
Secure Smart
Embedded Devices,
Platforms and
Applications

Konstantinos Markantonakis
Keith Mayes Editors

Secure Smart Embedded Devices, Platforms
and Applications

Konstantinos Markantonakis
Keith Mayes
Editors

Secure Smart Embedded
Devices, Platforms
and Applications

Foreword by Fred Piper

123

Editors
Konstantinos Markantonakis
Keith Mayes
Information Security Group
Smart Card Centre
Royal Holloway
University of London
Egham, Surrey
UK

ISBN 978-1-4614-7914-7 ISBN 978-1-4614-7915-4 (eBook)
DOI 10.1007/978-1-4614-7915-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013939824

� Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

I would like to dedicate this book to the
memory of my father, Georgios
Markantonakis. Thank you dad!

Konstantinos Markantonakis

I would like to dedicate this book to my
family and friends, and to people who
succeed despite disadvantage

Keith Mayes

Foreword

This is the second book to be co-edited by Keith Mayes and Konstantinos Mar-
kantonakis. The first, Smartcards, Tokens, Security and Applications was pub-
lished in 2008 and this volume is a natural ‘companion’ of that earlier publication
and greatly expands on the range of content. Both are the result of experiences
gained in managing the Smart Card Centre (SCC) at Royal Holloway, University
of London.

The SCC, which was founded 10 years ago by Vodafone and Giesecke &
Devrient, and has since been supported by numerous other companies, teaches a
specialist module to students studying for the M.Sc. in Information Security. That
module, which has the same title as their first book, focuses strongly on the
relevant technical, practical and security issues.

Just as with the earlier book, the editors have produced an informative volume
that is easy to read and its wide range of topics, which includes RFID, NFC,
Mobile communications and wireless sensor nodes, (to list only a few), will appeal
to a much wider audience than the Masters students at whom it is primarily aimed.
This wider audience is likely to extend to researchers and experts form industry
and governments. The two editors are both active researchers and their enthusiasm
for research adds extra interest to a fascinating area.

It is clear that technology has advanced enormously over the years, although the
fundamentals of Information Security may not have changed very much. Whether
we are dealing with pencil and paper or advanced super computers, the motivation
for fraud or security attacks and many of the reasons why vulnerabilities exist still
have very human origins. Perhaps the biggest change is that people have trans-
formed from being occasional users of technology to being dependent upon it and
its underlying security properties. We also have generations that have grown up
with the computer, mobile phone and Internet connectivity as essentials for life
and they consume services and share personal data with carefree enthusiasm,
whereas older heads might worry about how the technology works, who controls
the system and data etc. In response to this it is certainly possible to focus on the
security of something ‘‘big’’ like the Internet, but is very important to remember
that much of what we rely on to keep us and our data and activities secure, is a
collection of increasingly complex smaller devices. For example, the mobile phone
is really a concept and what we actually buy and use is an electronic assembly with

vii

processors, memories, security modules, displays, batteries, speakers etc. We
could almost describe a car in the same way as it only functions correctly because
a large number of embedded electronic modules, processors, sensors and com-
munications links work as they should. Therefore if we are to fully understand the
threats to modern systems and services, and then to help protect against them, we
should keep abreast of developments in embedded systems. A textbook on secure
smart embedded devices, platforms and applications would therefore seem a
welcome addition to the bookshelf.

Fred Piper
Founder, Director of the Information Security Group

Royal Holloway, University of London

viii Foreword

Preface

As we progress into the twenty-first century it seems that the pace of technological
advance shows no sign of slowing. We are in fact becoming increasingly depen-
dent on technology in our normal day-to-day lives, which means that we are
critically reliant on the security of systems and services that are built upon this
technology. In exploring this issue within a textbook, one could consider the high-
level design aspects or concentrate more on the nuts and bolts of security systems.
This book focuses mainly on the latter approach, as the editors and authors felt
there was no introductory overview that covered a sufficient breadth of available
technology and related issues. Generally speaking, a complex system is made up of
smaller components such as devices, processors, security modules, memories etc.
and knowing which of these can be trusted (and to what extent) to resist attacks
and misuse, is critical to the security of the complete system. For example, a very
sophisticated and expensive car might be reliant on a tiny embedded device (chip)
in the engine management system, for it to start and for protection against theft. It
is hoped that this book will help to clarify the role of embedded devices, their
capabilities, and how best to exploit them in secure system designs.

Structure of the Book

The book consists of 24 chapters organised in four sections. Part I introduces some
typical embedded devices and hardware, before some more generic information on
security issues is provided in Part II. The Part III (which is the largest section)
considers a wide range of application aspects and considerations. Part IV is pro-
vided for readers who are interested in application development for embedded
devices. The chapters are written as self-contained texts, from a range of expert
authors and can be read individually or in the book order. The chapters are briefly
introduced below.

Part I: Chapter 1 provides an overview of smart cards and (RFID), their security
capabilities and attack resistance, and their widespread use within a range of
security sensitive applications. Chapter 2 then introduces Digital Signal Processor

ix

http://dx.doi.org/10.1007/978-1-4614-7915-4_1
http://dx.doi.org/10.1007/978-1-4614-7915-4_2

devices which are widely used in modern devices, such as mobile phones.
Chapter 3 relates the historical development of microprocessor and microntroller
chips and goes onto cover the specialist design of secure embedded microcon-
trollers. Chapter 4 introduces a specific type of secure controller, the Trusted
Platform Module (TPM) and its mobile equivalent, that are intended to ensure
(amongst other things) the safe boot up of a computing platform, so it is a reliable
platform on which to load applications. Chapter 5 considers the Very Large Scale
Integration (VLSI) approach to the design of electronic hardware and the potential
for security attacks and associated countermeasures.

Part II: Chapter 6 provides a general recap on information security best prac-
tices. Although we are focussing on embedded devices we must not forget that
without a secure theoretical design the implementation security will be funda-
mentally flawed. Chapter 7 illustrates how a theoretically sound security design
can be undermined by a poor implementation that lacks attack resistance. The
chosen attack target is the smart card; however the principles are applicable to
most embedded security devices. Chapter 8 considers the Graphics Processing
Unit (GPU), a processing platform that is often overlooked for its security capa-
bilities. It can be used as a cryptographic processor; however it is also a target for
malware and general misuse. Chapter 9 focuses on the FPGA, which has been
exploited both to protect and to attack security systems. The discussion also
extends to the protection of valuable Intellectual Property loaded into FPGAs used
in commercial systems.

Part III: Chapter 10 considers a range of options for providing mobile com-
munications security controllers. It begins with the conventional Subscriber
Identity Module (SIM) and the associated personalisation, management and usage
processes, but goes on to consider other possibilities, including software SIMs and
TPMs. The action taken by a mobile device depends not just on the security
controller, but the validity of the data that it receives, which increasingly can
include a representation of physical location. Chapter 11 discusses practical
approaches to location estimation, highlighting the possible security vulnerabili-
ties. Car Satellite Navigation systems are just one obvious example of this;
however as discussed in Chap. 12 motor vehicles are packed with processing
technology that has important safety and security aspects. By contrast, payment
card systems tend not to have such emphasis on safety, but they are required to
safeguard significant financial transactions. The potential to undermine the pay-
ment terminals is discussed in Chap. 13 with reference to published attacks.
Another technology where the misuse may have both safety and security impli-
cations is the (WSN) which is described in Chap. 14. For example, if a sensor
value is modified, replaced or blocked the resulting effect could be serious and/or
costly if the system was used for say telemedicine or metering. In fact a number of
sensing and terminal solutions are proposed around mobile devices and this seems
to be expanding with the arrival of (NFC) Technology. Chapter 15 considers NFC
and its security in detail, and how the phone (or laptop, PDA, tablet) may emulate
an RFID, or act as an RFID reader, or communicate with other NFC phones over a
close proximity link. Although NFC includes a Security Element (SE) some

x Preface

http://dx.doi.org/10.1007/978-1-4614-7915-4_3
http://dx.doi.org/10.1007/978-1-4614-7915-4_4
http://dx.doi.org/10.1007/978-1-4614-7915-4_5
http://dx.doi.org/10.1007/978-1-4614-7915-4_6
http://dx.doi.org/10.1007/978-1-4614-7915-4_7
http://dx.doi.org/10.1007/978-1-4614-7915-4_8
http://dx.doi.org/10.1007/978-1-4614-7915-4_9
http://dx.doi.org/10.1007/978-1-4614-7915-4_10
http://dx.doi.org/10.1007/978-1-4614-7915-4_11
http://dx.doi.org/10.1007/978-1-4614-7915-4_12
http://dx.doi.org/10.1007/978-1-4614-7915-4_13
http://dx.doi.org/10.1007/978-1-4614-7915-4_14
http://dx.doi.org/10.1007/978-1-4614-7915-4_15

aspects of the functionality are reliant on the phone platform security, which has
vulnerabilities similar to conventional PCs. To clarify this problem, Chap. 16
provides a recap on BIOS and Rootkit infections on computing platforms. Spe-
cialist computing/server equipment can get around this problem to some extent by
the use of security hardened peripheral devices for sensitive processing. These are
commonly known as Hardware Security Modules (HSM), and are discussed in
Chap. 17. Such devices are normally required to be formally security evaluated
and the Common Criteria approach to this is outlined in Chap. 18. In Chap. 19
there is a description of Physically Uncloneable Functions (PUFs) that have
generated significant academic interest and then in Chap. 20 there is an overview
of SCADA systems security that has generated significant industry concerns.

Part IV: Chapter 21 provides an overview of the PIC family of microcontrollers
that are intended for general-purpose non tamper-resistant implementations;
however they are often used as clone platforms, as well as for research experi-
ments. More secure implementations are commonly implemented on Java Card
platforms and the programming aspects are introduced in Chap. 22. Java has also
been a preferred approach for mobile phone platforms and this approach plus
important APIs are described in Chap. 23. Finally, for readers interested in
experimenting with Wireless Sensor Nodes, some practical guidance on available
platforms is presented in Chap. 24.

The ISG Smart Card Centre Keith Mayes
Royal Holloway, University of London Konstantinos Markantonakis
www.scc.rhul.ac.uk; www.isg.rhul.ac.uk

Preface xi

http://dx.doi.org/10.1007/978-1-4614-7915-4_16
http://dx.doi.org/10.1007/978-1-4614-7915-4_17
http://dx.doi.org/10.1007/978-1-4614-7915-4_18
http://dx.doi.org/10.1007/978-1-4614-7915-4_19
http://dx.doi.org/10.1007/978-1-4614-7915-4_20
http://dx.doi.org/10.1007/978-1-4614-7915-4_21
http://dx.doi.org/10.1007/978-1-4614-7915-4_22
http://dx.doi.org/10.1007/978-1-4614-7915-4_23
http://dx.doi.org/10.1007/978-1-4614-7915-4_24

ISG Smart Card Centre—Members Message

The (SCC) was established more than 10 years ago at Royal Holloway, University
of London. The primary objective was to create a World-Wide Centre of
Excellence for training and research in the field of Smart Cards, applications and
related technologies. Over the years this has expanded into RFID, NFC, mobile
devices and general embedded/implementation system security. Following the
success of its first textbook in 2008 (Mayes and Markantonakis (eds), Smart Cards,
Tokens, security and Applications, Springer) it was felt that this new book was
now needed to cover more aspects of Secure Embedded Devices.

The SCC is part of the World renowned Information Security Group (ISG) that
is one of the oldest and largest such groups and is one of the UKs Cyber Security
Academic Centres of Excellence, with alumni of over 2,000 M.Sc./Ph.D.
postgraduates. The SCC in common with ISG principles is very strongly engaged
with industry, focussing on responsible research into real world projects of
significant impact, and actively engaging industry experts into postgraduate
training, research and publication.

As representing the range of supporting industrial members, we are pleased to
be associated with the work and publications of the SCC.

Orange Labs (UK)
Transport for London

UK Cards Association
ITSO

xiii

Acknowledgments

This book would not have been possible without the help and support of a number
of organisations and individuals. Firstly we would like to thank Orange Labs (UK),
Transport for London, The UK Cards Association, ITSO and Royal Holloway,
University of London for their tremendous support of the ISG Smart Card Centre.
We owe an enormous debt of gratitude to all chapter authors and reviewers for
their expert contributions and patient co-operation. We would also like to extend
our thanks to Fred Piper for writing the foreword. Last, but certainly not least, we
must thank Raja Naem Akram for his tremendous efforts in helping to bring this
book to print and to Sheila Cobourne for proof reading on an epic scale.

xv

Contents

Part I Embedded Devices

1 An Introduction to Smart Cards and RFIDs 3
Keith Mayes and Konstantinos Markantonakis
1.1 Introduction . 3
1.2 Application Requirements . 5

1.2.1 Mobile Communications . 5
1.2.2 Banking Cards . 7
1.2.3 Passports . 8
1.2.4 Satellite Pay-TV. 9
1.2.5 Transport Ticketing . 10
1.2.6 Product Tagging . 11
1.2.7 Comparing Requirements . 12

1.3 Contact and Contactless Smart Cards/RFIDs 13
1.3.1 Cards with Contacts . 13
1.3.2 Contactless Smart Cards/RFIDS 14
1.3.3 APDU Communication . 15

1.4 The Range of Smart Card Devices . 16
1.4.1 Simple ID Tag/Card . 16
1.4.2 Memory Tag/Card . 17
1.4.3 Secured Memory Tag/Card 17
1.4.4 Secured Microcontroller ID/Tag 18

1.5 The Importance of Providing Attack/Tamper-Resistance 19
1.6 Mobile and NFC . 20
1.7 Conventional Smart Card Lifecycle Management Processes. . . 21
1.8 Conclusion. 23
References . 24

2 Embedded DSP Devices . 27
Serendra Reddy
2.1 Overview. 28
2.2 Digital Signal Processing. 29

xvii

http://dx.doi.org/10.1007/978-1-4614-7915-4_1
http://dx.doi.org/10.1007/978-1-4614-7915-4_1
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_1#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_2
http://dx.doi.org/10.1007/978-1-4614-7915-4_2
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec2

2.2.1 The DSP Processor . 30
2.2.2 The Real-Time DSP System 32
2.2.3 The FPGA in DSP . 34
2.2.4 The ASIP in DSP . 35

2.3 Embedded DSP Systems . 36
2.3.1 The Embedded DSP Architecture 37
2.3.2 The Embedded DSP Processor and RISC 40
2.3.3 Embedded DSP and Security 42
2.3.4 Embedded DSP and the Mobile Phone 44

2.4 Discussion . 46
References . 46

3 Microprocessors and Microcontrollers Security 49
Chris Shire
3.1 Microcontrollers and Microprocessors Security Needs. 49
3.2 Historical Development . 51
3.3 The Microprocessor . 52

3.3.1 32 Bit Microprocessor Designs. 53
3.3.2 64 Bit Microprocessor Designs. 54
3.3.3 RISCs and ARM . 54

3.4 Security Design of Embedded CPU Architectures. 56
3.4.1 Security of Embedded CPU Memory 61
3.4.2 Security of Embedded CPU Interfaces 64

3.5 Advanced Chip Design . 65
3.6 Conclusion. 67
References . 68

4 An Introduction to the Trusted Platform Module
and Mobile Trusted Module . 71
Raja Naeem Akram, Konstantinos Markantonakis and Keith Mayes
4.1 Introduction . 71
4.2 The Trusted Platform Module . 72

4.2.1 Trusted Platform Framework 72
4.2.2 Basic Architecture . 73

4.3 TPM Operations . 76
4.3.1 TPM Endorsement Key . 76
4.3.2 TPM Ownership . 77
4.3.3 Attestation Identity Keys . 78
4.3.4 Measurement and Reporting Operations 79
4.3.5 Migration Model . 83

4.4 The Mobile Trusted Module . 85
4.4.1 Basic Architecture and Operations 85

4.5 TPM/MTM Technology Contenders 88
4.5.1 ARM TrustZone . 88

xviii Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_2#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_3
http://dx.doi.org/10.1007/978-1-4614-7915-4_3
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_3#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_4
http://dx.doi.org/10.1007/978-1-4614-7915-4_4
http://dx.doi.org/10.1007/978-1-4614-7915-4_4
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec25
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec25
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec26
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec26
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec28

4.5.2 M-Shield . 88
4.5.3 GlobalPlatform Device . 88
4.5.4 Trusted Personal Devices. 89
4.5.5 Secure Element . 89
4.5.6 Comparative Analysis of TPM/MTM Technology

Contenders. 89
4.5.7 What Lies Ahead? . 91

4.6 Conclusion. 91
References . 92

5 Hardware and VLSI Designs . 95
Mario Kirschbaum and Thomas Plos
5.1 Introduction and Motivation. 96
5.2 VLSI Design Cycle. 97
5.3 Design Space of Hardware Circuits 100
5.4 Secure Hardware Design . 102

5.4.1 Power Consumption of CMOS Gates 103
5.4.2 Countermeasures Against Power-Analysis Attacks . . . 104
5.4.3 Verification of Countermeasures by Means

of Simulations . 107
5.5 Instruction-Set Extensions . 108
5.6 A 32-Bit Processor with ISEs and SCA Countermeasures 110
5.7 Testability and Security. 112
5.8 Hardware Trojans . 113
5.9 Conclusion and Summary . 114
References . 115

Part II Generic Security and Processing Platforms

6 Information Security Best Practices . 119
Keith Mayes and Konstantinos Markantonakis
6.1 Introduction . 119

6.1.1 What is Information Security
and Who are the Adversaries? 120

6.2 Security Objectives . 121
6.2.1 Data Assets . 122
6.2.2 Critical Functions . 122
6.2.3 The Range of Security Protection 122

6.3 Cryptographic Algorithms . 123
6.3.1 Symmetric Algorithms . 124
6.3.2 Asymmetric Algorithms . 132
6.3.3 Other Algorithms/Modes . 134

Contents xix

http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec29
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec29
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec31
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec31
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec34
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec34
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_4#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_5
http://dx.doi.org/10.1007/978-1-4614-7915-4_5
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_5#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_6
http://dx.doi.org/10.1007/978-1-4614-7915-4_6
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec15

6.4 Key/Trust Management . 135
6.4.1 Asymmetric Key Management 136
6.4.2 Trust and Management . 137

6.5 Security Evaluation and Common Criteria 138
6.6 Handling Imperfection. 139
6.7 Case Study the MIFARE Classic . 140

6.7.1 Impact. 141
6.8 Concluding Remarks . 142
References . 143

7 Smart Card Security . 145
Michael Tunstall
7.1 Introduction . 145
7.2 Cryptographic Algorithms . 147

7.2.1 Data Encryption Standard . 147
7.2.2 RSA . 149

7.3 Smart Card Security Features. 152
7.3.1 Communication . 153
7.3.2 Cryptographic Coprocessors. 154
7.3.3 Random Number Generators 154
7.3.4 Anomaly Sensors . 155
7.3.5 Chip Features. 155

7.4 Side Channel Analysis . 157
7.4.1 Timing Analysis . 157
7.4.2 Power Analysis . 158
7.4.3 Electromagnetic Analysis . 163
7.4.4 Countermeasures . 164

7.5 Fault Analysis . 166
7.5.1 Fault Injection Mechanisms 166
7.5.2 Modelling the Effect of a Fault 167
7.5.3 Faults in Cryptographic Algorithms 168
7.5.4 Countermeasures . 171

7.6 Embedded Software Design . 172
7.6.1 PIN Verification . 172
7.6.2 File Access . 174

7.7 In Conclusion. 175
References . 175

8 Graphics Processing Units . 179
Peter Schwabe
8.1 An Introduction to Modern GPUs. 180

8.1.1 NVIDIA GPUs. 180
8.1.2 AMD GPUs . 183
8.1.3 Programming GPUs in High-Level Languages 183

xx Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_6#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_7
http://dx.doi.org/10.1007/978-1-4614-7915-4_7
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec25
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec25
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec29
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec29
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec36
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec36
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec37
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec37
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_7#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_8
http://dx.doi.org/10.1007/978-1-4614-7915-4_8
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec4

8.1.4 Programming GPUs in Assembly 185
8.1.5 GPU Performance Bottlenecks 185

8.2 GPUs as Cryptographic Coprocessors 187
8.2.1 AES on GPUs . 188
8.2.2 Asymmetric Cryptography on GPUs 190

8.3 GPUs in Cryptanalysis . 192
8.4 Malware Detection on GPUs . 194
8.5 Malware Targeting GPUs . 195
8.6 Accessing GPUs from Web Applications. 196
References . 197

9 A Survey of Recent Results in FPGA Security
and Intellectual Property Protection . 201
François Durvaux, Stéphanie Kerckhof, Francesco Regazzoni
and François-Xavier Standaert
9.1 FPGAs: An Overview . 202

9.1.1 Structure . 202
9.1.2 Design Flow . 204
9.1.3 Technologies . 205

9.2 Security IPs . 205
9.2.1 The AES Case . 206
9.2.2 Performance Evaluation. 209
9.2.3 Side-Channel Attacks and Countermeasures. 210
9.2.4 Fault Attacks and Countermeasures 212

9.3 IP Security. 213
9.3.1 Bitstream Security . 213
9.3.2 Design Security . 214

9.4 Conclusions . 219
References . 220

Part III Applications and Platform Embedded Security
Requirements

10 Mobile Communication Security Controllers 227
Keith Mayes and Konstantinos Markantonakis
10.1 Introduction . 227
10.2 An Overview of the SIM. 229

10.2.1 The SIM in Operation . 230
10.3 Security Analysis . 232

10.3.1 Categories of Cellular Usage 232
10.3.2 The Roles in Communication Solutions. 233

10.4 Security Fundamentals . 236
10.4.1 Trust Operations. 237

Contents xxi

http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_8#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_9
http://dx.doi.org/10.1007/978-1-4614-7915-4_9
http://dx.doi.org/10.1007/978-1-4614-7915-4_9
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_9#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_10
http://dx.doi.org/10.1007/978-1-4614-7915-4_10
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec8

10.4.2 Initialisation, Personalisation
and Key Management . 238

10.4.3 Authentication/Encryption . 238
10.4.4 Management of SIM Data and Application 239
10.4.5 Migration . 239
10.4.6 Extended Operations/Value-Added Service

Management . 240
10.4.7 NFC Management . 240

10.5 Generic Attacks on Smart Cards. 241
10.5.1 Logical Attacks . 241
10.5.2 Physical Attacks . 242
10.5.3 Side Channel Attacks . 244
10.5.4 Fault Attacks . 246
10.5.5 Summary and Main Points. 246

10.6 SIM Implementation Options . 247
10.6.1 Pure Software SIM . 247
10.6.2 Hardware Shared Security Software SIM Solution

(HS-SSIM) . 249
10.6.3 Standalone HW Security SIM Solution 251

10.7 Trusted Platform. 254
10.7.1 Roots of Trust . 255
10.7.2 Authenticated Boot and Secure Storage. 256
10.7.3 Ownership . 256
10.7.4 Mobile Trusted Platform (MTP) 257

10.8 Summary . 260
10.8.1 Value Added Service Management 263
10.8.2 Concluding Remarks. 264

References . 265

11 Security of Embedded Location Systems 267
G. P. Hancke
11.1 Introduction . 267
11.2 Embedded Location Systems . 268
11.3 Security and Resilience of Location Information 270

11.3.1 Security and Resilience of Position
Estimation Methods . 273

11.4 Securing Position Estimation Methods 277
11.5 Global Navigation Satellite Systems 280

11.5.1 GPS Security . 280
11.5.2 Future Efforts on Securing GNSS. 283

11.6 Conclusion. 284
References . 284

xxii Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec28
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec36
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec36
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec37
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec37
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec39
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec39
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec40
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec40
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec43
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec43
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec44
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec44
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec45
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Sec45
http://dx.doi.org/10.1007/978-1-4614-7915-4_10#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_11
http://dx.doi.org/10.1007/978-1-4614-7915-4_11
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_11#Bib1

12 Automotive Embedded Systems Applications and Platform
Embedded Security Requirements . 287
Jan Pelzl, Marko Wolf and Thomas Wollinger
12.1 Introduction: Smart Embedded Platform Automotive 287

12.1.1 Smart Communication Platform 289
12.1.2 Smart After-Market Platform 290
12.1.3 Smart Future Platform. 290

12.2 Security Aspects of Smart Embedded Automotive
Platforms . 291
12.2.1 Automotive Attackers . 292
12.2.2 Automotive Attack Paths . 292
12.2.3 Automotive Security Threats and Risks. 296
12.2.4 Security of Automotive Safety Mechanisms. 296
12.2.5 Security of Automotive Legal Applications 298
12.2.6 Security of Automotive Business Models 298
12.2.7 Automotive Privacy Aspects 299
12.2.8 Real-World Automotive Security Incidents 299
12.2.9 Examples of Automotive Security Mechanisms 300

12.3 Smart and Secure Open Automotive Platforms Platform 302
12.3.1 OVERSEE Virtualisation. 302
12.3.2 OVERSEE Security Services Architecture 304
12.3.3 OVERSEE Security Implementation 306

12.4 Conclusions . 308
References . 308

13 Analysis of Potential Vulnerabilities in Payment Terminals 311
Konstantinos Rantos and Konstantinos Markantonakis
13.1 Introduction . 311

13.1.1 EMV Standard . 314
13.2 Current Terminal Status . 316

13.2.1 Types of Terminals. 316
13.2.2 Where does Security Apply? 317

13.3 Types of Attacks . 320
13.3.1 Attacking the Supply Chain 320
13.3.2 Exploiting Inadequate Security Measures 322
13.3.3 Skimming . 324
13.3.4 Covert Channels to PINs . 325
13.3.5 PIN/PIN Block Interception and Cracking 326
13.3.6 Manipulating the Terminal-Card Interface 327
13.3.7 Relay Attacks. 330

13.4 Conclusions and Future Considerations 331
References . 332

Contents xxiii

http://dx.doi.org/10.1007/978-1-4614-7915-4_12
http://dx.doi.org/10.1007/978-1-4614-7915-4_12
http://dx.doi.org/10.1007/978-1-4614-7915-4_12
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_12#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_13
http://dx.doi.org/10.1007/978-1-4614-7915-4_13
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_13#Bib1

14 Wireless Sensor Nodes . 335
Serge Chaumette and Damien Sauveron
14.1 Introduction . 335
14.2 Applications. 336
14.3 Constraints. 337

14.3.1 Costs: Production Versus Performance 337
14.3.2 Energy . 338
14.3.3 Management: Self and Decentralized 339

14.4 Architecture and Operating System. 339
14.4.1 Sensing Unit . 340
14.4.2 Processing Unit . 341
14.4.3 Communication Unit. 342
14.4.4 Major Features of Operating Systems 342

14.5 Security Concerns. 343
14.5.1 Security of Wireless Sensor Nodes 343
14.5.2 Security in Networks of Wireless Sensor Nodes 345

References . 347

15 Near Field Communication . 351
Gerald Madlmayr, Christian Kantner and Thomas Grechenig
15.1 Introduction . 351
15.2 NFC Technology . 352

15.2.1 Physical Layer . 352
15.2.2 Use Cases and Applications 354

15.3 Hardware Integration . 355
15.3.1 NFC Chip . 355
15.3.2 Secure Element . 356
15.3.3 Host Controller . 357

15.4 NFC and Linux . 359
15.5 NFC Integration in Android . 359

15.5.1 NFC Chip . 360
15.5.2 API for the NFC Chip. 361
15.5.3 API for the Secure Element Access 362
15.5.4 Security. 362

15.6 NFC Tags . 364
15.6.1 Tag-Types . 364
15.6.2 NFC Data Exchange Format (NDEF) 364

15.7 Conclusion. 366
References . 366

16 The BIOS and Rootkits . 369
Graham Hili, Keith Mayes and Konstantinos Markantonakis
16.1 The BIOS . 369

16.1.1 The BIOS Subsystem Functionality 370

xxiv Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_14
http://dx.doi.org/10.1007/978-1-4614-7915-4_14
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_14#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_15
http://dx.doi.org/10.1007/978-1-4614-7915-4_15
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec11.
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec11.
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_15#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_16
http://dx.doi.org/10.1007/978-1-4614-7915-4_16
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec2

16.2 Attacks on the BIOS Subsystem. 371
16.2.1 Countermeasures to BIOS Attacks 373

16.3 Rootkits. 373
16.3.1 Introduction to Rootkits. 373

16.4 Rootkit Infections . 374
16.4.1 Detection of Rootkits . 376
16.4.2 Removal of Rootkits . 378

16.5 Conclusion. 379
References . 379

17 Hardware Security Modules . 383
Stathis Mavrovouniotis and Mick Ganley
17.1 Introduction . 383
17.2 HSM Usage . 384
17.3 HSM Physical Security . 388
17.4 HSM Security Evaluation and Approvals. 389
17.5 HSM Management . 393
17.6 Key Management . 395
17.7 Command Manipulation Attacks. 399
17.8 Conclusions . 403
References . 404

18 Security Evaluation and Common Criteria 407
Tony Boswell
18.1 Introduction . 407
18.2 Security Evaluation Issues . 408

18.2.1 The Security Evaluation Model 412
18.2.2 Structure and Use of the Common Criteria 413
18.2.3 Structure of Common Criteria 415
18.2.4 Assurance Requirements and Assurance Levels 416
18.2.5 CC Interpretation and Supporting Documents 416
18.2.6 Attack Potential Calculations 417

18.3 Evolution of Common Criteria . 418
18.3.1 CC Technical Communities 419
18.3.2 New Generation Protection Profiles 420

18.4 Other Security Evaluation Schemes 420
18.4.1 FIPS 140 . 421
18.4.2 PCI PIN Transaction Security Requirements 422

18.5 Example Protection Profiles . 423
18.5.1 Security IC PP . 423
18.5.2 Payment Terminal (Point of Interaction) PP set 424
18.5.3 Trusted Platform Module PP 425

References . 426

Contents xxv

http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_16#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_17
http://dx.doi.org/10.1007/978-1-4614-7915-4_17
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_17#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_18
http://dx.doi.org/10.1007/978-1-4614-7915-4_18
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_18#Bib1

19 Physical Security Primitives . 429
Ahmad-Reza Sadeghi, Steffen Schulz and Christian Wachsmann
19.1 Introduction . 429
19.2 Physically Unclonable Functions . 431

19.2.1 PUF Concept and Properties 431
19.2.2 PUF Types . 432
19.2.3 Noise Compensation and Privacy Amplification 435
19.2.4 Characterizing the Unpredictability of PUFs 436

19.3 Attacks Against PUFs and PUF-Based Systems 437
19.3.1 Emulation Attacks . 437
19.3.2 Side-Channel Attacks . 437
19.3.3 Fault Injection Attacks . 438

19.4 Advanced PUF Concepts . 438
19.4.1 Controlled PUFs. 439
19.4.2 Emulatable PUFs . 439

19.5 Common Applications of PUFs . 440
19.5.1 Device Identification and Authentication 440
19.5.2 Secure Key Storage and Key Generation 441

19.6 Future Directions . 441
19.6.1 Logically Reconfigurable PUFs 441
19.6.2 PUF-Based Remote Attestation 442

19.7 Open Questions and Challenges . 443
19.8 Conclusion. 444
References . 445

20 SCADA System Cyber Security. 451
Igor Nai Fovino
20.1 Introduction . 451
20.2 SCADA Architecture Overview . 452

20.2.1 SCADA Protocols Overview 453
20.3 SCADA Vulnerabilities and Attacks 455

20.3.1 Architectural Vulnerabilities 456
20.3.2 Security Policy Vulnerabilities 457
20.3.3 Software Vulnerabilities . 459
20.3.4 Communication Protocol Vulnerabilities 459

20.4 SCADA Security Countermeasures . 460
20.4.1 Communication Protocol Countermeasures 461
20.4.2 Filtering Coutermeasures . 462
20.4.3 Monitoring Coutermeasures 464
20.4.4 General Architectural Best Practices 465

20.5 Conclusion. 469
References . 469

xxvi Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_19
http://dx.doi.org/10.1007/978-1-4614-7915-4_19
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec19
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_19#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_20
http://dx.doi.org/10.1007/978-1-4614-7915-4_20
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_20#Bib1

Part IV Practical Examples and Tools

21 An Overview of PIC Microcontrollers and Their Suitability
for Cryptographic Algorithms. 475
Mehari G. Msgna and Colin D. Walter
21.1 Introduction . 475
21.2 Microcontroller Structure. 476
21.3 Peripheral Interface Controllers . 477

21.3.1 PIC Architecture. 477
21.3.2 Memory . 478
21.3.3 Other Components . 479
21.3.4 Development Tools. 479
21.3.5 Summary. 480

21.4 AES on a PIC . 480
21.4.1 Implementation of AES. 481

21.5 Attack Example . 482
21.5.1 Differential Power Analysis 483
21.5.2 Practical Implementation of DPA 485

21.6 Conclusion. 493
References . 493

22 An Introduction to Java Card Programming 497
Raja Naeem Akram, Konstantinos Markantonakis
and Keith Mayes
22.1 Introduction . 497
22.2 Smart Card Programming . 498

22.2.1 Smart Card Architecture . 498
22.2.2 Smart Card Hardware . 499
22.2.3 Communication Architecture 500
22.2.4 Application Development Lifecycle 502

22.3 Java Card . 503
22.3.1 Java Card Classic . 503
22.3.2 Java Card Connected . 504

22.4 Java Card Programming . 506
22.4.1 Java Card Applet Architecture 506

22.5 My First Applet . 507
22.5.1 Application Design . 507
22.5.2 Coding . 509
22.5.3 Simulating and Testing . 511

22.6 Conclusion. 512
References . 512

Contents xxvii

http://dx.doi.org/10.1007/978-1-4614-7915-4_21
http://dx.doi.org/10.1007/978-1-4614-7915-4_21
http://dx.doi.org/10.1007/978-1-4614-7915-4_21
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec9
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec11
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_21#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_22
http://dx.doi.org/10.1007/978-1-4614-7915-4_22
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec8
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec12
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec13
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_22#Bib1

23 A Practical Example of Mobile Phone Application
Using SATSA (JSR 177) API . 515
Lishoy Francis
23.1 Introduction . 515

23.1.1 A Brief Overview of SATSA Framework 517
23.1.2 A Brief Overview of Java Card Framework. 518

23.2 Practical Example. 518
23.2.1 Developing a MIDP Application (MIDlet)

Implementing SATSA APDU Communication API . . 518
23.2.2 Developing a Java Card Applet 525
23.2.3 Results: Testing MIDlet and Java Card Applet. 531

23.3 Conclusion. 532
23.3.1 Source Code of MIDP Application (MIDlet) 533
23.3.2 Source Code of Java Card Applet. 535
23.3.3 Java Card Applet Download-Script 537

References . 539

24 Wireless Sensors (Languages/Programming/Developments
Tools/Examples) . 541
Jérémie Albert, Lionel Barrère, Serge Chaumette
and Damien Sauveron
24.1 Introduction . 541
24.2 Sun SPOTs (Sun Small Programmable Object Technology) . . . 542

24.2.1 Introduction . 542
24.2.2 History . 543
24.2.3 Hardware Overview . 543
24.2.4 Software Overview . 544
24.2.5 How to Start with a Sun SPOT 544
24.2.6 Hello World (‘‘Shake and Blink’’) 546
24.2.7 Networked Sun SPOTs Applications 548

24.3 Arduino. 550
24.3.1 Introduction and History . 550
24.3.2 Hardware Overview . 550
24.3.3 Software Overview . 551
24.3.4 How to Start with a Arduino 552
24.3.5 Hello World (‘‘Blinking SOS’’) 553
24.3.6 Networked Arduino Application 555

24.4 TinyOS . 556
24.4.1 Introduction . 556
24.4.2 Hardware Overview . 557
24.4.3 How to Start with TinyOS. 558
24.4.4 Hello World (‘‘Sense and Blink’’). 559
24.4.5 Networking with TinyOS. 560

24.5 Sensor Network Deployment: An Example 561

xxviii Contents

http://dx.doi.org/10.1007/978-1-4614-7915-4_23
http://dx.doi.org/10.1007/978-1-4614-7915-4_23
http://dx.doi.org/10.1007/978-1-4614-7915-4_23
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec14
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec16
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec17
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Sec18
http://dx.doi.org/10.1007/978-1-4614-7915-4_23#Bib1
http://dx.doi.org/10.1007/978-1-4614-7915-4_24
http://dx.doi.org/10.1007/978-1-4614-7915-4_24
http://dx.doi.org/10.1007/978-1-4614-7915-4_24
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec1
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec2
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec3
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec4
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec5
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec6
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec7
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec10
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec15
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec20
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec21
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec22
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec23
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec24
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec27
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec30
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec32
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec33
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec34
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec34
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec35
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec38
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec42
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec42
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec43
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec43

24.5.1 Introduction . 561
24.5.2 Hardware Architecture . 561
24.5.3 The Time Synchronization Issue. 562
24.5.4 Data Collection, Location and Network Load Issues . . 563
24.5.5 The Problem of Missing Information 563
24.5.6 Conclusion. 564

References . 564

Errata to: Secure Smart Embedded Devices,
Platforms and Applications . E1

Errata to: Secure Smart Embedded Devices,
Platforms and Applications . E3

Index . 565

Contents xxix

http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec44
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec44
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec45
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec45
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec46
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec46
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec47
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec47
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec48
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec48
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec49
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Sec49
http://dx.doi.org/10.1007/978-1-4614-7915-4_24#Bib1

Contributors

Raja Naeem Akram received B.Sc. from University of Punjab, Pakistan in 2002.
After graduating, he studied for M.Sc. Computer Science from University of
Agriculture, Pakistan. In 2004, after completing the Master’s course in Distinction
he worked as IT/Computer Science teacher at Government M.C. High School,
Samanabad. He completed his M.Sc. Information Security from Royal Holloway,
University of London (RHUL) with Distinction in 2007. In 2012 he completed his
Ph.D. under the supervision of Dr. Konstantinos Markantonakis. Worked as Senior
Research Fellow on the RatTrap project, designing fraud detection techniques in
on-line affiliate marketing at Edinburgh Napier University. Currently, working as a
Research Fellow at the Cyber Security Lab, Department of Computer Science,
University of Waikato, New Zealand. His research mainly focuses on user centric
security and privacy models in different computing environments.

Dr. Jérémie Albert received his M.Sc. in Computer Science from the University
of Bordeaux in 2007 (with honors). Next, he pursued a Ph.D. in Computer Science
in this same University under the supervision of Prof. Serge Chaumette. During his
Ph.D. he designeda process calculus suitable for the modeling of Highly Mobile
Ad Hoc Networks. After his graduation (with highest honors) in 2010, he was an
Assistant Professor at the Polytechnic Institute of Bordeaux. Since 2011, he is a
Senior Solutions Architectat Ezakus, Bruges, France. His current research interests
are related to distributed computing, large datasets processing, semantic comput-
ing, machine learning and game theory.

Dr. Lionel Barrére is the Director of Research and Development team at H5
Audits. He previously graduated from the University of Bordeaux, France, and
then received his Ph.D. in2009 under the supervision of S. Chaumette for his work
on services over military MANets (Mobile Ad hoc Networks), work that was
funded by the DGA (French Army). At the end of 2008, he joined the H5 Audits
company to create its R&D Department. His research areasare oriented towards
the development of passive network monitoring tools such as network probes.

Tony Boswell began working in IT security as a security evaluator in one of the
original UK government Evaluation Facilities in 1987. Since then he has worked
on a wide range of secure system developments and evaluations (including the

xxxi

ITSEC E6 certificationsof the Mondex purse and the MULTOS smart card oper-
ating system) in the government and commercial domains. Much of Tonys recent
work has been on integrated circuit security projects and on server and application-
level virtualisation. Tony has been involved in UK and international interpretation
of evaluation requirements for smart cards and payment terminals since 1995, and
continues to contribute to multi-national technical community work on interpre-
tation and maintenance of Common Criteria evaluation requirements, as well as
assisting hardware and software developers to take their products through Com-
mon Criteria evaluations. He is currently a Principal Consultant and CLEF
Technical Manager at SiVenture (www.siventure.com).

Serge Chaumette is a Professor in Computer Science at the University Bordeaux
1, Leader of the Mobility, Ubiquity, and Security research group at Laboratoire
Bordelais de Recherche en Informatique. He has been using the Java technology
for distributed programming since its early beginning. Being concerned by security
issues he participated in thedesign of tools to help in the process of evaluating Java
Cards (and applications) within government funded industrial projects. He then
naturally moved to the domain of mobile systems and networks and he is col-
laborating with the French Army in the area of MANets; his group is designing
peer to peer applications to support battlefield/emergency situation management
(fleets of mobile terminals, robots, or drones). He is an expert by the European
Union for Framework Program 7 (FP7) and non FP programs, expert by the ANR
(French National Research Agency), and expert by the AERES (French Research
and Higher Education Evaluation Agency). He is a member of IEEE, of IEEE
Portable Information Devices (PID) group, of Situation Management SubCom-
mittee of the Communications and Operations Technical Committee of the IEEE
Communication Society, of IFIP groups 8.8 Smart Cards and 11.2 Pervasive
Systems Security.

François Durvaux is a Ph.D. Student at Universit Catholique de Louvain. He
received the Electro-mechanical Engineering Science degree from UCL in 2010
with his master thesis under the supervision of Pr. Jean-Didier Legat. He joined the
Pr. Legat’s team in October2010 to work as a researcher in the field of digital
nanoelectronics. In January 2011 he started a Ph.D. thesis in cryptography under
the supervision of Pr. Franois-Xavier Standaert at UCL. His researches are cur-
rently focused on cryptographic hardware design, side-channel analysis, and
intellectual property protection.

Dr. Igor Nai Fovino Igor is the Head of the Research Division of the Global
Cyber Security Center. Igor has deep knowledge in the fields of ICT Security of
Industrial Critical Infrastructure, Energy and Smart Grids, Risk Assessment, IDS,
Cryptography. He is author of more than 60 scientific papers published on inter-
national journals, books and conference proceedings; moreover, he serves as
reviewer for several international journals in the ICT security field. In May 2010
he received the IEEE HSI 2010 best paper award in the area of SCADA Systems.
He is also an expert in European Policies (mainly in CIIP field). From 2012 he is

xxxii Contributors

http://www.siventure.com

member of the European Commission Experts Working Group on the security of
ICS and Smart Grids. During his career Igor worked as Contractual Researcher at
the University of Milano in the field of privacy preserving datamining and com-
puter security and as Contractual Professor of Operating Systems at the University
of Insubria. From 2005 to 2011 he served as Scientific Officer at the Joint Research
Centre of the European Commission, providing scientific support to the EU Pol-
icies related to the EPCIIP program. Since 2007 he is member of the IFIP Working
Group on Critical Infrastructure Protection.

Lishoy Francis is a Security Researcher with background in Computer Science
and Engineering, and has specialised in Information Security. In 2002, he grad-
uated with a B.E. in Computer Science and Engineering from Visvesvaraya
Technological University (VTU), Belgaum, India. In 2004, he graduated with a
M.Sc. degree in Information Security from Information Security Group (ISG) at
RHUL. He is currently in his final stages of a Ph.D. degree in Information Security
at RHUL. He has extensive practical experience in security testing and product
prototyping of smart card, mobile, location, contactless, RFID and proximity
technologies. He is an acknowledged and published expert on NFC security. He
started his career by working as a Software Engineer in Wipro Fluid Power LTD
(Wipro Group), Bangalore, India; and more recently he worked as an Expert
Consultant at Crisp Telecom UK LTD. He is currently employed as a Senior
Research Engineer at France Telecom R&D UK LTD (Orange, UK) where he is
enterprising excellence and innovation in information security.

Dr. Mick Ganley is an independent security consultant who has worked in the
industry for 25 years. He specialises in the security of card payment systems,
cryptography and key management, hardware security modules and security
management. His current client list includes a number of the worlds largest
multinational corporations. Until recently, he provided consultancy services to the
prestigious ISG at RHUL, and was on the editorial board of the Information
Security Technical Report, published jointly by the ISG and Elsevier. In previous
lives he was an academic mathematician and Head of Security Analysis for the
security division of Racal (now Thales).

Univ.-Prof. DI Dr. Thomas Grechenig is a Senior Architect in large IT systems
and nation-wide IT-infrastructures. He is a Professor for Industrial Software
Engineering at the Vienna University of Technology. He and his teams have
planned, designed, and built several large scale NFC-solutions in payment, mobile
keys, mobile ticketing, railway and public transport applications. In science and
research the focus of interest goes towards (a) enhancing the stability and fine-
tuning of the NFC-mass-concept in all its critical sectors (usability, security, IT-
infrastructure, performance, integration and interoperability) (b) redefining every
day use cases and interactions for the consumers via NFC in a way that preserves
the users’ old experiences while providing ‘‘the new ubiquitous feeling of simple
touch interaction’’ in a natural form (c) this leads into a science aiming at re-
understanding daily processes like payments, locking doors, showing tickets, or

Contributors xxxiii

personal identification in its newly adapted ‘‘Gestalt’’ in fusion of the old meta-
phors, new facilities as well as its privacy and security needs. From a more abstract
scientific point of view Thomas Grechenig promotes NFC being one out of 5 major
technology enablers towards a ‘‘vitalized’’ environment on all three relevant
operative levels: (1) ‘‘desktop’’/individual (2) buildings/groups (3) urban and
regional/social.

Dr. Gerhard Hancke (B.E., M.E., Ph.D., CSCIP, SMIEEE) received a Bachelor
and Masters of Engineering degrees in Computer Engineering from the University
of Pretoria (South Africa) in 2002 and 2003, and a Ph.D. in Computer Science for
the Security group at the University of Cambridge’s Computer Laboratory in 2008.
He joined the ISG in 2007 as a post-doc, working within the ISG Smart Card
Centre managing the RFID/Contactless research track and RF/Hardware labora-
tory. In 2011, he was appointed as a Fellow within the ISG. His main interests are
smart hardware tokens and their applications, mobile systems and pervasive
computing.

Graham Hili B.Sc. I.T. Hons (Malta), M.Sc. (Royal Holloway) began his career
with the Vodafone Group (Malta) where he was in charge of the security and the
availability of the mobile value added systems (SMS, MMS, WAP). After this he
moved to a consultancy position with Orange Group in The Netherlands. His
current fields of specialisation include smart card security and the development of
digital identity and digital security in IT systems and virtual worlds.

DI Christian Kantner graduated in Communications Engineering from the
Vienna University of Technology in 1997 Christian Kantner joined Ascom
Business Systems in Switzerland. He was responsible for the design and imple-
mentation of data and fax protocols for the Thuraya satellite phone system. Before
he joined Mobilkom Austria in 2003 he was working as Freelancer for Ascom
(Solothurn), Philips Semiconductors (Zurich) and Hughes Network Systems (San
Diego, CA) in the field of GSM and Data Protocols. He taught Real Time Oper-
ating Systems for several years at the University of Applied Science in Upper
Austria. In 2003 he joined Mobilkom Austria’s TechLab, where he was respon-
sible for analyzing new technologies for mobile phone operators, focusing mainly
on mobile terminal technology. He has been investigating NFC technology since
2004 and got involved in NFC Forum activities in 2005. He is coeditor of the NFC
technical guidelines white paper published by the GSMA. Christian Kantner joined
Mobilkom Austria’s m-commerce team as Product Manager for NFC in 2007. He
was in the leading team for key NFC projects at Mobilkom Austria. From 2010 to
2012 Christian Kantner was head of IT and Services at Mobilkom Austrias
daughter paybox Bank. Paybox Bank operates ad hoc mobile payment services for
customers of A1, T-mobile Austria and Orange Austria. Christian Kantner has
dedicated his career to wireless communications. Starting with 36,000 km satellite
links and arriving at 3 cm NFC transactions. He has deep understanding about
technological aspects as well as market insight. Christian Kantner is now driving

xxxiv Contributors

the payment innovation roadmap in A1 Telekom Austria (former Mobilkom
Austria).

Stéphanie Kerckhof is a Ph.D. student at Universit Catholique de Louvain. She
received the Electro-mechanical Engineering Science degree from UCL in 2007
with her master thesis under the supervision of Pr. Jean-Didier Legat. She was a
hardware developer for two years at intoPIX, Louvain-la-Neuve, Belgium. In April
2010, she started a Ph.D. thesis in Cryptography under the supervision of Pr.
Franois-Xavier Standaert at UCL. Her researches are currently focused on cryp-
tographic hardware design, side-channel analysis, and intellectual property
protection.

Mario Kirschbaum received the B.Sc., M.Sc., and Ph.D. degrees in Telematics
from Graz University of Technology in Austria, in 2005, 2007, and 2011,
respectively. He is currently working as a member of the Secure Entities for Smart
Environments (SEnSE) group of the Institute for Applied Information Processing
and Communications (IAIK), Graz University of Technology, Austria. His
research interests include implementation attacks, development and investigation
of countermeasures, and the implementation of cryptographic hardware modules.

Dr. Gerald Madlmayr is an IT and Telecommunication Architect based in
Vienna. In his daily work he is confronted with technology strategy for mobile
network operators, software system and IT Integration in banking and payment
systems as well as customer focused mobile technologies and devices. Besides
that, he is Lecturer at the Vienna University of Technology at the Research Group
for Industrial Software. There his research is focused on mobile technology in
society as well as energy and environmental topics. Before that he worked as a
Research Associate at the Research Center Hagenberg. There his work was
focused on NFC/RFID based applications as well as security and privacy in such
systems. He is an authority on NFC technology and applications, actively par-
ticipating in the standardization of NFC. Within the scope of this job one of the
most sophisticated NFC trials was launched in 2006. Previously Gerald Madlmayr
was working as a visiting Researcher in Princeton/New Jersey at Siemens Cor-
porate Research (SCR) dealing with the design and implementation of CSCW
Systems. Before that he was part of the innovations department of Siemens mobile
in Munich. There he also wrote this diploma thesis with the focus on image
processing on mobile devices. Gerald Madlmayr holds a Diploma in Media
Technology from the University of Applied Sciences of Hagenberg and a Ph.D. in
Computer Science from the University in Linz.

Konstantinos Markantonakis B.Sc. (Lancaster University), M.Sc., MBA, Ph.D.
(London) received his B.Sc. (Hons) in Computer Science from Lancaster Uni-
versity in 1995, his M.Sc. in Information Security in 1996, his Ph.D. in 2000 and
his MBA in International Management in 2005 from RHUL. He is currently a
Reader (Associate Professor) in the ISG. His main research interests include smart
card security and applications, secure cryptographic protocol design, Public Key

Contributors xxxv

Infrastructures (PKI) and key management, embedded system security, mobile
phone operating systems/platform security, NFC/RFID security, grouping proofs,
electronic voting protocols. Since completing his Ph.D., he has worked as an
independent consultant in a number of information security and smart card related
projects. He has worked as a Multi-application Smart Card Manager in VISA
International EU, responsible for multi-application smart card technology for
southern Europe. More recently, he was working as a Senior Information Security
Consultant for Steer Davies Gleave, responsible for advising transport operators
and financial institutions on the use of smart card technology. He is also a member
of the IFIP Working Group 8.8 on Smart Cards. He has published more than 90
papers in international conferences and journals. He continues to act as a con-
sultant on a variety of topics including smart card security, key management,
information security protocols, mobile devices, smart card migration program
planning/project management for financial institutions, transport operators and
technology integrators.

Stathis Mavrovouniotis was born in Athens, Greece on June 27th, 1981. Stathis
attended the Athens University of Economics and Business (AUEB) and graduated
in 2004 with a degree in Business Administration. Following his graduation from
AUEB, Stathis attended the RHUL and received two M.Sc. degrees, in Business
Information Systems (2005) and in Information Security (2006). After serving his
military service back in Greece, he was offered the job of IT Security Analyst in
First Data Greece International, having the main responsibilities of key manage-
ment, compliance, audit preparation and Incident Investigation/Report as well as
Implementation of security related tools. Stathis soon became the IT Security
Manager for SE Europe, Middle East and Africa in First Data International,
focusing in implementing the information security policy and addressing it with
procedures and guidelines, maintaining compliance with payment schemes, PCI
DSS and ISO 27001, running IT Security related audits and gap analysis, security
planning, risk assessments and implementation of security awareness programs.
He has been also assist in consulting and assessments around key management in
different First Data sites. He has been so far qualified with the following certifi-
cations: CISM, SSCP, ISO 27001:LA, PCI ISA, CTGA and is member of ISC2,
ISACA and active member of the local OWASP chapter.

Keith Mayes is the Director of the Information Security Group-Smart Card
Centre (ISG-SCC) (www.scc.rhul.ac.uk) at RHUL. He is also the Founder and
Managing Director of the consulting company Crisp Telecom Limited
(www.crisptele.com). He is currently a non-executive independent Director of
AIMs listed GMO ltd., a provider of mobile services in China and a Director of
IWICS Europe Limited, a 4G mesh radio network company. Dr. Mayes has a
Bachelor of Science degree in Electronic Engineering and a Ph.D. in Digital Image
Processing from the University of Bath. He is a Chartered Engineer and Member
of the Institute of Engineering and Technology. He is also a Member of the
Licensing Executives Society and a Founder Associate Member of the Institute of

xxxvi Contributors

http://www.scc.rhul.ac.uk
http://www.crisptele.com

Information Security Professionals. During a long and varied industry career he
has worked for Philips, Honeywell Aerospace & Defence, Racal Research and
finally for the Vodafone Group as the Global SIM Manager responsible for SIM
card strategy and harmonisation. Aside from his current research and teaching
focus on smart cards, RFIDs and security, he has maintained an active interest in
mobile communications, hardware and software development, Intellectual Prop-
erty and radio relay trials.

Mehari G. Msgna received a Bachelor of Engineering degree in Electronics and
Communication Engineering from Mekelle Institute of Technology (Ethiopia) in
2007. In 2009 he received a Masters of Science degree in Information Security
from RHUL and he started his Ph.D. with the ISG in 2011 at the same institution.
His research interests are virtual machines for embedded devices, smart cards/
tokens security, biometrics and side channel analysis.

Jan Pelzl Since 1994, Dr. Pelzl works in the area of IT-security. In 1997, he
received the certificate as telecommunication technician from the company Bosch
Telecom. Since 1999, Dr. Pelzl is working in the area of embedded IT-security. He
successfully accomplished many national and international projects and released
numerous related publications at renowned international conferences and in
journals. As a researcher, Jan Pelzl investigated practical aspects of elliptic-curve-
based cryptography and cryptanalysis. Dr. Pelzl is teaching data security and
introduction to cryptography for industry courses, e.g. for TV-Akademie Rhein-
land, gits AG and Ruhr-University of Bochum. From March to August 2007, Dr.
Pelzl was Chief Technology Officer (CTO) of ESCRYPT GmbH. Since September
2007, Dr. Pelzl is Managing Director of ESCRYPT GmbH.

Thomas Plos received the B.Sc. and M.Sc. degrees in Telematics from Graz
University of Technology (TU Graz) in 2004 and 2007, respectively. In 2011 he
received the Ph.D. degree in Computer Science from TU Graz. His research
interests include digital VLSI design with a focus on low power and low-area
circuit design, information security, RFID technology, and implementation attacks
such as side-channel analysis and fault analysis. Currently, he is a post-doctoral
researcher at the Institute for IAIK at TU Graz.

Konstantinos Rantos is an Assistant Professor at the Industrial Informatics
Department of the Technological Educational Institute of Kavala. He received his
Diploma in Computer Engineering and Informatics from the University of Patras,
Greece, and both his M.Sc. and Ph.D. in Information Security (sponsored by Marie
Curie Research and Training Grant) from RHUL. He has extensive project
involvement and substantial (more than 15 years) private- and public-sector
experience in the area of information security which he gained while holding
positions in both sectors as well as in academia. His scientific interests lie in the
areas of public-key infrastructures, embedded systems, e-government services,
authentication systems, smart cards, electronic payment systems and security

Contributors xxxvii

awareness. He is a reviewer to a number of conferences and scientific journals and
authored many articles and papers.

Serendra Reddy has earned his B.Sc. in Engineering from the University of
Natal and a Masters in Engineering from the University of Pretoria. He is currently
completing his Ph.D. in Engineering at the University of Cape Town, South
Africa. His doctoral research is involved in the investigation and development of
methods for autonomous three dimensional conversion of two dimensional mon-
ocular images. Between 1999 and 2005 he worked and consulted for Siemens
Telecommunications, having been involved in projects locally and on-location
across Africa, the Middle East and Europe. In 2007 he joined the academic staff of
the Department of Electronic Engineering at the University of Pretoria, where he
lectured on Digital Systems and Digital Signal Processing, and was involved in the
Intelligent Systems research group. In 2011 he joined the academic staff of the
Department of Electronic Engineering at the Durban University of Technology,
where he currently lectures on Radio Engineering. He serves as the Chair of
Communications and is a founding member of the Intelligent Systems research
group. His research interests include artificial intelligence, machine learning,
computer vision, pattern recognition, embedded systems and robotics.

Francesco Regazzoni is a post-doctoral researcher at ALaRI Institute of Uni-
versity of Lugano (Lugano, Switzerland). He received his Master of Science
degree from Politecnico di Milano (Italy) and his Ph.D. degree from University of
Lugano (Switzerland). He has been a post-doctoral researcher at the Crypto Group
of the Universit Catholique de Louvain (Louvain-la-Neuve, Belgium) and has been
a visiting researcher at several institutions, including NEC Labs America
(Princeton, NJ, USA), Ruhr-University of Bochum (Bochum, Germany), and
EPFL (Lausanne, Switzerland). His research interests are mainly focused on
embedded systems security, covering in particular side channel attacks, crypto-
graphic hardware, and electronic design automation for security.

Prof. Dr.-Ing. Ahmad-Reza Sadeghi is the Head of the System Security Lab at
the Center for Advanced Security Research Darmstadt (CASED), Technische
Universitt Darmstadt and the Scientific Director of the Fraunhofer Institute for
Secure Information Systems (SIT), Darmstadt, Germany. Since January 2012 he is
the Director of the Intel-TU Darmstadt Security Institute for Mobile and
Embedded Systems in Darmstadt, Germany. He received his Ph.D. in Computer
Science from the University of Saarland in Saarbrcken, Germany. Prior to aca-
demia, he worked in research and development of telecommunications enterprises,
amongst others Ericson Telecommunications. He has been leading and involved in
a variety of national and international research and development projects on the
design and implementation of trustworthy computing platforms and Trusted
Computing, security hardware, Physically Unclonable Functions (PUFs), crypto-
graphic privacy-protecting systems, and cryptographic compilers (in particular for
secure computation). He has been continuously contributing to the IT security
research community and serving as general or program chair as well as program

xxxviii Contributors

committee member of many conferences and workshops in information security
and privacy, Trusted Computing and applied cryptography. He is on the Editorial
Board of the ACM Transactions on Information and System Security.

Damien Sauveron is Assistant Professor at the XLIM (UMR 6172 University of
Limoges/CNRS—France) Laboratory since 09/2004. Damien Sauveron worked
during three years for the ITSEF of SERMA Technologies on the Java Card
security. During his thesis that he carried out in the Distributed Systems and
Objects team of the LaBRI he was one of the main developers of a Java Card
emulator, he introduced the concept of pre-persistance in Java Card and he
highlighted a new category of attacks on the open multi-application smart cards.
From 01/02/2006 to 10/08/2006, he was an invited researcher at the ISG-SCC of
the RHUL. He is member of the IFIP WG 8.8 Smart Cards, member of the IFIP
WG 11.2 Small System Security and member of IEEE.

Dipl. Ing. Steffen Schulz received his Diploma degree in Information Security
from Ruhr-University Bochum, Germany. He works as Research Assistant at the
System Security Lab at Ruhr-University Bochum and at the CASED, Technische
Universitt Darmstadt, Germany. He currently pursues his Ph.D. in Trusted Infra-
structures and Trust Management in a joint cooperation between the System
Security Lab in Bochum and Macquarie University Sydney, Australia. Steffen
Schulz was involved in several national and international research projects, where
he participated in the design and development of trustworthy operating systems,
trust establishment in resource-constrained environments and trusted virtualization
infrastructures (TVDs). Furthermore, he has worked on different aspects of network
security and covert channels, with several publications in international conferences.

Peter Schwabe is a Post-Doctoral Researcher at the Research Center for Infor-
mation Technology Innovation of Academia Sinica, Taiwan. He graduated from
RWTH Aachen University in Computer Science in 2006 and received a Ph.D.
from the Faculty of Mathematics and Computer Science of Eindhoven University
of Technology in 2011. His research area is the optimization of cryptographic and
cryptanalytic algorithms in software. The target architectures of this software
range from high-end desktop and server CPUs through parallel architectures such
as the Cell Broadband Engine and graphics processing units to embedded pro-
cessors such as ARM and AVR. He has published articles at several international
conferences on fast software for a variety of cryptographic primitives including
AES, hash functions, elliptic-curve cryptography, and cryptographic pairings. He
has also published articles on fast cryptanalysis, in particular attacks on the dis-
crete-logarithm problem.

Chris Shire has a background in security technologies and semiconductor
hardware. He joined Infineon (then Siemens) in 1998 in the Chipcard and Security
business line, with many years experience in the industry. His current focus of
activity is on projects in the government and finance sectors. He is active on
several advisory committees helping to set standards for the UK, and support new

Contributors xxxix

security solutions. Chris is an active member of the IET, Intellect, UK Smart Card
Club and has been a guest lecturer for several years on the RHUL M.Sc. course on
Smart Card Security. He has written several articles on security technology and
contributed to textbooks on the subject.

Francois-Xavier Standaert received the Electrical Engineering degree and Ph.D.
degree from the Universite Catholique de Louvain, respectively in June 2001 and
June 2004. In 2004–2005, he was a Fulbright visiting researcher at Columbia
University, Department of Computer Science, Network Security Lab and at the
MIT Media Lab, Center for Bits and Atoms. In March 2006, he was a founding
member of IntoPix s.a. From 2005 to 2008, he was a post-doctoral researcher of
the UCL Crypto Group and a regular visitor of the two aforementioned labora-
tories. Since September 2008, he is Associate Researcher of the Belgian Fund for
Scientific Research (F.R.S.-FNRS) and Professor at the UCL Institute of Infor-
mation and Communication Technologies, Electronics and Applied Mathematics
(ICTEAM). In June 2011, he has been awarded a Starting Independent Research
Grant by the European Research Council. His research interests include digital
electronics, FPGAs and cryptographic hardware, low power implementations for
constrained environments (RFIDs, sensor networks, ...), the design and crypt-
analysis of symmetric cryptographic primitives, physical security issues in general
and side-channel analysis in particular.

Michael Tunstall has been involved in the research and development on the
implementation of cryptographic algorithms on embedded platforms for close to
nine years. He was originally employed by Gemplus (now called Gemalto after a
merger with Axalto) to develop authentication algorithms for GSM SIM cards.
After several years working for Gemplus Michael changed roles within the team to
focus on research into attacks and countermeasures that could be applied to smart
cards. He was involved in evaluating Gemplus’ products to determine whether a
suitable level of security had been achieved. The research conducted while
Michael was at Gemplus enabled him to start a Ph.D. At RHUL resulting in his
thesis entitled ‘‘Secure Cryptographic Algorithm Implementation on Embedded
Platforms’’. Michael is currently employed at University College Cork as a
postdoctorate researcher, and is currently funded by an Enterprise Ireland grant to
develop side-channel countermeasures for FPGA implementations of AES and
elliptic curve cryptographic algorithms.

Dipl. Ing. Christian Wachsmann received his Diploma degree in Information
Security from Ruhr-University Bochum, Germany. He worked as a Research
Assistant at the System Security Lab at the Horst Grtz Institute for IT Security
(HGI) at Ruhr-University Bochum. He is currently employed as a Research
Assistant at the System Security Lab at the CASED, Technische Universitt
Darmstadt, Germany and pursues his Ph.D. on privacy-protecting protocols for
mobile and resource constrained embedded devices, in particular RFIDs and
smartphones. His work focuses on the development, design and formal modeling
of cryptographic primitives and protocols based on physical security features, in

xl Contributors

particular PUFs. He was and is involved in a variety of national and international
research projects and has been continuously contributing to IT security research
with several publications at international conferences.

Colin Walter has spent the last 25 years concentrating on the practical imple-
mentation of cryptography, partly in industry and partly in academia. He helped
design one of the first RSA chips for Plessey-Crypto in 1989. He published the first
fully systolic array for modular exponentiation in 1993 and this is now widely used
in SSL accelerator chips. In the late 90s he did some consultancy for Multos to
understand and reduce side channel leakage from public key cryptography on
smart cards. This led to some important work on the implementation of Mont-
gomery modular multiplication and some improved algorithms for exponentiation.
He joined the ISG at Royal Holloway in 2009 after 8 years working on product
development as head of cryptography at a well-known certificate authority. For
many years he was on the steering committee of the IACR CHES workshops, and
was programme chair and local organiser for two of these. He is a senior member
of the IEEE.

Marko Wolf Dr.-Ing. Marko Wolf is a senior IT security expert and branch
manager of ESCRYPT GmbH in Munich. Marko is primarily active in the area of
automotive data security and privacy protection for various industry customers in
Europe, Asia, and the US as well as for different national and international gov-
ernment authorities and standardization bodies. Marko studied Electrical Engi-
neering and Computer Engineering at the University of Bochum (Germany) and at
Purdue University (USA). After receiving his M.Sc. in 2003, he started his Ph.D.
in the area of Trusted Computing and vehicular IT security at the Chair for
Embedded Security hold by Prof. Dr. Christof Paar. Wolf completed his Ph.D. in
2008 with the first comprehensive work about vehicular IT security engineering.
He is editor/author of the books Embedded Security in Cars (Springer, 2006) and
Security Engineering for Vehicular IT Systems (Vieweg?Teubner, 2009), program
chair of the international Embedded Security in Cars (escar) workshop series, and
has published over 30 articles in the area of embedded IT security and privacy.

Thomas Wollinger Dr. Wollinger has worked in the area of data security and
embedded security since 1997. He implemented and led several projects, for
instance, at secunet AG. Dr. Wollinger has published numerous articles at inter-
national conferences and in relevant journals in the area of security. Dr. Wollinger
frequently gives invited talks and teaches data security courses (e.g. at Motorola
Labs Paris, gits AG, and TV Academy Rhineland). He obtained his B.S. from the
University of Dieburg and obtained his Master of Science at the Worcester
Polytechnic Institute, USA. In June 2003, he obtained his Ph.D. with honors from
the University of Bochum. Dr. Wollinger worked as Chief Sales Officer (CSO) at
ESCRYPT from 2005 to 2007. Dr. Wollinger established the technical sales and
marketing structure of the company. He was involved in all acquisitions regarding
ESCRYPT projects. Since 2007, Dr. Wollinger is Managing Director of ES-
CRYPT GmbH.

Contributors xli

Part I
Embedded Devices

Chapter 1
An Introduction to Smart Cards and RFIDs

Keith Mayes and Konstantinos Markantonakis

Abstract Security systems often include specialised modules that are used to build
the foundations of attack-resistant security. One of the most common modules has
been the smart card; however, there are often misconceptions about the definition
of the smart card and related technologies, such as Radio Frequency Identification
(RFID), as well as the requirement and justification for using them in the first place.
These misconceptions are fuelled by the ever evolving nature of applications, security
technology, personal devices and the growing threats that they must deal with. There
is also a question of whether smart cards/RFIDs should really be in a book about
embedded security, but we will see that the “embedded” aspect is growing ever
stronger especially with developments in the mobile phone area. This chapter will
consider a range of smart cards and RFIDs, and associated applications. It will also
briefly cover the traditional manufacture, personalisation and management aspects,
illustrating how they are challenged by new mobile developments.

1.1 Introduction

Book chapters describing smart cards and Radio Frequency Identity (RFID) often
put a lot of focus on early history. This is all very interesting, but not really the
primary focus for a new book. We will direct our discussions towards the electronic
“chips” that are utilised in smart cards and RFIDs and which are now also being
incorporated into other electronic equipment such as mobile phones. However, for

K. Mayes (B) · K. Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, UK
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis
e-mail: k.markantonakis@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 3
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_1,
© Springer Science+Business Media New York 2014

4 K. Markantonakis and K. Mayes

readers that would feel disappointed without a little history, here are a few critical
developments.

• 1940: A generally held view is that the earliest RFID system appeared during
WWII and was based on RADAR transmissions to/from aircraft. It was called
Identification Friend or Foe (IFF), although strictly speaking it could only identify
friends that still had functioning equipment. In one mode, a radar pulse striking
an aircraft would trigger a “friendly” coded response, i.e. an identity transmitted
by radio means.

• 1968: This is probably the earliest appearance of what might one day be regarded
as a smart card. At the time it was referred to as the automated chip card; and
the invention was attributed to Helmut Grttrup and Jrgen Dethloff. The associated
patent was granted much later in 1982 to Giesecke and Devrient.

• 1974: The first memory card appeared and was attributed to Roland Moreno.
• 1977: The first microprocessor card was attributed to Michel Ugon from Honeywell

Bull.
• 1978: Honeywell Bull also patented the first Self-Programmable On-chip Micro-

computer.
• 1991: The first GSM [1] mobile SIM [2] card was manufactured by Giesecke and

Devrient.
• 1996: The first EMV [3] card specifications were issued by Mastercard and Visa.
• 1996: The first Java Cards [4] were introduced by Schlumberger.
• 1997: The Octopus [5] smart card travel ticket was launched in Hong Kong.
• 2003: The Oyster [6] transport card was launched by Transport for London.
• 2004+: The introduction of European e-passports in accordance with International

Civil Aviation Organisation (ICAO) [7].
• 2006: Nokia launched the 6131 NFC phone.

Note that throughout this chapter we will use the term smart card to indicate both
smart cards and RFIDs, unless there is a need to differentiate between them. The
meaning of the other terms and smart card types mentioned in the previous list will
become clearer as we move through the chapter, although it is worth emphasising
from the outset that whenever such a technology has been introduced it has been
subject to attack. Even back in WWII an enemy would generate “fake” friendly
radar signals to trick aircraft into responding with information and location. More
than 70 years on this approach has similarities with fake reader attacks on modern
RFIDs.

The study of smart cards has a very broad scope in which we find a wide range of
devices with diverse functional and attack-resistant capabilities. However, it would
not be a good start to our discussions if we did not explain why these devices are
at all necessary, so we will begin by extracting some requirements from relevant
applications.

1 An Introduction to Smart Cards and RFIDs 5

1.2 Application Requirements

The fact that smart cards exist in their billions might be grounds to waive analysis
of requirements as they must surely exist in overwhelming strength. This would
be rather dangerous as we should satisfy ourselves that smart cards were actually
needed for these applications or that those deployed are actually fit-for-purpose. We
will base our brief analysis around a few well-known applications of smart cards:

• Mobile Communications.
• Banking Cards.
• Satellite TV.
• Passports/Identity Cards.
• Transport Tickets.
• Product tagging.

The reason for putting mobile communications at the top of the list is due to its
dominance of the smart card market, as illustrated by Fig. 1.1.

The total size of the market is immense with 6.5 billion units shipped in 2011
rising to a predicted 8 billion by 2014. Note that Fig. 1.1 does not include an entry
for the RFIDs used in tagging, which is expected to reach 3 billion units by 2014.

1.2.1 Mobile Communications

Mobile communications uses a smart card which is typically referred to as a Sub-
scriber Identity Module (SIM) [2]; although these days it is strictly speaking a Uni-
versal Integrated Circuit Card (UICC) with a SIM application (and/or UMTS [8]
variant USIM) hosted on it. It came about initially in GSM standards because the
early analogue systems had poor security protection implemented in the phone, which
led to call eavesdropping and account cloning. The fundamental SIM requirements
were as follows:

Fig. 1.1 Smart card market
by application in 2011 (source
Infineon)

6 K. Markantonakis and K. Mayes

Fig. 1.2 SIM example
(source Giesecke and
Devrient)

• A portable identity/security element for easy transfer between phones.
• An attack-resistant chip.
• Algorithms/protocols for authentication and cipher key generation.
• Protected storage for unique identity and diversified cryptographic secret keys.
• Internationally standardised solutions.
• High security with supplier attested evaluation.

It is important to realise that the SIM (in common with many other smart cards)
is a personalised device. The industry way of working was to have separate supply
chains for phone manufacturer and SIM card manufacture and personalisation. An
example SIM card is shown in Fig. 1.2.

The example shows three supported SIM sizes. The full-card (ID-1) format, the
more common and smaller “plug-in” and the even smaller “third” form factor.

The first requirement in the above list is not as significant as it once was. Origi-
nally phones were very expensive and the SIM was a full size card moved between
say your portable handset and your car kit. Today, the SIM is usually in a plug-in
format and may be pre-installed in a purchased mobile phone, in which case the
user may not even be aware of it. The SIM is a bit of an oddity in that it is the
most widely used smart card (2 billion+), but is used more like an embedded, yet
removable chip, i.e. it is almost never used like a “card”. However, the card form
is still very useful as the SIM can be produced and configured using conventional
smart card manufacturing and personalisation machinery and associated processes.
The SIM supports the mobile network authentication and cipher key generation (see
Ref. [9] for GSM/UMTS description and comparison) in which the SIM and the
back office Authentication Centre are the trusted end points in the security protocol.
This means that the mobile phone does not need to be trusted and there is direct
back-office control means to disable individual SIM Identities (IDs) from accessing
the network. Historically, the mobile network operators have been more concerned
that a communication service/call will be paid for (the SIM ID is associated with a
valid account in credit) rather than proving that the legitimate phone owner is making
use of the services.

