
Chapter 3
Microprocessors and Microcontrollers Security

Chris Shire

Abstract This chapter will consider the chip architectures used in embedded
security; how they have evolved over the past three decades, the current designs,
and the future trends. The chapter will consider the evolution of the microcontroller
Central Processing Units (CPU) cores such as the 8051, 6805. It will look at the
wide range of innovative and reduced instruction set designs, including popular off-
the-shelf microcontroller designs, microprocessors, and digital signal processors. It
will also consider other reduced instruction set designs, with reference to known
attacks and options for protection. It will look at the vulnerability of functions within
the chips such as memories and interfaces, and possible enhancements. Further
security measures for different memory types will be reviewed. Enhanced secu-
rity concepts using defensive designs, anti-tampering measures, and other hardware
protection are discussed.

3.1 Microcontrollers and Microprocessors Security Needs

From an abstract perspective there is little difference in the function of a micro-
controller and microprocessor, and in embedded applications the implementation
becomes blurred as to the outside world the computing device in the system is often
literally a “black box”. This chapter will use the euphemism of ”Embedded CPU” to
cover all the options in design and integration, unless discussing a specific nuance
of a design. This is because the designers or test engineers of the system are the only
people likely to appreciate the difference. There are several misconceptions about the
security of embedded systems. First that attacking the Embedded CPU is difficult,
because it is often deep inside a complete assembly. Second there is little value in the
embedded software or intellectual property. Finally, that people lack the motivation
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to attack an embedded control system. Attacking a single smart meter and turning
off the lights in one house seems trivial, it is only when this attack could be scaled up
to a city may people worry. As a result many people consider an embedded control
system is secure, because it has never been attacked. Justifying embedded security
is often a major issue. In addition by definition to embed an item is “to fix something
firmly in a surface or object”1 so that it is an integral part of a larger system. It is
therefore perceived that as an Embedded CPU cannot easily be physically removed
without damaging the system so it is not open to abuse and must be secure. While
from a physical point of view this may often be the case, it does not imply the device
is secure electronically.

The first issue to clearly determine is why the Embedded CPU might be attacked,
as this will likely determine the method of attack. When a thief steals intellectual
property, e.g. software or chip design, then destruction of the system may be of little
consequence. Alternatively the attacker may want to deny the use of the system to
others for a period of time so as to gain profit directly or indirectly. The physical
location of the system will have a bearing on the method of attack. If a system can
be accessed remotely and even better covertly, then the potential for attack is greater.
A system with strong physical security which is difficult or expensive to breach,
such as the cashbox of an arcade gaming machine might be attacked via their test
port. Not properly understanding the complete system’s security mechanisms and
potential attacker’s methods can render any Embedded CPU security useless. Of
course the more money spent on a security mechanism is in theory the better but
there may be consequences. One example is an intrinsically valuable object, such as
a royal seal stamp, could be stored in a very secure vault, but if fast frequent access
is required such security might impede the signing of official documents. There has
to be a balance of risk versus performance.

The detailed methods of attack are described in another chapter, but for an
Embedded CPU in an enclosed system the physical connections to the outside
world are often the weakest links especially those used for manufacturing tests,
e.g. a JTAG (the industry standard Joint Test Action Group serial interface on many
CPUs), remote programming, and peripheral connections, e.g. USB, Ethernet, etc.
From a physical point of view the housing of the system can include anti-tamper
mechanisms, conformal coatings, or epoxy encapsulation. It may even have some
countermeasures such as one-way screws or include some “security by obscurity”
such as the deletion of product identifiers on the Embedded CPU chip packages.
Beyond the physical assembly the electronic architecture of the Embedded CPU and
its associated components should be considered in any security analysis. To under-
stand the strengths and weakness of an Embedded CPU it is worth considering the
historical development of common architectures.

1 Definition from Macmillan Dictionary http://www.macmillandictionary.com/thesaurus/british/
embed#embed_4
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3.2 Historical Development

Embedded CPUs can be broken into two broad categories: microprocessors with vari-
ous peripheral components and microcontrollers which have most of its
memory and peripherals on chip, thereby reducing cost and size and often designed
for dedicated applications. In contrast to the personal computer and server markets,
a large number of basic CPU architectures are used today; these are Von Neumann
as well as various degrees of Harvard structures, Reduced Instruction Set Computer
(RISC) as well as non-RISC and Very Long Instruction Word (VLIW); word lengths
vary from 4 bit to 64 bits and beyond, mainly in Digital Signal Processors (DSPs)
although the most typical remain 8/16 bit. Most architectures have a large number
of different variants and formats, the most popular of which are manufactured by
several different semiconductor companies.

Some common architectures are or were denoted by the following code numbers:
65816, 65C02, 68HCxx, 68K, 78K, 8051, 80251, ARM, C167, ColdFire, COP8, H8,
MIPS, MSP430, PIC, PowerPC, SHARC, SPARC, ST6-ST32, TriCore, V850, x86,
Z8-Z8000. Information on any of these architectures can be found from their entry
in an Internet search engine. It can be seen that this multitude of different designs
may present an obstacle to any attacker by simple obfuscation of what CPU is used
in an embedded system. However, the underlying format of any design and therefore
its weaknesses can be traced back to the basics of logic designs.

Since Integrated Circuit (IC) logic designs started to include arithmetic processing
units with software programming, the potential for misuse either accidently or delib-
erately has been an issue. The earliest CPU’s in the 1970’s were made from off-
the-shelf components such as Bit Slice Processors (BSP). BSP’s used arithmetic
logic units (ALUs) that typically came in 4 bit increments. These could be assem-
bled together to make larger word lengths (8 bit, 16 bit, etc.) and were controlled
using Programmable Read Only Memories (PROM). From these early beginnings
developed the one chip microcontroller solutions found in every type of electronic
product today, to the multi-core processors powering laptops, servers, and games
machines. A direct descendant of the BSP is the Digital Signal Processor (DSP).

