalog (as is in

PL1), the design process will compete for the same set of actors (h3) and resources

(e1, m3, m4, f2), indicating potential process conflicts. Meanwhile, the set of actors

(h2 and h5) and resource (e3), which are used in processes E7 and E8, stay idle. By

including the process of E7 and E8, these idle actors and resources are utilized, such

that the workload is allocated in a more balanced way. Such a difference indicates

that PL2 achieves lower cost of product development. Considering that the lead

time penalty functions are identical in the two plans, PL2 achieves a higher cohort
performance for developing the product variants.

20.7 Discussions

Design process planning presents a new perspective of product variant design.

Instead of focusing on product fulfillment through platform-based techniques, this

research streamlines the design processes so that they are better controlled in terms

of time and cost. Such an effort is appropriate due to the activity concurrency and

Project
Product Model M1
Market demand analysis
Initiate design specifications
Validate compatibility
Check regulation
Dispatch design specifications
Select component
Design new component
Quality assessment
Check compatibility
Validate product with customer
Product Model M2
Market demand analysis
Initiate design specifications
Validate compatibility
Check regulation
Dispatch design specifications
Select component
Design new component
Quality assessment
Check compatibility
Validate product with customer

Plan 1 (PL1) Plan 2 (PL2)

Fig. 20.18 Gantt chart of the design process plans

528 Q. Xu and R.J. Jiao

reusability inherent in the process of product variant development. Based on an

analysis of the design process architecture, the essential elements of design pro-

cesses are identified as tasks, actors, and resources. It establishes a multiple

viewpoint of the design process information, which is an improvement to traditional

methods that adopt a single viewpoint.

To tackle the large number of design process varieties, a GVS is constructed to

denote the design process variants. In this respect, the multiple process variants can be

instantiated from the same model, and the design activities can be better coordinated

within the common framework. Furthermore, the modular design process method

addresses module identification and project reconfiguration. In particular, a

DSM-basedmethodprovides analytical rigor to construct themodular project structure.

A fuzzy clustering algorithm is capable of constructing a hierarchical activity decom-

position tree, accommodating various sources and multiple levels of modularity.

Table 20.6 Performance of two design process plans

Plan

Lead time

Resource utilization Expected (τe) Actual (τc)

Penalty functionUtilization rate (U) Idle rate (1�U) P1 P2 P1 P2

PL1 0.49 0.51 50 65 46 65 0.354

PL2 0.62 0.38 51 59 0.355

Table 20.5 Actor and resource allocation for two design process plans

Activity

Process plan PL1 Process plan PL2

Actor Resource Actor Resource

Product

variant

(P1)

E1 h*11, h
*1
4 e*12 h*11, h

*2
4 e*12, e

*2
2

E2 h*11, h
*2
3 e*31, e

*3
3, f

*1
3 h*11, h

*2
3 e*21, e

*3
3, f

*1
3

E3 h*12 e*11, e
*2
3, f

*1
3 h*12 e*11, e

*2
3, f

*1
3, f

*2
3

E4 h*12 e*31, f
*1
2 h*22 e*11, e

*2
1, f

*1
2

E5 h*12 e*31, e
*3
3 h*12 e*31, e

*3
3

E6 h*13, h
*2
3 e*21, m

*1
3, m

*1
4, f

*2
2 h*13 e*21, m

*1
3, m

*1
4, f

*2
2

E7 – – h*13, h
*2
5 e*11, e

*3
3, f

*1
2

E8 – – h*12, h
*1
5 e*11, e

*3
3, f

*1
2

E9 h*12 e*11, f
*1
2 h*12 f*11, f

*1
2

E10 h*14 e*21, e
*2
2, f

*1
3 h*24 e*21, e

*2
2, f

*1
3

Product

variant

(P2)

E1 h*11, h
*2
4 e*12, e

*2
2 h*11, h

*2
4 e*12, e

*2
2

E2 h*11, h
*1
3 e*31, e

*2
3, f

*1
3 h*11, h

*1
3 e*21, e

*3
3, f

*1
3

E3 h*22 e*31, e
*3
3, f

*1
3 h*22 e*11, e

*2
3, f

*1
3, f

*2
3

E4 h*22 e*31, f
*1
2 h*22 e*11, e

*2
1, f

*2
2

E5 h*22 e*31, e
*3
3 h*12, h

*2
2 e*31, e

*3
3

E6 h*13, h
*2
3 e*21, m

*1
1, m

*1
2, m

*1
3,

m*2
4, f

*2
2

h*23 e*21, m
*1
1, m

*1
2, m

*1
3,

m*1
4, f

*2
2

E7 – – h*23, h
*1
5 e*11, e

*3
3, f

*1
2

E8 – – h*12, h
*1
5 e*11, e

*2
3, f

*2
2

E9 h*22 e*11, f
*2
2 h*12 f*11, f

*1
2

E10 h*14 e*21, e
*1
2, f

*1
3 h*24 e*21, e

*2
2, f

*1
3

20 Design Processes of Product Families 529

The TCPN model provides decision support in design process planning, which is

characterized by a generic structure based on colors and a task-driven planning

based on time. The TCPN is advantageous to traditional PN-based design process

planning methods because it saves the effort of generating distinct Petri nets for

each and every design process variant.

The method proposed in this research is a useful step toward modeling the design

process of product families. While the method is directed toward the product

variant design process, i.e., focusing on the deployment stage of product family

design, it can be readily extended to the development of product architectures, i.e.,

the construction stage of product family design. This is because the basic elements

used in the design process model, e.g., activities, tasks, actors, resources, and

generic routings, are independent of the content of the actual design process. In

other words, the process of constructing product architectures also involves a series

of activities, carried out/supported by shared, reusable actors and resources. In this

respect, this research establishes the foundation of managing design process for

product families, which exploits the generic nature of the design process elements

and the common sharing logic.

20.8 Summary

Product variant design facilitates an increasing number of product varieties, which

causes a proliferation of design processes throughout the product development life

cycle. This research proposes a modularization approach to support design project

modeling and planning for product families. Modularizing the design projects

facilitates the organization of design activities so as to simplify the decision process

in project planning. A project model that consists of three major elements (activity,

actor, and resource) is proposed to represent the project information, which enhances

information modeling for project management. Based on the project model, a GVS

provides a common modular framework that considers task sequences, actor, and

resource relationships. The GVS can accommodate the requirements of product

family design projects by modeling the project varieties in a consistent and concise

manner. Furthermore, the modular approach addresses module identification and

project reconfiguration. In particular, a DSM- and DMM-based method provides

analytical rigor to construct the modular design process structure. A fuzzy clustering

algorithm is capable of constructing a hierarchical activity decomposition tree,

accommodating various sources and multiple levels of modularity.

A timed colored Petri net is proposed formodeling and analyzing the product variant

design process. As an extension of the platform-based product development, the

modeling framework exploits the commonalities inherent in product variant design

process. Although such commonality is not necessarily equivalent to product common-

ality, it isworthwhile to investigatewhether such commonality can be used for planning

intelligence. Moreover, a TCPN decision framework is developed to integrate the

reasoning logic of design process planning. The diverse types of design process

530 Q. Xu and R.J. Jiao

information canbe capturedusingageneric color set. Finally, the cohort performance of

the designprocess plans is evaluated using discrete-event simulation.The applicationof

TCPN in car dashboard family design demonstrates that the method is conducive to

managing product design from a systematic level and coordinating activities belonging

to multiple projects to achieve favorable resource sharing and reuse.

References

Alizon F, Khadke K, Thevenot HJ, Gershenson JK, Marion TJ, Shooter SB, Simpson TW (2007)

Frameworks for product family design and development. Conc Eng Res Appl 15:187–199

Balakrishnan A, Brown S (1996) Process planning for aluminum tubes: an engineering-operations

perspective. Oper Res 44:7–20

Browning T (2002) Process integration using the design structure matrix. Syst Eng 5:180–193

Chen SJ (2005) An integrated methodological framework for project task coordination and team

organization in concurrent engineering. Conc Eng Res Appl 13:185–197

Chen S-J, Li L (2003) Decomposition of interdependent task group for concurrent engineering.

Comput Ind Eng 44:435–459

Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-based method for organizing

tasks in product development. Res Eng Des 6:1–13

Fernandez C (1998) Integration analysis of product architecture to support effective team

co-location, Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA

Fixson S (2007) Modularity and commonality research: past developments and future

opportunities. Conc Eng Res Appl 15:85–111

Gebala D, Eppinger S (1991) Methods for analyzing design procedures. In: Proceeding of the

ASME 3rd international conference on design theory and methodology, vol 31, pp 227–233

Gonzalez-Zugasti JP, Otto KN, Baker JD (2001) Assessing value in platformed product family

design. Res Eng Des 13:30–41

Hegge HMH,Wortmann JC (1991) Generic bill-of-material: a new product model. Int J Prod Econ

23:117–128

Jiang P, Shao X, Qiu H, Li P (2008) Interoperability of cross-organizational workflows based on

process-view for collaborative product development. Conc Eng Res Appl 16:73–87

Jiao J, Zhang Y (2005) Product portfolio identification based on association rule mining. Comput

Aided Des 37:149–172

Jiao J, Tseng MM, Ma Q, Zou Y (2000) Generic bill of materials and operations for high-variety

production management. Conc Eng Res Appl 8:297–322

Kao HP, Wang W, Dong J, Ku KC (2006) An event-driven approach with makespan/cost tradeoff

analysis for project portfolio scheduling. Comput Ind 57:379–397

Kumar AVK, Ganesh LS (1998) Use of petri nets for resource allocation. IEEE Trans Eng Manage

45:49–56

Kusiak A, Wang J (1993a) Decomposition of the design process. J Mech Des 115:687–695

Kusiak A, Wang J (1993b) Efficient organizing of design activities. Int J Prod Res 31:753–769

Kusiak A, Larson TN, Wang J (1994) Reengineering of design and manufacturing processes.

Comput Ind Eng 26:521–536

Leger JB, Morel G (2001) Integration of maintenance in the enterprise: towards an enterprise

modeling-based framework compliant with proactive maintenance strategy. Prod Plan Control

12:176–187

Liu LC, Horowitz E (1989) A formal model for software project management. IEEE Trans Softw

Eng 15:1280–1293

20 Design Processes of Product Families 531

Mayer RJ, Menzel CP, Painter MK, deWitte PS, Blinn T, Perakath B (1995) Information integra-

tion for concurrent engineering (IICE): IDEF3 process description capture method report.

Knowledge Based Systems, College Station, TX

Meier C, Yassine AA, Browning TR (2007) Design process sequencing with competent genetic

algorithms. ASME J Mech Des 129:566–585

Meredith JR, Mantel SJ (2003) Project management: A managerial approach, 5th ed., John Wiley

& Sons, New York

Mittal S, Frayman F (1989) Towards a generic model of configuration tasks. In: Proceedings of the

international joint conference on artificial intelligence, Detroit, MI, pp 1395–1401

Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77:541–580

Park H, Cutkosky MR (1999) Framework for modeling dependencies in collaborative engineering

processes. Res Eng Des 11:84–102

Pimmler TU, Eppinger SD (1994) Integration analysis of product decompositions. In: ASME 6th

international conference on design theory and methodology, Minneapolis, MN, Sept

Raposo AB, Magalhaes LP, Ricarte ILM (2000) Petri nets based coordination mechanisms for

multi-workflow environments. Comput Syst Sci Eng 15:315–326

Ross D (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans

Software Eng 3:16–31

Seol H, Kim C, Lee C, Park Y (2007) Design process modularization: concept and algorithm. Conc

Eng Res Appl 15:175–186

Sharman D, Yassine A, Carlile P (2002) Characterizing modular architectures. In: Proceedings of

ASME design engineering technical conferences, DETC2002/DTM-34024, Montreal, Canada

Steward DV (1981) The design structure system: a method for managing the design of complex

system. IEEE Trans Eng Manage 28:71–74

Suh N (1990) Axiomatic design: advances and applications. Oxford University Press,

New York, NY

Upton DM, McAfee AP (2000) A path-based approach to information technology in

manufacturing. Int J Technol Manage 20:354–372

van der Aalst WMP, van Hee KM (1996) Business process redesign: a petri-net-based approach.

Comput Ind 29:15–26

van Veen EA (1992) Modeling product structures by generic bills-of-materials. Elsevier,

New York, NY

Warfield JN (1973) Binary matrices in system modeling. IEEE Trans Syst Man Cybern 3:441–449

Watanabe C, Ane BK (2004) Constructing a virtuous cycle of manufacturing agility: concurrent

roles of modularity in improving agility and reducing lead time. Technovation 24:573–583

Wiest J, Levy F (1977) A management guide to PERT/CPM. Prentice-Hall, Englewood Cliffs, NJ

Xu Q, Jiao J (2010) Design project modularization for product families. ASME J Mech Des

131:061009

Yassine A, Braha D (2003) Complex concurrent engineering and the design structure matrix

method. Conc Eng Res Appl 11:165–176

Yu T, Yassine A, Goldberg D (2003) Genetic algorithm for developing modular product

architectures. In: Proceedings ASME 15th international conference on design theory and

methodology, Chicago, IL, 2003

Zurawski R, Zhou MC (1994) Petri nets and industrial applications: a tutorial. IEEE Trans Ind

Electron 41:567–583

532 Q. Xu and R.J. Jiao

Chapter 21

Design Principles for Reusable Software

Product Platforms

Carlos O. Morales

Abstract This chapter is an introduction to software design based on general

principles and engineering techniques, applicable to the design of software

platforms that are to be used as a foundation for the construction of product

families. The second section focuses on the fundamental characteristics of Design

for Change, which describes the qualities and structure that the software system

must exhibit as a product platform in order to be capable of evolving and adapting

to the changing needs of a range of related products within a family, or within an

industry domain over a long period of time. The third section introduces a number

of software engineering techniques that ensure that the software system to be

developed will have a structure suitable for supporting the general platform

qualities presented in the first section. The main purpose of this chapter is to provide

the background information on software engineering terms and concepts that are

needed to understand Chap. 26.

21.1 Introduction

Software engineering is the field of computer science that deals with the design and

production of large software systems involving a team of engineers. Computer

programming is an implementation activity that involves one isolated person only.

Software engineering is essentially a team activity.

In comparison to classic engineering disciplines like electrical, mechanical, or

civil engineering, software engineering has not yet reached the same level of

maturity, although it is now getting close, after the advent of model-based software

development, and design, analysis, simulation, and verification tools are still being

C.O. Morales (*)

Animas Corporation, Johnson & Johnson Medical Devices,

200 Lawrence Drive, West Chester, PA 19380, USA

e-mail: carlos.o.morales@ieee.org

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_21,
Springer Science+Business Media New York 2014

533

mailto:carlos.o.morales@ieee.org

evolved. As an emerging engineering discipline, the development of software must

be based on sound principles. The concepts presented in this chapter are the

foundation upon which software product platforms are built.

21.2 Software Qualities

Just like any engineering activity, software engineering is concerned with building

a product. In our case, the product is a software system. In some ways, software

products are similar to other engineering products, but software has some striking

differences, especially because it is intangible, extremely malleable, and its pro-

duction is necessarily human intensive.

Because of its malleability, some people think that changing software is easy, but

this misconception generally underestimates the complexity of software. To clearly

see this point, we just have to recall how other engineering products are changed, for

example, bridges, airplanes, and electronic circuits. All these other engineering

products are not changed without first making a formal design change and analyzing

the corresponding ripple effects of their impact before the implementation. After

this, management approval is sought, and only then, the change is actually

implemented. However, the change process is not complete until the correctness

of the change has been verified. A change in software must be viewed as a change in

the design, rather than just rewriting technical words in the code.

Now, let us examine the qualities that are pertinent to software products and

software production processes. These qualities are the general goals in the practice

of software engineering and affect all the system stakeholders.

21.2.1 Product and Process Qualities

We use a process to produce the software product. Sound process qualities, there-

fore, yield good product qualities. A software product is more than an executable

code and a user’s manual. It includes all the artifacts produced. These include

functional requirements, design, source code, and test data.

Some of the most relevant software qualities include correctness, reliability,

robustness, maintainability, repairability, evolvability, reusability, portability, and

interoperability (Ghezzi et al. 1991).

21.2.2 Correctness

A program that is correct behaves according to its functional specification.

Specifications, however, could be incorrect, and yet, computer programs that

implement that specification faithfully are still correct. This definition of

534 C.O. Morales

correctness assumes that it is possible to determine in an unambiguous manner

whether or not a program meets the specifications. This implies that a functional

requirement specification document exists, and correctness establishes the equiva-

lence between the software and its specification.

21.2.3 Reliability

A software system that is reliable is one that users can depend on. Reliability as

an engineering term is defined in the research literature in terms of statistical

behavior—i.e., the probability that the software being evaluated will operate

according to the user’s expectations over a specified time interval. The software

quality of correctness is absolute, and the most insignificant deviation from the

requirements specification renders the system incorrect. In contrast, reliability of a

computer program is relative, and a programming error affecting its reliability may

be triaged according to its severity. If the consequence of a software error is not

serious, the incorrect software may still be reliable.

Engineering products are expected to be reliable. Unfortunately, many software

products have not achieved this status yet. Users of software take it for granted that

“Release 1” of any product is “buggy.” One of the symptoms of the immaturity of

software engineering is that a significant number of new products are still released

along with a list of “known bugs.” Other engineering products (electronics, cars,

airplanes, etc.) are not released if they have “bugs” because they are deemed

unacceptable in these circumstances.

Figure 21.1 illustrates the relationship between correctness and reliability. It is

assumed that the functional requirements indeed capture the desirable properties of

the application, and no undesirable properties are erroneously introduced. All the

software can do is to meet the specified requirements of the model. The implemen-

tation itself cannot assure the accuracy of the model.

Computer Programs

Reliable Correct

Fig. 21.1 All reliable

programs include the set of

correct programs, but not

vice versa

21 Reusable Software Product Platforms 535

21.2.4 Robustness

A computer program is said to be robust if it is able to handle error conditions in a

safe manner, even under circumstances that were not anticipated and captured

as part of the requirements specification, for example, upon a hardware failure.

A program implementation that assumes it will always receive inputs exactly as

expected all the time and then crashes at the first error is not robust, even though it

might be correct according to its stated requirements specification. Robustness may

be better understood with an analogy: two bridges, for example, may be both

correct according to their own specification, but if after a storm one of them

collapses, then that one is not robust. Correctness, reliability, and robustness also

apply to the software production process.

21.2.5 Maintainability

The term maintainability commonly refers to the quality of software that makes it

easy to be modified in order to fix software defects, especially after it has been

deployed to the field. Software maintenance costs are very significant in business,

since they typically exceed 60 % of the total cost of a software product.

Software maintenance is divided into three categories: corrective, adaptive, and

perfective. Corrective maintenance is concerned with the removal of residual errors

(bug fixes) that have usually escaped verification of the product. These repairs

typically account for about 20 % of the total cost of software maintenance. Adaptive

and perfective maintenance are the real sources of evolutionary change necessary in

software, and this need motivates the introduction of evolvability as a fundamental

software quality and anticipation of change as a fundamental principle.

Adaptive maintenance involves adjusting the application to changes in technology

or its operating environment, for example. Perfective maintenance involves making

significant changes to the software in order to improve its qualities, like adding new

functions or replacing algorithms that improve its performance. We, therefore, view

maintainability as two separate qualities: repairability and evolvability.

21.2.5.1 Repairability

Reparability is very important in most engineering products like automobiles or

computers. Parts that are most likely to fail must be the most accessible. Repairs are

typically performed by replacing components that have worn out; like electronic

boards, timing belts, or plastic gears.

Software is different since software components do not deteriorate. A software

product that consists of well-designed modules is easier to repair than a monolithic

entanglement of code. Good modularization promotes repairability by confining

errors to a few modules in a larger structure. Good modularization techniques

include information hiding and abstract data types.

536 C.O. Morales

21.2.5.2 Evolvability

Similar to other products, software products are modified during their lifetime to

include new or improved functions. The fact that software is so malleable makes

changes very easy to apply to existing code, oftentimes without much consideration

as to the ripple effect a seemingly minor change will have across the system. In a

rigorous and formal development process, modifications begin at the design level

and then proceed to the implementation of the product, but in the case of software,

unfortunately, informal code development lacking discipline is still widespread,

except in regulated software industries developing safety-critical systems such as

medical, avionics, defense, or automobiles. In many of those informal software

development teams, it is too frequent that once the change is accomplished, the

modification is not even documented a posteriori. When product specifications and

design documents are not updated to reflect changes made to the implementation,

future changes become more and more difficult.

Formal and rigorous software development yields, in contrast, successful soft-

ware products with very long lives in the field. Examples of this kind of systems

include operating systems, Word Processors, Spreadsheets, and CAD Software.

Another incentive for evolvability is the leverage of significant investments in the

development of a software product.

21.2.6 Reusability

Reusability is directly related to evolvability. When we evolve a product, we

modify an existing product to create a new version. If the design is adequate, a

completely new product may be created by reusing parts of other products previ-

ously developed.

Reusability is typically more applicable to software components than to whole

products, but here we aim at software reuse at a larger scale; in the form of software

product platforms, as described in Chap. 26. The creation of reusable software

components is a good economical decision for many reasons, including that soft-

ware components allow engineers to design, build, and deploy new products in a

shorter time. This approach implies the design and development of self-contained

components, featuring standardized interfaces that are to be used as subassemblies

in larger systems.

Applied to software engineering, this practice enables developers to build new

applications using components that are available off the shelf, have been fully

debugged, tested, and are field proven. Ideally, components can be reused in new

applications with little or no modification at all. These software components

become assets, which are a source of cost savings in the form of improved

efficiency, shorter development time, shorter test and debug time, enhanced product

quality, a minimized number of software bugs, and delivery of better, more

21 Reusable Software Product Platforms 537

http://dx.doi.org/10.1007/978-1-4614-7937-6_26

complete software products to customers. In addition to lower development cost,

multiple uses of software assets improve the overall Return On Investment (ROI) of

the software development group.

Reusability is very difficult to achieve after a software component is finished and

delivered to the field. Instead, reusability must be designed into the new component

from the outset. Design for reuse extends to the software development process too,

where experience from previous projects must be leveraged. Mature engineering

disciplines show good examples of reusable components, such as the optics,

electronics, aeronautics, and automobile industries.

21.2.7 Portability

Software is said to be portable if it has the ability to run in different environments.

Environments for software are different processors or operating systems. This

quality of software is now being achieved most notably with the Java™ program-

ming language and its virtual machine, which runs on a variety of operating

systems, including corporate servers, desktop computers, and embedded platforms.

Microsoft’s .NET technology promises similar portability to any system supporting

the .NET framework. Portability can also be achieved at the source code level with

standardized programming languages such as C or C++, although it is sometimes

not as straightforward as it could be expected.

21.2.8 Interoperability

Interoperability is the ability of a software system to work with other external

systems (software or otherwise) in a consistent, efficient, and effective manner.

Interoperability is a well-known quality of other mature products, such as audio or

video systems, for example, where products from different manufacturers work

together seamlessly through standardized interfaces (cables, plugs, data formats,

etc.). This ability allows products to accommodate newer technologies as they

become available. Interoperability can be achieved in software through the

standardization of software component interfaces.

21.3 Software Engineering Principles

The following general software engineering principles are the foundation for

successful software development. In order to apply these abstract and general

principles, the software engineer needs appropriate methods and techniques, or

538 C.O. Morales

methodology (Fig. 21.2). Special tools are required to support the application of a

specific methodology.

Some of the most relevant software engineering principles are rigor and
formality, separation of concerns, modularity, abstraction, design for change,
generality, and incrementality, as originally defined by (Ghezzi et al. 1991).

21.3.1 Rigor and Formality

As in many creative activities, there is a tendency in software development to be

neither precise nor accurate when set to the task of designing or writing software.

Rigor, in the form of discipline, is a necessary ingredient to manage, direct, and

improve the engineer’s creativity. The highest degree of rigor is what is known as

“formal.” Formality requires the software process to be driven and evaluated by

mathematical laws. Formality implies rigor, but not vice versa.

It is not necessary to be always formal during software design, but it is important

to know how and when. An example of the various degrees of formality may be the

construction of different types of bridges: the design and construction of a short

bridge may be based on rules of thumb. A temporary, larger bridge may use a

mathematical model. An exceptionally long bridge in a seismic area would neces-

sarily make use of sophisticated mathematical models and simulation.

In software engineering, requirements specifications must be rigorous, some-

times formal. Software design sometimes requires formalisms to ensure consis-

tency and dependencies. These formalisms may form the basis for automated

software testing.

Another advantage of a formal model specification is the automated generation

of application code. A programming language is a formalism where syntax and

semantics are fully defined. This characteristic makes compilers possible, which

among other things verify formal correctness. Another example of the benefits of

this formalism is static code analysis tools, which can search source code to find

bugs, enforce coding standards, find unreachable code, and analyze code complex-

ity. Rigor and formality influence several dimensions and qualities of software

products, including reliability, verifiability, maintainability, reusability, portability,

understandability, and interoperability.

Tools
Methodologies

Principles

Fig. 21.2 Methodologies

and tools

21 Reusable Software Product Platforms 539

Rigorous, or even formal, software documentation can improve all of these

advantages over informal documentation, which is very often ambiguous, inconsis-

tent, and incomplete. Rigor and formality also apply to software processes.

21.3.2 Separation of Concerns

Separation of concerns (Parnas 1972) enables us to deal with different aspects of a

problem individually. This very important principle is applied to master the inher-

ent complexity of software. When we separate concerns, the same system has

several views, for example, its relationship with hardware, software behavior and

its resources, space and time complexity, user interfaces, and interfaces with

external systems.

Other concerns are related to the software development process and involve the

development environment, team organization and structure, project scheduling,

control procedures, or design strategies. Separation of concerns may be performed

in terms of time, as in the project schedule or tasks; in terms of qualities, like

efficiency and correctness; in views, as data flow, control flow, or activities that are

synchronized; and in parts, as decomposition of a system into modules. Separation

of concerns may also result in separation of responsibilities in dealing with separate

issues. In principle, this would result in dividing the work on a complex problem

into specific work assignments for different people with different skills. These work

assignments could be, for example, optical systems design, machine vision

algorithms, robot programming, database programming, application domain exper-

tise, and project management.

In an apparent disadvantage, separating concerns may result in the loss of some

potential global optimizations, but in reality, by combining concerns we are likely

to make wrong decisions because we are unable to overcome complexity.

Concentrating on different aspects separately yields much better results, even at

the expense of missing some global optimizations.

21.3.3 Modularity

Modules are small parts extracted or abstracted from a complex system. Modularity

is an important property of most engineering processes and products, for example,

in optics, mechanics, and electronics. The main benefit of modularity is that it

allows the principle of separation of concerns to be applied in two phases: first,

when dealing with each module in isolation (bottom-up design) and second, when

dealing with the overall characteristics of all modules and their relationships as a

system (top-down design).

Modularity is not only a design principle, but it permeates the whole of software

production. In particular, modularity pursues three important goals: decomposing a

540 C.O. Morales

complex system into modules, composing a new system from existing modules, and

understanding a system in pieces.

Decomposing a complex system into modules is just another example of the

age-old technique of “Divide and Conquer” to solving complex problems.

Composability of a system is based on a bottom-up construction of a complex

system by using elementary components. Examples of this approach include

microscopes, lasers, automobiles, airplanes, and computers. In software engineer-

ing, we aim to assemble new applications by taking modules from a library of

reusable components and combining them to form the required new product. The

capability of understanding each part of a system separately aids in the maintenance

and modification of a system.

To achieve modular composability, decomposability, and understanding,

modules must have two very important properties:

• High cohesion

• Low coupling

A module has high cohesion if all its elements are strongly related, for example,

statements, procedures, and declarations, and they are together for a reasonable and

well-defined specific purpose.

Coupling is determined by the relationship of an individual module with other

modules in the same system. Coupling is a measure of the interdependence of two

or more modules in the form of function calls or shared variables, for instance. If

two modules depend on each other heavily, then we say that they are highly

coupled. If this is the case, it will be difficult to analyze, understand, modify, test,

or reuse them separately. Figure 21.3 attempts to illustrate this situation.

In contrast, modular structures with high cohesion and low coupling allow us to

see modules as black boxes when the overall structure is described. The function-

ality of such kind of modules can be analyzed and described separately. This is

another example of the principle of separation of concerns. This concept is

exemplified in Fig. 21.4.

Fig. 21.3 Highly coupled

structure

21 Reusable Software Product Platforms 541

21.3.4 Abstraction

Abstraction is a process to identify the important aspects of a phenomenon and

ignore the details that are not relevant. What must be considered as important

and be abstracted away and what should be considered as a detail to be ignored

depend on the purpose of the abstraction. There may be different abstractions of

the same reality, each providing a different view. All of these may be valid at the

same time, but each serving a different, specific purpose.

For example, consider an electronic calculator. A useful abstraction for the

owner is a description of the effects of the various buttons. For a service technician,

it may be a box that can be opened to replace a battery. Other abstractions may be

useful for understanding the activities needed to repair the unit.

Another example is the representation of electrical devices using mathematical

equations. An equation represents a simplified, idealized model of the device. The

mathematical model is an abstraction that ignores details concerning the

manufacturing of each device, like process variations and tolerances, for example.

All mathematical models are abstractions from reality, ignoring certain facts and

concentrating on others that are deemed relevant. A model of a software system is

an abstraction built on the software requirements specification. This model may be

expressed at various levels of rigor and formality, includingmathematical formalisms.

Programming languages are abstractions built on top of the hardware. These

abstractions allow software developers to write programs at a “high level,” ignoring

(in most cases) such details such as microprocessor type, number of bits, or

addressing mechanisms. Computer programs are abstractions themselves, too. For

example, a payroll software system provides the essence of the manual procedure,

not its exact details.

Abstraction is an important principle that applies to both software products and

processes.

Fig. 21.4 High cohesion,

low coupling

542 C.O. Morales

21.3.5 Anticipation of Change

To ensure the ability of software to evolve is not straightforward, and it requires an

explicit effort during the requirements analysis and design phases to anticipate how

and where the changes are likely to occur. When potential changes are identified,

the system must be designed in such a way that it will be prepared or make it easy to

incorporate those changes when the time comes. Examples of these likely changes

are multiple iterations of related products based on a product family platform.

Anticipated modifications should be confined to restricted portions of the software,

where the ripple effect caused by its insertion is well understood.

Many software systems are built when actual requirements are still not

completely known, and later on, user feedback from the field provides the missing

and necessary information for evolving the product. This is not the best way to build

a product and certainly not the best way to design reusable software.

Reusability is also affected by anticipation of change. A software component is

reusable if it can be directly incorporated into a new product. In practice, however,

it is more likely that many reusable software components may have to be designed

to accommodate slight changes in order to meet the requirements of a new

application.

21.3.6 Generality

When we are asked to solve a problem, we should try to focus on the discovery of a

more general problem that may include the problem at hand as a special case. It is

possible that the newfound general problem may be not more complex than the

original problem. The main advantage of this approach is that the solution to the

generalized problem has more potential of being reused.

By generalizing the problem, we could possibly design a software module that is

used more than once, perhaps providing slightly different services, rather than

having several separate, specialized solutions. It is important to note, however,

that in many cases, a general solution may be more expensive to develop and

implement as compared to a specialized solution tailored to solve the original

problem only.

Generalized solutions to some problems are exemplified by spreadsheets,

databases, and word processors. These kinds of general-purpose solutions become

off-the-shelf products and tend to be commoditized. This trend occurs in all

branches of industry. For instance, in the early days of automobiles, it was possible

to customize cars according to specific requirements of the customer, and “horse-

less carriages” were so expensive that only wealthy customers could afford them.

Then, Henry Ford came along and decided that his customers could request cars of

any color as long as it is black (standardized mass manufacturing). As the field

21 Reusable Software Product Platforms 543

became more industrialized, customers could only choose from a catalog of models

corresponding to prepackaged solutions offered by each manufacturer.

Nowadays, in an interesting return to the origins of artisan manufacturing, there

is a marketing trend called “mass customization,” where the aim is to take advan-

tage of advanced computer-aided manufacturing technologies to provide

customized products to a large number of customers. This trend is a major motiva-

tion for the development of product family platforms, and it applies to software too.

21.3.7 Incrementality

Incrementality in software defines a development process that proceeds in a step-

wise fashion, where each step is a small change or increment, as compared to a

previous release of the system under development. Eventually, the system is

completed after successive approximations to the full implementation of

requirements. A major advantage of this approach is that development teams

have a functional product at all times. Incrementality, as applied to software,

means that the desired application is produced as the outcome of an evolutionary

process.

Applying the principle of incrementality, we may add functions to the applica-

tion being developed, one by one, starting from a prototype with minimum func-

tionality, enough to make it useful, albeit incomplete, and thus continue with

progressive iterations until the implementation is complete. Therefore, the early

versions might emphasize user interfaces, reliability, and correctness, while later

releases could focus on improving performance.

As with anticipation of change, an evolutionary process requires careful man-

agement of documents and code developed for the various versions.

21.4 Software Engineering Techniques

This section introduces some basic concepts of software engineering techniques

and terminology, necessary to comprehend the case study presented in Chap. 26.

Let us see how the fundamental ideas and software engineering principles

introduced in the previous sections are applied to the design of reusable software

architectures for a specific industry domain.

21.4.1 Design for Change

Design for change summarizes our approach to software design, and it is one of the

driving ideas in our design process. We view software design as the decomposition

544 C.O. Morales

http://dx.doi.org/10.1007/978-1-4614-7937-6_26

of a system into modules. A software design includes a description of what each

module is intended to do and of the relationships among the modules. Such

description is also called software architecture.

During the design activity, we must anticipate the changes that the system may

undergo during its lifetime. Design for change promotes a design that is flexible,

which in this case means that it is prepared to be modified easily. However, it is

impossible to know everything about future changes with enough precision, and

these may not be obvious. The ability to anticipate likely changes is, therefore,

highly dependent on the previous experience of the software architect and the depth

of understanding of the problem domain by the end user.

Design for change is very important, since changes to the system will inevitably
arise afterwards. It is a common mistake to design a system for today’s

requirements, paying little attention to likely changes in the future life of the

product. The consequence of this approach is that even a good original design

may turn out to be extremely difficult to adapt to future requests for changes.

Frequently, in order to incorporate even seemingly minor changes, it results

necessary to redesign and rewrite the whole application again. Another unfortunate

consequence is that the original software structure is cluttered or patched, resulting

in an application that is more difficult to maintain and less reliable.

The most common types of changes that a design should try to anticipate are

change of algorithms, change of data representation, change of underlying abstract

machine, change of peripheral devices, change in the social environment, or the

evolution of program families. These are described below.

21.4.1.1 Change of Algorithms

As examples of changes in algorithms, we could mention image analysis algorithms

in a machine vision application where we look for different image features or have

to inspect a different product; new protocols for testing products; the motion

sequences for a robot, in order to build new products; or writing faster algorithms

for digital signal processing. Another example could be a toolbox of optimization

algorithms where each member of the set uses a different approach for solving a

generalized search problem with different levels of breadth, depth, or computa-

tional cost. For instance, solving a multivariable optimization problem using any of

the following algorithms: genetic algorithms, particle swarms, simulated annealing,

or Tabu search. As part of a system where all these algorithms are replaceable, all of

them would comply with the same interface and would be directly replaceable.

21.4.1.2 Change of Data Representation

As an example of this type of change, we could mention that sometimes it is

possible to improve the efficiency of an existing program by changing the structure

used to represent data. For instance, changing the structure to represent a table from

21 Reusable Software Product Platforms 545

a sequential array to a linked list can improve the efficiency of operations accessing

the table. Another simple example is to add fields to (or deleting from) records, as

more (or less) information is required to be stored in a file. If this implementation

detail is hidden within a module (encapsulated), it makes the module a good

candidate for reuse.

21.4.1.3 Change of Abstract Machine

Computer programs that we write run on top of an abstract machine that hides the

details of the underlying hardware platform. Examples of abstract machines are the

Java™ virtual machine, the Microsoft .NET Framework™, operating systems, and

database engines.

Very often, it is necessary to modify our applications in order to be able to run on

new versions of the operating systems, or we may want to use a different database

engine in order to interact with different factory information systems.

21.4.1.4 Change of Peripheral Devices

As products evolve and mature, in many cases a whole ecosystem is developed

around a successful product, such as the case of popular personal computers like

Apple II™ or the IBM PC™. New peripherals continually arrive to the market,

solving previously unmet (or unknown) needs. As an example, we may want to use

a higher resolution camera or screen or use a different kind of industrial networking

protocol. We may also want to use a faster laser scanner for our new application or

perhaps to split an image-processing task between two processor boards instead

of one.

21.4.1.5 Change of Social Environment

Change of social environment occurs when new products are deployed in foreign

countries, which may have different languages, different alphabets, and different

standard systems of units and measures, for example, the adaptation of user

interfaces to languages like Spanish, Japanese, or Chinese and information display

format for different countries, like temperature in Celsius or Fahrenheit degrees,

date formats, decimal numbers, millimeters, or inches.

21.4.1.6 Program Families

In the case of software, the introduction of new products consists of building new

versions of the same application, where every version constitutes an individual

product, which might be sold as different “editions” (e.g., personal, professional,

546 C.O. Morales

and corporate editions). By designing all the members of a family jointly, rather

than doing separate designs for each member, we avoid the cost of designing the

common parts separately.

A simple example is an application that needs to be used by inexperienced users

in their native language, as in the case of an operator in a factory overseas, for

instance. Another example is a machine vision application that must run the same

analysis algorithms with different types of cameras or at different image

resolutions.

The more we stress commonality, the less work is done for each new version.

This reduces the chances of inconsistencies and reduces the combined maintenance

effort. Specific domain applications may be abstracted into an application frame-

work, which allows the reuse of both design and actual code.

21.4.2 Software Design

Software design is basically the process of decomposing a complex system into a

collection of individual modules that can be understood and implemented by a

single person (top-down design), while maintaining a composite whole that is self-

consistent and assembles these modules into a system using a logical structure

(bottom-up design). The system’s logical structure includes a clear and complete

definition of the communication mechanisms that will enable the cooperation of

these individual modules (module interfaces).

The principle of rigor and formality leads us to adopt formal notations for

describing software design, for example, the Unified Modeling Language (UML).

For an overview and introduction to the language, please refer to Fowler (2004),

Rumbaugh, et al. (1998) and Booch, et al. (1998). Separation of concerns,

modularity, and abstraction are applied to tackle the inherent complexity of design-

ing software systems. Anticipation of change and incrementality will allow us to

design systems that are able to evolve as requirements change. Anticipation of

change and generality will enable us to develop families of products, frameworks,
and other middleware components.

21.4.2.1 Top-Down Design

The decomposition of a system into modules can be accomplished in several ways,

as when designing top-down and bottom-up, for example. For top-down design, we

can decompose a system into high-level subsystems first. Next, each subsystem is

analyzed separately, and the procedure is iterated until the resulting modules are

sufficiently small that a single person can implement it.

In order to arrive to optimal subsystem implementations, the use of Design

Patterns is highly recommended (Gamma et al. 1995; Buschmann et al. 1996).

Design patterns are object-oriented, language-independent proven design solutions

21 Reusable Software Product Platforms 547

that are documented in a standardized format. These solutions help reuse design,

rather than code.

In addition to modularity, rigor and formality are useful in the description of

software architecture. The more precise the description, the easier it is to divide

software development into separate tasks that can proceed in parallel, with little risk

of inconsistencies. A very important feature of all modules should be to have high

cohesion and low coupling.

21.4.2.2 Bottom-Up Design

The bottom-up design strategy consists of defining modules that can be iteratively

combined to form subsystems. For example, a module may be designed to provide

an easy way of accessing a peripheral device, masking the low-level primitives

provided by the device, like a robot or a laser scanner, for instance. Bottom-up

design is the typical case where we are reusing modules from a library to build a

new system.

21.4.2.3 Module Interfaces

When designing a system, we want to divide the software into components such that

the internal details of each component can be designed independently of the other

components. If each component becomes a work assignment to a different pro-

grammer on a team, then each programmer should be able to work on a component

with as little knowledge as possible about how the other members of the team are

building their own components. This is another instance of the principle of separa-

tion of concerns.

During design, we must define how the interaction among modules actually

takes place. The set of services that each module provides to its clients is called its

Interface, and the way these services are accomplished by the module is called the

module’s Implementation.
A good interface is a key aspect of good design, because it supports the separa-

tion of concerns. The actual details of the implementation of services are the

module’s private secret and should not be visible through the interface. This is

also known as Information Hiding.
The interface of a module describes exactly what the clients need to know in

order to use its services, and it represents an abstraction of the module, as viewed by

its clients. The designer who is in charge of designing a module M only needs to

know the interfaces of the other modules used by M and may ignore their imple-

mentation. Module M’s interface may be viewed by the designer as his or her task

description. The interface of module M may also be viewed as a contract between
M and its clients.

The interface records all and only the facilities the designer in charge of M

agrees to provide to other designers. Clients may depend on what is listed in the

548 C.O. Morales

interface, and therefore, as long as the interface remains the same, M may change

internally without affecting its clients.

In most practical cases, interfaces describe computational resources, such as

variables that are shared among modules or functions that perform some kind of

operation. To maximize evolvability, the interface of a module should export the

minimum possible amount of detail. Another goal is to hide low-level details and

provide an abstract interface in order to make the design more understandable.

These characteristics are a consequence of the principles of abstraction and separa-

tion of concerns.

We say that the changeable, hidden information becomes the secret of the

module, or in object-oriented jargon, encapsulated within the module

implementation.

21.4.2.4 Abstract Objects

A significant number of modifications to software are due to changes in data

representation. One very important type of encapsulation is hiding the details of

data representation, isolating clients from internal changes in the module. Hidden

data structures provide modules with a state. Modules that exhibit a state are called

Abstract Objects.
A module that hides a data structure as a secret and exports functions that may be

used to access the hidden data structure is an example of an abstract object. If for

any reason the data structure had to change, the modification would be limited to the

internal change of the algorithms that implement the access routines. In this case,

client modules continue to use the same functions to access the hidden data,

completely unaware of the existence of the change. Clients, therefore, do not

need to change, as long as the interface remains the same.

21.4.2.5 Abstract Data Types

A module encapsulating a data structure defines a type. We may also generate

multiple instances of that type. Functions exported by such a module allow access

to its hidden structure, providing a mechanism to manipulate instances of that type.

Thus, an abstract data type is a module that exports a type, allows client modules to

declare variables of that type, and performs operations on those variables through

the type’s exported operations.

21.4.3 Object-Oriented Design

Object-oriented design is a technique that pushes to the extreme a design approach

based on abstract data types. An abstract data type is represented by a class, and a

21 Reusable Software Product Platforms 549

class may be seen as a template for making objects. Objects are instances of a class.
For example, people are instances of the “person” class. An object has structure;
that is, it has attributes (properties) and behavior, which in turn, consists of the

operations it carries out (also called functions or methods). Attributes and

operations taken together are called features.

21.4.3.1 The Object Model

As objects in the person class, we all have the following attributes: height, weight,

and age. We also perform these operations: eat, sleep, read, write, speak, and so

forth. Object orientation goes beyond just attributes and behavior. It includes other

aspects as well, namely, abstraction, encapsulation, inheritance, polymorphism,

message sending, associations, and aggregation.

21.4.3.2 Abstraction

“An Abstraction denotes the essential characteristics of an object that distinguish it from
all other kinds of objects and thus provide clearly defined conceptual boundaries from the
perspective of the viewer” (Booch 1991).

Different viewers focus on different essential characteristics of the same object. For

example, a child may view a cat as a pet with a characteristic furry appearance,

whereas for a veterinarian, it is a mammal with certain internal structure. The

abstraction of an object becomes the definition of its interface. The interface must

be kept to a minimum in order to make the module understandable and usable.

21.4.3.3 Encapsulation

“Encapsulation is the process of hiding all the details of an object that do not contribute to
its essential characteristics” (Booch 1991).

The explicit division of interface and implementation represents a clear separation

of concerns: the implementation encapsulates details about which clients may not

have knowledge or make assumptions. These are the “secrets” of an abstraction.

21.4.3.4 Inheritance

As mentioned before, objects are instances of a class. A class defines a category of

objects, with certain attributes, operations, and a hidden data structure. When an

object is instantiated, it has all the characteristics of its class, and we say then that

the object inherits all the characteristics from its base class.

550 C.O. Morales

Inheritance is a powerful mechanism for reuse, since not only objects inherit

from a class, but classes can inherit from other classes. For example, each of the

classes Cat, Dog, and Human inherit all the characteristics of the classMammal, as
shown in Fig. 21.5.

In this case, we also say that Cat,Dog, andHuman are subclasses of theMammal
class. The Mammal class, in turn, is called a superclass of Cat, Dog, and Human.

Inheritance, then, is a relationship among a hierarchy of classes, where lower

classes in the hierarchy (subclasses) inherit the characteristics of higher classes in
the hierarchy, also called ancestors or superclasses. There is no limit to this

hierarchy, and thus, the Mammal class may inherit characteristics from the Animal
class, which in turn inherits characteristics from the class Living Being, and so forth.

When a change is made to an ancestor class, the change is propagated to the

whole hierarchy. Inheritance is one of the most powerful features of object-oriented

languages.

21.4.3.5 Polymorphism

Polymorphism means “many forms.” With object-oriented programming

languages, it is possible to provide many forms of behavior by providing different

implementations of an inherited operation specified in an ancestor class. This way,

different objects subclassed from the same ancestor may respond in different ways

when this operation is invoked. Figure 21.6 illustrates this concept.

21.4.3.6 Message-Sending

Objects work together in a system. Objects communicate by sending and receiving

messages. For example, an object sends another object a message to perform an

Fig. 21.5 Object inheritance

21 Reusable Software Product Platforms 551

operation. The receiver object recognizes the message and performs the

operation and returns a result, as described by the sequence diagram shown in

Fig. 21.7.

21.4.3.7 Associations

Associations represent relationships between objects (instances of classes). These

associations express relationship concepts like uses, extends, employee of, client of,

Fig. 21.6 Object

polymorphism

Fig. 21.7 Message passing

between objects

552 C.O. Morales

and friends. Associations may be unidirectional (e.g., parent of) or bidirectional
(e.g., siblings). Associations also have multiplicity, for example, one-to-one,
one-to-ten, and one-to-many. In an association, each party may have a role name
defined, for example, sales rep, order, and line item. Within the specification

perspective, associations represent responsibilities of each object. Figure 21.8

shows some examples of class associations.

21.4.3.8 Aggregation

Aggregation is a special kind of relationship between objects. It may be thought of

as the part-of relationship. An aggregation is a set of interrelated objects. For

example, objects of type memory, screen, cd_rom, keyboard, and processor are

all aggregates that are part of an aggregate object of type computer.
An important characteristic of aggregations is that one or more of its components

may be missing, while the aggregate object retains its identity. In the example

above, the cd_rom object might be removed, and the computer object would still be
a computer. The set of aggregate objects makes up a single whole, as exemplified in

Figs. 21.9 and 21.10.

Fig. 21.8 Object association

21 Reusable Software Product Platforms 553

21.4.3.9 Composition

Composition is a stronger kind of aggregate relationship, where each and every one

of its components is essential. With composition, the “part” object may belong to

only one whole. For example, a cell phone keypad is composed of key objects, each

Fig. 21.9 Structure of an object aggregation

Fig. 21.10 Example of object aggregation

554 C.O. Morales

of them unique, even though all of them may be subclassed from the same abstract

class. However, if one of them is missing, the composite object keypad is rendered

useless.

Composition is particularly important in design patterns, which will be presented

in the next section, and it is a powerful technique for software reuse. Complete

systems may be constructed using object composition, where object relationships

only exist at run-time. Figure 21.11 shows an example of this concept.

21.4.4 Software Reuse

The two most common techniques for reusing functionality in object-oriented

systems are class inheritance and object composition. Class inheritance lets us

define the implementation of one class in terms of another. Reuse by subclassing

is often referred to as “White box reuse.”

Object composition is an alternative to class inheritance. New functionality is

obtained by assembling or composing objects to get more complex functionality.

Object composition requires that the objects being composed have well-defined

interfaces. This style of reuse is called “Black box reuse.”

Fig. 21.11 Object composition

21 Reusable Software Product Platforms 555

21.4.4.1 Component-Based Software

Object composition enables a higher level of software reuse based on self-contained

software components. Software systems made out of code components exhibit the

highly desirable characteristics of high cohesion and low coupling.

Object composition is defined dynamically at run-time through objects acquiring

references to other objects. Composition forces modules to respect each other’s

interfaces. Because objects are accessed solely through their interfaces, encapsula-

tion is not broken. Any object can be replaced at run-time by another object as long

as it has the same type.

Design patterns are proven design solutions based mainly on object composition

at run-time. For details on design patterns, see Gamma et al. (1995) and object-

oriented design (Booch 1991; Jacobson et al. 1992).

21.4.4.2 Object-Oriented Application Frameworks

Object-oriented application frameworks embody the ultimate expression of soft-

ware reuse. A framework is a set of cooperating classes that make up a reusable

design for a specific class of software. In other words, frameworks are partially

finished applications that address a specific domain.

A framework reuses architecture, design, and code, and they are customized to

particular applications by creating application-specific subclasses of abstract clas-

ses from the framework. Thus, frameworks dictate the architecture of the new

application, forcing fixed characteristics and assignments within the system, for

example:

• Defines the overall structure

• Defines partitioning into classes and objects

• Key responsibilities of the objects

• How classes and objects collaborate

• Thread of control and execution

A framework predefines these design parameters so that software designers/

implementers can concentrate on the specifics of the new application. In other

words, the framework captures design decisions that are common to its application

domain. Therefore, frameworks emphasize design reuse.

Reuse on this level leads to an inversion of control between the application and

the software on which it is based. When you use a framework, you reuse the main

body and write the application-specific code it calls. You will have to write

operations (functions) with specific names and calling conventions, but that reduces

the design decisions you have to make. Applications are built faster and have

similar structures, making them easier to maintain and to appear more consistent

to the user. All this convenience, however, comes with a price. If applications are

hard to design and toolkits are harder, then frameworks are the hardest of all.

556 C.O. Morales

A framework designer gambles that one architecture will work for all

applications in the domain. It is imperative to design the framework as flexible

and extensible as possible. Furthermore, because applications are so dependent on

the framework for their design, they are very sensitive to changes on the framework

interfaces.

For more information on object-oriented application frameworks, see Brugali

and Fayad (2002), Fayad et al. (2000), Johnson and Foote (1988), Roberts and

Johnson (1997) and Fayad and Schmidt (1997).

21.5 Conclusions

This chapter introduced fundamental software engineering concepts, software

qualities, and software engineering techniques necessary for a formal and disci-

plined approach to software design.

Object-oriented application frameworks are the software embodiment of a

platform for a family of products, and to deal effectively with this complex software

entity, it is necessary to master the concepts of software engineering principles,

object-oriented software design, and design patterns, especially before embarking

on the mission of designing one as a product family platform for a specific domain.

All of these concepts are quite abstract and will be more clearly understood after

reading the software application case study presented in Chap. 26.

References

Booch G (1991) Object-oriented design with applications. Benjamin Cummins, Redwood City, CA

Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language user guide. Addison-

Wesley, Reading, MA

Brugali D, Fayad M (2002) Distributed computing in robotics and automation. IEEE Trans Robot

Automat 18(4):409–420

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software

architecture: a system of patterns. Wiley, Chichester, England

Fayad ME, Schmidt D (1997) Object-oriented application frameworks. Commun ACM 40

(10):32–38

Fayad ME, Hamu DS, Brugali D (2000) Enterprise frameworks: characteristics, criteria and

challenges. Commun ACM 43(10):39–46

Fowler M (2004) UML distilled, 3rd edn. Addison-Wesley, Reading, MA

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-

oriented software. Addison-Wesley, Reading, MA

Ghezzi C, Jazayeri M, Mandrioli D (1991) Fundamentals of software engineering. Prentice Hall,

Upper Saddle River, NJ

Jacobson I, Christensson M, Jonsson P, Overgaard G (1992) Object-oriented software engineering:

a use case driven approach. Addison-Wesley, Reading, MA

Johnson RE, Foote B (1988) Designing reusable classes. J Obj Orien Prog 1(2):22–35

21 Reusable Software Product Platforms 557

http://dx.doi.org/10.1007/978-1-4614-7937-6_26

Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1052–1058

Roberts D, Johnson R (1997) Evolve frameworks into domain-specific languages. In: Martin RC,

Riehle D, Buschmann F (eds) Pattern languages of program design 3. Addison-Wesley,

Reading, MA

Rumbaugh J, Jacobson I, Booch G (1998) The unified modeling language reference manual.

Addison-Wesley, Reading, MA

558 C.O. Morales

Chapter 22

Considering Human Variability When

Implementing Product Platforms

Christopher J. Garneau, Gopal Nadadur, and Matthew B. Parkinson

Abstract Design for Human Variability (DfHV) is the practice of designing

artifacts, tasks, and environments that are robust to the variability in their users.

Designs often incorporate adjustability and/or offer several sizes to account for the

different requirements of the target user population. There are several situations

where DfHV can provide platforming opportunities that might otherwise be

overlooked. This chapter provides a brief introduction to DfHV, outlines some

basic techniques, and provides a description of scenarios where platforming and

modularity might be a good approach.

22.1 Introduction

Product families and platforms are designed to efficiently provide the required

variety in a product portfolio. This is usually defined through engineering and

market research—the former provides information about usage conditions and the

latter identifies the needs of the business, users, and any regulatory requirements

with which compliance is required. Many of these requirements vary across global

regions, markets, and consumers. Engineers are trained to consider many kinds of

C.J. Garneau

OPEN Design Lab, The Pennsylvania State University, University Park,

PA 16802, USA

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA

G. Nadadur

OPEN Design Lab, The Pennsylvania State University, University Park,

PA 16802, USA

M.B. Parkinson (*)

OPEN Design Lab Engineering Design, Mechanical Engineering, and Industrial Engineering,

The Pennsylvania State University, University Park, PA 16802, USA

e-mail: parkinson@psu.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_22,
Springer Science+Business Media New York 2014

559

mailto:parkinson@psu.edu

variability. For example, there are robust design methodologies for incorporating an

understanding of the variability in materials and manufacturing processes

associated with producing a product. In the artifacts and environments with

which humans interact, one of the largest sources of variability is the users

themselves. Because users can often adapt to make a design work, their needs are

sometimes considered less important than the hard engineering constraints that are

part of every project. Design for Human Variability (DfHV) is a D-f-X capability in

which artifacts, tasks, and environments are designed to be robust to the full

variability in their users. This chapter will focus primarily on body size and

shape, but the techniques presented apply to other types of DfHV (e.g., physiologi-

cal, cognitive, or perceptual).

Although the ideal is a truly universal design that accommodates everyone

equally well, practical limitations such as cost, development time, and conflicting

user requirements make this impossible. Instead, the designer or ergonomist selects

a design topology and dimensionally optimizes the product, or environment, with

the objective of providing some level of accommodation for its target users (Roe

1993). This is often achieved through adjustability and/or sizing. The use of

modularity and product platforms can assist designers in using these approaches

in cost-effective and strategic ways. The following sections explain some basic

principles of DfHV, outline available data and other resources, and give examples

of common practice for sizing and adjustability. The chapter concludes with a

description of some specific opportunities for applying platforming and

modularity—“How does one recognize a DfHV problem where platforms might

be particularly appropriate?”

22.2 Basic DfHV Principles

Design for Human Variability combines rigorous design methods (e.g., optimization

or robust design) with statistical modeling and ergonomics/human factors to improve

safety, fit, performance, or other measures of accommodation of broad populations.

Accommodation is the condition wherein a user can interact with a device in a

preferred or safe way. Performance is commonly expressed in terms of the percent-

age of potential user populations accommodated. The application of design automa-

tion tools facilitates the simultaneous consideration of many attributes of the target

user population (such as anthropometry, capability, and age) as well as other aspects

of designs (Parkinson et al. 2007; Michalek et al. 2006; Zou and Mahadevan 2006;

Van der Vegte and Horvath 2006; Osteras et al. 2006).

Properly accounting for the relevant variability in a target user population is

the first step in a quantitative DfHV analysis. This includes identifying the

target population (based on factors such as age, race, or demographics)

and quantifying the variability within. The quantification can be achieved through

experiments, appropriate databases (e.g., US Centers for Disease Control and Pre-

vention 2010; Gordon et al. 1989), and estimation based on models of relationships

in the measures.

560 C.J. Garneau et al.

Many traditional approaches to solving a DfHV problem involve the use of

boundary manikins (Sundin and Ortegren 2006; Bittner 2000). In this approach,

users at the extremes of the expected variability are used to assess candidate

designs. The expectation is that if the design works for these boundary cases, the

remaining users will be accommodated. Other approaches consider only an average

user. As data quantifying variability have become more prevalent and computing

tools more powerful, virtual fitting trials (Colombo and Cugini 2005; Garneau and

Parkinson 2011) are increasingly used. Populations of hundreds or thousands of

virtual users represent the diversity in anthropometry and preference of the target

user population. The interaction of the population with a candidate design is then

predicted, and the performance of the design for the entire population is assessed.

The underlying models may be physics-based or statistical models involving an

experiment with a prototype and a small number of representative users. A virtual

fitting trial method facilitates the use of optimization methodologies (Parkinson and

Reed 2006b). In particular, virtual fitting permits quantitative assessment of accom-

modation by offering the ability to checkwhether each virtual person is accommodated

or disaccommodated by the variants that comprise the product portfolio.

22.3 Quantifying the Variability

Whether using boundary manikins, designing for some hypothetical average user,

or using the more rigorous virtual fitting trials, estimates of the relevant variability

within the target user population are needed. These can include variability in body

size and shape, capability, and preference, among other factors. While an experi-

mental study is typically required to estimate preference, there are many published

estimates of anthropometry and capability. When the size and shape data for the

specific population of interest are unavailable, techniques have been developed

for obtaining estimates. These usually use statistical relationships in known data

to infer or synthesize values in a new population. Biomechanics models can also

be useful. This section focuses on variability in body size for three main reasons:

(1) it is a reasonable proxy for the many types of variability in a population that

affect physical interaction between user and device, (2) it is straightforward to

collect during user trials, and (3) detailed data are available for many populations

around the world.

22.3.1 Databases

Comprehensive anthropometric data are available for user populations around the

world. Examples of these databases are Germany’s Mikrozensus (Statistisches

Bundesamt Deutschland 2004); India’s survey of agricultural workers (Gite et al.

2009); Japan’s Human Engineering for Quality of Life (Research Institute of

22 Considering Human Variability in Product Platforms 561

Human Engineering for Quality Life 1997); England’s Health Survey (NHS

Information Center 2009); China’s Human Dimensions of Chinese Adults, GB

10000-88 (The State Bureau of Technical Supervision 1989); ANSUR (Gordon

et al. 1989), which is a survey of the US Army in the late 1980s; and NHANES

(US Centers for Disease Control and Prevention 2010), which is a continuous survey

of US civilians. These databases contain some number of measures (e.g., stature,

sitting height, arm length, and so forth) for each person sampled in the survey and

also usually provide summary statistics and appropriate statistical weights.

There are three important caveats to consider in the use of these data:

(1) anthropometric databases are not available for every user population a designer

will encounter, (2) a given design may target a population with a different gender or

racial/ethnic composition than available data, and (3) existing databases may lack

data about certain body measures that are critical to the design task. Methods have

been developed to synthesize anthropometric data in order to remedy these

concerns.

Unlike anthropometry, large databases of capability and preference are simply

not available. Although gathering data on body size and shape is expensive and time

consuming, the problem is a finite one. Using a combination of traditional

techniques (i.e., scales, calipers, and anthropometers) and scanners, extensive

data can be gathered relatively quickly. Capability and preference, however, vary

within individuals in an infinite number of ways. Strength, for example, varies with

posture and the frequency with which the task is conducted. An individual’s ability

to maintain balance depends on whether they are standing or seated, have their eyes

open or closed, and on what footwear they are wearing. And the conditions for

measuring preference are even more specific. There are some resources available

where the specific situation of interest has been investigated. These are primarily

published in journals and technical reports. Some suggestions include the journals

Ergonomics, Biomechanics, Clinical Biomechanics, The International Journal of
Industrial Ergonomics, Human Factors, Engineering Design, and ASME’s Journal
of Mechanical Design and technical reports from The University of Michigan
Transportation Research Institute, SAE International, and JD Power and
Associates. In general, however, the designer will likely need to conduct their

own study.

22.3.2 Synthesizing Anthropometry

An alternative to using actual anthropometric data is to use accurately estimated

data. Accordingly, anthropometry synthesis is a key component of methodologies

to design for human variability; such methods are usually applied when a represen-

tative database is unavailable for the target user population.

Traditional anthropometry synthesis techniques include those based on the use of

proportionality constants and linear regression models. Proportionality constants

are average ratios of various body measures to stature (Drillis and Contini 1966).

562 C.J. Garneau et al.

Given the stature data for a target population, the required body measure (Yi) may be

obtained bymultiplying stature (S) with the appropriate proportionality constant (pci):

Yi ¼ pci � S: (22.1)

While simple and easy to apply, this method is inherently flawed in many

respects (Fromuth and Parkinson 2008), with the most fundamental error being

the incorrect assumption that body proportions are constant across individuals.

Alternative anthropometry or posture prediction techniques (e.g., Flannagan

et al. 1998; You and Ryu 2005) involve the formulation of regression equations

between the data to be estimated (Y), which may be either relevant anthropometry

or postures, and the chosen predictors, which are typically stature and/or BMI

(body mass index, a measure of weight for stature):

Yi ¼ ai � statureþ bi � BMIþ ci (22.2)

where i is the number of required body measures or postures; a and b are regression

coefficients; and c is the regression constant. These regression relations can be

based on data from existing databases or newly conducted surveys or experiments.

These relations can be extrapolated to the target user population by using data about

the predictors for the target population in the regression equations. Stature and BMI

are effective predictors for several reasons: (1) they are strongly correlated with

measures of length and breadth, respectively; (2) they are easily measured and

readily available for a number of populations; and (3) they are uncorrelated with

each other (R2 � 0.02).
There are three main drawbacks associated with this type of regression

approach: (1) the incorrect assumption that people with the same values of

predictors (e.g., stature) will also always have the same values of the estimated

variable (e.g., leg length), (2) the lack of accuracy in simulating the distributions of

anthropometry in the upper and lower tails, which are key to making accurate and

efficient design decisions, and (3) the inability to model the component of user

variability that is uncorrelated to the chosen predictors.

Incorporating residual variance into the regression model overcomes the

limitations of the traditional linear regression models (Nadadur and Parkinson

2010) for this application. Residual variance is a statistical measure that quantifies

the amount of variability in a regression model that is uncorrelated to the chosen

predictors. The method reintroduces this measure in the form of a stochastic term in

the standard regression equation:

Yi ¼ ai � statureþ bi � BMIþ ci þ Nið0; si2Þ (22.3)

where N(0, s2) is a normally-distributed stochastic term with mean 0 and variance s2,

which is the residual variance of regression.

This method yields accurate estimates of data even in the upper and lower tails of

distributions. This is an important improvement over traditional regression because

22 Considering Human Variability in Product Platforms 563

design decisions are usually made in the tails of anthropometric distributions, and it

is the users in these upper and lower tails that are most likely to be affected by the

decisions (Haslegrave 1986). Having accurate data in the tails is therefore key to

making well-informed design decisions in developing the product portfolio.

22.4 Designing for the Variability

There are two main strategies for spatially optimizing a product so that it is

comfortable or safe for its human users: (1) specifying a certain amount of adjust-
ability on one or more dimensions of the same variant of the product, or

(2) specifying multiple size variants of the product. While permitting adjustability

is often simpler to design, it also introduces complexity and cost that may be

inappropriate for some applications (e.g., apparel). However, specifying multiple

sizes of a product also introduces design challenges. For instance, the outcome may

be sensitive to design specifications (e.g., average versus minimum performance

optimization); sizes may be distributed in various ways (e.g., equal people per size

versus equal spacing across the variability in dimensions); and assessing the

accommodation of a target population for size variants poses a greater challenge

than for adjustable products.

These two strategies are discussed in the context of two design problems:

bicycles and tool handles. The problems also demonstrate two different approaches

to modeling user needs. The first (bicycle) uses data from an experimental study

with participants representative of the target user population. The second (tool

handle) uses equations from biomechanics and literature. The platforming of

power tools is a well-known example within the product platform community

(Lehnerd 1987; Meyer and Lehnerd 1997). Here it is examined differently, where

the size and shape of the user provide platforming opportunities.

22.4.1 Specifying Adjustability

Adjustability is often specified in terms of required lower and upper limits to the

adjustable product dimension under investigation. There are many recommended

tools and practices that use anthropometry to prescribe adjustability (HFES

300 Committee 2004; SAE International 2006). Methods using only anthropometry

include “manikin” approaches (Bittner 2000; Diffrient et al. 1981; UGS 2007) and

population model approaches (Roe 1993). So-called hybrid methods using

attributes of both manikins and population models have been shown to be an

improvement on using one or the other individually (Reed and Flannagan 2000;

Garneau and Parkinson 2011).

Recent research has explored including a “preference” component, which

considers variability not predicted by body dimensions (Reed et al. 2000;

564 C.J. Garneau et al.

Parkinson et al. 2007; Parkinson and Reed 2006b). In particular, Garneau and

Parkinson (2007) outline a method for determining the range of adjustability for

a single size, continuously adjustable artifact including preference effects. Such a

hybrid method including preference is based on the work of Parkinson et al. (2007)

and Parkinson and Reed (2006a).

The first step for implementing a hybrid method including preference is to obtain

experimental data from a sample group using a prototype similar to the product

being designed. These data must include some anthropometric measure from the

sample group (often stature) as well as a corresponding preferred device configura-

tion. Next, linear regression is performed to relate the user-selected setting to a

body dimension such as stature for the entire test population. Both the equation of

the regression line and a measure of scatter (root-mean-square error, RMSE) must

be retained. The parameters of regression are then used to construct a “virtual

population” of a large size (e.g., 1,000 members). Each member of this virtual

sample is assigned a stature randomly drawn from a representative database (e.g.,

NHANES or ANSUR). A preferred setting for each member is determined using the

results of the regression, including a stochastic component calculated from the

residual variance. The adjustability required to achieve the desired level of accom-

modation (e.g., 95 %) is determined by taking the maximum and minimum

selections of the appropriate portion (e.g., the central 95 %) of virtual users. This

hybrid method is utilized in the examples in this chapter.

22.4.2 Specifying Sizes

It can be preferable to offer a number of sizes to accommodate a range of body size

and shape, capability, or preference. This can be done in conjunction with, or

exclusive of, adjustability. Footwear, for example, comes in fixed, nonadjustable

lengths. Bicycles, on the other hand, come in multiple sizes, but frequently have

adjustable seats and handlebars.

One approach to identifying the sizes in which an artifact should be produced is

to consider each size to be a variant within the product family. Although many

recent DfHV studies have focused on optimally allocating product adjustability

(Parkinson and Reed 2006b; Nadadur and Parkinson 2009; Garneau and Parkinson

2011), few have rigorously considered the optimization of product dimensions

across multiple discrete sizes. McCulloch et al. (1998) describe a method of using

optimization to improve fit with multiple sizes of apparel. Specification of sizes is

also often guided by meeting certain industry specifications or manufacturing

tolerance. Tryfos (1985, 1986) confirm this observation and offer another applica-

tion for optimization to minimize garment discomfort in order to maximize sales.

HFES 300 Committee (2004) provides one example of specifying sizes of military

gloves in which the number of sizes is determined based on a minimum

manufacturing tolerance. Nearly every application of size specification divides

the dimensions of sizes evenly between the extremes, but this may not be desirable.

22 Considering Human Variability in Product Platforms 565

22.4.2.1 Sizing for Equal Variability

The most common approach to the specification of sizes is to evenly allocate the

variability across some specified number of sizes. For example, as can be seen when

observing the markings on the Brannock Device (Fig. 22.1) used to estimate

Fig. 22.1 An image from the patent application for the Brannock foot measurement device. Patent

#1725334

566 C.J. Garneau et al.

appropriate sizes for footwear, the increments between each size are in fixed

increments. Whether an individual’s foot is small, average, or large, a shoe that

fits well on length can usually be found. However, the number of users

accommodated by the central sizes will be much greater than those at the extremes.

22.4.2.2 Sizing for Equal Accommodation

The sizing for equal variability scheme described above results in an unequal

demand for the product variants. As can be seen in Fig. 22.2, foot length is

approximately normally distributed. Since there are substantially more individuals

near the mean than in the tails of the distribution, one would expect that the demand

for shoes of “average sizes” would be much greater than at the extremes. This

creates a challenge at all levels of the supply chain. Consumers with feet of average

size may find that their size is sold out, while those with large or small feet may find

that their size was never even ordered. Vendors must stock a full range of sizes,

but risk having their large and small inventory left over. Manufacturers must

make unequal numbers of the different variants, causing problems in associated

processes, materials, and tooling, and making it more difficult to leverage

economies of scale.

The sizing for equal accommodation strategy mitigates these issues by targeting

the variants such that each faces a theoretically equivalent demand. This is

demonstrated in the footwear example by the omission of half-sizes (e.g., the larger

men’s sizes might be 10.5, 11, 11.5, 12, 13, 14). By increasing the size increment in

the larger sizes, the demand for a given size is artificially inflated (i.e., doubled).

Although this is beneficial for vendors and manufacturers, it can decrease perfor-

mance for the consumer.

Since this results in designs that must accommodate different amounts of

variability, adjustability can (when appropriate) be incorporated to make up the

difference. This is an interesting opportunity for platforming since key aspects of a

design may simply be scaled across the sizes, while others—such as the amount of

adjustability required to achieve the required accommodation—must be changed

(variants near the mean require less adjustability to accommodate their assigned

users than those nearer to the extremes).

foot length (mm)

normalized
frequency

Fig. 22.2 Distribution of

foot length within the male

ANSUR population

22 Considering Human Variability in Product Platforms 567

22.4.3 Example 1: Bicycle Saddle Height

22.4.3.1 Background

This analysis relies on the experimental data detailed in Garneau and Parkinson

(2007); see that paper for information on the experimental method and results

(only a summary is provided here). The device to be designed is an upright exercise

cycle, and the target population is adult males. Therefore, the prototype is a typical

upright exercise cycle, and the sample group was a set of 42 male students at Penn

State University. The metric of interest is the minimum saddle height and its range

of adjustability, which is used to determine an optimal number of sizes (with respect

to cost). Ninety-five percent accommodation of the target population is sought. It is

important to note that this analysis is provided as a simple case study only and is not

intended to be a guide for bicycle saddle height design. Figure 22.3 shows the

selections of the 42 sample users and the associated linear regression.

Linear regression is performed using the selected saddle height and stature for

the sample to create a saddle height (Hground) preference model that incorporates

residual variance:

Hground ¼ 0:476Sþ 98:9þ N 0; 38:8ð Þ (22.4)

where N is a normal distribution with a mean of 0 and a standard deviation of 38.8

(RMSE of the regression).

22.4.3.2 Adjustability

The preferred saddle height, including a component indicating how their preference

deviates from the mean, is calculated for each virtual user using the hybrid

method and the regression equation (Eq. 22.4) outlined above. The required stature

input was obtained by randomly sampling 1,000 individuals from the male ANSUR

stature (mm)

selected
seat

height
(mm)

Fig. 22.3 The selections of

the 42-member sample used

in Garneau and Parkinson

(2007). The parameters of

a linear regression and the

resulting line are also shown

568 C.J. Garneau et al.

population. To achieve 95 % accommodation, saddle height selections at the 2.5th

and 97.5th percentile give the low and high adjustment limits. This yields 192 mm

of adjustability, as shown in Fig. 22.4.

Since the correlated body dimension, stature, is a measure of length, it is approxi-

mately normally distributed. Similarly, the preference related to anthropometry is

also approximately normally distributed. As such, adjustability is best allocated by

centering it on the mean preferred height. This provides the most accommodation for

the smallest amount of adjustability. Not every scenario is like that. In some cases the

distributions are skewed, and in others accommodation is limited on one end.

For example, when specifying seat width, any individual with hip breadth smaller

than the distance between the armrests fits without difficulty. For this situation, the

lower 95 % of the population would provide the most efficient use of resources.

22.4.3.3 Sizing

One approach to identifying the size-related variants in a platform is to minimize

cost across the platform. At its most basic, cost for an adjustable product with

multiple sizes is proportional to the number of separate sizes, the quantity of each

size produced, and the amount of adjustability within each size. Therefore, total

cost may be broken into four components: fixed costs, the cost of offering a certain

number of sizes, the cost of producing a given quantity of each size, and the cost of

providing a certain amount of adjustability within each size. This may be

represented mathematically as

Costðn; qi;ΔXiÞ ¼ Aþ Bnþ
Xn
i¼1

Ciqi þ Dqif ΔXið Þf g (22.5)

where n ¼ number of size variants, qi ¼ quantity of each size variant produced,

ΔXi ¼ amount of adjustability in each size variant, and f (ΔXi) ¼ function relating

adjustability to cost.

seat
height
(mm)

stature (mm)

Fig. 22.4 The preferred

seat locations of the

1,000-member virtual

population. The central

95 % (950) users are noted

22 Considering Human Variability in Product Platforms 569

The following constraints must also be satisfied:

Xn
i¼1

qi ¼ q (22.6)

Xn
i¼1

ΔXi ¼ ΔX (22.7)

where q ¼ total quantity of all product variants produced and ΔX ¼ total overall

adjustable range.

