
Chapter 8
Graphics Processing Units

Peter Schwabe

Abstract This chapter introduces graphics processing units (GPUs) for general-
purpose computations. It describes the highly parallel architecture of modern GPUs,
software-development toolchains to program them, and typical pitfalls and perfor-
mance bottlenecks. Then it considers several applications of GPUs in information
security, in particular in cryptography and cryptanalysis.

Graphics Processing Units (GPUs) are coprocessors that traditionally perform the
rendering of 2-dimensional and 3-dimensional graphics information for display on
a screen. In particular, computer games request more and more realistic real-time
rendering of graphics data and so GPUs became more and more powerful highly
parallel specialist computing units. It did not take long until programmers realized
that this computational power can also be used for tasks other than computer graph-
ics. For example already in 1990 Lengyel, Reichert, Donald, and Greenberg used
GPUs for real-time robot motion planning [43]. In 2003, Harris introduced the term
general-purpose computations on GPUs (GPGPU) [28] for such nongraphics appli-
cations running on GPUs. At that time, programming GPGPUs meant expressing
all algorithms in terms of operations on graphics data, pixels, and vectors. This was
feasible for speed-critical small programs and for algorithms that operate on vectors
of floating-point values in a similar way as graphics data are typically processed in
the rendering pipeline. The programming paradigm shifted when the two main GPU
manufacturers, NVIDIA and AMD, changed the hardware architecture from a dedi-
cated graphics-rendering pipeline to a multi-core computing platform, implemented
shader algorithms of the rendering pipeline in software running on these cores, and
explicitly supported GPGPUs by offering programming languages and software-
development toolchains. This chapter first gives an introduction to the architectures
of these modern GPUs and the tools and languages to program them. Then it high-
lights several applications of GPUs related to information security with a focus on
applications in cryptography and cryptanalysis.
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8.1 An Introduction to Modern GPUs

GPUs have evolved to coprocessors of a size larger than typical CPUs. While CPUs
use large portions of the chip area for caches, GPUs use most of the area for arith-
metic logic units (ALUs). The main concept that both NVIDIA and AMD GPUs use
to exploit the computational power of these ALUs is executing a single instruction
stream on multiple independent data streams (SIMD) [23]. This concept is known
from CPUs with vector registers and instructions operating on these registers. For
example, a 128-bit vector register can hold four single-precision floating-point val-
ues; an additional instruction operating on two such registers performs four inde-
pendent additions in parallel. Instead of using vector registers, GPUs use hardware
threads that all execute the same instruction stream on different sets of data. NVIDIA
calls this approach to SIMD computing “single instruction stream, multiple threads
(SIMT)”. The number of threads required to keep the ALUs busy is much larger
than the number of elements inside vector registers on CPUs. GPU performance,
therefore, relies on a high degree of data-level parallelism in the application.

To alleviate these requirements on data-level parallelism, GPUs can also exploit
task-level parallelism by running different independent tasks of a computation in par-
allel. This is possible on all modern GPUs through the use of conditional statements.
Some recent GPUs support the exploitation of task-level parallelism also through
concurrent execution of independent GPU programs. Each of the independent tasks
again needs to involve a relatively high degree of data-level parallelism to make full
use of the computational power of the GPU, but exploitation of task-level parallelism
gives the programmer more flexibility and extends the set of applications that can
make use of GPUs to accelerate computations.

The remainder of this section gives an overview of the hardware architectures
of modern GPUs, introduces the relevant programming languages, and discusses
typical performance bottlenecks and GPU benchmarking issues. The section focuses
on NVIDIA GPUs, because most of the implementations of subsequent sections
target these GPUs.

8.1.1 NVIDIA GPUs

In 2006, NVIDIA introduced the Compute Unified Device Architecture (CUDA).
Today all of NVIDIA’s GPUs are CUDA GPUs. CUDA is not a computer archi-
tecture in the sense of a definition of an instruction set and a set of architectural
registers; binaries compiled for one CUDA GPU do not necessarily run on all CUDA
GPUs. More specifically, NVIDIA defines different CUDA compute capabilities to
describe the features supported by CUDA hardware. The first CUDA GPUs had
compute capability 1.0. In 2011, NVIDIA released GPUs with compute capability
2.1, which is known as “Fermi” architecture. Details about the different compute
capabilities are described in [50, Appendix F].
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A CUDA GPU consists of multiple so-called streaming multiprocessors (SMs).
The threads executing a GPU program, a so-called kernel, are grouped in blocks.
Threads belonging to one block all run on the same multiprocessor but one mul-
tiprocessor can run multiple blocks concurrently. Blocks are further divided into
groups of 32 threads called warps; the threads belonging to one warp are executed in
lock step, i.e., they are synchronized. As a consequence, if threads inside one warp
diverge via a conditional branch instruction, execution of the different branches is
serialized. On GPUs with compute capability 1.x all SMs must execute the same
kernel. Compute capability 2.x supports concurrent execution of different kernels on
different SMs.

Each SM contains several so-called CUDA cores, 8 per SM in compute capability
1.x , 32 per SM in compute capability 2.0, and 48 per SM in compute capability 2.1.
One could think that for example a reasonable number of threads per SM is 8 for
compute capability 1.x GPUs or 48 for compute capability-2.1 GPUs. In fact, it needs
many more threads to fully utilize the ALUs; the reason is that concurrent execution
of many threads on one SM is used to hide arithmetic latencies and up to some extent
also memory access latencies. For compute capability 1.x, NVIDIA recommends
to run at least 192 or 256 threads per SM. To fully utilize the power of compute
capability 2.x, GPUs even more threads need to run concurrently on one SM. For
applications that involve a very high degree of data-level parallelism, it might now
sound like a good idea to just run as many concurrent threads as possible. The problem
is that the register banks are shared among threads; the more threads are executed,
the fewer registers are available per thread. Finding the optimal number of threads
running concurrently on one SM is a crucial step to achieve good performance.