In 1971 Intel released its first real microprocessor, the 4004 and with it, the era
of microcomputers began [1]. Microcontrollers which included some form of on
chip memory first appeared in 1974 with the Texas Instruments TMS1000 with 1K
Byte of masked ROM and 64 × 4 bits of RAM for use originally in calculators2. In
1976, Intel introduced one of its earliest microcontrollers, the 8748 and 8048. They
were used extensively for computer keyboards, or programmed to perform certain
data conversion operations. Other Embedded CPUs were programmed with specific
stand-alone functions such as a calculator. From the 8048 came the 8051 and later
the 16 bit version the 80251. These designs were extensively licensed to over 20
semiconductor suppliers both as embedded cores and later synthesisable software
cores. To date it is estimated that over 5 billion embedded designs have been based
on the 8051 and its derivatives, mostly in smart cards.

2 http://www.ti.com/corp/docs/company/history/timeline/semicon/1970/docs/74tms_1000.htm
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From the start two issues regarding the reliability and security of systems became
evident, one internal, the other external. The internal problems were found either
when initially testing devices to ensure correct operation as construction faults within
multi-chip systems or faults in the PROM could lead to misbehaviour. These faults
could appear later in the field, due to the semiconductor process impurities or because
of the environment. Excess vibration, voltage, or electrostatic charge, either applied
by accident or on purpose, might damage the devices. The other threat was to the
intellectual property of the design. Clones from state-run semiconductor companies
in the USSR and other eastern bloc countries appeared within a few years3. The need
for clones was driven by the block on export of high technology by the USA and
the need to produce computers for military and commercial applications. The only
electrical protection at this time was often in the form of external devices that would
protect the Embedded CPU from electrical damage. Hardware protection consisted of
strong epoxy encapsulations to deter intruders and to ensure the component assembly
stayed together when vibrated.

From the beginning there was also seen a need to protect the software in the ROM
of a Embedded CPU as it represented the results of expensive software develop-
ment and sometimes key intellectual property. The masked ROM of the TMS1000
protected the code of the developer by making the command to read out the ROM
nominally inactive. These devices were used in simple games machines and so
became, at least as a hobby, the target of attack to allow people to sell cloned or
modified games. Various articles still exist (on illicit hacking websites) on how this
ROM might be read out using various hardware test functions.

3.3 The Microprocessor

The microprocessor is the portion of a computer system that carries out the instruc-
tions of a computer program. This term has been in use in the computer industry at
least since the early 1960s. The form, design and implementation of microproces-
sors have changed dramatically since the earliest examples, but their fundamental
operation remains much the same.

Early microprocessors were custom designed from logic circuits as a part of a
larger computer. However this has given way to the development of standard mass-
produced microprocessors. This trend generally began in the era of discrete transistor
mainframes and minicomputers and has accelerated with the popularity of the Inte-
grated Circuit (IC) and the underlying technology trend sometimes known as Moore’s
Law [2]. Semiconductor technology has allowed increasingly complex CPUs to be
designed and manufactured to tolerances in the order of a few tens of nanometers.

Early single chip CPUs supported 8 bit data and address buses such as the Intel
8080 or 16 bit as was TI’s TMS 9900. There are extensive references to the history
of CPU developments [3], but with regard to embedded systems there are a few

3 http://www.cpucollection.ca/Russian_and_ussr.htm
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significant steps which have driven this technology. Western Design Center Inc.
introduced the Complementary Metal Oxide Semiconductor (CMOS) 65816 a 16 bit
upgrade of the WDC CMOS 65C02 in 1984. This was the core of the Apple II
and later the Super Nintendo Entertainment System, making it one of the first and
most popular 16 bit embedded designs of all time. Intel followed a different path,
and upgraded their 4 bit 4004 designs to the 8 bit 8080t and eventually the 16 bit
Intel 8086, the first member of the x 86 families. Their derivatives were used in
a number of embedded systems. Intel introduced the 8086 as a cost effective way
of porting software from 8080 code. The 8088, a version of the 8086 that used
an external 8 bit data bus, was the microprocessor in the first IBM PC, the model
5150, but also used for several early embedded applications. Following up their
8086 and 8088, Intel released the 16 bit 80186, 80286. The 8086 and 80186 had a
crude method of memory segmentation, while the 80286 introduced a full-featured
segmented memory management unit (MMU) which could be used to protect access
to some software. The Intel family became the target of various clone manufacturers,
both legitimate licensees and reverse engineered chip suppliers. This lead to several
litigious incidents around chip design and intellectual property theft [4]. However it
also lead to the acceptance that chip design needed further security to, if not stop, at
least deter such issues in the future.

3.3.1 32 Bit Microprocessor Designs

16 bit designs had only been on the market briefly when 32 bit implementations
started to appear. The most significant of the 32 bit designs is the Motorola MC68000,
introduced in 1979. The 68 K, as it was widely known, had 32 bit registers, but used
16 bit internal data paths and a 16 bit external data bus to reduce pin count, and
supported only 24 bit addresses. Motorola described it as a 16 bit processor, though
it clearly has a 32 bit architecture. The combination of high performance, a large
16 MByte memory space, and low cost made it the most popular CPU design of its
class. The Apple Macintosh designs made use of the 68000, as did a host of other
designs in the mid-1980s and its derivatives such as the 68020 ever since. Other
large companies designed the 68020 and its derivatives (such the 68EC020 with
reduced 24 bit addressing) into embedded equipment such as laser printers Today’s
ColdFire [20] processor cores are derivatives of the respected 68020. The 68000 had
several clones again mostly legitimate.

From 1985 to 2003, the 32 bit Intel x86 architectures became increasingly domi-
nant in desktop, laptop and server markets and these microprocessors became faster
and more capable. In 1994 Intel introduced its Smart Die™ program for its 386, 486,
and Pentium products so it could supply CPU cores and peripherals for multi-chip
modules, for use in embedded computers such as hand held terminals and commu-
nication equipment.
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3.3.2 64 Bit Microprocessor Designs

While 64 bit microprocessor designs have been in use in several markets since the
early 1990s, the early 2000s saw the introduction of 64 bit microprocessors targeted
at the PC market. One example is the PowerPC a RISC architecture created by
the 1991 Apple–IBM–Motorola alliance [5], also known as AIM. Derivations of this
design are now found in high end embedded systems in the network communications
and automotive engine management units. Several derivatives have been developed
as cores for embedding in a Field Programmable Gate Array (FPGA) by various
suppliers such as Altera, LSI logic, Lattice and Xilinx and as cores for various Apple
products. There are a multitude of Linux-related operating systems developed with
this platform for embedded applications.