The constants in Eq. (22.5) are defined as follows: A represents fixed costs such

as marketing and capital expenses. B is the cost of offering a size variant. This

might include the cost of storing a size variant and reconfiguring machinery to

produce different sizes, for example. Ci is the manufacturing cost per product for

each size variant. In general, Cimay be different for each size and may be a function

of the quantity of that size produced. D is the incremental cost of adjustability in

each size variant. Each constant must be determined on a case-by-case basis.

22.4.3.4 Sizing for Equal Variability

When the sizes are evenly distributed over the adjustable range, the required

adjustability per size,ΔXi, is the same for all sizes and is given byΔX/n. Figure 22.5
demonstrates the nature of this relationship for the exercise cycle in which

ΔX ¼ 192 mm. An even distribution of sizes simplifies Eq. (22.5), since ΔX/n
may be substituted for ΔXi.

Two more assumptions make a simpler form of Eq. (22.5) possible. First, Ci is

assumed to be the same across all size variants and independent of the quantity of

each variant produced. Combined with the constraint of Eq. (22.6), this allows the

cost of production to become Cq when summed across all sizes. Second, a function

required
adjustability

per size
(mm)

number of sizes

Fig. 22.5 Required

adjustability per size

versus number of sizes

for the exercise cycle

example with each size

having equal adjustability

570 C.J. Garneau et al.

is assumed for f(ΔXi). In general, any function appropriate to the application may be

used. Here a nonlinear form will be assumed such that f(ΔXi) becomes (ΔX/n)2.
This models the nonlinear increase in cost with increase in adjustability. Note that

in the case of evenly distributed sizes, although ΔXi is the same for all sizes,

qi is not.
The cost objective function is now only a function of the number of size variants,

if a certain total quantity q and amount of overall adjustability ΔX are assumed.

Formatting this objective function in the standard way gives

min CostðnÞ ¼ Aþ Bnþ Cqþ Dq
ΔX

n

� �2

(22.8)

Neglecting A + Cq (since it is a constant for any number of size variants),

a relative cost function may be formatted as

min CostðnÞ ¼ B

D
nþ q

ΔX

n

� �2

(22.9)

From this equation, one can see that an increase in the number of size variants

increases production costs but decreases the cost of adjustability (since each size

requires less adjustability). Therefore, B/D may be thought of as a penalty for

adding additional sizes, or as the degree to which an increase in the number of sizes

increases cost over an increase in the amount of adjustability per size.

Figure 22.6 shows cost curves in the case where the n sizes are divided evenly,

q ¼ 1,000, and ΔX ¼ 0.192 m. Fixed costs are neglected, and so the curves

represent relative costs for various values of B/D. The optimum number of size

variants for each curve is given by the minimum cost. Suppose the value of B/D for

the exercise cycle is determined to be about 2.5. Then the optimum number of size

variants to minimize cost is about 3, determined by inspecting Fig. 22.6 or by using

an unconstrained optimization algorithm. Notice that an increasing value of B/D

relative
cost

number of sizes

B/D

2.5

2.0

1.5

1.0

0.5

Fig. 22.6 Relative cost as

a function of the number of

size variants and the constant

B/D for the exercise cycle

example with sizes of equal

adjustability. Various values

for this constant are given to

the right of the curves.
The point of minimum cost

is also shown on each curve

22 Considering Human Variability in Product Platforms 571

means that offering more size variants becomes increasingly expensive over adding

more adjustability per variant. Therefore, the optimum number of size variants

decreases, as shown in the plot.

If the size limits of the exercise cycle are evenly distributed as shown in

Fig. 22.7, then about 47 % are targeted by the middle band, and roughly 24 % are

targeted by each of the outer bands. Therefore, ΔX1,2,3 ¼ 64 mm, q1 ¼ q3 ¼ 0.24q,
and q2 ¼ 0.47q.

22.4.3.5 Sizing for Equal Accommodation

When sizing for equal accommodation, an equal number of individuals is

accommodated by each product variant. Since demand for each variant is expected

to be the same, qi is the same for all sizes and is equal to q/n. This requires that the
adjustability for each size, ΔXi, is different across sizes. Assuming Ci is a constant

across size variants as in the last case, the cost objective function then becomes:

min Costðn;ΔXiÞ ¼ Aþ Bnþ Cqþ D
q

n

� �Xn
i¼1

f ΔXið Þ (22.10)

subject to
Xn
i¼1

ΔXi ¼ ΔX (22.11)

Equation (22.10) is easily simplified only if f (ΔXi) is a linear function, i.e. the

cost of adjustability is linearly related to cost. Therefore, a simplified cost objective

function similar to Eq. (22.8) is not possible for a quadratic f(ΔXi). If f(ΔXi) is

linear, then optimizing cost with respect to sizes for evenly or unevenly distributed

sizes yields the same results.

If the size limits are as prescribed by the nonlinear scheme of Fig. 22.8, then the

proportion of the target population accommodated by each size variant will be

seat
height
(mm)

stature (mm)

23.8 %

47.3 %

23.9 %

Fig. 22.7 The size limits for

an evenly spaced sizing

scheme are shown along

with the 1,000-member

virtual sample and the

accommodation for each size

variant. Note the varying

levels of accommodation

for each variant

572 C.J. Garneau et al.

evenly distributed. Therefore, q1,2,3 ¼ 0.32q, ΔX1 ¼ 77 mm, ΔX2 ¼ 42 mm, and

ΔX3 ¼ 74 mm. These nonlinear size limits are determined simply by determining

the limits of sizes for which 1/n of the accommodated users (950/n in this example)

in the virtual population are attributed to each size variant, where n ¼ 3.

22.4.4 Example 2: Tool Handle

22.4.4.1 Background

In the tool handle example, the objective is to specify the handgrip such that

performance across the population of target users is high. Tool handles are com-

monly designed for the average user, making this an interesting example for the

application of sizing. This is an additional opportunity for platforming within a

power tool product family, where battery packs and motors are commonly

standardized (Meyer and Lehnerd 1997). Proper tool sizing benefits the user by

increasing comfort and safety. Poorly designed tools increase the risk of acute

trauma and chronic disorders, such as carpal tunnel syndrome (Mital and Kilborn

1992), so ensuring the use of well-designed tools at home and in the workplace is

important. The cross-sectional size and shape of a tool handle are the parameters of

greatest interest in its design and have been the focus of previous work on this

subject, which has been relatively well-studied for decades (Chengular et al. 2004;

Mital and Pennathur 1999; Chaffin et al. 1999). In general, circular or elliptical

handle cross-sections are recommended.

Some studies have attempted to generally correlate optimal handle size with user

anthropometry, particularly grip diameter (also called grip breadth). Grip diameter

is the diameter of the largest cylindrical object that can be grasped with the tip of the

middle finger touching the tip of the thumb. Grant et al. (1992) found that, of three

handle options (one with a 1 cm finger overlap, one with fingers just touching, and

another with a 1 cm gap), grip strength was maximized with the smaller diameter

seat
height
(mm)

stature (mm)

31.6 %

31.7 %

31.7 %

Fig. 22.8 The size limits for

a uniform accommodation

sizing scheme are shown

along with the 1,000-member

virtual sample and the

accommodation for each size

variant. Note the equal levels

of accommodation but

different adjustable range

per variant

22 Considering Human Variability in Product Platforms 573

handle in which the fingers overlap (Fig. 22.9). This configuration requires that the

circumference of the optimal handle be equivalent to the user’s grip circumference

(i.e., Dgrip � π) minus the constant C, where the optimal case is represented by

C ¼ 10 mm. Handle diameter, Dopt, is then determined by dividing this handle

circumference by π. Eq. (22.12) expresses this relationship mathematically.

Dopt ¼ Dgrip � π � C
� �

=π (22.12)

It has been shown that the index and middle fingers contribute most significantly

to the gripping force of the hand (Kong and Lowe 2005). Therefore, the posture of

the index and middle fingers is considered in a task that requires optimal grip

strength for tool stability and security. A tool handle is considered that has variable

cross-sectional properties to best accommodate the differing grip diameters of the

index and middle fingers. Thus, the optimal shape of a cylindrical tool handle, such

as the one shown in Fig. 22.9, with respect to its dimensions in the first and second

finger indent, is desired.

For this work, the optimal diameter is determined by Eq. (22.12); however, this

equation must be expanded to consider optimal handle diameter for both the first

and second fingers. Equation (22.13) gives modified optimal diameter, where the

indices 1, 2 correspond to index and middle fingers, respectively.

Dopt 1;2

�� ¼ Dgrip 1;2

�� � π � C
� �

=π (22.13)

Dgrip indicates grip diameter (for index and middle fingers), and C represents the

constant by which the fingers overlap for optimal strength, which is taken to be

10 mm for this study. The target user population was identified as ANSUR with

equal representation from men and women. Regression was performed using hand

D1

D2

index
finger
indent

middle
finger
indent

Fig. 22.9 The handle

assumes a circular cross

section, and relevant

parameters are the

diameter of the first and

second finger indents

574 C.J. Garneau et al.

data from Research Institute of Human Engineering for Quality Life (1997) to relate

LH—measure available in ANSUR—to Dgrip. The residual variance was retained as

described earlier, producing the following equations for the two grip diameters:

Dgrip 2j ¼ 0:244LH þ N 0; 2:579mmð Þ (22.14)

Dgrip 1j ¼ 0:877Dgrip 2j þ N 0; 1:180mmð Þ (22.15)

N(0,RMSE) simply indicates a normal distribution with mean 0 and standard

deviation equal to the root-mean-square error (RMSE) of the regression. The

relevant measure from ANSUR, LH, was randomly sampled from 500 males and

500 females from the ANSUR data. These 1,000 virtual users are the subjects for

the virtual fitting trial performed to calculate grip quality, Q, for the population of

users. The full details of this work are available in Garneau and Parkinson (2012).

22.4.4.2 Single Size

Figure 22.10b illustrates grip quality as a function of hand length. Figure 22.10a

simply uses a proportionality constant to compute Dgrip|1 and Dgrip|2 in Eq. (22.15).

This proportionality constant is given by Eq. (22.15) without the part representing

the residual variance. Figure 22.10b uses the entire relationship as given by

Eq. (22.15) to compute the two grip diameters. Including the residual variance

leads to greater scatter in the plots. All subsequent figures will use the relationship

for grip diameter including residual variance.

While many products are offered in a single size, any platforming or modularity

would have to exist across demographics (e.g., consumer and professional) or

hand length (mm)

Q

hand length (mm)

a b

Fig. 22.10 Grip quality plotted for each member of the population as a function of hand length for

one size, without and with the residual variance component of the regression equation for grip

diameter, (a) and (b) respectively. Optimal handle diameter for the first and second finger indents

is also shown

22 Considering Human Variability in Product Platforms 575

related product lines. This simple, single-size example is included here for two

reasons: (1) to demonstrate the approach and (2) to establish the necessary back-

ground for the multi-size example below.

22.4.5 Multiple Sizes

Designs are evaluated by the minimum grip quality they provide (i.e., their perfor-

mance is based on the worst experience of a user). The objective in increasing the

number of handle sizes is to improve this minimum fit, Q. Figure 22.11 shows grip

quality as a function of index finger grip diameter, middle finger grip diameter, and

hand length, respectively, for the case in which minimum grip quality for each size

is to be maximized.

Figure 22.11 shows that grip quality peaks for users with hand dimensions

yielding optimal diameters (Q ¼ 1). The number of peaks in the figures indicates

the number of optimal diameters (i.e., the number of sizes). In each case, an equal

number of users are attributed to each handle size. The relationship between grip

quality and hand length is nonlinear (i.e., possesses scatter) because the optimiza-

tion is performed over two anthropometric variables for each person. Since the ratio

between these variables is not constant, there is some deviation in grip quality for

any given measure of the hand.

Consider a scenario in which only users with a grip quality,Q, of some minimum

value are considered to be accommodated. Figure 22.12 plots the percentage of the

1,000 virtual users that achieve a grip quality Q � 0.95 for 1–10 sizes, for both

optimization schemata. Q � 0.95 is an arbitrary goal; increasing or decreasing the

required value of Q will affect accommodation levels. Studies of safety/comfort or

a cost–benefit analysis would guide designers in choosing an appropriate minimum

value of Q for accommodation.

grip diameter, middle (mm)

Q

grip diameter, index (mm) hand length (mm)

Fig. 22.11 Grip quality as a function of anthropometry for the case in which minimum grip

quality is to be maximized across three handle sizes, from smallest to largest: blue ①, green ②,

and purple ③. Optimal handle diameter for the first and second finger indents is also shown

576 C.J. Garneau et al.

22.5 Opportunities for Platforming and Modularity

Product platforming and modularity can be effective in most scenarios involving

sizing or the allocation of adjustability. There are, however, several situations

where DfHV offers opportunities that are particularly promising or that might be

overlooked. The following is a description of these scenarios and an explanation of

why platforming and modularity might be a good approach. Obviously this is not a

comprehensive list, but these are situations that occur often and where platforming

has not been considered.

22.5.1 Long-Tailed and Skewed Distributions

Most measures of length (e.g., stature, leg length) and many outcomes (e.g.,

uncensored, preferred fore-aft seat position in a vehicle) are approximately nor-

mally distributed. Consequently, designs that target the average body size or

outcome measure are efficient in their ability to accommodate a large number of

users. This is due both to the nature of the distribution and the adaptability of users.

Consider Fig. 22.13, a probability density plot showing the allocation of individuals

across a normally distributed measure like stature. The population (ANSUR men)

exhibits a range of 545 mm across the measure, but 50 % of the members of the

population are within 46 mm of the mean. Increasing accommodation from 50 to

90 % means the design must address nearly 2.5 times more variability.

When accommodation targets are high (e.g., 95 %), the amount of variability

that the design must address can also be very high.

number of sizes

%
accom.

min(Q)
optimization

Fig. 22.12 The percentage

of accommodated users is

illustrated for a varying

number of handle diameters

for both optimization

schemata. Accommodation is

achieved for users with a grip

quality of 0.95 or greater

22 Considering Human Variability in Product Platforms 577

Not all measures are normally distributed. In particular, many measures of width

are known to be skewed, with a long right tail. Consider Fig. 22.14, which shows

the probability density of seated hip breadth for the combined population of men

and women in the US. As with a normal distribution, the 50 % in the most densely

1400 1500 1600 1700 1800 1900 2000 2100

stature (mm)

min

1st

5th

25th 75th

95th

99th

50th

max

91mm

219mm

300mm

545mm

50 %

90 %

90 %

100 %

Fig. 22.13 A probability density plot for the distribution of stature for the ANSUR population

Fig. 22.14 A probability density plot showing the distribution of seated hip breadth for the US

civilian population

578 C.J. Garneau et al.

distributed region of the population exhibit only a fraction of the large amount of

total variability. There are, however, two important attributes of populations with

skewed distributions that make them particularly amenable to platforming. First,

the truncated left tail means that variability is limited in one direction, somewhat

simplifying the problem when high levels of accommodation are desired. Second,

the one-sided tail is often an indication that two platform variants might be

appropriate: one for the distribution corpus and one for the tail.

When the distribution of anthropometric measures is one-sided or skewed,

the range of design requirements might necessitate two or more variants.

22.5.2 Segmented Populations and Disproportionate
Disaccommodation

Segmentation in users provides a number of opportunities for platforming.

For example, the ratio of women to men in the workforce is known to vary across

occupations (Jarman et al. 2012). Designers targeting a given segment should

look at the distribution of variability in relevant user metrics such as body size,

shape, capability, or preference and determine if any clustering occurs. Failure to

do this can result in situations where particular demographic groups are dispro-

portionately disaccommodated. In addition to reducing market opportunities, this

can increase risk exposure for some groups, increasing their risk exposure (Elders

et al. 2004; Ahonen and Benavides 2006; Buchanan et al. 2010). Consider, for

example, a manufacturing operation that requires workers to be standing while

performing it. An accommodation level of 95 % seems appropriate for this task—

19 out of every 20 individuals could perform the task safely. However, if the

work environment were designed such that the tallest 95 % of the US Civilian

population were accommodated, 99 % of the disaccommodated individuals

would be women (US Centers for Disease Control and Prevention 2010). Of the

three major racial/ethnic groups in the USA, Hispanics tend to be the shortest.

In fact, one in four Hispanic women would not be able to perform the task safely.

In contrast, nearly 100 % of all men, regardless of race/ethnicity, would be

accommodated.

In these situations of disproportionate disaccommodation, designers are in a

difficult situation. Do they design an artifact, or environment based on the known

demographics of the users? For example, ~90 % of truck drivers are men, so should

truck cabs be designed to the variability exhibited by men? Alternately, the limited

presence of women in that work force could be at least partially due to disaccom-

modation in the truck cabs. It is possible that participation of women would

improve if the cabs accommodated a broader range of users. Product platforming

and modularity are excellent approaches to addressing these needs.

22 Considering Human Variability in Product Platforms 579

Population attributes such as gender (Mohammed 2005), race/ethnicity (Hawes

et al. 1994), and age (Annis 1996) have a strong influence on the distribution of

anthropometry in a population. Due to these differences, a product may perform

differently across race and gender groups. When designing for human variability,

it is important to identify the user population and select representative anthropo-

metric distributions that accurately estimate variability within it (Nadadur and

Parkinson 2010). For example, an analysis of data from a US military population,

ANSUR, found that 36 % of the 100+ anthropometric measurements showed

significant differences between racial and gender groups (Walker 1993).

Products designed for international markets must take into account the anthro-

pometric differences between various populations. Facemasks designed for an

American population might disaccommodate up to 35 % of Chinese users

(Yang et al. 2007). Even within neighboring groups, populations can have statisti-

cally different anthropometry; a comparison between Chinese, Japanese, Korean,

and Taiwanese men found that not only are the individual measures different,

the proportions between measurements are as well (Lin et al. 2004). On the

other hand, two completely separate populations may be similar, such as that

of Mexican female workers and Indian female agricultural workers (Dewangan

et al. 2008).

Identify different segments of users within the population and collect,

synthesize, or otherwise estimate variability in size, shape, capability, and

preference across these segments. Analyze this variability for sizing- and

adjustability-related platforming/modularization opportunities.

22.5.3 Long-Lifetime Products and Secular Trends

Many portfolios consist of products that have long usage lifetimes; this is more

likely for products that are relatively expensive. Examples include heavy trucks,

airplanes, and manufacturing operations. Changes in the target user population over

the product’s lifetime can mean that the needs of users as the product nears the end

of its life can be very different than those at the beginning. There are three types of

changes to which designers must be sensitive: secular trends, preference, and

demography.

A secular trend is a continuous, noncyclical, increase or decrease in some

measure over time. For example, as nutrition and health care have improved over

the last century, there has been a significant increase in life expectancy. This, along

with other factors such as birthrate, has resulted in a situation where the average age

of populations in many countries is increasing (Department of Economic and Social

Affairs—Population Division 2002). This “aging population” creates a number of

580 C.J. Garneau et al.

opportunities for designers. There are other important secular trends related to

DfHV. For example, across the world, the average height is increasing within a

given racial/ethnic group. For countries with relatively homogeneous populations

such as Scandinavia, this has resulted in dramatic increases in average height

for the region. In areas where immigration is high, the average height might

remain the same, but the standard deviation increases. In the US, for example,

Whites, Blacks, and Hispanics (the three major racial/ethnic groups) are all getting

taller, but the percentage of Hispanics in the US is increasing. Since that

group tends to be somewhat shorter than the others, the net effect has been to

stabilize the mean (Fig. 22.15), while the population as a whole gets both shorter

and taller.

Another important secular trend is the increased prevalence of obesity. This is a

global problem, but due to the ongoing survey conducted by the US Centers for

Disease Control, it is best documented in the US. Figure 22.16 shows the dramatic

increase in BMI over the last 30 years. With this change have come commensurate

changes in body size and shape. For measures of width, this has both increased the

mean and increased the length of the right tail of the distribution for most measures

of width and depth.

Demographic changes can also cause secular trends in user groups. For example,

increased numbers of women in the workforce, older workers, and more diverse

populations can change the spatial requirements and physical abilities of user

groups. The population for which a truck cab was designed in 1980 is substantially

different than the population that is using it now. While it is impossible to precisely

predict these changes, successful product portfolios will be adaptable to them.

Platforming and modularity must consider these changes and look to achieve the

requisite levels of flexibility. Although the magnitude of the change cannot be

stature
(cm)

Fig. 22.15 The average

stature for men and women in

the USA from 1962 to 2010

BMI

Fig. 22.16 The average

body mass index (BMI),

a measure of weight for

stature, for men and women

in the USA from 1962

to 2010

22 Considering Human Variability in Product Platforms 581

anticipated, a designer might determine which aspects of the user population can

change and how they might affect a given design. Platform variants can be

identified for present and future times. Then, at appropriate points in the product’s

lifecycle, the platform can be leveraged to update the product to the needs of the

new population (Nadadur et al. 2011).

Product portfolios that will be in use for a long period of time will likely

witness the effects of secular trends in their users. Plan accordingly.

22.6 Conclusion

Product platforming is a powerful strategy. When used in combination with DfHV

practices, it can improve the ability of a designer to meet the needs of a wider range

of target users. The two case studies provide an introduction to current practice in

sizing and the allocation of adjustability. Within the context of these two strategies,

several specific opportunities for the application of DfHV within product

platforming have been identified. These include products intended for global or

diverse populations, those for which high levels of accommodation are expected,

long-lifetime products, the opportunity to mitigate disproportionate disaccom-

modation, and designs that typically achieve poor performance because of the

high or skewed variability in the attributes of target users. Product platform design

has a rich history in mechanical and electrical components. Although not part of the

typical product platform community, the practice of platforming around body size

and shape, capability, and preference is an ancient one. Including these as potential

factors in platforming opens many new opportunities for expanding platforming

and improving efficiencies.

Acknowledgments Special thanks to Charlotte de Vries, Eliza Detweiler, and the research

assistants and alumni of the OPEN Design Lab at Penn State University.

References

Ahonen EQ, Benavides FG (2006) Risk of fatal and non-fatal occupational injury in foreign

workers in Spain. J Epidemiol Community Health 60(5):424–426

Annis JF (1996) Aging effects on anthropometric dimensions important to workplace design.

Int J Ind Ergon 18:381–388

Bittner AC (2000) A-CADRE: advanced family of manikins for workstation design.

In: Proceedings of the human factors and ergonomics society, Long Beach, CA, pp 774–777

Buchanan S, Vossenas P, Krause N, Moriarty J, Frumin E, Shimek JAM, Mirer F, Orris P,

Punnett L (2010) Occupational injury disparities in the us hotel industry. Am J Ind Med

53(2):116–125

582 C.J. Garneau et al.

Centers for Disease Control and Prevention (2010) National health and nutrition examination

survey 2007-2010. National Center for Health Statistics, Hyattsville, MD

Chaffin DB, Andersson GBJ, Martin BJ (1999) Occupational biomechanics, 3rd edn. Wiley,

New York, NY

Chengular SN, Rodgers SH, Bernard TE (2004) Kodak’s ergonomic design for people at work,

2nd edn. Wiley, New York, NY

Clauser C, McConville J, Young J (1969) Weight, volume and center of mass of segments of

the human body. Technical Report AMRL-TR-69-70, Wright Patterson Air Force Base,

Dayton, OH

Colombo G, Cugini U (2005) Virtual humans and prototypes to evaluate ergonomics and safety.

J Eng Des 16(2):195–203

Department of Economic and Social Affairs—Population Division (2002) World population

ageing: 1950-2050. UN DESA, New York, NY

Dewangan K, Owary C, Datta R (2008) Anthropometric data of female farm workers from north

eastern India and design of hand tools of the hilly region. Int J Ind Ergon 38(1):90–100

Diffrient N, Tilley A, Bardagjy J (1981) Humanscale. MIT Press, Cambridge, MA

Drillis R, Contini R (1966) Body segment parameters. Office of Vocational Rehabilitation

Engineering and Science, New York, NY, cited in Clauser et al. (1969)

Elders L, Burdorf A, Ory F (2004) Ethnic differences in disability risk between Dutch and Turkish

scaffolders. J Occup Health 46:391–397

Flannagan C, Manary M, Schneider L, Reed M (1998) Improved seating accommodation model

with application to different user populations. In: Proceedings of the SAE international

congress and exposition, vol 1358. SAE, Warrendale, PA, USA, pp 43–50

Fromuth R, Parkinson M (2008) Predicting 5th and 95th percentile anthropometric segment

lengths from population stature. In: Proceedings of the ASME international design engineering

technical conferences, New York, NY, DETC2008-50091

Garneau C, Parkinson M (2007) Including preference in anthropometry-driven models for design.

In: ASME design engineering technical conferences, ASME International, Las Vegas, NV

Garneau C, Parkinson M (2011) A comparison of methodologies for designing for human

variability. J Eng Des 22(7):505–521

Garneau C, Parkinson M (2012) Optimization of product dimensions for discrete sizing applied to

a tool handle. Int J Ind Ergon 42(1):56–64

Gite L, Majumdar J, Mehta C, Khadatkar A (2009) Anthropometric and strength data of Indian

agricultural workers for farm equipment design. All India Coordinated Research Project

on Ergonomics and Safety in Agriculture, Central Institute of Agricultural Engineering,

Bhopal, MP

Gordon CC, Churchill T, Clauser CE, Bradtmiller B, McConville JT, Tebbetts I, Walker RA

(1989) 1988 anthropometric survey of US Army personnel: methods and summary statistics,

Final report. Technical Report NATICK/TR-89/027, US Army Natick Research, Development

and Engineering Center, Natick, MA

Grant KA, Habes DJ, Steward LL (1992) An analysis of handle designs for reducing manual effort:

the influence of grip diameter. Int J Ind Ergon 10:199–206

Haslegrave CM (1986) Characterizing the anthropometric extremes of the population. Ergonomics

29(2):281–301

Hawes MR, Sovak D, Miyashita M, Kang SJ, Yoshihuku Y, Tanaka S (1994) Ethnic differences in

forefoot shape and the determination of shoe comfort. Ergonomics 37(1):187–196

HFES 300 Committee (2004) Guidelines for using anthropometric data in product design. Human

Factors and Ergonomics Society, Santa Monica, CA

Information Center NHS (2009) Health survey for England. Department of Health, England

Jarman J, Blackburn R, Racko G (2012) The dimensions of occupational gender segregation in

industrial countries. Sociology 46(6):1003–1019

Kong YK, Lowe BD (2005) Optimal cylindrical handle diameter for grip force tasks. Int J Ind

Ergon 35(6):495–507

22 Considering Human Variability in Product Platforms 583

Lehnerd A (1987) Revitalizing the manufacture and design of mature global products. In: Guile B,

Brooks H (eds) Technology and global industry: companies and nations in the world economy.

National Academy Press, Washington, DC, pp 49–64

Lin YC, Wang MJJ, Wang EM (2004) The comparisons of anthropometric characteristics among

four peoples in East Asia. Appl Ergon 35(2):173–178

McCulloch C, Paal B, Ashdown S (1998) An optimisation approach to apparel sizing. J Oper Res

Soc 49(5):492–499

Meyer M, Lehnerd A (1997) The power of product platforms. Free Press, New York, NY

Michalek J, Ceryan O, Papalambros PY, Koren Y (2006) Balancing marketing and manufacturing

objectives in product line design. ASME J Mech Des 128(6):1196–1204

Mital A, Kilborn A (1992) Design, selection and use of hand tools to alleviate trauma of the upper

extremeties: part ii—the scientific basis (knowledge base) for the guide. Int J Ind Ergon

10:7–21

Mital A, Pennathur A (1999) Chapter 8: Hand tools. In: Kumar S (ed) Biomechanics in ergonom-

ics. Taylor & Francis, London

Mohammed YAA (2005) Anthropometric characteristics of the hand based on laterality and sex

among Jordanians. Int J Ind Ergon 35(8):747–754

Nadadur G, Parkinson M (2009) Using designing for human variability to optimize aircraft seat

layout. SAE Int J Passeng Cars Mech Syst 2(1):1641–1648

Nadadur G, Parkinson M (2010) Consideration of demographics and variance in regression

approaches to estimating body dimensions for spatial analysis of design. ASME J Mech Des

132(2)

Nadadur G, Garneau C, de Vries C, Parkinson M (2011) A real options-based approach to

designing for changing user population of long-lifetime products. In: Proceedings of the

ASME international design engineering technical conferences. ASME International,

Washington, DC, DETC2011-48712

Osteras T, Murthy DNP, Rausand M (2006) Product performance and specification in new product

development. J Eng Des 17(2):177–192

Parkinson M, Reed M (2006a) Improved head restraint design for safety and compliance. In:

Proceedings of the ASME international design engineering technical conferences, ASME

International, Philadelphia, PA, DETC2006-99429

Parkinson M, Reed M (2006b) Optimizing vehicle occupant packaging. Technical report SAE

Technical Paper No. 2006-01-0961, SAE International, Warrendale, PA

Parkinson M, Reed M, Kokkolaras M, Papalambros P (2007) Optimizing truck cab layout for

driver accommodation. ASME J Mech Des 129(11):1110–1117

Reed M, Flannagan C (2000) Anthropometric and postural variability: limitations of the

boundary manikin approach. Technical Paper 2000-01-2172. SAE Trans J Passeng Cars

Mech Syst 109

Reed MP, Manary MA, Flannagan CAC, Schneider LW (2000) The effects of vehicle interior

geometry and anthropometric variables on automobile driving posture. Hum Factors

42(4):541–552

Research Institute of Human Engineering for Quality Life (1997) Japanese body size 1992–1994.

Osaka, Japan. http://www.dh.aist.go.jp/bodyDB/s/s-01-e.html

Roe R (1993) Occupant packaging. In: Peacock B, Karwowski W (eds) Automotive ergonomics.

Taylor & Francis, London, pp 11–42

SAE International (2006) Automotive engineering handbook. SAE International, Warrendale, PA

Statisches Bundesamt Deutschland (2004) Mikrozensus. http://www.destatis.de/DE/Meta/-AbisZ/

Mikrozensus.html

Sundin A, Ortegren R (2006) Chapter 39: Digital human modeling for CAE applications. In:

Salvendy G (ed) Handbook of human factors and ergonomics, 3rd edn. Wiley, New Jersey, NJ

The State Bureau of Technical Supervision (1989) Human dimensions of Chinese adults

(GB 10000-88)

Tryfos P (1985) On the optimal choice of sizes. Oper Res 33(3):678–684

584 C.J. Garneau et al.

http://www.dh.aist.go.jp/bodyDB/s/s-01-e.html
http://www.destatis.de/DE/Meta/-AbisZ/Mikrozensus.html
http://www.destatis.de/DE/Meta/-AbisZ/Mikrozensus.html

Tryfos P (1986) An integer programming approach to the apparel sizing problem. J Oper Res Soc

37(10):1001–1006

UGS (2007) Tecnomatix Jack UGS

Van der Vegte W, Horvath I (2006) Including human behavior in product simulations for the

investigation of use processes in conceptual design: a survey. In: Proceedings of the ASME

international design engineering technical conferences, ASME International, Philadelphia, PA,

DETC2006-99541

Walker RA (1993) The impact of racial variation on human engineering design criteria. NAPA

Bull 13(1):7–21. doi:10.1525/napa.1993.13.1.7

Yang L, Shen H, Wu G (2007) Racial differences in respirator fit testing: a pilot study of whether

american fit panels are representative of chinese faces. Ann Occup Hyg 51(4):415–421

You H, Ryu T (2005) Development of a hierarchical estimation method for anthropometric

variables. Int J Ind Ergon 35(4):331–343

Zou T, Mahadevan S (2006) Versatile formulation for multiobjective reliability-based design

optimization. ASME J Mech Des 128(6):1217–1226

22 Considering Human Variability in Product Platforms 585

http://dx.doi.org/10.1525/napa.1993.13.1.7

Part IV

Applications and Case Studies

Chapter 23

Building, Supplying, and Designing

Product Families

David M. Anderson

Abstract Product families must be based on customer/marketing feasibility,

operational flexibility, supply chain responsiveness, and design versatility. This

chapter discusses the general strategies of applying these criteria to the fulfillment

of product families.

23.1 Structuring and Selling Product Families

Product families must be based on all the following criteria: customer/marketing

feasibility, operational flexibility, supply chain responsiveness, and design versatil-

ity. Product families are probably not going to be based on products that appear on

adjacent pages in catalogs or web sites. Popular views about product families may

concentrate on offering whatever customers want or whatever engineering can

design. However, the supply chain and operations must be able to (a) provide

readily available parts and materials for each product family and (b) build unique

products in the family quickly without setup delays and costs.

To accomplish this, families of products should be structured to satisfy all the

above criteria. Product families can be defined by starting with a broad range of

product variations that would satisfy market needs and be wanted by customers—

not just your current customers but also other potential customers—as discussed in

many of the previous chapters. From that pool, the grouping would be explored as

follows.

First, ascertain how much variety could be built in existing manufacturing

facilities with existing parts, subassemblies, and materials (hereafter all called

“parts”) and be done quick enough and inexpensive enough to satisfy the identified

markets. However, unless the company has been implementing lean production,

D.M. Anderson (*)

Build-to-Order Consulting, Cambria, CA, USA

e-mail: anderson@build-to-order-consulting.com

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_23,
Springer Science+Business Media New York 2014

589

mailto:anderson@build-to-order-consulting.com

standardization, and other flexible manufacturing initiatives, current operations will

probably not be adequate for a viable product family strategy.

If this is the case, then the next step would be to try to improve the flexibility of

the current equipment with flexible fixtures and tooling, setup reduction efforts,

quick-change tool techniques, rapidly downloaded computer numerically con-

trolled (CNC) machine tool programs, dock-to-line part distribution, improved

flow of parts and products, and efforts to resolve bottlenecks and fill in “missing

link” processing equipment.

If it looks like this would still not be adequate for a viable product family

strategy, then prospective families would have to be designed into coherent product
families that can be built quickly at low cost from readily available parts and

materials. The following sections discuss how to build product families flexibly,

resupply parts and materials to all points of use, and design product families for

flexible operations.

23.1.1 What About Products That Do Not Fit into Families?

Do not attempt to build nonfamily products in flexible operations where they do

not fit.

Flexible operations offer enormous benefits to build a wide range of product

variations in each predefined family at low cost with fast response. However, those

benefits are dependent on (a) flexible manufacturing lines that were created for

predefined variety (as discussed in the next major section) and (b) standard parts

that are always available at all points of use (as presented in the following section).

Incompatible products include variations outside predetermined families, legacy

products, spare parts, prototypes, and acquired products.

Here are the options for product variations that do not fit into any product

family—the orphans—and are not compatible with flexible operations and supply

chains. The first is to expand the family to include valuable variations, with

appropriate enhancements in operations and supply chain management.

The second is to perform product line rationalization (Anderson 2008, Chap. 3)

to identify products that are incompatible or not really reaching goals for profitabil-

ity, which is only meaningful if all costs are quantified (Anderson 2008, Chap. 12;

see Sect. 23.8.2 at the end). This procedure may recommend dropping such

products, redesigning them to fit into flexible operations, outsourcing them, selling

their rights, or moving their production to a separate facility or isolate their

production into a self-supporting profit-and-loss center whose staffing and overhead

are totally outside flexible operations. To be self-sustaining, this operation may

have to raise prices to pay for all its cost. If the market will not “bear” these costs,

then those products will have to be improved or rationalized away.

590 D.M. Anderson

23.1.2 Focusing on the Families

Sales and marketing must confine sales to the designated product families. If there

are marketing opportunities outside these families, the options are (a) marketing

works with engineering, manufacturing, and supply chain management to expand

existing families or create new ones; and (b) until this happens, the closest family

version could be modified by skilled people in the independent profit-and-loss

center mentioned above. On a total cost basis, this will cost more than flexible

operations and will take longer to build, but it may keep certain market

opportunities alive until the variations can be incorporated into flexible operations.

23.2 Building Families of Product Quickly at Low Cost

To maximize the sales of product families, all variations must be built cost-

effectively and quickly, ideally on-demand as a build-to-order operation (Anderson

2008, Chap. 8) from always available parts (Anderson 2008, Chap. 7) without

forecasts or inventory.

23.2.1 Why Mass Production Methodologies Will Not
Work for Product Families

Mass production is very efficient for building identical products for the mass

markets (Anderson 2008, Chap. 2). The epitome of mass production efficiency

was the Ford Rouge River Model T plant, which could build any-color-as-long-as-

it-is-black cars for $245 in 1923. However, the cost of variety rises substantially

with variety, as shown in Fig. 23.1 because of setup costs and inventory carrying

costs, which presents one of manufacturing’s most irreconcilable dilemmas: raising
batch size lowers the setup cost charge to each product but raises inventory and
vice versa. Material overhead also rises with variety to cover many parts that have

to be ordered based on forecasts.

Forecasts also get substantially worse with variety, thus presenting

manufacturing’s other irreconcilable dilemma: trading-off inventory vs. order
response time. This can either be good if the needed variation happens to be in

stock but bad enough to thwart a product family strategy if customers have to wait

for the next batch or if scheduled production is interrupted with expensive emer-

gency runs with very high setup charges (the opening scene in Eli Goldratt’s classic

industrial novel, The Goal (Goldratt 1992)). Since product families would be at the

high end of the variety curve, more flexible operations will be necessary for product

families.

23 Building, Supplying, and Designing Product Families 591

23.2.2 The Value of Building Low-Cost Family
Variation Quickly

Building and shipping product family variations quickly bring many benefits:

• Capturing more orders when the purchasing decision is influenced by fast

delivery

• Avoiding delivery delays from inventory outages

• Increasing customer satisfaction, loyalty, and reorders

• Getting revenue back early

• Building at low cost and offering fast delivery will be an unbeatable competitive

advantage

23.3 How to Build Product Families Flexibly

Using some of the following methodologies will enable a manufacturer to quickly

build any product in a product family. Utilizing all of these methodologies will

enable build them on-demand and shipping them the same day (Anderson 2008,

Chap. 8).

Most companies build products in batches or lots, which are scheduled, based on

forecasts, after all the ordered parts and materials arrive. Then, the finished products

are placed in a warehouse until they are ordered.

The batch size is determined by the setup times (in which rising values drive the

batch size up) and cost of “carrying” inventory (in which rising costs drive the batch

size down)—another endless trade-off dilemma. Further details follow.

Fig. 23.1 Variety costs as a

function of market variety

592 D.M. Anderson

23.3.1 Setup and Batch Elimination

Setup reduction techniques (Shingo 1985) can shrink the batch size, which will help

moderate the variety situation, but for high-variety situations, setup needs to be

eliminated to achieve “batch size of one” flexibility, which would be ideal for large

product families.

If successive products are to be unique and different, then there cannot be any

significant setup delays to get parts, change dies and fixtures, download programs,

find instructions, or any kind of manual measurements, adjusting settings, or posi-

tioning of parts or fixtures. For a plant to mass-customize or spontaneously build

families of products to order, all production setup must be eliminated, not just the

low-hanging fruit or “as much as you can.” Setup “elimination” is defined as reduced

to the point where it is still feasible to operate efficiently in a batch-size-of-one mode.

Part setup can be eliminated by eliminating kitting and distributing all parts to all

points of use. Positioning setup can be eliminated by versatile jigs and fixtures.

Tooling setup can be eliminated with universal tooling, rapid die changes, or quick-

change inserts. Machining setup can be eliminated with optimal utilization of

programmable CNC machine tools. Programming setup can be eliminated by

downloading machine tool programs on-demand or generating them on-the-fly.

Process variable setup can be eliminated by standardizing on process variables.

Manual setup to find and understand instructions can be eliminated by displaying

instructions on monitors.

23.3.2 Tooling Setup Elimination

First, design the product/processes to eliminate the need for tooling changes for

cutting tools, dies, molds, tool plates, and fixtures. Design tool plates, jigs, and

fixtures to be versatile enough to accept all parts in the family without having to

change tool plates, jigs, and fixtures. The parts or standardized raw material must be

able to be quickly positioned in fixtures without any need for manual positioning or

measuring. Parts may need to be designed with common fixturing geometries.

If that is not possible, develop ways to change tooling rapidly. Clever, universal

die and mold mounting geometries can be developed to facilitate quick changeovers

(Shingo 1996). Conveyors and carousels, which were first applied to moving parts

and products, are now being applied to moving dies and fixtures quickly in and out

of machine tools.

23.3.3 CNC to Eliminate Machining Setup

CNC machine tools are very versatile tools to eliminate setup since many

operations can be done by multi-axis machine tools without having to reposition

the workpiece. CNC machining centers can perform a wide range of operations

23 Building, Supplying, and Designing Product Families 593

such as machining, drilling, tapping, and so forth. The more operations that can

be done in one operation, the fewer times the workpiece needs to be moved and

set up. In fact, a key principle to ensure design for manufacturability (DFM)

(Anderson 2013) and quality is to make sure all critical dimensions are cut in the

same machine tool in the same clamping.

23.3.4 Flow Manufacturing

If setup can be eliminated or reduced enough to eliminate the need to manufacture

in batches, then parts, subassemblies, and products can flow one piece at a time.

One-piece flow assures the throughput and flexibility needed for flexible operations.

U-shaped lines can facilitate feedback, make more people available to help

colleagues nearby, and enhance visual monitoring and correction (visual control.)

23.3.5 Assuring Quality with One-Piece Flow

One-piece flow has distinct advantages for assuring quality. First, flow

manufacturing help to eliminate the possibility that recurring defects may be built

into several batches before being caught at a downstream assembly or inspection

step. Second, people working in flow manufacturing look for any visible deviation

as each part is handed to “its customer” (the next station). Further, if the part does

not fit or work in the next operation, then the feedback will be immediate, leading to

quick rectification of the problem.

23.3.6 Flexible Source Cells

Flexible source cells can make a wide variety of parts on-demand from standard

raw materials without setup delays. For example, a flexible sheet metal source cell

can feed standard sheet metal from a coil and cut any rectangular shape on-demand

and then feed it directly to programmable cutters or be a Kanban source for other

cells. Such a cell could be located in or near the predominant user line, with single

sheet conveyance to other CNC machines or Kanbans.

To feed a flexible source cell from a coil, the cell must standardize on one sheet

metal thickness, material, and grade, which could be the “better” version of all

products that are fed by the cell. Fortunately, coils of standard material can be

bought with confidence; it will be used one way or another.

594 D.M. Anderson

23.3.7 Flexible Assembly

Flexible assembly stations would assembly cell-built parts and subassemblies with

other standard parts and fasteners that are always available at assembly stations.

Assembly instructions would be presented for each product variation on monitors or

a paperwork “traveler” that accompanies a major part, for instance, a frame,

chassis, circuit board, or major off-the-shelf part.

23.4 Spontaneous Supply Chains

Spontaneous supply chains (Anderson 2008, Chap. 7) play a key in product family

strategies to avoid the need to generate forecasts, count inventory on hand, generate

purchase order inputs through MRP (material requirements planning) systems, place

purchase orders, wait for parts to arrive, expedite those that are late, receive (and

maybe inspect) materials, warehouse, group into kits for scheduled production, and

distribute within the plant. Flexible operations can avoid all these costly and time-

consuming steps with a spontaneous supply chain, which is able to pull in standard

materials and parts on-demand. It is highly unlikely that this can be accomplished

merely by asking existing supply chains to deliver all of your existing parts on-demand.

The concepts presented herein are labeled as the resupply of parts and materials

as opposed to procurement or purchasing. This is to emphasize that most of supply

chain management is a resupply function of parts and materials that have been

procured before. Parts and raw materials could be automatically resupplied using

the following techniques (in order of increasing variety).

23.4.1 Steady Flow of Standard Parts

The ultimate scenario for spontaneous resupply is to reduce the number of part or

raw material types within each category to one, in which case steady flows can be

arranged for each one. Ideally, there should only be one type of each material or

part. Then, forecasting multiple types would be unnecessary and “ordering” would

be as simple as matching the tonnage in to the tonnage out; in other words, the

incoming flow of the standard raw materials would be equal to the monthly

consumption of the plant. These will be used one way or another. Multiple types

in each category would allow the same spontaneity if material changeover is quick

and the ratio is constant or predictable.

23.4.2 Linear Cutoff

Raw material variety can be greatly reduced by cutting off linear materials

on-demand at the points of use or the cutoff station could be a Kanban source for

23 Building, Supplying, and Designing Product Families 595

parts resupplied automatically to other points of use. The cutoff machine could be

fully programmable or a worker could position the material up against a program-

mable, or manual, stop. Linear materials include all forms of bar stock, extrusions,

strips, tubing, hose, wire, rope, cable, chain, and so forth.

23.4.3 Material Cut-to-Length/Shape

Raw material can be cut to length or shape on-demand from the longest version or

standard size by programmable CNC equipment, such as laser cutters and screw

machines, by single-axis programmable cutoff machines, or from less-automated

tools based on online instructions.

23.4.4 Min/Max Resupply

The “min/max” technique is an effective way to automatically resupply raw

material like sheet metal, where material is consumed until the stack reaches the

“min” level, usually marked on the rack or wall. This triggers a reorder of the

material to bring it up to the “max” level.

23.4.5 Breadtruck

The easiest and “lowest hanging fruit” in material logistics is the breadtruck

(sometimes called “free-stock”) delivery system for small, inexpensive parts, like

fasteners. Instead of counting on forecasts to trigger an MRP system to generate

purchase orders, all the “jelly bean” parts can be made available in bins at all

the points of use. A local supplier is contracted to simply keep the bins full and

bill the company monthly for what has been used, much like the way bread is

resupplied by the breadtruck to a small market.

23.4.6 Kanban

Kanban is a versatile technique that enables automatic resupply of parts that can be

made in batches or have not-quite-spontaneous delivery times. In Kanban resupply,

parts with limited variety are made, maybe in batches, and resupplied automatically

to replenish parts bins based on part consumption. This is one of the many pull

systems used to “pull” parts into assembly operations. The resupply is automatic

once the pull signal gets to the supplier.

596 D.M. Anderson

There are many simple ways to do this without complex information systems

such as MRP or ERP. The most common is the two-bin system, which has two rows

of parts. Initial assembly starts with all bins full of parts. When the part bin nearest

the worker is depleted, then the full bin behind moves forward. The empty part bin

is then returned to its “source,” which could be the machine that made the part, a

subassembly workstation that assembled the part, or a supplier. The source fills the

bin and returns it to this assembly workstation behind its counterpart which is still

dispensing parts.

The beauty of Kanban resupply is that the system ensures an uninterrupted

supply of parts without forecasts or high-overhead-cost ordering procedures. The

number of parts in a bin is based on the highest expected usage rate and the longest

resupply time. The size of each bin is determined by the bin quantity and size of the

parts. For large parts, some companies use two-truck Kanbans, in which parts are

drawn from one truck trailer while the other trailer goes back to the supplier for

more parts. Alternate systems include Kanban squares for larger parts and a

two-card system where the cards travel (or are faxed or e-mailed) back to the

source instead of the bins. Electronic equivalents can also be utilized. Thus, Kanban

resupply avoids the uncertainty of forecasting, the cost of purchasing, and the cost

and risk of inventory.

Kanban works best for semi-standard parts without too much variety, which

would increase work-in-process (WIP) inventory and clutter assembly stations with

too many part bins. Kanban parts can be made in mass-produced batches. Of course,

the parts manufacturers may have to implement setup and batch size reduction to be

able to economically make batches small enough for Kanban deliveries.

23.4.7 Parts Made On-Demand In-House

In order for flexible manufacturing to work, all parts must be available on-demand.

If there are any key parts that are not suitable for Kanban and no supplier can build

them and ship them quickly enough to your pull signal, then you might have to

bring those operations in-house and build them in flexible manufacturing

operations.

23.4.8 Strategic Stockpiles

Until any of the aforementioned techniques can be implemented, it may be neces-

sary to have strategic stockpiles of certain parts. The assembler could use selective

stockpiles to temporarily compensate for any aspect of the supply chain that cannot

be pulled or for temporary availability problems on standard parts.

23 Building, Supplying, and Designing Product Families 597

23.4.9 Dock-to-Line Deliveries

To be truly agile, incoming parts and materials must flow directly to all points of

use, called dock-to-line, instead of going through the traditional maze, which

includes the receiving department (where they are logged in), the incoming quality

control (IQC) department (where they are inspected), the raw material warehouse

(where they are inventoried), and the kitting department (where they are counted

and grouped into a batch worth of parts).

23.5 Designing Product Families

Existing product designs may not be suitable for product family operations.

The product portfolio may have too many unrelated products that lack any synergy

and, thus, too many different parts and processes. There may be a needless and

crippling proliferation of parts and materials. The specified parts may be too hard to

get quickly. The products and processes may have too many setups designed

in. Quality may not be designed into the product/process which results in

disruptions when failures loop back for correction. The product/process design

may not make optimal use of CNC as most CNC equipment is used in a batch

mode, not flexibly. So if the existing production operations and supply chains

cannot build product families, then they will need to be designed to make the

product family strategy viable.

23.5.1 Developing Products for Families

To be successful at designing products for a product family strategy, multifunc-

tional product development teams must design products in synergistic product

families, design around aggressively standardized parts and raw materials, make

sure specified parts are quickly available, consolidate inflexible parts into very

versatile standardized parts, assure quality by design with concurrently designed

process controls, and concurrently engineer product families and flexible flow-

based processes.

Further, product development teams need to eliminate setup by design by

specifying readily available standard parts and tools, designing versatile fixtures

at each workstation that eliminate setup to locate parts or change fixtures, and

making sure part count does not exceed available tool capacity or space at each

workstation.

Finally, products must be designed to optimize the use of available programma-

ble CNC fabrication and assembly tools, without expensive and time-consuming

setup delays.

598 D.M. Anderson

23.5.2 Designing for No Setup

Product design has a profound effect on setup. Excess proliferation of parts

complicates internal part distribution and may make it impossible to have all

parts available at all points of use. Even a moderate excess of part types will

cause setup delays to distribute, find, and load parts into manual or machine bins.

A serious excess of part types may make it necessary to kit parts for every batch,

which is a significant setup. Designers can eliminate fixturing setup by designing

parts for versatile fixturing which, if not already in place, may have to be concur-

rently designed with the parts.

Designers can eliminate tool change setup by designing parts around common

tools (cutting tools, bending mandrels, punches, etc.), ideally one tool that never has

to be changed. If multiple tools are required, then designers must keep tool variety

well within tool changing capacity for the whole family.

Design for manufacturability (DFM) principles can greatly simplify assembly

(Anderson 2013). Designers need to work with manufacturing engineers to concur-

rently develop simple assembly procedures that can be understood in a few seconds

either on a computer screen or on paper instructions that can be quickly located and

understood.

23.5.3 Designing for CNC

Computer numerically controlled machine tools (CNC) offer vast opportunities to

eliminate machining setup, as discussed in Sect. 23.3.3. CNC machine tools include

metal cutting equipment (mills, lathes, etc.), laser cutters, punch presses, press

brakes, printed circuit board assemblers, and basically any production machine

controlled by a programmable computer. Designers need to understand enough

about CNC operation to use the versatility of CNC to eliminate setup.

23.5.4 Designing Around Standard Parts and Materials

Standardization of parts and material variety reduction are the most important

design contributions to the feasibility of spontaneous supply chains. Aggressive
standardization can enable the easiest technique of spontaneous supply chains:

steady flows of very standardized parts and materials. If there are too many different

parts and material types, then steady flows cannot be arranged because of the

variety and unpredictability of demand. The total cost value of standardization

and its contribution to the product family business model should motivate engineers

and materials organizations to implement such aggressive standardization.

23 Building, Supplying, and Designing Product Families 599

23.5.5 Designing Around Readily Available Parts/Materials

A spontaneous supply chain depends on readily available parts and materials. There-

fore, it is an important aspect of engineers’ jobs to specify parts and materials that are

readily available. Usually, design engineers choose parts based on functionality and

maybe quality, but for product families, availability is equally important.

23.5.6 Design for Manufacturability

Design for manufacturability guidelines can support product family strategy by

minimizing incoming variety of parts and materials, for instance, by combining

right/left-hand parts, combining parts and functions into a single part, specifying

prefinished material, and avoiding arbitrary decisions (Anderson 2013).

23.5.7 Arbitrary Decisions

Successful product development requires that designers proactively design

products for a product family environment using the principles presented herein.

This may be difficult or impossible if designers make arbitrary decisions that

preclude implementation of these principles. All design considerations—

functionality, cost, quality, and flexibility—must be taken into account early.

If they are not, then designers will probably make many arbitrary decisions that

will make it much harder to satisfy omitted design considerations later.

23.6 Ways to Build Variety

There are three ways to easily build variety for a product family strategy: (1)

modular, (2) adjustable, and (3) dimensional means (Anderson 2008, Chap. 9).

The most obvious way, modularity, can create variety by assembling various

combinations of modules. Adjustability is a reversible way to create variety, as

mechanical or electrical adjustments. Dimensionality involves a permanent cutting-

to-fit, mixing, or tailoring. The key to success is to optimize the combination of all

these techniques, not just the obvious modularity. This optimization comes from a

thorough understanding of these techniques, many of which are discussed in the

earlier chapters of this book.

23.6.1 Postponement

Postponement is a mass customization technique that is applicable for certain

products that can have their variety postponed until just before shipping.

600 D.M. Anderson

The factory builds basic “vanilla” platforms and quickly adds “flavors” upon

receipt of order. Postponement is most suitable for product architecture that has a

major platform part can be built without variation and then customized by various

adjustments, configurations, or bolt-on modules.

23.6.2 Extending Product Families with Mass Customization

The phrase mass customization was first coined in the book by Stan Davis (Davis

1987). Inspired by Davis’ book, B. Joseph Pine II then wrote the book, Mass
Customization: The Next Frontier in Business Competition (Pine 1993), which

makes an eloquent case for the paradigm.

Mass customization is the ability to quickly and efficiently build-to-order

customized products. It uses all the techniques presented so far for the build-to-

order of standard products and extends that to custom products. These products can

be customized for individual customers or niche markets, such as versions

optimized for certain market segments, industries, regions, or countries.

Prerequisites for mass customization are acquiring the ability to: (1) quickly and

efficiently assemble products on-demand, as discussed above, and (2) procure

materials and parts spontaneously. So in addition to offering predetermined product

family variations, mass-customized products could be offered, thus offering even

more appeal to customers and business opportunities for the company.

Engineers must concurrently engineer combinations of standard parts and

modules with mass-customized parts and modules. One way to accomplish this is

to design in adjustability, configurability, and programmability to create new

variations based on customer input rather than predefined values by:

1. Creating parametric CAD templates in which CAD drawings are based on

floating dimensions that can accept custom inputs that would “stretch” or

“shrink” various dimensions.

2. Then the customized CAD drawing would be used to generate customized CNC

machine tool programs.

3. The CNC machine tools then make customized parts from “stock” consisting of

standard raw materials.

4. The custom part would then be assembled into the product through standard

interfaces.

23.7 Synergies of Mass Customization

and Product Families

There is a natural synergy between product families built-to-order and mass

customization. They share the same flexible operations and spontaneous supply

chain. Product families and mass customization operations are equally efficient and

very complementary. Adding mass customization to a product family strategy can

23 Building, Supplying, and Designing Product Families 601

push the combined volume over the threshold that may be necessary to justify these

implementations. Thus, mass-customized product families would be more likely to

be approved and succeed.

23.8 Essential Prerequisites

23.8.1 Standardization

A successful product family strategy depends on standardization for several

reasons. First, flexible manufacturing, by definition, depends on all parts being

always available at all points of use, which can only be done for very standard parts.

Too many parts would make it too hard to (a) fit them all into workstations and (b)

assure availability spontaneously. So, if that is the case, supply chain management

would have to order all the parts based on forecasts, which is how parts are ordered

in mass production, which is not flexible and, therefore, not conducive for product

families.

Second, for this availability, at all points of use, every part would have to be:

(a) Versatile enough to support all the variations in the family. If this versatility is

not found off-the-shelf, parts may need to be designed and built to have that

versatility. For instance, molded or cast parts would be designed with all the

features molded or cast in for various variations in the family.

(b) High enough quality and tight enough tolerances to satisfy the most demanding

variation in the family. For example, if some variations need 1 % tolerance

resistors, then that becomes standard tolerance for all resistors, even if other

variations might only need 5 % parts. The author applied this standardization

for entire printed circuit board factories at Intel’s Systems Group because the

money saved in material overhead exceeds any increased part cost.

(c) High enough performance or capacity for all family variations. For instance, if

the most demanding variation in the family needs a 100 W power supply, then

all variations would get a 100 W power supply, rather than struggling to supply

several unusual power supplies for several wattages under 100 W.

(d) Readily available from the source so each standard part selected would be the

most available one within a range of candidates that meet or exceed the above

criteria.

Third, flexible manufacturing must have dependable deliveries from suppliers

and be able to distribute parts to all points of use in flexible factories. This can only

be done with very standard parts.

Fourth, for spontaneous product manufacture on-demand, parts must be

resupplied spontaneously with the spontaneous resupply techniques discussed

earlier. These techniques work best with standard parts, but may not be feasible

at all if incoming part variety is too great.

602 D.M. Anderson

Last, product families will benefit from the cost-effectiveness of standardization

and the feasibility of product families may depend on the efficiencies that include:

• Better purchasing leverage and economy-of-scale savings

• Material overhead that can be 1/10 of nonstandard parts, which reflects savings

in purchasing efforts and encourages engineers to specify standard parts, thus

lowering total cost

• Much less inventory carrying costs for parts and materials

• Less expediting and fewer change orders to solve availability problems

To realize, and get credit for, these benefits, all costs must be quantified as

discussed next.

23.8.2 Total Cost Quantification

For a product family strategy to proceed, quantifying all costs is essential because

most of the cost benefits—and most of the justification—will come from reducing

overhead costs, some of which will be dramatic. The main cost savings will be

inventory carrying costs, which average about 25 % of the inventory value per year

(Anderson 2008, Chap. 2). So for every $4 million of inventory, the company will

have to pay $1 million per year. A good product family strategy will consolidate

many previous inventory SKUs into a few versatile product family platforms, thus

greatly reducing finished goods inventory. Further, if build-to-order principles are

pursued, then product family variations could be built on-demand without any

finished goods inventory at all. Moreover, other significant overhead costs that

can be eliminated (or, at least, greatly reduced) are setup costs, WIP inventory (that

is eliminated by one-piece flow), and material overhead, which can be as low as one

tenth when procuring standard parts.

Furthermore, standardization depends on total cost to (a) quantify the benefits

cited in the above section and (b) ensure engineers embrace standardization. Better

versatility, tolerances, performance, and availability will probably raise the “cost”

of a bill of material line, although it will result in a much greater total cost savings

for a net lower cost. However, if the total cost savings are not quantified, then

designers will resist standardization because it may appear to raise the most visible

cost: parts and materials.

References

Anderson DM (2008) Build-to-order & mass customization. CIM, Cambria, CA

Anderson DM (2013) www.design4manufacturability.com, accessed 30 July 2013

Davis S (1987) Chapter 5: Mass customization. In: Future perfect. Addison-Wesley, Reading, MA

Goldratt EM (1992) The goal, second revised edition. North River, Great Barrington, MA

23 Building, Supplying, and Designing Product Families 603

www.design4manufacturability.com

Pine JB (1993) Mass customization. Harvard Business School Press, Boston, MA

Shingo S (1985) A revolution in manufacturing, the SMED system. Productivity, Portland, OR

Shingo S (1996) A summary of SMED principles for shop floor personnel, Quick changeover for

operators, the SMED system. Productivity, Portland, OR

604 D.M. Anderson

Chapter 24

Modular Function Deployment Applied

to a Cordless Handheld Vacuum

Fredrik Börjesson

Abstract Modular Function Deployment (Erixon, Modular function deployment

– a method for product modularization. PhD thesis, The Royal Institute of Technol-

ogy, Stockholm, 1998) is a structured method used to define modular product

architectures through the integration of customer values, company strategy, and

the product technology. A modular product architecture breaks down a product into

modules that can be directed toward specific, strategic goals where the operations of

the company are optimized within each module individually. A presentation of the

theory of Modular Function Deployment will serve as the groundwork for a case

story based on a cordless handheld vacuum.

24.1 Theory of Modular Function Deployment

In the early 1990s Professor Anders Arnström in the Dept. of Production Engineer-

ing at KTH Royal Institute of Technology (KTH) in Sweden started a program to

promote cell-based automated manufacturing in Swedish industry (Modular Man-

agement 2012a). Research during the program identified that many products were

not designed to be produced using this manufacturing approach (Lange 2012).

Products that were appropriate for cell-based manufacturing were found to be

modular in their physical shape. Consequently, the research team began to develop

a product development procedure that could produce a modular product. The result

was Modular Function Deployment.

Modular Function Deployment and MFD are registered trademarks of Modular Management, Inc.

F. Börjesson (*)

Modular Management USA, Inc., Bloomington, MN 55425, USA

e-mail: fredrik.borjesson@modularmanagement.com

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_24,
Springer Science+Business Media New York 2014

605

mailto:fredrik.borjesson@modularmanagement.com

MFD as a research focus has generated a broad range of articles and continues to

be taught at KTH as a product development method. Another outcome of the

research program was the establishment of the consulting company, Modular

Management, which has specialized in the application of Modular Function

Deployment. Since the inception of the company in 1995, a wide range of product

development efforts have applied MFD including cars, trucks, washing machines,

dishwashers, front entry doors, commercial air handling units, construction equip-

ment, and many more (Dobberfuhl and Lange 2009).

Complexity cost reduction is one of the common objectives of a modularity

program. Unique Part Number Count (PNC) is a leading key performance indicator

used to measure the level of reduction. PNC reductions typically range from 30 %

(Modular Management 2012b, c) to 58 % (Modular Management 2012d) and in

some cases as high as 90 % (Modular Management 2012e). Developing a modular

product architecture also allows the company to offer more end product variants.

Application of MFD at an early phase in product development allows a cross

functional team to collaborate and define target market segments, product features,

performance levels, and launch plans.

As a matrix-based method, Modular Function Deployment manages data effi-

ciently and used software to perform numerical or statistical analyses. Hierarchical

clustering (Romesburg 2004) may be utilized in MFD for the purpose of generating

modules (Stake 2000; Hölttä et al. 2003). Algorithms are used to perform the

clustering and are convenient for large matrices. Manual cluster can be performed

with small and simple matrices.

Quality Function Deployment (QFD) (Akao and Mizuno 1994), Design Property

Matrix (DPM: Nilsson and Erixon 1998), and Module Indication Matrix (MIM:

Erixon 1998) are the three primary matrices utilized by the method to capture the

product and its strategy. These three matrices are interlinked and referred to as

Product Management Map (PMM), illustrated in Fig. 24.1.

Additional matrices, shown in gray in the above figure, can be used to enhance

the result of MFD. Customer Value Rating (CVR) is used when the modular

product is intended to satisfy the needs of multiple market segments each with

unique product preferences. The Interface Matrix documents interactions between

modules and allows for further optimization of the architecture.

Modular Function Deployment consists of five steps, Fig. 24.2. These five steps

are used to capture the voices of the critical stakeholders in the formulation of the

product including the customer, the engineering team, and the strategic initiatives

of the company. Step one focuses on the Voice of Customer by first defining target

market segments. Market segments are differentiated by their needs and

preferences. These needs are quantified as Customer Values and rated by impor-

tance to each segment. Customer Values are transformed into a set of Product

Properties which describes in metric-based terms how the product will meet the

needs of the customer. The impact of Product Properties on Customer Values is

captured in a Quality Function Deployment (QFD).

Voice of Engineering is addressed in the second step of MFD by selecting

technical solutions. A technical solution is a physical entity designed to embody

606 F. Börjesson

Product Properties and carry a required function in the product. To generate the list

of technical solutions, the product is decomposed by utilizing either a top-down or

bottom-up approach. Then the relationship between Product Properties and techni-

cal solutions is documented in a Design Property Matrix (DPM). It is possible that

alternative technical solutions can be used to fulfill a function. In this case the

solutions are evaluated using criteria from QFD, DPM, and internal sources to

determine the appropriate direction for the product architecture.

A unique aspect of the method is the application of Voice of Business in the third

step. Module drivers are the means by which a company’s strategic intent can be

applied to the product structure. Module drivers are assigned to technical solutions

in the Module Indication Matrix (MIM). Data from both DPM and MIM are

statistically clustered to generate conceptual modules.

Module concepts are evaluated in the fourth step of MFD by defining the

interfaces. An interface is a representation of an agreement or contract for an

interaction between modules in a modular product architecture. Types of interfaces

define the various interactions modules can have with each other including attach-

ment, transfer, control and communication, spatial, field, environment, and user.

Interfaces are assigned a design risk and design importance to analyze the priority

of the modules within the system.

Documentation and analysis of the resultant product architecture is the final step.

Design for Manufacturing/Assembly DFMA (Boothroyd Dewhurst, Inc. 2012) and

other techniques are used to evaluate the architecture’s robustness. Typically,

modification and iterations are required. Once complete, the results are reported

as module and interface specifications as well as the Product Management Map.

Fig. 24.1 PMM features three mandatory interlinked matrices

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 607

24.1.1 Quality Function Deployment

The Quality Function Deployment (Akao and Mizuno 1994) used in Modular

Function Deployment is focused as compared to a full House of Quality, or HOQ

(Hauser and Clausing 1988). Figure 24.3 shows a QFD as it appears in MFD.

Customer Values talk about what experience is expected with the product. Product

Properties say how the experience will be achieved in the product.

In addition to using focused matrices, MFD relies on strict definitions to ensure

data is categorized correctly. A market segment is a group of customers that seek

similar Customer Benefits from a product or service. The collection of market

segments provides an explanation to the variation in how individual customers

behave. Customer Benefits are used to derive Customer Values, which are

statements of the experience the customer desires in their use of the product,

formulated as if they were in fact spoken by a customer.

Product Properties are measurable, controllable, and solution-free statements

about the level to which a function is being carried out. Product Properties are defined

in such a way that a method of measurement can be conceived. For example, it is

possible to use a voltmeter to measure the voltage of a battery. Therefore, battery

Fig. 24.2 Modular function deployment (MFD) process

608 F. Börjesson

voltage is a Product Property. The number of batteries, however, is not a Product

Property.While it is possible to measure and control the number of batteries, different

battery chemistries would change the voltage per battery cell. The number of batteries

is dependent on a specific solution and is therefore not solution free.

HOQ features several additional sets of data related to benchmarking as well as

the roof which is used to describe trade-offs between different performance levels.

For example, a higher value for door seal resistance improves the chances of

keeping rain out but makes the door harder to close. MFD does not incorporate

the roof. Instead, it uses mechanisms such as functional disaggregation of technical

solutions for the trade-offs. By removing this information from the QFD, data is

focused on the product. The benefit is a clear understanding of Voice of Customer.

Borjesson and Jiran (2012) offer a full discussion on the differences between HOQ

and the QFD used in MFD. Interested readers are encouraged to visit the website

and download the full article.

24.1.2 Design Property Matrix

Design Property Matrix captures the Voice of Engineering by relating Product

Properties to technical solutions. The relationship creates the link between the

engineering reality and the customer perception defined in the Quality Function

Deployment. Product Properties are the key to linking these concepts.

Fig. 24.3 QFD as used in MFD

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 609

Technical solutions are the physical embodiments of functions needed in the

product. It is possible for a function to be fulfilled by multiple technical solutions.

For example, to generate suction a rotating impeller may be used. Impellers

rotating at high speed tend to be noisy, while small impellers have poor efficiency.

An alternative is a tangential fan which is often used in split-unit type air conditions

because they operate silently. Although tangential fans deliver good flow rates, they

do not produce enough pressure. The selection of a specific technical solution for a

handheld vacuum cleaner involves trade-offs between flow, pressure, and noise.

A concept selection would consider these trade-offs as well as cost, risk, supply

chain issues, and other company-specific requirements to identify the appropriate

technical solution for the modular product architecture. Selection of Product

Properties is explored in Borjesson (2009).

24.1.3 Module Indication Matrix

The Module Indication Matrix is a unique feature of Modular Function Deploy-

ment. By linking technical solutions to one or several of the 12 predefined module

drivers within the matrix, company-specific strategies are incorporated into the

product architecture. Module drivers describe the strategic intent as it relates to

technical solutions or modules. In MFD, there is no direct relation between Cus-

tomer Values and module drivers that allows the specific company strategy to be

applied to the market. The Module Indication Matrix is used to relate company

strategy to technical solutions which are, in turn, related to the specific properties

and experience delivered by the product.

Treacy and Wiersema (1997) described company strategy using three Value

Disciplines, Operational Excellence, Customer Intimacy, and Product Leadership.

Operational Excellence is about delivering a product efficiently at the lowest price.

Customer Intimacy implies adapting the product to give individual customers

exactly what they want. Product Leadership means supplying a product that is

better than the competition. Table 24.1 summarizes the module drivers as they

relate to a Value Discipline.

Readers familiar with Design Structure Matrix, DSM (Steward 1981), will note

that a normal DSM has no features for capturing the company-specific strategy.

Attempts have been made to address this issue. Although multiple matrices can be

used to achieve similar results to Modular Function Deployment’s MIM, the DSM

clustering stage becomes more complicated (Blackenfelt 2001).

24.2 Cordless Handheld Vacuum Case Study

For this case study the Black & Decker DustBuster® has been selected because it

has a medium level of complexity with around 60 technical solutions. Handheld

vacuums are well known, inexpensive to purchase, easy to take apart, and have a

610 F. Börjesson

good range of performance and feature variation which lends itself to a useful

discussion about architecture. DustBuster, in particular, shows signs of modularity.

An exploded view of the DustBuster is shown in Fig. 24.4.

24.2.1 Specifications

Development of a modular product architecture begins with a set of baseline

expectations for the product. These include the strategic intent of the product,

product features, performance levels, required documentation, and an understand-

ing of external relationships with vendors to name a few. Below is the specification

for the modularization of the cordless handheld vacuum.

The product will store energy in rechargeable batteries and use a standard DC

motor to drive a high-speed rotating impeller which, in turn, creates suction. The air

stream gets cleaned by a mechanical filter and the separated debris is stored in a

Table 24.1 Twelve module drivers used in MFD

Value discipline Module driver Refers to

Operational

excellence

Carry-over Part of a product, or a subsystem of a product, that

can be reused

Common unit Part and subfunction that can be used throughout the

entire assortment of products

Process/organization Part that uses a scarce production or development

resource or where there are organizational

reasons for separation

Separate testability Part with a function that may be tested separately

before final assembly

Strategic supplier

available

Part that may be developed and sourced from an

external strategic partner, typically also affording

a reduction of logistical costs

Recycling Part that contains a material that will be separated

before scrapping at product end of life

Customer

intimacy

Technical

specification

Part with a performance-driving attribute that is

varied to meet different customer values

Styling Part that is influenced by trends, fashion, or brand

differentiation in such a way that shape or surface

material characteristics vary

Service/maintenance Part that will simplify service repair if it is easily

detachable

Upgrading Part that may be changed after the initial purchase to

achieve a different level of product performance

Product leadership Technology push Part, or a subsystem, that is likely to go through a

technology shift during its life cycle as a result of

expected, radically changing, customer values

Planned design

change

Part that carries attributes that will be changed

according to a product plan

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 611

container, which is incorporated into the unit. A range of different powers are

planned as well as several different sets of attachments and styling.

Sketches or renderings of the new product, as well as a conceptual definition of

the interfaces, are required. These interfaces are to be standardized. A conceptual

definition of an interface does not include complete documentation in CAD but

rather a set of requirements of the interface itself. The physical manifestations of

these modules, referred to as module variants, are to be defined as well.

The battery supplier can deliver a complete battery pack and has made

investments in automated machinery that can produce battery packs in large

volumes at low cost, as long as the battery pack has the same spatial envelope

and the battery terminals are in the same location. The battery pack simplifies

assembly with no need to deal with individual cells and no quality concerns with

poor solders. The battery packs also come pretested from the supplier.

Finally, the impeller design is to remain unchanged. The motor supplier can ship

the motor with impeller attached to the shaft. Aligning the impeller on the motor

shaft requires a special machine. There are no plans to shift this capability in house

because the additional cost of getting the impeller pre-mounted on the shaft is

marginal.

24.2.2 Market Segments

Market segmentation is not a uniformly understood concept. At many companies,

market segments are based solely on consumer attitudes, demographics, or simply a

reflection of the range of applications to which a product is sold. It is difficult to

translate segments like these into unique and broad Customer Value Ratings.

Customer needs-based market segments are required to perform a successful

MFD because they describe the variation in the benefits customers seek from the

Fig. 24.4 Exploded view of the 12 V unit

612 F. Börjesson

product. When market segments are based on the merits customers are seeking from

a product, the translation becomes clear and precise. The cordless handheld vacuum

architecture is based on three target market segments.

24.2.2.1 Family Felicia

Felicia buys a handheld cordless vacuum to clean up after the family breakfast.

Felicia has two kids under the age of five. They make a big mess with their cereals

and toast in the morning. Although the ideal might be a wet-and-dry unit to pick up

things like milk-soaked cereal, she wants a dry-only unit. In her experience, the

wet-and-dry needs to be cleaned frequently and Felicia does not want that hassle.

Power has to be sufficient for medium-density particles like small pieces of bread.

She sometimes has food stuck in the sofa so the brush attachment is important. After

about a year, Felicia understands she may have to buy a new unit, but that is okay

provided the price tag is not above $40. She wants the unit to be ready to work for her

when it is needed and appreciates a good run time. Felicia is afraid to provoke the

onset of a dust allergy in any of her kids, so an advanced filter would be nice.