1 An Introduction to Smart Cards and RFIDs 7

1.2.2 Banking Cards

Banks make use of many Automatic Teller Machines (ATM), Point of Sale terminals
(POS) and credit/debit cards to secure financial transactions. Their core requirements
include those listed below:

• A portable identity/security card for use at standardised ATMs and POSs.
• An attack-resistant chip.
• Algorithms/protocols for authentication, ciphering.
• Protected storage for unique identity and diversified cryptographic secret keys.
• Support for user identity checking via Personal Identification Numbers (PIN

codes).
• Card body authenticity check mechanisms (for manual inspection).
• Mag-stripe support for legacy systems.
• Internationally standardised solutions.
• High security requirements with independent evaluation.

An example banking card is shown in Fig. 1.3.
The example shown is a rather special card as not only is it a conventional EMV

[3] contact bank card, but it is also a contactless card (RFID) that permits travel on the
London Oyster [6] card system. Clearly, the bank card is much more card-like than
the SIM and the body is part of the overall security solution, especially for human
checks and fall-back situations. Because the transfer of significant amounts of money
is involved it is usually a requirement to determine that the legitimate owner is using
the card and hence the support for PIN codes. This is in contrast to the approach
taken with SIM cards.

Transactions of significant value are still online, so effectively managed by a back-
office. The POS/ATMs are intended to be controlled and trustworthy (as compared to
the mobile phone) and so can form part of the overall security solution. An interesting
aspect is that the banking industry has a history of trading security against cost and
accessibility. A first example of this is the continued support of the mag-stripe for

Fig. 1.3 OnePulse bank card
(source Barclaycard)

8 K. Markantonakis and K. Mayes

locations where the chip card cannot be used and indeed the long use of the mag-
stripe before chip and PIN was introduced, despite the fact that the security was
extremely weak. A more current example is the use of touch & pay contactless
transactions in which there is an offline transaction and the PIN is not used. Moving
from a two-factor (card and PIN) to a single factor authentication reduces security,
however, the potential losses are intended to be contained by caps on the number
of transactions and associated value. The business thinking is that the easy/simple
customer experience will generate more transactions, and fees will be captured that
outweigh any money lost to fraud.

1.2.3 Passports

Passports have existed for many time without smart card functionality and because
of their relatively long lifetime, legacy and chip-enabled passports exist side by side.
Therefore the body of the passport is very important, and some requirements are
listed below:

• A portable identity/security card for use at border control.
• An attack-resistant chip.
• Algorithms/protocols for authentication, ciphering.
• Protected storage for unique identity and diversified cryptographic secret keys.
• Support for user identity checking (PIN codes).
• Advanced passport body authenticity check mechanisms (for manual inspection).
• Optical machine readable support for legacy systems.
• Internationally standardised solutions—ICAO [7] compliant.
• High security requirements and independent evaluation.

The picture in Fig. 1.4 shows the symbol used to recognise an e-passport, i.e. one
containing the special RFID.

Fig. 1.4 UK e-passport show-
ing logo (source www.direct.
gov.uk)

www.direct.gov.uk
www.direct.gov.uk

1 An Introduction to Smart Cards and RFIDs 9

The use of the chip provides an additional anti-counterfeit measure as well as
traveller convenience for automated checks (compared to presented machine read-
able printed strips). Improved security is possible as the chip may contain secret
credentials to support protocols that are not based on printed information on the
passport.

1.2.4 Satellite Pay-TV

Satellite TV companies broadcast valuable media content (e.g. TV programmes,
films, sports, etc.) and use smart cards within Set Top Boxes (STB) as part of their
conditional access systems. Their core smart card requirements are as follows:

• A replaceable identity/security card for use in the satellite TV company’s STBs.
• An attack-resistant chip.
• Algorithms/protocols for ciphering and privilege /access control.
• Protected storage for unique identity and diversified cryptographic secret keys.
• Support for user identity checking (PIN codes).
• Usually proprietary/non-standardised solutions.
• High security requirements—proprietary.

An example of a typical Pay-TV card is shown in Fig. 1.5.
Satellite TV differs from most other smart card applications in that it is a broad-

cast system so transmissions can be potentially received by anyone and also that
there is often no return channel for the protocol. The Satellite TV companies are
quite secretive and are suspected of having non-standardised proprietary defensive
measures within their conditional access solutions, i.e. security by obscurity. These
facts coupled with the value/desirability of the protected contact have led to a great

Fig. 1.5 Skytv card (source
www.skytv.co.nz)

www.skytv.co.nz

10 K. Markantonakis and K. Mayes

deal of attacker activity and so the requirements for security countermeasures are
high. Given that the STB is under the company control it would be reasonable to
suggest an alternative strategy in which the full conditional access security solution is
implemented in the STB, thus avoiding the need for smart cards. The reasons for not
doing this tend to be economic. The Satellite TV industry recognises that its security
and possibly account details may need to be updated over time and so the companies
that use smart cards have decided that it is simpler and cheaper to personalise and
issue them than replace STBs.

1.2.5 Transport Ticketing

Transport service providers are increasingly turning to smart cards as electronic
tickets. Their core requirements are summarised below:

• A portable identity/security card for use at their station gates/buses.
• A fast transaction.
• An attack-resistant chip.
• Algorithms/protocols for authentication, ciphering.
• Protected storage for unique identity and diversified cryptographic secret keys.
• Protected wallet/ticket functionality/storage.
• Moderate security usually supplier attested evaluation.

Figure 1.6 shows two popular examples of contactless/RFID travel cards. The Oyster
[6] card is the most well known in the UK and has been very successful since its
introduction in 2003. However, the Octopus [5] card from Hong Kong was introduced
much earlier (1997) and is now being used for a range of purchases in addition to
travel.

Smart card tickets are often used alongside legacy tickets, and are popular with
customers for their ease of use and avoiding the need to queue for tickets. They
also help with fraud control at gated stations and reduced cash handling as well as

Fig. 1.6 Oyster and Octopus travel cards (source Transport for London)

1 An Introduction to Smart Cards and RFIDs 11

supporting statistical journey analysis and optimisation. Transport tickets have been
attacked in a public manner (notably the MIFARE Classic [10] -based cards) and
in response the security of the solutions has been improving, albeit driven more by
reputational issues than actual measured losses from fraud.

1.2.6 Product Tagging

Product tagging and logistics is a growth area for smart card devices, although in
this field they are most often exclusively referred to as RFIDs. There is in fact a wide
range of devices to consider from extremely simple IDs to high-end smart cards with
similar capabilities to SIMs. Core requirements include:

• Storage/memory including at least an ID—preferably protect by a security proto-
col.

• A fast transaction.
• Algorithms/protocols for authentication, integrity—optional.
• Low to moderate security usually supplier attested evaluation.

Product tagging was originally driven mainly by convenience, and the choice of tags
by cost; however, tag sophistication and security is growing as manufacturing costs
reduce.

The examples in Fig. 1.7 illustrate the diversity of tag types. The left-hand side
image shows a typical self-adhesive tag which in this case is being used for medicine
identification, by being stuck onto the container. The tag on the right can be used for
the identification of pets and is inserted under the skin of the animal, yet can still

Fig. 1.7 Medicine and animal tags

12 K. Markantonakis and K. Mayes

Table 1.1 Comparison of application requirements for smart cards

Speed Security Storage Portability Low Standards Security
protocols amount cost evaluation

Mobile M H H L M H L
Banking M H M H M H H
Passport M H H H L H H
Satellite M H M L M L L
Transport H M M H M M L
Tagging H L L M H L L

be accessed by an external reader device. The diversity is possible because of the
contactless interface and so the form factor is far less restricted than a contact smart
card, and RFID tags can be made smaller, physically robust and reliable.

1.2.7 Comparing Requirements

The above discussions are summarised in a subjective manner within Table 1.1. Each
characteristic is rated by importance as High Medium or Low (H:M:L).

We can explain some of the differences in the table, using the mobile SIM as a
reference.

• In terms of speed, the SIM may have complex functionality and so needs to be
reasonably swift; however, it is within a powered device and most transaction
times do not inconvenience the user. By contrast, a transport card (such as an
Oyster card) has to be extremely fast to maximise safe throughput at station gates
during busy times.

• A SIM will support secure protocols, however, the impact of such protocols has
more significance for bank cards and passports where considerable sums of money
or proof of identity may be at risk.

• SIMs tend to have the highest storage of any mass market smart cards, whereas a
simple RFID tag might just have a few bits of memory to hold a fixed ID.

• The SIM is not very card-like and today is not really portable, but rather transferable
between devices, and in this respect is not unlike the cards used in Satellite pay-TV
systems. Bank cards, passports and transport tickets rely far more on portability.

• Because they are produced in huge volumes, SIM cards are not expensive compared
to their high level of functionality, however, cost is perhaps the biggest issue for
RFID tagging of products where just a few pennies are available for tag purchase.
Passports are perhaps the least cost-sensitive, especially as in the UK the citizen
is required to pay a significant amount to obtain a passport.

• Standards are well developed in the mobile, banking and passport applications,
whereas proprietary solutions are still common in satellite pay-TV and tagging.

1 An Introduction to Smart Cards and RFIDs 13

The transport industry is also still dominated by proprietary solutions, although
there are some moves towards a more interoperable approach.

• Formal security evaluation (e.g. common criteria) has historically been important
to banking and passport applications. In principle, the mobile industry could also
insist on formally evaluated SIMs, although cost and process delay issues have
prevented this in the past.

Having established some requirements related to the real-world applications of smart
cards, the next step is to consider the available devices that might satisfy those
requirements, and this is discussed in the following section.

1.3 Contact and Contactless Smart Cards/RFIDs

Smart card products exist to satisfy the full range of application requirements men-
tioned in the preceding section. Before considering the product categories we need
to first cover some basic characteristics and differences of contact and contactless
smart cards, passive RFIDs and active RFIDs.

1.3.1 Cards with Contacts

Referring back to Fig. 1.2 we can see some electrical contacts behind which sits the
chip. In normal use the card is inserted into a reader that makes electrical connection
to the chip via these contacts. The pin-out for the contacts has changed a little over
the years and Fig. 1.8 shows the traditional definitions.

VCC is the power input and GND is the ground (0V) return. CLK provides the chip
with a clock signal (it does not have an internal clock), I/O is used for input/output
and RST is there to reset the chip. Vpp is a throw-back to old EPROM technology
when a voltage higher than VCC was need to actually write to the chip memory.
These days this pin is used in SIM cards for the Single Wire protocol (SWP) which
enables a SIM hosted Security Element (SE) to communicate with the phone’s Near
Field Communication (NFC) modem. Furthermore, in the most modern SIMs, the
contacts marked RFU are now used for the USB connection which is much faster

Fig. 1.8 Smart card contacts

14 K. Markantonakis and K. Mayes

Fig. 1.9 Laminated construc-
tion of a contactless smart
card (source Giesecke and
Devrient)

than the traditional I/O PIN interface. More information on general contact cards can
be found in Ref. [11], and [2] is a good starting point for SIM information.

1.3.2 Contactless Smart Cards/RFIDS

Clearly a contactless smart card/RFID requires a different method for powering and
communication. This is typically achieved by connecting the chip to an antenna as
shown in Fig. 1.9. Although we have shown a card example, the great flexibility
of RFIDs is that they can be made in all manner of shapes and sizes, provided
that the antenna design and size is sufficient to provide powering and support chip
communication. The basic operation is described in the following text, although the
interested reader is referred to Ref. [12] for a more detailed description.

The reader device has no contacts, but instead creates an electromagnetic field.
When the card is placed in this field, the antenna gathers energy from it (rather like
a transformer) in order to power the chip. The field is modulated by the reader in
a controlled manner so that the card can detect a clock signal and the information
transmissions/requests from the reader. The card communicates back to the reader
by modulating the field amplitude. This is basically achieved by the chip switching
on a load so that the electromagnetic field strength momentarily shrinks lower than
normal. This is rather like the way a battery voltage will drop when you switch on a
connected electrical load. This can be seen more clearly with reference to Fig. 1.10,
which represents the electromagnetic field for the reader and card transmissions.

In the upper trace the reader is able to exert strong control over the electromagnetic
field that it generates, whereas in the lower trace the card can only weakly modulate
the field.

1 An Introduction to Smart Cards and RFIDs 15

Fig. 1.10 RFID Reader
and card signal modulation
examples

Active RFIDS: What we have just briefly described is a passive RFID which is
by far the most common type in use. However, there are also active RFIDs that have
their own batteries and transmitters, with perhaps the most common being used for
remote locking in vehicles. Whilst active RFIDs are useful devices, their cost, size
and maintenance aspects means that they are used far less than passive RFIDs, so
they will not be considered further within this chapter. Instead we will focus on
the family of passive devices that support standard Application protocol Data Unit
(APDU) communication.

1.3.3 APDU Communication

Whether we are using a smart card with contacts or a contactless device, the rele-
vant reader needs some logical way to communicate with the chip, once we have got
beyond the physical interfaces (wires or RF). This is achieved via a simple command-
response protocol in which the reader issues command messages and expects appro-
priate responses from the card. The commands are structured into APDUs and an
example of command and response formats is shown in Fig. 1.11.

The CLA represents the “class byte” which is a static value for a given type of
application. INS indicates the instruction/command and is what the reader wants the
card to do, which could be to read a memory location or perhaps run an algorithm.
P1 and P2 are parameters relevant to the particular INS and P3 is a data length
indicator. P3 can be used to indicate the length of data that is supplied with the
command, or the length of data field expected in the response from the card.

16 K. Markantonakis and K. Mayes

Fig. 1.11 APDU format

The card response will always provide the status words SW1 and SW2 indicat-
ing the outcome of the request and depending on the INS some data may also be
returned.

1.4 The Range of Smart Card Devices

Smart card products are not simply split into contact and contactless, and RFIDs are
not just passive and active. There is in fact a very wide range of products with differing
capabilities and costs, designed to satisfy the variety of application requirements. The
product range for passive devices is depicted in Fig. 1.12 and the generic types are
described below.

1.4.1 Simple ID Tag/Card

The simplest devices offer convenience and fast machine readability, but not much
more. They are usually called tags or RFIDs and almost never smart cards. They
contain a very small amount of memory to represent an ID which is transmitted
when the device interacts with a reader. In tags that are used as barcode replacements
the ID need not be unique, but perhaps represents a product type. Tags can also have
unique IDs in which case the only security feature is if the ID field is read-only.
There is no security protocol other than reporting the ID to the reader and so it is

Fig. 1.12 The range of smart
card/RFID devices

1 An Introduction to Smart Cards and RFIDs 17

very easy for an attacker to discover the ID and program it into an emulator device
or a similar ID/Tag that permits control of the ID field. In the latter case it could be
a legitimate tag in its pre-configured state, i.e. before personalised with its ID.

Anyone with some interest in information security might wonder why such tags
(which are usually proprietary) are used when they have almost no security protection
and there are better devices available. Cost is not far from the answer, but you also
avoid the trouble of key management (as there are none!). This is not to say that
the use of such tags is inappropriate, it depends on the application. For tagging your
groceries it could be fine, although using it as a building access control card would
be very worrying. It also depends on what you are replacing. A system based on
paper vouchers and human inspection could be revolutionised by the introduction
of automated inspection of machine readable tags and whilst this could introduce
potential opportunity for fraud, it might be far less than for the legacy system it
replaces.

1.4.2 Memory Tag/Card

Some applications require more data to be stored on the tag than just the ID and so
need more capable devices, which we will refer to as memory tags. Usually they have
a unique read-only ID (like the ID/Tag) plus a small open memory with read/write
access, although in principle the whole memory could be read/write. In common with
the simplest ID tags they are usually proprietary and there is no low-level security
protocol and so it is possible for anyone to read the memory contents and re-use them
in an emulator or clone platform. The tags are quite fast and speed is a function of
the memory size, or at least how much data are read or written during a transaction.
The tag system operator can add some security measures at the application level if
required. There is not too much that can be down about tag authentication, but the
data integrity and authenticity could be protected by an associated stored Message
Authentication Code (MAC) or digital signature and/or the data privacy could be
maintained by encryption. If the tag data is effectively interpreted by an online
secure server then this is reasonably secure and manageable, but otherwise it means
that keys will need to be distributed to reader devices that must also run algorithms,
which makes them and the associated Key Management System (KMS) processes
critical parts of the system. If you are going to this trouble it might be better to opt
for a Secured Memory Tag/Card.

1.4.3 Secured Memory Tag/Card

These tags/cards have key-based cryptographic protocols to control access to mem-
ory contents. They are perhaps the first devices in the card family that deserver the
“smart” description. Typically, the tag and reader will mutually authenticate before

18 K. Markantonakis and K. Mayes

allowing access to memory; usually with data transfers encrypted under session keys.
Some cards divide the memory up into smaller partitions that have different keys, so
multi-application support is possible with different keys assigned to various applica-
tion providers. There are other devices that divide the memory into a hierarchical file
structure using the security protocol to establish access rights and privileges. One
of the most maligned products in this class is the MIFARE Classic [10], yet it has
also been one of the most popular and successful products. Although its security has
been comprehensively compromised by widely published attacks (see Chap. 6), it
at least has some security measures to attack, which cannot be said for the simpler
Tag/Card products, and so for very simple low risk applications it may still be useful.
It would be better to opt for the newer MIFARE Plus [13] which takes the same
basic product approach, but uses the AES [14] algorithm. For the file-based secured
memory tag/card there is the DESFIRE EV1 [15], which despite the name can also
use AES. The products are fast and although proprietary, the more modern types
have undergone independent security evaluation.

1.4.4 Secured Microcontroller ID/Tag

At the head of the family we find the most sophisticated products based on secured
microcontroller chips. In card form this is what we most definitely refer to as a
“smart” card, although it is really the chip that matters and this could be used within
many other form factors and assemblies. These devices can be used for just secure
data storage, but more importantly for hosting secure functionality and especially
advanced security and transaction protocols. A modern device would typically have
be a Java Card [4] and include GlobalPlatform [16] support for management. The
most advanced products include cryptographic co-processors for common symmet-
ric and asymmetric cryptographic functionality such as encryption, verification and
signing. These products tend to conform to international standards and industry
guidelines and are often security evaluated either in an internationally recognised
manner (e.g. common criteria [17]) or via private lab tests. The downside of such
devices is that they tend to be slower and more expensive than the alternatives; and
usually more complex to develop and manage.

Note: It is of fundamental importance to understand that the Secured Memory and
Secured Microcontroller products can only be used with confidence in target appli-
cations because they are based on tamper-resistant hardware, incorporating physical
countermeasures against all known practical attacks. Attacks on security devices are
covered in detail elsewhere within this book, but given the importance it is worthwhile
just briefly recapping on these capabilities.

http://dx.doi.org/10.1007/978-1-4614-7915-4_6

1 An Introduction to Smart Cards and RFIDs 19

1.5 The Importance of Providing Attack/Tamper-Resistance

When we talk of attack/tamper-resistance we are referring to attacks that can be per-
formed on the implementation of sensitive applications, algorithms and protocols,
etc., of a particular device. This is not to be confused with the logical design of
the solution, e.g. algorithm and keysize choices, which are covered by best-practice
considerations (see Sect. 6.8). For an assembly, tampering may be removing the lid,
rewiring the connections, probing chips, etc., and with smart cards we are concerned
with similar things at the chip level. There are a lot of tools from the manufacturing
world that facilitate this and there is evidence of physical attacks and reverse engi-
neering. An attacker may seek to physically inspect the chip design, probe memories
and buses and make changes to low-level hardware. To hinder this the special smart
card chips have shields which can be simple fixed barriers or current carrying meshes,
they scramble the design layout so it is hard to access areas of interest and the low-
level encrypt buses and memories. The designers also add environmental sensors for
detecting light, temperature and voltage. Light is an indicator that the chip is outside
of its package and so a reason to render the device inoperable. Temperature and
voltage extremes may be associated with fault attacks whereby the attacker seeks to
disrupt normal operation for a security advantage. The chip will also include mea-
sures to disguise/break the linkage between chip current and operation performed to
prevent exploitation of side-channel leakage attacks. At chip level these measures
usually include power smoothing, noise addition and variable processing delays. The
very intrusive physical attacks are usually only attempted for reverse engineering,
whereas the fault and side-channel attacks could be justified against individual cards
and need not destroy the test target.

Just looking at a chip it is impossible to appreciate its level of tamper-resistance and
physical attack resistance and given the sensitive nature of the protection measures
they will not be detailed within a data sheet. It is therefore very important for someone
seeking a smart card product to be able to gain assurance of the implementation
security. Fortunately there are well-known means to do this. The Common Criteria
[17] framework is a means to achieve an internationally recognised level of evaluated
security on a range of products including smart cards. The levels start at EAL1 and
rise to EAL7, with smart cards commonly evaluated to EAL4+, where the + means
that some higher level features are included. Where such an evaluation certificate is
not available the next best thing is a report from a credible expert lab stating that the
products resisted all known attack strategies during the period of the tests.

To finally hammer home the point, many common smart card applications would
be flawed and indeed pointless without the property of attack/tamper-resistance.
Fortunately, these principles have been well understood in the smart card world
and products, specifications and processes have emerged to successfully provide
the necessary safeguards. However, these measures are now being stressed by the
emergence of new technologies, which challenge the way that we implement smart
card (and particularly RFID) functionality.

http://dx.doi.org/10.1007/978-1-4614-7915-4_6

20 K. Markantonakis and K. Mayes

1.6 Mobile and NFC

Conventional smart cards show little sign of disappearing from the market and more
and more are used each year. However, there is a disruptive technology that might
change this in the longer term and which is already challenging assumptions and
processes related to security modules. The technology in question is Near Field
Communication (NFC) [18]. This is discussed in detail within Sect. 14.5.2.3, so here
it will suffice to say that it gives a mobile phone the ability to act as a smart card
reader, to emulate a smart card or to communicate with another phone in peer-to-peer
mode. In our discussions here we will just focus on card emulation and the challenges
for evaluated tamper-resistance and associated security processes.

A good example for this is shown in Fig. 1.13. This represents a collaboration
between Orange and Barclaycard to offer the first NFC wallet (Quicktap [19]) in
the UK, whereby the mobile phone may be used in place of a contactless bank card.
Clearly, as financial transactions are involved there will be interest from attackers and
so it is important to emulate the bank card in a secure manner. In NFC the smart card is
emulated by something called a Security Element (SE). In the early NFC phones this
was provided in the form of a chip embedded within the phone hardware. As the chip

Fig. 1.13 Quick-tap applica-
tion (Orange/Barclaycard)

http://dx.doi.org/10.1007/978-1-4614-7915-4_14

1 An Introduction to Smart Cards and RFIDs 21

was a high-end smart card device (e.g. SmartMX [20]), then from a physical point
of view there should be no problem with it, although there are serious challenges
for personalisation, ownership and management that we will defer until later. Other
options include the SE as an integrated part of the SIM and a plug-in on a memory card
port, which again should be capable of satisfying physical protection requirements.
More of a concern is the Soft-SE approach whereby the SE emulation is running in
the phone CPU. The history of mobile phone security is very poor and the complexity
and fast moving nature of modern smart phone hardware and software development
is unlikely to see the problem resolved overnight. There are efforts to improve mobile
phone security, however, even if an enterprising company comes up with a physically
(and not just logically) secure solution there is the problem of convincing application
and service providers that this is the case and bearing in mind that the general market
will not be restricted to products from one supplier.

Whichever solution is used there are big challenges for the associated processes
and trust management. Typically, a smart card has an Issuer who owns, personalise,
issues and securely manages the device during its useful life. The processes for this
are very well established and proven. The disadvantage is that you end up with a lot
of smart cards in your wallet, although some might argue that this provides some
diversity; if you lose one card you still have others. An NFC phone could in principle
replace all your cards which can be very convenient, but potentially disastrous if it
fails to function or gets lost or stolen. Exactly what types of smart cards might be
displaced by NFC is not yet known although low value applications such as metro
travel or touch & pay purchases seem reasonable candidates.

The first NFC payment services in the UK are likely to be constrained and pro-
prietary. The Quicktap [19] is available from Orange and uses Barclaycard for the
financial aspects. Whilst other products are expected, it is doubtful that they will be
compatible beyond the card to reader interface. It therefore seems very likely that
the configuration management of SEs will be a major issue, especially as customers
often change, phone, SIM, credit cards and sometimes banks. This will challenge the
lifecycle processes used for conventional smart cards, which are briefly described in
the following section.

1.7 Conventional Smart Card Lifecycle Management Processes

The typical stages in the preparation, issuance and management of a smart card or
RFID are shown in Fig. 1.14. The overall process is normally triggered by the Issuer
(who provides cards to end users) placing an order with the Manufacturer (sometimes
called the Smart Card Vendor) for a batch of cards according to a specification
(profile) and using Issuer input data (input file). The Issuer will eventually receive
the smart cards (or perhaps they are shipped direct to end-users) plus the response
file containing data, keys and PINS to securely manage the smart cards.

Chip Manufacture is handled by the chip fabrication plant (FAB) and for a masked
Read Only Memory (ROM) style device would include the Operating System (OS)

22 K. Markantonakis and K. Mayes

Fig. 1.14 Typical smart card lifecycle stages

from the particular smart card vendor. Completion is getting the chip into a usable
state which may mean patching the OS using some of the chip’s non-volatile memory.
Initialisation is the process of getting all the standard data and functionality loaded
onto the card. Here the word “standard” means for the particular Issuer’s product and
other Issuers may have very different requirements. Personalisation is configuring
a smart card for a particular account, or if known, a particular end-user. The Issue
stage represents the ways and means to get the card into the hands of the end-user.
In-use Management includes updates to keep the smart card functioning in an opti-
mum manner, including data and functional updates, which have to be applied in
a security protected manner. End of Life can be a tangible update that disables the
card, the removal of its corresponding back office data/functionality or simply a soft
ending, e.g. that the card is probably not in use any more.

The Completion through to Issue stages are often all handled by the smart card
vendor. Basically, the Issuer requests smart cards to a certain specification (profile)
from the vendor and also provides an input file for personalising them to either
generic unique accounts or particular end-users. In the latter case, the vendor may
also pack/send the cards to end-users via the mail. Thereafter the smart cards are
deemed In-use and any updates are handled by the Issuer using credentials received
from the vendor in the form of a response file. The response file is highly sensitive
as it contains all the security credentials, IDs, keys, PINs, etc., for the issued cards
and gives the holder the ability to manage the smart card contents and functionality.
This includes the capability to disable the card at end of life should this be necessary
and indeed the means to create a clone of the smart card.

The time span of the lifecycle is quite different depending on the application.
A banking card might be expected to have a lifecycle of about five years after which
it will be expired and no longer work. A mobile communications SIM card might be
used for less than a year, but then again some continue 10+ years as there is no fixed
expiry limit. Chips in passports would be expected to last for 10 years. If we think
ahead to chips within electronic assemblies such as phones and even cars we again
have a wide variation. Mobile smart phones fall rapidly out of fashion, whereas a
chip in an automobile subsystem might have to survive 15+ years.

Returning to NFC SEs the above situation is not much changed if we have a
SIM-based SE or indeed a memory card-based version. However, the embedded
chip is markedly different. The chip should go through Completion before it ends
up in the phone hardware. If we buy the phone as an unlocked device then it has
in a way been issued to us, but without the Initialisation and Personalisation stages
and (at the moment) no real certainty over where the response data/credentials are

1 An Introduction to Smart Cards and RFIDs 23

and indeed who now has the privileges and responsibilities of the Issuer. If we get
the phone locked to a network, the SE might have been through Initialisation for
the network, but Personalisation probably requires some subsequent effort/set-up.
Bearing in mind that Initialisation and Personalisation are conventionally carried out
in highly secured physical environments there is quite a challenge to replicate the
same level of security in the field. There is of course a queue of companies lining up
to meet the challenge with the ambition of becoming the Trusted Service Manager
(TSM) who would be in charge of the remote security management of SEs. However,
whilst agreement on technical issues is eventually likely, agreement on who should be
the TSM seems far more elusive and indeed a battle ground for conflicting business
interests.

1.8 Conclusion

In this chapter we have briefly introduced smart cards and some of the major appli-
cations that make use of them. There is no absolute right or wrong choice for a smart
card device as it depends on the requirements of the particular application. The most
successful application in terms of number of standards-compliant devices has been
mobile communications, which has used SIMs with advanced functionality, yet paid
less attention to formal security evaluations than other standardised solutions such
as bank cards or passports. Furthermore, the SIM today is far more like an embed-
ded security module than a conventional smart card and there are suggestions that it
should simply be replaced by a chip in the phone, although this raises all kinds of
issues related to personalisation, ownership and control. In some respects the SIM is
similar to the cards used in proprietary satellite Pay-TV security systems as all they
are manufactured and distributed in the card form, but once installed they are used
like embedded modules. The bank card is most obviously still a conventional and
portable smart card, making full use of personalised card body features as well as
the chip security. Historically, the less sophisticated and usually proprietary devices
are found in tagging and transport systems. For tags the capabilities are normally
restricted due to very tight cost constraints, whereas for transport it is the speed of
operation that is critical.

The diversity of application requirements has led to a wide range of available
products that offer varying degrees of functionality and security for a given cost. For
many applications the tamper resistance of the chip is of vital importance and a wide
range of attacks against the implementation should be resisted, including physical
tampering, side-channel and fault attacks. For the cryptographic algorithm and pro-
tocol design aspects it is highly advisable to make a selection based on best-practices
of information security (see Sect. 5.9), however cost and legacy compatibility often
mean that a compromise has to be made and indeed much of information security
is about working with imperfect solutions. It is important to appreciate that the less
secure products can be quite suitable for some applications, although one should
always check that the security of a device has not been compromised, otherwise the

http://dx.doi.org/10.1007/978-1-4614-7915-4_5

24 K. Markantonakis and K. Mayes

wrong design decisions will be made. A good example is the MIFARE Classic, as
it was originally offered as a small key secured memory card, although today it is
best considered as a basic memory card; so extra security protection may need to be
added at the application layer.

A lot of industry experience has been gained from the manufacture, initialisa-
tion, personalisation and management of smart cards, however, new technological
developments may challenge the conventional way of working. In particular, an NFC
phone may emulate several smart card devices via the SE. Whilst the hardware SEs
are based around smart card chips and should offer attack resistance, the config-
uration, personalisation, management and ownership of the phone-embedded and
memory module SE options may be quite different from that of the SIM card, or
indeed any other issued smart card. The security challenges and added complexity
has led some parties to suggest the use of software SEs hosted by the phone processor.
This is a worrying development and history risks repeating itself if too much trust is
placed in mobile phone software security, without proper consideration. What may
eventually emerge is a hybrid solution using mobile phone software underpinned by
specialist hardware features, either provided by separate chips or possibly included
within the phone processor itself.

As a final remark, there appears little sign that the billions of smart cards and RFIDs
produced each year will reduce and in fact they are expected to rise significantly.
NFC will not make much difference in the short term, especially while companies are
squabbling over roles and standards options, however it might result in an acceptable
security solution for the remote management of SEs. If this is the case then the same
solution might be used to logically justify the use of embedded SIMs, although this
would no doubt be resisted by mobile network operators.

References

1. Mouly, M., Pautet, M.B.: The GSM System for Mobile Communications, Cell & Sys. Corre-
spondence, 1992.

2. ETSI, 3GPP TS 11.11 V8.14.0 Specification of the Subscriber Identity Module -Mobile Equip-
ment (SIM - ME) interface, (2007–06)

3. EMV Books 1–4, Version 4.3, November 2011. www.emvco.com
4. Java Card Platform Specifications V3.04, Oracle, 2011. www.oracle.com/technetwork/java/

javacard/overview/index.html
5. Octopus, www.octopus.com.hk/home/en/index.html
6. Transport for London, Oyster Card, www.tfl.gov.uk/oyster
7. International Civil Aviation Organisation (ICAO) Doc 9303, www.icao.int
8. Friedhelm Hillebrand: GSM & UMTS - The Creation of Global Mobile Communication Wiley,

2002, ISBN: 978-0-470-84322-2.
9. Mayes and Markantonakis: Smart Cards, Tokens, Security and Applications, Springer 2008,

Chapter 4, p 85–112.
10. Philips Semiconductors (NXP), MIFARE Standard Card IC MF1 IC S50 Functional Specifi-

cation, revision 4.0 1998.
11. International Organisation for Standardisation, ISO.IEC 7816 1–4, 1999.

www.emvco.com
www.oracle.com/technetwork/java/javacard/overview/index.html
www.oracle.com/technetwork/java/javacard/overview/index.html
www.octopus.com.hk/home/en/index.html
www.tfl.gov.uk/oyster
www.icao.int

1 An Introduction to Smart Cards and RFIDs 25

12. International Organisation for Standardisation, ISO.IEC 14443 Identification cards - Contact-
less integrated circuit cards - Proximity cards, 2000.

13. NXP, MIFARE Plus data sheet MF1SPLUSx0y1, February 2011. www.nxp.com/documents/
short_data_sheet/MF1SPLUSX0Y1_SDS.pdf

14. Federal Information processing Standards, Advanced Encryption Standard (AES), FIPS pub-
lication 197. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

15. NXP, MF3ICx21_4_81 MIFARE DESFire EV1 contactless multi-application IC short data
sheet, revision 3.1, December 2010

16. GlobalPlatform, GlobalPlatform Card Specification 2006 www.globalplatform.org
17. Common Criteria V3.1, 2009, www.commoncriteriaportal.org
18. NFC Forum, NFC Forum technical Specifications, www.nfc-forum.org/specs/spec_list
19. Orange UK, Quicktap, www.shop.orange.co.uk/mobile-phones/contactless
20. NXP, SmartMX Platform features, Revision 1.0 Short form Specification, 2004

www.nxp.com/documents/short_data_sheet/MF1SPLUSX0Y1_SDS.pdf
www.nxp.com/documents/short_data_sheet/MF1SPLUSX0Y1_SDS.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
www.globalplatform.org
www.commoncriteriaportal.org
www.nfc-forum.org/specs/spec_list
www.shop.orange.co.uk/mobile-phones/contactless

Chapter 2
Embedded DSP Devices

Serendra Reddy

Abstract As a consequence of the rapid surge in digital signal processing (DSP)
technologies, DSP components and their specific algorithms continue to find uses
in broad application areas, including the embedded systems arena. Embedded sys-
tems generally refer to systems that include dedicated hardware and computationally
specific software. When several fundamental components of an embedded system
are integrated onto a single silicon substrate it is referred to as a system-on-chip
(SoC). These embedded systems, including SoCs, can either stand-alone or seen as a
subsystem of a much larger and/or complex system. However, these systems are not
without constraints, and constantly need to adapt to the drawbacks associated with
limited hardware, restricted computational power and fewer resources. Recently,
there has also been an increased interest in the use of field-programmable gate arrays
(FPGAs) and application-specific instruction-set processors (ASIPs) within embed-
ded DSP devices. This can be seen as a trade-off between size, speed and flexibility,
with the latter being the driving force. Embedded DSP devices have proliferated
through society so much so that we have become virtually oblivious to their impact.
Among the countless applications of embedded systems, some products that require a
DSP component include our mobile phones, digital radios, digital televisions, digital
satellite set-top boxes, DVD players, MP3 players, heart-rate monitors, GPS naviga-
tion devices and automotive control systems. This chapter gives a brief introduction
into the theory of DSP, followed by a more detailed examination of the architectures,
implementations, security and applications within real-time embedded systems.

S. Reddy (B)

Department of Electronic Engineering, Durban University of Technology,
KwaZulu-Natal, South Africa
e-mail: serenr@gmail.com

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 27
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_2,
© Springer Science+Business Media New York 2014

28 S. Reddy

2.1 Overview

A signal can be described as information within a form of detectable energy that
is generated by a physical occurrence, like changes in electromagnetic radiation or
air pressure. In order to investigate these signals this energy is first converted into
a continuous electrical signal using, for example, a photosensor or microphone, as
in the case of light or sound, respectively. These continuous electrical signals are
commonly termed analog signals and the variations in these signals are represented
by voltage values that are theoretically infinite, both in amplitude and precision.
A digital signal is then the discretisation of an analog signal i.e. the representation
of the continuous signal by a discrete (non-continuous) set of quantised values. This
is achieved by taking samples (measuring the amplitude/voltage) of this continuous
signal at successive non-zero time intervals i.e. a snapshot of the relative space-time.
This process of conversion from an analog signal to a digital signal is called an
analog-to-digital (A/D) conversion.

Digital signals can be represented in multiple dimensions, like one-dimensional,
in the case of sound, and two-dimensional (2D), in the case of images. Although
photons hitting a photosensor (like a CCD array in a digital camera) arrive at the
speed of light, the image (or photograph) is merely a representation of the individual
voltage levels on all the sensors at a single instance in time, arranged and stored in
a 2D matrix. Digital video can then be extrapolated as a collection of 2D matrices
captured sequentially, like at 0.033 s intervals in the case of a standard 30 frames per
second movie, hence the term motion- or moving-picture.

If not clearly defined, the acronym DSP is often ambiguous, as it can describe
the specific hardware/software processes used in handling digital signals, as well
as a hardware processor. In this chapter, DSP refers to digital signal processing
(DSP), which is the generic term applied to the hardware/software processing of
digital signals and data by digital electronic devices. Digital electronic systems can
range from super-computers, desktop computers and laptops, to tablet computers
and smartphones, to small DSP specific systems and SoCs, including application-
specific integrated circuits (ASICs), application-specific instruction set processors
(ASIPs), field-programmable gate arrays (FPGAs), general-purpose DSP processors
(GP DSPs) and general-purpose microprocessors (GPPs). The aim of the processing
is to analyse the information content of the cached or stored signal data and some-
times modifying the signal depending on the desired output. This can range from,
among others, noise reduction to data enhancement to data compression to pattern
recognition, and to whether the system should operate in real-time. Real-time systems
can be defined as those systems that respond in a timely manner to external actions
or triggers [26]. In DSP, this implies that an output is produced from the current
set of data before the next set of input data is collected and/or available to process.
Once the digital signal has been processed and possibly enhanced (or altered) by
the DSP system, it might be required to be sent back out into the real world, as in
the case of music being outputted from a digital amplifier or equaliser. This process
is, fundamentally, the reverse of an A/D conversion, where discrete digital data is

2 Embedded DSP Devices 29

transformed or converted into a continuous analog signal, and is, therefore, called
a digital-to-analog (D/A) conversion.

An embedded system is a combination of computer hardware and software, and
perhaps additional mechanical or other parts, designed to perform a dedicated func-
tion [13]. Unlike a personal computer which serves a general-purpose, an embedded
system is generally designed to serve a specific purpose, and is usually limited in
size, cost, power consumption, processor speed, memory and hardware functionality.
An embedded system can also be seen as being a part of larger system, containing
possibly a collection of smaller embedded subsystems, including those with DSP
functionality, each responsible for a separate task, like handling decompression and
decoding of audio files on a MP3 player or the capture, compression and memory
card storage of images on a digital camera. An embedded processor is a specialised
processor, like a GP DSP or ASIC, designed to meet the requirements of a spe-
cific application, i.e. the functionality is often limited or tailored to just the intended
purpose, e.g. with perhaps low power consumption and low heat dissipation, and
restricted clock speed [26]. In order to handle real-world analog signals, including
speech, images, video and music, an embedded processor must interface with exter-
nal hardware such as input/output (I/O) devices like coders/decoders, memories and
displays.

An embedded DSP device is typically a combination of one or more individual
pieces of hardware (or subsystems) integrated into a single stand-alone system per-
forming a specialised function, that requires a DSP specific hardware processor, like
an ASIP and/or a FPGA, that uses DSP specific software algorithms and techniques
to process and/or transform real-time input signals into a desired output.

2.2 Digital Signal Processing

Almost all information in the physical world is represented in the form of an analog
signal, and as a result the processing of these analog signals represents a funda-
mental component within the field of electrical engineering. This subfield came to
be known as analog signal processing (ASP); and entails the use of analog hard-
ware in the manipulation of these signals. However, ASP had its shortcomings in the
form of complicated electronic circuitry, inflexibility, varying accuracy and incon-
sistent reproducibility. In addition, sophisticated applications, like speech and image
processing, were not suitable to ASP technologies. These challenges needed to be
addressed and were eventually solved by the advent of digital systems and DSP.

Although the mathematics of DSP algorithms had been in existence for many
years, it was only the emergence of the GPP and GP DSP in the 1970s that marked
the turning point in digital systems. The original systems were primarily fixed-
point machines [39, 45]. The mid- to late 1970s saw the introduction of floating-
point machines and together with supporting memory devices gave rise to the era
of DSP, which by 1980s included multi-processor systems with massively parallel

30 S. Reddy

architectures, allowing for efficient execution of the fast Fourier transform (FFT)1 and
vector-based processing schemes. However, non-conventional schemes, like adaptive
and high-resolution signal processing remained a bottleneck [18, 49], until recently.
Advances in super-scalar and massively parallel processor technologies have seen
the GP DSP go from being able to perform several hundred million multiply accu-
mulates (MACs) per second (or about 21 ns per MAC) in 2000 to around 5 billion
MACs per second (or about 3 ns per MAC) in recent years [22, 27].

2.2.1 The DSP Processor

The core purpose of a DSP processor (or GP DSP) is to perform signal processing,
and almost every single DSP application is based on efficient mathematical imple-
mentations of one or more of algorithms [15, 36, 37] shown in the following table:

Fourier transforms are used for representing signals in the frequency domain;
convolution can be used to perform filtering in the spatial domain; correlation is used
to detect similarities in signals, like in the case of Radar; finite impulse response
(FIR) and infinite impulse response (IIR) filters can be used in noise attenuation
and other frequency selective processes; 2D Fourier transforms are used for image
processing in the frequency domain, and discrete cosine transforms are used in image
compression, like JPEG.

The DSP processor was thus optimally designed around the ability to efficiently
execute the above algorithms. This was done by exploiting the inherent similarities
between the algorithms, like the summation and multiplication operations. The com-
bination of the summation, which can be described as a “for” loop in software,
together with the multiplication operations, results in the accumulation of a large
number of multiplied elements. It was, therefore, logical to develop a processor that
was able to resourcefully accommodate the operands of multiplication and accumu-
lation. In addition, there are intrinsic structures in these algorithms which allow for
non-dependent parts to be operated on separately. In the end, the common factors
observed in the digital signal algorithms allowed for the tailoring of a DSP specific
processor that could achieve tremendous execution savings.

The GP DSP differs mainly from the GPP in its memory architecture, internal
architecture and instruction set. The memory architecture of the GPP is based on the
Von Neumann single memory model, whereas the GP DSP is based on the Harvard
dual memory model (Refer to Fig. 2.1), which is designed for parallel access to the
program and data memory, allowing for the fetching of multiple data and/or instruc-
tions at the same time. An advancement to the Harvard architecture is referred to
as the super Harvard architecture and includes an instruction cache and dedicated
I/O controller (with DMA) [42]. The internal architecture contains several multipli-
ers and accumulators, in order to optimally perform fixed-point and floating-point

1 The discrete Fourier transform (DFT) is the method of translating any sequence of discrete values
into its frequency domain equivalent, by representing the signal as a composition of sine and cosine
waves. The FFT is the more efficient method of generating a DFT.

2 Embedded DSP Devices 31

Fig. 2.1 Microprocessor architecture

multiply-accumulate (MAC) operations extremely fast, which is a necessary require-
ment in order to efficiently perform the DSP algorithms described in Table 2.1. The
specialised instruction set was designed to maximise the use of hardware, minimise
memory space and increase efficiency. In addition, it incorporated measures to alle-
viate some of the problems associated with the limitations of working in the digital
arena, like quantisation errors, round-off errors, finite wordlength effects and over-
flow. All this, in the end, means that a GP DSP performs signal processing much
more proficiently than a GPP, which is optimised for non-signal processing centric
applications.

Table 2.1 Common DSP algorithms

Discrete fourier transform (DFT) X (k) = ∑N−1
n=0 x(n)e− j2πkn/N

Convolution y(n) = ∑M−1
k=0 h(k)x(n − k)

Correlation rxy(n) = ∑M−1
k=0 x(k)y(n − k)

Finite impulse response (FIR) filter y(n) = ∑M
k=0 bk x(n − k)

Infinite impulse response (IIR)
filter

y(n) = −∑N
k=1 ak y(n − k) + ∑M

k=0 bk x(n − k)

2-D DFT F(u, v) = ∑M−1
x=0

∑N−1
y=0 f (x, y)e− j2π(ux/M+vy/N)

2-D Discrete cosine transform
(DCT)

F(u, v) = ∑M−1
x=0

∑N−1
y=0 f (x, y)cos(π(2x+1)u

2M)cos(π(2y+1)v
2N)

32 S. Reddy

2.2.2 The Real-Time DSP System

A non-real-time system [23, 24] technically does not have any limitations on the
amount of processing or execution time required to complete a task. A real-time
system can be seen as having an environment in which the correctness of the system
depends not only on the logical results of the computation, but also on the time in
which the results are produced [43].

The definition of real-time systems with respect to DSP are not entirely unam-
biguous, hence in this chapter, a real-time DSP system [23, 24, 27] refers to a system
that generates an output signal within the rate of which the input signals arrive, i.e.
the ability to process one sample within the duration it takes two consecutive samples
to arrive. Real-time DSP places rigorous demands on both the hardware and soft-
ware design of the system so as to achieve the predefined tasks within the allocated
time frame. Some of the numerous applications that employ real-time DSP include
Radar [5, 45], Sonar [45, 46], signal intelligence [48], speech [39, 41] and image
[22, 38, 45] processing and missile guidance [48].

Figure 2.2 illustrates the basic functional blocks of a real-time DSP system, where
a physical analog input signal is converted to a digital signal, which is then processed
by a DSP processor, and eventually converted back to an analog output signal. The
following is a brief discussion of the function of each stage in the system:

• Input signal. An electronic sensor (microphone, photosensor, etc.) will first convert
the variances of the analog signal (temperature, pressure, sound, light, etc.) into
an electrical signal.

• Analog signal pre-processing. The aim of this circuitry is to perform some pre-
processing on the incoming electrical signal. This can include amplification, volt-
age regulation, anti-aliasing filtering and possibly other analog enhancements that
could benefit the A/D conversion.

Fig. 2.2 Functional blocks of
a real-time DSP system

2 Embedded DSP Devices 33

• Analog-to-digital convertor (ADC). The proverb, “a chain is only as strong as its
weakest link”, when applied to a real-time system, is applicable to the ADC, owing
to the fact that the sampling rate defines the digital filter’s working frequency. There
are three components that comprise the ADC: sample-and-hold (S/H), quantisation
and coding. In order to obtain the digital representation of the electrical amplitude,
the electrical signal is first sampled, which is the process of tracking and tapping
into the fluctuating electrical signal; this tapped value is then held constant for a
single A/D conversion cycle, in order to be read and translated (or digitised). N.B.
For a complete and unambiguous reconstitution of a continuous analog signal by
a digital process the electrical signal must be sampled at a frequency that is at least
greater than twice the highest frequency of the respective signal. This has been
defined by the sampling theorem [37]. Quantisation is the process of mapping an
electrical value of theoretically infinite precision to a value of finite precision. This
is dependent on the quantisation step size, which is the minimum significant value
allowed i.e. the value to which the discrete time signal must be rounded up or down
to. A system that has, for example, only one significant digit after the decimal point
will result in the values 0.4862969 and 2.348672 to be rounded to 0.5 and 2.3,
respectively, with a quantisation error of 0.0137031 and −0.048672, respectively.
The final phase is the coding of the quantized values into binary, which is, like the
quantisation stage, also dependent on the significance of the system. In order to
maximise efficiency, the resolution, or step-size, of both the quantiser and encoder
are jointly optimised. The errors due to quantization and wordlength effects can
be modelled to determine the effective accuracy and throughput of the ADC.

• DSP processor. This represents the hardware and/or software responsible for the
analysis and/or modification of the digital bits or signals by DSP methods; a process
which largely involves the application of at least one of the algorithms given in
Table 2.1 (Sect. 2.2.1).

• Digital-to-analog convertor (DAC). The transformation from the digital world to
the real world is done at this stage. A voltage is generated at the output, proportional
to an electrical signal, corresponding to a binary word input to the DAC. In order
to go from a series of discrete values to a continuous signal requires a type of
interpolation. Although there are several methods of interpolation [37], most DACs
are zero-order-hold. In this system a constant voltage value is outputted until
another sample value is received; the result is a staircase effect. In order to create
a continuous smooth analog output signal, the output from the DAC is processed
through a post-filter.

• Analog signal post-processing. This represents the smoothing and anti-imaging
filter. The final reconstruction of the analog signal is done by smoothing off the
corners of the staircase signal generated by the interpolation or zero-order-hold
process at the output of the DAC. In addition, the interpolation could cause image
(high frequency) components being passed above the folding frequency, resulting
in replications (or images) at multiples of the sampling frequency (sometimes
referred to as post-aliasing [37]); this could generate possible degradation of the
output signal due to overloading of certain components of the external circuitry,
and thus are subsequently filtered and removed at this stage.

34 S. Reddy

• Output signal. The final converted, modified and/or improved analog signal is
processed at this stage, usually by some human-compatible real-world device,
like a speaker, display or computer.

Real-time systems are occasionally influenced by response time constraints, like
unanticipated delays or latencies. The effect of these inconsistencies on the overall
system is vitally important, consequently creating two types of real-time systems viz.
soft and hard [33]. Soft type implies that in the event of a missed deadline there is a
degradation of performance, but no system failure; hard type subsequently implies a
hard deadline, which if not met, results in system failure e.g. the navigation system
of an aircraft.

Real-world embedded DSP systems are usually qualified as hard real-time sys-
tems. Compared to desktop programming, embedded DSP real-time systems must
be able to respond predictably and reliably to all external events, meaning that the
DSP code must not only execute as predicted, but execute on time, without little or
no exception.

2.2.3 The FPGA in DSP

In the past, whenever there was a need to meet extreme performance requirements,
and a programmable device could not handle the load demand, or there was a solution
requiring ultra-low power ultra-small silicon size, an ASIC was the only alternative
for an embedded DSP system [27]. ASICs are produced by directly mapping algo-
rithms to an integrated circuit; this, however, provides extremely limited flexibility,
and virtually no room for changes once fabricated. In addition, as DSP applica-
tions become vastly more complicated, the mapping of the DSP functions to circuits
become vastly more difficult.

As a result, over the past decade, the DSP market has seen a drastic increase in
the use of alternate processing systems, most especially the FPGA [12]. The FPGA
is seen as a compromise between the rigid ASIC and the programmable GP DSP.
Although both the ASIC and GP DSP have their own merits, the attractiveness of the
FPGA comes in its flexibility, or configurable hardware, which has shown to have a
cost/performance of between 10 and 25 times that of a typical high performance GP
DSP [11, 47].

Although GP DSPs have conquered the world over, the requirements of certain
newer applications tended to exceed their processing capabilities. The FPGA was
able to meet these demands, owing to its ability to reconfigure the logic, thus allow-
ing for the design of computationally effective structures, in the form of special
purpose functional units that can perform limited tasks very efficiently [34]. The
massive computational resources, as well as the ability to configure highly paral-
lel architectures, surpassed the throughput of even the high-end GP DSPs. Due to
the nature of FPGAs, field upgrades of the configuration file are rare; whereas, GP
DSP code and product software patches and updates are widespread. Since a FPGA

2 Embedded DSP Devices 35

is hardware-programmed, by manipulating logic at the gate level, it is possible to
construct DSP-oriented processors in parallel that can efficiently and simultaneously
solve a desired DSP task.

The downside to the FPGA is the effort of complexity required to map DSP
applications, including ADCs (although significantly higher frequency ADCs can
be achieved with FPGAs), DMA controllers, bus interfaces, etc.; requiring archi-
tecture implementations at the register-transfer-level (RTL)2 usually via some hard-
ware description language (HDL)3 like very-high-speed integrated circuits HDL
(VHDL). This complication is, however, being addressed with steadfast advance-
ments in FPGA tools (including simulators) and libraries. Another issue concerning
the FPGA, is working with floating-point cores, which can consume a significant
amount of area within the FPGA, especially when parallel processing is consid-
ered; one alternative is to settle for using integer-based coefficients, or to possibly
pipeline the floating-point operations, which will reduce the required gate area, but
at the expense of the response times. A final issue that is worth noting is the issue
of “excess baggage”; the FPGA essentially implements a function by turning on or
off different logic gates; the problem being that once an application is programmed
into the FPGA there can be a lot of redundant gates taking up unnecessary space.
These aforementioned issues are relative to each project and need to be considered
in determining the tradeoff between performance and size, cost and development
times.

2.2.4 The ASIP in DSP

Another avenue of interest that has recently emerged in the embedded systems sec-
tor is the use of embedded soft-cores. Embedded soft-cores can be seen as ASICs
with application-specific parameterisable components, and are thus referred to as
application-specific instruction-set processors (ASIPs) [32]. Although the instruc-
tion set of an ASIP is designed around specific application requirements that tailor
the processor for these applications, it is also a programmable machine with a degree
of flexibility, allowing it to run various software programs [27]. The former allows
for a product that can be high performing while low in power consumption, and
high volume manufacturing can be used to lower costs. ASIPs can even come with
their own development environment, debug tools, simulators and compilers, with the
option of adding peripherals for communications, I/O, memory control, etc.

FPGA-oriented-ASIPs [25] are also possible, whereby a “soft-core” processor can
be configured and downloaded onto a FPGA and used just like any other embedded
processor, including a GP DSP. A DSP ASIP mapped on an FPGA will consist of

2 The RTL is the level above the transistor or logic gate level that translates the circuits described
by the HDL into their equivalent sequential (usually consisting of registers comprising a number
of D-type flip-flops) and combinational logic structures.
3 A HDL, which is implemented at a level above the RTL, is a method of using text-based expressions
to represent an algorithm that describes the behaviour of a digital circuit.

36 S. Reddy

an instruction set optimised for a class of DSP applications; the reduced instruction-
set-like architecture can take a form of a parallel process-unit array that can realise
high processing speeds and high levels of parallelism [51], thus combining the pro-
gramming capabilities of a GP DSP and the high throughput of an ASIC. Any type
of microprocessor can be implemented on an FPGA; however, in recent times the
vendors have provided soft-core processors specifically designed for FPGAs. These
soft-cores include instruction sets, arithmetic-logic units, register files, and other
features specifically optimised for the FPGA resources, and dually serve as preven-
tative measures against inefficient and/or incorrect use of FPGA resources. It has
been shown that the performance overhead between general circuit implementations
on FPGAs versus ASICs is far superior when comparing overheads between such
soft-core processor implementation on FPGAs versus ASICs [40]. A key value of
an ASIP on a FPGA is that they are composed of smaller building blocks that can
be reconfigured on the fly to implement more than one high-level function [25].
Example relevant to DSPs would be FIR filters and Fast Fourier Transform (FFT)
blocks. Since these two high-level algorithms share many common sub-blocks, the
ASIP can be easily altered to implement the FIR, instead of the FFT, in hardware,
by changing the interconnect between these subblocks.

The customisable ability of the ASIP is not without challenges, as currently, each
application that is compiled must be simulated and run on all possible configurations
of the ASIP, which can be exponentially exhausting owing to the increase in configu-
rations with the number of parameter values [17]. This can result in an increase in the
time-to-market and subsequent cost, prompting a possible decrease in the number
of customisable parameters or opting for a general-purpose chip solution. However,
there are methods to improve these drawbacks, like having customisable develop-
ment, simulation and test-bench environments, which aid in optimising the values of
these architectural parameters. Although soft-core processing is still in its relative
infancy, their applications on SoC platforms make them hugely attractive within the
embedded systems market [17], thus creating a consistent drive to adapt and advance
this technology.

2.3 Embedded DSP Systems

Both a general-purpose computer and an embedded computer (or system) can simply
be seen as devices created to store, retrieve and process data; with the fundamen-
tal distinction lying in their application, size, power, cost and predictable speed.
A general-purpose computer is typically a multi-tasking system that can respond to
the requirements of multiple applications, such as playing music or accessing web
pages or generating spreadsheets. An embedded computer might only perform one
specific task, like the removing of noise from an audio stream. In addition, unlike
desktop computers, embedded devices do not necessarily have a user interface; alter-
natively they might have a basic user interface, like a simple button with a LED, to
a midrange user interface, such as an alpha-numeric liquid crystal display (LCD)

2 Embedded DSP Devices 37

menu system, all the way up to a complex graphical user interface (GUI), like a
touchscreen icon-based menu system on a mobile phone.

With the rapid evolution and requirements of modern dedicated embedded cir-
cuitry, the modern embedded computer is seen as a viable replacement to application-
specific electronics, with the fundamental advantage being that the former can be
used to define functionality using software and/or hardware, as opposed to the inflex-
ible dedicated hardware of the ASIC [6]. The embedded system can subsequently be
partitioned into the hardware component, which is responsible satisfying the perfor-
mance requirements of the application, and the software component, which provides
for bulk of the functionality and flexibility within the system [33].

In the case where there is a need for the handling of time critical tasks by an
embedded system, a DSP component may be required. Given the high demands of
current embedded devices, like smartphones, it has become an unavoidable necessity
for most modern embedded systems to include a DSP subsystem.

A DSP subsystem can also be fabricated within an embedded GPP system together
with additional components, like a direct memory access (DMA) controller, a pro-
grammable interrupt controller (PIC), a programmable general-purpose timer and
even Ethernet interfaces. These self-contained platforms are referred to as system-
on-chip (SoC) processors, and due to the reduction in the need for external peripheral
devices the overall size and cost of a product can be optimised.

Embedded systems that incorporate DSP technologies include three-dimensional
high-definition televisions (3D HDTVs), digital cameras, media players, digital voice
recorders, fingerprint scanners, unmanned aerial vehicles (UAVs), software defined
radio (SDR) and innumerable others.

2.3.1 The Embedded DSP Architecture

The architecture of an embedded DSP system is modelled on the architecture of
a generic embedded system. Both comprise four basic units, including processor,
memory, general-purpose I/O and bus subsystems, with the embedded DSP system
containing a DSP processor and a few other I/O peripherals.

Figure 2.3 illustrates the basic architecture of an embedded DSP system. The
following is a brief discussion of each subsystem:

• Embedded processor unit (EPU). This is essentially the brains of the operation,
and its key responsibility is in the processing of instructions and data. The EPU can
include a master processor (or several master processors) and can either have one
or several associated slave processors (or none at all). A master processor can be
classed as a stand-alone microprocessor or a microcontroller, with the latter rep-
resenting a subsystem where one or more microprocessors are integrated together
with other memory and I/O components [30]. Furthermore, the embedded DSP
processor can be an add-on processor which accompanies a GPP within the proces-
sor subsystem, or a stand-alone processor representing the entire EPU. Depending
on the application, the co-processor scheme can be advantageous, in the sense

38 S. Reddy

Fig. 2.3 Embedded DSP architecture

that the GPP can handle the miscellaneous and/or mundane tasks, as for example,
hardware management and connection protocols, or interacting with a keypad or
display, while the DSP processor focuses on the computationally intensive real-
time demands. In addition, cache and DMA controllers (discussed later) can also
be included as part of the EPU. These are, in essence, slave processors that func-
tion primarily to improve the overall performance and efficiency of the processor
cores, and, therefore, when included, define the EPU as a microcontroller.

• Memory. This subsystem supports data and program storage for the EPU, and rep-
resents multiple levels of memories that range hierarchically from the local and/or
cache memories within the processor cores, to on-chip memory (as in the case of
SoC), to the extrinsic or off-chip main memory. These three memory architectures
are called Level 1 (L1), Level 2 (L2) and Level 3 (L3) memories respectively, and
vary incrementally in size, and decrementally in performance [21]. L1 memory
is literally closest to the core on the silicon die and is fabricated for maximising
interoperable speeds. Within the GP DSP this L1 memory is configured using the
Harvard architecture scheme, where the instruction and data segments are split.

• Cache controller. Cache is essentially a small, fast advanced memory that holds
duplicates of some of the data and/or instructions stored in main memory. The
cache controller takes on a mediator role between the embedded processor and
main memory. It works by simultaneously sending memory requests to both the
cache and main memory. If the location requested is in the cache, it aborts the
main memory request, while forwarding the location’s content from the cache to
the embedded processor [50]. Cache is a valuable L1 memory which is costly in
terms of silicon size, and thus is limited in its capacity. The main aim of the cache
is to maximise the instances of successfully finding what it needs in the cache as an
alternative to having to wait to retrieve it from the larger and slower main memory
[21]. DSP processors typically contain smaller and simpler caches than GPPs.

2 Embedded DSP Devices 39

It has been shown that once the cache reaches a certain size there is a saturation
of the performance benefits. This typically occurs between 256 KB and 512 KB
[33]. DSP processors frequently use caches to free memory bandwidth rather than
to minimise memory delays.

• Input/Output Peripherals. These interfaces are in charge of interacting with func-
tional units that are connected to the outside world, with the primary responsibility
of bringing data into, and getting data out of, the embedded system. They are prin-
cipally managed by a slave processor known as the I/O controller which interfaces
with the communication interface and I/O buses in order to facilitate data commu-
nication between the EPU and I/O device [29]. There are multiple roles performed
by these I/O devices, which can be extremely diverse in their range, and consist
of simple circuit components, like LEDs, up to other complex embedded systems.
These I/O peripherals can be broadly categorised as follows.

– Human-machine I/O: Keypad/keyboard, touchscreen, mouse, etc.
– Graphical and audio I/O: Camera, microphone, speaker, displays, etc.
– Real-time I/O: ADCs and DACs.
– Communication and networking I/O: IEEE 802.11 g/n, Ethernet, etc.
– Data transfer I/O: USB 2.0, IEEE 1394 (Firewire), etc.
– Subsystem controls: Timers, counters, low-speed serial interface, etc.
– Storage I/O: Optical disk, Flash, SDRAM/DDR, etc.
– Debugging I/O: JTAG, parallel and serial ports, etc.

• Bus. The bus is the mechanism responsible for the interconnection and exchange of
data, address and control signals between all subsystems. It does not just physically
represent a collection of related wires connected between functional units, but also
conceptually represents a set of protocols that are used to allow for communication
between the EPU and memory, EPU and I/O, and memory and I/O. The embedded
bus network can be split into three types of busses via system, backplane and
I/O buses [29]. The system bus interconnects the EPU with the cache and the
main external memory. The backplane bus represents a single bus that connects
all three subsystems. The I/O bus is an extension of the system bus and handles
communication between the I/O peripherals and the system bus, including interrupt
requests. The performance of a bus is measured in bandwidth, which is dependent
on the design, protocols, number of bus lines and the interconnect permutations
of the respective bus.

• DMA controller. DMA is a bus operation that provides for the movement of data
between subsystems without the need to interfere with the more important tasks
being performed by the processor, thereby improving overall system performance.
The DMA controller essentially oversees the DMA operation. This is done by first
requesting control of the bus from the main processor followed by the transfer of
data to and from IO and memory, or ports and memory, or internal and external
memories [33]. By off-loading memory transfers from the processor it allows for
efficient parallel processing. Without DMA the main processor is consumed for
the entire time required for the bus transfer, and since the buses often function at a
reduced clock speed compared to the main processor, this can significantly reduce

40 S. Reddy

overall efficiency of the embedded system [50]. In a DSP, for example, when data
comes onto the serial port from the A/D converter, rather than interrupting the
DSP processor to transfer the data to memory (and subsequently consume a large
amount of processing cycles), this can be handled by the DMA controller; the
DSP processor can then focus on the execution of the algorithms while the DMA
controller is handling the movement of data [33]. This feature of overlapping
operations, via DMA, is extremely common in real-time embedded DSP systems.

2.3.2 The Embedded DSP Processor and RISC

At the lowest depth of any processor is ultimately a collection (albeit millions) of
transistor-based hardware gates. These gates are connected into groups of combi-
national and sequential logic circuits that perform the instructions of a higher level
application. These logic circuits are in the end the essence of the machine, and operate
using binary language. This binary or native language is known as machine language.
The problem encountered is that application layer instructions are formulated at a
non-binary level, and therefore a process of translation between this level and the
lowest level hardware is required. This hierarchical process contains several inter-
mediary stages with the most crucial sublevel being the Instruction set architecture
(ISA).

The functionality of any application is determined by a collection of interdepen-
dent instructions. These instructions can be constructed by a myriad of high-level
languages like C or FORTRAN. ISA is the common platform that provides for the
interpretation and execution of high-level instructions independent of the high level
language employed [10]. This is achieved by first having all high-level language
instructions compiled into a single universal language. This universal language is
known as assembly language and uses mnemonics to express instructions. These
assembly language mnemonics are then finally encoded into the binary machine
language.

At the ISA level there exists two design categories complex instruction set com-
puting (CISC) and reduced instruction set computing (RISC). CISC as the name
suggests is the system of employing complex or complicated instructions, like those
used when working directly with multiple array elements. RISC, on the other hand, is
the system of employing reduced or simple instructions, as in the case of just adding
two integers.

An early downside of complex instructions was that there was a need for complex
and expensive complementary hardware to carry out these instructions. To work
around this problem, a micro-programmed computer was introduced [10]. This came
in the form of a small run-time interpreter, which was located between the ISA
level and the hardware, which converted complex instructions into simple ones.
This, therefore, eliminated the need for complex hardware, and meant that complex
instructions could be executed on simple hardware.

2 Embedded DSP Devices 41

An inherent shortcoming to RISC systems was that they were first constrained
to a set of simple instructions, and second these limited operands were restricted to
the processor’s internal registry, as opposed to the main memory. CISC, on the other
hand, does not have such restrictions and allows for an increased volume of complex
instructions, which can be placed in the main memory.

With the staggering increase in functionality and features demanded of our modern
embedded DSP systems, comes the need for higher processing capabilities, increased
number of chips per system, and associated power constraints. Within the embed-
ded systems environment, each of these issues comes with a whole host of related
problems, ranging from processor size, to access to a compatible, sufficient and sus-
tainable power supply, and heat dissipation. Heat dissipation is not only an aesthetic
concern, but also of vital importance to both processor performance and lifespan. In
addition to these issues, a problem that has been encountered is in the advancement
of battery technologies, which have not kept abreast with the increase in consumer
expectations for more functional and feature driven smart embedded devices.

As a consequence of the aforementioned problems, the hardware for these spe-
cialised high-demanding embedded DSP systems had to adapt almost independently;
as a result a separate evolutionary branch emerged in conjunction with their generic
computer counterparts, and prompted the rise of RISC.

Although CISC has some inherent advantages, the complexity of the instruction
set requires additional processing, hardware and memory, prompting an increase
in physical size and power needs, which consequently is inadequate with regard to
embedded systems. Desktop and server computing usually do not suffer so severely
from power requirement issues and size constraints, and these systems have the
advantage of large cooling units, including heat sinks and fans, and air-conditioned
environments.

RISC systems, having instructions that are simple in nature, can be executed
directly on the simple hardware, thus eliminating the need for any additional mid-
dleware, and as it turns out, the confinement of the register-based operands not only
results in a simplified processor design, but additionally creates improved applica-
tion performance. This, in the end, means that RISC is ideally suited for embedded
systems.

Applications, like video encoding, that require high computational complexity
as well as data bandwidth, can be designed using just a DSP core; however, higher
performance would entail either an increase in the clock frequency or the use of
multiple DSP processors. The disadvantage of these alternatives is increase in sil-
icon size, which subsequently results in the rise in cost and power demand [28].
A better approach would be to have a SoC design that combines a DSP processor
with a RISC processor [14]. This kind of design can split tasks thus providing video-
specific hardware acceleration necessary for optimal encoding and decoding. The
comparative trade-offs between possible SoC architectures that can be employed in
video encoding are shown in Table 2.2 [28].

Currently, the most popular RISC processor architecture employed in embedded
DSP systems is the Advanced RISC Machine (ARM) [4, 7]. SoC platforms for these
high-performing embedded DSP devices can consist of multi-core ARM processors,

42 S. Reddy

Table 2.2 SoC architecture

Solution Programm-
ability

Performance Power Cost (Area) Development
time
(Reuse)

AISC Low High Low Low High
FPGA High Medium High High Medium
Multi-

Processor
+ Multi-
Core

High High High High Medium

DSP High Medium Low to
Medium

Medium Low

DSP + Co-
Processor

High High Medium Low to
Medium

Medium

together with multi-core DSP chips, and various other interfaces. These ARM/RISC
processors feature a highly specialised and optimised architecture, with extremely
low power consumption [3]. There is, currently, a whole subdivision dedicated to DSP
processors using the ARM architecture. A possible configuration for the above video
encoding problem could be to use an ARM 32-bit RISC processor which could be
extended into an efficient co-processor scheme that offers a standard ARM processor
integrated with a DSP-oriented data path and an associated DSP instruction set. This
provides for a small low cost embedded DSP chip that is optimised for performance
while providing low power consumption [9].

2.3.3 Embedded DSP and Security

The security issues that affect large computer systems also apply to the embedded
systems environment. However, the latter comes with added complexity, due not only
to the limited hardware and software capabilities, but also because of the diverse
environments which these devices are deployed.

Security concerns are especially crucial in embedded DSP systems that are
involved in safety critical hard real-time functions, like automotive breaking sys-
tems, and in protection of private and confidential information using encryption, as
needed for cellular voice and data transmissions.

The malicious exploitation of sensitive data as well as catastrophic system failure
(owing to internal or external influences) can signify severe security risks apparent in
using an embedded device. Among the numerous possible security threats inherent
in embedded systems [44] there are four types that can be considered crucial when
considering an embedded DSP device:

• Physical/Environmental. Considered when there exists a potential vulnerability in
the manipulation of the physical components of the device, thereby either causing

2 Embedded DSP Devices 43

the device to malfunction or fail completely. This can also include complete device
destruction.

• Internal. Involves the breakdown of the hardware and/or software of the embedded
system, as in the case of a processor overheating or an erroneous/corrupt software
routine, thereby causing erratic/incorrect operation and/or complete failure of the
device. Owing to the often unpredictable nature of hardware malfunction it is
common practice, especially in large-scale production, to perform some form of
system/load testing prior to full-scale production. The more reputable embedded
systems designers may also follow a form of best practices and software lifecycle
management in order to improve the success of their development projects.

• External. Involves hacking, hijacking and/or purposely corrupting the embedded
device, usually, but not always, by some form of software tampering. Off-the-
shelf PC security products, like anti-virus and firewall, are designed to be general
and often very flexible. However, application dependent embedded devices are
unique and specific, and therefore a universal solution is implausible. A system
cannot be guaranteed secure even when using cryptography, as employing the most
cryptographically astute algorithm is almost rendered futile should someone be
allowed to access the information, directly from the source, prior to encryption
[19]. Another type of security violation can involve a denial-of-service attack,
whereby, as in the case of a mobile phone, the signal can be “jammed” so as to
prevent the transmission or reception of calls.

• Information/Data. Involves the access, interception and/or decryption of stored
and/or transmitted information. As highlighted in the previous point, software-
based encryption usually has some kind of security infirmity due to the high risk
environment inherent when managing the certificates/keys; an alternative might
be to employ the use of an embedded DSP device that incorporates an on-board
encryption module which can store and encrypt sensitive information [19]. As in
the case of cellular communications, the GSM speech service is relatively secure,
up to the point of entry of the network provider; however, this can be construed
as a potential security vulnerability, as the cellular network provider, and not the
subscriber, is controlling the encryption/decryption. A malicious intrusion of the
network provider’s system could therefore render all subscribers susceptible to
privacy violations. A possible solution will be for the subscriber to incorporate
some form of embedded DSP device that can provide personalised encryption
prior to the speech entering the handset, thereby providing exclusive protection
[20]. Not that DSPs generally do not have the attack resistant capabilities found
in security modules (such as smart card chips).

However, with the role of the embedded DSP device in many vulnerable applications,
especially hard real-time safety-critical systems, it is vitally important that a thorough
risk versus reward analysis be undertaken when pondering the repercussions of a
security failure.

44 S. Reddy

Table 2.3 The mobile phone evolution

Mobile phone: features/appli- Mobile phone: features/applications between 2000–2005
cations before 2000

• Camera • GPRS
• MMS • 360 KB RAM

• Voice • Push-Email • Colour touchscreen
• Keypad • Monochrome touchscreen • 128 MB Memory
• Basic monochrome display • QWERTY keyboard • Video camera

• 64 MB memory • Colour LCD display
• Short message service (SMS) • FM radio • Extended battery life

• Infra-red •Basic games
• Monochrome LCD display • Calendar • 3G
• WAP • Video playback • Size (Thinner)
• MP3 Playback • Bluetooth • HTML browsing

• Size (Shorter) • 1 Mega-pixel camera
• Colour screen • Windows mobile

Mobile phone: features/applications between 2006–2010
• Dual-processor • GPS navigation and

google maps
• GPU

• High-resolution LCD screen • Voice-over-IP • High-resolution graphics
gaming

• Multi-format document viewing • Downloadable
applications (Apps)

• High-definition video
capture

• Multi-touch sensor screen • Document/office editing
suites

• 1.2 GHz ARM processor

• Instant messaging • Programmable
open-source O/S

• 1 GB RAM

• Instant messaging • Resistive touch screen • 3D autostereoscopic
displays

• Accelerometer • 8 Mega-pixel camera • 3D stereoscopic capture
• 5 Mega-pixel camera • Smile and blink detection
• 8 GB memory

2.3.4 Embedded DSP and the Mobile Phone

The worldwide ascension of the mobile phone has been met with significant evolu-
tionary changes to the capabilities of the device; having transformed from a wireless
gadget that made and received phone calls, into a handheld computer integrated
with a mobile phone (known as a smartphone) containing myriads of features and
seemingly limitless capabilities (Refer to Table 2.3).

