
Chapter 14
Wireless Sensor Nodes

Serge Chaumette and Damien Sauveron

Abstract This chapter addresses the key points of wireless sensor nodes: applica-
tions, constraints, architecture, operating systems, and security concerns. It does not
pretend to be exhaustive but to provide the major references on these topics.

14.1 Introduction

Huge advances in Microelectromechanical systems (MEMS) and Wireless commu-
nications in the last decade of the twentieth century gave birth to new paradigms,
where cheap, small size communicating sensors have been developed and integrated
in many devices and large hardware/software environments. In this chapter, we target
standalone wireless sensing devices, so-called wireless sensor nodes, which means
that we focus on the device itself and not on the way it can be integrated within a
global wireless sensor network. These small hardware pieces are becoming a key
component of the digitization of the real world, thanks to their ease of deployment
and the benefits that they can bring to human life in general, like infrastructure man-
agement (such as power grids) and environmental protection for instance. They are
quite different from expensive isolated sensors (i.e., not intended to be a part of a
whole swarm) and achieve complex measurements (related to a given phenomenon),
and subsequent computation operations. Indeed, the strength of small sensor nodes
is their ability to self-organize as a large network which enables measurement very
close to a possibly dangerous phenomenon. They can cover a wide area and so are
able to observe the evolution and spreading of complex events. In Sect. 14.2 we
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will show that wireless sensor nodes are used in both military and civil applications,
health care, and power grid monitoring, among many other domains. In Sect. 14.3 we
address constraints, like cost, energy-consumption, and network management (even
though, as explained above, this last point is not a central topic of this chapter). In
Sect. 14.4 the generic architecture of a wireless sensor node and the major features
of the associated operating systems are described. We eventually present the security
concerns in Sect. 14.5.

14.2 Applications

It is widely acknowledged that the first uses of advanced sensing technologies were
military. In 1949, the US Navy announced its intention to exploit passive sonars
for anti-submarine warfare (ASW) purposes using hydrophonic sensors deployed on
the seafloor. In 1961, the sound surveillance system (SOSUS) [4] provided deep-
water long-range detection capabilities, which were successfully used during the
Cold War. It is now used by national oceanographic and atmospheric administration
(NOAA) to observe a number of natural phenomena like submarine earthquakes [51]
or the activities of some animals [22]. However, the concept of Distributed Sensor
Networks only appeared in the early 1980’s, driven by defense advanced research
projects agency (DARPA) through a first program which was followed in 2001,
due to evolution in the domain of MEMS, by the sensor information technology
(SensIT) program [43]. The primary goals of SensIT were the creation of a new class
of software for distributed microsensors, the development of novel methods for ad
hoc networking of deployable microsensors and the extraction of right and timely
information from a sensor field. Typical military applications of sensors are related
to the collection of information that can be used to enforce situation management:

• monitoring friendly forces, equipment, and ammunition;
• battlefield surveillance;
• reconnaissance of opposing forces and terrain;
• targeting (e.g., for missiles);
• battle damage assessment;
• nuclear, biological, and chemical attack detection and reconnaissance.

Since early 2000, the number of civil applications has increased. Sensors now
permit the creation of low-cost monitoring systems. Many domains, for instance
biology, climatology, geology, etc., benefit from integrated sensors and sensor net-
work technology. These sensors can for instance be used:

• to alert the civilian population when a volcanic eruption is going to occur [67] and
to collect data without any risk to compromise the physical integrity of the persons
in charge of taking the samples [65];

• to detect forest fire [37] or floodings [15];
• to forecast environmental pollution;
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• to observe animals in their living environment without human presence [42, 49];
• to help farmers collect accurate measures of phenomena, which have a potential

impact on their agricultural production [16].

As mentioned in the introduction, sensors can also be used in:

• health care, like telemonitoring of human physiological data [41], tracking and
monitoring doctors and patients inside a hospital, environmental control in office
buildings [54], etc.;

• infrastructure protection by monitoring bridges, tunnels, pipelines, power grids,
etc.;

• home automation and smart environments [32], interactive museums [54], vehicle
tracking and detection [60], etc.

Beyond these well-known applications, some other are much more unusual. For
example, Simon et al. [61] propose to use a large number of cheap sensors communi-
cating through an ad hoc wireless network, to detect and accurately locate shooters in
urban environments. Their system supports multiple sensors failures, provides good
coverage and high accuracy, and is capable of overcoming multipath effects.