24.2.2.2 Danny Do-It-Yourself

Danny does not have kids so the cordless vacuum he is looking for is intended to

pick up stuff in his shop. He primarily does woodwork, but on occasion there are

metallic fragments. The highest possible suction power is important. Run time is

less important as it generally only takes Danny about 2 min to clean up, well below

the typical 10-min run time of most units. The filter has to be able to resist heavy

particles without breaking. No wet pickup is envisioned. Danny likes high-tech

gadgets, so a rechargeable lithium-ion battery would be appreciated. Alternatively,

a battery he can replace, like the one on his VersaPak screwdriver, would be fine.

He is not overly sensitive to price and is willing to spend up to $80 if the unit fills his

needs. Danny likes cool features like a charge-in-progress indicator and a charge-

complete indicator. His shaver shows remaining run time so that would definitely

be a plus on the handheld vacuum. Long product life really is not that important.

Features that extend the life, such as replaceable batteries, would be.

24.2.2.3 Sophia Student

Sophia is in college and there is a surprising amount of lint on the floor in her room.

Lint is low density so she is looking for a low-cost unit, even if that means it is

weaker. Vertical storage is important and the unit needs to be wall mounted.

Although Sophia certainly would never spill liquids on the floor of her room, she

has heard some of her friends sometimes have that issue. For this reason, a wet-and-

dry capability would be a plus. Unless it drives the price tag up by $10 in which case

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 613

she can just use paper towels. Sophia expects the lifetime of her product to be pretty

much the duration of her college stay. Because the walls in her dorm are thin, she

appreciates a low-noise unit.

24.2.3 Customer Value Rating

Standardization tries to find one product which fits all market segments reasonably

well. Modularization on the other hand generates a range of products that can be

efficiently developed, marketed, produced, and delivered to match the needs of any

given segment as closely as possible. Having established three market segments, it

is necessary to determine where their differences lie and understand what range of

products is required to meet all of their needs.

Customer Value Rating (CVR) documents Customer Value importance for each

of the target market segments. A common set of Customer Values are used across

all segments, but the importance of each value is segment specific. A numerical

scale of 1–5 is used, where 1 is low and 5 is high importance. The advantage of

using a numerical scale is that mathematical operations can be performed to predict

where there is differentiation between market segments.

24.2.4 Quality Function Deployment

A QFD relates Customer Values to Product Properties. QFD implies there is a

direction of cause and effect. A customer’s experience with a product will change as

the goal value of a Product Property is changed. Consider the Customer Value

Powerful Suction. Altering the value of battery voltage changes the customer’s

perception of powerful suction. Therefore, there is a relationship between this

Customer Value and Product Property.

For the purposes of analysis, these relationships are translated into numbers.

A weak relation receives a one, a medium is a three, and a strong gets a nine. No

relation is a zero. The use of a 9/3/1/0 scale is based on project experience from Japan

(Akao and Mizuno 1994). To get definitive results, strong relations required more

emphasis than what a linear scheme of 3/2/1/0 would give. As shown in the legend of

Fig. 24.3, circles with three levels of shading are used to indicate the strength of the

relation. Figure 24.5 shows a complete QFD for the cordless handheld vacuum.

24.2.5 Design Property Matrix

The Design Property Matrix (DPM) is the Voice of Engineering. DPM relates the

technical solutions needed to fulfill a Function to the Product Properties used to

614 F. Börjesson

Fig. 24.5 QFD for cordless hand vacuum

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 615

quantify those functions. The generation and selection of technical solutions can be

done using either a top-down or bottom-up approach. For completely new products

or where there is a high innovation content, a top-down function-means tree is the

preferred tool.

Roughly 80 % of all projects are a redesign of existing products where the goal is

to achieve incremental improvements such as a lower material cost, new features,

or improved styling. In these cases, technical solutions may be generated using a

bottom-up approach. This lists the technical solutions of several products which

cover the scope of the new modular product architecture.

The level of decomposition of the technical solutions needs to be sufficient such

that the modules are not predetermined by previous design or bias. The technical

solutions of the cordless handheld vacuum are shown in Fig. 24.4. The graphic shows

battery pack as a single technical solution. However, the results of the CVR and QFD

indicate that battery voltage needs to vary. To achieve this level of resolution the

battery pack needs to be decomposed to the individual battery cell, terminal

connectors, soldered leads, and an enclosure. Conversely there is no reason to decom-

pose the electrical motor into rotor, stator, brush, bearing, shaft, etc. Strategically, the

motor is a purchased component which is being supplied by a preferred vendor.

24.2.6 Module Indication Matrix

The MIM assigned the company-specific strategy to the technical solutions

selected. With only 12 predefined module drivers, it may be hard to conceive a

company-specific strategy. As each of the drivers can be applied on individual

technical solutions, the number of combinations is astronomical. Since the drivers

are generic a specific definition can be used to develop a company-specific applica-

tion. For example, Process/Organization is used to protect scarce resources. In a

company that makes vacuum cleaners, that could be competence in the area of

computational fluid dynamics (CFD). This analysis requires software licenses,

which may be limited within the organization. In other cases, Process/Organization

can be a reference to a production process which is capital or know-how intensive.

Such processes benefit from technical solutions with these requirements being

collected into a single module.

Module Indication Matrix is scored with the mind-set that each technical solu-

tion has at most one strong primary driver and perhaps a weaker secondary driver.

Consider the battery. Since battery voltage needs to change, it would be reasonable

to put a strong score on Technical Specification to document this strategy.

There is an interaction between the MIM scoring and the concept selections,

because in the end, they must be consistent. If it has been decided that a single DC

motor covers the entire voltage range from 7.2 V up to 16.8 V, the motor is a

common unit. If two different motors are required to cover the voltage range, the

motor would be Technical Specification.

616 F. Börjesson

Styling is used to indicate technical solutions that get used to create visual

differentiation between models. All the buttons are styled, as is the styling handle

and escutcheon. The dustbin is color matched, so that it might carry styling as a

secondary driver. The styling driver is only applied for something that requires

variance in the styling.

A key strategic decision is whether the handheld unit has a consumer replaceable

battery. If the consumer is able to purchase the battery pack and replace it, then

removing the battery has to be easy and foolproof. Prior business experience has

shown this was not profitable. Therefore, the planned architecture will not support a

battery pack that is serviceable. As a result, the Service/Maintenance module driver

will not be applied.

24.2.7 Module Generation

To generate modules, a statistical tool called hierarchical clustering is applied to the

MFD data. It is possible to cluster only the DPM and then examine the clusters

generated to determine if the module drivers are compatible within the clusters.

Alternatively, one can cluster with regard to DPM and MIM at the same time.

Hierarchical clustering looks as scoring patterns and places items with similar

patterns into groups. Two or more groups may cluster into a bigger group. The

groups and groups of groups form a hierarchy.

Hierarchical clustering (Romesburg 2004) is generally supported by statistical

software packages such as SPSS (SPSS 2010), JMP (SAS 2012), and Minitab

(Minitab 2012). The output of hierarchical clustering can be shown in many

different ways. A useful and visual representation is the dendrogram. A dendrogram

of DPM and MIM is shown in Fig. 24.6.

The vertical line has been drawn in a place intersecting the dendrogram to

indicate 21 potential modules. The process of determining the appropriate number

of modules is not discussed in this chapter.

The proposed modules, as predicted by the hierarchical clustering and displayed

in the dendrogram, are usually different from what was expected. In some cases, the

modules might be geometrically difficult to realize because technical solutions are

far apart or not connected by anything in particular. When that is the case, the merits

of the new structure must be balanced against the difficulty of creating a physical

design that allows the technical solutions to be part of the same module.

24.2.8 Conceptual Modules

Clustering predicts the conceptual modules. A conceptual module is a cluster of

technical solutions that have some justification for being considered a module be it

a strong module driver score, strong Product Property score, or both. A conceptual

module can lead to a product innovation so an open mind and time for reflection

are required.

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 617

Fig. 24.6 Dendrogram indicating 21 modules

618 F. Börjesson

The power module consists of electric motor and rechargeable battery cells. The

motor was scored as voltage dependent, which would indicate the motor and battery

create a module. However, the MIM scoring indicates the battery has to be

separated for recycling, so we will deal with them as two separate modules.

The charge module is highlighted in Fig. 24.7. This module has either a rectifier

circuit for NiCd/NiMH batteries or a charge controller for the lithium batteries. The

Fig. 24.7 PMM documents the logic of the architecture

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 619

charge module based on a simple rectifier and resistor is of very low cost and

reduces battery life because the circuit keeps pushing charge into the battery even

when it is full. A charge controller can charge at a high current and turn off charge

completely when the battery is full. This extends battery life but costs a bit more.

Charge controller is mandatory for lithium batteries but optional for NiCd/NiMH

batteries. The need to protect from overcharge is the Product Property that drives

the variation on this module.

On wet units, the liquid separator replaces the filter media. Liquid separator and

filter media interface the same way to the dirt bowl or the filter holder. Future

variants of the separation module may be needed to achieve HEPA rating as it is

relevant for a segment of dust-sensitive consumers.

The dirt bowl can be offered in transparent or nontransparent versions. As long

as the interfaces to the suction unit and the nozzle are kept stable, the dirt bowl

could conceivably be offered in different volumes by allowing it to grow longer.

A longer dirt bowl incurs a slightly additional pressure drop which reduces pickup

capability, so that must be considered when bowl volume is selected.

All the components changed to achieve a different styling are focused in the

styling devices module. It is possible the escutcheon and styling handle make a

single geometrical part. Buttons need to move to be useful. They could be allowed

to move within a constrained space, allowing the styling devices module to be dealt

with conveniently as one piece during assembly.

To improve readability the Product Management Map (PMM) can be sorted in

the sequence determined by the dendrogram and color coded as shown in Fig. 24.6.

A filtered version of the PMM is shown in Fig. 24.7. A filtered PMM is one where a

few modules are selected and only the related technical solutions, Product

Properties, and Customer Values are shown.

24.3 Modular Launch Planning

Once Modular Function Deployment has defined a modular product architecture,

product launch planning can begin. A famous example of product launch planning is

the Sony Handycam study by Sanchez (1991), to be described further in Sanchez

(forthcoming). Figure 24.8 depicts the development plans for the Sony Handycam

range of handheld video cameras. Sony managed to launch a new model on average

every 6 months and stay ahead of competitors with this launch plan. The Handycam

platform which came out in 1985 was not hampered by the limitations of a legacy

platform.

Two of the module drivers relate directly to product launch planning, Technology

Push and Planned Design Change. Technology Push is when the impetus for change

comes from outside the organization in the form of new technologies that must

be incorporated. Planned Design Change is the internally driven desire to change

performance.

620 F. Börjesson

Digital cameras are a good example of Technology Push. A fine consumer

SLR camera might have 24 megapixels in 2012, but in 2013, high-end consumer

cameras will likely need 36 megapixels to compete. It is possible for a company

to manufacture digital cameras without also manufacturing the charge-coupled

device (CCD). The CCD is purchased from a CCD manufacturer which controls

the technology. So the Technology Push comes from the makers of the CCDs.

To enable this strategy, an interface capable of reading CCD signals from higher

resolution circuits is reserved, minimizing the need for change for the

improved CCD.

Figure 24.9 shows the modular launch plan for the handheld vacuum cleaner. In

the initial launch, a product specified for each of the three global market segments is

Fig. 24.8 Sony Handycam was improved on average every 6 months (# Ron Sanchez 1991),

reprinted with permission

First
Launch

Current
Launch

Future
Launch

3 new

4 new
2 existing
1 retired

2 new
4 existing
2 retired

New world product
- 14.4V NiCd
- Advanced nozzle
- Filter protector
- Light blue

New world product
- 15.6V NiCd
- Advanced nozzle
- Washable filter
- Purple

New world product
- 9.6V NiCd
- Integrated nozzle
- Elastomeric flapper
- Orchid

New world product
- 9.6V NiCd
- Liquid separator
- Turquoise

Update for NA & EUR
- 14.4 V Li-Ion w/stand
- Rotating nozzle & brush
- Green shell w/blue LED

New for NA & EUR
- 12V NiCd
- Advanced vortex
- Detachable nozzle
- Purple

Update for world
- Same battery
- Rotating nozzle & brush
- Blue

Update for world
- Same battery
- HEPA/aroma filter
- Carryover appearance

Update for NA & EUR
- 18 V Li-Ion
- Black painted shell
- Long-life filter

Danny Do-it-yourself Felicia Family Sophia Student

reuse config w/lower voltage

re
us

e
no

zz
le

Fig. 24.9 A product launch plan for cordless handheld vacuum

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 621

included. In the second launch phase, only two of the original three products will be

available to market. Felicia’s 15.6 V NiCd product will be reconfigured using the

same battery but updated with a rotating nozzle and brush and a new blue color.

Also, three new products will be launched. In the final launch wave, four of the

current products will remain with two additional products being made available for

Danny and Felicia. Both of these seemingly new products are reconfigurations of

existing products that are being taken off the market.

Even without a modular product architecture, one could still do product launch

planning. However, every new launch may require significant redesign. This

consumes resources, time, cost, etc. Companies are often poor at product launch

planning. Plans rarely extend beyond 2 years and changes are very reactive, driven

by what competitors do, and not proactive. Modular product architecture enables

proactive product launch planning.

24.4 Concluding Remarks

Modular Function Deployment is a structured method used to define modular

product architectures by integrating Voice of Customer, Engineering, and Com-

pany. Each of these voices impact the structure of the resultant modular product

architecture. Segmentation of the market and use of a focused QFD enable Voice of

Customer. This voice is transformed into the Voice of Engineering by selecting and

documenting the necessary technology required to meet the market needs.

Inclusion of strategic intent is a feature that differentiates MFD from other

product architecture development methods. Including Voice of Company helps a

business to place their product within a market as well as to have the product reflect

the strategic position of the organization.

Capturing this information within a Product Management Map allows for

iterations throughout the lifetime of the product platform. It also reminds the

business what the intent of the architecture was and what trade-off decisions

were made to build the architecture. This documentation helps for governance of

the architecture to ensure it does not erode over time.

As seen with the application of Modular Function Deployment to the

DustBuster, developing an architecture is not a trivial task. Cross functional input

is needed to have an architecture that is acceptable to each of the functions within

an organization. By setting up this framework as the first step in the product

development process will reap benefits for years.

Acknowledgments The author wishes to thank his colleagues at Modular Management USA,

Inc., who patiently provided feedback on several iterations of this chapter.

622 F. Börjesson

References

Akao Y, Mizuno S (1994) The customer-driven approach to quality planning and development.

Asian Productivity Organization, Tokyo

Blackenfelt M (2001) Managing complexity by product modularisation, TRITA-MMK 2001:1,

ISSN 1400-1179, ISRN KTH/MMK/R–01/1–SE. Doctoral Thesis, Department of Machine

Design, Royal Institute of Technology, Stockholm, Sweden

Boothroyd Dewhurst, Inc. (2012) Company information downloaded on 20 July 2012. http://www.

dfma.com/

Borjesson F (2009) Improved output in modular function deployment using heuristics. In:

Proceedings of the 17th international conference on engineering design (ICED ’09),

vol 4, Stanford, pp 1-12. ISBN:9-781904-670087

Borjesson F, Jiran S (2012) Modular Function Deployment® Concepts: QFD. http://

modularmanagement.com/publications/articles, downloaded on 26 Nov 2012

Dobberfuhl A, Lange MW (2009) Interfaces per module is there an ideal number? In: Proceedings

of the ASME 2009 international design engineering technical conferences & computers and

information in engineering conference IDETC/CIE 2009, Aug 30 – Sept 2, San Diego, CA,

DETC2009-86872

Erixon G (1998) Modular function deployment – a method for product modularisation. PhD thesis,

The Royal Institute of Technology, Stockholm

Hauser JR, Clausing D (1988) The house of quality. The Harvard Business Review, May–June,

no 3, pp 63–73

Hölttä K, Tang V, Seering WP (2003) Modularizing product architectures using dendrograms. In:

Proceedings of international conference on engineering design, August 19–21, Stockholm,

Sweden

Lange MWL (2012) Personal communication

Minitab (2012) Company information downloaded on 20 July 2012. http://www.minitab.com

Modular Management (2012a) Interview with MFD founders Dr. Gunnar Erixon, Mr. Alex von

Yxkull, and Mr. Arne Erlandsson, personal communication

Modular Management (2012b) Case “Dynapac”. http://modularmanagement.com

Modular Management (2012c) Case “Esab”. http://modularmanagement.com

Modular Management (2012d) Case “Trane”. http://modularmanagement.com

Modular Management (2012e) Case “MTS”. http://modularmanagement.com

Nilsson P, Erixon G (1998) The chart of modular function deployment. In: Proceedings of 4th

workshop on product structuring, Delft University of Technology, Delft, The Netherlands

Romesburg HC (2004) Cluster analysis for researchers. Lulu, Raleigh, NC. ISBN

978-1411606173

Sanchez RA (1991) Strategic flexibility, real options, and product-based strategy. PhD disserta-

tion, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/13205

Sanchez R (forthcoming) Modularity: strategy, organization, and knowledge management. Oxford

University Press, Oxford

SAS (2012) Company information downloaded on 20 July 2012. http://www.jmp.com

SPSS (2010) SPSS 12.0. http://www.spss.com/

Stake RB (2000) Using cluster analysis to support the generation of modular concepts in the

MFD-method. In: International CIRP manufacturing systems seminar, June 5–7, Stockholm,

Sweden

Steward DT (1981) The design structure system: a method for managing the design of complex

systems. IEEE Trans Eng Manag 28(3):71–74, ISSN:0018-9391

Treacy M, Wiersema F (1997) The discipline of market leaders: choose your customers, narrow

your focus, dominate your market. Addison-Wesley, Reading, MA. ISBN 978-0201407198

24 Modular Function Deployment Applied to a Cordless Handheld Vacuum 623

http://www.dfma.com/
http://www.dfma.com/
http://modularmanagement.com/publications/articles
http://modularmanagement.com/publications/articles
http://www.minitab.com/
http://modularmanagement.com/
http://modularmanagement.com/
http://modularmanagement.com/
http://modularmanagement.com/
http://hdl.handle.net/1721.1/13205
http://www.jmp.com/
http://www.spss.com/

Chapter 25

Optimal Commonality Decisions in Multiple

Ship Classes

Michael J. Corl, Michael G. Parsons, and Michael Kokkolaras

Abstract A methodology is presented for the determination of the Pareto optimal

choice of components and elements to make common between two different classes

of military vessels. The use of commonality can produce fleet-wide savings in

component purchasing, training, spare parts, vessel construction, etc. The method-

ology presented here determines the optimal commonality decision and designs

the vessel classes to maximize the mission performance per average acquisition

cost of each vessel class and the total fleet saving achieved by the commonality.

A customized evolutionary algorithm is used to determine the resulting discrete

Pareto surface. The methodology is illustrated by its application to the design of two

ship classes to perform the specific missions of the US Coast Guard’s National

Security Cutter and Offshore Patrol Cutter. The results show that the methodology

is effective and that not all commonality choices produce a net savings.

25.1 Introduction

Simpson provides an extensive survey of efforts to develop rational, analytical

methods for the definition of platforms within product family design (Simpson

2004). Most of the literature involving methodologies for and applications of

product family design focus on products that are manufactured in large quantities,

M.J. Corl

CDR, U.S.C.G., U.S. Coast Guard Academy, New London, CT, USA

M.G. Parsons (*)

University of Michigan, Ann Arbor, MI, USA

e-mail: parsons@umich.edu

M. Kokkolaras

McGill University, Montreal, QC, Canada

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_25,
Springer Science+Business Media New York 2014

625

mailto:parsons@umich.edu

such as hand tools and automobiles (Gonzalez-Zugasti and Otto 2000;

Gonzalez-Zugasti et al. 2000; Simpson et al. 2001, 2005; Messac et al. 2002;

Nayak et al. 2002; Fellini et al. 2004, 2005, 2006; Fujita and Yoshida 2004).

This chapter focuses on the development and application of product family

methods for the public procurement of complex military products that are typically

manufactured in very small numbers. This difference in the quantity manufactured

changes the way the product value is modeled and optimized. Moreover, the

savings that will result from the use of a platform are explicitly considered since

not all commonality decisions will result in an overall savings.

The application area forwhich thismethodologywas developed and tested is optimal

commonality decisions in multiple ship classes (Corl 2007; Corl et al. 2007a, b;

Parsons 2009). In ship design, common hull blocks, main engines, engine

rooms, ship service electrical generators, sensors, and weapons can be used to provide

commonality across multiple ship class variants. Commonality within multiple ship

classes can save money through larger bulk procurements of components, learning

during production leading to reductions in the required man-hours, reduced spare

part procurement and storage, consolidated and reduced training, etc. This must be

introduced, however, with an acceptable loss of performance compared to the use of

the optimal design developed for each class individually. Military ships are generally

designed today to maximize their mission effectiveness without systematic consider-

ation of the detailed design of other ships in the fleet; an exception being compatible

communications and weapons control.

The test application utilizes the specific missions of the US Coast Guard’s high

and medium endurance cutter fleets that include the Maritime Security Cutter Large

(WMSL), formerly the National Security Cutter (NSC), and the Maritime Security

Cutter Medium (WMSM), formerly known as the Offshore Patrol Cutter (OPC), as

shown in the conceptual images of Fig. 25.1. The first NSC was actually launched in

September 2007 and the OPC is being designed as of 2012. Table 25.1 shows the

approximate design characteristics of both ships (USCG website 2006). The initial

mission requirements for these two classes of ships were used in the research

described here to examine the validity of the optimization methodology. This

approach was used for academic methodology development only and was not

intended to be a comparison to US Coast Guard design work for either the NSC

or the OPC.

Fig. 25.1 National Security Cutter (left) and Offshore Patrol Cutter (right)

626 M.J. Corl et al.

25.2 Problem Formulation

The commonality optimization is approached by formulating and solving a multi-

objective optimization using three-objective functions:

f1ðx1; xCÞ ¼ ðOverall NSC Mission EffectivenessÞ=ðAve: NSC Acquisition CostÞ
(25.1)

f2ðx2; xCÞ ¼ ðOverall OPC Mission EffectivenessÞ=ðAve: OPC Acquisition CostÞ
(25.2)

f3ðx1; x2; xCÞ ¼ Net Fleet Savings due to Commonality (25.3)

The objective functions f1 and f2 maximize the ratio of the individual mission

effectiveness to average acquisition cost for the two cutter classes, respectively.

The objective function f3 is the total fleet savings realized through the use of the

commonality. The ship design synthesis models used within the evaluation of f1 and
f2 include the relationships among the independent ship design variables and the

many dependent variables necessary to define a preliminary ship design as well as

Table 25.1 Approximate characteristics of US Coast Guard’s vessels

Characteristics NSC OPC

Number of cutters 8 25

Length overall 127.4 m (4180) Estimate 106.7 m (3500)
Maximum beam 16.46 m (540) Estimate 15.54 m (510)
Navigational draft 6.4 m (210) Estimate 6.4 m (210)
Displacement 4,368.3 t (4,300 LT) Estimate 3,047.6 t (3,000 LT)

Sprint speed 28 kts 26.5 kts

Sprint speed range 2,600 nm 1,550 nm

Sprint speed endurance 3.91 days (94 h) 2.5 days (60 h)

Economical speed 8 kts 9 kts

Economical speed range 12,000 nm 9,000 nm

Endurance 60 days 45 days

Propulsion plant 2 diesels, 1 gas turbine 4 main diesel engines

Bow thruster Yes Yes

Gun for weapon system 57 mm gun 57 mm gun

Gunfire control Mk-160/Mk 46/SPQ-9B Mk-160/Mk 46/SPQ-9B

Operating days away from port 230 230

Mission days/year 200–220 200–220

Berthing capacity limit 148 106

Number of helicopter hangars 2 2

25 Optimal Commonality Decisions in Multiple Ship Classes 627

many design constraints imposed by physics, sound naval architecture practice, and

the customer. The design variables are as follows:

x1 ¼ NSC mission design independent variables

x2 ¼ OPC mission design independent variables

xC ¼ commonality definition variables

Multi-objective fuzzy optimization is used to solve the problem. In fuzzy

optimization, fuzzy membership functions or fuzzy utilities 0 � U(y) � 1 are

defined for each criterion or constraint. They represent the degree to which some

requirement is satisfied. Each independent variable y is selected to represent a

design aspect appropriately. A typical fuzzy utility, as might be used to express a

requirement for ship speed to accomplish a particular mission, is shown in Fig. 25.2.

The region with U(y) ¼ 0 is clearly unacceptable to the designer, while the region

with U(y) ¼ 1 is fully acceptable. The fuzzy region between the minimum accept-

able threshold y‘ and the design goal or target yu yields a fuzzy quantity value

between 0 and 1. The fuzzy transition could be developed by design judgment or

from expert opinion using the analytical hierarchy process (Saaty 1996) or similar

methods (Ayyub 2002).

If each design goal and constraint is expressed by an appropriate utility function

Ui(x) that depends on the design choices x, a fuzzy optimum, using minimum

correlation inference (Kosko 1992), is given by the maximization of the optimiza-

tion criterion (objective function) or total utility U(Ui(x)):

U� ¼ max
x

UðUiðxÞÞ ¼ max
x

½min
i

ðUiðxÞÞ� (25.4)

Minimum correlation inference corresponds to an “AND” conjunction where

each of the goals and constraints must be met. This seeks the design x that

maximizes the worst (minimum) satisfaction of any of the applicable goals

and constraints i. This approach yields a multi-objective compromise among all

of the conflicting goals and constraints and treats them all in a similar manner.

It has the search advantage that there can always be a feasible solution that can

be improved.

Fig. 25.2 A typical design

requirement fuzzy utilityU(y)

628 M.J. Corl et al.

25.2.1 Mission Effectiveness/Cost Objectives

For f1(x1, xC) and f2(x2, xC), the ratio of overall mission effectiveness to average

acquisition cost for vessel i is given by

fi ¼ ½Performance=Cost�i ¼
X
j

MPij min
k

½UijkðykÞ�=Costi (25.5)

The vessel overall mission effectiveness (OME) is modeled similar to Brown

and Salcedo (2003). The overall mission effectiveness of the OPC is shown as a

hierarchy in Fig. 25.3. The OPC has four missions j as shown, and the MPij are the

mission profile percent time each vessel i will spend on its mission j. The missions

of the vessel classes and the relatedMPij were taken from US Coast Guard planning

(USCG internal, USCG 1995). The NSC and OPC missions both include National

Defense, Drug Interdiction, and Living Marine Resources (LMR) missions. The

OPC also performs USCG nomonelarure used, while the NSC also performs

additional General Defense operations in support of the US Navy.

The ability of each ship i to successfully accomplish each mission j is assumed to

depend upon k performance attributes yk. The contribution of each performance

attribute yk of ship i to the success of its mission j is characterized by a fuzzy

membership function or fuzzy utility 0 � Uijk(yk) � 1. The overall mission effec-

tiveness is obtained by minimum correlation inference. The Costi is the average

acquisition cost of ship i. The first two objectives are written as benefit/cost

ratios so that any overdesign caused by the use of commonality will be penalized

as wasteful.

For illustration, the effectiveness of the two vessel classes to perform their

missions is assumed to be dependent on the following attributes: maximum ship

speed, number of helicopters carried, weapon systems, and endurance range. The

fuzzy utilities assumed for the two vessel classes for the Drug Interdiction Mission

are shown in Fig. 25.4.

Fig. 25.3 Overall mission effectiveness hierarchy for OPC

25 Optimal Commonality Decisions in Multiple Ship Classes 629

25.2.2 Net Fleet Savings Objective

The net fleet savings objective f3(x1, x2, xC) aggregates the savings in all fleet-wide
costs resulting from the use of commonality defined by xC. To validate the

methodology, these savings were limited here to those resulting from larger bulk

purchases of components and savings from the construction learning curve when

more work of the same type is performed. The bulk purchase models were linear

with respect to the number of common components purchased up to some assumed

percentage reduction (5–15 %) for the maximum number possible (for 33 total

vessels).

A typical ship construction labor man-hours learning curve for a learning or

experience rate of 0.95 is shown in Fig. 25.5. This learning rate results in the labor

man-hours dropping by 5 % every time the number of units constructed doubles.

This effect is important where only a small number of units are constructed.

Observed shipbuilding learning rates have been as high as 0.80. A conservative

Fig. 25.4 Fuzzy utilities for drug interdiction missions (Corl et al. 2007b)

630 M.J. Corl et al.

rate of 0.95 is assumed here. The global effect of commonality on the cost of the

entire fleet of ships involving the 8 NSC mission design vessels and 25 OPC

mission design vessels is used.

25.2.3 Design Variables

The ship class design variables x1 and x2 include the limited number of independent

variables required to define a consistent and feasible design within the ship synthe-

sis model described below.

The commonality variables xC contain an additional set of integers that specify

whether a particular component will not be constrained to be common (0) or if one

of its options (1, . . ., n) will be required to be common between both ship classes. If

a given component is designated as common, the synthesis of both ships will be

constrained to use that component. Each potential commonality component will

have two or three component choices. By varying the number and combinations of

the commonality components, the design space will be populated. Potentially

common components here will be the weapon systems, diesel ship service electrical

generators, diesel cruise engines, the superstructure blocks, and the midship section

hull blocks. The various combinations of these commonality components will be

used to determine which sets of common components will result in Pareto optimal

designs for the NSC mission design and OPC mission design.

Fig. 25.5 Typical ship construction labor learning curve for learning rate 0.95

25 Optimal Commonality Decisions in Multiple Ship Classes 631

25.2.4 Expected Discrete Pareto Front

As the various combinations of commonality are applied to the designs, the

optimization will be repeated to fill out the three-objective Pareto front or Pareto

surface. Figure 25.6 shows a schematic of the expected discrete Pareto front that

will be obtained for this multi-objective optimization. The mission performance/

cost vertical base plane is the Pareto front that would result if a two-objective

optimization was performed on f1 and f2 for the single ship design that would best

perform both missions. The discrete Pareto surface coming out from this base plane

defines the solution to the three-objective problem of interest here.

Every set of commonality components ‘ will result in a solution for an OPC

mission design A‘ and an NSC mission design B‘ that will be located on a line of

commonality. If a single ship were being considered for both missions, this line

would be the two-objective Pareto front for NSC mission design performance/cost

and OPC mission design performance/cost. For specific commonalities, Ship A1 and

Ship B1 might share the NSCmission design’s midship section hull blocks, Ships A2

andB2might share theNSCmission design’smidship section and cruise engines, and

so on. Asmore things become common among the ships, the savings can increase and

the ship designs will tend toward each other on the Pareto surface as more effective-

ness is sacrificed for commonality. Once every item on the ship is determined to be

common, the result will be one design for both missions. This design is shown as

point C in Fig. 25.6. Once every combination of common components is used in the

Fig. 25.6 Expected discrete Pareto front (adapted from Corl 2007)

632 M.J. Corl et al.

optimization, the discrete Pareto front will be fully populated. The Pareto front will

not be continuous because of the discrete nature of the commonality variable. Rather,

the Pareto front will be a collection of discrete points as shown in Fig. 25.6.

25.3 Ship Design Synthesis Model

A ship design synthesis model is a parametric model that produces a fully balanced

and feasible ship design for use in conceptual or preliminary design trade-off

studies and optimization (Parsons 2003). These complex models can have any-

where from a few (5–10) independent design variables to a much larger number of

design variables and design choices at the discretion of the designer. The many ship

characteristics that depend upon these design variables are computed from first

principles or estimated by parametric models derived from past acceptable design

practice. These models define dimensions, hull shape characteristics, weights,

volumes, propulsion power requirements, electrical loads, etc. based upon the

design variables and many related dependent variables. To define a feasible ship,

constraints related to adequate ship stability, operational practicality, regulatory

requirements, and accepted design practices are also included. The US Navy’s

Advanced Surface Ship Estimating Tool (ASSET 2005) is used routinely in early

design trade-off studies for US surface combatants. ASSET is a combination of

first-principle algorithms and regression models based upon historical US combat-

ant ship data.

The feasible, weight- and volume-balanced vessel designs used in this study

were synthesized using an adaptation of the US Coast Guard’s Performance-Based

Cost Model (NSWC Carderock Division 1998), which is used routinely to study the

effects of the choice of 21 design variables on early Coast Guard cutter conceptual

designs. This synthesis tool was developed by the US Navy using components of its

Advanced Surface Ship Evaluation Tool (ASSET 2005) and the Canadian equiva-

lent SHOP5. The related costs are estimated in constant 1998 US dollars using cost

estimating relationships (CERs) based upon the US Coast Guard’s WHEC

378, WMEC 270, WMEC 210, and Great Lakes Icebreaker. The model is capable

of synthesizing frigate-sized, deepwater cutters of over 1,500 metric tons (t) and

providing estimates of the acquisition, operational, and support costs. The engines

and ship service generators included in these designs come from catalogs of

available engine and generator models.

For this optimization, the USCG Performance-Based Cost Model was modified

to reduce the number of inputs to the eight as listed in Table 25.2 using typical

design practices and models internally to obtain the other inputs usually required

from the designer. All ship design constraints needed to ensure a balanced and

feasible design are included internal to the synthesis.

The design variables in Table 25.2 compose x1 and x2 describing the NSC

mission design vessel and the OPC mission design vessel, respectively. The ranges

considered for these variables were roughly �10 % from the values for the actual

25 Optimal Commonality Decisions in Multiple Ship Classes 633

NSC and the OPC designs. The power plants considered were (1) a combined two

cruise diesel engine and two sprint diesel engine (CODAD) plant or (2) a combined

two cruise diesel or one sprint gas turbine (CODOG) plant. Both options have twin

propulsion shafts with mechanical gearing and a controllable pitch propeller. The

weapon suites were (W1) a 46 mm gun, (W2) a 57 mm gun, and (W3) both a 57 mm

gun and a Phalanx close-in weapon system (CIWS).

25.4 Evolutionary Optimization

25.4.1 Overall Optimization Strategy

The multi-criterion optimization was undertaken in two steps. The two-objective

problem involving just f1 and f2 was solved first. This provided the vertical base

plane solution shown schematically in Fig. 25.6. In addition to validating the

problem formulation, modeling, and the basic optimization algorithm, it provided

insight into the fundamental design trade-offs between the NSC and OPC mission

design requirements. This also provided an understanding of what components and

which options to include as candidates for a commonality decision. It is important

to limit this candidate list due to the combinatorial nature of this discrete optimal

decision. The three-objective problem was then undertaken with a specialized

version of the optimization algorithm due to the discrete nature of the final Pareto

surface with the need for only two discrete solutions for each commonality

possibility.

25.4.2 Two-Objective Evolutionary Optimization Method

An evolutionary (real-coded genetic algorithm) optimization process (Goldberg

1989; Michalewicz 1996; Deb 2001; Osyczka 2002) was designed to provide the

Pareto front with a diverse set of solutions. The basic optimization process used to

Table 25.2 Ship design

variables and ranges

(Corl et al. 2007b)

Independent variables Variable range used

Power plant type 1 or 2

Midship coefficient 0.75–0.99

Block coefficient 0.45–0.85

Length 82.3–143.3 m (2700–4700)
Maximum speed 19–31 knots

Range at cruising speed 8,000–14,000 nm

Number of helicopter hangars 1 or 2

Weapons system type 1, 2, or 3

634 M.J. Corl et al.

obtain the two-objective solution involving only f1 and f2 is illustrated in Fig. 25.7.

The details of each portion of this algorithm are described briefly in the following.

The optimization process is a multi-objective evolutionary algorithm based

primarily on Zalek’s work (Zalek et al. 2006; Zalek 2007). Penalty functions for

constraint satisfaction were not needed since all constraints were implemented

within the ship synthesis model. Zalek’s algorithm was based primarily on Deb

(2001) and Zitzler et al. (2003) with some original concepts that were developed for

the specific nature of his work. Many of the procedures used are standard

methodologies in evolutionary algorithms. However, Deb’s influence can be seen

in the nondominance sorting algorithm and in the tournament selection method

used. The use of an archive as an elitism operator was taken from the Strength

Pareto Evolutionary Algorithm (SPEA) work of Zitzler.

The initial population of ships, P0, consists of randomly generated combinations

of the n ¼ 16 independent variables, xji. Each set of parameters is input into the ship

synthesis model and a ship is developed. Not all combinations of inputs will

generate a feasible ship. If a ship is not feasible, a new set of parameters is

developed and synthesized. The process continues until the minimum population

of ships, N, has been created.

The population at any given generation t is set to have a minimum number of

ship variants N. There is no maximum on the number of solutions in the archive.

Fig. 25.7 Two-objective evolutionary optimization algorithm

25 Optimal Commonality Decisions in Multiple Ship Classes 635

By allowing the population to grow without a maximum, the variable space is

searched more efficiently and effectively. If an artificial criterion were used to limit

the size of the population, as done by Zitzler, nondominated solutions may be lost

and never recovered. In order to maintain elitism, the population at t > 0 consists of

the previous generation’s archive and the offspring that are created in the current

generation.

In order to ensure that a wide range of solutions are generated along the entire

Pareto front, solution diversity is analyzed. The diversity measures a given

solution’s distance from its nearest neighbor solutions. Using a method similar to

that utilized by Zalek (2007), the distance to the nearest three neighbors in the

n-dimensional independent variable space is calculated. The average of the three

closest solutions, DRAW, is calculated, normalized by the maximum value of DRAW

for all solutions in the population, and then maximized to ensure solution spreading

along the Pareto front. Using the three nearest neighbors ensures that a solution that

has a single close neighbor will not be penalized. By only using the three nearest

neighbors, a localized diversity is calculated. Identical solutions are not considered

in the calculation of diversity. By eliminating duplicate solutions, the diversity of

the population is more easily maintained. Duplicate solutions run the risk of

dominating the genetic processes and creating additional duplicates.

The archiving of best solutions serves three important purposes. First, it creates

the pool of potential parents for tournament selection and the evolutionary genera-

tion of offspring. Second, it allows for the measurement of how much the Pareto

front is progressing from one generation to the next. Finally, it serves as the elitism

operator for the algorithm. The archive is developed using standard dominance

sorting techniques. Each solution in the population is compared to every other

solution to check for dominance. Dominance occurs when each of the objective

values is not worse than those of the other solutions and at least one objective is

better than that of the other solutions.

The archive is generally made up of the nondominated set of solutions. How-

ever, during the early generations it may consist of lower ranked solutions in order

to reach the minimum number of solutions. As the solutions become more refined,

the number of nondominated solutions increases and eliminates the need to carry

lower ranked solutions in the archive. There is no maximum to the size of the

archive. If the number of solutions on the Pareto front were limited in size, the fine

details of the Pareto front might not become apparent. These might include impor-

tant knuckles or gaps in the front.

The optimization process has two termination conditions. The user can set a

maximum number of generations t*. A second stopping condition becomes active

when the archive becomes stagnant. The solutions in the archive carry markers

which indicate if they have been carried over from previous generations or if they

are newly generated offspring. If 99 % of the solutions from one archive to the next

are the same, the program stops and outputs the final archive.

The archived solutions in A make up the potential parent solutions in the mating

pool. Once the archive has been created, those solutions are compared in a tourna-

ment selection process (Michalewicz 1996; Li and Parsons 1998). In tournament

636 M.J. Corl et al.

selection, archived solutions are randomly paired together. Each pair of solutions is

compared using two tests. The first test asks if either solution dominates the other. If

one solution dominates the other, the dominant solution is placed in the mating

pool. If neither solution dominates, the diversity measure is added to the objective

functions and the solution with the higher sum is selected for the mating pool. In

earlier generations, the first test is more likely to determine which solution in a pair

will become a parent. As the archive is filled entirely with nondominated solutions,

the second test tends to distinguish between the two solutions. In essence, early in

the optimization process, the goal is to generate more nondominated solutions.

Later in the process the goal shifts to creating more diverse solutions.

The optimization process creates a minimum of k child solutions per generation.
As the archive grows beyond its minimum, more child solutions are developed in

proportion to the size of the archive. Arithmetic crossover (Michalewicz 1996) is

applied to two randomly selected parents to create an offspring. The optimization

process also utilizes a mutation operator that allows for a more global search of the

variable space. The mutation is set up similar to Zalek’s work in that the rate of

mutation starts out small with a large mutation magnitude in the earlier generations.

This allows for a broad search of the variable space. As the generations progress

toward the termination condition, the rate of mutation is increased exponentially,

while the mutation magnitude is decreased exponentially. This allows for a more

local search of new design solutions. By searching closer to existing solutions, the

optimization process looks to fill in the gaps between existing solutions to create a

more refined Pareto front.

25.4.3 Three-Objective Discrete Optimization Process

The optimization was adapted to incorporate the commonality variable (string) and

accommodate the discrete nature of the final Pareto surface with the need for only

two discrete solutions for each commonality possibility. The dominance sort was

also modified to include all three design objectives. The complete three-objective

optimization process can be seen in Fig. 25.8. With the reasonable number of

combinations of the possible commonality choices, the commonality choices

were searched by an exhaustive search.

The optimization process for the discrete solution was similar to the one seen in

Fig. 25.7. A few changes were made, however, in order to make this process more

efficient in solving the three-objective problem. The most obvious change is that the

optimization is run for the OPC and NSC mission designs independently. Since

finding only the end points of the two-objective Pareto front is the goal for each

candidate commonality, it is possible to optimize for each objective at higher

precision when performed independently. The dominance sorting and tournament

selection processes are performed using only the respective objective for each

mission ship. This single-objective sorting provides a more efficient search for

25 Optimal Commonality Decisions in Multiple Ship Classes 637

the best OPC mission design and the best NSC mission design for each commonal-

ity string.

In each optimization in which commonality was applied, a fleet savings from the

commonality was calculated. The total fleet savings that results from the use of

commonality in the designs was calculated by summing up each of the applicable

savings associated with each of the common components. The fleet savings for each

pair of ship classes was calculated relative to the vertical base plane pair of ship

classes that were designed with no commonality.

In order to determine which pairs of these designs were on the discrete Pareto

front, another dominance sort was performed. The ships are compared to each other

in pairs. Each pair will have an NSC mission design, an OPC mission design, and

the associated fleet savings. Dominance is determined by comparing the NSC

mission designs using f1, the OPC mission designs using f2, and each pair’s f3.
The solutions that make up the nondominated set of solutions are the final three-

objective discrete Pareto front anticipated in Fig. 25.6.

25.5 Sample Results

For testing and evaluation of the methodology, the commonality design for a fleet of

8 NSC mission design vessels and 25 OPC mission design vessels was undertaken.

Following the overall optimization strategy, the two-objective optimization was

first performed for one ship design to satisfy both the NSC mission requirements

Commonality String,
Ci= xci

Single Criterion Optimization
Process –NSC f1

Archive End points,
i = i+1

Fleet Savings Analysis, f3

Dominance Sort using
f1, f2 and f3

Single Criterion Optimization
Process – OPC f2

Fig. 25.8 Three-objective discrete optimization process

638 M.J. Corl et al.

and the OPC mission requirements. Recall, this is the vertical base plane in

Fig. 25.6. A typical progression of these solutions through 108 generations is

illustrated in Fig. 25.9. The dense line through the center of the figure is the dividing

line between designs with one helicopter hangar (below and to the right, the less

capable OPC end) and two helicopter hangars (above and to the left, the more

demanding NSC end).

The final Pareto front for the two-objective optimization for a single design to do

both missions was studied to establish which choices of weapons, cruise engines,

and ship service diesel generators occurred in the Pareto optimal designs. This was

used to guide which of the many options to include in the commonality study. All

solutions used the two cruise diesel—two sprint diesel CODAD plant type. The

results showed that only two cruise engines (C7 or C9 from the synthesis model

catalog of 13 possible engine choices), three ship service generators (G0, G1, or G3

from the possible 12), and two weapon systems (W1 or W3) were Pareto optimal, as

shown in Fig. 25.10. These cruise engine and ship service generator results were

selected to reduce the scope of the commonality study. It was also noticed that once

the number of helicopter hangars was set, there was very little variation in the

resulting superstructure volume: either a small superstructure (one helicopter han-

gar) or a large superstructure (two helicopter hangars). Also, the number of heli-

copter hangars resulted in little variation in the beam and depth of the hull, with

either a small beam and depth or a larger beam and depth. Thus, common super-

structure blocks (small or large) and common midship section hull blocks (small or

large) were included as commonality options.

The modeling for the commonality was then an integer vector of the form

xC ¼ [0 2 0 1 1]T where the positions indicate the commonality decision for

weapons, cruise diesel engines, ship service diesel generator sets, superstructure

Fig. 25.9 Progression of evolutionary solution toward the Pareto front (Corl et al. 2007b)

25 Optimal Commonality Decisions in Multiple Ship Classes 639

(blocks), and midship section hull blocks, respectively; the zero indicates no

commonality is imposed; and a nonzero entry indicates the index number of the

commonality choice imposed on the designs.

The two-objective evolutionary algorithm was next adapted further to obtain two

separate, higher-quality solutions near the ends of the f1 and f2 base plane Pareto

front, since the end points as shown in Fig. 25.10 were all that was needed. Given

the five possible commonality components (weapons systems, cruise engines,

generators, superstructure, midship hull blocks) and the choices associated for

each (no commonality or a specific commonality), the total number of possible

commonality strings was 4 � 3 � 4 � 3 � 3 ¼ 432. However, some of these had

conflicting requirements. For example, ships with the large superstructure could not

also have the smaller midship hull blocks, and they required the large cruise engines

to make the needed speed.

The three-objective analysis was, therefore, run for the 288 possible feasible

combinations of commonality decisions. As shown in Fig. 25.11 in normalized

objective function space, these results produced three bands of similar designs:

128 NSC mission design vessels with two helicopter hangars, 160 NSC mission

design vessels with one helicopter hangar, and 288 OPC mission design vessels

with one helicopter hangar. Of these results, 129 of the pairs resulted in negative net
fleet savings when more expensive components were being imposed on the 25 less

demanding OPC mission design vessels. This is a common fallacy of much of

previous work on platforms where it is usually assumed that all commonality is

good. Because the optimization criterion used here involves performance/cost and

no increase in the performance utilities occurs with more than the goal level,

overdesign results in a loss in performance/cost.

Fig. 25.10 Natural commonality within the Pareto front solutions

640 M.J. Corl et al.

When the 159 positive net fleet savings commonality pairs were sorted to

determine those nondominated designs that lie on the discrete Pareto surface,

only 20 different commonality combinations remained. Of these there were only

12 uniquely different design pairs from a naval architectural standpoint. These are

as shown in Fig. 25.12 with the baseline, no commonality designs that yield no net

fleet savings (best NSC and best OPC). The design pair NSC15 and OPC15 (using

the 46 mm gun, the smaller cruise engines, the smallest ship service diesel generator

sets, the small superstructure, and the small midship section blocks in common)

yields the greatest overall fleet savings from their commonality. Note, however, that

the NSC15 design has a significant performance loss compared to the baseline

design, primarily from its use of only one helicopter hangar. The NSC18 and

OPC18 designs (using the smallest ship service diesel generator sets and the large

superstructure in common) have the largest net fleet savings before the shift from

two helicopter hangars to one. Thus, they are at a “knee” of the surface and are

particularly attractive designs.

The characteristics of the NSC18/OPC18 pair and the NSC15/OPC15 pair of

designs are summarized in Table 25.3. Note that the NSC15 design has a significant

(52.4 %) performance loss compared to the baseline design, primarily due to its use

of only one helicopter hangar. Note also that the two 15 designs are probably close

enough that it might be better to produce one design for both missions and save

even more by complete commonality. Note that the NSC18/OPC18 pair provides

97 % of the NSC baseline performance, 100 % of the OPC baseline performance,

and still provide 60.7 % of the maximum net fleet savings observed.

Fig. 25.11 Optimization results for a 288 possible commonality combinations

25 Optimal Commonality Decisions in Multiple Ship Classes 641

25.6 Conclusions

The methodology contained in this chapter offers a valuable tool for use in making

optimal commonality decisions for small-volume applications. It provides a logical

procedure for the use of commonality in design while taking into consideration

performance loss, cost, and savings. In much of the commonality literature, there is

a basic assumption that commonality in design hinders the performance of

products, and this is accepted because of the savings associated with using common

parts. It is simply assumed that the use of commonality always results in savings.

Prior to this methodology, the amount of savings was never explicitly quantified.

The sample results in this chapter show that positive savings is not always realized.

Fig. 25.12 Three-objective discrete Pareto surface

Table 25.3 Characteristics for selected Pareto front designs (adapted from Corl et al. 2007b)

Point

L m

(ft)

B m

(ft)

Vmax

kts

kWmax

(SHP)

Vcruise

kts

kWcruise

(SHP)

Range

nm

OPC

Perf.

NSC

Perf

Cost

$mil

Fleet

Savings

$mil

OPC18 107.6

(353)

16.46

(54)

22.0 5,757

(7,720)

18.0 2,895

(3,882)

9,158 100.0 0.314 89.8 45.5

NSC18 121.6

(399)

16.46

(54)

27.9 16,687

(22,377)

18.0 3,585

(4,807)

12,074 100.0 97.0 141.7 45.5

OPC15 91.4

(300)

12.19

(40)

22.2 5,333

(7,152)

18.0 2,537

(3,402)

9,046 89.7 2.95 72.9 75.0

NSC15 92.4

(303)

12.19

(40)

25.5 9,642

(12,930)

18.0 2,767

(3,710)

9,019 89.7 47.6 91.1 75.0

642 M.J. Corl et al.

If poor commonality decisions are made in design, products could both cost more

and perform less.

The mission performance model presented relies on the use of fuzzy utility

values. Performance was determined using the four design characteristics for each

mission area and applying the corresponding fuzzy utility value to each. Studies

were performed which demonstrated the method’s sensitivity to changing these

fuzzy utility values. A designer could easily modify this model to include more

design characteristics or even more mission areas. The fuzzy utilities could also be

replaced with another tool for awarding value to a given design characteristic.

In this chapter, commonality decisions were limited to five components. Each of

these components was integrated into the design in a slightly different manner to

show the versatility of the optimization model. In the sample presented there were a

finite number of commonality options from which to choose. As a result, an

exhaustive search was used to determine which commonality choices were the

best. In this case, the exhaustive search saved computation time. However, if more

choices are available, another evolutionary algorithm could be used to more

efficiently search for the Pareto optimal commonality combinations.

Bulk purchasing and construction learning curves were used in the example to

determine the savings associated with the use of commonality. The savings model

was kept relatively simple. Other forms of savings could be realized as well. These

could include training of personnel, technical design costs, administrative savings,

facility costs, and spare parts. The type of savings and the number of different

factors to consider varies with each product being designed. A designer may choose

to make the savings model very elaborate when information of these other forms of

savings is available, or it may be kept simple as seen in this chapter.

Using the logical methodology presented here will enable a designer to present a

much more complete analysis of commonality decisions in design. Designers can

expand the optimization model in many ways to adapt it to their particular needs.

Regardless of how crude or elaborate it may become, the process shown should be

able to stay very much the same.

Acknowledgments This development of the commonality optimization methodology described

here was possible with academic leave and related support of the US Coast Guard for the lead

author and support from the Office of Naval Research through N00014-03-0983 for all authors.

The authors would like to thank the US Coast Guard for the use of their ship synthesis model and

emphasize that this research is by no means intended to be a comparison to any US Coast Guard

design work for either the OPC or the NSC. The initial mission requirements for the endurance

cutter designs were used for academic purposes only.

References

ASSET (2005) Advanced surface ship evaluation tool. Naval Surface Warfare Center, Carderock

Division, Version 5.2.0

Ayyub BM (2002) Elicitation of expert opinions for uncertainty and risks. CRC, Boca Raton, FL

25 Optimal Commonality Decisions in Multiple Ship Classes 643

Brown A, Salcedo J (2003) Multi-objective optimization in naval ship design. Nav Eng J

115:49–61

Corl MJ (2007) Methodology for optimizing commonality decisions in multiple classes of ships.

Dissertation, University of Michigan

Corl MJ, Kokkolaras M, Parsons MG (2007a) Platform-based design of a family of ships

considering both performance and savings. In: Proceedings of international conference on

engineering design, ICED’07, Paris, France

Corl MJ, Parsons MG, Kokkolaras M (2007b) Methodology for the optimization of commonality

in multiple ship classes. Trans Soc Nav Archit Mar Eng (SNAME) 115:68–93

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

Fellini R, Kokkolaras M, Michelena N, Papalambros PY, Saitou K, Perez-Duarte A, Feynes P

(2004) A sensitivity-based commonality strategy for family products of mild variation with

application to automotive body structures. Struct Multidiscip Optim 27:89–96

Fellini R, Kokkolaras M, Papalambros PY, Perez-Duarte A (2005) Platform selection under

performance loss constraints in optimal design of product families. J Mech Des 127:524–535

Fellini R, Kokkolaras M, Papalambros PY (2006) Quantitative platform selection in optimal

design of product families, with application to automotive engine design. J Eng Des

17:429–446

Fujita K, Yoshida H (2004) Product variety optimization: simultaneously designing module

combination and module attributes. Concur Eng Res Appl 12:105–118

Goldberg DE (1989) Genetic algorithms for search, optimization, and machine learning. Addison-

Wesley, Reading, MA

Gonzalez-Zugasti JP, Otto KN (2000) Modular platform-based product design. In: Proceedings of

the 2000 ASME design engineering technical conference, Baltimore, MD

Gonzalez-Zugasti JP, Otto KN, Baker JD (2000) A method for architecting product platforms. Res

Eng Des 12:61–72

Kosko B (1992) Neural networks and fuzzy systems: a dynamical systems approach to machine

learning. Prentice-Hall, Englewood Cliffs, NJ

Li J, Parsons MG (1998) An improved method for shipbuilding market modeling and forecasting.

Trans Soc Nav Archit Mar Eng 106:157–183

Messac A, Martinez MP, Simpson TW (2002) Effective product family design using physical

programming. Eng Optim 34:245–261

Michalewicz Z (1996) Genetic algorithms + data structures ¼ evolutionary programs. Springer,

Berlin

Naval Surface Warfare Center Carderock Division (1998) User’s guide USCG performance based

cost model

Nayak RW, Chen W, Simpson TW (2002) Variation-based methodology for product family

design. J Eng Optim 34:65–81

Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization.

Physica, Berlin

Parsons MG (2003) Parametric design. In: Lamb T (ed) Ship design and construction. SNAME,

Jersey City, NJ

Parsons MG (2009) Applications of optimization in early ship design. Ship Sci Technol (Rev

Cienc Technol Buques) 5:9–31

Saaty TL (1996) The analytical hierarchy process. RWS, Pittsburgh, PA

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18:3–20

Simpson TW, Maier JRA, Mistree F (2001) Product platform design: method and application. Res

Eng Des 13:2–22

Simpson TW, Siddique Z, Jiao J (eds) (2005) Product platform and product family design:

methods and application. Springer, Berlin

U.S. Coast Guard Internal Documents, various

644 M.J. Corl et al.

U.S. Coast Guard Memorandum (1995) Mission analysis report (MAR) N-001-95 deepwater

missions

U.S. Coast Guard (2006) http://www.uscg.mil/deepwater/system/cuttercomparison. Accessed

15 Dec 2006

Zalek SF (2007) Multicriterion evolutionary optimization of ship hull forms for propulsion and

seakeeping. Dissertation, University of Michigan

Zalek SF, Parsons MG, Papalambros PY (2006) Multi-criteria design optimization of monohull

vessels for propulsion and seakeeping. In: Proceedings of the 9th international marine design

conference, vol 2, pp 533–557

Zitzler E, Laumanns M, Bleuler S (2003) A tutorial on evolutionary multi-objective optimization.

http://citeseer.ist.psu.edu/zitzler03tutorial. Accessed 4 June 2003

25 Optimal Commonality Decisions in Multiple Ship Classes 645

http://www.uscg.mil/deepwater/system/cuttercomparison
http://citeseer.ist.psu.edu/zitzler03tutorial

Chapter 26

A Heuristic Approach to Architectural

Design of Software-Intensive Product

Platforms

Carlos O. Morales

Abstract This chapter introduces a heuristic approach for the analysis,

architecting, and design of software-centric product platforms. The central role of

software architecture is stressed by highlighting its relationship to the analysis of

new product domains. Several case studies are used to illustrate key concepts,

including a more detailed case on the design of an object-oriented application

framework as platform for a family of products that control industrial processing

machines. Case studies and methodology are linked to important software

engineering design principles. At the end of the detailed case study, an approximate

measure of code reuse and its economic impact is presented, which can serve to

support the business case of making the significant investment required by a

software platform for a family of related products. This chapter builds on funda-

mental software engineering concepts introduced in Chap. 21.

26.1 Introduction

Each new generation of high-technology products is smarter and more sophisticated

than the previous one, mainly as a result of their advanced software features. Voice

recognition and synthesis, automated suggestions for newpurchases, smart assistants

that anticipate the user’s intention, devices that learn the user’s preferences and

lifestyle, expert systems that can perform automated diagnoses and classifications, or

predictions of the future cost of airline tickets and stock prices. All of these

technologies are manifestations of the ever-increasing complexity of software.

Software is inherently complex, and its malleability coupled with the sheer

number of degrees of freedom (DOF) of a software system (one DOF per line of

code) makes it a fragile and fertile source of product defects. However, as software

C.O. Morales (*)

Animas Corporation, Johnson & Johnson Medical Devices, 200 Lawrence Drive,

West Chester, PA 19380, USA

e-mail: carlos.o.morales@ieee.org

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_26,
Springer Science+Business Media New York 2014

647

mailto:carlos.o.morales@ieee.org

engineering continues to mature as a discipline, new methodologies, tools,

processes, and design approaches aid in the development of more solid and robust

software technologies for this kind of products.

Mission-critical systems, in particular, require a high level of discipline and

formality during their design, implementation, and testing. It is of the utmost

importance to spend enough time analyzing and understanding the specific domain

for which the new product is targeted. Examples of mission-critical systems include

implantable medical devices, life-support equipment in hospitals, weapon systems,

avionics, spacecraft, telecommunication satellites, nuclear reactor controllers, and

automobile control computers, just to name a few. Nevertheless, the same process

and concepts can also be applied to other products like cellular phones, industrial

controllers, or consumer video equipment, where overall quality of the product is

increasingly judged by the quality of its software content.

These sophisticated products must be built on a solid foundation if they are to

perform safely and effectively, and the best way to accomplish this is to design and

implement a software platform for a family of related products, which is known in

software engineering as a domain-specific framework (Fayad and Schmidt 1997).

One of the most notable qualities of these frameworks is that their robustness is

improved every time this platform is reused to derive a new product, since the

framework constitutes a reusable reference design and a very valuable, thoroughly

tested, reusable code base.

Domain-specific application frameworks, or enterprise frameworks, are neither

easy nor cheap to develop. The task requires a dedicated team of professional

software engineers led by an architect with a deep understanding of the problem

domain andwith the experience of having previously developed several applications

in that same domain. For more information on enterprise frameworks, their

challenges, and economic justifications, the reader is referred to CACM (1997).

In this chapter, we use examples from several domains to illustrate the analysis

and design of software systems that could serve as generalized solutions, or

platforms, for families of related products.

26.2 Definitions of Framework in Software Engineering

The term “framework” is heavily used in software engineering, but it can be confusing

sometimes. For clarity, we shall define the following terms: “enterprise architecture

framework,” “software infrastructure framework,” and “family platform framework.”

26.2.1 Industry-Standard Enterprise Architecture
Framework

IEEE Standard 42010–2011, “Systems and Software Engineering: Architecture

Description” (IEEE 2011) is now an international standard that has also been

adopted by ISO and IEC. This document specifies the manner in which architecture

648 C.O. Morales

descriptions of systems are organized and expressed. This includes specifications
for architecture viewpoints, architecture frameworks, and architecture description
languages for use in architecture descriptions. This standard defines the term

“architecture framework” as conventions, principles, and practices for the descrip-
tion of architectures established within a specific domain of application and/or
community of stakeholders.

One of the earliest publications on the topic of enterprise architecture

frameworks was authored by John Zachman, of IBM (Zachman 1987). The

Zachman Framework continues to be in use today, and it paved the way for

the creation of architecture frameworks for many domains, most notably for the

defense industry, e.g., DoDAF, the US Department of Defense Architecture Frame-

work standard on how to document architectures. Further discussion on architecture

frameworks is beyond the scope of this chapter, and the interested reader is referred

to Clemens et al. (2011) for an accessible overview of DoDAF and other architec-

ture frameworks. For a survey of all known architecture frameworks currently in

use, please see ISO (2011).

The main idea to remember here is that industry-standard architecture

frameworks are not executable code and refer mainly to documentation

requirements.

26.2.2 Software Infrastructure Framework

Examples of these frameworks include Microsoft Foundation Classes (MFC®),

Microsoft NET Framework®, Java EE®, and frameworks for creating graphical user

interfaces (GUI toolkits) such as Qt, Motif, Swing®, or Adobe Flash®, just to name a

few. This class of frameworks has been called by many names, including application
frameworks and architectural frameworks. These frameworks are collections of soft-

ware libraries that provide infrastructure services for other applications to use in the

form of software objects. Some notable classes provided by these frameworks are GUI

widgets, networking services, web services, e-mail, and other messaging services.

These frameworks provide executable code that is intended for general purpose,

and they can be used to build sophisticated software applications by using its high-

level functionality. However, they do not solve problems that pertain to a particular

domain or business, which is the next level up in the software abstraction scale, as

described below. A software infrastructure framework can be thought of as a

general-purpose toolbox.

26.2.3 Family Platform Framework

In this work, we refer to enterprise application framework as a former name for

family platform framework, since the term helps to make the connection with the

literature. However, we prefer to use the term family platform framework because it

is more accurate and descriptive regarding its intention and use.

26 A Heuristic Approach to Architectural Design of Software 649

Enterprise application frameworks, or family platform frameworks, implement

solutions for a specific domain. This kind of framework is a reusable, semi-

complete application that can be specialized to produce custom applications.

They are designed for particular businesses such as data processing, telecommu-

nications, or other industrial domains. A platform framework reuses not only code

but design as well. It describes how the system is decomposed into cooperating

objects and how custom applications must be implemented based on this infrastruc-

ture. Platform frameworks are the software foundation for families of related

products, i.e., they serve as software product family platforms.

A good introduction to enterprise application frameworks can be found in the

literature (CACM 1997). For a deeper study of all that entails to embark in their

design and development, see the referenced works by Fayad et al. (1997, 1999,

2000), Schmidt and Fayad (1997), Schmidt et al. (2000), and Johnson (1997).

The term “family platform framework” specifically refers to an object-oriented

enterprise application framework that serves as the foundation for a family of

related products and that has been developed according to the specific software

architecture and design process described herein.

Later, a detailed case study is introduced to illustrate the design and imple-

mentation of a software platform for a family of industrial machines and the

economic impact of creating software family platforms. The scope of this chapter

is to present the thought process for analyzing a newly planned product family and

for mapping the results of that analysis to the family architecture and its detailed

software design.

26.3 General Architecture of Software-Intensive Products

This chapter uses, and builds on, the concepts presented in Chap. 21 on software

design principles (Morales 2013). It is recommended to read that chapter first, if the

reader is unfamiliar with some of the terms used below.

Most modern software-intensive products are embedded devices, but not neces-

sarily. As shown in the following examples, these products can be found hidden in

vehicles, in the form of high-volume consumer devices, high-cost customizable

industrial equipment, or just as pure software residing on remote servers providing

service to clients over the Internet (also known as “the cloud”).

The best way to tame the complexity of most software-intensive modern

products is with the application of the age-old principle of Divide and Conquer.
Figure 26.1 shows a typical layered architecture for software applications, based on

the LAYERS architectural pattern (Buschmann et al. 1996), which is widely used in

industry and even standardized for some applications like networking. The main

advantage of this architectural pattern is that each layer specializes in a particular

aspect of the application. Each layer is highly cohesive and is loosely coupled with

its adjacent layers. Typically, dependency among layers only flows in one direction,

650 C.O. Morales

http://dx.doi.org/10.1007/978-1-4614-7937-6_21

i.e., downwards. This means that upper layers can typically initiate interaction with

the lower layer at any time by requesting services through its interface.

In the classical structure of a layered architecture, the Infrastructure software

layer provides generic technical services that enable access to the system’s

resources, while the Domain layer encapsulates the business-specific concepts and

rules. The Application layer implements particular jobs that the software is intended

to do, but it does not include any business knowledge. It accomplishes its task by

delegating processing and coordinating cooperation between objects in the Domain

layer. The Presentation layer is typically the user interface.

Let us use an example to illustrate how this structure is applied. In an online

banking application, the Presentation layer would be implemented within the

customer’s web browser, through which she navigates the system’s functionality

and requests transactions. The Infrastructure layer would provide user authentica-

tion services, access to the bank’s databases, and encryption for a secure connection

between the bank and the customer, among many other facilities.

In the case of a fund transfer operation, for instance, the customer would enter

information through the Presentation layer (GUI), which in turn would send it down

to the Application layer. The Application layer is responsible for validating that

input and then sending it down to the Domain layer for processing. Data sent would

include the amount to be transferred, currency type, source account number, and

destination account number, and that is the end of its responsibility. The Domain

layer implements the essential business rules for the banking business, like account-

ing, for example. In accounting, one of the fundamental business rules is “Every

credit must have a matching debit”; thus, it performs the operation by modifying all

the necessary tables in the bank’s database through requests to the Infrastructure

layer, which provides these services. As each operation in the lower layers is

completed, the upper layers are notified, until the end result is finally presented

back to the customer at the top layer.

When we embark on the task of designing a platform for a product family,

maximizing software reuse is one of the main objectives. Although designing and

Computing Hardware

Domain Layer

Application Layer

OPERATING SYSTEM AND DEVICE DRIVERS

Presentation Layer

Infrastructure Layer

Fig. 26.1 Layered

architecture

26 A Heuristic Approach to Architectural Design of Software 651

implementing a platform take time, it later pays off significantly. Maximizing code

reuse ensures that once the platform is finished, new products can be implemented

in a very short time, and it allows engineers to focus on what makes the new product

unique, i.e., they don’t have to reinvent everything with each new project.

In order to maximize code reuse, we design and implement an object-oriented

application framework to work as the Domain layer, which here we call the family
platform framework. We call it by a different name because it not only implements

the core functionality that comprises the essence of the product family as well as its

overall design philosophy but, at the same time, it imposes certain rules for the

implementation of features that differentiate individual members of the family, both

in software at the top layer and in hardware at the bottom layer. At the top, we take

the layered architecture described above and compress the Application and Presen-

tation layers into one, which we call the product-specific features. Individual
product-specific features could be optionally included or excluded in order to create

different products within the family, even though their structure and basic behavior

are dictated by the platform framework architecture.

The advantages of merging the two top layers into one will become clear with

some examples, as described later, but the main reason is that the framework takes

control over most things in the product family, and user interfaces (Presentation)

become just one more product-specific feature that must comply with the interfaces

prescribed by the platform.

At the bottom of the software layer hierarchy we have the Product Family Infra-
structure layer,which is slightly different from the classical banking example presented

above. In the case of a product family platform, the Infrastructure layer must not be

static, nor monolithic, but modular and extensible to accommodate the evolving

hardware needs of individual products within the family. This is illustrated with the

partitioned hardware layers shown in Fig. 26.2, where we can appreciate a standardized

hardware platform for the family, plus additional modules that are product specific.

Family Platform Framework

Product-Specific Features

Electronics: Product Family Computing
Platform

Mechanics: Product Family Platform

ELECTRO-MECHANICAL INTERFACE

Electronics:
Product-Specific

Features

Mechanics:
Product-Specific

Features

Product Family Infrastructure

Fig. 26.2 General

architecture for a software-

intensive product platform

652 C.O. Morales

This highly cohesive domain encapsulation centered on the family platform

framework brings along a technical risk. If the platform is not designed correctly,

then the number of products that can be easily derived from the platform would not

be as prolific as expected. Investment on a product platform is justified only when it

has a long life span, consistently generating a long sequence of derived products.

Two key principles that will help us achieve a correct design of the platform are

Abstraction and Design for Change (Morales 2013).

Figure 26.2 shows a generalized layered architecture for a software-intensive

product platform, which is based on the same concepts of the LAYERS architectural
pattern, but tailored to suit the specific needs of a software platform for a family of

related products. This figure describes a platform for embedded devices more

accurately, although it also applies to software-only products if we remove the

bottom layer representing the product’s mechanisms. The key concept here is

abstraction, clearly separating concerns into specific containers that segregate

technologies and encapsulate those features that belong to the common product

platform and those that distinguish individual products in the family.

Each layer is abstracted away from the adjacent layers by means of their

interfaces. The framework exposes an Application Programming Interface (API),

which prescribes the behavior and data expected from the software modules that

comprise the Product-Specific Features’ layer. The electromechanical interface

specifies how the electronics and mechanical subsystems fit within the system in

order to interact with the external world. Compared with the reference LAYERS
architectural pattern, the operating system and device drivers’ layer, which isolates

the software from its computing platform, have been merged into the family

platform framework.

In order to design an effective and efficient product family platform, we must

make design choices related to the computing platform that will ensure software

compatibility across all derived products in the family and maximize reuse. Specif-

ically, the platform specification should prescribe a particular processor core for the

whole family, e.g., an ARM Cortex or an Intel Atom, or some other specific

processor. However, this choice does not prevent product designers from having

a rich assortment of peripherals around the processor core that can be very different

from product to product within the same family—as long as they keep the same

core. Furthermore, choosing a single operating system for the whole family makes

software reuse even easier and more cost-effective.

A successful family platform framework typically implements approximately

80 % of the functionality for each product derived from the family, and it

prescribes with precision how the remaining 20 % (product-specific features)

are to be designed and implemented. Although it sounds restrictive, it is in fact

very effective and efficient, since the enforcement of the family architecture and

its behavior encapsulated in the platform forces and enables software engineers to

follow a clear and consistent process for the implementation of derivative

products based on the platform. This phenomenon will be explained in more

detail later in this chapter.

26 A Heuristic Approach to Architectural Design of Software 653

26.4 Domain Analysis

Deep knowledge about a product domain doesn’t come easy. The best situation is to

have previous experience designing stand-alone products for that domain before

one commits to designing a successful product family platform, or at least, to have a

multidisciplinary team of product designers and consultants with significant expe-

rience in that particular domain. The reason for this concern is related to the

technical risk mentioned above: if the product family framework is not designed

correctly, then the exercise will result in a significant expense that does not meet

expectations. This is not a typical software project and has many subtleties in

designing and building object-oriented enterprise application frameworks (Fayad

and Johnson 1999; Fayad and Schmidt 1997).

Figure 26.3 shows a UML activity diagram that describes the high-level process

for synthesizing the core essence of a product domain and incorporating that

knowledge into a new product family platform. Each step is described below.

26.4.1 Develop Product Platform Use Cases

When designing a platform for a new product family, the first thing we need to know is

a clear definition of its scope. It is necessary to specify the behavior and functionality

that these new products must exhibit in order to satisfy the needs of all stakeholders.

DesignModeling

Map Architecture Objects to Design Patterns

Complete Detailed Software Design

Architectural Code Generation

Map Knowledge to Architecture

Analyze Constraints and Adaptability

Analyze Previous Product Projects

Build Domain Knowledge Model

Survey Relevant Literature

Develop Product Family Use Cases

Refine Domain Knowledge Model

Fig. 26.3 High-level process for synthesizing a product family platform

654 C.O. Morales

One of the best ways to obtain this understanding is to analyze the expected use of the

product family through use cases (Jacobson et al. 1992).

The scope of the use cases must remain at a high level of abstraction, where the

goal is to obtain all the scenarios in which each type of stakeholder will interact

with a generic product of this new family in order to satisfy their goals. Some

specific needs may be satisfied by one product derived from the platform, but at this

point, the analysis should be kept at the product platform level. Our goal at this

stage is to abstract the essential use cases that make up the core behavior of the

product family. An excellent manual for analyzing use cases is Cockburn (2000).

26.4.2 Survey Relevant Literature

This activity is particularly important (and indispensable) for software designers that

are newcomers to the particular domain of interest. Collect all relevant literature about

the domain, which includes books, journal publications, presentations, technical

descriptions, and specification documents for similar products that can be used as

precedents. Reliability of all sources should be confirmed, ensuring that they represent

the consensus of subject matter experts. Extract and abstract the essential knowledge

about the domain, summarizing the essential concepts in tables or some other tool.

26.4.3 Analyze Previous Product Projects

Fred Brooks said that, when designing a new kind of system, software teams will
throw one system away whether they want it or not (Brooks 1975). His argument

was in favor of using pilot projects to ensure that we can ultimately deliver exactly

the software system that we all want. There is certainly great value in having the

opportunity to perform forensic analysis of previous projects that have attempted to

solve the same problem that we are now facing, since this improves the odds that the

team will arrive at a better design the next time. However, our focus here is not on

the software design or the code. What we are looking for are abstract concepts:

those ideas that represent the essence of the kind of products for which we want to

design a platform and those characteristics, functions, and behavior that comprise

the essence of being a member of that family of products. For example, we want to

discover those essential attributes and behavior that constitutes being a smartphone,

or a pacemaker, or a human-size robot arm.

Essentially, this is still part of the information survey that began with the

relevant literature review, but now our sources are more heterogeneous and focused

on the actual product needs. We have to continue extracting and abstracting

important knowledge about the domain from these new sources and add the

most relevant concepts and relations to the compilation we started with the litera-

ture review.

