Chapter 15
Near Field Communication

Gerald Madlmayr, Christian Kantner and Thomas Grechenig

Abstract Near field communication (NFC) is a radio frequency (RF) based proxim-
ity coupling technology allowing transactions within a range up to 10 cm. With NFC,
a key technology is on its way into the consumer’s most personal device, allowing
the customer to use his devices for secure services such as payment or ticketing
but also for service initiation or data exchange. Interoperability is one of the most
important goals to be achieved prior to the roll out of devices and services, in order
to satisfy the consumer’s expectations. This chapter deals with different operating
modes and use cases that can be implemented with NFC technology with the main
focus on mobile phones. This high level description is backed up with a look into the
hardware architecture for NFC as well as the software stack in mobile phones. The
chapter ends with a description of tags and tag formats for the NFC ecosystem.

15.1 Introduction

Radio frequency identification (RFID) technology is used in many daily applications.
For the consumer, RFIDs are unnoticed and simple to use, they offer a popular
alternative to conventional communication channels. Starting with simple access
control possibilities up to complex data memories, quite different applications can
be realized. A further development represents NFC [16], a technology for the fast
and uncomplicated exchange of small amounts of data. It opens new perspectives

G. Madlmayr (X)) - C. Kantner - T. Grechenig

Research Group for Industrial Software (INSO), Vienna University of Technology,
Vienna, Austria

e-mail: gerald.madlmayr @inso.tuwien.ac.at

C. Kantner
e-mail: christian.kantner @inso.tuwien.ac.at

T. Grechenig
e-mail: thomas.grechenig@inso.tuwien.ac.at

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 351
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_15,
© Springer Science+Business Media New York 2014

352 G. Madlmayr et al.

regarding the application development on all kind of consumer devices. Nowadays,
NEFC is being introduced to mobile phones.

NFC is an amendment to the existing contactless smart card systems, but still
compatible to them. It is presented in ISO 18092 (NFCIP-1), supporting cards com-
pliant to ISO 14443 [9] and Sony’s proprietary FeLiCa system as well as NFC’s
own communication method. NFC allows wireless transactions over a distance of
up to 10 centimetres. This is part of the Touch and Go philosophy giving the user
a new dimension of usability. Hence, NFC-enabled handsets allow the consumer to
interactively participate in the Internet of Things in a way like never before.

Consumers can use their handsets to retrieve further information by touching tags
integrated within posters, products, or shelves. Alternatively, the handset itself can
be used as a transponder, and therefore provides additional functionality in terms
of applications and identification. This vision requires interoperability on differ-
ent layers and a common agreement of industry players integrating technology and
applications.

15.2 NFC Technology

15.2.1 Physical Layer

On the physical layer, NFC data are exchanged by two inductively coupled coils,
one per appliance, generating a magnetic field with a frequency of 13.56 MHz. The
field is modulated to facilitate data transfers. For communication, one device acts
as the initiator (starting the communication), whereas the other device operates in
target mode (waiting for the initiator). Typically, two devices are involved in the
communication [3].

The roles of the devices, initiator and target, are assigned automatically during the
listen-before-talk concept, which is part of the mode switching of NFC. In general,
each NFC device acts in target mode. Periodically, the device switches into initiator
mode in order to scan the environment for NFC targets (= polling) and then falls
back into target mode. If the initiator finds a target an initiation sequence is used to
establish communication before exchanging data.

NFC distinguishes two operation modes for communication: passive and active
modes (Fig. 15.1).

15.2.1.1 Passive Mode

In passive mode only the device that starts the communication (the initiator) produces
the 13.56 MHz carrier field. A target introduced to this field may use it to draw
energy, but must not generate a carrier field of its own. The initiator transfers data by
directly modulating the field, the target by load modulating it. In both directions, the

15 Near Field Communication 353

Engery Data Data
Initiator to Target Initiator to Target Target to Initiator

Load modulated data

Only one NFC device (Initiator) provides energy, 2nd device in passive
mode

Data Data
Initiator to Target Target to Initiator

ASK modulated data

=

Both devices in active Mode

Fig. 15.1 Active and passive operation mode of an NFC device [13]

coding complies with ISO14443 or FeLiCa, respectively. This enables NFC devices
to communicate with existing contactless smart cards. The term load modulation
describes the influence of load changes on the initiator’s carrier field’s amplitude.
These changes can be perceived as information by the initiator. Depending on the
size of the coils, ranges up to 10 cm and data rates of 106, 212, and 424 kbits/s are
possible.

