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Abstract Efficient and secure hardware implementations have become a very
popular topic during the last decades. In this chapter, we discuss the fundamental
design approaches to successfully implement integrated circuits (ICs) as well as test-
ing methods and optimization techniques to achieve an adequate solution for various
application scenarios. A major topic handled in this chapter is security in the context
of hardware implementations. We elaborate on the characteristics of modern CMOS
circuits with regard to side-channel attacks and we discuss possible countermeasure
approaches against such attacks. Furthermore, we describe a comprehensive prac-
tical example of combining cryptographic instruction set extensions with hardware
countermeasures on a modern 32-bit processor platform. In the last section of this
chapter, we argue about the assets and drawbacks of implementing test structures
in digital circuits with regard to unintentionally opening security holes as well as
about intentionally introducing malicious hardware structures, also called hardware
Trojans.
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5.1 Introduction and Motivation

During the last decades, integrated hardware circuits have become more popular
and are an integral part of our daily life. Hardware circuits are not only found in
personal computers and laptops, but also in cars, domestic appliances, and any kind
of communication and multimedia device. Continuous migration to smaller process
technologies has allowed us to dramatically increase the transistor count and conse-
quently also the functionality of hardware circuits. In order to handle the increasing
complexity of hardware circuits, a whole new branch of industry has been built up:
Very large scale integration (VLSI) design.

Mainly two different approaches can be followed when designing complex
hardware circuits: a general-purpose approach or a special-purpose approach. The
general-purpose approaches based on hardware circuits like microprocessors that
provide a fixed set of functionality. Customization of the microprocessor for a
concerning application is done through program development which provides high
flexibility. The special-purpose approach on the other hand, involves design of a ded-
icated hardware circuit for a more specific application. This hardware-based concept
is less flexible and causes longer development times, but allows optimizing a design
toward a certain goal, for example: low area, low power consumption, low energy
consumption, or high throughput. Reducing the hardware overhead is desirable for
cost-sensitive high-volume products that aim for minimum chip area. Achieving low
power consumption or low energy consumption is important for passively-powered
devices (e.g., RFID tags) and battery-operated devices, respectively. Especially when
integrating complex and resource-intensive operations into a device, like for exam-
ple cryptographic operations in a security-related application, fulfilling the design
requirements is often only achievable if dedicated hardware circuits are used.

In the following sections, we discuss some principles of hardware and VLSI
design. We start with describing the fundamental VLSI design cycle which is the
basis of every integrated circuit (IC). Hardware designers may choose between dif-
ferent design perspectives at various abstraction levels encountered during the design
cycle. Starting with the system specification, a designer defines the submodules, uses
hardware description languages (HDLs), applies tools for standard-cell mapping, and
finally comes to the geometric layout of the design.

During the design cycle, repeated testing and simulation of the design at different
abstraction levels is inevitable in order to obtain a flawless and well functioning
circuit. In case errors occur, only a small step has to be made back in the design
cycle instead of returning to square one. Another important topic we will discuss
is the extensive design space which is at the designer’s disposal during the whole
design cycle. A designer has almost indefinite possibilities to reach a design goal,
which is, e.g., high performance, low area, or low energy consumption. By means
of several practical examples, we illustrate the impact of decisions made during the
design cycle on the outcome of a hardware design.

In the next part, we concentrate on security in hardware and VLSI design, which
is an important topic. The use of security-related devices is steadily increasing,
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e.g., web servers protected with SSL, encrypted hard-disc drives, wireless car
keys, or radio-frequency identification (RFID) tags, to name but a few well-known
examples. Mathematically secure cryptographic algorithms become highly vulner-
able to various types of attacks when implemented in hardware due to the strong
relation between the data processed within a device and the power consumption of
conventional complementary metal-oxide semiconductor (CMOS) circuits. In order
to address this issue, researchers began to develop countermeasures to protect sensi-
tive hardware devices. We have a detailed look at the fundamental characteristics of
CMOS circuits that enable side-channel attacks in the first place and we elaborate on
possible approaches for implementing countermeasures against such attacks. Similar
to the importance of repeatedly simulating a design during the design cycle to obtain
a reliably-working circuit, we point out the possibility of verifying the effectiveness
of countermeasures by means of simulations.

Combining the topics of efficient hardware implementations, cryptographic algo-
rithms, and security, we contrast different approaches for implementing crypto-
graphic algorithms on modern embedded devices. As we will see, pure software
as well as pure hardware solutions have both drawbacks. A more efficient solution
in case of embedded systems is the usage of instruction-set extensions (ISEs).
Furthermore, we discuss the implementation of countermeasures against side-
channel attacks in the presence of ISEs and we elaborate on a practical example
of a modern 32-bit processor platform.

The testability of a device during the design cycle as well as after manufacturing
of an IC is very important to prevent distribution of malfunctioning parts. Unfortu-
nately, the integration of test structures may counteract the efforts to protect a device
from various attacks, since test structures could be used by an adversary to break
security-enabled devices. We describe different testing approaches and discuss their
relevance and possible impact on secure implementations. Finally, we discuss the
topic of hardware Trojans. Contrary to test structures implemented in ICs that may
unintentionally cause a vulnerability of the device, hardware Trojans are malicious
structures intentionally implemented by an adversary with the goal, for example, to
possibly bypass one or more security features of an IC.