Aside from registers, each thread also has access to various memory domains.
Each SM has several KB of fast shared memory accessible by all threads on this
multiprocessor. This memory is intended to exchange data between the threads of a
thread block, latencies are as low as for register access but throughput depends on
access patterns. The shared memory is organized in 16 banks. If two threads within
the same half-warp (16 threads) load from or store to different addresses on the same
memory bank in the same instruction, these requests are serialized. Such requests to
different addresses on the same memory bank are called bank conflicts, for details
see [50, Sect. 5.3.2.3]. Graphics cards also contain several hundred MB up to a few
GB of device memory. Each thread has a part of this device memory dedicated
as so-called local memory. Another part of the device memory is global memory
accessible by all threads. Access to device memory has a much higher latency than
access to shared memory or registers. For details on latencies and throughput see
[50, Sects. 5.3.2.1, 5.3.2.2]. Additionally, each thread has cached read-only access
to constant memory and texture and surface memory. Loads from constant cache
are efficient if all threads belonging to a half-warp load from the same address; if
two threads within the same half-warp loaded from different addresses in the same
instruction, throughput decreases by a factor equal to the number of different load
addresses. Another decision (aside from the number of threads per SM) that can have
huge impact on performance is what data are kept in which memory domain. Access
from threads to different memories is depicted in Fig. 8.1.
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Fig. 8.1 Access to different memories from threads on NVIDIA CUDA devices. Light-red mem-
ories are fast; dark-red memories are parts of device memory with high-latency access

Communication between CPU and GPU is done by transferring data between
the host memory and the GPU device memory or by mapping page-locked host
memory into the GPUs address space. Asynchronous data transfers between page-
locked host memory and device memory can overlap with computations on the CPU.
For some CUDA devices since compute capability 1.1 they can also overlap with
computations on the GPU. For details on data transfers to and from NVIDIA GPUs
see [50, Sects. 3.4, 3.5]. Since CUDA 4.0 NVIDIA simplifies data exchange between
host memory and device memory of Fermi GPUs by supporting a unified virtual
address space. For details see [50, Sects. 3.2.7, 3.3.9]. The unified virtual address
space is particularly interesting in conjunction with peer-to-peer memory access
between multiple GPUs. This technique makes it possible to access the memory of
one GPU directly from another GPU without data transfers through host memory.
For details see [50, Sects. 3.2.6.4, 3.2.6.5].
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8.1.2 AMD GPUs

The hardware and software technologies that allow programmers to use AMD GPUs
for general-purpose computations are called AMD accelerated parallel processing
(APP), formerly known as ATI Stream. For a detailed description of the architecture
and the programming environment see [3].

Each APP device consists of multiple so-called compute units, each compute unit
contains multiple stream cores, which, in turn, contain multiple processing elements.
Multiple instances of a GPU program (kernel) are executed concurrently on different
data, one such instance of a kernel is called a work-item. Multiple work-items are
executed by all stream cores of one compute unit in lock step, one such group of
work items executed together is called wavefront. The number of work items in a
wavefront is hardware dependent. The programmer decides how many work items
are scheduled to one compute unit in a so-called workgroup. Best performance is
obtained, if this number is a multiple of the size of a wavefront.

In principle, different compute units can execute different kernels concurrently.
However, the number of different kernels running on one APP device may be limited.
All stream cores of one compute element execute the same instruction sequence
consisting of very-large-instruction-word (VLIW) arithmetic instructions, control-
flow instructions, and memory load and store instructions. Then up to four or five
(depending on the device) instructions inside a VLIW instruction word are co-issued
to the processing elements.

Similar to NVIDIA GPUs, AMD GPUs have various memories with different
visibility to work items and different latencies and throughputs. The private mem-
ory is specific to each work item and is kept in a register file with very fast access.
Work items inside one workgroup, i.e., running on the same compute unit, can com-
municate through local memory. This “local memory” is not a part of the device
memory as on NVIDIA GPUs. In fact, it is very similar to what NVIDIA calls
shared memory, a relatively small memory with fast access for efficient exchange of
data between work items. Access to local memory is about an order of magnitude
faster than access to device memory. Furthermore, all work items executing in one
context have access to the global device memory and cached read-only access to
a part of the device memory called constant memory. Access from work items to
different memories is depicted in Fig. 8.2.

Communication with the host is done through DMA transfers between host and
device memory. Computation on both the CPU and the GPU can overlap with DMA
transfers.

8.1.3 Programming GPUs in High-Level Languages

With the CUDA architecture NVIDIA introduced language extensions to the C pro-
gramming language that allowed to write programs that are partially executed on
the GPU. The resulting programming language is called “C for CUDA”. Note that
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depending on the compute capability some restrictions apply for the part of the pro-
gram that is executed by the GPU, for example compute capability 1.x does not
support recursive function calls. For details on C for CUDA see [50].

The first software-development tool that AMD offered for GPGPUs was called
Close-to-Metal (CTM) which gave low-level access to the native instruction set of
the GPU. High-level-language support was first offered in the ATI Stream SDK v1
with the ATI Brook+ language, which is based on BrookGPU developed at Stanford
University [14].

Both solutions, C for CUDA and Brook+ could only be used to implement soft-
ware for the respective manufacturer’s GPUs. As a more portable approach, both
NVIDIA and AMD now also support the OpenCL programming language and API
developed by the Khronos group. This programming language is designed for the
development of software for parallel computations on arbitrary heterogeneous sys-
tems. Two versions of the language have been released, OpenCL 1.0 in November
2008 [26] and OpenCL 1.1 in June 2004 [27].