15.2.1.2 Active Mode

When in active mode, both appliances generate an RF field. Each side transmits
data by modifying its own field, using an amplitude shift keying (ASK) modulation
scheme. Advantages compared to passive mode include a larger operating distance

354 G. Madlmayr et al.

e

NFC Phone NFCPhone NFC Phone RFID RFID NFC Phone
Initiator Target Reader/Writer Transponder Terminal CardEmulation
NFC peer-to-peer-Mode Reader/Writer-Mode Card Emulation-Mode

Fig. 15.2 Different operating modes of an NFC device [13]

(up to 20 cm) and higher transmission speeds (eventually over 1 MBit/s). To avoid
collisions, only the sending device emits a electromagnetic field; the receiving entity
switches off its field while listening. If necessary, these roles can change as often as
needed [13].

15.2.2 Use Cases and Applications

An NFC compliant device offers the following modes of communication (Fig. 15.2):

15.2.2.1 Reader/Writer Mode:

In this mode, an NFC system acts as an ordinary reader for contactless smart cards. If
two or more cards are present in the reader’s carrier field one is selected using an anti-
collision algorithm. NFC also takes care of sensing whether the chosen card is ISO
14443-A/B or FeLiCa compliant. The method used for anti-collision is dependent
on the type of card detected. This mode causes the NFC device to act as an active
device. From an application’s view, there is no difference between a conventional
and an emulated terminal, accesses to the contactless token proceed equally [3].

Operating in this mode, the NFC device can read and alter data stored in NFC
compliant passive (without battery) transponders. Such tags can be found on e.g.
a SmartPoster allowing the user to retrieve additional information by reading the tag
with an NFC device. Depending on the data stored on the tag, the NFC device takes
an appropriate action. If e.g. a URI was found on the tag the handset could open a
Web browser.

15.2.2.2 Card Emulation Mode:

Card emulation mode is the reverse of reader/writer mode; a contactless token is
emulated in passive mode. Due to the fact that the card is only emulated, it is possible
to use one NFC device in place of several real smart cards. Which card is presented to
the reader depends on the situation and can be influenced by software. Additionally,

15 Near Field Communication 355

an NFC device can contain a secure element to store the information for the emulated
card in a secure way [3].

In this case, an external reader cannot distinguish between a smart card and an
NFC device in card emulation mode. This mode is useful for contactless payment
and ticketing applications, and a single NFC-enabled handset is capable of emulating
multiple contactless smart card applications.

15.2.2.3 Peer-to-Peer Mode:

This mode is specific to NFC. After having established a link between the two partici-
pants (the method is equal to ISO 14443-A), a transparent protocol for data exchange
can be started. The data block size can be chosen freely, with an maximum transmis-
sion unit (MTU) limited to 256 bytes. The main purpose of this protocol is to enable
the user to send his/her own data as soon as possible (i.e. after a few milliseconds).
In a peer-to-peer session, the initiator is always in active mode, whereas the target
may be active or passive. This helps the target to reduce its energy consumption
and is therefore especially useful if the initiator is a stationary terminal (e.g. a ticket
machine) and the target a mobile device (e.g. a mobile phone) [3].

The NFC peer-to-peer mode (ISO 18092) allows two NFC-enabled devices to
establish a bidirectional connection to exchange contacts, bluetooth pairing infor-
mation, or any other kind of data [10]. Cumbersome pairing processes are a thing of
the past thanks to NFC technology. To establish a connection, a client (NFC peer-to-
peer initiator) is searching for a host (NFC peer-to-peer target) to setup a connection;
then the near field communcation data exchange format (NDEF) is used to transmit
the data.

15.3 Hardware Integration

In order to provide all three application modes, a mobile has to include an NFC chip,
a secure element, and a host controller. Their tasks and functionality will be outlined
in the following sections.

15.3.1 NFC Chip

The NFC hardware in the mobile phone has to take over various tasks. One core
functionality of the NFC chip is the analogue front end which is responsible for
modulating and demodulating the 13.56 MHz carrier signals from the antenna to
digital signals. Additionally, the communication between the host controller as well
as the secure element (if present) is part of the chip. The NFC chip is managed by
the host controller and an appropriate software stack with an API which is available

356 G. Madlmayr et al.

to the developer. The functions of the NFC chip will most likely be an integrated
part of future baseband processors in order to reduce costs and save valuable space
in mobile devices.