26 A Heuristic Approach to Architectural Design of Software 655

26.4.4 Build Top-Level Domain Knowledge Model

Using the knowledge derived from the literature and product information surveys,

we now build a knowledge graph (Fayad et al. 1999). Knowledge graphs are a form

of the more widely known Semantic Networks (Russell and Norvig 2009).

A knowledge graph is made up of nodes and edges. Nodes are those concepts

that appear consistently and in similar ways, in the domain knowledge survey.

These essential domain concepts are typically nouns, and each node represents an

indispensable concept for the product platform. Edges represent relations among

the different concepts, or nodes, and they are typically represented with verbs

indicating actions that one node performs on other nodes.

As an example, Fig. 26.4 shows a knowledge graph that abstracts and represents

some of the concepts and relations that could be used to design a generic product in

the mobile phone domain. Notice that the nodes represent concepts that are

indispensable for the product to be considered a mobile phone. In other words,

they constitute the essence of the product family.

The key design principles here are Separation of Concerns, Abstraction, and
Generality (Morales 2013).

26.4.5 Refine Domain Knowledge Model

Once we have collected the main concepts and relationships in the top-level domain

model, it is necessary to investigate the internal structure of each node in order to

gain a deeper understanding of the platform design needs. This refinement of the

RF TransceiverProtocol

Address Book

DTMF Generator

Call Manager

Keyboard
requests

controls

reads

encodes

cre
ates

Phone Call

operates

Fig. 26.4 Knowledge graph partially representing the mobile phone domain

656 C.O. Morales

domain knowledge model reveals more information that is less abstract and more

suitable for use in the design of the product platform.

Figures 26.5 and 26.6 show the concept hierarchies for the RF Transceiver and

Protocol nodes. The white triangle denotes specialization of the root concept, similar

to inheritance in object-oriented software. The root node can be thought of as similar

to an abstract class and the leaves as similar to concrete derived classes.

26.4.6 Analyze Constraints and Adaptability

This is a critical step in the process of abstracting knowledge about a domain and

using that knowledge to design a successful product family platform that can

evolve over time and be useful to generate a prolific family of derived products.

RF Transceiver

CDMA/
FDM

TDMA MIMOOFDM

SOFDMA
CDMA/

FDD
CDMA/

TDD

Fig. 26.5 Refined knowledge graph for the RF Transceiver node in the mobile phone domain

Protocol

IPv4 PPPX.25 TCP/IP

Telephone
Protocol

ISDN

Internet Protocol

Fig. 26.6 Refined knowledge graph for the Protocol node in the mobile phone domain

26 A Heuristic Approach to Architectural Design of Software 657

The key design principle here is Design for Change and its various forms of

expression: Change of Algorithms, Change of Data Representation, Change of
Abstract Machine, Change of Peripheral Devices, and Change of Social Environ-
ment (Morales 2013).

Each node in the knowledge graph must be analyzed for its potential need of

change in the future due to foreseeable technological progress or to enable different

features for distinct members of the product family. All anticipated changes can be

compiled in tables, supported by reference documents.

For example, let us continue using the mobile phone example, and

oversimplifying for the sake of clarity, we say that it could be anticipated that the

“RF Transceiver” node will change. This node represents the radio transmitter and

receiver used by the mobile phone to connect to Base Stations, and it could use any

of two multiplexing technologies, namely, code division multiple access (CDMA)

or time division multiple access (TDMA), depending on the target market of the

particular product. This is an indicator of the need forModularity in the implemen-

tation of this feature in the product platform. Compliance with each of these

standard technologies is also a constraint on the system.

Similarly, and oversimplifying again, we could see that the “Network Protocol”

node should be easily adaptable to work with potentially non-compatible new

technologies. Experience shows that mobile network technology evolves very

quickly, and thus, for the investment on a long-life span product platform to be

worthwhile, it should be able to adapt to these new technologies as they come along.

In this manner, we have seen three generations of mobile networks based on the

Global System for Mobile Communications (GSM), including general packet radio

service (GPRS) for second-generation networks (2G), Universal Mobile

Telecommunications System (UMTS) for third-generation networks (3G), or

Long-Term Evolution for fourth-generation networks (4G LTE). These are

examples of Constraints on the platform design and Change of Peripheral Devices.
Other concepts are not as clear-cut, however. For example, a keyboard could

have different embodiments in two products derived from the same platform. Let’s

say that one product could use a membrane keyboard driving the electronics

directly, and another could implement it as a soft keyboard on a touch screen,

driving a software device driver instead (Change of Peripherals or Change of Data
Representation). However, at the product platform level, the abstract concept of a

keyboard is exactly the same. Therefore, the actual implementation of the keyboard

in a particular product is a secondary matter. Along the same lines, the abstract

concept of an address book is exactly the same at the platform level, even though it

might be implemented as a remote web page that is accessed over the Internet or as

a local database file, which, as described above, would constitute secondary

concepts and not essential details for the platform.

The dual-tone multi-frequency (DTMF) generator can be implemented in one way

only, since it is a real function based on an international industry standard with which

every phone, regardless of its technology, must comply. This is a Constraint on the

system design. In contrast, the concept of a “Call” is completely abstract, completely

defined internally, and its representation could be unique to the product platform.

658 C.O. Morales

Although the user interface is not shown in the knowledge graph, we can say

that the product platform software should be designed to represent all the concepts

of a user interface in an abstract form within the platform, e.g., using label IDs

instead of actual text strings, and anticipate a Change of Social Environment by
designing the platform is such a way that different languages can be easily

implemented through loosely coupled software components that are external to

the platform.

26.4.7 Map Knowledge to Architecture

With a greater understanding of each node and its internal structure in the domain

knowledge graph, we now proceed to find the right place for each node in

the software architecture. Figure 26.7 shows the software section of the

generalized architecture presented earlier. Assignment of each node to the appro-

priate software layer will ensure the construction of layers that have the very

important properties of high cohesion within them and low coupling between

them (Morales 2013).

In general, the Product Family Infrastructure layer should provide access to the

physical resources of the system, the Family Platform Framework layer should

encapsulate all the system behavior and functionality that does not change from

product to product, and the top layer should encapsulate those features that distin-

guish each product from the rest of the family.

In the mobile phone example, it is clear that abstract keyboard and RF Trans-

ceiver refer to physical resources and, therefore, belong in the Infrastructure layer.

The call manager, phone call objects, Internet session objects, protocol handlers,

address book, and DTMF generator all belong specifically to the mobile phone

domain, i.e., in the family platform framework. Note that none of the nodes in the

top-level knowledge graph is actually mapped to the Product-Specific Features

layer directly, but as revealed by the Constraints and Adaptability analysis above,

some of the nodes have deeper hierarchies where some of the sub-nodes are

expected to change over time or change from product to product in the family. In

other words, some of the sub-nodes should be allocated to the top layer where they

Family Platform Framework

Product-Specific Features

Product Family Infrastructure

Fig. 26.7 Layered software

architecture for a product

family platform

26 A Heuristic Approach to Architectural Design of Software 659

function as product differentiators. Those sub-nodes that are not expected to

change, regardless of the particular product instance, should be allocated to the

family platform framework to be encapsulated. The best way to produce a robust

arrangement of software objects is to use a catalog of best design practices and

time-proven solutions known as design patterns (Gamma et al. 1995).

26.4.8 Map Architecture Objects to Design Patterns

The Constraints and Adaptability analysis guides the selection of the best design

pattern for each case. For example, some of the classic design patterns from

Gamma et al. (1995) are the following: “Bridge,” which decouples an abstraction

from its implementation so that both can vary independently; “Proxy,” which

provides a surrogate for another object in order to control access to it; and

“Strategy,” which defines the interface for a family of algorithms, encapsulating

them and making them interchangeable. After the landmark work of Gamma,

Helm, Johnson, and Vlissides, many other books on design patterns have been

published. Some of them are new catalogs of design solutions for software in

general, and some others are aimed at particular domains (e.g., Johnson 1992;

Buschmann et al. 1996; Schmidt et al. 2000; Fowler 2002; Douglass 2002, 2011;

Alur et al. 2003; Daigneau 2011).

As an example, let us assume that our family of smartphones has a built-in image

enhancement tool designed to improve the quality of images taken with the phone’s

built-in camera. A digital image is represented in software as a matrix of pixels with

color values. Users can perform automatic or manual enhancements on a single

image by running image filters to enhance sharpness, contrast, modify color satura-

tion, or exposure (brightness). Since this is a feature that all products in the family

will have, these image-enhancing mechanisms will be allocated to the Family

Platform Framework layer. All image filters operate as convolutions on the original

image and produce a new image as output, with modified values on each pixel

according to the requested operation. Figure 26.8 shows a UML class diagram that

implements a family of image processing algorithms according to the “Strategy”

design pattern (Gamma et al. 1995).

26.4.9 Complete Detailed Software Model Design

Applying design patterns is only the beginning of detailed software design. Design

patterns are coarse-grain building blocks, but each software system has nuances and

peculiar concepts that need to be represented in detail, as well as the interconnec-

tion among design pattern structures.

The ever-increasing complexity of each new generation of high-technology

products requires the use of appropriate tools to handle it and enable designers to

660 C.O. Morales

look at the system from different perspectives. Abstraction is the strongest feature

of model-based development, also known as Model-Driven Architecture (MDA).

By slicing the system into distinct perspectives that show its structure, dynamic

behavior, interfaces, and internal states, designers can develop a complex system

that maintains consistency and correctness throughout the product development

life cycle. The Unified Modeling Language, or UML, was specifically developed

for this purpose. For more detailed presentations, the reader is referred to the

following: Fowler (2003), Booch et al. (1998), Rumbaugh et al. (1998), and

OMG UML (2011).

26.4.10 Architectural Code Generation

An additional benefit of modern software modeling tools based on UML is that most

of them provide code generation facilities, as well as two-way code engineering. We

use the term architectural code generation to refer to the automatic generation of

source code in an industry-standard programming language like C++, Java, C#, or

any other. This automatically generated code typically includes all software

interfaces defined as properties and methods of a class, as well as processor and

project-specific header files. Since the Object Management Group (OMG) released

the new specification for UML 2.0, executable models are now possible, and code

generated automatically also includes source code that implements state machine

behavior directly from UML State Diagrams (also known as Statecharts).

Two-way code engineering tools allow software developers to maintain the

software model and source code synchronized by having the tool automatically

update the code every time the model is changed. Likewise, it can also update the

model whenever the source code is modified, e.g., when a function parameter

changes name or data type.

Process(in Original : Image) : Image

depth : int

ImageFilter

Contrast

Image

Sharpness Saturation

ImageCanvas

1 *
+

+

Fig. 26.8 An image processing feature for a family of mobile smartphones based on the Strategy

design pattern

26 A Heuristic Approach to Architectural Design of Software 661

26.5 Case Study: Software Platform for a Family

of Industrial Machines

26.5.1 System Overview

We now present a more detailed case study from an actual project to illustrate the

design of a software platform for a product family. Here, we review the

characteristics of the system and the design decisions that made it a successful

platform. The purpose of this system was to serve as a generalized solution that

addresses the specific requirements of a family of products in the industrial auto-

mation and test domain.

The main purpose of this platform is to provide the software foundation for a

family of automated machines that are used in industrial manufacturing and test.

Typical applications of this product family are stand-alone units, or cells, that are

integrated into fully automated or semiautomated manufacturing lines. Many of

these cells include one or more robots for product handling, machine vision systems

for robot guidance and automated visual inspection, general-purpose digital and

analog inputs and outputs and programmable power supplies, waveform generators,

current and voltage meters, and other instrumentation equipment. The same robots,

digital cameras, power supplies, and meters can be used across many different

projects, for example, assembling handheld blood glucose meters, testing miniature

endoscopy equipment, calibrating vibrating mirrors, or simultaneously performing

functional tests on a batch of two hundred computer hard drives. Below we take a

closer look at some of the most important aspects of this design.

26.5.1.1 High-Level Organization

A major design goal for this system was to serve as a solid, reusable product

platform, applicable in a variety of automated test and industrial automation

solutions. In general, its implementation is extendable through external and inter-

changeable software components.

Software components conforming to the interface specified by this framework

will, as a consequence, be reusable components as well, which may be stored in a

company repository for use in future projects. This component-based approach to

software development enables consistent reuse of the components described below.

PATF Engine

PATF stands for production automation and test framework. The PATF engine

component encapsulates the general operations and algorithms required by most

applications in this domain, including but not limited to sequencing of operations,

662 C.O. Morales

manage requests to and from external devices, manage internal data representation,

system configuration, basic interaction with the user, interaction with external

software components representing devices under test (DUT), and basic database

management using a default format that may be overridden or translated by an

external software component (see below). The engine provides two main classes:

first, we have the Scheduler class, a singleton (Gamma et al. 1995) responsible for

assembling the software system at run-time and for orchestrating overall execution.

Then, we have the TaskProcessor class, implemented according to the Command
Processor design pattern (Buschmann et al. 1996). This class provides an arbitrary

number of TaskProcessor instances that are responsible for executing the

procedures prescribed within AppSequence classes.

ActiveDevices

These software components are more than just device drivers. They not only

implement communication and control over ActiveDevices, but they also include

graphical user interfaces and persistent configuration facilities for each

ActiveDevice. This set of software components becomes part of a common library

of extendable components for use in future projects. These components may be

initially built by implementing minimum functionality and then incrementally

extend their services, while complying with the ActiveDevice interface as specified

by the platform.

Independent ancillary software components describing the current application-

specific details include:

1. Application sequence component. Library file that contains code for the

application-specific functions or sequence of operations. This component

encompasses the main differences that distinguish each product in the family

derived from this platform.

2. System configuration Component. Executable file responsible for launching the

PATF engine and customizing it for a particular application.

3. Application-Specific GUI Component. Required software component that

defines application-specific GUI labels and panels.

4. DutCollection. Optional software component that implements application-

specific computation algorithms for devices under test (DUT). Examples are

DUT product-specific communications protocols, decision-making algorithms,

parameter limits testing, and data-exchange protocol translators.

5. External DB controller. Optional software component that implements interfaces

for a specific database, for example, interfacing with remote database servers,

generating files that are compatible with other applications likeMicrosoft Excel®

or Word® processors, and exchanging data with other applications.

Figure 26.9 is a UML component diagram that shows the main software

components of the PATF platform and their mapping to the corresponding archi-

tectural layers of the framework.

26 A Heuristic Approach to Architectural Design of Software 663

26.5.1.2 High-Level System Behavior

The proposed domain abstraction classifies operation modes of all automated

industrial machines as being either manual mode or automatic mode. The system’s

behavior is driven by a finite state machine, and under these two operation modes,

there are six top-level system states. Figure 26.10 shows these states and the events

that cause transitions between them.

Manual Mode

This mode is used for initializing the machine, modifying operational parameters,

and for performing manually controlled operations like jogging a robot, for

example. Safety devices are of utmost importance in industrial automation

machines, as they play a critical role in preventing operators from getting injured

by the machine. In manual mode, however, these safety devices are overridden to

enable a qualified technician to perform certain operations that require full control

over the machine, as is the case of machine troubleshooting or other maintenance

operations. This operation mode is hard coded into the system’s engine, but before

entering this mode, users are authenticated and only allowed in if they carry the

Product-Specific Features

App Sequence GUI PanelsDUT Collection

Task Processor GUI Subjects

Observers

Scheduler

ActiveDevice(1) ActiveDevice(2) ActiveDevice(n)ActiveDevice(3)

Product Family Infrastructure

Family Platform Framework

User ManagementSync Objects Active Device Container

Fig. 26.9 Software components and architecture of the PATF product family platform

664 C.O. Morales

proper credentials, as determined by the User Management component. All safety

device signals are ignored and the machine is allowed to run, although displaying

a warning message on the user interface through the main GUI component.

Automatic Mode

This is the normal operation mode of this type of machines. In contrast to manual

mode, all system devices and subsystems are engaged, and a built-in safety moni-

toring system watches for incoming alarms from input/output signals configured as

safety devices and automatically calls an emergency shutdown procedure when

flagged. Automatic mode also allows users to perform maintenance operations

where full speed and safety device enforcement are required, for example, robot

coordinate system calibration or product load and unload.

MANUAL_OPS MANUAL_IDLE

AUTO_IDLEAUTO_PRODUCTION AUTO_SEQUENCE

AUTO_MODE

MANUAL_MODE

MANUAL_SETUP

PATF System

start end

power_on

go_ops

go_idle

go_idle go_idle

go_sequence

go_idle

go_setup

go_manualgo_auto

shutdown

go_production

Fig. 26.10 PATF system state diagram

26 A Heuristic Approach to Architectural Design of Software 665

26.5.2 Relevant Design Decisions in PATF

Let us review the most important design decisions that were put into this frame-

work. A significant feature is that this software application gets assembled at

run-time as opposed to compile time. This is possible due to a clear Separation of
Concerns and Modularity. As shown in Fig. 26.9, software components are com-

piled separately into multiple executables, not as a monolithic application. At the

binary level, they are completely decoupled and independent, establishing their

relationships and dependencies during execution only. This means that each soft-

ware component in the Product Family Infrastructure and Family Platform Frame-

work layers is always reused in binary form, not linked as source code libraries at

compile time.

Another aspect of significance is that the architecture implements an Abstraction
of the domain in the shape of behavior, as shown in Fig. 26.10, imposing Generality
in the behavior of all derived products while still allowing limited customization

through the use of externally defined configuration algorithms for each state and

substate, which will be explained in more detail later.

The most relevant features, however, revolve around the principle of Design for
Change, which enables the construction of a wide variety of products. Although

they all belong to the same family and share similar characteristics, they can also be

applied to a wide range of dissimilar applications across many industries. A more

detailed presentation of these features follows below.

26.5.2.1 Design for Change

For the purpose of illustrating the application of the principle of Design for Change
(Morales 2013), we now discuss some of the Evolvability, Reusability, and Antici-
pation of Change features that went into the design of the PATF software product

platform.

Product Family Infrastructure Layer

Among several needed flexibility features that were observed during the

Constraints and Adaptability analysis performed for this project, it was noted that

most industrial automated cells would use robots, machine vision, and instrumen-

tation equipment in a consistent manner. The differences between applications were

limited to the specific settings and configuration for each infrastructure device, and

the sequence of actions that were needed to assemble one product, or test some

other. For that reason, all of these components (robots, cameras, instruments, etc.)

were packaged as black-box reusable components called ActiveDevices.

ActiveDevices were designed to be implemented in two parts: an ActiveX control

666 C.O. Morales

and an ActiveX EXE (Microsoft 1994). Both ActiveX components are reused in

binary form regardless of the application in which they are used.

Configuration for each ActiveDevice is performed by reading an INI text file

containing parameter values for a particular application. When software engineers

produce a new application based on the PATF platform, they configure their

Infrastructure layer by executing a simple operation of “drag and drop” of ActiveX

controls onto the “ActiveDevice Container,” as illustrated in Fig. 26.14, later in this

chapter.

As will be seen later on, this approach allowed code reuse of the Product Family

Infrastructure layer to reach 100 % across all products in the family.

Family Platform Framework Layer

It was also observed during the Constraints and Adaptability analysis that a single

graphical user interface based on the state machine of Fig. 26.10 could satisfy the

needs of all applications in the industrial automation domain, as long as it provided

a way to include general-purpose panels in which derived software products could

display customized information based on their particular application. This design

problem required the provision of a mechanism that could insert customized panels

into the Main GUI at run-time.

The solution was to implement the GUI completely as part of the platform

framework so it would be reusable in binary form (black box) and add a separate

product-specific feature called “GUI panels.” Reusing the GUI along with the

system state machine and its related User Management component with its own

database represented a major contribution to the overall code reuse ratio, which will

be elaborated on later in this chapter.

The family platform framework also supplies generic “Subject” objects which

can be instantiated from a GUI panel to work together with an “Observer” object.

Observers are described in the next section.

As mentioned previously, the main difference among members of the product

family is the sequence of operations they perform on their physical resources to

assemble products using a robot and machine vision or the sequence of events when

generating electrical stimuli to their devices under test (DUT) on which they

perform automated measurements and apply pass/fail criteria. Therefore, a funda-

mental flexibility need for the platform was the ability to execute one or more

simultaneous tasks in a multithreaded environment, effectively implementing an

explicit Separation of Concerns (Morales 2013). This was achieved by having the

platform framework provide generic “Task Processor” objects that would take

algorithms encapsulated in a generic object whose class was defined externally,

i.e., as a product-specific feature. Thus, a sample application would define a

sequence of events for moving a robot about its work cell, operating its gripper,

and controlling its speed and joint position, all in a single class of type

AppSequence (see below).

26 A Heuristic Approach to Architectural Design of Software 667

Multiple Task Processors can run simultaneously either independently or

collaborating through Sync objects (also provided by the platform framework)

which enable processors to exchange messages and data, as well as performing a

rendezvous that may lead them to alternate paths of execution based on their data

exchange, e.g., a test station sending Pass/Fail results to the robot handling the

product, which can then drop the product off into a reject bin or pack it into a

shipping box, for instance.

Product-Specific Features Layer

The top layer of the product family architecture houses those features that make

individual members of the family truly distinct from each other. The platform

framework imposes what is known as inversion of control (Morales 2013). This

means that all software components in the top layer must comply with the

interfaces, protocols, and types expected by the platform framework underneath

it. For that reason, this layer consists mostly of code templates. In other words, code

reuse in the Product-Specific Features layer is white box. Form is imposed by the

software platform, but content is completely determined by the application at hand,

i.e., the specific product being implemented.

Whereas Task Processors are generic objects that will execute any task

encapsulated in an AppSequence object, the AppSequence class is the product-

specific complement to Task Processors. The software family platform specifica-

tion prescribes some special requirements for the content of these classes, e.g.,

initialization sequences and exit sequences, but the new application is otherwise

completely free to define the sequence of actions on ActiveDevices, to perform any

calculations to determine results using external libraries if needed, to exchange data

and synchronization points with other sequences (rendezvous), and to update the

user interface at any time. During initialization, AppSequences receive references

to the ActiveDevice and GUI panel containers in order to have access to the

system’s resources, and each sequence object announces to the Scheduler with

what other AppSequences it needs to collaborate during execution.

GUI panels are plain object containers, which get modified and configured at

design-time. All GUI elements like text boxes, list boxes, labels, buttons, tab

containers, and frames that are needed by the application can be added freely

without any other restriction but the real estate available, which cannot be modified.

The number of panels available at run-time is also configured at design-time, being

a minimum of one and a maximum of eight. Panels that are not used are hidden at

run-time, and users can select which GUI panel is displayed by clicking a button on

the screen, independently of the current state of the system (Fig. 26.10).

AppSequences can access any GUI widget through the object reference to the

container they all have.

Observers are also reused as code templates, and they are typically used to

update the contents of GUI panels in an asynchronous manner. Subject and

Observer objects are implemented according to the Observer design pattern

668 C.O. Morales

(Gamma et al. 1995), and as described in the referenced book, each Observer

subscribes to its corresponding subject during initialization. Subjects are typically

updated by AppSequences.

DUT Collection is just another code template that provides a multithreaded

execution environment for a collection of application-specific objects defined by

a free-form class representing devices under test.

Final Product Test Example

Further elaborating on the discussion of Separation of Concerns as it relates to the

implementation of AppSequences, we now present a concrete example to clarify

and show how this approach helps to isolate the truly application-dependent

features from the common product family functionality.

Figure 26.11 depicts a robotic cell application where we have a robot arm (1)

with a gripper to pick up a finished product from the input feeder (2) and take it to

an electrical functional test station (4) in the first step of the process. If the electrical

test fails, the robot takes the product to a rejection chute (3) that guides the scrapped

product to a bin and then picks up a new part from the input feeder. If the product

passes the test, it continues in the process and is then taken to a machine vision

station (5) for final cosmetic inspection. The visual inspection station consists of a

digital camera and its illumination system. If the product fails the visual inspection,

the robot takes the product to a tray (6) that is used to ship a batch of rejected

products to an external rework station when it’s full. If the product passes the visual

inspection, then the robot packs the product in the shipping container (7).

This cell is required to keep the count of defective products, count of products

sent for rework, and count of good products packed in shipping containers. Addi-

tionally, it is required to store the detailed results of all electrical and visual tests,

Electrical Test
Station

(4)

(1) Visual Inspection
Station

(5)

Rejection
Bin
(3)

Rework
Tray
(6)

Shipping
Container

(7)

New Product
Feeder

(2)

Fig. 26.11 A robotic cell

based on the PATF product

platform

26 A Heuristic Approach to Architectural Design of Software 669

associate them with the serial number of each product and compute statistical

results, and process capability of the robotic cell.

The controlling software for this cell would be implemented as follows:

1. A new class named RobotSequence is derived from the AppProductSequence

class (see Fig. 26.13) to implement the sequence of actions required to control

the robot’s movements to and from each position in the robot cell, according to

the scenario described above.

2. Another class named ElectricalTestSequence, also derived from the concrete

class AppProductSequence, is implemented to execute all the electrical tests at

station (4) and to determine the final Pass/Fail result, based on the measurements

from each product tested. This class must include a rendezvous point that is

exchanged with RobotSequence to stop the robot at the electrical test station and

pass in the test result, so the robot can proceed to either drop the product in the

rejection chute (3) or continue on to the next test station (5). Measurement

instruments are all ActiveDevices, as described above.

3. The third sequence class, called VisualInspectionSequence, is implemented with

the image processing algorithms that are needed to perform the cosmetic inspec-

tion. These image processing functions are called from an external library

acquired from a third party that specializes in machine vision algorithms. The

sequence also handles digital inputs and outputs to control the illumination

system. This class also implements a rendezvous point to synchronize with

RobotSequence, stopping the robot in front of the camera and exchanging data

representing the inspection results, upon which RobotSequence reacts subse-

quently by placing the product either on the rework tray or in the shipping box.

4. The fourth sequence class is implemented to keep track of the rework tray and

automatically swap a full tray with an empty one using a mechanical actuator

without having to interfere with the other components of the robot cell. This

sequence does not need to synchronize with the robot because they are

completely asynchronous and independent. The swapping action is indirectly

triggered as the consequence of having the robot place a product in the last

available spot on the tray.

5. A Subject object is instantiated and assigned an object of type ProductCount, which

holds the current counts of products tested, rejected, reworked, and shipped.

6. Another Subject object is instantiated and assigned an object of type

TestResults, which holds all the electrical parameter measurements for each

product, plus the cumulative statistical results and metrics.

7. Two Observer objects are created based on the Observer class template. Each of

them subscribes to its corresponding Subject objects: ProductCount or

TestResults. Each observer is responsible for updating its own GUI panel,

which is assigned to them at run-time.

Notice how convenient it is to focus on just one thing at a time (Separation of
Concerns) when implementing a new application based on the PATF platform,

even one as simplified as this example. This advantage becomes more evident as the

complexity of the application increases. Additionally, this approach enables teams

670 C.O. Morales

to divide and conquer the complexity of the problem and to distribute programming

work among team members without affecting the system’s consistency, resulting in

shorter development times.

26.5.2.2 Run-Time System Composition

One of the great benefits of creating a software platform for a family of products is

code reuse. Black-box code reuse, in particular, has additional side benefits includ-

ing robustness, known quality and reliability, and software maturity that improves

with each new product that is implemented using the family platform.

Software can be reused in binary form if a multitude of compiled software

components are assembled into a customized application at run-time. This is

achieved through object composition, as described below. Figure 26.12 is a UML

Object Collaboration Diagram showing a partial view of the run-time structure of a

generic application built on the PATF product family platform. During

initialization, the Main application instantiates the Scheduler, which is the orches-

trator of a PATF application, and a chain of events is triggered, at the end of which

the whole application is composed and ready to run.

The sequence of events during start-up is roughly as follows:

1. Main application starts, indicating a number of parameters and resource

locations for the framework’s use. Scheduler is instantiated, who takes control

over the execution and suspends Main. From that point on, Scheduler is respon-
sible for instantiating all the necessary objects and assembling them into a

complete working application.

2. Scheduler instantiates MainGUI, which in turn instantiates GUIPanels and

UserManagement. The latter component is responsible for providing user

authentication services to MainGUI and can use a local database, a remote

SCH : Scheduler

TP1 : TaskProcessor

TP2 : TaskProcessor

Task1 : AppSequence

Task2 : AppSequence

GUI : MainGUI

P1 : GUIpanel P2 : GUIpanel

UDB : UserManagement

Main : PATFapp

Ob1 : Observer Ob2 : Observer Ob3 : Observer

S1 : Subject S2 : Subject S3 : Subject

ADC : ActiveDeviceContainer

AD1 : ActiveDevice

AD2 : ActiveDevice

Fig. 26.12 Partial view of the PATF run-time structure (object collaboration)

26 A Heuristic Approach to Architectural Design of Software 671

database connection, or delegate requests to a corporate user repository, details

of which are completely hidden from MainGUI.
3. Once MainGUI is up and running, Scheduler instantiates the ActiveDevice-

Container object, which in turn instantiates all its children components, i.e., all

theActiveDevices available to the system in a particular application. At this point,

the application objects are all fully assembled in memory, and the systemwaits in

the MANUAL_IDLE state (see Fig. 26.10) for user input about the next action.

All applications built on top of the PATF platform behave according to the state

machine shown in Fig. 26.10. When the user requests a change of state, the state

machine executes the sequence of actions specified in the AppStateSequence class

corresponding to that state. Figure 26.13 shows a UML class diagram partially

showing the structure of AppSequences, with a faint reference to the robot cell

example described above.

As shown in Fig. 26.13, there are two subclasses derived from the abstract class

AppSequence: one that defines the actions the system must take during a state

transition (AppStateSequence) and one that defines the actions to be taken while the
system remains in that state (AppProductSequence). There are eight AppState-
Sequences that are expected by Scheduler, and therefore, they must be implemented

by the new product application. These eight classes correspond to each of the

low-level system states shown in Fig. 26.10, plus Initialization and Shutdown.
Each AppStateSequenceclass launches one or more AppProductSequences as

required to be run in their corresponding state. AppSequences can be executed in

either Concurrent or Sequential mode, and AppSequences may spawn other

AppSequences in either execution mode. Once children sequences terminate, the

parent terminates too. This scheme enables product designers to implement

dynamic system behaviors of arbitrary complexity.

+RunStep(in nStep : int) : int

+ClientID : int
+Abort : bool
+Message : char
+SyncPoints : CollectionSyncPoints
+ADcontainer : ActiveDeviceContainer
+Panel : GUIpanel

AppProductSequence

AppSequence

+Execute() : int

+ProcessList : char
+CurrentProcess : int

AppStateSequence

RobotSequence ElectricalTestSequenceSeqAutoProduction SeqManualSetup

CollectionSyncPoints

+SyncName : char
+SeqName : char
+SeqClientID : int
+PartnerSeqID : int
+SyncData : char
+SyncStep : int

SyncPoint

1

*

Fig. 26.13 Partial class diagram showing the structure of application sequences in PATF

672 C.O. Morales

When an AppProductSequence object starts, it is responsible for attaching

themselves to Subject objects so they can post the information that is to be displayed

on GUI panels after any transformations are made by the corresponding Observer
objects.

SyncPoint objects are instantiated by each AppProductSequence object that

needs to rendezvous with another AppProductSequence. When execution of a

sequence reaches the SyncSteppoint, the SyncPoint object is handed over to Sched-
uler, who takes the request and puts the sequence to sleep until its advertised partner
PartnerSeqID is ready for rendezvous. At that point, the dormant sequence is

awaken, and Scheduler swaps the SyncPoint objects and sends them back to the

partner sequences, thus enabling information exchange between the partners, as

described in the robot cell example above.

Run-time object composition as described above maximizes code reuse in binary

form, thus ensuring that a more solid product is implemented in a very short time

with great technical and economic benefits, as shown in the study of code reuse

presented in the next section.

26.6 Code Reuse in Product Platforms

Vs. Traditional Approach

The PATF product family platform was implemented and initially tested on three

different applications within the field of automated industrial manufacturing and

testing. More than twenty different products have been implemented and deployed

since then.

The first application, System A, is an automated assembly cell for building

microelectromechanical system (MEMS) devices. This task requires very high

precision, high performance, and high flexibility. It includes a vision-guided

SCARA robot, multiple servo-controlled linear actuators, and a range of other

industrial automation devices.

The second application, System B, uses the same type of robot in a completely

different robot cell platform for automatically testing the same MEMS devices. In

this case, the system features multiple automated part feeders that enable uninter-

rupted operation. This system uses high-precision optical and instrumentation

equipment and performs a series of mathematically intensive calculations.

The third application, System C, is a manual version of the robotic tester, using

the same optical equipment and mathematical algorithms but manual part handling,

interactive operation, and a different set of operator safety policies.

26.6.1 Implementation

The system was implemented to run on a Microsoft Windows® platform using

Microsoft COM technology. Active objects were implemented as multithreaded

COM servers (Microsoft 1994), which produce native code for faster execution.

26 A Heuristic Approach to Architectural Design of Software 673

In order to simplify the use of ActiveDevices, these components were

implemented in two parts: an ActiveX control and an ActiveX EXE executable.

The ActiveX control can be dragged and dropped onto an object container, which in

turn instantiates an out-of-process COM server in a way that becomes transparent to

the application programmer. Figure 26.14 shows a UML deployment diagram with

the code components required to implement System A, described above. Similar

structures were used to implement Systems B and C.

Software components represented with white symbols are reusable in binary

form across multiple applications, and shaded symbols (top row) represent

components that must be modified with application-specific code. Therefore, the

set of software components that comprise an instance of the system architecture

described herein is divided in two subsets according to their relation to the custom

application: They are either dependent or independent.

26.6.2 Application-Independent Components

Components represented in the UML deployment diagram of Fig. 26.9 are directly

mapped from high-level classes in the system architecture. Notice that virtually

every software components in the Product Family Infrastructure layer are reusable

in executable form. The only exception is ActiveDevice_Container, which is

discussed below.

<<ActiveX DLL>>
Application Sequences

<<Standard EXE>>
CustomApp

<<ActiveX DLL>>
GUI_Panels

<<ActiveX EXE>>
Subject_Observer

<<Dependency>>

<<Dependency>>

<<Dependency>>

<<Dependency>>

<<Dependency>>

<<Dependency>>

<<Instantiates>>

<<ActiveX EXE>>
System Scheduler

<<ActiveX DLL>>
ActiveDevice_Container

<<ActiveX EXE>>
Processor

<<ActiveX EXE>>
Main_GUI

<<ActiveX Control>>
ActiveDevice

Digital I/O

<<ActiveX EXE>>
Digital I/O EXE

<<ActiveX EXE>>
Robot EXE

<<ActiveX EXE>>
Servo EXE

<<ActiveX Control>>
ActiveDevice

Robot

<<ActiveX Control>>
ActiveDevice

Servo Controller

<<ActiveX Control>>
User_Management

<<Instantiates>><<Instantiates>><<Instantiates>>

Fig. 26.14 System deployment diagram

674 C.O. Morales

All of the components in the Family Platform Framework layer are also reusable

in binary form across multiple applications, with the sole exception of the

Subject_Observer component, which is also discussed below.

From an economical point of view, components that are reusable in binary form

are very valuable assets for an organization, since they are designed, developed, and

tested once and can then be used in many future applications using the same devices

abstracted by these software components.

26.6.3 Application-Dependent Components

As naturally expected, most of the components in the top layer (product-specific

features) must be customized to fit the target application. Nevertheless, these

components are developed based on code templates, where more than 60 % of

the source code is reused, with the exception of App_Sequence, which only reuses a

code skeleton or, in other words, just the interface.

Going back to ActiveDevice_Container, there is virtually no code required in

this component, since its only purpose is to package the selected ActiveDevice

components into a single compiled component.

As its name hints, Subject_Observer serves objects of two types: Subject and

Observer. There is only one class for Subject, which requires no customization

whatever. It is reused at the source code level as is. On the other hand, an Observer

class is supplied as an example and code template, which then has to be copied and

modified to fit the application at hand. For customization, a typical Observer class

requires modifying or writing less than 100 lines of code.

The case for GUI_Panels is very similar, although most of the modifications are

related to user interface objects, like command buttons, data grids, data-bound

controls, and labels.

Finally, we get to the executable program CustomApp, which in fact is only a

generic name for this component. This program has the sole task of instantiating the

System Scheduler with the main settings for the user interface. This is a template

project that requires customizing <10 lines of code. In practice, this program is

usually compiled with the application name, for instance, RobotCell.exe. Once

instantiated, the System Scheduler takes over, and from that point on, CustomApp

is actually relegated to the background.

26.6.4 Evaluation

We now set to evaluate the impact of this approach to software architecture in terms

of code reuse and programmer productivity. At the time this project was completed,

a survey of the literature on software reuse metrics was made (Chidamber and

Kemerer 1994; Price and Demurjian 1997; Price et al. 2001; Washizaki et al. 2003;

26 A Heuristic Approach to Architectural Design of Software 675

Devanbu et al. 1996; Chen et al. 1995; Ferri et al. 1997; Cardino et al. 1997). The

objective was to find an appropriate technique that would reflect the benefits

derived from reusing enterprise frameworks, where reuse includes both design

and executable code. Most proposed metrics addressed class structure, complexity,

and static relations that use source code files and other fine-grain elements as inputs.

The coarse-grain modularity and functionality of an enterprise framework lay

beyond the scope of such metrics. Our conclusion was that new metrics were

needed, such that the influence of reusing design, architecture, and other system

features located at higher levels of abstraction are also taken into account.

In the case of application frameworks,we think that reuse of architectural design is a

major factor in the success of deployed applications using it.Whenarchitectural design

is reused, the design phase of the software development cycle is greatly simplified,

reducing it to a mapping of the application’s specific requirements to the different

components offered by the standardized architecture, which results in a well-known

system organization that streamlines the implementation phase and enhances the

quality of the final product. This effect includes important engineering labor savings,

which should be quantified in order to take this important benefit into consideration.

26.6.5 Methodology

Given this situation, we opted for an informal and simple pragmatic approach to

measuring the impact of framework reuse and carry a soft evaluation by using

historical data from comparable projects previously completed by the same soft-

ware development team.

Table 26.1 shows a list of projects previously developed and their respective

software development cost in man-hours. All listed applications are very similar

robotic cells for automated manufacturing. They all integrate the same robot, the

same machine vision system, the same servomotors for linear motion, and other

industrial automation tools. Their main difference is that each machine builds a

different product. Projects A, B, C, and D were developed using the traditional

approach to software development. Project E was implemented using the PATF

product family platform. With this information as our starting point, we took the

number of engineering hours that were required to design, implement, test, and

debug the previous projects and then compared it to the effort required to

Table 26.1 Summary of

product family optimization

methods evaluated in study

Projects with similar

applications

Total engineering

hours

Project A 3,030

Project B 2,290

Project C 2,225

Project D 1,530

Project E (using PATF) 384

676 C.O. Morales

implement a brand new application using the PATF platform. Please note that this

table does not include the effort required to design, develop, and implement the

platform itself (3,800 h). However, this overhead cost is included in the final

evaluation shown in Table 26.5.

26.6.6 Results

Let us now characterize the PATF platform and its reusable code base, as fully

implemented in the completed product family platform or enterprise framework.

26.6.6.1 Code Reusability

Table 26.2 shows the PATF black-box reuse profile, which lists software

components that are reused in binary (executable) form. The total number of

shipped source instruction lines (SSI) is given as an indicator of the component’s

size and cost. This is later used as a reference point when quantifying labor savings.

Since these components are reused without any changes, the total black-box reuse

ratio is 100 %.

Table 26.3 shows the PATF white-box reuse profile. It presents the source code

reuse ratio for components that are reused as project and code templates. These

templates have to be modified to suit the new application at hand. Naturally, all

application-specific code components show low source code reuse ratios. Never-

theless, the overall white-box reuse ratio reaches 20 %, which accounts mostly for

abstract classes, type libraries, and other PATF interface elements.

Table 26.4 summarizes the PATF Compound Reuse Profile, which comprises

both black-box and white-box reuse ratios, yielding a net shipped code reuse of

more than 90 %.

Table 26.2 PATF black-box reuse profile (Project E)

Component SSI RSI Reuse (%)

Scheduler 112,963 112,963 100

Processor 15,961 15,961 100

Main GUI 18,046 18,046 100

User management 14,584 14,584 100

ActiveDevice robot 110,864 110,864 100

ActiveDevice DIO 12,449 12,449 100

ActiveDevice DMM 12,170 12,170 100

ActiveDevice vision 14,762 14,762 100

ActiveDeviceDeviceNet 16,842 16,842 100

ActiveDevice servo 15,308 15,308 100

Total 343,949 343,949 100

Key: SSI shipped source instructions, RSI reused source instructions

26 A Heuristic Approach to Architectural Design of Software 677

26.6.6.2 Cost Savings When Using the Platform

It is evident that a reduction in the total implementation effort translates directly

into cost savings. Looking at the previous projects, we find that the median

development effort for Projects A, B, C, and D is 2,258 man-hours, and the average

is 2,269 man-hours.

On the other hand, the total cost for the design, implementation, and test of the

PATF framework was 3,815 man-hours. Once ten applications were implemented

based on the PATF framework, the investment resulted in a unit cost of approxi-

mately 382 man-hours per system. If we add this PATF unit cost to the implemen-

tation effort for Project D and take the median as a representative cost value for

projects implemented using the traditional approach, we get the results shown in

Table 26.5.

The numbers show that projects implemented with the PATF platform cost

approximately 1/3 of what it would cost if it were developed from scratch. Like-

wise, since our cost units are man-hours, the same numbers show that the software

team gets the job done three times faster than with the traditional approach.

Table 26.3 PATF white-box reuse profile (Project E)

Component SSI RSI Reuse (%)

Subject 1,597 1,597 100

CustomApp 1,354 620 46

ActiveDevice container 1,288 425 33

GUI_Panels 2,761 863 31

AppSequence 17,620 1,621 21

Observer 2,678 366 14

Total 27,298 5,492 20

Key: SSI shipped source instructions, RSI reused source instructions

Table 26.4 PATF compound reuse profile (Project E)

Component SSI RSI Reuse (%)

Black-box reuse 343,949 343,949 100

White-box reuse 27,298 5,492 20

Total 371,247 349,441 94

Key: SSI shipped source instructions, RSI reused source instructions

Table 26.5 Comparing PATF vs. traditional approach

Software implementation technique

Total engineering

hours

Total project cost using traditional approach (median) 2,258

Total project cost using PATF as the platform (includes 10 %

of the development cost of the PATF framework itself)

766

Development cost reduction: 66 %

Productivity improvement: 295 %

678 C.O. Morales

Cost savings in engineering effort are an important piece of information to

economically justify the greater investment needed to develop reusable software

architectures and code within an organization.

Keep in mind, however, that software product platforms, or enterprise applica-

tion frameworks, are hard to design and the challenge should not be taken lightly. It

requires an expert software architect with deep knowledge of the domain, supported

by a team of software professionals, and the full commitment of the organization to

make the significant investment that requires such project. Nevertheless, the payoff

of a successful software product platform is significant and rewarding in the

long term.

26.6.6.3 Other Observations

Since PATF implies that a complete set of design decisions have been made for

software developers of future projects that use it, they did not have to spend any

time at all designing their new applications.

Likewise, developers had to spend no time thinking of how to identify, create, or

abstract new modules or interfaces, since everything is fixed a priori in the frame-

work. Functional policies that are typical to most applications within the particular

domain are also implemented in the underlying design and platform. Therefore, the

only task left for them to do was to focus on the particular functional details that

made the target application unique, i.e., the specific algorithms of their new

assignment.

Due to the phenomenon of inversion of control exhibited by an application

framework, programmers are forced to write application-specific code strictly

following the guidelines and interfaces prescribed in the framework design. The

resulting code was more homogeneous and standardized across the team, as com-

pared to code produced for previous projects. This effect is an additional benefit,

since it also helps to improve the software product maintainability.

It is important to mention, however, that at the beginning, it was a difficult task

for software developers to grasp the system model and the new inverted-control

programming style where the family platform framework was in charge, not them.

Inflexibility of the interface design and the multitude of stand-alone external

components required by the system as mandatory also demanded additional

adjustments to the typical programmer mindset. Nevertheless, after the learning

period was over, programmers acknowledged the benefits of the new structured

development based on the new product platform.

26.6.6.4 Code Reuse Conclusion

In agreement with previous reports (Fayad et al. 2000; Fayad and Schmidt 1997;

Schmidt and Fayad 1997; Yassin and Fayad 1999; Poulin et al. 1993), the effect of

using a software product platform for the industrial automation and test domain was

26 A Heuristic Approach to Architectural Design of Software 679

positive, having achieved an estimated level of executable code reusability above

90 % and cost savings of about 60 %. Productivity of software development teams

was improved, although the learning curve could be steep for some programmers.

Reusing both design and code yields multiple benefits in terms of cost, new

product development lead time, and robust quality of the production code due to

extensive testing at each new product iteration. Homogeneity and consistency

among different members of the product family makes maintenance and evolution

feasible, efficient, and cost-effective.

References

AlurD, Crupi J,MalksD (2003) Core J2EE patterns, 2nd edn. PrenticeHall, Upper Saddle River, NJ

Booch G, Rumbaugh J, Jacobson I (1998) The unified modeling language user guide. Addison-

Wesley, Reading, MA

Brooks FP (1975) The mythical man month. Addison-Wesley, Reading, MA

Buschmann F et al (1996) Pattern-oriented software architecture: a system of patterns. Wiley,

Chichester

CACM (1997) Special issue on object-oriented application frameworks. Commun ACM 40

(10):32–87

Cardino G, Baruchelli F, Valerio A (1997) The evaluation of framework reusability. ACM

SIGAPP Appl Comput Rev 5(2):21–27

Chen YF, Krishnamurti B, Vo KP (1995) An objective reuse metric: model and methodology. In:

Schäfer W, Botella P (eds) ESEC ‘95: 5th European software engineering conference, Sitges,

Spain, Sept 1995

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Soft

Eng 20(6):476–493

Clemens P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Merson P, Nord R, Stafford J (2011)

Documenting software architectures, 2nd edn. Addison-Wesley, Reading, MA

Cockburn A (2000) Writing effective use cases. Addison-Wesley Professional, Reading, MA

Daigneau R (2011) Service design patterns: fundamental design solutions for SOAP/WSDL and

RESTful web services. Addison-Wesley Professional, Reading, MA

Devanbu P, Kartsu S, Melo W, Thomas W (1996) Analytical and empirical evaluation of software

reuse metrics. In: Dieter Rombach H et al (eds) ICSE ‘96: 18th international conference on

software engineering, Berlin, Germany, 25–29 Mar 1996. Proceedings IEEE Computer Society

1996, pp 189–199

Douglass BP (2002) Real-time design patterns: robust scalable architecture for real-time systems.

Addison-Wesley Professional, Reading, MA

Douglass BP (2011) Design patterns for embedded systems in C. Newnes, Boston, MA

Fayad ME, Schmidt D (1997) Object-oriented application frameworks. Commun ACM 40

(10):32–38

Fayad ME, Schmidt D, Johnson R (1999) Building application frameworks: object-oriented

foundations of framework design. Wiley, New York, NY

FayadME and Johnson R, (1999) Domain-Specific Application Frameworks: framework Experience

by Industry. Wiley, New York

Fayad ME, Hamu DS, Brugali D (2000) Enterprise frameworks: characteristics, criteria and

challenges. Commun ACM 43(10):39–46

Ferri RN, Pratiwadi RN, Rivera LM, Shakir M, Snyder JJ, Thomas DW, Chen YF, Fowler GS,

Krishnamurti B, Vo KP (1997) Software reuse metrics for an industrial project. In: Bieman

680 C.O. Morales

et al (eds) METRICS ‘97: Proceedings of the 4th international software metrics symposium,

Albuquerque, NM, Nov 1997, pp 165–173

Fowler M (2002) Patterns of enterprise application architecture. Addison-Wesley Professional,

Reading, MA

Fowler M (2003) UML distilled, 3rd edn. Addison-Wesley, Reading, MA

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-

oriented software. Addison-Wesley, Reading, MA

IEEE (2011) ISO/IEC/IEEE Std 42010-2011 systems and software engineering: architecture

description, international standard

ISO (2011) The ISO architecture group maintains a survey of all known architecture frameworks

as reference material in their ISO/IEC/IEEE Std 42010. http://www.iso-architecture.org/ieee-

1471/afs/frameworks-table.html. Accessed Jul 2012

Jacobson I, Christerson M, Jonsson P, Overgaard G (1992) Object-oriented software engineering:

a use case driven approach. Addison-Wesley, Reading, MA

Johnson RE (1992) Documenting frameworks using patterns. In: Pugh J (ed) OOPSLA ‘92: ACM

conference on object oriented programming systems, languages and applications, conference

proceedings, Vancouver, BC, Canada, Oct 1992

Johnson RE (1997) Frameworks¼(components+patterns). Commun ACM 40(10):39–42

Microsoft (1994) COM and COM+Technology reference papers. http://msdn.microsoft.com/

Morales CO (2013) Chapter 21: Design principles for reusable software platforms. In: Simpson T,

Jiao R, Siddique Z, Holtta-Otto K (eds) Advances in Product Family and Product Platform

Design: Methods and Applications, Springer, New York, NY

Object Management Group (2011) The unified modeling language UML, ver. 2.4.1, Object

Management Group

Poulin J, Caruso J, Hancock D (1993) The business case for software reuse. IBM Syst J 32

(4):567–594

Price MW, Demurjian SA (1997) Analyzing and measuring reusability in object-oriented designs.

In: Berman AM (ed) OOPSLA ‘97: ACM conference on object oriented programming systems

languages and applications, conference proceedings, Atlanta, GA, Oct 1997, pp 22–33

Price MW,Needham DM, Demurjian SA (2001) Producing reusable object-oriented components:

a domain-and-organization-specific perspective. In: Proceedings of ACM symposium on

software reusability SSR ‘01, Toronto, ON, Canada, May 2001, pp 41–50

Rumbaugh J, Jacobson I, Booch G (1998) The unified modeling language reference manual.

Addison-Wesley, Reading, MA

Russell S, Norvig P (2009) Artificial Intelligence: a modern approach, 3rd edn. Prentice Hall,

Upper Saddle River, NJ

Schmidt D, Fayad ME (1997) Lessons learned building reusable OO frameworks for distributed

software. Commun ACM 40(10):85–87

Schmidt D, Stal M, Rohnert H, Buschmann F (2000) Pattern-oriented software architecture, vol 2:

patterns for concurrent and networked objects. Wiley, Chichester

Washizaki H, Yamamoto H, Fukuzawa Y (2003) A metrics suite for measuring reusability of

software components. In: Proceedings of the 9th IEEE international software metrics sympo-

sium (METRICS 2003), 3–5 Sept 2003, Sydney, Australia, pp 211–223

Yassin AF, Fayad ME (1999) Chapter 29: A survey of object-oriented application frameworks.

In: Fayad ME, Johnson R (eds) Domain-specific application frameworks. Wiley, New York,

NY, pp 615–632

Zachman JA (1987) A framework for information systems architecture. IBM Syst J 26(3):276–292

26 A Heuristic Approach to Architectural Design of Software 681

http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
http://msdn.microsoft.com/

Chapter 27

Customer Needs Based Product Family

Sizing Design: The Viper Case Study

Cassandra Sotos, Gül E. Okudan Kremer, and Gülşen Akman

Abstract This study explores the issue of optimizing the size of a product family as

well as designing the product variants of the family in the context of designing a stand

for a unique electric violin known as the “Viper.” The study uses collected customer

data in order to identify the optimal number of design variants in the product family,

generate design alternatives, assign each design to the appropriate customer type, and

verify the outcome. Themethodology begins with data collection through a survey of

Viper players which is analyzed usingK-means clustering analysis and segmentation

in order to determine the optimal number of variants in the product family. This

analysis also defines each customer group and each group’s specific customer

requirements. Quality function deployment (QFD) is used to fit design concepts

(generated by the requirements and specifications) to synthesized design variants and

assign to a customer group. Then, analytic network process (ANP) is used to

substantiate the outcome of the study by further verifying each Product Family

Member-Customer Group mapping as well as the number of variants. This is

achieved by simultaneously fitting the generated design concepts to customer

requirements and customer groups through ANP. The ultimate goal of this work is

to provide a simple, easy to understand, easy to reproduce, and customizable method

for making product family size and design decisions in any industry.

C. Sotos • G.E. Okudan Kremer (*)

The Pennsylvania State University, University Park, PA, USA

e-mail: gek3@psu.edu

G. Akman

Kocaeli University, Kocaeli, Turkey

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_27,
Springer Science+Business Media New York 2014

683

mailto:gek3@psu.edu

27.1 Product Family Sizing Design

Product family and product platform design problems are topics commonly written

about in the academic and business worlds and include issues and viewpoints

presented from many fields. Design decisions can be based on a number of factors

and are often simultaneously explored bymany areas of study and expertise: business

and finance, supply chain and operations research, engineering, marketing and

computer science, etc. In many cases, these areas have very different, and sometimes

conflicting objectives during each stage of the design phase. Each objective comes

with its own set of trade-offs that need to be considered. Identifying the most

important factors and achieving the correct balance between the differences in

objectives for each individual problem can become very complex. Themethodologies

presented, in general, address issues of commonality, flexibility, and cost.

More than ever, meeting the rapidly changing and demanding requirements of

customers is of the highest importance to product designers and executives around

the globe. In recent years, customers have grown accustomed to their own purchas-

ing power granting them nearly-instantaneous product gratification: perfectly

matched and customized to their individual requirements and specifications with

high quality and, most importantly, right when they need it. This trend is clearly

displayed in the industry of application development for mobile devices and

computers. Customer perceptions and expectations from companies are moving

in the direction of the previously mentioned trend across industries in general,

reflected in the continuous enhancements and improvements upon the current

technology for manufacturing facilities. To survive in such an intensely competitive

and volatile market, firms, small and large, must adapt their practices to be able to

meet the requirements of a breadth of customers with differing requirements while

maintaining low retail prices and without damaging profits.

Research shows that when a customer is presented with product options that

meet their individual desires and requirements, aesthetically and/or functionally,

they are likely to pay more for these products than for lesser varieties (Tseng and

Jiao 1996). One method of meeting differing requirements within a company’s

customer base is to offer a variety of products such as in a product family

(Salhieh 2007). In today’s market, it is becoming harder and harder to meet

customer requirements with a single product as many customers want a choice

of several options as well as rapidly released new updates. An alternative to cope

with these demands is mass customization, the production of individually

customized and highly varied products (Meyer and Lehnerd 1997). The issues

of demanding and varying customer requirements and how to address these issues

are a common theme in recent publications as they relate to both mass customi-

zation and product family design (e.g., Jiao et al. 1998; Jiao and Zhang 2005; Li

et al. 2008), where the authors stress the importance of incorporating more

directly customer-related input into the design process in research as well as in

industry. However, the aforementioned issues are not typically seen as the focus

of most publications.

684 C. Sotos et al.

One way to meet the demands of a larger group of customers is to offer a variety

of products such as in a product family. However, the issue of potential product

cannibalization can be a problem. In this context, cannibalization can be described

as one product variant diminishing the returns (e.g., market share and profits) of

another. For example, introducing a DVD player with new technologies into a

product family can increase its own revenue, but it may lower the sales of other

DVD players already in production by the same manufacturer. Due to this concern,

when a company is planning to launch a product variant to market where other

variants exist, customer fit and profitability should be considered across the product

family and at the individual variant level. Conversely, if the available variants of

the product family marketed by a company do not respond to the actual customer

needs, competing companies can infiltrate the market by launching new variants.

In other words, neither having more than needed nor less than needed product

variants is beneficial for a company. Many authors acknowledge that the number of

variants in the product family is an important factor to consider, but in most cases it

is an afterthought, used as a metric to describe a family once it is designed or a

by-product when trying to decide upon another factor. Those who do directly

approach choosing the optimal number of variants (N*) do it in a very complex

manner that requires a large amount of resources, historical customer and engineer-

ing cost information, and breadth of engineering knowledge. Many of the methods

currently in literature are notably complex and would not be on a level that most

small to midsized companies could accommodate from within their organization’s

resources. The methods that we propose here seek to simplify the process of starting

the design of a product family by providing an easily reproduced (and easily

customized to the particular industry or business) method of deriving the optimal

number of variants in the product family (N*) and then mapping customer

requirements to those products utilizing one all-encompassing set of data. While

this method requires notable effort in customer market intelligence, the information

collected is used throughout the methodology. The methodology should, using

customer requirements, provide a solid and simple starting point for new product

family development that effectively builds a foundation for the rest of the design

processes involved.

Issues explored in product family design are similar to those of product

platform design, including cost, flexibility, and market demands. However, the

topics considered also span into product variety, performance, customization, and

manufacturability. Some researchers discuss the different strategies and processes

involved in designing a product family that is based on a modular platform. One

of the most called for topics in industry and academic research is incorporating

more customer-direct data into the design process. An example of work that

heavily utilizes customer data and is similar to what we are proposing is described

in a method by Tucker and Kim (2009). The methodology is based on customer

data collection and analysis techniques, in particular decision tree classification.

The authors collect customer data, segment it, and then use that information in the

concept generation process so that they may define what functionalities customers

require. The thought behind this method of concept generation is to optimize the

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 685

resources and time spent on concept generation and selection when one would

normally be evaluating much larger lists of design alternatives. Once designs are

selected for the products, a concept cost/profit multilevel optimization model is

constructed and solved. Out of this model comes a number of variants, denoted

“N,” but it is based on the engineering costs and profits rather than the original

customer data. Although choosing the number of variants for the family is a part

of this methodology, its main focus is to design the variants based on the collected

customer data.

Along the same lines, Zha and Sriram (2006) present a method which is

knowledge-based and emphasizes the importance of incorporating several areas

of knowledge into all steps of the design process as well as modeling that

knowledge along the way. Considerations of product variety are one of the factors

mentioned as a way to apply knowledge-based methodologies. In terms of apply-

ing this to product family sizing, the authors briefly mention two metrics that are

related to the number of product variants: market efficiency ηM ¼ Ntm (number

of targetable market niches)/NM (total market), and investment efficiency ηI ¼
Cm (manufacturing equipment costs)/Nv (number of product varieties). These

metrics provide a way of evaluating a product family after the fact. They do not

explicitly tell designers when or how to create a new family. Also along the lines

of incorporating customer data, Kumar et al. (2009) propose a methodology called

“Market-driven product family design” that incorporates market data (similar to

our case) with manufacturing and engineering costs. The methodology begins

with market segmentation and demand estimates and then furthers to cost and

performance models. One step of the methodology is product family optimization,

and it addresses finding the optimal number of product variants. The number of

product variants is found simultaneously with the number of platforms in the

family (commonality decisions). How many platforms to use is the greater focus

of the study. This methodology is not exclusive for new product design; it

includes preexisting markets in the segmentation. The authors propose multiple

platforms for the product variants rather than building upon one platform.

Although this is a very elegant model that covers many decisions simultaneously,

it is complex and requires a lot of information. In situations where there are

limited resources and information about the market or where it is not anticipated

that the company wishes to work through multiple platforms, this methodology

may not be appropriate.

Some researchers have focused on how to expand family products through

modularization. They have used function structure and the physical principle of

components or a product itself to set modularity rules, by which they have

generated possible new modules and potential product matrices (Dahmus et al.

2000). Others have used modular architecture and module commonalization com-

bined with quality function deployment (QFD) to build function and module

structures for target products (Fujita et al. 1999). By mapping customer needs to

functions and manufacturing in receiver circuits, researchers believe they can

extend product variety and reduce costs (Fujita et al. 1999). Through the imple-

mentation of such an approach, scholars have made minor adjustments such as

686 C. Sotos et al.

performing successive quadratic programming (SQP) to derive new modularity

elements (Fujita 2002). Similarly, a way to optimize a product family is to define

what (if any) is the most efficient use of a product platform or at least what

components should or should not be common throughout the family. Huang et al.

(2008) address product family optimization by defining which variables should be

common throughout the product family and which of the variants should include the

said variables. They accomplish this by using a multi-objective genetic algorithm

and introduce a commonality index which is utilized in the model. In this work, the

product variants are optimized individually but simultaneously. The simultaneous

optimization is described as a way to preserve individual variant performance while

still considering commonality and avoiding great differences in the variants them-

selves. In this methodology, it is assumed that the number of product variants (np) is
already known when entering into the problem and it does not provide a way of

choosing np. The authors use the multi-objective genetic algorithm as a way to

control and define commonality across the product family with np product variants

and nv design variables.

There are many instances of research where the number of variants in the

product family is a part of the process that confirms the “N” (number of variants)

after the fact or is a predefined input into the process. One example is in the work

by Bhandare and Allada (2009), an approach to product family design that begins

with known variants and then based on those variants, selects the optimal number

of platforms and which platforms to use. They suggest multiple scalable platforms

in the family to reduce the degradation of individual variant performance which

they say is common when building upon one platform. To achieve optimal

platform selection, the authors propose an optimization problem that minimizes

costs to the manufacturer while considering the demand constraints of each

individual variant. This model also considers the cost of performance loss of

each variant due to platforming in addition to the manufacturing costs. This

methodology demands intensive information gathering for the model of each

variant: demand data, product specifications, technical specifications and

requirements, defining variables that affect performance, etc. The optimization

problem allows for the identification of subsets of scalable and common variables.

Beyond this, it also calls for the simulation of platform cases—using 1 through m

platforms (m platforms would mean that there is a platform for each variant) and

evaluating the implications of each case. Given the results of the optimization

combined with the evaluation of each of the cases, the authors are able to select

the optimal number of platforms to derive the variants from. The authors demon-

strate their proposed methodology by applying it to a product family of axial

piston pumps. In this case, the demand information is known a priori and there is a

significant amount of technical information (i.e., requirements and specifications)

to be included in the optimization problem. This methodology is applicable to

many technically complex problems; however, it may be difficult to scale up the

optimization section as it has been currently developed for use with less compli-

cated product families.

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 687

27.2 Background Information and Problem Description

27.2.1 Wood Violins and the Viper Electric Violin

The Viper electric violin is produced in the USA by a privately owned company,

Wood Violins, and has been available to the public for around 15 years. The Viper

offers violinists, violists, and other instrumentalists seeking an electric instrument a

plethora of options which are typically not available in configurations from other

manufacturers. Some of these options include custom finishes, the addition of up to

three strings (extending the total number of strings to seven, three strings lower than

those of a traditional four string acoustic violin), and the possibility of adding frets

similar to an electric guitar. The benefits and trade-offs of adding or excluding

these options are determined by the customer’s personal preferences, and almost

all Vipers are currently customized and made to order. The Viper’s suggested

retail price ranges from $2,500 to $5,500 depending on the features included and

excluded in the ordering period. A side view of the Viper can be seen in Fig. 27.1.

The type of customers who currently purchase and own Vipers ranges from young

students to full-time professionals. Wood Violins offers a whole line of instruments

from student to professional models with the Viper representing the most “luxury,”

high-end product in the line. It is also considered one of the flagship products of

the company. The shape of the Viper resembles a “flying-V” electric guitar and is

very different from a traditional acoustic violin. The shape provides aesthetics as

well as functionality by lending itself to the Wood Violins-patented chest support

system, which makes the instrument completely self-supporting. The need for the

Fig. 27.1 Side view

of Viper shown with strap

and extended chest

support (http://www.

woodviolins.com)

688 C. Sotos et al.

http://www.woodviolins.com/
http://www.woodviolins.com/

chin rest and shoulder pad is eliminated and the user’s head, neck, and arms are free

and overall mobility and flexibility is increased. This is achieved by utilizing a

paddle and a strap that stabilizes the instrument on the musician’s body.

Although it most definitely adds value to the instrument, the Viper’s shape

precludes it from being paired with many commonly used accessories for acoustic

violins and violas such as instrument stands and instrument cases. Wood Violins

currently carries a custom shaped case for the Viper electric violin, but there is no

available instrument stand that safely suits the shape of the Viper.

Instrument stands are a commonly used accessory for all musical instruments

ranging from stringed instruments, brass, and wind instruments to electric

instruments like guitars and bass guitars. A stand maintains the safety and security

of the instrument by holding it upright and stable while still keeping it very easily

accessible in performance or home practice situations. Stands are also very com-

monly used by multi-instrumentalist performers who have limited stage space but

need to switch between several instruments quickly and very frequently. There are

no stands on the market that are specifically made for Viper electric violins. As of

now, Viper players who actively seek and use an instrument stand are using the next

best alternatives to a custom-fitted Viper stand. These are guitar stands, which do

not meet all the geometric and safety needs of the Viper.

Since almost all Viper players are multi-instrumentalists (almost all play at least

the acoustic violin or viola and many others play mandolin or guitar), and there is an

existing common use for instrument stands for other musicians, there is also most

likely need for a Viper stand. Combining this knowledge with the fact that the Viper

is a relatively expensive product that has an existing and growing customer base,

it is also likely that customers would be willing to seek out and purchase a new

accessory for their instrument, and this possibility would be worth investigating.

Even though the type of production and materials may change in new generations of

the Viper, the geometry of the instrument would not be changed, so the designs

resulting from this study would remain relevant.

27.2.2 Objectives

To address the task of designing a new family of stands for the Viper, we propose a

methodology to choose the number of variants in a product family, assign

components to each family “member” to define a product setup for each variant,

and verify the results.

This methodology is demonstrated by the design of a product family of stands

for the Viper electric violin. It is hypothesized that there are several distinct

customer groups of Viper players that have equally distinct needs when purchasing

accessories such as a stand for their instrument. It has also been identified that there

is a customer need for a Viper instrument stand. The goal of the methodology is to

determine the optimal number of variants in a product family (N*) of Viper stands

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 689

corresponding to the number of distinct groups of customer types indicating their

needs and preferences as well as generate distinct designs for each group.

A concurrent goal of the methodology is to provide a guideline for sizing and

designing a product family that is simple, easily reproducible, and easily customiz-

able across a range of industries and problem types. The methodology provides a

solid foundational starting point for the design of a product family that is easy to

understand and can be applied by designers with business and engineering

backgrounds alike.

27.3 Methodology

The methodology begins with the creation of a survey (or any medium of customer

data collection—this phase is customizable to the problem type and the resources

available), validation and testing of the survey, and deployment. It should be noted

that the first step in this methodology assumes that the objectives of the study have

been identified a priori so that meaningful questions can be written for the survey.

Once the data has been collected, the responses are cleaned and categorized when

possible and, if not already in numeric formats, transformed to have numeric

representation. With this data set, the K-means clustering method is implemented

along with a validity measurement to identify the number of groups in the product

family (N*). Once the data is segmented, the original customers are mapped to each

segment, or customer group, so that new descriptive statistics can be calculated for

each customer group. From this segmented information, design requirements and

specifications are generated for each individual group. Concurrently, design

alternatives for the components of the variants in the product family are generated

based on what currently exists on the market as well as newly generated ideas.

These components are ranked with respect to how well they meet certain design

requirements and matched with the customer group components using quality

function deployment (QFD). This is used to generate actual design variants by

combining the components selected for each group. Finally, the findings are

verified by implementing analytic network process (ANP). The flow of the meth-

odology is shown in Fig. 27.2.

Fig. 27.2 Methodology flow

690 C. Sotos et al.

27.3.1 Survey Creation and Deployment

A survey was created as a medium to collect data from current users of the Viper

electric violin. The survey was designed in such a way that the person taking the

survey would not know that it was related to the creation of a stand. Instead, the

survey sought to define the type and frequency of interactions with the Viper in

different settings where the user might want to use a stand: home, performance, and

travel, and in doing so answer the designers’ questions about potential product

needs. Creating the survey in this manner prevents biased answers from the users.

Instead of asking the user a direct question about a stand such as What are the most

important qualities you need in an instrument stand while practicing?, we ask a

series of questions about the way they practice: what, when, how, etc., and we are

able to infer an answer to the first question based on those answers. The survey

was divided into six sections: (1) About You, (2) Specifics about Viper Playing,

(3) Playing your Viper at Home, (4) Performing with your Viper, (5) Traveling with

your Viper, and (6) Supplies and Accessories for your Viper.

The survey allows us to profile Viper players, sort them into groups of similar

users who express similar needs and preferences, and identify what percentage of

the total market the group holds. For instance, there may be a notable group of

professional, full-time performers who also play at least one other instrument,

travel frequently, and play at home very infrequently. Members of this group may

be most concerned with flexibility and portability. There may also be a group of

amateur/recreational Viper players who play only one other instrument, perform

very irregularly and casually if at all, and never travel. Members of this group may

be less concerned with portability and more concerned with cost. The individual

sections of the survey ask questions that let us know specifics about the types of

interactions members of these group experience which in turn allow us to identify

their preferences and needs.

The survey was tested by a group of pilot users (n ¼ 4) and then deployed via

the Internet and through Wood Violins’ electronic mailing list. During the 3-week

surveying period, 111 valid responses were collected. Participants were mainly

from the USA, but some international Viper players also responded.

27.3.2 Data Cleaning and Interpretation

A very important part of this process was to select the correct questions to be

clustered. The selected question and the corresponding answer choices are those

that indirectly or directly influence customer needs and preferences when dealing

with an instrument stand. The original survey contained many more questions,

but some of the questions were inserted for the purpose of unrelated research to be

used for later projects such as marketing, or the importance of the answers were

already captured by another question that was included for the clustering analysis.

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 691

Many of the responses needed to be transformed to numeric values for the

clustering analysis. The questions were classified into four categories: numerical

questions, nominal single answer questions, nominal multiple answer questions,

and ordinal questions. For example, the answer choices for the question, “What is

your highest level of formal music training?,” were originally in the format of none-

self taught, pre-college private lessons, adult private lessons, undergraduate music

minor, undergraduate music major, graduate music degree, and conservatory

trained. The answer choices were identified as ordinal and were relabeled in

the format 0–6: 0 (none-self taught), 1 (pre-college private lessons), 2 (adult

private lessons), 3 (undergraduate music minor), 4 (undergraduate music major),

5 (graduate music degree), and 6 (conservatory trained). This process ultimately led

to transforming 25 original survey questions into 61 variables for the analysis.

27.3.3 Cluster Analysis

After converting all of the data to numerical values, we implemented the K-means

clustering method and used a validity measure to select the optimum number of

clusters. K-means clustering (MacQueen 1967) is a widely used method to partition

a data set into k groups. It starts with the selection of the k initial cluster centers and
then iteratively refining them as (1) each instance di is assigned to its closest cluster.
(2) Each cluster center Cj is updated to the mean of its instances. The algorithm

converges when there is no further change in assignment of data instances to the

clusters (Wagstaff et al. 2001).

This method was chosen after study of the current literature because it is simple

to understand and implement for all types of professionals in varying fields of

engineering and business. It was also chosen because it provides an up-front

foundational starting point for the design of the family in regard to the number of

variants, where most current methodologies examine N variants as an afterthought

in the form of a metric to describe the current state of the family. It also allows for

greater flexibility for different business and engineering objectives of management.

The K-means clustering method requires that the K (number of clusters) is

preselected. Once K is selected, the data is clustered into K groups by using a

Euclidian distance formula. Since the K requires preselection, completing K-means

clustering analysis alone will not provide an optimum number of clusters.

Each scenario (2 clusters, 3, 4, 5, and so on) has to be calculated independently.

The scenarios for K ¼ [2, 3, 4, 5, 6, 7, 8, 9, 10] were all computed for this analysis.

27.3.4 Validity and Selecting the Optimum
Number of Clusters

As was previously mentioned, the information obtained from only calculating

scenarios K ¼ [2, 10] does not provide specific insight about the optimum number

of clusters. Authors Ray and Turi (1999) present a method of selecting the optimum

692 C. Sotos et al.

number of clusters when using K-means by using a measure they call validity.

The validity measure provides a way to compare the said scenarios and aids in

making a decision about the optimum number of clusters. Validity is defined as the

ratio between the intra-cluster distance measure (the distance between points inside

one cluster) and the inter-cluster distance measure (the distance between clusters).

When validity is small, it implies that the points within one cluster are very close to

one another (i.e., small intra-cluster distance) and also very far away from the data

points in other clusters (i.e., large inter-cluster distance).

The authors also suggest that instead of selecting the purely minimum

validity value, one should identify the local maximums and explore the points

around each maximum to find the most improvements or bend when moving

between K values.

27.3.5 Discovering the Customer Groups

Once the optimum number of clusters has been identified, the group membership

can be extracted from the original analysis. With new customer groups divided

from one another instead of the original overall customer group, new descriptive

statistics can be calculated for each group, and the customer types can begin to be

discovered along with their needs and preferences. The group membership is linked

to the original respondent identification number, and therefore all of that

respondent’s information from the original survey (including the questions that

were omitted from the clustering analysis) can be accessed and analyzed for further

research.

27.3.6 Matching Designs to Customers with QFD

In the final steps, quality function deployment (QFD) is used to fit generated design

concepts to each clustered customer group. Since it was proposed in 1966 by

Dr. Yoji Akao and Shigeru Mizuno, QFD has been applied in numerous industries.

It connects the voice of customers (VOC) to the product designers. It is a systematic

way to transform the customers’ needs for a product into prioritized technical

measures that can be further deployed to develop process and production plans.

With QFD, user expectations (the “Whats”) are related to design and production-

related parameters (the “Hows”). This process is represented by a succession of

double entry “Whats/Hows” tables, allowing the correlations between entries to be

identified and prioritized (Chiu et al. 2008).

The benefits of QFD are well known. Chan and Wu (2002) classified the benefits

intoqualitative andquantitativebenefits. Threemajor qualitative benefits are enhanced

customer orientation, effective product development, and improved communications

and teamwork. For the quantitative benefits, Bicknell and Bicknell (1995) outlined

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 693

the estimated tangible benefits that are common when QFD is properly used as

30–50 % reduction in engineering changes, 30–50 % shorter design cycles, 20–60 %

lower start-up costs, and 20–50 % fewer warranty claims. Given its benefits, QFD is

chosen for application here.