Today, the recommended way to program NVIDIA GPUs is using either C for
CUDA [50] or OpenCL for CUDA [51]. AMD recommends OpenCL as high-level
programming language for their GPUs in their latest APP SDK [3].

The compilation process is very similar for all of the high-level languages. In a
first step, the compiler separates the parts of the program that run on the CPU from
the parts that run on the GPU. The CPU part is further compiled using native C or
C++ compilers for the respective host architecture. The GPU part is first translated
to an intermediate low-level language. For NVIDIA this language is called PTX,
for AMD it is called IL. The advantage of this intermediate language is that it is
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somewhat device independent. More specifically, PTX code is compatible across
minor revisions of the compute capability; IL code is forward compatible. The GPU
driver contains a just-in-time compiler for this intermediate language. Code that
needs to run on GPUs with different hardware capabilities can thus be translated
only to intermediate language, final compilation to binary code is performed by the
respective driver. This last compilation step can also be done off-line to produce
binaries for a specific GPU architecture.

8.1.4 Programming GPUs in Assembly

Most software today is written in high-level languages, but some areas of computing
still employ hand-optimized assembly routines to achieve best performance. One of
these areas is high-performance computing—in computations that run for weeks or
months even small performance gains are typically worth the effort of implementing
parts of the software in assembly. Now that GPUs explicitly support applications in
high-performance computing one would expect that the manufacturers also provide
assemblers. However, this is not the case. Until the CUDA 4.0 toolkit was released in
May 2011, NVIDIA offered neither an assembler nor a disassembler for their GPUs,
an assembler is still not provided by NVIDIA. To fill this gap, van der Laan reverse-
engineered the binary format and developed the cubin utilities [57] consisting of the
disassembler decuda and the assembler cudasm.

For the Fermi GPUs (compute capability 2.0 and 2.1) NVIDIA includes the
cuobjdump disassembler in the CUDA 4.0 toolkit. An assembler for Fermi GPUs
is being developed by the asfermi project [33].

AMD documents the instruction-set architecture of their recent GPUs, for example
in [2] for the Radeon R600 series, in [5] for the Radeon R700 series, and in [4] for the
Evergreen series. AMD does not document the complete ELF format of the binaries
and does not provide an assembler for their GPUs. Similar to NVIDIA, community
projects work on assemblers that support different families of AMD GPUs [48, 53].

8.1.5 GPU Performance Bottlenecks

What makes GPUs a very interesting computing platform for many algorithms is their
pure computing power. For example, an NVIDIA GTX 295 graphics card containing
two GT200b GPUs can dispatch a total of 745 billion single-precision floating-point
operations per second. For comparison, all four cores of a 2.4 GHz Intel Core 2 Quad
CPU can dispatch a total of 57.6 billion single-precision floating-point operations,
more than one order of magnitude less. One might thus expect that GPUs speed up
computations by a factor of 10 or more, but as the examples in the following sections
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show this is not the case for many applications. The reason is that in order to make
use of the computational power of GPUs, applications need to fulfill two conditions:

• The degree of data-level parallelism required to keep hundreds of threads busy is
much larger than the degree of data-level parallelism that is required for the SIMD
implementations of current CPUs. For example, keeping 192 threads on each of
the 30 multiprocessors of 2 GPUs on an NVIDIA GTX 295 graphics card busy
needs 11,520 independent data streams. Keeping the four cores of a CPU busy
working on 128-bit vector registers needs just 16 such independent streams. Less
data-level parallelism typically requires multiple threads to work on the same data
which involves communication and thread synchronization overhead.

• GPU performance depends on memory-access patterns much more than CPU
performance does. The reason is that GPUs spend most of their chip area on
ALUs while CPUs spend a large part of the chip area on fast caches that reduce
load and store latencies. Computations that can keep the active set of data in
the available registers benefit from the large computational power of the ALUs,
but the high latencies of device-memory loads and stores typically incur huge
performance penalties in applications that cannot. Some applications can use the
shared memory on NVIDIA GPUs or the local memory on AMD GPUs as cache,
Fermi GPUs make this easy by using a configurable amount of shared memory
as transparent cache. If the same data are required by all threads this is indeed a
very good solution. However, if each thread requires different data in cache (for
example, register content temporarily spilled to memory), the amount of shared
memory per thread is typically too small. Compilers therefore use device memory
for register spills. Another way to deal with high memory latencies is to run
more threads and thus hide the latencies. Note that this comes at the price of a
smaller number of registers per thread and even higher requirements on data-level
parallelism.

Another potential bottleneck is data transfer between host memory and device
memory. All modern graphics cards are connected through PCI Express. Through-
put rates highly depend on the version of PCI Express, and the number of lanes. For
example, the theoretical throughput of PCI Express 2.0 with 16 lanes (commonly
denoted x16) is 8 GB/s in both directions. The throughput obtained in practice is
considerably lower and depends on the size of data packets transmitted over the bus.
For details see, for example, [20]. More serious than throughput limitations can be
the latency incurred by data transfers over PCI Express, at least for applications that
require frequent communication and cannot interleave communication with compu-
tations.

With these limitations in mind, it is interesting to see that GPU advertisements
and also various scientific papers claim speedups by a factor of 100 and more of
software running on a GPU compared to software running on a CPU. In most of
the cases, a careful look at how these speedups were achieved reveals that the CPU
implementation is far from state of the art, for example, it does not use the SIMD
computing capabilities of modern CPUs, and the CPU implementation is not set up
to run on multiple cores.
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Despite these misleading comparisons found in many places, GPUs are very pow-
erful computing devices and with careful optimization GPUs can speed up many
computations considerably compared to the same computations running on a CPU.
The following sections give examples of applications of GPU computing in infor-
mation security and try to put the performance numbers in a meaningful perspective
in comparison to state-of-the-art CPU implementations.