15.3.2 Secure Element

The secure element is typically a smart card controller which is capable of emulat-
ing a real smart card. For security purposes, it is typically constructed in a tamper
proof way. The software architecture of a typical secure element provides an envi-
ronment, where applications are downloaded, personalized, managed, and removed
independently with varying life cycles (e.g. using Global Platform functionality). It
is also possible that the secure element is completely emulated in software. There
are already general purpose CPUs in the market that support a trusted execution
environment (TEE) where data can be processed in a secure way (e.g. ARM with its
TrustZone architecture).

Payment or ticketing applications place high demands on security of the secure
element. The chip must be highly reliable and robust to withstand different kinds of
attacks. Also the manageability of the secure element is an important property [2].
Actually, a secure element function is not mandatory in an NFC device, although
such devices cannot be used for card emulation mode.

e Security: Security implies confidentiality, integrity, availability, and authentica-
tion. Security as defined in ISO 14980 is: ‘The purpose of information security is
to ensure business continuity and minimize business damage by preventing and
minimizing the impact of security incidents.’

e Manageability: A secure element can contain applications and data from different
sources. Hence, means for application and data management need to be available.
There should also be the possibility to remotely lock the secure element in case of
loss or theft.

A secure element has to provide the following functionality [11]:

e Secure memory: A secure memory is necessary to store sensitive data like private
keys, root certificates, and personal data.

e Cryptographic functions: Protocols for secure data exchange usually rely on cryp-
tographic functions to provide security for the sensitive data, as this information
must not leave the secure element without encryption.

e Secure environment for code execution: A secure element has to contain a unit to
execute code in a secure way which cannot be monitored.

The secure element can be implemented in different ways in a mobile device.
Smart cards or secure smart card chips are possible options for a secure element,
whereas the following implementations are common for an NFC enabled handset:

e Embedded secure element as a chip

15 Near Field Communication 357

e Subscriber identity module (SIM) Card
e Secure digital card (SD-Card)

For the communication with the secure element application protocol data units
(APDU) are used. The communication interface is standardized in the ISO standard
for smart cards, ISO 7816. In order to link the secure element to the NFC Chip and
the host controller, different interfaces are considered:

e Single wire protocol (SWP) to link a Universal Integrated Circuit Card (UICC) to
the NFC chip

e SigIn-SigOut-Communication (S2C) for linking the NFC chip with embedded
secure elements or SD-Cards [19]

e ISO 7816 interface for the communication between the host and the secure element.

Java Card OS is a widespread platform for the secure element which is already
an industry standard for chip cards and is getting more and more popular for SIM
cards as well.

15.3.3 Host Controller

The host controller has to manage the NFC chip on the one side (e.g., reading/writing
data to a tag, switching between application modes) as well as to communicate with
the secure element on the other side (e.g., to view the content of a card application
stored on the secure element). The communication between the NFC chip and the
host controller is handled by the host controller interface (HCI). The communication
between the host controller and the secure element is not specifically standardized,
but is based on APDUs as defined in ISO 7816-4. In case the secure element is
the UICC, the communication is routed through the cell phone baseband chipset
via the radio interface layer (RIL) which holds control over the UICC. In case of
the embedded secure element or an SD-Card, it depends on the integration of the
hardware within the phone.

Figure 15.3 shows the logical parts of each component and how they communicate
with each other.

To save space, the embedded secure element and the NFC chip can be packaged
into one chip. The chipset manufacturer NXP for example offers such a product
under its PN65 series. This type of chip has a so-called SmartConnect architecture
(see Fig. 15.4).

Thus the secure element, in this case NXP’s SmartMX, can operate in the different
modes [13]:

e Wired: In wired mode, the embedded secure element can be accessed by the host
controller through the NFC chip. Therefore, an application running on the phone
is able to fetch data stored on the secure element. The secure element is not visible
to an external reader and therefore card emulation is disabled.