14.3 Constraints

As illustrated in the above section, Wireless Sensor Nodes can be used for an
extremely wide range of applications. However, they suffer from several constraints
that need to be known and understood in order to properly target their possible
domains of use.

14.3.1 Costs: Production Versus Performance

When a phenomenon needs to be observed, the decision to use wireless sensor nodes
or classical sensors is mostly based on technical reasons. For instance, when consider-
ing the ability of the system to observe the spreading and evolution of a phenomenon
to measure, it appears that a wireless sensor network is probably a good candidate
because it allows wider and more accurate geographic coverage. Nevertheless, the
financial cost of building the sensing system is also a prominent parameter. A wire-
less sensor network can be composed of a few to several thousands1 devices and the
overall price of the sensing system may thus be huge. To be viable, their production

1 In practice very few applications use thousands of nodes. However theoretically, for instance, in
military applications like battlefield surveillance, a huge number of nodes may be required. The
biggest wireless sensor networks publicly known that have ever been built are: a system based
on MyriaNed and composed of more than 1000 nodes [14, 38]; an 800 nodes network called
the “Largest Tiny Network Yet” deployed at Berkeley [5] in 2001; WISEBED [21] which is made of
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cost should remain very low (for example less than 1$/node). Indeed, even if not all
networks are composed of thousands of nodes, there can be several networks oper-
ating in parallel for different purposes and thus the total number of nodes can still be
huge. At the same time, they should offer good performance to sense phenomena and
if required enough computing power to handle data locally, so as to overcome the
network-related constraints and usage consequences such as energy-consumption
(see below). Thus, their design is always the result of a trade-off between perfor-
mance and cost. Obviously there is no hidden cost due to the deployment of wires
(and associated devices) as can be found in classical networks, since by definition
wireless sensor nodes do not require any infrastructure, however, in some cases there
may be a cost for a wireless sensors spectrum licence.

14.3.2 Energy

To enable the sensors to operate during their whole mission time, energy saving is
a major concern of both the manufacturers and the users, even though it is widely
acknowledged that designing energy efficient communication components is a chal-
lenging task. Furthermore, it still remains that even with a power-efficient radio fre-
quency (RF) technology, the energy consumption due to the communication between
two nodes follows at best an inverse-square law of their distances. For this reason, to
save power, it is needed to ‘split’ long distances between two communicating nodes
by using multi-hop communication and routing [24]. Software is thus also largely
involved in the energy-saving process. However, this way to communicate implies
more cooperation between the nodes of the network in order to relay messages using
power-efficient routing algorithms. It is thus a challenge to design low duty cycle
radio circuits to relay messages between neighbors without losing any message.
Strategies based on “wakeup on demand” (using two radios) [59] or “adaptive duty
cycles” [68] are being studied to circumvent this problem. Another solution is to
setup a network backbone with a subset of nodes that remain active.

In addition, it is possible to minimize [8] power consumption in a multi-hop
sensor network, by processing sensed data locally to minimize transmission. The
economy comes from the fact that the cost to transmit a large quantity of raw data
coming from the sensor is more important than the cost of locally processing them,
extracting the useful information, and eventually sending these information over the
wireless network. Even if it is true that communication consumes a large quantity
of energy in a sensor architecture, it still remains that the rest of the hardware and
especially the processing unit must also be designed to be efficient. At software level,
the operating system, protocols, algorithms, etc., must also be power-efficient and
thus power-aware.

(Footnote 1 continued)
around 750 nodes but split in several subnetworks; the architecture described in [7] that uses 273
sensors and 47 wireless nodes to monitor nectarine orchard.



14 Wireless Sensor Nodes 339

When battery capacity cannot be sufficient, solar cells [20] can be added to supply
additional power. But they increase the manufacturing cost and are not suited to all
deployments. However, other power scavenging methods, which enable wireless
nodes to be completely self-sustained exist [55], at least as prototypes. Among these
methods are those using temperature gradients, human power, wind or air flow,
vibrations [56], etc.