8.2 GPUs as Cryptographic Coprocessors

Cryptographic computations such as encryption and decryption, hashing, signature
generation, and signature verification rely on high performance in software for many
applications. Furthermore, most of the algorithms involved can be implemented in
relatively small code size and it is feasible to hand-optimize code on the assembly
level.

This is why for example advanced encryption standard (AES) and RSA encryption
were among the algorithms that were implemented using shader instructions of the
graphics rendering pipeline of traditional GPUs [29, 47, 62].

In 2006, before CUDA was introduced by NVIDIA, Cook and Keromytis pub-
lished a book on cryptography on graphics cards [21]. This book claims that using
GPUs for cryptography has two additional advantages aside from speeding up com-
putations:

• The authors suggest that GPU implementations may be more resistant to (at least
existing) side-channel attacks. They do not claim that GPU implementations are
inherently protected against any side-channel attacks that work against CPU imple-
mentations. In fact, there is no immediate reason to believe that GPUs generally
offer better protection against any side-channel attacks than CPUs. Certainly one
of the most relevant class of attacks, namely cache-timing attacks (see, e.g., [56])
will not work on GPUs that have uncached access to memory, but at least the most
recent NVIDIA GPUs use part of their shared memory as transparent cache for
access to the GPUs main memory [49].

• Chapter 3 of [21] describes a video-streaming service that uses GPUs to decrypt
video data that shall only be displayed but never be stored or modified. The system
uses the GPU as “the only trusted component in a spyware-safe system”.
This idea starts from the assumption that GPUs and graphics drivers are more
trustworthy than the operating system for computations involving sensitive data
such as cryptographic keys. This is a dangerous assumption to make, attackers
controlling the operating system can also exchange the graphics driver, there is
not even a guarantee that any code really runs on the GPU.

When using GPUs for cryptographic computations, one should keep in mind that
GPUs and graphics drivers are not designed for computations on sensitive data and
should be used for such computations only with precaution. For instance, on various
graphics cards it is possible for a computing kernel to read out parts of the memory
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content left behind by a previously executed kernel. Keeping cryptographic keys in
these parts of the memory can be used to speed up computations—for example, a
key can be expanded once and be left in constant memory for all subsequent kernel
launches as suggested in [52]. On the other hand, this can also be a serious security
threat in multi-user environments if one user manages to launch a GPU kernel that
reads out the key of another user.

In environments where data in GPU memory can be protected, for example on
a single-user server, or with careful protections to avoid memory readout, modern
GPUs can be used as powerful cryptographic coprocessors for throughput-oriented
applications.

8.2.1 AES on GPUs

In particular, the possibility to implement the AES, the most widely used symmetric
encryption algorithm, on GPUs has attracted a lot of attention. AES is a block cipher
with supported key sizes of 128, 192, and 256 bits and a block size of 128 bits.
Most implementations focus on AES with 128-bit keys. In this setting, the key is
first expanded into 11 round keys K0, . . . , K11. Each 128-bit input block (state) is
then transformed into 10 rounds, each round involving one of the 11 round keys. The
first round key K0 is xored to the block before the first round. The most common
implementation technique for AES, described in [22, Sect. 5.2.1], operates on 32-bit
words and uses 4 lookup tables T0, T1, T2, and T3 of size 1 KB (256 32-bit words)
each. The 128-bit state is represented as 4 such 32-bit words. The operations of one
round of AES in C notation is given in Listing 1.

Listing 1 One round of AES encryption in C, the 128-bit input state is in 32-bit
unsigned integers y0, y1, y2, y3, the output state is in 32-bit unsigned integers z0,
z1, z2, z3; the 128-bit round key is in 32-bit unsigned integers k0, k1, k2, k3.

    z0 = T0[ y0 >> 24        ] ˆ T1[(y1 >> 16) & 0xff] \
       ˆ T2[(y2 >>  8) & 0xff] ˆ T3[ y3        & 0xff] ˆ k0;
    z1 = T0[ y1 >> 24        ] ˆ T1[(y2 >> 16) & 0xff] \
       ˆ T2[(y3 >>  8) & 0xff] ˆ T3[ y0        & 0xff] ˆ k1;
    z2 = T0[ y2 >> 24        ] ˆ T1[(y3 >> 16) & 0xff] \
       ˆ T2[(y0 >>  8) & 0xff] ˆ T3[ y1        & 0xff] ˆ k2;
    z3 = T0[ y3 >> 24        ] ˆ T1[(y0 >> 16) & 0xff] \
       ˆ T2[(y1 >>  8) & 0xff] ˆ T3[ y2        & 0xff] ˆ k3;

To achieve the required degree of parallelism, GPU implementations of AES
typically either consider many independent streams that are encrypted in parallel or
they use a parallel mode of operation such as ECB or CTR that allows to encrypt
blocks of a single stream independently. The most important decision to make for
high-performance AES encryption on GPUs is how to use the available memory
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domains. CPU implementations store lookup tables and expanded keys in RAM,
after some rounds of AES the tables will be in level-1 cache and lookups are fast.
On most GPUs a straightforward adaptation of this approach, placing tables and
expanded keys in device memory, will incur high latency penalties, because access
to device memory is uncached (except for NVIDIA Fermi GPUs where part of the
shared memory is used as transparent cache). A better approach is to place the
lookup tables in the fast shared memory of NVIDIA GPUs or the local memory of
AMD GPUs. Recall that loads from shared memory on NVIDIA GPUs can be as fast
as register access, but that throughput and latency depend on the access pattern. AES
table lookups have an unpredictable access pattern, so one must expect penalties due
to memory bank conflicts. One solution to avoid these penalties is to store multiple
copies of the lookup tables in the fast memory, such that each entry is available on
each memory bank. If shared memory is not large enough to hold these copies of
the tables, it may still be possible to store copies of only one of the tables and obtain
entries of the other tables through rotations (see, e.g., [22, Sect. 5.2.1]). The best
combination of optimization techniques depends on the target GPU.