358

‘ Java APls

ACP Middleware/JVM

1S07816
T=1/T=0

Kernel/Core OS

NFC HAL

Host
0os

Host Controller

Com Interface || Com Interface

G. Madlmayr et al.

(IS0, USB) || (UART, usB) [

i

RIL (Radio Interface Layer)

NN
A4

<«

Swp

Transport Transport Interface [<[7

SWP Com CLF
Inter- s2c Inter- Inter-
face face face

Interface (ISO, Interface

UsB) (ISO, USB)
HCI

HCI Interface

Smartcard 0OS Smartcard OS

Firmware

(e.g Java Card) (e.g Java Card)
Secure Element
(embedded) vicc NFC Controller (NFC IC)

Fig. 15.3 Architecture for the integration of NFC into a mobile phone

Host

Interal

Mode of
Secure
Element

»

»
Secure
Element

-

Controller
A A
Peer-to-Peer NFC
Mode Ic
A J Y

External
Reader

Fig. 15.4 SmartConnect architecture for NFC chips with an embedded secure element [13]

e Virtual: In virtual mode, the embedded secure element represents a virtual card and
the NFC chip is in card emulation mode. The secure element cannot be accessed

External
Mode of
Secure
Element

from an application running on the phone.

e Off: In this case the secure element is turned off, the communication with the
secure element is not possible at all and the NFC chip can be used in reader/writer

mode or for peer-to-peer (P2P) communication.

This is a special form of integrating both, NFC chip and an embedded secure
element into a mobile phone. Handset manufactures like Nokia (3220, 6131, 6212)
or Samsung (X700n, Nexus S, and Nexus Galaxy) use variants (one chip and two

chip solutions) of this architecture in their phones.

(CLF = Contactless
Frontend)

15 Near Field Communication 359

15.4 NFC and Linux

The Linux kernel is used in an increasing number of computer platforms and Android
is one of the most famous members of the Linux family. Besides Desktop and Server
environments, Linux is used in many embedded devices such as Internet routers
and connected consumer electronics. NFC has the potential to greatly enhance the
user experience for such devices and so far, several initiatives have been started to
integrate NFC into Linux environments:

e Native Android support: Google has integrated NXP’s FRI library with a kernel
driver for the PN544 chip. The whole SW architecture focuses on NXP NFC
hardware and is maintained by NXP and Google. The software supports all main
NFC features: reader/writer mode, secure element support for card emulation,
basic SWP support, and peer-to-peer mode.

e Open NFC for Android: This is similar to the native approach, but with the focus
on Inside Secure hardware. Android phone manufacturer would be responsible for
the integration of Open NFC on their own products [8].

e libnfc: libnfc implements NFC functionality completely in the user space and thus
depends on the existing drivers. Furthermore, the library is platform independent.
It supports reader/writer mode and peer-to-peer functionality [22].

All the above-mentioned initiatives are incomplete and either miss out particular
features or are focused on certain hardware. This adds justification to a new approach
which is starting to implement NFC support into the linux kernel: Linux NFC Sub-
system as of kernel 3.1 [14]. The NFC Linux Subsystem follows the principles of
Linux open source projects:

e Vendor independent (drivers are needed for new hardware)
e Portable Operating System Interface (POSIX) compliant
e Sockets and Netlink for data exchange and device control

The first included drivers are for devices based on NXP chips PN533 (via USB)
and PN544 (via 12C).

Atthe moment, the Linux Subsystem provides only limited functionality, but work
is ongoing to eventually support all NFC features, including full support for card
emulation. Currently, Nokia and OpenBossa [7] are working on this implementation
goal.

15.5 NFC Integration in Android

In the following section, the software architecture for the integration of the NFC
hardware architecture into an operating system will be described. This is shown for
Google’s Android operating system and the NXP NFC hardware platform (native
Android support). To have a sound understanding on what the NFC chips exactly do,
an overview of the components is given first.

360 G. Madlmayr et al.

‘ FRI/HAL (Host Controller) ‘

4
| Swp
Q
Q
=}
BFL
80C51
A
‘ HCI ‘
1 » S2C
5 PN51x 2 _
£ 87T
%) € S
PN53 (] g SWP: Single Wire Protocol
X Lll [HAL: Hardware Abstraction Layer
d BFL: Basic Function Library
PN544 = HCI: Host Controller Interface

CLF: Contactless Frontend
S2C: SigIn-SigOut-Connection

PN65

Fig. 15.5 Different chip variants of NXP’s PN-family

15.5.1 NFC Chip

The Nexus Galaxy ships with a PN65 chip (see Fig. 15.5) which contains different
hardware and software components, such as [20]:

e A PN512 NFC transmission module for contactless communication at 13.56 MHz.

e A micro controller (80C51 core with 32 kbyte of ROM and 1 kbyte of RAM)
running the firmware for the PN512 transmission module. The combination of the
micro controller and the PN512 is also called PN531.

e An additional interface and software stack to use a SIM card as the secure element.
Therefore, the chip needs to implement the so-called SWP.

e A secure smart card chip. In this case, a PSCNO072 Secure Dual Interface PKI Smart
Card Controller, SmartMX, which can be used as the embedded secure element.
This secure element is running a Java Card OS.