Overall in the past decade or more as world trade became more open and the
semiconductor technology became more complex the benefit from cloning com-
plex CPU’s became less economic. The so called “Grey” market for unofficial sales
moved to remarking or repackaging lower specification original devices as high spec
units. This practice continues to this day. In the past 10 years, CPU designers have
now started to include hardware security functions, ranging from serial numbers to
dedicated encryption engines to ensure that users can verify on-line the source of
the device. This technique is effectively two factor authentication. The first step is to
use the serial number or credential, which can include a check sum, to verify that it
is a valid formatted serial number or credential. This will not stop copied hardware
serial numbers. The second step is for a hash function of data using this identity to
be verified by a remote trusted third party. This then ensures that clones cannot be
active in a population of connected devices. It does not solve the problem of cloning
for embedded devices with little or no remote connectivity. In these circumstances
the Embedded CPU’s architecture has to have further security protection integrated
at the start and to be continuously active when operational. This may include hidden
unique properties programmed into each individual Embedded CPU that cannot be
cloned, or a public/private key pair generated on chip that can be challenged to test
for authenticity of the device.

3.3.3 RISCs and ARM

A microprocessor is a general purpose product that may have many commands both
logical and arithmetic to allow easy programming. Several specialised processing
derivatives have followed from this basic concept. A digital signal processor (DSP)
has limited instructions but often with a very large data bus to allow for high data
throughput. Graphics processing units similarly in the past had limited or no general
programming facilities. However, ever since the first “general purpose” CPUs were
developed there has been a demand for high performance, dedicated functionality,
low cost designs; so-called RISC Machines. By implementing fewer instructions,
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the chip designer is able to dedicate some of the precious silicon real-estate for per-
formance enhancing features. In addition the benefits of RISC design simplicity are
a smaller chip, smaller pin count, and low power consumption. Among some of the
typical features of a RISC processor are a Harvard architecture which allows simulta-
neous access to all the memory by having separate buses for instructions and data. The
overlapping of some operations increases processing performance. Probably the most
popular RISC family today is the Acorn RISC Machine (ARM) architecture which
first appeared in 1985. It has since come to dominate the 32 bit embedded systems
processor space due to its efficiency, the low cost licensing model, and its wide selec-
tion of system development tools. Many mobile phones include an ARM processor,
as do a wide variety of other embedded products. There are microcontroller-oriented
ARM cores without virtual memory support, as well as multi-core processors with
virtual memory. It has been estimated that by 2011 that over 25 billion ARM cores
will have been shipped [6], the vast majority into embedded systems. ARM has been
licensed to over 60 commercial companies, including nearly all major IC manufac-
turers, and several other institutions. Only a few vendors are licensed to modify the
ARM cores. This approach has lead to common design and layout, without secu-
rity features making it an easy target for attack. So derivatives with security func-
tions were requested by the smart card industry. In 1999, ARM announced it was
looking at derivatives incorporating security features, called SecureCore, the first
public implementation was with Samsung in 2001 with the SC100 core [21]. This
core besides being a fully synthesisable design, offered randomised layout options,
secure debugging, controlled development to stop reverse synthesis, plus memory
protection features and anti-Differential Power Analysis (DPA) functions. From this
has come the Cortex-M series of microcontrollers including the special secure core
M3 (SC300) range and the ARM company has allowed further modification by at
least one vendor. The SC300 has become the preferred architecture for most of the
major smart card IC vendors, with various different extra security features. It pro-
vides a relatively common platform for the major software developers, i.e. the smart
card vendors. This allows at least some software portability from one IC vendor to
another, which has been a major hurdle to the industry in the past. In addition second
sources silicon suppliers for high volume smart card designs can be provided quickly
and less expensively. These derivatives can be considered for assessment to Common
Criteria, with certification to EAL5 High and potentially up to EAL6 High.

In 2003, ARM announced the introductions of security extensions for its micro-
processor range, marketed as TrustZone® [7] first for its ARM1176 and later found
in the Cortex A5 to A15 CPU range. It provides a low cost alternative to adding
an additional dedicated security core to a System-on-Chip, by providing two virtual
processors backed by hardware-based access control, including a 33rd bit to identify
secure commands. It offers a combination of MMU and caches uses tables to deter-
mine whether a particular level of memory exists in “Secure Mode” or “Non-secure
Mode”. This enables the application core to switch between two states, referred to
as “worlds” (to reduce confusion with other names for domains), in order to prevent
information from leaking from the more trusted domain to the less trusted domain.
This domain switch is generally orthogonal to all other capabilities of the processor,
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thus each domain can operate independently of the other while using the same core.
Memory and peripherals are then made aware of the operating domain of the core
and may use this to provide access control to secrets and code on the device. Over
20 companies have taken licenses for the TrustZone® extensions, and variants have
been used in applications as varied as MP3 players, smart-phones and payment ter-
minals. The implementation the TrustZone® extensions are specific to each design,
and some may include other hardware security features. However, it would be dif-
ficult to apply any sort of formal security certification on a device which includes
both secure and insecure functions on the same chip.

3.4 Security Design of Embedded CPU Architectures

Today Embedded CPUs are at the heart of a huge range of commercial and industrial
equipment [22], including domestic appliances such as microwaves, DVD players
and televisions. They are used in cars for engine-control and service functions, in
medical instruments, and in many other areas. The widespread availability of Embed-
ded CPUs is a measure of their flexibility and cost when compared to a dedicated
hardware function. Usually, they have a high level of input and output (I/O) device
options including serial interfaces, e.g. SPI Serial Peripheral Bus (SPI), Control Area
Network (CAN), Universal Serial Bus (USB), general use I/O and other interfaces.
A microcontroller may minimise the number of external devices used in the sys-
tem by integrating much of the external interfacing to analog signals as many of
them have built-in analog-to-digital (ADC) and digital-to-analog converters (DAC),
comparators and pulse width modulators (PWM).