Not only the decision about location and layout of the lookup tables is important,
also handling of the round keys influences performance. This is relatively easy if one
big stream is encrypted in a parallel mode of operation. In this case, all threads use the
same key and it can be stored in constant memory. Unlike lookups from the tables,
the round keys are accessed in a completely predictable pattern; they are broadcasted
to all threads which is exactly what the constant memory is made for. The situation
is different for the encryption of many independent streams under different keys. If
each thread needs different round keys, there is not enough fast memory on most
GPUs to store all these round keys. Instead of loading round keys from slow device
memory, it may be a better choice to expand the key on the fly. Again, the best
solution highly depends on the specific target GPU.

A completely different approach to implement AES is bitslicing. This technique
was first introduced for the Data Encryption Standard (DES) by Biham in [12] and
has also been used for various AES implementations [37, 41, 45]. The idea of this
technique is transposition of data: Instead of storing a 128-bit state in, e.g., 4 32-bit
registers, it uses 128 registers, 1 register per bit. This representation of data allows to
simulate a hardware implementation, logical gates become bit-logical instructions.
For just one computation this is not efficient, but if all n bits of registers are used to
perform computations on n independent streams, this can be very efficient. Note that
on top of the high degree of parallelism required for GPU computations, bitslicing
requires another factor of n of parallelism, n being the register width.

Various GPU implementations of AES are described in the literature. In [63],
Yang and Goodman describe different implementations of AES for AMD GPUs.
Their bitsliced implementation aims at key search, so keys need to be expanded into
round keys on the fly. On an AMD HD 2900 XT GPU this implementation performs
encryption of one block under 145 million keys per second, this corresponds to a
throughput of 18.5 Gbit/s. For the lookup-table-based implementation, they report
an AES encryption throughput of 3.5 Gbit/s on an AMD HD 2900 XT GPU.
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The implementation by Manavski described in [44] uses a lookup-table-based
approach to achieve a peak throughput of 8.28 Gbit/s on an NVIDIA 8800 GTX
graphics card (G80 GPU); to achieve this peak throughput at least 8 MB of data
need to be encrypted under the same key. This implementation exploits parallelism
inside AES, four threads perform the transformation of one 128-bit block. Harrison
and Waldron report a throughput of 15.423 Gbit/s in [30] for their lookup-table-
based implementation of AES on an NVIDIA G80 GPU. This peak performance is
achieved for input messages of ≥ 65 MB, overhead from data transfers to and from
the GPU are not included in the benchmarks. Both the implementation in [44] and the
implementation in [30] achieve a significantly lower throughput when data transfers
are included in the benchmarks: 2.5 Gbit/s for [44] and 6.9 Gbit/s for [30].

Two more recent papers report speeds beyond 30 Gbit/s on NVIDIA GPUs. Osvik,
Bos, Stefan, and Canright in [52] describe an implementation of AES with 128-bit
keys that achieve 30.9 Gbit/s throughput on one GPU of an NVIDIA GTX 295
graphics card (containing 2 GT200b GPUs). The implementation interleaves data
transfers with computations by using page-locked host memory. Interleaving data
transfers with kernel execution were not possible for the GPUs used for benchmarking
in [30, 44]. This throughput is achieved for encryption under one key in constant
memory, but the paper also describes an implementation with on-the-fly key schedule
suitable for key-search applications, that achieve a throughput of 23.8 Gbit/s. Jang,
Han, Han, Moon, and Park present a GPU-accelerated SSL proxy in [36]. For the
AES implementation included in this proxy, they report 32.8 Gbit/s on an NVIDIA
GTX 285 graphics card (GT200b GPU), not including data transfers. They also report
detailed performance numbers of AES encryption in the nonparallel CBC mode for
different numbers of independent streams on an NVIDIA GTX 580 graphics card
(GF110 GPU).

Note that these high throughputs of AES on GPUs can only be achieved by
performing AES encryption on thousands of blocks in parallel. This amount of data-
level parallelism can certainly be found for some database applications or when
writing large amounts of data to an encrypted hard disk. The encryption of typically
small Internet packages in applications that do not just need high throughput but
also low latency will still do better with a CPU-based approach, not only when using
CPUs that support AES in hardware. For example, the bitsliced implementation for
Intel processors presented in [37] encrypts 1,500-byte packets in 7.27 cycles per byte
on a 2,668 MHz Intel Core i7 920 CPU. This corresponds to a throughput of more
than 11.7 Gbit/s on 4 cores.