The chip used in this phone supports both an embedded secure element as well as
a secure element implemented within the SIM card. The software running on the host
is thus able to send commands to the NFC chip through the host controller interface
in order to user either the embedded or SIM card secure element to emulate a virtual
smart card.

From an integration point of view, it does not make any difference if the handset
manufacture uses the PN544 or the PN65 as both chips have the same interfaces and
use the same pin layout. The only difference is the SmartMX with is included in the
PN65 which cannot be directly contacted from outside the chip.

15 Near Field Communication 361

15.5.2 API for the NFC Chip

The NFC software stack running on the host of an Android OS-based device is
called the forum reference implementation (FRI) and is already part of Android
since Version 2.3 (Gingerbread). The stack is implemented in pure ANSI C and
communicates with the /dev/pn544 device of the Android variant of the Linux kernel.
On top of the native NFC software stack, there is a Java native interface (JNI) layer
that builds the bridge to the Android Java development environment for the Android
developer. Finally, the android system development kit (SDK) provides Java APIs
which can be used by any app running on the device in order to communicate with
the NFC chip in the phone. This API can be used for reader/writer mode, P2P mode,
detecting external fields, or targets as well as switching on and off the card emulation
mode (Fig. 15.6).

On the J2ME platform, there is already an API standardized for this purpose: Con-
tactless Communications API (JSR257). This JSR was released in 2006 and describes
the necessary interfaces in order to allow contactless transactions with a J2ME appli-
cation running on the handset. Thus, this API makes use of the read-er/writer mode
as well as the NFC peer-to-peer mode. The JSR257 already implements the near
field communication data exchange format (NDEF) and the basic record type defin-
itions (RTD) published so far by the NFC-Forum [12]. Unfortunately, the Android
implementation and the J2ME implementation are not compatible.

‘ Android Application using NFC ‘

| NfcAdapter

Android NFC API, Java Layer NfcService

1 (part of Android since Version 2.3) NativeNfcService AIDL
~ Interfaces

ﬁ Header-Files (generated automatically with ,javah“ during build)
Android C
‘ Java Native Interfaces Classes (C++ Code) ‘ F?ar;ilworﬁre
(to be found in
JNI glue Layer (com_android_nfc.h + cpp Files) Android GIT repo
/framework/base/
- core/java/
links to be found in Android GIT repo /packages/apps/NFC android/nfc)
against
NXP FRI: native C Code + Header Files
(to be found in Android-GIT Repo /external/libnfc-nxp)

‘ Linux Kernel with PN544 driver (/dev/pn544) ‘

Fig. 15.6 Software stack for the integration of an NFC chip into a handset; by the example of the
Google Nexus S/Nexus Galaxy

362 G. Madlmayr et al.

15.5.3 API for the Secure Element Access

Additionally, an APIis required to access the secure elements in the phone. Accessing
the embedded secure element within the PN65 can be done through the SmartConnect
architecture and the FRI. The embedded secure element first needs to be switched
into wired mode. Then a communication channel has to be established. After that
APDUs can be sent to the smart card chip to read and write information from the
secure memory.

Accessing the SIM card involves more software (SW) layers. The host controller
of an Android OS-based device cannot directly talk to the SIM card, but must use
functions from the radio baseband controller which finally connects to SIM Card.
Thus, the host controller needs to send commands to the radio interface layer (RIL)
which then talks to the SIM Card. As the RIL is a proprietary implementation and
full control of the UICC is not mandatory for Android, it is up to the phone man-
ufacturer to support the necessary RIL functions. The open source project secure
element evaluation kit (SEEK) from G&D is for example providing tutorials and an
open source stack for accessing the SIM card from an Android application. Phone
manufacturers can use this module and integrate it into their Android variant. Google
investigates the integration of full UICC access into the official Android code. So far
the official implementation is not available.