14.3.3 Management: Self and Decentralized

When large-scale wireless sensor networks are deployed, relying on a centralized
base station that would manage the topology and the routing is by nature not pos-
sible. This is due, among other parameters, to the cost in terms of energy spent to
communicate over large distances. However, even though it is true that lower cost (in
terms of energy consumption) multi-hop communication can be used to reach a base
station, it still remains that in the particular case where nodes are mobile, the base
station can become physically unreachable. Thus, wireless sensor networks often
rely on decentralized management. For instance the decisions related to routing are
computed locally based on information collected from neighbors using algorithms
that once again optimize the energy consumption of the system.

In addition, it must be remembered that the nodes are deployed in a possibly
adverse environment where they must thus operate without any human intervention.
Therefore, configuration, adaptation, maintenance, and repair should be performed
in an autonomous manner [24]. The nodes then need to have self-management and
context-awareness capabilities [50], like self-organization and self healing. These
require the ability to adapt configuration parameters according to changes in the
environment, such as network disruption (the goal here being to maintain a given
network topology) and to support self-protection (the ability to detect and protect
against attacks). These are two fundamental features.

14.4 Architecture and Operating System

There are a plethora of readily available wireless sensor nodes which combine diverse
hardware architectures with various operating systems. To try and make things clear,
this section describes a tentative generic architecture of a node and the main fea-
tures that are usually supported by the associated operating systems. Figure 14.1
presents the architecture. The sensing unit is the aim for which the sensor node has
been designed. The rest of the unit is needed: to process the acquired data items or
those received from neighbor nodes; to communicate with neighbor nodes; to supply
power to all the boards and components. As can be seen, the sensing, power, and
communication units exchange/communicate over buses such as general purpose
input/output (GPIO), secure data input/output (SDIO), universal serial bus (USB),
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Fig. 14.1 Generic architecture of a wireless sensor node

serial peripheral interface (SPI), Inter-Integrated Circuit (I2C), the two latter being
the most commonly used. As illustrated in Fig. 14.1, a direct memory access (DMA)
bus can even be used so as to save the computing cycles of the processor.

As aforementioned, energy supply and management are crucial in sensors. The
power unit may be a simple battery or it can generate part (or all) of the necessary
power using solar cells, or even MEMS-based advanced technologies.

14.4.1 Sensing Unit

Figure 14.1 shows that a sensing unit can integrate several sensors and analog to dig-
ital converters (ADCs). The crucial hardware element of a sensor node are obviously
the sensors themselves (even though the other components are also of major impor-
tance). Their goal is to monitor changes of some external physical phenomenon and
to output a continuous analog signal as a function of time, which then needs to be
converted to a digital value. The choice of the embedded sensors is done by the man-
ufacturer depending on the physical phenomena to observe. It should also be noted
that many architectures now support the notion of shields that are purpose-specific
sensor boards, that can be plugged in depending on the target application. Thanks to
the advances in MEMS, there exist sensors for most physical values, from heart rate
to temperature (an illustrative list of sensors is given Table 14.1). The readers inter-
ested in building their own node with specific sensors are referred to a later chapter
where the Arduino platform (a Do It Yourself open hardware platform) is described.
A sensor that requires power to measure a physical information is called active while
one that derives power from the energy provided by the sensed phenomenon is called
passive.

To convert the signal produced by a sensor to information that can be handled by
the processing unit, an ADC must be used to digitize the analog values. A bus is then
used to feed the processing unit with the resulting digital information. As can be seen
in Fig. 14.1, an ADC can be shared by different sensors. The decision of having one
single ADC for several sensor units or one ADC per sensor unit or even not to embed
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Table 14.1 Examples of
sensed phenomena and asso-
ciated sensors

Type of sensed phenomena Example of sensor

Acoustic Microphone
Chemical pH sensor
Electromagnetic Magnetometer
Flow Anemometer
Humidity Hygrometer
Mechanical Tactile sensor
Motion Accelerometer
Optical Photodiode
Position Gps
Pressure Barometer
Radiation Radioactivity counter
Temperature Thermocouple

any ADC is done by the manufacturer based on the nature of the information (for
instance, in terms of sampling frequencies and in terms of resolution) that the sensor
is designed to measure. Multiplexing at ADC level can be used for sensors whose
monitored information does not change with high frequency (or at least remains
under a given threshold).

Although this will not be detailed here, sensor nodes can also integrate actuators
such as LEDs, motors, etc.