In the original mobile phone the DSP processor was connected to the audio and RF
interfaces and responsible primarily for modulation, demodulation, decoding, encod-
ing, encryption, filtering and noise reduction. The GPP was responsible for hosting
the operating system and controlling the RF modem, user interface/keypad and few
other control functions. The roles of these processors had to adapt significantly to

2 Embedded DSP Devices 45

Fig. 2.4 Smartphone SoC processor (courtesy of Texas instruments)

meet the new demands of the modern mobile phone. As a consequence, the chip man-
ufacturers had to find innovative ways to develop multi-integrated SoC processors
for products that were smaller, lighter, more energy efficient and richer in features.

These processors, like the smartphone SoC processor shown in Fig. 2.4 [31], were
designed for complete solutions in one embedded system. The embedded DSP system
in Fig. 2.4 has a co-processor EPU that includes a RISC/ARM11 quad-core processor
and a DSP multi-core processor. These process the basic telephony functions but also
handle a multitude of additional peripherals, including GPS navigation, 3G and WiFi
network connectivity, high resolution touch screens, and cameras, as well as support
security. The EPU also interfaces with an image accelerator for image and video
processing and video decoding, and a 3D graphics accelerator for gaming and other
3D applications.

In such an embedded system the DSP processors or processor cores have to
perform several functions, a few of which include:

• Security: A DSP multi-core processor can be integrated in a SoC to perform the
function of a security module that contains a cryptographic engine responsible for
the logical protection of the voice, data and internetworking systems, as well as
providing support for the defense against malicious software and firewall acceler-
ation [1, 2, 48].

• GPS Navigation: In the GPS link there will be a DSP-based multi-channel satellite
receiver that handles the signals received from the satellites. The DSP processor

46 S. Reddy

will then obtain the location parameters by performing specific mathematical com-
putations on the received data [35].

• Voice-over-IP (VoIP): VoIP is a function whereby a user can make telephone calls
over the data/internet network as opposed to the GSM network. Under certain
conditions this could result in the user paying very little or nothing for calls. In
this scenario the DSP will perform the low bit rate coding and encoding of the
voice signals.

• Image and Video Capture: During image and video capture, a DSP processor will
be used to control the display prior to capture and then perform image processing on
the data stored in the buffer memory after capture. In addition, the DSP processor
can provide for features like face, smile and blink detection.

No other consumer electronics device in history has had such a popular global
impact, both socially and culturally, as the mobile phone. Since emerging onto the
scene, it rapidly spread from a just handful of countries to around 200 by 2010 [16].

It must also be emphasised that with the evolution of the smartphone, there become
an ever increasing need for security, as more and more personal and sensitive infor-
mation is being stored on, and transmitted between, these devices. Looking to the
future, it is not hard to see that the smartphone and tablet PC may displace a wide
range of existing computing and sensing devices.

2.4 Discussion

DSP is pivotal in systems that involve speech, vision, high-fidelity audio, modulation-
demodulation, image compression and compositing, beamforming, echo cancella-
tion, spectral estimation and real-time processing. These types of DSP subsystems
have broad ranging applications within the embedded devices market and are incor-
porated extensively into both the military and commercial sectors.

With the demand for more complicated, secure, smaller, faster and cheaper real-
time embedded systems, there will be a need to develop newer more advanced DSP
techniques and technologies. However, it is also important to note that as the number
of computationally expensive processes increase, so, too, does the power consump-
tion. A collaborative effort between improved RISC processor designs and more
energy efficient power sources is necessary in order for these systems to continue to
evolve.

References

1. ADSP-2141 SafeNet™ DSP Security System on Chip. Analog Devices. http://www.
analog.com/static/imported-files/product_highlights/ADSP2141_Brief.pdf (2000). Accessed
15 September 2011

2. ADSP-2141L Data Sheet. Analog Devices. http://www.analog.com/static/imported-files/data_
sheets/ADSP-2141L.pdf (2000). Accessed 15 September 2011

http://www.analog.com/static/imported-files/product_highlights/ADSP2141_Brief.pdf
http://www.analog.com/static/imported-files/product_highlights/ADSP2141_Brief.pdf
http://www.analog.com/static/imported-files/data_sheets/ADSP-2141L.pdf
http://www.analog.com/static/imported-files/data_sheets/ADSP-2141L.pdf

2 Embedded DSP Devices 47

3. ARM Architecture Reference Manual, 3rd edn. ARM Limited. http://www.altera.com/
literature/third-party/archives/ddi0100e_arm_arm.pdf (2000). Accessed 15 July 2011

4. ARM Holdings profits up on tablet and smartphone sales. BBC News. http://www.bbc.co.uk/
news/business-13207150 (2011). Accessed 15 July 2011

5. Blackman, S.S.: Multiple-Target Tracking with Radar Applications. Artech House Inc.,
Norwood, MA (1986)

6. Catsoulis, J.: Designing Embedded Hardware. O’Reilly (2005)
7. Clarke, P.: ARM reports sales, profits up in Q2. EE Times, News and Analysis. http://www.

eetimes.com/electronics-news/4204942/ARM-reports-sales-profits-up (2010). Accessed 15
July 2011

8. Cong, J., Fan, Y., Han, G., Zhang, Z.: Application-Specific Instruction Generation for
Configurable Processor Architectures. In: Proc. ACM International Symposium on Field-
Programmable Gate Arrays, pp. 183–189 (2004). doi: 10.1.1.122.9578

9. DSP and SIMD. ARM Limited. http://www.arm.com/products/processors/technologies/dsp-
simd.php. Accessed 15 July 2011

10. Dundamudi, S.P.: Guide to RISC Processors for Programmers and Engineers. Springer, United
States (2004)

11. FPGAs for High-Performance DSP Applications. Altera Corporation. http://www.altera.com/
literature/wp/wp_dsp_comp.pdf (2005). Accessed 11 July 2011

12. FPGAs Provide Reconfigurable DSP Solutions. Altera Corporation. http://www.altera.com/
literature/wp/wp_dsp_fpga.pdf (2001). Accessed 11 July 2011

13. Ganssle, J., Barr, M.: Embedded Systems Dictionary. CMP Books (2003)
14. Goldston, J., Bhattacharya, R.: Reaping the Benefits of SoC processors for Video Applications.

Texas Instruments. http://focus.ti.com.cn/cn/lit/wp/spry096/spry096.pdf (2007). Accessed 16
July 2011

15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Prentice Hall, New
Jersey (2008)

16. GSM Roaming and Coverage Maps. Mobile World Live. http://www.mobileworldlive.com/
maps/ (2010). Accessed 14 July 2011

17. Gupta, V.K., Vinod, T., Gupta, K.: Compiler directed Customization of ASIP Cores. In: Proc. of
the 10th Int’l Symp. on Hardware/Software, Codesign, pp. 97–102 (2002). doi: 10.1.1.16.8455

18. Heath, S.: Embedded Systems Design, 2nd edn. Newnes (2003)
19. Hu, j., Hoang X. D., Khalil, I.: An embedded DSP hardware encryption module for secure

e-commerce transactions. In: Security and Communication Networks 4(8), 902–909 (2011).
doi: 10.1002/sec.221

20. Islam, S., Ajmal, F.: Developing and implementing encryption algorithm for addressing GSM
security issues. In: International Conference on Emerging Technologies, pp. 358–361 (2009).
doi: 10.1109/ICET.2009.5353146

21. Katz, D.J., Gentile, R.: Memory Systems. In: Ganssle, J. (ed) Embedded Hardware, pp. 183–
238. Newnes (2008)

22. Katz, D.J.: Embedded Media Processing (Embedded Technology). Newnes (2005)
23. Krishna, C.M., Shin, K. G.: Real-Time Systems. McGraw-Hill (1997)
24. Laplante, P.A.: Real-Time Systems Design and Analysis, 3rd edn. Wiley-IEEE Press (2004)
25. Lau, D., Blackburn, J., Seely, J.A.: The Use of Hardware Acceleration in SDR Wave-forms.

Altera Corporation. http://www.altera.com/literature/cp/cp_sdr_hardware_acceleration.pdf
(2005). Accessed 12 July 2011

26. Li, Q., Yao, C.: Real-Time Concepts for Embedded Systems. CMP Books (2003)
27. Liu, D.: Embedded DSP Processor Design: Application Specific Instruction Set Processors

(Systems on Silicon). Morgan Kaufmann (2008)
28. Mody, M.: Video encoding, SoC development, and TI’s DSP architecture. Texas Instruments.

http://www.eetimes.com/design/signal-processing-dsp/4013053/Video-encoding-SoC-devel-
opment-and-TI-s-DSP-architecture (2006). Accessed 15 July 2011

29. Noergaard, T.: Embedded Board Buses and I/O. In: Ganssle, J. (ed) Embedded Hard-ware, pp.
137–182. Newnes (2008)

http://www.altera.com/literature/third-party/archives/ddi0100e_arm_arm.pdf
http://www.altera.com/literature/third-party/archives/ddi0100e_arm_arm.pdf
http://www.bbc.co.uk/news/business-13207150
http://www.bbc.co.uk/news/business-13207150
http://www.eetimes.com/electronics-news/4204942/ARM-reports-sales-profits-up
http://www.eetimes.com/electronics-news/4204942/ARM-reports-sales-profits-up
http://www.arm.com/products/processors/technologies/dsp-simd.php.
http://www.arm.com/products/processors/technologies/dsp-simd.php.
http://www.altera.com/literature/wp/wp_dsp_comp.pdf
http://www.altera.com/literature/wp/wp_dsp_comp.pdf
http://www.altera.com/literature/wp/wp_dsp_fpga.pdf
http://www.altera.com/literature/wp/wp_dsp_fpga.pdf
http://focus.ti.com.cn/cn/lit/wp/spry096/spry096.pdf
http://www.mobileworldlive.com/maps/
http://www.mobileworldlive.com/maps/
http://www.altera.com/literature/cp/cp_sdr_hardware_acceleration.pdf
http://www.eetimes.com/design/signal-processing-dsp/4013053/Video-encoding-SoC-development-and-TI-s-DSP-architecture
http://www.eetimes.com/design/signal-processing-dsp/4013053/Video-encoding-SoC-development-and-TI-s-DSP-architecture

48 S. Reddy

30. Noergaard, T.: Embedded Processors. In: Ganssle, J. (ed) Embedded Hardware, pp. 63–136.
Newnes (2008)

31. OMAP™ 2 Architecture: OMAP2420 Processor. Texas Instruments. http://focus.ti.com/pdfs/
wtbu/TI_omap2420.pdf (2005). Accessed 17 July 2011

32. Oraioglu, A., Veidenbaum, A.: Guest Editors Introduction: Application Specific
Microprocessors. IEEE Design & Test of Computers 20(1), 6–7 (2003). doi:
10.1109/MDT.2003.1173046

33. Oshana, R.: DSP Software Development Techniques for Embedded and Real-Time Systems.
Newnes (2006)

34. Parker, M.: FPGA vs. DSP Design Reliability and Maintenance. Altera Corporation. http://
www.altera.com/literature/wp/wp-01023.pdf (2007). Accessed 11 July 2011

35. Prasad, K.V.K.K.: Embedded/ Real-Time Systems: Concepts, Design and Programming.
Dreamtech Press, New Delhi (2009)

36. Pratt, W.K.: Digital Image Processing: PIKS Scientific Inside, 4th edn. Wiley-Interscience,
New Jersey (2007)

37. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms and Appli-
cations, 4th edn. Prentice Hall (2007)

38. Quereshi, S.: Embedded Image Processing on the TMS320C6000™ DSP: Examples in Code
Composer Studio™ and MATLAB. Springer, New York (2005)

39. Rabiner, L.R.: Digital Processing of Speech Signals. Prentice Hall (1978)
40. Sheldon, D., Kumar, R., Lysecky, R., Vahid, F., Tullsen, D.: Application-Specific Customization

of Parameterized FPGA Soft-Core Processors. In: International Conference on, Computer-
Aided Design (2007). doi: 10.1.1.76.3659

41. Sinha, P.: Speech Processing in Embedded Systems. Springer, New York (2010)
42. Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Tech-

nical Pub. (1997)
43. Stankovic, J.: Misconceptions About Real-Time Computing: A Serious Problem for Next-

Generation Systems. IEEE Computer 21(10), 10–19 (1988). doi:10.1109/2.7053
44. Stapko, T.: Practical Embedded Security: Building Secure Resource-Constrained Systems.

Newnes (2007)
45. Stergiopoulos, S.: Advanced signal processing handbook: Theory and implementation for radar,

sonar, and medical imaging real-time systems. CRC Press LLC (2001)
46. Stergiopoulos, S.: Implementation of adaptive and synthetic-aperture processing schemes in

integrated active-passive sonar systems. Proc. IEEE. 86(2), 358–396 (1998). doi:10.1109/5.
659491

47. The Evolving Role of FPGAs in DSP Applications. BDTI. http://www.bdti.com/MyBDTI/
pubs/fpga_article.pdf (2007). Accessed 11 July 2011

48. Tretter, S.A.: Communication System Design Using DSP Algorithms: With Laboratory Exper-
iments for the TMS320C6701 and TMS320C6711. Springer (2003)

49. Windrow, B., Stearns, S.D.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, NJ
(1985)

50. Wolf, W.: Computers as Components: Principles of Embedded Computing System Design, 2nd
ed. Morgan Kaufmann (2008)

51. Zhang, L., Li, S., Yin, Z., Zhao, W.: A Research on an ASIP Processing Element Architecture
Suitable for FPGA Implementation. In: International Conference on Computer Science and,
Software Engineering, 3, pp. 441–445, 2008. doi: 10.1109/CSSE.2008.580

http://focus.ti.com/pdfs/wtbu/TI_omap2420.pdf
http://focus.ti.com/pdfs/wtbu/TI_omap2420.pdf
http://www.altera.com/literature/wp/wp-01023.pdf
http://www.altera.com/literature/wp/wp-01023.pdf
http://dx.doi.org/10.1109/2.7053
http://dx.doi.org/10.1109/5.659491
http://dx.doi.org/10.1109/5.659491
http://www.bdti.com/MyBDTI/pubs/fpga_article.pdf
http://www.bdti.com/MyBDTI/pubs/fpga_article.pdf

Chapter 3
Microprocessors and Microcontrollers Security

Chris Shire

Abstract This chapter will consider the chip architectures used in embedded
security; how they have evolved over the past three decades, the current designs,
and the future trends. The chapter will consider the evolution of the microcontroller
Central Processing Units (CPU) cores such as the 8051, 6805. It will look at the
wide range of innovative and reduced instruction set designs, including popular off-
the-shelf microcontroller designs, microprocessors, and digital signal processors. It
will also consider other reduced instruction set designs, with reference to known
attacks and options for protection. It will look at the vulnerability of functions within
the chips such as memories and interfaces, and possible enhancements. Further
security measures for different memory types will be reviewed. Enhanced secu-
rity concepts using defensive designs, anti-tampering measures, and other hardware
protection are discussed.

3.1 Microcontrollers and Microprocessors Security Needs

From an abstract perspective there is little difference in the function of a micro-
controller and microprocessor, and in embedded applications the implementation
becomes blurred as to the outside world the computing device in the system is often
literally a “black box”. This chapter will use the euphemism of ”Embedded CPU” to
cover all the options in design and integration, unless discussing a specific nuance
of a design. This is because the designers or test engineers of the system are the only
people likely to appreciate the difference. There are several misconceptions about the
security of embedded systems. First that attacking the Embedded CPU is difficult,
because it is often deep inside a complete assembly. Second there is little value in the
embedded software or intellectual property. Finally, that people lack the motivation

C. Shire (B)

Infineon Technologies UK, Bristol, United Kingdom
e-mail: chris.shire@infineon.com

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 49
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_3,
© Springer Science+Business Media New York 2014

50 C. Shire

to attack an embedded control system. Attacking a single smart meter and turning
off the lights in one house seems trivial, it is only when this attack could be scaled up
to a city may people worry. As a result many people consider an embedded control
system is secure, because it has never been attacked. Justifying embedded security
is often a major issue. In addition by definition to embed an item is “to fix something
firmly in a surface or object”1 so that it is an integral part of a larger system. It is
therefore perceived that as an Embedded CPU cannot easily be physically removed
without damaging the system so it is not open to abuse and must be secure. While
from a physical point of view this may often be the case, it does not imply the device
is secure electronically.

The first issue to clearly determine is why the Embedded CPU might be attacked,
as this will likely determine the method of attack. When a thief steals intellectual
property, e.g. software or chip design, then destruction of the system may be of little
consequence. Alternatively the attacker may want to deny the use of the system to
others for a period of time so as to gain profit directly or indirectly. The physical
location of the system will have a bearing on the method of attack. If a system can
be accessed remotely and even better covertly, then the potential for attack is greater.
A system with strong physical security which is difficult or expensive to breach,
such as the cashbox of an arcade gaming machine might be attacked via their test
port. Not properly understanding the complete system’s security mechanisms and
potential attacker’s methods can render any Embedded CPU security useless. Of
course the more money spent on a security mechanism is in theory the better but
there may be consequences. One example is an intrinsically valuable object, such as
a royal seal stamp, could be stored in a very secure vault, but if fast frequent access
is required such security might impede the signing of official documents. There has
to be a balance of risk versus performance.

The detailed methods of attack are described in another chapter, but for an
Embedded CPU in an enclosed system the physical connections to the outside
world are often the weakest links especially those used for manufacturing tests,
e.g. a JTAG (the industry standard Joint Test Action Group serial interface on many
CPUs), remote programming, and peripheral connections, e.g. USB, Ethernet, etc.
From a physical point of view the housing of the system can include anti-tamper
mechanisms, conformal coatings, or epoxy encapsulation. It may even have some
countermeasures such as one-way screws or include some “security by obscurity”
such as the deletion of product identifiers on the Embedded CPU chip packages.
Beyond the physical assembly the electronic architecture of the Embedded CPU and
its associated components should be considered in any security analysis. To under-
stand the strengths and weakness of an Embedded CPU it is worth considering the
historical development of common architectures.

1 Definition from Macmillan Dictionary http://www.macmillandictionary.com/thesaurus/british/
embed#embed_4

http://www.macmillandictionary.com/thesaurus/british/embed#embed_4
http://www.macmillandictionary.com/thesaurus/british/embed#embed_4

3 Microprocessors and Microcontrollers Security 51

3.2 Historical Development

Embedded CPUs can be broken into two broad categories: microprocessors with vari-
ous peripheral components and microcontrollers which have most of its
memory and peripherals on chip, thereby reducing cost and size and often designed
for dedicated applications. In contrast to the personal computer and server markets,
a large number of basic CPU architectures are used today; these are Von Neumann
as well as various degrees of Harvard structures, Reduced Instruction Set Computer
(RISC) as well as non-RISC and Very Long Instruction Word (VLIW); word lengths
vary from 4 bit to 64 bits and beyond, mainly in Digital Signal Processors (DSPs)
although the most typical remain 8/16 bit. Most architectures have a large number
of different variants and formats, the most popular of which are manufactured by
several different semiconductor companies.

Some common architectures are or were denoted by the following code numbers:
65816, 65C02, 68HCxx, 68K, 78K, 8051, 80251, ARM, C167, ColdFire, COP8, H8,
MIPS, MSP430, PIC, PowerPC, SHARC, SPARC, ST6-ST32, TriCore, V850, x86,
Z8-Z8000. Information on any of these architectures can be found from their entry
in an Internet search engine. It can be seen that this multitude of different designs
may present an obstacle to any attacker by simple obfuscation of what CPU is used
in an embedded system. However, the underlying format of any design and therefore
its weaknesses can be traced back to the basics of logic designs.

Since Integrated Circuit (IC) logic designs started to include arithmetic processing
units with software programming, the potential for misuse either accidently or delib-
erately has been an issue. The earliest CPU’s in the 1970’s were made from off-
the-shelf components such as Bit Slice Processors (BSP). BSP’s used arithmetic
logic units (ALUs) that typically came in 4 bit increments. These could be assem-
bled together to make larger word lengths (8 bit, 16 bit, etc.) and were controlled
using Programmable Read Only Memories (PROM). From these early beginnings
developed the one chip microcontroller solutions found in every type of electronic
product today, to the multi-core processors powering laptops, servers, and games
machines. A direct descendant of the BSP is the Digital Signal Processor (DSP).

In 1971 Intel released its first real microprocessor, the 4004 and with it, the era
of microcomputers began [1]. Microcontrollers which included some form of on
chip memory first appeared in 1974 with the Texas Instruments TMS1000 with 1K
Byte of masked ROM and 64 × 4 bits of RAM for use originally in calculators2. In
1976, Intel introduced one of its earliest microcontrollers, the 8748 and 8048. They
were used extensively for computer keyboards, or programmed to perform certain
data conversion operations. Other Embedded CPUs were programmed with specific
stand-alone functions such as a calculator. From the 8048 came the 8051 and later
the 16 bit version the 80251. These designs were extensively licensed to over 20
semiconductor suppliers both as embedded cores and later synthesisable software
cores. To date it is estimated that over 5 billion embedded designs have been based
on the 8051 and its derivatives, mostly in smart cards.

2 http://www.ti.com/corp/docs/company/history/timeline/semicon/1970/docs/74tms_1000.htm

http://www.ti.com/corp/docs/company/history/timeline/semicon/1970/docs/74tms_1000.htm

52 C. Shire

From the start two issues regarding the reliability and security of systems became
evident, one internal, the other external. The internal problems were found either
when initially testing devices to ensure correct operation as construction faults within
multi-chip systems or faults in the PROM could lead to misbehaviour. These faults
could appear later in the field, due to the semiconductor process impurities or because
of the environment. Excess vibration, voltage, or electrostatic charge, either applied
by accident or on purpose, might damage the devices. The other threat was to the
intellectual property of the design. Clones from state-run semiconductor companies
in the USSR and other eastern bloc countries appeared within a few years3. The need
for clones was driven by the block on export of high technology by the USA and
the need to produce computers for military and commercial applications. The only
electrical protection at this time was often in the form of external devices that would
protect the Embedded CPU from electrical damage. Hardware protection consisted of
strong epoxy encapsulations to deter intruders and to ensure the component assembly
stayed together when vibrated.

From the beginning there was also seen a need to protect the software in the ROM
of a Embedded CPU as it represented the results of expensive software develop-
ment and sometimes key intellectual property. The masked ROM of the TMS1000
protected the code of the developer by making the command to read out the ROM
nominally inactive. These devices were used in simple games machines and so
became, at least as a hobby, the target of attack to allow people to sell cloned or
modified games. Various articles still exist (on illicit hacking websites) on how this
ROM might be read out using various hardware test functions.

3.3 The Microprocessor

The microprocessor is the portion of a computer system that carries out the instruc-
tions of a computer program. This term has been in use in the computer industry at
least since the early 1960s. The form, design and implementation of microproces-
sors have changed dramatically since the earliest examples, but their fundamental
operation remains much the same.

Early microprocessors were custom designed from logic circuits as a part of a
larger computer. However this has given way to the development of standard mass-
produced microprocessors. This trend generally began in the era of discrete transistor
mainframes and minicomputers and has accelerated with the popularity of the Inte-
grated Circuit (IC) and the underlying technology trend sometimes known as Moore’s
Law [2]. Semiconductor technology has allowed increasingly complex CPUs to be
designed and manufactured to tolerances in the order of a few tens of nanometers.

Early single chip CPUs supported 8 bit data and address buses such as the Intel
8080 or 16 bit as was TI’s TMS 9900. There are extensive references to the history
of CPU developments [3], but with regard to embedded systems there are a few

3 http://www.cpucollection.ca/Russian_and_ussr.htm

http://www.cpucollection.ca/Russian_and_ussr.htm

3 Microprocessors and Microcontrollers Security 53

significant steps which have driven this technology. Western Design Center Inc.
introduced the Complementary Metal Oxide Semiconductor (CMOS) 65816 a 16 bit
upgrade of the WDC CMOS 65C02 in 1984. This was the core of the Apple II
and later the Super Nintendo Entertainment System, making it one of the first and
most popular 16 bit embedded designs of all time. Intel followed a different path,
and upgraded their 4 bit 4004 designs to the 8 bit 8080t and eventually the 16 bit
Intel 8086, the first member of the x 86 families. Their derivatives were used in
a number of embedded systems. Intel introduced the 8086 as a cost effective way
of porting software from 8080 code. The 8088, a version of the 8086 that used
an external 8 bit data bus, was the microprocessor in the first IBM PC, the model
5150, but also used for several early embedded applications. Following up their
8086 and 8088, Intel released the 16 bit 80186, 80286. The 8086 and 80186 had a
crude method of memory segmentation, while the 80286 introduced a full-featured
segmented memory management unit (MMU) which could be used to protect access
to some software. The Intel family became the target of various clone manufacturers,
both legitimate licensees and reverse engineered chip suppliers. This lead to several
litigious incidents around chip design and intellectual property theft [4]. However it
also lead to the acceptance that chip design needed further security to, if not stop, at
least deter such issues in the future.

3.3.1 32 Bit Microprocessor Designs

16 bit designs had only been on the market briefly when 32 bit implementations
started to appear. The most significant of the 32 bit designs is the Motorola MC68000,
introduced in 1979. The 68 K, as it was widely known, had 32 bit registers, but used
16 bit internal data paths and a 16 bit external data bus to reduce pin count, and
supported only 24 bit addresses. Motorola described it as a 16 bit processor, though
it clearly has a 32 bit architecture. The combination of high performance, a large
16 MByte memory space, and low cost made it the most popular CPU design of its
class. The Apple Macintosh designs made use of the 68000, as did a host of other
designs in the mid-1980s and its derivatives such as the 68020 ever since. Other
large companies designed the 68020 and its derivatives (such the 68EC020 with
reduced 24 bit addressing) into embedded equipment such as laser printers Today’s
ColdFire [20] processor cores are derivatives of the respected 68020. The 68000 had
several clones again mostly legitimate.

From 1985 to 2003, the 32 bit Intel x86 architectures became increasingly domi-
nant in desktop, laptop and server markets and these microprocessors became faster
and more capable. In 1994 Intel introduced its Smart Die™ program for its 386, 486,
and Pentium products so it could supply CPU cores and peripherals for multi-chip
modules, for use in embedded computers such as hand held terminals and commu-
nication equipment.

54 C. Shire

3.3.2 64 Bit Microprocessor Designs

While 64 bit microprocessor designs have been in use in several markets since the
early 1990s, the early 2000s saw the introduction of 64 bit microprocessors targeted
at the PC market. One example is the PowerPC a RISC architecture created by
the 1991 Apple–IBM–Motorola alliance [5], also known as AIM. Derivations of this
design are now found in high end embedded systems in the network communications
and automotive engine management units. Several derivatives have been developed
as cores for embedding in a Field Programmable Gate Array (FPGA) by various
suppliers such as Altera, LSI logic, Lattice and Xilinx and as cores for various Apple
products. There are a multitude of Linux-related operating systems developed with
this platform for embedded applications.

Overall in the past decade or more as world trade became more open and the
semiconductor technology became more complex the benefit from cloning com-
plex CPU’s became less economic. The so called “Grey” market for unofficial sales
moved to remarking or repackaging lower specification original devices as high spec
units. This practice continues to this day. In the past 10 years, CPU designers have
now started to include hardware security functions, ranging from serial numbers to
dedicated encryption engines to ensure that users can verify on-line the source of
the device. This technique is effectively two factor authentication. The first step is to
use the serial number or credential, which can include a check sum, to verify that it
is a valid formatted serial number or credential. This will not stop copied hardware
serial numbers. The second step is for a hash function of data using this identity to
be verified by a remote trusted third party. This then ensures that clones cannot be
active in a population of connected devices. It does not solve the problem of cloning
for embedded devices with little or no remote connectivity. In these circumstances
the Embedded CPU’s architecture has to have further security protection integrated
at the start and to be continuously active when operational. This may include hidden
unique properties programmed into each individual Embedded CPU that cannot be
cloned, or a public/private key pair generated on chip that can be challenged to test
for authenticity of the device.

3.3.3 RISCs and ARM

A microprocessor is a general purpose product that may have many commands both
logical and arithmetic to allow easy programming. Several specialised processing
derivatives have followed from this basic concept. A digital signal processor (DSP)
has limited instructions but often with a very large data bus to allow for high data
throughput. Graphics processing units similarly in the past had limited or no general
programming facilities. However, ever since the first “general purpose” CPUs were
developed there has been a demand for high performance, dedicated functionality,
low cost designs; so-called RISC Machines. By implementing fewer instructions,

3 Microprocessors and Microcontrollers Security 55

the chip designer is able to dedicate some of the precious silicon real-estate for per-
formance enhancing features. In addition the benefits of RISC design simplicity are
a smaller chip, smaller pin count, and low power consumption. Among some of the
typical features of a RISC processor are a Harvard architecture which allows simulta-
neous access to all the memory by having separate buses for instructions and data. The
overlapping of some operations increases processing performance. Probably the most
popular RISC family today is the Acorn RISC Machine (ARM) architecture which
first appeared in 1985. It has since come to dominate the 32 bit embedded systems
processor space due to its efficiency, the low cost licensing model, and its wide selec-
tion of system development tools. Many mobile phones include an ARM processor,
as do a wide variety of other embedded products. There are microcontroller-oriented
ARM cores without virtual memory support, as well as multi-core processors with
virtual memory. It has been estimated that by 2011 that over 25 billion ARM cores
will have been shipped [6], the vast majority into embedded systems. ARM has been
licensed to over 60 commercial companies, including nearly all major IC manufac-
turers, and several other institutions. Only a few vendors are licensed to modify the
ARM cores. This approach has lead to common design and layout, without secu-
rity features making it an easy target for attack. So derivatives with security func-
tions were requested by the smart card industry. In 1999, ARM announced it was
looking at derivatives incorporating security features, called SecureCore, the first
public implementation was with Samsung in 2001 with the SC100 core [21]. This
core besides being a fully synthesisable design, offered randomised layout options,
secure debugging, controlled development to stop reverse synthesis, plus memory
protection features and anti-Differential Power Analysis (DPA) functions. From this
has come the Cortex-M series of microcontrollers including the special secure core
M3 (SC300) range and the ARM company has allowed further modification by at
least one vendor. The SC300 has become the preferred architecture for most of the
major smart card IC vendors, with various different extra security features. It pro-
vides a relatively common platform for the major software developers, i.e. the smart
card vendors. This allows at least some software portability from one IC vendor to
another, which has been a major hurdle to the industry in the past. In addition second
sources silicon suppliers for high volume smart card designs can be provided quickly
and less expensively. These derivatives can be considered for assessment to Common
Criteria, with certification to EAL5 High and potentially up to EAL6 High.

In 2003, ARM announced the introductions of security extensions for its micro-
processor range, marketed as TrustZone® [7] first for its ARM1176 and later found
in the Cortex A5 to A15 CPU range. It provides a low cost alternative to adding
an additional dedicated security core to a System-on-Chip, by providing two virtual
processors backed by hardware-based access control, including a 33rd bit to identify
secure commands. It offers a combination of MMU and caches uses tables to deter-
mine whether a particular level of memory exists in “Secure Mode” or “Non-secure
Mode”. This enables the application core to switch between two states, referred to
as “worlds” (to reduce confusion with other names for domains), in order to prevent
information from leaking from the more trusted domain to the less trusted domain.
This domain switch is generally orthogonal to all other capabilities of the processor,

56 C. Shire

thus each domain can operate independently of the other while using the same core.
Memory and peripherals are then made aware of the operating domain of the core
and may use this to provide access control to secrets and code on the device. Over
20 companies have taken licenses for the TrustZone® extensions, and variants have
been used in applications as varied as MP3 players, smart-phones and payment ter-
minals. The implementation the TrustZone® extensions are specific to each design,
and some may include other hardware security features. However, it would be dif-
ficult to apply any sort of formal security certification on a device which includes
both secure and insecure functions on the same chip.

3.4 Security Design of Embedded CPU Architectures

Today Embedded CPUs are at the heart of a huge range of commercial and industrial
equipment [22], including domestic appliances such as microwaves, DVD players
and televisions. They are used in cars for engine-control and service functions, in
medical instruments, and in many other areas. The widespread availability of Embed-
ded CPUs is a measure of their flexibility and cost when compared to a dedicated
hardware function. Usually, they have a high level of input and output (I/O) device
options including serial interfaces, e.g. SPI Serial Peripheral Bus (SPI), Control Area
Network (CAN), Universal Serial Bus (USB), general use I/O and other interfaces.
A microcontroller may minimise the number of external devices used in the sys-
tem by integrating much of the external interfacing to analog signals as many of
them have built-in analog-to-digital (ADC) and digital-to-analog converters (DAC),
comparators and pulse width modulators (PWM).

Early Embedded CPUs had 4 bit or 8 bit internal data buses, while modern micro-
controllers have 16 bit or 32 bit data buses to access external memory. Obviously,
the wider the data bus, the more difficult it is to micro-probe it and reverse engi-
neer. While the complexity, size, construction and general form of Embedded CPUs
have changed drastically over the past 40 years. It is notable that the basic design
and function has not changed much at all. Most modern Embedded CPUs can be
described as von Neumann stored-program machines, but a few do have a Har-
vard architecture. The first architecture uses separate memory for instructions and
data, while the latter uses a single memory structure to hold both instructions and
data. From the security point of view, the Harvard architecture should offer better
protection against micro-probing attacks. When attacking a von Neumann architec-
ture, an attacker could interrupt the CPU so that it will no longer execute branch
instructions or fetch instructions. The contents of the memory can be revealed by
micro-probing the data bus and storing the signals. The same attack when applied
to a Harvard microcontroller might reveal only the program code, whereas the data
memory, which usually contains passwords and decryption keys, may not be avail-
able. If a RISC design is too simple with few instructions, it might be easier to reverse
engineer it. A RISC with a complex instruction set may leave more distinctive power
traces making identification of each instruction through power analysis easier.

3 Microprocessors and Microcontrollers Security 57

Some Embedded CPUs derivatives have core designs with speed enhancement
features. One is an instruction pipeline. Each instruction is divided into some simple
subinstructions, which are executed by the CPU in step, with a pipeline controller
watching the process. Hence, the Embedded CPU will not be immediately execute
the code, instead it executes two or more instructions simultaneously. This makes
the power analysis more difficult, because two or more instructions can contribute to
the power trace. Some secure Embedded CPUs may have one or more slave crypto-
coprocessors [8]. These support encryption and related processing of either various
symmetric algorithms such as AES, 3DES or asymmetric algorithms such as RSA or
ECC. These firmware coded coprocessors typically provide hardware acceleration of
a range of functions such as multiple XORs, Galois Field multiplication/addition or
modulo multiplication while storing the intermediate results in a dedicated memory
of the crypto-coprocessor (SRAM). Such devices have numerous protection features
that prevent unauthorised analysis of their data, or reverse engineering. A crypto-
coprocessor block may include functions such as a random number generator in
order to house them in the same protective environment as the encryption function.
If the Embedded CPU is to be certified such random number generators have to use
bit sources with a high level of entropy, for example based on two independent free
running oscillators. Another common feature in many Embedded CPUs is a cache
memory that stores instructions and data that requires frequent and fast access. For
example, if the Embedded CPU executes a loop, then the instructions will be fetched
from the cache memory rather than from the external memory thus saving time. This
makes micro-probing attacks harder, as some data will not appear on the external
data bus.

The demand for hardware security began with embedded systems for consumer
products. Thirty years ago there was almost no protection against cloning of such
devices except legal and economic forces. Often Application-Specific Integrated Cir-
cuits (ASICs) were widely used. Such ASICs were simple state machines replacing
discrete logic components, thus reducing the size of the assembly and at the same
time protecting against competitors with less integrated designs incurring more cost
and larger solutions. These ASICs did not carry much security. Their functionality
could be determined by a simple analysis of the signals using an oscilloscope or
doing an exhaustive pattern analysis of their inputs and outputs. For example as the
consumer demand for a clock in every room grew, digital clock ICs were heavily
cloned. From the late 1970s, microcontrollers offered a very good replacement for
ASIC-based designs. They not only had internal memory and useful interfaces such
as LCD drivers, but some sort of security protection against unauthorised access to
the internal memory contents. Unfortunately, early microcontroller’s semiconductor
technology did not offer non-volatile storage for large programmes or variable data,
so this had to be stored in a separate chip outside the microcontroller thus allow-
ing the attacker to access them. Games machines had ROMs made with low-cost
mask technology allowing easy reverse engineering their contents. Replication of the
design could involve using a microcontroller with EPROMs, which although expen-
sive, it was economically viable if the games machine was very popular. This trend

58 C. Shire

continues today as even recently news of attacks on dongles used for “software
protection” in the consumer games market has been published [9].

The next step in security design was to place an Electrically Erasable Program-
mable Read Only Memory (EEPROM) data storage chip next to the microcontroller
inside the same plastic package or on the same die. To attack such a chip is not easy;
a professional attacker would have to take apart the sample and micro-probe the chip.
Such methods require equipment that cannot be afforded by a “hobbyist” attacker,
and so their only hope was to exploit a software bug to get access to the data. Even
today most microcontroller EEPROMs do not have any special hardware security
protection, with the exception of the obscurity of the programming algorithm. In
some cases the ROM read-back function is disguised, or replaced with a verify-only
function. The verify-only approach can be very powerful if implemented properly,
as it is in most microcontrollers used for smart cards.

Microcontrollers with on-chip program memory today often have one or more
security fuses that control access to the information stored in on-chip memory. These
fuses can be implemented in software or in hardware [10, 11]. Software implemen-
tation means that a password is stored in the memory or a certain memory location
is assigned as a security fuse. The earliest implementation was for the fuse to be in
the logic for the read-back function of the programming interface. The drawback of
this design is that the size of the fuse makes it easy to locate and perform an invasive
attack. For example, the state of the fuse could be reconfigured by connecting the
fuse logic output directly to the supply or ground line. Another well-known example
of such attacks is erasing the security fuse under a UV light. The next concept in
designs was to make the security fuse part of the memory access circuit, so that any
external access to the data is disabled if the fuse is set, usually the fuse is located very
close to the main memory or even shares some control lines with it. If the fuse shares
the same technology as the main memory array it makes it harder to locate and reset
directly. One solution, used in the Motorola MC68HC705C9A microcontroller, was
to place fuse cells bit-lines mixed in between the main memory cells. However, other
noninvasive attacks are possible, because a fuse cell was often a one-time program-
mable location in the memory so the fuse may operate differently from the normal
memory. As a result a combination of signals could be found under which, thus
allowing the access to the information stored in the on-chip memory. Noninvasive
attacks could be automated reducing time and effort. Alternatively, the attacker may
try using glitch attacks to confound the security check subroutine, or using power
analysis to see whether a password guess is correct or even partially correct. This is
useful if the fuse is in a separate memory cell to the main memory array. For exam-
ple, this was the case for early Microchip Peripheral Interface Controller (PIC) and
early Atmel AVR (this is an Atmel brand not an acronym) microcontrollers. In both
cases, the fuses could be easily found and disabled by one or another method. The
simplest way is to check the state of the fuse on power-up, on reset, or on entering the
programming mode. The state of the fuse might be changed for a short time by power
glitch or laser pulse. Storing the fuse state in a register may not help, because the
fuse state is checked only once and the register could be changed by fault injection.
The PIC16 × 84 became popular in many hobbyist applications because it uses a

3 Microprocessors and Microcontrollers Security 59

simple serial programming algorithm. It also used an EPROM memory, which was
easy to erase. It also has a 64 byte EEPROM for storage of user data. The PIC16× 84
was easily tweaked to allow hackers to read its protected contents, simple disassem-
bly software could then reproduce the source assembly files. Microchip corrected
this by introducing the PIC16F84 (and later the PIC16F84A) and discontinuing the
PIC16C84.

Fuses are more secure when located within the same memory array but with sep-
arate control and signal lines. For example, fuse and main memory cells can touch
each other with bit-lines, as in the Zilog Z86E33 microcontroller; or with word-lines,
as in the STMicroelectronics ST62T60 microcontroller. Even if the fuses could be
erased with electromagnetic radiation it is likely the main memory area would be
damaged trying to erase them. At the same time, semi-invasive methods may work
on some Embedded CPUs if the fuses have a separate control circuit that could be
attacked without affecting the main memory. Apart from different implementations,
the security fuse can be monitored in different ways. It is preferable to ensure the
fuses are checked each time there is a data access. It may be more secure if the
fuse state is monitored in real time and any change affects memory access. In this
case, any attacker will have to disable permanently the fuse to access the informa-
tion. A further improvement is the Anti-fuse [12]; this is a different kind of One-
Time-Programmable (OTP) memory that uses programmable interconnection links
between metal wires inside the chip. As these links are extremely small, (∼100 nm
wide) it is virtually impossible to identify their state and that gives an extremely high
security level to the devices based on this technology.

In some early Embedded CPU architectures there were various undocumented fea-
tures in their command sets, e.g. Z80, 8085, 8048 besides the occasionally obscured
ROM read out command. These commands were available, depending of the partic-
ular vendor, to offer commercial advantage to special customers. They could provide
test routines or to preserve compatibility with other members of the family, e.g. the
8085 with the 8086. These features varied by licensee, but it was common practice
in the early developments. One apocryphal command said to exist in some CPUs
was the HCF command—the Halt and Catch Fire command, [13], it offered either
a hazard to hobbyist programmers or a target for hackers. The 68000 HCF com-
mand is believed to be used as a memory checker during production, as it halts the
processor and reads through all memory locations as fast as possible and can only be
stopped by resetting the system. Certainly some exotic commands did exist on other
devices, some of which were discovered by the use of various disassembler tools
that had been developed to regenerate source code. Even in later designs such as the
Intel Pentium and some of its derivatives there was the so-called F00F command
or a bug. This instructed the CPU exception handler to stop servicing interrupts.
As a result, any Embedded CPU must be reset. This so- called “Bricking” command
of an Embedded CPU can be considered a serious security flaw and can be the target
of various “denial of service” attacks. Newer designs include non-executable bits to
make some address space secure. ARM has instigated this feature in its TrustZone(r)
concept to provide such a secure execution environment for some code.

60 C. Shire

To make invasive attacks more difficult the Embedded CPUs designs have used a
final layer metal or poly-silicon mesh for some time [14]. Logic paths in this mesh
are monitored for interruptions and short circuits, and cause reset or zeroing of the
EEPROM memory if triggered. In addition, sensors for light, voltage, frequency and
temperature maybe included to test for invasive attacks. Normally, such protection
is not used in ordinary Embedded CPUs because it increases the design cost. Such
sensors could be also triggered unintentionally in their environment such as in auto-
motive applications. Ordinary microcontrollers sometimes have been seen with a
fake top layer mesh, whilst this may not stop the determined reverse engineering
attempt it is an effective hurdle for simple optical analysis and basic micro-probing
attacks. In secure Embedded CPUs such meshes have incorporated various tamper
detection mechanisms and sensors. The logic lines in the mesh are polled to check
for timing interference, indicating a short circuit and the data on the lines may have
randomly changing encrypted data, thus discouraging false signal injection. How-
ever, not all meshes are perfect and flaws make micro-probing attacks possible. Some
semi-invasive attacks are still possible if the mesh has gaps between the wires and
light/radiation or a micro probe can pass through the gap into to the active areas of the
circuit. Some user programmable Embedded CPU designs have a non-standard pro-
gramming interface, allowing a one-time programmable option, effectively a WORM
function. In some recent Embedded CPUs further protection against micro-probing
attacks is provided by bus and memory encryption. This means even if the chip is
stripped down to its active layers without having access to the key materiel the sensi-
tive information cannot be retrieved. This protection process often prevents invasive
and semi-invasive attacks. In the past noninvasive attacks could still be possible if the
CPU used unencrypted data. The data reaching the CPU could then be vulnerable.
An example was the encrypted data stored in external program memory of the old
Dallas Semiconductor DS5002FP encryption engine. Weaknesses were found in the
data encryption method used in this CPU that lead to a relatively low cost attack
published several years ago [23]. In a standard Embedded CPU like the PIC micro-
controller, an attacker can easily trace the data bus coming from the memory to the
CPU. To reduce further the chance of a micro-probe attack, various non-standard
circuit layout processes have been used in secure Embedded CPUs. The standard
circuit blocks used in a CPU such as the register file, ALU, instruction decoder, have
been laid out in a pseudo-randomly way. This approach is sometimes called ‘glue
logic layout’ and it is widely used in ASICs. Glue logic makes it very difficult to
monitor the CPU information physically. Semi-invasive attacks will be difficult due
to random layouts of blocks. Of course given time the probing can be automated to
test every possible point and then cross-analyse the results. This approach takes a
long time and may not be successful. It may be easier to attack a memory block or
its control circuit as they cannot be implemented with a glue logic structure and are
often physically separate.

Semiconductor process changes to facilitate faster processing and smaller lower
cost production has become more expensive with each new generation of geometric
feature reduction. This progress is also increasing the costs to the attackers. Ten years
ago it was possible to use a laser cutter and a simple probing station to get access to

3 Microprocessors and Microcontrollers Security 61

any point on the chip surface. Even today, second hand semiconductor production
test equipment can be acquired quite cheaply. The original owners may have used
these tools to repair devices that might have errors in the top layer metal mask, which
might include the ROM of the user. These tools then provide potential for attackers,
with deep pockets, to attack some chips. However, with the latest multi-metal layer
semiconductor ICs, with silicon geometries measured in tens of nanometres, most
potential attackers are excluded and new attack methods must be found. For example,
the structure of the old Microchip PIC16F877 microcontroller was easily observable
and could be reverse engineered under a microscope. The second metal layer and
poly-silicon layer can still be determined even when buried under the top metal layer.
This is because each mask layer in the semiconductor fabrication process follows
the shape of the underlying layer. An observer may determine not only the top layer
logic functions but also shapes of circuits in structure of the deeper layers. With
newer technologies, for example in the Microchip PIC16F877A microcontroller,
each layer is smoothed using both chemical etching, and mechanical polishing before
the application of the next layer. In this way, the top metal layer does not indicate the
features of the deeper layers. The result is that for an attacker to identify the circuit
functions they carefully have to etch the chip layer by layer. Currently, many circuit
functions are spread across several layers, the result is a three dimensional jig-saw
with no big picture.

3.4.1 Security of Embedded CPU Memory

An Embedded CPU operates according to the program located in its memory. There
are many different memory types and most of them are used inside microcon-
trollers. The majority of recent Embedded CPUs are made with CMOS technology.
Embedded CPUs often have different memories on the same die. Developers can
then use the appropriate memory technology for each different data functions,
Static Random Access Memory (SRAM) for cache, Read Only Memory (ROM)
for programs, and EEPROM for user variable data, or program updates. This has led
to attackers trying to identify the memory cells and the control circuits as a focus
of different sensitive data. The EEPROM is likely to hold the user credentials, the
SRAM an individual session key. The ROM may hold the communication or encryp-
tion algorithms and of course the designers IP for all sorts of software processes.
From the traditional security point of view, an Embedded CPU with ROM has less
risk than one with EPROM memory, and in turn better than one with EEPROM or
Flash memory as the number of possible attack vectors are limited. Most external
memory devices are not designed with security in mind. For example, serial EEP-
ROMs can be read in-circuit, usually via the SPI or inter-IC (I2C) bus. It is also
difficult to securely and totally erase data from RAM and non-volatile memory.

Early Embedded CPUs incorporated a masked ROM or relied on external
Ultraviolet EPROM for program storage and SRAM for data storage. Masked
ROM is still used where large-quantity production and low cost are required.

62 C. Shire

Such microcontrollers may not be marked with their part number on the package
and have only a manufacturer’s logo and a ROM version number. Masked ROM
offers very good performance, but cannot be reprogrammed or updated. Normally,
the ROM of a standard Embedded CPU does not allow any form of external access.
There are few examples where a ROM is the last layer metal mask as it is intended
to be modified during production as a way of personalising the devices. In stan-
dard CMOS masked ROM the data is stored as a NOR function, this allows active
layer programming; the logic state is encoded by the presence or absence of link
to a transistor. Information from this type of memory is observable under an opti-
cal microscope. This type of feature was offered in Dallas Semiconductor/Maxim
iButton products [24] for serialisation and the information is programmed by cutting
memory bits with a laser cutter. This memory allows an attacker with sophisticated
tools to change the memory contents on a nominally secure product. For semicon-
ductor geometries smaller than 0.5 microns, further processing might be required to
remove the top metal layers, which may deter observation.

With the advent of microcontrollers with integrated UV EPROM, a reprogram-
mable single chip embedded design became possible. In fact, there were usually two
versions—one for prototyping, in ceramic packages with a quartz window allowing
write and erasure of the program and another in standard plastic packages for mass
production allowing a single One-Time Programming (OTP). The early devices had
some disadvantages as they required high voltages for programming, which might
not be available on the circuit board so in-circuit programming was not possible.
This was in effect a security measure as data could only be written only one byte or
word at a time, so taking a long time to program a whole chip. Some plastic packages
were not 100 % UV opaque allowing OTP devices to be erased, but the time for an
erase operation is around 20–30 minutes under a very intensive UV light source so
it was unlikely to be attacked without some careful planning. However, attacks on
devices using photographic flashgun have been known for some time [15].

George Perlegos at Intel developed Electrically Erasable PROM (EEPROM)
memory in the late 1970s. The first products were discrete memory devices and
it offered a great advantage over the EPROM by allowing full electrical control over
both write and erase operations. Due to high manufacturing cost and complexity,
it was not widely embedded in single chip Embedded CPUs until the early 1990s.
Even today, many embedded system may have a small serial bus EEPROM on board
to store configuration settings or transaction logs. The more recent Embedded CPUs
have relied on EEPROM, which has several advantages over the UV EPROM: it can
be reprogrammed electronically, in- circuit, up to hundreds of thousands of times;
the high voltages are usually generated by on-chip voltage charge-pump circuits; and
programming is much faster.

A further improvement of the EEPROM memory, called Flash EEPROM, is
becoming the main memory storage for modern Embedded CPUs. It offers much
faster programming, it can be reprogrammed in blocks saving a lot of time, and this
can be repeated thousands of times. Most of the modern microcontrollers with Flash
memory offer internal memory programming, thus allowing field code upgrades
without expensive programming tools. Flash memory also has high density offering

3 Microprocessors and Microcontrollers Security 63

3–5 times more storage capacity than the same area of EEPROM. The downside of
this memory type is that it can only be erased in blocks, which are relatively large.
That puts some strain on embedded software design where program updates are
required. Some microcontrollers offer an alternative solution to this problem, having
both new memory cells with a combined Flash and EEPROM type behaviour. Flash
EEPROM has many different layouts and structures; every IC manufacturer normally
has its own design process. The structure is made up of a floating gate memory with
either a NOR or a NAND structure. From the security point of view, all floating-gate
memories offer very good protection against invasive attacks, because of the very
small electrical charge used during programming, which is buried deeply inside the
memory cell, so it cannot be detected directly.

Another memory type uses a ferroelectric function to store the data. So called
FRAM, has been promoted as an alternative for EEPROM and Flash memories.
FRAM has a very fast write cycle and does not require internal high voltage gener-
ators, so could also replace some of the functions as SRAM used in an Embedded
CPU. FRAM has a two-transistor cell with nonlinear capacitors, which are polarised
depending on the applied electric field; the cell will keep its state even when unpow-
ered. FRAM has a disadvantage in that the Read operation destroys the contents
of the cell so that a refresh Write is required. However, FRAM offers very good
security because its logic state cannot be detected either optically or with probes.
Micro-probing of the memory data bus is of course still possible, unless the informa-
tion is encrypted. However, current FRAM has a limited number of read/write cycles,
the cell size is 3–5 times larger than a Flash cell and its fabrication technology is
more complex, so there are very few areas where FRAM-based memories are used.

Attacks on the regular layout areas of memory on a chip have forced chip designers
to introduce additional protection. For example, modern secure Embedded CPUs
may have a default setting of a one-time bootstrap software loader located in the
Flash memory that overwrites itself during initialisation. This eliminates any possible
access to the information, unless disabled by the system designer with a password.
The password can be stored at a certain address location in non-volatile memory.
For example, in the Texas Instruments MSP430F112 microcontroller, the read-back
operates only with the correct 32 bytes password. Although such protection seems to
be more effective than previous offerings, it is open to low-cost noninvasive attacks
such as timing attacks and power analysis. If the security code is sampled from the
memory during power-up or reset, it could present an attacker the chance to identify
the password. This could be done using a combination of brute force attack and
power glitches, or by trying to force the checking circuit to get the wrong state of
the memory.

Another hardware security issue for all types of memories is data remanence.
Remnants of stored data may exist and be retrievable from devices long after nom-
inally being erased and with the power removed, which could be useful to obtain
program code, temporary data, crypto keys, etc. In many modern Embedded CPUs,
a monitoring circuit is usually implemented, causing a reset of the hardware pro-
gramming interface or preventing any write/erase operations below or above certain
voltages, frequencies etc. Some system designers have assumed that the erased data

64 C. Shire

will disappear. In reality, some traces of the data may be left behind. Even in SRAM,
after power removal, have shown examples of data remanence, as when frozen some
SRAM cells retain information for hours [16]. To retrieve the trace of the data is
not easy, but for example during the chip erase, operation if the security fuse was
deactivated, the memory may be accessed normally. Then each transistor inside the
memory array has to be checked by micro-probing the internal memory bus. In gen-
eral, SRAM memory offers a very good level of protection by placing sensors into
the circuit to avoid low-temperature attacks.

3.4.2 Security of Embedded CPU Interfaces

Almost every modern piece of assembly equipment in a factory with an electronic
control unit is connected to a network. These networks carry information that con-
trols production flow, transfers manufacturing data, and provide remote equipment
management. It may be possible to diagnose and repair many failures, if the unit
equipment is connected to a network. Thus avoiding expensive on-site service calls,
and reducing production down time. It may be required to provide secure access to
the control system in a number of situations:

• To interrogate an industrial Embedded CPU for data, even when the manufacturing
machine is switched off.
• Reboot a controller station remotely.
• Ensure an operator panel is safeguarded with latest health and safety policies,

without halting operations or operator intervention.

All of these scenarios and more represent possible threats. An embedded system
designer must consider that attackers will attempt to access the Embedded CPU and
consider the following points of attack:

• Software programming interface
• Hardware programming interface
• Third party unverified protocols
• Read-back functions
• Hardware security fuses
• Software security fuses
• Discrete memory separate from the on chip memory
• Shared memory control lines
• Shared bit-lines
• Password locations
• Verification checks at power-up
• Permanent real time monitoring

Some Embedded CPU manufacturers intentionally leave a side channel access
to the code for testing or programming purposes after fabrication. Normally, the

3 Microprocessors and Microcontrollers Security 65

information on these test protocols is kept secret by the manufacturers. The pro-
gramming interface allows writing, verifying, reading and erasing of data in on-chip
memory. It could be implemented either in hardware such as a JTAG state machine,
in a proprietary interface, or in software (e.g. Mask ROM or Flash bootloader).
Before initial programming and a fuse has been set, some microcontrollers offer
a software controlled boot loader for in-system programming. Others offer a fast
hardware interface for mass production programming. For example, an Embedded
CPU may have in-circuit serial programming via a synchronous interface (e.g. SPI,
JTAG), fast industrial parallel programming, and a software boot loader via an asyn-
chronous serial interface (e.g. USB). The JTAG (IEEE 1149.1) interface maybe an
Achilles’ heel of the system. JATG can provide a direct interface to the internal
registers of Embedded CPU and so has become a common attack vector. A JTAG
interface to USB test harness can be bought or self-assembled with a few low cost
commonly available components, allowing automated attack routines to set easily
set up. Removing JTAG functionality from a device is difficult. System designers
usually disguise links, cut traces, or blow fuses. However, a determined attacker can
easily repair most of them. Such test lines are used in smart card ICs only during
the initial wafer manufacture. These lines are routed into the sawing corridors of the
die during chip layout. These lines are then destroyed during chip separation. This
technique when used with the combination of fuses make micro-probing for the lines
useless.

The In-Circuit-Emulator (ICE) is a commonly adopted tool as a software program
debugging technique. The GUI interface debugging software can help a legitimate
user to debug easily. If freely available, these tools may reduce the time taken to
attack an embedded CPU design. One solution for embedded system designers that
need to protect their embedded software, from competitors and counterfeiters, is
to use a secure Embedded CPU as an in-system software authentication device. To
protect embedded software from cloning a challenge is sent at random intervals
from the secure Embedded CPU. The response to the secure Embedded CPU is then
compared to the expected response. By providing a large number of challenges and
placing those in unique areas, the source code can be relatively well protected. This
makes it extremely difficult for anyone to reverse engineer the source code. This
added difficulty will make it more cost effective for attackers to develop an entirely
new system rather than modify the existing source code.

3.5 Advanced Chip Design

Advanced embedded designs may use more than a single chip CPU, and as part
of an ASIC or other VLSI design. Synthesisable logical blocks such as DSPs and
RISCs and CPUs have been available for nearly 20 years. Their first development
in the early 1990s, was to reduce the system cost by using the minimum functions
needed for an application and to improve the system size or performance or security.
Implementation tools are often optimized for a specific FPGA family or ASIC library

66 C. Shire

and for a given range of clock frequencies. When designing a synthesised Embedded
CPU, a few important aspects must be taken into account; area usage, performance
in terms of throughput, and added value. To protect what maybe a non-secure hard-
ware platform various techniques have been employed to protect the design from an
illicit observer, such as introduction of random or spurious logic blocks but these
may impact performance or power consumption. Synthesis tools have led to multi-
core designs for embedded applications incorporating two or more CPU’s with DSP
functions. Safety and security features are sometimes included such as error cor-
rection on the memory, parity checking on some interfaces and interrupt registers,
redundancy checking functions, and advanced memory lock protection. In addition
as previously described the software in an Embedded CPU-based system may be
protected often by a mixture of encryption and fuse protection, against unauthorised
attacks. Although this will provide a barrier to any reading of the memory optically
or by micro-probing the data bus, this data normally has to be decrypted somewhere,
often in or by the main CPU and stored in a SRAM cache pipeline ready for oper-
ation. The focus of the attacker may then try to detect any plaintext on the data bus
close to the CPU, or better still the key to decipher the ROM. It may be possible by
stopping the clock and literally freezing the circuit to read the contents of the SRAM
with impunity. As a further precaution, Embedded CPU chip manufacturers offer an
enhanced verify-only approach. In this case, a hash value of the content of memory
is compared to a secured value and a single-bit response in the form of pass/fail
sent back. The verification process can take place both in hardware or in software. It
may be impossible to verify the whole memory in one go, so the process is split into
blocks with their size limited by the available SRAM buffer or hardware register. The
result of the verification is either to stop the Embedded CPU on detection of the first
incorrect memory block, or to flag the status in a register. Of course, as described
ever more sensors can be included to test for invasive attacks and tighter geometry
meshes added to deflect probing or reverse engineering.

A radical departure to this concept has been developed by Infineon in the past
few years, given the name “Integrity Guard™” [17] it consists of three features;
error detection, full data encryption, and a new type of mesh shield. The concept is
focused on not, as in earlier generations, to add more sensors and protective devices
to the periphery of the Embedded CPU but to concentrate on protecting the data
at all times, so no plaintext is ever used. The concept includes a mesh that uses a
new shielding concept combined with intelligent secure wiring. The electrical signal
lines inside the chips are rated concerning their relevance, and on the basis of this
classification they are automatically routed and checked. An intelligent shielding
algorithm checks the chip’s layers, providing the final so-called “Active I2-shield”.
The error detection is based on a microcontroller with a dual CPU allowing error
detection in real time, even while processing. Both CPUs deliver their operational
results independently from each other. A comparator detects whether an operation
was performed the same, or if an erroneous operation was made. In the case of an
error, an alarm is issued. Even the cache is an active part of the error detection,
which is essential, as cache-based attacks will become a major threat for embedded
security in the near future. In addition the concept applies full encryption over the

3 Microprocessors and Microcontrollers Security 67

complete core and memories, leaving no plain text on the chip. The dual CPUs
utilise full hardware encrypted operation, with different secret keys used in each of
the CPUs. All memories are completely encrypted: for the memory buses and blocks
of RAM, ROM, EEPROM, and FLASH, a strong block-cipher hardware encryption
engine has been utilised. Data is enciphered from the memory encryption system
to the encrypted CPU without exposing plaintext. Peripheral buses are protected
using dynamically changing keys, and some peripherals work in encrypted modes.
For example, the new crypto coprocessor “SCP” (a Symmetric Crypto Processor for
Triple-DES and AES) utilises internal, dynamic encryption — just like the encrypted
CPUs. This prevents the presence of plaintext inside important parts of the chip. This
type of enhanced digital security is required as advanced attacks are developed, such
as micro coil-based localised Differential Electromagnetic Analysis (DEMA). This
concept is being applied to both traditional 16 bit Embedded CPU architectures
and to modified ARM designs. As with all innovation it can be expected that other
Embedded CPUs will also start to incorporate such concepts, but the cost of such
developments and the cost of such technology has to be balanced against the threat
risks.

3.6 Conclusion

The impact of embedded devices is huge. Overall, it is usually estimated that for
every desktop computer chip sold, 100 microcontrollers are sold for embedded sys-
tems. Techniques for creating secure high-reliability embedded systems have focused
historically on safety-critical markets, e.g. the aerospace, medical, and automotive
industries. In these sectors system failures can have fatal consequences. These appli-
cations remain important, but embedded microprocessors and microcontrollers now
also have an enormous impact in much broader areas of product development, such
as consumer applications as diverse as simple washing machines and as sophisti-
cated as games consoles. Manufacturers need to maximise the reliability, and the
security, of the key components in embedded systems in order to reduce the cost of
warranty repairs, minimise product recalls and ensure continued business. In sum-
mary, it is clear that Embedded CPUs have become more sophisticated and more
secure in the past 40 years. A typical modern average house may contain 10–20
devices with an Embedded CPU, mostly independent of each other. The average
citizen may carry 5–10 portable devices with Embedded CPUs as smart cards or in
smart phones etc. The average mid-range car may have over 50 Embedded CPUs
with over 50 % networked together. A factory employing 500 operators may have
over a 1,000 networked devices. While most of these Embedded CPUs may have
little access to the outside world, and little information of worth, the few such used
for payment or access rights may present a target for theft either physical or virtual.
However, as the issues of the “Semantic Web” [18] become reality there will be
need to increase security as threats from “denial of service” or malware attacks on
the user or the network provider will become more attractive. With the increasing

68 C. Shire

complexity of software and the possibility to provide remote updates there will be
need for remote authentication, and integrity management of an Embedded CPU’s
status. It is likely that self-checking of systems will have to move past parity checks
or error correction and look at frequent hardware and software image verification.
The need for embedded hypervisor Embedded CPU elements will increase. This idea
has been seen in the Trusted Platform Modules (TPM) for notebook computers, and
the various secure elements in mobile phones, engine management systems, gaming
consoles and smart meters. If the current trend [18] continues then by 2020 the cur-
rent level of machine-to-machine communications could have more than quadrupled.
There is little doubt that as the value of these communications increases, so will be
the need for embedded security.

References

1. Ed Glynnis Thompson Kaye “Intel: Innovator of the information revolution”, Published by Intel
Communications Dept 1984 [Online Available] http://www.intel.com/Assets/PDF/General/
15yrs.pdf

2. Gordon Moore: “Cramming More Components Onto Integrated Circuits” Electronics Mag-
azine, 1965, [Online Available] http://download.intel.com/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf

3. Mike MALONE, “The Microprocessor - A Biography”, Springer-Verlag 1995, 0–387-94342-0,
[Online Available] http://www.computerhistory.org/

4. An early example :Article 10 of 31, Article ID: 8901130503, Published on February 16, 1989,
San Jose Mercury News (CA), “Start-Up used Stolen Trade Secrets, Intel Charges”.

5. Charles R Mooore & Russell Stamphill: “The Making of the PowerPC”, Association of Com-
puting Machinery Communications of the ACM, June 1994, 37(6), [Online Available] http://
zmoore.net/CACM%20PPC%20Alliance.pdf

6. Mark Hachman, ARM: “We’ll Own over Half of the Mobile PC Market by 2015”: PC Magazine
May 31st 2011 [Online Available] http://www.pcmag.com/article2/0,2817,2386209,00.asp

7. ARM PLc; “Building a Secure System using TrustZone Technology”, ref PRD29-GENC-
009492C, [Online Available] http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

8. Helena Handschuh: “Smart Card Crypto-Coprocessors for Public-Key Cryptography” 2000
The Pennsylvania State University [Online Available] http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.1.9288

9. Ronald Huizer, ”Don’t Give Credit: Hacking Arcade Machines”, Immunity Inc, May 2011
[Online Available] http://www.immunitysec.com/infiltrate/presentations/Arcade_Attacks.pdf

10. Smart card handbook By Wolfgang Rankl, Wolfgang Effing Smart card Handbook 2003 Wiley,
ISBN 0-470-85668-8 page 535.

11. US patent: 5083293, “Prevention of alteration of data stored in secure integrated circuit chip
memory”, Gilberg, Robert C. (San Diego, CA), Moroney, Paul (Cardiff-By-The-Sea, CA),
Shumate, William A. (San Diego, CA), January 1992.

12. Inventors Cutter, Douglas J. (Boise, ID), Beigel, Kurt D. (Boise, ID), Ong, Adrian E. (Santa
Clara, CA), Ho, Fan (Boise, ID), Mullarkey, Patrick J. (Meridian, ID), Luong, Dien S. (Boise,
ID), Debenham, Brett (Meridian, ID), Pierce, Kim M. (Meridian, ID) United States Patent
5631862 “Self current limiting antifuse circuit”, Micron Technology, 20 May 1997.

13. HCF was first mentioned in conjunction with the Motorola 68000, in BYTE Magazine, Vol 2,
December 1977.

http://www.intel.com/Assets/PDF/General/15yrs.pdf
http://www.intel.com/Assets/PDF/General/15yrs.pdf
http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://www.computerhistory.org/
http://zmoore.net/CACM%20PPC%20Alliance.pdf
http://zmoore.net/CACM%20PPC%20Alliance.pdf
http://www.pcmag.com/article2/0,2817,2386209,00.asp
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9288
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9288
http://www.immunitysec.com/infiltrate/presentations/Arcade_Attacks.pdf

3 Microprocessors and Microcontrollers Security 69

14. Inventors Gilberg, Robert C. (San Diego, CA), Knowles, Richard M. (San Diego, CA),
Moroney, Paul (Cardiff-by-the-Sea, CA), Shumate, William A. (San Diego, CA) US
patent:4933898, Secure integrated circuit chip with conductive shield, 1990.

15. Hinds, D.J. Stokoe, J.C.D. British Telecom Research Laboratories, Ipswich, UK, IET Elec-
tronics Letters: June 20 1985 Volume: 21 Issue: 13, On page(s): 553–554 ISSN: 0013–5194.

16. Peter Gutmann. “Secure Deletion of Data from Magnetic and Solid-State Memory”, 6th
USENIX Security Symposium Proceedings, San Jose, California, July 22–25, 1996.

17. Peter Laakmann, Markus Janke “A New Security Concept For The Next Decade” Secure
Magazine Issue 2 2006. www.infineon.com/integrityguard.

18. Tim Berners-Lee, James Hendler and Ora Lassila: “The Semantic Web” Scientific American
Magazine (May 17, 2001). [Online Available] http://www.scientificamerican.com/article.cfm?
id=the-semantic-web

19. Harbor Research: 2010–2014 M2M & Smart Systems Forecast Report 2010 M2M & Smart
Systems Report Brochure.

20. Motorola Press release High Performance Embedded Systems Division today announced
the ColdFire(TM) MCF5200D Developer’s Chip at the Embedded Systems Conference,
September 12–15, 1995 in San Jose, CA. [Online Available] http://www.thefreelibrary.com/
MOTOROLA+ANNOUNCES+COLDFIRE+MCF5200D+DEVELOPER'S+CHIP-
a017376831

21. Samsung to use ARM core with security accelerator in 32-bit smart card chips
10/09/2001 [Online Available] http://www.eetimes.com/electronics-news/4105054/Samsung-
to-use-ARM-core-with-security-accelerator-in-32-bit-smart-card-chips

22. Designing Embedded Hardware, 2nd Edition By John Catsoulis Publisher: O’Reilly
Media Released: May 2005 Print ISBN:978-0-596-00755-3| ISBN 10:0-596-00755-8 Ebook
ISBN:978-0-596-55662-4| ISBN 10:0-596-55662-4.

23. Pirate War Causes Shut-Off of Battery Cards article by David Lawson Scrambling News. 1996
[Online Available] http://www.mycal.net/Group42/hack/tv/sat/scnews/news0306.htm

24. Dallas/Maxim datasheet DS1427 17.02.1998 [Online Available] http://datasheets.
maximintegrated.com/en/ds/DS1427.pdf

www.infineon.com/integrityguard.
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.thefreelibrary.com/MOTOROLA+ANNOUNCES+COLDFIRE+MCF5200D+DEVELOPER'S+CHIP-a017376831
http://www.thefreelibrary.com/MOTOROLA+ANNOUNCES+COLDFIRE+MCF5200D+DEVELOPER'S+CHIP-a017376831
http://www.thefreelibrary.com/MOTOROLA+ANNOUNCES+COLDFIRE+MCF5200D+DEVELOPER'S+CHIP-a017376831
http://www.eetimes.com/electronics-news/4105054/Samsung-to-use-ARM-core-with-security-accelerator-in-32-bit-smart-card-chips
http://www.eetimes.com/electronics-news/4105054/Samsung-to-use-ARM-core-with-security-accelerator-in-32-bit-smart-card-chips
http://www.mycal.net/Group42/hack/tv/sat/scnews/news0306.htm
http://datasheets.maximintegrated.com/en/ds/DS1427.pdf
http://datasheets.maximintegrated.com/en/ds/DS1427.pdf

Chapter 4
An Introduction to the Trusted Platform
Module and Mobile Trusted Module

Raja Naeem Akram, Konstantinos Markantonakis and Keith Mayes

Abstract The trusted platform module (TPM) is a tamper-resistant component that
provides roots of trust in secure computing and remote attestation frameworks. In this
chapter, we briefly discuss the TPM architecture, operations and services. The discus-
sion is then extended to the mobile trusted module (MTM)—to contrast and compare
different approaches to implement a trusted platform architecture. This illustrates the
vital role the ecosystem of a computing platform plays in the architectural design
decisions regarding the root of trust in a trusted platforms.

Keywords Trusted Computing · TPM ·MTM ·Mobile phones · Tablets

4.1 Introduction

The concept of a trusted platform is based on the existence of a trusted and reliable
component that provides evidence of the state of a given system. How this evidence is
interpreted is dependent on the requesting entity. Trust in this context can be defined
as an expectation that the state of a system is expected and so secure. This definition
requires a trusted and reliable entity called the trusted platform module (TPM) to
provide the trustworthy evidence regarding the state of a system. Therefore, a TPM
is a reporting agent (witness) not an evaluator or enforcer of the security policies. It
provides a root of trust on which an inquisitor relies for the validation of the current
state of a system.

R. N. Akram (B)

Department of Computer Science,
University of Waikato, Hamilton, New Zealand
e-mail: rnakram@waikato.ac.nz

K. Markantonakis · K. Mayes
Information Security Group, Smart Card Centre, Royal Holloway,
University of London, London, UK
e-mail: k.markantonakis@rhul.ac.uk

K. Mayes
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 71
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_4,
© Springer Science+Business Media New York 2014

72 R. N. Akram et al.

The TPM specifications are maintained and developed by an international stan-
dards group called the Trusted Computing Group1 (TCG). Today, TCG not only pub-
lishes the TPM specifications, but also those for the mobile trusted module (MTM),
Trusted Multi-tenant Infrastructure and trusted network connect (TNC). With emerg-
ing technologies, service architectures and computing platforms, TCG is adapting
to the challenges they present. In this chapter, we described the TPM and MTM
architectures along with the influence exercised by the ecosystem of the targeted
computing platform on their design. Finally, we discuss the future challenges facing
the TCG in the shape of restricted and technology specific initiatives proposed by
individual organisations.

4.2 The Trusted Platform Module

In this section, we open the discussion with a brief description of the trusted platform
framework that is then extended to the TPM architecture.

4.2.1 Trusted Platform Framework

The basic framework for the trusted platform is to have a root of trust (preferably in
hardware) that must be trustworthy, if an entity has to measure the trustworthiness
of a system. The root of trust in the TCG specifications [1, 2] is a collection of—a
root of trust for measurement (RTM), a root of trust for storage (RTS) and a root
of trust for reporting (RTR). The RTM is an independent computing platform that
has a minimum set of instructions, which are considered to be trusted for measuring
the integrity matrix2 of a system. On a typical desktop computer, the RTM will be
part of the basic input output system (BIOS) and in this scenario, it is referred as
core root of trust for measurement (CRTM). Where the RTS and RTR are based
on an independent, self-sufficient and reliable computing component that has a pre-
defined set of instructions to provide the platform authentication3 and attestation4

functionality; such a component is referred to as a TPM.

1 TCG: It is a non-profit industry standard organisation that “develop, define and promote vendor
neutral specifications for trusted computing”. Web site: http://www.trustedcomputinggroup.org/.
2 Integrity Matrix: To provide integrity assurance of a platform component, a TPM generates
the hash of individual subcomponents, this individual measurement is referred to as an integrity
measurement. Whereas, integrity matrix is the condensed value of the integrity measurements that
represent the overall state of the respective platform component (Sect. 4.3.4.1).
3 Platform Authentication: It provides the proof the platform’s identity and this identity may or may
not be associated with the respective user. A TPM can have unlimited number of platform identities
that are usually generated by the TPM itself (discussed further in Sect. 4.3.3).
4 Platform Attestation: It provides the proof that a platform can be trusted by providing the crypto-
graphically signed integrity matrix of the respective platform (further discussed in Sect. 4.3.4.4).

http://www.trustedcomputinggroup.org/

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 73

A platform can be considered to be a trusted platform if it has a TPM and support-
ing architecture for the “trusted building block” (TBB). The TBB includes CRTM,
physical connection between a CRTM and the motherboard (of the platform), con-
nection between a TPM and the motherboard, and functionality to detect the physical
presence. The physical presence implies the direct interaction of a user with the plat-
form, which is traditionally based on a secret credential that in theory is only known
to the respective user. By verifying the credentials, the platform assumes that the
platform owner is physically present. Credentials can be a simple password, USB
dongle or a smart card, etc. The TPM specification does not specify any implemen-
tation technique regarding the physical presence check. The specification defines
the physical presence as a signal from the platform to the TPM that indicates the
user has manipulated the hardware of the platform (e.g. typing on the keyboard) [1].
Figure 4.1, illustrates the trusted platform framework.