5.2 VLSI Design Cycle

Today’s VLSI designers are faced with two challenges, increasing circuit complexity
and shorter design cycles. Following Moore’s Law, the transistor count of hardware
circuits doubles about every 18 months. This prediction has been formulated more
than 40 years ago and is still adhered to by the semiconductor industry by migrating
towards smaller and smaller process technologies. Most recent microprocessors, for
example, have already reached a transistor count of one billion and more. Circuit
complexity grows faster than the productivity of designers and the increase in effi-
ciency of electronic design automation (EDA) tools. This has opened a so-called
“design gap” over the years. In order to close this gap, design of VLSI circuits has
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Fig. 5.1 Y-diagram according to Gajski and Kuhn showing the different design perspectives and
abstraction levels of hardware circuits

been brought to a higher abstraction level. Designing a circuit at a higher abstrac-
tion level also addresses the requirement of shorter design times to improve cost
effectiveness.

A good overview of the different abstraction levels and design perspectives of
hardware circuits is provided by the Y-diagram illustrated in Fig. 5.1. The Y-diagram
has been introduced by Gajski and Kuhn [6] and has its name from the three axes
that are arranged in a y-shape. Each axis relates to a different design perspective.
The three design perspectives are behavioural perspective, structural perspective,
and geometric perspective. Behavioural perspective focuses on the functionality of
a circuit, whereas structural perspective describes the interconnection of different
blocks within it. Geometric perspective deals with the arrangement of the compo-
nents, including the final layout of a circuit. Concentric circles indicate the various
abstraction levels, which are system level, architectural level, register-transfer level,
logic level, and electrical level. Starting from highest abstraction level at the outer-
most circle, the various development steps of a hardware circuit are passed through
when moving toward the center of the diagram, marking the final outcome of the
design (i.e., layout of the circuit).

When moving toward the center of the diagram to reach the design goal, the
level of detail increases continuously. Different perspectives can be used for enter-
ing lower abstraction levels and changing between perspectives is possible as well.
Behavioral perspective is the most-suitable domain for describing hardware designs
with high complexity. Consequently, behavioral perspective is used for starting the
design process. The first step is creating a software model that implements the speci-
fication of the system and that allows exploring different algorithm variants. This first
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software model also eases communication among design teams and enables concur-
rent development of hardware and software components (important to shorten overall
development time). Next step is finding an appropriate architecture that is reflected by
a cycle-accurate high-level model. When the architecture is fixed, HDLs like VHDL
and Verilog are deployed to transfer the high-level model into a register-transfer level
representation. The combined use of HDLs and EDA tools for circuit synthesis allows
an automated transformation from behavioral perspective to structural perspective.
The outcome of this step is a netlist that contains a circuit representation with logic
gates, flip flops, and the appropriate wire connections.

The following steps after netlist creation relate to the so-called back-end design
where the structural perspective is left and the geometric domain is entered.
Automated tools are again applied to deduce a standard-cell representation and the
layout of the design. During back-end design, various verification techniques are
utilized to ensure proper operation and manufacturability of the circuit. Verification
techniques comprise for example, design-rule checks, electrical-rule checks, layout-
versus-schematic checks, timing verification, and simulation of power consumption.
With the layout of the circuit, the final design step (tape out) is reached and data can
be sent to a semiconductor manufacturer.

Following this top-down approach gives a good understanding of the involved
steps of state-of-the-art VLSI design. Implementing a circuit within behavioral per-
spective through HDLs and deploying automated tools for further processing eases
not only the handling of circuit complexity, but also brings also more flexibility.
A circuit in HDL representation can be easily mapped to different process tech-
nologies and targets by using circuit-synthesis tools. This significantly shortens the
time required for migrating a design to a new process technology and allows also
first-level tests on field-programmable gate array (FPGA) prototypes.

Continuously testing the functionality of a design within all abstraction levels is
an important aspect of modern VLSI design. Required test data is typically derived
from the high-level model and repeatedly used for tests on lower abstraction levels.
When a test fails, designers can immediately step back and fix the problem. This
allows detection of issues as early as possible, following the first-time-right concept
to launch products on time.

When building hardware circuits that contain security-relevant components, func-
tional tests alone are no longer enough. Additional considerations have to be taken
into account like evaluating the resistance of the implementation against side-channel
analysis (SCA) and fault analysis. Such evaluation tests are mainly conducted after
chip production on first prototype samples, but also during design phase. Power-
simulation results of the circuit can be used to deduce first information about side-
channel resistance of a design. Other examples are side channel and fault attacks on
FPGA prototypes that contain a synthesized version of the design.



100 M. Kirschbaum and T. Plos

5.3 Design Space of Hardware Circuits

Hardware circuits can be designed toward different optimization goals, depending
on the targeted application. Typical optimization goals are high throughput, low
area, low power consumption, and low energy consumption. Optimization can be
conducted on different abstraction levels. However, the higher the abstraction level,
the larger is the impact of the optimization techniques and the lower the required
effort. Optimizing a design at system level or at architectural level is therefore more
promising than optimizing it for example on logical level. Various metrics are used
to quantify the effectiveness and the influence of a certain optimization measure.
Widely-used metrics includes chip area, throughput, execution time, maximum clock
frequency, latency, and average power consumption.

Optimization at system level typically involves finding more suitable protocols
or looking for alternative algorithms that lead to the same result but provide advan-
tageous behavior in terms of computation time or resource usage. A good example
is the representation of the substitution box (S-box) used in the AES. The S-box is a
non-linear operation that is applied on a single byte of data. Hence, the result of the
S-box operation can be precomputed for all possible 28 input values and stored in a
look-up table. This will result in an area requirement of more than 1, 000 GEs when
implementing the look-up table with standard cells. However, the S-box operation
can also be realized by calculating the multiplicative inverse in the finite field G F(28)

followed by an affine transformation (see [15] for more details). Using combinatorial
logic to calculate the S-box operation in that way, leads to an area requirement of
300 GEs. This is less than a third of the value required by the look-up table approach.
Achieving such an area saving through optimization at lower abstraction levels is
hardly possible.