The GSM association (GSMA) as well as the SIM Alliance agreed on an API for
accessing the secure element as well as the security mechanisms using the UICC as
the secure element [5, 6, 21]. SEEK already supports the Version 1.01 of the SIM
Alliance’s API specification as well the authentcation using PKCS#15.

The JSR177 takes over this part on the J2ME platform. The intended goal of this
API was to provide the cryptographic functionality of a smart card chip to J2ME
applications. The use of a secure storage for Digital Rights Management (DRM)
certificates and digital signatures was also a use case during the definition. With the
introduction of NFC and the use of a smart card chip for tag emulation, this API
received a boost in importance. In 2007, a maintenance release was published [11]
(Fig. 15.7).

The Blackberry OS also comes with NFC functionality and therefore provides an
API for using contactless functionality. This new API is available since SDK 7 and
allows access to the secure element (which can be either embedded or in the UICC)
as well as the use of the reader/write and P2P mode.

15.5.4 Security

When looking at security of NFC different aspects are relevant. There are different
threat models and attack scenarios for NFC usecases [15]. The most valuable infor-
mation is stored in the secure element. Hence, this component is implemented as a
separate hardware chip in the mobile device. Access to the secure element is possible

15 Near Field Communication 363

‘ Android Application using NFC and access to the secure element/UICC ‘

—{ NfcAdapter SEService }—

Android NFC API G&D’s SmartCard API (SEEK)
(part of Android since Version 2.3) (not part of Android 2.3, approved by SIM Alliance)
JSR 257 is the J2ME equivilant JSR 177 is the J2ME equivilant
‘ NXP Forum Reference Implementation (FRI) ‘ ‘ Radio Interface Layer (RIL) ‘
‘ Linux Kernel ‘

‘ NXP PN544 Hardware ‘ ‘ Radio Module + UICC ‘

Fig. 15.7 APIs for accessing the different functionalities in an NFC-enabled handset

through the contactless interface of the NFC chip or through an application running
on the host controller.

Accessing data in the secure element usually requires the appropriate keys. The
most common authentication between an external reader and a secure element is
a three pass mutual authentication using symmetric keys. After the authentication,
a secure channel is established which allows the two parties to exchange data in a
secure way. Although the data stream is routed through the NFC chip, eavesdropping
information at this point is useless as the communication is encrypted.

Accessing data in the secure element from an application running on the device is
the big advantage of NFC in comparison to usual smart cards. The communication
is possible through SEEK (Android) or the JSR177 (J2ME). As these APIs provide
access to the secure element of the device special care must be taken in order to
restrict the access to those APIs.

All applications using these restricted APIs must be signed with an appropriate
certified key. This mechanism is called access condition policys (ACP) enforcement.
The ACP is part of the operating system and validates the signature of the application
running on the host. In this case, there are certificates (PKCS#15) on either the SIM
card or on the phone that are used to validate the signatures of applications that wish
to access the secure element.

As the ACP is part of the operating system and therefore implemented in software
it can be modified. Especially for systems which are available as open source (e.g.,
Android), the ACP is easy to disable . Nevertheless, it provides at least an additional
barrier to accessing and hacking the UICC from malware and the attacker/customer
would also have to root his device and flash a custom ROM into it.

For J2ME, there is an attack method which abuses the fact that there is no byte
code verification of an application installed on the device. Thus through modifications
in the byte code an application is able to access resources which normally are not
available (e.g., accessing the filesystem) [4].

364 G. Madlmayr et al.

15.6 NFC Tags

In order to allow each NFC device to read and decode the data from NFC Tags, the
NFC Forum has defined four different types of NFC Forum compliant tags as well
as a data format for storing NFC relevant data structures on such a tag.

15.6.1 Tag-Types

The NFC Forum has agreed on the following four tag types.

Type 1: Type 1 Tag is based on ISO/IEC 14443 A. This tag type is read and re-write
capable. The memory of the tags can be write protected. Memory size can
be between 96 bytes and 2 kbytes. Communication Speed with the tag is
106 kbit/s. Example: Innovision Topaz

Type 2: Type 2 Tag is based on ISO/IEC 14443A. This tag type is read and re-write
capable. The memory of the tags can be write protected. Memory size can
be between 48 bytes and 2 kbytes. Communication Speed with the tag is
106 kbit/s. Example: NXP Mifare Ultralight, NXP Mifare Ultralight C

Type 3: Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4.
This tag type is pre-configured at manufacture to be either read and re-
writable, or read-only. Memory size can be up to 1 Mbyte. Communication
Speed with the tag is 212 kbit/s. Example: Sony Felica

Type 4: Type 4 is fully compatible with the ISO/IEC 14443 (A &B) standard series.
This tag type is pre-configured at manufacture to be either read and re-
writable, or read-only. Memory size can be up to 32 kbytes; For the com-
munication with tags APDUs according to ISO 7816-4 can be used. Com-
munication speed with the tag is 106 kbit/s. Example: NXP DESfire, NXP
SmartMX with JCOP.