The trust boundary is a collection of the TBB and roots of trust (e.g. RTM, RTS
and RTR). A TPM extends the trust from roots of trust through transitive or inductive
trust. A transitive trust is a process that enables a root of trust to provide a trustworthy-
description (e.g. hash generation) of a second function (e.g. software). Therefore, the
requesting entity can then verify whether it can trust the second function based on
the integrity measurement provided by the respective TPM. The rationale behind
transitive trust is that if an entity trusts the TPM of a platform, it will also trust its
measurements.

4.2.2 Basic Architecture

In this section, we discuss the basic TPM architecture and its different components
that are shown in Fig. 4.2 and discussed subsequently.

Fig. 4.1 Trusted platform
framework Transitive

Trust

The Trust
Boundary

Trusted
Platform
Building

Block

74 R. N. Akram et al.

Trusted Platform Module

Input/
Output

Power Detection Volatile Memory Opt-In
Execution

Engine
Non-Volatile

Memory

SHA-1 Engine
Random Number

Generator
HMAC EngineKey Generation

Cryptographic
Processor

Fig. 4.2 Generic architecture of trusted platform module [1]

4.2.2.1 Input and Output

The input/output (I/O) component of a TPM provides protocol encoding/decoding
for data transfer over the communication bus. Furthermore, the I/O enforces the
access policies stated by the Opt-In (Sect. 4.2.2.8) or other TPM components. The
structure and design of the I/O are not specified by the TPM specifications, but left
to the discretion of the platform implementers.

4.2.2.2 Cryptographic Processor

The cryptographic processor is a dedicated hardware for cryptographic operations
that supports: (a) asymmetric encryption and decryption (including signature algo-
rithms), (b) asymmetric key generation, (c) Hashing (e.g. SHA-1) and (d) Random
Number Generation. A TPM might implement symmetric encryption, but TCG spec-
ification states that such algorithms should only be used internally by a TPM and not
exposed to general users.

4.2.2.3 Key Generation

This component provides the functionality to generate asymmetric and symmetric
keys. The key generation will use the algorithm implemented by the random number
generator (RNG) for generating random sequences. The requirements imposed by the
TCG for asymmetric key generation include mandatory compliance with the IEEE
standard P1363 [3] that specify primality tests. Whereas, the TCG specification does
not place any restriction or minimum requirements regarding the performance of the
key generation process.

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 75

4.2.2.4 HMAC Engine

The TCG specification requires that the HMAC implementation in a TPM should
conform to the RFC 2104 [4]. A TPM uses HMAC engine to ascertain the validity of
the Authentication Data (AuthData) and prove that the request received by the TPM
is not modified during transmission. Each object in a TPM that does not allow public
access has an associated AuthData of 160-bits.

4.2.2.5 Random Number Generator

Trusted platform module use the RNG for random-nonce and key generation along
with providing randomness for digital signatures. The TCG is open regarding the
implementation of the RNG and leave the design decision to the individual vendors.

4.2.2.6 SHA-1 Engine

The TCG specifies the SHA-1 hash algorithm [5] to support integrity measurement
generation. The hash algorithm is available for public access, but a TPM is not
regarded as a cryptographic accelerator; therefore, there are no performance restric-
tions on a TPM-based SHA-1 engine.

4.2.2.7 Power Detection

The TPM specification requires that a TPM should be notified of any power state
changes, which is obviously the responsibility of the host platform. On such an event,
a TPM might perform some tasks based on the pre-defined security and reliability
policy. For example, a TPM might restrict certain commands while the system is in
a particular power consumption state (e.g. power-on self-test, hibernate, and sleep,
etc.).

4.2.2.8 Opt-In

The Opt-In component manages different TPM states that include: on/off, enabled/
disabled and activated/deactivated. It also maintains and enforces the policies associ-
ated with individual states. These policies describe the requirements for authorisation
of a TPM user, or/and how to ascertain the physical presence. The TPM states are
discussed in detail in Sect. 4.3.2.

76 R. N. Akram et al.

4.2.2.9 Execution Engine

The TPM commands (instructions) [6] are executed by the execution engine in a
secure and reliable manner. The execution engine is an on-chip (within the boundary
of a TPM) processor that provides execution isolation.

4.2.2.10 Non-volatile and Volatile Memory

The non-volatile memory is used to store persistent data items that relate to a TPM’s
identity and associated state. Whereas, volatile memory is used to store temporary
data items including keys during the signing or decryption operations. Persistent
data items that are moved to the volatile memory location to facilitate the associated
operations (i.e. keys for signing or decryption operations), are stored back to non-
volatile memory (if there are any changes to them) at the end of the associated
operation.

4.3 TPM Operations

In this section, we discuss the main operations of a TPM including generation and
use of a endorsement keys (EKs) and attestation identity keys (AIKs). Later, we will
dive into the integrity measurement and reporting mechanisms. Finally, we detail the
delegation process for moving a user’s credentials (cryptographic keys, and related
data associated with a user) from one TPM to another.

4.3.1 TPM Endorsement Key

During the TPM manufacturing process, the TPM Entity (TPME) will initiate the
generation of a TPM endorsement key (EK). The EK is a 2048-bit RSA key pair
that is bonded to the respective TPM, and it is certified by the TPME [1]. Typically,
TPM manufacturers take the role of the TPME. The issued certificate also validates
the association of the EK with the respective TPM. The EK remains the same for
the entire lifetime of a TPM and due to security and privacy reasons, the EK is
not sanctioned to generate signatures. However, if a TPM implements (optional) the
“revoke trust” [1] functionality then the TPM can revoke the old EK and generate a
new EK (if required).

The public portion of the EK, which is termed as PUBEK by the TPM specification
does not have any security or privacy issues associate with its exposure, assuming
there is no association with other information [1]. A PUBEK can be considered a
platform identifier that is associated with the TPM hardware, and typically it is not
associated with personal information. Nevertheless, a PUBEK can be considered

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 77

personally identifiable information (PII) if it is associated with other PIIs or part of
the personal information in some way. The PII enables an external entity to uniquely
identify a relation between a platform and its user(s). Therefore, for privacy reasons
use of any such information that is related to the PII should be under the TPM owner’s
control.

For example, an attestation service (e.g. Certification Authority) might include
personal information related to a user in the AIK credentials that may also contain
the PUBEK; making AIK-PUBEK as PII. In such case, the PUBEK becomes privacy
sensitive information from the respective user’s point of view. To provide privacy to
the TPM users, the TPM specification requires that a TPM should allow the respective
owner to specify whether to include/disclose PUBEK along with the AIK. During
the AIK credential generation (Sect. 4.3.3), the user should be notified what personal
information is being included. Therefore, a PUBEK on its own is not privacy sensitive
information until the respective user permits it to be associated with an AIK.

4.3.2 TPM Ownership

A TPM can have up to eight operational modes shown in Table 4.1 that are formed
by combining the three states discussed in Sect. 4.2.2.8.

The S1 is the fully operational state of a TPM, and the S8 is the most restrictive
state where all functions of a TPM are off except the state change operations. The
TPM has to be under the ownership of an entity to perform all of the designated
operations. The ownership acquisition process in the TPM includes the generation

Table 4.1 TPM operational states

Operational mode Description

S1 Enabled–Active–Owned The TPM is enabled with all supported features
available and under the ownership of an entity

S2 Disabled–Active–Owned This state is similar to the S1 except all TPM
operations are restricted with exception of the
reporting TPM capabilities and Platform
Configuration Registers (PCRs) update

S3 Enabled–Inactive–Owned The TPM is enabled, but disables all TPM
operations except the once that changes the
TPM’s operational state (e.g. ownership change
or activating the TPM)

S4 Disabled–Inactive–Owned The TPM is disabled and inactive; however, it is still
in the ownership of an entity

S5 Enabled–Active–Unowned Similar to state S1 without any owner
S6 Disabled–Active–Unowned Similar to state S2 without any owner
S7 Enabled–Inactive–Unowned Similar to state S3 with no owner
S8 Disabled–Inactive–Unowned Similar to state S4 but not under any entity’s control

78 R. N. Akram et al.

of RTS, insertion of the shared secret (e.g. AuthData) and setting TPM policies. The
proof of ownership of the TPM constitutes the knowledge of the shared secret by an
entity.

The TPM ownership process generates a new storage root key (SRK) that is
associated with the particular user, and it acts as RTS. For each new user, the TPM
will generate a new SRK and the new user will not inherit any objects from previous
users. If the new user wants to inherit objects from other users then data migration
is requested that is discussed in Sect. 4.3.5. A TPM use SRKs to secure the data that
is stored on the external storage; an SRK provides confidentiality and integrity to a
given data—providing secure storage.

The new AuthData is inserted into a TPM using the AuthData insertion protocol
(ADIP). To change the AuthData, an entity can execute either AuthData change
protocol (ADCP) or asymmetric authorisation change protocol (AACP) [1]. During
the lifetime of a TPM, an entity can provide the proof of ownership to the TPM by
either using the protocols: object-independent authorisation protocol (OIAP), object-
specific authorisation protocol (OSAP) and delegated-specific authorisation protocol
(DSAP) [1]. The basic design principle of these protocols is to provide ownership,
command and parameter authentication along with protection against replay and
man-in-the-middle attacks. In this chapter we avoid detailing these protocols for the
sake of brevity; however, interested readers can consult TCG specification regarding
these protocols [1, 7].

4.3.3 Attestation Identity Keys

An AIK is a 2048-bit RSA key, which is generated on the request of the TPM owner
and stored in non-volatile storage outside the TPM; it is encrypted and integrity
protected by the respective SRK. The usage of an AIK is under the control of the
user who requested its generation. The AIK is used to generate signatures on data
that is only generated by the TPM internally (e.g. integrity measurements, keys, and
TPM status information, etc.). To provide assurance that the AIK is genuine and
associated with a trustworthy TPM, the TCG has defined two possible solutions.
One based on the privacy certification authority (privacy CA) and second on direct
anonymous attestation (DAA).

The AIK credentials are generated by an external entity, by the privacy CA. The
TPM will disclose the AIK (public part) with or without EK to the respective privacy
CA. The CA will attest the AIK and its association with the endorsement, platform
and/or conformance credentials.

In this solution, the privacy CA has to take part in every transaction between
an entity (verifier) that requests the TPM to provide platform authentication. This
imposes high availability restrictions on the privacy CA along with a possible issue
of a CA colluding with the verifier, which can create privacy concerns. Furthermore,
if a malicious user is able to obtain privacy CA (historic) transaction records in
which a TPM has participated, the malicious user will be able to uniquely identity

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 79

the respective TPM in future transactions. However, on a positive point, the privacy
CA- based architecture can effectively detect rogue TPMs, which have been com-
promised by a malicious user.

Another possible approach is DAA [8]. The DAA protocol enables a user to prove
to a verifier that she has a trustworthy (certified) TPM, and the verifier cannot even
tell whether it has communicated with the user before. The DAA protocol is based
on three entities: the TPM, DAA issuer and verifier. The DAA protocol consists of
two steps, first joining in which a TPM and DAA issuer executes a two-way protocol.
At the successful conclusion of the protocol. The DAA issues the AIK credential to
the TPM. In second step, the TPM uses the DAA credentials to prove to the verifier
the trustworthiness of the TPM—using zero knowledge proof. The DAA scheme
provides the same level of privacy along with the capability of detecting the rogue
TPMs without the availability requirement of the privacy CA. Furthermore, the DAA
scheme also effectively prevents the problem in which a malicious user can identify
a TPM based on previous communications.

4.3.4 Measurement and Reporting Operations

Before we discuss the integrity measurement process and how it is reported to the
local and remote entities, we should first discuss the platform configuration register
(PCR) that plays a crucial role in the trusted measurement and reporting framework.

4.3.4.1 Platform Configuration Register

A PCR is a 160-bit (20 bytes) data register that stores the result of an integrity
measurement, which is a generated hash of a given component (e.g. BIOS, operating
system or an application). Therefore, a group of PCRs form the integrity matrix.
The process of extending PCR values is as: PC Ri = Hash(PC R≥i ||X). Where i is
the PCR index, PC R≥i represents the old value stored at index i , and X is the byte
string that updates the PCR value. The “||” indicates the concatenation of two data
elements in the given order. The starting value of all PCRs is set to zero.

The TPM specification requires a minimum of 16 PCRs, numbering from PCR-0
to PCR-15. The first eight PCRs are reserved for TPM use, and this set is termed as
hardware PCRs as they store integrity measurement relating to the BIOS, hardware
configuration and ROM code (see Table 4.2). The remaining registers can be utilised
by the operating system (OS). A TPM manufacturer can opt for more PCRs as desired
and the decision is left to the respective manufacturer. The TPM specification requires
the use of a 32-bit index that indicates the maximum number of PCRs a TPM can
have; however, it also specifies that a TPM should not have PCRs with indices 230
or higher. The indices 230+ are reserved by the TPM specification for future use.
This means that a TPM manufacturer can only implement 214 optional PCRs with
indices 16-229.

80 R. N. Akram et al.

Table 4.2 Platform configuration registers

PCR Description

PCR-0 Stores the integrity measure of the BIOS
PCR-1 Integrity measurement of the motherboard configuration
PCR-2 ROM code (third party BIOS code)
PCR-3 ROM configuration (BIOS configuration)
PCR-4 Initial program loader (IPL) code
PCR-5 IPL configuration
PCR-6 Platform state data (sleep or hibernate)
PCR-7 TPM reserves this PCR for the manufacturer use
PCR-8 to PCR15 Not assigned by the TPM specification; however, in user of the

operating system and installed applications

The PCR values should be in the shielded location (inside TPM) and they are stored
in a volatile memory. On every system boot, a TPM will calculate new values for
individual PCRs and these values are then used to provide secure boot and platform
state attestation. A TPM does not make any decision regarding the validity of the
software whose hash is generated. Therefore, how the hash will be interpreted is left
to the discretion of the requesting entity.

The PCR values can be used to seal data, which will only be decrypted if the PCR
values matches on every boot. If a malicious user tries to boot a different OS or is
able to compromise the OS (i.e. installed a rootkit or backdoor to an OS), the PCR
values will be different and the data will not decrypt properly. However, the TPM
will not detect any changes to the OS once it is booted up or detect any malicious
activity due to exploitation of an existing bug in the OS or software. The TPM can
only detect any changes to the existing state of the OS or software before they are
initiated (i.e. begin execution).

The attestation mechanism discussed in Sect. 4.3.4.4, keeps track of all PCRs
associated with the software states. When an entity requests the attestation, it will
sign the PCR value with the sealed private key. If there is a change in any of the PCR
values during the system boot, the signature will not verify. This will indicate to the
requester that the system is not in the same state as before; whether it is still secure
is a decision that the requesting entity has to make.

4.3.4.2 Boot Process

When a user boots up her computer, the first component to power up is the sys-
tem BIOS. On a trusted platform, the boot sequence is initiated by the Core BIOS
(i.e. CRTM) that first measures its own integrity. This measurement is stored in
PCR-0, and later it is extended to include the integrity measurement of the rest of
the BIOS. The Core BIOS then measures the motherboard configuration setting, and
this value is stored in PCR-1. After these measurements, the Core BIOS will load

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 81

the rest of the code of the BIOS. The BIOS will subsequently measure the integrity
of the ROM firmware and ROM firmware configuration, storing them in PCR-2 and
PCR-3, respectively. At this stage, the TBB is established and CRTM will proceed
with integrity measurement and loading of the OS.

The CRTM measures the integrity of the “OS Loader Code” (also termed as
Initial Program Loader: IPL) and stores the measurement in the PCR. The designated
PCR index is left to the discretion of the OS. Subsequently, it will execute the “OS
Loader Code” and on its successful execution, the TPM will measure the integrity
of the “OS Code”. After measurement is taken and stored, the “OS Code” executes.
Finally, the respective software that initiates its execution will first be subjected to
an integrity measurement, and values will be stored in a PCR then sanctioned to
execute. This process is shown in Fig. 4.3, that illustrates the execution flow and
integrity measurement storage.

By creating the daisy chain of integrity measurements, a TPM provides a trusted
and reliable view of the current state of the system. Any software, whether part of
an OS or an application has an integrity measurement stored in a PCR at a particular
index. If the value satisfies the requirement of the software or requesting entity, then
it can ascertain the trustworthiness of the system. As discussed before, a TPM does
not make any decision, it only measures, stores, and reports integrity measurement

Trusted Building Block (TBB) and Roots of Trust

Core Root of Trust
(CRTM) Code

Load OS Loader
Code

Measure OS Loader
Code

Load OS Code

Measure OS Code

Load Application
Code

Measure Application
Code

PCR

Execution
Flow

Integrity
Measurements

Fig. 4.3 Trusted platform boot sequence

82 R. N. Akram et al.

in a secure and reliable manner. When a TPM reports an integrity measurement, it
is recommended that it should generate the signature on the value - to avoid replay
and man-in-the-middle attacks [1].

The secure boot process relies on the BIOS of the system to provide the CRTM.
However, we note that this is not the only method to perform a secure boot using
the TPM. The intel trusted execution technology (Intel TXT) [9] allows CRTM to
be moved from the BIOS to the CPU.

4.3.4.3 Secure Storage

The internal non-volatile memory of a TPM is not large enough to store all data related
to a system and its users. Therefore, the TPM specification allows storage of data on
general-purpose non-volatile memory in a secure manner. This involves encrypting
data before communicating out of a TPM (chip) including the cryptographic key
material, except for the RTS. The RTS is actually the SRK that is discussed in
Sect. 4.3.2.

In Fig. 4.4, two of the possible key hierarchies on a trusted platform are shown
and each child node is sealed (encrypted) under the parent key. Figure 4.4, illustrates
scenarios of a single-user platform, and a multiple user platform that is under an
administrative control (i.e. corporate or parental control). The TPM owner in the
first case is a user, and the user key (basically a storage key) is a direct child of the
respective SRK. This key will not be used unless the user provides the associated
AuthData. However, in the second case the TPM is under the ownership of a system
administrator, and all user keys are direct children of the administrator key in Fig. 4.4.

EK

SRK

User 1 Key

Signing Key Binding Key Storage Key

AES Key 2AES Key 1

Signing Key Binding Key

Application
“A” Key

EK

SRK

User 1 Key

Signing KeyBinding KeyStorage Key

AES Key 2AES Key 1

Binding Key Signing Key

Application
“A” Key

User 2 Key

Signing Key Binding Key

AES Key 2AES Key 1

Administrator’s Key

Trusted Platform (Single User) Trusted Platform under Administrative Control (Multiple Users)

Opaque
Data

Fig. 4.4 Examples of a trusted platform key hierarchy

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 83

Next to the user’s key, (depending upon the privileges associated with each user)
there can be three types of keys: a signing key (i.e. AIK), binding key and storage
key. The signing key is used during the attestation process to provide the requester a
signed integrity measurement. The binding key is used to store symmetric keys, and
it is not used for signing any data. The process of binding and sealing is different
in the TPM specification. In binding, data is encrypted with a key, and before it is
used the data is required to be decrypted. Where in the sealing, not only the data is
encrypted, but it is associated with a PCR state, and it will only be decrypted if the
PCR value is the same as at the time of encryption.

Finally, the storage key gives the privilege to a user to load keys (or generate
them in the TPM). As in Fig. 4.4, “User 1” loads the key material for an application
“A”. The opaque data can be any data related to the application that it is requested
to be encrypted. A point to note is that only the first two keys in the hierarchy (EK
and SRK) are stored on the TPM. All other keys and opaque data are stored on
general-purpose storage encrypted by their parent keys in the hierarchy (Fig. 4.4);
thus, providing the secure storage.

In the second scenario, an administrator takes the ownership of the TPM and then
creates two users. Each user has her own storage key, and they are restricted by the
policies set by the administrator. For example, in Fig. 4.4 “User 2” cannot load keys
for other entities or applications as the administrator did not sanction her to have
a storage key. Where “User 1” is allowed by the administrator to load keys for the
application “A”.

4.3.4.4 Attestation

This is the process of providing proof that the respective TPM is trustworthy to report
the integrity matrix to the requesting verifier. The process, involves the generation
of a signature using the respective AIK on the (associated/requested) PCR values.
The signature proves to a verifier the validity of the integrity measurement stored
in PCRs. The choice of the AIK and the PCR index is dependent on the verifier,
platform (OS), and application.

4.3.5 Migration Model

The TPM specification provides a flexible architecture to support trusted platforms.
One feature is the possibility that keys and related data can be migrated either for
backup or transfer purposes. From the migration point of view, there is no particular
difference between the backup and transfer of TPM keys. The backup process can be
considered as key archiving, in which TPM keys are stored on a protected and safe
server. The key material can be restored on to the respective TPM in case a system
restore is required after the system crashes (failure). The transfer mechanism comes
to play when data related to a user is migrated from one system to another; such a

84 R. N. Akram et al.

EK

SRK

User 1 Key

Signing
Key

Binding
Key

Storage
Key

AES Key 2AES Key 1

Binding
Key

Signing
Key

Application
“A” Key

User 2 Key

Signing
Key

Binding
Key

AES Key 2AES Key 1

Administrator’s Key

Opaque
Data

Migratable Keys

Non-Migratable Keys

Platform Key
(Migratable)

T
P

M
 1

T
P

M
 2

Migration Process

(1)
Migration (Initiated

by TPM 1)
Public Key

Archive Key

(2)
Platform Key warped

in Archive Key of
TPM2, TPM1 sends
the warp to TPM2

(4)
Unwrap the

Platform Key of
TPM1 by TPM2

Private Key

EK

SRK

Administrator’s
Key

User 1 Key

Signing
Key

Binding
Key

Storage
Key

AES Key 2AES Key 1

Binding
Key

Signing
Key

Application
“A” Key

Opaque
Data

Migratable Keys

(3)
Transfer

migratable keys
of TPM1 to TPM2

Platform Key
(Migratable)

Fig. 4.5 Migration process between two TPMs

scenario may be possible in a corporate environment where employees move around
and at each location they might have different (computer) systems.

The pre-requisite of the migration architecture is that all keying material that is
required to be migrated should be flagged as migratable. As shown in Fig. 4.5, the
TPM 1 has two users and keys belonging to User 1 are not migratable. However,
key material related to User 2 is flagged as migratable by the TPM owner (in this
case the system administrator). At the destination, whether it is an archiving server
or a TPM–there should be an Archive Key. In Fig. 4.5, we have chosen TPM 2 as the
destination that has an Archive Key as a child to the SRK. The migration process
initiated by the user (or system administrator) is shown in Fig. 4.5 with control flow
depicted as double arrowheads and described below:

1. The TPM 1 initiates the migration process by requesting the public part
(PKArchiveKey) of the TPM 2’s archive key. The TPM 2 provides the public part
of the archive key. The archive key is a RSA key of length 2048-bits.

2. The TPM 1 will warp (encrypt) the migratable Platform Key using the
PKArchiveKey of TPM 2. The encrypted key is then transferred to the TPM 2.

3. All key material that is encrypted by the Platform Key of the TPM 1 is transferred
to the general-purpose memory accessible to the TPM 2.

4. The TPM 2 will decrypt the wrapped Platform Key and make it a child of the
SRK.

During the backup process, the archiving server can take the role of the TPM 2
and step four will be deferred until the backup is required to be restored onto the
same or new TPM.

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 85

4.4 The Mobile Trusted Module

The growth of the mobile computing platforms has encouraged TCG to propose the
MTM. In this section, we briefly discuss the MTM architecture and operations along
with how it differs from the TPM.

4.4.1 Basic Architecture and Operations

The ecosystems of mobile computing platforms (e.g mobile phone, tablet, and PDA)
are fundamentally different to traditional platforms. Therefore, the architecture of
the MTM has only some features from the TPM specification, and introduces new
features to support its target environment. The main changes introduced in the MTM
that make it different than the TPM specification are stated below:

1. The MTM is required not only to perform integrity measurement during the
mobile-device bootup sequence, but also enforce the security policy that aborts
the systems from initiating securely if it does not meet the trusted (approved) state
transition.

2. The MTM does not have to be in hardware, it is considered as a functionality,
which can be implemented by the mobile manufacturers as an add-on to their
existing architectures. It is not mandatory to have MTM in hardware, but it is
profoundly recommended.

3. Some commands that are mandatory for the TPM are optional for the MTM (e.g.
DAA).

4. The MTM specification supports parallel instances of MTM, associated with
different stakeholders.

The MTM specification [10] proposes an abstraction architecture enabling mul-
tiple instances of the MTM supporting different stakeholders as shown in Fig. 4.6.
Each instance of the abstract MTM is referred to as an engine, where each of the
engines are under the control of a stakeholder including mobile manufacturer (Device
Engine), Mobile Network Operator (Cellular Engine), Application Provider (Appli-
cation Engine), and User (User Engine); as illustrated in Fig. 4.6. A point to highlight
is that each engine is an abstraction of a trusted services associated with a single stake-
holder. Therefore, on a mobile platform there can be a single hardware that supports
the MTM functionality, which is being accessed by different engines.

Each abstract engine on a mobile platform supports: (1) provision to implement
trusted and non-trusted services (normal services) associated with a stakeholder,
(2) self-test to ascertain the trustworthiness of its own state, (3) storage of EK (which
is optional in MTM) and/or AIKs and (4) key migration.

We can further dissect each abstract engine as components of different services
as shown in Fig. 4.7. The non-trusted services in an engine cannot access the trusted
resources directly. They have to use the APIs implemented by the trusted services.

86 R. N. Akram et al.

MTM MTM MTM MTM

Device Services

Trusted Services

Trusted
Resources

Cellular Services

Trusted Services

Trusted
Resources

Application
Services

Trusted Services

Trusted
Resources

User Services

Trusted Services

Trusted
Resources

Device Engine Cellular Engine Application Engine User Engine

Fig. 4.6 Possible (generic) architecture of mobile trusted platform

Non-Trusted Services

Trusted Services

D
ev

ic
e

E
ng

in
e

External Non-Trusted ServicesExternal Trusted Services External Non-Trusted Resources

Trusted Resources

Reporting Verification Enforcement

MTM

Measurement Storage

Fig. 4.7 Generic architecture of an abstract engine

The trusted resources, including reporting, verification, and enforcement are new
concepts that are introduced in the MTM specifications. The MTM measurement
and storage services shown in Fig. 4.7 are similar to the TPMs discussed in previous
sections.

The MTM specification defines two variants of the MTM profile depending upon
who is the owner of a particular instant of an MTM. They are referred as mobile
remote ownership trusted module (MRTM) and mobile local ownership trusted mod-
ule (MLTM). The MRTM supports the remote ownership, which is either held by the
mobile manufacturer or mobile network operator, where MLTM supports the user
ownership.

The roots of trust in the MTM include the ones we discussed in TPM includ-
ing RTS, RTM and RTR; however, the MTM introduces two new roots of trust
that are root of trust for verification (RTV) and root of trust for enforcement (RTE).
During the MTM operations on a trusted mobile platform, we can logically group
different roots of trust; like RTM and RTV together to perform an efficient measure-
verify-extend operation, illustrated in Fig. 4.8. Similarly, RTS and RTR can be

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 87

RTM

(1) Integrity Measurement

Process Initiated

Program Code

Configuration

Event

Event Data
Integrity

Measurement

RTV
(2') Execution Transfer

(3) Read Event
and Measurement

Reference Integrity Metric (RIM)

Events

Integrity Measurements

(4) Retrieve
Associated

Measurement

Process Executes

Program Code

Configuration

(7) Sanction execution

Stored
Measurement

Log

(5) Store the Event Log

MTM(6) Extend PCR

(2) Event Generation

Fig. 4.8 MTM measurement and verification process

grouped together to provide secure storage and trustworthiness of the mobile plat-
form.

The MTM operations as shown in Fig. 4.8 begin when a process starts execution,
and they are listed as below:

1. The RTM will perform the integrity measurement of the initiated process.
2. In the second step, the RTM will register an event that includes the event data

(application/process identifier) and associated integrity measurement. The RTM
then transfers the execution to the RTV.

3. The RTV will read the event registered by the RTM.
4. The RTV will then search the event details from the reference integrity metric

(RIM). The RIM includes the (trusted) reference integrity values associated with
individual events; populated by the engine owner. The RTM will measure the
integrity value of the event and RTV will perform the comparison with associated
(trusted) reference integrity value stored in the RIM. If the measured integrity
value from RTM does not match, the MTM will terminates the execution or
disable the process. If the verification is successful then it will proceed with step
5 and 6 along with sanctioning the execution (step 7). This operation makes the
MTM different than the TPM, as the later does not make any decision regarding
the trustworthiness of the application or process.

5. The RTV will register the event in the measurement logs. These logs give the
order in which the measurements were made to generate the final (present) value
of the associated PCR.

6. The RTV will extend the associated PCR value that is stored in the MTM.
7. If verification is successful, it will sanction the execution of the process.

The RIMs are issued as part the RIM certificates (RIM_Certs) by an authentic
and authorised entity referred as RIM_Auth. A RIM_Auth can be an external entity
or the engine owner itself. Each RIM-Cert is verified by the TPM verification keys,
which is a hierarchical structure of keys, set up by the engine owner. The engine
owner referred to as the root verification authority (RVA), has a public key that
is pre-configured to the engine. The public key of the RVA, also referred as RVA
identifier (RVAI), should be integrity protected as any successful modification to the
RVAI can enable a malicious user to load RIM_Certs. The RVA acts as a root CA in

88 R. N. Akram et al.

the MTM key hierarchy, and it might sign the RIM_Cert itself, delegate the authority
to a third party, or even authorise third parties to issues RIM_Cert signing privileges
to their affiliates.

4.5 TPM/MTM Technology Contenders

In the mobile platforms market, new technologies are introduced that claim to offer
secure platform services making them competitors to the MTM (and to some extend
also to the TPM). In this section, we discuss some of these new proposals then
compare them with the MTM/TPM.

4.5.1 ARM TrustZone

The ARM TrustZone provides an architecture for a trusted execution platform, which
has its application in mobile platforms. The underlying concept is providing two
virtual processor with hardware level segregation and access control [11, 12]. This
enables the ARM TrustZone to define two execution environments termed as: Secure
world and Normal world. The Secure world executes the security and privacy sen-
sitive components of applications, where as normal execution can be taken place in
the Normal world. The ARM processor manages the switch between the two worlds
that also include the switch in the contents of the memory and peripherals (i.e. they
are notified of the switch between the worlds). The ARM TrustZone is implemented
as security extensions to the ARM processors (e.g. ARM1176JZ(F)-S, Cortes-A8
and Cortex-A9 MPCore, etc.) [12].

4.5.2 M-Shield

The Texas Instrument has designed the M-Shield, a secure execution environment
for the mobile phone market [13]. The M-Shield is a stand-alone secure chip
(unlike ARM TrustZone), and it provides a secure execution and limited non-volatile
memory.

4.5.3 GlobalPlatform Device

The GlobalPlatform device (GPD) is the GlobalPlatform’s initiative for trusted exe-
cution environment (TEE) [14, 15] for mobile phones, set-top boxes, utility meters
and payphones, etc. The GlobalPlatform defines a specification for interoperable

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 89

secure hardware, which is based on the experience they had with the smart card
industry. It does not define any particular hardware, which can be based on either a
typical secure element or any of the previously discussed tamper-resistant devices.
The underlying ownership of the device still predominately resides with the GPD
issuing authority, which is similar to the GlobalPlatform’s specification for smart
card industry [16].

4.5.4 Trusted Personal Devices

The term trusted personal devices (TPD) was coined by the Integrated secure
platform for interactive Trusted Personal Devices (InspireD) project. The aim of
the project was to develop a next generation of smart cards to meet the challenges
of privacy, trust and security form emerging technologies like mobile devices and
pervasive environments [17].

The TPD gives the management privileges to the user but not the “ownership”
of the platform. The platform is still control by a centralised authority (i.e. card
issuer) and the user gets the privilege of using the device or not. They cannot request
installation or deletion of an application. The architecture of the TPD is similar to
the smart card, with an exception of different form factors that include SIM card,
secure digital (SD) card and universal serial bus (USB) memory stick, etc [17].

4.5.5 Secure Element

Secure elements (i.e. smart cards) are tamper-resistant and reliable devices that are
used as security tokens. Traditionally and unlike the TPM, secure elements are under
the control of a centralised authority and users do not have any authority except
for the decision to use it. However, there are proposals that enable a user to gain
ownership of her secure element and request installation/deletion of any application
she is entitled to [18, 19]. During the discussion in next section, we assume a secure
element that is under the user’s control similar to the MTM.

4.5.6 Comparative Analysis of TPM/MTM Technology Contenders

In this section, we list some security and reliability requirements that a typical mobile
computing platform might require. Later in Table 4.3, we compare the MTM and other
proposals discussed in previous sections, against these requirements.

1. Execution protection: Defined commands related to security and privacy sensi-
tive processing are executed in a secure and reliable environment.

90 R. N. Akram et al.

Table 4.3 Comparison of different candidate tamper-resistant devices for a mobile platform

Criteria MTM ARM TZ M–Shield GPD TPD SE

1. Execution protection Yes Yes Yes Yes Yes Yes
2. Storage protection (volatile) -Yes -Yes Yes Yes Yes Yes
3. Storage protection (non-volatile) -Yes -Yes Yes Yes Yes Yes
4. Tamper-resistant Yes No Yes Yes Yes Yes
5. Tamper-evident Yes No Yes Yes Yes Yes
6. Scalability Yes Yes Yes No No Yes
7. Interoperable architecture No NA NA Yes Yes Yes
8. Dynamic relation Yes NA No No No Yes
9. User ownership Yes NA NA No No Yes

10. Administrative architecture Yes Yes* Yes* No No Yes
11. Open design -Yes No No -Yes -Yes Yes
12. Extendible design No No No Yes* Yes * Yes
13. Secure execution platform No -Yes Yes Yes Yes Yes
14. Independent security evaluation Yes* No No No -Yes Yes

2. Storage protection (volatile): The device has a volatile memory on the chip
intended for the secure storage of temporary data and code related to the execut-
ing application.

3. Storage protection (non-volatile): The device provides non-volatile storage on
the chip, that is intended to be secure.

4. Tamper-resistant: The device provides tamper-resistant protection that is based
on hardware techniques (for example, physical, side-channel and fault attacks).

5. Tamper-evident: The device has the capability to detect potential tampering with
the hardware and respond in a pre-defined manner.

6. Scalability: The architecture of the device is scalable so that it can provide
services to any application or application provider.

7. Interoperable architecture: The architecture deals with the idea that the candidate
device can be interoperable with different computing devices (i.e. mobile phones,
tablets and personal computers, etc.).

8. Dynamic relation: A third party can establish a direct relationship based on
the security and reliability of the device. The dynamic relation requires that
an application provider can trust a device without requiring it to be part of a
syndicated scheme (i.e. one adopted by Apple App Store, etc.) and vice versa.

9. User ownership: The device is in the control of its user and she can install, delete
and execute any application she desires.

10. Administrative architecture: The device also provides for administrative controls
as might be required in a corporate network or in the case of parental control.
This option is to accommodate different deployment scenarios.

11. Open design: The design should not be proprietary; it should be in the public
domain.

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 91

12. Extendible design: The design should allow third parties to design and deploy
their proprietary credentials algorithms or trust architectures on-board the secure
hardware.

13. Secure execution platform: The device allows the execution of an (arbitrary)
application code (from third parties) in a secure and reliable manner as long as
it complies with the device’s security and operational requirements.

14. Independent security evaluation: As part of the design, the device is subjected
to a third party (e.g. Common Criteria [20]) security and reliability analysis.

In the Table 4.3, “Yes” indicates that that the device fully supports the require-
ment, “-Yes” means that the device generally supports the requirement but there
are instances where it does not (e.g. (U)SIM are not required to be independently
evaluated whereas in the case of EMV cards it is mandatory), “Yes*” means that
the device could support the requirement with adequate design. The notation “No”
means not supported, and “NA” means that the given criterion is not applicable.

4.5.7 What Lies Ahead?

The TCG has been on the forefront of trusted computing frameworks, and it has pro-
posed specifications that cater to specialised needs of individual computing devices
(e.g. TPM and MTM). However, as the services accessible to different computing
devices are converging, the trusted computing framework must evolve.

The trusted computing frameworks that are based on specialised hardware and a
software architecture and provide a trusted execution and data storage have already
been proposed by several parties. Examples of such proposals are ARM TrustZone,
M-Shield and GPD and as can be seen from Table 4.3 they satisfy the requirements to
a greater or lesser extent. These technologies are challenging the traditional view of
trusted hardware that has been championed by the TCG. As shown in Table 4.3, smart
card (or secure element) technology has the opportunity to become a unified trusted
device to provide security, privacy and trusted services. In response, the proposal
User Centric Tamper Resistant Devices [19] provide the ground work for giving the
control of the device to its respective user. Whether these proposals will become
viable or not is still to be ascertained; nevertheless, they are providing an alternative
to the TCG specification.

4.6 Conclusion

In this chapter, we briefly discussed the TCG framework, its architecture and oper-
ations. We discussed the key hierarchy, integrity measurement and secure storage
architecture proposed by the TCG. Later, we dived into the details of the MTM that
is targeting mobile platforms. We discussed the differences between the TPM and

92 R. N. Akram et al.

MTM to give an appreciation that different platforms have different ecosystems that
play a crucial role in the design of trusted platforms. Finally, we compared the MTM
with other proposals for trusted mobile platforms. These proposals are challenging
the TPM architecture, and each of them takes a different view on how to provide
trusted mobile platforms.

Acknowledgments The authors want to thank the reviewers for their constructive comments which
were helpful to improve this chapter.

References

1. TPM Main: Part 1 Design Principles, Online, Trusted Computing Group (TCG) Specification
1.2, Rev. 116, March 2011.

2. ISO/IEC 11889–1: Information Technology - Trusted Platform Module - Part 1: Overview,
Online, International Organization for Standardization (ISO) Standard 11 889–1, May 2009.

3. Standard Specifications for Public Key Cryptography, Online, Institute for Electrical and Elec-
tronics Engineers (IEEE) Standard 1363–2000, January 2000.

4. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authentication,
Online, Network Working Group Requst for Comments 2104, February 1997.

5. FIPS 180–2: Secure Hash Standard (SHS), National Institute of Standards and Technology
(NIST) Std., 2002.

6. TPM Main: Part 3 Commands, Online, Trusted Computing Group (TCG) Specification 1.2,
Rev. 116, March 2011.

7. ISO/IEC 11889–2: Information technology - Trusted Platform Module - Part 2: Design prin-
ciples, International Organization for Standardization (ISO) Std., May 2009.

8. E. Brickell, J. Camenisch, L. Chen, “Direct anonymous attestation”, in Proceedings of the
11th ACM conference on Computer and communications security, ser. CCS ’04. New York,
NY, USA: ACM, 2004, pp. 132–145. [Online]. Available: http://doi.acm.org/10.1145/1030083.
1030103

9. “Intel Trusted Execution Technology (Intel TXT)”, Intel Corporation, Software Development
Guide 315168–008, March 2011. [Online]. Available: http://download.intel.com/technology/
security/downloads/315168.pdf

10. TCG Mobile Trusted Module Specification, Online, Trusted Computing Group (TCG) Speci-
fication 1.0, Rev. 6, June 2008.

11. P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing Embedded Security on
Dual-Virtual-CPU Systems”, IEEE Design and Test of Computers, vol. 24, pp. 582–591, 2007.

12. , “ARM Security Technology: Building a Secure System using TrustZone Technology”, ARM,
White Paper PRD29-GENC-009492C, 2009.

13. —, “M-Shield Mobile Security Technology: Making Wireless Secure”, Texas Instruments,
Whilte Paper, February 2008.

14. GlobalPlatform Device Technology: Device Application Security Management - Concepts and
Description Document Specification, Online, GlobalPlatform Specification, April 2008.

15. , “GlobalPlatform Device: GPD/STIP Specification Overview”, GlobalPlatform, Specification
Version 2.3, August 2007.

16. GlobalPlatform: GlobalPlatform Card Specification, Version 2.2,, GlobalPlatform Std., March
2006.

17. F. C. Bormann, L. Manteau, A. Linke, J. C. Pailles, and J. D. van, “Concept for Trusted
Personal Devices in a Mobile and Networked Environment”, in 15th IST Mobile & Wireless
Communications Summit, June 2006.

http://doi.acm.org/10.1145/1030083.1030103
http://doi.acm.org/10.1145/1030083.1030103
http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf

4 An Introduction to the Trusted Platform Module and Mobile Trusted Module 93

18. R. N. Akram, K. Markantonakis, and K. Mayes, “A Paradigm Shift in Smart Card Ownership
Model”, in Proceedings of the 2010 International Conference on Computational Science and
Its Applications (ICCSA 2010), B. O. Apduhan, O. Gervasi, A. Iglesias, D. Taniar, and M.
Gavrilova, Eds. Fukuoka, Japan: IEEE Computer Society, March 2010, pp. 191–200.

19. —, “User Centric Security Model for Tamper-Resistant Devices”, in 8th IEEE International
Conference on e-Business Engineering (ICEBE 2011), J. Li and J.-Y. Chung, Eds. Beijing,
China: IEEE Computer Science, October 2011.

20. Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model, Part 2: Security Functional Requirements, Part 3: Security Assurance Require-
ments, Common Criteria Std. Version 3.1, August 2006.

Chapter 5
Hardware and VLSI Designs

Mario Kirschbaum and Thomas Plos

Abstract Efficient and secure hardware implementations have become a very
popular topic during the last decades. In this chapter, we discuss the fundamental
design approaches to successfully implement integrated circuits (ICs) as well as test-
ing methods and optimization techniques to achieve an adequate solution for various
application scenarios. A major topic handled in this chapter is security in the context
of hardware implementations. We elaborate on the characteristics of modern CMOS
circuits with regard to side-channel attacks and we discuss possible countermeasure
approaches against such attacks. Furthermore, we describe a comprehensive prac-
tical example of combining cryptographic instruction set extensions with hardware
countermeasures on a modern 32-bit processor platform. In the last section of this
chapter, we argue about the assets and drawbacks of implementing test structures
in digital circuits with regard to unintentionally opening security holes as well as
about intentionally introducing malicious hardware structures, also called hardware
Trojans.

Keywords VLSI design cycle · Design space · Advanced encryption standard
(AES) · Secure hardware design · Side-channel analysis · Power-analysis attacks ·
Masking · Hiding · Dual-rail precharge · Instruction-set extensions · Design for
test · Hardware Trojans

M. Kirschbaum (B) · T. Plos
Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
e-mail: Mario.Kirschbaum@iaik.tugraz.at

T. Plos
e-mail: Thomas.Plos@iaik.tugraz.at

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 95
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_5,
© Springer Science+Business Media New York 2014

96 M. Kirschbaum and T. Plos

5.1 Introduction and Motivation

During the last decades, integrated hardware circuits have become more popular
and are an integral part of our daily life. Hardware circuits are not only found in
personal computers and laptops, but also in cars, domestic appliances, and any kind
of communication and multimedia device. Continuous migration to smaller process
technologies has allowed us to dramatically increase the transistor count and conse-
quently also the functionality of hardware circuits. In order to handle the increasing
complexity of hardware circuits, a whole new branch of industry has been built up:
Very large scale integration (VLSI) design.

Mainly two different approaches can be followed when designing complex
hardware circuits: a general-purpose approach or a special-purpose approach. The
general-purpose approaches based on hardware circuits like microprocessors that
provide a fixed set of functionality. Customization of the microprocessor for a
concerning application is done through program development which provides high
flexibility. The special-purpose approach on the other hand, involves design of a ded-
icated hardware circuit for a more specific application. This hardware-based concept
is less flexible and causes longer development times, but allows optimizing a design
toward a certain goal, for example: low area, low power consumption, low energy
consumption, or high throughput. Reducing the hardware overhead is desirable for
cost-sensitive high-volume products that aim for minimum chip area. Achieving low
power consumption or low energy consumption is important for passively-powered
devices (e.g., RFID tags) and battery-operated devices, respectively. Especially when
integrating complex and resource-intensive operations into a device, like for exam-
ple cryptographic operations in a security-related application, fulfilling the design
requirements is often only achievable if dedicated hardware circuits are used.

In the following sections, we discuss some principles of hardware and VLSI
design. We start with describing the fundamental VLSI design cycle which is the
basis of every integrated circuit (IC). Hardware designers may choose between dif-
ferent design perspectives at various abstraction levels encountered during the design
cycle. Starting with the system specification, a designer defines the submodules, uses
hardware description languages (HDLs), applies tools for standard-cell mapping, and
finally comes to the geometric layout of the design.

During the design cycle, repeated testing and simulation of the design at different
abstraction levels is inevitable in order to obtain a flawless and well functioning
circuit. In case errors occur, only a small step has to be made back in the design
cycle instead of returning to square one. Another important topic we will discuss
is the extensive design space which is at the designer’s disposal during the whole
design cycle. A designer has almost indefinite possibilities to reach a design goal,
which is, e.g., high performance, low area, or low energy consumption. By means
of several practical examples, we illustrate the impact of decisions made during the
design cycle on the outcome of a hardware design.

In the next part, we concentrate on security in hardware and VLSI design, which
is an important topic. The use of security-related devices is steadily increasing,

5 Hardware and VLSI Designs 97

e.g., web servers protected with SSL, encrypted hard-disc drives, wireless car
keys, or radio-frequency identification (RFID) tags, to name but a few well-known
examples. Mathematically secure cryptographic algorithms become highly vulner-
able to various types of attacks when implemented in hardware due to the strong
relation between the data processed within a device and the power consumption of
conventional complementary metal-oxide semiconductor (CMOS) circuits. In order
to address this issue, researchers began to develop countermeasures to protect sensi-
tive hardware devices. We have a detailed look at the fundamental characteristics of
CMOS circuits that enable side-channel attacks in the first place and we elaborate on
possible approaches for implementing countermeasures against such attacks. Similar
to the importance of repeatedly simulating a design during the design cycle to obtain
a reliably-working circuit, we point out the possibility of verifying the effectiveness
of countermeasures by means of simulations.

Combining the topics of efficient hardware implementations, cryptographic algo-
rithms, and security, we contrast different approaches for implementing crypto-
graphic algorithms on modern embedded devices. As we will see, pure software
as well as pure hardware solutions have both drawbacks. A more efficient solution
in case of embedded systems is the usage of instruction-set extensions (ISEs).
Furthermore, we discuss the implementation of countermeasures against side-
channel attacks in the presence of ISEs and we elaborate on a practical example
of a modern 32-bit processor platform.

The testability of a device during the design cycle as well as after manufacturing
of an IC is very important to prevent distribution of malfunctioning parts. Unfortu-
nately, the integration of test structures may counteract the efforts to protect a device
from various attacks, since test structures could be used by an adversary to break
security-enabled devices. We describe different testing approaches and discuss their
relevance and possible impact on secure implementations. Finally, we discuss the
topic of hardware Trojans. Contrary to test structures implemented in ICs that may
unintentionally cause a vulnerability of the device, hardware Trojans are malicious
structures intentionally implemented by an adversary with the goal, for example, to
possibly bypass one or more security features of an IC.

5.2 VLSI Design Cycle

Today’s VLSI designers are faced with two challenges, increasing circuit complexity
and shorter design cycles. Following Moore’s Law, the transistor count of hardware
circuits doubles about every 18 months. This prediction has been formulated more
than 40 years ago and is still adhered to by the semiconductor industry by migrating
towards smaller and smaller process technologies. Most recent microprocessors, for
example, have already reached a transistor count of one billion and more. Circuit
complexity grows faster than the productivity of designers and the increase in effi-
ciency of electronic design automation (EDA) tools. This has opened a so-called
“design gap” over the years. In order to close this gap, design of VLSI circuits has

98 M. Kirschbaum and T. Plos

Structural
perspective

Geometric
perspective

Behavioral
perspective

System

Architecture

Register transfer

Logic

Electrical

Transistors

Layout

Standard cells

Placement

Partitioning

Chip

Gates

Registers

Sub modules

Top module

Diffe
rential equations

Boolean equations
Data transfe

r

Task
separation

System specific
ation

Abstraction
levels

Fig. 5.1 Y-diagram according to Gajski and Kuhn showing the different design perspectives and
abstraction levels of hardware circuits

been brought to a higher abstraction level. Designing a circuit at a higher abstrac-
tion level also addresses the requirement of shorter design times to improve cost
effectiveness.

A good overview of the different abstraction levels and design perspectives of
hardware circuits is provided by the Y-diagram illustrated in Fig. 5.1. The Y-diagram
has been introduced by Gajski and Kuhn [6] and has its name from the three axes
that are arranged in a y-shape. Each axis relates to a different design perspective.
The three design perspectives are behavioural perspective, structural perspective,
and geometric perspective. Behavioural perspective focuses on the functionality of
a circuit, whereas structural perspective describes the interconnection of different
blocks within it. Geometric perspective deals with the arrangement of the compo-
nents, including the final layout of a circuit. Concentric circles indicate the various
abstraction levels, which are system level, architectural level, register-transfer level,
logic level, and electrical level. Starting from highest abstraction level at the outer-
most circle, the various development steps of a hardware circuit are passed through
when moving toward the center of the diagram, marking the final outcome of the
design (i.e., layout of the circuit).

When moving toward the center of the diagram to reach the design goal, the
level of detail increases continuously. Different perspectives can be used for enter-
ing lower abstraction levels and changing between perspectives is possible as well.
Behavioral perspective is the most-suitable domain for describing hardware designs
with high complexity. Consequently, behavioral perspective is used for starting the
design process. The first step is creating a software model that implements the speci-
fication of the system and that allows exploring different algorithm variants. This first

5 Hardware and VLSI Designs 99

software model also eases communication among design teams and enables concur-
rent development of hardware and software components (important to shorten overall
development time). Next step is finding an appropriate architecture that is reflected by
a cycle-accurate high-level model. When the architecture is fixed, HDLs like VHDL
and Verilog are deployed to transfer the high-level model into a register-transfer level
representation. The combined use of HDLs and EDA tools for circuit synthesis allows
an automated transformation from behavioral perspective to structural perspective.
The outcome of this step is a netlist that contains a circuit representation with logic
gates, flip flops, and the appropriate wire connections.

The following steps after netlist creation relate to the so-called back-end design
where the structural perspective is left and the geometric domain is entered.
Automated tools are again applied to deduce a standard-cell representation and the
layout of the design. During back-end design, various verification techniques are
utilized to ensure proper operation and manufacturability of the circuit. Verification
techniques comprise for example, design-rule checks, electrical-rule checks, layout-
versus-schematic checks, timing verification, and simulation of power consumption.
With the layout of the circuit, the final design step (tape out) is reached and data can
be sent to a semiconductor manufacturer.

Following this top-down approach gives a good understanding of the involved
steps of state-of-the-art VLSI design. Implementing a circuit within behavioral per-
spective through HDLs and deploying automated tools for further processing eases
not only the handling of circuit complexity, but also brings also more flexibility.
A circuit in HDL representation can be easily mapped to different process tech-
nologies and targets by using circuit-synthesis tools. This significantly shortens the
time required for migrating a design to a new process technology and allows also
first-level tests on field-programmable gate array (FPGA) prototypes.

Continuously testing the functionality of a design within all abstraction levels is
an important aspect of modern VLSI design. Required test data is typically derived
from the high-level model and repeatedly used for tests on lower abstraction levels.
When a test fails, designers can immediately step back and fix the problem. This
allows detection of issues as early as possible, following the first-time-right concept
to launch products on time.

When building hardware circuits that contain security-relevant components, func-
tional tests alone are no longer enough. Additional considerations have to be taken
into account like evaluating the resistance of the implementation against side-channel
analysis (SCA) and fault analysis. Such evaluation tests are mainly conducted after
chip production on first prototype samples, but also during design phase. Power-
simulation results of the circuit can be used to deduce first information about side-
channel resistance of a design. Other examples are side channel and fault attacks on
FPGA prototypes that contain a synthesized version of the design.

100 M. Kirschbaum and T. Plos

5.3 Design Space of Hardware Circuits

Hardware circuits can be designed toward different optimization goals, depending
on the targeted application. Typical optimization goals are high throughput, low
area, low power consumption, and low energy consumption. Optimization can be
conducted on different abstraction levels. However, the higher the abstraction level,
the larger is the impact of the optimization techniques and the lower the required
effort. Optimizing a design at system level or at architectural level is therefore more
promising than optimizing it for example on logical level. Various metrics are used
to quantify the effectiveness and the influence of a certain optimization measure.
Widely-used metrics includes chip area, throughput, execution time, maximum clock
frequency, latency, and average power consumption.

Optimization at system level typically involves finding more suitable protocols
or looking for alternative algorithms that lead to the same result but provide advan-
tageous behavior in terms of computation time or resource usage. A good example
is the representation of the substitution box (S-box) used in the AES. The S-box is a
non-linear operation that is applied on a single byte of data. Hence, the result of the
S-box operation can be precomputed for all possible 28 input values and stored in a
look-up table. This will result in an area requirement of more than 1, 000 GEs when
implementing the look-up table with standard cells. However, the S-box operation
can also be realized by calculating the multiplicative inverse in the finite field G F(28)

followed by an affine transformation (see [15] for more details). Using combinatorial
logic to calculate the S-box operation in that way, leads to an area requirement of
300 GEs. This is less than a third of the value required by the look-up table approach.
Achieving such an area saving through optimization at lower abstraction levels is
hardly possible.

Architecture is another abstraction level that has significant potential to optimize
a design toward a certain direction. Well-known optimization techniques at archi-
tectural level are functional decomposition, pipelining, and parallel computation [8].
Functional decomposition aims at breaking a complex function into smaller sub-
functions that can be computed sequentially. This method is most effective when
the subfunctions compute similar operations that allow reusing of a single hardware
unit that decreases the overall chip area. Execution time remains roughly the same,
since the shorter critical path allows a higher maximum clock frequency, which
compensates for the increased number of required clock cycles.

Pipelining is another effective optimization method at architectural level. The data
path of a function is cut into smaller parts (ideally of equal length) by inserting storage
elements called pipeline registers. This shortens the critical path and leads to a higher
maximum clock frequency. For computing the result of one data item, as many clock
cycles are required as there are pipeline stages. However, once the whole pipeline is
filled, the result of a data item is computed with every clock cycle. It is important
to note that this works only if there are no recursive data dependencies, since they
would prevent the pipeline from getting filled. Pipelining is very efficient because a

5 Hardware and VLSI Designs 101

marginal increase of chip area that is introduced by adding pipeline registers, results
in a significant computational speed-up.

Computing operations in parallel is the opposite of functional decomposition.
Instead of reusing components to reduce chip area, additional hardware modules are
introduced to lower computation time. Trading chip area for speed is some kind of
brute-force approach and is used if other measures like pipelining are not applicable
(e.g., if low latency is required). In contrast to pipelining, the critical path of a design
is not shortened and therefore increasing the clock frequency is not possible. Chip-
area requirements increase significantly and relate to the degree of parallelism.

An overview of the impact of all three optimization techniques within the design
space is given in Fig. 5.2. Functional decomposition and pipelining are efficient
approaches to decrease chip area and execution time of a design, respectively. Both
techniques significantly lower the area-time product. Parallel execution of operations
increases chip area to lower execution time, by keeping the area-time product roughly
constant.

The following examples illustrate the effects on hardware implementations of the
advanced encryption standard (AES) when focusing on different design goals and
implementing different optimization techniques. AES is a symmetric block cipher
and has been standardized by the National Institute of Standards and Technology
(NIST) in 2000 [15]. Let us first have a look at the low-power AES implementation
of Feldhofer et al. [4]. The design goals of this AES implementation have been
low area and low power in order to apply AES in highly resource-limited devices
like RFID tags. The AES module supports encryption and decryption including
the key schedule and is based on an 8-bit architecture. In order to reduce the area
to a minimum the design contains only one S-Box instance (combinational, one
pipeline stage) and one multiplier for the MixColumns operation. The usage of
only one S-Box instance corresponds to functional decomposition, i.e., one S-Box
instance is used several times during one cryptographic computation. The pipeline
stage within the S-Box implementation helps to shorten the critical path of the design.
One encryption/decryption can be done in roughly 1, 000 cycles. Strictly following
low area and low-power guidelines, the developers produced the AES module in a

Chip area

Execution time

Functional
decomposition

Parallel
computing

Pipelining

Design space

Current
design

Fig. 5.2 Impact of functional decomposition, pipelining, and parallel computation on design space

102 M. Kirschbaum and T. Plos

0.35µm CMOS technology and were able to achieve a very low area requirement
of 3, 400 GEs and an extremely low power consumption of 3.0µA when operating
the AES module at 100 kHz and a supply voltage of 1.5 V. In this configuration, the
module achieves a throughput of approximately 12.5 kbps.

Contrary to the low-area implementation of Feldhofer et al., Mangard et al. [12]
proposed a high-performance hardware implementation of the AES based on a 32-bit
architecture. The AES module follows the parallel computation approach and con-
tains 16 S-Box instances and 16 multipliers implementing the MixColumns opera-
tion. The AES implementation has an area requirement of 16 kGEs, needs 34 cycles
per encryption/decryption, and reaches a maximum clock frequency of 64 MHz and
a throughput of 241 Mbps produced in a 0.6µm CMOS technology. There also exist
some extreme-performance implementations of AES, deploying a 128-bit architec-
ture and highly optimized implementations of the AES operations, resulting in larger
implementations (beyond 20 kGEs) and significantly higher throughput (≥1 Gbps).

These examples show that a designer has almost indefinite possibilities to exploit
the design space in many different directions. Often a designer decides to go in
more than one direction at once: e.g., low area and low power, high throughput, and
low area. In the end, a designer is mostly forced to accept compromises between
throughput, area, and power consumption in order to achieve an adequate hardware
solution suitable for the particular application.

5.4 Secure Hardware Design

The use of security-related devices has been steadily increasing during the last few
years. Besides meeting appropriate design goals in terms of throughput, chip area,
and power consumption, security goals started to play a major role in hardware
design. Various attacks on hardware circuits in the past have pushed the emergence
of a completely new research field.

Additionally to the intended output, e.g., the result of a cryptographic computa-
tion, each physical device also emits various other information, the so-called side-
channel information. This information is permanently present, before, during, and
after a computation. A very obvious side channel is timing. It is quite easy to accu-
rately measure the time required for executing a cryptographic operation on a device.
Kocher has first shown the vulnerability of asymmetric cryptographic algorithms to
timing attacks [9]. Preventing timing attacks lies manly at the designer’s hands. For
example, in most cases, it is relatively easy to avoid conditional branches, and hence,
to avoid a data-dependent timing behavior of a cryptographic implementation.

The last decade has shown that avoiding data-dependent information in the power
consumption of a device is not so easy. After the first publication on SCA attacks
that exploit the power consumption of cryptographic devices by Kocher et al. [10],
the security of hardware designs against power analysis (PA) attacks became a major
research topic in the fields of cryptography and hardware implementations. As it
turned out that almost any cryptographic device implemented in CMOS technology

5 Hardware and VLSI Designs 103

is highly vulnerable to PA attacks, designers of algorithms as well as hardware devel-
opers began to think about possible solutions to overcome the inherent relationship
between the processed data within a CMOS circuit and its total instantaneous power
consumption.

5.4.1 Power Consumption of CMOS Gates

The total power consumption of CMOS gates is the sum of the static power consump-
tion and the dynamic power consumption. The static power consumption is caused
by a small leakage current that is flowing through the metal-oxide semiconductor
(MOS) transistors that are turned off. An actual example is given in [27]: the leak-
age current of a MOS transistor in a 100 nm process is typically in the n A range.
In most applications, the static power consumption of CMOS circuits is neglected,
except for low-power applications. In such applications, special low-leakage process
technologies come into play which are able to significantly reduce the static power
consumption. From a security perspective, the static power consumption of CMOS
circuits can be neglected, as the leakage current only shows an extremely low data
dependency. Dynamic power consumption, on the contrary, is significantly higher
than static power consumption, and even more important, it shows a strong depen-
dency to the data processed by the CMOS circuit.

In the following, the fundamental characteristics of CMOS circuits, which enable
the execution of power-analysis attacks in the first place, are described by means
of a conventional CMOS inverter. The schematic of a CMOS inverter is depicted in
Fig. 5.3 (left), it basically consists of a pMOS transistor p and an nMOS transistor n.
The output line q of the inverter is naturally afflicted with a vast number of parasitic
capacitances. In a simplified model, we can assume two significant-pooled parasitic
capacitances (indicated as CL1 and CL2 in Fig. 5.3). Depending on the state transition
of the CMOS inverter one of the capacitances is charged. The events in case input

VDD

GND

a q

CL2

VDD

GND

q=1

CL2

S1

S2

VDD

GND

q=0

CL2

S1

S2

CL1 CL1 CL1

a=0 a=1

iLH_DD iHL_DD

p

n

Fig. 5.3 Depiction of the power consumption of a CMOS inverter: the schematic of the inverter
(left plot), the equivalent circuit in case input a : 1→ 0 (middle plot), the equivalent circuit in case
input a : 0→ 1 (right plot)

104 M. Kirschbaum and T. Plos

a switches from 1 to 0 (i.e., q : 0 → 1) are illustrated in the equivalent circuit
in Fig. 5.3 (middle). The pMOS and nMOS transistors are represented by switches
S1 (closed) and S2 (opened), respectively. Assuming that CL1 is charged from the
previous state and CL2 is discharged, the following charging processes occur: CL1 is
discharged internally via S1 and CL2 is charged via iL H_DD , i.e., the CMOS inverter
consumes power to charge CL2. In case input a switches from 0 to 1 (i.e., q : 1→ 0),
very similar charging processes occur in the circuit (Fig. 5.3, right): S1 is opened,
S2 is closed, CL2 is discharged internally via S2, and CL1 is charged via iH L_DD .
The CMOS inverter consumes power to charge CL1.

We can summarize the events happening in the CMOS inverter in the following
way: if the input of the inverter does not change (i.e., a : 0→ 0 or a : 1→ 1), the
nMOS and pMOS transistors keep their state, and none of the output capacitances
CL1,CL2 needs to be charged. Neglecting the static power consumption, we can
state that the power consumption of a CMOS inverter is zero in case the input signal
remains in its state. On the other hand, if the input of the inverter changes its state
(i.e., a : 0→ 1 or a : 1→ 0) the nMOS and pMOS transistors change their conduc-
tivity and the output capacitances CL1,CL2 are charged/discharged accordingly. We
see a change of the input value causes a significant amount of power consumption.
Furthermore, we can also imagine the following: assuming we know the initial state
of the inverter and we record the power consumption of our small CMOS circuit, we
are able to determine the actual state of the circuit at any time by simply considering
the power spikes we see on our record. That is exactly the reason why power-analysis
attacks pose a serious threat to CMOS circuits. An attacker can quite easily figure
out what is happening in a circuit by analysing the power consumption.

As the power consumption is closely related to the electromagnetic (EM) ema-
nation of a device, EM analysis attacks can also reveal very small data dependen-
cies within a device. More specifically, EM-analysis attacks and usually even more
powerful than power-analysis attacks, because with the appropriate equipment, the
measurement of the EM emanation of a device can be limited to a very small portion
of the circuitry. This way, the signal-to-noise ratio (SNR) of the measurement can
be significantly increased.

5.4.2 Countermeasures Against Power-Analysis Attacks

The following section gives a broad outline of ideas that have been developed during
the last few decades to impede PA attacks. We introduce the basic approaches and
indicate the main assets and drawbacks. The underlying concept of countermeasures
against PA attacks is to break the dependency between the processed intermediate
data within a device and the device’s instantaneous power consumption. Basically,
there exist two approaches: masking countermeasures and hiding countermeasures.
Figure 5.4 depicts the points where the two approaches apply. Both approaches can
be utilized at the architecture level (implemented in software and/or hardware) as

5 Hardware and VLSI Designs 105

Fig. 5.4 Depiction of the
two basic countermeasure
approaches: masking and
hiding

Device

Input data

Physical
side-channel

output

Output data

Masking

Hiding

well as at the cell level (purely implemented in hardware). Usually, a combination
of both approaches is worthwhile to achieve an adequate level of security.

Masking countermeasures conceal the processed data within the device by a
random mask, i.e., the input data is altered before any operations are executed. Hence,
the device’s power consumption only depends on the masked data. After performing
the critical operations within the device, the mask has to be removed again. Some
additional effort is associated when implementing a masking countermeasure, in
many cases the algorithm’s operations need to be adapted in order to process the
masked data correctly, e.g., when masking an AES S-Box operation [3].

Special logic styles belong to the strongest methods to prevent PA attacks. The
secure logic-style front is highly competitive. Many approaches have been presented
during the last decade, although for most one or more flaws have been discovered
by the research community. Let us have a closer look at one example for such a spe-
cial logic style implementing a masking technique: the masked dual-rail precharge
logic (MDPL), proposed by Popp et al. [16], Popp and Mangard [17]. The MDPL
style is based on the dual-rail precharge (DRP) principle which prevents the occur-
rence of glitches by representing each signal with complementary electrical wires
in the circuit. It is well known that glitches, also called dynamic hazards, do occur
in CMOS circuits and that they have a significant effect on the power consump-
tion [19]. Considering their effect on the power consumption, it appears obvious that
glitches also play a major role in the context of countermeasures against PA attacks.
It has been shown several times that glitches may have a negative influence on the
effectiveness of countermeasures [13, 21]. Preventing glitches is achieved by strictly
applying only monotonic logic functions and by introducing a precharge phase1 and
an evaluation phase2 in each clock cycle. In a DRP circuit, only one of the two
complementary wires of each signal is HIGH, depending on the value of the signal,
the other wire remains LOW. Additionally, each cell within an MDPL circuit unex-
ceptionally processes masked signals, with the result that the power consumption

1 In the precharge phase, every signal (both complementary wires) within a digital circuit is charged
to the precharge value, which is in most cases logic ‘0’.
2 Similar to a standard clock cycle in a conventional CMOS circuit, the combinational blocks start
to evaluate according to their input signals.

106 M. Kirschbaum and T. Plos

only depends on masked values. A not yet eliminated flaw in the MDPL style is
that the mask value can be discovered due to significant differences in the power
consumption, as the mask signal is connected to every MDPL cell in the circuit and
hence it has to overcome a major amount of parasitic capacitances [20, 25]. The
general drawbacks of special logic styles may be manifold: a significant overhead
in terms of area requirement and power consumption, a decrease of performance,
and a considerable effort for implementing the logic style in the first place, which is
especially the case for logic styles that are based on full-custom cells.

Hiding countermeasures directly alter the side-channel characteristics of the
device with the result that the correlation between the processed data within the
device and the device’s power consumption is weakened or even completely dis-
solved. This way, an attacker is not able to draw any conclusions from the power
consumption about the intermediate data processed in the device. There are basically
two approaches to implement hiding countermeasures: randomizing the power con-
sumption of a device (also called hiding in time) and equalizing the power consump-
tion of a device (also called hiding in amplitude). Unfortunately, both approaches
are almost impossible to be perfectly implemented in practice.

An example for hiding in time is the random insertion of additional operations
during the execution of a cryptographic algorithm. The additional operations do
not contribute anything to the actual cryptographic computation and therefore they
are called dummy operations. The random insertion of dummy operations increases
the runtime of the whole computation with the result that the power consumption
of the critical operations on actual data is randomized in time. This approach sim-
ply adds noise to power measurements and thus complicates a side-channel attack.
The random insertion of dummy operations has to be implemented with great care: the
dummy operations must not be distinguishable from the actual operations, otherwise
the execution times of dummy operations can be detected and filtered. Furthermore,
once the countermeasure is activated, the number of dummy operations that are exe-
cuted has to remain constant for every cryptographic computation. Otherwise the
implementation is vulnerable to timing attacks. As the runtime of the computation
correlates with the number of dummy operations inserted, another drawback is that
the countermeasure has to be adapted to every cryptographic algorithm for which it
is implemented.

A very simple example for a countermeasure following the approach of hiding
in amplitude is the application of noise generators within a device. The obvious
drawbacks of noise generators are the requirement of area and power, without con-
tributing anything to the actual functionality of the circuit. A further example for
hiding in amplitude is a heavily parallelized design of an algorithm. However, this
approach strongly depends on the implemented algorithm, as data dependencies limit
the possible degree of parallelization.

More-advanced techniques are based for example on the previously mentioned
DRP logic style. Pure DRP styles, which do not implement a masking technique, try
to keep the power consumption constant and thus independent of the processed data.
This is achieved by balancing each pair of complementary wires, i.e., the designer
tries to adjust the complementary wires in a way that their electrical characteristics

5 Hardware and VLSI Designs 107

(resistance, inductance, and capacitance) perfectly match. Ideally, a circuit containing
perfectly balanced wires would consume a constant amount of power, and hence, it
would be secure against PA attacks. The irrefutable flaw of this approach is that an
exact balancing of wires is almost impossible to achieve in practice. Even if the most
powerful EDA tools are used, the smallest variations in the chip-fabrication process
would cause differences in the electrical characteristics of the complementary wires
once more.

5.4.3 Verification of Countermeasures by Means of Simulations

As mentioned in Sect. 5.2, simulations play a major role during the design phase to
verify the functionality of the IC. When implementing countermeasures, it is also
highly desirable to be able to verify the efficiency of the implemented protection
techniques. Various simulation techniques can be used to perform a detailed investi-
gation of the implemented countermeasures without the need of actually fabricating
an IC. The following section describes to what extent simulations at different levels
can be used to estimate the impact of countermeasures.

One of the main advantages of simulations is the possibility to detect errors in a
design before a chip goes into production. This is also the case for detecting flaws
in countermeasures implemented in a secure hardware design, before developing a
costly prototype chip. Simulations also offer the possibility to simply narrow down
the simulated parts of a digital circuit and hence to easily detect and improve faulty
submodules or vulnerable parts of an implemented countermeasure. For investigating
countermeasures, two simulation levels are interesting: transistor-level simulations
and logic-level simulations.

Transistor-level simulations based on SPICE [18] models of transistors repre-
sent a highly accurate yet very time consuming way to verify the correct functionality
of digital circuits and countermeasures. SPICE simulations may include detailed par-
asitic information about each element in a circuit and about each wiring in a placed
and routed chip design. This results in power-estimation results that are highly com-
parable with power measurements on an actual chip. Hence, transistor-level power
simulations are very suitable to perform power-analysis attacks and to investigate the
effectiveness of countermeasures. The main drawback of transistor-level simulations
is the complexity and the associated expenditure of time due to solving countless
algebraic equations based on nonlinear transistor models. If a designer does not have a
powerful computer cluster at hand, the transistor-level simulation of a medium-sized
design consisting of approximately 2 million transistors may easily take several hours
for a few-hundred clock cycles. Considering that hundreds of power simulations are
potentially required to perform a meaningful PA attack, transistor-level simulations
become a rather impractical.

Logic-level simulations (also called gate-level simulations) in their simplest form
have the advantage of operating at a significantly higher level (i.e., not including any
low-level circuit information) compared to transistor-level simulations. This implies

108 M. Kirschbaum and T. Plos

a significant speed up of performed simulations, but also a decrease in simulation
accuracy. Furthermore, a conventional logic-level simulation is not able to provide
something similar to a power consumption trace, it is merely possible to obtain logic-
level transitions of each signal within a digital circuit. As described in Sect. 5.4.1, the
state transition of CMOS gates is directly related to the dynamic power consumption.
Hence, it is possible to derive a simulated power trace from the logic-level transitions
obtained from the simulations. A common technique is called toggle counting or
transition counting. At each point in the simulation time where a signal transition
(0 → 1 or 1 → 0) occurs, the power-consumption value for this specific point in
time is increased by 1. Constant signals (0→ 0 or 1→ 1) do not contribute anything
to the power consumption. This way a designer is able to obtain power consumption
traces in a fraction of the time needed to perform transistor level simulations.

There are some limitations in case of power traces derived from basic logic-level
simulations. First, there is no timing information at all included in the simulations:
some simulators work with unit delay (i.e., all logic gates have the same constant
propagation delay) or zero delay (i.e., all transitions occurring in a specific time
are summed up to one point in time, usually the clock event). Second, all signal
transitions consume the same amount of power, which is highly unrealistic com-
pared to an actual digital circuit. The accuracy of power-consumption traces derived
from logic-level simulations can be substantially increased if back-annotated delay
information is included in the simulations. This approach has minor effect on the
performance of logic-level simulations but greatly increases the accuracy of signal-
delay information. A second measure to increase the accuracy of toggle-count power
traces is to randomly weight the signal transitions or to include parasitic information
when processing the signal transitions. The latter approach would result in a time-
consuming preprocessing step to build an appropriate transition-weight database.

Although we have seen that various simulation techniques may be used to verify
the efficiency of implemented countermeasures, unforeseen effects may cover actual
side-channel leakages during simulation.