Architecture is another abstraction level that has significant potential to optimize
a design toward a certain direction. Well-known optimization techniques at archi-
tectural level are functional decomposition, pipelining, and parallel computation [8].
Functional decomposition aims at breaking a complex function into smaller sub-
functions that can be computed sequentially. This method is most effective when
the subfunctions compute similar operations that allow reusing of a single hardware
unit that decreases the overall chip area. Execution time remains roughly the same,
since the shorter critical path allows a higher maximum clock frequency, which
compensates for the increased number of required clock cycles.

Pipelining is another effective optimization method at architectural level. The data
path of a function is cut into smaller parts (ideally of equal length) by inserting storage
elements called pipeline registers. This shortens the critical path and leads to a higher
maximum clock frequency. For computing the result of one data item, as many clock
cycles are required as there are pipeline stages. However, once the whole pipeline is
filled, the result of a data item is computed with every clock cycle. It is important
to note that this works only if there are no recursive data dependencies, since they
would prevent the pipeline from getting filled. Pipelining is very efficient because a
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marginal increase of chip area that is introduced by adding pipeline registers, results
in a significant computational speed-up.

Computing operations in parallel is the opposite of functional decomposition.
Instead of reusing components to reduce chip area, additional hardware modules are
introduced to lower computation time. Trading chip area for speed is some kind of
brute-force approach and is used if other measures like pipelining are not applicable
(e.g., if low latency is required). In contrast to pipelining, the critical path of a design
is not shortened and therefore increasing the clock frequency is not possible. Chip-
area requirements increase significantly and relate to the degree of parallelism.

An overview of the impact of all three optimization techniques within the design
space is given in Fig. 5.2. Functional decomposition and pipelining are efficient
approaches to decrease chip area and execution time of a design, respectively. Both
techniques significantly lower the area-time product. Parallel execution of operations
increases chip area to lower execution time, by keeping the area-time product roughly
constant.

The following examples illustrate the effects on hardware implementations of the
advanced encryption standard (AES) when focusing on different design goals and
implementing different optimization techniques. AES is a symmetric block cipher
and has been standardized by the National Institute of Standards and Technology
(NIST) in 2000 [15]. Let us first have a look at the low-power AES implementation
of Feldhofer et al. [4]. The design goals of this AES implementation have been
low area and low power in order to apply AES in highly resource-limited devices
like RFID tags. The AES module supports encryption and decryption including
the key schedule and is based on an 8-bit architecture. In order to reduce the area
to a minimum the design contains only one S-Box instance (combinational, one
pipeline stage) and one multiplier for the MixColumns operation. The usage of
only one S-Box instance corresponds to functional decomposition, i.e., one S-Box
instance is used several times during one cryptographic computation. The pipeline
stage within the S-Box implementation helps to shorten the critical path of the design.
One encryption/decryption can be done in roughly 1, 000 cycles. Strictly following
low area and low-power guidelines, the developers produced the AES module in a
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Fig. 5.2 Impact of functional decomposition, pipelining, and parallel computation on design space
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0.35 µm CMOS technology and were able to achieve a very low area requirement
of 3, 400 GEs and an extremely low power consumption of 3.0 µA when operating
the AES module at 100 kHz and a supply voltage of 1.5 V. In this configuration, the
module achieves a throughput of approximately 12.5 kbps.

Contrary to the low-area implementation of Feldhofer et al., Mangard et al. [12]
proposed a high-performance hardware implementation of the AES based on a 32-bit
architecture. The AES module follows the parallel computation approach and con-
tains 16 S-Box instances and 16 multipliers implementing the MixColumns opera-
tion. The AES implementation has an area requirement of 16 kGEs, needs 34 cycles
per encryption/decryption, and reaches a maximum clock frequency of 64 MHz and
a throughput of 241 Mbps produced in a 0.6 µm CMOS technology. There also exist
some extreme-performance implementations of AES, deploying a 128-bit architec-
ture and highly optimized implementations of the AES operations, resulting in larger
implementations (beyond 20 kGEs) and significantly higher throughput (≥1 Gbps).

These examples show that a designer has almost indefinite possibilities to exploit
the design space in many different directions. Often a designer decides to go in
more than one direction at once: e.g., low area and low power, high throughput, and
low area. In the end, a designer is mostly forced to accept compromises between
throughput, area, and power consumption in order to achieve an adequate hardware
solution suitable for the particular application.

5.4 Secure Hardware Design

The use of security-related devices has been steadily increasing during the last few
years. Besides meeting appropriate design goals in terms of throughput, chip area,
and power consumption, security goals started to play a major role in hardware
design. Various attacks on hardware circuits in the past have pushed the emergence
of a completely new research field.

Additionally to the intended output, e.g., the result of a cryptographic computa-
tion, each physical device also emits various other information, the so-called side-
channel information. This information is permanently present, before, during, and
after a computation. A very obvious side channel is timing. It is quite easy to accu-
rately measure the time required for executing a cryptographic operation on a device.
Kocher has first shown the vulnerability of asymmetric cryptographic algorithms to
timing attacks [9]. Preventing timing attacks lies manly at the designer’s hands. For
example, in most cases, it is relatively easy to avoid conditional branches, and hence,
to avoid a data-dependent timing behavior of a cryptographic implementation.

The last decade has shown that avoiding data-dependent information in the power
consumption of a device is not so easy. After the first publication on SCA attacks
that exploit the power consumption of cryptographic devices by Kocher et al. [10],
the security of hardware designs against power analysis (PA) attacks became a major
research topic in the fields of cryptography and hardware implementations. As it
turned out that almost any cryptographic device implemented in CMOS technology
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is highly vulnerable to PA attacks, designers of algorithms as well as hardware devel-
opers began to think about possible solutions to overcome the inherent relationship
between the processed data within a CMOS circuit and its total instantaneous power
consumption.