14.4.2 Processing Unit

The processing unit provides the computing power of the system and connects the
sensing and the communication modules. It consists in a processor and different kinds
of memory banks: a nonvolatile memory (for instance Flash memory or EEPROM)
to store the programs (application(s) and OS) and a volatile fast memory (different
brands of RAM are possible) to store the objects used by the operating system (like the
application stack), the sensed data items, etc. The processor can be of different types:
field programmable gate array (FPGA), digital signal processor (DSP), application-
specific integrated circuit (ASIC), or microcontroller. The latter embeds memories
and several additional hardware features such as a clock generator.

However, if DSPs and FPGAs are special purpose energy-efficient processors that
can be used for some well-defined and simple sensing tasks, they are not suitable for
setting up a modular architecture. In the sensor network context, the sensing tasks
can vary a lot, the overall hardware configuration can be modified by adding a new
sensor, and the software layers must then be able to redefine the sensing operations.
It is acknowledged that a microcontroller is the best solution when dynamic code
loading and updating are required. For instance, it makes it possible to load post-
issuance new energy-efficient software components and protocols. It is less powerful
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than a DSP or a FPGA, but easier to program (in C or assembly language). The main
drawback of DSPs is their lack of flexibility when reprogramming is needed, whereas
the drawback of an FPGA is that its production and design costs remain high. An
ASIC provides the best performance, but again reconfiguration is difficult to achieve.
Most of the time ASICs are used to complement microcontrollers or DSPs in low
level tasks, such as wireless communication.

From an architectural point of view, the processing unit can be organized according
to the Von Neumann (for FPGAs and ASICs) or Harvard (or even Super Harvard)
architectures (for DSPs or microcontrollers).

14.4.3 Communication Unit

The communication unit, i.e., the transceiver, may be an optical device like in the
Smart Dust motes project [50], but most of the time, it is an RF device. However,
as aforementioned in Sect. 14.3.2, hardware is not sufficient and software multi-
hopping is the most efficient and usual way to communicate in sensor networks.
Therefore, different types of short-range and energy-efficient radio technologies are
used such as those based on IEEE 802.15.4 like ZigBee [29], WirelessHART [62],
ISA100.11a [64]; IEEE 802.11 [23] like WiFi; IEEE 1451 [45]; or other proprietary
technologies. Because of its high-power consumption when switching the RF module
on and off, Bluetooth is not used very often. Although there are not many benchmarks
available, the reader interested in a comparison between these technologies can refer
to the three following papers [46, 48, 63].

14.4.4 Major Features of Operating Systems

The operating system of a WSN is a small software layer linking the application layer
to the hardware layer. It enables applications to interact with the hardware resources
through services or libraries and is in charge of scheduling and prioritizing tasks. It
can manage memory, power, etc. In addition, it provides application developers with
a few basic abstractions and paradigms to express their algorithms. For example, to
support concurrent tasks, they often provide either a multithreaded or an event-based
programming environment [24].

Nevertheless, there is most of the time no clear separation between the operating
system and the applications running on top of it. WSN operating systems generally
consist of a number of selectable lightweight modules which are linked together at
compilation time to create a monolithic program code which is in charge of sensing,
processing, and managing communications. Some other operating systems provide
an indivisible system kernel along with a set of library components for building
applications [24]. More details on some common operating systems like TinyOS
[33], SOS [36], Contiki [26] or LiteOS [17] can be found in [24].
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14.5 Security Concerns

Until recently, most attacks on wireless sensor nodes have targeted the protocols
used to communicate between nodes integrated in a network, therefore the intrinsic
security of the nodes themselves is a major concern. For instance, nodes can be cap-
tured and then tampered with since they often operate in an adversary environment.
We first address security of the nodes before presenting the main network-related
concerns.

14.5.1 Security of Wireless Sensor Nodes

In our opinion, tamper resistance will be an important feature of sensing nodes
operating in adverse environments (which is the most common case). In 2000, the
authors of [18] mentioned the need for tamper resistance; however, because of the
(low) cost constraint, they assumed that tamper protection for sensor nodes was
limited. They even recommended not to use unattended sensors for some military
missions where classified algorithms have to be used. It is true that developing tamper
resistant nodes will be more expensive at the beginning of the production due to all
the stages needed to be able to provide a high trust regarding the added security
mechanisms. However, based on the smart card experience, one can think that the
price will certainly quickly decrease when the production process will integrate these
constraints.