5.5 Instruction-Set Extensions

Efficiently implementing cryptographic algorithms on embedded devices is highly
challenging due to the limited resources (energy, clock frequency, and memory).
A widely deployed processor for embedded devices is for example the LEON CPU
core [5], which is a SPARC V8-compliant processor. The LEON core has a 32-
bit architecture and follows the Reduced Instruction Set Computing (RISC) con-
cept. When implementing a cryptographic algorithm on such an embedded system,
a designer has mainly two options: selecting a software approach or a choosing a
hardware approach. The software approach uses only the existing instructions of
the processor and requires no additional hardware. This concept provides maximum
flexibility, but is costly in terms of code size and allows achieving only a moderate
computation speed. A hardware solution on the other hand requires the integration

5 Hardware and VLSI Designs 109

Pure software
implementation

LEON core

Instruction
set

AES Co-
processor

Program
code

Pure hardware implementation

LEON core

Instruction
set

Program
code

Instruction-set
extensions

LEON core

Instruction
set

extensions

Program
code

Fig. 5.5 Design alternatives for implementing AES on a LEON core. Dark-gray colored areas
contribute to the AES implementation

of a dedicated coprocessor that is optimized for a special algorithm. Relying on an
optimized hardware module allows very short execution times, which comes at cost
of additional chip area and loss of flexibility. Another aspect that has to be considered
is the communication overhead between embedded processor and coprocessor. As
reported in the work of Hodjat and Verbauwhede [7], much more time is typically
spent for the communication between processor and coprocessor, than for the actual
computation of the algorithm within the coprocessor. This overhead dramatically
lowers the performance gain of a coprocessor approach.

ISEs are techniques that combine the advantages from both pure software imple-
mentations and pure hardware implementations. ISEs provide the flexibility of a
software solution together with the high computation speed of a dedicated hard-
ware circuit. Moreover, there is no communication overhead between processor
and coprocessor. A schematic overview of the three different design approaches
is depicted in Fig. 5.5. ISEs provide a processor with additional instructions that are
optimized for a certain purpose, like the execution of a cryptographic algorithm. The
additional instructions require extra hardware circuits and can be used in a program
as any other instruction. Hardware costs of the ISEs are much lower than those of a
corresponding coprocessor.

A concept for ISEs on a LEON core has been presented by Tillich and
Großschädl [22]. These ISEs aim for improving the computation speed of the AES
algorithm on the embedded processor. The proposed ISEs allow computing AES
within 196 clock cycles on the LEON core using only 896 bytes of code. The addi-
tional hardware costs introduced by the ISEs are estimated by the authors at 3 kGEs.
For comparison, a pure software implementation of the AES algorithm on the LEON
core takes 1,637 clock cycles and requires 2168 bytes of code. A pure hardware
implementation on the other hand, as presented for example by Mangard et al. [12]
(cp. Sect. 5.3), requires only 34 clock cycles for computing AES, but leads to addi-
tional hardware costs of 16 kGEs. Table 5.1 summarizes the performance numbers
of the three design approaches and clarifies that ISEs are a highly efficient approach

110 M. Kirschbaum and T. Plos

Table 5.1 Overview of the different design approaches with corresponding performance numbers

Design approach Code size Execution time Hardware costs
[Bytes] [Cycles] [kGEs]

Pure software implementation 2168 1637 –
Pure hardware implementation – 34 16
Instruction-set extensions 896 196 3

that provides a good tradeoff between computation speed and resource usage (in
terms of code size and hardware overhead).

Also with regard to implementing hardware countermeasures (i.e., secure logic
styles) against side-channel attacks, cryptographic ISEs have a significant advan-
tage over dedicated coprocessors. In the case of cryptographic coprocessors, critical
data is running countless times from one submodule to another and vice versa. For
example, an AES coprocessor the input data is first XORed with the secret key. As
the key represents the critical data in an AES computation, the following operations
process critical data. In the next step, the critical data runs through the S-Box module
and a probably directly-integrated ShiftRows module, followed by the MixColumns
module back to the XOR operation with the next RoundKey. We see, in order to
secure an AES coprocessor we need to implement countermeasures in many sub-
modules, as all submodules directly process critical data. Securing a cryptographic
coprocessor by means of hardware countermeasures usually results in implement-
ing the whole coprocessor in a costly secure logic style, which entails a significant
increase in terms of area requirements and power consumption.

In case of cryptographic ISEs implemented on a processor platform, operations
that are actually transforming critical data are confined to the functional units of the
processor. This circumstance enables us to implement only the functional units in a
costly secure logic style and to implement a much cheaper countermeasure to the rest
of the chip. The next section introduces a concept for developing a secure processor
with ISEs and hardware countermeasures.

5.6 A 32-Bit Processor with ISEs and SCA Countermeasures

In the following we investigate a practical example of how ISEs can be combined
with countermeasures against side-channel attacks on a modern processor platform.
We discuss the main features of a comprehensive concept proposed by Tillich and
Großschädl [23], Tillich et al. [24] for implementing AES ISEs and hardware coun-
termeasures on a 32-bit SPARC V8-compliant processor.

In this concept the majority of the 32-bit processor remains unmodified. All crit-
ical operations are executed within a single hardware module which acts like a
conventional function unit, the so-called secure zone. Only the secure zone is imple-
mented in a secure logic style and contains some additional hardware blocks, the rest

5 Hardware and VLSI Designs 111

of the processor remains untouched and is implemented in standard CMOS logic.
A protected functional unit within the secure zone provides a set of custom instruc-
tions that can be used for a flexible implementation of different cryptographic algo-
rithms. In fact, all operations that may potentially become a target of side-channel
attacks have to be unconditionally executed by the protected functional unit. Hence, a
software developer still has to proceed with great care during the process of software
development in order to avoid unintentionally implemented security leaks.

Within the secure zone, all operations are protected by a secure logic style, outside
of the secure zone all data is strictly masked. Function operands entering the secure
zone are unmasked, critical operations are performed on the unmasked data, and
before leaving the secure zone the data is masked again with a freshly generated
mask. This way it is ensured that transformations on critical data as well as the
masks do not leak any side-channel information because of the secure logic style,
and the masked data running outside of the secure zone may not leak any useful
side-channel information because of the masking technique and the anonymity of
the masks.

All mask-handling modules are also part of the secure zone, i.e., they are protected
by the secure logic style, and the masks themselves must not leave the secure zone in
their original form. The secure zone contains a mask generator and a mask storage
for generating, storing, and retrieving masks. The retrieval of masks corresponding
to input operands and the storage of a mask corresponding to a result can be linked
to the addresses of the operands and the result, respectively.

We now want to take a look at the implementation costs of the practical example
proposed by Tillich et al. [24] based on a SPARC V8-compliant LEON3 processor [1].
A full version of the secure zone has an area requirement of approximately 22 kGEs.
In the following, we go through some theoretic numerical examples, calculating the
total area overhead when implementing the secure zone in different secure logic
styles.

We assume that a typical LEON3 processor implementation containing a debug
support unit, RAMs, and caches requires approximately 580 kGEs. In total, a LEON3
processor equipped with a secure zone implemented in unprotected CMOS logic
requires 602 kGEs. A pure DRP logic style like DWDDL increases the area require-
ment approximately by a factor of about 12 [31]. In our example the secure zone
implemented in DWDDL would require approximately 264 kGEs, the whole LEON3
processor would thus result in 844 kGEs. The total area overhead would increase
by a factor of only 1.4 compared to the LEON3 implementation in unprotected
CMOS logic. In case of a coprocessor that would have to be completely imple-
mented in DWDDL we would encounter the full area overhead factor of 12. In case
of iMDPL [16], which causes an area overhead of a factor of 18, the overall area for
our LEON3 processor would be 976 kGEs. This would result in an area overhead
factor of approximately 1.7.

These numerical examples illustrate the following: although secure logic styles
may result in a significant drawback in terms of area requirements as well as power
consumption, they may be implemented much more economically if secure logic
styles are combined with advanced concepts like the secure-zone approach.

112 M. Kirschbaum and T. Plos

5.7 Testability and Security

Testing is an important activity not only during development of a hardware circuit but
also after its manufacturing. Typically, not all microchips that have been manufac-
tured are working properly. This has various reasons, for example, varying process
parameters during production or imperfections of material and masks. The yield,
which is the ratio between the number of working chips and the overall number of
manufactured chips, should be as high as possible to maximize the profit. In order
to separate faulty chips from working chips, tests have to be applied.

Releasing a faulty chip causes tremendous costs. Imagine the following simple
example: A company manufactures 100,000 chips, and sells them at the price of $1
per chip. We assume that one percent of the chips (i.e., 1,000 chips) are faulty. When
the faulty chips are immediately detected after production through tests before they
get sold, costs of $1,000 will arise. When the faulty chips get detected after they have
been sold and soldered on a board, costs will already result in $50,000 if repairing
a malfunctioning board costs $50. Even worse, when the failing parts get detected
after integration into a whole system, costs will boost to $1,000,000 when repairing a
non-working system costs $1,000. This simple example clearly emphasizes the need
of detecting faulty parts as early as possible after production.

In order to get confidence about proper operation of a microchip after production,
reliable tests are necessary. For realizing such reliable tests, the underlying test con-
cepts that are used have to be planned and included at the design time of a hardware
circuit. This so-called “design-for-test” approach integrates additional test structures
to a circuit to allow fast and comprehensive analysis of a chip after production. The
more internal details of a chip can be accessed, the more comprehensive tests can be
conducted, lowering the chance that malfunctioning parts remain undetected.

A powerful and widely-used test concept uses scan chains that provide access to
the values internally stored in the flip flops of a hardware circuit. For cryptographic
devices, giving access to internal values can be problematic. As shown in the work of
Yang et al. [29, 30], test structures based on scan chains can be easily used to mount
attacks against cryptographic devices. In order to prevent such attacks, test structures
of security-related devices are typically deactivated after successfully testing the chip
(e.g. by blowing a fuse) or even totally removed by cutting them off [11].

An alternative to scan-chain approaches are built-in self tests (BISTs). The NIST
suggests to use BISTs instead of scan-chains for cryptographic devices [14]. For a
BIST, necessary test data and test cases are generated within the evaluated chip. The
only information that is returned after conducting the tests is whether all tests have
been passed or not. This is advantageous from a security point of view but comes
at cost of a lower fault-detection rate, since comprehensive tests as with scan-chain
approaches are not possible. Moreover, generating test data within the chip causes
significant hardware overhead.

5 Hardware and VLSI Designs 113

5.8 Hardware Trojans

Test structures implemented by a designer to be able to verify the correct functionality
of an IC after production, may unintentionally weaken or bypass security measures
implemented on that device. In contrast, hardware Trojans describe security-
threatening hardware structures in ICs, intentionally implemented at some point
in the fabrication chain. For cost reasons, more and more semiconductor companies
outsource the chip fabrication process to cheaper facilities. Hence, hardware Trojans
may be implemented without the designers’ knowledge or notification (assuming
that the designer is not an adversary). Moreover, they may remain undetected even
if the designer receives the ICs from the wafer factory and performs conventional
functionality tests, as hardware Trojans may or may not be activated as soon as the IC
is powered up. Once activated, the malicious actions a hardware Trojan may perform
are incredibly powerful:

• simply shut down the device the Trojan is running on or disable connected devices,
• disable security mechanisms in a system,
• transmit critical data via various interfaces (e.g. radio-frequency emission),
• open a backdoor for an adversary and provide access to a system,
• or bypass implemented hardware countermeasures against side-channel attacks.

Wang et al. [26] classified hardware Trojans into three classes according to their
physical, activation, and action characteristics. The physical characteristics describe
how the Trojan is introduced in a digital circuit (addition/deletion of cells or mod-
ification of existing cells), the size and the location of the Trojan (how many cells
are involved), as well as if the insertion of the Trojan entails significant changes
of the physical layout of the digital circuit. The activation characteristics describe
whether the Trojan is “always-on” or has to be activated externally, e.g. via antenna,
or internally. Wolff et al. [28] further divided internally activated Trojans into three
categories based on their trigger behavior: rare value triggered, time triggered, and
both value and time triggered. Wang et al.introduced three action characteristics that
describe whether an activated Trojan modifies a function (addition/deletion of logic
cells) or specification (e.g. modification of wires changes the timing specifications),
or directly transmits critical information over various channels.

Preventing hardware Trojans is a very complex issue, as Trojans may be implanted
in different phases, e.g. during the high level or hardware-level design phase of a
system, during synthesis/place/route of hardware modules, or even during the fabri-
cation process of an IC. One possible protection against hardware Trojans is a chip
developer would have to somehow establish a chain of trust, starting at the designer,
continuing with the hardware experts, up to the IC production facility and the package
house.

Another possibility to detect hardware Trojans is based on SCA [2]. In this
approach a few ICs from one IC family (produced with the same mask) are first
subjected to sufficient I/O tests to verify all parts of the circuitry. During these tests,
some side-channel signals are also collected to build a side-channel fingerprint. In a

114 M. Kirschbaum and T. Plos

next step, the ICs are destructively reverse engineered in order to thoroughly ensure
that these few samples are free of Trojans. All other ICs from the same family can
then be checked by comparing the fingerprints. This example shows that security-
threatening side-channel attacks can also be used to some degree to detect hardware
Trojans in ICs.

5.9 Conclusion and Summary

Implementing efficient, secure, and reliable ICs is a highly sophisticated task that
provides manifold possibilities, but requires to be performed with great care. In this
chapter we have shown that a hardware designer has almost indefinite possibilities
to basically add specific functionality to an IC as well as to optimize the implemen-
tation to reach various design goals. By means of several examples of cryptographic
hardware implementations we have illustrated the degrees of freedom that are at
a designer’s disposal. We also pointed out the importance of performing tests and
simulations throughout the whole design cycle in order to minimize the possibility
of errors as well as to decrease the effort if an error occurs during the design phase.

With regard to security-threatening side-channel attacks we described the fun-
damental characteristics of modern CMOS circuits and pointed out the reason for
the vulnerability of ICs against such attacks by means of a conventional CMOS
inverter. We discussed basic approaches for implementing countermeasures against
side-channel attacks and introduced some particular countermeasures in more detail.
We also pointed out the possibility to verify the effectiveness of various types of
countermeasures to some degree in early design phases. This minimizes the costs as
well as the effort to perform changes in the implementation.

We combined the topics of efficient hardware implementations, cryptographic
ISEs, and hardware countermeasures against side-channel attacks and presented a
sophisticated concept with custom instructions and countermeasures on a modern
SPARC V8-compliant 32-bit processor platform. It turned out that such a concept
benefits from both the efficiency and compactness of ISEs as well as the security
gain achieved by a secure logic style.

In a last part of this chapter, we contrasted the testability with the security of
ICs. It has been shown that test structures implemented by designers to be able to
comprehensively verify the correct functionality of a design after production may
lead to significant security leaks. We also discussed the insertion and some possible
effects of hardware Trojans, which represent a worrying yet interesting and currently
evolving research topic.

5 Hardware and VLSI Designs 115

References

1. Aeroflex Gaisler. The Aeroflex Gaisler Website. http://www.gaisler.com/.
2. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan Detection using IC

Fingerprinting. In IEEE Symposium on Security and Privacy (SP ’07), Berkeley, Californie,
USA, May 20–23 2007, pages 296–310, 2007.

3. D. Canright and L. Batina. A Very Compact ”Perfectly Masked” S-Box for AES. In
Applied Cryptography and Network Security - ACNS 2008, New York, USA, June 3–6, 2008,
Proceedings, volume 5037 of Lecture Notes in Computer Science, pages 446–459. Springer,
2008.

4. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand. IEE
Proceedings on Information Security, 152(1):13–20, October 2005.

5. Gaisler Research. LEON2 Processor Users Manual. XST Edition. [Online] http://www.gaisler.
com/doc/leon2-1.0.30-xst.pdf, July 2005. Version 1.0.30.

6. D. Gajski and R. H. Kuhn. New VLSI Tools - Guest Eidtors’ Introduction. IEEE Computer,
16(12):11–14, 1983.

7. A. Hodjat and I. Verbauwhede. Interfacing a High Speed Crypto Accelerator to an Embedded
CPU. In Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems,
and Computers, 2004, volume 1, pages 488–492. IEEE, November 2004.

8. H. Kaeslin. Digital Integrated Circuit Design - From VLSI Architectures to CMOS Fabrication.
Cambridge University Press, 2008. ISBN 978-0-521-88267-5.

9. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Sys-
tems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18–22, 1996, Proceedings,
number 1109 in Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

10. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15–19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

11. O. Kömmerling and M. G. Kuhn. Design Principles for Tamper-Resistant Smartcard Processors.
In Proceedings of the 1st USENIX Workshop on Smartcard Technology (Smartcard ’99),
Chicago, Illinois, USA, May 10–11, 1999, pages 9–20, McCormick Place South, May 1999.
USENIX Association. ISBN 1-880446-34-0.

12. S. Mangard, M. Aigner, and S. Dominikus. A Highly Regular and Scalable AES Hardware
Architecture. IEEE Transactions on Computers, 52(4):483–491, April 2003.

13. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS Gates. In
A. Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the
RSA Conference 2005, San Francisco, CA, USA, February 14–18, 2005, Proceedings, volume
3376 of Lecture Notes in Computer Science, pages 351–365. Springer, February 2005.

14. National Institute of Standards and Technology (NIST). FIPS PUB 140–1: Security Require-
ments for Cryptographic Modules, 1994. [Online] http://www.itl.nist.gov/fipspubs/.

15. National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption Stan-
dard, November 2001. [Online] http://www.itl.nist.gov/fipspubs/.

16. T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked Logic Style
MDPL on a Prototype Chip. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10–13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science,
pages 81–94. Springer, September 2007. ISBN 978-3-540-74734-5.

17. T. Popp and S. Mangard. Masked Dual-Rail Pre-Charge Logic: DPA-Resistance without Rout-
ing Constraints. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29–September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science, pages 172–186. Springer,
2005.

http://www.gaisler.com/
http://www.gaisler.com/doc/leon2-1.0.30-xst.pdf,
http://www.gaisler.com/doc/leon2-1.0.30-xst.pdf,
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/

116 M. Kirschbaum and T. Plos

18. J. M. Rabaey. The SPICE Home Page. http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.
19. J. M. Rabaey. Digital Integrated Circuits - A Design Perspective. Electronics and VLSI Series.

Prentice Hall, 1st edition, 1996. ISBN 0-13-178609-1.
20. P. Schaumont and K. Tiri. Masking and Dual-Rail Logic Dont Add Up. In P. Paillier and I.

Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, 9th
International Workshop, Vienna, Austria, September 10–13, 2007, Proceedings, volume 4727
of Lecture Notes in Computer Science, pages 95–106. Springer, September 2007.

21. D. Suzuki, M. Saeki, and T. Ichikawa. Random Switching Logic: A New Countermeasure
against DPA and Second-Order DPA at the Logic Level. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E90-A(1):160–168, 2007. ISSN
0916–8508.

22. S. Tillich and J. Großschädl. Instruction Set Extensions for Efficient AES Implementation
on 32-bit Processors. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, October 10–
13, 2006, Proceedings, volume 4249 of Lecture Notes in Computer Science, pages 270–284.
Springer, 2006.

23. S. Tillich and J. Großschädl. Power-Analysis Resistant AES Implementation with Instruc-
tion Set Extensions. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10–
13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 303–319.
Springer, September 2007.

24. S. Tillich, M. Kirschbaum, and A. Szekely. SCA-Resistant Embedded Processors - The Next
Generation. In C. Gates, M. Franz, and J. P. McDermott, editors, 26th Annual Computer Security
Applications Conference (ACSAC 2010), 6–10 December 2010, Austin, Texas, USA, pages
211–220. ACM Press, 2010.

25. K. Tiri and P. Schaumont. Changing the Odds against Masked Logic. In E. Biham and
A. M.Youssef, editors, Selected Areas in Cryptography, 13th International Workshop, SAC
2006, Montreal, Quebec, Canada, August 17–18, 2006, Revised Selected Papers, volume 4356
of Lecture Notes in Computer Science, pp. 134–146. Springer, 2007. [Online] http://rijndael.
ece.vt.edu/schaum/papers/2006sac.pdf.

26. X. Wang, M. Tehranipoor, and J. Plusquellic. Detecting Malicious Inclusions in Secure Hard-
ware: Challenges and Solutions. In M. Tehranipoor and J. Plusquellic, editors, Hardware-
Oriented Security and Trust (HOST 2008), Anaheim, CA, June 9 2008, Proceedings, pages
15–19, 2008.

27. N. H. E. Weste and D. Harris. CMOS VLSI Design—A Circuits and Systems Perspective.
Addison-Wesley, 3rd edition, May 2004. ISBN 0-321-14901-7.

28. F. G. Wolff, C. A. Papachristou, S. Bhunia, and R. S. Chakraborty. Towards Trojan-Free Trusted
ICs: Problem Analysis and Detection Scheme. In Design, Automation and Test in Europe
(DATE), 10–14 March, 2008, 2008.

29. B. Yang, K. Wu, and R. Karri. Scan Based Side Channel Attack on Dedicated Hardware Imple-
mentations of Data Encryption Standard. In Proceedings of the International Test Conference
on International Test Conference, CCS ’05, pages 139–146, New York, NY, USA, 2005. ACM.

30. B. Yang, K. Wu, and R. Karri. Secure Scan: A Design-for-Test Architecture for Crypto Chips.
IEEE Trans. on CAD of Integrated Circuits and Systems, 25(10):2287–2293, 2006.

31. P. Yu and P. Schaumont. Secure FPGA circuits using controlled placement and routing. In
Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, Salzburg, Austria, September 30 - October 5, 2007, pages 45–50. ACM
Press, September 2007. ISBN 978-1-59593-824-4.

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://rijndael.ece.vt.edu/schaum/papers/2006sac.pdf
http://rijndael.ece.vt.edu/schaum/papers/2006sac.pdf

Part II
Generic Security and Processing

Platforms

Chapter 6
Information Security Best Practices

Keith Mayes and Konstantinos Markantonakis

Abstract We are increasingly reliant on the use of IT systems in our normal day-
to-day business and personal activities. It is of paramount importance that these
systems are sufficiently secure to protect sensitive, valuable and private data, and
associated storage, communications and transactions. Therefore, the design and use
of such systems should be in accordance with best practices for information security
that have been developed by industry, government and the worldwide expert com-
munity. This chapter emphasises the need for system security and goes on to explain
technical choices such as algorithms, key size and trust management, and concludes
with a real-world case study.

6.1 Introduction

We live in an age in which the tools of information technology (IT) and the Internet
have become ubiquitous and essential for all manner of good reasons and responsible
uses. We are able to harness the creativity, skills, enthusiasm and cooperation of
the people for greater and positive achievements. Unfortunately, these same tools
have a darker side and can be used just as effectively for negative purposes. This
is certainly true in the area of Information Security. On the one hand, we have
designers and system owners trying to safeguard sensitive data and functionality
using security protection, whilst on the other hand we have attackers (and worse!)
trying to undermine the protection. This is no clear cut, good against evil struggle and
whilst system owners will condemn the action of attackers, the attackers may rally to

K. Mayes (B) · K. Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, United Kingdom
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis
e-mail: k.markantonakis@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 119
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_6,
© Springer Science+Business Media New York 2014

120 K. Mayes and K. Markantonakis

a cause because of perceived failings of the system owners. What is clear is that if you
plan to implement a system you should assess the likely risks and impacts of attacker
activity and design, implement, test, operate and manage your system in-line with
information security industry best practices. There is no real excuse to be ignorant of
these practices as guidelines are published by several authoritative sources, although
it is also important to realise that there are often practical and financial constraints,
especially with legacy systems. A lot of effort in information security is working with
imperfect solutions; however, if you initially design to best-practices, you at least
know where the imperfections and risks lie and are better able to manage them. This
chapter provides an overview of some aspects of best-practice that are applicable to
embedded devices and where possible links the topic to relevant published exploits.

6.1.1 What is Information Security and Who are the Adversaries?

A system typically makes use of data, functionality and communication, and this
supports a data centric view of security. The data may be sensitive or private, can
have direct linkage to money and value or can control configuration, ownership and
privilege. Preserving the integrity, confidentiality and access privileges of data is
therefore essential for the system to work as planned. Functions act upon data and
hence the integrity of the functionality must also be maintained, so that it cannot
be modified or disrupted and that it does not leak the sensitive information. Data
is communicated between valid entities and so it is equally important that integrity,
confidentiality and entity authentication is maintained.

Another viewpoint is that security is a barrier to keep attackers at bay. There are
in fact many different types of active attackers and examples are listed below.

• Academics/researchers
• Private “enthusiasts”
• Petty criminals
• Activists
• Organised - well equipped criminals

As there are a variety of attacker types it is not surprising that there is also a
diversity of motivations.

• Fame
• Curiosity/Challenge/Fun
• Reduce own costs
• Political agenda/embarrassment
• Money

In the not too distant past, when conducting a risk review it was customary to
always consider the business case of an attack activity. Basically for a given attack
target, what would be a reasonable amount of time, money, effort to commit in order
for the attacker to succeed? The implication being that if the target’s value was lower

6 Information Security Best Practices 121

than the attack investment it would probably be left alone. It is unwise to hold too close
to this way of thinking, because the Internet, communications and social networking
is used effectively by the attacker community allowing efforts to be co-ordinated,
tasks to be shared, with software and hardware designs being freely published (see
[1]). The idea of attacking systems that are poorly designed, implemented or that
are suspected of abusing power in some way is accepted in such groups and indeed
bringing these things to the public domain has become a fun “sport” [2]. Predicting
what targets an attacker group would like to attack might even be impossible; there
actually does not need to be much of reason other than the group wants to do it. It
should be noted that a lot of the pioneering activity is driven by curiosity and has no
real malicious objective; however, it is dangerous if it serves to educate groups and
organisations with ruthless and criminal intent.

When designing a system, it is therefore prudent to assume that you are up against
a host of experts and criminals who are as least as smart as you, that have almost
unlimited human resources, and have specialist computing equipment many times
more powerful than yours. Therefore, don’t go looking for trouble! Translated to best
practice, this means reduce the chances of becoming a target. If it is known that your
system relies on secretive, proprietary and unreviewed techniques or algorithms,
it is equivalent to painting a large target on the system; just the thing that some
attacker groups like. Whereas, if it is publicly declared that your system adheres to
best practices then there is less “fun” in attacking it; so you will be overlooked by a
large proportion of your potential adversaries. You reduce the target still further by
minimising the potential prize from a successful attack. For example, if a difficult
attack reveals a key that can be used for one second, in one location, by one person,
for one purpose then you might deter all but the most persistent attackers. Conversely,
if an attack reveals a global secret (e.g. common key or secret proprietary algorithm)
that undermines the security of the entire system, there will be a larger group of
adversaries to resist.

6.2 Security Objectives

Paranoia about security attacks is a good starting point, but you then need to carry out
a security risk review of your system or assets. This should be done independently of
suppliers as not surprisingly they will rarely point out vulnerabilities in the products
they are trying to sell to you! Similarly you would be wise to require independent
evidence from certification labs or your own trusted experts, that a product or system
component meets your security requirements. This of course means that you will
have determined your requirements in sufficient detail. This is not so simple, but one
way to approach it, is to identity the security critical data assets and functions that
are relied on by the system.

122 K. Mayes and K. Markantonakis

6.2.1 Data Assets

With a sensitive data asset we may be concerned about integrity, access control and
privacy. There are different types of data assets that may need protection.

• Personal data: This could be information on customers such as names and
addresses, ages, perhaps even health records and criminal convictions etc.
• Monetary data: This could include the contents of an e-wallet, tickets, vouchers,

credit/debit card data and bank details.
• Transaction data: This could be all manner of access to on-line services e.g. shop-

ping history, tax returns, health-site logs as well as conventional POS transactions.
• Cryptographic data: This is the data used to provide security protection so includes

account IDs, passwords, PINs, keys, signatures, certificates, etc.

As a general guide, we are concerned about critical data assets when they are in
storage, communication or being acted upon by critical functions.

6.2.2 Critical Functions

Protecting data assets alone is not sufficient. The functions that act upon the data
assets are also attack targets. Example functions are included below.

• Service and data access functions.
• Payment transaction handlers.
• Data handling functions.
• Cryptographic functions: Encryption/Decryption, Hash, MAC, random number

generation, signing and verification.

6.2.3 The Range of Security Protection

Having identified the critical data assets and functions we can set about protecting
them; however, effective protection requires appreciation of the full range of security
measures. We can split this range into logical security which relates mainly to design
aspects, implementation security and critical process security.

Logical Security: This is the traditional design of a system and where you will
find a lot of the best practice advice. It covers aspects including.

• Algorithms and security functions.
• Cryptographic keys.
• Protocols.
• Random number generation.

6 Information Security Best Practices 123

Implementation is equally important, as the logical security design has to be part
of some hardware and usually software combination in order to be used in practice
and attackers target implementations just as well as designs. This area can be split
as follows.

• Platform security.
• Physical security.
• Side-channel security.1

When thinking of critical processes, most people thing of the operational trans-
actions, which are of course vital. However, security solutions do not magically
start working and continue without any management attention. System components
require initialisation so they have the common data and functions needed by the sys-
tem and then personalisation to have them appropriately configured for individuals
or as different system components. An important part of this is making sure that all
the entities have the correct keys for use in the crypto operations. Keys have to be
generated programmed and distributed, and sometimes updated and/or withdrawn
from use, all of which is covered by the general term of Key Management. There will
also be operational management that might be another target for attack. For exam-
ple, a transaction website address may occasionally need changing so it is important
that only authorised parties can do this. Managing the system and its components
throughout their normal useful life, including the data, the keys and operations is
often referred to as lifecycle management.

This chapter will focus mainly on an overview of logical security best practice;
however, the reader should be quite clear that this alone does not make a secure
system. Equal attention is needed to prevent attacks against the implementation as
well as critical processes; see Chap. 9 of [3] for some overview information.

6.3 Cryptographic Algorithms

To safeguard our data assets, in storage, communication or processing we can use
cryptographic algorithms that have useful security properties, and can be employed
for a variety of purposes including the following.

• Encryption/decryption: This is effectively disguising the data assets so that only
an authorised party can determine the source content.
• Integrity protection: This is used to ensure that a data asset has not been modified

or corrupted.
• Signing/Verification: This can be used (rather like a written signature) to determine

the authenticity of data and transactions.

1 Side-channel security is the ability for an implementation to prevent information leakage (e.g.
from timing and power consumption variations and radio emissions) when running critical functions.
Attackers may analyse leakage to recover sensitive information and cryptographic keys [15].

124 K. Mayes and K. Markantonakis

Fig. 6.1 Symmetric algorithm

The cryptographic algorithms can be used in combination as part of a security
protocol. For example, they could be used in an authentication protocol to deter-
mine that the communicating parties are legitimate (e.g. a real bank and its real
genuine customer), to establish session keys for communication privacy and verify
the integrity of exchanged information.

There are some common cryptographic algorithms that can be used for a variety
of purposes. They are split into two main classes.

• Symmetric (e.g. DES [4], AES [5])
• Asymmetric (e.g. RSA [6])

6.3.1 Symmetric Algorithms

In a symmetric algorithm, the transaction participants share the same key that is kept
secret from all other parties.

If the algorithm is designed without structural weaknesses, then the most efficient
way to attack it is via brute-force key recovery. This means that Eve must use trial
and error to find the key that Alice and Bob have shared. In practice, a key may be
considered as a pattern of N binary digits (bits). This means that there may be at
most 2N unique keys. Eve could be very lucky and get the right key first try, or very
unlucky and find the key on the last attempt. The normal design assumption is that on
average Eve will guess the key after about 2N-1 attempts, i.e. after having tried half
of the possible key values. Therefore to have a useful symmetric algorithm we need
to have an N that is sufficiently large to make it impractical for Eve to guess the key,
despite having lots of computing power at her disposal. In fact we have to assume that

6 Information Security Best Practices 125

she has a key-cracker machine. A key-cracker is a specialist machine that can run an
algorithm very many times in a short period, usually employing parallel processing,
Historically one would purchase a physical machine [7] to do this although similar
power may now be obtained from an Internet based virtual computer or a grid of
computer resource shared between a hacker “enthusiast” group.

The obvious question of course is how large is enough when choosing the keysize
N for a symmetric algorithm? The more correct question is what is the minimum
recommended effective keysize (in bits) for a symmetric algorithm? The distinction
between the number of bits used to represent the key N and the effective keysize
will be explained later. The answer to the keysize question changes over time as the
keysize will need to increase to allow for technology advances which will improve
attacker resources. Fortunately there are respected sources of expert advice such as
NIST [8, 9] and ECRYPT [10] that can suggest an appropriate keysize for a given
target lifetime of your system. Although the advice from different sources is not
identical, it is similar, and so roughly speaking a legacy system in say 2011 would
be just about OK with an effective keysize of 80 bits, but if you were introducing
a new system you should have at least 128 bits, and if it is particularly security
sensitive then play safe with 256 bits. With these guidelines in mind, we can analyse
a common symmetric algorithm, namely the Data Encryption Standard (DES) and
its TripleDES variant.

6.3.1.1 The DES Example

DES [4] is referred to as a Feistal Cipher and has 16 sequential “rounds” of processing.
A single round is shown in Fig. 6.2 and generally the output from the previous round
is subject to expansion, sub-key addition, substitution and permutation.

The algorithm has an input data block size of 64 bits and a keysize of 56 bits.
Clearly, the keysize falls way below current best practice and DES keys have been
well within the range of brute force key-crackers for many years. It is therefore not
surprising that DES is considered obsolete and should be phased out from legacy
systems. There are variants known as Two Key Triple DES (2key-3DES) and Three
Key Triple DES (3key-3DES) that have stronger logical security and have been used

Fig. 6.2 Round of DES [4]

126 K. Mayes and K. Markantonakis

Fig. 6.3 Triple DES
processing

Table 6.1 DES key-sizes and best practice [10]

DES variant Actual bey bits Effective key bits Best-practice view

1-key DES 56 56 Not recommended for use - obsolete
2-key 3DES 112 80 Not recommended for use after 2012
3-key 3DES 168 112 Recommended for use until 2030

in relatively recent systems. Both variants simply run the algorithm multiple times
as shown in Fig. 6.3.

In 3key-3DES, the keys K1, K2 and K3 are all different. In 2key-3DES, K1 and K3
are the same. If you set all keys to be the same then you have backward compatibility
to normal DES, albeit in an inefficient implementation. There is no performance
advantage in using 2key-DES over 3key-DES so its use is often a throw-back to past
issues of compatibility, memory limitation and practical key management.

6.3.1.2 Effective Keysize

When judging an algorithm, it is the effective key-bits that are important as these
relate to the brute-force attack difficulty. If you are curious about the estimation of
effective keysize and can follow equations then read on, otherwise skip to the next
section. The reason that triple DES does not increase the effective key-size as much as
one might initially think is that the iterative (3-stage) processing may be exploited in
attack optimisation. For example, 3-key 3DES has a lower effective keysize due to a
“meet-in-the-middle” [11] attack strategy. This is classically described by successive
encryption (E) by two keys; K1 and K2 of an input plaintext P1 to generate and output
cipher text C1.

C1 = EK 2(EK 1(P1))

Generally for the mt h plaintext and ciphertext.

Cm = EK 2(EK 1(Pm))

If the single encryption has a key of N bits length, then the double encryption
might be expected to be equivalent to encryption with a key of 2N bits in length.
In terms of possible keys, this would be a change from 2N to 22N key possibilities
which should increase the effort for a brute force attack enormously. Unfortunately,
the meet-in-the-middle attack brings us back close to the single key brute force
difficulty. It works as follows.

6 Information Security Best Practices 127

1. Compute EK 1(P1) under all possible values of K1 and store in a table.
2. Compute DK 2(C1) under possible values of K2 until you find a matching result

in the table.
3. Check another Pm&Cm pair to see if the correct K1 and K2 found (if not go back

to step 2).

If the table look-up time is considered negligible, then the brute force effort is the
encryption under all possible K1 (N operations) and the decryptions under K2 (worst
case N operations). The number of cryptographic processes (which related to brute-
force attack difficulty) is therefore.

Processes = 2N + 2N = 2N+1

Even under worst case conditions (K2 last of keys tried) this is equivalent to adding
just one bit to the key length rather than doubling it and so the double encryption has
made little improvement.

In the case of 3-key 3DES, the encryption is represented as.

Cm = EK 3(EK 2(EK 1(Pm)))

where each key has size N bits.
If we assume that the combined second and third encryptions EK 3(EK 2(.)) are

equivalent to a single encryption of a key K23 which has 2N bits, we can rewrite the
equation as.

Cm = EK 23(EK 1(Pm))

If we follow the meet-in-the-middle approach, the computation is now.

Processes = 22N + 2N ≈ 22N

So for 3key-3DES N = 56 and so the effective key size = 2N = 112 bits2.
This “trick” does not come for free and you need a large memory to store the

results from the original stage of encryption. The amount depends on N, but also on
the blocksize of the algorithm. For DES variants the blocksize is 64 bits (= 8bytes).
The memory requirement in bytes is therefore.

2N × 8 = 2N+3 = 259 ≈ 5× 1017bytes ≈ 500,000 Terabytes = half an Exabyte

This sounds like a lot of memory, but according to [32] the Internet is reckoned to be
storing around 300 Exabytes at the moment and new satellite TV boxes are already
shipping to thousands of homes with Terabyte hard drives. Note that attackers don’t
need to own all this memory, just share and use it for a while and so developments

2 In this case, the example calculation results in the same effective keysize as appears in the
recommendations. However, in the more general case, other considerations of positive or negative
impact may be taken into account when defining effective keysizes.

128 K. Mayes and K. Markantonakis

like the Cloud are also interesting. The likelihood is that half an Exabyte will not
sound “big” for very long.

The reduction in effective key size for the 2-key 3DES is not due to the meet-in-
the-middle attack (as the same key is used in the outer stages), but rather another
attack strategy that makes use of captured plaintext/ciphertext pairs and a memory
table. The effective keysize is reduced the more pairs that it is feasible to collect.
If the keys are used rarely, then the effective key size would be closer to the actual
keysize. According to [12] the attack process difficulty can be estimated as follows.

If n is the number of collected plaintext/ciphertext pairs compute.

r = log2n

Then the number of effective key bits b for estimating attack difficulty is
given by.

b = 2120−r

Just to illustrate the evolving dynamic nature of best-practice, the attack which
was published back in 1990 [13] estimated the cost of the table memory at $10–20
million. The table size was 240 bits = 237 bytes ≈ 1011 bytes (100 GB). Today you
would struggle to buy a hard disk drive this small and a 500 GB disk would cost
around $100.

6.3.1.3 Choosing a Symmetric Algorithm Today

Although we have used DES as an example, the general issues are relevant to all
similar algorithms. In fact despite the known attack optimisations, DES has proved
itself to have a robust design, sufficient to justify its long life-time of practical use.
However, if we wish to remove temptation for mounting brute-force attacks over the
longer term we need an algorithm that has bigger effective key sizes and does not
have to be run multiple times to raise its security. Fortunately, there is a readymade
solution in the form of the Advanced Encryption Standard (AES) [5], the successor
to DES. AES has a multi-round style of construction (DES is also multi-round) and
is standardised in 128, 192 and 256 bit key options, and even the smallest key is
expected to be secure beyond 2030. The block size is increased from 64 to 128 bits
which makes it less vulnerable to some attack strategies. It is also fast like its DES
predecessor.

A very important point to note about AES is that it was evaluated and selected
by the world’s expert community and is published openly. This is very important
because of the following.

• An algorithm’s security should not rely on the secrecy of the algorithm (Kerck-
hoffs’ principle [14]).
• Violation of this principle is called “Security by Obscurity”.

6 Information Security Best Practices 129

In principle, a secret and proprietary algorithm might be “secure,” but it may be hard
to convince anyone of this and history has taught us that most proprietary algorithms
are shown to be flawed once their design information is disclosed.

The main message here is that the rational choice for a symmetric algorithm
today would be AES, unless you have a resource limited implementation and/or
demanding performance requirements. One important point to note is that we have
only commented on the logical design choice. The construction of both DES and
AES requires execution of multiple rounds of processing, each of which may be
analysed using side-channel techniques. If you do not implement the algorithms in
a way that prevents side channel leakage, the individual rounds may be attacked in
sequence [15] and the “good” design of the algorithm can be completely undermined.
The reader is again referred to Chap. 9 of [3].

6.3.1.4 Symmetric Algorithm Modes

Choosing the symmetric algorithm is not the end of the design process either. You
need to decide which mode you will use it in. If we are interested in encryption, we
know that both DES and AES are block ciphers which gives us several mode options.

The simplest mode is referred to as electronic codebook (ECB) in which each
block of plaintext is encrypted using the same secret key(s). There is a weakness
with this approach if your plaintext blocks are meant to form part of a contiguous
sequence. An adversary could remove or insert cipher blocks as part of an attack
strategy. To counter this threat the Cipher Block Chaining (CBC) mode is commonly
used as illustrated in Fig. 6.4.

The basic principle is that the input plaintext is EXORed with the ciphertext result
from the preceding block encryption, thereby chaining the encryptions together. The
initial encryption is a special case as there is no preceding ciphertext result, so an
Initialisation Vector (IV) is used instead. Determining the value of the IV is a design
choice. In some applications it has been zero, a fixed value, the result of a fixed
calculation, but for best practice it should be a random dynamic value. In the last

Fig. 6.4 CBC

130 K. Mayes and K. Markantonakis

Fig. 6.5 OFB mode to create a cipher stream [33]

case, an additional mechanism is needed to ensure that both the encryption and
decryption processes are able to agree a common IV value. Although the IV does
not have the same secrecy requirements as the symmetric key(s) it is important that
its integrity is protected.

Just because you are using a block cipher does not mean you have to use a block
mode for encryption. You can use a block cipher to generate a keystream that is
then simply EXORed with the plaintext bit stream to create the ciphertext bitstream.
Figure 6.5 gives an example of the Output feedback mode that generates keystream
blocks for EXORing with the plaintext. Cipher Block Feedback is another variant
that generates a keystream.

If you decide to take the stream cipher approach, then extra care is needed due to
particular vulnerabilities and in particular bit-flipping attacks. You should also not
reuse the IV; otherwise the output from the first block cipher encryption will be a
constant value.

6.3.1.5 Bit-Flipping

The basic idea is that because of the way that the plaintext bits are EXORed with the
keystream, changing a ciphertext bit, changes the corresponding bit in the deciphered
plaintext. This means that an attacker can modify the decrypted plaintext without
knowing the algorithm or key used to generate the keystream! This can be illustrated
with reference to Fig. 6.6.

Decryption is the same process as encryption, just simple EXORing of the cipher-
stream with the keystream. Table 6.2 provides an example of a bit-flipping exploit.

While the attacker may not know the algorithm or key, he may well have knowl-
edge of the plaintext structure. For example, the plaintext could have been an instruc-
tion to load an e-wallet with $25, and so the attacker may have in fact loaded $89 by
simply flipping a bit (underlined in Table 6.2). In an attempt to maintain the integrity

6 Information Security Best Practices 131

Fig. 6.6 Keystream example

Table 6.2 The effect of
bit-flipping on stream
ciphering

Normal case Bit-flipping attack

Ciphertext 10110101 11110101
Keystream 10101100 10101100
Plaintext 00011001 01011001
Value (base 10) 25(Correct) 89 (Modified)

of the payload data, some protocols add a Cyclic Redundancy Check (CRC), how-
ever this does not help if the data structure is known, as the attacker simply flips the
CRC bits to fit the modified payload. The use of Message Authentication Codes is
far more effective as the attacker does not have the key to generate new MACs for his
modified payload; although this creates another key to manage. Key management is
discussed in a later section, however for now it is sufficient to note that the difficulties
of managing secret keys leads to interest in the use of asymmetric algorithms.

132 K. Mayes and K. Markantonakis

Fig. 6.7 Asymmetric algorithm keys

6.3.2 Asymmetric Algorithms

In an asymmetric algorithm, each party has a pair of keys. The “private” key is kept
secret and only known to the owning party. The corresponding public key can be
given to anyone. An example is shown in Fig. 6.7.

Eve is allowed to know the public keys of Alive and Bob, but cannot determine
the corresponding private keys. Solutions of this kind need measures to prevent Eve
from presenting her own public key and claiming to be someone else, e.g. Bob, as
then Alice may send information that Eve can decrypt thinking it is destined for Bob.

All such algorithms rely on a mathematical problem (e.g. factoring or discrete
logarithm), such that knowing the public key does not allow someone to work out
the private key. RSA [6] is the most popular asymmetric algorithm and can be used
both for encryption and signing, although you should use a different key-pair for
each. It is the nearest thing to a “safe bet” for new systems designs. In simple terms,
the mathematical problem faced by an attacker is to factor a very large integer (n)
into its prime factors (p, q), which is very difficult. If this fact can be accepted,
then the mechanics of setting up and using RSA are not hard to understand even
for non mathematicians. If you have no interest in the equations (that use modulo3

operations) then skip to Table 6.3, otherwise consider the following steps to create a
key-pair and use it for encryption and decryption:

• In the key generation process, two large prime numbers (p, q) are selected.

3 In modular division the result of a mod (b) would be the remainder after dividing the integer a
by integer b, so for example 1 = 13 mod 6.

6 Information Security Best Practices 133

Table 6.3 RSA best practice key sizes [10]— practical/rough approximation

Keybits Symmetric equivalent Best-practice

1024 Similar to 2-key 3DES No longer recommended for use—obsolete
2048 Similar to 3-key 3DES Recommended for use until 2030
4096 Similar to 128 bit AES Recommended for use until about 2040

• pq = n is called the modulus and we denote the product (p-1)(q-1) by ϕ(n).
• Choose a positive integer e (1 < e < pq) that has no common factors with p-1 and

q-1. This is equivalent to having gcd4(e, ϕ(n)) = 1.
• Your public key is then (e, n).
• Compute a positive integer d, such that ed = 1 mod ϕ(n). The number d is the

private key.
• Encryption of plaintext (m) is c = me mod n.
• Decryption of ciphertext (c) is m = cd mod n.

RSA can alternatively be used for signing and signature verification as illustrated by
the following steps;

• A digital signature (s) on plaintext (m) is s = md mod n

– Here m is usually a message digest

• Signature verification is m = se mod n

– This is compared with the recipients message digest calculation

Note that the effective keysize of the algorithm relates to the size of p and q.
Whilst it is possible to encrypt and decrypt bulk data using RSA, normally the

algorithm is used in a protocol to ensure the trusted establishment of a session key that
can be used in a faster symmetric algorithm. Table 6.4 provides some comparative
performance figures. Note that RSA decryption and signature generation are much
slower than encryption and than signature verification. RSA decryption tends to be
the biggest overhead as this has to be computed for all blocks in the plaintext/message,
whereas an RSA signature is normally a one-off function on the message digest.

It is also important to note that the plaintext should undergo specialized padding
before RSA encryption. Failure to do this is sometimes referred to (in a non com-
plimentary manner) as textbook RSA. There are several reasons why padding is
necessary and one can be illustrated by a simple example. We know that encryption
is c = me mod n and that the reason it is relatively fast is that e can be quite small;
values such as 3, 17 are often used. We also know that n must be large as p and q are
of the order of 2048 bits. The data to be encrypted is considered as a binary number
m also of size 2048 bits. Depending on the actual data represented, m could map to
a very small binary number, e.g. with mainly zero/null content. So it is feasible for
the encrypted data me < n. In this case it is possible to compute the inverse of me to

4 gcd means greatest common divisor.

134 K. Mayes and K. Markantonakis

Table 6.4 RSA v AES performance Crptopp lib for Pentium 4 - 2.93 GHz on 256 byte message [16]

Operation Execution time (us) Compared to AES

AES 128 Encrypt/Decrypt 3.03 1
RSA 2048 Encrypt 220 x73
RSA 2048 Decrypt 10530 x3475
RSA 2048 Sign 10640 x3512
RSA 2048 Signature Verify 220 x73

recover m. Best practice advice on RSA encryption is to use padding in accordance
with Optimal Asymmetric Encryption Padding (OAEP) [17].

6.3.3 Other Algorithms/Modes

Cyclic Redundancy Check (CRC): This is a simple/small computed integrity check
value from a message. It is primarily intended for the detection of accidental or
transmission errors rather than those created by an attack. A CRC calculation uses
a shift register and a divisor (which is usually called the polynomial of the CRC).
There are many variants and the common CRC-16-CCITT is represented below as
an example.

x16 + x12 + x5 + 1

Because a CRC calculation only uses shift and EXOR functions is simple and fast,
but it has limited security use as it easy to compute, modify and to find collisions. A
collision is when two or more messages produce the same CRC and it may allow an
attacker to modify the source message, yet still pass the CRC check.

Hash Function: This function has a special one-way property so that it is simple
to compute a hash value H from a message m i.e. H = hash(m), yet it should be
practically infeasible to find m from H. This is sometimes referred to as pre-image
resistance and similar to the arguments on symmetric keys the size of the hash needed
for this quality would at first appear to be 80–128 bits. However, there is an important
additional requirement that the hash function should have good collision resistance
so that the hash of one message is unlikely to be the same as the hash of another
message. Because of the potential for finding collisions via a birthday attack [18]
the hash needs to be twice the size required for pre-image resistance. Best practice
recommendation is to use the SHA-256 (256 bits) [19] algorithm in new applications.
SHA-1 (160 bits) [19] is still in use, but there are concerns (not fully substantiated)
that it may be vulnerable to attack. MD5 should no longer be used as it is obsolete.
Because a hash value can be regarded as a compact way to represent the integrity of
an entire message it is often used as and referred to as a message digest.

6 Information Security Best Practices 135

Message Authentication Code (MAC): Because a hash value can be easily calcu-
lated it is could be possible for an attacker to modify a message and then calculate
and substitute the original hash function. To prevent this we use the hash value and a
suitable secret key (known to the message originator and recipient) to create a MAC
which is effectively an authentic hash. A commonly used MAC is the HMAC which
is computed as follows [20].

HMAC(K , m) = H((K ⊕ opad) • H((K ⊕ i pad) • m))

The parameters opad and ipad are padding constants designed to make the key K
different in both operations.

6.4 Key/Trust Management

In the discussion so far, we have mentioned cryptographic keys and their importance,
however we have said little about how they are generated and managed. In much the
same way that an ill considered implementation can undermine good security design
choices, poor key management can negate the intended cryptographic protection and
indeed determine whether a system is likely to be attacked. We of course need to
generate keys of the correct size and in a manner and location that does not leak secret
or private key values. This can be achieved in a highly secure manufacturing and/or
personalisation facility and sometimes within a user device. For the latter case, it is
extremely important that the device is tamper resistant and not prone to side channel
leakage of information under normal or fault conditions.

Critical to key generation (and indeed to many protocols) is a random number
source. For example, a random number generator could be used to produce an N bit
pattern used as a secret key. However, it is important that the generator has sufficient
entropy otherwise the number of possible bit patterns may be far less than 2N. In
this instance, entropy is the number of information bits per physical bit and so this
will be close to one for a good random generator. Best-practice guidance on random
number generation can be found in [21].

A key should be used for only one purpose. For example, an encryption key should
not be used for a digital signature. This limits the exposure of the key and restricts the
impact of any vulnerability or secret/private key discovery. Key exposure can also be
reduced by deriving working keys from long term secret or private keys, noting that
a working key cannot be more secure than the original key from which it is derived.

It is a very bad idea indeed to choose a common key for many user accounts. This
is called a “global secret” and if discovered it means that the security for all users
is compromised. It also increases the likelihood of the system being attacked in a
sophisticated and perhaps intrusive manner as discovery of the global secret is often
of significant value. To avoid this, all user account keys should be diversified, so that
an attack can only compromise a single account; making a sophisticated attack of

136 K. Mayes and K. Markantonakis

very limited value. Note that a global secret need not be a cryptographic key, but
possibly a proprietary unpublished algorithm.

Once a device is outside of a physically secure and trusted environment, then
further measures are required to keep secret or private keys safe. For example they
need to be securely,

• transferred/communicated to the authorised parties,
• kept in attack/tamper resistant storage,
• protected during operation.

For transfer via electronic means, the keys should be encrypted using a transport key
that is as least as strong as the keys that it protects. A notable exception to this is
when you are transporting a public key, as by definition there is no need for secrecy.

6.4.1 Asymmetric Key Management

Although public keys are not secret, it does not mean that key management for asym-
metric algorithm systems is straightforward, as they exchange the requirement for
secrecy for one of authenticity. This is usually achieved via a Certification Authority
and associated hierarchy as shown in Fig. 6.8. This is sometime referred to as a Public
Key Infrastructure (PKI).

The basic system relies on the fact that everyone directly or indirectly trusts the
Certification Authority (CA), so that when they are presented with a certificate that
has been endorsed (signed) by the CA they assume it is authentic. For this assumption

Fig. 6.8 Public key/certificate hierarchy

6 Information Security Best Practices 137

to be valid, the CA should only sign certificates from identifiable, legitimate entities,
which is normally determined by a Registration Authority (RA). For example, if Alice
would like to have a signed certificate she must apply to the RA. The RA should
carry out appropriately rigorous checks to ensure that it is dealing with the legitimate
Alice and her genuine data and keys. Assuming that the RA is satisfied, it requests
the CA to create and digitally sign a certificate for Alice that is bound to her data
and her public key. The CA creates the signature using its own secret key, so anyone
verifying the signature on Alice’s certificate must have some way of accessing the
genuine CA public key certificate, which could be via a server or pre-installed with
transactional equipment. Note there can be an interconnection of multiple CAs, so
a verifier can follow a chain of certification to reach the necessary level of security
assurance. EMV [22] credit cards are a good example of multi-level certification.
The issuing bank signs data held on the card and then Visa or MasterCard sign the
bank’s certificate also stored on the card. The Visa/MasterCard public keys can be
pre-stored in the Point of Sale (POS) card readers, allowing the full chain of trust to
be checked.

Of course things are never quite this simple when we look at the detail. Recalling
the performance examples given in Table 6.4 there may be a general desire to reduce
the number of PKI operations that are carried out. Furthermore, the certificates would
not be expected to have indefinite validity and can be revoked, e.g. as a result of a
service provider fraud/security control or user wishes. A verifier is normally able to
determine if a certificate is still valid by reference to the Certificate Revocation List
(CRL). In principle, you should always check the CRL to determine if a certificate is
still valid prior to use, however with mass market applications the CRL can become
very large and so the temptation is to skip the check and rely on other monitoring
or controlling facilities to disable an application. This is particularly true in time
critical transactions on resource limited devices such as smart cards, where it may
be simpler to disable the entire card rather than revoke a certificate.

6.4.2 Trust and Management

Regardless of whether we are considering symmetric or asymmetric solutions for
major systems, we tend to find that an entity or organisation is at the top of the trust
hierarchy. A good example is SIM card management in mobile communications. The
network operators issue SIM cards to customers, yet retain all the necessary keys
and parameters to manage them. Bank cards are similar although the banks have
scheme operators (e.g. Visa/Mastercard) for the interoperability of their services
and security. Card technology has the technical capability for delegated security
management via security domains (see GlobalPlatform [23]) however this is rarely
used due to business and competition issues.

As technology moves on, the trust management roles are far less clear-cut. For
example, a Near Field Communication (NFC) [24] phone allows a mobile phone
to emulate multiple smart cards. As the phone is not issued by the bank and not

138 K. Mayes and K. Markantonakis

necessarily by any one network operator, the ownership of trust management is not
well defined. If we also consider that handset manufacturers, party trust service
providers and a wide range of influential commercial organisations have ambitions
in this area, then it is difficult to predict who will dominate trust management..
What is clear is that whilst there are multiple security management solutions and
multiple competing business parties there is a danger for incompatible and vulnerable
solutions to be rushed into use. One might imagine that agreement for minimum
security requirements would be in the common interest, however even this is in
doubt when it comes to security evaluation.

6.5 Security Evaluation and Common Criteria

Consider that a banking card used for EMV debit or credit transactions must satisfy
strict security evaluation requirements set by the banking industry. This means the
card (and mainly the secure chip and its applications) has to have undergone common
criteria evaluation [25]. This is a best-practice approach to establishing design and
implementation security to levels that are internationally recognised. Evaluated smart
card chips are usually EAL4+ or better, which should mean that not only is the logical
design to a good standard, but that the implementation is strongly resistant to all
known attacks. This is clearly a beneficial security step; however it comes at a price.
This is not just financial, but also the time it takes for the evaluation. Table 6.5 gives
a very rough indication of the relative time/cost of the evaluation levels.

For banking cards that have an expected lifetime of about 5 years and whose func-
tionality changes relatively slowly, the EAL4+ evaluation time may be acceptable,
but this has not been the case in other more fast moving industries. Mobile communi-

Table 6.5 Comparison of common criteria evaluation levels (Chap. 8 of [3])

CC Level Description Time (months) Cost

EAL1 Functionally tested 2–3 Several 10s of 000s
EAL2 Structurally tested
EAL3 Methodically tested and

checked
EAL4a Methodically designed,

tested and reviewed
6–9 Many 10s of 000s to low 100s of 000s

EAL5 Semi-formally designed
and tested

EAL6 Semi-formally verified,
designed and tested

EAL7 Formally verified design
and tested

7–18+ Several 100s of 000s

a Note that the ‘+’ such as in EAL4+ means that EAL4 is satisfied, plus some extra requirements
from higher levels

6 Information Security Best Practices 139

cations is a good example where SIM lifetimes can be very short and the application
evolution rapid. Historically this industry has not CC evaluated its SIMs, but rather
put contractual pressure (penalty clauses) on their suppliers to make sure they carry
out their own evaluations, perhaps using private test labs or in-house capability. This
may have to change with the deployment of NFC phones in which SIM hosted Secu-
rity Elements (SE) will have to satisfy the security requirements of multiple parties.
Alternatively a SE chip can be used, that is embedded within the phone hardware,
although phone innovation and replacement is very fast compared to bank cards and
the CC evaluation process. There does not seem to be anything better than CC at the
moment, but critics say it is too slow and cumbersome and that there should be more
attention on vulnerabilities rather than compliance.

6.6 Handling Imperfection

Lack of best-practice security rarely stops the introduction of a new service or appli-
cation, although it can herald its early demise. Practical information security has
much to do with trying to make best use of imperfect solutions which can take the
form of back-office monitoring and controls, plus old favourites at the client end
such as passwords and PINs. Back office solutions are most useful when you have
on-line transactions, but have also been helpful in periodic batch reporting of off-line
transactions. This latter mode of usage is becoming stressed by modern client tech-
nology and back office systems may struggle to sufficiently constrain the window
of opportunity to make attacks unattractive, especial if faced with widespread attack
attempts. The perils of passwords and PINs are well known as are the techniques to
make the best of them; however, it is worth noting that the increasing use of touch-
screen devices could undermine security a little further. For example, a PIN challenge
is a request for a four digit static data pattern. The thinking is that there are 10,000
combinations and so an attacker would on average have to try 5,000 to a 50:50 chance
of getting the right PIN. So a best-practice countermeasure could be a block after
a number of tries much less than 5000, although then you also need an unblocking
mechanism as users often forget PINs anyway. It has been observed that on a cleaned
touch screen device (e.g. smart phone) the PIN-entry leaves visible grease marks on
the screen that can be used to reduce the PIN possibilities. For example, if the marks
tell us four different values there are only 24 PIN possibilities, and so the attacker
gets to the 50:50 point after 12 tries even if the electronic implementation is secure.
Furthermore, some devices prompt the user to use their finger to draw a pattern on the
screen as a convenient alternative to a PIN. A simple continuous pattern can probably
only be drawn forwards or backwards and so just one or two attempts are required.
The best-practice message is to consider the security of the entire solution and where
possible avoid reliance on static data in authentication, but of course recognise that
the system must still be easy to use.

140 K. Mayes and K. Markantonakis

6.7 Case Study the MIFARE Classic

Having suggested various aspects of a security system that might require attention
to best practice, a good way to remember them is with a public case study in which
several of these wise principles were seemingly ignored!

The case study is based on a contactless smart card called the MIFARE Classic
that was released by Philips (now NXP) in 1994. This is now an old design and it is
easy to criticise, however when it was introduced there was probably nothing more
secure around that provided even comparable functionality and speed. It was never
intended for high security or high value use and the fact that this was seemingly
forgotten at a time when the product was quite aged is pivotal to its demise.

Recall from earlier in this chapter that a good objective of best-practice sys-
tem design is to avoid becoming an attractive target and so choosing the obsolete
MIFARE Classic was not a great idea. It was a target for attackers/enthusiast even
when first introduced as a product, because it used 48 bit keys at a time when DES
(with its 56 bit key) was coming into range of practical key-cracker equipment and
when GSM authentication algorithms had been introduced with 128 bit keys. A key-
cracker would need to try 256 times less keys for MIFARE Classic than for DES and
232 less keys than for today’s best-practice minimum key size of 80 bits. Another
reason to be a target was that the algorithm was proprietary and secret, and within
a product that had not been evaluated to a recognisable standard such as common
criteria. Furthermore, the product relied on that secrecy to prevent the algorithm
being implemented in key-crackers. Recall that this violated Kerckhoffs principle;
“An algorithm’s security should not rely on the secrecy of the algorithm”. This is
sometime referred to (in a disparaging way) as security by obscurity which is an
information security sin and a rallying cry for all kinds of attackers and researchers.
There were also other trigger events including the planned use of the ageing MIFARE
Classic product in new and high value national systems.

History has shown that technical secrets usually leak out. This can be due to
reverse engineering or by less direct, but effective means including, bribery, leakage
disgruntled employees, breaking of confidentiality, IT attack or robbery. In fact for
many years it was considered that the product design had been reverse engineered
as there were tales of unauthorised MIFARE Classic type products being sourced in
Asia and one datasheet was dated 2004. The design was not openly published at that
time as commercial gain seemed to be the motive.

The design of the proprietary algorithm (known as CRYPTO1) did not start to
leak into the public domain until a meeting of the Computer Chaos Club 2007,
when Nohl et al. [26] presented their work on reverse engineering. Although not all
details were provided at this stage it opened the flood gates and other researchers
(notably Dutch) rushed to fill in the gaps. There was some debate as to whether the
initial reverse engineering was really research, bearing in mind it just reproduced
information known to the NXP designers, at least 15 years earlier. Whatever label
the work was given the effect was the same in that CRYPTO1 was in the public

6 Information Security Best Practices 141

domain and so available for analysis. In common with most algorithms exposed in
this way the proprietary design of CRYPTO1 started to fall apart under scrutiny.

One of the first problem areas was the random number generator. Recall that for
best practice, a random number should be large to make it difficult to guess. Today a
reasonable choice would be 128 bits from a quality generator. The MIFARE Classic
used 32-bit values, but on closer inspection they were generated by a Linear Feedback
Shift Register that had only a 16-bit state and so the maximum variation was only
216. However, worse was to come as the state was reset to a fixed value on start-up
and then dependent on time of operation, which was found to be predictable.

It even proved unnecessary to get access to a key-cracker as researchers discov-
ered structural weaknesses, which led to attack optimisations [27–29] that were far
more efficient than exhaustive key search, bringing attacks into the range of ama-
teur hackers. The first attacks extracted the keys for a victim card’s identity from a
legitimate reader and then subsequent attacked the actual card, reading out all the
data for modification or use within clones. In the final form of exploit it was possible
to attack a legitimate card directly using PC/reader equipment to extract all keys
and data. Armed with this information an attacker could in principle reprogram the
device much like the Issuer, or increase the value of the wallet or a recorded receipt or
privilege; or create a non-standard implementation in a clone emulator, e.g. a wallet
that never reduces after purchase.

With such effective and well publicised attacks, it is easy to overlook the fact
that the MIFARE Classic also uses stream ciphering for encryption (with integrity
only protected by CRC), which means that it is also vulnerable to the bit-flipping
attacks described earlier. Furthermore as we know that the so called random number
generator has predictable output, the route is open for conventional replay attacks.

There were also cases where common keys were used in certain applications,
although this was really lack of best-practice from the application providers, rather
than anything to do with the product itself.

6.7.1 Impact

The attacks on the MIFARE Classic were seized upon by the press and presented in
a sensationalistic manner, especially in the Netherlands. The Dutch transport min-
istry was in the process of overseeing the roll-out of a Smartcard ticket solution
(OV-Chipkaart [30]) for national travel and unfortunately the MIFARE Classic was
chosen for this. There was an element of bad luck and fate about the focus on this par-
ticular country; a Dutch project, using a Dutch smartcard product that violated a crit-
ical Dutch (Kerckhoff) security principle that was enthusiastically attacked mainly
by Dutch researchers. The immediate result was front page newspaper coverage over
a prolonged period and threats to political/ministerial careers. Views were polarised
on what the developments actually meant for the future of the OV-Chipkaart. The
system owners initially claimed there was little to worry about in practice, whereas
some hackers/researchers claimed that the end of the World was nigh! To try and get

142 K. Mayes and K. Markantonakis

a balanced expert view the Dutch Government asked the ISG Smart Card Centre at
Royal Holloway University of London to carry out a review. A report was eventually
produced that confirmed the attacker claims of security vulnerabilities and urged the
system owners to make migration plans for a move to an improved solution. The rea-
son for this was that the system security was considered as “fragile” as it was almost
totally reliant on the back-office systems that were not designed to deal with wide-
spread technical attacks and cloning. The general recommendation was to get ready
to migrate as soon as possible, so in case of rapidly growing and widespread fraud,
the improved system could be introduced swiftly (but at high cost). If measured or
predicted fraud was low, a slower (and more cost-efficient) pace of migration could
be adopted. To date, some proof-of-concept attacks have been detected by the back
office and a suspected criminal seems to have bought batches of legitimate cards to
sell on with inflated wallet values [31], but generally fraud seems to have been low.
It is important to remember that security is not all about technology and transport
system owners have a lot of experience of managing imperfect solutions and fraud in
general. Recall that before e-tickets one would only have paper or mag-stripe tickets
that can be targeted with very low tech attacks.

6.8 Concluding Remarks

Anyone who is responsible for the security and fraud prevention of a new or exist-
ing system should have awareness of best-practices. There are very good sources
of guidance that can, for example, advise on the choice of algorithms and key-sizes
for a required system lifetime. However, it is important to remember that the imple-
mentation, processes, management and application configuration/personalisation are
equally important for a secure solution. An independent expert risk assessment is
always advised and should go into sufficient analysis detail. Products and compo-
nents can be Common Criteria evaluated so that their security levels and capabilities
are internationally recognised. If this is not deemed practical then independent lab-
testing for vulnerabilities is probably the next best thing. Even if it is likely that a less
than perfect solution will be implemented, a system owner should scope the entire
problem as if a perfect solution was sought, so that the risk and potential impact of
any compromises can be fully appreciated. This advice can of course be ignored, but
when your company ends up in the newspapers, your brand is damaged, money is
lost, damages are claimed and you perhaps face government enquiries, you would
need a very good explanation as to why you ignored the expert best practice advice
from the information security community.

Looking to the future, one should also be aware of certain disruptive technolo-
gies and trends that might challenge our current thoughts on best practices and the
resources available to attackers and criminals. Firstly, the recommendations of algo-
rithm best-practice have been traditionally linked to Moore’s Law effects, i.e. the
increase in computer processing with time (roughly doubling every 18 months in
recent years). However, as this is usually achieved by reducing the size of the chip

6 Information Security Best Practices 143

fabrication technology, the current trends are predicted to end around 2015–2020
due to limitations of physics and manufacturing. So it maybe that massive paral-
lelism provides the next leap in processing power. We have already seen initiatives in
shared and grid computing and are now being encouraged to use powerful “Cloud”
computing resources (which is another major security challenge). There is also talk
of quantum computers used against conventional security algorithms; for example
solving a problem in time N instead of 2N. This is still in the very early days and
if, or when, the technology for a quantum key-cracker becomes readily available
then it is not unreasonable to suppose that so too would the technology for new
quantum algorithms. There is much research in future chip technology, Clouds and
quantum computing and so time will tell what all this means for the long-term future
of information security best-practice. For the time being, following the published
recommendations of NIST [8, 9] and ECRYPT [10] is a very prudent strategy.

References

1. Hacking at Random, [Online Available] http://www.wiki.har2009.org/page/Main_Page
2. Hack a Day site, [Online Available] http://hackaday.com/
3. K. Mayes, K. Markantonakis, “Smart Cards, Tokens, Security and Applications”, Springer

Verlag, 2007
4. Federal Information processing Standards, Data Encryption Standard (DES), FIPS publication

46–3 [Online Available] http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
5. Federal Information processing Standards, Advanced Encryption Standard (AES), FIPS pub-

lication 197. [Online Available] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
6. Rivest, R.; A. Shamir; L. Adleman (1978). “Method for Obtaining Digital Signatures and

Public-Key Cryptosystems”. Communications of the ACM 21 (2): 120–126.
7. Jan Petzl (2006), “Cryptanalysis with a low cost FPGA Cluster”, IPAM Workshop Special

Purpose Hardware for Cryptography [Online Available] http://www.copacobana.org/paper/
IPAM2006_slides.pdf

8. SP 800-57 Recommendation for Key Management - Part 1: General, and Part 2: Best Practices
for Key Management Organizations, NIST, March 2007

9. SP 800-131, Recommendations for the Transitioning of Cryptographic Algorithms and Key
Lengths. NIST, drafted June 2010

10. ECRYPT II Yearly Report on Algorithms and key-sizes (2009–2010), Revision 1.0, ECRYPT
II, 30th March 2010

11. Diffie, Whitfield; Hellman, Martin E. (June 1977). “Exhaustive Cryptanalysis of the NBS Data
Encryption Standard”. Computer 10 (6): 74–84

12. Ralph Merkle, Martin Hellman: On the Security of Multiple Encryption (PDF), Communica-
tions of the ACM, Vol 24, No 7, pp 465–467, July 1981

13. Paul van Oorschot, Michael J. Wiener, A known-plaintext attack on two-key triple encryption
(PDF), EUROCRYPT’90, LNCS 473, 1990, pp 318–325

14. Auguste Kerckhoffs, “La cryptographie militaire”, Journal des sciences militaires, vol. IX, pp.
5–83, Jan. 1883, pp. 161–191, Feb. 1883

15. P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”, technical report, 1998; later published
in Advances in Cryptology - Crypto 99 Proceedings, Lecture Notes In Computer Science Vol.
1666, M. Wiener, ed., Springer-Verlag, 1999

16. Crypto++, Benchmarks, [Online Available] http://www.cryptopp.com/benchmarks-p4.html,
April 2011

http://www.wiki.har2009.org/page/Main_Page
http://hackaday.com/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.copacobana.org/paper/IPAM2006_slides.pdf
http://www.copacobana.org/paper/IPAM2006_slides.pdf
http://www.cryptopp.com/benchmarks-p4.html

144 K. Mayes and K. Markantonakis

17. M. Bellare, P. Rogaway. Optimal Asymmetric Encryption - How to encrypt with RSA. Extended
abstract in Advances in Cryptology - Eurocrypt’94 Proceedings, Lecture Notes in Computer
Science Vol. 950, A. De Santis ed, Springer-Verlag, 1995

18. Birthday attack, [Online Available] http://en.wikipedia.org/wiki/Birthday_attack
19. FIPS 180–2: Secure Hash Standard (SHS) (PDF,) - Current version of the Secure Hash Standard

(SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512), 1 August 2002, amended 25 February
2004.

20. rfc2104, [Online Available] http://tools.ietf.org/html/rfc2104
21. NIST SP 800–90. Recommendation for Random Number Generation, March 2007.
22. EMV Books 1–4 Version 4.1 2004, [Online Available] http://www.emvco.com/specifications
23. GlobalPlatform, [Online Available] http://www.globalplatform.org.
24. NFC Forum http://www.nfc-forum.org
25. Common Criteria Portal [Online Available] http://www.commoncriteriaportal.org/
26. Nohl K, Starbug, Plotz H. MIFARE, little security, despite obscurity. Presentation on the 24th

Congress of the Chaos Computer Club (CCC); December 2007
27. Courtois NT, Nohl K, O’Neil S. Algebraic attacks on the crypto-1 stream cipher in MIFARE

Classic and oyster cards, vol. 166. Cryptology ePrint Archive, [Online Available] http://eprint.
iacr.org/2008/166; 2008. Report.

28. Gans GK, Hoepman JH, Garcia FD. A practical attack on the MIFARE Classic. Proceedings
of the 8th Smart Card Research and Advanced Application Workshop (CARDIS 2008). LNCS
5189, pp. 267–282. Heidelberg: Springer; 2008.

29. Garcia FD, Gans GK, Muijrers R, Rossum P, Verdult R, Schreur RW, et al. Dismantling
MIFARE Classic. Proceedings of ESORICS 2008, LNCS 5283. Springer; 2008. pp. 97–114.

30. OV-Chipkaart System, [Online Available] http://www.ov-chipkaart.nl/
31. Dutch News Public transport smart card fraud under investigation 6th July 2011 [Online

Available] http://www.dutchnews.nl/news/archives/2011/07/public_transport_smart_card_fr.
php

32. M. Hilbert and P. Lopez, “The world’s technological capacity to store, communicate and com-
pute information”, Science Express: Feb. 10, 2011. [Online Available] http://www.physorg.
com/news/2011-02-world-scientists-total-technological-capacity.html

33. [Online Available] http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

http://en.wikipedia.org/wiki/Birthday_attack
http://tools.ietf.org/html/rfc2104
http://www.emvco.com/specifications
http://www.globalplatform.org
http://www.nfc-forum.org
http://www.commoncriteriaportal.org/
http://eprint.iacr.org/2008/166
http://eprint.iacr.org/2008/166
http://www.ov-chipkaart.nl/
http://www.dutchnews.nl/news/archives/2011/07/public_transport_smart_card_fr.php
http://www.dutchnews.nl/news/archives/2011/07/public_transport_smart_card_fr.php
http://www.physorg.com/news/2011-02-world-scientists-total-technological-capacity.html
http://www.physorg.com/news/2011-02-world-scientists-total-technological-capacity.html
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Chapter 7
Smart Card Security

Michael Tunstall

Abstract In this chapter, a description of the various attacks and countermeasures
that apply to secure smart card applications is described. This chapter focuses on
the attacks that could affect cryptographic algorithms, since the security of many
applications is dependent on the security of these algorithms. Nevertheless, how
these attacks can be applied to other security mechanisms is also described. The aim
of this chapter is to demonstrate that a careful evaluation of embedded software is
required to produce a secure smart card application.