8.2.2 Asymmetric Cryptography on GPUs

Asymmetric cryptographic primitives can be accelerated by laying off the compu-
tations from the CPU to the GPU. As for symmetric primitives like AES one way
to obtain the necessary degree of parallelism is to consider operations on many
independent messages. However, there is another source for parallelism inherent in
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the algorithms. Most state-of-the-art asymmetric algorithms involve operations on
large integers, for example RSA signature generation is the computation of md mod n,
where m, d and n are integers of 1,024 bits or larger. Arithmetic on such integers, in
particular multiplication, squaring and modular reduction, needs to be decomposed
in many operations on machine words. Elliptic-curve cryptography involves modular
arithmetic on integers of smaller size, typically between 160 and 256 bits, but arith-
metic on those integers still decomposes into many operations on machine words.
For example, when using a multiplier with 32-bit output, schoolbook multiplication
of two 256-bit integers requires 256 multiplications of 16-bit limbs and 240 addi-
tions of the 32-bit multiplication outputs. Most of these operations are independent
and can be done in parallel by multiple threads. Exploiting such parallelism inside
one computation has some obvious advantages. If multiple threads process one input
stream together, fewer independent input streams are required to make use of the
computational power of the GPU. This makes GPU computations attractive also
for applications that require low latency rather than high throughput. Furthermore,
when multiple threads carry out one computation together the overall amount of data
involved in the computations is smaller; this can be used to fit all data into memory
domains that offer low-latency access. However, exploiting data-level parallelism
inside computations like big-integer multiplication comes with the disadvantage that
it involves overhead from thread synchronization and exchange of data between
treads.

Several papers describe implementations of RSA on modern graphics cards.
In [55], Szerwinski and Güneysu describe a CUDA implementation that performs
813 modular exponentiations (RSA encryption) of 1,024-bit integers on a NVIDIA
8800 GTS graphics card. This paper furthermore reports a throughput of 104.3 mod-
ular exponentiations for 2,048-bit RSA encryption. Harrison and Waldron in [31]
focus on RSA decryption and report 5536.75 RSA-1024 decryptions per second on
an NVIDIA 8800 GTX graphics card. This computation can make use of the Chinese
Remainder Theorem to perform arithmetic on half-size integers. The RSA implemen-
tation included in the SSL proxy described in [36] can perform for example 74732
RSA-1024 encryptions or 12044 RSA-2048 encryptions per second on an NVIDIA
GTX 580 graphics card. What is particularly interesting about this implementation
is that it does not purely focus on throughput but also needs to keep the latency low
enough for the application in the SSL proxy. For RSA-1024 the latency is at 3.8 ms,
for RSA-2048 it is 13.83 ms.

To put this into perspective to what is currently possible on CPUs, the eBACS
benchmarking project [11] reports, for example, more than 11,000 1,024-bit integer
exponentiations per second on all six cores of an AMD Phenom II X6 1090T. Again,
this speed does not require the large number of independent parallel computations that
GPU implementations need and although it is much slower from a pure throughput
perspective, it may be the better choice for applications that do not process multiple
messages in parallel.

Elliptic-curve cryptography has been implemented on GPUs. Szerwinski and
Güneysu report 1,412 scalar multiplications on the NIST P-224 elliptic curve on
an NVIDIA 8800 GTS graphics card in [55]. On the same curve but the more recent
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NVIDIA GTX 285 graphics card Antão, Bajard, and Sousa report 9990 scalar multi-
plications per second. More than an order of magnitude slower at significantly lower
security is the implementation of scalar multiplication on an elliptic-curve over a
binary field described in [19]. Cohen and Parhi report only 96.5 scalar multiplica-
tions per second.

Elliptic-curve scalar multiplication has received more attention on CPUs, for
example [10] reports 226872 cycles for a scalar multiplication on a 255-bit elliptic
curve on an Intel Xeon E5620 CPU running at 2.4 GHz. This corresponds to more
than 40,000 scalar multiplication per second on all four cores. Even faster speeds for
CPU implementations are reported in [34] for scalar multiplication on elliptic curves
with efficiently computable endomorphisms. These comparative numbers may sug-
gest that GPU implementations of elliptic-curve cryptography cannot compete with
state-of-the-art CPU implementations, not even in throughput-oriented applications.
However, the next section describes implementations of elliptic-curve operations on
GPUs for cryptanalysis that outperform CPU implementations. The reason that there
are no faster GPU implementations targeting constructive applications may be that
there are simply not many applications that require only throughput and can ignore
latency.

An asymmetric cryptosystem that appears to be much better suited for imple-
mentation on GPUs than elliptic-curve cryptography or RSA is NTRU. The central
operation for encryption and decryption is convolution which can be carried out
by many threads without significant communication or synchronization due to its
parallel structure. In [32], Hermans, Vercauteren, and Preneel describe an imple-
mentation of NTRU with a set of parameters that aims at the 256-bit security level.
This implementation is able to perform 218,000 encryption operations per second
on an NVIDIA GTX 280 graphics card (GT200 GPU).

8.3 GPUs in Cryptanalysis

Cryptanalytical computations are in many ways similar to cryptographic computa-
tions. In many cases, breaking a cryptographic system means executing the same or
very similar computations that are used in the constructive use of the cryptosystem.
One example is brute-force key recovery of symmetric ciphers that simply performs
encryption with many different keys. Another example is hash-function collision
search with the computationally most expensive part being computing hashes. An
example in the cryptanalysis of asymmetric systems is Pollard’s rho algorithm to
solve the discrete logarithm problem (DLP). Again the computationally most expen-
sive part are the same or very similar operations in the same mathematical structures
that are involved in the legitimate use of the DLP-based system.

In three very important points, cryptanalytical computations are different from
cryptographic computations and all three make them even better suited for GPUs.
First, they typically involve an arbitrary amount of data-level parallelism, the same
computations are carried out on huge amounts of independent data; this is exactly
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the sort of computations that GPUs are best at. Second, many of these computations
do not care about latency, they are purely throughput oriented. Third, there is no
confidential data involved that needs to be protected, one could say that the opposite
is true, revealing the confidential data is the target of the computation.

The most obvious applications of GPUs for cryptanalysis are attacks against sym-
metric encryption and hash functions. Various commercial solutions for password
recovery already include GPU implementations to speed up the computations. These
tools typically try out many different passwords from a given word list and either
compare with given hash values or derive symmetric keys from a list of known
passphrases to recover the content of encrypted files.