For the QFD application, a concise list of the most important requirements for

each group is generated based on the customer responses, habits, and needs

demonstrated by the original survey questions. These needs are linked to a number

of possible concepts to be included in the final designs. The final designs are selected

by how well each individual concept is able to meet a group’s specific needs.

27.3.7 Verifying Consistency of the Results with ANP

As per the steps of the QFD application, it is not possible to verify the consistency of

the fit judgments. Accordingly, analytic network process (ANP) is used to simulta-

neously fit generated design concepts to customer requirements and customer

groups. ANP is the more general form of the analytical hierarchy process (AHP)

used in multi-criteria decision making (MCDM) to ease limitations related to

dependency across variables (Huang et al. 2005). While AHP ensures a hierarchical

decision framework by employing a unidirectional relationship within the range of

decision-making levels, ANP provides modeling more complex interrelationships

among the decision levels and sub-criteria (Meade and Sarkis 1998). ANP is also

recognized as the systems-with-feedback approach. A supermatrix will be created

by linking interdependencies and feedback loops in the model. The supermatrix

arranges the relative weights in individual matrices, and then a new overall matrix is

constructed with the eigenvectors of the arranged relative weights (Meade and

Sarkis 1998). The supermatrix has limiting impact which provides the priorities of

the factors in the network and it is computed for each network (Saaty 2001). In ANP,

weights are calculated bymeans of three matrices: (1) the unweighted supermatrix is

acquired directly from pair-wise comparison ratios, (2) then the weighted

supermatrix is calculated thereby multiplying the values by cluster weights and

normalizing by column, and (3) the limited supermatrix provides the weights of the

alternatives by converging the supermatrix (Saaty 2001).

27.4 Results

27.4.1 Survey Results

In total, 111 responses were collected during the survey deployment period. It was

discovered after selecting questions for the clustering analysis that due to omitted

answers (none of the respondents were required to answer any particular question

694 C. Sotos et al.

except to indicate that they were in fact a Viper owner), some respondents had to be

excluded from the analysis. This led to 74 valid respondents that we were able to

include in this section of the methodology.

The results of the survey are shown in Table 27.1 where the descriptive statistics

for each variable are displayed as well as in Table 27.2 where those descriptive

statistics are converted to statements to describe the “typical Viper player.” While

this information can be insightful in certain ways, in this particular format, it does

not allow for many insightful design decisions to be made for a product family,

so further analysis is required.

27.4.2 Cluster Analysis

The K-means clustering methodology was applied to the data collected from

74 respondents. The 25 original questions selected for the clustering were converted

to 61 numeric variables, and the K-means methodology was applied to those

variables. The scenarios for K ¼ [2, 3, 4, 5, 6, 7, 8, 9, 10] were all completed and

the results can be found in Table 27.3, while a more detailed set of results is

provided for K ¼ 5 in Table 27.4.

As the methodology presented in Ray and Turi’s work (1999) suggests, the first

local validity maximum was identified to be (K ¼ 3, validity ¼ 4.52) and the

points after that [(K + 1, K_max) or (K ¼ [4, 10])] were placed into consideration

for the optimum number of product variants, N*. One method of determining N* is

to select the K with the lowest validity measure within this range (K ¼ [4, 10]).

This method would yield the choice of (K ¼ 8, validity ¼ 2.639), or N* ¼ 8.

Table 27.1 Generalized characteristics of respondents—total group

Origin Sex Average age About using and owning a Viper

USA, 80 % F, 65 % 34.45 Average # of Vipers owned: 1.18

International, 20 % M, 35 % Average years owning Viper: 3.44

Table 27.2 Generalized characteristics of respondents—total group

Level of playing %

Instruments respondents

also play %

Music

respondents play %

Student 27 Only viper 07 Rock 85

Amateur 37 Violin or viola 80 Classical 82

Educator (Prim. income) 14 Mandolin 12 Bluegrass 27

Educator (Sec. income) 08 Guitar or bass 35 Country 23

Performer (Prim. income) 14 Cello 07 Jazz 50

Performer (Sec. income) 30 Piano 24 Celtic 34

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 695

An alternative method is to select the point with the largest “bend.” Bend is the

improvement from one point to another, in the form of a decrease in validity. For

example, the bend between points K ¼ 3 and K ¼ 4 with respective validity

measures 4.521 and 3.987 is 0.534 (4.521 � 3.987 ¼ 0.534). Although there is

an improvement, or “bend” from K ¼ 3 to K ¼ 4, when examining other nearby

points, it was determined that the bend from K ¼ 4 to K ¼ 5 was greater than the

bend from K ¼ 3 to K ¼ 4. The point K ¼ 5 has the largest bend of the group, so

according to this method, K ¼ 5 yields an N* ¼ 5.

According to the two approaches, both N* ¼ 5 and N* ¼ 8 are reasonable results

to consider. When considering the two different scenarios, we can see the individual

group membership is low when N* ¼ 8. Four out of the eight total groups have

membership less than 7 %, and two of those groups have membership of less than

2 %. The % of the original sample that each cluster represents was also calculated

Table 27.3 K-values validity results

K # of clusters Intra-cluster distance Inter-cluster distance Validity

2 55.940 18.934 2.955

3 54.010 11.947 4.521

4 52.913 13.272 3.987

5* 50.804 15.865 3.202

6 49.876 16.107 3.096

7 48.375 16.107 3.003

8# 46.636 17.674 2.639

9 45.413 15.103 3.007

10 44.361 15.103 2.937

* Optimum with the highest bend

Optimum with the lowest validity score

Table 27.4 Detailed cluster analysis results for K ¼ 5

K ¼ 5 Clusters

Number of

observations

Within

cluster

sum of

squares

Avg.

distance

from

centroid

Max.

distance

from

centroid Intra Inter

Cluster 113 666.511 7.087 9.829 50.80393 15.86509

Cluster 221 1051.767 6.914 10.285

Cluster 312 530.598 6.630 7.241

Cluster 422 1138.805 7.089 10.65 MIN 3.9831

Cluster 5 6 371.810 7.706 9.806

Distance between

cluster centroids Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 0.0000 5.2484 0.6386 4.0987 5.4187

Cluster 2 5.2484 0.0000 5.0016 4.9867 6.561

Cluster 3 4.6386 5.0016 0.0000 3.9831 5.6428

Cluster 4 4.0987 4.9867 3.9831 0.0000 5.2591

Cluster 5 5.4187 6.561 5.6428 5.2591 0.000

696 C. Sotos et al.

for the K ¼ 5 (N* ¼5) scenario. The findings are listed below in Table 27.5.

The choice of N* ¼ 5 has a more balanced membership than the N* ¼ 8 scenario

with only one group below 10 % membership. Based on this finding, N* ¼ 5 was

chosen over N* ¼ 8 as the better suited final result for this particular situation.

Also, as seen in Table 27.4, for K ¼ 5, intra-cluster distance is 50.804, inter-cluster

distance is 15.568, and validity is 3.202. These results are very reasonable.

Once N* was determined through the clustering analysis, each group member-

ship was identified and new descriptive statistics were calculated. With this infor-

mation we can begin to identify their needs and preferences. Demographic profiles

of these customer groups are provided in Table 27.6. Descriptions of each Viper

player customer types #1–5 were generated from the new descriptive statistics and

are shown in Table 27.7. The information in these tables was used to create concise

lists of ranked customer requirements for QFD analysis. This information can also

be used during many different stages of design and implementation such as the

marketing and sales efforts.

27.4.3 Defining Customer Groups

Once the optimal number of variants in the product family (N*) was determined

through the clustering analysis, membership in each group was identified and new

descriptive statistics were calculated. With this information we are able to profile

each group and identify their needs and preferences.

27.4.4 Implementing QFD: Fitting Designs to Customers

Customer needs for each group were extracted and ranked from the details of the

new descriptive statistics described in the previous section. We can generate and

rank the lists by observing the habits of each group. For instance, the typical “#3”

type customer performs an average of over five instances per month, but the typical

“#2” type customer makes less than one (if any) performance per month, so “ease of

use during performance” appears on the needs list for “#3” but not “#2.” A list of

the ranked customer requirements according to customer groups is provided in

Table 27.8.

Table 27.5 Group

membership scenario N* ¼ 5
Cluster (group) # #Group members % of Total group

1 13 17.57 %

2 21 28.38 %

3 12 16.22 %

4 22 29.73 %

5 6 08.11 %

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 697

T
a
b
le

2
7
.6

D
et
ai
le
d
d
es
cr
ip
ti
o
n
s
o
f
cu
st
o
m
er

g
ro
u
p
s

G
ro
u
p
#
1

G
ro
u
p
#
2

G
ro
u
p
#
3

G
ro
u
p
#
4

G
ro
u
p
#
5

A
v
er
ag
e
ag
e

3
7
.2

3
2
.5
7

2
9
.9
6

3
4
.0
2

4
4
.6
7

S
ex

6
9
.2
3
%

m
al
e

6
6
.6
7
%

m
al
e

5
8
.3
3
%

m
al
e

6
8
.1
8
%

m
al
e

5
0
%

m
al
e/
5
0
%

fe
m
al
e

A
v
g
.
#
o
f
V
ip
er

o
w
n
ed

1
.0
8

1
.0
5

1
.0
8

1
.2
7

1
.6
7

A
v
g
.
y
ea
rs

o
f

V
ip
er

o
w
n
ed

4
.1
3
y
ea
rs

3
.2
4
y
ea
rs

2
.4
9
y
ea
rs

3
.6
4
y
ea
rs

3
.8
5
y
ea
rs

A
v
g
.
tr
ai
n
in
g

le
v
el

(1
–
6
)

2
.6
1

2
.6
2

4
.0
8

3
.0
9
1

3
.1
6
7

A
v
g
.
tr
ai
n
in
g

le
v
el

d
es
cr
ip
ti
o
n

B
et
w
ee
n
p
re
-c
o
ll
eg
e

p
ri
v
at
e
le
ss
o
n
s
an
d

ad
u
lt
p
ri
v
at
e
le
ss
o
n
s

B
et
w
ee
n
p
re
-c
o
ll
eg
e

p
ri
v
at
e
le
ss
o
n
s
an
d

ad
u
lt
p
ri
v
at
e
le
ss
o
n
s

N
ea
r
an

u
n
d
er
-

g
ra
d
u
at
e

m
u
si
c
d
eg
re
e

N
ea
r
an

u
n
d
er
-

g
ra
d
u
at
e

m
u
si
c
m
in
o
r

B
et
w
ee
n
u
n
d
er
g
ra
d
u
at
e

m
u
si
c
m
in
o
r
an
d
m
u
si
c

m
aj
o
r

698 C. Sotos et al.

Possible concepts were generated for each part of the stand (Fig 27.3). This is an

example of modular architecture which is discussed in the literature review. An

instrument stand requires a top support (for the neck of the instrument), a rod (for

the midsection or body of the stand), a bottom support (for the bottom of the

Table 27.7 Overview of five Viper player groups

Group #1 Group #2 Group #3 Group #4 Group #5

Performers,

amateurs,

students

Amateurs,

students,

educators

Students,

performers,

educators

Mostly performers,

some students,

educators

Educators,

performers,

amateurs,

Rock, classical,

country

Classical, rock,

celtic, jazz

Always classical,

very likely rock

Mostly rock, classi-

cal, all other

styles

Classical, rock,

jazz,

bluegrass

Guitar, piano Violin or viola Always violin/

viola, some-

times guitar/

bass

Violin/viola,

mandolin

Violin/viola,

guitar/bass,

piano, sings

Frequently

practices

multiple

instruments

at home

Sometimes

practices

multiple

instruments

at home

Spends the most

time out of any

group playing

multiple

instruments at

home

Often plays multiple

instruments at

home

Plays multiple

instruments

at home

Frequent multi-

instrumental

performance

Very infrequent

single

instrument

performer

Frequent multi-

instrument

performances

but has infre-

quent

intermissions

Frequent multi-

instrument

performances

with frequent

intermissions and

switches

Frequent multi-

instrument

performer

Travels

infrequently

but with

moderate

equipment

Almost never

travels, only

with

instrument

Travels

recreationally

with minimal

equipment

Travels for fun and

performing with

multiple types

heavy equipment

Infrequent,

only for fun

travel,

minimal to

moderate

equipment

Table 27.8 Ranked customer requirements (Groups #1–#5)

Requirements Req. no Group #1 Group #2 Group #3 Group #4 Group #5

Easy to use during performance CR1 1 4 1 3

Ability to hold guitar CR2 2 7 5

Cost CR3 3 1 2 6 7

Stability of instrument CR4 4 2 1 5 4

Aesthetics CR5 5 3 3 7 6

Easy to retrieve instrument CR6 6 2 1

Portability/local travel CR7 7

Accommodate violin/viola CR8 4

Air plane travel ready CR9 5 4

Can hold violin/viola CR10 6 3 2

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 699

instrument, in this case the wings of the Viper), and a base. This design problem

also requires the decision of how many and what instruments the stand can hold, or

“multi-instrument capability.” This defines whether the stand can accommodate

one instrument or two instruments (in addition to a Viper, an acoustic violin or

viola, a guitar, or an additional Viper). The type of bow holder was held constant

and not considered as an option. These conceptual designs can be synthesized to

form the best option for various customer groups (see Fig. 27.4, for an example).

Fig. 27.3 Generated concepts

700 C. Sotos et al.

The QFD matrices that were used to fit designs to the customer groups are

provided below in Fig. 27.5. The matrices are a combination of the typical QFD

Phase 1 and QFD Phase 2, which allow us to directly link the customer

requirements to concept design alternatives. One concept from each section

Fig. 27.4 Final designs for

Group #1

Fig. 27.5 QFD matrix to fit designs to clusters

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 701

(A, B, C, D, E) has to be selected to make a final design. The customer requirements

were pre-ranked and the calculation of the scores incorporated the ranking.

The highest scoring concept from each section was selected for the final design

(the highest scores are highlighted in bold).

The QFD analysis for concept selection resulted in five unique designs

corresponding to each group. Each design meets different needs for each group.

For example, the final design of CG #1 along with a component list is shown above

in Fig. 27.4.

The final designs are as follows: customer group #1 features the capability to

hold a Viper electric violin as well as a guitar or bass. The rod is telescoping and the

legs are folding to make it to store in a smaller space. The t-bar supports the back of

the Viper without obstructing the view of the instrument. Group #2 is the most

stable of the designs, offering the instrument safety and security that these

customers require. It features a solid base, two bottom supports, and a locking

arm that secures the neck of the instrument in the stand. It also allows customers to

hold an additional acoustic violin or viola. Customer group #3 also offers security

of the instrument but allows for the stand to fold in order to save space. It only holds

one instrument, the Viper, and has the locking arm over the front of the neck holder.

The base can fold as well as the rod that supports the body of the Viper, making it

possible to fold to save space for storage or transportation. Customer group #4 final

design is for the performer who needs ease of retrieval and space saving for

portability. The neck holder is simple, without the locking arm, to make it quick

and easy to retrieve an instrument during a performance. It has a telescoping rod

and a tripod style base, making it very easy to fold for portability and storage. It also

has the capability to hold an acoustic violin as well as the Viper. The design for

customer group #5 also addresses ease of retrieval, featuring the simple neck holder

and the t-bar back support. However, it has increased stability by using the folding

base instead of the tripod and a solid rod instead of a telescoping rod. It also has the

ability to hold an acoustic violin as well as the Viper.

27.4.5 Consistency Verification of QFD Results
with Analytical Network Process

Analytic network process (ANP) is used to simultaneously fit generated design

concepts to customer requirements and customer groups. In ANP model, main

clusters and nodes are constructed first: customer groups (CG1,. . .,CG5), customer

requirements (CR1,. . .,CR10), and design concepts (A,. . .,E). Then, customer

groups (CGs) are linked to customer requirements (CRs) and design concepts

(DCs), and CRs are linked to DCs. DCs should satisfy both CGs and CRs. CRs

should satisfy CGs. The ANP model is presented in Fig. 27.6.

Pair-wise comparisons were performed with Saaty’s [23] 1–9 scale, where

1 represents equal importance and 9 represents extreme importance that favors

702 C. Sotos et al.

one element over another. If the element has a weaker impact than its comparison

element, then the scale ranges from 1 to 1/9 indicating indifference, or a relatively

weak impact. The ANP model is solved using the software “Super Decisions”

(http://www.superdecisions.com). First, all pair-wise comparison matrices are cal-

culated and given in the form of unweighted supermatrix. A consistency test is

conducted through the analysis of comparative matrix pairs using the consistency

ratio (CR). CR is obtained through consistency index (CI) and random index (RI).

When CR � 0.1, the comparative matrix pairs are deemed consistent. Then the

weighted supermatrix (shown in Fig. 27.7) is transformed first to be stochastic. After

entering the normalized values into the supermatrix, the supermatrix is then

increased to a sufficient large power until convergence occurs. Figure 27.8 presents

a final limit matrix. This limit matrix represents the final eigenvector.

The presented information in Fig. 27.7 shows us which concept is the most

appropriate to meet customer requirements particular to each CG. For example, for

CG1, most appropriate design concepts are A1, B4, C2, D3, and E1. A1 has highest

priority (0.06063) between design concepts related top support for CG1 and B4

(0.09461) for multi-instrument capability, C2 (0.07596) for rod type, D3 (0.08782)

for bottom support, and E1(0.07797) for base. Note that the weighted supermatrix

confirms the QFD-based design selection provided in Fig. 27.4.

Limit matrix shows that if we want to develop only one product that meets all

CG’s requirements, we can determine which component is mostly suitable to

requirements of all customer groups by using limit matrix results. A1 has highest

Fig. 27.6 ANP model of the study

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 703

http://www.superdecisions.com/

priority (0.05150) between design concepts related top support for CG1 and B1

(0.02400) for multi-instrument capability, C2 (0.03575) for rod type, D2 (0.04162)

for bottom support, and E3 (0.04618) for base as shown in Fig. 27.8. For one

product meeting requirements of all customer groups, concepts can be determined

as A1, B1, C2, D2, and E3. Although this may be one approach to the real-world

business solution, given the variation in use habits of the customer groups, it is not

possible to completely satisfy all customers with this one product.

Fig. 27.8 A part of the limit matrix

Fig. 27.7 Weighted super matrix

704 C. Sotos et al.

27.5 Conclusions

As a result of the study, a family size of N* ¼ 5 was decided for the Viper stand

product family; five individual customer groups were defined with five distinct

product variants mapped and assigned to each, where the consistency of decisions is

also verified through ANP.

The proposed methodology provides a simple, reproducible way to make prod-

uct family sizing decisions that can be customized to many different problem types.

It can be effectively executed with basic statistical software by a team of designers

with business and engineering backgrounds, without extensive knowledge of engi-

neering design principles without sacrificing quality of work. The knowledge

gained through the survey phase can be used not only in the methodology but

throughout the design process in a multitude of ways. This research demonstrates

the importance of product family size in the design process through the differences

in each customer group and their requirements. Designing for one group would not

accommodate the needs of all the customers even if it is based on “average” or

“typical” values. Segmenting the customers also allows for further analysis in later

stages such as specific pricing and targeted advertising by having greater customer

insight for each product variant in the family. Overall, this methodology lays a solid

foundation for a team beginning the design process and provides invaluable cus-

tomer insights and information that can be used from the beginning of a project to

the very end and beyond.

Acknowledgments This product family design project was introduced during the 2010 offering

of the Design Decision Making (IE/EDSGN 549) course at Penn State University. Some of the

designs included within this chapter are inspired by the designs generated by students enrolled in

IE/EDGSN 549. We acknowledge their contributions.

References

Bhandare S, Allada V (2009) Scalable product family design: case study of axial piston pumps.

Int J Prod Res 47:585–620

Bicknell BA, Bicknell KD (1995) The road map to repeatable success—using QFD to implement

change. CRC, Boca Raton, FL

Chan L-K, Wu M-L (2002) Quality function deployment: a comprehensive review of its concepts

and methods. Qual Eng 15(1):23–35

Chiu M, Gupta S,Okudan GE (2008) A multi-stakeholder quality function deployment approach to

support design decision-making. In: Industrial engineering research conference, Vancouver, CA

Dahmus JB, Gonzalez-Zugasti JP, Otto KN (2000) Modular product architecture. Des Stud 22(5):

409–424

Fujita K (2002) Product variety optimization under modular architecture. Comput Aid Des

34:953–965

Fujita KF, Sakaguchi H, Akagi S (1999) Product variety deployment and its optimization under

modular architecture and modules communalization. In: ASME design engineering technical

conferences, Las Vegas, Nevada, 12–15 Sept 1999.

27 Customer Needs Based Product Family Sizing Design: The Viper Case Study 705

Huang JJ, Tzeng GH, Ong CS (2005) Multidimensional data in multidimensional scaling using the

analytic network process. Pattern Recognit Lett 26:755–67

Huang GQ, Li L, Schulze L (2008) Genetic algorithm-based optimisation method for product

family design with multi-level commonality. J Eng Des 19(5):401–416

Jiao J, Zhang Y (2005) Product portfolio identification based on association rule mining. Comput

Aid Des 37:149–172

Jiao J, Tseng MM, Dufty VG, Lin F (1998) Product family modeling for mass customization.

Comput Ind Eng 35(3–4):495–498

Kumar D, Chen W, Simpson TW (2009) A market-driven approach to product family design. Int J

Prod Res 47(1):71–104

Li Z, Feng Y, Tan J, Wei Z (2008) A methodology to support product platform optimization using

multi-objective evolutionary algorithms. Trans Inst Measur Contr 30:295–312

MacQueen JB (1967) Some methods for classification and analysis multivariate observations. In:

Proceedings of the 5th symposium on math, statistics, and probability, Berkeley, CA,

pp 291–297

Meade L, Sarkis J (1998) Strategic analysis of logistics and supply chain management systems

using the analytical network process. Logist Transport Rev 34(3):201–215

Meyer MH, Lehnerd AP (1997) The power of product platforms. The Free Press, New York

Ray S, Turi RH (1999) Determination of the number of clusters in K-means clustering and

application in color image segmentation. In: Proceedings of the 4th international conference

on advances in pattern recognition and digital techniques, India, 2–3 (Sect. 3.2).

Saaty TL (2001) Decision making with the ANP and the national missile defense example. In:

Proceedings of the 6th international symposium on the AHP, ISAHP 2001, Bern, Switzerland,

pp 365–382

Salhieh SM (2007) A methodology to redesign heterogeneous product portfolios as homogeneous

product families. Comput Aid Des 39:1065–1074

Super Decisions Software, http://www.superdecisions.com. Viewed on 20 Jul 2012

Tseng MM, Jiao J (1996) Design for mass customization. Ann CIRP 45(1):153–156

Tucker CS, Kim HM (2009) Data-driven decision tree classification for product portfolio design

optimization. J Comput Inform Sci Eng 9:1–14

Wagstaff K, Rogers S, Schroedl S (2001) Constrained K-means clustering with background

knowledge. In: Proceedings of the 18th international conference on machine learning,

pp 577–584

Zha XF, Sriram RD (2006) Platform-based product design and development: A knowledge-

intensive support approach. Knowl Based Syst 19:524–543

706 C. Sotos et al.

http://www.superdecisions.com/

Chapter 28

Product Family Design and Recovery

for Lifecycle

Minjung Kwak and Harrison Kim

Abstract Product family design via component sharing is a widely practiced

approach for offering sufficient variety to the market in an economical way. Most

of the previous research has focused on the benefits of product family in the design

and manufacturing stages—early stages of product family lifecycle. This chapter

highlights another important aspect of product family design—the impact of com-

ponent sharing on product end-of-life management—by a quantitative model for

evaluating product family design from an end-of-life perspective. The model

identifies an optimal strategy for managing product take-back and end-of-life

recovery by use of mixed integer programming, thereby assessing the product

family design in terms of its profitability in end-of-life management. A design

study of a smartphone family is presented, and the results show that the model can

assess profitability of a family design and highlight preferred family design

alternatives at various degrees of component sharing.

The authors published the original version in Engineering Optimization Journal, Vol. 43,

Issue 3, 2011 (DOI:10.1080/0305215X.2010.482990), which was modified for this book

chapter.

M. Kwak

Department of Industrial and Information Systems Engineering,

Soongsil University, Seoul, Korea

e-mail: mkwak@ssu.ac.kr

H. Kim (*)

Department of Industrial and Enterprise Systems Engineering,

University of Illinois at Urbana-Champaign, Urbana, IL, USA

e-mail: hmkim@illinois.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_28,
Springer Science+Business Media New York 2014

707

http://dx.doi.org/10.1080/0305215X.2010.482990
mailto:mkwak@ssu.ac.kr
mailto:hmkim@illinois.edu

28.1 Introduction

For more than a decade, a great deal of research has been conducted on the design

issues expressed in the following questions. Can a set of products benefit a company

when it is designed to have common components? If so, what are the best designs

for a group of products by sharing certain components? It is commonly accepted

now that sharing components across multiple products can have a multitude of

benefits, especially in the design and manufacturing stages. Specifically, compo-

nent sharing is highlighted as a means of increasing product variety while retaining

the necessary economies of scale and scope (Simpson et al. 2006). The growing

interest in component sharing has triggered the development of product family

design. Many approaches have been developed to support component sharing and

product family design, and successful product families have been reported by both

academics and industries.

Most existing methods and applications, however, have overlooked the impact

of product family design on product end-of-life management. Managing end-of-life

products involves two major activities, i.e., product take-back for collecting used

products from their former users and end-of-life recovery of economic value.

Environmental regulations currently mandate that manufacturers assume the eco-

nomic burden of these two activities (Mangun and Thurston 2002); therefore,

manufacturers must find a way to achieve profitability in end-of-life management.

The point is that the profitability of end-of-life management may be influenced by

the design of the product family.

End-of-life management involves multiple types of end-of-life products.

Accordingly, product take-back and end-of-life recovery are influenced by individ-

ual product designs and the interactions between designs, i.e., the commonality of

components across product variants. Manufacturers must carefully make common-

ality decisions in product family design to improve profitability of end-of-life

management. Thus, a method is needed to determine which product family design

is better from an end-of-life perspective.

This chapter presents a quantitative model for assessing the profitability of

product family designs in end-of-life management. The proposed model evaluates

a product family for which the product variants are assumed to overlap end-of-life

stages. Each product variant has a hierarchical assembly structure, and some of its

components can be shared with other product variants. The model focuses on the

fact that component commonality influences the end-of-life profitability by increas-

ing the degree of component interchangeability. The model also identifies an

optimal strategy for maximizing the profitability of managing product take-back

and end-of-life recovery, which is formulated as a mixed integer programming

problem.

The rest of the chapter is organized as follows. The background for the chapter is

presented in Sect. 28.2, focusing on the problem settings and the end-of-life

management process. The mathematical model to assess product family design is

proposed in Sect. 28.3, and an illustrative example is presented in Sect. 28.4.

Closing remarks are presented in Sect. 28.5.

708 M. Kwak and H. Kim

28.2 End-of-Life Management of a Family of Products

28.2.1 Definition and Benefit of Product Family
in End-of-Life Management

A family of products is defined as a group of related products that share a product

platform—a set of common design elements, processes, technologies, and other

assets (Jiao et al. 2007; Simpson 2004). In this research, a product family is

specifically defined as a group of products (1) that has common components shared

by some or all of its product variants and (2) whose product variants are anticipated

to have overlapping end-of-life stages; i.e., end-of-life management can be

performed on multiple product variants simultaneously. Sharing the product plat-

form can benefit both design (prelife) and recovery (end-of-life) stages with this

definition.

Figure 28.1 depicts a family of products in which two variants exist and

Component X is common. Each product variant has a hierarchical assembly

structure consisting of three levels—core, intermediate (Inderfurth and Langella

2008), and component. A core refers to a used product that is intact. Disassembly

separates a core into parts that are either intermediates or components. Here, the

term “part” refers to any decomposable element of a product. Intermediate denotes

nonatomic parts of a product at the middle level of product hierarchy, which are

neither a core nor a component. Through another step of disassembly, intermediates

can be separated into child components. Component indicates an atomic part at the

lowest level, which cannot be disassembled any further (Krikke et al. 1998).

The parent items of a component can be either intermediates or cores, depending

on the product structure. Starting from components, child parts are reassembled into

a parent part until a core is made. It should be noted that all product variants in this

study are assumed to have three-level structures for simplicity.

Fig. 28.1 Exemplary product family sharing Component X

28 Product Family Design and Recovery for Lifecycle 709

With the definition of product family in the beginning of this section, product

variants of a family of products have overlapping end-of-life stages. Hence, within

a time period, multiple product variants are expected to reach the end-of-life stage

at the same time, which renders component commonality across the variants and

affects profitability in product end-of-life management. As Simpson (1998), Perera

et al. (1999), and Bras (2007) stated, improving component commonality can

benefit end-of-life management in two ways. First, the economies of scale in the

recovery operation increase. Necessary tools and worker skill and setup time

decrease in various operations, including disassembly, conditioning, and reassem-

bly. Second, the interchangeability of components across a family of products

increases. For instance, in Fig. 28.1, Component X, which resulted from the

disassembly of Product 1, can be used for refurbishing both Intermediate WX and

Product 1 and Intermediate XY and Product 2. Such increased interchangeability

facilitates the profitable reuse of more components.

The current model in this chapter focuses on the increased interchangeability of

components and its economic impact on the end-of-life stage, which has not been

studied to any great extent in the previous literature. When a product family has

some components that are shared by multiple variants, the model quantitatively

assesses how the interchangeable components can increase manufacturer’s profit.

The developed model is one of the first attempts to examine product family design

from the end-of-life point of view. Most previous approaches have focused on the

initial manufacturing stage with aims to save product development efforts and

maximize the profitability of new product sales. Their main concerns include

what parts or design variables should be common among product variants and

how the values of design variables should be optimized (e.g., Simpson et al. 2001;

Fellini et al. 2005; Martin and Ishii 2002; Rai and Allada 2003; Simpson and

D0Souza 2004; Alizon et al. 2009). Although a few studies (e.g., Simpson 1998;

Perera et al. 1999; Bras 2007) considered the end-of-life stage, they simply state

that cost reduction in the end-of-life stage is another possible advantage of compo-

nent sharing.

28.2.2 Processes for Product End-of-Life Management

28.2.2.1 Product Take-Back

This section describes the recovery processes under consideration in the model.

End-of-life management consists of two sequential processes—product take-back

and end-of-life recovery. Product take-back is the process of collecting cores, i.e.,

products that reach their end-of-life status. Since product take-back determines the

volume, type, and quality of feedstock processed later in the recovery process, how

710 M. Kwak and H. Kim

many cores and which types of cores should be acquired are major concerns for the

manufacturer.

Regulatory requirements on waste collection greatly affect manufacturers’

take-back decisions by forcing manufacturers to meet a certain collection target.

For example, the Council of the European Union (EU) recently announced a new

waste electrical and electronic equipment (WEEE) directive that imposes a manda-

tory collection target on EU member states (European Commission 2012). To

comply with the legislation, member states must collect annually 45 % of the

average weight for products positioned on their national markets. In this research,

the proposed model assumes that a collection target exists for a manufacturing

company. The company must take back a certain number of cores so that the total

weight of the collected cores exceeds the target.

The cost of core procurement is another important factor that affects take-back

decisions. According to environmental legislation, consumers can return the cores

to collection points free of charge in most cases. Without compensation, however,

consumers tend to store a core indefinitely even if they no longer use it (Kwak et al.

2011). Manufacturers provide an economic incentive to motivate consumers to

return their cores. Although this may increase the take-back cost, manufacturers can

secure a greater number of valuable cores in order to offset end-of-life management

costs by making more profit in recovery. Thus, the proposed model assumes a

buyback program as a take-back strategy. The buyback price can have either

negative, zero, or positive value depending on the type and condition of the core.

Negative value is included, because a company is allowed to charge consumers for

taking back cores in some cases (Envirowise 2004).

For simplicity, the current study adopts bi-level condition levels, i.e., fully

functioning (referred to as working hereafter) and malfunctioning (referred to as

nonworking hereafter). Working cores are usually more expensive to buy back but

have higher disassembly yield rates of working parts and components. Hence, the

type, condition, and number of cores to take back should be carefully determined in

end-of-life management.

28.2.2.2 End-of-Life Recovery

After product take-back, the collected cores pass through an end-of-life recovery

process. Manufacturers must identify the most profitable way to recover incoming

feedstock. To this end, this research considers recycling, reuse, reconditioning,

refurbishment, and cannibalization as recovery options (Krikke et al. 1998;

Jacobsson 2000; Kwak and Kim 2010). The meaning of each option is described

in Table 28.1. Here, reuse and reconditioning options only apply to working items.

When deciding how to recover cores, manufacturers also need to consider

environmental regulations, which obligate them to achieve a specific recovery

rate or pay a penalty. In the proposed model, the recovery target is set at 80 % of

28 Product Family Design and Recovery for Lifecycle 711

the collection target. For example, a company that has a collection target of

85,000 lb should recover more than 68,000 lb of resources from the collected

cores. Many manufacturers (e.g., HP, Dell, and Apple) prefer complying with the

regulation to paying penalties to promote “green” corporate image. Therefore, the

proposed model represents the regulation as a constraint, which must be satisfied.

Figure 28.2 depicts the three-stage recovery process considered in this research.

Here, a company is assumed not to carry out recycling operations on its own

account. Instead, the company sells cores and parts to its recycling partners who

perform actual recycling operations. Depending on the path each core follows in the

recovery process, a set of collected cores can be transformed into eight kinds of

outputs, i.e., four in the form of a product and four in the form of parts. These

outputs are further transported to landfills, recycling partners, or customer markets,

according to their assigned disposal and recovery options.

In the first stage of the recovery process, a decision is made concerning the next

step for each core collected from the product take-back. To illustrate, suppose a set

of used cell phones just arrived for the recovery process. Based on their conditions,

the cell phones are discarded, recycled, reused, reconditioned, or disassembled.

Cell phones for disposal and material recycling go to landfills or to recycling

partners. The other cell phones undergo data scrubbing to eliminate any remaining

personal data, and some of them are resold as reused or reconditioned phones, and

some are sent to Stage 2 for disassembly.

Table 28.1 End-of-life recovery options

Option Description

Recycling An item is sent to recyclers and shredded, separated, and refined to recover raw

materials. The higher the per weight material concentration, the more per

weight recycling revenue

Reuse An item is sold to another user to be used for its original purpose. Only essential

operations (e.g., data scrubbing) are conducted without any value-adding

operations. Only working cores can follow this option

Reconditioning An item is sold to another user and used for its original purpose. In addition to

essential operations, some minor value-adding operations, such as cleaning,

lubricating, and polishing, are conducted to raise the value of the core. Only

working cores can follow this option

Refurbishment An item is restored to its original condition. Product type and structure are

maintained. Disassembly, part conditioning and replacement, and

reassembly belong to the refurbishment option. If upgrading functions are

conducted to the level of up-to-date products, such refurbishment can be

reclassified as remanufacturing

Cannibalization An item is cannibalized for parts. Disassembly is conducted to separate a core

into a set of parts. Individual parts resulting from the disassembly then can

start their recovery as independent units, each with its own recovery and

disposal option. Working parts can also be a source of parts for refurbishing

other parts or cores

712 M. Kwak and H. Kim

In Stage 2, a core is disassembled for the purpose of refurbishment or

cannibalization. For example, a cell phone from Stage 1 is disassembled into a

screen module, main board, antenna, microphone, keypad, and cases. Further

disassembly can be done as needed, but an important point is that every resultant

part is either working or nonworking. A deterministic parameter, disassembly yield

Fig. 28.2 End-of-life recovery process

28 Product Family Design and Recovery for Lifecycle 713

rate, reflects the number of working parts acquired by the disassembly of a core or

an intermediate. Similar to the approach taken by Krikke et al. (1998), disassembly

yield rate in this research depends on the parent item’s condition. For example,

suppose a cell phone has the following disassembly yield rates for its main board:

Yield|W ¼ 1 and Yield|N ¼ 0.8. When a working (W) cell phone is disassembled,

one unit of working main board results from the disassembly. When a nonworking

(N) cell phone is disassembled, only 0.8 unit of working mother board is harvested.

The remaining 0.2 unit is nonworking.

After disassembly, nonworking parts are either disposed of or recycled.

For working parts, any disposal and recovery options are allowed including reas-

sembly. If the reassembly option is chosen, a part is harvested, reconditioned, and

sent to Stage 3. In Stage 3, parts are reassembled into its parent part or a core. When

there is a shortage of parts, new spare parts are procured. The resulting parts and

cores are remarketed as refurbished items.

28.3 Model for Evaluating Product Family Design

from an End-of-Life Perspective

28.3.1 Problem Statement

The proposed model uses mixed integer programming to identify an optimal take-

back and recovery strategy for a given a product family design. The optimization

result can be used to quantify the economic impacts of component sharing on

end-of-life management. The proposed model is summarized by the following

optimization problem:

• Given

– Product family design with predefined commonality decisions.

– Disassembly yield rates of cores and intermediates.

– Costs of cores and the maximum amount of cores available for take-back.

– Costs and revenue of executing recovery and disposal options.

– Market demand for recovered items.

• Find

– Optimal take-back strategy: amount, type, and condition of core that should

be taken back.

– Optimal disposal and recovery strategy: amount, type, and condition of core

that should follow each disposal and recovery option; disassembly level of a

core (parts to which a core should be disassembled) and recovery and disposal

options for parts; amount and type of spare parts to acquire.

714 M. Kwak and H. Kim

• Subject to

– Flow volume balance constraints: With respect to an item, its flow balance

between input and output units should be maintained.

– Environmental regulations: Collection and recovery targets should be satisfied.

– Core availability: There are limits on the amount of available cores that can

be collected.

– Avoiding excess fulfilment: The supply of a recovered item cannot exceed the

demand for it.

• Maximizing total net profit from end-of-life management.

• Assuming

– Three-level product structure: Each product variant has a three-level assem-

bly structure consisting of a core, intermediates, and components, which are

denoted with three indices.

– Unlimited part procurement: Spare parts can be procured with no lead time,

and there are no limits on the number of parts that can be purchased.

– Unlimited facility capacity: There are no limits on the number of items or the

number of operations that can be processed.

– No loss in yield in the recovery operation: Data scrubbing, conditioning,

disassembly, and reassembly do not damage their input items, and there is no

loss in yield caused by operations.

– Deterministic parameter values: Disassembly yield rates, market demand,

related costs, and revenue are deterministic.

– Single-period planning.

28.3.2 Mathematical Formulation

28.3.2.1 Objective Function

The objective of this model is to maximize the total profit from end-of-life man-

agement. The objective function is modeled in Eq. (28.1). The total cost of end-of-

life management is the sum of nine cost components: (1) cost for take-back (C1), (2)

cost for data scrubbing (C2), (3) cost for product conditioning (C3), (4) cost for

disassembly (C4), (5) cost for part conditioning (C5), (6) cost for spare part

procurement (C6), (7) cost for reassembly (C7), (8) cost for software update (C8),

and (9) cost for disposal (C9). The total recovery revenue is the sum of four revenue

terms: revenue from selling items to recyclers (R1), revenue from selling used items

to the market (R2), revenue from selling reconditioned items to the market (R3), and

revenue from selling refurbished items to the market (R4). The notations used in this

chapter are described in Tables 28.2 and 28.3.

28 Product Family Design and Recovery for Lifecycle 715

min :
X9
n¼1

Cn �
X4
n¼1

Rn

where

C1 ¼
X
i2I

ðcti;w � Xt
i;w þ cti;n � Xt

i;nÞ

C2 ¼
X
i2I

cei � ðXu
i;w þ Xc

i;w þ Xd
i;w þ Xd

i;nÞ

C3 ¼
X
i2I

cci � Xc
i;w

C4 ¼
X
i2I

cdi � ðXd
i;w þ Xd

i;nÞ þ
X
j2J

cdj � ðXd
j;w þ Xd

j;nÞ

C5 ¼
X
j2J

ccj � ðXc
j;w þ Xr

j;wÞ þ
X
k2K

cck � ðXc
k;w þ Xr

k;wÞ

C6 ¼
X
j2J

cyj � Yj þ
X
k2K

cyk � Yk

C7 ¼
X
i2I

cri � Zs
i þ

X
j2J

crj � ðZr
j þ Zs

j Þ

C8 ¼
X
i2I

csi � Zs
i

C9 ¼
X
i2I

cli � ðXl
i;w þ Xl

i;nÞþ
X
j2J

clj � ðXl
j;w þ Xl

j;nÞþ
X
k2K

clk � ðXl
k;w þ Xl

k;nÞ

R1 ¼
X
i2I

rmi � ðXm
i;w þ Xm

i;nÞþ
X
j2J

rmj � ðXm
j;w þ Xm

j;nÞþ
X
k2K

rmk � ðXm
k;w þ Xm

k;nÞ

R2 ¼
X
i2I

rui � Xu
i;w þ

X
j2J

ruj � Xu
j;w þ

X
k2K

ruk � Xu
k;w

R3 ¼
X
i2I

rci � Xc
i;w þ

X
j2J

rcj � Xc
j;w þ

X
k2K

rck � Xc
k;w

R4 ¼
X
i2I

rzi � Zs
i þ

X
j2J

rzj � Zs
j (28.1)

28.3.2.2 Constraints

Flow Balance of Cores

There are several ways to process collected working cores, i.e., sending to landfills,

selling to recyclers, selling as a used product, selling as a reconditioned product,

and conducting disassembly to refurbish or cannibalize the core. For nonworking

cores, the three available options are disposal, recycling, and disassembly. Con-

straint (28.2) requires every collected core to follow one of the possible options:

716 M. Kwak and H. Kim

Xt
i;w ¼ Xl

i;w þ Xm
i;w þ Xu

i;w þ Xc
i;w þ Xd

i;w 8i 2 I

Xt
i;n ¼ Xl

i;n þ Xm
i;n þ Xd

i;n 8i 2 I (28.2)

Flow Balance of Intermediates

Constraint (28.3) restrains the flow balance of working and nonworking

intermediates, respectively. The left-hand side of each equation represents the

amount of intermediates obtained from the disassembly of their parent cores.

Since the model assumes a bi-level quality condition for every item, every interme-

diate acquired from the disassembly is either working or nonworking. Depending

on the condition of the parent cores, the amount of working and nonworking

intermediates can vary. To reflect this, the number of disassembled working cores

and nonworking cores are multiplied by different disassembly yields π.
Each earned intermediate must follow one of the possible processing options.

For working intermediates, six options are available: disposal, recycling, reuse,

reconditioning, disassembly into components, and reuse for core refurbishment. For

nonworking intermediates, only three options are available: disposal, recycling, and

disassembly into components.

Table 28.2 Mathematical notation (decision variable)

Notation Description

Index

I; J; K Index set for core i, intermediate j, and component k, respectively

Pj;Pk Parent set of intermediate j and parent set of component k, respectively

Q Quality condition set; Q ¼ fw; ng; q 2 Q

w; n Working and nonworking quality condition index, respectively

Variable

Xt
i;q Number of core i with condition q to take back

Xl
i;q;X

l
j;q;X

l
k;q

Number of core i, intermediate j, and component k with condition q to dispose of,

respectively

Xm
i;q;X

m
j;q;X

m
k;q Number of core i, intermediate j, and component k with condition q to recycle,

respectively

Xu
i;q;X

u
j;q;X

u
k;q Number of core i, intermediate j, and component k with condition q to reuse,

respectively

Xc
i;q;X

c
j;q;X

c
k;q Number of core i, intermediate j, and component k with condition q to recondition,

respectively

Xd
i;q;X

d
j;q

Number of core i and intermediate j with condition q to disassemble, respectively

Xr
j;q;X

r
k;q Number of intermediate j and component k with condition q to use in

refurbishment, respectively

Yj;Yk Number of intermediate j and component k to procure for spare, respectively

Zr
j Number of intermediate j to refurbish and use in core refurbishment

Zs
i ; Z

s
j Number of core i and intermediate j to refurbish and sell in the market

28 Product Family Design and Recovery for Lifecycle 717

X
i2Pj

ðπwi;j � Xd
i;w þ πni;j � Xd

i;nÞ ¼ Xl
j;w þ Xm

j;w þ Xu
j;w þ Xc

j;w þ Xd
j;w þ Xr

j;w 8j 2 J

X
i2Pj

ðπoi;j � πwi;jÞ � Xd
i;w þ ðπoi;j � πni;jÞ � Xd

i;n

� �
¼ Xl

j;n þ Xm
j;n þ Xd

j;n 8j 2 J (28.3)

Flow Balance of Components

Constraint (28.4) ensures the flow balance of working and nonworking components,

respectively. The left-hand side of each equation represents the amount of

components that resulted from disassembly. Both a core and an intermediate can

be the parents of a component depending on the product family design. The

conditions of parent items determine the amount of working and nonworking

components.

Table 28.3 Mathematical notation (parameter)

Notation Description

πoi;j; π
o
i;k Number of units of intermediate j and component k that are originally included in

core i, respectively; the multiplicity of intermediate j and component k

πoj;k Number of units of component k originally included in intermediate j

πqi;j; π
q
i;k Disassembly yield rates of core i with condition q with respect to working

intermediate j and working component k, respectively

πqj;k Disassembly yield rates of intermediate j with condition q with respect to working

component k

α; β Collection target and the maximum allowed disposal amount (recovery target)

Ai;q Number of core i with condition q available for take-back

ωi;ωj;ωk Weight of core i, intermediate j, and component k, respectively

cti;q Unit take-back cost for core i with condition q

cei Unit data scrubbing cost for core i

cci ; c
c
j ; c

c
k Unit conditioning cost for core i, intermediate j, and component k, respectively

cdi ; c
d
j

Unit disassembly cost for core i and intermediate j, respectively

cri ; c
r
j Unit reassembly cost for core i and intermediate j, respectively

cyj ; c
y
k Unit procurement cost for intermediate j and component k, respectively

csi Unit software upgrade cost for core i

cli; c
l
j; c

l
k

Unit disposal cost for core i, intermediate j, and component k, respectively

rmi ; r
m
j ; r

m
k Unit revenue from recycling core i, intermediate j, and component k, respectively

rui ; r
u
j ; r

u
k Unit revenue from reusing core i, intermediate j, and component k, respectively

rci ; r
c
j ; r

c
k Unit revenue from reconditioning core i, intermediate j, and component k,

respectively

rzi ; r
z
j Unit revenue from refurbishing core i and intermediate j, respectively

Du
i ;D

u
j ;D

u
k Demand for used core i, intermediate j, and component k, respectively

Dc
i ;D

c
j ;D

c
k Demand for reconditioned core i, intermediate j, and component k, respectively

Dz
i ;D

z
j Demand for refurbished core i and intermediate j, respectively

718 M. Kwak and H. Kim

The first equation states that every working component must follow one of five

options: disposal, recycling, reuse, reconditioning, and reuse for intermediate

refurbishment. The second equation requires every nonworking component to be

landfilled or recycled. Since a component is the lowest-level part, the option of

disassembly is not considered in both constraints.

X
i2Pk

ðπwi;k � Xd
i;w þ πni;k � Xd

i;nÞ þ
X
j2Pk

ðπwj;k � Xd
j;w þ πnj;k � Xd

j;nÞ

¼ Xl
k:w þ Xm

k:w þ Xu
k:w þ Xc

k:w þ Xr
k:w 8k 2 K

X
i2Pk

ðπoi;k � πwi;kÞ � Xd
i;w þ ðπoi;k � πni;kÞ � Xd

i;n

� �

þ
X
j2Pk

ðπoj;k � πwj;kÞ � Xd
j;w þ ðπoj;k � πnj;kÞ � Xd

j;n

� �

¼ Xl
k;n þ Xm

k;n 8k 2 K (28.4)

Flow Balance of Refurbished Intermediates

Intermediates can be refurbished by reassembling working components. Working

components can result from the disassembly of cores or from external procurement.

Once refurbished, intermediates can be sold on the market or reassembled with

other parts to refurbish cores. Constraint (28.5) forces a balance of the flow between

input components and output refurbished intermediates:

X
j2Pk

πoj;k � ðZr
j þ Zs

j Þ ¼ Xr
k;w þ Yk 8k 2 K (28.5)

Flow Balance of Refurbished Cores

Similar to intermediates, cores can be refurbished by reassembling their working

child parts. Working intermediates can be obtained by core disassembly or inter-

mediate refurbishment. If there is a shortage of working intermediates, external

procurement is also possible. As for the working components, only two sources are

available: core disassembly and external procurement. After reassembly,

refurbished cores are sold in the market as refurbished products. The first equation

in Constraint (28.6) restricts the flow balance between input intermediates and

output refurbished cores, while the second equation balances the flow between

input components and output refurbished cores:

28 Product Family Design and Recovery for Lifecycle 719

X
i2Pj

πoi;j � Zs
i ¼ Xr

j;w þ Yj þ Zr
j 8j 2 J

X
i2Pk

πoi;k � Zs
i ¼ Xr

k;w þ Yk 8k 2 K (28.6)

Environmental Regulations

Environmental regulations require weight-based calculations. Constraint (28.7)

represents the regulation on collection targets. The proposed model presumes

a collection target α for a manufacturing company. The company must take back

enough cores to exceed the target.

X
i2I

ωi � ðXt
i;w þ Xt

i;nÞ � α (28.7)

Constraint (28.8) models the regulation on the minimum rate of recovery (or the

maximum allowable disposal amount). The left-hand side of the constraint

represents the total weight of discarded items, and β denotes the upper limit of

disposal. In the proposed model, the recovery target is set at 80 % of the collection

target α. In other words, disposal of up to 20 % of α is allowed; thus, β ¼ 0.2α.

X
i2I

ωi � ðXl
i;w þ Xl

i;nÞ þ
X
j2J

ωj � ðXl
j;w þ Xl

j;nÞ þ
X
k2K

ωk � ðXl
k;w þ Xl

k;nÞ � β (28.8)

Core Availability

The proposed model assumes a buyback program wherein the manufacturer pays

the consumer for each core. The number and type of cores to take-back are decision

variables, not given parameters. Regarding take-back decisions, Constraint (28.9)

limits the amount of available cores that can be collected:

Xt
i;w � Ai;w;X

t
i;n � Ai;n 8i 2 I (28.9)

Demand Satisfaction and Avoidance of Excess Fulfillment

The customer market demands a certain amount of used, conditioned, and

refurbished items. Constraint (28.10) ensures that the supply of recovered cores,

intermediates, and components cannot exceed the corresponding demand:

720 M. Kwak and H. Kim

Xu
i;w � Du

i ;X
c
i;w � Dc

i ; Z
s
i � Dz

i 8i 2 I

Xu
j;w � Du

j ;X
c
j;w � Dc

j ; Z
s
j � Dz

j 8j 2 J

Xu
k;w � Du

k ;X
c
k;w � Dc

k 8k 2 K (28.10)

Variable Condition

All decision variables in the model represent numbers of items. Due to disassembly

yields, the amount of intermediates and components acquired from the disassembly

might not be integers. To absorb the decimals, the amount of items sent to landfills

and the amount sold to recyclers are set as real numbers. The others are constrained

as integers. Constraint (28.11) restrains these variable conditions:

Xt
i;q;X

u
i;q;X

c
i;q;X

d
i;q; Z

s
i � 0 and integer;Xl

i;q;X
m
i;q � 0 8i 2 I; 8q 2 Q

Xu
j;q;X

c
j;q;X

d
j;q;X

r
j;q; Yj; Z

r
j ; Z

s
j � 0 and integer;Xl

j;q;X
m
j;q � 0 8j 2 J; 8q 2 Q

Xu
k;q;X

c
k;q;X

r
k;q; Yk � 0 and integer;Xl

k;q;X
m
k;q � 0 8k 2 K; 8q 2 Q (28.11)

28.4 Illustrative Example

This section presents an illustrative example with a smartphone family to illustrate

how to apply the proposed model and how it supports decision making in product

family design.

28.4.1 Smartphone Family Design

28.4.1.1 Design Scenario

Suppose that a smartphone manufacturer makes new products in the first period and

uses cores to offer secondhand items along with new products in the next period.

Until now, the company has customized the design of each phone to a specific

market segment using uniquely designed components. However, since the company

offers various types of phones to the market at the same time, parts proliferation due

to the core variety (Bras 2007) has become one of the biggest obstacles to making

profits in recovery. To address this issue, the company is considering designing a

family of products in which some parts are shared by product variants. The design

team has developed a design alternative for a product family. Now, they want to

know whether the family design actually supports the recovery business and, if so,

28 Product Family Design and Recovery for Lifecycle 721

what increase in profit is anticipated. Regarding the regulatory issues, the company

currently has a collection target of 85,000 lb and a recovery target of 68,000 lb.

In this scenario, the proposed model is applied to a smartphone family (composed

of four product variants). Figure 28.3 represents the product structure of the

smartphone considered in this research. All product variants have identical structures

composed of 15 components. The design difference comes from the variant parts,

represented as an oval in the figure. Some, but not all, product variants can share the

identical design for the variant parts. If all product variants share the same design

for a part, the part is referred to as a common part (Thevenot and Simpson 2006).

The smartphone variants differ in memory size and rear panel color.

Table 28.4 gives detailed information on the part composition of each product

variant. Four product variants in this product family share a significant number of

parts and intermediates noted as “common.” Numbers in Table 28.4 represents each

type. For example, camera is noted as “1” for all four variants (i.e., common part),

while rear casing is noted as 1, 2, 3, or 4, each representing different component.

For a simple illustration, the secondhand items to be recovered from cores are

assumed to maintain their original design, without any hardware upgrade. In

addition, the proposed model is applicable when the refurbished items have differ-

ent design from cores; such refurbished items are regarded also as cores while their

take-back availability (Ai,q) is set as zero. By doing so, no take-back is considered

for the second-generation products, but they become a possible throughput from

refurbishment.

28.4.1.2 Parameter Setting

Table 28.5 represents the amount of available cores to take-back and the buyback

price of a core for each type and condition. The parameter values used here are

simulated based on the actual prices of a particular smartphone in the new product

Fig. 28.3 Smartphone structure

722 M. Kwak and H. Kim

market (http://www.apple.com), in the secondhand market (http://www.ebay.com),

and in the buyback market (http://www.gazelle.com; http://www.nextworth.com).

The price difference between cores originates mostly from the difference in mem-

ory size, which is determined by the logic board, the most expensive component in

the smartphone family.

Table 28.6 shows the disassembly yield rates of cores and intermediates. In the

smartphone family, most failures are expected in the top screen assemblies, especially

the digitizers. The yield rates used in this study are estimated based on the failure

reports on a particular smartphone model (SquareTrade 2008, 2009). The model has a

Table 28.4 Part composition of product variants in the high-sharing smartphone family

Part Type of part

Type of

commonality

Phone 1

(8 GB,

black)

Phone 2

(16 GB,

black)

Phone 3

(16 GB,

white)

Phone 4

(32 GB,

black)

Top screen

assembly

Intermediate Common 1 1 1 1

Dock connector

assembly

Intermediate Common 1 1 1 1

Rear panel

assembly

Intermediate Variant 1 2 3 4

Logic board Component Variant 1 2 2 3

Camera Component Common 1 1 1 1

Battery Component Common 1 1 1 1

Digitizer Component Common 1 1 1 1

LCD screen Component Common 1 1 1 1

Ear speaker Component Common 1 1 1 1

Frame Component Common 1 1 1 1

Antenna Component Common 1 1 1 1

Charger port Component Common 1 1 1 1

Ringer/speaker Component Common 1 1 1 1

Microphone Component Common 1 1 1 1

Rear casing Component Variant 1 2 3 4

Headphone jack

assembly

Component Variant 1 1 2 1

Wi-Fi antenna Component Common 1 1 1 1

Vibrator Component Common 1 1 1 1

Table 28.5 Product take-back information

Type of core Sale price ($) (without 2-year contract) cti;w cti;n Ai;w Ai;n

Phone 1 (8 GB, black) 450 150 100 80,000 100,000

Phone 2 (16 GB, black) 550 180 100 50,000 80,000

Phone 3 (16 GB, white) 550 180 100 60,000 80,000

Phone 4 (32 GB, black) 650 300 150 10,000 10,000

28 Product Family Design and Recovery for Lifecycle 723

http://www.apple.com/
http://www.ebay.com/
http://www.gazelle.com/
http://www.nextworth.com/

structure similar to the one inFig. 28.3. It shouldbe also pointed out that, for simplicity,

this study assumes the same yield rates for every core in the family. This is so for every

rear panel assembly. If the parameter values are given, the proposed model can serve

other cases as well. For example, the model is applicable to the case where different

cores (e.g., Phone 1 and Phone 2) or different intermediates (e.g., rear panel assembly

1 and rear panel assembly 2) have different yield rates.

Finally, recovery cost and revenue parameters are assigned as shown in

Tables 28.7 and 28.8. The disposal cost and recycling revenue of an item are

assigned based on its weight shown in the second column. A cost per pound

multiplier, $0.02/lb (Sodhi and Reimer 2001), is used to estimate disposal costs.

For recycling revenue, three different multipliers are used: $5.00/lb for logic boards,

$1.50/lb for batteries, and $2.50/lb for any mix of items (http://www.grn.com).

Revenue from selling reused, reconditioned, and refurbished core is set as 30 %,

40%, and 50% of the new product price in Table 28.5. As for parts, the ratios change

to 50 %, 65 %, and 80 % of new part price in the market. Retail prices of new parts

are estimated according to the prices of similar parts in the market (http://www.

ubreakifix.com). Note that these parameters can be changed for various market

conditions. The proposed model can accommodate different set of parameters easily

for different scenarios.

Table 28.6 Disassembly yield rates

Parent part Child part Yield|W Yield|N

Core Top screen assembly 1 0.333

Dock connector assembly 1 0.741

Rear panel assembly 1 0.600

Logic board 1 0.793

Camera 1 0.787

Battery 1 0.792

Top screen assembly Digitizer 1 0.380

LCD screen 1 0.545

Ear speaker 1 0.718

Frame 1 0.804

Dock connector assembly Antenna 1 0.587

Charger port 1 0.365

Ringer/speaker 1 0.606

Microphone 1 0.587

Rear panel assembly Rear casing 1 0.407

Headphone jack assembly 1 0.478

Wi-Fi antenna 1 0.496

Vibrator 1 0.496

724 M. Kwak and H. Kim

http://www.grn.com/
http://www.ubreakifix.com/
http://www.ubreakifix.com/

28.4.2 Optimization Result

In order to assess how much profit can be improved by adopting the family design, a

reference case without component sharing was necessary. Therefore, a set of four

smartphones that share no components (reference case in column 5 in Table 28.9)

was analyzed in addition to the high-sharing family design (Family 1) described in

Table 28.4, using equivalent parameters and assumptions. In addition, two families

of smartphones with limited sharing are also derived and compared to examine how

the degree of sharing influences the optimization result. One family (Family 2)

shares only the digitizer and LCD screen across all product variants, and the other

one (Family 3) shares the microphone only. To solve mixed integer programming,

Risk Solver Platform and XPRESS Solver Engine were used.

The optimization results from the four different cases are shown in Table 28.9.

Table 28.10 shows the optimal amount of cores to take back in each of the four cases.

Due to the limitation of space, a complete set of optimization results is presented

only for the high-sharing design (Family 1) in Table 28.11. Figure 28.4 is presented

to help in understanding Table 28.11. It graphically represents some of the results in

the table, specifically the results related to all cores, the front screen assembly, and

Table 28.7 Recovery cost assumptions

Item Weight (lb) ce cc cd cr cy cs cl

Phone 1 0.2908 1.5 1 1.5 2 – 1 0.0058

Phone 2 0.2952 1.5 1 1.5 2 – 1 0.0059

Phone 3 0.2952 1.5 1 1.5 2 – 1 0.0059

Phone 4 0.2996 1.5 1 1.5 2 – 1 0.0060

Front screen assembly 0.0960 – 0.5 0.5 1.5 56 – 0.0019

Lower dock assembly 0.0268 – 0.5 0.5 1.5 12 – 0.0005

Real panel assemblies 0.0672 – 0.75 0.5 1.5 38 – 0.0013

Logic board 1 0.0408 – 1 – – 80 – 0.0008

Logic board 2 0.0452 – 1 – – 100 – 0.0009

Logic board 3 0.0496 – 1 – – 140 – 0.0010

Camera 0.0100 – 0.5 – – 4 – 0.0002

Battery 0.0500 – 0.5 – – 6 – 0.0010

Digitizer 0.0384 – 0.75 – – 14 – 0.0008

LCD screen 0.0384 – 0.5 – – 22 – 0.0008

Ear speaker 0.0096 – 0.5 – – 4 – 0.0002

Mid chassis frame 0.0096 – 0.5 – – 12 – 0.0002

Antenna 0.0038 – 0.5 – – 4 – 0.0001

Dock connector 0.0096 – 0.5 – – 6 – 0.0002

Loud speaker 0.0096 – 0.5 – – 4 – 0.0002

Microphone 0.0038 – 0.5 – – 3.6 – 0.0001

Rear casings 0.0384 – 0.5 – – 30 – 0.0008

Headphone jack assemblies 0.0096 – 0.5 – – 5.6 – 0.0002

Wi-Fi antenna 0.0096 – 0.5 – – 4 – 0.0002

Vibrator 0.0096 – 0.5 – – 4 – 0.0002

28 Product Family Design and Recovery for Lifecycle 725

the components that compose the front screen assembly. In the figure, a square

corresponds to a specific part, and an arrow represents material flows in recovery

processes with respect to the part. The type of an arrow indicates whether the flow is

of working parts or of nonworking parts. The number and capital letter next to an

arrow indicate the number of units of parts that follows a specific recovery or

disposal option. For instance, the square “front screen assembly” and its relevant

arrows in Fig. 28.4 show that the disassembly of Family 1 will provide 75,550

(working) and 146,600 (nonworking) units of front screen assembly. Out of the total

75,550 working parts, 20,000 units should be directly remarketed as used parts,

another 20,000 units should be reconditioned and remarketed as reconditioned parts,

and 35,500 units should be reused for core refurbishment. Recycling should be

Table 28.8 Recovery revenue and demand assumptions

Item rm ru rc rz Du Dc Dz

Phone 1 0.7270 135 180 225 10,000 10,000 10,000

Phone 2 0.7380 165 220 275 10,000 10,000 20,000

Phone 3 0.7380 165 220 275 10,000 10,000 20,000

Phone 4 0.7490 195 260 325 10,000 10,000 50,000

Front screen assembly 0.2400 70 91 112 20,000 20,000 40,000

Lower dock assembly 0.0670 15 19.5 24 20,000 20,000 20,000

Real panel assembly 1 0.1680 47.5 61.75 76 5,000 5,000 20,000

Real panel assembly 2 0.1680 47.5 61.75 76 5,000 5,000 15,000

Real panel assembly 3 0.1680 47.5 61.75 76 5,000 5,000 15,000

Real panel assembly 4 0.1680 47.5 61.75 76 5,000 5,000 10,000

Logic board 1 0.2040 100 130 – 5,000 5,000 –

Logic board 2 0.2260 125 162.5 – 10,000 10,000 –

Logic board 3 0.2480 175 227.5 – 5,000 5,000 –

Camera 0.0250 5 6.5 – 20,000 20,000 –

Battery 0.0750 7.5 9.75 – 20,000 20,000 –

Digitizer 0.0960 17.5 22.75 – 20,000 20,000 –

LCD screen 0.0960 27.5 35.75 – 20,000 20,000 –

Ear speaker 0.0240 5 6.5 – 20,000 20,000 –

Mid chassis frame 0.0240 15 19.5 – 20,000 20,000 –

Antenna 0.0095 5 6.5 – 20,000 20,000 –

Dock connector 0.0240 7.5 9.75 – 20,000 20,000 –

Loud speaker 0.0240 5 6.5 – 20,000 20,000 –

Microphone 0.0095 4.5 5.85 – 20,000 20,000 –

Rear casings 0.0960 37.5 48.75 – 5,000 5,000 –

Headphone jack assembly 1 0.0240 7 9.1 – 15,000 15,000 –

Headphone jack assembly 2 0.0240 7 9.1 – 5,000 5,000 –

Wi-Fi antenna 0.0240 5 6.5 – 20,000 20,000 –

Vibrator 0.0240 5 6.5 – 20,000 20,000 –

Note: When applying these parameters to a reference case, demand parameters (i.e., Du, Dc, and

Dz) for shared parts are needed to change. For a product variant, the demand for each part is

changed into (D/n), where n is the number of variants sharing the part in the family design. For

example, the demand for used camera is 5,000 (¼20,000/4) for each phone in the reference case

726 M. Kwak and H. Kim

T
a
b
le

2
8
.9

O
p
ti
m
iz
at
io
n
re
su
lt
(o
b
je
ct
iv
e
v
al
u
e)

F
am

il
y
1
(h
ig
h
-s
h
ar
in
g
d
es
ig
n
)

F
am

il
y
2
(s
h
ar
in
g
d
is
p
la
y
o
n
ly
)

F
am

il
y
3
(s
h
ar
in
g
M
IC

o
n
ly
)

R
ef
er
en
ce

(n
o
sh
ar
in
g
)

C
o
st
in

to
ta
l

5
0
,1
9
3
,3
7
0

5
0
,4
1
3
,1
1
7

5
0
,4
5
4
,5
1
0

5
0
,4
1
1
,3
2
9

T
ak
e-
b
ac
k

3
5
,4
2
8
,2
0
0

3
5
,5
9
0
,4
5
0

3
5
,5
9
0
,4
2
0

3
5
,5
9
0
,4
2
0

D
at
a
sc
ru
b
b
in
g

4
3
3
,3
9
5

4
3
3
,3
5
8

4
3
3
,3
5
8

4
3
3
,3
5
8

C
o
re

co
n
d
it
io
n
in
g

3
6
,8
0
4

3
0
,0
0
0

3
0
,0
0
0

3
0
,0
0
0

D
is
as
se
m
b
ly

5
1
6
,7
9
3

5
1
9
,4
4
0

5
1
9
,9
7
6

5
1
9
,4
4
1

P
ar
t
co
n
d
it
io
n
in
g

6
9
4
,2
4
3

6
1
4
,5
7
8

6
1
1
,3
7
5

6
1
6
,4
4
8

N
ew

p
ar
t
p
ro
cu
re
m
en
t

1
2
,5
0
7
,2
6
3

1
2
,6
5
2
,3
2
4

1
2
,6
9
6
,4
1
2

1
2
,6
4
8
,6
9
4

R
ea
ss
em

b
ly

4
7
6
,6
7
4

4
7
2
,9
6
9

4
7
2
,9
7
0

4
7
2
,9
7
0

S
o
ft
w
ar
e
u
p
g
ra
d
e

1
0
0
,0
0
0

1
0
0
,0
0
0

1
0
0
,0
0
0

1
0
0
,0
0
0

D
is
p
o
sa
l

0
0

0
0

R
ev
en
u
e
in

to
ta
l

7
0
,4
9
4
,5
5
7

6
8
,9
4
4
,2
3
3

6
8
,8
4
3
,1
9
6

6
8
,7
8
8
,6
0
6

R
ec
y
cl
in
g

6
4
,0
1
7

7
4
,5
7
4

7
5
,0
5
6

7
5
,1
0
4

R
eu
se

1
2
,5
8
0
,0
0
0

1
2
,7
8
8
,1
8
5

1
2
,6
8
6
,6
4
0

1
2
,6
3
2
,0
0
3

R
ec
o
n
d
it
io
n
in
g

1
8
,8
3
0
,5
4
0

1
7
,0
6
1
,4
7
4

1
7
,0
6
1
,5
0
0

1
7
,0
6
1
,5
0
0

R
ef
u
rb
is
h
m
en
t

3
9
,0
2
0
,0
0
0

3
9
,0
2
0
,0
0
0

3
9
,0
2
0
,0
0
0

3
9
,0
2
0
,0
0
0

O
b
je
ct
iv
e
v
al
u
e
(c
o
st
-r
ev
en
u
e)

�2
0
,3
0
1
,1
8
6

�1
8
,5
3
1
,1
1
7

�1
8
,3
8
8
,6
8
7

�1
8
,3
7
7
,2
7
7

R
O
I
(r
et
u
rn

o
n
in
v
es
tm

en
t)

4
0
.4
5
%

3
6
.7
6
%

3
6
.4
5
%

3
6
.4
5
%

28 Product Family Design and Recovery for Lifecycle 727

chosen only for a small fraction of working and nonworking parts. For most of the

nonworking units, further disassembly is required.

From the optimization results, three implications are obtained as follows:

• Result 1: Family 1 (high-sharing design) is the most profitable design among the

four cases. In Table 28.9, all four cases present negative objective values, which

implies that the end-of-life management can be a profitable business in all cases.

Family 1 shows the smallest objective value (i.e., the largest profit). This means

that Family 1 can support end-of-life management, and, once adopted, the profit

is expected to increase by 1.9 million dollars.

• Result 2: Family 1 allows the most efficient end-of-life management among the

four cases. The last row of Table 28.9 presents the return on investment (ROI) of

each case. ROI denotes the ratio of net profit relative to the cost, and the higher,

the better. The ROI for Family 1 is the highest, which means that Family 1 can

obtain more profit for the same amount of investment.

• Result 3: Maximum profit and ROI increase as the degree of component sharing

increases. Family 1 has the highest degree of component sharing, while the

reference case has no sharing. Families 2 and 3 are in between these two.

The four cases demonstrate that the maximum profit and ROI increase with

the degree of component sharing. The results also indicate that the identity of the

components that are shared is also an important factor affecting the profitability.

For example, even though the microphone is shared in Family 3, the profit and

ROI do not change much. Microphone and its parent intermediate (i.e., dock

connector assembly) are the cheapest parts in a smartphone; although Family

3 encourages reuse of these parts (rather than material recovery), the revenue

from the increased reuse is too small to make any significant difference in total

profit. However, when the digitizer and LCD screen are shared in Family 2, the

profit increases more significantly. Digitizers and LCD screens are the most

high-priced components along with logic boards.

The discussion up to now has been focused only on the economic perspective.