5.4.1 Power Consumption of CMOS Gates

The total power consumption of CMOS gates is the sum of the static power consump-
tion and the dynamic power consumption. The static power consumption is caused
by a small leakage current that is flowing through the metal-oxide semiconductor
(MOS) transistors that are turned off. An actual example is given in [27]: the leak-
age current of a MOS transistor in a 100 nm process is typically in the n A range.
In most applications, the static power consumption of CMOS circuits is neglected,
except for low-power applications. In such applications, special low-leakage process
technologies come into play which are able to significantly reduce the static power
consumption. From a security perspective, the static power consumption of CMOS
circuits can be neglected, as the leakage current only shows an extremely low data
dependency. Dynamic power consumption, on the contrary, is significantly higher
than static power consumption, and even more important, it shows a strong depen-
dency to the data processed by the CMOS circuit.

In the following, the fundamental characteristics of CMOS circuits, which enable
the execution of power-analysis attacks in the first place, are described by means
of a conventional CMOS inverter. The schematic of a CMOS inverter is depicted in
Fig. 5.3 (left), it basically consists of a pMOS transistor p and an nMOS transistor n.
The output line q of the inverter is naturally afflicted with a vast number of parasitic
capacitances. In a simplified model, we can assume two significant-pooled parasitic
capacitances (indicated as CL1 and CL2 in Fig. 5.3). Depending on the state transition
of the CMOS inverter one of the capacitances is charged. The events in case input
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Fig. 5.3 Depiction of the power consumption of a CMOS inverter: the schematic of the inverter
(left plot), the equivalent circuit in case input a : 1 → 0 (middle plot), the equivalent circuit in case
input a : 0 → 1 (right plot)
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a switches from 1 to 0 (i.e., q : 0 → 1) are illustrated in the equivalent circuit
in Fig. 5.3 (middle). The pMOS and nMOS transistors are represented by switches
S1 (closed) and S2 (opened), respectively. Assuming that CL1 is charged from the
previous state and CL2 is discharged, the following charging processes occur: CL1 is
discharged internally via S1 and CL2 is charged via iL H_DD , i.e., the CMOS inverter
consumes power to charge CL2. In case input a switches from 0 to 1 (i.e., q : 1 → 0),
very similar charging processes occur in the circuit (Fig. 5.3, right): S1 is opened,
S2 is closed, CL2 is discharged internally via S2, and CL1 is charged via iH L_DD .
The CMOS inverter consumes power to charge CL1.

We can summarize the events happening in the CMOS inverter in the following
way: if the input of the inverter does not change (i.e., a : 0 → 0 or a : 1 → 1), the
nMOS and pMOS transistors keep their state, and none of the output capacitances
CL1, CL2 needs to be charged. Neglecting the static power consumption, we can
state that the power consumption of a CMOS inverter is zero in case the input signal
remains in its state. On the other hand, if the input of the inverter changes its state
(i.e., a : 0 → 1 or a : 1 → 0) the nMOS and pMOS transistors change their conduc-
tivity and the output capacitances CL1, CL2 are charged/discharged accordingly. We
see a change of the input value causes a significant amount of power consumption.
Furthermore, we can also imagine the following: assuming we know the initial state
of the inverter and we record the power consumption of our small CMOS circuit, we
are able to determine the actual state of the circuit at any time by simply considering
the power spikes we see on our record. That is exactly the reason why power-analysis
attacks pose a serious threat to CMOS circuits. An attacker can quite easily figure
out what is happening in a circuit by analysing the power consumption.

As the power consumption is closely related to the electromagnetic (EM) ema-
nation of a device, EM analysis attacks can also reveal very small data dependen-
cies within a device. More specifically, EM-analysis attacks and usually even more
powerful than power-analysis attacks, because with the appropriate equipment, the
measurement of the EM emanation of a device can be limited to a very small portion
of the circuitry. This way, the signal-to-noise ratio (SNR) of the measurement can
be significantly increased.

5.4.2 Countermeasures Against Power-Analysis Attacks

The following section gives a broad outline of ideas that have been developed during
the last few decades to impede PA attacks. We introduce the basic approaches and
indicate the main assets and drawbacks. The underlying concept of countermeasures
against PA attacks is to break the dependency between the processed intermediate
data within a device and the device’s instantaneous power consumption. Basically,
there exist two approaches: masking countermeasures and hiding countermeasures.
Figure 5.4 depicts the points where the two approaches apply. Both approaches can
be utilized at the architecture level (implemented in software and/or hardware) as
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well as at the cell level (purely implemented in hardware). Usually, a combination
of both approaches is worthwhile to achieve an adequate level of security.

Masking countermeasures conceal the processed data within the device by a
random mask, i.e., the input data is altered before any operations are executed. Hence,
the device’s power consumption only depends on the masked data. After performing
the critical operations within the device, the mask has to be removed again. Some
additional effort is associated when implementing a masking countermeasure, in
many cases the algorithm’s operations need to be adapted in order to process the
masked data correctly, e.g., when masking an AES S-Box operation [3].