Until 2006, node-capture has been considered for instance in [28, 53] that only
the resilience of the network has been addressed. The proposed approaches were
based on algorithmic solutions, e.g., through routing protocol [25], instead of a
tamper-resistant mechanism, or based on redundancy to cross-check measures for
consistency. The first studies [10, 11, 27] which have targeted the security of nodes
themselves were done quite recently. Benenson et al. [10, 11] have developed a
“design space for physical attacks” on nodes and have provided a framework for
realistic security analysis in wireless sensor networks. Attacks (e.g., via a JTAG Test
Access Port, via the Bootstrap Loader) against unattended sensor nodes in the field
were discovered and countermeasures were proposed. For example, detection by its
neighbors of the removal of a node through the communication protocol or by the
node itself using for example an acceleration sensor, and if the removal is detected
then the node is revoked of the network in the first case or it erases its confidential data
in the second case. Side-channel attacks were only mentioned in the conclusions by Z.
Benenson et al.; however, these threats have been considered by K. Eagles et al. [27].
In this chapter, the authors have developed a comparative threat analysis framework
and a methodology to catalog threats, vulnerabilities, attacks, and countermeasures
for smart cards (contact and contactless) and wireless sensor network nodes. One
of the goals of their research was to determine security lessons learned from the
world of smart cards that could be applied to the nodes of a wireless sensor network.
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They clearly conclude that the nodes are subject to many attacks that exist on smart
cards, and that tamper resistance features that are implemented within smart cards
should also be considered for nodes.

Despite the very interesting conclusions of these studies, it is surprising to note that
very few efforts have been made in this direction to improve the security of nodes.
However, in 2010, Bialas published two papers [12, 13] in which he considered
security issues of sensors used for high-risk applications. Among his contributions,
he proposed Common Criteria-related security design patterns for the development
of sensors’ security features. This is an important step. However, applications with
crucial security and reliability requirements, such as the studied sensors in charge
of detecting methane in a mine [12], have not been subject to real Common Criteria
evaluation and certification processes. A high level of trust for sensor nodes will
only exist when Common Criteria certificates will be issued. However, the company
named “Ultra Electronics 3eTI” seems close to deliver the first commercial sensing
product that can reach such a level of assurance [1]. They manufacture a product
called “EnergyGuard Appliance 3e-723” [2] which is a real-time energy monitoring
and control system with built-in security mechanisms that allows energy managers
to analyze usage at the building and base/campus level. The webpage of the product
[3] claims it has been validated FIPS 140-2, Level 2, that Common Criteria EAL2
and EAL4 are pending and that it complies with DoDD 8500.1 and DoDD 8100.2.

In parallel and regardless of the conclusions of the paper by Eagles et al., three
papers [30, 34, 35] have been published which exploit the network to attack the nodes
themselves. Here is what the authors have been able to achieve. In [34], they com-
promised a Von Neumann architecture-based sensor with a classical stack attack. In
[35], it is explained how a mal-packet carrying only specially crafted data can exploit
memory-related vulnerabilities and utilize existing application code in a Harvard-
based architecture sensor to propagate itself without disrupting sensor’s functional-
ities. In [30], the authors succeeded in achieving a remote code injection attack on
a Harvard-based architecture sensor, which was considered impossible before. This
attack enables adversary to gain full control of the target sensor and for example
to inject a worm that can then propagate through the wireless sensor network and
possibly create a sensor botnet, or eavesdrop the network, etc.

To counter these recent attacks, Hu et al. present in [39] the design and imple-
mentation of a trusted sensor node, called trustedFleck. It uses a commodity trusted
platform module (TPM) chip to extend the capabilities of a standard wireless sensor
node (Fleck) to provide security services such as message integrity, confidential-
ity, authenticity, and system integrity. In addition, they provide services like secure
software update and remote attestation.