Keywords Embedded software · Fault analysis · Side channel analysis · Smart card
security

7.1 Introduction

The implementation of secure applications on smart cards is different to the develop-
ment on other platforms. Smart cards have limited computing power, comparatively
small amounts of memory and are reliant on a smart card reader to provide power and
a clock. There are security considerations that are specific to smart cards, that need
to be taken into account when developing a secure smart card-based application.

In this chapter, attacks that are specific to smart cards and other devices based
around a secure microprocessor will be described. There are other considerations
that need to be taken into account when implementing a secure application, but these
are generic and beyond the scope of this chapter.

M. Tunstall (B)
Department of Computer Science, University of Bristol, Bristol, United Kingdom
e-mail: tunstall@cs.bris.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 145
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_7,
© Springer Science+Business Media New York 2014

146 M. Tunstall

There are three main types of attack that are considered in smart card security.
These are:

1. Invasive Attacks: These are attacks that require the microprocessor in a smart
card to be removed and directly attacked through a physical means. This class
of attacks can, at least in theory, compromise the security of any secure micro-
processor. However, these attacks typically require very expensive equipment
and a large investment in time to produce results. Invasive attacks are therefore
considered to be primarily in the realm of semiconductor manufacturers and stu-
dents at well-funded universities. An example of such an attack would be to place
probes on bus lines between blocks of a chip (a hole needs to be made in the
chip’s passivation layer to allow this). An attacker could then attempt to derive
secret information by observing the information that is sent form one block to
another.
At its most extreme, this type of attack could make use of a focused ion beam to
destroy or create tracks on the chips surface. In theory, this could, for example,
be used to reconnect fuses. Traditionally, chip manufacturers typically used a test
mode where it was possible to read and write to all memory addresses whilst a
fuse was present. Once the fuse was blown inside the chip (before the chip left
the manufacturer’s factory), this mode was no longer available. In modern secure
microprocessors, this test circuit is typically removed when the chip is cut from
the die and this attack is no longer possible.
Further information on invasive attacks is available in [3, 28].

2. Semi-Invasive Attacks: These attacks require the surface of the chip to be
exposed. An attacker then seeks to compromise the security of the secure micro-
processor without directly modifying the chip.
Some examples of this type of attack include observing the electromagnetic ema-
nations using a suitable probe [16, 40] and injecting faults using laser light [6] or
white light [43]. More details on these attacks are given in later sections.
A description of numerous semi-invasive attacks is available in [44].

3. Non-Invasive Attacks: These attacks seek to derive information without modi-
fying a smart card, i.e. both the secure microprocessor and the plastic card remain
unaffected. An attacker will attempt to derive information by observing informa-
tion that leaks during the computation of a given command, or attempt to inject
faults using mechanisms other than light.
Some examples of this type of attack would be to observe the power consumption
of a microprocessor [27], or to inject faults by putting a glitch into the power
supply [3].
Further descriptions of power analysis attacks can be found in [29], and fault
attacks in [6].

This chapter will focus on semi-invasive and non-invasive attacks, as the equip-
ment required to conduct these attacks is more readily available. Invasive attacks are
of interest but are extremely expensive to conduct. This chapter will focus more on
what can be achieved in a reasonably funded laboratory. However, some information
is given on invasive attacks where relevant.

7 Smart Card Security 147

Organisation

Section 7.2 contains a description of the cryptographic algorithms that will be used
in later sections to give examples of attacks. Section 7.3 describes certain hardware
security features that are typically included in a smart card. Section 7.4 describes
the different forms of side channel analysis and how they can be applied to smart
card implementations of cryptographic algorithms. Section 7.5 describes how fault
attacks can be applied to smart cards. Section 7.6 describes how the techniques given
in Sects. 7.4 and 7.5 can be applied to other security mechanisms. Section 7.7 sum-
marises the chapter.

Notation

The base of a value is determined by a trailing subscript, which is applied to the
whole word preceding the subscript. For example, F E16 is 254 expressed in base 16
and d = (dπ−1, dπ−2, . . . , d0)2 gives a binary expression for d.

In all the algorithms described in this chapter, φ represents Euler’s totient function,
where φ(N) equals the number of positive integers less than N which are coprime
to N . In particular, if N = p · q is an RSA modulus then φ(N) = (p − 1)(q − 1).

7.2 Cryptographic Algorithms

Some of the attacks detailed in later sections will assume a detailed knowledge of
some of the commonly used cryptographic algorithms. Specifically, the Data Encryp-
tion Standard (DES) and RSA are detailed in this section to provide a reference, and
to describe the notation that will be used.

7.2.1 Data Encryption Standard

The DES was introduced by NIST in the mid 1970s [37], and was the first openly
available cryptography standard. It has since become a worldwide de facto stan-
dard for numerous purposes. It is only in recent years that it has been practically
demonstrated that an exhaustive search of the keyspace is possible, leading to the
introduction of triple DES and the development of the Advanced Encryption Standard
(AES) [38].

DES can be considered as a transformation of two 32-bit variables (L0, R0), i.e.
the message block, through 16 iterations of a round function, as shown in Fig. 7.1,
to produce a ciphertext block (L16, R16). The Expansion permutation selects eight
overlapping six-bit substrings from Rn . The P-permutation is a bitwise permutation

148 M. Tunstall

Fig. 7.1 The DES round
function for round n

on the 32-bit output of the S-box function. For clarity of expression, these permuta-
tions will not always be considered and the round function will be written as:

Rn = S(Rn−1 ≥ Kn)≥ Ln−1
Ln = Rn−1

(7.1)

where S is the S-box function. The subkeys Kn , for 1 ∗ n ∗ 16, are each 48
bits generated from the 56-bit secret key, by choosing 48 bits from the 56-bit key.
This is done by initially conducting a bitwise permutation on the key, referred to as
Permuted Choice 1 (PC1). Each round bit shifts are conducted on the key, and 48
bits are chosen from this shifted key to form each subkey using the Permuted Choice
2 (PC2) function.

Eight different S-boxes are applied in each round to sets of six bits, thereby
reducing the 48-bit output of the XOR with Kn to 32-bits. Each S-box is a substitution
table that is addressed using six bits of information, and each entry is a 4-bit number.

The algorithm also includes an initial and final permutation (these permutations
are referred to as IP and IP−1, respectively), where the final permutation is the
inverse of the initial permutation. More precisely the permutation at the end of
DES is conducted on (R16, L16) rather than (L16, R16). These permutations will

7 Smart Card Security 149

be ignored in this chapter, as they do not contribute to the security of the algorithm.
The permutations IP and IP−1 were included since this was the most convenient
way of introducing the bits into the chip use to calculate the DES algorithm (at the
time software implementations were not considered because of the complexity of
the algorithm) [33].

7.2.1.1 Triple DES

In order to mitigate the key length problem, a modification to DES was proposed to
make an exhaustive key search prohibitively complex. Triple DES is a construction
that uses two different DES keys and is defined in [37]. In the algorithm below, these
are labelled K1 and K2, and in order to generate a ciphertext block C from a plaintext
block M the following calculation is performed:

C = DES
(
DES−1(DES(M, K1), K2

)
, K1

)
(7.2)

where DES(M, K) denotes the output of the DES encryption algorithm applied to
message block M with key K . Deciphering the ciphertext block C uses the function,

M = DES−1(DES
(
DES−1(C, K1), K2

)
, K1

)
(7.3)

The structure of triple DES allows for backward compatibility as if K1 and K2 are
equal the resulting ciphertext will the equivalent to that produced with a single DES.
The triple DES requires that three instantiations of the DES algorithm are used, since
it has been shown that two instantiations of DES only increase the security of the
algorithm by one bit (see meet-in-the-middle attacks [31]).

Another version of triple DES is proposed in [37], in which three different keys
are used rather than two.

7.2.2 RSA

RSA was first published in 1978 [41], and was the first published example of a public
key encryption algorithm. The security of RSA depends on the difficulty of factorising
large numbers. This means that RSA keys need to be quite large, because of advances
in factorisation algorithms and the constantly increasing processing power available
in modern computers.

To generate a key pair for use with RSA, two prime numbers, p and q, typically
of equal bit length, are generated; they are then multiplied together to create a value
N , the modulus, whose bit length is equal to that desired for the cryptosystem.

150 M. Tunstall

That is, in order to create a 1,024-bit modulus, 2511.5 < p, q < 25121 (if values of p
or q are chosen from {2511+ 1, . . . , 2511.5} the product of p and q is not guaranteed
to have a bit length of 1,024-bits). A public exponent, e, is chosen that is coprime to
both (p − 1) and (q − 1).

A private exponent, d , is generated from the parameters previously calculated,
using the formula:

e · d ≡ 1 (mod (p − 1)(q − 1)), or equivalently
e · d ≡ 1 (mod φ(N))

(7.4)

where φ is Euler’s Totient function.

7.2.2.1 The RSA Cryptosystem

In the RSA cryptosystem, to encrypt a message, M , and create ciphertext, C , one
calculates:

C = Me mod N (7.5)

The value of e is often chosen as 3 or 216+ 1, as these value are small, relative to
N , and have a low Hamming weight, which means that the encryption process is fast
(see below). To decrypt the ciphertext, the same calculation is carried out but using
the private exponent, d , which generally has the same bit length as N :

M = Cd mod N (7.6)

7.2.2.2 The RSA Signature Scheme

The RSA digital signature scheme involves the reverse the operations used in the
RSA cryptosystem. The generation of a signature, S, uses the private exponent d.
By convention, this is expressed as:

S = Md mod N (7.7)

The verification therefore uses the public exponent and is expressed as:

M = Se mod N (7.8)

1 This is possibly overly strong, as it typically recommend that the bit lengths of p and q are
approximately equal. However, it will provide the most security for a modulus of a given bit length
assuming that p − q is sufficiently large to prevent an attacker from guessing their values by
calculating

√
N .

7 Smart Card Security 151

7.2.2.3 Padding Schemes

Applying the RSA primitive to a message, as described above, will not yield a secure
signature or encryption scheme (for reasons beyond the scope of this chapter). To
achieve a secure scheme, it is necessary to apply the RSA operation to a transformed
version of the message, e.g., as can be achieved by hashing the message, adding
padding, and/or masking the result. This process is termed padding, and the interested
reader is referred to [31] for a treatment of padding schemes.

Some of the attacks presented in this chapter will not be realistic when a padding
scheme is used, since padding schemes mean that an attacker cannot entirely control
a message. However, it is important that an implementation of RSA is secure against
all possible attacks. If a given implementation does not use padding or, more real-
istically, contains a bug that allows an attacker to remove the padding function, the
implementation should still be able to resist all the attacks described in this chapter.

7.2.2.4 Computing a Modular Exponentiation

Many different algorithms can be used to calculate the modular exponentiation algo-
rithm required for RSA. In practice, a large number of algorithms cannot be imple-
mented on smart cards, as the amount of available memory does not usually allow
numerous intermediate values to be stored in RAM. The manipulation of large num-
bers is usually performed using a coprocessor (see Sect. 7.3), as implementing a
multiplication on an 8-bit platform would not give a desirable performance level.

The simplest exponentiation algorithm is the square and multiply algorithm [31],
and is given below for an exponent d of bit length π:

The Square and Multiply Algorithm
Input:
M, d = (dπ−1, dπ−2, . . . , d0)2, N
Output:
S = Md mod N {

A := 1
for i = π− 1 to 0 {

A := A2 mod N
if (di = 1) {

A := A · M mod N
}

}
return A

}

The square and multiply algorithm calculates Md mod N by loading the value one
into the accumulator A and d is read bit-by-bit. For each bit a squaring operation
modulo N takes place on A, and when a bit is equal to one A is subsequently
multiplied by M . It is because of this multiplication that e is typically chosen to

152 M. Tunstall

as 3 or 216 + 1, as both values only have two bits set to one; therefore minimising
the number of multiplications required. It is not possible to only have one bit set to
one as it is necessary for e to be an odd number in order for it to have an inverse
modulo N . The most significant bit of a number will always be set to one, and the
least significant bit will need to be set to one to produce an odd number.

7.2.2.5 Using the Chinese Remainder Theorem

The RSA calculation using the private exponent (i.e. where S = Md mod N and
N = p · q) can be performed using the Chinese remainder theorem (CRT) [25].
Initially, the following values are calculated,

Sp = (M mod p)(d mod (p−1)) mod p
Sq = (M mod q)(d mod (q−1)) mod q

(7.9)

which can be combined to form the RSA signature S using the formula S = aSp +
bSq mod N , where:

a ≡ 1 (mod p)

a ≡ 0 (mod q)
and

b ≡ 0 (mod p)

b ≡ 1 (mod q) .

This can be implemented in the following manner:

S = Sq +
((

Sp − Sq
)

q−1 mod p
)
· q (7.10)

This provides a method of calculating an RSA signature that is approximately
four times quicker than a generic modular exponentiation algorithm, i.e. two expo-
nentiations, each of which can be computed eight times faster than an exponen-
tiation using d (the bit length of d mod (p − 1) and d mod (p − 1) will be half
that of d). This advantage is offset by an increase in the key information that
needs to be stored. Rather than storing just the value of d and N , the values
of (p, q, d mod (p − 1), d mod (q − 1), q−1 mod p) need to be precalculated and
stored.

7.3 Smart Card Security Features

This section will detail some of the features of smart cards that are pertinent when
considering their security. Smart cards have traditionally been based on 8-bit com-
plex instruction set computer (CISC) architectures [35]. Usually built around a
Motorola 6805 or Intel 8051 core, often with extensions to the instruction set.
More sophisticated smart cards are emerging based on 32-bit reduced instruction

7 Smart Card Security 153

set computer (RISC) architecture chips, containing dedicated peripherals (crypto-
graphic coprocessors, memory managers, large m memories, …) [34].

7.3.1 Communication

A smart card has five contacts that it uses to communicate with the outside world
defined in the ISO/IEC 7816-2 standard [22]. Two of these are taken by the power
supply (usually 3 or 5 V), referred to as Vcc, and the ground used to power the
chip. Another contact is used to supply a clock, which is allowed to vary between 1
and 5 MHz but is typically set to 3.57 MHz. The remaining two contacts are used to
communicate with the microprocessor. A sixth contact was originally used to provide
a higher voltage to program the EEPROM (referred to as Vpp), but is no longer in
use for reasons described in Sect. 7.6. The location of the different contacts is shown
in Fig. 7.2.

One of the contacts, called the I/O, is used for communication and to send com-
mands to the chip in a smart card. The protocols used to communicate with a smart
card are referred to as T = 0 and T = 1 and are defined in the ISO/IEC 7816-3
standard [21]. This section will describe both protocols, as they are nearly identical.
The extra requirements of T = 1 are detailed where relevant.

The remaining contact is used to reset the smart card (there are a further two
contacts defined in the ISO/IEC 7816-3 standard but they are not currently used).
This is a physical event (i.e. moving the voltage applied to this contact from 0 to 1)
that will always provoke a response from the smart card. A user can apply the reset
at any time. The smart card will respond by sending an answer to reset (ATR) to the
I/O contact, which is a string of bytes that defines the protocols the smart card can
use, the speeds at which the smart card can communicate and the order in which bits
are going to be sent during the session (i.e. most or least significant bit first).

Fig. 7.2 The contacts used to
power and communicate with
a smart card

154 M. Tunstall

7.3.2 Cryptographic Coprocessors

Traditionally, smart cards have been based around 8-bit architectures. In order to
manipulate large numbers, e.g., to calculate the RSA algorithm, dedicated coproces-
sors can be appended to the CPU. In more modern 32-bit chips [34] this is no longer
necessary, as efficient software implementations can be achieved. DES is also often
implemented in a coprocessor to help increase performance, and AES implementa-
tions should be available in the near future. These coprocessors can increase the smart
card’s performance, as hardware implementations of secret key algorithms can be
expected to require one or two clock cycles per round of the block cipher. However,
the inclusion of coprocessors also increases the size of the chip and the overall power
consumption. This means that chips with coprocessors are usually more expensive
and are not ideal in environments where the amount of available current is limited.

7.3.3 Random Number Generators

Random number generators are usually included in smart cards, as unpredictable
numbers are an important element in many secure protocols. A true random number
generator is typically based on a signal generated by an analogue device which is then
treated to remove any bias that may exist, or has been induced, in the bits generated.
The correct functioning of all aspects of a smart card chip under varied environmental
conditions is important, but is critical for random number generation because the
quality of the generated random values can have a profound effect on cryptographic
schemes. Random number generators are therefore designed to function correctly in a
large range of environmental conditions, including temperature, supply voltage, and
so on. However, if an attacker succeeds in modifying the environmental conditions
such that the physical source of randomness is affected, the subsequent treatment is
included so that an attacker will not be able to determine if the change in conditions
had any effect.

Pseudo-random number generators are also often included in a secure micro-
processor. These are typically based on linear feedback shift registers (LFSRs) that
are able to generate a new pseudo-random value every clock cycle, but are determin-
istic over time and are not usually used for critical security functions.

Where random values are required in cryptographic algorithms, a true random
number generator is used when the quality of the random value is important, e.g. for
use in a cryptographic protocol. Where the quality of the random value is less impor-
tant, a pseudo-random number generator can be used. In some secure microprocessors
only pseudo-random number generators are available. In this case, mechanisms that
combine a random seed (that can be inserted into the chip during manufacture) with
pseudo-random values can be used to provide random values.

An example of this latter type of random number generator is given in the ANSI
X9.17 [2, 19] standard, that uses DES to provide random values based on a random

7 Smart Card Security 155

seed generated during the initialisation of a given device and another source of
pseudo-random information. This functions by taking a 64-bit pseudo-random input
(X), a 64-bit random seed (S) and a DES key (K). X is usually generated by calculat-
ing X = DES(D, K), where D is a the date and/or time, but this information is not
available to a smart card and is therefore replaced with values provided by a pseudo-
random number generator. To output a random value R, the following calculation
takes place:

R = DES(X ≥ S, K) , (7.11)

and the random seed is updated using:

S = DES(R ≥ X, K) . (7.12)

For increased security, the DES function can be replaced with triple DES, as the key
length used by DES has proven to be too short to entirely resist an exhaustive key
search.

7.3.4 Anomaly Sensors

There are usually a number of different types of anomaly detectors present in smart
cards. These are used to detect unusual events in the voltage and clock supplied to the
card, and the environmental conditions (e.g. the temperature). These enable a smart
card to detect when it is exposed to conditions that are outside the parameters within
which it is known to function correctly. When unusual conditions are detected, the
chip will cease to function until the effect has been removed (i.e. initiate a reset
or execute an infinite loop when the sensor is activated). However, it is considered
prudent not to rely solely on these sensors and to implement further countermeasures
(see Sect. 7.5).

7.3.5 Chip Features

The surface of the chip used in a smart card can be uncovered by removing the plastic
body of the card and using fuming nitric acid to remove the resin used to protect
the microprocessor. Once the chip has been revealed the easiest form of analysis is
to simply look at it under a microscope. The various different blocks can often be
identified, as shown in Fig. 7.3.

Reverse engineering can target the internal design to understand how a given chip
or block functions. An attacker can use such information to improve their knowledge
of chip design and find potential weaknesses in the chip, which may allow them to
compromise the chip’s integrity.

156 M. Tunstall

Fig. 7.3 A chip surface with
readily identifiable features

In modern smart cards, various features used to inhibit reverse engineering are
implemented using glue logic: important blocks are laid out in a randomised fashion
that makes reverse engineering difficult. This technique increases the size of the
block, and is therefore not used in the design of large blocks such as ROM and
EEPROM.

Another common technique to prevent this sort of identification and targeting is
to overlay the chip with another metal layer that prevents the chip’s features being
identified. This can be removed using hydrofluoric acid that eats through the metal
layer; this reaction is then stopped using acetone before further damage is done and
the chip surface can be analysed. The chip becomes non-functional but the layout of
the chip can be determined, so that other chips of the same family can be attacked.
The result of such a process is shown in Fig. 7.4.

Discovering the layout and functioning of a chip is particularly important when
using a laser as a fault injection mechanism (see Sect. 7.5). Different areas of a chip
can be targeted through the metal layer once the layout of a chip is known.

Fig. 7.4 A chip with a shield present and removed

7 Smart Card Security 157

7.4 Side Channel Analysis

Side channel attacks are a class of attacks where an attacker will attempt to deduce
what is occurring inside a device by observing information that leaks during the
normal functioning of the device. If this information can be related to any secret
information being manipulated the security of the device can be compromised. It
should be noted that side channel analysis is a passive form of attack, i.e. an attacker
will simply observe what is occurring when a device is functioning. In the case
of smart cards, the message being manipulated can be controlled, but this is not
necessary to construct a valid side channel attack.

The first publication that mentions a side channel attack is described in [45]. In
1956, MI5 mounted an operation to decipher communications between Egyptian
embassies. The communications were enciphered using Hagelin machines [24].
These machines did not function by using a key value as described in Sect. 7.2.
Enciphering occurred by routing electronic signals from a keyboard through seven
rotating wheels to generate a ciphertext. The “key” was the initial setting of these
seven wheels. The machine was reset every morning by the clerk who would be
sending messages. MI5 managed to plant a microphone in close proximity to one of
these machines. This allowed the initial settings to be determined by listening to the
initial settings being made every morning. This would have allowed them to decipher
intercepted communications with another Hagelin machine set to the same key. In
practice, MI5 was only able to determine a certain amount of wheel settings because
of the difficulty of distinguishing the noise of the wheels being set from background
noise. This made deciphering more complex, but not impossible, as the number of
possible keys was significantly reduced by the partial information.

7.4.1 Timing Analysis

The first modern example of a side channel attack was proposed in [26]. This involved
observing the differences in the amount of time required to calculate a RSA signature
for different messages to derive the secret key. This attack was conducted against a
PC implementation but a similar analysis could potentially be applied to smart card
implementations. It would be expected to be more efficient against a smart card as
more precise timings can be achieved with an oscilloscope or proprietary readers.
An example of a trace acquired with an oscilloscope that would provide this sort of
information is shown in Fig. 7.5. The I/O events on the left hand side of the figure
represent the reader sending a command to the smart card. The I/O events on the
right hand side of the figure show the response of the smart card. The time taken by
a given command can be determined by observing the amount of time that passes
between these two sets of events.

158 M. Tunstall

0

5

Time

V
ol

ta
ge

Fig. 7.5 The I/O of a smart card command

7.4.2 Power Analysis

The most common form of side channel attack, when considering smart cards, is
the analysis of the instantaneous power consumption [27]. This is measured by
placing a resistor in series with a smart card and the power supply (or ground),
and measuring the potential difference across the resistor with an oscilloscope. The
acquired information can be analysed a posteriori to attempt to determine information
on what is occurring within a secure microprocessor. There are two main types of
power attack; these are simple power analysis (SPA) and differential power analysis
(DPA).

7.4.2.1 Simple Power Analysis

A powerful form of power analysis is to search for patterns within the acquired
power consumption. An attacker can attempt to determine the location of individual
functions within a command. For example, Fig. 7.6 shows the power consumption
of a smart card during the execution of DES. A pattern can be seen that repeats 16
times, corresponding to the 16 rounds that are required during the computation of
DES.

This analysis can be further extended by closely inspecting the power consump-
tion during the computation of one round, to attempt to determine the individ-
ual functions within each round. This is shown in Fig. 7.7 where the functions
in the second round of a DES implementation are evident from the power con-
sumption trace. This may not be immediately apparent, as close inspection of the
trace’s features is necessary to identify the individual functions. For example, if an
attacker is seeking to determine where in a command the compression permutation

7 Smart Card Security 159

Fig. 7.6 The power consumption of a DES implementation showing the rounds of the algorithm

Key: Key Shift A bitwise shift applied to the key each round.
PC2 PC2 used to generate a 48-bit round key each round.
E Perm Expansion permutation applied to Ri,

for 1 i 16, to produce a 48-bit output.
XOR The XOR with the round key.
S-boxes Eight substitution tables reducing 48 bits to 32 bits.
P Perm The P permutation, a bitwise transformation.

Fig. 7.7 The power consumption of a DES implementation showing the round functions

(PC2) is computed. An attacker will look for eight patterns of six events. This is
because the compression permutation selects 48-bits from the 56-bit DES key, where
the 48-bit result is divided into segments of 6-bits (for use in the S-box function).
The natural method of implementing this permutation will, therefore, be to construct
a loop that will repeat eight times. Each loop will move six bits from the DES key to

160 M. Tunstall

the 48-bit output. This should therefore produce eight patterns of six events because
of the individual bits being selected and written.

The use of this information is not necessarily immediately apparent; an attacker
can use this information to improve the effectiveness of other attacks. The efficiency
of the statistical treatment required for DPA [27] can be increased by taking more
precise acquisitions. This is because the area that needs to be analysed can be defined,
and therefore reducing the amount of data that needs to be acquired. A more detailed
analysis is given below.

The same is true for fault injection techniques, detailed in Sect. 7.5, as it is often
necessary to target specific events. If arbitrary functions can be identified using the
power consumption, the point in time at which an attacker wishes to inject a fault can
be discovered. This can greatly decrease the time required to conduct a successful
attack, as less time is wasted injecting faults into areas of the computation that will
not produce the desired result.

The examination of the power consumption can also be used to determine infor-
mation on the private/secret keys used in naïve implementations of cryptographic
algorithms. For example, if the power consumption of a smart card during the gen-
eration of an RSA signature using the square and multiply algorithm is analysed, it
may be possible to determine some bits of the private key. An example of the power
consumption during the generation of an RSA signature is shown in Fig. 7.8.

Looking closely at the acquired power consumption, a series of events can be
seen. There are two types of event at two different power consumption levels, with
a short dip in the power consumption between each event. This corresponds well
to the square and multiply algorithm described in Sect. 7.2. Given the ratio of the
two features, it can be assumed that the feature with the lower power consumption
represents the squaring operation and the higher power consumption represents the
multiplication. From this, the beginning of the exponent can be read from the power
consumption, in this case the exponent used is F00F000FF0016.

Fig. 7.8 The power consumption of an RSA implemented using the square and multiply algorithm

7 Smart Card Security 161

It should be noted that all the examples given in this section have been taken
from chips that display the differences in an obvious manner. Modern secure micro-
processors rarely display the functions being executed as clearly as in the examples
given.

7.4.2.2 Differential Power Analysis

The idea of statistically treating power analysis traces was first presented to the
cryptographic community in [27], and is referred to as DPA. DPA is based on the
relationship between the power consumption and the Hamming weight of data being
manipulated at a given point in time. The differences in power consumption are
potentially extremely small, and cannot be interpreted individually, as the information
will be lost in the noise incurred during the acquisition process. The small differences
produced can be seen in Fig. 7.9, where traces were taken using a chip where the
acquisition noise is exceptionally low.

DPA can be performed on any algorithm in which an intermediate operation of
the form β = S(α≥ K) is calculated, where α is known and K is the key (or some
segment of the key). The function S is typically a non-linear function, usually a
substitution table (referred to as an S-box), which produces an intermediate output
value β.

The process of performing the attack initially involves running a microprocessor
N times with N distinct message values Mi , where 1 ∗ i ∗ N . The encryption of
the message Mi under the key K to produce the corresponding ciphertext Ci will
result in power consumption waveforms wi , for 1 ∗ i ∗ N . These waveforms are
captured with an oscilloscope, and sent to a computer for analysis and processing.

To find K , one bit of β is chosen which we will refer to as b. For a given hypoth-
esis for K this bit will classify whether each trace wi is a member of one of two
possible sets. The first set S0 will contain all the traces where b is equal to zero, and

Fig. 7.9 Overlaid acquisitions of the power consumption produced by the same instruction but
with varying data

162 M. Tunstall

the second set S1 will contain all the remaining traces, i.e. where the output bit b is
equal to one.

A differential trace Δn is calculated by finding the average of each set and then
subtracting the resulting values from each other, where all operations on waveforms
are conducted in a pointwise fashion, i.e. this calculation is conducted on the first
point of each acquisition to produce the first point of the differential trace, the second
point of each acquisition to produce the second point of the differential trace, etc.

Δn =
∑

wi∈S0
wi

|S0| −
∑

wi∈S1
wi

|S1|
A differential trace is produced for each value that K can take. In DES, the first

subkey will be treated in groups of six bits, so 64 (i.e. 26) differential traces will
be generated to test all the combinations of six bits. The differential trace with the
highest peak will validate a hypothesis for K , i.e. K = n corresponds to the Δn

featuring a maximum amplitude. An example of a differential trace produced by
predicting one bit of the output a DES S-box, with a correct key guess, is shown in
Fig. 7.10.

The differential trace in Fig. 7.10 shows a large difference in the power consump-
tion at five different points, which are referred to as DPA peaks. The first peak
corresponds to the output of the S-box, i.e. where the output of the S-box function
is determined and written to memory. The four subsequent peaks correspond to the
same bit being manipulated in the P-permutation. This occurs because the output of
each S-box consists of four bits, and the memory containing those four bits will be
accessed each time one of those bits is required in the output of the P-permutation.

A more complete version of this attack uses Pearson’s correlation coefficient to
demonstrate the correlation between the Hamming weight and the instantaneous
power consumption. This can be used to validate key hypotheses in an identical
manner to DPA. Details of this method are beyond the scope of this chapter, but the
interested reader is referred to [11].

Fig. 7.10 A differential trace

7 Smart Card Security 163

Fig. 7.11 Electromagnetic
probing of a chip

7.4.3 Electromagnetic Analysis

An alternative side channel to measuring the power consumption of a smart card is to
measure the instantaneous electromagnetic emanations as a cryptographic algorithm
is being computed [16, 40]. This is typically implemented using a small probe, an
example of which can be seen in Fig. 7.11. Such probes can measure the electromag-
netic emanations for different blocks of a chip, as such probes are an equivalent size
to the chip’s features. This means that the probe can be placed just above a given
feature to try and get a strong signal from that part of the chip, e.g. the bus between
two areas of the chip, while excluding noise from other areas of the chip.

Unfortunately, it is a much more complicated attack to realise, as the chip needs
to be open, as shown in Fig. 7.11. If the chip surface is not exposed the signal is
not usually strong enough for any information to be deduced. The tools required to
capture this information are also more complex, as the power consumption can be
measured by simply reading the potential difference over a resistor in series with a
smart card. To measure the electromagnetic field involves building a suitable probe
(the probe in Fig. 7.11 is handmade) and the use of amplifiers, so that an oscilloscope
can detect the signal.

The signals that are acquired using this method are also different to those acquired
by reading the instantaneous power consumption. The signals acquired during two
executions of a selected command by an 8-bit microprocessor is shown in Fig. 7.12.
The black traces show the acquired power and electromagnetic signals when the
chip manipulates FF16, and the grey traces shows the same command where the
microprocessor is manipulating 0016. The difference in the black and grey traces
representing the power consumption can be seen as a increase in the power consump-
tion for short periods. The difference in the traces representing the electromagnetic
emanations is caused by sudden changes in the electromagnetic field, shown by spikes
in the signal at the same moment in time the difference in the power consumption
can be observed.

The traces acquired from measuring the instantaneous electromagnetic emanations
can be treated in exactly the same way as power consumption acquisitions [16, 40].
The acquisitions can be analysed individually, referred to as simple electromagnetic
analysis (SEMA), or treated statistically, referred to as differential electromagnetic
analysis (DEMA).

164 M. Tunstall

Key: The upper traces represents the power consumption, and the lower traces
represent the electromagnetic emanations during the same command. The
black traces were taken were 16 is being manipulated, and the grey traces
where 16 is being manipulated.

Fig. 7.12 Power and electromagnetic measurements

7.4.4 Countermeasures

There are several countermeasures for protecting cryptographic algorithms against
side channel attacks. Some countermeasures can either be implemented in hardware
or software; only software implementations are considered here for simplicity. These
countermeasures are listed below:

Constant Execution can be used to fix the time taken by an algorithm, so that no
deductions on secret information can be made though timing analysis or SPA. This
extends to individual processes being executed by a smart card. If a process takes
different lengths of time depending on some secret information and the difference in
time is made up by a dummy function, there is a good chance that this will be visible
in the power consumption or electromagnetic emanations. It is therefore important
that an algorithm is written so that the same code is executed for all the possible
input values.

Random Delays can be inserted at different points in the algorithm being executed,
i.e. a dummy function that takes a random amount of time to execute can be called.
The algorithm can no longer be said to comply with the constant execution criteria
given above, but any variation is completely independent of any secret information.
This does not prevent any attacks, but creates an extra step for an attacker. In order to
conduct any power analysis an attacker needs to synchronise the power consumption
acquisitions a posteriori. The problem of attempting to conduct side channel attacks
in the presence of random delays is described in [14].

Randomisation (or data whitening) is where the data is manipulated in such a way
that the value present in memory is always masked with a random value. This ran-
domisation remains constant for one execution, but will vary from one acquisition to

7 Smart Card Security 165

another. This mask is then removed at the end of the algorithm to produce the cipher-
text. Some ideas for implementing this countermeasure were proposed in [12], and
an example of this sort of implementation applied to block ciphers can be found
in [1].

The size of the random value used in block ciphers is generally limited as S-boxes
need to be randomised before the execution of the block cipher. This is generally
achieved by creating an alternative S-box in memory for each execution of the cryp-
tographic algorithm using the algorithm given below:

Randomising S-box Values
Input:
S = (s0, s1, s2, . . . , sn)x containing the S-box, R a random ∈ {0, 1, . . . , n},
and r a random ∈ {0, 1, . . . , x − 1}
Output:
RS = (rs0, rs1, rs2, . . . , rsn)x
{

for i = 0 to n {
rsi := s(i≥R) ≥ r

}
return RS

}

The random value used for masking the input data can be no larger than n, and the
random used for the output value can be no larger that x . In an implementation of
DES R ∈ {0, 1, . . . , 63} and r ∈ {0, 1, . . . , 15}. The rest of the algorithm needs to be
a carefully designed to produce values masked with R, and to be able to manipulate
returned values masked with r .

This is not possible in the case of RSA, where the calculation methods do not
facilitate the method described above. A method for randomising the calculation of
an RSA signature is given in [23], where the signature generation can be calculated
using the formula:

S =
(
(M + r1 · N)d+r2·φ(N) mod (r3 · N)

)
mod N (7.13)

where φ is Euler’s totient function and, r1, r2 and r3 are small random values. The
effect of the each of the small random values does not change the outcome, but
the order of the squaring operations and multiplications required to compute S is
randomised. This does not provide a totally secure algorithm as the modular expo-
nentiation itself also has to be secured against SPA attacks. A discussion of these
algorithms is given in [13].
Randomised Execution is the manipulation of data in a random order so that an
attacker does not know what is being manipulated at a given moment in time. If, for
example, n bytes are being XORed with n key bytes then it is prudent to do it in
a random order. If an attacker wishes to determine which byte has been XORed at

166 M. Tunstall

any particular time this will be infeasible given that the order that bytes are being
manipulated is unknown.

This also inhibits any statistical analysis of a side channel (i.e. using DPA), as
this relies on the same unknown variable being treated at the same point in time.
As an attacker cannot know the order in which the data has been treated, this pro-
vides an extremely efficient countermeasure when combined with randomisation.
An discussion of this technique applied to DES is described in [32].

7.4.4.1 Remarks

The above list gives the countermeasures that would need to be applied to a cryp-
tographic algorithm to render it secure against side channel analysis. An attacker
would, therefore, have to overcome the combination of all these countermeasures.
For an extensive treatment of side channel analysis, the interested reader is referred
to [29].

7.5 Fault Analysis

The problem of faults occurring in microprocessors has existed for a relatively long
time. One of the initial observations of faults being provoked in microprocessors was
accidental. It was observed that radioactive particles produced by elements naturally
present in packaging material caused faults in chips [30]. Specifically, these faults
were caused by Uranium-235, Uranium-238 and Thorium-230 residues present in
the packaging decaying to Lead-206 and releasing α particles. These particles were
energetic enough to cause bits stored in RAM to change.

Further research involved the analysis of the effect of cosmic rays on semiconduc-
tors [46]. While cosmic rays are very weak at ground level, their effect in the upper
atmosphere and outer space is important for the aero-spacial industry. This provoked
research into integrity measures that need to be included in semiconductors utilised
in the upper atmosphere and space.

In 1997, it was pointed out that a fault present in the generation of an RSA signa-
ture, computed using the CRT, could reveal information on the private key [10] (this
attack is detailed below). This led to further research into the effect of faults on the
security of implementations of cryptographic algorithms in secure microprocessors,
and the possible mechanisms that could be used to inject faults in a microprocessor.

7.5.1 Fault Injection Mechanisms

There are a variety of different mechanisms that can be used to inject faults in
microprocessors. These are listed here:

7 Smart Card Security 167

Variations in Supply Voltage [3, 9] during execution may cause a processor to mis-
interpret or skip instructions.

Variations in the External Clock [3, 4, 28] may cause data to be misread (the circuit
tries to read a value from the data bus before the memory has time to latch out the
correct value) or an instruction miss (the circuit starts executing instruction n + 1
before the microprocessor has finished executing instruction n).

Extremes of Temperature [10, 18] may cause unpredictable effects in microproces-
sors. When conducting temperature attacks on smart cards, two effects can be
obtained [6]: the random modification of RAM cells due to heating, and the exploita-
tion of the fact that read and write temperature thresholds do not coincide in most
non-volatile memories (NVMs). By tuning the chip’s temperature to a value where
write operations work but read operations do not, or the other way around, a number
of attacks can be mounted.

Laser Light [15, 20, 39] can be used to simulate the effect of cosmic rays in micro-
processors. Laser light is used to test semiconductors that are destined to be used in
the upper atmosphere or space. The effect produced in semiconductors is based on
the photoelectric effect, where light arriving on a metal surface will induce a current.
If the light is intense, as in laser light, this may be enough to induce a fault in a
circuit.

White Light [3] has been proposed as an alternative to laser light to induce faults in
microprocessors. This can be used as a relatively inexpensive means of fault induction
[43]. However, white light is not directional and cannot easily be used to illuminate
small portions of a microprocessor.

Electromagnetic flux [42] has also been shown to be able to change values in RAM,
as eddy currents can be made strong enough to affect microprocessors. However,
this effect has only been observed in insecure microprocessors.

7.5.2 Modelling the Effect of a Fault

The fault injection methods described above may have many different effects on
silicon. They can be modelled in ways that depend on the type of fault injection that
has been used. The following list indicates the possible effects that can be created
by these methods:

Resetting Data: an attacker could force the data to the blank state, i.e. reset a given
byte, or bytes, of data back to 00 or FF16, depending on the logical representation.

Data Randomisation: an attacker could change the data to a random value. However,
the adversary does not control the random value, and the new value of the data is
unknown to the adversary.

Modifying Opcodes: an attacker could change the instructions executed by the chip’s
CPU, as described in [3]. This will often have the same effect as the previous two
types of attack. Additional effects could include removal of functions or the breaking

168 M. Tunstall

of loops. The previous two models are algorithm dependent, whereas the changing
of opcodes is implementation dependent.

These three types of attack cover everything that an attacker could hope to do
to an implementation of an algorithm. It is not usually possible for an attacker to
create all of these possible faults in any particular implementation. Nevertheless, it is
important that algorithms are able to tolerate all types of fault, as the fault injection
methods that may be realisable on a given platform are unpredictable. While an
attacker might only ever have a subset of the above effects available, if that effect is
not taken into account then it may have catastrophic consequences for the security
of a given implementation.

In the literature, one-bit faults are often considered. This is a useful model for
developing theoretical attacks, but has proven to be extremely difficult to produce on
a secure microprocessor. The model given above is based on published descriptions
of implementations of fault attacks.

7.5.3 Faults in Cryptographic Algorithms

The faults mechanisms and fault model described above can be used to attack numer-
ous cryptographic algorithms. Two examples of fault attacks on cryptographic algo-
rithms are described below.

7.5.3.1 Faults in RSA Signature Generation

The first published fault attack [10], proposed an attack focused on an implementation
of RSA using the Chinese Remainder Theorem (CRT). The attack allows for a wide
range of fault injection methods, as it only requires one fault to be inserted in order
to factorise the RSA modulus.

The technique requires an attacker to obtain two signatures for the same message,
where one signature is correct and the other is the result of the injection of a fault
during the computation of Sp or Sq (see above). That is, the attack requires that one
of Sp and Sq is computed correctly, and the other is computed incorrectly.

Without loss of generality, suppose that S′ = aSp + bS′q mod N is the faulty
signature, where Sq is changed to S′q �= Sq . We then have:

Δ ≡ S − S′ (mod N)

≡ (aSp + bSq)− (aSp + bS′q) (mod N)

≡ b(Sq − S′q) (mod N) .

(7.14)

As b ≡ 0 (mod p) and b ≡ 1 (mod q), it follows that Δ ≡ 0 (mod p) (but
Δ �≡ 0 (mod q)) meaning that Δ is a multiple of p (but not of q). Hence, we can
derive the factors of N by observing that p = gcd(Δ mod N , N) and q = N/p.

7 Smart Card Security 169

In summary, all that is required to break RSA is one correct signature and one
faulty one. This attack will be successful regardless of the type or number of faults
injected during the process, provided that all faults affect the computation of either
Sp or Sq .

Although initially theoretical, this attack stimulated the development of a variety
of fault attacks against a wide range of cryptographic algorithms. A description of
an implementation of this attack is given in [5].

7.5.3.2 Faults in DES

A type of cryptanalysis of ciphertext blocks produced by injecting faults into DES
was proposed in [8], based on using techniques used in differential cryptanalysis [31].
One-bit faults were assumed to occur in random places throughout an execution of
DES. The ciphertext blocks corresponding to faults occurring in the 14th and 15th
round were taken, enabling the derivation of the key. This was possible as the effect of
a one-bit fault in the last three rounds of DES is visible in the ciphertext block when
it is compared with a correct ciphertext block. This allowed the key to be recovered
using between 50 and 200 different ciphertext blocks. It is claimed in [8] that, if an
attacker can be sure of injecting faults towards the end of the algorithm, the same
results could be achieved with only 10 faulty ciphertext blocks, and that, if a precise
fault could be induced, only three faulty ciphertext blocks would be required.

This algorithm was improved upon in [17]. When searching for a key, the number
of times a given hypothesis is found is counted. This means that faults from earlier
rounds can be taken into account. It is claimed in [17] that faults from the 11th round
onwards can be used to derive information on the key, and that in the ideal situation
only two faulty ciphertext blocks are required.

The simplest case of a fault attack on DES involves injecting a fault in the 15th
round, and such an attack is well-known within the smart card industry. The last
round of DES can be expressed in the following manner:

R16 = S(R15 ≥ K16)≥ L15
= S(L16 ≥ K16)≥ L15

If a fault occurs during the execution of the 15th round, i.e. R15 is randomised by
a fault to become R′15, then:

R′16 = S(R′15 ≥ K16)≥ L15
= S(L ′16 ≥ K16)≥ L15

and
R16 ≥ R′16 = S(L16 ≥ K16)≥ L15 ≥ S(L ′16 ≥ K16)≥ L15

= S(L16 ≥ K16)≥ S(L ′16 ≥ K16) .

170 M. Tunstall

Table 7.1 The expected
number of hypotheses per
S-box for one faulty
ciphertext block

S-box Ek

1 7.54
2 7.67
3 7.58
4 8.36
5 7.73
6 7.41
7 7.91
8 7.66

This provides an equation in which only the last subkey, K16, is unknown. All
of the other variables are available from the ciphertext block. This equation holds
for each S-box in the last round, which means that it is possible to search for key
hypotheses in sets of six bits, i.e. the 48-bit output after the XOR is divided into eight
groups of six bits before being substituted with values from the S-boxes.

All 64 possible key values corresponding to the XOR just before each individual
S-box can be used to generate a list of possible key values for these key bits. After
this, all the possible combinations of the hypotheses can be searched though, with
the extra eight key bits that are not included in the last subkey, to find the entire key.

If R′15 is randomised by a fault, then the expected number of hypotheses that are
generated can be predicted using the methods given in [7]. The Table 7.1 shows the
statistically expected number of key hypotheses Ek that would be returned by a fault
producing a difference across each S-box in the last round. This is an average of the
non-zero elements in the expected number of hypotheses that are generated using
the tables defined in [7].

The expected number of hypotheses for the last subkey will be the product of all
eight expected values Ek ; this gives an expected number of around 224. This is just
for the last subkey, an actual exhaustive search will need to take into account the eight
bits that are not included in the last subkey, giving an overall expected keyspace size
of 232.

This substantially reduces the number of possible keys that would need to be
tested to try and determine the secret key used. The size of the keyspace can be
further reduced if the fault attack is repeated and the intersection of the two resulting
keyspaces is determined.

The same attack can also be applied if small faults occur in the last five rounds
of DES, but the treatment is statistical in nature and requires many more faults to
determine information on the key. Further details of this attack, and a brief description
of an implementation, are given in [17].

7 Smart Card Security 171

7.5.4 Countermeasures

The countermeasures that can be used to protect microprocessors from fault attacks
are based on methods previously employed for integrity purposes. However, coun-
termeasures only need to be applied in processes where an attacker could benefit
from injecting a fault, although a careful analysis of a given application is required
to determine where countermeasures are required. This has proven to be true even
where algorithms are based on one-time random numbers, as it has been shown that
the manipulation of the random number can compromise the security of an crypto-
graphic algorithm [36]. The list of countermeasures is given below:

Checksums can be implemented in software or hardware. This prevents data (such
as key values) being modified by a fault, as the fault can be detected followed by
appropriate action (see below).

Execution Randomisation can be used to change the order in which operations in an
algorithm are executed from one execution to another, making it difficult to predict
what the machine is doing at any given cycle. For most fault attacks this counter-
measure will only slow down a determined attacker, as eventually a fault will hit the
desired instruction. However, this will thwart attacks that require faults in specific
places or in a specific order.

Random Delays can be used to increase the time required to attack. As with execution
randomisation a determined attacker can attempt to inject a fault until the moment the
fault is injected coincides with the target. However, this can take significantly more
time than would otherwise be required, especially if an attacker is able to identify a
target through a side channel (e.g. using SPA).

Execution redundancy is the repeating of algorithms and comparing the results to
verify that the correct result is generated. This is most effective when the second
calculation is different to the first, e.g. the inverse function, to prevent an attacker
form trying to inject an identical fault in each execution.

Variable redundancy is the reproduction of a variable in memory. When a variable
is tested or modified the redundant copy is also tested or modified. This is most
effective when the copy is stored in a different form to the original, e.g. the bitwise
complement, to avoid a fault being applied to each variable in the same way.

Ratification counters and baits can be included to prevent an attacker from success-
fully completing a fault attack by rendering a microprocessor inoperative once a
fault attack is detected. Baits are small (<10 byte) code fragments that perform an
operation and test it’s result. A typical bait writes, reads and compares data, per-
forms XORs, additions, multiplications and other operations whose results can be
easily checked. When a bait detects an error it increments a counter in non-volatile
memory (NVM), and when this counter exceeds a tolerance limit (typically three)
the microprocessor ceases to function.

172 M. Tunstall

7.5.4.1 Remarks

Many of the countermeasures in this list can be implemented in either hardware or
software. A more complete list of the countermeasures (in hardware and software),
along with a description of certain fault attacks, is given in [6].

7.6 Embedded Software Design

The attacks described in the previous sections of this chapter have focused on attack-
ing cryptographic algorithms to determine a secret or private key. In this section, some
example of how the attack methods presented in Sects. 7.4 and 7.5 can be applied to
other security mechanisms are described. This is to demonstrate that implementing
a secure application on a smart card is not trivial, and requires the careful evaluation
of every implemented function. It should also be noted that the attacks described
below are only possible where no specific countermeasures are implemented.

7.6.1 PIN Verification

As described in Sect. 7.3, the first smart cards included a contact that was called Vpp
used to supply power to the microprocessor so that it could program the EEPROM
present in the chip. At the time, the voltage supply (Vcc) did not supply enough
power to allow a microprocessor to modify EEPROM and a higher voltage needed to
be applied to the Vpp contact. The Vpp contact is no longer used as it led to security
problems, as described below.

If the Vpp contact was masked (e.g. covered with nail varnish), then no power
would be available for the microprocessor to program the EEPROM, but power
would be available through the Vcc to run every other function of the smart card.
This meant that an attacker could try every single PIN number without decrementing
the PIN counter (typically a PIN counter is set to three and decremented with every
false PIN presentation, once the PIN number is zero a smart card will render itself
non-functional). This process could be automated using a standard PC and a smart
card reader to determine a PIN number in matter of minutes.

After the Vpp contact was removed, further problems were encountered. The most
natural way to implement a PIN verification would be as follows:

where the PIN entered by a user is returned by the RequestPIN function and compared
with the PIN in NVM. If the entered PIN is not equal to the stored PIN, the PINcounter
will be decremented.

It was observed that the power consumption increased when a smart card modified
the value of the PIN counter, i.e. it was visible using the SPA techniques described
in Sect. 7.4 as an increase in the power consumption. Attackers then developed tools

7 Smart Card Security 173

Insecure PIN Verification Algorithm
{

if (PINcounter > 0) {
PIN := RequestPIN();

}
else {
return false;
}
if (PIN �= UserPIN) {

PINcounter := PINcounter − 1;
return false;

}
else {

return true;
}

}

to cut the power being supplied to a microprocessor once this increase in power con-
sumption was detected. This allowed automated tools to attempt every PIN number
until the correct PIN was found. The correct PIN would be the only value where
the command would finish as the microprocessor would not attempt to modify the
NVM.

This made it necessary to change the algorithm used to verify a PIN number.
Typically, a secure PIN verification will be implemented in the following manner:

Secure PIN Verification Algorithm
{

if (PINcounter > 0) {
PIN := RequestPIN();

}
else {
return false;
}
PINcounter := PINcounter − 1;
if (PIN = UserPIN) {

PINcounter := PINcounter + 1;
return true;

}
else {

return false;
}

}

where the PINcounter is decremented before it is tested, and only incremented if
the PIN is entered correctly. The power supply can be removed at any point during
the command without producing a security problem. However, further modifications

174 M. Tunstall

would need to be made to render it resistant to fault attacks. An example of a fault
attack against an operating system is described below.

7.6.2 File Access

Another possible target within a smart card operating system is the file structure.
All personalisation information, e.g. PIN numbers etc., is stored in a file structure
situated in NVM. Each file will have a set of access conditions that determine who
can read and write to each file or directory. For example, a user’s PIN number on
a SIM card, unless intentionally disabled, will grant access to the files that contain
SMS messages once verified. If the PIN is not verified, access to these files will
be denied. There are often administrator identification codes (essentially eight-digit
PIN numbers) that grant access to more files and allow the modification of files that
the end user is not able to directly modify, e.g. the user’s PIN number.

If an attacker wishes to attempt to access information stored in files without any
of the codes mentioned above, a fault attack could be attempted. An attacker can
attempt to inject a fault at the moment a smart card is evaluating whether the right
to read a file, for example, should be granted. If successful, the evaluation will be
erroneous and the right to access the file will be temporarily granted.

In order to determine the point in which a fault would need to be injected, an
attacker can use SPA (see Sect. 7.4). An attacker could compare a trace of the power
consumption where file access is granted with a trace where file access has been
denied. An example of this is shown in Fig. 7.13. The black trace represents the
power consumption where access has been denied. The grey trace represents the
power consumption where access has been granted. It can be see at the point indicated
in the figure that the two traces diverge. This should represent the moment at which
the access conditions are evaluated and will, therefore, be the targeted area for a fault
attack.

Key: Black Power consumption where file access is denied.
Grey Power consumption where file access is granted.

Fig. 7.13 Determining the moment file access is granted using the power consumption

7 Smart Card Security 175

On a smart card, there are typically files that contain serial numbers and such
information, which can be read by anyone. Finding two files to attempt to read in
order to generate traces, as shown in Fig. 7.13, should be straightforward.

This type of fault attack means that the access conditions to files, and other security
mechanisms such as PIN verification, need to include redundancy in their tests to
ensure that a fault attack is not possible. The various countermeasures that can be
implemented are described in Sect. 7.5.

7.7 In Conclusion

This chapter presents the particular security considerations that need to be taken into
account when implementing a secure smart card-based application. Implementations
of all the commands on a smart card need to be subjected to careful analysis to prevent
power analysis and fault injection techniques from compromising the security of the
smart card.

Research in the domain of smart card security is typically a cyclic process. New
attacks are developed against algorithm implementations, standards, etc. and coun-
termeasures are proposed. The modifications are then reviewed for potential vulner-
abilities and further countermeasures proposed if required. The aim of this process
is to remain sufficiently ahead of what can be achieved by an individual attacker that
smart cards remain secure throughout the period that they are active.

References

1. Akkar, M.-L. and Giraud, C. (2001). An implementation of DES and AES secure against
some attacks. In Koç, C. K., Naccache, D., and Paar, C., editors, Cryptogaphic Hardware and
Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
309–318. Springer-Verlag.

2. American National Standards Institute (1985). Financial Institution Key Management (Whole-
sale). American National Standards Institute.

3. Anderson, R. and Kuhn, M. (1996). Tamper resistance – a cautionary note. In Proceedings of
the Second USENIX Workshop of Electronic Commerce, pages 1–11.

4. Anderson, R. and Kuhn, M. (1997). Low cost attacks on tamper resistant devices. In Christian-
son, B., Crispo, B., Lomas, T. M. A., and Roe, M., editors, Security Protocols, volume 1361
of Lecture Notes in Computer Science, pages 125–136. Springer-Verlag.

5. Aumüller, C., Bier, P., Hofreiter, P., Fischer, W., and Seifert, J.-P. (2002). Fault attacks on RSA
with CRT: Concrete results and practical countermeasures. In Kaliski, B. S., Koç, C. K., and
Paar, C., editors, Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523
of Lecture Notes in Computer Science, pages 260–275. Springer-Verlag.

6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and Whelan, C. (2006). The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382.

7. Biham, E. and Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. In
Menezes, A. and Vanstone, S., editors, Advances in Cryptology – CRYPTO ’90, volume 537
of Lecture Notes in Computer Science, pages 2?-21. Springer-Verlag.

176 M. Tunstall

8. Biham, E. and Shamir, A. (1997). Differential fault analysis of secret key cryptosystems. In
Kaliski, B. S., editor, Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes
in Computer Science, pages 513–525. Springer-Verlag.

9. Blömer, J. and Seifert, J.-P. (2003). Fault based cryptanalysis of the advanced encryption
standard (AES). In Wright, R. N., editor, Financial Cryptography – FC 2003, volume 2742 of
Lecture Notes in Computer Science, pages 162–181. Springer-Verlag.

10. Boneh, D., DeMillo, R. A., and Lipton, R. J. (1997). On the importance of checking com-
putations. In Fumy, W., editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science, pages 37–51. Springer-Verlag.

11. Brier, E., Clavier, C., and Olivier, F. (2004). Correlation power analysis with a leakage model.
In Joye, M. and Quisquater, J.-J., editors, Cryptographic Hardware and Embedded Systems
– CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer-
Verlag.

12. Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. (1999). Towards approaches to counteract
power-analysis attacks. In Wiener, M., editor, Advances in Cryptology – CRYPTO ’99, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer-Verlag.

13. Chevallier-Mames, B., Ciet, M., and Joye, M. (2004). Low-cost solutions for preventing
simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers,
53(6):760–768.

14. Clavier, C., Coron, J.-S., and Dabbous, N. (2000). Differential power analysis in the presence
of hardware countermeasures. In Koç, C. K. and Paar, C., editors, Cryptographic Hardware
and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science,
pages 252–263. Springer-Verlag.

15. Fouillat, P. (1990). Contribution a l’etude de l’interaction entre un faisceau laser et un milieu
semiconducteur, Applications a l’etude du Latchup et al l’analyse d’etats logiques dans les
circuits integres en technologie CMOS. PhD thesis, University of Bordeaux.

16. Gandolfi, K., Mourtel, C., and Olivier, F. (2001). Electromagnetic analysis: Concrete results.
In Koç, C. K., Naccache, D., and Paar, C., editors, Cryptographic Hardware and Embedded
Systems – CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 251–261.
Springer-Verlag.

17. Giraud, C. and Thiebeauld, H. (2004). A survey on fault attacks. In Deswarte, Y. and Kalam,
A. A. El, editors, Smart Card Research and Advanced Applications VI – 18th IFIP World
Computer Congress, pages 159–176. Kluwer Academic.

18. Govindavajhala, S. and Appel, A. W. (2003). Using memory errors to attack a virtual machine.
In IEEE Symposium on Security and Privacy 2003, pages 154–165.

19. Gutmann, P. (2004). Security Architecture. Springer-Verlag.
20. Habing, D. H. (1992). The use of lasers to simulate radiation-induced transients in semicon-

ductor devices and circuits. IEEE Transactions On Nuclear Science, 39:1647–1653.
21. International Organization for Standardization (1997). ISO/IEC 7816–3 Information technol-

ogy - Identification cards - Integrated circuit(s) cards with contacts - Part 3: Electronic signals
and transmission protocols. International Organization for Standardization.

22. International Organization for Standardization (1999). ISO/IEC 7816–2 Identification cards
- Integrated circuit cards - Part 2: Cards with contacts - Dimensions and location of the
contacts. International Organization for Standardization.

23. Joye, M. and Olivier, F. (2005). Side-channel attacks. In van Tilborg, H., editor, Encyclopedia
of Cryptography and Security, pages 571–576. Kluwer Academic Publishers.

24. Kahn, D. (1997). The Codebreakers: The Comprehensive History of Secret Communication
from Ancient Times to the Internet. Simon & Schuster Inc., second edition.

25. Knuth, D. (2001). The Art of Computer Programming, volume 2, Seminumerical Algorithms.
Addison-Wesley, third edition.

26. Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Koblitz, N., editor, Advances in Cryptology – CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer-Verlag.

7 Smart Card Security 177

27. Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Wiener, M. J., editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer-Verlag.

28. Kommerling, O. and Kuhn, M. (1999). Design principles for tamper resistant smartcard
processors. In USENIX Workshop on Smartcard Technology, pages 9–20.

29. Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks – Revealing the Secrets
of Smart Cards. Springer-Verlag.

30. May, T. and Woods, M. (1978). A new physical mechanism for soft erros in dynamic memories.
In 16th International Reliability Physics Symposium.

31. Menezes, A., van Oorschot, P., and Vanstone, S. (1997). Handbook of Applied Cryptography.
CRC Press.

32. Messerges, T. S. (2000). Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, Chicago.

33. Meyer, C. (2000). Private communication. Carl Meyer was one of the designers of the DES
algorithm.

34. MIPS-Technologies (2001). MIPS™architecture for programmers volume I: Introduction to
the MIPS32™architecture. Technical Report MD00082, Revision 0.95.

35. Murdocca, M. and Heuring, V. P. (2000). Principles of Computer Architecture. Addison-Wesley.
36. Naccache, D., Nguyen, P. Q., Tunstall, M., and Whelan, C. (2005). Experimenting with faults,

lattices and the DSA. In Vaudenay, S., editor, Public Key Cryptography – PKC 2005, volume
3386 of Lecture Notes in Computer Science, pages 16–28. Springer-Verlag.

37. NIST (1999). Data Encryption Standard (DES) (FIPS-46-3). National Institute of Standards
and Technology.

38. NIST (2001). Advanced Encryption Standard (AES) (FIPS-197). National Institute of
Standards and Technology.

39. Pouget, V. (2000). Simulation experimentale par impulsions laser ultra-courtes des effets des
radiations ionisantes sur les circuits integres. PhD thesis, University of Bordeaux.

40. Quisquater, J.-J. and Samyde, D. (2001). Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Attali, I. and Jensen, T. P., editors, Smart Card Program-
ming and Security, International Conference on Research in Smart Cards – E-smart 2001,
volume 2140 of Lecture Notes in Computer Science, pages 200–210. Springer-Verlag.

41. Rivest, R., Shamir, A., and Adleman, L. M. (1978). Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126.

42. Samyde, D., Skorobogatov, S. P., Anderson, R. J., and Quisquater, J.-J. (2002). On a new way
to read data from memory. In Proceedings of the First International IEEE Security in Storage,
Workshop, pp. 65–69.

43. Skorobogatov, S. and Anderson, R. (2002). Optical fault induction attacks. In Kaliski, B. S.,
Ç. K. Koç, and Paar, C., editors, Cryptographic Hardware and Embedded Systems – CHES
2002, volume 2523 of Lecture Notes in Computer Science, pages 2–12. Springer-Verlag.

44. Skorobogatov, S. P. (2005). Semi-Invasive Attacks – A New Approach to Hardware Secu-
rity Analysis. PhD thesis, University of Cambridge. available at http://www.cl.cam.ac.uk/
TechReports/

45. Wright, P. (1987). Spycatcher. Heineman.
46. Ziegler, J. (1979). Effect of cosmic rays on computer memories. Science, 206:776–788.

http://www.cl.cam.ac.uk/TechReports/
http://www.cl.cam.ac.uk/TechReports/

Chapter 8
Graphics Processing Units

Peter Schwabe

Abstract This chapter introduces graphics processing units (GPUs) for general-
purpose computations. It describes the highly parallel architecture of modern GPUs,
software-development toolchains to program them, and typical pitfalls and perfor-
mance bottlenecks. Then it considers several applications of GPUs in information
security, in particular in cryptography and cryptanalysis.

Graphics Processing Units (GPUs) are coprocessors that traditionally perform the
rendering of 2-dimensional and 3-dimensional graphics information for display on
a screen. In particular, computer games request more and more realistic real-time
rendering of graphics data and so GPUs became more and more powerful highly
parallel specialist computing units. It did not take long until programmers realized
that this computational power can also be used for tasks other than computer graph-
ics. For example already in 1990 Lengyel, Reichert, Donald, and Greenberg used
GPUs for real-time robot motion planning [43]. In 2003, Harris introduced the term
general-purpose computations on GPUs (GPGPU) [28] for such nongraphics appli-
cations running on GPUs. At that time, programming GPGPUs meant expressing
all algorithms in terms of operations on graphics data, pixels, and vectors. This was
feasible for speed-critical small programs and for algorithms that operate on vectors
of floating-point values in a similar way as graphics data are typically processed in
the rendering pipeline. The programming paradigm shifted when the two main GPU
manufacturers, NVIDIA and AMD, changed the hardware architecture from a dedi-
cated graphics-rendering pipeline to a multi-core computing platform, implemented
shader algorithms of the rendering pipeline in software running on these cores, and
explicitly supported GPGPUs by offering programming languages and software-
development toolchains. This chapter first gives an introduction to the architectures
of these modern GPUs and the tools and languages to program them. Then it high-
lights several applications of GPUs related to information security with a focus on
applications in cryptography and cryptanalysis.

P. Schwabe (B)
Digital Security Group, Radboud University Nijmegen, Nijmegen, The Netherlands
e-mail: peter@cryptojedi.org

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 179
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_8,
© Springer Science+Business Media New York 2014

180 P. Schwabe

8.1 An Introduction to Modern GPUs

GPUs have evolved to coprocessors of a size larger than typical CPUs. While CPUs
use large portions of the chip area for caches, GPUs use most of the area for arith-
metic logic units (ALUs). The main concept that both NVIDIA and AMD GPUs use
to exploit the computational power of these ALUs is executing a single instruction
stream on multiple independent data streams (SIMD) [23]. This concept is known
from CPUs with vector registers and instructions operating on these registers. For
example, a 128-bit vector register can hold four single-precision floating-point val-
ues; an additional instruction operating on two such registers performs four inde-
pendent additions in parallel. Instead of using vector registers, GPUs use hardware
threads that all execute the same instruction stream on different sets of data. NVIDIA
calls this approach to SIMD computing “single instruction stream, multiple threads
(SIMT)”. The number of threads required to keep the ALUs busy is much larger
than the number of elements inside vector registers on CPUs. GPU performance,
therefore, relies on a high degree of data-level parallelism in the application.

To alleviate these requirements on data-level parallelism, GPUs can also exploit
task-level parallelism by running different independent tasks of a computation in par-
allel. This is possible on all modern GPUs through the use of conditional statements.
Some recent GPUs support the exploitation of task-level parallelism also through
concurrent execution of independent GPU programs. Each of the independent tasks
again needs to involve a relatively high degree of data-level parallelism to make full
use of the computational power of the GPU, but exploitation of task-level parallelism
gives the programmer more flexibility and extends the set of applications that can
make use of GPUs to accelerate computations.

The remainder of this section gives an overview of the hardware architectures
of modern GPUs, introduces the relevant programming languages, and discusses
typical performance bottlenecks and GPU benchmarking issues. The section focuses
on NVIDIA GPUs, because most of the implementations of subsequent sections
target these GPUs.

8.1.1 NVIDIA GPUs

In 2006, NVIDIA introduced the Compute Unified Device Architecture (CUDA).
Today all of NVIDIA’s GPUs are CUDA GPUs. CUDA is not a computer archi-
tecture in the sense of a definition of an instruction set and a set of architectural
registers; binaries compiled for one CUDA GPU do not necessarily run on all CUDA
GPUs. More specifically, NVIDIA defines different CUDA compute capabilities to
describe the features supported by CUDA hardware. The first CUDA GPUs had
compute capability 1.0. In 2011, NVIDIA released GPUs with compute capability
2.1, which is known as “Fermi” architecture. Details about the different compute
capabilities are described in [50, Appendix F].

8 Graphics Processing Units 181

A CUDA GPU consists of multiple so-called streaming multiprocessors (SMs).
The threads executing a GPU program, a so-called kernel, are grouped in blocks.
Threads belonging to one block all run on the same multiprocessor but one mul-
tiprocessor can run multiple blocks concurrently. Blocks are further divided into
groups of 32 threads called warps; the threads belonging to one warp are executed in
lock step, i.e., they are synchronized. As a consequence, if threads inside one warp
diverge via a conditional branch instruction, execution of the different branches is
serialized. On GPUs with compute capability 1.x all SMs must execute the same
kernel. Compute capability 2.x supports concurrent execution of different kernels on
different SMs.

Each SM contains several so-called CUDA cores, 8 per SM in compute capability
1.x , 32 per SM in compute capability 2.0, and 48 per SM in compute capability 2.1.
One could think that for example a reasonable number of threads per SM is 8 for
compute capability 1.x GPUs or 48 for compute capability-2.1 GPUs. In fact, it needs
many more threads to fully utilize the ALUs; the reason is that concurrent execution
of many threads on one SM is used to hide arithmetic latencies and up to some extent
also memory access latencies. For compute capability 1.x, NVIDIA recommends
to run at least 192 or 256 threads per SM. To fully utilize the power of compute
capability 2.x, GPUs even more threads need to run concurrently on one SM. For
applications that involve a very high degree of data-level parallelism, it might now
sound like a good idea to just run as many concurrent threads as possible. The problem
is that the register banks are shared among threads; the more threads are executed,
the fewer registers are available per thread. Finding the optimal number of threads
running concurrently on one SM is a crucial step to achieve good performance.

Aside from registers, each thread also has access to various memory domains.
Each SM has several KB of fast shared memory accessible by all threads on this
multiprocessor. This memory is intended to exchange data between the threads of a
thread block, latencies are as low as for register access but throughput depends on
access patterns. The shared memory is organized in 16 banks. If two threads within
the same half-warp (16 threads) load from or store to different addresses on the same
memory bank in the same instruction, these requests are serialized. Such requests to
different addresses on the same memory bank are called bank conflicts, for details
see [50, Sect. 5.3.2.3]. Graphics cards also contain several hundred MB up to a few
GB of device memory. Each thread has a part of this device memory dedicated
as so-called local memory. Another part of the device memory is global memory
accessible by all threads. Access to device memory has a much higher latency than
access to shared memory or registers. For details on latencies and throughput see
[50, Sects. 5.3.2.1, 5.3.2.2]. Additionally, each thread has cached read-only access
to constant memory and texture and surface memory. Loads from constant cache
are efficient if all threads belonging to a half-warp load from the same address; if
two threads within the same half-warp loaded from different addresses in the same
instruction, throughput decreases by a factor equal to the number of different load
addresses. Another decision (aside from the number of threads per SM) that can have
huge impact on performance is what data are kept in which memory domain. Access
from threads to different memories is depicted in Fig. 8.1.

182 P. Schwabe

Block0

Thread0 ... Threadm

Registers Registers

...

Blockn

Thread0...Threadm

Registers Registers

Shared
Memory

Shared
Memory

Cache∗ Cache∗

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Constant
Memory

(read-only access through
fast constant cache)

Texture
Memory

(read-only access through
fast texture cache)

Global
Memory

∗Since compute capability2.0 : configurable amount of shared memory
serves as transparent cache to local and global memory

Fig. 8.1 Access to different memories from threads on NVIDIA CUDA devices. Light-red mem-
ories are fast; dark-red memories are parts of device memory with high-latency access

Communication between CPU and GPU is done by transferring data between
the host memory and the GPU device memory or by mapping page-locked host
memory into the GPUs address space. Asynchronous data transfers between page-
locked host memory and device memory can overlap with computations on the CPU.
For some CUDA devices since compute capability 1.1 they can also overlap with
computations on the GPU. For details on data transfers to and from NVIDIA GPUs
see [50, Sects. 3.4, 3.5]. Since CUDA 4.0 NVIDIA simplifies data exchange between
host memory and device memory of Fermi GPUs by supporting a unified virtual
address space. For details see [50, Sects. 3.2.7, 3.3.9]. The unified virtual address
space is particularly interesting in conjunction with peer-to-peer memory access
between multiple GPUs. This technique makes it possible to access the memory of
one GPU directly from another GPU without data transfers through host memory.
For details see [50, Sects. 3.2.6.4, 3.2.6.5].

8 Graphics Processing Units 183

8.1.2 AMD GPUs

The hardware and software technologies that allow programmers to use AMD GPUs
for general-purpose computations are called AMD accelerated parallel processing
(APP), formerly known as ATI Stream. For a detailed description of the architecture
and the programming environment see [3].

Each APP device consists of multiple so-called compute units, each compute unit
contains multiple stream cores, which, in turn, contain multiple processing elements.
Multiple instances of a GPU program (kernel) are executed concurrently on different
data, one such instance of a kernel is called a work-item. Multiple work-items are
executed by all stream cores of one compute unit in lock step, one such group of
work items executed together is called wavefront. The number of work items in a
wavefront is hardware dependent. The programmer decides how many work items
are scheduled to one compute unit in a so-called workgroup. Best performance is
obtained, if this number is a multiple of the size of a wavefront.

In principle, different compute units can execute different kernels concurrently.
However, the number of different kernels running on one APP device may be limited.
All stream cores of one compute element execute the same instruction sequence
consisting of very-large-instruction-word (VLIW) arithmetic instructions, control-
flow instructions, and memory load and store instructions. Then up to four or five
(depending on the device) instructions inside a VLIW instruction word are co-issued
to the processing elements.

Similar to NVIDIA GPUs, AMD GPUs have various memories with different
visibility to work items and different latencies and throughputs. The private mem-
ory is specific to each work item and is kept in a register file with very fast access.
Work items inside one workgroup, i.e., running on the same compute unit, can com-
municate through local memory. This “local memory” is not a part of the device
memory as on NVIDIA GPUs. In fact, it is very similar to what NVIDIA calls
shared memory, a relatively small memory with fast access for efficient exchange of
data between work items. Access to local memory is about an order of magnitude
faster than access to device memory. Furthermore, all work items executing in one
context have access to the global device memory and cached read-only access to
a part of the device memory called constant memory. Access from work items to
different memories is depicted in Fig. 8.2.

Communication with the host is done through DMA transfers between host and
device memory. Computation on both the CPU and the GPU can overlap with DMA
transfers.

8.1.3 Programming GPUs in High-Level Languages

With the CUDA architecture NVIDIA introduced language extensions to the C pro-
gramming language that allowed to write programs that are partially executed on
the GPU. The resulting programming language is called “C for CUDA”. Note that

184 P. Schwabe

Workgroup0

Work-item0 ... Work-itemm

Private
Memory

Private
Memory

...

Workgroupn

Work-item0...Work-itemm

Private
Memory

Private
Memory

Local
Memory

Local
Memory

Constant
Memory

(read-only access through
fast constant cache)

Global
Memory

Fig. 8.2 Access to different memories from work items on AMD APP devices. Light-red memories
are fast; dark-red memories are parts of device memory with high-latency access

depending on the compute capability some restrictions apply for the part of the pro-
gram that is executed by the GPU, for example compute capability 1.x does not
support recursive function calls. For details on C for CUDA see [50].

The first software-development tool that AMD offered for GPGPUs was called
Close-to-Metal (CTM) which gave low-level access to the native instruction set of
the GPU. High-level-language support was first offered in the ATI Stream SDK v1
with the ATI Brook+ language, which is based on BrookGPU developed at Stanford
University [14].

Both solutions, C for CUDA and Brook+ could only be used to implement soft-
ware for the respective manufacturer’s GPUs. As a more portable approach, both
NVIDIA and AMD now also support the OpenCL programming language and API
developed by the Khronos group. This programming language is designed for the
development of software for parallel computations on arbitrary heterogeneous sys-
tems. Two versions of the language have been released, OpenCL 1.0 in November
2008 [26] and OpenCL 1.1 in June 2004 [27].

Today, the recommended way to program NVIDIA GPUs is using either C for
CUDA [50] or OpenCL for CUDA [51]. AMD recommends OpenCL as high-level
programming language for their GPUs in their latest APP SDK [3].