The power of GPUs was also used by the winner of Engineyard’s SHA-1 program-
ming contest: The task was to find an input to SHA-1 that has minimal Hamming
distance to a given hash value. Lange in [42] reports that code by Bernstein is able to
compute more than 328 million hashes per second on an NVIDIA GTX 295 graphics
card. Each of these hashes required computation of only one 64-byte block of input,
so this corresponds to a throughput of more than 167 Gbit/s. As a comparison, all
four cores of a 2.4 GHz Intel Core 2 Quad Q6600 CPU involved in the same com-
putation computed 47 million hashes per second. Also the SHA-3 candidates have
been implemented on GPUs, password recovery being the most obvious application.
In [13], Bos and Stefan describe implementations of all of the SHA-3 round-2 can-
didates on NVIDIA GT200 GPUs. The reported throughputs reach from 0.9 Gbit/s
for Cubehash 16/1 up to 36.8 Gbit/s for Blake-32 and BMW-256 on one GPU of
an NVIDIA GTX 295 graphics card. Again to put this into perspective, on a recent
CPU, the Intel Core i7-2600K, hashing with Blake-32 takes 6.68 cycles/byte [11];
this corresponds to a throughput of 16.29 Gbit/s.

These applications in password recovery are quite straightforward, but GPUs have
also been used for cryptanalysis of asymmetric systems. One of the most famous prob-
lems closely related to the RSA cryptosystem is the factorization of large numbers.
A critical step inside the factorization of large RSA numbers with the number-field
sieve is the factorization of many smaller numbers using the elliptic-curve factoriza-
tion method (ECM). In [9], Bernstein, Chen, Cheng, Lange, and Yang describe an
implementation of ECM for 280-bit numbers. This implementation running on both
GT200b GPUs of an NVIDIA GTX 295 graphics card outperforms a state-of-the-art
CPU implementation running on all 4 cores of an Intel Core 2 Quad Q9550 by a
factor of more than 2.8. The GPU implementation tries 400.7 curves per second, the
CPU implementation 142.17 curves per second. A much higher ECM throughput
for slightly smaller numbers is reported in [8]. For example, for 210-bit numbers a
GTX 295 graphics card is reported to try 4,928 curves per second. Although these
numbers are not as impressive as the speedups achieved by using GPUs in symmetric
cryptanalysis, the results show that GPUs can also be used to speed up elliptic-curve
arithmetic.

This is confirmed for elliptic curves over binary fields in [7]. As part of a large
effort to solve Certicom’s elliptic-curve discrete-logarithm-problem (ECDLP) chal-
lenge ECC2K-130 [15, 16], this paper presents an implementation of Pollard’s rho
algorithm for GT200b GPUs. On the two GPUs inside the GTX 295 graphics card,
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this implementation is able to perform 63 million Pollard rho iterations per second.
As a comparison, the CPU implementation computing the same iteration function
described in [6] performs 22.45 million iterations per second on all 4 cores of an
Intel Core 2 Extreme Q6850 CPU.

GPUs have also been considered for solving the DLP on elliptic curves over large
prime fields. The implementation described in [17] targets an ECDLP on a 109-
bit prime curve and is reported to “have generated about 320.000 points/second”
on an NVIDIA 8800 GTS graphics card with a G92 GPU. This probably means
320,000 iterations per second, but it is unclear what the exact performance of the
implementation is.

8.4 Malware Detection on GPUs

Similar to cryptographic applications, malware-detection software is expected to
operate in the background with as little influence on the system’s performance as
possible. A large computational task of virus detection is pattern matching of byte
sequences found in files with known signatures of malware. This task is highly
parallel, so it is an application that can run at high speed on GPUs.

Seamans and Alexander describe an implementation of parallel virus signature
matching for NVIDIA GPUs in [54]. The authors integrated this implementation into
the ClamAV virus scanner [18] and compare the performance of this implementation
running on an NVIDIA GTX 7800 graphics card to the original CPU implementation
running on an unspecified 3-GHz Intel Pentium 4 CPU; the authors do not specify the
number of CPU cores used for this comparison. The speedup obtained by running the
pattern matching on the GPU depends on the number of matches, because matches
need to be communicated back to the CPU. If no matches are found, the GPU
implementation is 27 times faster than the CPU implementation; this factor drops to
17 at a match rate of 1 % and further to 11 at a match rate of 50 %.

In [59], Vasiliadis and Ioannidis describe an implementation of virus-signature
pattern matching targeting more recent NVIDIA GPUs. Their implementation filters
out clean, unsuspicious regions, it is included as a preprocessing step into the ClamAV
[18] virus scanner. The authors achieve a 100-times higher throughput with this
approach running on an NVIDIA GTX295 graphics card compared to the CPU-only
virus scanner running on 1 core of an Intel Xeon E5520 CPU. Compared to the CPU
implementation running on 8 cores of 2 CPUs, the speedup is still 10-fold.

The approach of using the GPU as a coprocessor for malware detection is not
purely academic. In December 2009, Kaspersky announced that they incorporated
an implementation of the “similarity service” for NVIDIA Tesla cards into their
infrastructure. The press release [38] does not give much detail but claims a 360-
times speedup of the GPU implementation running on an NVIDIA Tesla S1070
compared to the a CPU implementation running on a 2.6 GHz Intel Core 2 Duo
processor. This comparison does not give details about the number of CPU cores
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used, it also does not say whether the speedup is obtained from running the GPU
code on one or all four GPUs included in the Tesla S1070.