The reader interested in software remote attestation approaches like SWATT [58]
and ICE-based [57] schemes must be aware that attacks [19] exist against them and
that a hardware root of trust is certainly the best reliable solution. Recently a debate
[31, 52] concluded that while software-based code attestation is a useful security
primitive, its design principles are not yet fully understood. The last advance [47] on
this topic at the time of writing this chapter does not target sensor nodes.
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14.5.2 Security in Networks of Wireless Sensor Nodes

As mentioned in the introduction of this section, most of the classical attacks that
have been studied until now are related to the network protocols and not to the nodes
themselves. Classical attacks like replay, packet injection, or corruption are well
known and will thus not be described here. It should also be noted that operations
like data aggregation and clock synchronization [44] will not be presented here in
spite of the security issues that they raise, because they are application specific.

14.5.2.1 Denial-of-Service Attacks

A first class of security concerns in a sensors network is related to availability. Indeed,
it is very easy for an adversary to stop the network operation with Denial-of-Service
(DoS) attacks [66].

For example at physical layer, a jamming attack can be achieved by interfering
on radio frequencies used by the sensor network. This kind of attack is very efficient
since in most of the topologies, it does not require an important number of “attacking
nodes” to perform it. However, some countermeasures to make it more complex have
been developed, like:

• using spread-spectrum communication [e.g., Frequency-Hopping Spread Spec-
trum (FHSS)] which forces attackers to jam on a wide frequency band;

• jamming detection which enables the nodes to be switched in low consumption
mode and awakened periodically to check if the jamming attack is still in progress.

Tampering with a node is also considered a DoS attack, since once captured, it is
possible to destroy it or try to compromise it. Currently suggested countermeasures
consist in:

• disabling the node and deleting its information when it believes that it has been
compromised. It should be noted, however, that this is not very satisfactory, since
the node is no longer available, which is the goal of DoS.

• camouflaging or hiding nodes in their physical environment [9], but this is not an
information technology-based countermeasure!

At link-layer level, a DoS can be achieved with collision attacks which may consist
in exploiting the medium access control backoff and retransmission procedures. In
addition, even if collisions occur for only a few bits, the sending node should send its
packet again, thus consuming more energy (this is an exhaustion attack). Fortunately,
this can be partially addressed using error correcting codes and best-effort delivery
protocols.

At network-layer level, a DoS can be achieved using routing loop attacks [44]
to create loops in message routes so that messages are constantly forwarded around
this loop, draining batteries of the nodes involved in the loop, and preventing the
message from reaching its final destination.
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At transport-layer level, a flooding attack can be performed by repeatedly request-
ing new connections to a given node which then undergoes a memory exhaustion and
thus refuses further connections from legitimate nodes. A desynchronization attack
can also be achieved to elicit resource-costly retransmissions [24].

14.5.2.2 Routing Attacks

There are a large number of possible attacks on routing protocols [6]. Here are a few:

• the blackhole attack in which an attacker attempts to be on the path of one or
more routes to drop all the traffic so that the transmitted data never reach their
destination. A variant is the selective forwarding attack, in which the attacker
drops only the data matching certain criteria. This latter is more difficult to detect
than a blackhole attack.

• the sinkhole attack is another variant of the blackhole attack, in which the traffic
is not dropped, but disrupted or tampered.

• the rushing attack [40] in which an attacker exploits the nature of the route dis-
covery procedure of on-demand routing protocols to increase its probability to be
chosen as an intermediary node between a source and a destination.

• the sybil attack consists in an attacker presenting multiple (impersonated or false)
identities to the other nodes of the network to influence the decision taken in
cooperation inside the network (for instance to become a part of the route). Imper-
sonation can be done with node or base station identities [44]. A variant of the
sybil attack exists for geographic routing protocols where an attacker claims to be
at several locations (instead of impersonating an identity) simultaneously with the
hope to be chosen as a forwarding node.

• the wormhole attack in which two colluding attackers using an out-of-band channel
between them, divert most of the traffic from the rest of the network. This then
enables attacks like blackhole, sinkhole, etc.

While using wireless link encryption and authentication mechanisms can prevent
most attacks from an outsider of the network, it cannot be effective against an inside
attack, coming from a compromised node. As seen in this section, there are many
possibilities to compromise a node and thus an intrusion detection system (IDS) is
clearly an additional security mechanism that can help protecting the system.

14.5.2.3 Conclusion on Security

To the best of our knowledge, at the time of writing these lines, there is not yet
any publicly available cheap wireless sensor node which would implement tamper-
resistant features so as to provide a high level of trust and that could be deployed in
a real network to defeat all aforementioned attacks.
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