Early Embedded CPUs had 4 bit or 8 bit internal data buses, while modern micro-
controllers have 16 bit or 32 bit data buses to access external memory. Obviously,
the wider the data bus, the more difficult it is to micro-probe it and reverse engi-
neer. While the complexity, size, construction and general form of Embedded CPUs
have changed drastically over the past 40 years. It is notable that the basic design
and function has not changed much at all. Most modern Embedded CPUs can be
described as von Neumann stored-program machines, but a few do have a Har-
vard architecture. The first architecture uses separate memory for instructions and
data, while the latter uses a single memory structure to hold both instructions and
data. From the security point of view, the Harvard architecture should offer better
protection against micro-probing attacks. When attacking a von Neumann architec-
ture, an attacker could interrupt the CPU so that it will no longer execute branch
instructions or fetch instructions. The contents of the memory can be revealed by
micro-probing the data bus and storing the signals. The same attack when applied
to a Harvard microcontroller might reveal only the program code, whereas the data
memory, which usually contains passwords and decryption keys, may not be avail-
able. If a RISC design is too simple with few instructions, it might be easier to reverse
engineer it. A RISC with a complex instruction set may leave more distinctive power
traces making identification of each instruction through power analysis easier.
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Some Embedded CPUs derivatives have core designs with speed enhancement
features. One is an instruction pipeline. Each instruction is divided into some simple
subinstructions, which are executed by the CPU in step, with a pipeline controller
watching the process. Hence, the Embedded CPU will not be immediately execute
the code, instead it executes two or more instructions simultaneously. This makes
the power analysis more difficult, because two or more instructions can contribute to
the power trace. Some secure Embedded CPUs may have one or more slave crypto-
coprocessors [8]. These support encryption and related processing of either various
symmetric algorithms such as AES, 3DES or asymmetric algorithms such as RSA or
ECC. These firmware coded coprocessors typically provide hardware acceleration of
a range of functions such as multiple XORs, Galois Field multiplication/addition or
modulo multiplication while storing the intermediate results in a dedicated memory
of the crypto-coprocessor (SRAM). Such devices have numerous protection features
that prevent unauthorised analysis of their data, or reverse engineering. A crypto-
coprocessor block may include functions such as a random number generator in
order to house them in the same protective environment as the encryption function.
If the Embedded CPU is to be certified such random number generators have to use
bit sources with a high level of entropy, for example based on two independent free
running oscillators. Another common feature in many Embedded CPUs is a cache
memory that stores instructions and data that requires frequent and fast access. For
example, if the Embedded CPU executes a loop, then the instructions will be fetched
from the cache memory rather than from the external memory thus saving time. This
makes micro-probing attacks harder, as some data will not appear on the external
data bus.

The demand for hardware security began with embedded systems for consumer
products. Thirty years ago there was almost no protection against cloning of such
devices except legal and economic forces. Often Application-Specific Integrated Cir-
cuits (ASICs) were widely used. Such ASICs were simple state machines replacing
discrete logic components, thus reducing the size of the assembly and at the same
time protecting against competitors with less integrated designs incurring more cost
and larger solutions. These ASICs did not carry much security. Their functionality
could be determined by a simple analysis of the signals using an oscilloscope or
doing an exhaustive pattern analysis of their inputs and outputs. For example as the
consumer demand for a clock in every room grew, digital clock ICs were heavily
cloned. From the late 1970s, microcontrollers offered a very good replacement for
ASIC-based designs. They not only had internal memory and useful interfaces such
as LCD drivers, but some sort of security protection against unauthorised access to
the internal memory contents. Unfortunately, early microcontroller’s semiconductor
technology did not offer non-volatile storage for large programmes or variable data,
so this had to be stored in a separate chip outside the microcontroller thus allow-
ing the attacker to access them. Games machines had ROMs made with low-cost
mask technology allowing easy reverse engineering their contents. Replication of the
design could involve using a microcontroller with EPROMs, which although expen-
sive, it was economically viable if the games machine was very popular. This trend
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continues today as even recently news of attacks on dongles used for “software
protection” in the consumer games market has been published [9].

The next step in security design was to place an Electrically Erasable Program-
mable Read Only Memory (EEPROM) data storage chip next to the microcontroller
inside the same plastic package or on the same die. To attack such a chip is not easy;
a professional attacker would have to take apart the sample and micro-probe the chip.
Such methods require equipment that cannot be afforded by a “hobbyist” attacker,
and so their only hope was to exploit a software bug to get access to the data. Even
today most microcontroller EEPROMs do not have any special hardware security
protection, with the exception of the obscurity of the programming algorithm. In
some cases the ROM read-back function is disguised, or replaced with a verify-only
function. The verify-only approach can be very powerful if implemented properly,
as it is in most microcontrollers used for smart cards.

Microcontrollers with on-chip program memory today often have one or more
security fuses that control access to the information stored in on-chip memory. These
fuses can be implemented in software or in hardware [10, 11]. Software implemen-
tation means that a password is stored in the memory or a certain memory location
is assigned as a security fuse. The earliest implementation was for the fuse to be in
the logic for the read-back function of the programming interface. The drawback of
this design is that the size of the fuse makes it easy to locate and perform an invasive
attack. For example, the state of the fuse could be reconfigured by connecting the
fuse logic output directly to the supply or ground line. Another well-known example
of such attacks is erasing the security fuse under a UV light. The next concept in
designs was to make the security fuse part of the memory access circuit, so that any
external access to the data is disabled if the fuse is set, usually the fuse is located very
close to the main memory or even shares some control lines with it. If the fuse shares
the same technology as the main memory array it makes it harder to locate and reset
directly. One solution, used in the Motorola MC68HC705C9A microcontroller, was
to place fuse cells bit-lines mixed in between the main memory cells. However, other
noninvasive attacks are possible, because a fuse cell was often a one-time program-
mable location in the memory so the fuse may operate differently from the normal
memory. As a result a combination of signals could be found under which, thus
allowing the access to the information stored in the on-chip memory. Noninvasive
attacks could be automated reducing time and effort. Alternatively, the attacker may
try using glitch attacks to confound the security check subroutine, or using power
analysis to see whether a password guess is correct or even partially correct. This is
useful if the fuse is in a separate memory cell to the main memory array. For exam-
ple, this was the case for early Microchip Peripheral Interface Controller (PIC) and
early Atmel AVR (this is an Atmel brand not an acronym) microcontrollers. In both
cases, the fuses could be easily found and disabled by one or another method. The
simplest way is to check the state of the fuse on power-up, on reset, or on entering the
programming mode. The state of the fuse might be changed for a short time by power
glitch or laser pulse. Storing the fuse state in a register may not help, because the
fuse state is checked only once and the register could be changed by fault injection.
The PIC16 × 84 became popular in many hobbyist applications because it uses a
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simple serial programming algorithm. It also used an EPROM memory, which was
easy to erase. It also has a 64 byte EEPROM for storage of user data. The PIC16 × 84
was easily tweaked to allow hackers to read its protected contents, simple disassem-
bly software could then reproduce the source assembly files. Microchip corrected
this by introducing the PIC16F84 (and later the PIC16F84A) and discontinuing the
PIC16C84.