The compilation process is very similar for all of the high-level languages. In a
first step, the compiler separates the parts of the program that run on the CPU from
the parts that run on the GPU. The CPU part is further compiled using native C or
C++ compilers for the respective host architecture. The GPU part is first translated
to an intermediate low-level language. For NVIDIA this language is called PTX,
for AMD it is called IL. The advantage of this intermediate language is that it is

8 Graphics Processing Units 185

somewhat device independent. More specifically, PTX code is compatible across
minor revisions of the compute capability; IL code is forward compatible. The GPU
driver contains a just-in-time compiler for this intermediate language. Code that
needs to run on GPUs with different hardware capabilities can thus be translated
only to intermediate language, final compilation to binary code is performed by the
respective driver. This last compilation step can also be done off-line to produce
binaries for a specific GPU architecture.

8.1.4 Programming GPUs in Assembly

Most software today is written in high-level languages, but some areas of computing
still employ hand-optimized assembly routines to achieve best performance. One of
these areas is high-performance computing—in computations that run for weeks or
months even small performance gains are typically worth the effort of implementing
parts of the software in assembly. Now that GPUs explicitly support applications in
high-performance computing one would expect that the manufacturers also provide
assemblers. However, this is not the case. Until the CUDA 4.0 toolkit was released in
May 2011, NVIDIA offered neither an assembler nor a disassembler for their GPUs,
an assembler is still not provided by NVIDIA. To fill this gap, van der Laan reverse-
engineered the binary format and developed the cubin utilities [57] consisting of the
disassembler decuda and the assembler cudasm.

For the Fermi GPUs (compute capability 2.0 and 2.1) NVIDIA includes the
cuobjdump disassembler in the CUDA 4.0 toolkit. An assembler for Fermi GPUs
is being developed by the asfermi project [33].

AMD documents the instruction-set architecture of their recent GPUs, for example
in [2] for the Radeon R600 series, in [5] for the Radeon R700 series, and in [4] for the
Evergreen series. AMD does not document the complete ELF format of the binaries
and does not provide an assembler for their GPUs. Similar to NVIDIA, community
projects work on assemblers that support different families of AMD GPUs [48, 53].

8.1.5 GPU Performance Bottlenecks

What makes GPUs a very interesting computing platform for many algorithms is their
pure computing power. For example, an NVIDIA GTX 295 graphics card containing
two GT200b GPUs can dispatch a total of 745 billion single-precision floating-point
operations per second. For comparison, all four cores of a 2.4 GHz Intel Core 2 Quad
CPU can dispatch a total of 57.6 billion single-precision floating-point operations,
more than one order of magnitude less. One might thus expect that GPUs speed up
computations by a factor of 10 or more, but as the examples in the following sections

186 P. Schwabe

show this is not the case for many applications. The reason is that in order to make
use of the computational power of GPUs, applications need to fulfill two conditions:

• The degree of data-level parallelism required to keep hundreds of threads busy is
much larger than the degree of data-level parallelism that is required for the SIMD
implementations of current CPUs. For example, keeping 192 threads on each of
the 30 multiprocessors of 2 GPUs on an NVIDIA GTX 295 graphics card busy
needs 11,520 independent data streams. Keeping the four cores of a CPU busy
working on 128-bit vector registers needs just 16 such independent streams. Less
data-level parallelism typically requires multiple threads to work on the same data
which involves communication and thread synchronization overhead.
• GPU performance depends on memory-access patterns much more than CPU

performance does. The reason is that GPUs spend most of their chip area on
ALUs while CPUs spend a large part of the chip area on fast caches that reduce
load and store latencies. Computations that can keep the active set of data in
the available registers benefit from the large computational power of the ALUs,
but the high latencies of device-memory loads and stores typically incur huge
performance penalties in applications that cannot. Some applications can use the
shared memory on NVIDIA GPUs or the local memory on AMD GPUs as cache,
Fermi GPUs make this easy by using a configurable amount of shared memory
as transparent cache. If the same data are required by all threads this is indeed a
very good solution. However, if each thread requires different data in cache (for
example, register content temporarily spilled to memory), the amount of shared
memory per thread is typically too small. Compilers therefore use device memory
for register spills. Another way to deal with high memory latencies is to run
more threads and thus hide the latencies. Note that this comes at the price of a
smaller number of registers per thread and even higher requirements on data-level
parallelism.

Another potential bottleneck is data transfer between host memory and device
memory. All modern graphics cards are connected through PCI Express. Through-
put rates highly depend on the version of PCI Express, and the number of lanes. For
example, the theoretical throughput of PCI Express 2.0 with 16 lanes (commonly
denoted x16) is 8 GB/s in both directions. The throughput obtained in practice is
considerably lower and depends on the size of data packets transmitted over the bus.
For details see, for example, [20]. More serious than throughput limitations can be
the latency incurred by data transfers over PCI Express, at least for applications that
require frequent communication and cannot interleave communication with compu-
tations.

With these limitations in mind, it is interesting to see that GPU advertisements
and also various scientific papers claim speedups by a factor of 100 and more of
software running on a GPU compared to software running on a CPU. In most of
the cases, a careful look at how these speedups were achieved reveals that the CPU
implementation is far from state of the art, for example, it does not use the SIMD
computing capabilities of modern CPUs, and the CPU implementation is not set up
to run on multiple cores.

8 Graphics Processing Units 187

Despite these misleading comparisons found in many places, GPUs are very pow-
erful computing devices and with careful optimization GPUs can speed up many
computations considerably compared to the same computations running on a CPU.
The following sections give examples of applications of GPU computing in infor-
mation security and try to put the performance numbers in a meaningful perspective
in comparison to state-of-the-art CPU implementations.

8.2 GPUs as Cryptographic Coprocessors

Cryptographic computations such as encryption and decryption, hashing, signature
generation, and signature verification rely on high performance in software for many
applications. Furthermore, most of the algorithms involved can be implemented in
relatively small code size and it is feasible to hand-optimize code on the assembly
level.

This is why for example advanced encryption standard (AES) and RSA encryption
were among the algorithms that were implemented using shader instructions of the
graphics rendering pipeline of traditional GPUs [29, 47, 62].

In 2006, before CUDA was introduced by NVIDIA, Cook and Keromytis pub-
lished a book on cryptography on graphics cards [21]. This book claims that using
GPUs for cryptography has two additional advantages aside from speeding up com-
putations:

• The authors suggest that GPU implementations may be more resistant to (at least
existing) side-channel attacks. They do not claim that GPU implementations are
inherently protected against any side-channel attacks that work against CPU imple-
mentations. In fact, there is no immediate reason to believe that GPUs generally
offer better protection against any side-channel attacks than CPUs. Certainly one
of the most relevant class of attacks, namely cache-timing attacks (see, e.g., [56])
will not work on GPUs that have uncached access to memory, but at least the most
recent NVIDIA GPUs use part of their shared memory as transparent cache for
access to the GPUs main memory [49].
• Chapter 3 of [21] describes a video-streaming service that uses GPUs to decrypt

video data that shall only be displayed but never be stored or modified. The system
uses the GPU as “the only trusted component in a spyware-safe system”.
This idea starts from the assumption that GPUs and graphics drivers are more
trustworthy than the operating system for computations involving sensitive data
such as cryptographic keys. This is a dangerous assumption to make, attackers
controlling the operating system can also exchange the graphics driver, there is
not even a guarantee that any code really runs on the GPU.

When using GPUs for cryptographic computations, one should keep in mind that
GPUs and graphics drivers are not designed for computations on sensitive data and
should be used for such computations only with precaution. For instance, on various
graphics cards it is possible for a computing kernel to read out parts of the memory

188 P. Schwabe

content left behind by a previously executed kernel. Keeping cryptographic keys in
these parts of the memory can be used to speed up computations—for example, a
key can be expanded once and be left in constant memory for all subsequent kernel
launches as suggested in [52]. On the other hand, this can also be a serious security
threat in multi-user environments if one user manages to launch a GPU kernel that
reads out the key of another user.

In environments where data in GPU memory can be protected, for example on
a single-user server, or with careful protections to avoid memory readout, modern
GPUs can be used as powerful cryptographic coprocessors for throughput-oriented
applications.

8.2.1 AES on GPUs

In particular, the possibility to implement the AES, the most widely used symmetric
encryption algorithm, on GPUs has attracted a lot of attention. AES is a block cipher
with supported key sizes of 128, 192, and 256 bits and a block size of 128 bits.
Most implementations focus on AES with 128-bit keys. In this setting, the key is
first expanded into 11 round keys K0, . . . , K11. Each 128-bit input block (state) is
then transformed into 10 rounds, each round involving one of the 11 round keys. The
first round key K0 is xored to the block before the first round. The most common
implementation technique for AES, described in [22, Sect. 5.2.1], operates on 32-bit
words and uses 4 lookup tables T0, T1, T2, and T3 of size 1 KB (256 32-bit words)
each. The 128-bit state is represented as 4 such 32-bit words. The operations of one
round of AES in C notation is given in Listing 1.

Listing 1 One round of AES encryption in C, the 128-bit input state is in 32-bit
unsigned integers y0, y1, y2, y3, the output state is in 32-bit unsigned integers z0,
z1, z2, z3; the 128-bit round key is in 32-bit unsigned integers k0, k1, k2, k3.

 z0 = T0[y0 >> 24] ˆ T1[(y1 >> 16) & 0xff] \
 ˆ T2[(y2 >> 8) & 0xff] ˆ T3[y3 & 0xff] ˆ k0;
 z1 = T0[y1 >> 24] ˆ T1[(y2 >> 16) & 0xff] \
 ˆ T2[(y3 >> 8) & 0xff] ˆ T3[y0 & 0xff] ˆ k1;
 z2 = T0[y2 >> 24] ˆ T1[(y3 >> 16) & 0xff] \
 ˆ T2[(y0 >> 8) & 0xff] ˆ T3[y1 & 0xff] ˆ k2;
 z3 = T0[y3 >> 24] ˆ T1[(y0 >> 16) & 0xff] \
 ˆ T2[(y1 >> 8) & 0xff] ˆ T3[y2 & 0xff] ˆ k3;

To achieve the required degree of parallelism, GPU implementations of AES
typically either consider many independent streams that are encrypted in parallel or
they use a parallel mode of operation such as ECB or CTR that allows to encrypt
blocks of a single stream independently. The most important decision to make for
high-performance AES encryption on GPUs is how to use the available memory

8 Graphics Processing Units 189

domains. CPU implementations store lookup tables and expanded keys in RAM,
after some rounds of AES the tables will be in level-1 cache and lookups are fast.
On most GPUs a straightforward adaptation of this approach, placing tables and
expanded keys in device memory, will incur high latency penalties, because access
to device memory is uncached (except for NVIDIA Fermi GPUs where part of the
shared memory is used as transparent cache). A better approach is to place the
lookup tables in the fast shared memory of NVIDIA GPUs or the local memory of
AMD GPUs. Recall that loads from shared memory on NVIDIA GPUs can be as fast
as register access, but that throughput and latency depend on the access pattern. AES
table lookups have an unpredictable access pattern, so one must expect penalties due
to memory bank conflicts. One solution to avoid these penalties is to store multiple
copies of the lookup tables in the fast memory, such that each entry is available on
each memory bank. If shared memory is not large enough to hold these copies of
the tables, it may still be possible to store copies of only one of the tables and obtain
entries of the other tables through rotations (see, e.g., [22, Sect. 5.2.1]). The best
combination of optimization techniques depends on the target GPU.

Not only the decision about location and layout of the lookup tables is important,
also handling of the round keys influences performance. This is relatively easy if one
big stream is encrypted in a parallel mode of operation. In this case, all threads use the
same key and it can be stored in constant memory. Unlike lookups from the tables,
the round keys are accessed in a completely predictable pattern; they are broadcasted
to all threads which is exactly what the constant memory is made for. The situation
is different for the encryption of many independent streams under different keys. If
each thread needs different round keys, there is not enough fast memory on most
GPUs to store all these round keys. Instead of loading round keys from slow device
memory, it may be a better choice to expand the key on the fly. Again, the best
solution highly depends on the specific target GPU.

A completely different approach to implement AES is bitslicing. This technique
was first introduced for the Data Encryption Standard (DES) by Biham in [12] and
has also been used for various AES implementations [37, 41, 45]. The idea of this
technique is transposition of data: Instead of storing a 128-bit state in, e.g., 4 32-bit
registers, it uses 128 registers, 1 register per bit. This representation of data allows to
simulate a hardware implementation, logical gates become bit-logical instructions.
For just one computation this is not efficient, but if all n bits of registers are used to
perform computations on n independent streams, this can be very efficient. Note that
on top of the high degree of parallelism required for GPU computations, bitslicing
requires another factor of n of parallelism, n being the register width.

Various GPU implementations of AES are described in the literature. In [63],
Yang and Goodman describe different implementations of AES for AMD GPUs.
Their bitsliced implementation aims at key search, so keys need to be expanded into
round keys on the fly. On an AMD HD 2900 XT GPU this implementation performs
encryption of one block under 145 million keys per second, this corresponds to a
throughput of 18.5 Gbit/s. For the lookup-table-based implementation, they report
an AES encryption throughput of 3.5 Gbit/s on an AMD HD 2900 XT GPU.

190 P. Schwabe

The implementation by Manavski described in [44] uses a lookup-table-based
approach to achieve a peak throughput of 8.28 Gbit/s on an NVIDIA 8800 GTX
graphics card (G80 GPU); to achieve this peak throughput at least 8 MB of data
need to be encrypted under the same key. This implementation exploits parallelism
inside AES, four threads perform the transformation of one 128-bit block. Harrison
and Waldron report a throughput of 15.423 Gbit/s in [30] for their lookup-table-
based implementation of AES on an NVIDIA G80 GPU. This peak performance is
achieved for input messages of ≥ 65 MB, overhead from data transfers to and from
the GPU are not included in the benchmarks. Both the implementation in [44] and the
implementation in [30] achieve a significantly lower throughput when data transfers
are included in the benchmarks: 2.5 Gbit/s for [44] and 6.9 Gbit/s for [30].

Two more recent papers report speeds beyond 30 Gbit/s on NVIDIA GPUs. Osvik,
Bos, Stefan, and Canright in [52] describe an implementation of AES with 128-bit
keys that achieve 30.9 Gbit/s throughput on one GPU of an NVIDIA GTX 295
graphics card (containing 2 GT200b GPUs). The implementation interleaves data
transfers with computations by using page-locked host memory. Interleaving data
transfers with kernel execution were not possible for the GPUs used for benchmarking
in [30, 44]. This throughput is achieved for encryption under one key in constant
memory, but the paper also describes an implementation with on-the-fly key schedule
suitable for key-search applications, that achieve a throughput of 23.8 Gbit/s. Jang,
Han, Han, Moon, and Park present a GPU-accelerated SSL proxy in [36]. For the
AES implementation included in this proxy, they report 32.8 Gbit/s on an NVIDIA
GTX 285 graphics card (GT200b GPU), not including data transfers. They also report
detailed performance numbers of AES encryption in the nonparallel CBC mode for
different numbers of independent streams on an NVIDIA GTX 580 graphics card
(GF110 GPU).

Note that these high throughputs of AES on GPUs can only be achieved by
performing AES encryption on thousands of blocks in parallel. This amount of data-
level parallelism can certainly be found for some database applications or when
writing large amounts of data to an encrypted hard disk. The encryption of typically
small Internet packages in applications that do not just need high throughput but
also low latency will still do better with a CPU-based approach, not only when using
CPUs that support AES in hardware. For example, the bitsliced implementation for
Intel processors presented in [37] encrypts 1,500-byte packets in 7.27 cycles per byte
on a 2,668 MHz Intel Core i7 920 CPU. This corresponds to a throughput of more
than 11.7 Gbit/s on 4 cores.

8.2.2 Asymmetric Cryptography on GPUs

Asymmetric cryptographic primitives can be accelerated by laying off the compu-
tations from the CPU to the GPU. As for symmetric primitives like AES one way
to obtain the necessary degree of parallelism is to consider operations on many
independent messages. However, there is another source for parallelism inherent in

8 Graphics Processing Units 191

the algorithms. Most state-of-the-art asymmetric algorithms involve operations on
large integers, for example RSA signature generation is the computation of md mod n,
where m, d and n are integers of 1,024 bits or larger. Arithmetic on such integers, in
particular multiplication, squaring and modular reduction, needs to be decomposed
in many operations on machine words. Elliptic-curve cryptography involves modular
arithmetic on integers of smaller size, typically between 160 and 256 bits, but arith-
metic on those integers still decomposes into many operations on machine words.
For example, when using a multiplier with 32-bit output, schoolbook multiplication
of two 256-bit integers requires 256 multiplications of 16-bit limbs and 240 addi-
tions of the 32-bit multiplication outputs. Most of these operations are independent
and can be done in parallel by multiple threads. Exploiting such parallelism inside
one computation has some obvious advantages. If multiple threads process one input
stream together, fewer independent input streams are required to make use of the
computational power of the GPU. This makes GPU computations attractive also
for applications that require low latency rather than high throughput. Furthermore,
when multiple threads carry out one computation together the overall amount of data
involved in the computations is smaller; this can be used to fit all data into memory
domains that offer low-latency access. However, exploiting data-level parallelism
inside computations like big-integer multiplication comes with the disadvantage that
it involves overhead from thread synchronization and exchange of data between
treads.

Several papers describe implementations of RSA on modern graphics cards.
In [55], Szerwinski and Güneysu describe a CUDA implementation that performs
813 modular exponentiations (RSA encryption) of 1,024-bit integers on a NVIDIA
8800 GTS graphics card. This paper furthermore reports a throughput of 104.3 mod-
ular exponentiations for 2,048-bit RSA encryption. Harrison and Waldron in [31]
focus on RSA decryption and report 5536.75 RSA-1024 decryptions per second on
an NVIDIA 8800 GTX graphics card. This computation can make use of the Chinese
Remainder Theorem to perform arithmetic on half-size integers. The RSA implemen-
tation included in the SSL proxy described in [36] can perform for example 74732
RSA-1024 encryptions or 12044 RSA-2048 encryptions per second on an NVIDIA
GTX 580 graphics card. What is particularly interesting about this implementation
is that it does not purely focus on throughput but also needs to keep the latency low
enough for the application in the SSL proxy. For RSA-1024 the latency is at 3.8 ms,
for RSA-2048 it is 13.83 ms.

To put this into perspective to what is currently possible on CPUs, the eBACS
benchmarking project [11] reports, for example, more than 11,000 1,024-bit integer
exponentiations per second on all six cores of an AMD Phenom II X6 1090T. Again,
this speed does not require the large number of independent parallel computations that
GPU implementations need and although it is much slower from a pure throughput
perspective, it may be the better choice for applications that do not process multiple
messages in parallel.

Elliptic-curve cryptography has been implemented on GPUs. Szerwinski and
Güneysu report 1,412 scalar multiplications on the NIST P-224 elliptic curve on
an NVIDIA 8800 GTS graphics card in [55]. On the same curve but the more recent

192 P. Schwabe

NVIDIA GTX 285 graphics card Antão, Bajard, and Sousa report 9990 scalar multi-
plications per second. More than an order of magnitude slower at significantly lower
security is the implementation of scalar multiplication on an elliptic-curve over a
binary field described in [19]. Cohen and Parhi report only 96.5 scalar multiplica-
tions per second.

Elliptic-curve scalar multiplication has received more attention on CPUs, for
example [10] reports 226872 cycles for a scalar multiplication on a 255-bit elliptic
curve on an Intel Xeon E5620 CPU running at 2.4 GHz. This corresponds to more
than 40,000 scalar multiplication per second on all four cores. Even faster speeds for
CPU implementations are reported in [34] for scalar multiplication on elliptic curves
with efficiently computable endomorphisms. These comparative numbers may sug-
gest that GPU implementations of elliptic-curve cryptography cannot compete with
state-of-the-art CPU implementations, not even in throughput-oriented applications.
However, the next section describes implementations of elliptic-curve operations on
GPUs for cryptanalysis that outperform CPU implementations. The reason that there
are no faster GPU implementations targeting constructive applications may be that
there are simply not many applications that require only throughput and can ignore
latency.

An asymmetric cryptosystem that appears to be much better suited for imple-
mentation on GPUs than elliptic-curve cryptography or RSA is NTRU. The central
operation for encryption and decryption is convolution which can be carried out
by many threads without significant communication or synchronization due to its
parallel structure. In [32], Hermans, Vercauteren, and Preneel describe an imple-
mentation of NTRU with a set of parameters that aims at the 256-bit security level.
This implementation is able to perform 218,000 encryption operations per second
on an NVIDIA GTX 280 graphics card (GT200 GPU).

8.3 GPUs in Cryptanalysis

Cryptanalytical computations are in many ways similar to cryptographic computa-
tions. In many cases, breaking a cryptographic system means executing the same or
very similar computations that are used in the constructive use of the cryptosystem.
One example is brute-force key recovery of symmetric ciphers that simply performs
encryption with many different keys. Another example is hash-function collision
search with the computationally most expensive part being computing hashes. An
example in the cryptanalysis of asymmetric systems is Pollard’s rho algorithm to
solve the discrete logarithm problem (DLP). Again the computationally most expen-
sive part are the same or very similar operations in the same mathematical structures
that are involved in the legitimate use of the DLP-based system.

In three very important points, cryptanalytical computations are different from
cryptographic computations and all three make them even better suited for GPUs.
First, they typically involve an arbitrary amount of data-level parallelism, the same
computations are carried out on huge amounts of independent data; this is exactly

8 Graphics Processing Units 193

the sort of computations that GPUs are best at. Second, many of these computations
do not care about latency, they are purely throughput oriented. Third, there is no
confidential data involved that needs to be protected, one could say that the opposite
is true, revealing the confidential data is the target of the computation.

The most obvious applications of GPUs for cryptanalysis are attacks against sym-
metric encryption and hash functions. Various commercial solutions for password
recovery already include GPU implementations to speed up the computations. These
tools typically try out many different passwords from a given word list and either
compare with given hash values or derive symmetric keys from a list of known
passphrases to recover the content of encrypted files.

The power of GPUs was also used by the winner of Engineyard’s SHA-1 program-
ming contest: The task was to find an input to SHA-1 that has minimal Hamming
distance to a given hash value. Lange in [42] reports that code by Bernstein is able to
compute more than 328 million hashes per second on an NVIDIA GTX 295 graphics
card. Each of these hashes required computation of only one 64-byte block of input,
so this corresponds to a throughput of more than 167 Gbit/s. As a comparison, all
four cores of a 2.4 GHz Intel Core 2 Quad Q6600 CPU involved in the same com-
putation computed 47 million hashes per second. Also the SHA-3 candidates have
been implemented on GPUs, password recovery being the most obvious application.
In [13], Bos and Stefan describe implementations of all of the SHA-3 round-2 can-
didates on NVIDIA GT200 GPUs. The reported throughputs reach from 0.9 Gbit/s
for Cubehash 16/1 up to 36.8 Gbit/s for Blake-32 and BMW-256 on one GPU of
an NVIDIA GTX 295 graphics card. Again to put this into perspective, on a recent
CPU, the Intel Core i7-2600K, hashing with Blake-32 takes 6.68 cycles/byte [11];
this corresponds to a throughput of 16.29 Gbit/s.

These applications in password recovery are quite straightforward, but GPUs have
also been used for cryptanalysis of asymmetric systems. One of the most famous prob-
lems closely related to the RSA cryptosystem is the factorization of large numbers.
A critical step inside the factorization of large RSA numbers with the number-field
sieve is the factorization of many smaller numbers using the elliptic-curve factoriza-
tion method (ECM). In [9], Bernstein, Chen, Cheng, Lange, and Yang describe an
implementation of ECM for 280-bit numbers. This implementation running on both
GT200b GPUs of an NVIDIA GTX 295 graphics card outperforms a state-of-the-art
CPU implementation running on all 4 cores of an Intel Core 2 Quad Q9550 by a
factor of more than 2.8. The GPU implementation tries 400.7 curves per second, the
CPU implementation 142.17 curves per second. A much higher ECM throughput
for slightly smaller numbers is reported in [8]. For example, for 210-bit numbers a
GTX 295 graphics card is reported to try 4,928 curves per second. Although these
numbers are not as impressive as the speedups achieved by using GPUs in symmetric
cryptanalysis, the results show that GPUs can also be used to speed up elliptic-curve
arithmetic.

This is confirmed for elliptic curves over binary fields in [7]. As part of a large
effort to solve Certicom’s elliptic-curve discrete-logarithm-problem (ECDLP) chal-
lenge ECC2K-130 [15, 16], this paper presents an implementation of Pollard’s rho
algorithm for GT200b GPUs. On the two GPUs inside the GTX 295 graphics card,

194 P. Schwabe

this implementation is able to perform 63 million Pollard rho iterations per second.
As a comparison, the CPU implementation computing the same iteration function
described in [6] performs 22.45 million iterations per second on all 4 cores of an
Intel Core 2 Extreme Q6850 CPU.

GPUs have also been considered for solving the DLP on elliptic curves over large
prime fields. The implementation described in [17] targets an ECDLP on a 109-
bit prime curve and is reported to “have generated about 320.000 points/second”
on an NVIDIA 8800 GTS graphics card with a G92 GPU. This probably means
320,000 iterations per second, but it is unclear what the exact performance of the
implementation is.

8.4 Malware Detection on GPUs

Similar to cryptographic applications, malware-detection software is expected to
operate in the background with as little influence on the system’s performance as
possible. A large computational task of virus detection is pattern matching of byte
sequences found in files with known signatures of malware. This task is highly
parallel, so it is an application that can run at high speed on GPUs.

Seamans and Alexander describe an implementation of parallel virus signature
matching for NVIDIA GPUs in [54]. The authors integrated this implementation into
the ClamAV virus scanner [18] and compare the performance of this implementation
running on an NVIDIA GTX 7800 graphics card to the original CPU implementation
running on an unspecified 3-GHz Intel Pentium 4 CPU; the authors do not specify the
number of CPU cores used for this comparison. The speedup obtained by running the
pattern matching on the GPU depends on the number of matches, because matches
need to be communicated back to the CPU. If no matches are found, the GPU
implementation is 27 times faster than the CPU implementation; this factor drops to
17 at a match rate of 1 % and further to 11 at a match rate of 50 %.

In [59], Vasiliadis and Ioannidis describe an implementation of virus-signature
pattern matching targeting more recent NVIDIA GPUs. Their implementation filters
out clean, unsuspicious regions, it is included as a preprocessing step into the ClamAV
[18] virus scanner. The authors achieve a 100-times higher throughput with this
approach running on an NVIDIA GTX295 graphics card compared to the CPU-only
virus scanner running on 1 core of an Intel Xeon E5520 CPU. Compared to the CPU
implementation running on 8 cores of 2 CPUs, the speedup is still 10-fold.

The approach of using the GPU as a coprocessor for malware detection is not
purely academic. In December 2009, Kaspersky announced that they incorporated
an implementation of the “similarity service” for NVIDIA Tesla cards into their
infrastructure. The press release [38] does not give much detail but claims a 360-
times speedup of the GPU implementation running on an NVIDIA Tesla S1070
compared to the a CPU implementation running on a 2.6 GHz Intel Core 2 Duo
processor. This comparison does not give details about the number of CPU cores

8 Graphics Processing Units 195

used, it also does not say whether the speedup is obtained from running the GPU
code on one or all four GPUs included in the Tesla S1070.

Signature matching is also one of the main performance bottlenecks of network-
intrusion-detection systems. Consequently, GPUs can also be used to speed up such
systems. This was first described by Jacob and Brodley who use a traditional GPGPU
approach targeting the NVIDIA 6800 GT graphics card in [35]. They conclude that
with their GPU pattern-matching extension to the open-source intrusion detection
system Snort “there was no appreciable speedup in packet processing under normal-
load conditions”. A more efficient approach targeting the NVIDIA 8600 GT graphics
card is described in [58]. Vasiliadis, Antonatos, Polychronakis, Markatos, and Ioan-
nidis present a GPU pattern-matching extension of Snort that increases the overall
Snort throughput capacity by a factor of two compared to CPU-only Snort running
on a 3.4 GHz Intel Pentium 4 processor. The most comprehensive solution for intru-
sion detection involving GPUs to date is presented in [61]. Vasiliadis, Polychronakis,
and Ioannidis describe a Snort-based intrusion detection solution that exploits par-
allelism on multiple levels. The system makes use of multiple GPUs and multiple
CPU cores and copes with a network throughput of 5.2 GBit per second. This per-
formance number was achieved on a system with two NVIDIA GTX 480 graphics
cards and two Intel Xeon E5520 CPUs. The pure pattern-matching step reaches a
peak performance of more than 70 GBit per second on the two graphics cards.

8.5 Malware Targeting GPUs

GPUs can not only be used to accelerate malware detection, malware itself can
also use GPUs to hide from virus scanners. In [60], Vasiliadis, Polychronakis, and
Ioannidis describe an implementation of a malware unpacker running on an NVIDIA
GPU. The complete malware package consists of two parts, the unpacker running on
the GPU and the actual malware that runs on the CPU. These two parts communicate
through host memory mapped into the GPUs address space.

Unpackers are one of the most common techniques to hide malware from scanners:
The malware code is packed or encrypted in some way and gets unpacked (decrypted)
only when it is actually executed. The advantage from the malware author’s perspec-
tive of using GPU code for the unpacker is twofold as it offers better protection
against detection by both static and dynamic malware-detection systems. Static sys-
tems try different known unpacking techniques to recover the original malware. This
becomes harder if the computational power of the GPU is used for computationally
more expensive unpacking algorithms. Dynamic unpacking tools use the unpacker
that is included in the malware, for example inside a sandbox or virtual machine. At
least existing dynamic tools do not support GPU binaries and would thus fail.

As a second step [60], Yang and Goodman also describe GPU-assisted run-time
polymorphism on the function level. The malware binary is never fully decrypted,
only the currently executed function resides in memory, when returning from a func-
tion call the function is encrypted again and the next function context is decrypted.

196 P. Schwabe

The implementations are still just a proof of concept and there have been no
reports of real-world malware using the GPU to hide from scanners. Some of the
claimed advantages of using the GPU to hide malware can obviously be addressed
by malware-detection tools also using the GPU. Others will require better tools for
static and dynamic analysis of GPU code. It will be interesting to see whether or how
much GPUs become a new battlefield in the everlasting fight between malware and
malware detection.

8.6 Accessing GPUs from Web Applications

Software becomes more and more Web centric; programs such as office suites, image-
processing software, and games, which traditionally run directly on a computer, are
now implemented as applications running inside a Web browser. The most consistent
implementation of this approach is Google’s Chromium OS, an operating system
that is designed to run a Web browser as only application—all other software is Web
applications running inside this browser.

As a consequence of higher demands for advanced graphics in Web applications,
various technologies have been developed to let those applications access the GPU.
The most prominent three approaches are WebGL developed initially by Mozilla
and now by the Khronos group [39], Silverlight 5 developed by Microsoft [46], and
Flash 11 developed by Adobe.

All of these approaches have in common that they expose the graphics driver and
hardware to software originating from the Internet and thus from typically untrusted
sources. The implications for security of this approach have so far been discussed
primarily for WebGL. In March 2011, version 1.0 of the specification of WebGL
was released by the Khronos group. Browsers supporting this specification include
Mozilla’s Firefox and Google’s Chrome. Only about 2 months later, Forshaw publi-
cized an article [24] that describes several security issues in these implementations
and claims that these are actually caused by design flaws in WebGL. One of these
issues is the possibility to remotely exploit vulnerabilities in the graphics driver to
crash or freeze the system. Another one is a cross-site timing attack that extracts
image data processed on the GPU. A follow-up article by Forshaw, Stone, and Jor-
don [25] describes an attack targeting the WebGL implementation of Firefox. In this
attack, a malicious website can take screenshots of arbitrary applications running on
the client computer.

Khronos has reacted to these articles in a WebGL security whitepaper [40] that
describes approaches to address the security issues. These approaches can not all be
implemented only on the browser side but need support on the graphics-driver side.

Even without any vulnerabilities in the framework, the computational power of
GPUs enables attacks that would otherwise be infeasible. For example, the JavaScript
bitcoin miner of bitp., it has been discontinued because “Javascript is just too slow
to mine bitcoins” [1]. This would certainly be different with the computing power
of GPUs open to Web applications. Mining bitcoins on the GPU in the background

8 Graphics Processing Units 197

while a user is visiting a website could on the one hand be a legitimate new way of
funding websites (if the user is asked for permission), on the other hand it would
most likely also be done silently and thus become sort of a Web Trojan.

The discussion about WebGL security and more general security issues related to
exposing the GPU and the graphics driver to untrusted code from the Internet is still
ongoing. On the one hand WebGL, Silverlight 5, and Flash 11 are still very young
technologies and maybe some of the vulnerabilities are just teething troubles. On the
other hand, the concept of letting Web applications access the driver layer of a client’s
operating system flies in the face of conventional wisdom that tells us that untrusted
code should be kept as far away from any critical parts of a system as possible. The
future will have to show what changes are required to browsers, operating systems,
and drivers to deal with current and future security vulnerabilities and whether it
is actually possible to establish these technologies without exposing their users to
severe risks.

References

1. “1bitc0inplz”. Edited forum post on bitcointalk.org, 2011. https://bitcointalk.org/index.php?
topic=9042.0.

2. Advanced Microdevices Inc. R600-Family Instruction Set Architecture, 2008. http://developer.
amd.com/gpu_assets/r600isa.pdf.

3. Advanced Microdevices Inc. AMD Accelerated Parallel Processing OpenCL Program-
ming Guide, rev. 1.3f, 2011. http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_
Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf.

4. Advanced Microdevices Inc. Evergreen Family Instruction Set Architecture Instructions
and Microcode, 2011. http://www.amddevcentral.com/sdks/AMDAPPSDK/assets/AMD_
Evergreen-Family_Instruction_Set_Architecture.pdf.

5. Advanced Microdevices Inc. R700-Family Instruction Set Architecture, 2011. http://developer.
amd.com/gpu_assets/R700-Family_Instruction_Set_Architecture.pdf.

6. Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-
Chung Chen, Chen-Mou Cheng, Gauthier Van Damme, Giacomo de Meulenaer, Luis Julian
Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gürkaynak, Thorsten Kleinjung,
Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni, Peter
Schwabe, Leif Uhsadel, Anthony Van Herrewege, and Bo-Yin Yang. Breaking ECC2K-130.
Cryptology ePrint Archive, Report 2009/541, 2009. http://eprint.iacr.org/2009/541/.

7. Daniel J. Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng, Tanja Lange, Ruben Niederhagen,
Peter Schwabe, and Bo-Yin Yang. ECC2K-130 on NVIDIA GPUs. In Guang Gong and Kishan
Chand Gupta, editors, Progress in Cryptology - INDOCRYPT 2010, volume 6498 of LNCS,
pp. 328–346. Springer, 2010. http://cryptojedi.org/papers/#gpuev1l.

8. Daniel J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chen-Mou Cheng, Chun-Hung
Hsiao, Tanja Lange, Zong-Cing Lin, and Bo-Yin Yang. The billion-mulmod-per-second pc.
In Workshop Record of SHARCS’09: Special-purpose Hardware for Attacking Cryptographic
Systems, pp. 131–144, 2009. http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf.

9. Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and Bo-Yin Yang. ECM
on graphics cards. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
volume 5479 of LNCS, pp. 483–501. Springer, 2009. http://cr.yp.to/papers.html#gpuecm.

10. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures, 2011. http://cryptojedi.org/papers/#ed25519.

https://bitcointalk.org/index.php?topic=9042.0
https://bitcointalk.org/index.php?topic=9042.0
http://developer.amd.com/gpu_assets/r600isa.pdf
http://developer.amd.com/gpu_assets/r600isa.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://www.amddevcentral.com/sdks/AMDAPPSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf
http://www.amddevcentral.com/sdks/AMDAPPSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu_assets/R700-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu_assets/R700-Family_Instruction_Set_Architecture.pdf
http://eprint.iacr.org/2009/541/
http://cryptojedi.org/papers/#gpuev1l
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://cr.yp.to/papers.html#gpuecm
http://cryptojedi.org/papers/#ed25519

198 P. Schwabe

11. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to (Accessed Nov. 3, 2011).

12. Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, Fast Software
Encryption, volume 1267 of LNCS, pp. 260–272. Springer, 1997. http://www.cs.technion.ac.
il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf.

13. Joppe W. Bos and Deian Stefan. Performance analysis of the SHA-3 candidates on exotic multi-
core architectures. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems - CHES 2010, volume 6225 of LNCS, pp. 279–293. Springer,
2010. http://www.ee.cooper.edu/stefan/pubs/conference/ches2010.pdf.

14. BrookGPU. http://graphics.stanford.edu/projects/brookgpu/, Accessed Nov. 5, 2011.
15. Certicom ECC Challenge, 1997. http://www.certicom.com/images/pdfs/cert_ecc_challenge.

pdf, Accessed Nov. 6, 2011.
16. ECC Curves List, 1997. http://www.certicom.com/index.php/curves-list, Accessed Nov. 6,

2011.
17. Marta Chinnici, Salvatore Cuomo, Maurizio Laporta, Alberto Pizzirani, and Silvio Migliori.

CUDA based implementation of parallelized Pollard’s rho algorithm for ECDLP. In Final
Workshop of Grid Projects, “Pon Ricerca 2000–2006, Avviso 1575”, 2009. http:///www.cresco.
enea.it/Documenti/web/presentazioni/ProceedingsCatan%ia2009/7chinnici.pdf.

18. Clam AntiVirus. http://clamav.net, Accessed Nov 1, 2011.
19. Aaron E. Cohen and Keshab K. Parhi. GPU accelerated elliptic curve cryptography in G F(2m).

In 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pages
57–60. IEEE, 2010.

20. James Coleman and Perry Taylor. Hardware level IO benchmarking of PCI Express. White
Paper, Intel Corporation, 2008. ftp://download.intel.com/design/intarch/PAPERS/321071.pdf.

21. Debra L. Cook and Angelos D. Keromytis. CryptoGraphics: Exploiting Graphics Cards For
Security, volume 20 of Advances in Information Security. Springer, 2006.

22. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, version 2, 1999. http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf.

23. Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–
1909, 1966. http://ieeexplore.ieee.org/iel5/5/31091/01447203.pdf.

24. James Forshaw. WebGL - a new dimension for browser exploitation. Blog entry on the
Context Information Security Ltd. blog, 2011. http://www.contextis.com/resources/blog/
webgl/.

25. James Forshaw, Paul Stone, and Michael Jordon. WebGL - more WebGL security flaws.
Blog entry on the Context Information Security Ltd. blog, 2011. http://www.contextis.com/
resources/blog/webgl2/.

26. Khronos OpenCL Working Group. The OpenCL Specification, Version 1.0, 2008. http://www.
khronos.org/registry/cl/specs/opencl-1.0.pdf.

27. Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1, 2010. http://www.
khronos.org/registry/cl/specs/opencl-1.1.pdf.

28. Mark Harris. Real-Time Cloud Simulation and Rendering. Ph.D. thesis, University of North
Carolina at Chapel Hill, 2003. http://www.markmark.net/dissertation/index.html.

29. Owen Harrison and John Waldron. AES encryption implementation and analysis on commodity
graphics processing units. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727 of LNCS, pages 209–226.
Springer, 2007.

30. Owen Harrison and John Waldron. Practical symmetric key cryptography on modern graphics
hardware. In USENIX Security Symposium, pages 195–209. Usenix Association, 2008.

31. Owen Harrison and John Waldron. Efficient acceleration of asymmetric cryptography on graph-
ics hardware. In Bart Preneel, editor, Progress in Cryptology - AFRICACRYPT 2009, volume
5580 of LNCS, pages 350–367. Springer, 2009.

32. Jens Hermans, Frederik Vercauteren, and Bart Preneel. Speed records for NTRU. In Josef
Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, volume 5985 of LNCS, pages 73–88.
Springer, 2010.

http://bench.cr.yp.to
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.ee.cooper.edu/stefan/pubs/conference/ches2010.pdf
http://graphics.stanford.edu/projects/brookgpu/,
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf,
http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf,
http://www.certicom.com/index.php/curves-list,
http:///www.cresco.enea.it/Documenti/web/presentazioni/ProceedingsCatan% ia2009/7chinnici.pdf.
http:///www.cresco.enea.it/Documenti/web/presentazioni/ProceedingsCatan% ia2009/7chinnici.pdf.
http://clamav.net
ftp://download.intel.com/design/intarch/PAPERS/321071.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://ieeexplore.ieee.org/iel5/5/31091/01447203.pdf
http://www.contextis.com/resources/blog/webgl/
http://www.contextis.com/resources/blog/webgl/
http://www.contextis.com/resources/blog/webgl2/
http://www.contextis.com/resources/blog/webgl2/
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.markmark.net/dissertation/index.html

8 Graphics Processing Units 199

33. Yunqing Hou. asfermi: An assembler for the NVIDIA Fermi instruction set, 2011. http://code.
google.com/p/asfermi/, Accessed Nov. 1, 2011.

34. Zhi Hu, Patrick Longa, and Maozhi Xu. Implementing 4-dimensional GLV method on GLS
elliptic curves with j-invariant 0. Cryptology ePrint Archive, Report 2011/315, 2011. http://
eprint.iacr.org/2011/315.

35. Nigel Jacob and Carla Brodley. Offloading IDS computation to the GPU. In Proceedings of
the 22nd Annual Computer Security Applications Conference, pp. 371–380. IEEE Computer
Society, 2006. http://www.acsac.org/2006/papers/74.pdf.

36. Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo Park. SSLShader: cheap
SSL acceleration with commodity processors. In David G. Andersen and Sylvia Ratnasamy, edi-
tors, Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI ’11). ACM Press, 2011. http://www.usenix.org/events/nsdi11/tech/full_papers/
Jang.pdf.

37. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009,
volume 5747 of LNCS, pp. 1–17. Springer, 2009. http://cryptojedi.org/papers/#aesbs.

38. Kaspersky Lab. Kaspersky Lab utilizes NVIDIA technologies to enhance protec-
tion, 2009. http://www.kaspersky.com/about/news/business/2009/Kaspersky_Lab_utilizes_
NVIDIA_technologies_to_enhance_protection.

39. WebGL - OpenGL ES 2.0 for the web, 2011. http://www.khronos.org/webgl/.
40. WebGL security, 2011. http://www.khronos.org/webgl/security/, Accessed Nov. 4. 2011.
41. Robert Könighofer. A fast and cache-timing resistant implementation of the AES. In Tal Malkin,

editor, Topics in Cryptology - CT-RSA 2008, volume 4964 of LNCS, pages 187–202. Springer,
2008.

42. Tanja Lange. CodingCrypto’s page on Engineyard’s programming contest, 2009. http://www.
win.tue.nl/cccc/sha-1-challenge.html, Accessed Nov. 5, 2011.

43. Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. SIGGRAPH Computer
Graphics, 24(4):327–335, 1990. http://dl.acm.org/citation.cfm?id=97915&CFID=67002344&
CFTOKEN=69396923.

44. Svetlin A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for AES cryp-
tography. In 2007 IEEE International Conference on Signal Processing and Communications
(ICSPC 2007), pages 65–68. IEEE, 2007. http://www.manavski.com/downloads/PID505889.
pdf.

45. Mitsuru Matsui. How far can we go on the x64 processors? In Matthew Robshaw, editor, Fast
Software Encryption, volume 4047 of LNCS, pp. 341–358. Springer, 2006. http://www.iacr.
org/archive/fse2006/40470344/40470344.pdf.

46. What’s new in Silverlight 5, 2011. http://www.silverlight.net/learn/overview/what%27s-new-
in-silverlight-5.

47. Andrew Moss, Daniel Page, and Nigel P. Smart. Toward acceleration of RSA using 3d graphics
hardware. In Steven D. Galbraith, editor, Cryptography and Coding, volume 4887 of LNCS,
pp. 364–383. Springer, 2007. http://www.cs.bris.ac.uk/Publications/Papers/2000772.pdf.

48. Ruben Niederhagen. Calasm, 2011. http://www.polycephaly.org/projects/calasm/.
49. NVIDIA Corporation. Tuning CUDA Applications for Fermi, Version 1.0, 2010.

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_
FermiTuningGuide.pdf.

50. NVIDIA Corporation. NVIDIA CUDA - NVIDIA CUDA C Programming Guide, Version
4.0, 2011. http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_
Programming_Guide.pdf.

51. NVIDIA Corporation. OpenCL Programming Guide for the CUDA Architecture, 2011.
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_
Programming_Guide.pdf.

52. Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast software AES encryp-
tion. In Seokhie Hong and Tetsu Iwata, editors,Fast Software Encryption, volume 6147 of
LNCS, pages 75–93. Springer, 2010.

http://code.google.com/p/asfermi/,
http://code.google.com/p/asfermi/,
http://eprint.iacr.org/2011/315
http://eprint.iacr.org/2011/315
http://www.acsac.org/2006/papers/74.pdf
http://www.usenix.org/events/nsdi11/tech/full_papers/Jang.pdf
http://www.usenix.org/events/nsdi11/tech/full_papers/Jang.pdf
http://cryptojedi.org/papers/#aesbs
http://www.kaspersky.com/about/news/business/2009/Kaspersky_Lab_utilizes_NVIDIA_technologies_to_enhance_protection
http://www.kaspersky.com/about/news/business/2009/Kaspersky_Lab_utilizes_NVIDIA_technologies_to_enhance_protection
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/security/,
http://www.win.tue.nl/cccc/sha-1-challenge.html,
http://www.win.tue.nl/cccc/sha-1-challenge.html,
http://dl.acm.org/citation.cfm?id=97915&CFID=67002344&CFTOKEN=69396923
http://dl.acm.org/citation.cfm?id=97915&CFID=67002344&CFTOKEN=69396923
http://www.manavski.com/downloads/PID505889.pdf.
http://www.manavski.com/downloads/PID505889.pdf.
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
http://www.silverlight.net/learn/overview/what%27s-new-in-silverlight-5
http://www.silverlight.net/learn/overview/what%27s-new-in-silverlight-5
http://www.cs.bris.ac.uk/Publications/Papers/2000772.pdf
http://www.polycephaly.org/projects/calasm/
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_FermiTuningGuide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf

200 P. Schwabe

53. Ádám Rák. AMD-GPU-Asm-Disasm, 2011. https://github.com/rakadam/AMD-GPU-Asm-
Disasm/, Accessed Nov. 1, 2011.

54. Elizabeth Seamans and Thomas Alexander. Fast virus signature matching on the GPU. In Hubert
Nguyen, editor,GPU Gems 3, pp. 771–784. Addison-Wesley, 2007. http://http.developer.nvidia.
com/GPUGems3/gpugems3_ch35.html, Accessed Nov. 1, 2011.

55. Robert Szerwinski and Tim Güneysu. Exploiting the power of GPUs for asymmetric cryptogra-
phy. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded
Systems -CHES 2008, volume 5154 of LNCS, pages 79–99. Springer, 2008.

56. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and coun-
termeasures. Journal of Cryptology, 23(1):37–71, 2010. http://people.csail.mit.edu/tromer/
papers/cache-joc-official.pdf.

57. Wladimir J. van der Laan. Cubin utilities, 2007. https://github.com/laanwj/decuda/wiki,
Accessed Nov. 1, 2011.

58. Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P. Markatos, and
Sotiris Ioannidis. Gnort: High performance network intrusion detection using graphics proces-
sors. In Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors, Recent Advances in
Intrusion Detection, volume 5230 of LNCS, pp. 116–134. Springer, 2008. http://www.ics.forth.
gr/_pdf/brochures/gnort.raid08.pdf.

59. Giorgos Vasiliadis and Sotiris Ioannidis. GrAVity: A massively parallel antivirus engine. In
Somesh Jha, Robin Sommer, and Christian Kreibich, editors, Recent Advances In Intrusion
Detection, LNCS, pp. 79–96. Springer, 2010. http://dcs.ics.forth.gr/Activities/papers/gravity-
raid10.pdf.

60. Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. GPU-assisted malware.
In Jean-Yves Marion, Noam Rathaus, and Cliff Zou, editors, Proceedings of the 5th
International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2010.
dcs.ics.forth.gr/Activities/papers/gpumalware.malware10.pdf.

61. Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: A multi-parallel
intrusion detection architecture. In George Danezis and Vitaly Shmatikov, editors, Proceedings
of the 18th ACM/SIGSAC Conference on Computer and Communications Security, pp. 297–
308. ACM Press, 2011. http://dcs.ics.forth.gr/Activities/papers/midea.css11.pdf.

62. Takeshi Yamanouchi. AES encryption and decryption on the GPU. In Hubert Nguyen, edi-
tor, GPU Gems 3, pp. 785–804. Addison-Wesley, 2007. http://http.developer.nvidia.com/
GPUGems3/gpugems3_ch35.html, Accessed Nov. 1, 2011.

63. Jason Yang and James Goodman. Symmetric key cryptography on modern graphics hardware.
In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833 of
LNCS, pages 249–264. Springer, 2007.

https://github.com/rakadam/AMD-GPU-Asm-Disasm/,
https://github.com/rakadam/AMD-GPU-Asm-Disasm/,
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch35.html,
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch35.html,
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
https://github.com/laanwj/decuda/wiki,
http://www.ics.forth.gr/_pdf/brochures/gnort.raid08.pdf
http://www.ics.forth.gr/_pdf/brochures/gnort.raid08.pdf
http://dcs.ics.forth.gr/Activities/papers/gravity-raid10.pdf
http://dcs.ics.forth.gr/Activities/papers/gravity-raid10.pdf
http://dcs.ics.forth.gr/Activities/papers/midea.css11.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch35.html,
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch35.html,

Chapter 9
A Survey of Recent Results in FPGA Security
and Intellectual Property Protection

François Durvaux, Stéphanie Kerckhof, Francesco Regazzoni and
François-Xavier Standaert

Abstract Field programmable gate arrays (FPGAs) are reconfigurable devices
which have emerged as an interesting trade-off between the efficiency of application-
specific integrated circuits (ASICs) and the versatility of standard microproces-
sors [81]. Progresses over the last 10 years have improved their capabilities to the
point where they can hold a complete system on a chip (SoC) and thus become an
attractive platform for an increasing number of applications (e.g., signal processing,
image processing, aerospace, etc.). In view of the important data manipulated by
these devices, but also of the high amount of intellectual property (IP) they may
contain, security-related questions have arisen. First, can we use FPGAs as security
devices for example, securely and efficiently encrypting sensitive data (in particular
when compared to software solutions)? Second, how can we guarantee that the IP
corresponding to FPGA designs is protected (i.e., cannot be easily counterfeited)?
Such questions have been the target of a large number of papers in the literature,

François Durvaux: PhD student funded by the Walloon region MIPSs project.
Stéphanie Kerckhof: PhD student funded by a FRIA grant, Belgium.
François-Xavier Standaert: Associate Researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.).
François-Xavier Standaert: Work funded in part by the ERC project 280141 (acronym CRASH).

F. Durvaux (B)· S. Kerckhof · F. Regazzoni · F. X. Standaert
UCL Crypto Group, Université catholique de Louvain, Louvain-la-Neuve, Belgium
e-mail: francois.durvaux@uclouvain.be

S. Kerckhof
e-mail: stephanie.kerckhof@uclouvain.be

F. Regazzoni
e-mail: regazzoni@alari.ch

F. X. Standaert
e-mail: fstandae@uclouvain.be

F. Regazzoni
ALaRI Institute, University of Lugano, Lugano, Switzerland

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 201
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_9,
© Springer Science+Business Media New York 2014

202 F. Durvaux et al.

including several surveys, example [13, 71, 83]. In this chapter, we take another
look at them and review a number of important recent results related to security IPs
and IP security in modern reconfigurable devices. The chapter is structured in three
main sections. First, we briefly describe the structure of recent FPGAs. Next, we
discuss security IPs in FPGAs, taking the example of symmetric encryption with the
AES Rijndael, and including their performance evaluations and resistance against
physical attacks. Finally, we emphasize recent trends for improving IP security in
FPGAs, including bitstream security, the use of code watermarking techniques and
the exploitation of physically unclonable functions (PUFs).

9.1 FPGAs: An Overview

In this section, we introduce the major features of field programmable gate arrays
(FPGAs) for the non-familiar reader. First, we present the overall structure of the
devices. Next, we briefly describe the different steps of an FPGA design flow. Finally,
we discuss the different technologies of reconfigurable devices that are publicly
available.

9.1.1 Structure

For convenience, we will focus on the two main FPGA manufacturers: Altera [3] and
Xilinx [84].1 The configurable logic block and the logic array block (CLB and LAB)
are the basic logic cells for the most recent Xilinx (e.g., Virtex-7) and Altera (e.g.,
Stratix-V) FPGAs. Such devices typically contain an array of these cells connected
together through a configurable routing matrix. The CLB is composed of multiple
slices (Fig. 9.1) and the LAB is composed of multiple adaptive logic modules (ALMs,
Fig. 9.2). The main components of slices and ALMs are the look-up tables (LUTs) and
the registers. In the latest FPGAs (Xilinx Virtex-7 or the Altera Stratix-V), the LUTs
are 6-bit input and 2-bit output functions generators. They can also be configured as
small embedded memories or shift registers. In older technologies, the LUT input
was generally limited to 4 bits. Slices and ALMs combine the LUTs with a chaining
logic in order to allow efficient arithmetic operations. Next, this combinatorial part of
the logic cells is followed by registers used to generate synchronous logic. Efficient
FPGA designs essentially try to take advantage of these resources in the best manner
in order to perform some algorithmic task. Hence, slices, LABs, ALMs, LUTs, and
registers are the typical figures of merit used to evaluate the performances of FPGA
implementations (see the next section).

1 These two manufacturers produce mainly “volatile” FPGAs in which the configuration is stored
in nonvolatile memory devices like EEPROM or Flash. Nonvolatile FPGAs also exist but are out
of the scope of this chapter.

9 A Survey of Recent Results in FPGA Security and Protection 203

Fig. 9.1 Xilinx configurable logic block and detailed slice (Dashed registers are optional, they can
be bypassed)

Fig. 9.2 Altera logic array block and detailed adaptive logic module

In addition, it is worth mentioning that the routing matrix of the FPGAs also has a
major impact on final performances. These routes, allowing the connection between
the different computational blocks and memories, are generally structured according
to the connection lengths. Quite naturally, small wires have much lower effective

204 F. Durvaux et al.

capacitance than long ones, hence explaining significant variations of the computa-
tion delays, when efficient routing cannot be ensured with “local” connections [69].
Finally, most modern FPGAs combine reconfigurable logic elements with a vari-
ety of “embedded blocks”, i.e., specific elements that are hardwired in the devices.
Typical embedded blocks include memories, multipliers, and processors.

9.1.2 Design Flow

Configuring FPGAs for different applications is carried out in several steps, as when
designing ASICs. The first step is to define the behavior of the circuit with a hardware
description language (HDL). The two most usual HDLs are VHDL and Verilog.
They can be used to describe a design from a functional point of view. This part
of the design flow is essential as it is where most of the algorithmic optimizations
can be introduced. Importantly, one can choose to design for performance or for
portability. In the first case, the goal is to take advantage of all the specificities of
the target platform, in order to increase performances (e.g., particular logic element
configurations, embedded blocks, …). In the second case, the goal is to have a code
that is directly usable on the widest range of devices. The next step consists in
generating a technology-mapped netlist. It is done thanks to an electronic design
automation tool. The netlist is a description of all the nets linking the basic cells of
the target device specified by the user (logic gates, registers, memory, …). Hence,
contrary to the HDL description, the netlist is device-specific. Once the netlist is
generated, the different cells are placed and routed on the FPGA map, which again
takes advantage of an automated design tool. At this step of the design, users perform
additional simulations and tests (e.g., timing analysis) in order to validate that the
obtained results are functionally correct and fits the target performances. Finally,
a binary file describing the design is generated. This file is loaded into the FPGA
through, e.g., a serial port like joint test action group (JTAG, IEEE standard). It is
used to configure the FPGA which then behaves essentially like an ASIC.

Note that this design flow illustrates where the performance loss of FPGAs versus
ASICs comes from. Namely, a part of the FPGA resources are consumed to store its
configuration (i.e., the description of its functional behavior), whereas all the (hard-
wired) resources of an ASIC are dedicated to the design processing tasks. However,
compared to a software solution, FPGA designs usually allow major performance
increases, as they can take advantage of parallel computing and processing units that
are specialized for one specific type of computation. Finally, it is also worth men-
tioning that designing with recent FPGAs offer more and more facilities in terms of
predesigned blocks. That is, a large number of primitives (e.g., embedded memories,
or embedded processors like the Microblaze for Xilinx and Nios for Altera) are now
made available by manufacturers, which can essentially be used in a HDL design as
black boxes.

9 A Survey of Recent Results in FPGA Security and Protection 205

9.1.3 Technologies

Different categories of FPGAs are available from different vendors. In the first place,
high-end (more expensive) FPGAs are generally distinguished from lower-end ones.
The first category features all the latest developments of the manufacturers (e.g.,
the Xilinx Virtex and Altera Stratix devices), while the second one is essentially
optimized for cost (e.g., the Xilinx Spartan or Artix and Altera Cyclone devices).
These FPGAs also differ in their fabrication technology ranging from 130 to 28 nm
in 2011. As an illustration, we next describe a few examples of recent reconfigurable
devices.

The most recent high-end FPGA from Xilinx is the Virtex-7. It is part of a new
generation of devices built from a 28 nm technology and designed for maximum
power efficiency. Virtex-7 FPGAs contain up to 1,954,560 logic cells, which corre-
spond to 305,400 slices. Each slice contains four LUTs and eight flip-flops, some
of them being usable as distributed RAM, for up to 21.55 Mb. The largest device in
the family also contains 2,160 DSP slices, which include a pre-adder, an adder, an
accumulator, and a 25 × 18 multiplier. It additionally contains 46.51 Mb of RAM
blocks that can be instantiated as 18 or 36 Kb blocks. Finally, these FPGAs contain 24
clock management tiles, 4 interface blocks for PCI express, 36 low-power 12.5-Gbps
transceivers, 1 analog-to-digital converter, 24 I/O banks, and 1,200 user I/O.

The latest family of high-end FPGAs developed by Altera is denoted as the
Stratix-V. They are based on a similar 28-nm high-performance process optimized
for low power and contain up to 358,000 ALMs. Each ALM is based on two combina-
tional adaptive LUTs (ALUTs) and four registers. Some ALMs can be configured as
distributed SRAM, for up to 12.12 Mb. This largest version of the Stratix-V includes
352 27 × 27 DSP blocks, 704 18 × 18 multipliers, 52 Mb of RAM blocks, which
can be instantiated as 20 Kb blocks, 4 PCI express hard IP blocks, and 48 14.1 Gbps
transceivers.

9.2 Security IPs

Modern reconfigurable devices are complex and complete platforms which pro-
vide an appealing and cost-effective solution to implement high performance, low
to medium volume custom integrated circuits. FPGA designs are characterized by
reduced nonrecurring engineering costs and reduced time to market. The cost for a
typical mask set to fabricate an ASIC using modern CMOS technology runs in the
range of $500–$700K. By contrast, a system designer can purchase an off-the-shelf
FPGA and program it for only a fraction of the cost. Quite naturally, the result-
ing circuit will be slower, consume more power and utilize significantly more silicon
resources than its ASIC equivalent. Still, FPGAs are an attractive platform for several
applications nowadays.

206 F. Durvaux et al.

In general, and as discussed in the previous section, designing with FPGAs shares
a number of similarities with ASIC development. In the first place, the clear definition
of the architectural choices and performance goals is a prerequisite in both cases.
The requirements of the target application also determine the main figures of merit
which will be optimized by the designer. But once these decisions are specified, the
task of efficiently designing for FPGAs is different from its ASIC counterpart. In the
latter, the designer has full control over the components to implement. By contrast, in
the FPGA case, he is forced to use the components that the FPGA vendor selected as
the most suitable for a majority of applications. As a result, the strategy to maximize
the exploitation of the available resources may significantly depend on the selected
FPGAs.

In the remainder of this section, we illustrate this discussion in the context of secu-
rity IPs. In particular, and as a case study, we first review different implementations
of the Advanced Encryption Standard. Next, we take advantage of these examples
in order to underline the problem of fairness in the comparison among different
architectures, and the meaningfulness of the metrics currently used for this purpose.
Finally, we discuss the specificities of security IPs in FPGAs regarding so-called
physical attacks in which an adversary either observes physical emanations of the
target devices (side-channel attacks), or tries to induce faults during the cryptographic
computations.

9.2.1 The AES Case

The Rijndael algorithm was adopted as the advanced encryption standard (AES) in
2001 [54]. The standard supports a block size of 128-bit and key sizes of 128, 192,
and 256 bits. The encryption process, which is illustrated in Fig. 9.3, starts with the
first key addition, followed by a number of round functions which depends on the
key size. The round function is composed of four transformations applied to a state
of 16 bytes. ShiftRows cyclically shifts to the left, the bytes in the last three rows
of the state, using different offsets; SubBytes is a nonlinear byte substitution and
operates independently on each byte of the state; MixColumns multiplies modulo
x4 + 1 the columns of the state by the polynomial {03}x3 + {01}x2 + {01}x + {02};
finally, AddRoundKey adds a round key to the state. All the round keys are generated
by a key schedule routine, which takes the secret key and expands it as specified in
the standard. The decryption algorithm is similar to the encryption one and uses the
inverted versions of the basic transformations used during the encryption. The key
schedule for decryption is identical to the one used for encryption, but it starts using
the last round key and generates the round keys in reverse order. In this context, the
typical design decisions that have to be taken include:

• Which key size should be supported (128, 192, or 256)?
• Does the implementation have to compute encryption only, decryption only, or

both of them?

9 A Survey of Recent Results in FPGA Security and Protection 207

Fig. 9.3 AES encryption block diagram

• How is the key scheduling computed (“on-the-fly”, precomputed on chip before
each encryption, or precomputed off chip)?

• Is the algorithm supposed to run in a specific encryption mode (with feedback,
without feedback, …), which would prevent parallelization?

Additionally, depending on the application requirements, the designer also has to
select a number of architectural parameters, including the datapath size, the type of
architecture (loop or unrolled), the target throughput (high performances or not), the
portability of the design among different platforms, the usable area (low-cost or not),
and, more specific to the reconfigurable world, the type of resources which can be
used (BRAMs, DSPs, only LUTs, …), and the target FPGA.

In the remainder of the section, we describe a representative subset of designs
targeting several of these goals. Reported architectures range from high-speed to low-
cost, also including designs which maximize the exploitation of the inner structure
of the target FPGA, summarized in Table 9.1.

Area efficient designs of AES were implemented using reduced datapath. The
8-bit architecture proposed by Good and Benaissa [21] features a datapath consist-
ing of two processing units, one to perform the SubBytes transformation and the
second to compute the multiply and accumulate operations needed by MixColumn.
The processor has an instruction set composed of 15 instructions and relies on a
pipeline to execute a new instruction every cycle. Low-cost implementations were
also targeting 32-bit datapaths; possible examples are those of Chodowiec and Gaj
[10] and Rouvroy et al. [63].

Multiple AES implementations were proposed by Helion Technology [78], tar-
geting different purposes: Standard encryption, fast encryption, and fast encryption

208 F. Durvaux et al.

Ta
bl

e
9.

1
FP

G
A

im
pl

em
en

ta
tio

ns
of

th
e

A
E

S
al

go
ri

th
m

D
ev

ic
e

D
at

ap
at

h
L

og
ic

al
el

em
en

t
M

em
or

y
bl

oc
ks

Fr
eq

ue
nc

y
(M

H
z)

T
hr

.(
G

bp
s)

en
c/

de
c

A
rc

hi
te

ct
ur

e
ty

pe
K

ey
sc

he
du

lin
g

X
ili

nx
Sp

ar
ta

n-
II

[2
1]

8
12

4
(s

lic
es

)
2

–
0.

00
22

en
c/

de
c

lo
op

+
pi

pe
lin

e
pr

ec
om

pu
te

d
on

ch
ip

X
ili

nx
Sp

ar
ta

n-
II

I
[6

3]
32

16
3

(s
lic

es
)

3
71

.5
0.

20
8

en
c/

de
c

lo
op

pr
ec

om
pu

te
d

on
ch

ip
A

lte
ra

C
yc

lo
ne

-I
II

[7
8]

32
31

4
(l
es

)
3

17
0

0.
45

en
c

lo
op

pr
ec

om
pu

te
d

of
f

ch
ip

A
lte

ra
C

yc
lo

ne
-I

II
[7

8]
32

60
3

(l
es

)
3

17
0

0.
45

en
c

lo
op

on
-t

he
-fl

y
X

ili
nx

Sp
ar

ta
n-

II
[1

0]
32

22
2

(s
lic

es
)

3
60

0.
16

6
en

c/
de

c
lo

op
pr

ec
om

pu
te

d
on

ch
ip

A
lte

ra
C

yc
lo

ne
-I

II
[7

8]
12

8
90

6
(l
es

)
10

17
4

2.
02

en
c

lo
op

on
-t

he
-fl

y
A

lte
ra

St
ra

tix
-I

V
[7

8]
12

8
65

1
(a
lu

ts
)

10
30

0
3.

49
en

c
lo

op
on

-t
he

-fl
y

A
lte

ra
St

ra
tix

-I
V

[7
8]

12
8

16
52

(a
lu

ts
)

18
28

5
3.

32
en

c/
de

c
lo

op
on

-t
he

-fl
y

A
lte

ra
C

yc
lo

ne
-I

I
[3

5]
12

8
30

39
(l
es

)
18

19
8.

9
2.

5
en

c/
de

c
lo

op
+

pi
pe

lin
e

on
-t

he
-fl

y
X

ili
nx

V
ir

te
x-

E
[7

5]
12

8
17

67
(s

lic
es

)
0

16
7

2.
08

5
en

c
lo

op
+

pi
pe

lin
e

on
-t

he
-fl

y
X

ili
nx

V
ir

te
x-

5
[7

]
12

8
40

0
(s

lic
es

)
0

35
0

4.
1

en
c

lo
op

+
pi

pe
lin

e
on

-t
he

-fl
y

X
ili

nx
V

ir
te

x-
II

Pr
o

[2
9]

12
8

5.
17

7
(s

lic
es

)
84

16
8.

3
21

.5
4

en
c

un
ro

lle
d

+
pi

pe
lin

e
pr

ec
om

pu
te

d
of

f
ch

ip
X

ili
nx

V
ir

te
x-

II
20

00
[3

0]
12

8
10

.7
50

(s
lic

es
)

0
13

9.
1

17
.8

en
c

un
ro

lle
d

+
pi

pe
lin

e
on

-t
he

-fl
y

X
ili

nx
V

ir
te

x-
II

Pr
o

[9
]

12
8

3.
51

3
(s

lic
es

)
80

27
1

34
en

c/
de

c
un

ro
lle

d
+

pi
pe

lin
e

pr
ec

om
pu

te
d

of
f

ch
ip

X
ili

nx
V

ir
te

x-
5

[1
5]

12
8

32
1

(s
lic

es
)

80
41

3
52

.8
en

c/
de

c
un

ro
lle

d
+

pi
pe

lin
e

pr
ec

om
pu

te
d

of
f

ch
ip

9 A Survey of Recent Results in FPGA Security and Protection 209

and decryption. The user also has the possibility to choose whether the expansion
of the key is performed on-the-fly or precomputed off chip. The fast encryptor (and
decryptor) are based on a high-throughput 128-bit datapath version, and are evaluated
both on Altera Cyclone-III and Stratix-IV FPGAs, i.e., a low-cost and a high-end
FPGA. Several implementations of AES were also proposed by Standaert et al. [75],
the efficiency of their architectures was evaluated at different stages of the design
process and the structure of the pipeline which better considered the place and route
constraints was discussed.

Kenney [35] proposed an energy efficient 128-bit implementation in his Ph.D.
thesis. It is based on a complete unroll of the rounds and deeply exploits the pipeline.
Examples of this kind of implementation are also reported by Järvinen et al. [30],
Hodjat and Verbauwhede [29], and Chaves et al. [9]

Designs which maximize the specific resources of the target FPGA have also
been proposed. Bulens et al. [7] proposed a design which deeper exploits the 8-bit
look-up table structure of the Xilinx Virtex-E. Drimer et al. [15] proposed an AES
design which is largely implemented on the additional components of the FPGA,
such as DSPs and BRAM, attempting to leave the majority of the programmable
logic available for other applications.

To conclude, let us mention that very similar considerations and choices apply
to the implementation of other cryptographic algorithms. Typical examples include
the implementation of Elliptic Curve Cryptography and hash functions. We refer the
interested reader to [11, 17, 26–28, 87].

9.2.2 Performance Evaluation

Evaluating the performances of a design are a very natural goal. As introduced in the
previous sections, each of the resources of an FPGA (slices, LABs, ALMs, LUTs,
registers, …) can be used as figure of merit to carry on the comparison. Unfortunately,
producing fair comparisons for FPGA implementations are limited by a number of
difficulties that we discuss in this section.

Eventually, and as previously mentioned, the very goal of optimizing an imple-
mentation is highly dependent on the need for portability. Namely, a designer always
has the possibility to deeply exploit the inner structure of his target FPGA, in order
to achieve higher speed or smaller occupation. However, this comes at the price of a
reduced portability, since the inner structure is specific to the device, model, and ven-
dor. Hence, considering such a decision is important when performing comparative
analyzes. In this respect, it is worth underlining that academic publications generally
tend to focus on device-specific optimizations more than found in industrial IP cores,
where portability is usually appreciated for the cost-reduction it allows.

Of course, the different limitations discussed here do not mean that it is impossi-
ble to compare different designs. They simply underline that any comparison should
be carried out with care and the results of the comparison should be well under-
stood. In this context, the typical comparison metrics include working frequency

210 F. Durvaux et al.

(measured in GHz or MHz), throughput (measured in Mbit/second), hardware occu-
pation (measured in LUTs, registers, …), and the previously mentioned throughput
over area ratio. In addition, improved comparisons can take the reproducibility of the
synthesis results into account. For this reason, Drimer encouraged the academic and
scientific community to favor the publication of implementations which are presented
together with the source code [14].

This issue of fair comparisons for FPGA designs has recently received attention,
as FPGA implementations are one of the criteria for the selection of the next hash
standard [53]. In this context, Gaj et al. proposed a series of guidelines including
the definition of suitable performance metrics and the development of uniform inter-
faces [18], also used in [36]. Furthermore, their evaluation of the candidates was
completed on several representative FPGA platforms, from the two major vendors
discussed in the first section of this chapter.

9.2.3 Side-Channel Attacks and Countermeasures

The previous section discussed different implementations of the AES algorithm.
However, when the target application involves security IPs, it is important to consider
also the security of the designs against various types of physical attacks. Physical
attacks exploit the characteristics of the hardware platform on which the algorithm
is implemented in order to acquire sensitive information. They are usually classi-
fied between two axes: Invasive or non-invasive and active or passive. Side-channel
attacks are a particular class of passive and non-invasive physical attacks which use
the information leaked, while data are being processed in order to break some security
guarantee, e.g., by deriving the secret key of a cryptographic algorithm [46]. Common
examples of this leaking information are the time employed for the computation [38],
the corresponding power consumed [39], or the electromagnetic emissions [2, 58].

Among the different types of power-based attacks available in the literature, the
most common ones are simple power analysis (SPA) and differential power analysis
(DPA). In a SPA, an attacker measures the power consumed by a device while per-
forming cryptographic operations and, by observing the traces, attempts to deduce
the secret information, e.g., by distinguishing different operations. SPA attacks are
typically powerful in context where distinguishing operations directly allows recov-
ering secret information, e.g., in public key cryptographic computations. DPA attacks
extend this principle toward data dependencies and try to recover secret information
with some statistical processing. A typical DPA attack consists of four steps. At
first, an intermediate key dependent result is selected as the target. Then, the attacker
encrypts (decrypts) a certain number of known plaintexts (ciphertexts) and measures
the corresponding power consumption traces. Subsequently, hypothetical intermedi-
ate values are calculated, based on a key guess. Finally, the hypothetical intermediate
values (and thus the corresponding secret keys) are verified against the measured
power traces. If the attack is successful, the right key hypothesis will be clearly
visible in correspondence of the time frame where the information is leaked [46].

9 A Survey of Recent Results in FPGA Security and Protection 211

First investigations of power analysis attacks on FPGA devices were carried out
in [56, 76] in 2003. These initial results have been followed by several papers,
e.g., [72–74] which improved the efficiency of the attacks and analyzed them in
deeper details, considering also the specificity of reconfigurable devices. Examples
of tackled problems are the dependency between the attack and used resources or
the effects that a pipelined architecture might have on side-channels.

Counteracting side-channel attacks are difficult since the attack is caused by an
intrinsic feature of the transistors. Hence, physical security is generally guaranteed
by a combination of countermeasures, acting at different abstraction levels (e.g.,
hardware, algorithm, protocol). Among these solutions, so-called hiding and masking
techniques have attracted significant attention for FPGAs. Hiding aims at obtaining
independence between the power consumed by a cryptographic device and the secret
data being processed, e.g., by ensuring constant power consumption for all inputs.
Masking is a technique inspired by cryptographic secret-sharing schemes; the original
message to be encrypted is divided into parts called shares that are then encrypted
separately. This aims to ensure that only attacks combining the leakage of different
shares can be successful. The ciphertext is eventually reconstructed by combining
the output shares.

As an illustration, to implement logic function resistant against power analysis
attacks, Tiri and Verbauwhede proposed WDDL [79], a differential logic style with
precharge, which can be designed from FPGA elements. WDDL essentially translates
every gate on a design into “protected gates” having the goal to produce constant
power consumption. For this purpose, each gate uses four inputs that are pairwise
complementary, and always computes the two complementary outputs. On the Virtex-
II FPGAs, WDDL requires two LUTs to generate a gate with two differential outputs.