Table 28.12 interprets the same optimization results from a different viewpoint, i.e.,

material flows. Comparing the four cases gives the following implications:

• Result 4: Family 1 requires less new resources to retrieve maximum profit from

the same amount of input material. The table shows how much material must be

input to the recovery system to obtain maximum profit. Family 1 shows

Table 28.10 Optimal number of units of core ½Xt
i;w; Xt

i;n� to take back

Family 1 Family 2 Family 3 Reference

Phone 1 (8 GB, black) [20000, 65548] [19999, 64700] [20000, 64701] [20000, 64701]

Phone 2 (16 GB, black) [20000, 72103] [20000, 72103] [19999, 72101] [19999, 72101]

Phone 3 (16 GB, white) [20000, 72103] [20000, 72103] [20000, 72104] [20000, 72104]

Phone 4 (32 GB, black) [9176, 10000] [10000, 10000] [10000, 10000] [10000, 10000]

Total weight of cores

to take back (lb)

[20373, 64627] [20620, 64380] [20620, 64380] [20620, 64380]

728 M. Kwak and H. Kim

T
a
b
le

2
8
.1
1

O
p
ti
m
al

so
lu
ti
o
n
to

th
e
en
d
-o
f-
li
fe

m
an
ag
em

en
t
o
f
a
sm

ar
tp
h
o
n
e
fa
m
il
y

It
em

X
t w

X
t n

X
m w

X
u w

X
c w

X
d w

X
r w

X
m n

X
d n

Y
Z
r

Z
s

P
h
o
n
e
1

2
0
,0
0
0

6
5
,5
4
8

0
1
0
,0
0
0

1
0
,0
0
0

0
0

6
5
,5
4
8

1
0
,0
0
0

P
h
o
n
e
2

2
0
,0
0
0

7
2
,1
0
3

0
1
0
,0
0
0

1
0
,0
0
0

0
0

7
2
,1
0
3

2
0
,0
0
0

P
h
o
n
e
3

2
0
,0
0
0

7
2
,1
0
3

0
1
0
,0
0
0

1
0
,0
0
0

0
0

7
2
,1
0
3

2
0
,0
0
0

P
h
o
n
e
4

9
,1
7
6

1
0
,0
0
0

0
0

6
,8
0
4

2
,3
7
2

0
1
0
,0
0
0

5
0
,0
0
0

F
ro
n
t
sc
re
en

as
se
m
b
ly

7
5
,5
5
0
.1

1
4
6
,5
7
5
.9

0
.1

2
0
,0
0
0

2
0
,0
0
0

0
3
5
,5
5
0

0
.9

1
4
6
,5
7
5

1
6
4
,4
4
9

4
0
,0
0
0

L
o
w
er

d
o
ck

as
se
m
b
ly

1
6
5
,2
0
9
.7

5
6
,9
1
6
.3

0
.7

2
0
,0
0
0

2
0
,0
0
0

2
6
,5
9
1

9
8
,6
1
8

0
.3

5
6
,9
1
6

1
,3
8
2

0
2
0
,0
0
0

R
ea
l
p
an
el

as
se
m
b
ly

1
3
9
,3
2
8
.8

2
6
,2
1
9
.2

0
.8

5
,0
0
0

5
,0
0
0

1
9
,3
2
8

1
0
,0
0
0

0
.2

2
6
,2
1
9

0
0

2
0
,0
0
0

R
ea
l
p
an
el

as
se
m
b
ly

2
4
3
,2
6
1
.8

2
8
,8
4
1
.2

0
.8

5
,0
0
0

5
,0
0
0

1
3
,2
6
2

1
9
,9
9
9

0
.2

2
8
,8
4
1

1
0

1
5
,0
0
0

R
ea
l
p
an
el

as
se
m
b
ly

3
4
3
,2
6
1
.8

2
8
,8
4
1
.2

0
.8

5
,0
0
0

5
,0
0
0

1
3
,2
6
2

1
9
,9
9
9

0
.2

2
8
,8
4
1

1
0

1
5
,0
0
0

R
ea
l
p
an
el

as
se
m
b
ly

4
8
,3
7
2
.0

4
,0
0
0
.0

0
.0

0
5
,0
0
0

3
,3
7
2

0
0
.0

4
,0
0
0

5
0
,0
0
0

0
1
0
,0
0
0

L
o
g
ic

b
o
ar
d
1

5
1
,9
7
9
.6

1
3
,5
6
8
.4

3
1
,9
7
9
.6

5
,0
0
0

5
,0
0
0

1
0
,0
0
0

1
3
,5
6
8
.4

0

L
o
g
ic

b
o
ar
d
2

1
1
4
,3
5
5
.4

2
9
,8
5
0
.6

5
4
,3
5
5
.4

1
0
,0
0
0

1
0
,0
0
0

4
0
,0
0
0

2
9
,8
5
0
.6

0

L
o
g
ic

b
o
ar
d
3

1
0
,3
0
2
.0

2
,0
7
0
.0

0
.0

5
,0
0
0

5
,0
0
0

3
0
2

2
,0
7
0
.0

4
9
,6
9
8

C
am

er
a

1
7
5
,3
1
8
.4

4
6
,8
0
7
.6

3
5
,3
1
8
.4

2
0
,0
0
0

2
0
,0
0
0

1
0
0
,0
0
0

4
6
,8
0
7
.6

0

B
at
te
ry

1
7
6
,4
1
7
.2

4
5
,7
0
8
.8

3
6
,4
1
7
.2

2
0
,0
0
0

2
0
,0
0
0

1
0
0
,0
0
0

4
5
,7
0
8
.8

0

D
ig
it
iz
er

5
5
,6
9
8
.5

9
0
,8
7
6
.5

0
.5

2
0
,0
0
0

2
0
,0
0
0

1
5
,6
9
8

9
0
,8
7
6
.5

8
8
,7
5
1

L
C
D

sc
re
en

7
9
,8
8
3
.4

6
6
,6
9
1
.6

0
.4

2
0
,0
0
0

2
0
,0
0
0

3
9
,8
8
3

6
6
,6
9
1
.6

6
4
,5
6
6

E
ar

sp
ea
k
er

1
0
5
,2
4
0
.9

4
1
,3
3
4
.2

0
.9

2
0
,0
0
0

2
0
,0
0
0

6
5
,2
4
0

4
1
,3
3
4
.2

3
9
,2
0
9

F
ra
m
e

1
1
7
,8
4
6
.3

2
8
,7
2
8
.7

0
.3

2
0
,0
0
0

2
0
,0
0
0

7
7
,8
4
6

2
8
,7
2
8
.7

2
6
,6
0
3

A
n
te
n
n
a

6
0
,0
0
0
.7

2
3
,5
0
6
.3

0
.7

2
0
,0
0
0

2
0
,0
0
0

2
0
,0
0
0

2
3
,5
0
6
.3

0

D
o
ck

co
n
n
ec
to
r

4
7
,3
6
5
.3

3
6
,1
4
1
.7

0
.3

2
0
,0
0
0

2
0
,0
0
0

7
,3
6
5

3
6
,1
4
1
.7

1
2
,6
3
5

L
o
u
d
sp
ea
k
er

6
1
,0
8
2
.1

2
2
,4
2
4
.9

1
,0
8
2
.1

2
0
,0
0
0

2
0
,0
0
0

2
0
,0
0
0

2
2
,4
2
4
.9

0

M
ic
ro
p
h
o
n
e

6
0
,0
0
0
.7

2
3
,5
0
6
.3

0
.7

2
0
,0
0
0

2
0
,0
0
0

2
0
,0
0
0

2
3
,5
0
6
.3

0

R
ea
r
ca
si
n
g
1

2
9
,9
9
9
.1

1
5
,5
4
7
.9

0
.1

5
,0
0
0

5
,0
0
0

1
9
,9
9
9

1
5
,5
4
7
.9

1

R
ea
r
ca
si
n
g
2

2
5
,0
0
0
.3

1
7
,1
0
2
.7

0
.3

5
,0
0
0

5
,0
0
0

1
5
,0
0
0

1
7
,1
0
2
.7

0

R
ea
r
ca
si
n
g
3

2
5
,0
0
0
.3

1
7
,1
0
2
.7

0
.3

5
,0
0
0

5
,0
0
0

1
5
,0
0
0

1
7
,1
0
2
.7

0

R
ea
r
ca
si
n
g
4

5
,0
0
0
.0

2
,3
7
2
.0

0
.0

0
5
,0
0
0

0
2
,3
7
2
.0

1
0
,0
0
0

(c
o
n
ti
n
u
ed
)

28 Product Family Design and Recovery for Lifecycle 729

T
a
b
le

2
8
.1
1

(c
o
n
ti
n
u
ed
)

It
em

X
t w

X
t n

X
m w

X
u w

X
c w

X
d w

X
r w

X
m n

X
d n

Y
Z
r

Z
s

H
ea
d
p
h
o
n
e
ja
ck

as
se
m
b
ly

1
6
4
,1
9
2
.7

3
0
,8
2
9
.3

0
.7

1
5
,0
0
0

1
5
,0
0
0

3
4
,1
9
2

3
0
,8
2
9
.3

1
0
,8
0
8

H
ea
d
p
h
o
n
e
ja
ck

as
se
m
b
ly

2
2
7
,0
4
8
.0

1
5
,0
5
5
.0

2
,0
4
8
.0

5
,0
0
0

5
,0
0
0

1
5
,0
0
0

1
5
,0
5
5
.0

0

W
i-
F
i
an
te
n
n
a

9
2
,8
2
2
.9

4
4
,3
0
2
.1

0
.9

2
0
,0
0
0

2
0
,0
0
0

5
2
,8
2
2

4
4
,3
0
2
.1

7
,1
7
8

V
ib
ra
to
r

9
2
,8
2
2
.9

4
4
,3
0
2
.1

0
.9

2
0
,0
0
0

2
0
,0
0
0

5
2
,8
2
2

4
4
,3
0
2
.1

7
,1
7
8

N
o
te
:
U
n
d
er
li
n
ed

n
u
m
b
er
s
in
d
ic
at
e
th
e
n
u
m
b
er

o
f
w
o
rk
in
g
an
d
n
o
n
w
o
rk
in
g
it
em

s
o
b
ta
in
ed

fr
o
m

p
ar
en
ts
’
d
is
as
se
m
b
ly
;
al
l
X
l w
an
d
X
l n
ar
e
ze
ro

730 M. Kwak and H. Kim

Fig. 28.4 Graphical representation of the part of the optimal solution

Table 28.12 Material input–output flow

Family 1 Family 2 Family 3 Reference

Input (lb)

Take-back 85,000 85,000 85,000 85,000

New part spare 13,128 16,529 16,545 16,454

Output (lb)

Disposal 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 0 (0.00 %)

Recycling 21,482 (21.89 %) 26,717 (26.31 %) 26,910 (26.50 %) 26,983 (26.58 %)

Reuse 17,988 (18.33 %) 18,192 (17.92 %) 18,016 (17.74 %) 17,916 (17.65 %)

Reconditioning 20,554 (20.95 %) 18,516 (18.24 %) 18,516 (18.23 %) 18,516 (18.24 %)

Refurbishment 38,104 (38.83 %) 38,104 (37.53 %) 38,104 (37.52 %) 38,104 (37.53 %)

Sum of weight (lb) 98,128 101,529 101,545 101,454

Net profit per

pound ($)

206.88 182.52 181.09 181.12

28 Product Family Design and Recovery for Lifecycle 731

superiority here as well with use of smaller amount of new resources. From an

environmental perspective, less new material is usually more desirable. How-

ever, it is hard to conclude that the higher degree of sharing is always better in

terms of saving resources. Families 2 and 3 require more weight of material than

the reference case. (Also, Family 3 is worse than the reference, even in the net

profit per unit weight.) This is due to higher reuse rate of parts. In other words,

more reusable parts are available due to higher interchangeability in product

family compared to the reference case. In turn, the remanufacturer may use more

material to manufacture more secondhand products for higher profit.

• Result 5: Family 1 supports end-of-life management to be more effective. First,

Family 1 enables core management in a better way. From the environmental

standpoint, reuse, reconditioning, and refurbishment are regarded as better

options than material recycling. In this regard, Family 1 is superior to the others.

Table 28.12 shows how the input material is processed in each design case.

For Family 1, a greater percentage of material is reused, reconditioned, and

refurbished than for the other cases. Second, Family 1 allows the retrieval of a

greater value from the same amount of material. The last row of Table 28.12

shows net profit per pound. Family 1 shows the best performance in this area

as well.

Family 1’s superiority is the result of high interchangeability of its components.

Thus, Family 1 can reduce take-back and part procurement costs while increasing

recovery revenue. As shown in Table 28.5, Phone 4, which has 32 GB of memory

and is black in color, is the most preferred phone to refurbish. The unit revenue

obtained from refurbishment is higher than it is for other variants. In addition, the

current setting of parameters assumes a large market demand for a refurbished

Phone 4. (The demand for every core and part is listed in Table 28.8). However,

Phone 4 is also the most difficult one to refurbish. Not only is it expensive to take-

back, but the core availability is too low to satisfy the demand. While the demand

for refurbished Phone 4 is 50,000, there are only 20,000 cores available, including

working and nonworking cores. Therefore, spare parts must be purchased to meet

the demand.

In the case of Family 1, a company can utilize other phones to refurbish Phone 4.

Because Phone 1 is the least expensive core, it would be an excellent substitute for

Phone 4. Accordingly, as presented in Table 28.10, the optimal take-back plan for

Family 1 involves less take-back of working Phone 4 along with more take-back of

nonworking Phone 1.

In addition to the cost reduction in product take-back and parts procurement,

increased revenue for reconditioning is also examined. Since other phones take the

place of Phone 4 in providing parts for refurbishment, the company can keep some

of the available Phone 4 for other purposes without sacrificing refurbishment.

Specifically, the company can recover Phone 4 by the second most profitable

way; i.e., reconditioning, which increases the overall recovery revenue.

732 M. Kwak and H. Kim

28.5 Summary

End-of-lifemanagement is regarded as a problemofmultiple coreswith commonality.

In order to improve the profitability of end-of-life management, a manufacturer

should make commonality decisions in product family design by considering their

influences on product take-back and end-of-life recovery. To help manufacturers

make the best decisions, an optimization method was developed for assessing

product family designs for their profitability in end-of-life management. Using

mixed integer programming, the model identifies an optimal strategy for product

take-back and end-of-life recovery, thereby assessing the maximum profits for the

product family during the end-of-life stage. The profit value can be used as a

quantitative measure to evaluate product family design. By applying this method

in the design stage, manufacturers can assess various product family designs and

choose the best one for lifecycle.

An example with a smartphone family illustrates how to apply the proposed

model and how it supports decision making in product family design. The study

results demonstrate that product family design can be a means of improving the

profitability of end-of-life management. When multiple products are designed to

have common components, the profit outweighs that of the reference case with

no components shared. Moreover, the superiority is examined not only in the

magnitude of profit but also in the return on investment. The results also

imply that the profit monotonically increases with the level of component sharing,

but the increasing amount differs from case to case, depending on the shared parts.

Finally, the results show that product family design has potential to support a

more environmentally conscious product recovery. The high-sharing smartphone

family produces greater value for the company from the same amount of material.

Also, it requires a smaller amount of new material to achieve the maximum profit.

The economies of scale in recovery operations can be incorporated in the model

in the future. As component commonality increases, the necessary tools, the

required worker skills, and the time required for setup can decrease in various

recovery operations (e.g., disassembly, conditioning, part purchasing, warehousing,

and reassembly). However, in this paper, the economies of scale are excluded from

consideration by assuming unlimited facility capacity and by assuming constant

unit cost for every operation. Uncertainty is also an important aspect because many

parameters, which are assumed to be known and deterministic in this chapter, are

stochastic in reality. The developed model is one of the first attempts to examine

product family design from the recovery point of view—thus using mixed integer

programming was a natural choice—it is simple and provides a great foundation for

a variety of studies in the future. However, uncertainty in real-world decisions must

be considered in the assessment to find an optimal family design that is robust in

handling possible changes. Future work should include the development of a

stochastic model that can deal effectively with such uncertainties. Models for

estimating the economic value of parts and the costs of recovery processes also

need to be developed. Finally, an integrated approach should be developed in the

28 Product Family Design and Recovery for Lifecycle 733

future that considers both end-of-life stage and design and manufacturing stages.

Combining the proposed model with traditional family design approaches will lead

to a more advanced framework.

Acknowledgments This material is based upon the work supported by the National Science

Foundation under Award No. 0726934. Any opinions, findings, and conclusions or

recommendations expressed in this publication are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

References

Alizon F, Shooter SB, Simpson TW (2009) Assessing and improving commonality and diversity

within a product family. Res Eng Des 20(4):241–253

Bras B (2007) Design for remanufacturing processes. In: Kutz M (ed) Environmentally conscious

mechanical design. Wiley, Hoboken, NJ, pp 283–318

Envirowise (2004) Sustainable design of electrical and electronic products to control costs

and comply with legislation-GG427. Envirowise. http://www.envirowise.gov.uk. Accessed

30 Nov 2009

European Commission (2012) Council steps up collection and recycling targets for wasteelectrical

and electronic equipment. http://ec.europa.eu/environment/waste/weee. Accessed 13 Jul 2012

Fellini R, Kokkolaras M, Papalambros P, Perez-Duarte A (2005) Platform selection under perfor-

mance bounds in optimal design of product families. J Mech Des 127(4):524–535

Inderfurth K, Langella IM (2008) Planning disassembly for remanufacture-to-order systems. In:

Gupta SM, Lambert AJD (eds) Environment conscious manufacturing. CRC, Boca Raton, FL,

pp 387–411

Jacobsson N (2000) Emerging product strategies – selling services of remanufactured products.

Licentiate Dissertation, Lund University

Jiao J, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Krikke HR, van Harten A, Schuur PC (1998) On a medium term product recovery and disposal

strategy for durable assembly products. Int J Prod Res 36(1):111–139

Kwak M, Kim H (2010) Evaluating end-of-life recovery profit by a simultaneous consideration of

product design and recovery network design. J Mech Des 132(7):071001

Kwak M, Behdad S, Zhao Y, Kim H, Thurston D (2011) E-waste stream analysis and design

implications. J Mech Des 133(10):101003

Mangun D, Thurston D (2002) Incorporating component reuse, remanufacture, and recycle into

product portfolio design. IEEE Trans Eng Manag 49(4):479–490

Martin M, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Perera HS, Nagarur N, Tabucanon MT (1999) Component part standardization: a way to reduce

the life-cycle costs of products. Int J Prod Econ 60–61:109–116

Rai R, Allada V (2003) Modular product family design: agent-based pareto-optimization and

quality loss function-based post-optimal analysis. Int J Prod Res 41(17):4075–4098

Simpson TW (1998) A concept exploration method for product family design. Dissertation,

Georgia Institute of Technology

Simpson TW (2004) Product platform design and customization: status and promise. Artif Intell

Eng Des Anal Manuf 18(1):3–20

Simpson TW, D0Souza BS (2004) Assessing variable levels of platform commonality within

a product family using a multiobjective genetic algorithm. Concur Eng 12(2):119–129

734 M. Kwak and H. Kim

http://www.envirowise.gov.uk/
http://ec.europa.eu/environment/waste/weee

Simpson TW, Seepersad CC, Mistree F (2001) Balancing commonality and performance within

concurrent design of multiple products in a product family. Concur Eng 9(3):175–190

Simpson TW, Siddique Z, Jiao J (2006) Platform-based product family development. In:

Simpson T, Siddique Z, Jiao J (eds) Product platform and product family design. Springer,

New York, NY, pp 1–15

Sodhi MS, Reimer B (2001) Models for recycling electronics end-of-life products. OR Specktrum

23(1):97–115

SquareTrade (2008) SquareTrade Research: iPhone more reliable than BlackBerry, One Year

In. SquareTrade. http://www.squaretrade.com/pages/iphone-reliability-study-11-2008. Accessed

15 Nov 2009

SquareTrade (2009) SquareTrade Research: one-third of iPhones fail over 2 years, mostly from

accidents. SquareTrade. http://www.squaretrade.com/pages/iphone-reliability-study-06-2009.

Accessed 15 Nov 2009

Thevenot HJ, Simpson T (2006) Commonality indices for assessing product families. In:

Simpson T, Siddique Z, Jiao J (eds) Product platform and product family design. Springer,

New York, NY, pp 107–129

28 Product Family Design and Recovery for Lifecycle 735

http://www.squaretrade.com/pages/iphone-reliability-study-11-2008
http://www.squaretrade.com/pages/iphone-reliability-study-06-2009

Chapter 29

Application of the Generational Variety

Index: A Retrospective Study of iPhone

Evolution

Gopal Nadadur, Matthew B. Parkinson, and Timothy W. Simpson

Abstract The generational variety index (GVI) helps to identify the components

of product variants that are most likely to require redesign in the future. These

components can then be embedded with the flexibility required for them to be easily

modifiable; the remaining components can be designed into a platform. This paper

describes the application of the GVI technique in studying the evolution of the

Apple iPhone, which was first released in 2007 and has since undergone multiple

redesigns. The analysis includes the five generations of the iPhone (original, 3G,

3GS, 4, and 4S) and focuses primarily on mechanical subsystems. The results of the

analysis and subsequent design recommendations are compared with the actual

design evolution of the iPhone product line. For certain subsystems, this compari-

son reveals a divergence in Apple’s design decision-making from the evolution

recommended by the GVI technique. Limitations include its retrospective nature

and the use of only publicly available data.

An earlier version of this chapter appeared in G. Nadadur, M. B. Parkinson, and T. W. Simpson

(2012) Application of the Generational Variety Index: A Retrospective Study of iPhone Evolution,

ASME Design Engineering Technical Conferences—Design Automation Conference, Chicago,

IL, ASME, Paper No. DETC2012/DAC-70727 (# ASME 2012), reprinted with permission.

G. Nadadur

OPEN Design Lab, The Pennsylvania State University, University Park, PA 16802, USA

M.B. Parkinson

OPEN Design Lab Engineering Design, Mechanical Engineering, and Industrial Engineering,

The Pennsylvania State University, University Park, PA 16802, USA

T.W. Simpson (*)

Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

e-mail: tws8@psu.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_29,
Springer Science+Business Media New York 2014

737

mailto:tws8@psu.edu

29.1 Introduction

Certain product categories (e.g., consumer electronics, information technology,

apparel) experience rapid changes in user needs and preferences, sometimes

governed by rapid technological advancement. This can result in fast product

turnover and short life cycles (Ko and Hu 2009). The technological and user-

related factors force the company to evolve the designs of these products in the

duration for which they are offered in the market (Sanderson and Uzumeri 1997).

Increasing design and manufacturing efficiencies in these products requires the

consideration of these factors during the design development process. The genera-

tional variety index (GVI) (Martin and Ishii 2002) was developed to address this

specifically and to help companies to identify how their products may evolve as

customer needs change. This paper applies GVI analysis in evaluating the multi-

generational design of the Apple iPhone, thereby providing an interesting example

of an evolving product which was designed without the conventional attention paid

to consumer surveys, studies, assessments, and feedback (Isaacson 2011).

29.1.1 Evolving Designs

Product lines can undergo changes that are revolutionary or evolutionary (Axelsson

2009), both of which may be interrelated and interdependent. Revolutionary

changes are effected relatively infrequently, when a new product line is being

designed and launched. Since these design decisions have longer-lasting impact

on the product line, they must involve the consideration of future progress of

technology or temporal variations in user requirements. In contrast, evolutionary

changes occur more frequently and result in incremental improvements in systems

of functions within the product architecture. Despite the divergent semantics, a

similar distinction is made by Haolun et al. (2009), which discusses product

platform upgrades and evolution. Upgrades consist of incremental improvements

in efficiencies or functionalities of the product. On the other hand, evolution, which

results in more radical changes in the design, becomes necessary when instabilities

(e.g., changing consumer needs/preferences and technology) cause disturbances in

the steady-state condition of the market. A third study along these lines is Kivi et al.

(2012), which categorizes improvements in product features as being either multi-

generational or incremental.

A number of brands of products have fast turnover and short life cycles, but are

offered in the market for a number of years. The consumer electronics segment is

replete with examples of such products, which include smartphones (e.g., Apple

iPhone, RIM Blackberry), cameras (e.g., Canon SLR), and calculators (e.g., Texas

Instruments TI-83). In some cases (e.g., websites, pharmaceuticals), these products

are strategically customized to suit varying technological and user requirements

across the target markets (Wang and Zhou 2008). In other cases, in order to keep up

738 G. Nadadur et al.

with changing technologies, user needs and preferences, production capacity, and

market growth and demand, the designs and product lines of these brands are

evolved in a variety of ways following their introduction (Haolun et al. 2009;

Cao et al. 2010; Orbach and Fruchter 2011).

Numerous research efforts have sought to understand, quantify, and model the

aforementioned factors and their impact on product evolution. For example, Cao

et al. (2010) model the influence of changing demand and systems on the evolution

of product function (i.e., the functions served by the product). Product evolution has

also been modeled as a function of technological changes, market growth, and

market preferences (Orbach and Fruchter 2011) and competitive market forces and

technological changes (Zhang and Xu 2007), to mention two of the proposed

modeling methods. Many of these models are intended for generating forecasts of

product evolution for use in making present-day design decisions.

Product design entities tend to spend relatively low percentages of their research

and development budgets on new product design and development (Rezayat 2000),

which can be considered similar to revolutionary changes in product lines. A

majority of the investment is on design reuse, either with parts that are completely

unchanged or modified (i.e., evolved) in some manner. The process of evolutionary

change in products can be made more efficient through the application of flexible

design principles; the value of inbuilt flexibility is higher for greater levels of

uncertainty in design decision-making (Nadadur et al. 2011).

Non-platformed products can be embedded with appropriate forms and amounts

of flexibility to make their components easier to adapt and reuse across multiple

generations of the designs (Van Wie et al. 2004) and to reduce the time and cost of

designing existing products to keep pace with changing requirements (Keese et al.

2007). This goal can be achieved through multiple approaches, including

modularity, parts reduction, spatial interface decoupling, and adjustability (Keese

et al. 2007). In order to also increase production efficiency, the product and its

assembly system can be concurrently designed through a method termed

co-evolution (Bryan et al. 2010). Doing so allows the assembly system also to be

adapted to evolving designs of the product; this decreases the time, cost, and effort

involved in revamping the manufacturing system. Similarly, the recurring tasks

across the different generations of the product can be forecast and integrated with

stochastic product evolution models to identify ways in which to increase the life

cycle of manufacturing systems (Ko and Hu 2009).

Flexibility can also be built into certain elements of product platforms (Ferguson

et al. 2009) through techniques such as function-based product information

modeling (Xu et al. 2006), multi-objective optimization based on predicted changes

in functional and performance requirements (Lewis et al. 2011), change propaga-

tion analysis (Suh et al. 2007), and methods that are based on the generational

variety index, which is described in the next subsection. Methods to assess this

flexibility based on the design dependencies that arise from the physical interfaces

in an architecture have been developed and are being studied elsewhere (Asikoglu

and Simpson 2010). The value of such inbuilt flexibility increases with growth in

levels of uncertainty in decision-making (Nadadur et al. 2011).

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 739

29.1.2 Generational Variety Index

The generational variety index (GVI) (Martin and Ishii 2002) is a means to identify

the components and subsystems within a product platform that will require signifi-

cant modifications across multiple generations of the product. The technique is

applied during the design planning phase of the platform.

As illustrated in Fig. 29.1, the technique involves seven basic steps (Martin and

Ishii 2002). First, the designer estimates the market lifetime of the platform.

Second, quality function deployment matrices are used to map generally stated

customer requirements to more specific engineering metrics and then to the

components necessary to achieve those specifications. Third, changes in customer

requirements are forecast for the lifetime of the platform. The fourth and fifth

steps entail the prediction of engineering metric specifications to be achieved by

each generation of the platform and the subsequent normalization of these

specifications to calculate the normalized target values of the metrics. Finally,

in the seventh step, the GVI matrix is created and used to assess the GVI values

for each subsystem of the platform. The GVI values thus calculated bear ordinal

and ratio relationships to each other and are indicative of the percentage levels of

change that their respective subsystems will require; the higher the GVI value, the

greater the level of required change.

Since its introduction, the generational variety index has been incorporated into

a number of methods and tools for product platform design. An example of these

applications is the platform architecture utilized by a Dutch house-building com-

pany; the standardization of certain modules of the houses (e.g., structure,

dimensions of floor slabs) allows the company to efficiently provide customers

with the desired degree of variety (Veenstra et al. 2006). GVI is used in a

conceptual design framework to leverage the benefits of product modularity, design

for assembly, and design for variety (Gupta and Okudan 2008). The framework

results in modules that are designed to require only a few of them to be replaced for

the product to keep pace with changing user requirements. Additionally, the

recommended designs are ranked in order of minimum assembly time. This frame-

work is demonstrated through the design of an electronic toothbrush.

Simpson et al. (2011) presents a method that integrates product family design

techniques that are qualitative (e.g., market segmentation grid, GVI) and

Fig. 29.1 The seven steps in calculating generational variety index (GVI) values for the com-

ponents or subsystems of a product platform (Martin and Ishii 2002)

740 G. Nadadur et al.

quantitative (e.g., multi-objective optimization, commonality indices). The method

is demonstrated in the context of unmanned aerial vehicle design. An important

observation is that the designs of GVI-based product families are close to the Pareto

optimal designs. A similar conclusion is arrived at by Bobuk et al. (2010), which

states that while GVI analysis does not necessarily result in an optimal product

platform in terms of performance metrics, the analysis undoubtedly helps increase

commonality across the variants of the evolving product.

29.1.3 Case Study Focus

The Apple iPhone is an example of a product that has been on the market for some

time (since 2007), has attained global popularity, and has undergone both evolu-

tionary and revolutionary changes since its release (see Fig. 29.2). The evolutionary

changes include the transition from the original iPhone through the iPhone 3 and to

the iPhone 3GS and subsequently from the iPhone 4 to the iPhone 4S. The main

revolutionary change is the transition from the iPhone 3GS to the iPhone 4;

examples of revolutionary alterations to the design include the improved display

resolution, the transition to Apple-manufactured processors, the expansion to

include CDMA technology, the introduction of a front camera, and the modified

casing with a built-in antenna. More information about these transitions is presented

in the following section.

Another important uniqueness in the development of the iPhone is Apple’s

apparent omission from the design process of public opinion measured through

consumer surveys, feedback, focus groups, etc. (Isaacson 2011). Major decisions

concerning the functionality and aesthetics of products were made by only a few

individuals, based on their intuitive awareness of product characteristics that would

be appreciated and valued by users. User feedback was limited to the appraisals of

product prototypes by a few employees of the company before the final version was

Fig. 29.2 A timeline showing the periods during which each of the five generations of the iPhone

has been available in the market

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 741

released to the market. This process is contrary to most product design efforts,

which entail a variety of formal methods of understanding the user populations’

needs and wants. This paper presents a retrospective application of the generational

variety index on publicly available information about five generations of the

iPhone: original, 3G, 3GS, 4, and 4S.

29.2 Methodology and Case Study

This section describes the analysis of the five generations of the Apple iPhone using

the GVI technique. There were a few constraints in this study. First, only publicly

available information about the iPhone was utilized, and the analysis did not involve

a detailed, component-level exploration of the product. Second, the five generations

of the iPhone were examined retrospectively based on published details of its

technological evolution; among other things, this involved seeking feedback from

users who were already aware of the product and its different generations. Third,

marketing research was not employed to understand, model, and predict consumer

requirements. Fourth, the study was approached from a mechanical and industrial

design perspective, resulting in relatively lower focus on concerns such as software

and electronic components. Despite these constraints, the study is believed to be an

interesting examination of the iPhone from a mechanical/industrial engineering

standpoint.

29.2.1 Step 1: Assessing Market Life

As illustrated in Fig. 29.2, the original iPhonewas released in early 2007. The dates of

market entry of the subsequent generations of the product are early 2008 (iPhone 3G),

early 2009 (iPhone 3GS), mid-2010 (iPhone 4), and late 2011 (iPhone 4S).

29.2.2 Step 2: Constructing QFD Matrices

The first stage of Step 2 was the listing of customer needs. This was done by

soliciting the opinions of a group of students at the Pennsylvania State University.

The question put before them was: “What characteristics or features do you desire

in a smartphone?” The responses helped to develop the list of requirements shown

in the first column of Fig. 29.3. The responses and engineering requirements are

grouped into a few categories (e.g., display, sound, data download/transfer) to

identify subsystems and thereby simplify the analysis.

The next stages of Step 2 involved first mapping the customer needs to engi-

neering metrics (see Fig. 29.3), then mapping the engineering metrics to product

subsystems. The 22 engineering metrics and 14 product subsystems are listed in

Fig. 29.4.

742 G. Nadadur et al.

F
ig
.
2
9
.3

T
h
e
Q
F
D
1
m
at
ri
x
in

S
te
p
2
o
f
th
e
G
V
I
p
ro
ce
ss
.
T
h
e
ex
p
ec
te
d
ra
n
g
e
o
f
ch
an
g
e
o
f
th
e
cu
st
o
m
er

re
q
u
ir
em

en
ts
ar
e
cl
as
si
fi
ed

as
lo
w
(L
),
m
ed
iu
m

(M
),

an
d
h
ig
h
(H

)

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 743

F
ig
.
2
9
.4

T
h
e
en
g
in
ee
ri
n
g
m
et
ri
c
ta
rg
et

v
al
u
es

fo
r
th
e
cu
rr
en
t
an
d
fu
tu
re

ta
rg
et

m
ar
k
et
s
o
f
th
e
iP
h
o
n
e

744 G. Nadadur et al.

29.2.3 Step 3: Predicting Changes in Customer Needs

In a forward-looking GVI analysis, this step would entail studying past and current

trends in the market, developing predictive models of these trends, and utilizing

these models to estimate future changes in customer needs. However, in this

retrospective study, the actual rate of evolution of the technology and features

were considered indicative of the rate of change of customer requirements. These

rates were grouped into low, medium, and high categories and are shown for the

different customer requirements in the last column of Fig. 29.3.

29.2.4 Step 4: Estimating Engineering Metric Target Values

The engineering metric target values used to track the evolution of the iPhone (see

Fig. 29.4) were obtained from sources such as iSuppli (2012) and iDownload

(2012). This information consisted of a mix of quantitative and qualitative technical

specifications for every engineering requirement for each generation of the iPhone;

every successive generation was considered a future market for the designer to take

into account.

For instance, the engineering metric targets for the “operating system” engineer-

ing requirement were specified for the current market (original iPhone) and four

future markets (iPhone 3G, 3GS, 4, and 4S); these targets were the iOS 1.0, 2.0, 3.0,

4.0, and 5.0, respectively. Another example is the “display resolution” engineering

requirement, for which the engineering metric target was 320 � 480 pixels at

163 pixels per inch until the iPhone 4, after which it was 960 � 480 pixels at

326 pixels per inch. As stated earlier in this section, the level of detail of this

information was limited by the amount of publicly available information about each

engineering requirement.

While there may be some level of uncertainty associated with any predictions of

the future technological changes, such predictions are not unrealistic. Intel is an

example of a major organization that utilizes forecasts of technological

advancements to guide the company roadmap (Intel 2012).

29.2.5 Step 5: Calculating Normalized Target Value Matrix

This calculation is an optional step in the GVI procedure (Martin and Ishii 2002)

and was skipped in this study.

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 745

29.2.6 Step 6: Creating GVI Matrix

The matrix created at the end of Step 2 was used as the basis for the creation of the

GVI matrix. This step involved assessing the complexity of subsystem-level rede-

sign to satisfy the expected changes in the engineering requirements over the

market lifetime of the product. A 0, 1, 3, 6, and 9 scale was used to indicate

whether each of the relevant subsystems would require no redesign, few minor

changes, numerous simple changes, partial redesign, or major redesign, respec-

tively. The result of this process is shown in Fig. 29.5.

There can be two categories of redesign. The first category could refer to

improvements in the existing functionalities of the product, e.g., the changes in

the display and touch screen subsystems (Fig. 29.4). The second category involves

changed or added functionalities of the design. The camera subsystem is an

example of the second category, since its functionalities have grown from only a

rear camera with no video capability to a front and rear camera combination with

video capability. The GVI process is applicable to both types of redesign, as

evidenced by this study.

29.2.7 Step 7: Computing GVI Values

The final step of the GVI procedure was the summation of the ratings assigned to

each subsystem in the preceding step; this yielded a GVI value for every subsystem.

These values are listed in the bottom row of Fig. 29.5.

29.3 Discussion

This section discusses certain aspects of the different stages of the procedure

applied in the previous section and examines the GVI values calculated for the

iPhone subsystems and their implications on the design strategy of the product.

The construction of the list of customer requirements in Fig. 29.3 was based on

feedback elicited from a group of students. Not all these students were smartphone

users. However, even the non-smartphone users were aware to the functionalities of

the iPhone and are likely to have been influenced by this knowledge while

responding to the informal survey question. The iPhone is recognized as a product

that has revolutionized consumers’ perceptions of smartphone capabilities and user

interaction. This is particularly true for the younger, college-age population of

consumers. The work could be expanded upon by conducting the survey among

more diverse populations (e.g., older people, people in lower income brackets);

these responses are likely to result in a dramatically different list of consumer

requirements.

746 G. Nadadur et al.

F
ig
.
2
9
.5

G
V
I
an
al
y
si
s
o
f
th
e
iP
h
o
n
e.
T
h
e
en
g
in
ee
ri
n
g
m
et
ri
cs

an
d
p
ro
d
u
ct
su
b
sy
st
em

s
ar
e
li
st
ed

in
th
e
fi
rs
t
co
lu
m
n
an
d
fi
rs
t
ro
w
,r
es
p
ec
ti
v
el
y
.T

h
e
ca
lc
u
la
te
d

G
V
I
v
al
u
es

ar
e
co
m
p
ar
ed

w
it
h
th
e
n
u
m
b
er

o
f
ti
m
es

ea
ch

su
b
sy
st
em

h
as

ch
an
g
ed

th
ro
u
g
h
th
e
fi
v
e
g
en
er
at
io
n
s
o
f
th
e
iP
h
o
n
e;
th
is
co
u
n
t
is
b
as
ed

o
n
F
ig
.
2
9
.4
.

A
ls
o
in
cl
u
d
ed

ar
e
th
e
sc
al
ed

G
V
I
an
d
#
ch
an
g
es
;
th
es
e
ar
e
o
b
ta
in
ed

b
y
d
iv
id
in
g
ea
ch

v
al
u
e
b
y
th
e
m
ax
im

u
m

G
V
I
o
r
#
ch
an
g
es
,
re
sp
ec
ti
v
el
y

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 747

The mapping of the 22 engineering requirements to the 14 product subsystems

(see Fig. 29.5) represents a higher-level analysis of the product than the standard

engineering requirements to product components mapping procedure. This was due

to a number of reasons, including the lack of detailed information about individual

components; the sheer number of individual components due to the complexity of

the product; and the desire to conduct a more holistic engineering design analysis of

the product from a novel mechanical/industrial engineering perspective. The

subsystems-level analysis is believed to be effective in achieving this end.

The aforementioned reasons are also why the ratings assigned in the GVI matrix

(see Fig. 29.5) are relatively subjective. Information about costs, components, and

underlying technology would have allowed for more objective assignment of

ratings. This notwithstanding, the breadth of knowledge of the authors meant that

multiple perspectives, viewpoints, and pieces of knowledge were accounted for in

the GVI analysis. This is in keeping with the general procedure described by Martin

and Ishii (2002).

Despite these limitations, the generational variety index evaluation of iPhone

evolution has yielded some interesting observations. Three subsystems are

identified as having higher GVI values (�5), while five subsystems have lower

values (<5); these boundary values were chosen based on the extent of variation of

the 14 GVI values. Higher GVIs imply a greater probability of redesign over the

product’s market lifetime. Accordingly, the “processor,” “data transfer,” and “soft-

ware” subsystems are more likely to require future redesign. In contrast, the lower

GVI subsystems—“sound,” “DRAM memory,” “flash memory,” “Internet and

connectivity,” and “battery”—are more likely to remain unchanged throughout

the iPhone’s market lifetime based on the GVI analysis. These GVI predictions

are consistent with the changes observed in the iPhone design over the years.

The scaled GVI and #changes metrics included in Fig. 29.5 allow for a high-

level comparison of GVI predictions and actual changes in the design. The values of

the two metrics are similar for certain subsystems: “display,” “touch screen,” “data

transfer,” “Internet and connectivity,” “GPS,” and “outer casing.” For these

subsystems, the calculated GVI value provides an accurate assessment of the future

changes in the iPhone design. In contrast, marked divergences in the values of the

two metrics are observed with some subsystems (“sound” and “battery”), indicating

that the GVI assessment is not guaranteed to be accurate.

Since its introduction, the iPhone operating system (iOS), which is included in

the “software” subsystem in this study, has been the platform for an ever-growing

suite of Apple products. As explained by Nadadur et al. (2012), the iOS is a flexible

platform, which is able to easily adapt to changing user-, business-, and regulation-

related requirements. The lack of detailed knowledge makes it difficult to identify

the application of a similar strategy with the other high-GVI subsystems, but it is

likely that this is the case.

The iOS-based flexible platform strategy is a deviation from the guideline of

platforming the low-GVI components or subsystems and modularizing the high-

GVI components or subsystems. The success of this approach is evidenced by iOS’s

52 % worldwide market share of the mobile and tablet operating system domain

748 G. Nadadur et al.

(Netmarketshare 2012) and by the fact that the suite of Apple products served by

iOS has grown from just the iPhone and iPod Touch to the iPhone, iPod Touch,

iPad, and Apple TV (Nadadur et al. 2012). This is yet another example of the

unconventional design approach that Apple is known for.

It should be noted, however, that such unconventional processes may not be

universally applicable and could be associated with higher levels of risk. For

instance, quickly evolving technology could result in increasing levels of difficulty

in ensuring the compatibility of the different components of the product. GVI and

other similar tools could prove useful in avoiding unexpected dysfunctionalities in

the design due to mutually incompatible components.

29.4 Conclusions

There are a number of sources of limitations in this work. First, only publicly

available data from websites and related sources were utilized. Second, the study

was retrospective in nature and therefore applied already-known information about

the evolution of the iPhone product line since its introduction in early 2007. Third,

consumer research (e.g., marketing surveys, feedback datasets) were not drawn

upon in the GVI analysis. And fourth, the analysis was approached from a mechan-

ical/industrial engineering perspective, which implied a relative neglect of aspects

such as the software.

The main utility of GVI is in providing designers with a quantifiable method

to estimate the extent of future changes in the designs of products. This is useful

in decision-making concerning the incorporation of flexibility into different

components and subsystems. However, as discussed in the context of the iPhone

study, GVI is not a foolproof method of predicting changes. A number of other

methods have been proposed for the development of flexible products and

platforms; some of these studies are mentioned in the Introduction section. A

comparison of the effectiveness of these methods relative to GVI would make for

interesting future research into the flexible designs.

Acknowledgments This study is not intended as an endorsement of Apple, Inc. or any of the

company’s products. The analysis reported in this paper utilized data that were publicly available

thanks to the popularity of the iPhone product line. This research was partially funded by the

National Science Foundation under Award No. 0846373. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 749

References

Asikoglu O, Simpson TW (2010) A new approach for evaluating design dependencies in product

architectures. In: 13th AIAA/ISSMO multidisciplinary analysis and optimization conference,

No. AIAA-2010-9028

Axelsson J (2009) Evolutionary architecting of embedded automotive product lines: an industrial

case study. In: Software architecture and European conference on software architecture, IEEE/

IFIP

Bobuk A, Slingerland LA, Simpson TW, Donaldson B, Reichard K (2010) Validating the genera-

tional variety index (GVI) through product family optimization: a preliminary study. In:

Proceedings of the ASME international design engineering technical conferences and

computers and information in engineering conference. ASME International, No. DETC2010-285

Bryan A, Ko J, Hu J, Koren Y (2010) Co-evolution of product families and assembly systems.

CIRP Ann Manuf Technol 56(1):41–44

Cao G, Guo H, Zhang C, Liu H, Li Q (2010) Function evolution and forecasting for product

innovation. In: IEEE international conference on management of innovation and technology

Ferguson S, Kasprzak E, Lewis K (2009) Designing a family of reconfigurable vehicles using

multi-level multidisciplinary design optimization. Struct Multidiscip Optim 39(2):171–186

Gupta S, Okudan GE (2008) Computer-aided generation of modularised conceptual designs with

assembly and variety considerations. J Eng Des 19(6):533–551

Haolun W, Liang H, Yuyi L (2009) Theoretical system of product platform innovation and

evolution. In: 16th international conference on IEEE industrial engineering and engineering

management

iDownload (2012) The evolution of the iPhone. http://www.idownloadblog.com/2011/08/23/

iphone-evolution/

Intel (2012) Intel public roadmap for desktop, mobile, data center. http://www.intel.com/content/

www/us/en/processors/public-roadmap-article.html

Isaacson W (2011) Steve jobs. Simon & Schuster, New York, NY

iSuppli (2012) iPhone 4S shows key design and component changes. http://www.isuppli.com/

Mobile-and-Wireless-Communications/News/Pages/iPhone-4S-Shows-Key-Design-and-

Component-Changes.aspx

Keese DA, Tilstra AH, Seepersad CC, Wood KL (2007) Empirically-derived principles for

designing products with flexibility for future evolution. In: Proceedings of the ASME interna-

tional design engineering technical conferences and computers and information in engineering

conference. ASME International, No. DETC2007-35695

Kivi A, Smura T, Toyli J (2012) Technology product evolution and the diffusion of new product

features. Technol Forecast Soc Change 79(1):107–126

Ko J, Hu SJ (2009) Manufacturing system design considering stochastic product evolution and

task recurrence. ASME J Manuf Sci Eng 131(5):051012

Lewis PK, Murray VR, Mattson CA (2011) A design optimization strategy for creating devices

that traverse the Pareto frontier over time. Struct Multidiscip Optim 43(2):191–204

Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Nadadur G, Garneau CJ, de Vries C, Parkinson MB (2011) A real options-based approach to

designing for changing user populations of long-lifetime products. In: Proceedings of the

ASME international design engineering technical conferences and computers and information

in engineering conference. ASME International, No. DETC2011-48712

Nadadur G, Kim W, Thomson AR, Parkinson MB, Simpson TW (2012) Strategic product design

for multiple global markets. In: Proceedings of the ASME international design engineering

technical conferences and computers and information in engineering conference. ASME

International, No. DETC2012-70723

Netmarketshare (2012) Mobile/tablet operating system market share. http://netmarketshare.com/

750 G. Nadadur et al.

http://www.idownloadblog.com/2011/08/23/iphone-evolution/
http://www.idownloadblog.com/2011/08/23/iphone-evolution/
http://www.intel.com/content/www/us/en/processors/public-roadmap-article.html
http://www.intel.com/content/www/us/en/processors/public-roadmap-article.html
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/iPhone-4S-Shows-Key-Design-and-Component-Changes.aspx
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/iPhone-4S-Shows-Key-Design-and-Component-Changes.aspx
http://www.isuppli.com/Mobile-and-Wireless-Communications/News/Pages/iPhone-4S-Shows-Key-Design-and-Component-Changes.aspx
http://netmarketshare.com/

Orbach Y, Fruchter GE (2011) Forecasting sales and product evolution: the case of the hybrid/

electric car. Technol Forecast Soc Change 78(7):1210–1226

Rezayat M (2000) Knowledge-based product development using XML and KCs. Comput Aid Des

32(5–6):299–309

Sanderson SW, Uzumeri M (1997) Managing product families. Irwin, Chicago, IL

Simpson TW, Bobuk A, Slingerland LA, Brennan S, Logan D, Reichard K (2011) From user

requirements to commonality specifications: an integrated approach to product family design.

Res Eng Des: 1–13. doi:10.1007/s00163-011-0119-4

Suh ES, de Weck OL, Chang D (2007) Flexible product platforms: framework and case study. Res

Eng Des 18(2):67–89

Van Wie M, Stone RB, McAdams DA (2004) Sustainable design through flexible product

evolution. In: Proceedings of the ASME international mechanical engineering congress and

exposition. ASME International, No. IMECE2004-60667

Veenstra VS, Halman JI, Voordijk JT (2006) A methodology for developing product platforms in

the specific setting of the housebuilding industry. Res Eng Des 17(3):157–173

Wang T, Zhou J (2008) Strategic choices of firms in expanding overseas business—a case study of

Pfizer’s production scope evolution in China (1993–2002). Front Bus Res China 2(1):67–97

Xu Q, Ong S, Nee A (2006) Function-based design synthesis approach to design reuse. Res Eng

Des 17(1):27–44

Zhang F-y, Xu Y-s (2007) Research on technical strategy for new product development based on

TRIZ evolution theory. Int J Prod Dev 4(1–2):96–108

29 Generational Variety Index: A Retrospective Study of iPhone Evolution 751

http://dx.doi.org/10.1007/s00163-011-0119-4

Chapter 30

Designing a Lawn and Landscape Blower

Family Using Proactive Platform Design

Approach

Keith Hirshburg and Zahed Siddique

Abstract In this chapter, a Scaling, Small Product, Proactive Platform Design
Method Using Modularity (PPM) for Product Variations is used to create a product

family of lawn and landscape blowers from the conception of an idea for the family,

to the actual product variations.

30.1 Introduction

To be competitive in the current business environment, a company or engineering

firmmust be able to produce new products or designs in the market place with better

quality and greater customization than competitors (Bower and Hout 1988; Stalk

and Hout 1990). These business entities must also be able to accomplish this at a

more strenuous pace than their competitors to capture the largest market share.

Scaling, Small Product, Proactive Platform Design Method Using Modularity
(PPM) for Product Variations (Fig. 30.1) uses the concept of modularity and scaling

to assist the company to achieve higher competitive result. This chapter builds on

already presented PPM in Chap. 8.

PPM begins with the initial ideal concept, followed by market research through

direct and indirect customer interviews and also through competitor product analy-

sis to identify the customer needs, to evaluate the importance in purchasing of each

of the customer demands, to identify the competing products in the market

segments and how well the competing products fulfill the customer requirements,

and to determine what basic rules and regulations might dictate the product family.

The next step in the method is Product Family Planning, where the product family

is defined by product offering targets. These market targets include the optimal set

K. Hirshburg • Z. Siddique (*)

School of Aerospace and Mechanical Engineering, University of Oklahoma,

Norman, OK 73019, USA

e-mail: zsiddique@ou.edu

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6_30,
Springer Science+Business Media New York 2014

753

http://dx.doi.org/10.1007/978-1-4614-7937-6_8
mailto:zsiddique@ou.edu

of products of the main market segments and market niches to create the greatest

revenue from different customer basis. The step also involves planning for time to

determine when the products and their updates will be delivered to the market, to

properly fulfill the time between product family generations.

The next step in PPM is the Target Function Strategy, which maps out the

function structure of each product offerings and then constructs theoretical concepts

from individual functions. The next step, Platform Design, involves reviewing all

possible function concepts and then uses an algorithm to identify and select a

product family platform. Following the selection of the platform component, the

actual design of the platform can be driven by using mathematical optimization to

scale the component to meet the performance requirements of the different

products. The platform is then improved for manufacturing, tools, and assembly

using. Lastly, PPM uses one-to-one mapping of the non-platform components to

integrate product variability through modularity.

A family of lawn and landscape blowers will be designed, based upon a scaled

platform that is leveraged to support possible variants of hand blowers, backpack

blowers, rolling blowers, fan assemblies, and beyond. The case study is used to

demonstrate PPM, presented in Chap. 8, by creating a product line.

Since resources are not available to demonstrate the entirety of the method,

market research phase will be performed with generated data for the customer

needs, data on the competitors will be limited to the companies Stihl and Echo,

Initial Concept, Ideal, or Product

Market Research
Identify & Graph Customer Needs

Identify & Graph Competitors
Market Volume Analysis

Market Rules and Regulations

Product Family Planning
Determine optimal set of products

Future of the product family

Target Function Strategy
Creates the function structure of each market target

Find concepts for each function

Platform Design
Uses an algorithm to identify and isolate possible platform components

Team negotiation adds/removes components to platform
Mathematical models scale the platform for different products

Platform is optimized for manufacturing and assembly by the Lucas method.
Manufacturing tooling is improved by process flow

Modularity Construction
Designs each component outside of the platform on a module basis

Create Models of each component
Creates the optimal products to meet the market targets

Perform Design for Manufacturing Optimization
Design Manufacturing Tooling for each component

Manufacture and Distribute Product

Fig. 30.1 Case study

road map

754 K. Hirshburg and Z. Siddique

http://dx.doi.org/10.1007/978-1-4614-7937-6_8

market volume analysis will be generated, and searching for the rules and

regulations for the product will not be conducted. The entire product family

planning phase will be included. Target function strategy phase will include

function structures, but not concept generation for each function. Platform design

and optimization phase will include an algorithm to identify and isolate platform

components, and negotiation will not be covered since a single designer is creating

the example (Fig. 30.1). Since the product family will not exist in physical form, the

analysis for stress in the components, computations for fluid dynamics, and the

design for manufacturing tooling are not performed.

30.2 Step 1: Market Research

The first step of market research is to identify the market segments for the product

line and determine the common functions. After searching, it was identified that the

mainmarket segments to the blower family should be the handheld blower, handheld

blower/vacuum, backpack blower, and backpack blower/vacuum (Fig. 30.2).

The product family will compete within these segments with at least have one

product offered. Since the main concept of the blower family is a fan or pump

device to move air, and the primary market is the lawn and landscape community,

there are other close market segments to the blower family: push lawn vacuum,

push lawn rolling blower, debris loader, and pulled trailer debris loader. These are

close market segments, hence the team should attempt to create versions of the

product family to offer in these segments as well, but they should not have the main

emphasis. Design involving products for segments outside of the four main market

segments are not included in the case study. Products outside the market segment

are usually released after the initial product offerings. Using solely the concept of a

fan or pump device to move air, other segments can be found: AC/heater fans, home

office fans, hair dryers, car wash driers, car turbo, and compressors. These distant

market segments can be viewed as possible to reach in the product family, but most

likely reaching them will require the platform to produce lower performance. If the

platform does not retain the proper performance in the four main segments,

the distant segments should not be targeted. The market segment identification of

the four main segments, the four close segments, and the distant segments are

shown in Fig. 30.2 (the market segments have been created using ECHO,

BillyGoat, and Contenital).

After the market segments have been identified, the customer needs of each

segment are determined through direct and indirect interviewing. The direct polling

is conducted through physical interviews of the customer. The results for each

feature are averaged and displayed in Fig. 30.3. The result shows customers are

driven to the purchase of blowers by the features of air velocity, air volume, total

weight, total fuel consumption time, safety, durability, gas powered, and being a

backpack version. Figure 30.3 also shows that potential market niches may exist in

using the features of low sound, high comfort, right-handed versions, annual

30 Designing a Lawn and Landscape Blower Family 755

maintenance only, handheld, and small total volume. It can also be seen that very

little emphasis should be placed on the features: high style and aesthetics, left-hand

versions, electric versions, and small total height.

Along with the direct polling, indirect polling of the customers by e-mail was

performed. The e-mail polling results produced extremes, which identify the most

important features and the features that are the least important. The extremes with

above 80 % were features: maximum air velocity, maximum air volume, minimum

amount of weight, maximum amount of safety, maximum durability in the product,

gas-powered version, and backpack version. The extremes with below 20 % were

features: high style design, left-handed version, electric powered, minimum total

height, and minimum total volume. The features outside of the two extremes were

minimum sound, maximum fuel consumption allowance, comfort, right-handed

version, and annual maintenance. The indirect polling results are shown in

Fig. 30.3.

Fig. 30.2 Market segment identification of the blower family

756 K. Hirshburg and Z. Siddique

Superimposing the direct and indirect polling indicates maximum air velocity,

maximum air volume, total weight, safety of the device, durability of the device,

gas powered, and being a backpack version, are the required customer demands

when purchasing. Features that do not attract buyers are style of the design, left-

hand version, electric-powered version, and total height of the device. Varying

degrees of importance in the purchase of the product are the features: low sound

output, maximum fuel consumption allowance, comfort, right-handed version,

annual maintenance, handheld version, and total volume.

Market targets (Fig. 30.4) can be created using the demands found from the

direct polling, non-direct polling, and the combined polling. A product should be

offered to target each of the main market segments. Using the three most desired

features from the interviews, the four market targets must have high standards of

safety, high durability, and be gas powered. Fuel time, comfort, and volume are

more of a concern for the backpack models in the design process since the product

will be strapped to the users back.

The user will also dislike stopping to refill the gas tank, stopping to rest from

poor comfort, or losing motor function from having a model with too large of

volume. For the handheld models, total weight, a right-handed version, and the

minimum total height are the important features. These features are important,

because the total weight is held by hand instead of shoulders, the user is holding the

product with their preferred hand, and total height is minimal so the product is not

dragging across the ground. For the blower only units, the power of the blower is

related to both the volume and velocity, creating the need for them to be optimized

equally. In the blower/vacuum units, volume is the most important for performance,

since the product will need to vacuum large bunches of leaves. The order of

improvement, determined from surveys, is shown for different products in

Table 30.1.

Fig. 30.3 Combined direct and non-direct polling of the customer demands for the product family

30 Designing a Lawn and Landscape Blower Family 757

After the market targets have been decided, the competing products are

evaluated. This evaluation is defined by the inclusion of the features, the quality

of the features, how the product performs these features, and how many of these

products are purchased. The values for each feature are calculated (Eq. 8.2) and is

shown in Fig. 30.5. The feature values, closest to the customer demands, are what

Fig. 30.4 Market targets with their respective features to optimize

Table 30.1 Order of features for market target

Handheld Backpack

Order Blower Blower/vacuum Blower Blower/vacuum

1 Gas powered Gas powered Gas powered Gas powered

2 Durability Durability Durability Durability

3 Safety Safety Safety Safety

4 Volume Volume Volume Volume

5 Velocity Total weight Velocity Fuel time

6 Total weight Height Fuel time Comfort

7 Height Velocity Comfort Velocity

8 Velocity Sound Sound Sound

9 Fuel time Fuel time Volume Volume

10 Comfort Comfort Height Height

11 Annual main Annual main Annual main Annual main

12 Style Style Style Style

758 K. Hirshburg and Z. Siddique

the product family will need to outperform to sell the largest market share in the

main segments. Reviewing Fig. 30.5, the models with best performance are the

Echo hand blower, the Echo hand blower vacuum, the Echo backpack blower, and

the Stihl backpack blower vacuum.

Fulfillment of customer needs in the market is evaluated by averaging together

the competing products (Fig. 30.6). Features missing in the averaged scores are

style, left-hand version, electric-powered version, and annual maintenance only.

Comparison of the average fulfillment of customer demands by competitor’s

products and the direct polling of customer requirements shows the demands in

the market being met and the demands in the market not being met (Fig. 30.7).

Reviewing the comparison, features that are matched, meaning the customer

demands have been met, are weight, sound, time of use by fuel tank, safety, style,

gas powered, and handheld units. Since the demand for these features have been

met by the current products in the market, the team will have to outdesign the

competitors in these features to take market share away from them. The features

offered in the competing products that have greater performance than the demand

are right-hand version, total height, and total volume. These features will have less

emphasis than the other features in the design process, since these demands are over

met and outperforming them will not lead to greater sales. The features offered in

the competing products that do not meet customer demand are output air velocity,

Fig. 30.5 The competitor product analysis of the market targets

30 Designing a Lawn and Landscape Blower Family 759

output air volume, durability, left-hand version, electric-powered version, and

annual maintenance only version.

To obtain niche market share, the design of products in the product family

should contain features of left-handed version, electric-powered version, and an

annual maintenance only version. The features needed to obtain the largest amount

of market share are output air velocity, output air volume, and durability. The

product family should consist of right-handheld blower, right-handheld blower

vacuum, right backpack blower, right backpack blower vacuum, left-hand back-

pack blower vacuum, and an electric-powered right-hand backpack blower vacuum.

Fig. 30.7 Comparison of the competitors market targets versus the customer requirements

Fig. 30.6 Average fulfillment of customer demands in the market segment

760 K. Hirshburg and Z. Siddique

30.3 Step 2: Product Family Planning

To plan the product family, the product targets need quantitative metrics to compare

against the highest performance product family competitors (Table 30.2). To

produce products that acquire market volumes in each segment, the products

must outperform the competition on the features: output air velocity, output air

volume, and durability. The products must also meet performance metrics in the

other features.

To leverage the product family across the entire life span of the product genera-

tion, the product offerings must be planned and spaced out. The initial offering

includes the four main market segment products: handheld blower, handheld

blower/vacuum, and the backpack blower. After the initial product offerings, the

plan should be to offer products at different time intervals until the next generation

of product family is designed. In this product family, the life span was selected as

8 years due to the products life span of the competitors and the ability for the firm to

design and release product generations. Using the 8-year life span of the generation,

the market niches should be released to fulfill the middle time of the life span, and

the product upgrades should be released in the second half of the life span. The

product release times are shown in Fig. 30.8.

30.4 Step 3: Function Strategy

The function structure for the handheld blower uses four systems to create the

functions of the product. The “Air to/from the Engine System” controls air going

into the carburetor and the air leaving the engine. The “Engine System” controls the

engine by metering the fuel into the engine cylinders, turning the drive shaft by the

cylinder, and turning the turbine from the drive shaft. The “Engine Control Sys-

tem,” controlled by the user, is responsible for storing the gasoline for the engine,

controlling the speed of the engine, turning on and off the engine, and starting the

engine. The “Main Blower Process System” funnels air into the turbine housing,

sucks air into the turbine, pushes air out of the turbine assembly, pushes air down

the outlet tube, and pushes air out of the outlet tube. The handheld blowers’ function

structure is shown in Fig. 30.9.

The function structure for the handheld blower vacuum uses five systems to

create the functions of the product: Air to/from the Engine System, Engine System,

Engine Control System, Main Blower Process System, and Main Vacuum Process

System (Fig. 30.10). The “Main Vacuum Process System” is essentially the “Main

Blower Process System” working in reverse. The handheld blower vacuums’

function structure is shown in Fig. 30.10.

Similarly, the function structure for the backpack blower uses four systems to

create the functions of the product. The “Air to/from the Engine System” controls

air going into the carburetor and the air leaving the engine. The “Engine System”

30 Designing a Lawn and Landscape Blower Family 761

T
a
b
le

3
0
.2

Q
u
an
ti
ta
ti
v
e
m
ar
k
et

ta
rg
et
s
fo
r
th
e
p
ro
d
u
ct

fa
m
il
y

F
ea
tu
re

H
an
d
h
el
d
b
lo
w
er

H
an
d
h
el
d
b
lo
w
er

v
ac
u
u
m

B
ac
k
p
ac
k
b
lo
w
er

B
ac
k
p
ac
k
b
lo
w
er

v
ac
u
u
m

L
ef
t-
h
an
d
B
P
b
lo
w
er

v
ac
u
u
m

E
le
ct
ri
c
b
ac
k
p
ac
k

b
lo
w
/v
ac

V
el
o
ci
ty

>
1
5
5
m
p
h

>
1
5
5
m
p
h

>
2
0
5
m
p
h

>
1
7
2
m
p
h

>
1
7
2
m
p
h

>
1
7
2
m
p
h

V
o
lu
m
e

>
4
5
9
cf
m

>
4
5
3
cf
m

>
7
1
2
cf
m

>
5
1
8
cf
m

>
5
1
8
cf
m

>
5
1
8
cf
m

W
ei
g
h
t

<
9
.7

lb
s

<
1
2
.3

lb
s

<
2
1
.6

lb
s

<
2
0
.5

lb
s

<
2
0
.5

lb
s

<
2
0
.5

lb
s

S
o
u
n
d

<
6
5
d
B

<
7
0
d
B

<
7
4
d
B

<
7
3
d
B

<
7
3
d
B

n
a

F
u
el

ra
te

>
1
6
.9

o
z

>
1
6
.9

o
z

>
6
8
o
z

>
5
0
.7

o
z

>
5
0
.7

o
z

n
a

S
af
et
y

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

C
ag
ed

tu
rb
in
e,
co
v
er
ed

ex
h
au
st

S
ty
le

D
u
al

co
lo
rs
/s
ti
ck
er
s

D
u
al

co
lo
rs
/s
ti
ck
er
s

F
lo
w
in
g
li
n
es
,
co
lo
rs

F
lo
w
in
g
li
n
es
,
co
lo
rs

F
lo
w
in
g
li
n
es
,
co
lo
rs

F
lo
w
in
g
li
n
es
,
co
lo
rs

C
o
m
fo
rt

P
lu
sh

ar
m

st
ra
p

P
lu
sh

ar
m

st
ra
p

P
lu
sh

ar
m
/b
ac
k
p
ad
s

P
lu
sh

ar
m
/b
ac
k
p
ad
s

P
lu
sh

ar
m
/b
ac
k
p
ad
s

P
lu
sh

ar
m
/b
ac
k
p
ad
s

D
u
ra
b
il
it
y

M
et
al

b
o
tt
o
m

M
et
al

b
o
tt
o
m

M
et
al

ca
g
e

M
et
al

ca
g
e

M
et
al

ca
g
e

M
et
al

ca
g
e

R
t/
L
f
h
an
d

R
ig
h
t
h
an
d

R
ig
h
t
h
an
d

R
ig
h
t
h
an
d

R
ig
h
t
h
an
d

L
ef
t
h
an
d

R
ig
h
t
h
an
d

G
as
/e
le
ct
ri
c

G
as

G
as

G
as

G
as

G
as

E
le
ct
ri
c

M
ai
n
te
n
an
ce

A
n
n
u
al

A
n
n
u
al

A
n
n
u
al

A
n
n
u
al

A
n
n
u
al

A
n
n
u
al

B
p
/h
an
d

H
an
d
h
el
d

H
an
d
h
el
d

B
ac
k
p
ac
k

B
ac
k
p
ac
k

B
ac
k
p
ac
k

B
ac
k
p
ac
k

H
ei
g
h
t

<
1
8
in
.

<
1
8
in
.

<
2
0
in
.

<
2
0
in
.

<
2
0
in
.

<
2
0
in
.

V
o
lu
m
e

W
<

1
8
in
.,
L
<

1
8
in
.
W

<
1
8
in
.,
L
<

1
8
in
.
W

<
1
8
in
.,
L
<

1
0
in
.
W

<
1
8
in
.,
L
<

1
0
in
.
W

<
1
8
in
.,
L
<

1
0
in
.
W

<
1
8
in
.,
L
<

1
0
in
.

controls the engine by metering the fuel into the engine cylinders, turning the drive

shaft by the cylinder, and turning the turbine from the drive shaft. The “Engine

Control System,” controlled by the user, is responsible for storing the gasoline for

the engine, controlling the speed of the engine, turning on and off the engine, and

starting the engine. The “Main Blower Process System” funnels air into the turbine

housing, sucks air into the turbine, pushes air out of the turbine assembly, pushes air

down the outlet tube, and pushes air out of the outlet tube. The function structure for

the backpack blower vacuum (right- and left-hand) uses five systems to create the

functions of the product: Air to/from the Engine System, Engine System, Engine

Control System, Main Blower Process System, and Main Vacuum Process System.

30.5 Step 4: Platform Design

The elements of the function structure are used to create a table with the component

name, the product it is used in, the function, if it is scalable, if it is a standard or

off-the-shelf part, and if the component can be modified. When the functions from

the function structure are added to the sheet, a component is named for the function,

Hand Held
Blower

Hand Held
Blower Vacuum

Back Pack
Blower

Initial Product Offering Year One

Back Pack
Blower

Vacuum

Left Handed
Back Pack

Blower Vacuum
Electric Back
Pack Blower

Vacuum

Product Variations
Year Two

Year Three
Year Four

Upgraded
Hand Held
Blower

Upgraded Hand
Held Blower
Vacuum

Upgraded
Back Pack
Blower

Product Upgrades
Year Five

Upgraded Back
Pack Blower
Vacuum

Year Six

Upgraded Left
Handed Back Pack

Blower Vacuum

Upgraded Electric
Back Pack Blower

Vacuum

2nd Generation Blower Family Year Eight

Fig. 30.8 Product

generation planning map

30 Designing a Lawn and Landscape Blower Family 763

the function is marked if it can be scalable, the component is marked if it is an

off-the-shelf part, and the function dimensions are decided if it can be modified.

The handheld blower’s input sheet (Fig. 30.9) contained 17 functions; the handheld

blower vacuum’s contained 20 functions (Fig. 30.10); the backpack blower’s input

sheet contained 18 functions; and the backpack blower vacuum’s input sheet

contained 21 functions. The algorithm, presented in Sect. 8.3.4, is used to identify

Operator

Controller to
control engine

speed

Button to turn
on / off engine

Method to start
engine

Outside
Air

Air enters into
turbine housing

inlet

Air is sucked
into turbine

Drive shaft
turns turbine

Air is pushed
into Blower
Outlet Tube

Air is pushed
out of blower
outlet tube

Gas Engine is
on and
turning

Air is filtered
Air enters filter

box

Exhaust gas
goes to cleaner/

silencer

Exhaust gas
leaves nozzle

Engine turns
drive shaft

Turning turbine
pushes air out of
turbine housing

Fuel Stored in
Gas Tank

Air/Fuel is
metered into
the engine

Air to / from Engine System

Main Blower Process System

Engine Control System

Engine System

Air is filtered
Air enters filter

box

Exhaust gas
goes to cleaner/

silencer

Exhaust gas
leaves nozzle

Air to / from Engine System

Drive shaft
turns turbine

Gas Engine is
on and
turning

Engine turns
drive shaft

Air/Fuel is
metered into
the engine

Engine System

Controller to
control engine

speed

Button to turn
on / off engine

Method to start
engine

Fuel Stored in
Gas Tank

Engine Control System

Air enters into
turbine housing

inlet

Air is sucked
into turbine

Air is pushed
into Blower
Outlet Tube

Air is pushed
out of blower
outlet tube

Turning turbine
pushes air out of
turbine housing

Main Blower Process System

Hand Held Blower

Component
Name

Market
Target Component Function Scalable

Standard
Part / Off

Shelf
Modified /
Changed

air filter box H H B Air enters filter box yes no yes

air filter H H B air is filtered no yes no

muffler H H B exhaust gas goes to cleaner/silencer yes no yes
exhaust piping H H B exhaust gas leaves nozzle yes no yes

carburetor H H B air/fuel is metered into the engine no no yes
gas engine H H B gas engine is on and turning no yes no
drive shaft H H B drive shaft turns turbine (trans) no no yes

gas tank H H B fuel stored in gas tank yes no yes

cable throttle H H B controller to control engine speed no no yes

switch H H B button to turn on/off engine no yes no

pull cord H H B method to start engine no no yes

housing inlet H H B air enters into turn housing inlet yes no yes

turbine H H B air is sucked into turbine yes no yes

turbine housing H H B
turning turbine pushes air out of turbine

housing yes no yes

blower tube H H B air is pushed into blower outlet tube yes no yes

tube nozzle H H B air is pushed out of blower outlet tube yes no yes

handle H H B handle to hold unit no no yes

Fig. 30.9 Function structure of the handheld blower market target

764 K. Hirshburg and Z. Siddique

http://dx.doi.org/10.1007/978-1-4614-7937-6_8#Sec00087

and isolate a potential platform. Application of step one of the algorithm did not

identify any component for the platform, this is due to no functions in the

spreadsheets being described as: non-modifiable, non-off-the-shelf parts, and

were present in at least 75 % of the products. Step two of the algorithm identifies

the off-the-shelf components in at least 75 % of the products. Step two resulted in

two functions being placed in the possible platform components list shown in

Operator

Outside
Air

Air enters into
turbine housing

inlet

Air is sucked
into turbine

Drive shaft
turns turbine

forward

Air is pushed
into Blower
Outlet Tube

Air is pushed
out of blower
outlet tube

Air is filtered
Air enters filter

box

Exhaust gas
goes to cleaner/

silencer

Exhaust gas
leaves nozzle

Turning turbine
pushes air out of
turbine housing

Air to / from Engine System

Main Blower Process System

Air is filtered
Air enters filter

box

Exhaust gas
goes to cleaner/

silencer

Exhaust gas
leaves nozzle

Air to / from Engine System

Hand Held Blower Vacuum

Method to
change from

blower to vacuum

Drive shaft
turns turbine

in reverse

Main Vacuum Process

Outside
Air and
Leaves

Comp Name
Market
Target Component Function Scalable

Standard/
Off Shelf Modified

Air Filter Box H H B V Air enters filter box yes no yes
Air Filter H H B V air is filtered no yes no
Muffler H H B V exhaust gas goes to cleaner/silencer yes no yes

Exhaust Piping H H B V exhaust gas leaves nozzle yes no yes
Carburetor H H B V air/fuel is metered into the engine no no yes
Gas Engine H H B V gas engine is on and turning no yes no

Transmission H H B V transmission switches forward/reverse no no yes
Gas Tank H H B V fuel stored in gas tank yes no yes

Cable Throttle H H B V controller to control engine speed no no yes
Switch H H B V button to turn on/off engine no yes no

Pull Cord H H B V method to start engine no no yes
Inlet Cover H H B V air enters into housing for blower yes no yes

Turbine H H B V air is sucked into turbine yes no yes
Turbine Housing H H B V turning turbine pushes air out of turbine housing yes no yes

Blower Tube H H B V air is pushed into blower outlet tube yes no yes
Tube Nozzle H H B V air is pushed out of blower outlet tube yes no yes
Clutch Switch H H B V method to change from blow to vac no no yes

Air/leaves exits
the turbine

housing inlet

Air/leaves are
pushed into

turbine housing
inlet

Air/leaves are
sucked into

Blower Outlet
Tube

Air/leaves are
sucked into
the blower
outlet tube

Turning turbine
sucks air/leaves
into the turbine

housing

Air/leaves
stored in bag

Controller to
control engine

speed

Button to turn
on / off engine

Method to start
engine

Gas Engine is
on and
turning

Engine turns
drive shaft

Fuel Stored in
Gas Tank

Air/Fuel is
metered into
the engine

Gear box
creates

forward/reverse
spin

Engine Control SystemEngine System

Fig. 30.10 Function structure for the handheld blower vacuum market target

30 Designing a Lawn and Landscape Blower Family 765

Table 30.3. Step three of the algorithm determines the components of the products

that have a shared function in at least 75 % of the products (Table 30.4).

The last step in the algorithm determines the components of the platform that are

scalable, the percentage of use in the product family by the components of the

platform, and the components that need to be approved by the negotiation model

(Table 30.5). The following components were identified as scalable platform

components: air filter box, muffler, exhaust piping, gas tank, turbine, turbine

housing, blower tube, and tube nozzle. In addition, non-scalable platform

components have been identified as: cable throttle, pull cord, air filter, and on/off

switch. The non-platform components are drive shaft, housing inlet, handle, inlet

cover, transmission, back support, shoulder straps, clutch switch, storage bag, bag

clamp, gas engine, and the carburetor.

Table 30.3 The possible platform components list for step two of the platform finding algorithm

(components that are off-the-shelf parts or standard parts which are found in 75 % of the market

targets and isolates them)

Component

name

Market

target

Component

function Scalable

Std. part/

off shelf

Modified/

changed

Air filter 4/4 Air is filtered No Yes No

Switch 4/4 Button to turn

on/off engine

No Yes No

Table 30.4 Results of Step 3 of the platform component finding algorithm (components that share

a function with at least 75 % of the market targets)

Component name Market target Component function Scalable

Std. part/

off shelf

Modified/

changed

Air filter box 4/4 Air enters filter box Yes No Yes

Muffler 4/4 Exhaust gas goes tocleaner/

silencer

Yes No Yes

Exhaust piping 4/4 Exhaust gas leaves nozzle Yes No Yes

Gas tank 4/4 Fuel stored in gas tank Yes No Yes

Cable throttle 4/4 Controller to control engine

speed

No No Yes

Pull cord 4/4 Method to start engine No No Yes

Turbine 4/4 Air is sucked into turbine Yes No Yes

Turbine housing 4/4 Turning turbine pushes air

out of turbine housing

Yes No Yes

Blower tube 4/4 Air is pushed into blower

outlet tube

Yes No Yes

Tube nozzle 4/4 Air is pushed out of blower

outlet tube

Yes No Yes

Air filter 4/4 Air is filtered No Yes No

Switch 4/4 Button to turn on/off engine No Yes No

766 K. Hirshburg and Z. Siddique

The algorithm identified only permanent platform components, so there is no

need for negotiation to change the platform components from the algorithm results.