Fuses are more secure when located within the same memory array but with sep-
arate control and signal lines. For example, fuse and main memory cells can touch
each other with bit-lines, as in the Zilog Z86E33 microcontroller; or with word-lines,
as in the STMicroelectronics ST62T60 microcontroller. Even if the fuses could be
erased with electromagnetic radiation it is likely the main memory area would be
damaged trying to erase them. At the same time, semi-invasive methods may work
on some Embedded CPUs if the fuses have a separate control circuit that could be
attacked without affecting the main memory. Apart from different implementations,
the security fuse can be monitored in different ways. It is preferable to ensure the
fuses are checked each time there is a data access. It may be more secure if the
fuse state is monitored in real time and any change affects memory access. In this
case, any attacker will have to disable permanently the fuse to access the informa-
tion. A further improvement is the Anti-fuse [12]; this is a different kind of One-
Time-Programmable (OTP) memory that uses programmable interconnection links
between metal wires inside the chip. As these links are extremely small, (∼100 nm
wide) it is virtually impossible to identify their state and that gives an extremely high
security level to the devices based on this technology.

In some early Embedded CPU architectures there were various undocumented fea-
tures in their command sets, e.g. Z80, 8085, 8048 besides the occasionally obscured
ROM read out command. These commands were available, depending of the partic-
ular vendor, to offer commercial advantage to special customers. They could provide
test routines or to preserve compatibility with other members of the family, e.g. the
8085 with the 8086. These features varied by licensee, but it was common practice
in the early developments. One apocryphal command said to exist in some CPUs
was the HCF command—the Halt and Catch Fire command, [13], it offered either
a hazard to hobbyist programmers or a target for hackers. The 68000 HCF com-
mand is believed to be used as a memory checker during production, as it halts the
processor and reads through all memory locations as fast as possible and can only be
stopped by resetting the system. Certainly some exotic commands did exist on other
devices, some of which were discovered by the use of various disassembler tools
that had been developed to regenerate source code. Even in later designs such as the
Intel Pentium and some of its derivatives there was the so-called F00F command
or a bug. This instructed the CPU exception handler to stop servicing interrupts.
As a result, any Embedded CPU must be reset. This so- called “Bricking” command
of an Embedded CPU can be considered a serious security flaw and can be the target
of various “denial of service” attacks. Newer designs include non-executable bits to
make some address space secure. ARM has instigated this feature in its TrustZone(r)
concept to provide such a secure execution environment for some code.
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To make invasive attacks more difficult the Embedded CPUs designs have used a
final layer metal or poly-silicon mesh for some time [14]. Logic paths in this mesh
are monitored for interruptions and short circuits, and cause reset or zeroing of the
EEPROM memory if triggered. In addition, sensors for light, voltage, frequency and
temperature maybe included to test for invasive attacks. Normally, such protection
is not used in ordinary Embedded CPUs because it increases the design cost. Such
sensors could be also triggered unintentionally in their environment such as in auto-
motive applications. Ordinary microcontrollers sometimes have been seen with a
fake top layer mesh, whilst this may not stop the determined reverse engineering
attempt it is an effective hurdle for simple optical analysis and basic micro-probing
attacks. In secure Embedded CPUs such meshes have incorporated various tamper
detection mechanisms and sensors. The logic lines in the mesh are polled to check
for timing interference, indicating a short circuit and the data on the lines may have
randomly changing encrypted data, thus discouraging false signal injection. How-
ever, not all meshes are perfect and flaws make micro-probing attacks possible. Some
semi-invasive attacks are still possible if the mesh has gaps between the wires and
light/radiation or a micro probe can pass through the gap into to the active areas of the
circuit. Some user programmable Embedded CPU designs have a non-standard pro-
gramming interface, allowing a one-time programmable option, effectively a WORM
function. In some recent Embedded CPUs further protection against micro-probing
attacks is provided by bus and memory encryption. This means even if the chip is
stripped down to its active layers without having access to the key materiel the sensi-
tive information cannot be retrieved. This protection process often prevents invasive
and semi-invasive attacks. In the past noninvasive attacks could still be possible if the
CPU used unencrypted data. The data reaching the CPU could then be vulnerable.
An example was the encrypted data stored in external program memory of the old
Dallas Semiconductor DS5002FP encryption engine. Weaknesses were found in the
data encryption method used in this CPU that lead to a relatively low cost attack
published several years ago [23]. In a standard Embedded CPU like the PIC micro-
controller, an attacker can easily trace the data bus coming from the memory to the
CPU. To reduce further the chance of a micro-probe attack, various non-standard
circuit layout processes have been used in secure Embedded CPUs. The standard
circuit blocks used in a CPU such as the register file, ALU, instruction decoder, have
been laid out in a pseudo-randomly way. This approach is sometimes called ‘glue
logic layout’ and it is widely used in ASICs. Glue logic makes it very difficult to
monitor the CPU information physically. Semi-invasive attacks will be difficult due
to random layouts of blocks. Of course given time the probing can be automated to
test every possible point and then cross-analyse the results. This approach takes a
long time and may not be successful. It may be easier to attack a memory block or
its control circuit as they cannot be implemented with a glue logic structure and are
often physically separate.