Signature matching is also one of the main performance bottlenecks of network-
intrusion-detection systems. Consequently, GPUs can also be used to speed up such
systems. This was first described by Jacob and Brodley who use a traditional GPGPU
approach targeting the NVIDIA 6800 GT graphics card in [35]. They conclude that
with their GPU pattern-matching extension to the open-source intrusion detection
system Snort “there was no appreciable speedup in packet processing under normal-
load conditions”. A more efficient approach targeting the NVIDIA 8600 GT graphics
card is described in [58]. Vasiliadis, Antonatos, Polychronakis, Markatos, and Ioan-
nidis present a GPU pattern-matching extension of Snort that increases the overall
Snort throughput capacity by a factor of two compared to CPU-only Snort running
on a 3.4 GHz Intel Pentium 4 processor. The most comprehensive solution for intru-
sion detection involving GPUs to date is presented in [61]. Vasiliadis, Polychronakis,
and Ioannidis describe a Snort-based intrusion detection solution that exploits par-
allelism on multiple levels. The system makes use of multiple GPUs and multiple
CPU cores and copes with a network throughput of 5.2 GBit per second. This per-
formance number was achieved on a system with two NVIDIA GTX 480 graphics
cards and two Intel Xeon E5520 CPUs. The pure pattern-matching step reaches a
peak performance of more than 70 GBit per second on the two graphics cards.

8.5 Malware Targeting GPUs

GPUs can not only be used to accelerate malware detection, malware itself can
also use GPUs to hide from virus scanners. In [60], Vasiliadis, Polychronakis, and
Ioannidis describe an implementation of a malware unpacker running on an NVIDIA
GPU. The complete malware package consists of two parts, the unpacker running on
the GPU and the actual malware that runs on the CPU. These two parts communicate
through host memory mapped into the GPUs address space.

Unpackers are one of the most common techniques to hide malware from scanners:
The malware code is packed or encrypted in some way and gets unpacked (decrypted)
only when it is actually executed. The advantage from the malware author’s perspec-
tive of using GPU code for the unpacker is twofold as it offers better protection
against detection by both static and dynamic malware-detection systems. Static sys-
tems try different known unpacking techniques to recover the original malware. This
becomes harder if the computational power of the GPU is used for computationally
more expensive unpacking algorithms. Dynamic unpacking tools use the unpacker
that is included in the malware, for example inside a sandbox or virtual machine. At
least existing dynamic tools do not support GPU binaries and would thus fail.

As a second step [60], Yang and Goodman also describe GPU-assisted run-time
polymorphism on the function level. The malware binary is never fully decrypted,
only the currently executed function resides in memory, when returning from a func-
tion call the function is encrypted again and the next function context is decrypted.
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The implementations are still just a proof of concept and there have been no
reports of real-world malware using the GPU to hide from scanners. Some of the
claimed advantages of using the GPU to hide malware can obviously be addressed
by malware-detection tools also using the GPU. Others will require better tools for
static and dynamic analysis of GPU code. It will be interesting to see whether or how
much GPUs become a new battlefield in the everlasting fight between malware and
malware detection.

8.6 Accessing GPUs from Web Applications

Software becomes more and more Web centric; programs such as office suites, image-
processing software, and games, which traditionally run directly on a computer, are
now implemented as applications running inside a Web browser. The most consistent
implementation of this approach is Google’s Chromium OS, an operating system
that is designed to run a Web browser as only application—all other software is Web
applications running inside this browser.

As a consequence of higher demands for advanced graphics in Web applications,
various technologies have been developed to let those applications access the GPU.
The most prominent three approaches are WebGL developed initially by Mozilla
and now by the Khronos group [39], Silverlight 5 developed by Microsoft [46], and
Flash 11 developed by Adobe.

All of these approaches have in common that they expose the graphics driver and
hardware to software originating from the Internet and thus from typically untrusted
sources. The implications for security of this approach have so far been discussed
primarily for WebGL. In March 2011, version 1.0 of the specification of WebGL
was released by the Khronos group. Browsers supporting this specification include
Mozilla’s Firefox and Google’s Chrome. Only about 2 months later, Forshaw publi-
cized an article [24] that describes several security issues in these implementations
and claims that these are actually caused by design flaws in WebGL. One of these
issues is the possibility to remotely exploit vulnerabilities in the graphics driver to
crash or freeze the system. Another one is a cross-site timing attack that extracts
image data processed on the GPU. A follow-up article by Forshaw, Stone, and Jor-
don [25] describes an attack targeting the WebGL implementation of Firefox. In this
attack, a malicious website can take screenshots of arbitrary applications running on
the client computer.

Khronos has reacted to these articles in a WebGL security whitepaper [40] that
describes approaches to address the security issues. These approaches can not all be
implemented only on the browser side but need support on the graphics-driver side.

Even without any vulnerabilities in the framework, the computational power of
GPUs enables attacks that would otherwise be infeasible. For example, the JavaScript
bitcoin miner of bitp., it has been discontinued because “Javascript is just too slow
to mine bitcoins” [1]. This would certainly be different with the computing power
of GPUs open to Web applications. Mining bitcoins on the GPU in the background
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while a user is visiting a website could on the one hand be a legitimate new way of
funding websites (if the user is asked for permission), on the other hand it would
most likely also be done silently and thus become sort of a Web Trojan.

The discussion about WebGL security and more general security issues related to
exposing the GPU and the graphics driver to untrusted code from the Internet is still
ongoing. On the one hand WebGL, Silverlight 5, and Flash 11 are still very young
technologies and maybe some of the vulnerabilities are just teething troubles. On the
other hand, the concept of letting Web applications access the driver layer of a client’s
operating system flies in the face of conventional wisdom that tells us that untrusted
code should be kept as far away from any critical parts of a system as possible. The
future will have to show what changes are required to browsers, operating systems,
and drivers to deal with current and future security vulnerabilities and whether it
is actually possible to establish these technologies without exposing their users to
severe risks.
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