Special logic styles belong to the strongest methods to prevent PA attacks. The
secure logic-style front is highly competitive. Many approaches have been presented
during the last decade, although for most one or more flaws have been discovered
by the research community. Let us have a closer look at one example for such a spe-
cial logic style implementing a masking technique: the masked dual-rail precharge
logic (MDPL), proposed by Popp et al. [16], Popp and Mangard [17]. The MDPL
style is based on the dual-rail precharge (DRP) principle which prevents the occur-
rence of glitches by representing each signal with complementary electrical wires
in the circuit. It is well known that glitches, also called dynamic hazards, do occur
in CMOS circuits and that they have a significant effect on the power consump-
tion [19]. Considering their effect on the power consumption, it appears obvious that
glitches also play a major role in the context of countermeasures against PA attacks.
It has been shown several times that glitches may have a negative influence on the
effectiveness of countermeasures [13, 21]. Preventing glitches is achieved by strictly
applying only monotonic logic functions and by introducing a precharge phase1 and
an evaluation phase2 in each clock cycle. In a DRP circuit, only one of the two
complementary wires of each signal is HIGH, depending on the value of the signal,
the other wire remains LOW. Additionally, each cell within an MDPL circuit unex-
ceptionally processes masked signals, with the result that the power consumption

1 In the precharge phase, every signal (both complementary wires) within a digital circuit is charged
to the precharge value, which is in most cases logic ‘0’.
2 Similar to a standard clock cycle in a conventional CMOS circuit, the combinational blocks start
to evaluate according to their input signals.
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only depends on masked values. A not yet eliminated flaw in the MDPL style is
that the mask value can be discovered due to significant differences in the power
consumption, as the mask signal is connected to every MDPL cell in the circuit and
hence it has to overcome a major amount of parasitic capacitances [20, 25]. The
general drawbacks of special logic styles may be manifold: a significant overhead
in terms of area requirement and power consumption, a decrease of performance,
and a considerable effort for implementing the logic style in the first place, which is
especially the case for logic styles that are based on full-custom cells.

Hiding countermeasures directly alter the side-channel characteristics of the
device with the result that the correlation between the processed data within the
device and the device’s power consumption is weakened or even completely dis-
solved. This way, an attacker is not able to draw any conclusions from the power
consumption about the intermediate data processed in the device. There are basically
two approaches to implement hiding countermeasures: randomizing the power con-
sumption of a device (also called hiding in time) and equalizing the power consump-
tion of a device (also called hiding in amplitude). Unfortunately, both approaches
are almost impossible to be perfectly implemented in practice.

An example for hiding in time is the random insertion of additional operations
during the execution of a cryptographic algorithm. The additional operations do
not contribute anything to the actual cryptographic computation and therefore they
are called dummy operations. The random insertion of dummy operations increases
the runtime of the whole computation with the result that the power consumption
of the critical operations on actual data is randomized in time. This approach sim-
ply adds noise to power measurements and thus complicates a side-channel attack.
The random insertion of dummy operations has to be implemented with great care: the
dummy operations must not be distinguishable from the actual operations, otherwise
the execution times of dummy operations can be detected and filtered. Furthermore,
once the countermeasure is activated, the number of dummy operations that are exe-
cuted has to remain constant for every cryptographic computation. Otherwise the
implementation is vulnerable to timing attacks. As the runtime of the computation
correlates with the number of dummy operations inserted, another drawback is that
the countermeasure has to be adapted to every cryptographic algorithm for which it
is implemented.

A very simple example for a countermeasure following the approach of hiding
in amplitude is the application of noise generators within a device. The obvious
drawbacks of noise generators are the requirement of area and power, without con-
tributing anything to the actual functionality of the circuit. A further example for
hiding in amplitude is a heavily parallelized design of an algorithm. However, this
approach strongly depends on the implemented algorithm, as data dependencies limit
the possible degree of parallelization.

More-advanced techniques are based for example on the previously mentioned
DRP logic style. Pure DRP styles, which do not implement a masking technique, try
to keep the power consumption constant and thus independent of the processed data.
This is achieved by balancing each pair of complementary wires, i.e., the designer
tries to adjust the complementary wires in a way that their electrical characteristics
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(resistance, inductance, and capacitance) perfectly match. Ideally, a circuit containing
perfectly balanced wires would consume a constant amount of power, and hence, it
would be secure against PA attacks. The irrefutable flaw of this approach is that an
exact balancing of wires is almost impossible to achieve in practice. Even if the most
powerful EDA tools are used, the smallest variations in the chip-fabrication process
would cause differences in the electrical characteristics of the complementary wires
once more.

5.4.3 Verification of Countermeasures by Means of Simulations

As mentioned in Sect. 5.2, simulations play a major role during the design phase to
verify the functionality of the IC. When implementing countermeasures, it is also
highly desirable to be able to verify the efficiency of the implemented protection
techniques. Various simulation techniques can be used to perform a detailed investi-
gation of the implemented countermeasures without the need of actually fabricating
an IC. The following section describes to what extent simulations at different levels
can be used to estimate the impact of countermeasures.

One of the main advantages of simulations is the possibility to detect errors in a
design before a chip goes into production. This is also the case for detecting flaws
in countermeasures implemented in a secure hardware design, before developing a
costly prototype chip. Simulations also offer the possibility to simply narrow down
the simulated parts of a digital circuit and hence to easily detect and improve faulty
submodules or vulnerable parts of an implemented countermeasure. For investigating
countermeasures, two simulation levels are interesting: transistor-level simulations
and logic-level simulations.

Transistor-level simulations based on SPICE [18] models of transistors repre-
sent a highly accurate yet very time consuming way to verify the correct functionality
of digital circuits and countermeasures. SPICE simulations may include detailed par-
asitic information about each element in a circuit and about each wiring in a placed
and routed chip design. This results in power-estimation results that are highly com-
parable with power measurements on an actual chip. Hence, transistor-level power
simulations are very suitable to perform power-analysis attacks and to investigate the
effectiveness of countermeasures. The main drawback of transistor-level simulations
is the complexity and the associated expenditure of time due to solving countless
algebraic equations based on nonlinear transistor models. If a designer does not have a
powerful computer cluster at hand, the transistor-level simulation of a medium-sized
design consisting of approximately 2 million transistors may easily take several hours
for a few-hundred clock cycles. Considering that hundreds of power simulations are
potentially required to perform a meaningful PA attack, transistor-level simulations
become a rather impractical.