Semiconductor process changes to facilitate faster processing and smaller lower
cost production has become more expensive with each new generation of geometric
feature reduction. This progress is also increasing the costs to the attackers. Ten years
ago it was possible to use a laser cutter and a simple probing station to get access to
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any point on the chip surface. Even today, second hand semiconductor production
test equipment can be acquired quite cheaply. The original owners may have used
these tools to repair devices that might have errors in the top layer metal mask, which
might include the ROM of the user. These tools then provide potential for attackers,
with deep pockets, to attack some chips. However, with the latest multi-metal layer
semiconductor ICs, with silicon geometries measured in tens of nanometres, most
potential attackers are excluded and new attack methods must be found. For example,
the structure of the old Microchip PIC16F877 microcontroller was easily observable
and could be reverse engineered under a microscope. The second metal layer and
poly-silicon layer can still be determined even when buried under the top metal layer.
This is because each mask layer in the semiconductor fabrication process follows
the shape of the underlying layer. An observer may determine not only the top layer
logic functions but also shapes of circuits in structure of the deeper layers. With
newer technologies, for example in the Microchip PIC16F877A microcontroller,
each layer is smoothed using both chemical etching, and mechanical polishing before
the application of the next layer. In this way, the top metal layer does not indicate the
features of the deeper layers. The result is that for an attacker to identify the circuit
functions they carefully have to etch the chip layer by layer. Currently, many circuit
functions are spread across several layers, the result is a three dimensional jig-saw
with no big picture.

3.4.1 Security of Embedded CPU Memory

An Embedded CPU operates according to the program located in its memory. There
are many different memory types and most of them are used inside microcon-
trollers. The majority of recent Embedded CPUs are made with CMOS technology.
Embedded CPUs often have different memories on the same die. Developers can
then use the appropriate memory technology for each different data functions,
Static Random Access Memory (SRAM) for cache, Read Only Memory (ROM)
for programs, and EEPROM for user variable data, or program updates. This has led
to attackers trying to identify the memory cells and the control circuits as a focus
of different sensitive data. The EEPROM is likely to hold the user credentials, the
SRAM an individual session key. The ROM may hold the communication or encryp-
tion algorithms and of course the designers IP for all sorts of software processes.
From the traditional security point of view, an Embedded CPU with ROM has less
risk than one with EPROM memory, and in turn better than one with EEPROM or
Flash memory as the number of possible attack vectors are limited. Most external
memory devices are not designed with security in mind. For example, serial EEP-
ROMs can be read in-circuit, usually via the SPI or inter-IC (I2C) bus. It is also
difficult to securely and totally erase data from RAM and non-volatile memory.

Early Embedded CPUs incorporated a masked ROM or relied on external
Ultraviolet EPROM for program storage and SRAM for data storage. Masked
ROM is still used where large-quantity production and low cost are required.
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Such microcontrollers may not be marked with their part number on the package
and have only a manufacturer’s logo and a ROM version number. Masked ROM
offers very good performance, but cannot be reprogrammed or updated. Normally,
the ROM of a standard Embedded CPU does not allow any form of external access.
There are few examples where a ROM is the last layer metal mask as it is intended
to be modified during production as a way of personalising the devices. In stan-
dard CMOS masked ROM the data is stored as a NOR function, this allows active
layer programming; the logic state is encoded by the presence or absence of link
to a transistor. Information from this type of memory is observable under an opti-
cal microscope. This type of feature was offered in Dallas Semiconductor/Maxim
iButton products [24] for serialisation and the information is programmed by cutting
memory bits with a laser cutter. This memory allows an attacker with sophisticated
tools to change the memory contents on a nominally secure product. For semicon-
ductor geometries smaller than 0.5 microns, further processing might be required to
remove the top metal layers, which may deter observation.

With the advent of microcontrollers with integrated UV EPROM, a reprogram-
mable single chip embedded design became possible. In fact, there were usually two
versions—one for prototyping, in ceramic packages with a quartz window allowing
write and erasure of the program and another in standard plastic packages for mass
production allowing a single One-Time Programming (OTP). The early devices had
some disadvantages as they required high voltages for programming, which might
not be available on the circuit board so in-circuit programming was not possible.
This was in effect a security measure as data could only be written only one byte or
word at a time, so taking a long time to program a whole chip. Some plastic packages
were not 100 % UV opaque allowing OTP devices to be erased, but the time for an
erase operation is around 20–30 minutes under a very intensive UV light source so
it was unlikely to be attacked without some careful planning. However, attacks on
devices using photographic flashgun have been known for some time [15].

George Perlegos at Intel developed Electrically Erasable PROM (EEPROM)
memory in the late 1970s. The first products were discrete memory devices and
it offered a great advantage over the EPROM by allowing full electrical control over
both write and erase operations. Due to high manufacturing cost and complexity,
it was not widely embedded in single chip Embedded CPUs until the early 1990s.
Even today, many embedded system may have a small serial bus EEPROM on board
to store configuration settings or transaction logs. The more recent Embedded CPUs
have relied on EEPROM, which has several advantages over the UV EPROM: it can
be reprogrammed electronically, in- circuit, up to hundreds of thousands of times;
the high voltages are usually generated by on-chip voltage charge-pump circuits; and
programming is much faster.

A further improvement of the EEPROM memory, called Flash EEPROM, is
becoming the main memory storage for modern Embedded CPUs. It offers much
faster programming, it can be reprogrammed in blocks saving a lot of time, and this
can be repeated thousands of times. Most of the modern microcontrollers with Flash
memory offer internal memory programming, thus allowing field code upgrades
without expensive programming tools. Flash memory also has high density offering
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3–5 times more storage capacity than the same area of EEPROM. The downside of
this memory type is that it can only be erased in blocks, which are relatively large.
That puts some strain on embedded software design where program updates are
required. Some microcontrollers offer an alternative solution to this problem, having
both new memory cells with a combined Flash and EEPROM type behaviour. Flash
EEPROM has many different layouts and structures; every IC manufacturer normally
has its own design process. The structure is made up of a floating gate memory with
either a NOR or a NAND structure. From the security point of view, all floating-gate
memories offer very good protection against invasive attacks, because of the very
small electrical charge used during programming, which is buried deeply inside the
memory cell, so it cannot be detected directly.