The specifications for the tag types are available for free from the NFC-Forum
website [1]. Note that Mifare Classic is not an NFC forum compliant tag, although
reading and writing of the tag is supported by most of the NFC devices as they ship
with an NXP chip. Due to its reported security weaknesses, the NXP Mifare Classic
should be regarded as obsolete and not recommended for new systems [18].

15.6.2 NFC Data Exchange Format (NDEF)

The NFC forum has defined a structure for writing data to tags or exchanging it
between two NFC devices. The format is called NDEF. A so-called NDEF message
can contain multiple different NDEF records also referred to as record type definitions
(RTD). An NDEF message has to contain at least one RTD. An RTD is an information

15 Near Field Communication 365

set for a single application, as an RTD may only contain isolated information such
as text, a uniform resource indicator (URI), Multipurpose Internet Mail Extensions
(MIME) media type, a business card or pairing information for other technologies.
The different RTD specifications are available from the NFC Forum website. NDEF
is a binary data format with a TLV (tag/length/value) structure. The maximum size of
a standard NDEF record is 232-1 Bytes. As lots of NFC applications do not need so
much data, the NDEF specification defines a so-called short record with a maximum
length of 255 Bytes. Payloads of NDEF records can include nested NDEF messages
or chains of linked chunks.
An NDEF record includes three parameters to describe its payload [17]:

e The payload length: The payload length indicates the number of bytes in the
payload.

e The payload type: The NDEF payload type identifier indicates the type of the
payload. NDEF supports URIs, MIME media type constructs, and an NFC-specific
type format as type identifiers. By indicating the type of a payload, it is possible
to hand over the payload of the records to the appropriate application on the NFC
device.

e The payload identifier: The payload may contain an absolute or relative URI as
the payload identifier. The use of an identifier enables payloads that support URI
linking technologies to cross-reference other payloads.

The structure of an NDEF record is shown in Fig. 15.8. The header additionally
includes the following parameters in the first byte:

e Message begin (MB): Indicates whether this is the first NDEF records of the NDEF
message or not.

e Message end (ME): Indicates whether this is the last NDEF records of the NDEF
message or not.

e Chunk flag (CF): The chunk flag bit can be set to segment the payload into multiple
record with are serialized with one message.

Fig. 15.8 Structure of an 7 6 5 4 3 2 1 0

NDEF record . .
MB | ME | CF | SR | IL TNF

Type Length

Payload Length 3

Payload Length 2

Payload Length 1

Payload Length 0

ID Length

Type

ID

Payload

366

G. Madlmayr et al.

e Short record (SR): The short record bit is set to ‘1’ in case the record size is not
longer than 255 bytes.

e ID length (IL): This bit is set the record contains the payload identifier and payload
identifier length.

15.7 Conclusion

NFC integrates sophisticated RFID and smart card technology into mobile devices.
Although the industry has been pushing the technology through the NFC Forum
since 2003, it seems to be the integration of NFC into Google’s Android platform (in
2010) that has finally pushed the technology into the consumer market. Thus, NFC
is on the verge of becoming a ubiquitous technology like bluetooth and WiFi.

The combination of existing contactless applications such as credit card payment
and the upcoming NFC capabilities like P2P provides the basis for complete new
interaction models between the virtual and physical worlds.

References

oo

10.

11.

12.

13.

14.
15.