The negotiation model also needs multiple designers to implement, and this case

study only uses a single designer. The modeling and design of the components starts

Table 30.5 Final results of the platform component finding algorithm

Component

name

Market

target Component function Scalable

Std. part/

off shelf Modified

Scalable, 100 % platform components

Air filter box 4/4 Air enters filter box Yes No Yes

Muffler 4/4 Exhaust gas goes to cleaner/

silencer

Yes No Yes

Exhaust

piping

4/4 Exhaust gas leaves nozzle Yes No Yes

Gas tank 4/4 Fuel stored in gas tank Yes No Yes

Turbine 4/4 Air is sucked into turbine Yes No Yes

Turbine

housing

4/4 turning turbine pushes air out of

turbine housing

Yes No Yes

Blower tube 4/4 Air is pushed into blower outlet

tube

Yes No Yes

Tube nozzle 4/4 Air is pushed out of blower outlet

tube

Yes No Yes

Non scalable, 100 % platform components

Cable

throttle

4/4 Controller to control engine speed No No Yes

Pull cord 4/4 Method to start engine No No Yes

Air filter 4/4 Air is filtered No Yes No

Switch 4/4 Button to turn on/off engine No Yes No

Scalable, possible platform components (none)

Non scalable, possible platform components (none)

Non platform components

Drive shaft 2/4 Drive shaft turns turbine (trans) No No Yes

Housing inlet 2/4 Air enters into turn housing inlet Yes No Yes

Handle 2/4 Handle to hold unit No No Yes

Inlet cover 2/4 Air enters into housing for blower Yes No Yes

Transmission 2/4 Transmission switches forward/

reverse

No No Yes

Back support 2/4 Pad that supports the unit of back Yes No Yes

Shoulder

straps

2/4 Strap that holds the unit onto the

back

No Yes Yes

Clutch

switch

2/4 Method to change from blow to

vacuum

No No Yes

Storage bag 2/4 Air/leaves stored in bag Yes No Yes

Bag clamp 2/4 Clamps bag onto housing inlet Yes No Yes

Gas engine 1/4 Gas engine is on and turning No No No

Carburetor 1/4 Air/fuel is metered into the engine No No Yes

30 Designing a Lawn and Landscape Blower Family 767

with the most crucial platform components and works to the less crucial

components.

According to market research, the velocity and volume of air is the most

important feature, which is generated in the turbine assembly and all other

components in the product either redirect or control the air. These components

outside of the turbine assembly generate frictional losses creating a reduced

velocity and volume of the air. Since the consumer demands are the full throttle

performance, the flow of the air inside the blower can be considered as a

one-dimensional steady-state flow. The turbine and turbine assembly are modeled

to allow scaling of the diameter to create different air velocity and air volume for

the different product variants. The turbine assembly is modeled in CAD

(Fig. 30.11a) and can be scaled to the optimal values for each product.

Fig. 30.11 CAD Model of components. (a) Turbine platform components, (b) air input system,

(c) air exhaust system, (d) gas tank system, (e) engine on/off control system, (f) engine starter cord

system, (g) engine throttle control system

768 K. Hirshburg and Z. Siddique

The other scaling components in the platform are part of the air intake system, and

the exhaust system, to allow different amounts of air into the engine depending on

the engines’ needs. The air filter assembly scales vertically and horizontally to allow

for different size air filters. The air intake system (Fig. 30.11b), made up of an air

filter, filter box, and filter cover, is modeled in CAD to allow for flexible on the fly

changes. The air intake system also uses a modular connection to the carburetors by

using two ¼ in. bolts in 180� increments. The diameter of the exhaust tubing scales

larger to allow for greater exhaust flow or scales smaller to keep exhaust back

pressure to meet the needs of the different engines. The exhaust system

(Fig. 30.11c) uses a modular connection with the engine by using three ¼ in. bolts

in 90� increments. The gas tank (Fig. 30.11d) scales in horizontal and vertical

dimensions to match the scaling of the turbine assembly to offer a larger/smaller

capacity of gasoline for the larger/smaller engines when the turbine diameter is

larger/smaller.

The non-scaling platform components include engine starter system, on/off

switch, and the engine throttle control. The non-scaled platform components are

designed to fulfill their roles in the function structures. The engine starter system

starts the engine by rotating the piston in the cylinder. The engine starter system

(Fig. 30.11f) is connected onto the engine by 4 ¼ in. bolts in 90� increments. The

on/off switch is an off-the-shelf part. The switch closes, or opens, the electric circuit

powering the spark plug. The switch is shown in Fig. 30.11e. The engine throttle

control system (Fig. 30.11g) is made up of a lever that the user moves to control the

engine speed. This lever pulls a cable that is connected to the carburetor, and the

carburetor meters the air fuel mixture into the engine. The lever is mounted on a

handle that is used to hold up the handheld product versions, and the handle is used

to direct the air output tube for the backpack product versions.

At this point in the design process of the platform, FEA is used to improve and

optimize for stresses in the component during use, and CFD to validate the fluid

flow. This case study does not perform this analysis. After the optimization of the

designs for stress and fluid flow, the design is improved for manufacturing and

assembly, through the use of the Lucas method (Sect. 8.3.5). The first step is to

perform the functional analysis to determine the design efficiency [Eq. (8.3)], which

is performed by dividing the components into essential (15) and nonessential

components (15), which gives design efficiency of 50 % (Table 30.6). The design

efficiency of 50 % is lower than the desired 60 %, but still reasonable. The

functional analysis efficiency result can be improved by combining components

or by using a smaller number of fasteners.

The feeding analysis is used to examine the handling of the components when

assembling them to the platform. The Lucas method provides charts for the handling

scores to be computed based on the size and weight of the component, the handling

difficulties of the component, the end-to-end symmetry of the component, and the

rotational symmetry of the component. The data for the feeding analysis of platform

components is shown in Table 30.6. The calculated feeding ratio for the product

platform is 2.35 and the desired feeding ratio is under 2.5.

30 Designing a Lawn and Landscape Blower Family 769

http://dx.doi.org/10.1007/978-1-4614-7937-6_8#Sec00088

T
a
b
le

3
0
.6

F
ee
d
in
g
an
d
fi
tt
in
g
an
al
y
si
s
d
at
a
fo
r
th
e
p
la
tf
o
rm

co
m
p
o
n
en
ts

F
ee
d
in
g
an
al
y
si
s

F
it
ti
n
g
an
al
y
si
s
d
at
a

C
o
m
p
o
n
en
t
n
am

e
E
ss
en
ti
al

N
o
n
-

es
se
n
ti
al

S
iz
e/

w
ei
g
h
t

H
an
d
li
n
g

d
if
fi
cu
lt
ie
s

O
ri
en
ta
ti
o
n

o
f
p
ar
t

R
o
ta
ti
o
n
al

o
ri
en
ta
ti
o
n

P
la
ci
n
g
/

fa
st
en
in
g

D
ir
ec
ti
o
n

In
se
rt
io
n

A
cc
es
s/

v
is
io
n

A
li
g
n
m
en
t

F
o
rc
e

T
u
rb
in
e

1
0

1
0

0
0

2
0

0
0

0
0

T
u
rb
in
e
h
o
u
se

to
p

1
0

1
0

0
.1

0
.2

1
0

0
0

0
0

T
u
rb
in
e
h
o
u
se

b
o
tt
o
m

1
0

1
0

0
.1

0
.2

1
0

1
.2

0
0

0

T
u
rb
in
e
h
o
u
se

fa
st
en
er
s

0
4

4
0

0
.4

0
1
6

0
0

0
0

0

A
ir
fi
lt
er

b
o
tt
o
m

1
0

1
0

0
.1

0
.2

2
0
.1

0
0

0
.7

0

A
ir
fi
lt
er

to
p

0
1

1
0

0
.1

0
.2

2
.3

0
.1

0
0

0
0

A
ir
fi
lt
er

fa
st
en
er
s

0
2

2
0

0
.2

0
8

0
.4

0
0

0
0

A
ir
fi
lt
er

1
0

1
0

0
0

1
0
.1

0
0

0
0

E
x
h
au
st

1
0

1
0

0
.1

0
.2

2
0
.1

0
0

0
.7

0

E
x
h
au
st
m
u
ffl
er

1
0

1
0

0
.1

0
.2

2
.3

0
.1

0
0

0
0
.6

G
as

ta
n
k

1
0

1
0

0
.1

0
.2

2
0

0
0

0
.7

0

G
as

ta
n
k
li
d

1
0

1
0

0
0

4
0
.1

0
0

0
0

G
as

ta
n
k
fa
st
en
rs

0
4

4
0

0
.4

0
1
6

0
0

0
0

0

S
ta
rt
er

h
an
d
le

1
0

1
0

0
.1

0
.2

2
0

0
0

0
0

S
ta
rt
er

as
sy

to
p

1
0

1
0

0
.1

0
.2

2
0

0
0

0
0

S
ta
rt
er

as
sy

b
o
tt
o
m

1
0

1
0

0
.1

0
1

0
0

0
0
.7

0

S
ta
rt
er

co
rd

1
0

1
0
.6

0
0

2
0

0
0

0
0
.6

S
ta
rt
er

as
sy

fa
st
en
rs

0
4

4
0

0
.4

0
1
6

0
0

0
0

0

T
h
ro
tt
le

h
an
d
le

1
0

1
0

0
.1

0
.2

2
0

0
0

0
0

T
h
ro
tt
le

le
v
er

1
0

1
0

0
0
.2

2
.3

0
0

0
0

0
.6

S
u
m
s

1
5

1
5

3
0

0
.6

2
.5

2
.2

8
6
.9

1
1
.2

0
2
.8

1
.8

T
o
ta
l
in
d
ex

3
5
.3

8
9
.1

F
ee
d
in
g
ra
ti
o

2
.3
5

F
it
ti
n
g
ra
ti
o

5
.9
4

770 K. Hirshburg and Z. Siddique

The fitting analysis examines the ability for the components to be inserted into

the platform. The fitting analysis charts, Lucas Method, examine the part placing

and fastening, process direction, insertion, access and vision, alignment, and force.

The data for the fitting analysis of the platform components is shown in Table 30.6.

The fitting ratio of the platform products was calculated at a ratio of 5.94 which

is significantly over the 2.5 goal ratio. With a fitting ratio of more than double the

goal, the platform will undergo significant redesigns to improve for assembly.

The platform is redesigned using a smaller number of fasteners, a greater number

of platform components will be assemble with snaps, and each component will self-

hold on to the assembly during insertion.

The last step in the Lucas method is the manufacturing analysis to evaluate

complexity of the components. The manufacturing analysis’ cost index is calcu-

lated by Eq. (8.6). The data for the manufacturing analysis of the platform

components are shown in Table 30.7.

The manufacturing analysis is used to determine which components should be

redesigned to lower the complexity. The components that have unusually high

index, as in the turbine and exhaust, should be redesigned to lower the production

cost. The manufacturing tooling design for the platform should also be optimized to

allow efficient manufacturing of the platform components. Due to the product

family not being created, the manufacturing tooling optimization is not conducted,

but information of optimizing the manufacturing tool is explained in Sect. 8.3.4.

The nonphysical platform for the product family is the design of the modular

connections in the products. The connections use one to four ¼ in. hex bolts in

90� increments. The nonphysical platform assists in the design of the connections

for components and allows for more component variation to be interchanged in the

products.

30.6 Step 5: Modularity Construction

The platform components need to be designed, optimized, and be able to perform to

the four market targets (Sect. 30.2) by scaling. To foster modularity in the

non-platform components, all of components are designed to be removed and

interchanged with another component, and still have the product work correctly.

Using a modular architecture, all of the non-platform components must connect to

the product in a one to one manner. In addition, all component connections are

made by one to four ¼ in. bolts set at 90� increments.

The design requirements of the back pad for the backpack version are to mate to

the turbine assembly, to support and comfort the users back, to be a connection

point for the straps, and to create a sturdy structure for the product. The back pad

will be included in the backpack blower, backpack blower vacuum, left-handed

backpack blower vacuum, and the electric-powered backpack blower vacuum.

Using these constraints, the back pads were designed and are shown in

Fig. 30.12a. The design requirements for the handle, for the handheld versions,

30 Designing a Lawn and Landscape Blower Family 771

http://dx.doi.org/10.1007/978-1-4614-7937-6_8#Sec00087

T
a
b
le

3
0
.7

M
an
u
fa
ct
u
ri
n
g
an
al
y
si
s

C
o
m
p
o
n
en
t
n
am

e
C
o
m
p
le
x
it
y

M
at
er
ia
l
fa
ct
o
r

M
in
im

u
m

P
ro
ce
ss
in
g

T
o
le
ra
n
ce
/fi
n
is
h

V
o
lu
m
e

M
at
er
ia
l
co
st

W
as
te

In
d
ex

T
u
rb
in
e

6
.5

1
.2

1
6
.2

1
.2

1
0
.0
0
3
4
1

1
.4

5
8
.0
4

T
u
rb
in
e
h
o
u
si
n
g
to
p

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

T
u
rb
in
e
h
o
u
si
n
g
b
o
tt
o
m

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

T
u
rb
in
e
h
o
u
si
n
g
fa
st
en
er
s

2
1
.2

1
2
.4
7

1
.1

1
0
.0
0
0
6
8

2
6
.5
2

A
ir
fi
lt
er

b
o
tt
o
m

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

A
ir
fi
lt
er

to
p

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

A
ir
fi
lt
er

fa
st
en
er
s

2
1
.2

1
2
.4
7

1
.1

1
0
.0
0
0
6
8

2
6
.5
2

A
ir
fi
lt
er

3
1

1
1
1

1
1

0
.0
0
0
5
8

1
.1

3
3
.0
0

E
x
h
au
st

6
.1

1
.5

1
5
.7

1
.2

1
0
.0
0
0
6
8

1
.4

6
2
.5
9

E
x
h
au
st
m
u
ffl
er

2
.5

1
.5

1
5
.7

1
.2

1
0
.0
0
0
6
8

1
.4

2
5
.6
5

G
as

ta
n
k

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

G
as

ta
n
k
li
d

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

G
as

ta
n
k
fa
st
en
er
s

2
1
.2

1
2
.4
7

1
.1

1
0
.0
0
0
6
8

2
6
.5
2

S
ta
rt
er

h
an
d
le

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

S
ta
rt
er

as
se
m
b
ly

to
p

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

S
ta
rt
er

as
se
m
b
ly

b
o
tt
o
m

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

S
ta
rt
er

co
rd

0
1

1
5

1
1

0
.0
0
0
3
5

1
0
.0
0
0
4

S
ta
rt
er

as
se
m
b
ly

fa
st
en
er
s

2
1
.2

1
2
.4
7

1
.1

1
0
.0
0
0
6
8

2
6
.5
2

T
h
ro
tt
le

h
an
d
le

1
.2

1
1

1
1

1
1

0
.0
0
1
0
7

1
.1

1
3
.2
0

T
h
ro
tt
le

le
v
er

1
.2

1
1

6
.2

1
1

0
.0
0
1
0
7

1
.1

7
.4
4

772 K. Hirshburg and Z. Siddique

Fig. 30.12 CAD models of variety modules. (a) Backpack pad, (b) handheld versions handle,

(c) blower version’s inlet cover, (d) shoulder strap used in the backpack products, (e) bash cage for

backpack models, (f) bottom guard for the handheld versions, (g) bendable tubing for backpack

versions, (h) drive shaft for the blower only models, (i) storage bag lock for the vacuum models,

(j) vacuum outlet for the vacuum models, (k) small gas engine used in the models

30 Designing a Lawn and Landscape Blower Family 773

are to mate to the turbine assembly, house the on/off switch, house the throttle

system, be right handed, and hold the entire weight of the product. The handle will

be used in the handheld blower and the handheld blower vacuum model. Using

these constraints, the handle was designed and is shown in Fig. 30.12b. The design

of the inlet cover for the blower only version requirements is to keep the user from

getting hurt and to allow air into the turbine housing inlet. The inlet cover will be

used in the handheld blower and in the backpack blower models. Using these

constraints, the inlet cover was designed and is shown in Fig. 30.12c. The design

of the shoulder straps for the backpack version requirements is to support the weight

of the product on the users back comfortably. The shoulder straps (Fig. 30.12d)

were designed for use with the backpack blower, left-handed backpack blower

vacuum, electric-powered backpack blower vacuum and the backpack blower

vacuum models. The design of the bash cage for the backpack versions’

requirements is to protect the unit from being damaged in a drop and to keep the

unit straight up when set down. The bash cage (Fig. 30.12e) will be used in

the backpack blower and in the backpack blower vacuum models. The design of

the bottom guard for the handheld only version requirements is to protect the unit

from being damaged in a drop, to keep the unit straight up when set down, and to

keep the total height of the unit below 18 in. The bottom guard will be used in the

handheld blower and in the handheld blower vacuum models (Fig. 30.12f).

The design of the bendable tubing for the backpack version requirements is to

allow for the user to manage the direction of the blower tube. The bendable tubing

will be used in the backpack blower and in the backpack blower vacuum models

(Fig. 30.12g). The design of the drive shaft for the blower only version

requirements is to keep the turning of the engine mated with the turbine and also

to be housed in the same place as the transmission. The drive shaft will be used in

the handheld blower and in the backpack blower models(Fig. 30.12h). The design

of the storage bag lock for the vacuum version requirements is to keep the user from

getting hurt and to allow quick change to storing the vacuumed material. The

storage bag lock will be used in the handheld blower vacuum and in the backpack

blower vacuum models (Fig. 30.12i). The design of the vacuum outlet for the

vacuum version requirements is to keep the user from getting hurt and to allow

air to leave the turbine housing and be collected in a bag. The vacuum outlet will be

used in the handheld blower vacuum and in the backpack blower vacuum models

(Fig. 30.12j). The design of the engine for the units is to keep provide the unit with

power to meet its performance and to fit in the required space allocation. The engine

will be used in all models (Fig. 30.12k).

After the design and modeling of the components, the CAD model for

the varieties were assembled: handheld blower (Fig. 30.13a), handheld blower

vacuum (Fig. 30.13b), backpack blower (Fig. 30.13c), and backpack blower vac-

uum (Fig. 30.13d).

774 K. Hirshburg and Z. Siddique

30.7 Summary

The case study provides an example of using PPM (Chap. 8) to product family

design. Although not all aspects of PPM were presented in the case study, the main

concepts were discussed and demonstrated. This chapter began with defining the

concept of the landscaping blower vacuum family to be designed. The customer

demands were determined through direct and indirect interviewing, and the com-

peting products from the Stihl and Echo companies. The product family was

planned with offering four main market segment products and two niche products.

Function structures for the six products in the product family were then created.

Followed by modeling of the scaling platform components with the ability to

accommodate the changes to the dimensions, the non-scaled platform components

were also designed and modeled. Manufacturing and assembly improvements using

the Lucas method was presented. The non-platform components are designed and

modeled using modular architecture to provide the varieties using the platform.

The PPM design process for a product family focuses on multiple customer

segments instead of one segment as normally found in a single product design

process. Unlike an individual product design process and its homogeneous market

segment, the case study demonstrates the use of four market segments to design the

product family. When designing a product family, the design process needs to

include plans for release dates for the product variants. In the case study, the plan

includes the market release dates for initial four product offering, the two product

niches and the upgrades to the models. In product family, economies of scale are

Fig. 30.13 CAD models of products in the family. (a) Handheld blower, (b) handheld blower

vacuum, (c) backpack blower, (d) backpack blower vacuum

30 Designing a Lawn and Landscape Blower Family 775

http://dx.doi.org/10.1007/978-1-4614-7937-6_8

achieved through designing components to be leveraged across the family, known

as a platform. The case study shows the use of an algorithm to identify and isolate

components to select the platform. In product family, design components need is

designed to be interchangeable to allow for product variants. In PPM, product

variation is accomplished by modular architecture and customization of the variants

to the different market segments or to the market niches within the main segments.

PPM is used to design modular architecture and related connections for the lawn

and landscape blower family.

References

Bower JL, Hout T (1988) Fast cycle capability for competitive power. Harvard Bus Rev

66:110–118

Stalk GJ, Hout T (1990) Competing against time. The Free Press, New York, NY

776 K. Hirshburg and Z. Siddique

Epilogue

Product Family and Product Platform Design:

Looking Forward

Timothy W. Simpson, Roger J. Jiao, Zahed Siddique,

and Katja Hölttä-Otto

The 30 chapters included in this book capture many of the recent advances in

product family design and product platform development and encompass a broad

scope of product fulfillment. Owing to the flurry of research activities, this field has

matured rapidly in the past decade (Simpson et al. 2005; Jiao et al. 2007), and

numerous industrial applications have involved product family and platform design

(Simpson et al. 2006). These advances are motivating continued and renewed

interests in design methods and tools to support the development of a product

platform and the corresponding product family. While the chapters reflect the

common themes and key developments in product family and platform design, it

is important to achieve system-wide solutions for industries to deploy platform

strategies. For future research, the following areas are identified as promising

opportunities to advance the field.

T.W. Simpson *
Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA

Industrial and Manufacturing Engineering, Penn State University, University Park,

PA 16802, USA

email: tws8@psu.edu

R.J. Jiao

Georgia Institute of Technology, Atlanta, GA, USA

Z. Siddique

The University of Oklahoma, Norman, Oklahoma

K. Hölttä-Otto

Engineering Product Development, Singapore University of Technology

and Design, Singapore 138682 Singapore

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6,
Springer Science+Business Media New York 2014

777

Customer Integration and Marketing Interaction
with Product Family Design

The driving force behind product family and platform design is the enterprise’s

positioning of customers at the center of value creation and involving customers into

the product fulfillment process. Of primary importance in product families is the

interaction with customers and marketing. On the technical side, designers have

always assumed that customers’ satisfactionwith the designed product is sufficiently

high as long as the product meets the prescribed technical specifications; however,

what customers appreciate is not the enhancement of the solution capability but the

functionality of the product. This means that the traditional dimensions of customer

satisfaction may deserve scrutiny, for example, identifying product characteristics

that cause different degrees of satisfaction among customers; understanding the

interrelation between the buying process and product satisfaction; determining

the optimal amount of customization and customer integration; explaining the key

factors regarding the value perception of customers; and justifying an appropriate

number of choices from the customers’ and marketing perspective.

Equally important are customers’ decision-making processes when interacting

with product families and in turn developing proper fulfillment capabilities. Hence,

it is important to support decisions of customers at the end, which coincides with

consumer behaviors in business systems based on customer involvement in the

product customization process. While most product family based customization

approaches implemented in practice are based on offering a large variety of choices,

the perception of choice and the joy or burden of configuration experienced by

customers are not well understood (Chen et al. 2013). Many questions are pending.

For example, what are the incentives for integrating customers into value creation?

What factors drive customers to interact with a configurator? How many variants

should be explored and offered before making a final decision? Are there any

specific patterns that customers follow when interacting with a product family

design system? And how do different levels of the decoupling point (i.e., where

the customer is integrated into value creation) influence customer integration and

how does this affect the performance of a product customization system? Towards

this end, product family and platform development needs to be incorporated with

more marketing-engineering decisions (Michalek et al. 2011; Williams et al. 2011)

as well as customer perceptions and behavioral economies (Camerer et al. 2003;

Koop and Johnson 2012).

In order to develop successful product families, companies must listen intently

and identify the customer needs and expectations of each market segment and price/

performance tier. In looking at this competitive landscape, each market niche needs

to consider (Gordon 2004): What is the significance of this segment? What are the

key products? What are their volumes, revenue, and profits? What is the outlook

for the next 5 years? What does the company have to do to enter, sustain, and grow

in the segment? The company needs to develop a comprehensive view of potential

customers to understand their needs, requirements, and usage patterns. This voice-

778 Epilogue

of-the-customer (VOC) approach has been effective in helping guide the product

specifications and features of new product platforms. Moreover, it is becoming

more widely accepted that product family design approaches must be analytical and

quantitative, that is, model based. One approach is to design product platforms for

robustness, i.e., insensitive to variations (Simpson et al. 2006). It has been

suggested that this can be best accomplished by using hierarchical and modular

product architectures with appropriate interfaces to enable sensitivity analysis, error

tracking, statistical analysis of uncertainties and their propagation, and cascading of

requirements and specifications that enable both subcontractor flexibility and

accountability (Otto 2005; Kokkolaras et al. 2006). It is interesting to observe

that hierarchical frameworks are suggested for both traditional (physical product

in engineering) and “nontraditional” applications (e.g., software engineering in

Chap. 26).

Corporate-Level Product Platform Support

Platforms are related to the product architecture, supply chain, manufacturing,

design reuse, etc. The platform strategy should be considered not only as a part of

a product strategy but also as a corporate strategy (see Chap. 2 for more details).

Platform design can be the tool to use to achieve diverse goals that align with the

company strategy. The challenge is how to consider the full strategy in the devel-

opment, i.e., how to take into account the multiple demands of the entire strategy

while designing the platform.

In order to implement a broad and effective platform strategy, substantial

management involvement is needed. Effective platform design requires a truly

company-wide effort. A single platform should carry over through multiple product

generations, but how many and how often should a single platform or the entire

platform strategy be updated? Should a platform be adapted to changes when needed,

or does that make the platform just a regular component that is redesigned as needed?

Some researchers have addressed generational issues (Martin and Ishii 2002;

Seepersad et al. 2002; and see examples in Chap. 29), but considerably more work

is needed. The discipline of platform development represents a rich area for further

research at the intersection of organizational behavior and engineering design.

While technologies such as Enterprise Resource Planning (ERP) and Product

Data Management (PDM) have made inroads to supporting product development,

there are currently few tools available to facilitate the sharing of knowledge

directed to product platforms (Byron and Shooter 2005; Shooter et al. 2005).

Opportunities abound for enhanced techniques for effectively capturing, storing,

retrieving, and delivering information in support of product platform strategies.

There is a need to explore how documents can become primary vehicles for

manipulating an information model in support of platforms, implying the broader

opportunities for knowledge management to support platforms. It is important

for an organization to align with and sustain the platform strategy (Devendorf and

Epilogue 779

http://dx.doi.org/10.1007/978-1-4614-7937-6_26
http://dx.doi.org/10.1007/978-1-4614-7937-6_2
http://dx.doi.org/10.1007/978-1-4614-7937-6_29

Lewis 2011). The challenge is how to get support and involvement from the entire

organization to this major change. There are clearly ample opportunities for

research into organizations, operations, and human factors to support product

platform strategies.

Although the basic principles of product family design are understood and

well documented in the literature, quite a few fundamental issues require further

examination. Some pending issues include, for example, the difference of

customer-perceived variety from technical variety; the optimal degree of product

differentiation; the mechanisms of interrelation between modularity and common-

ality; the implications of adaptability, flexibility, reusability, and customizability;

the product family configuration models and decision support; and the coherence

among the product architecture, family, and platform. Further issues may consider,

for instance, to what extent a product family architecture and platform can best

represent the capability of an enterprise? How can product families be matched

with an existing set of resources and enterprise capabilities? How can various

players (customers, designers, suppliers, production engineers, etc.) communicate

well within the same platform of product family design? How to evolve product

platforms and architectures in accordance with changes in customers’ requirements,

product technologies, and enterprise capabilities? How to coordinate basic product

designs with variant design of the configuration process? Last but not least, what are

the key factors that contribute to design-by-customer with the support of product

families and e-commerce technologies?

Fig. A.1 Extended platforms for comprehensive product families. Adapted from Jiao and

Helander (2006)

780 Epilogue

Extended Platforms for Comprehensive Product Families

Product family design and development enhances profitability through a synergy of

increased customer-perceived value and cost reduction in design, manufacturing,

and the supply chain (see Chap. 23 for more examples of the latter). As discussed in

Chap. 12, a product family should ideally be built on sharing a multidimensional

core of assets such as standardized components, manufacturing, supply and distri-

bution processes, customer segmentation, and brand positioning. To support coor-

dination of the demand and supply chains with product families, it is necessary to

extend platform thinking to the entire continuum of product fulfillment, including

customer platforms, brand platforms, product platforms, process platforms, and

logistics platforms, as illustrated in Fig. A.1. Greater complexity must be introduced

to product family design decisions when considering more decision variables or

design parameters pertinent to the coordination across the product, manufacturing

process, and supply chain domains (Rungtusanatham and Forza 2005).

It is also important to incorporate the pervasive connectivity of the Internet to

coordinate the participation of all parties including customers, suppliers, service

providers, and many others. While the Internet facilitates a company’s communi-

cation with its customers to configure its products and even offer online

transactions, the manufacturers must implement such Web-based solutions to

allow them to interactively communicate information related to product design,

development, manufacturing, and logistics within their own infrastructures in a

coherent manner. The ultimate goal is to achieve a virtual enterprise that enables

digital product customization over the Internet through coherently integrating

manufacturing production automation with supply chain management and sales-

service support into a collaborative Web of interactive commerce.

The premise of product family design and platform-based product development

relies on the belief that flexible manufacturing systems, along with scalable and

modular product structures, can significantly reduce the fixed cost in comparison

with the variable cost, enabling variety to be provided without incurring significant

cost increases. Nonetheless, flexible manufacturing and the corresponding planning

systems are necessary but insufficient for successful implementation of product

families. These systems have to be supplemented by information technologies

capable of handling the information flows and transaction costs involved in the

fulfillment of product families. The advent of pervasive connectivity by the Internet

provides the necessary and affordable connections among all parties in a product

family-based customization system. As a result, the successful implementation of

product families depends on the extension of concurrent engineering beyond the

traditional boundary of design and manufacturing to include customer interaction,

marketing, service, and recovery. It has been suggested that concurrent enterprising

is very much in line with the idea of the real-time economy where the customers are

central to the value creation. More research efforts are expected for building up

rigorous frameworks of reconfigurable processes and process platforms, integrated

information management for product and process families, coordination of product

and process variety, etc.

Epilogue 781

http://dx.doi.org/10.1007/978-1-4614-7937-6_23
http://dx.doi.org/10.1007/978-1-4614-7937-6_12

Another important aspect of extended product platforms is for the enterprise to

create capabilities with dynamic stability that enable the firm to adapt, integrate,

and reconfigure the manufacturing skills and competences so as to react more

sufficiently to new customers’ requirements or to adapt to a changing business

environment. Substantial research is needed to transfer the tools and principles from

the design of this area to an enterprise that is no longer based on the manufacturing

of products but on interactions with each individual customer through combinations

of product-, software-, and/or service-oriented exchanges. It is necessary to estab-

lish methodologies for describing capabilities and sharing them in an extended

value chain network. For example, how can modular process models be created and

configured in order to integrate the capabilities of different firms in the fulfillment

process of a specific customer order? The idea of interorganizational cooperation

and virtual enterprises has to be developed much further. The benefits of integrating

suppliers into customized manufacturing and capability development are well

described in theory, but not well implemented in practice. Further research is

needed to establish scalable and transferable coordination schemes in the logistics

domain as well. Even though the trade-off of delayed satisfaction and increase in

volume efficiency is obvious from the manufacturer perspective, it may not be the

case for customers. This leads to the justification of the congruence of customer

specifications and manufacturing capabilities, for example, to explain how major

ERP suites (e.g., SAP, Baan, Edwards, etc.) affect operational performances when

implementing product families.

Financial Analysis of Product Platforms and Economics
of Product Family Design

Appropriate planning and architecture configuration for product family development

requires estimating expected financial benefits both in terms of savings due to

commonality(manufacturing, inventory, training, maintenance) and revenues due

to successful product performance in the market (see examples in Chaps. 2 and 19).

With only a few exceptions, most existing methodologies for product family design

and development lack a rigorous cost-benefit analysis: cost models and data are

either not available or proprietary, while expected product performance and revenues

are estimated using elementary net present value methods. Most methodologies are

based on the implicit assumption that maximized commonality is equivalent

to maximized cost benefits. Even when cost models are included, they are used to

quantify cost savings and to translate commonality to monetary units. Therefore,

product commonality and differentiation is decided upon functional performance

penalty (relative to products that do not share common parts or manufacturing

processes) considerations without taking into account losses or profits due to market

performance. Attempts to quantify the market impact of commonality in terms of

demand and revenue effects and to “close the loop” with the manufacturing savings

782 Epilogue

http://dx.doi.org/10.1007/978-1-4614-7937-6_2
http://dx.doi.org/10.1007/978-1-4614-7937-6_19

(both fixed and variable costs) achieved through commonality are beingmade in both

industry and academia. It is important to develop an end-to-end product modeling

framework that maps key platform commonality decisions through both the product

architecture to engineering performance and to product value-market revenue path

and the product architecture to manufacturing cost and to investment finance path.

While the general causal relationships between key quantities such as

commonality, product performance, market demand, revenue, and manufacturing

costs are generally well understood, their detailed quantitative modeling remains

elusive. The main reason is that as models of product performance, market demand,

and manufacturing costs are concatenated, so too are the modeling errors and

uncertainties inherent in them. To make matters worse, these errors are not typically

additive but multiplicative. It is thus imperative to develop credible interdisciplin-

ary product family development frameworks. Along with these, formal methods of

model validation and verification against engineering, market, and cost data are

needed. While the engineering part of the framework already exists and/or may not

be the hardest one to achieve, the rest, such as integrated financial planning, is a

challenge per se. As in single product development, in platform development

too, the profits from the design take years to realize. The true success of a design

can be objectively judged only at the end of the product’s lifecycle. In platform

development, this problem is even more pronounced as a platform is designed to

last for several product generations. The question becomes how to evaluate the

“goodness” of a platform sooner, rather during the development process already.

Product family design and development is indeed associated with new cost and

profit structures that can entail “economies of scale and scope.” Current research on

the economic and performance evaluation of product families is dominated by

empirical studies, ad hoc samples, or broad approaches based on cost accounting.

Traditional cost accounting by allocating fixed costs and variable costs across

multiple products may produce distorted cost-carrying figures due to possible

sunk costs associated with investment into product and process platforms (Jiao

and Zhang 2005). It is quite common in product family fulfillment that design and

manufacturing admit resources, and thus the related costs, to be shared among

multiple products in a reconfigurable fashion, as well as per-product fixed costs

(Moore et al. 1999). Yano and Dobson (1998) observe a number of industrial

settings, where a wide range of products are produced with very little incremental

costs per se, or very high development costs are shared across broad product

families, or fixed costs and variable costs change dramatically with product variety.

They point out that “the accounting systems, whether traditional or activity based,

do not support the separation of various cost elements.” Safizadeh et al. (2000)

derive similar results from an empirical study of 142 manufacturing plants: plants

that provide a high degree of customization incur high-cost structures; however,

when controlling for production processes, the trade-off disappears. This means

once a company has defined its product range along with an appropriate production

process, product family-based customization that falls within the range offered does

not cost any extra.

Epilogue 783

The economic justification of product families requires the identification of

proper measures and performance indicators to characterize different outcomes of

a product customization system. This task is imperative because the current

accounting systems are not designed for assessing the true economic benefits

from the total value chain point of view (Cameron 2011). Even if the focus

is shifted from cost control to value creation, existing accounting and control

systems are mostly dominated by the practice of product costing. Savings and

additional costs resulting from different degrees of interaction with the customers

are not covered by most industrial accounting systems. Activity-based costing and

the balanced score card approaches may provide initial solutions; however,

approved ratios for calculating the value of customer relationships are still missing

nor are parameters for evaluating the extent of the market research information

gained by aggregated customer knowledge. Moreover, the value contribution of

product families should be evaluated from the customers’ perspective (see also

Chap. 7). There is rarely any attempt to explicitly measure the need for individuali-

zation or to quantify the value of product families from a customers’ perspective.

The issue of justifying the economic value of introducing individualized products is

of vital importance. Only if the increment in the customer-perceived value or utility

suffices enough can product customization become a mass phenomenon. Recent

study on the valuation of flexibility has suggested that the real option approach

surmounts traditional discounted cash flow (DCF) analysis-based methods that tend

to ignore the upside potentials from management flexibility (Kalligeros 2006; de

Neufville and Scholtes 2011; Jiao 2012).

Furthermore, the risks related to product family development need to be

addressed properly. Robertson and Ulrich (1998) observe the organizational risks

related to platform development. Developing product platforms in most cases

requires more investments and development time than developing a single product,

which may delay the time to market and affect the return on investment time. Meyer

and Dalal (2001) point out such risks, namely, that a weak common platform may

undermine the competitiveness of the entire product line, and therefore a broad

array of products may “feel the pain.” In addition to fixed investments, developing

platforms may result in over design of low-end product variants in order to enable

reuse with high-end products (Krishnan and Gupta 2001). Henderson and Clark

(1990) identify one potential negative effect of modular product architectures that

originates from the risk of creating barriers to architectural innovation. Organiza-

tional forces may also hinder the ability to balance commonality and distinctiveness

(Halman et al. 2003).

Open Architecture Product and Service Platform Design

Nowadays, there are so many new products being introduced to the market that they

are no longer islands of their own to fulfill self-contained functionality. A modern

product like an iPhone or iPad works not only because of its inherent industrial

784 Epilogue

http://dx.doi.org/10.1007/978-1-4614-7937-6_7

and interface design but also because of the ecosystem in which it “lives”

(Cho et al. 2010). Likewise, the recently launched MyFord Touch exemplifies a

product-service ecosystem that has been designed to enable personalized in-car

experience in the form of human interactions with the entire interior environment

(Ford 2011). Along the same lines, a Xerox customer can choose to either purchase

a printer with potentially a service plan, or simply a printing service, where the

printer is located at the customer’s facility, but not owned by the customer anymore.

These are all examples of a more holistic view of filling the customer need. As

customers become more connected, products and services are increasingly knitted

into a larger ecosystem of “touchpoints.” The physical product is not alone, whilst

other factors can be conducive to the users’ emotional and hedonic experience, and

in turn contributes to the value added (Gould 2010).

Services’ contribution to the world’s GDP has grown from 25 % in 1992 to 63 %

in 2010 (World Bank 2012) while the percent contribution of manufacturing is

declining. As a result, more and more companies from Rolls Royce to ZipCar are

realizing that in order to increase revenues and profit, a new business model is

required. This is resulting in blurred boundaries between products, services, and

networks. It is often user experience that makes product-service ecosystems appeal-

ing in many industries (Rae 2006). We have been convinced by the trend of product

value fulfillment progressing from traditional function-focused product and service

fulfillment to nowadays customization and personalization (Jiao 2011). Pine and

Gilmore (1999) have envisioned an “experience economy” underlying this para-

digm shift, which has indeed come to fruition in many industries. Product and

service design traditionally copes with physical products and emphasizes mainly

functional requirements, yet with limited consideration of customers’ affective and

cognitive needs or roles in decision making. It is therefore imperative for product

and service design to bring in the human and system interaction dimensions

explicitly (Papalambros 2010; Saunders et al. 2011). In particular, integrated design

of product and service platforms suggests itself to be of paramount importance for

achieving open architecture systems that enable open innovation, open design, and

open manufacturing throughout the product realization process, so as to cater to

business success in user experience.

Tremendous research opportunities are geared towards product and service

family planning and open architecture platform development, and existing work

has only “scratched the surface” (e.g., Moon et al. 2010). Mapping between the

customer and functional domains constitutes the front-end issues associated with

customization and personalization. Such a planning task usually starts with existing

product portfolio and conforms to those common practices of order configuration

and sales force automation. The exploration of “soft” user requirements involves

intensive interactions with customers. Customer co-creation is necessary to elicit

latent customer needs. User innovation, data mining, and Web learning lend

themselves to be the main techniques of customer requirement acquisition and

reasoning about user experience (Zhou et al. 2010).

Customization and personalization solutions are generated in the physical

domain by mapping functional requirements to design parameters based on the

Epilogue 785

shared product and value chain platforms. The fulfillment of “hard” requirements

involves typical decisions regarding product family design and configuration. For

personalization of “soft” characteristics, customer-unique value chains must be

designed in such a way that customer participation within a product-service eco-

system can be separated into a series of value-generating activities. Usability

studies are always useful to design changeable and adaptable workflows that

enable customer co-creation and accommodate open innovation. Also of concern

are the cost advantages of personalized value chains. Similar to the wisdom of

reusing proven design elements, formulating common value chain platforms is

deemed to be an effective means to achieve mass production efficiency. New

cyber-physical platforms, such as Web 2.0, cloud computing, P2P, and Second

Life, offer great potential for implementing value chain platforms into online

personalization engines that can provide recommendations on latent customer

needs (Zhou et al. 2011).

The back-end issues associated with open architecture product and service

platforms involve the process and logistics domains, which are characterized by

process variables and logistics variables, respectively. The mappings from design

parameters to processes and to logistics entail process platform design and supply

chain platform planning. The main concern of process platform design is to take

advantage of existing capabilities and utilize repetitions in production planning.

The process view of personalization is enacted as service delivery processes.

Identification of changeable, adaptable, and reconfigurable service delivery

processes and formulation of service process platforms are deemed to be the

fundamental issues of process reuse (Wiendahl et al. 2007). Likewise, in

the logistics domain, the economic fulfillment of customization and personalization

relies on changeable, adaptable, and reconfigurable supply and delivery networks.

Finally, the social aspect of product and service platforms is emerging as an

interesting research area, as a product-service ecosystem is often associated with

social networks (Jiao and Zhou 2013). Interactive information sharing among

customers is becoming fast and convenient over the Internet with the online social

networks (e.g., Facebook) or review sections of shopping websites (e.g., Amazon).

The increasing availability of data about peer interactions and the popularity of

marketing communication techniques based on such interactions have led to even

greater interest in understanding the effects of peer influence on customers’ choice

decisions of product offerings (Iyengar et al. 2011). The extensive reach of the Web

and the prevalence of social networking sites have made large amounts of data on

social networks easily available, which has recently resulted in their recognition as

an important tool for marketing (van den Bulte and Wuyts 2007). Because the

market is shifting to the online environment and due to the competitive nature of

industries, it is important for firms to benefit from such information with appropriate

marketing and product family design strategies (Panchal and Messer 2011).

While the effect of peer influence has been well documented in marketing research

(Childers and Rao 1992), social network effects have generally been neglected

within the product family design process. Recent advances in social media that

allow better access to social networks of customers have profound technical and

786 Epilogue

economic implications for product and service platform development. A phenome-

nal trend is emerging towards social commerce, which makes academia and

industries recall the dot-com and e-commerce revolution of the previous decade

ago. Abundant research opportunities exist in response to the emerging trend of

open architecture product and service platform development that aims to leverage

upon systems, humans, cybernetics, and businesses.

Summary

Market pressures are forcing companies to rethink their product development

organization, develop new technologies, infuse these into platforms, and derive

customized variants from them. This encompasses the entire development process,

from market and customer research to supply chain management. Integral to this

change in a wide variety of industries is the adoption of a platform management

architecture. Successful traits among industry leaders are the formation of cross-

functional development teams, strong management support, common platform

architectures that maximize the sharing of subsystems and components, and the

ability to capture and apply lessons learned over time for continuous improvement.

\Future research directions are aligned to the holistic view and system-wide

solutions towards open architecture product and service platforms. More specifically,

product family design needs to incorporate more front-end issues such as explicit

customer modeling and integration, product demand, and market segmentation, along

with the economic evaluation of product families. In the meantime, the spectrum of

product family design should extend to include more back-end issues involving

manufacturing, production, and the supply chain. The fulfillment of product families

requires alignment of the customer, product, process, and supply chain decisions.

Extended collaborative platforms are the core to support product customization over

the Internet while achieving a synergy of sales force automation, product design,

manufacturing planning, and supply chain management within a coherent framework.

It is important to think strategically about developing families of products or

services and platforms based on scalable, modular architectures with interchange-

able, standardized interfaces. In reality, complete modularity is not always fully

achievable due to packaging, weight, power, and volume constraints, among others.

Quantifying both the benefits and costs of platforming and standardization is

necessary, but difficult due to inherent model and market uncertainties. It is these

uncertainties that also require platforms to be designed with robustness or flexibility

to respond to future needs better. These future needs could include new functional

requirements demanded by customers, new technologies, social commerce, adher-

ence to new regulations, or the expansion into new geographical and demographic

markets. Product platforms tend to have lifetimes that exceed the lifetime of the

variants that are derived from them, and this makes the problem both challenging

and relevant.

Epilogue 787

References

Byron BM, Shooter SB (2005) A review of software solutions for the management of new product

development and product family planning. In: ASME design engineering technical

conferences, Long Beach, CA, Paper No. DETC2005/DAC-84454

Camerer CF, Loewenstein G, Rabin M (2003) Advances in behavioral economics. Princeton

University Press, Princeton, NJ

Cameron BG (2011) Costing commonality: evaluating the impact of platform divergence on

internal investment returns. Ph.D. Dissertation, Engineering Systems Division, MIT Press,

Cambridge, MA

Chen W, Hoyle C, Wassenaar H (2013) Decision-based design: integrating consumer preferences

into engineering design. Springer, London

Childers TL, Rao AR (1992) The influence of familial and peer based reference groups on

consumer decisions. J Consum Res 19(2):198–211

Cho CK, Kim YS, Lee WJ (2010) Economical, ecological and experience values for product-

service systems. In: The 7th design and emotion conference, 4–7 Oct, Chicago, IL

de Neufville R, Scholtes S (2011) Flexibility in design. MIT Press, Cambridge, MA

Devendorf E, Lewis K (2011) The impact of process architecture on equilibrium stability in

distributed design. ASME J Mech Des 133:101001-1–101001-12

Ford (2011) http://www.ford.com/technology/sync/myfordtouch. Accessed 27 Jan 2011

Gordon P (2004) Tapping the full potential of product platforms: best practices in planning,

managing, and organizing for platform effectiveness. Platform management for continued

growth. IIR/PDMA, Atlanta, GA

Gould D (2010) Product ecosystems and service design. http://www.psfk.com/2010/01/

Halman JIM, Hofer AP, van Wuuren W (2003) Platform-driven development of product families:

linking theory with practice. J Prod Innov Manag 20(2):149–162

Henderson RM, Clark KB (1990) Architecture innovation: the reconfiguration of existing product

technologies and the failure of established firms. Adm Sci Q 35(1):9–30

Iyengar R, van den Bulte C, Valente TW (2011) Opinion leadership and social contagion in new

product diffusion. Market Sci 30(2):195–212

Jiao RJ (2011) Prospect of design for mass customization and personalization. In: ASME interna-

tional design engineering technical conferences and computers and information in engineering

conference, DETC20011-48919, 28–31 Aug, Washington, DC, USA

Jiao RJ (2012) Product platform flexibility planning by hybrid real options analysis. IIE Trans 44

(6):431–445

Jiao J, Helander M (2006) Development of an electronic configure-to-order platform for

customized product development. Comput Ind 57(3):231–244

Jiao J, Zhang Y (2005) Product portfolio planning with customer-engineering interaction. IIE

Trans 37(9):801–814

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6,
Springer Science+Business Media New York 2014

789

http://www.ford.com/technology/sync/myfordtouch
http://www.psfk.com/2010/01/

Jiao RJ, Zhou F (2013) Product line planning incorporating peer influence of social networks. In:

IEEE international conference on industrial engineering and engineering management,

Thailand

Jiao RJ, Simpson TW, Siddique Z (2007) Product family design and platform-based product

development: a state-of-the-art review. J Intell Manuf 18(1):5–29

Kalligeros K (2006) Platforms and real options in large-scale engineering systems. Ph.D. thesis,

MIT

Kokkolaras M, Mourelatos ZP, Papalambros PY (2006) Design optimization of hierarchically

decomposed multilevel system under uncertainty. ASME J Mech Des 128(2):503–508

Koop GJ, Johnson JG (2012) The use of multiple reference points in risky decision making.

J Behav Decis Mak 25(1):49–62

Krishnan V, Gupta S (2001) Appropriateness and impact of platform-based product development.

Manage Sci 47(1):52–68

Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product

platform architectures. Res Eng Des 13(4):213–235

Meyer MH, Dalal D (2001) Managing platform architectures and manufacturing processes for

nonassembled products. J Prod Innov Manag 19(4):277–293

Michalek JJ, Ebbes P, Adigüzel F, Feinberg FM, Papalambros PY (2011) Enhancing marketing

with engineering: optimal product line design for heterogeneous markets. Int J Res Market 28

(1):1–12

Moon SK, Shu J, Simpson TW, Kumara SRT (2010) A module-based service model for mass

customization: service family design. IIE Trans 43(3):153–163

Moore WL, Louviere JJ, Verma R (1999) Using conjoint analysis to help design product

platforms. J Prod Innov Manag 16(1):27–39

Otto K (2005) Model-based design and verification of modular platforms. Innovations in product

development conference—product families and platforms: from strategic innovation to imple-

mentation, Cambridge, MA

Panchal JH, Messer M (2011) Extracting the structure of design information from collaborative

tagging. ASME J Comput Inf Sci Eng 11(4):041007(1–11)

Papalambros PY (2010) The human dimension. ASME J Mech Eng 132(5):1

Pine BJ, Gilmore JH (1999) The experience economy. Harvard Business School Press,

Boston, MA

Rae J (2006) Ruthless focus on the customer. Bus Week, 28 Jul 2006

Robertson D, Ulrich K (1998) Planning product platforms. Sloan Manag Rev 39(4):19–31

Rungtusanatham M, Forza C (2005) Coordinating product design, process design, and supply

chain design decisions, part A: topic motivation, performance implications, and article review

process. J Oper Manag 23(3–4):257–265

Safizadeh MH, Ritzman LP, Mallick D (2000) Revisiting alternative theoretical paradigms in

manufacturing strategy. Prod Oper Manag 9(2):111–127

Saunders MN, Seepersad CC, Hölttä-Otto K (2011) The characteristics of innovative, mechanical

products. ASME J Mech Des 133(2):021009

Seepersad CC, Mistree F, Allen JK (2002) A quantitative approach for designing multiple product

platforms for an evolving portfolio of products. In: ASME design engineering technical

conferences, Montreal, QC, ASME, Paper No. DETC2002/DAC-34096

Shooter SB, Simpson TW, Kumara SRT, Stone RB, Terpenny JP (2005) Toward a multi-agent

information infrastructure for product family planning and mass customization. Int J Mass

Custom 1(1):134–155

Simpson TW, Siddique Z, Jiao J (2005) Product platform and product family design: methods and

applications. Springer, New York, NY

Simpson TW, Marion TJ, de Weck O, Holtta-Otto K, Kokkolaras M, Shooter SB (2006) Platform-

based design and development: current trends and needs in industry. In: ASME design

engineering technical conferences, Philadelphia, PA, Paper No. DETC2006/DAC-99229

790 References

van den Bulte C, Wuyts S (2007) Social networks and marketing, marketing science institute.

Cambridge, MA

Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh M, Wiendahl HH, Duffie N, Kolakowski M (2007)

Changeable manufacturing: classification, design and operation. Ann CIRP 56(2):783–809

Williams N, Kannan PK, Azarm S (2011) Retail channel structure impact on strategic engineering

product design. Manage Sci 57(5):897–914

World Bank (2012) http://data.worldbank.org. 10 Feb 2012

Yano C, Dobson G (1998) Profit optimizing product line design, selection and pricing with

manufacturing cost considerations, in product variety management: research advances. In:

Ho T-H, Tang CS (Eds.), pp. 145–176, Kluwer Academic Publisher, Boston, MA

Zhou F, Jiao RJ, Schaefer D, Chen S (2010) Hybrid association mining and refinement for

affective mapping in emotional design. ASME J Comput Inf Sci Eng 10(3):031010-

1–031010-0

Zhou F, Xu Q, Jiao RJ (2011) Fundamentals of product ecosystem design for user experience. Res

Eng Des 22(1):43–61

References 791

http://data.worldbank.org/

Index

A

ABC. See Activity-based costing (ABC)

Accommodation

equal variability scheme, 567, 572–573

performance, 560

target user population, 560

Activity-based costing (ABC), 24, 480–481

Adaptive systems, 297, 307

Adjustability

preferred seat locations, 1,000-member

virtual population, 569

sizing and the allocation, 582

specification, 564–565

Aerodynamic particle separators

data mining-driven product family design,

167–168

engineering design optimization (see
Engineering design)

market segments, 167, 168

methods, 167

particulate matter (PM)/particle

pollution, 167

temporal market-driven preferences,

168–169

AHP. See Analytical hierarchy process (AHP)

AM. See Architecture model (AM)

Analytical hierarchy process (AHP), 694

Analytical network process (ANP)

consistency verification, 694

and QFD

consistency test, 703

construction, clusters and nodes,

702, 703

element, 703

matrix limitation, 703–704

weighted super matrix, 703, 704

Analytical target cascading (ATC), 275

ANP. See Analytical network process (ANP)

APFD model. See Associated product family

design (APFD) model

Apple®, 100

Apple iOS, 748–749

Apple iPhone

compution, GVI values, 746

construction, QFD matrices

customer needs, 742

engineering metric target values,

742, 744

GVI process, 742, 743

design process and measures, 741

estimation, engineering metric target

values, 744, 745

evolutionary and revolutionary changes, 741

generational variety index, 742

GVI

analysis, 747

matrix creation, 746

market life assessment, 742

normalized target value matrix, 745

predicting changes, customer needs, 745

user feedback, 741–742

Application Programming Interface (API), 653

Applied Research Laboratory’s Trade Space

Visualizer (ATSV), 458, 459, 469

Architecting

activity

clustering methods, 425

embodiments/building blocks, 426

function modeling, 425

knowledge base, computer tools, 427

software design, 426

system architects, 425

system-level specifications, 424–425

V-model, 424–425

T.W. Simpson et al. (eds.), Advances in Product Family and Product Platform
Design: Methods & Applications, DOI 10.1007/978-1-4614-7937-6,
Springer Science+Business Media New York 2014

793

Architecting (cont.)
design, software-intensive product

platforms (see Software-intensive
product platforms)

process, product platforms

assets and modular platforms, 323

commonality assignment, 337–338

component-based approach, 332–333

customer needs gathering, 328–329

development, 325

functional requirements, 331

generic system, 333–334

market segment (see Market segments)

methods and techniques, 324–325

modules boundary (see Module)

module sizing and down selection,

338–339

roadmap, 336–337

system requirements, 329–331

Architectural code generation, 661

Architectural decomposition. See
Decomposition

Architecture

map knowledge, 659–660

objects to design patterns mapping, 660

Architecture-centric design approach

AM, 422

architectural model, 422–423

complexity-related issues, 420

conceptual model, architectural description,

422, 423

connectivity information, 421

definition, 419–420

development activities, 423

domain-specific methods, 422

elements, product and system

architecture, 421

FBS model, 421–422

model views, product (platform)

development, 422

modularization and definition, interfaces,

431–437

platform designs, 423

platform development, 420

production context, 420

product platform development, 424–431

prototype tools, 445

stage of development, 445

structure of the product, 420

system architecture, 422

system architecture models, 437–446

Architecture model (AM)

architectural descriptions, 439–440

development activities, 440–441

entities “E” and functions “F”, 438, 439

FBS model, 422

information reuse and model-based

paradigm, 441–445

information spectrum and design

questions, 439

modeling conventions, objects and

relations, 440

standard, 422, 423

Assembly decomposition, 226

Associated product family design (APFD)

model

algorithm, 85–87

cladistic analysis, 82

customer requirements, 87

demonstration and application, 87

and DSMs, 76

IDEF0 representation, 75

liaison graphs, 83

market segments and process plans, 75

parsimony analysis, 81

primary product components, 76–77

ATC. See Analytical target cascading (ATC)

Automotive

and aerospace businesses, 127

industry, 135, 409

“small car platform,” enterprise, 122

Axiomatic design, 26, 132, 504

B

BACS. See Building air conditioning system

(BACS)

Benefits, commonality

aircraft manufacturer, 58

broad firm cost structures, 58, 59

categories, 53, 54

comprehensive list, 54–56

cost saving, 54

design phase, 57

development cost, 59

firm’s flexibility, 54

management literature, 53

manufacturing cost, 59–60

manufacturing phase, 57

operation phases, 57, 58

proactive, 54

reuse, 54

works cited, 53

Bicycle saddle height

adjustability, 568–569

equal accommodation sizing, 572–573

equal variability sizing, 570–572

42-member sample, 568

794 Index

residual variance, 568

sizing, 569–570

Bill of material (BOM), 25, 26, 77, 120, 226

Black-box reuse profile, 555, 677

Body size and shape, 279, 560–562, 581, 582

BOM. See Bill of material (BOM)

Building air conditioning system (BACS)

Customer Intimacy, 111, 113

initial distribution, 112

The Middle East and Africa, 111

Operational Excellence, 111

Bulk purchasing, 60, 65, 66, 630, 643

C

CAP. See Carryover Assignment Plan (CAP)

Carpal tunnel syndrome, 573

Carryover Assignment Plan (CAP), 257, 260

Carryover Chart (CoC), 258, 265

Case study

platform valuation

additional strategy cost, 190, 192

binomial lattice, 194

current and expected market

segments, 192

design quality, 192–193

feature and component matrix, 190, 191

market analysis, 193

market segmentation, 190

mobile product family, 189

Nokia N70 series products, 189

option value, 194–196

platform design strategy, 189

tactile key marker, 190, 192

vision accessible, 189

Viper Case (see Viper Case study)
CCM. See Configurable Component Modeler

(CCM)

CCs. See Configurable components (CCs)

CERs. See Cost estimating relationships

(CERs)

CI. See Commonality index (CI)

Cladistics

APFD model, 81

application, 72–73

biology, 73, 74

cladogram, 81–82

classification tool, 73

hypotheses, 73

modules identification and process

planning, 84

product modules, 82

Cladogram

APFD model (see Associated product

family design (APFD) model)

components, 82

construction process, 82

definition, 81

interspecies co-speciation, 74

product family, 83, 84

tanglegrams, 73

CMC. See Comprehensive metric for

commonality (CMC)

CNCmachine tools. SeeComputer numerically

controlled (CNC) machine tools

CNs. See Customer needs (CNs)

CoC. See Carryover Chart (CoC)
Code division multiple access (CDMA),

658, 741

Code reuse evaluation, 675–676

Code reuse, product platforms vs. traditional
approach

application

dependent components, 675

independent components, 674–675

cost savings, 678–679

effects, 679–680

evaluation, 675–676

implementation, 673–674

methodology, 676–678

microelectromechanical system (MEMS)

devices, 673

observations, 679

PATF

black-box reuse, 677

compound reuse, 677, 678

product, 673

white-box reuse, 677, 678

Commonality

assignment, architecting process, 337–338

benefits (see Benefits, commonality)

challenges, 33–34

characteristics, 12–14

CMC, CDI and TCI indexs, 14–16

costs

design premium, 60

drawbacks and risks, 60, 61

individual variants, 62–63

investment, platforms, 62

multiproduct strategy, 60

realistic projections, 60–61

upfront variant, 62

and diversity, 26

and DSMs, 87

Index 795

Commonality (cont.)
and metrics, 12

modularity, 11–12

PCI, 11

and PFD, 74

PFEG, 25

product platform, 72, 73

selection and modularity, 18–20

vs. variety, family/platform design, 11, 25

Commonality index (CI)

characteristics, 12, 13

definition, 12, 348

and measures, 73

and metrics, 12

standard, 318

Commonality metrics

blocks, 304, 306

diagnostic value, 498

early-stage measures, 496

fabrication weighting, 498

investment-weighted metric, 498

IP beam comparison (see Instrument panel

(IP) beam product families)

limitations, 498–500

modeling and assessment methods (see
Modeling)

platforming decisions, 474

and platform literature, 475–476

shared components and type, product, 497

small-n case study, 474

total vs. fixed cost, 497

and variables, 303

Commonality premium, 60, 62, 65

Commonality selection

decision-making process, 466–467

design space exploration process, 469

engineering design practices, 469

interactive visualization methods (see
Interactive visualization methods)

method 2, 467, 468

optimization, product family, 450

platform optimization approaches, 469

product complexity and competitive

pressure, 450

product family design (see Product family

design)

product optimization and visualization

method, 469

product platform, 450

UTC product family, 467, 468

Commonality strategy

canonical, 66

diffuse low-order, 66

realistic projections creation, costs, 60, 62

technical feasibility, 53

Complexity

decomposition scheme, 288–290

encapsulation, 133, 134

robust optimization approaches, 34–35

Component sharing

all-or-none restriction, 276

and commonality decisions, 26–27

end-of-life management, 714

optimization, 164

product family sharing level, 170

ranking, 497

ROI, 728

Comprehensive metric for commonality

(CMC)

CDI and TCI index, 15–16

commonality and variety, 25

commonality indices, 12–14

Comprehensive product platform planning

(CP3) model

application, electric motors family, 317–318

definition, generalized product platform, 305

design variables, 306

features, 300

formulation

commonality matrix blocks, 304

commonality variables, 302–303

design variable, 300–301

general product family, 302

modular product families, 303–304

modular-scaling families, 304

PFD, 301

product architecture, 305

generalized MINLP problem, 307

one-step approaches (see One-step
approaches)

optimization process, 299

sample product family, 305

scale-based/module-based product

families, 300

and SIO outcomes, 318–319

Computer numerically controlled (CNC)

machine tools

design, 599

fabrication and assembly tools, 598

machining setup elimination, 593–594

product/process design, 598

Concurrent engineering, 27, 96, 781

Configurable Component Modeler (CCM)

description, 137

FR and C objects, 138

PMC system, 140

796 Index

Configurable components (CCs)

CCM, 137, 138, 140

composition, 136–137

definition, 120, 130

and design rational (DR), 135, 138

PDM system, 138

system family, 135

and TEC, 139, 140

Configuration

2D, commonality chromosome, 278

design, 202

family, 27

platform and optimaization (see Platform
configuration and optimization)

platform and product family, 10–11

Constraints and adaptability

code division multiple access (CDMA), 658

design knowledge, family product

platform, 657

dual-tone multi-frequency (DTMF)

generator, 658

flow balance, product lifecycle

components, 718–719

core availability, 720

cores, 716–717

demand satisfaction and avoidance,

720–721

environmental regulations, 720

intermediates, 717

refurbished cores, 719–720

refurbished intermediates, 719

variable condition, 721

working and nonworking cores, 716–717

network protocol, 658

social environment changes, 659

Construction equipment accessory

modular function deployment, 114

module indication matrix, 114

practice, 115

“strategic suppliers”, 114

value disciplines, 114–115

Control devices, industrial trucks

CoC, 265

modular product programs, 263

module variants, 265–266

VAM, 264, 265

Cordless handheld vacuum

conceptual modules, 617, 620

CVR (see Customer value rating (CVR))

description, 610–611

DPM, 614, 616

exploded view, 12 V unit, 610, 612

market segments (see Market segments)

MIM, 616–617

module generation, 617, 618

QFD, 614, 615

specifications, 611–612

Cost estimating relationships (CERs), 633

Cost modeling

ABC, 480–481

cost savings metric calculation, 483

exclusive cost, 483

fixed costs, 403

PBCM, 481–482

process-based, 481

standalone cost, variant, 482–483

total cost and profit, 405

variable, 404

volume-weighted ratio, 483

CP3 model. See Comprehensive product

platform planning (CP3) model

Customer needs (CNs)

architecting process, product platforms

market segmentation, 328, 329

planned market strategy, UGVs, 328

requirements, 328

voice of the customer (VOC), 328–329

description, 504

and FRs, 504

GVS description, 525

PPM

direct interview methods, 205

indirect feedback method, 206

market segment, 204–205

product family sizing design (see Product
family sizing design)

Customer preference

clustering, 7

involvement, 8

and market conditions, 34

QFD, 149

Customer satisfaction

competitive and dynamic marketplaces, 344

product profiles, 353–354, 359, 362

Customer value rating (CVR)

modular product, 606

and QFD, 616

target market segments, 614

Customer values

benefits, 608

QFD, 614

transformation, product properties, 606

Customization

appearance, 10

family-based system, 781

mass, 2, 25, 148, 544, 600–601

Index 797

Customization (cont.)
and personalization, 785, 786

platform-based, 201–202

product families, mass, 601–602

CVR. See Customer value rating (CVR)

D

Data mining

description, 154

iterative feature evaluation, 154–156

KDD process, 154

model generation and irrelevant feature

classification, 156–158

nonstandard feature (NF), 159–160

obsolete feature (OF), 160–161

standard feature (SF), 158–159

DCDM. See Design of commonality and

diversity method (DCDM)

DCF. See Discounted cash flow (DCF)

DCI. See Degree of commonality index (DCI)

Decision-making

collaborative, 182

commonality, 53, 452–453, 466, 467

complexity, 465

cultural, 53–54

customers’, 780

enterprise, 147, 174

market-based, 180

strategic, 394, 395

Decision support to design process planning

construction, TCPN, 520

TCPN deployment, 520

Decomposition

assembly, 226

ATC, 275

commonality, 221–222

description, 221

functional, 226

granularity (see Granularity)
hierarchical decomposition, 224

and parallelization, MOGA

chromosome representations, 280, 281

commonality value, 282

crossover and mutation, 282

description, 282–283

fitness calculation, 280, 282

initialization, 280

iteration and termination, 282

replacement, 282

products and systems, 224

representation

DSM, 222–223

functional model, 222, 223

network, 222, 223

service-based, 227

top-down decomposition, 224

viewpoint, 225–226

work breakdown structure, 224

Degree of commonality index (DCI), 150

Dendrogram, 617, 618

Dependency matrix, 27

Design concept exploration, representative

solutions

cluster 1, 412, 413

cluster 2, 412, 413

cluster 3, 413, 414

cluster 4, 413, 414

cluster 5, 414, 415

cluster 6, 414, 416

cluster 7, 415, 416

cluster 8, 415, 416

Design decision-making, 33, 739

Design for Human Variability (DfHV)

adjustability, 564–565

bicycle saddle height (see Bicycle saddle
height)

description, 559, 560

multiple sizes, 576–577

opportunities, platforming and

modularity, 577

platforming and modularity, 577–582

principles, 560–561

quantifying, variability

anthropometry synthesis, 562–564

databases, 561–562

robust design methodologies, 559–560

sizing (see Sizing)
tool handle

carpal tunnel syndrome, 573

grip diameters, 575

optimal diameter, 574

regression, 574–575

RMSE, 575

single size, 575–576

user’s grip circumference, 574

Design for lifecycle, 54, 783

Design for manufacturability (DFM)

and assembly, 99

guidelines, 600

platform, 211, 213

principle, 594, 599

Design for recovery

cost and revenue parameters, 724–726

end-of-life recovery, 711–714

optimization problem, 714–715

product take-back, 710–711

Design for variety (DFV)

definition, 72

product variety, 253

798 Index

TEV, 252–253

VAM, 254

Designing product families

arbitrary decisions, 600

CNC, 599

DFM principles, 599

eliminate tool, 599

manufacturability, 600

products development, 598

standard parts and materials, 599–600

Design matrix

DPM (see Design property matrix (DPM))

DSM (see Design structure matrix (DSM))

Design of commonality and diversity method

(DCDM), 181

Design process

actor and resource allocation, 527, 529

characteristics, 505

CNs, 504

configurations, TCPN, 528

customers’ requirements, 504

Gantt chart, 527, 528

generic structure, 506

GVS, PNs and TCPN model, 505

modular design projects, 506–507

modularization (see Modularization)

performance, 527, 529

planning, 525–527

platform-based techniques, 528

PN (see Petri Nets (PN))
product variant (see Product variants)
project module identification (see Project

module identification)

TCPN, design process simulation, 525, 526

Design process planning, 519–520, 525–527

Design project

configurable component-based product

platform model, 131

modular design, 506–507

Design property matrix (DPM)

company-specific requirements, 610

description, 614, 616

hierarchical clustering, 617

MFD, 607

and MIM, 607

module generation, 617

and module indication matrix (MIM),

96, 606

physical embodiments of functions, 610

and PMM, 606, 607

product architecture, 607

technical solutions, 610

voice of engineering, 614

Design quality

customers’ preference, 187

expected, 192

family product, 186

full quality, 187, 192

functions, 187, 188

marginal quality, 187, 192

market demands, 188

N71, 192–193

value of the preference U(Qp), 188

Design rationale (DR)

CC models, 138–140

concepts, 131

configurable component, 135–136

and design histories, 120

system description, 130

Design structure matrix (DSM)

analytical methods, 507

APFD model, 76, 77, 80

application, 87

architecture, 222–223

assembly decomposition, 226

automatic naming algorithm, 432, 433

based modularization, 434

clustering techniques, 434

component-based, 333

description, 248, 434, 511

DMM, 434

and DMMs, 511

FBS model, 436

“generic” architecture, 333–334

herbicide spraying systems, 249

heuristic swapping algorithm, 507

idealized matrices, granularity, 229–230

interactions, 164

kettles product family (see Kettles family)

market segments, 80

market segments and kettles primary

components, 77, 79

mathematical operations, 507

matrix operations, 511

off-diagonal entries, 434

paper trays, 235

primary and secondary components in

kettles, 77, 80

project elements, 522

service-based decomposition, 235,

240, 241

symmetrical and asymmetrical, 223

and UGVs

clustered, 335, 336

unclustered, 334–335

viewpoints, printing system, 235–237

Index 799

Design valuation

company’s profit, 184–185

design quality, 187–188

financial model, 185–187

product family architecture, 183

Design versatility, 599, 602

Development cost, 59

DfHV. See Design for Human Variability

(DfHV)

DFM. See Design for manufacturability (DFM)

DFV. See Design for variety (DFV)

Disassembly

constraints, 716–719

description, 709

end-of-life recovery, 711–714

system decomposition, 226

yield rates, 723–724

Discounted cash flow (DCF), 784

Divergence

commonality, 50

planning

beneficial, 63

commonality levels, 63

firm’s ability, 65

program manager, 65–66

rail manufacturer, 65

realistic commonality benefits, 65

research data categorization, 63, 64

variants, 63

DMMs. See Domain mapping matrices

(DMMs)

Domain analysis

architectural code generation, 661

architecture objects to design

patterns, 660

constraints and adaptability, 657–659

detailed software design, 660–661

domain knowledge model, 656–657

high-level process, product family

platform, 654

knowledge to architecture, 659–660

previous product projects, 655

relevant literature, 655

use cases, 654–655

Domain knowledge model, 656–657

Domain mapping matrices (DMMs)

and MoAs, 510

modularization process, 434

project elements, 522

types, relationships, 511

DPM. See Design property matrix (DPM)

DSM. See Design structure matrix (DSM)

E

Economies of scale

advantages, 451

and customization, 119, 120

description, 57

product family design, 181

in recovery operations, 733

End-of-life management

benefits, 710

definition, 709

hierarchical assembly structure, product

family, 709

product take-back, 710–711

recovery (see End-of-life recovery)
End-of-life recovery

disassembly parts and decision making,

713, 714

disposal and recycling, 712

incoming feedstock, 711

options, 711–712

process, 712, 713

refurbishment/cannibalization, 713–714

Engineering characteristics (EC)

platform and non-platform (see
Optimization, platform and non-

platform ECs)

scalable product platform, 345

sensitivity analysis, 351–352

value determination, 350–351

Engineering design

aerodynamic

design objectives, 170

mapping product, 174

mathematical representation, 170–171

particle separator design, 169

product family sharing level, 170

scale based and module based, 169–170

and PFD

commonality, 162

component function identification,

162, 163

cosine similarity, 164

data mining predictive model, 161–162,

173–174

DSM, 164

large-scale data set, 162

latent semantic analysis, 162

product family optimization problem, 165

product feature-function comparison

matrix, 162–164

product variant optimization level,

166–167

800 Index

sharing level, product family, 166

textual description, 162

60 Whr 6-Cell Lithium-Ion Battery,

164–165

Ergonomics, 560, 562

Evolutionary optimization

optimization strategy, 634

three-objective discrete optimization

process, 637–638

two-objective method, 634–637

F

FBS modeling. See Function-behavior-state
(FBS) modeling

Financial model

call option valuation, binomial tree, 187

demand, movements, 185–186

design strategies, 196

drift, 185

family product, 186

modular product families, 196

net benefit, 186

real options analysis, 180

time interval, 186

valuation, 182

Fit, 590

Flexible assembly, 595

Flexible building, product families

assembly, 595

CNC, eliminate machining setup, 593–594

flow manufacturing, 594

one-piece flow quality, 594

setup and batch elimination, 593

source cells, 594

tooling setup elimination, 593

Flexible platform, 3, 5, 14, 25, 31, 748

F-M tree. See Function-means (F-M) tree

FRs. See Functional requirement (FRs)

Functional decomposition, 226–227

Functional efficiency, 213, 217

Functional requirement (FRs), 504

Function-behavior-state (FBS) modeling

DSM, 434

product architecture, 421–422

shifting system, 434

system architect, 432

Function-means (F-M) tree, 132

Function strategy, 208

Function structure

component design modeling, 214–215

elements, 763–764

function strategy, 208

handheld blower, 761, 764, 765

modularization, 686

modules, 335

Fuzzy clustering

combined similarity measure, 514

D00, D1 and D2, 513

equivalence matrix, 514

hierarchical decomposition, 511

module identification, 511, 512

partitioning algorithm, 512

project elements, 512

Fuzzy optimality, 347, 628

G

Gas inlet valves

MIG, 261, 263

MPC, 255, 261, 262

product variants, 263

TEV, 261–262

vacuum applications, 261

VAM, 261, 262

GBOMs. See Generic bill of materials

(GBOMs)

Generalized commonality. See Joint product
platform selection and family design

Generational variety index (GVI)

analysis, 747–748

Apple iPhone (see Apple iPhone)
calculation, 740, 746

customer requirement list, 743, 746

development, 749

evolving designs

consumer electronics segment, 738–739

impacts, 739

platformed and non-platformed

products, 739

product features, 738

revolutionary/evolutionary

changes, 738

iOS-based flexible platform strategy,

748–749

limitations, 749

low and high values, 337

Pareto optimal designs, 741

product platform design, 740–741

risk, 748–749

technological advancement, 738

Generic assets

bandwidth, 124, 127

bill of material (BOM), 120

description, 144

development processes and concept

platform, 125–126

industrial case study

Index 801

Generic assets (cont.)
CCM software, 140

commercial software RD&T, 140, 142

design rationales (DRs), 139

design solution space, 142

fabricated structures, 139

functional requirement-related (FR)

properties, 140

parameter values, 142

platform elements, 140

TEC family system (see Turbine
exhaust cases (TEC))

industrial customers, 125

knowledge platform approach, 124, 125

life cycle phases, 143

maturity, 123–124

OEM company, 125

platform-based development and

manufacturing, 119–120

platforms (see Platform)