Another memory type uses a ferroelectric function to store the data. So called
FRAM, has been promoted as an alternative for EEPROM and Flash memories.
FRAM has a very fast write cycle and does not require internal high voltage gener-
ators, so could also replace some of the functions as SRAM used in an Embedded
CPU. FRAM has a two-transistor cell with nonlinear capacitors, which are polarised
depending on the applied electric field; the cell will keep its state even when unpow-
ered. FRAM has a disadvantage in that the Read operation destroys the contents
of the cell so that a refresh Write is required. However, FRAM offers very good
security because its logic state cannot be detected either optically or with probes.
Micro-probing of the memory data bus is of course still possible, unless the informa-
tion is encrypted. However, current FRAM has a limited number of read/write cycles,
the cell size is 3–5 times larger than a Flash cell and its fabrication technology is
more complex, so there are very few areas where FRAM-based memories are used.

Attacks on the regular layout areas of memory on a chip have forced chip designers
to introduce additional protection. For example, modern secure Embedded CPUs
may have a default setting of a one-time bootstrap software loader located in the
Flash memory that overwrites itself during initialisation. This eliminates any possible
access to the information, unless disabled by the system designer with a password.
The password can be stored at a certain address location in non-volatile memory.
For example, in the Texas Instruments MSP430F112 microcontroller, the read-back
operates only with the correct 32 bytes password. Although such protection seems to
be more effective than previous offerings, it is open to low-cost noninvasive attacks
such as timing attacks and power analysis. If the security code is sampled from the
memory during power-up or reset, it could present an attacker the chance to identify
the password. This could be done using a combination of brute force attack and
power glitches, or by trying to force the checking circuit to get the wrong state of
the memory.

Another hardware security issue for all types of memories is data remanence.
Remnants of stored data may exist and be retrievable from devices long after nom-
inally being erased and with the power removed, which could be useful to obtain
program code, temporary data, crypto keys, etc. In many modern Embedded CPUs,
a monitoring circuit is usually implemented, causing a reset of the hardware pro-
gramming interface or preventing any write/erase operations below or above certain
voltages, frequencies etc. Some system designers have assumed that the erased data
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will disappear. In reality, some traces of the data may be left behind. Even in SRAM,
after power removal, have shown examples of data remanence, as when frozen some
SRAM cells retain information for hours [16]. To retrieve the trace of the data is
not easy, but for example during the chip erase, operation if the security fuse was
deactivated, the memory may be accessed normally. Then each transistor inside the
memory array has to be checked by micro-probing the internal memory bus. In gen-
eral, SRAM memory offers a very good level of protection by placing sensors into
the circuit to avoid low-temperature attacks.

3.4.2 Security of Embedded CPU Interfaces

Almost every modern piece of assembly equipment in a factory with an electronic
control unit is connected to a network. These networks carry information that con-
trols production flow, transfers manufacturing data, and provide remote equipment
management. It may be possible to diagnose and repair many failures, if the unit
equipment is connected to a network. Thus avoiding expensive on-site service calls,
and reducing production down time. It may be required to provide secure access to
the control system in a number of situations:

• To interrogate an industrial Embedded CPU for data, even when the manufacturing
machine is switched off.

• Reboot a controller station remotely.
• Ensure an operator panel is safeguarded with latest health and safety policies,

without halting operations or operator intervention.

All of these scenarios and more represent possible threats. An embedded system
designer must consider that attackers will attempt to access the Embedded CPU and
consider the following points of attack:

• Software programming interface
• Hardware programming interface
• Third party unverified protocols
• Read-back functions
• Hardware security fuses
• Software security fuses
• Discrete memory separate from the on chip memory
• Shared memory control lines
• Shared bit-lines
• Password locations
• Verification checks at power-up
• Permanent real time monitoring

Some Embedded CPU manufacturers intentionally leave a side channel access
to the code for testing or programming purposes after fabrication. Normally, the
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information on these test protocols is kept secret by the manufacturers. The pro-
gramming interface allows writing, verifying, reading and erasing of data in on-chip
memory. It could be implemented either in hardware such as a JTAG state machine,
in a proprietary interface, or in software (e.g. Mask ROM or Flash bootloader).
Before initial programming and a fuse has been set, some microcontrollers offer
a software controlled boot loader for in-system programming. Others offer a fast
hardware interface for mass production programming. For example, an Embedded
CPU may have in-circuit serial programming via a synchronous interface (e.g. SPI,
JTAG), fast industrial parallel programming, and a software boot loader via an asyn-
chronous serial interface (e.g. USB). The JTAG (IEEE 1149.1) interface maybe an
Achilles’ heel of the system. JATG can provide a direct interface to the internal
registers of Embedded CPU and so has become a common attack vector. A JTAG
interface to USB test harness can be bought or self-assembled with a few low cost
commonly available components, allowing automated attack routines to set easily
set up. Removing JTAG functionality from a device is difficult. System designers
usually disguise links, cut traces, or blow fuses. However, a determined attacker can
easily repair most of them. Such test lines are used in smart card ICs only during
the initial wafer manufacture. These lines are routed into the sawing corridors of the
die during chip layout. These lines are then destroyed during chip separation. This
technique when used with the combination of fuses make micro-probing for the lines
useless.

The In-Circuit-Emulator (ICE) is a commonly adopted tool as a software program
debugging technique. The GUI interface debugging software can help a legitimate
user to debug easily. If freely available, these tools may reduce the time taken to
attack an embedded CPU design. One solution for embedded system designers that
need to protect their embedded software, from competitors and counterfeiters, is
to use a secure Embedded CPU as an in-system software authentication device. To
protect embedded software from cloning a challenge is sent at random intervals
from the secure Embedded CPU. The response to the secure Embedded CPU is then
compared to the expected response. By providing a large number of challenges and
placing those in unique areas, the source code can be relatively well protected. This
makes it extremely difficult for anyone to reverse engineer the source code. This
added difficulty will make it more cost effective for attackers to develop an entirely
new system rather than modify the existing source code.