Logic-level simulations (also called gate-level simulations) in their simplest form
have the advantage of operating at a significantly higher level (i.e., not including any
low-level circuit information) compared to transistor-level simulations. This implies
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a significant speed up of performed simulations, but also a decrease in simulation
accuracy. Furthermore, a conventional logic-level simulation is not able to provide
something similar to a power consumption trace, it is merely possible to obtain logic-
level transitions of each signal within a digital circuit. As described in Sect. 5.4.1, the
state transition of CMOS gates is directly related to the dynamic power consumption.
Hence, it is possible to derive a simulated power trace from the logic-level transitions
obtained from the simulations. A common technique is called toggle counting or
transition counting. At each point in the simulation time where a signal transition
(0 → 1 or 1 → 0) occurs, the power-consumption value for this specific point in
time is increased by 1. Constant signals (0 → 0 or 1 → 1) do not contribute anything
to the power consumption. This way a designer is able to obtain power consumption
traces in a fraction of the time needed to perform transistor level simulations.

There are some limitations in case of power traces derived from basic logic-level
simulations. First, there is no timing information at all included in the simulations:
some simulators work with unit delay (i.e., all logic gates have the same constant
propagation delay) or zero delay (i.e., all transitions occurring in a specific time
are summed up to one point in time, usually the clock event). Second, all signal
transitions consume the same amount of power, which is highly unrealistic com-
pared to an actual digital circuit. The accuracy of power-consumption traces derived
from logic-level simulations can be substantially increased if back-annotated delay
information is included in the simulations. This approach has minor effect on the
performance of logic-level simulations but greatly increases the accuracy of signal-
delay information. A second measure to increase the accuracy of toggle-count power
traces is to randomly weight the signal transitions or to include parasitic information
when processing the signal transitions. The latter approach would result in a time-
consuming preprocessing step to build an appropriate transition-weight database.

Although we have seen that various simulation techniques may be used to verify
the efficiency of implemented countermeasures, unforeseen effects may cover actual
side-channel leakages during simulation.

5.5 Instruction-Set Extensions

Efficiently implementing cryptographic algorithms on embedded devices is highly
challenging due to the limited resources (energy, clock frequency, and memory).
A widely deployed processor for embedded devices is for example the LEON CPU
core [5], which is a SPARC V8-compliant processor. The LEON core has a 32-
bit architecture and follows the Reduced Instruction Set Computing (RISC) con-
cept. When implementing a cryptographic algorithm on such an embedded system,
a designer has mainly two options: selecting a software approach or a choosing a
hardware approach. The software approach uses only the existing instructions of
the processor and requires no additional hardware. This concept provides maximum
flexibility, but is costly in terms of code size and allows achieving only a moderate
computation speed. A hardware solution on the other hand requires the integration
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Fig. 5.5 Design alternatives for implementing AES on a LEON core. Dark-gray colored areas
contribute to the AES implementation

of a dedicated coprocessor that is optimized for a special algorithm. Relying on an
optimized hardware module allows very short execution times, which comes at cost
of additional chip area and loss of flexibility. Another aspect that has to be considered
is the communication overhead between embedded processor and coprocessor. As
reported in the work of Hodjat and Verbauwhede [7], much more time is typically
spent for the communication between processor and coprocessor, than for the actual
computation of the algorithm within the coprocessor. This overhead dramatically
lowers the performance gain of a coprocessor approach.

ISEs are techniques that combine the advantages from both pure software imple-
mentations and pure hardware implementations. ISEs provide the flexibility of a
software solution together with the high computation speed of a dedicated hard-
ware circuit. Moreover, there is no communication overhead between processor
and coprocessor. A schematic overview of the three different design approaches
is depicted in Fig. 5.5. ISEs provide a processor with additional instructions that are
optimized for a certain purpose, like the execution of a cryptographic algorithm. The
additional instructions require extra hardware circuits and can be used in a program
as any other instruction. Hardware costs of the ISEs are much lower than those of a
corresponding coprocessor.

A concept for ISEs on a LEON core has been presented by Tillich and
Großschädl [22]. These ISEs aim for improving the computation speed of the AES
algorithm on the embedded processor. The proposed ISEs allow computing AES
within 196 clock cycles on the LEON core using only 896 bytes of code. The addi-
tional hardware costs introduced by the ISEs are estimated by the authors at 3 kGEs.
For comparison, a pure software implementation of the AES algorithm on the LEON
core takes 1,637 clock cycles and requires 2168 bytes of code. A pure hardware
implementation on the other hand, as presented for example by Mangard et al. [12]
(cp. Sect. 5.3), requires only 34 clock cycles for computing AES, but leads to addi-
tional hardware costs of 16 kGEs. Table 5.1 summarizes the performance numbers
of the three design approaches and clarifies that ISEs are a highly efficient approach
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Table 5.1 Overview of the different design approaches with corresponding performance numbers

Design approach Code size Execution time Hardware costs
[Bytes] [Cycles] [kGEs]

Pure software implementation 2168 1637 –
Pure hardware implementation – 34 16
Instruction-set extensions 896 196 3

that provides a good tradeoff between computation speed and resource usage (in
terms of code size and hardware overhead).