PLM (see Product life cycle management

(PLM))

product and production system platforms

(see Product, and production system

platforms)

reuse, 120–121

suppliers, 121

system development project, 126–127

technology platforms, 127–129

Generic bill of materials (GBOMs), 20, 506

Generic product plan, 208, 209

Generic variety structure (GVS)

hierarchical structure, 509

leaf node activities, 509

process varieties, 509, 510

AND and XOR junction, 510

Genetic algorithm (GA)

GP, 23

GVS, 514

MINLP, 316

parametric platforms, 4

Pareto optimal solutions, 394

product family design (PFD) method, 296

Genetic programming (GP), 23

Global product family design

automotive industries, 409

availability, modules, 409, 410

clustering, Pareto solutions, 411

demand volume, products, 409, 410

design concept exploration (see Design
concept exploration, representative

solutions)

global manufacturing, 394–395

mass customization, 393

mathematical model, 396–404

multi-objective

and concept-level design, 395–396

formulation, 416

optimization, 410–411

neighborhood cultivation genetic

algorithm, 416

optimal techniques, 407–408

PCA-based clustering technique, 416–417

price, products, 409, 410

production and sales capability, respective

sites, 409, 410

site differences, 409, 410

Granularity

assembly modules, 238

DADF and xerographics modules,

233–234

degree of modularity

MG&G metric, 238–239

service-based decomposition, 239–241

description, 241–242

DSM (see design structure matrix (DSM))

effect, modularity

idealized matrices, 230, 231

integral and modular variants, 230, 231

MDL, 230, 232

MG&G, 230, 232

product, 229

electrical components, 237–238

ITB module, 234, 235

metrics, 228–229

printing system, 235

service-based decomposition, 235

“smaller size”, 236

system decomposition, 233

Xerox DocuColor 250, 233, 234

GVI. See Generational variety index (GVI)

GVS. See Generic variety structure (GVS)

H

Hierarchical clustering

ECs, 351–352

MFD, 606, 617

modules, 334

multidisciplinary dependency, 74, 75

SPSS, 617

HoQs. See Houses of quality (HoQs)

Houses of quality (HoQs), 357

Human factors, 560, 562, 780

Human variability. See Design for Human

Variability (DfHV)

802 Index

I

INCOSE guidelines, 329

Industrial machines, software platforms

changing design

family platform framework layer,

667–668

final product test, 669–671

product family infrastructure layer,

666–667

product-specific features layer, 668–669

description, 662

high-level organization

activedevices, 663–664

PATF engine and component, 662–663

modularity, 667

review, 667

run-time system composition

application sequences, PATF, 671–672

AppProductSequence object, 673

object composition, 671

SyncPoint objects, 673

system behavior, high-level

automatic mode, 665–666

manual mode, 664–665

PATF system state, 664, 665

Instrument panel (IP) beam product families

assembly cost allocation, 486

beam processing information, 484, 485

commonality metrics

component and magnesium, 484, 487

correlations, 494, 495

and cost savings, 491, 493

investment-weighted commonality metric,

491–492

linear regression analysis, 494

magnesium design, 484, 485

mass-and piece-weighted metrics, 494

operational and financial assumptions,

484, 485

and PBCM, 484

product variants, 484, 486

projected cost category, 496

proposed commonality metrics, 486

regression statistics, 494–496

standalone variants

assembly costs, 484, 491

development costs, 484, 491

fabrication costs, 484, 491

steel and magnesium IP beam variants,

486, 492

steel component and commonality

information, 484, 488–490

volume-weighted commonality metric, 491

Interactive visualization methods

exhaustive + visualization

design space exploration, 464

product family design, 456, 457

individual opt + visualization

ATSV, 458

commonality selection, 459–461

multidimensional data, 459

product family design space, 459

trade-off resolution, 464–465

Pareto Band concept, 466

product family opt + visualization

CI, 462

commonality assessments, 463

computational cost, decomposition, 466

family-based optimization

techniques, 461

product family optimization, 462

trade-off resolution, 465

UTC product family, 461

Interface definition

DSM, 434

FBS model, shifting system, 434–437

and modularization, 431

workflow and function modeling, 431–434

Intermediate transfer belt (ITB) module,

234, 235

Inventory reduction, 55, 56, 58

iPad®, 101, 749, 784–785

IP beam product families. See Instrument panel

(IP) beam product families

iPhone evolution. See Generational variety
index (GVI)

ITB module. See Intermediate transfer belt

(ITB) module

J

Joint product platform selection and family

design

classification, product family optimization,

273–274

decomposition approaches, 275

issues, 272

MOGA (see Multi-objective genetic

algorithms (MOGA))

optimization-based research, 272

pareto fronts

electric motor family, 287

GAA family, 286

platform configuration, 287

posteriori optimization methods, 274

product platforms, 272

Index 803

Joint product platform selection and family

design (cont.)
single-stage class III problems, 274

universal electric motor, 283–291

Joint Strike Fighter, 34, 49, 50, 63

K

Kanban, 594–597

Kettles family

liaison graph, 83

market segments, 76, 80, 86

primary components, 77, 79

process plan, 87

secondary component, 77, 80

unique feasible kettles variants, 80, 81

water boiling, 76, 77

K-means clustering, 351, 690, 692–693, 695

Knowledge discovery in databases (KDD)

acquisition, 152–153

description, 151–152

mining/pattern discovery (see Data mining)

selection and cleaning, 153

transformation, 154

Knowledge to architecture mapping, 659–660

L

Latent semantic analysis (LSA), 162, 164

Lawn and landscape blower family, PPM

business environment, 753

data, customer needs, 754

formation strategy, 753–754, 762

function structure

engine control system, 761, 763

handheld blower market target, 761,

764, 765

main blower process system, 763

market research, PPM (see Market

research, PPM)

modularity construction (see Modularity

construction, PPM)

platform design

CAD model components, 768–769

components list, platform finding

algorithm, 765–766

feeding analysis, 769–771

fitting ratio, 771

handheld blower vacuum, 764, 765

input sheet, 764

manufacturing analysis, 771, 772

outcomes, 766–767

permanent components, 767

product family planning, 761, 762

product variations, 753, 754

resources, 754–755

road map, 753, 754

rules and regulations, 755

Learning curve

bulk purchasing and construction, 643

manufacturing line, 57

typical ship construction labor, 630, 631

Liaison graph

APFD model, 83

application, 83, 87

definition, 83

kettles, 83

Life phases modularization

module drivers, 255–256

MPC, 255, 256

product life cycle, 254–255

LSA. See Latent semantic analysis (LSA)

Lucas method, 211, 213, 215, 218

M

Mann–Kendall (MK) trend test

feature Fi, 157

feature Fn, 159

feature Fo, 160–161

feature Fs, 158–159

mathematical representation, 157–158

null hypothesis, 158

Manufacturing cost, 59–60

Market-based design, 180–182

Market-driven product family design

(MPED), 346

Market mechanisms, 28, 180

Market research

competitors, 206–207

customer needs, 204–206

PPM

competitor product analysis, 758–759

competitors market targets vs. customer

requirements, 759–760

customer demands, 759, 760

customer fulfillment, 758–759

direct and non-direct polling, customer

demands, 755–757

identification, market segment, 755, 756

market target, 757–759

rules and regulation bodies, 207

volume analysis, 207

Market segments

and APFD model, 75

business application, 325

804 Index

characteristics, 325

current and expected, 192

customer

population, 325

preferences, 187

requirements, 74

defense-related applications, 325

demand model, 182

description, 611

difference, 325

and DSM, 77, 80

family Felicia, 613

functional preference information, 187

identification, 180

kettle identification, 76, 86

and market attack plan, 326–327

mobile products, 190, 192

platform leveraging strategies, 327

preference value and demographics, 188

product market matrix, 327–328

scalable platforms, 328

Sophia student, 613–614

sources, 76

suction power, 613

UGVs, 326–327

Mass customization

extending product families, 601

postponement, 600–601

setup “elimination”, 593

synergies, 601–602

Mass production

cost-oriented design method, 246

product families, 591–592

Mathematical model

conditions, problem formulation, 397–398

cost model, 403–405

delivery model, 405–406

integration, product family and supply

chain, 396–397

mathematical formulation, 406–407

product family model, 399–402

quality model, 405

MDL. SeeMinimum description length (MDL)

MDO. See Multidisciplinary design

optimization (MDO)

MEMS. See Microelectromechanical system

(MEMS)

Method units, integrated PKT-approach

description, 251

design for variety, 252–254

life phases modularization, 254–256

modular product programs, 257–258

product program planning, 256–257

visual tools, 252, 253

Metrics

activity-based costing system (ABC), 24

assessment methodology, 483

axiomatic design, 26

commonality (see Commonality)

correlations and dependencies, 26–27

cost considerations, 21, 24

cost model, 25

definition, 24–25

extended QFD, 25

Ford’s Model T, 26

fuzzy clustering techniques, 26

leveraging data mining techniques, 25

multi-criteria platform evaluation, 24

platform construction method, 25

platform exploration and identification, 26

product family evaluation graph approach

(PFEG), 25

variation and uncertainty, 25, 26

MFD. See Modular function deployment

(MFD)

Microelectromechanical system (MEMS), 673

MIG. See Module Interface Graph (MIG)

MIM. See Module indication matrix (MIM)

Minimum description length (MDL), 228, 232,

239, 240

Mission effectiveness, 627, 629–630

Mixed-integer nonlinear programming

(MINLP), 300, 301, 307, 316, 454

Mixed integer programming, 714, 733

MK trend test. See Mann–Kendall (MK)

trend test

MoAs. See Module of activities (MoAs)

Modeling

cost methodology (see Cost modeling)

metric assessment methodology, 483

product family, 9–10

proposed commonality metrics

bill of materials, product family, 478

calculation, 478, 479

descriptions, 480

metric and cost savings, 477

piece-based, 478

production volume, 479

subassemblies, 478

trimming/drilling, holes, 477

Modular function deployment (MFD)

and BACS (see Building air conditioning

system (BACS))

business strategy, 117

Index 805

Modular function deployment (MFD) (cont.)
cell phone, 115–117

complexity cost reduction, 605

construction equipment accessory

(see Construction equipment

accessory)

cordless handheld vacuum (see Cordless
handheld vacuum)

cross-functional, 94

design property matrix, 609–610

and DFX approaches, 96

documentation and analysis, 607

DPM and MIM, 607

functional requirements, 94–95

indication matrix, 610

industrial companies, 117

interfaces analysis, 96

launch planning (see Modular launch

planning)

matrix-based method, 605

and MIM, 96

module drivers (see Module drivers)

NAICS, 106

and PMM, 94, 95, 606, 607

product family and development, 91, 92

product properties, 94

and QFD, 94, 95, 608–609

riding-machine platform (see Riding-
machine platform)

strategy and tactics, 92–93

tactical vehicle, 93–94

unique application, 106

“Voices of X”, 94

Modularity

cohesion and coupling, 541–542

commonality, 11–12

goals, 540–541

highly coupled structure, 541

PFD analysis

APFD model algorithm, 85–87

cladistics, 81–82

product modules and platforms, 82–83

and platform

long-lifetime products and secular

trends, 580–582

long-tailed and skewed distributions,

577–579

segmented populations and

disproportionate disaccommodation,

579–580

principle of separation, 540

SMI, 24–25

software production, 540

Modularity construction

component design modeling, 214–216

component manufacturing tooling

design, 215

Lucas method, 215, 217

market targets, 215

module design, components, 214

PPM

CAD model, 771, 773–775

design, 771, 774

platform and non-platform

components, 771

products, 774–775

production volume costing, 215, 217–218

types, 203

Modularization

actor and resource, dashboard design,

523, 524

car dashboard design, 521

design activities, 522, 523

DSM representation, 522

fuzzy clustering algorithm and MoAs, 522

generic design process, 522, 523

generic routing, dashboard design process,

523, 524

input/output class, 523, 524

and interfaces (see Modularization and

interfaces)

Modularization and interfaces

formula student case

automatic naming algorithm, 436

generated interface graphs model,

shifting system, 437, 438

interface graphs model, shifting system,

437, 438

MSI, 436

power system, 436–437

SAE shifting system, 434, 435

modularization and interfaces, 434

workflow and function modeling

automatically generated interface,

432, 433

automatic naming algorithm, 432, 433

business process modeling, 432, 433

DSM, 434

flowchart-type description, 432

functional system decomposition, 432

simplified workflow model, 431, 432

Modular launch planning

digital cameras, 621

module drivers, 620

product launch plan, 620–622

Sony Handycam range, 620, 621

806 Index

Modular product families, integrated

PKT-approach

control devices, industrial trucks (see
Control devices, industrial trucks)

description, 250

gas inlet valves (see Gas inlet valves)
herbicide spraying systems

DSM, 248, 249

MANKAR-Roll, 247–248

method units (see Method units, integrated

PKT-approach)

MIG, 251–252

MIM, herbicide spraying systems, 248–250

modern market situations, 245–246

modular lightweight design, 266

reduction, internal variety

DSM, 247

product modularization, 247

product platform, 247

product variants, 247

variety-oriented product design, 246–247

serial and parallel applications, 267

water measurement devices (see Water

measurement devices)

Modular product programs

CoC, 258

market-driven factors, 257

product structure strategies and

commonality, 257–258

Module

battery cells, 619

boundary definition

clustered DSM, UGV family, 335, 336

coupling and similarity, 334

definition, 334, 335

function deployment, 334

unclustered DSM, UGV platform,

334–335

generation, 617

interfaces, 548–549

liquid separator, 620

logic, architecture, 619, 620

MIM (seeModule indication matrix (MIM))

PMM documents, 619, 620

technical solutions, 617

transparent/nontransparent versions, 620

Module commonalization

and modular architecture, 686

optimal design (see Global product family

design)

Module Drivers

application, 99–100

battery packs, 100

building air conditioning system, 113

cell phone, 117

common unit and carry over addresses, 99

complications, 104

construction equipment accessory, 114

customer intimacy companies, 102

different specification, 100

hard drives, 101

information objects, 99, 101

laptop and e-readers/tablets, 100

laptop microprocessors, 101

medical industry, 98–99

and MIM, 103–104

modular function deployment, 96

motherboards, 101

operational excellence companies, 102

PALMA database, 103

product leadership companies, 102,

104–105

product life cycle stream, 96, 97

profile, 103

project team, 104

recycling, 102

riding-machine platform, 108, 109

service and maintenance, 99

styling and different specification, 99

technical evolution and planned design

change, 99

value disciplines, 102–103

vehicle industries, 99

“Voice of Customer”, 96–97

“Voice of Engineering”, 97

“Voice of Manufacturing”, 98

“Voice of Supply Chain”, 98

webcams, 101

Module indication matrix (MIM)

battery voltage, 616

company-specific application, 616

DC motor, 616

description, 610

herbicide spraying systems, 248–250

iteration, 103, 111

module drivers (see Module drivers)

PALMA application, 103, 104

and PMM, 606

product leadership, 610

replaceable battery, 617

riding-machine platform, 107

styling handle and escutcheon, 616–617

Module Interface Graph (MIG)

3D CAD data, 251–252

product variety, 253

and TEV, 256, 257

Index 807

Module of activities (MoAs)

definition, 523

identification, 514

types, modularity, 510

Module Process Chart (MPC), 255, 256, 262

Module Strength Indicator (MSI), 436

MOGA. See Multi-objective genetic

algorithms (MOGA)

MOPSO. See Multi-objective particle swarm

optimization (MOPSO)

MPC. See Module Process Chart (MPC)

MPED. See Market-driven product family

design (MPED)

MSI. See Module Strength Indicator (MSI)

Multidisciplinary design optimization (MDO),

29, 395

Multidisciplinary product development.

See Architecture-centric design
approach

Multidiscipline, PFD. See Product family

design (PFD)

Multi-domain, 9, 88

Multi-objective genetic algorithms (MOGA)

chromosome representation, 276

commonality objective function, 279–280

consistency constraints, 277

crossover operators, 278

decomposition and parallelization

chromosome representations, 280, 281

commonality value, 282

crossover and mutation, 282

description, 282–283

fitness calculation, 280, 282

initialization, 280

iteration and termination, 282

replacement, 282

mutation operators, 278–279

non-dominated sorting GA (NSGA-II)

code, 275

Multi-objective optimization, 394, 407–408,

410–411, 739

Multi-objective particle swarm optimization

(MOPSO), 370–371

Multi-platform design, 368, 370–377, 386

Mutation operators, 278–279

N

National Security Cutter (NSC), 626, 627, 632,

634, 638, 640, 641

Naval architecture, 627, 628, 641

Nonstandard feature (NF), 159–160

The North American Industry Classification

System (NAICS), 106

O

Object-oriented design

abstraction, 550

aggregation, 553–554

application frameworks, 556–557

associations, 552–553

composition, 554–555

encapsulation, 550

inheritance, 550–551

message-sending, 551–552

object model, 550

polymorphism, 551

Obsolete feature (OF), 160–161

OEM. See Original equipment manufacturer

(OEM)

OF. See Obsolete feature (OF)
Offshore Patrol Cutter (OPC), 626, 629, 632,

638–641

One-piece flow, 594

One-step approaches

CP3 model

description, 311

optimization algorithm, 315–316

PSMF, 312–315

SIO, product family design

conventional mapping, 308

description, 307–308

design variables selection, 308

implementation, VSMF, 310–311

VSMF, 308–309

OPC. See Offshore Patrol Cutter (OPC)
Optimal commonality decisions

characteristics, Pareto front designs,

641, 642

characteristics, US Coast Guard’s vessels,

626, 627

correlation inference, 628

design variables, 628

development and application, 626

discrete pareto front, 632–633

evolutionary optimization (see
Evolutionary optimization)

fuzzy utility, 628

integer vector, 639

mission effectiveness/cost objectives,

629, 630

multi-objective fuzzy optimization, 628

natural commonality, 639, 640

net fleet savings objective, 630–631

NSC15 and OPC15, 641

NSC mission requirements, 638–639

performance/cost, 640

product family design, 625

progression, evolutionary solution, 639

808 Index

ship design synthesis model (see Ship
design synthesis model)

test application, 626

three-objective method

analysis, 640

Pareto surface, 641, 642

two-objective method

evolutionary algorithm, 640

optimization, 639

Optimal design

multi-objective optimization, 407–408

PCA, clustering pareto solutions, 408

Optimization

evolutionary (see Evolutionary
optimization)

idiosyncrasies, 450

interactive visualization methods (see
Interactive visualization methods)

multi-objective, 407–408

product family design, 450

and UTC product design space, 454–455

Optimization, platform and non-platform ECs

calculated sensitivity indices, 357, 359

constraints, 354–355

degree of customer satisfaction, 362

industrial pincers

calculated coefficients, 357, 359

engineering measures and

benchmarking information, 356, 358

HoQ, 357

systemic image, 355–356

literature, 357

maximal OCS and OCS loss, 357, 360

objective function, 353–354

optimal values, product profiles, 357, 359

problem definition, 352–353

proposed approach, 360–361

Original equipment manufacturer (OEM)

automotive business, 125

consumer market, 122

suppliers, 121

P

PALMA. See Product architecture lifecycle
management (PALMA)

Parallelization, 246, 280–283, 291, 296

Pareto band

approach, 466

design bandwidth, 466

family and individual product, 466

Pareto front, 285–287, 632–633

Pareto set, 286, 370

Particle separator. See Aerodynamic particle

separators

Particle Swarm Optimization (PSO), 311, 314,

315, 317

Part sharing, 63, 477

PBCM. See Process-based cost modeling

(PBCM)

PCI. See Product line commonality index (PCI)

PDM. See Product data management (PDM)

Penalty function, 297, 298, 307, 310, 370, 518,

520, 527, 528, 635

Petri nets (PN). See also Timed colored petri

net (TCPN) model

description, 507

handling process varieties, 518

seven-tuple, 514

PFD. See Product family design (PFD)

PFEG. See Product family evaluation graph

approach (PFEG)

Platform

industrial contexts, 121–123

literature, 475–476

product development, 504, 530

requirement analysis stage, 504

Platform based product development

commonality vs. variety, 11–14
configuration and optimization (see

Platform configuration and

optimization)

description, 11

metrics (see Metrics)

powerful tools, 27

support systems and techniques, 27, 28

terminology, 27

Platform configuration and optimization

commonality, and modularity, 18–20

configuration and portfolio optimization

problems, 14, 18
development, 14

families and platforms, classes, 18, 21

GBOM, 20

and non-platform parameters, 20

selection and design, 14, 17–18

Platform design

identifying and isolating algorithm,

209–211

lawn and landscape blower family (see
Lawn and landscape blower family,

PPM)

manufacturing improvement

functional efficiency, 211, 213

Lucas method, 211, 213

manufacturing tooling design, 213–214

Index 809

Platform design (cont.)
modeling, 211

nonphysical component platform, 214

optimization, 211, 212

performance, product family, 208

Platform evaluation

negative valued targets, 375

optimization, product instances, 374, 375

positive valued targets, 375

stages, 374, 375

threshold value, 376

universal electric motors

optimization, 379, 382

performance, products, 382

products leveraged, 382, 383

Platform investment, 24, 60, 62

Platform leveraging, 8, 14, 327, 376, 384

Platform modeling and configuration (PMC)

CCM software, 140

configurable components (CCs), 138

description, 137

and PDM systems, 138

Platform optimization, 211

Platform planning. See Product platform
planning

Platform relaxation

multi-platform design

evaluation stage, 374–376

mathematical model, 371

platform commonality variables, 371

relaxation stage, 376–377

single platform stage, 372–374

three-stage design process, 369, 371

stage, 376–377

universal electric motors

combined results, platforms 1 and 2,

384, 388

family, 384, 385

optimum design variables and

performances, 384, 386

product evaluation, platform 2, 384, 387

strategy, case study, 384, 389

Platform selection

and design, 17, 22

joint product (see Joint product platform
selection and family design)

Platform strategy

advantages, 49–50

automotive model, 49

Black and Decker’s electric hand tools, 49

commonality (see Commonality)

divergence (see Divergence)
examination, 50

Joint Strike Fighter program, 49

low and high forward planning, 66, 67

market segmentation, 190–192

MQB platform, 49

product cost, 184–185

trade-offs

architectural parameters, 50

internal, 52–53

market, 51–52

water valve, 66

Platform valuation

case study (see Case study, platform
valuation)

company’s profit model, 184–185

design quality, 187–188

financial model, 185–187

market-based design approaches, 180–182

modular product architecture, 196

and PFD, 181

product family architecture, 183

real options analysis, 180

sharing and reusing assets, 179–180

strategy cost, 184–185

PLM. See Product life cycle management

(PLM)

PMC. See Platform modeling and configuration

(PMC)

PMM. See Product management map (PMM)

Postponement

mass customization technique, 600–601

product architecture, 601

PPCEM. See Product Platform Concept

Exploration Method (PPCEM)

PPCTM. See Product platform constructal

theory method (PPCTM)

Primary components, 76–77, 79

Principal component analysis (PCA), 396

Proactive platform design method using

modularity (PPM)

companies, 201–202

design affordance, 204

function strategy, 208

lawn and landscape blower family

(see Lawn and landscape blower

family, PPM)
Lucas method, 218

market research, 204–207

modular architecture, 203

modularity construction, 214–218

platform design (see Platform design)

product engineering design process, 202

product family, 203

product family planning, 207–208

810 Index

product platform, 202, 203

product strategy, 202

top-down approach, 203

Process-based cost modeling (PBCM),

481–482

Process platform, 3, 504, 781, 783, 786

Process reuse, 786

Product

and process qualities, 534

and production system platforms

activities, 130

bandwidth, 129

configurable component, 134–137

decomposition, 133

definition, 129

designs, 131–132

different design projects, 131

elaborations and encapsulations,

133, 134

extensive properties, 130

functional and nonfunctional

requirements, 132

function-means (F-M) tree, 132, 133

models, 131

platform, 129, 130

technical system characteristics, 131

theory of domains (ToD), 131

theory of technical systems (TTS), 131

Product architecture lifecycle management

(PALMA), 103

Product data management (PDM), 137, 138,

140, 779

Product design. See Product family design

(PFD)

Product development

cost, 62, 72, 181, 481

strategy and tactics, 92–93

Product evolution, 739

Product families

building, low cost

low-cost family variation, 592

mass production methodologies,

591, 592

commonality metrics (see Commonality

metrics)

designing (see Designing product families)

design processes (see Design process)

flexible building (see Flexible building,
product families)

and mass customization, 601–602

prerequisites

standardization, 602–603

total cost quantification, 603

spontaneous supply chains (see Supply
chains)

structuring and selling

CNC, 590

definition, 589

flexible operations, nonfamily

products, 590

sales and marketing, 591

supply chain and operations, 589

variety building (see Variety)
Product family

APFD model algorithm, 85–87

bill of materials, 478

commonality

metric calculation, 478

selection (see Commonality selection)

common components, 87

process planning, 83–84

and product platform design

capabilities, enterprises, 782

coordination demand and supply

chains, 781

corporate-level product platform,

779–780

customer and marketing interaction,

778–779

development, 777

financial analysis, 782–784

internet, 781

manufacturing systems, 781

open architecture product and service,

784–787

trade-off, 782

Product family architecture, 183

Product family configuration, 10–11

Product family design (PFD)

aerodynamic (see Aerodynamic particle

separators)

back-end issues

description, 3

front-end and development issues, 4–6

reconfigurability, 27–29

redesign and design reuse strategies,

29–31

supply chain issues, 31–33

biological analogy

APFD model (see Associated product

family design (APFD) model)

cladistics, 73

cladogram construction method, 83–84

coevolution, 73

commonality and modularity, 84

constituents, 73

Index 811

Product family design (PFD) (cont.)
designers and engineers, 73

design feasibility and variant

generation, 80–81

functional analysis, 76–77, 79

interspecies co-speciation cladograms, 74

liaison graphs, 83

market analysis, 75–76, 78

modularity analysis (see Modularity,

PFD analysis)

physical assembly process, 84

structural analysis, 77, 80

“black box” simulations, 451–452

classification, 368

cluster and sensitivity analysis., 370

commonality selection, 451

common components and functions, 2

components/modules, 451

consideration, 34

data mining-driven product design, 148–149

demonstration and application, 87

description, 35–36

design and production complexity, 87

design space exploration, 451, 452

design strategies, 148

development enterprises, 367

and development issues (see Platform based

product development)

distinctiveness, 451

and DSMs, 87

engineering design optimization

(see Engineering design)

front-end issues

description, 2

development and back-end issues, 2,

4–6

market-driven, 8–9

modeling product families and

platforms, 9–10

platform and product family

configuration, 10–11

product portfolio and product family

positioning, 6–7

global platform development, 35

gradient-based optimization methods, 389

heterogeneity, 87

low-cost communication infrastructure, 147

management and engineering aspects, 33

manufacturing and resource constraint, 35

mass customization, 2

“master assembly process plan”, 88

minimal loss, performance, 386

MOPSO, 370–371

multi-platform design, 386

optimization approaches, 370

optimization methods, 368

Pareto-optimal solution,

370–371

performance, 452

performance and commonality, 368

platform divergence, 33–34

platform planning

design variables, 296

efficiency, 296

genetic algorithms (GA), 296

method, 296

quantification, 296

platform relaxation, 371–377, 386

platform selection, 370

PPCEM, 370

product cost, 184

product features, 174–175

product lifecycle (see Product lifecycle)
product platform and sharing decisions,

149–151

relaxation formulation, 369

robust optimization approaches, 34–35

scale-based product family design

method, 390

sizing (see Product family sizing design)

stages, 2

standardization, 34

temporal market-driven preferences

(see Temporal market-driven

preferences)

top-down and bottom-up approaches, 3

translating customer, 149

universal electric motor, 377–386

UTC (see United Technologies Corporation
(UTC))

valuation (see Platform valuation)

variety management, 71–73

Product family evaluation graph approach

(PFEG), 25

Product family model

module production, 399

module transportation, 399–400

production, 400–401

product sales, 402

product transportation, 401–402

Product family planning, PPM

generic product plan, 208, 209

life cycles, 207–208

optimal set, products, 207

Product family positioning, 6–7, 345

Product family sizing design

cannibalization, 685

changing and demanding requirements, 684

812 Index

cost, flexibility, and market demands,

685–686

knowledge-based methodologies, 686

literature, 685

market, 684

modularization, 686–687

multi-objective genetic algorithm, 687

multiple scalable platforms, 687

objectives, 684

optimization, 687

perceptions and expectations, 684

product options, 684

purchasing power, 684

sizing (see Product family sizing design)

successive quadratic programming

(SQP), 687

variants, 685

Product family use cases. See Case study
Product features. See also Product family

design (PFD)

classification, 148–149, 157

consumer electronics, 157, 158

data mining model generation, 155

Mann–Kendal trend test, 157–158

nonstandard feature (NF), 159–160

obsolete feature (OF), 160–161

standard feature (SF), 158–159

time series product data, 152

Product lifecycle

commonality decisions, 733

components, 708

constraints, flow balance (see Constraints
and adaptability)

description, 708

end-of-life management (see End-of-life
management)

objective function, 714–715

optimal take-back and recovery

strategy, 714

optimization outcomes

cores, optimal amount, 725, 728

cost reduction, 732

end-of-life management, smartphone

family, 725, 729–730

graphical representation, optimal

solution, 725–726, 731

implications, 728

material input–output flow, 728, 731–732

objective value, 725, 727

refurbished Phone 4, 732

take-back and part procurement

costs, 732

optimization problem, 714–715

smartphone family design (see Smartphone

family design)

traditional family design approaches, 734

Product life cycle management (PLM)

CAE and CAD systems, 138

Configurable Component Modeler

(CCM), 137

design rationale models, 138

PMC and the PDM systems, 138

software tools, 138

Product life phases. See Life phases
modularization

Product line commonality index (PCI), 11, 13

Product line rationalization, 590

Product management map (PMM)

dendrogram and color coded, 620

logic, architecture, 619, 620

mandatory interlinked matrices, 606, 607

MIM and Module Drivers, 95, 96

Product Platform Concept Exploration Method

(PPCEM), 370

Product platform constructal theory method

(PPCTM), 346

Product platform development

architecting activity, 424–431

computational support

air-conditioning system, 428, 429

clustering pattern generation, 430

development, product architecture,

428, 429

ElectricHeatGeneration, 431
FBS modeler, 427

geometric modeler, 428

modelers, 427

physical phenomena, 430, 431

structural and behavioral

descriptions, 427

Product platform planning

CP3 method

continuous optimization frameworks,

311–316

electric motors family, 317–319

integration (see Comprehensive product

platform planning (CP3))

creation, 296

development, 295

one-step continuous optimization

frameworks (see One-step
approaches)

optimization algorithms, 296–297

particle swarm optimization, 320

PFD methods, 296

quantification, 295–296, 319

Index 813

Product platform planning (cont.)
SIO method

continuous optimization frameworks,

307–311

electric motors family, 316–317

integration (see Selection-integrated
optimization (SIO))

Product platforms

description, 533

DfHV (see Design for Human Variability

(DfHV))

software engineering

principles (see Software engineering
principles)

qualities (see Software qualities)
techniques (see Software engineering

techniques)

Product program

modular product programs, 257–258

planning (see Product program planning)

Product program planning

CAP, 257, 260

MIGs, 257

procedure, 256

PSM, 256–257, 259

Product Property Matrix, 333

Product quality, 184, 187, 188, 207, 213, 344,

347, 451, 527, 534, 537

Product strategy, 202, 248–250, 779

Product structure strategies, 257, 258

Product take-back

buyback price and program, 711

cost, 711

end-of-life management, 708

manufacturers, 711

recovery processes, 710–711

Product variants

design process, 508–509

families, structuring and selling, 589

flexible operations, 590

GVS, 509–510

modularity and scaling, 753, 754

PPM (see Proactive platform design

method using modularity (PPM))

Product variety

integrated PKT-Approach, 251–252

management, 71–73

Program families, 546–547

Program Structuring Model (PSM),

256–257, 259

Project module identification

DSM and DMM, 511

fuzzy clustering, 511–514

MoAs, 510

Q

QFD-based optimization method, scalable

product platform, 344

Quality function deployment (QFD)

and ANP (see Analytical network process

(ANP))

application, 25

based optimization method

advantages, two-stage approach,

352–353

commonality indices, 348

description, 344–345

disadvantages, 363

EC (see Engineering characteristics

(EC))

limitation, 364

planning process, 347

procedure, 349–350

product platform, 348–349

scalable product platform, 345–347

single-stage, 363

CNs and FRs, 25

components, 690

cordless handheld vacuum, 614

customer requirements, 8, 94

customers, 693–694

customer values, 606

HOQ features, 609

implementation

final designs, group 1, 700–701

fit designs, clusters, 701–702

modular architecture and literature

review, 699–700

multi-instrument capability, 700

ranked customer requirements,

697, 699

market segment, 608

and MFD, 608, 609

model, 149

product properties, 608

voice of customer, 609

R

Real options

decision-making method, 180

financial model, 196

platform design, 183

product development processes, 182

uses, 7

valuation, 180

Reconfigurable system design, 27

Refurbishment, 712, 713, 732

Requirement management (RM) system, 138

814 Index

Reuse

redesign and design, 32–31

software

component-based, 556

object-oriented application frameworks,

556–557

Riding-machine platform

iterations, 107

module drivers

indication matrix, 107, 109

profiles/scoring, 107, 111

technical solutions, 108

value disciplines, 108, 110

product lines, 106–107

strategic objectives, 107

RMSE. See Root-mean-square error (RMSE)

RM system. See Requirement management

(RM) system

Robust design

materials and manufacture, 560

program implementation, 536

requirements specification, 536

statistical modeling and ergonomics/human

factors, 560

Root-mean-square error (RMSE)

parameters, regression, 565

regression, 575

standard deviation and mean, 568

Run-time system composition, 671–673

S

SA-CAD. See Systems Architecting CAD

(SA-CAD)

Savings from commonality, 638, 641

Scalable product platform, QFD-based

optimization method

common components and modules, 345

design, 345

engineering characteristics, 345

integration, 347

MPED, 346

PPCTM, 346

product commonality, 346

research, 345

stages, 345–346

VBPDM, 346

Scaling

commonality matrix blocks, 304

design configuration, 298

factors, 382

platform components, 777

platform parameter, 384

PPM (see Proactive platform design

method using modularity (PPM))

variables, 169–170, 308, 311

Secondary components, 77, 80

Selection-integrated optimization (SIO)

application, electric motors family,

316–317

and CP3 model, 318–319

one-step approaches (see One-step
approaches)

product family design

conventional mapping, 308

description, 307–308

implementation, VSMF, 310–311

selection, design variables, 308

VSMF, 308–309

product planning

application, 297–298

optimization problem formulation, 299

penalty function formulation, 298

universal electric motor family, 298

VSMF scheme, 297

Self-organizing map (SOM), 396

Sensitivity analysis, 189, 194, 346, 351–352

Sensitivity Index (SI), 349, 351, 359

Service-based decomposition, 227

Setup elimination, 593

SF. See Standard feature (SF)

Ship design synthesis model

CERs, 633

parametric models, 633

power plants, 634

variables and ranges, 633, 634

SI. See Sensitivity Index (SI)

Single platform design, 386

Single platform stage

binary decision variable, 373

formulation, non-platform specified

optimization, 372, 373

goal programming model, 374

platform-specified formulation, 373

universal electric motors

family, 379, 380

optimization formulation, 379, 381

Singular value modularity index (SMI), 24–25

SIO. See Selection-integrated optimization

(SIO)

Sizing

architectural module, 338–339

bicycle saddle height (see Bicycle saddle
height)

Index 815

Sizing (cont.)
specification

equal accommodation, 567

equal variability, 566–567

military gloves, 565

tool handle, 573–576

Smartphone family design

decision making, 733

economies scale, recovery operations, 733

high-sharing, part composition of product

variant, 722, 723

optimization outcomes (see Product
lifecycle)

parameter setting

disassembly yield rates, 723–724

product take-back information, 722–723

recovery cost assumptions, 724–725

recovery revenue and demand

assumptions, 724, 726

structure, 721–722

SMI. See Singular value modularity index

(SMI)

Software–abstraction, 542, 649

Software–design for change

abstract machine, 546

algorithms, 545

data representation, 545–546

peripheral devices, 546

program families, 546–547

social environment, 546

Software engineering principles

abstraction, 542

anticipation, change, 543

generality, 543–544

incrementality, 544

methodologies and tools, 538, 539

modularity, 540–542

rigor and formality, 539–540

separation, concerns, 540

Software engineering techniques

design for change

abstract machine, 546

algorithms, 545

data representation, 545–546

peripheral devices, 546

program families, 546–547

social environment, 546

designs

abstract data types, 549

abstract objects, 549

bottom-up design, 548

module interfaces, 548–549

top-down design, 547–548

object-oriented design (see Object-oriented
design)

principles (see Software engineering
principles)

Reuse (see Reuse)
Software frameworks

family platform, 649–650

industry-standard enterprise architecture,

648–649

software infrastructure, 649

Software–generality, 543–544

Software–incrementality, 544

Software-intensive product platforms

advanced feature, 647

architectural code generation, 661

architecture objects to design patterns

mapping, 660

code reuse (see Code reuse, product
platforms)

constraints and adaptability

(see Constraints and
adaptability)

degrees of freedom (DOF), 647–648

design pattern stucture, 660–661

develop product platform use cases,

654–655

frameworks (see Software frameworks)

general architecture (see Software
layered architecture)

high-level process, product family

platform, 654

industrial machines (see Industrial
machines, software platforms)

knowledge graph, cell phone, 656

knowledge to architecture mapping,

659–660

mission-critical systems, 648

previous product projects, 655

refined knowledge model, 656–657

survey relevant literature, 655

Software layered architecture

advantages, 652

API, 653

family products, 652, 653

implementation, 653

maximizing code, 651–652

modern products, 650

online banking application, 651

pattern, 650, 651

standardized hardware, 652

structure, 650–651

technical risk, 653

Software–modularity, 540–542

816 Index

Software qualities

correctness, 534–535

interoperability, 538

maintainability

evolvability, 537

repairability, 536

portability, 538

product and process, 534

reliability, 535

reusability, 537–538

robustness, 536

Software–rigor and formality, 539–540

Software–separation of concerns, 540

SOM. See Self-organizing map (SOM)

Standard feature (SF), 158–159

Standardization, prerequisites, 602–603

Standard parts

and fasteners, 595

mass-customized parts and modules, 601

and materials, 599–600

product development teams, 598

steady flow, 595

Strategic axes, 103

Strategy

business, 117

enterprise-driven, 148

function, 208, 761–763

and market analysis, 190–192

module drivers, 99–101

optimization, 634

platform (see Platform strategy)

platform strategy cost, 184–185

“strategic suppliers”, 114

and tactics, 92–93

Supply chain configuration

and integration, product family, 396–397

and module commonalization, 406, 416

product family design, 31, 32

Supply chain management, 31, 33, 272,

595, 787

Supply chains

breadtruck, 596

dock-to-line deliveries, 597

flexible operations, 595

kanban, 596–597

linear cutoff, 595–596

material cut-to-length/shape, 596

min/max resupply, 596

on-demand in-house, 597

steady flow, standard parts, 595

strategic stockpiles, 597

Survey

agricultural workers, 561

consumer/user, 206

creation and deployment, 691

descriptive statistics, 695

focus groups, 149

market, 350

software designers, 655

System architecture

and architectural descriptions, 439–440

designing platforms, 423

development activities, 440–441

ISO/IEC 42010 standard, 422

mapped functionality, 438, 439

model-based development, 437

model-based paradigm

architecture-centric development

process, 442

domain-specific models, 442

domain-specific tool, 443–445

information exchange, 441, 442

MATLAB, 441

modules, 336

product architecture, 421

proposed modeling language, 437–438

System bandwidth, 124, 127, 129, 140

System family, 126, 129, 135, 137, 139, 143

System modeling, 137

Systems Architecting CAD (SA-CAD)

architecting activity, 427, 428

physical phenomena search and clustering

pattern, 430

product architecture, 429

T

TCCI. See Total constant commonality index

(TCCI)

TCM. See Total commonality metric (TCM)

TCPN model. See Timed colored petri net

(TCPN) model

TEC. See Turbine exhaust cases (TEC)
Technical solution

air conditioning system, 111

DPM, 609–610, 614–616

MFD, 94, 606–607

MIM, 96, 616

modularity, 107

PALMA, 103

Technology

development platform, 126

ERP and PDM, 779

laptop microprocessors, 101

“Network Protocol”, 658

platforms, 127–128

roadmap, 336–337

“Technology Push”, 97, 260, 620

Index 817

Technology (cont.)
TRL, 123–124

UTC (see United Technologies Corporation
(UTC))

Technology roadmap, 336–337

Temporal market-driven preferences

aerodynamic, 168–169

engineering design optimization, 151

KDD (see Knowledge discovery in

databases (KDD))

PFD, data mining predictive model, 172

Text mining, 7, 25

Timed colored petri net (TCPN) model

control

colored tokens, 516

enabling and firing rule, 515

predefined rules, 515

time properties, 516

decision support to design process

planning, 519–520

performance indicators, 518–519

seven-tuple representation, 514

variety handling mechanism, 516–518

Time series

Entropy statistics, 158–160

product data, 152

“rapid design transfer strategy”, 52

Total commonality metric (TCM), 12, 13

Total constant commonality index (TCCI), 150

Tree of External Variety (TEV)

MIGs, 256, 257

product variety, 252, 253

VAM, 261

Trend mining, 28

Turbine exhaust cases (TEC)

configurable components (CCs) images,

139, 140

definition, 139

fabricated structures, 139

jet aeroengines, 139

platform system software architecture,

140, 142

system design rationales, 139, 141

variants, 142

U

UGVs. See Unmanned ground vehicles

(UGVs)

United States Coast Guard

OME, 629

test application, 626

vessel designs, 633

United Technologies Corporation (UTC)

commonality selection, 455–456

objectives, 455

product design space and optimization

algorithm, 454–455

product family design, 453, 454

system-level simulation model, 453

Universal electric motor

complexity, decomposition scheme

all-in-one approach, 288–289

function and variants, 290

decomposition, 285–286

description, 283

design requirements, 378

design variables and constraints, 283–284

generalization, 286–287

minimum performance loss, 379

objectives, 284

parallelization, 291

platform evaluation stage, 379–383

platform relaxation stage, 384–389

product family, requirements, 377, 378

product parameters, 377

scale-based product families, 378

single platform stage, 379–381

Unmanned ground vehicles (UGVs)

clustered DSM, 335, 336

customer needs gathering, 328

Market segments, 326–327

unclustered DSM, 334, 335

UTC. See United Technologies Corporation

(UTC)

V

Value disciplines

aligned Module Drivers, 102, 117

building air conditioning system, 113

cell phone, 117

construction equipment accessory, 115

customer intimacy companies, 102

dimensional space, 93

operational excellence companies, 102, 103

product leadership companies, 102

riding-machine platform, 108, 110

space and intersection, 104

VAM. See Variety Allocation Model (VAM)

Variable segregating mapping function (VSMF)

description, 308–309

one-step approaches (see One-step
approaches)

SIO (see Selection-integrated optimization

(SIO))

818 Index

Variant design

data mining-driven product design, 148

design process modeling, 505

market requirements, 75

optimization approaches, 273

process structure

design process, 508–509

GVS, 509–510

stages, 504

Variant management, 71–73

Variation-based platform design method

(VBPDM), 346

Variety. See also Commonality

mass customization, 601

postponement, 600–601

Variety Allocation Model (VAM)

CoC, 265

optimize product structure, 254

TEV, 261

VBPDM. See Variation-based platform design

method (VBPDM)

Viper Case study

ANP, 694

cluster analysis

customer groups, 697, 698

group membership scenario, 696–697

outcomes, K-values, 695–696

Viper player groups, 697, 699

customer groups, 693, 697

data cleaning and interpretation, 691–692

methodology flow, 690

objectives, 689–690

product family sizing design, 684–687

QFD (see Quality function deployment

(QFD))

survey, 694–695

survey creation and deployment, 691

validity and optimum number clusters,

692–693

wood violins and Viper electric violin,

688–689

V-model, 424, 425

VOC. See Voice of the customer (VOC)

Voice of the customer (VOC)

Module Drivers, 96–97

QFD, 94

W

Water measurement devices

CAP, 260

flow measurement systems, 259, 260

MIGs, 260–261

product program planning, 259

PSM, 259

stakeholders, 261

White-box reuse profile, 555, 677, 678

60Whr 6-Cell Lithium-IonBattery, 162, 164–165

Wingquist Laboratory (WQL) Chalmers

aeroengine subsystem supplier, 139

aerospace sub-supplier company, 125

development knowledge platform, 124, 125

product system development, 143

Workflow models, 432

Index 819

	Preface
	Part I: Platform Planning and Strategy
	Part II: Platform Architecting and Design
	Part III: Product Family Development and Implementation
	Part IV: Applications and Case Studies
	References

	Contents
	Contributors
	Chapter 1: A Review of Recent Literature in Product Family Design and Platform-Based Product Development
	1.1 Introduction
	1.2 Fundamental Concepts
	1.3 Front-End Issues in Product Family Design
	1.3.1 Product Portfolio and Product Family Positioning
	1.3.2 Market-Driven Product Family Design
	1.3.3 Product Family Modeling
	1.3.4 Platform and Product Family Configuration

	1.4 Product Family Design and Development Issues
	1.4.1 Commonality Versus Variety
	1.4.2 Family and Platform Configuration and Optimization
	1.4.3 Metrics for Design and Assessment of Platforms
	1.4.4 Design Support Systems

	1.5 Back-End Issues of Product Family Design
	1.5.1 Reconfigurability of the Design
	1.5.2 Redesign and Design Reuse Strategies
	1.5.3 Supply Chain Issues for Product Family Design

	1.6 Future Research Directions
	1.7 Summary
	References

	Part I: Platform Planning and Strategy
	Chapter 2: Crafting Platform Strategy Based on Anticipated Benefits and Costs
	2.1 Introduction
	2.2 Trade-Offs in Platforming
	2.2.1 Trade-Offs Caused by the Market
	2.2.2 Internal Trade-Offs

	2.3 Benefits of Commonality
	2.3.1 Industries Dominated by Development Cost
	2.3.2 Industries Dominated by Manufacturing Cost

	2.4 Costs of Commonality
	2.5 Planning for Divergence
	2.6 Choosing a Platform Strategy
	References

	Chapter 3: Multidisciplinary Domains Association in Product Family Design
	3.1 Product Variety Management
	3.2 Biological Association Analogy
	3.2.1 Market Analysis
	3.2.2 Functional Analysis
	3.2.3 Structural Analysis
	3.2.4 Design Feasibility and Variant Generation
	3.2.5 Modularity Analysis
	3.2.5.1 Cladistics
	3.2.5.2 Identifying Product Modules and Platforms

	3.2.6 Process Planning for Product family
	3.2.7 APFD Model Algorithm

	3.3 Discussions and Conclusions
	References

	Chapter 4: Modular Function Deployment: Using Module Drivers to Impart Strategies to a Product Architecture
	4.1 Introduction
	4.2 Background
	4.2.1 Strategy and Tactics in Product Development
	4.2.2 Module as a Tactical Vehicle
	4.2.3 Modular Function Deployment
	4.2.4 Module Drivers

	4.3 Approach
	4.3.1 Imparting Strategy with Module Drivers
	4.3.2 Aligning Module Drivers to Value Disciplines
	4.3.3 Illustrating the Module Driver Profile

	4.4 Demonstrations
	4.4.1 Riding-Machine Platform
	4.4.2 Building Air Conditioning System
	4.4.3 Construction Equipment Accessory
	4.4.4 Cell Phone

	4.5 Conclusions
	References

	Chapter 5: Emphasizing Reuse of Generic Assets Through Integrated Product and Production System Development Platforms
	5.1 Background
	5.2 Platforms in Industrial Contexts
	5.3 An Integrated Platform Approach
	5.4 Platform Descriptions and Platform System Models
	5.4.1 Technology Platforms
	5.4.2 Product and Production System Platforms
	5.4.2.1 Theoretical Background
	5.4.2.2 The Configurable Component Concept

	5.5 A Platform Life Cycle Management Software Environment
	5.6 An Industrial Case Study
	5.7 Conclusions
	Appendix
	References

	Chapter 6: Quantifying the Relevance of Product Feature Classification in Product Family Design
	6.1 Introduction
	6.2 Related Work
	6.2.1 Data Mining-Driven Product Design
	6.2.2 Translating Customer Needs into Engineering Targets
	6.2.3 Product Platform and Sharing Decisions

	6.3 Methodology
	6.3.1 Level 1: Temporal Market-Driven Preferences
	6.3.1.1 KDD Step 1: Data Acquisition
	6.3.1.2 KDD Step 2: Data Selection and Cleaning
	6.3.1.3 KDD Step 3: Data Transformation
	6.3.1.4 KDD Step 4: Data Mining/Pattern Discovery
	Phase 1: Iterative Feature Evaluation
	Phase 2: Model Generation and Irrelevant Feature Classification
	Standard Feature (SF)
	Nonstandard Feature (NF)
	Obsolete Feature (OF)

	6.3.2 Level 2: Engineering Design Optimization
	6.3.2.1 Mapping Product Feature Space to Engineering Design Space

	6.4 Case Study of a Family of Aerodynamic Particle Separators
	6.4.1 Level 1: Temporal Market-Driven Preferences
	6.4.2 Level 2: Engineering Design Optimization

	6.5 Results and Discussion
	6.5.1 Level 1: Temporal Market-Driven Preferences
	6.5.2 Level 2: Engineering Design Optimization

	6.6 Conclusions
	References

	Chapter 7: Platform Valuation for Product Family Design
	7.1 Introduction
	7.2 Literature Review and Background
	7.2.1 Product Family Design
	7.2.2 Market-Based Design Approaches

	7.3 A Financial Model for Platform Design Valuation
	7.3.1 Product Family Architecture
	7.3.2 Company´s Profit Model and Platform Strategy Cost
	7.3.3 A Financial Model
	7.3.4 Design Quality

	7.4 Case Study
	7.4.1 Market Analysis and Platform Strategy
	7.4.2 Identify Design Quality
	7.4.3 Numerical Analysis

	7.5 Closing Remarks and Future Work
	References

	Part II: Platform Architecting and Design
	Chapter 8: A Proactive Scaling Platform Design Method Using Modularity for Product Variations
	8.1 Introduction
	8.2 Related Work
	8.3 Proactive Platform Design Method Using Modularity
	8.3.1 Step 1: Market Research
	8.3.2 Step 2: Product Family Planning
	8.3.3 Step 3: Function Strategy
	8.3.4 Step 4: Platform Design
	8.3.5 Step 5: Modularity Construction

	8.4 Concluding Remarks
	References

	Chapter 9: Architectural Decomposition: The Role of Granularity and Decomposition Viewpoint
	9.1 Introduction
	9.2 Representation of an Architecture
	9.3 Background
	9.4 Choices in Decomposition
	9.4.1 Level of Granularity
	9.4.2 Decomposition Viewpoint
	9.4.3 Assembly Decomposition
	9.4.4 Functional Decomposition
	9.4.5 Service-Based Decomposition

	9.5 Effect of Level of Granularity on Product Modularity
	9.5.1 Metrics Used
	9.5.2 Effect of Granularity
	9.5.3 Effect of Viewpoint
	9.5.4 Case Study: Joint Effect of Granularity and Viewpoint

	9.6 Conclusions and Recommendations
	References

	Chapter 10: Integrated Development of Modular Product Families: A Methods Toolkit
	10.1 Modular Product Families for Modern Market Situations
	10.2 Research on Reduction of Internal Variety
	10.3 Example of a Product Family
	10.4 Needs in the Development of Modular Product Families
	10.5 Integrated PKT-Approach for Developing Modular Product Families
	10.6 Method Units
	10.6.1 Design for Variety
	10.6.2 Life Phases Modularization
	10.6.3 Product Program Planning
	10.6.4 Development of Modular Product Programs

	10.7 Industrial Case Studies
	10.7.1 Planning a Program of Water Measurement Devices
	10.7.1.1 Initial Situation and Objectives
	10.7.1.2 Procedure and Application of Methods Toolkit
	10.7.1.3 Results

	10.7.2 Development of a Family of Gas Inlet Valves
	10.7.2.1 Initial Situation and Objectives
	10.7.2.2 Procedure and Application of Methods Toolkit
	10.7.2.3 Results

	10.7.3 A Family of Control Devices for Industrial Trucks
	10.7.3.1 Initial Situation and Objectives
	10.7.3.2 Procedure and Application of Methods Toolkit
	10.7.3.3 Results

	10.8 Perspectives on the PKT Methods Toolkit
	10.9 Conclusions
	References

	Chapter 11: Solving the Joint Product Platform Selection and Product Family Design Problem: An Efficient Decomposed Multiobjec...
	11.1 Introduction
	11.2 Review of Related Literature
	11.2.1 Classification: Product Family Optimization
	11.2.2 Prior Approaches to Solving the Joint Problem
	11.2.3 Decomposition Approaches

	11.3 Proposed MOGA Approach
	11.3.1 Chromosome Representation
	11.3.2 Consistency Constraints
	11.3.3 Crossover Operators
	11.3.4 Mutation Operators
	11.3.5 Commonality Objective Function

	11.4 Decomposition and Parallelization of the MOGA
	11.5 Demonstration: Universal Electric Motor Family
	11.5.1 Product Family Objective Functions
	11.5.2 Decomposition
	11.5.3 Generalization
	11.5.4 Complexity of the Decomposition Scheme
	11.5.5 Parallelization

	11.6 Conclusions and Future Work
	References

	Chapter 12: One-Step Continuous Product Platform Planning: Methods and Applications
	12.1 Introduction
	12.2 Integrated Product Planning Models
	12.2.1 Selection-Integrated Optimization (SIO) Model
	12.2.1.1 Penalty Function Formulation
	12.2.1.2 SIO Problem Formulation

	12.2.2 Comprehensive Product Platform Planning (CP3) Model
	12.2.2.1 Formulation of the CP3 Model
	12.2.2.2 Representative Illustration of the CP3 Model
	12.2.2.3 The Generalized MINLP Problem

	12.3 One-Step Continuous Optimization Frameworks
	12.3.1 Product Family Design Using Selection-Integrated Optimization (SIO)
	12.3.1.1 Variable-Segregating Mapping Functions (VSMF)
	12.3.1.2 Implementation of VSMF in SIO-Based PFD

	12.3.2 Comprehensive Product Platform Planning (CP3) Optimization
	12.3.2.1 Platform Segregating Mapping Function (PSMF)
	12.3.2.2 Choice of Optimization Algorithm

	12.4 Application to Family of Electric Motors
	12.4.1 Application of the SIO Method
	12.4.2 Application of the CP3 Method
	12.4.3 Comparison of CP3 and SIO Results

	12.5 Closing Remarks
	References

	Chapter 13: Defining Modules for Platforms: An Overview of the Architecting Process
	13.1 Introduction
	13.2 Market Segment Definition and Market Attack Plan
	13.3 Customer Needs Gathering
	13.4 System Requirements Definition
	13.5 Functional Requirements Definition
	13.6 Component-Based Approach
	13.7 Generic System Platform Architecture Definition
	13.8 Module Boundary Definition
	13.9 Architecture Roadmap
	13.10 Commonality Assignment
	13.11 Architectural Module Sizing and Down Selection
	13.12 Summary
	References

	Chapter 14: A QFD-Based Optimization Method for Scalable Product Platform
	14.1 Introduction
	14.2 Related Work
	14.2.1 Optimization for Scalable Product Platform
	14.2.2 Quality Function Deployment
	14.2.3 Commonality Indices

	14.3 A Method for Product Platform Optimization Based on QFD
	14.3.1 Procedure
	14.3.2 Determine the Optimal Values of ECs for Each Product Profile
	14.3.3 Sensitivity Analysis for Determining Platform ECs
	14.3.4 Optimization of Platform and Non-platform ECs
	14.3.4.1 Problem Definition
	14.3.4.2 Objective Function
	14.3.4.3 Constraints

	14.4 Case Study and Analysis
	14.4.1 Case Description
	14.4.2 Computational Results
	14.4.3 Advantages Over a Two-Stage Approach

	14.5 Discussions and Conclusions
	References

	Chapter 15: Cascading Platforms for Product Family Design
	15.1 Introduction
	15.2 Literature Review
	15.3 Platform Relaxation for Multi-platform Design: Overall Approach
	15.3.1 Single Platform Stage
	15.3.2 Evaluation Stage
	15.3.3 Relaxation Stage

	15.4 Universal Electric Motor Case Study
	15.4.1 Single Platform Stage
	15.4.2 Platform Evaluation Stage
	15.4.3 Platform Relaxation Stage

	15.5 Conclusions
	References

	Part III: Product Family Development and Implementation

	Chapter 16: Global Product Family Design: Simultaneous Optimal Design of Module Commonalization and Supply Chain Configuration
	16.1 Introduction
	16.2 Global Product Family and Its Design Problem
	16.2.1 Product Family Under Global Manufacturing
	16.2.2 Multi-objectiveness and Concept-Level Design

	16.3 Mathematical Model of Global Product Family Design
	16.3.1 Integration of Product Family and Supply Chain
	16.3.2 Conditions for Problem Formulation
	16.3.3 Product Family Model
	16.3.3.1 Module Production
	16.3.3.2 Module Transportation
	16.3.3.3 Product Production
	16.3.3.4 Product Transportation
	16.3.3.5 Product Sales

	16.3.4 Cost Model
	16.3.4.1 Fixed Costs
	16.3.4.2 Variable Costs
	16.3.4.3 Total Cost and Profit

	16.3.5 Quality Model
	16.3.6 Delivery Model
	16.3.7 Mathematical Formulation

	16.4 Optimal Design Techniques for Global Product Family
	16.4.1 Multi-Objective Optimization
	16.4.2 Principal Component Analysis for Clustering Pareto Solutions

	16.5 Numerical Case Study
	16.5.1 Typical Situation of Global Product Family Design
	16.5.2 Contents of an Example Problem
	16.5.3 Multi-Objective Optimization
	16.5.4 Clustering of Pareto Solutions
	16.5.5 Design Concept Exploration

	16.6 Concluding Remarks
	References

	Chapter 17: Architecture-Centric Design Approach for Multidisciplinary Product Development
	17.1 Introduction
	17.2 Architecting Activity in Product Development and Its Relevance to Product Platform Development
	17.2.1 Architecting Activity in Product Development
	17.2.2 Product Platform Development in Architecting Activity
	17.2.3 Computational Support

	17.3 Modularization and Definition of Interfaces
	17.3.1 Workflow and Function Modeling
	17.3.2 Modularization and Interfaces
	17.3.3 Formula Student Case

	17.4 System Architecture Models and Their Use in Model-Based Platform Development
	17.4.1 System Architecture and Architectural Descriptions
	17.4.2 Providing Overview of Development Activities
	17.4.3 Supporting Information Reuse Through the Model-Based Paradigm

	17.5 Conclusions
	References

	Chapter 18: Product Family Commonality Selection Using Optimization and Interactive Visualization
	18.1 Introduction
	18.2 Related Work in Product Family Design
	18.3 Product Family Design Example
	18.3.1 UTC Product Design Space and Optimization Algorithm
	18.3.2 Objectives for the UTC Product Family
	18.3.3 Commonality Selection

	18.4 Interactive Visualization Methods for Commonality Selection
	18.4.1 Method 1 (Exhaustive+Visualization)
	18.4.2 Method 2 (Individual Opt+Visualization)
	18.4.2.1 Interactive Visualization
	18.4.2.2 Commonality Selection with Visualization

	18.4.3 Method 3 (Product Family Opt+Visualization)
	18.4.4 Comparison of Methods: Our Experience
	18.4.4.1 Discussion of Method 1
	18.4.4.2 Discussion of Method 2
	18.4.4.3 Discussion of Method 3

	18.4.5 Introduction of the Pareto Band Concept

	18.5 Implications of Commonality Selection Process
	18.6 Closing Remarks
	References

	Chapter 19: Developing and Assessing Commonality Metrics for Product Families
	19.1 Introduction
	19.2 Commonality and Platform Literature
	19.3 Modeling and Assessment Methods
	19.3.1 Proposed Commonality Metrics
	19.3.2 Cost Modeling Methodology
	19.3.3 Metric Assessment Methodology

	19.4 Case Studies
	19.4.1 Instrument Panel Beam Comparison
	19.4.2 Case Results

	19.5 Discussions
	19.6 Limitations and Future Work
	References

	Chapter 20: Managing Design Processes of Product Families by Modularization and Simulation
	20.1 Introduction
	20.2 Background Review
	20.2.1 Generic Design Process Structure
	20.2.2 Modular Design Projects
	20.2.3 Design Process Models

	20.3 Product Variant Design Process Structure
	20.3.1 Design Process of Product Variants
	20.3.2 Generic Variety Structure

	20.4 Project Module Identification
	20.4.1 Design Structure Matrix and Domain Mapping Matrix
	20.4.2 Fuzzy Clustering

	20.5 Design Process Modeling by Timed Colored Petri Nets
	20.5.1 Design Process TCPN Model
	20.5.1.1 TCPN Control
	Colored Tokens
	Time Properties

	20.5.1.2 Variety Handling Mechanism
	20.5.1.3 Performance Indicators

	20.5.2 Decision Support to Design Process Planning
	20.5.2.1 TCPN Construction
	20.5.2.2 TCPN Deployment

	20.6 Case Study
	20.6.1 Design Process Modularization
	20.6.2 TCPN for Design Process Simulation
	20.6.3 Design Process Planning
	20.6.4 Results and Analysis

	20.7 Discussions
	20.8 Summary
	References

	Chapter 21: Design Principles for Reusable Software Product Platforms
	21.1 Introduction
	21.2 Software Qualities
	21.2.1 Product and Process Qualities
	21.2.2 Correctness
	21.2.3 Reliability
	21.2.4 Robustness
	21.2.5 Maintainability
	21.2.5.1 Repairability
	21.2.5.2 Evolvability

	21.2.6 Reusability
	21.2.7 Portability
	21.2.8 Interoperability

	21.3 Software Engineering Principles
	21.3.1 Rigor and Formality
	21.3.2 Separation of Concerns
	21.3.3 Modularity
	21.3.4 Abstraction
	21.3.5 Anticipation of Change
	21.3.6 Generality
	21.3.7 Incrementality

	21.4 Software Engineering Techniques
	21.4.1 Design for Change
	21.4.1.1 Change of Algorithms
	21.4.1.2 Change of Data Representation
	21.4.1.3 Change of Abstract Machine
	21.4.1.4 Change of Peripheral Devices
	21.4.1.5 Change of Social Environment
	21.4.1.6 Program Families

	21.4.2 Software Design
	21.4.2.1 Top-Down Design
	21.4.2.2 Bottom-Up Design
	21.4.2.3 Module Interfaces
	21.4.2.4 Abstract Objects
	21.4.2.5 Abstract Data Types

	21.4.3 Object-Oriented Design
	21.4.3.1 The Object Model
	21.4.3.2 Abstraction
	21.4.3.3 Encapsulation
	21.4.3.4 Inheritance
	21.4.3.5 Polymorphism
	21.4.3.6 Message-Sending
	21.4.3.7 Associations
	21.4.3.8 Aggregation
	21.4.3.9 Composition

	21.4.4 Software Reuse
	21.4.4.1 Component-Based Software
	21.4.4.2 Object-Oriented Application Frameworks

	21.5 Conclusions
	References

	Chapter 22: Considering Human Variability When Implementing Product Platforms
	22.1 Introduction
	22.2 Basic DfHV Principles
	22.3 Quantifying the Variability
	22.3.1 Databases
	22.3.2 Synthesizing Anthropometry

	22.4 Designing for the Variability
	22.4.1 Specifying Adjustability
	22.4.2 Specifying Sizes
	22.4.2.1 Sizing for Equal Variability
	22.4.2.2 Sizing for Equal Accommodation

	22.4.3 Example 1: Bicycle Saddle Height
	22.4.3.1 Background
	22.4.3.2 Adjustability
	22.4.3.3 Sizing
	22.4.3.4 Sizing for Equal Variability
	22.4.3.5 Sizing for Equal Accommodation

	22.4.4 Example 2: Tool Handle
	22.4.4.1 Background
	22.4.4.2 Single Size

	22.4.5 Multiple Sizes

	22.5 Opportunities for Platforming and Modularity
	22.5.1 Long-Tailed and Skewed Distributions
	22.5.2 Segmented Populations and Disproportionate Disaccommodation
	22.5.3 Long-Lifetime Products and Secular Trends

	22.6 Conclusion
	References

	Part IV: Applications and Case Studies
	Chapter 23: Building, Supplying, and Designing Product Families
	23.1 Structuring and Selling Product Families
	23.1.1 What About Products That Do Not Fit into Families?
	23.1.2 Focusing on the Families

	23.2 Building Families of Product Quickly at Low Cost
	23.2.1 Why Mass Production Methodologies Will Not Work for Product Families
	23.2.2 The Value of Building Low-Cost Family Variation Quickly

	23.3 How to Build Product Families Flexibly
	23.3.1 Setup and Batch Elimination
	23.3.2 Tooling Setup Elimination
	23.3.3 CNC to Eliminate Machining Setup
	23.3.4 Flow Manufacturing
	23.3.5 Assuring Quality with One-Piece Flow
	23.3.6 Flexible Source Cells
	23.3.7 Flexible Assembly

	23.4 Spontaneous Supply Chains
	23.4.1 Steady Flow of Standard Parts
	23.4.2 Linear Cutoff
	23.4.3 Material Cut-to-Length/Shape
	23.4.4 Min/Max Resupply
	23.4.5 Breadtruck
	23.4.6 Kanban
	23.4.7 Parts Made On-Demand In-House
	23.4.8 Strategic Stockpiles
	23.4.9 Dock-to-Line Deliveries

	23.5 Designing Product Families
	23.5.1 Developing Products for Families
	23.5.2 Designing for No Setup
	23.5.3 Designing for CNC
	23.5.4 Designing Around Standard Parts and Materials
	23.5.5 Designing Around Readily Available Parts/Materials
	23.5.6 Design for Manufacturability
	23.5.7 Arbitrary Decisions

	23.6 Ways to Build Variety
	23.6.1 Postponement
	23.6.2 Extending Product Families with Mass Customization

	23.7 Synergies of Mass Customization and Product Families
	23.8 Essential Prerequisites
	23.8.1 Standardization
	23.8.2 Total Cost Quantification

	References

	Chapter 24: Modular Function Deployment Applied to a Cordless Handheld Vacuum
	24.1 Theory of Modular Function Deployment
	24.1.1 Quality Function Deployment
	24.1.2 Design Property Matrix
	24.1.3 Module Indication Matrix

	24.2 Cordless Handheld Vacuum Case Study
	24.2.1 Specifications
	24.2.2 Market Segments
	24.2.2.1 Family Felicia
	24.2.2.2 Danny Do-It-Yourself
	24.2.2.3 Sophia Student

	24.2.3 Customer Value Rating
	24.2.4 Quality Function Deployment
	24.2.5 Design Property Matrix
	24.2.6 Module Indication Matrix
	24.2.7 Module Generation
	24.2.8 Conceptual Modules

	24.3 Modular Launch Planning
	24.4 Concluding Remarks
	References

	Chapter 25: Optimal Commonality Decisions in Multiple Ship Classes
	25.1 Introduction
	25.2 Problem Formulation
	25.2.1 Mission Effectiveness/Cost Objectives
	25.2.2 Net Fleet Savings Objective
	25.2.3 Design Variables
	25.2.4 Expected Discrete Pareto Front

	25.3 Ship Design Synthesis Model
	25.4 Evolutionary Optimization
	25.4.1 Overall Optimization Strategy
	25.4.2 Two-Objective Evolutionary Optimization Method
	25.4.3 Three-Objective Discrete Optimization Process

	25.5 Sample Results
	25.6 Conclusions
	References

	Chapter 26: A Heuristic Approach to Architectural Design of Software-Intensive Product Platforms
	26.1 Introduction
	26.2 Definitions of Framework in Software Engineering
	26.2.1 Industry-Standard Enterprise Architecture Framework
	26.2.2 Software Infrastructure Framework
	26.2.3 Family Platform Framework

	26.3 General Architecture of Software-Intensive Products
	26.4 Domain Analysis
	26.4.1 Develop Product Platform Use Cases
	26.4.2 Survey Relevant Literature
	26.4.3 Analyze Previous Product Projects
	26.4.4 Build Top-Level Domain Knowledge Model
	26.4.5 Refine Domain Knowledge Model
	26.4.6 Analyze Constraints and Adaptability
	26.4.7 Map Knowledge to Architecture
	26.4.8 Map Architecture Objects to Design Patterns
	26.4.9 Complete Detailed Software Model Design
	26.4.10 Architectural Code Generation

	26.5 Case Study: Software Platform for a Family of Industrial Machines
	26.5.1 System Overview
	26.5.1.1 High-Level Organization
	PATF Engine
	ActiveDevices

	26.5.1.2 High-Level System Behavior
	Manual Mode
	Automatic Mode

	26.5.2 Relevant Design Decisions in PATF
	26.5.2.1 Design for Change
	Product Family Infrastructure Layer
	Family Platform Framework Layer
	Product-Specific Features Layer
	Final Product Test Example

	26.5.2.2 Run-Time System Composition

	26.6 Code Reuse in Product Platforms Vs. Traditional Approach
	26.6.1 Implementation
	26.6.2 Application-Independent Components
	26.6.3 Application-Dependent Components
	26.6.4 Evaluation
	26.6.5 Methodology
	26.6.6 Results
	26.6.6.1 Code Reusability
	26.6.6.2 Cost Savings When Using the Platform
	26.6.6.3 Other Observations
	26.6.6.4 Code Reuse Conclusion

	References

	Chapter 27: Customer Needs Based Product Family Sizing Design: The Viper Case Study
	27.1 Product Family Sizing Design
	27.2 Background Information and Problem Description
	27.2.1 Wood Violins and the Viper Electric Violin
	27.2.2 Objectives

	27.3 Methodology
	27.3.1 Survey Creation and Deployment
	27.3.2 Data Cleaning and Interpretation
	27.3.3 Cluster Analysis
	27.3.4 Validity and Selecting the Optimum Number of Clusters
	27.3.5 Discovering the Customer Groups
	27.3.6 Matching Designs to Customers with QFD
	27.3.7 Verifying Consistency of the Results with ANP

	27.4 Results
	27.4.1 Survey Results
	27.4.2 Cluster Analysis
	27.4.3 Defining Customer Groups
	27.4.4 Implementing QFD: Fitting Designs to Customers
	27.4.5 Consistency Verification of QFD Results with Analytical Network Process

	27.5 Conclusions
	References

	Chapter 28: Product Family Design and Recovery for Lifecycle
	28.1 Introduction
	28.2 End-of-Life Management of a Family of Products
	28.2.1 Definition and Benefit of Product Family in End-of-Life Management
	28.2.2 Processes for Product End-of-Life Management
	28.2.2.1 Product Take-Back
	28.2.2.2 End-of-Life Recovery

	28.3 Model for Evaluating Product Family Design from an End-of-Life Perspective
	28.3.1 Problem Statement
	28.3.2 Mathematical Formulation
	28.3.2.1 Objective Function
	28.3.2.2 Constraints
	Flow Balance of Cores
	Flow Balance of Intermediates
	Flow Balance of Components
	Flow Balance of Refurbished Intermediates
	Flow Balance of Refurbished Cores
	Environmental Regulations
	Core Availability
	Demand Satisfaction and Avoidance of Excess Fulfillment
	Variable Condition

	28.4 Illustrative Example
	28.4.1 Smartphone Family Design
	28.4.1.1 Design Scenario
	28.4.1.2 Parameter Setting

	28.4.2 Optimization Result

	28.5 Summary
	References

	Chapter 29: Application of the Generational Variety Index: A Retrospective Study of iPhone Evolution
	29.1 Introduction
	29.1.1 Evolving Designs
	29.1.2 Generational Variety Index
	29.1.3 Case Study Focus

	29.2 Methodology and Case Study
	29.2.1 Step 1: Assessing Market Life
	29.2.2 Step 2: Constructing QFD Matrices
	29.2.3 Step 3: Predicting Changes in Customer Needs
	29.2.4 Step 4: Estimating Engineering Metric Target Values
	29.2.5 Step 5: Calculating Normalized Target Value Matrix
	29.2.6 Step 6: Creating GVI Matrix
	29.2.7 Step 7: Computing GVI Values

	29.3 Discussion
	29.4 Conclusions
	References

	Chapter 30: Designing a Lawn and Landscape Blower Family Using Proactive Platform Design Approach
	30.1 Introduction
	30.2 Step 1: Market Research
	30.3 Step 2: Product Family Planning
	30.4 Step 3: Function Strategy
	30.5 Step 4: Platform Design
	30.6 Step 5: Modularity Construction
	30.7 Summary
	References

	Epilogue

	Product Family and Product Platform Design:Looking Forward
	Customer Integration and Marketing Interaction with Product Family Design
	Corporate-Level Product Platform Support
	Extended Platforms for Comprehensive Product Families
	Financial Analysis of Product Platforms and Economics of Product Family Design
	Open Architecture Product and Service Platform Design
	Summary

	References
	Index