3.5 Advanced Chip Design

Advanced embedded designs may use more than a single chip CPU, and as part
of an ASIC or other VLSI design. Synthesisable logical blocks such as DSPs and
RISCs and CPUs have been available for nearly 20 years. Their first development
in the early 1990s, was to reduce the system cost by using the minimum functions
needed for an application and to improve the system size or performance or security.
Implementation tools are often optimized for a specific FPGA family or ASIC library
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and for a given range of clock frequencies. When designing a synthesised Embedded
CPU, a few important aspects must be taken into account; area usage, performance
in terms of throughput, and added value. To protect what maybe a non-secure hard-
ware platform various techniques have been employed to protect the design from an
illicit observer, such as introduction of random or spurious logic blocks but these
may impact performance or power consumption. Synthesis tools have led to multi-
core designs for embedded applications incorporating two or more CPU’s with DSP
functions. Safety and security features are sometimes included such as error cor-
rection on the memory, parity checking on some interfaces and interrupt registers,
redundancy checking functions, and advanced memory lock protection. In addition
as previously described the software in an Embedded CPU-based system may be
protected often by a mixture of encryption and fuse protection, against unauthorised
attacks. Although this will provide a barrier to any reading of the memory optically
or by micro-probing the data bus, this data normally has to be decrypted somewhere,
often in or by the main CPU and stored in a SRAM cache pipeline ready for oper-
ation. The focus of the attacker may then try to detect any plaintext on the data bus
close to the CPU, or better still the key to decipher the ROM. It may be possible by
stopping the clock and literally freezing the circuit to read the contents of the SRAM
with impunity. As a further precaution, Embedded CPU chip manufacturers offer an
enhanced verify-only approach. In this case, a hash value of the content of memory
is compared to a secured value and a single-bit response in the form of pass/fail
sent back. The verification process can take place both in hardware or in software. It
may be impossible to verify the whole memory in one go, so the process is split into
blocks with their size limited by the available SRAM buffer or hardware register. The
result of the verification is either to stop the Embedded CPU on detection of the first
incorrect memory block, or to flag the status in a register. Of course, as described
ever more sensors can be included to test for invasive attacks and tighter geometry
meshes added to deflect probing or reverse engineering.

A radical departure to this concept has been developed by Infineon in the past
few years, given the name “Integrity Guard™” [17] it consists of three features;
error detection, full data encryption, and a new type of mesh shield. The concept is
focused on not, as in earlier generations, to add more sensors and protective devices
to the periphery of the Embedded CPU but to concentrate on protecting the data
at all times, so no plaintext is ever used. The concept includes a mesh that uses a
new shielding concept combined with intelligent secure wiring. The electrical signal
lines inside the chips are rated concerning their relevance, and on the basis of this
classification they are automatically routed and checked. An intelligent shielding
algorithm checks the chip’s layers, providing the final so-called “Active I2-shield”.
The error detection is based on a microcontroller with a dual CPU allowing error
detection in real time, even while processing. Both CPUs deliver their operational
results independently from each other. A comparator detects whether an operation
was performed the same, or if an erroneous operation was made. In the case of an
error, an alarm is issued. Even the cache is an active part of the error detection,
which is essential, as cache-based attacks will become a major threat for embedded
security in the near future. In addition the concept applies full encryption over the
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complete core and memories, leaving no plain text on the chip. The dual CPUs
utilise full hardware encrypted operation, with different secret keys used in each of
the CPUs. All memories are completely encrypted: for the memory buses and blocks
of RAM, ROM, EEPROM, and FLASH, a strong block-cipher hardware encryption
engine has been utilised. Data is enciphered from the memory encryption system
to the encrypted CPU without exposing plaintext. Peripheral buses are protected
using dynamically changing keys, and some peripherals work in encrypted modes.
For example, the new crypto coprocessor “SCP” (a Symmetric Crypto Processor for
Triple-DES and AES) utilises internal, dynamic encryption — just like the encrypted
CPUs. This prevents the presence of plaintext inside important parts of the chip. This
type of enhanced digital security is required as advanced attacks are developed, such
as micro coil-based localised Differential Electromagnetic Analysis (DEMA). This
concept is being applied to both traditional 16 bit Embedded CPU architectures
and to modified ARM designs. As with all innovation it can be expected that other
Embedded CPUs will also start to incorporate such concepts, but the cost of such
developments and the cost of such technology has to be balanced against the threat
risks.

3.6 Conclusion

The impact of embedded devices is huge. Overall, it is usually estimated that for
every desktop computer chip sold, 100 microcontrollers are sold for embedded sys-
tems. Techniques for creating secure high-reliability embedded systems have focused
historically on safety-critical markets, e.g. the aerospace, medical, and automotive
industries. In these sectors system failures can have fatal consequences. These appli-
cations remain important, but embedded microprocessors and microcontrollers now
also have an enormous impact in much broader areas of product development, such
as consumer applications as diverse as simple washing machines and as sophisti-
cated as games consoles. Manufacturers need to maximise the reliability, and the
security, of the key components in embedded systems in order to reduce the cost of
warranty repairs, minimise product recalls and ensure continued business. In sum-
mary, it is clear that Embedded CPUs have become more sophisticated and more
secure in the past 40 years. A typical modern average house may contain 10–20
devices with an Embedded CPU, mostly independent of each other. The average
citizen may carry 5–10 portable devices with Embedded CPUs as smart cards or in
smart phones etc. The average mid-range car may have over 50 Embedded CPUs
with over 50 % networked together. A factory employing 500 operators may have
over a 1,000 networked devices. While most of these Embedded CPUs may have
little access to the outside world, and little information of worth, the few such used
for payment or access rights may present a target for theft either physical or virtual.
However, as the issues of the “Semantic Web” [18] become reality there will be
need to increase security as threats from “denial of service” or malware attacks on
the user or the network provider will become more attractive. With the increasing
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complexity of software and the possibility to provide remote updates there will be
need for remote authentication, and integrity management of an Embedded CPU’s
status. It is likely that self-checking of systems will have to move past parity checks
or error correction and look at frequent hardware and software image verification.
The need for embedded hypervisor Embedded CPU elements will increase. This idea
has been seen in the Trusted Platform Modules (TPM) for notebook computers, and
the various secure elements in mobile phones, engine management systems, gaming
consoles and smart meters. If the current trend [18] continues then by 2020 the cur-
rent level of machine-to-machine communications could have more than quadrupled.
There is little doubt that as the value of these communications increases, so will be
the need for embedded security.
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