Also with regard to implementing hardware countermeasures (i.e., secure logic
styles) against side-channel attacks, cryptographic ISEs have a significant advan-
tage over dedicated coprocessors. In the case of cryptographic coprocessors, critical
data is running countless times from one submodule to another and vice versa. For
example, an AES coprocessor the input data is first XORed with the secret key. As
the key represents the critical data in an AES computation, the following operations
process critical data. In the next step, the critical data runs through the S-Box module
and a probably directly-integrated ShiftRows module, followed by the MixColumns
module back to the XOR operation with the next RoundKey. We see, in order to
secure an AES coprocessor we need to implement countermeasures in many sub-
modules, as all submodules directly process critical data. Securing a cryptographic
coprocessor by means of hardware countermeasures usually results in implement-
ing the whole coprocessor in a costly secure logic style, which entails a significant
increase in terms of area requirements and power consumption.

In case of cryptographic ISEs implemented on a processor platform, operations
that are actually transforming critical data are confined to the functional units of the
processor. This circumstance enables us to implement only the functional units in a
costly secure logic style and to implement a much cheaper countermeasure to the rest
of the chip. The next section introduces a concept for developing a secure processor
with ISEs and hardware countermeasures.

5.6 A 32-Bit Processor with ISEs and SCA Countermeasures

In the following we investigate a practical example of how ISEs can be combined
with countermeasures against side-channel attacks on a modern processor platform.
We discuss the main features of a comprehensive concept proposed by Tillich and
Großschädl [23], Tillich et al. [24] for implementing AES ISEs and hardware coun-
termeasures on a 32-bit SPARC V8-compliant processor.

In this concept the majority of the 32-bit processor remains unmodified. All crit-
ical operations are executed within a single hardware module which acts like a
conventional function unit, the so-called secure zone. Only the secure zone is imple-
mented in a secure logic style and contains some additional hardware blocks, the rest
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of the processor remains untouched and is implemented in standard CMOS logic.
A protected functional unit within the secure zone provides a set of custom instruc-
tions that can be used for a flexible implementation of different cryptographic algo-
rithms. In fact, all operations that may potentially become a target of side-channel
attacks have to be unconditionally executed by the protected functional unit. Hence, a
software developer still has to proceed with great care during the process of software
development in order to avoid unintentionally implemented security leaks.

Within the secure zone, all operations are protected by a secure logic style, outside
of the secure zone all data is strictly masked. Function operands entering the secure
zone are unmasked, critical operations are performed on the unmasked data, and
before leaving the secure zone the data is masked again with a freshly generated
mask. This way it is ensured that transformations on critical data as well as the
masks do not leak any side-channel information because of the secure logic style,
and the masked data running outside of the secure zone may not leak any useful
side-channel information because of the masking technique and the anonymity of
the masks.

All mask-handling modules are also part of the secure zone, i.e., they are protected
by the secure logic style, and the masks themselves must not leave the secure zone in
their original form. The secure zone contains a mask generator and a mask storage
for generating, storing, and retrieving masks. The retrieval of masks corresponding
to input operands and the storage of a mask corresponding to a result can be linked
to the addresses of the operands and the result, respectively.

We now want to take a look at the implementation costs of the practical example
proposed by Tillich et al. [24] based on a SPARC V8-compliant LEON3 processor [1].
A full version of the secure zone has an area requirement of approximately 22 kGEs.
In the following, we go through some theoretic numerical examples, calculating the
total area overhead when implementing the secure zone in different secure logic
styles.

We assume that a typical LEON3 processor implementation containing a debug
support unit, RAMs, and caches requires approximately 580 kGEs. In total, a LEON3
processor equipped with a secure zone implemented in unprotected CMOS logic
requires 602 kGEs. A pure DRP logic style like DWDDL increases the area require-
ment approximately by a factor of about 12 [31]. In our example the secure zone
implemented in DWDDL would require approximately 264 kGEs, the whole LEON3
processor would thus result in 844 kGEs. The total area overhead would increase
by a factor of only 1.4 compared to the LEON3 implementation in unprotected
CMOS logic. In case of a coprocessor that would have to be completely imple-
mented in DWDDL we would encounter the full area overhead factor of 12. In case
of iMDPL [16], which causes an area overhead of a factor of 18, the overall area for
our LEON3 processor would be 976 kGEs. This would result in an area overhead
factor of approximately 1.7.

These numerical examples illustrate the following: although secure logic styles
may result in a significant drawback in terms of area requirements as well as power
consumption, they may be implemented much more economically if secure logic
styles are combined with advanced concepts like the secure-zone approach.
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5.7 Testability and Security

Testing is an important activity not only during development of a hardware circuit but
also after its manufacturing. Typically, not all microchips that have been manufac-
tured are working properly. This has various reasons, for example, varying process
parameters during production or imperfections of material and masks. The yield,
which is the ratio between the number of working chips and the overall number of
manufactured chips, should be as high as possible to maximize the profit. In order
to separate faulty chips from working chips, tests have to be applied.

Releasing a faulty chip causes tremendous costs. Imagine the following simple
example: A company manufactures 100,000 chips, and sells them at the price of $1
per chip. We assume that one percent of the chips (i.e., 1,000 chips) are faulty. When
the faulty chips are immediately detected after production through tests before they
get sold, costs of $1,000 will arise. When the faulty chips get detected after they have
been sold and soldered on a board, costs will already result in $50,000 if repairing
a malfunctioning board costs $50. Even worse, when the failing parts get detected
after integration into a whole system, costs will boost to $1,000,000 when repairing a
non-working system costs $1,000. This simple example clearly emphasizes the need
of detecting faulty parts as early as possible after production.

In order to get confidence about proper operation of a microchip after production,
reliable tests are necessary. For realizing such reliable tests, the underlying test con-
cepts that are used have to be planned and included at the design time of a hardware
circuit. This so-called “design-for-test” approach integrates additional test structures
to a circuit to allow fast and comprehensive analysis of a chip after production. The
more internal details of a chip can be accessed, the more comprehensive tests can be
conducted, lowering the chance that malfunctioning parts remain undetected.