. Nfc-forum. http://www.nfc-forum.org/
. Bishwajit, C., Juha, R.: Mobile Device Security Element. Mobey Forum, Satamaradankatu

3 B, 3rd floor 00020 Nordea, Helsinki/Finland (2005)

. Dillinger, O., Langer, J., Madlmayr, G., Muehlberger, A.: Near field communication in embed-

ded systems. In: Proceedings of the Embedded World Conference 2006, vol. 01, p. 7 (2006)

. Gowdiak, A.: Java 2 micro edition (j2me) security vulnerabilities. In: Proceedings of the Hack

in the Box Security Conference (2004)

. GSM Association: GSMA NFC UICC Requirement Specification Version 2.0. GSMA London

Office, 1st Floor, Mid City Place, 71 High Holborn, London WC1V 6EA, United Kingdom,
2.0 edn. (2011). 2st Revision

. GSM Association: NFC Handset APIs and Requirements v2.0. GSMA London Office, 1st

Floor, Mid City Place, 71 High Holborn, London WCI1V 6EA, United Kingdom, 2.0 edn.
(2011). 2st Revision

. openBossa Inc.: openbossa website. http://www.openbossa.org/ (2011)
. InsideSecure: The Open NFC Project, (2011). http://www.open-nfc.org/
. International Organization for Standardization: ISO/IEC 14443 Part 1-4: Proximity cards

(2003)

International Organization for Standardization: ISO/IEC 18092: Near Field Communication -
Interface and Protocol (NFCIP-1) (2004)

Java Community Process (SM) Program: Java Security and Trust Services API (SATSA). http://
java.sun.com/products/satsa/ (2004). JSR177 Final Release

Java Community Process (SM) Program: Java Contactless Communications API. http://jcp.
org/en/jsr/detail?id=257 (2006). JSR257 Final Release

Kunkat, H.: NFC und seine Pluspunkte. Electronic Wireless 01, 4-8 (2005)

Linux Kernel Organization Inc.: The Linux Kernel Archives, (2011). http://www.kernel.org/
Madlmayr, G., Langer, J., Schaffer, C., Scharinger, J.: Nfc devices: Security and privacy. In:
S. Jakoubi, S. Tjoa, E.R. Weippl (eds.) Proceedings of the 3rd International Conference on

http://www.nfc-forum.org/
http://www.openbossa.org/
http://www.open-nfc.org/
http://java.sun.com/products/satsa/
http://java.sun.com/products/satsa/
http://jcp.org/en/jsr/detail?id=257
http://jcp.org/en/jsr/detail?id=257
http://www.kernel.org/

15

16.

17.

18.

19.
20.

21.

22.

Near Field Communication 367

Availability, Reliability and Security, vol. 03, p. 6. DEXA Society, IEEE Computer Society
(2008)

Michahelles, E., Thiesse, F., Schmidt, A., Williams, J.R.: Pervasive RFID and Near Field
Communication Technology. IEEE Pervasive Computing 6(3), 94-96, c3 (2007). doi:http://
doi.ieeecomputersociety.org/10.1109/MPRV.2007.64

NFC Forum: Nfc data exchange format (ndef). www.nfc-forum.org/resources/ (2007). Letzter
Zugriff am 10.3.2008

Nohl, K.: Cryptanalysis of crypto-1. http://www.cs. virginia.edu/ kn5f/Mifare.
Cryptanalysis.htm (2008). Letzter Zugriff am 12.12.2008

NXP: S2C Interface for NFC (2005). http://www.nxp.com

NXP: PN65 — Near Field Communication (NFC) SmartConnect Module in a single package
(2006). http://www.nxp.com

SIMalliance Limited: Open Mobile API specification V2.02. SIMalliance Limited, 29/30
Fitzroy Square, London W1T 6LQ, 2.02 edn. (2011). 2st Revision

Verdult, R., Conty, R.: libnfc.org - Public platform independent Near Field Communication
(NFC) library, (2011). http://www.libnfc.org/

http://doi.ieeecomputersociety.org/10.1109/MPRV.2007.64
http://doi.ieeecomputersociety.org/10.1109/MPRV.2007.64
http://www.cs.
http://www.nxp.com
http://www.nxp.com
http://www.libnfc.org/

	15 Near Field Communication
	15.1 Introduction
	15.2 NFC Technology
	15.2.1 Physical Layer
	15.2.2 Use Cases and Applications

	15.3 Hardware Integration
	15.3.1 NFC Chip
	15.3.2 Secure Element
	15.3.3 Host Controller

	15.4 NFC and Linux
	15.5 NFC Integration in Android
	15.5.1 NFC Chip
	15.5.2 API for the NFC Chip
	15.5.3 API for the Secure Element Access
	15.5.4 Security

	15.6 NFC Tags
	15.6.1 Tag-Types
	15.6.2 NFC Data Exchange Format (NDEF)

	15.7 Conclusion
	References