A powerful and widely-used test concept uses scan chains that provide access to
the values internally stored in the flip flops of a hardware circuit. For cryptographic
devices, giving access to internal values can be problematic. As shown in the work of
Yang et al. [29, 30], test structures based on scan chains can be easily used to mount
attacks against cryptographic devices. In order to prevent such attacks, test structures
of security-related devices are typically deactivated after successfully testing the chip
(e.g. by blowing a fuse) or even totally removed by cutting them off [11].

An alternative to scan-chain approaches are built-in self tests (BISTs). The NIST
suggests to use BISTs instead of scan-chains for cryptographic devices [14]. For a
BIST, necessary test data and test cases are generated within the evaluated chip. The
only information that is returned after conducting the tests is whether all tests have
been passed or not. This is advantageous from a security point of view but comes
at cost of a lower fault-detection rate, since comprehensive tests as with scan-chain
approaches are not possible. Moreover, generating test data within the chip causes
significant hardware overhead.
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5.8 Hardware Trojans

Test structures implemented by a designer to be able to verify the correct functionality
of an IC after production, may unintentionally weaken or bypass security measures
implemented on that device. In contrast, hardware Trojans describe security-
threatening hardware structures in ICs, intentionally implemented at some point
in the fabrication chain. For cost reasons, more and more semiconductor companies
outsource the chip fabrication process to cheaper facilities. Hence, hardware Trojans
may be implemented without the designers’ knowledge or notification (assuming
that the designer is not an adversary). Moreover, they may remain undetected even
if the designer receives the ICs from the wafer factory and performs conventional
functionality tests, as hardware Trojans may or may not be activated as soon as the IC
is powered up. Once activated, the malicious actions a hardware Trojan may perform
are incredibly powerful:

• simply shut down the device the Trojan is running on or disable connected devices,
• disable security mechanisms in a system,
• transmit critical data via various interfaces (e.g. radio-frequency emission),
• open a backdoor for an adversary and provide access to a system,
• or bypass implemented hardware countermeasures against side-channel attacks.

Wang et al. [26] classified hardware Trojans into three classes according to their
physical, activation, and action characteristics. The physical characteristics describe
how the Trojan is introduced in a digital circuit (addition/deletion of cells or mod-
ification of existing cells), the size and the location of the Trojan (how many cells
are involved), as well as if the insertion of the Trojan entails significant changes
of the physical layout of the digital circuit. The activation characteristics describe
whether the Trojan is “always-on” or has to be activated externally, e.g. via antenna,
or internally. Wolff et al. [28] further divided internally activated Trojans into three
categories based on their trigger behavior: rare value triggered, time triggered, and
both value and time triggered. Wang et al.introduced three action characteristics that
describe whether an activated Trojan modifies a function (addition/deletion of logic
cells) or specification (e.g. modification of wires changes the timing specifications),
or directly transmits critical information over various channels.

Preventing hardware Trojans is a very complex issue, as Trojans may be implanted
in different phases, e.g. during the high level or hardware-level design phase of a
system, during synthesis/place/route of hardware modules, or even during the fabri-
cation process of an IC. One possible protection against hardware Trojans is a chip
developer would have to somehow establish a chain of trust, starting at the designer,
continuing with the hardware experts, up to the IC production facility and the package
house.

Another possibility to detect hardware Trojans is based on SCA [2]. In this
approach a few ICs from one IC family (produced with the same mask) are first
subjected to sufficient I/O tests to verify all parts of the circuitry. During these tests,
some side-channel signals are also collected to build a side-channel fingerprint. In a
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next step, the ICs are destructively reverse engineered in order to thoroughly ensure
that these few samples are free of Trojans. All other ICs from the same family can
then be checked by comparing the fingerprints. This example shows that security-
threatening side-channel attacks can also be used to some degree to detect hardware
Trojans in ICs.

5.9 Conclusion and Summary

Implementing efficient, secure, and reliable ICs is a highly sophisticated task that
provides manifold possibilities, but requires to be performed with great care. In this
chapter we have shown that a hardware designer has almost indefinite possibilities
to basically add specific functionality to an IC as well as to optimize the implemen-
tation to reach various design goals. By means of several examples of cryptographic
hardware implementations we have illustrated the degrees of freedom that are at
a designer’s disposal. We also pointed out the importance of performing tests and
simulations throughout the whole design cycle in order to minimize the possibility
of errors as well as to decrease the effort if an error occurs during the design phase.

With regard to security-threatening side-channel attacks we described the fun-
damental characteristics of modern CMOS circuits and pointed out the reason for
the vulnerability of ICs against such attacks by means of a conventional CMOS
inverter. We discussed basic approaches for implementing countermeasures against
side-channel attacks and introduced some particular countermeasures in more detail.
We also pointed out the possibility to verify the effectiveness of various types of
countermeasures to some degree in early design phases. This minimizes the costs as
well as the effort to perform changes in the implementation.

We combined the topics of efficient hardware implementations, cryptographic
ISEs, and hardware countermeasures against side-channel attacks and presented a
sophisticated concept with custom instructions and countermeasures on a modern
SPARC V8-compliant 32-bit processor platform. It turned out that such a concept
benefits from both the efficiency and compactness of ISEs as well as the security
gain achieved by a secure logic style.

In a last part of this chapter, we contrasted the testability with the security of
ICs. It has been shown that test structures implemented by designers to be able to
comprehensively verify the correct functionality of a design after production may
lead to significant security leaks. We also discussed the insertion and some possible
effects of hardware Trojans, which represent a worrying yet interesting and currently
evolving research topic.
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