Masked implementations of different algorithms were also proposed for FPGAs,
incurring different performances and area overheads. Concerning the AES algorithm,
an implementation which combines Boolean and multiplicative masking was pro-
posed by Mentens et al. [49]. The area overhead of their secured core compared with
the reference unsecured version is approximately 20 %, while the speed is degraded
by 30 %. Kamoun et al. [32] implemented a masked AES S-box on Virtex-4 FPGA
which incurs an area overhead of 44 % and a frequency decrease of 31 %. Specific
features of state-of-the-art FPGAs were also exploited for implementing masking;
the larger input size of the basic block of Xilinx Virtex-5 FPGA was combined with
optimization techniques for S-boxes to obtain an efficient FPGA implementation of
the AES algorithm, masked against side-channel attacks [62].

Note that none of the countermeasures investigated so far can guarantee perfect
security. In particular, a certain number of physical effects, like glitches in integrated
circuits for masking, or early propagation effects for hiding, can compromise the
security of these countermeasures [47, 48, 77]. Overall, providing security against
physical attacks remains an active scope of research. For example, one recent trend
is to investigate FPGA-dedicated countermeasures [25], taking advantage of the
specificities of reconfigurable devices.

Still concerning the power analysis attacks, it is worth mentioning the effort
done by the Research Center for Information Security (RCIS) of AIST and Tohoku

212 F. Durvaux et al.

University in the direction of developing a common platform for standardizing the
evaluation of attacks and the comparison of countermeasures. The outcome was the
Side-channel Attack Standard Evaluation BOard (SASEBO) [65], which was distrib-
uted together with design information to research institutes as common experimental
platforms. To date, there are five types of SASEBO boards, based on both Xilinx and
ALTERA FPGAs. The FPGA boards have microprocessor features, and thus side-
channel attack experiments against cryptographic software can also be performed.
Additionally, SASEBO-R is extended with a custom cryptographic LSI that supports
all of the block ciphers adopted by ISO/IEC 18033-3, as well as the public-key cipher
RSA. The advantage of SASEBO board, besides eliminating the high engineering
costs, is to provide a common platform which allows results to be reproduced.

9.2.4 Fault Attacks and Countermeasures

More recently, fault attacks have also been applied to FPGAs. Since it is a relatively
new area of research, they are not as common as power analysis attacks and there are
only few works discussing them, all focusing on attacks against the AES algorithm.
In a nutshell, a fault attack consists of a deliberate injection of a fault into a target
device, in our case the FPGA where the cryptographic routine is executed. The fault
is injected by actively tampering with the device itself. Once the error required by
the attack model is produced, an adversary can analyze the differences between the
correct and the faulty outputs of the device and extract sensitive information, e.g.,
about a secret key. Depending on the specific attack used, it can be required that the
fault has to appear at a specific point of the computation [16]. Several methods for
inducing a fault were proposed and verified to be effective in FPGA. Some of them,
such as clocking the circuit at a different speed, or reducing the supply voltage, can
be exploited using very inexpensive devices.

Examples of successful attacks mounted on FPGAs were presented by
Saha et al. [64], Khelil et al. [37], and Selmane et al. [68]. In Saha et al. [64],
the attack induces faults into a diagonal of the AES state matrix that is input to the
8th round. Since, to successfully mount a fault attack, it is necessary to introduce
exactly the error required by the fault model, the adversary has to perform a prelim-
inary exploration in order to find the sweet spot for the attack. A sweet spot is the
area where the degradation induced in the device is sufficient to generate only the
needed fault without resulting in a complete corruption of the circuit behavior. In
this case, the fault is injected by switching the clock to a faster frequency when the
8th round of the encryption function begins.

Other works such as [37, 68] also evaluate the feasibility on FPGAs of the attack
proposed by Piret and Quisquater [57]. The attack requires the injection of a fault on
one byte of the state before the computation of MixColumn in the 9th round of the
AES algorithm. In both works, the fault is injected by reducing the supply voltage to
induce a setup time violation. This is possible since the propagation delay is inversely
proportional to the power supply; when the voltage is reduced, the signals which are

9 A Survey of Recent Results in FPGA Security and Protection 213

propagated into the circuit require more time to stabilize. As a consequence, the
values stored in the register might not be computed in time and they produce a faulty
result.

Considering the relatively recent appearance of fault attacks in FPGAs, no coun-
termeasures have been developed so far, specifically targeting reconfigurable devices.
However, initial work has been performed to evaluate the resistance of power analy-
sis countermeasures against fault attacks. In particular, Selmane et al. [67] used the
lowering voltage technique to evaluate the intrinsic resistance of WDDL against
fault attacks on FPGA implementations. Furthermore, techniques for fault tolerance
were already successfully adapted to the needs of fault attack prevention in ASICs
[6, 33]. Hence, it is possible to envision the use of similar schemes in reconfigurable
devices. As a final note, it is important that the designer also considers the interaction
between countermeasures against one attack and the vulnerability to another attack,
since it has been shown that several error correcting and detection codes increase the
vulnerability of a cryptographic circuit to power analysis attacks [60, 61].

9.3 IP Security

Since FPGAs are volatile and generic platforms, a large number of designs can be
implemented on them, ranging from essentially hardware to on chip combinations
of hardware and software. Most of the time, these implementations are developed by
different designers and the inherent value of their IP can be high. As a result, various
design houses base their business on the selling of IPs, and their protection against
various types of counterfeiting has become an important issue. In the first place
comes the problem of bitstream security. That is, given an FPGA board running an
application, how to guarantee that no adversary can recover the bitstream and, from
it, clone or reverse engineer a design? Next, and more critical, comes the problem of
design security. That is, given an IP that is sold by a design house, how to guarantee
that this IP is not used beyond the terms of a license? And how to combine this
requirement with the flexibility constraints of the client (e.g., the need to integrate
an IP in a large design, and to simulate it)? In this section, we briefly tackle these
two problems and describe some recent trends that are considered to solve them.

9.3.1 Bitstream Security

In this case, the most frequent solution is bitstream encryption. That is, the bitstream
is encrypted by the CAD tool with user-defined symmetric (secret) keys. The same
keys are stored on the FPGA, e.g., in a volatile memory with an external battery.
During configuration, an on-chip decryption circuit is used to recover the original
configuration file. Readback is not allowed when encrypted bitstreams are used. The
main drawback of bitstream encryption is the need for an external battery to maintain

214 F. Durvaux et al.

the keys, and the difficult key management. For example, if a single key is used for
all the boards, then a system designer has no opportunity to update the configuration
files for only a part of them. Ideally, it should be possible to update the symmetric
keys remotely. This could be achieved either by the use of a symmetric master
key (but the system security would then depend on this single key) or a public-key
mechanism in which each FPGA would come with a private/public key pair stored
in a nonvolatile memory. Note also that the importance of authenticated encryption
for FPGA bitstreams has been discussed in [12, 80]. Finally, let us mention that the
on-chip circuitry that is used to perform decryption also has to be secure against
physical attacks. As recently discussed in [50], security against side-channel attacks
was not considered in certain Xilinx designs.

9.3.2 Design Security

9.3.2.1 Encrypted Netlists

A first solution to protect IP providers’ work is exchanging encrypted netlists and
simulation models with the system designer. This encryption is done through the
Xilinx development tools which embed the key in its software. So, the system
designer can easily instantiate the IP core as a black box, i.e., without having access
to the implementation details. The problem is that this solution only protects the IP
integrity and does not prevent from reusing the IP many times. Moreover, the IP is
only protected by a key stored in the CAD software. Hence, it may be potentially
recovered by reverse engineering this tool.

9.3.2.2 Security Chips

Another solution is proposed in the Xilinx documentation [43]. It works as follows:
The IP provider sends a preprogrammed security chip with the encrypted netlist to
the system manager. To use the IP, the system manager instantiates it and connects
the security chip to the FPGA. The encrypted netlist contains the IP core itself and
a security module embedding the same identification number as the security chip.
When the system starts, the security module checks whether the right security chip is
present or not. This solution allows managing the quantity of IP cores sold. However,
it faces similar limitations for the key management as bitstream encryption (as the
key is contained in an encrypted netlist). Furthermore, this solution still relies on
the key of the encrypted netlist. Hence, its main advantage is to allow per device
licensing.

9 A Survey of Recent Results in FPGA Security and Protection 215

9.3.2.3 Physically Unclonable Functions

In view of the limitations of encrypted netlists and the use of security chips, the
development of device-specific identification tools has become an intensive research
topic in the recent years. Physically unclonable functions are among the frequently
considered solutions for this purpose. They are challenge-response systems relying
on uncontrollable random features inherent to the manufacturing processes. Their
particularities lie in their output, which is easy to measure but assumably hard to
predict if it has not been previously queried. Many kinds of PUF have been proposed
in the literature. The following lines describe some of them, that are suitable for
FPGAs. Implementation details are given in the related references.

1. SRAM-based PUF initially proposed by Guajardo et al. [23], the SRAM-based
PUF uses the initialization values of dedicated SRAM blocks. They consider a
range of memory locations as challenges and start-up values at these locations
as responses. These values depend on the small asymmetry between two cross-
coupled inverters, ensuring that the start-up values will always be the same with
high probability. Guajardo et al. define this kind of PUF as intrinsic, because
the PUF generating circuit is directly present in the design to protect. The main
drawback of SRAM-based PUF with FPGAs is that most FPGA manufacturers
initialize the embedded memory blocks to zero before loading the bitstream to
avoid shortcuts in the reconfigurable circuitry.

2. Flip-flop PUF proposed by Maes et al. [44], the flip-flop PUF uses flip-flops start-
up values as responses similarly to the SRAM-based PUF. Maes et al. imagined
this PUF because it is possible to prevent flip-flops from being reset. Hence, this
allows having an efficient PUF suitable for every FPGA.

3. Butterfly PUF proposed by Kumar et al. [40], the butterfly PUF is another solution
to overcome the SRAM PUF reset drawback. It consists in two cross-coupled
latches initialized with two different values to have an unstable operating point.
The latches are initialized on an external signal. When this one is released, the
stable state depends on the slight differences between the connecting wires which
are designed using symmetrical paths on the FPGA matrix. The butterfly PUF
needs manual routing to have symmetric paths and its performance highly depends
on the targeted FPGA [51].

4. LUT-based PUF proposed by Anderson [4], the LUT-based PUF harnesses the
FPGA’s LUT structure. It uses LUTs from the same basic logic block (slice or
ALM), configured in shift-register, and the carry-chain logic. This PUF relies
on delays introduced by the LUTs and the multiplexers. It uses the presence or
absence of glitches along the carry chain to determine the output bit. This PUF
has the advantage to be completely described in HDL.

5. Ring oscillator PUF introduced by Gassend [19], Gassend et al. [20], it mainly
relies on a self-oscillating circuit and a counter. The ring oscillator produces an
oscillating signal with a delay-dependent frequency. Besides, the counter mea-
sures the number of positive edges over a period of time. The obtained value is a
good representation of the ring oscillator intrinsic delay. The main drawbacks of

216 F. Durvaux et al.

this kind of PUF are the limited number of possible challenges and the significant
dynamic power consumption.

6. Time-bounded PUF introduced by Majzoobi et al. [45], the time-bounded PUF
relies on three flip-flops placed around the circuit under test (CUT) : The Launch
FF, the Sample FF, and the Capture FF. Initially, the flip-flops are set to zero.
Then, the Launch FF is set to one on the rising edge of the clock. This signal
propagates through the CUT and is sampled by the Sample FF on the falling edge
of the clock. The CUT adds a challenge-dependent delay which may be greater
than the half of the clock period. Hence, the sampled value depends on it and is
xor-ed with the true launched value to be captured by the Capture FF.

As the PUFs lead to unique and device-dependent challenge-reponse pairs, they
can be used in many identification-related applications including IP protection.
Simpson and Schaumont [70] are among the few to have proposed FPGA-specific IP
protection protocols using PUFs (Fig. 9.4). Their work relies on the assumption that
the FPGA manufacturer has embedded a standard security module which contains
two different hardware blocks: The PUF itself, used for hardware authentication
and key generation, and a block cipher used for symmetric encryption and software
authentication.

During a preliminary step, the FPGA manufacturer and the IP provider have sent
authentication information to the trusted third party (TTP) including a challenge-
response pair vector from the PUF (CRP). Then, the protocol is a 3-player game
among the system designer (SYS), the IP provider (IPP), and a TTP. First, the SYS
sends a request to the TTP to obtain a particular IP. Then, the TTP forwards this

Fig. 9.4 Simspon et al.’s IP protection protocol based on PUFs

9 A Survey of Recent Results in FPGA Security and Protection 217

request to the IPP attached with a PUF response that is used as encryption key. In
the same time, the TTP sends the IP authenticity information attached with a PUF
challenge that allows the SYS to recover the PUF response (i.e., the encryption key).
Finally, IPP sends his encrypted IP to the SYS which is able to decrypt it into the
device without having access to the IP itself. Hence, the SYS cannot use the data for
another platform without asking the IP provider. The strength of using PUFs in this
kind of IP protection protocol comes from the hidden, secret, and nonvolatile aspects
of PUFs.

Starting from the Simpson et al.’s work, Guajardo et al. [23] proposed a protocol
where the TTP cannot access the IP block exchanged between the IPP and the SYS.
Indeed, as the TTP knows all the challenge-response pairs and since the SYS–IPP
channel is public, he is able to access to the IP core. To avoid this, they introduced
a public-key based operation. In a following work [24], the same team studied the
advantages that asymmetric cryptography provides in this context. It allows that
secret information from PUF never has to leave the FGPA unlike in previous works.
This results in increased security guarantees.

In general, PUFs are interesting objects for dealing with security questions in
nonvolatile FPGAs, in particular when these devices do not contain any nonvolatile
memory that could be used to store a key. As far as IP protection is concerned, it can
also allow per device licensing, without the need of any security chip. However, it
also faces limitations, as the protected designs have to include the processing of the
PUFs, which could possibly be removed by an adversary, e.g., if the security of the
netlists is compromised.

9.3.2.4 IP Watermarking

Digital watermarking is the process of embedding an evidence of ownership into all
types of digital content. The embedded information must be very difficult to remove.
Hence, each copy of the content will also include the watermark information. This
process is largely used in multimedia content by slightly modifying the data in an
unperceivable way from a user point of view (e.g., hiding a signature in the highest
frequencies of a picture). Similar techniques have been proposed for IP protection.
However, watermarking for IP protection is more difficult as most of the times, when
a chip needs to be tested, it is not available before returning completely assembled
and packaged from the manufacturing process. Hence, e.g., the constraint-based
watermarking proposed by Kahng et al. [31] and Narayan et al. [52] cannot capture
such postproduction features. Also, the main difference with other IP protection
techniques lies in the fact that the watermarking is an a posteriori solution. That
means that, unlike other solutions, the watermarking is searched and checked only if
the IP owner has doubts on the IP authenticity (i.e., it allows detecting counterfeiting,
but does not directly prevent it).

When watermarking IPs, care must first be taken that the functional correctness
of the core is preserved. Also, in order to be efficient, an IP watermarking strategy
should only use the usual design tools, not affect the performances of the core, be

218 F. Durvaux et al.

robust to removals or modifications, and be sufficient as proof-of-ownership. In this
context, the two main goals of IP watermarking are the detectability and the proof-
of-ownership [5]. The detectability means that, given an integrated circuit (IC), the
IP core designer is able to determine whether his IP core is used. The proof-of-
ownership means that, given an IC, the IP core designer is able to prove to a third
party that he owns the IP core used. A general survey and analysis of watermarking
techniques are provided by Abdel-Hamid et al. in [1], and complete states-of-the-art
for IP watermarking can be found in Drimer’s and Ziener’s Ph.D. thesis [14, 85].

A watermark can be embedded at the three different levels of the design flow, with
pros and cons: The behavioral HDL description, the netlist generation, and the bitfile
generation. Including the watermark in the HDL or the netlist allows protection of
individual IP cores as they can be handled independently. However, if the adversary
is able to break the netlist encryption, he can then (as for bitstream encryption and
PUFs) easily remove the watermark. Including it in the bitfile may prevent the netlist
encryption issue, but can only protect the whole system as the bitfile is generated by
the system designer and not by the IP provider.

Next, different ways to recover a watermark signature exist, among which we
find:

1. Bitfile the bitfile can be read either using the readback command if it is activated,
either by wire tapping the bus between the PROM (Programmable Read-Only
Memory) and the FPGA if the bitfile is not encrypted.

2. Ports some ports of the FPGA can be dedicated to the watermark reading. How-
ever, in the case of IPs integrated in larger systems, the system designer could
deliberately choose to disconnect those ports from the IP.

3. Power introduced by Ziener and Teich [86], as in cryptographic side-channel
attacks, the clock frequency and the toggling logic can be extracted from the
measured power traces.

4. Electromagnetic radiations the EM radiations are easy to measure and offer a
similar information as the power traces if the chip is not protected.

5. Temperature proposed by Kean et al. [34], the temperature just needs a thermo-
couple to measure it through the chip package without having access to the power
pins. Although it is a rather slow process, it is currently the only commercially
available approach.

As this chapter focuses specifically on FPGAs, we now report a few examples of
watermarking techniques that are or could be applicable in this case.

Lach et al. [41, 42] propose to include a watermark signature in the unused
LUTs at the bitstream level. Furthermore, Schmid et al. [66] improve it by tightly
integrating the watermark with the LUTs of the design, so that simply removing the
mark carrying components would damage the IP core. The watermark extraction is
done knowing their positions and performing a readback of the bitfile.

Oliveira [55] proposes a Finite-State-Machine-based watermarking, while Castillo
et al. [8] propose a technique using unused parts of the distributed RAM memory.
These two techniques offer the ease to be implemented in HDL but the main drawback
is that they need FPGA ports to extract the watermark.

9 A Survey of Recent Results in FPGA Security and Protection 219

A side-channel based technique is introduced by Becker et al. [5] and consists in
hiding a watermark signature below the noise floor in the power traces, by including
leakage generating circuit depending on an identification number. The signature can
be easily recovered with DPA. This solution is well suited to tag netlist cores but it
can hardly be applied to HDL IP cores, since the identification and the suppression
of the watermarking circuit would then be easy.

Finally, as previously mentioned, Kean et al. [34] propose a solution which con-
sists in hiding the watermark signature in the chip’s temperature. The underlying
working is quite the same as the Becker et al.’s work but, instead of measuring
power consumption leakages, they measure the heat generated by their circuit. This
one is composed of multiple ring oscillators that are switch on/off according to the
identification number. The tag signature can be easily found with cross-correlation.

9.4 Conclusions

FPGAs are useful for the implementation of security algorithms, because of the sig-
nificant performance gains that they provide compared with software solutions. As
they allow customizing and specializing the processing blocks, they also offer inter-
esting opportunities for the design of countermeasures against noninvasive (passive)
physical attacks. In particular, their inherent parallelism generally allows noisy mea-
surements in side-channel attacks and less precise fault insertions in active attacks.
Overall, cryptographic implementations in FPGAs can be seen as the result of a flex-
ibility versus efficiency and security trade-off. That is, for security and efficiency,
it is best to fully take advantage of each given device architecture. But for flexibil-
ity, it is more attractive to have designs able to run on a large amount of devices.
A similar statement can be made for the important problem of IP protection in recon-
figurable devices. For flexibility reasons, it is desirable that the security relates to
the netlists, so that IPs can be easily simulated and integrated in larger designs. But
for security reasons, the best solution would be to deal directly with bitstreams. IP
and bitstream securities are also limited by the difficult key management problem.
Ideally, the integration of nonvolatile keys and public key cryptography facilities in
each device would be the best solution to allow the “per device” licensing of the
IPs based on bitstreams. But present devices do not offer such facilities. Alternative
solutions exist, based on the detection of a security chip, or physically unclonable
functions (PUFs), but are then limited by some other assumptions (e.g., the difficulty
to remove the “detection mechanisms from the design”). Watermarking-based tech-
niques are yet another way to detect IP theft a posteriori. These questions illustrate
the rapidly evolving nature of security issues in reconfigurable computing, for which
several important research problems remain open.

220 F. Durvaux et al.

References

1. Amr T. Abdel-Hamid, Sofiène Tahar, and El Mostapha Aboulhamid. Ip watermarking tech-
niques: Survey and comparison. In IWSOC, pages 60–65. IEEE Computer Society, 2003

2. Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM side-
channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume
2523 of Lecture Notes in Computer Science, pages 29–45. Springer, 2002.

3. Altera. http://www.altera.com/
4. Jason H. Anderson. A PUF design for secure FPGA-based embedded systems. In Design

Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pages 1–6, jan. 2010.
5. Georg T. Becker, Markus Kasper, Amir Moradi, and Christof Paar. Side-channel based water-

marks for integrated circuits. In Hardware-Oriented Security and Trust (HOST), 2010 IEEE
International Symposium on, pages 30–35, june 2010.

6. Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo Piuri. Error analysis
and detection procedures for a hardware implementation of the advanced encryption standard.
IEEE Trans. Computers, 52(4):492–505, 2003.

7. Philippe Bulens, François-Xavier Standaert, Jean-Jacques Quisquater, Pascal Pellegrin, and
Gaël Rouvroy. Implementation of the AES-128 on Virtex-5 FPGAs. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of Lecture Notes in Computer Science, pages 16–26. Springer,
2008.

8. Encarnación Castillo, Luis Parrilla, Antonio García, Antonio Lloris-Ruíz, and Uwe Meyer-
Bäse. IPP watermarking technique for IP core protection on FPL devices. In FPL, pages 1–6,
2006.

9. Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis, and Leonel Sousa. Reconfigurable
memory based AES co-processor. In IPDPS. IEEE, 2006.

10. Pawel Chodowiec and Kris Gaj. Very compact FPGA implementation of the AES algorithm.
In Walter et al. [82], pages 319–333.

11. Guerric Meurice de Dormale, Philippe Bulens, and Jean-Jacques Quisquater. Collision search
for Elliptic Curve Discrete logarithm over GF(2m) with FPGA. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages
378–393. Springer, 2007.

12. Saar Drimer. Authentication of fpga bitstreams: Why and how. In Pedro C. Diniz, Eduardo
Marques, Koen Bertels, Marcio Merino Fernandes, and João M. P. Cardoso, editors, ARC,
volume 4419 of Lecture Notes in Computer Science, pages 73–84. Springer, 2007.

13. Saar Drimer. Security for volatile FPGAs. PhD dissertation, University of Cambridge Technical,
Report UCAM-CL-TR-763, 2009.

14. Saar Drimer. Security for volatile FPGAs. Technical Report UCAM-CL-TR-763, University
of Cambridge, Computer Laboratory, November 2009.

15. Saar Drimer, Tim Güneysu, and Christof Paar. DSPs, BRAMs, and a pinch of logic: Extended
recipes for AES on FPGAs. TRETS, 3(1), 2010.

16. Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis on AES. CoRR,
cs.CR/0301020, 2003.

17. Junfeng Fan, Daniel V. Bailey, Lejla Batina, Tim Güneysu, Christof Paar, and Ingrid Ver-
bauwhede. Breaking Elliptic Curve Cryptosystems using reconfigurable hardware. In FPL,
pages 133–138. IEEE, 2010.

18. Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski. Fair and comprehensive methodology
for comparing hardware performance of fourteen round two SHA-3 candidates using FPGAs.
In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture
Notes in Computer Science, pages 264–278. Springer, 2010.

19. Blaise Gassend. Physical Random Functions. Master’s thesis, MIT, USA, 2003.
20. Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon physical

random functions. In ACM Conference on Computer and Communications Security, pages
148–160, New York, NY, USA, 2002. ACM Press.

http://www.altera.com/

9 A Survey of Recent Results in FPGA Security and Protection 221

21. Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to the smallest. In Rao
and Sunar [59], pages 427–440.

22. Louis Goubin and Mitsuru Matsui, editors. Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10–13, 2006, Proceed-
ings, volume 4249 of Lecture Notes in Computer Science. Springer, 2006.

23. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. FPGA intrinsic PUFs
and their use for IP protection. In Cryptographic Hardware and Embedded Systems Workshop,
volume 4727 of LNCS, pages 63–80, September 2007.

24. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. Physical unclonable
functions and public-key crypto for FPGA IP protection. In Field Programmable Logic and
Applications, 2007. FPL 2007. International Conference on, pages 189–195, Aug. 2007.

25. Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfigurable
devices. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2011.

26. Tim Güneysu and Christof Paar. Ultra high performance ECC over NIST primes on commercial
FPGAs. In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes
in Computer Science, pages 62–78. Springer, 2008.

27. Mohamed N. Hassan and Mohammed Benaissa. Efficient time-area scalable ECC processor
using µ-coding technique. In M. Hasan and Tor Helleseth, editors, Arithmetic of Finite Fields,
volume 6087 of Lecture Notes in Computer Science, pages 250–268. Springer Berlin / Heidel-
berg, 2010.

28. Mohamed N. Hassan and Mohammed Benaissa. Small footprint implementations of scalable
ECC point multiplication on FPGA. In Communications (ICC), 2010 IEEE International Con-
ference on, pages 1–4, May 2010.

29. Alireza Hodjat and Ingrid Verbauwhede. A 21.54 Gbits/s fully pipelined AES processor on
FPGA. In FCCM, pages 308–309. IEEE Computer Society, 2004.

30. Kimmo U. Järvinen, Matti Tommiska, and Jorma Skyttä. A fully pipelined memoryless 17.8
Gbps AES-128 encryptor. In FPGA, pages 207–215, 2003.

31. Andrew B. Kahng, Darko Kirovski, Stefanus Mantik, Miodrag Potkonjak, and Jennifer L.
Wong. Copy detection for intellectual property protection of VLSI designs. In Computer-
Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International Conference
on, pages 600–604, 1999.

32. Najeh Kamoun, Lilian Bossuet, and Adel Ghazel. SRAM-FPGA implementation of masked
S-Box based DPA countermeasure for AES. In Design and Test Workshop, 2008. IDT 2008.
3rd International, pages 74–77. IEEE, 2009.

33. Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans.
on CAD of Integrated Circuits and Systems, 21(12):1509–1517, 2002.

34. Tom Kean, David McLaren, and Carol Marsh. Verifying the authenticity of chip designs with
the DesignTag system. In Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, pages 59–64, June 2008.

35. David Kenney. Energy efficiency analysis and implementation of AES on an FPGA. Master’s
thesis, University of Waterloo, Canada, 2008.

36. Stéphanie Kerckhof, François Durvaux, Nicolas Veyrat-Charvillon, Francesco Regazzoni,
Guerric Meurice de Dormaele, and François-Xavier Standaert. Compact fpga implementations
of the five sha-3 finalists. ECRYPT II Hash Workshop, Talinn, Estonia, May 2011.

37. Farouk Khelil, Mohamed Hamdi, Sylvain Guilley, Jean-Luc Danger, and Nidhal Selmane. Fault
analysis attack on an FPGA AES implementation. In NTMS’08, pages 1–5, 2008.

38. Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal I. Koblitz, editor, Advances in Cryptology-CRYPTO ’96, volume 1109 of
LNCS, pages 104–13. Springer, Berlin, September 1996.

39. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Michael
Wiener, editor, Advances in Cryptology-CRYPTO ’99, volume 1666 of LNCS, pages
398–412. Springer, Berlin, August 1999.

222 F. Durvaux et al.

40. Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, and Pim Tuyls. Extended
abstract: The butterfly PUF protecting IP on every FPGA. In Hardware-Oriented Security and
Trust, 2008. HOST 2008. IEEE International Workshop on, pages 67–70, June 2008.

41. John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Signature hiding techniques
for FPGA intellectual property protection. In ICCAD, pages 186–189, 1998.

42. John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Robust FPGA intellectual
property protection through multiple small watermarks. In DAC, pages 831–836, 1999.

43. Bernhard Linke. Xilinx FPGA IFF copy protection with 1-wire SHA-1 secure memories. http://
www.maxim-ic.com/app-notes/index.mvp/id/3826, June 2006

44. Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic PUFs from flip-flops on reconfig-
urable devices. In 3rd Benelux Workshop on Information and System Security (WISSec 2008),
page 17, Eindhoven, NL, 2008.

45. Mehrdad Majzoobi, Ahmed Elnably, and Farinaz Koushanfar. Information Hiding, volume
6387 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin / Heidelberg, 2010.

46. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Advances in Information Security. Springer, New York, 2007.

47. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attacking masked
AES hardware implementations. In Rao and Sunar [59], pages 157–171.

48. Stefan Mangard and Kai Schramm. Pinpointing the side-channel leakage of masked AES
hardware implementations. In Goubin and Matsui [22], pages 76–90.

49. Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. An FPGA implementation
of Rijndael: Trade-offs for side-channel security. In IFAC Workshop-PDS, pages 493–498.
Citeseer, 2004.

50. Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar.
51. Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. An analysis of delay based PUF

implementations on FPGA. In Phaophak Sirisuk, Fearghal Morgan, Tarek El-Ghazawi, and
Hideharu Amano, editors, Reconfigurable Computing: Architectures, Tools and Applications,
volume 5992 of Lecture Notes in Computer Science, pages 382–387. Springer Berlin / Heidel-
berg, 2010.

52. Naveen Narayan, Rexford D. Newbould, Jo Dale Carothers, Jeffrey J. Rodriguez, and W.
Timothy Holman. IP protection for VLSI designs via watermarking of routes. In ASIC/SOC
Conference, 2001. Proceedings. 14th Annual IEEE, International, pp. 406–410, 2001.

53. NIST. http://csrc.nist.gov/groups/st/hash/sha-3/index.html
54. NIST. Announcing the Advanced Encryption Standard (AES). Federal Information Processing

Standards Publication 197, November 2001.
55. Arlindo L. Oliveira. Techniques for the creation of digital watermarks in sequential circuit

designs. IEEE Trans. on CAD of Integrated Circuits and Systems, 20(9):1101–1117, 2001.
56. Siddika Berna Örs, Elisabeth Oswald, and Bart Preneel. Power-analysis attacks on an FPGA -

first experimental results. In Walter et al. [82], pages 35–50.
57. Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against SPN

structures, with application to the AES and KHAZAD. In CHES’03, pages 77–88, 2003.
58. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures and

counter-measures for smart cards. In Isabelle Attali and Thomas P. Jensen, editors, E-smart,
volume 2140 of Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

59. Josyula R. Rao and Berk Sunar, editors. Cryptographic Hardware and Embedded Systems -
CHES 2005, 7th International Workshop, Edinburgh, UK, August 29–September 1, 2005,
Proceedings, volume 3659 of Lecture Notes in Computer Science. Springer, 2005.

60. Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo Ienne, and Israel Koren.
Can knowledge regarding the presence of countermeasures against fault attacks simplify power
attacks on cryptographic devices? In Cristiana Bolchini, Yong-Bin Kim, Dimitris Gizopoulos,
and Mohammad Tehranipoor, editors, 23rd IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT 2008), pages 202–210. IEEE Computer Society, 2008.

61. Francesco Regazzoni, Thomas Eisenbarth, Johann Großschädl, Luca Breveglieri, Paolo Ienne,
Israel Koren, and Christof Paar. Power attacks resistance of cryptographic S-boxes with added

http://www.maxim-ic.com/app-notes/index.mvp/id/3826,
http://www.maxim-ic.com/app-notes/index.mvp/id/3826,
http://csrc.nist.gov/groups/st/hash/sha-3/index.html

9 A Survey of Recent Results in FPGA Security and Protection 223

error detection procedures. In Cristiana Bolchini, Yong-Bin Kim, Adelio Salsano, and Nur A.
Touba, editors, 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2007), pages 508–516. IEEE Computer Society, 2007.

62. Francesco Regazzoni, Yi Wang, and François-Xavier Standaert. FPGA implementations of the
AES masked against power analysis attacks. In COSADE 2011, 2011.

63. G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact and efficient encryp-
tion/decryption module for fpga implementation of the aes rijndael very well suited for small
embedded applications. In Information Technology: Coding and Computing, 2004. Proceed-
ings. ITCC 2004. International Conference on, volume 2, pages 583–587 Vol. 2, April 2004.

64. Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita RoyChowdhury. A diagonal fault
attack on the Advanced Encryption Standard. Cryptology ePrint Archive, Report 2009/581,
2009. http://eprint.iacr.org/

65. Sasebo. http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
66. Moritz Schmid, Daniel Ziener, and Jürgen Teich. Netlist-level IP protection by watermarking for

LUT-based FPGAs. In Proceedings of IEEE International Conference on Field-Programmable
Technology (FPT 2008), pages 209–216, Taipei, Taiwan, December 2008.

67. Nidhal Selmane, Shivam Bhasin, Sylvain Guilley, Tarik Graba, and Jean-Luc Danger. WDDL is
protected against setup time violation attacks. In Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2009 Workshop on, pages 73–83, Sept. 2009.

68. Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup time violation attacks
on AES. In Proceedings of the 2008 Seventh European Dependable Computing Conference,
pages 91–96, Washington, DC, USA, 2008. IEEE Computer Society.

69. Li Shang, Alireza S. Kaviani, and Kusuma Bathala. Dynamic power consumption in virtex-
II FPGA family. In Proceedings of the 2002 ACM/SIGDA tenth international symposium on
Field-programmable gate arrays, FPGA ’02, pages 157–164, New York, NY, USA, 2002. ACM.

70. Eric Simpson and Patrick Schaumont. Offline hardware/software authentication for reconfig-
urable platforms. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and
Embedded Systems - CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages
311–323. Springer Berlin/Heidelberg, 2006.

71. François-Xavier Standaert. Secure and efficient symmetric encryption using FPGAs. Crypto-
graphic Engineering. Chapter 11, pp 295–320, Springer, 2009.

72. François-Xavier Standaert, François Macé, Eric Peeters, and Jean-Jacques Quisquater. Updates
on the security of FPGAs against power analysis attacks. In Koen Bertels, João M. P. Cardoso,
and Stamatis Vassiliadis, editors, ARC, volume 3985 of Lecture Notes in Computer Science,
pages 335–346. Springer, 2006.

73. François-Xavier Standaert, Siddika Berna Örs, and Bart Preneel. Power analysis of an FPGA:
Implementation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-
Jacques Quisquater, editors, CHES, volume 3156 of Lecture Notes in Computer Science, pages
30–44. Springer, 2004.

74. François-Xavier Standaert, Eric Peeters, Gaël Rouvroy, and Jean-Jacques Quisquater. An
overview of power analysis attacks against field programmable gate arrays. Proceedings of
the IEEE, 94(2):383–394, 2006.

75. François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-Didier Legat.
Efficient implementation of rijndael encryption in reconfigurable hardware: Improvements
and design tradeoffs. In Walter et al. [82], pages 334–350.

76. François-Xavier Standaert, Loïc van Oldeneel tot Oldenzeel, David Samyde, and Jean-Jacques
Quisquater. Power analysis of fpgas: How practical is the attack? In Peter Y. K. Cheung,
George A. Constantinides, and José T. de Sousa, editors, FPL, volume 2778 of Lecture Notes
in Computer Science, pages 701–711. Springer, 2003.

77. Daisuke Suzuki and Minoru Saeki. Security evaluation of dpa countermeasures using dual-rail
pre-charge logic style. In Goubin and Matsui [22], pages 255–269.

78. Helion Technology. http://www.heliontech.com/
79. Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure DPA resistant

ASIC or FPGA implementation. In DATE, pages 246–251. IEEE Computer Society, 2004.

http://eprint.iacr.org/
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
http://www.heliontech.com/

224 F. Durvaux et al.

80. Stephen Trimberger, Jason Moore, and Weiguang Lu. Authenticated encryption for fpga bit-
streams. In Proceedings of the 19th ACM/SIGDA international symposium on Field program-
mable gate arrays, FPGA ’11, pages 83–86, New York, NY, USA, 2011. ACM.

81. Frank Vahid. The softening of hardware. Computer, 36:27–34, April 2003.
82. Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors. Cryptographic Hardware and

Embedded Systems - CHES 2003, 5th International Workshop, Cologne, Germany, September
8–10, 2003, Proceedings, volume 2779 of Lecture Notes in Computer Science. Springer, 2003.

83. Thomas Wollinger, Jorge Guajardo, and Christof Paar. Security on FPGAs: State-of-the-art
implementations and attacks. ACM Trans. Embed. Comput. Syst., 3:534–574, August 2004.

84. Xilinx. http://www.xilinx.com/
85. Daniel Ziener. Techniques for Increasing Security and Reliability of IP Cores Embedded in

FPGA and ASIC Designs. Dissertation, University of Erlangen-Nuremberg, Germany, July
2010. Verlag Dr. Hut, Munich, Germany.

86. Daniel Ziener and Jürgen Teich. Power signature watermarking of IP cores for FPGAs. Signal
Processing Systems, 51(1):123–136, 2008.

87. The SHA-3 Zoo. http://ehash.iaik.tugraz.at/wiki/the_sha-3_zoo

http://www.xilinx.com/
http://ehash.iaik.tugraz.at/wiki/the_sha-3_zoo

Part III
Applications and Platform Embedded

Security Requirements

Chapter 10
Mobile Communication Security Controllers

Keith Mayes and Konstantinos Markantonakis

Abstract Cellular communication via a traditional mobile handset is a ubiquitous
part of modern life and as device technology and network performance continues
to advance, it becomes possible for laptop computers, Personal Digital Assistants
(PDAs) and even electrical meters to better exploit mobile networks for wireless
communication. As the diverse demands for network access and value added services
increase, so does the importance of maintaining secure and consistent access controls.
A critical and well-proven component of the Global System for Mobile Communi-
cations (GSM) and Universal Mobile Telecommunications System (UMTS) security
solution is the smart card in the form of the Subscriber Identity Module (SIM) or
USIM, respectively. However, with the enlarged range of communications devices,
some manufacturers claim that the hardware selection, chip design, operating system
implementation and security concepts are different from traditional mobile phones.
This has led to a suggestion that types of “Software SIM” should be used as an
alternative to the smart card-based solution. This paper investigates the suggestion.

10.1 Introduction

Mobile communication and computing technology have evolved at a remarkable
pace and it is now possible to propose new functionality and services that even a
few years ago would have been dismissed as impossible. Compared to today, the
mobile telephony pioneers of the 1980s worked in a much more restricted technical
environment and with a different set of design priorities and associated assumptions.

K. Mayes (B) · K. Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway,
University of London, London, UK
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis
e-mail: k.markantonakis@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 227
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_10,
© Springer Science+Business Media New York 2014

228 K. Mayes and K. Markantonakis

However, it is not only the underlying technology that has changed, but also the
market’s attitude and expectation toward communication and computing, largely
fuelled by ubiquitous Internet connectivity, the boom in e-mail, on-line purchasing
and increasingly the exchange of digital content and sensitive information. Whilst
there are many initiatives aimed to offer new services to individual customers, there
is growing interest in machine-to-machine communications and telemetry systems.
Even boundaries between business segments are breaking down as the distinction
between wireless and fixed communications is increasingly blurred and if we consider
modern Near Field Communication (NFC)1 we will see mobile phones acting as
credit cards, train tickets or smart poster readers.

Whilst many of the changes are positive and exciting, the long standing problem
of securing systems and services against criminal mis-use remains and indeed has
become more acute as electronic applications and transactions have become complex
and remote. What is also evident is that the great technological advances that are
enabling modern services are also being exploited by attackers. In the case of the
GSM mobile communications standard (GSM), the attackers have been successfully
repelled (with a few avoidable exceptions) by a device known as the Subscriber
Identity Module (SIM). The SIM is essentially an application hosted by a specialised
microcontroller (optimised for security) that is normally housed within a plug-in
format smart card. There were very good reasons for introducing the SIM for GSM
and its design has now been elegantly upgraded to an advanced USIM application for
UMTS2 third generation networks. There is also a smart card called a RUIM defined
in some competing cellular standards.3 However, despite its proven track record
there will always be parties that question the necessity of a separate and removable
hardware component to support security and/or whether the SIM is really the best
solution for the twenty-first century. This paper will address such questions in an
attempt to provide guidance to the industry.

The discussion will begin in Sect. 10.2 by recapping on the reasons why the SIM
was adopted into standards and the main role that it takes in a mobile communi-
cations network. Section 10.3 first considers the trust relationships of the various
parties involved in SIM/handset supply, usage and maintenance with respect to tra-
ditional and new categories of cellular usage. Section 10.4 goes on to extract the
security fundamentals and critical capabilities that are necessary to carry out the
range of trusted/secure operations in the various communication scenarios. As a
fundamental reason for using hardware security modules such as the SIM is the
ability to resist anticipated security attacks; Sect. 10.5 introduces the broad range
of attacks that a smart card would be expected to defend against. Section 10.6 intro-
duces some candidate software SIM solutions and compares them to the conventional
SIM. Section 10.7 considers the Trusted Platform security element as a potential

1 Near Field Communication (NFC) is similar to a contactless smart card/Radio Frequency Identi-
fication (RFID) interface for mobile phones.
2 UMTS is the successor to GSM, initially standardised by ETSI and now by the Third Generation
Partnership Project (3GPP).
3 Standards defined by 3GPP2—relating to IS95/CDMA2000.

10 Mobile Communication Security Controllers 229

complementary or alternative technology to the SIM smart card. The overall findings
are further discussed and summarised in Sect. 10.8, leading to the final concluding
remarks.

Note that unless there is a need to show a distinction, the term SIM will imply
a SIM or USIM application implemented on a conventional smart card platform.
Similarly, the term SIM Application will refer to the SIM or USIM functionality,
independent of the hardware platform. The term Mobile Equipment (ME) will be
used to refer to all types of cellular communication device such as a mobile phone
or data modem, unless there is a need to differentiate between devices.

10.2 An Overview of the SIM

Before considering the detailed trust issues surrounding the role of the SIM, it is
essential to understand why the SIM exists in the first place. In fact, one of the main
reasons was to overcome problems caused by weak security mechanisms imple-
mented in early mobile phones. For example, before the GSM digital phone networks
appeared in the UK, there was an analogue system called Total Access Communica-
tions (TACS). For a mobile to be allowed access to the network, it needed to trans-
mit two identifiers; its telephone number (MSISDN) and a unique electronic serial
number (ESN). If the MSISDN-ESN pairing matched the network’s own records
then the mobile was judged legitimate and was allowed access. Unfortunately, there
was no algorithm available to provide confidentiality and so the phone transmis-
sions were not encrypted, making it relatively easy for an attacker to eavesdrop the
signalling exchanges and discover the MSISDN-ESN pairs. Taking a modern-day
analogy for the network access procedure, the phone was acting as a very simple
RFID [1]. Basic RFIDs can be observed and copied/cloned onto alternative plat-
forms; however, a legitimate RFID should at least resist unauthorised changes to its
critical data/ID; so it cannot be used to assume another identity. The TACS phones
were meant to share this property, however in practice, it proved simple to re-program
them as “clones”. Whilst lack of encryption was a system design issue that resulted
in eaves-dropping of signalling and phone calls, the weak handset security was a
major factor in facilitating cloning.

Fig. 10.1 SIM authentication
and session key generation

230 K. Mayes and K. Markantonakis

Therefore, when the European Technical Standards Institute (ETSI) [2] standard-
ised its digital phone system (GSM) [3], it decided to remove the reliance on the
handset as a security component and introduce a more secure solution based on a
SIM smart card. There was still some reliance on phone-based security controls in the
form of network locks, so that a subsidised mobile could not be moved from one net-
work to another without appropriate authorisation. The fact that even today, so many
“unauthorised” parties offer to unlock handsets does little to suggest that mobile-
based security control is the correct approach. However, technology and application
requirements have advanced dramatically, and so it is reasonable to suggest that the
whole issue of security and trust be reconsidered from a complete system perspective.

10.2.1 The SIM in Operation

As the role and implementation of the SIM is core to the issues discussed within this
paper, it is first necessary to obtain a basic understanding of its contribution to the
system security. The early SIMs were regarded as a combination of smart card and
application i.e. there was no logical decoupling between the SIM Application and
the smart card hardware/platform. More modern cards are based on the Universal
Integrated Circuit Card (UICC) smart card platform, and so the SIM is regarded more
as an application rather than part of the underlying hardware. However, in real SIM
products, the SIM Application is not necessarily a complete abstraction from the
hardware, but rather a “special-case” application, exploiting lower level hardware
and software functionality within the platform for both efficiency and resistance to
attacks on its security. The SIM stores quite a lot of information and supports a range
of functionality, but for clarity we will just focus on three critical components that
are stored within the SIM and also in the mobile network’s Authentication Centre
(AuC).

• An Identity (International Mobile Subscriber Identity—IMSI).
• An Algorithm (A3/A8)
• A Secret Key (Ki)

When a ME is switched on and attempts to access a mobile network, there is
a signalling exchange that transmits the SIM’s identity (IMSI) to the AuC. The
AuC issues a random number challenge (RAND) to the SIM (using the phone as a
dumb pipe) and the SIM uses its authentication algorithm (A3) and secret key (Ki) to
compute a result (SRES), which is sent back to the network. The process is illustrated
in Fig. 10.1. The AuC (which also knows the Ki and algorithm) carries out a similar
operation and if the SIM and network results match, the SIM is legitimate and the ME
is allowed to use the network. In parallel with this, the SIM encryption key algorithm
(A8) produces a session key (Kc) to cipher/scramble the communications between
the ME and network. For performance reasons, the encryption is actually performed
in the ME. This seems to go against the philosophy of not trusting the ME; however,

10 Mobile Communication Security Controllers 231

the key has no long-term significance and is refreshed regularly. It is very important
to note that whilst the SIM functionality for authentication and key generation is
well standardised, the algorithms (A3/A8) are not and so every network could have
its own proprietary algorithms. Furthermore, because the AuC can identify a SIM
from its IMSI, it can not only obtain its secret Ki, but also determines the associated
algorithm. There are numerous proprietary algorithms in use and most designs are
kept strictly secret.

Regardless of the particular algorithm used in the above procedure there are some
security weaknesses. The procedure only checks that the SIM is legitimate and not
the network, nor does it check that the network challenge is new/fresh. Therefore,
the USIM used in 3G networks [4] has an improved exchange that allows the USIM
to also test the legitimacy of the messages/challenges received from the network. An
example set of algorithms, the milenage set [5], which may be used for authentication
and key generation has also been published. The milenage algorithm set was designed
by the ETSI Sage group [6] and is based on the Advanced Encryption Standard
(AES) [7]. Whilst it is expected that milenage will be quite widely used, proprietary
algorithms are also likely. A complete description of 3G/UMTS authentication is
beyond the scope of this report; however, the important changes with respect to
2G/GSM authentication can be appreciated with respect to Fig. 10.2.

There are some changes in nomenclature4 and field sizes, but the main design
difference is that accompanying the RAND challenge is an authentication token
(AUTN). The token includes a Message Authentication Code (MAC) that can be
checked by the USIM to determine that the challenge came from the authentic
network. It also includes a sequence number (SQN) that can be used to thwart replay
attacks and an anonymity key (AK) that can disguise the sequence number within

Fig. 10.2 USIM authentica-
tion overview

4 K, CK and RES are similar to Ki, Kc and SRES in GSM authentication.

232 K. Mayes and K. Markantonakis

the legitimate challenge. Other enhancements that are beyond the scope of detailed
discussion in this paper include the generation of an Integrity Key (IK) and an authen-
tication management field (AMF). For any new system, 3G/UMTS authentication
would be strongly recommended instead of the 2G/GSM method.

10.3 Security Analysis

The SIM has been at the heart of the technical measures that underpin the funda-
mental client-side mobile communication security. However, technology alone does
not provide the required system security assurance and there are critical relation-
ships between entities plus associated operational procedures that are necessary to
establish and maintain trust. As technology has advanced and the role of mobile
communications has expanded, the security requirements go beyond the need to
simply safeguard the access to communication bearers. This added complexity not
only impacts on technical solutions, but affects the relationship between operational
entities. We can begin to examine the roles of these entities with respect to client
side trust by considering a range of categories for cellular usage.

10.3.1 Categories of Cellular Usage

There are many ways that a modern mobile communications system can be exploited
and this has lead to a number of cellular usage scenarios, supported by a wide
range of ME capabilities plus application and service environments. The following
categorisation of cellular usage will be used for further discussions.

• Conventional cellular phones (voice/SMS/SIM Toolkit)

– This category is self explanatory, although we include within it the ability to
support SIM toolkit applications i.e. simple and usually menu-based applications
that are hosted on the SIM itself.

• PDAs and Smart phones

– These are examples of multi-application MEs, which are more likely than the
SIM to host advanced value added applications. These MEs are also regarded as
Internet connected, with all the service advantages and potential security risks
that this entails.

• PCs and Laptops

– Computers tend to have a range of communication/connectivity options includ-
ing ADSL and WiFi as well as cellular. It is, therefore, most likely that the ME
is used as an added modem rather than the computer’s application usage being
strongly dependent on the MNO.

10 Mobile Communication Security Controllers 233

• Telematics and Metering

– There is a wide range of possible telematics and metering applications, but
considering vehicle telematics or electricity metering, one could imagine a fixed
function application using a custom ME reporting to a central application server.

• General Machine to Machine cellular

– This category is very diverse, but there is an implication that a custom and
managed application exists at each “machine” and that the cellular network is
used as a logical communications pipe between them. The applications could
be hosted in the SIM, ME or a connected device/computer.

Due to their similarities, telemetry and machine to machine MEs will be referred to
collectively as “T/M2M” devices. Similarly, PDAs and Smart phones will be referred
to as “PDA/Smart” devices.

Having introduced an expanded set of cellular communications categories, it is
now appropriate to introduce some generic definitions for the roles that one would
typically find involved in and around a mobile communications system and/or a
cellular-enabled computer.

10.3.2 The Roles in Communication Solutions

The following roles would be commonly recognised as present in mobile communi-
cations solutions, business and service provision activities. However, it is important
to realise that for the SIM and network security viewpoint, we are most concerned
about the hacker/attacker who would seek to undermine the system. There is no
shortage of potential attackers ranging from academics developing proof-of-concept
exploits to organised criminals seeking clones, counterfeit products and sensitive
information for financial gain. Similarly, with over 2 billion MEs and SIM cards in
circulation and active use, there is no difficulty in finding devices to attack or trans-
actions to eavesdrop. Attack methods are described in detail within Sect. 10.5 and so
for now we will focus on the more conventional roles in the mobile communication
usage categories.

• Customer/User

– A typical individual customer is likely to make use of communications services
plus value added services that are accessible via his equipment. He is quite
likely to change ME whilst keeping the same customer account; normally by
transferring his SIM card. He may also sell his old phone and possibly include
his pre-pay SIM. He may also change to a new MNO and perhaps keep his old
ME. He may register for value added services either with the MNO or a third-
party service provider. A MNO-enabled service might result in a SIM toolkit
application being downloaded/enabled on the SIM. If he has a smarter ME he

234 K. Mayes and K. Markantonakis

may download applications from the MNO, ME manufacturer or third-party
service provider.

– The customer in a metering telemetry environment is likely to be a company such
as an electricity supplier. This may require the use of a client-side application
in the SIM, ME or computer and a network-based application server. Given the
likely cost of custom deployment, upgrading the ME is unlikely, but changing
MNO en masse is possible for commercial and service performance reasons.

• Mobile Network Operator

– The owner of the mobile network, the servers and all its deployed SIM cards.
Its primary business is to charge customers for use of its network, however,
virtually all MNOs operate in the value added service domain. They may provide
application servers and also corresponding client-side applications for SIMs and
MEs. They are able to operate remote management servers for both SIMs and
MEs. The large influential MNOs issue customised handsets to their customers.

• SIM Card Manufacturer/Supplier

– The SIM card manufacturer provides the physical SIM cards to the MNO spec-
ification and usually the associated trust services such as initialisation and per-
sonalisation. SIM card manufacturers may also see themselves in an application
development role and in the provision of operational trust services.

• Mobile Equipment (ME) Manufacturer/Supplier

– Aside from manufacturing and supplying MEs, the ME manufacturer may see
itself in the role of a value-added application/service provider. As most suppliers
have some means to manage and control the data and applications on their
products they may also see themselves in a security or trust services role.

• SIM Client Application Provider

– A developer/provider of an application hosted on the SIM.

• ME Client Application Provider

– A developer/provider of an application hosted on the ME.

• ME/SIM Service Provider

– A provider of a network-hosted services matched to applications hosted on the
ME or SIM.

• PC Service Provider

– A provider of a network-hosted services matched to applications hosted on a
conventional computer.

• PC/OS Manufacturer/Supplier

– Aside from supplying the computer platform, these suppliers may also see
themselves in the role of application/service provider. As most suppliers have

10 Mobile Communication Security Controllers 235

Fig. 10.3 Interaction of roles
in mobile service provision

proprietary means to manage and control the data/applications on their MEs
they may also act in security or trust services roles.

The interaction between the various entities and roles is complex and as there are
many MNOs, SIM card manufacturers and ME manufacturers, one cannot cover all
possible combinations in this report. However, Fig. 10.3 is an attempt to show the
general interaction of the various entities/roles with respect to client-side trust for
various cellular usage categories.

An initial observation is that there has always been a very strong trust and security
relationship (A) between the MNO, the SIM manufacturer and the users (or at least
their SIM cards). This has underpinned every category of GSM cellular usage to
date.

In early phone systems, there was relatively little complexity as handsets were only
capable of basic functionality. As SIM capabilities improved, it was possible to have
value-added services that were implemented as SIM Toolkit (STK) [8] applications.
This implied a relationship between the SIM service provider and the MNO (B) who
had management control of the SIM card contents and functionality.

There was also a relationship between the STK application developer (SIM appli-
cation provider) and the SIM card manufacturers (sometimes the same entity) in order
to implement the application on delivered SIMs. The reliance on the SIM manufac-
turer to load the applications has weakened over time due to the introduction of Java
Card technology [9] that allows remote loading (or more likely post-manufacture
loading) of additional applications.

With the introduction of PDA/Smart devices (case C), ME service providers and
ME client application developers/providers work closely together (or are the same
entity) to offer services that are less influenced by the MNO. In this scenario, the
need to establish some level of client-side trust and management may be leveraged
from the ME manufacturer e.g. Nokia signing of applications for download to Sym-
bian platforms. This may also serve to strengthen the ME manufacturer relationship

236 K. Mayes and K. Markantonakis

with the end user in the area of value-added applications and services. The ME man-
ufacturer may not be totally free to control ME trust services as MNOs are major
customers for MEs and can in some cases insist on customisations and controls on
ME functionality and configuration.

In the case of cellular enabling PCs/laptops, there is much less influence from
the MNO and ME manufacturer on client-side trust unless it is established by busi-
ness/contractual means. The reason is simply that a laptop/PC user may normally
work connecting to ADSL/WiFi and so cellular communications is often regarded
as another connectivity channel rather than something that would dominate/control
service trust and usage.

Telemetry services could in principle fit into any of the options shown in Fig. 10.3,
although option (C) is the most likely. The reason is that a fixed function service
and custom client application will probably require a customised ME, especially
if the accuracy and integrity of the reported measurements are critical. Machine-to-
machine applications would probably suit options (C) and (D) with more emphasis on
the deployed applications/equipment and less influence and control from the MNO.

10.4 Security Fundamentals

So far we have considered trust and security in fairly general terms, but at this stage
it is necessary to define some trust items that we will examine further in our cellular
usage scenarios. First, we will introduce some information security fundamentals;

• Authentication

– To ensure that entities involved in our trusted solution are legitimate/authentic.

• Confidentiality

– Information, signals, commands or functionality that are restricted to certain
authorised entities must be protected from disclosure/discovery by unauthorised
entities.

• Integrity

– Critical data and applications code should be protected from modification when
in storage, operation or during communications/transactions.

These fundamentals can in turn be underpinned by some practical capabilities;

• Cryptographic algorithm(s) plus supporting data for authentication/encryption/
integrity

• Secure storage and verification of critical data, with strict access controls
• Secure verification and execution of algorithm(s) and other critical functions
• Secure communication protocols
• Controlled operating environment and isolated “security domains”

10 Mobile Communication Security Controllers 237

The word “Secure” has been used rather freely in the above bullet points and so
we should be clear what it means in this context;

The functionality that embodies our security fundamentals has been correctly
designed, implemented and tested to strongly resist the anticipated attacks5 that may
be made against it.

Having established some security fundamentals and supporting practical capabil-
ities, the next step is to consider how they are used in critical operational processes.

10.4.1 Trust Operations

The concepts described thus far need to be applied to SIM usage and evolution,
and so it is necessary to consider some relevant processes and operations that rely on
security and trust. These entries will be split into two sections; Core SIM Operations,
that are fundamental to all forms of mobile communication and Extended Operations
that relate to value-added services. Although this paper focuses mainly on the Core
SIM Operations, it is important to be aware of Extended Operations, because if the
SIM’s capabilities are not sufficient or easily accessible then alternative strategies
and technology/management solutions will likely appear.

10.4.1.1 Core SIM Operations

• Initialisation, Personalisation and Key Management

– Customised configuration of the solution prior to issue to a customer

• Authentication/ Encryption
• Management of SIM Data and Applications
• Migration

– Change of MNO
– Change of ME
– Change of Computer/Peripheral
– Change of Algorithm

10.4.1.2 Extended Operations/Value-Added Services Management

• MNO, ME Manufacturer and third-party Value-Added Services provision/
management

• Near Field Communication Management

5 The attacks which are described more fully in the Sect. 10.5 include all known logical, physical,
side-channel and fault classes.

238 K. Mayes and K. Markantonakis

10.4.2 Initialisation, Personalisation and Key Management

The actions under this heading are strongly protected under the trust relationship
between the MNO and a few selected SIM card manufacturers; these parties are
considered mutually authenticated. Initialisation prepares the SIM for issue to any
of the MNO’s customers; however, it is a significant stage as the MNO will have
shared confidential details of its algorithm, services and data supported by the SIM.
It is still the case that some MNOs keep their algorithms secret and whilst they may
believe them to have been well designed, they are unlikely to disclose them; as it
is not uncommon for proprietary algorithms to fail dramatically once exposed to
widespread expert scrutiny. Personalisation is the next critical phase as the keys are
generated/loaded to permit authentication/encryption. Normally, the keys are also
loaded to permit future Over The Air (OTA) [10] management of the SIMs by the
MNO and in the case of Java Cards the GlobalPlatform [11] key(s) are loaded to
permit application loading/deletion. Various PIN codes are also set at this point to
strictly control access to the SIM functionality. Clearly, initialisation, personalisation
and the associated key generation and management processes are extremely security
sensitive operations and reliant on the integrity of the information loaded onto the
smart card. These process are intended only to be carried out in a secure environment
by a party adhering to the highest physical, operational and IT security standards.

10.4.3 Authentication/Encryption

The basic GSM authentication/encryption support via the SIM was described in
Sect. 10.3. For it to be secure we must be sure of the algorithm integrity; that it has
not been modified and cannot be disclosed by anyone with access to the SIM, nor
should it be revealed when in operation. The secret key must not be rewritable, or
externally readable and may only be accessed by the algorithm with the condition that
the key value cannot be inferred from the operation of the algorithm. To achieve this
under anticipated attack conditions requires attention to design and implementation
aspects in both software and hardware. Normally, these safeguards are provided by
the SIM Card manufacturer (assisted by the specialist chip provider) who would
normally also be the algorithm implementor. The session key generated by the SIM
and passed to the phone to support confidentiality of radio transmissions is not
a strong or long-term secret, but the SIM and phone should ensure that it cannot
easily be extracted by an adversary.

10 Mobile Communication Security Controllers 239

10.4.4 Management of SIM Data and Application

The SIM contains numerous data files [12]. The integrity of the data critically affects
the operation of the ME and the services/facilities offered to the customer. The data
fall into a number of categories;

• System configuration (identity, SMS switching server, language preference, ser-
vice table)

• User data (telephone numbers, SMS messages)
• Operational data (network lists, fixed dial numbers, customer-care telephone num-

bers, branding)
• Application data (menus)

The files have authentication access controls that were set during the initialisa-
tion/personalisation processes. Access permissions are controlled locally by a range
of PIN codes. The most significant PINs are only known to the MNO (and SIM
manufacturer), whereas PIN1 is trusted to the customer for locking the SIM. It is
also possible to remotely access the files using an OTA server. This relies on a stan-
dardised protocol and another set of keys that have been pre-stored in the SIM during
personalisation. The OTA server and keys are normally only available to the MNO;
however in principle, some keys may be trusted to other parties for the management
of application data on the SIM. SIM Toolkit applications may also be managed in this
manner and the keys permit a secure/confidential channel to be established between
the SIM application and the OTA server, independent and additional to any security
offered by the basic GSM encryption. In the case of a Java Card supporting Glob-
alPlatform, it is possible to download/delete SIM applications in the form of Java
applets. For this purpose, there is also a Card Manager key that is pre-stored on the
SIM during personalisation. Clearly, the management capability for a modern SIM
relies on a significant number of secret keys and PINs.

10.4.5 Migration

Migration is an important consideration in mobile networks and there are a number
of scenarios that deserve consideration.

• Migration to a new MNO is usually achieved simply by SIM replacement. This
ensures that the stored data, algorithms, keys, PINS and added functions are
exactly as required for the new MNO. It also ensures that the SIM has the correct
capabilities in terms of memory, speed, crypto-coprocessor and communications
capabilities. There is usually quite a wide range, with some MNOs going for very
low-cost limited devices, whereas others opt for the more sophisticated and expen-
sive products. Variation may also be evident within SIMs for different customer
segments used by a single MNO. There are also significant geographic variations

240 K. Mayes and K. Markantonakis

driven by local market conditions and competition. Replacing the complete SIM
card also provides assurance that security critical functionality and storage plus
the associated attack resistant countermeasures in the underlying hardware and
software have been implemented and tested to the MNOs standards.

• Migration to a new ME was one of the reasons that the SIM was introduced as
a removable module. Providing that the new ME is not locked to a competing
network, plugging in the customer SIM is all that is required. Networks are often
obliged by regulation to unlock handsets (for a fee) when requested to do so by a
customer, although most are unlocked by unauthorised means.

• Migration to a new PC/Laptop usually means swapping the whole ME + SIM, in
the form of a PCMCIA or USB communications adaptor. A new driver may need
to be loaded onto the computer. If the laptop has a built in ME then migration
would normally be via a SIM and driver swap.

• Although less common, migration of algorithm is possible within mobile networks
and indeed, multiple authentication algorithms can be simultaneously supported
within the network, so that not all SIMs need to be replaced at the same time. At
the client level, the migration could be achieved by a SIM swap, however, some
networks implement back-up algorithms. These can be switched in, if the normal
algorithm is compromised by some unexpected weakness or advance in attack
techniques. Because of its emergency-use nature, the back-up algorithm is likely
to be a confidential/proprietary design as is the authorisation method to enable it.

10.4.6 Extended Operations/Value-Added Service Management

For value-added service management, there are a number of scenarios to consider.
First, an application may be hosted on the SIM or in the ME. SIM applications are
normally controlled by the MNO and tend to be restricted by SIM technology and
varying levels of standards support in MEs. On the positive side they benefit from
mature SIM standards for authentication, confidentiality, integrity and management.
ME applications can benefit from the much greater available processing and user
interface resources and potentially may be managed by MNOs, ME Manufacturers
and third-party application/service providers. The deployment/business strategies of
these parties may be divergent and the security assurance, control and management
requirements can vary for each application.

10.4.7 NFC Management

The prospect of MEs having Near Field Communication (NFC) capability and being
able to emulate contact-less smart card readers and contactless smart cards is exciting
and opens up new opportunities for mobile services. NFC capable MEs introduce
the concept of a Security Element (SE) that might be used to host applications in

10 Mobile Communication Security Controllers 241

a secure manner. The ownership and control of the SE and indeed whether it is an
additional chip or added SIM functionality is still the subject of some debate. It is
also feasible to drive the NFC functionality direct from the ME platform, thereby
bypassing an additional or SIM hosted SE.

10.5 Generic Attacks on Smart Cards

Before considering whether the SIM card is any more at risk today compared to when
it was launched, it is first necessary to review the range of attacks that have been
successfully attempted against smart card solutions. It is a common characteristic
of smart card-based systems that a critical part of the security solution is in the
hand of the user and indeed often in the hands of millions of users. The opportunity
for misuse/tampering is enormous and not only from criminals/hackers, but also
from the legitimate holders and employees involved with card distribution, sales
and operations. It is therefore comforting to note that the most advanced SIM cards
are extremely capable of defending themselves, using a sophisticated arsenal of
countermeasures against known attacks. It might be imagined that systems would
only deploy these state-of-the-art smart cards; however, the need to deploy large
numbers of cards that often have a limited lifetime, creates pressure on costs. What is
actually deployed is the best business compromise, balancing price, risk, functionality
and attack resistance. Advances in technology, new attacks and/or increasing the
value of protected assets can all upset this balance, and so it is prudent to periodically
re-evaluate a card’s vulnerability to attack. Smart card attacks may be grouped within
some general categories that typify the techniques and also the resources and expertise
needed by the attackers. Commonly described categories are:

• Logical
• Physical
• Side Channel
• Fault6

10.5.1 Logical Attacks

Logical attacks are not unique to smart cards and are similar to attempts to hack into
IT systems. The attack uses the normal interface to the device, but attempts to extract
information via repeated guesses, invalid requests and stimulating error conditions
etc. Logical attacks exploit things that have been done badly e.g.

• Weak design

6 Fault attacks could be considered as combinations of other categories, but their importance merits
separate mention.

242 K. Mayes and K. Markantonakis

• Bad implementation
• Poor testing
• Lack of monitoring/detection

Applied to a smart card, the logical attack only needs a card reader and a PC so
there is no cost and/or equipment barrier to such an approach. The basic message
formats and protocols used to communicate with smart cards are well standardised
[13], and so the attacker can easily construct test messages of correct or intentionally
incorrect formats and lengths to try and generate some revealing response.

Weak design is the biggest worry, as it affects not only the information that might
be revealed to an attacker, but also its subsequent value and desirability. A great prize
would be a global secret held on a legitimate smart card, which if revealed could
be used for mass production of counterfeit cards or simply exposure to blackmail.
A flawed security algorithm could also be exploited to extract card-specific secret
keys, as in a well-reported logical attack [14] against an example GSM authenti-
cation algorithm called COMP128-1. Essentially, the attack involved repeated calls
(many thousands) to the card authentication command, which eventually revealed
sufficient information to allow the secret key (Ki) to be extracted. This should have
been practically impossible from a brute-force/trial-and-error standpoint, and so the
fact that the attack could succeed in a practical time frame is related to a weak-
ness in the algorithm itself. There were also system design weaknesses in that the
authentication command could be called from a PC device that had no provable
authority and originally there was no monitoring or detection mechanism for the
many authentication attempts. Stronger GSM algorithms exist which are less vulner-
able and 3G systems overcome the mutual authentication problem by using a MAC to
validate authentication requests. Where COMP128-1 cards are still deployed today
they tend to incorporate an authentication counter that terminates the card after too
many attempts—albeit with a corresponding reduction in the normal life of the card.

The best countermeasure against logical attack is quite simple, just design, imple-
ment and test things in a rigorous and best-practice manner. For good measure, it is
also advisable to include monitoring methods to detect and react to attacks in progress.
The good news is that modern smart cards bought from reputable manufacturers are
generally well designed and tested, so that an attacker would be very fortunate to
succeed with a logical attack alone. In response to this, more sophisticated attack
methods have evolved including physical, side-channel and fault attacks.

10.5.2 Physical Attacks

It is a false assumption to consider a system secure because it uses a good algorithm.
The algorithm alone may provide good logical security, but could be completely
undermined by physical tampering. In the case of the smart card there is reliance on
the chip to defend itself against intrusive physical attacks that seek direct access to,

10 Mobile Communication Security Controllers 243

or modification of memories, buses, CPUs etc., thereby bypassing “logical” security
defences.

Whereas logical attacks can be developed or copied by just about anyone, physical
attacks normally require a high level of technical expertise and access to sophisti-
cated and expensive laboratory equipment. Almost invariably the attacks require the
decapsulation of the smart card chip i.e., its removal from the card in preparation for
physical examination and/or modification.

Rendering the source card (or indeed many of them) unusable is not an important
issue as physical attacks are most often used for reverse engineering the card imple-
mentation. The goal is to discover design information that could be used in some
other type of attack or lead directly to the creation of card clones. Although physical
probing techniques are tricky because the chip area is so tiny (typically less than
10 mm2), the principle is quite simple i.e. attach conductive probes to interesting
parts of the circuit. One of the favoured tools for investigating smart card chips was
the probe station consisting of a microscope, a high precision mechanical platform
and needle-like probes designed to make electrical contact with parts of the chip
circuitry. A second-hand probe station can be bought for about e12,000; an example
is shown in Fig. 10.4.

As chip technology has advanced, the smart card circuitry has got smaller and
smaller, to the point where conventional probe stations are becoming impractical as
the target contacts are very small compared to the size of the probe needles. A more
modern and expensive tool (approx. e350,000) is the Focussed Ion Beam (FIB).
The FIB can be used to examine and/or modify a circuit, and can connect additional
circuitry or simply larger contact pads for access via a conventional probe station.

Fig. 10.4 Probe station
(Wentworth labs)

244 K. Mayes and K. Markantonakis

A physical attack against a chip that has not been specially designed to resist
it, will reveal its secrets quite rapidly, however smart cards can incorporate many
countermeasure techniques which whilst not guaranteeing protection against physical
attack, make it far more difficult for the attacker. A common countermeasure is to
introduce a physical barrier that may simply be a slab of tough material or an active
current carrying mesh. Removing either type of barrier without destroying the chip
requires the type of expensive equipment and high-level expertise normally found in
commercial test labs. This is not the end of the defences available to smart cards and
indeed the circuit layout and layers may be scrambled to make it difficult to locate
the desired attack points. Even if the barriers and layout confusion are eventually
mastered there can still be low-level encryption methods that prevent direct reading
of buses and memory contents. Whilst the attack/investigation is in progress there
are also the environmental detectors to worry about. If the chip is exposed to light,
extremes of temperature and/or voltage it will trigger a detector and the chip will
cease to operate.

For a tiny piece of silicon, the smart card can be astonishingly good at resisting
physical attack. However, one must always expect that any security device is only
tamper resistant and not tamper proof as driven by enough motivation, expertise,
money and time, a physical attack will succeed. The important question is why would
anyone take the trouble? A company-commercial reason is that reverse engineering
may permit the creation of counterfeit smart cards. A security reason is the belief
that the card contains some secret information or technique that may directly or in
combination with other attacks be used to exploit and or clone other such cards. It
should also be appreciated that some researchers would embark on a sophisticated
physical attack simply because of the academic challenge. Whilst proof-of-concept
attacks are not usually motivated by financial gain, they unfortunately serve to educate
other parties that may have malicious intent.

It is worth re-iterating that not all smart cards include all the physical attack
countermeasures mentioned above and manufacturers are understandably coy about
revealing what their chips will or will not do. It is also worth noting that there have
been successful physical attacks that have been very simple and low cost [15] such as
interrupting the power supply during critical processes. Generally, physical attacks
are beyond the resources and capabilities of most attackers, whereas the same is not
true of side channel attacks.

10.5.3 Side Channel Attacks

It is very difficult to keep a secret. Usually this statement might apply to some
document, secret algorithm or key that is locked away; however it can be applied to
the operation of electronic circuits. If a circuit such as a smart card chip is believed
to be running an algorithm and using a secret key it may become an attack target.
The logical attacker will actively try and trick the chip into revealing its secrets
(but should fail), whereas the physical attacker will try and break in and perhaps

10 Mobile Communication Security Controllers 245

destroy a few other chips as part of a learning process. What makes the side-channel
attacker interesting is that he basically just waits and listens, extracts the secret with
a modest amount of equipment and often leaves the original card undamaged. As an
analogy, consider the attackers trying to get access to an interesting security lecture.
The logical attacker tries to trick his way in, but cannot get past the security guard
on the door, the physical attacker drives a bulldozer through the wall, whereas the
side-channel attacker just listens at the door where the sound of the lecturer’s voice
“leaks” through the door (the side channel).

The basic principle of side-channel analysis is that secret information is always
leaking despite the presence of logical and physical attack countermeasures, so the
trick is to find the leakage and extract something useful from it. The smart card,
in common with most other electronic devices, consists of many logic gates and
transistors. An example is shown in Fig. 10.5. As the logic state of the gate changes
e.g. from 1 to 0 or 0 to 1 there is a minute surge of electrical current accompanied
by a spike of electromagnetic radiation. Therefore, if you can detect the current or
radiation changes you can get an idea about the state of the logic gates. Now, if for
example those gates are part of a register used by the security algorithm then at some
stage, the transitions will be caused by the value of the key. To extract the key from
the leakage may sound difficult, but the reality is that until countermeasures were
put in place, side-channel attacks were effective against even high-end smart cards
and they are still valid against other types of non-protected circuitry.

One of the major concerns is that side-channel attacks do not need a lot of expen-
sive equipment and can be recreated with far less expertise than would be needed by
a physical attacker. A typical set up for Simple Power Analysis [16] or Differential
Power Analysis [17] requires little more than a digital oscilloscope and PC, whereas
the electromagnetic emission version simply requires an added antenna/amplifier.

DES was an early target algorithm [18] as it uses multiple rounds of processing
in which only a few key bits are used. The side-channel analysis is used to reveal key
information at each round, so the attacker deals with a sequence of small key problems
rather than the full DES key. It is of course known that with the right equipment,
normal DES can be brute forced [19], so a common strategy is to recommend double
or triple key DES. Whilst this is a logical defence, it does little to safeguard against
a side-channel attack that can simply work its way through the small number of
key variations of each round. The critical point to remember is that logically strong

Fig. 10.5 CMOS switching
circuit

246 K. Mayes and K. Markantonakis

algorithms and keys may still be vulnerable to side-channel attack unless appropriate
tamper-resistant measured are implemented.

Modern high-end smart cards are strongly tamper resistant and this extends to
defences against side-channel attack. As attack analysis usually relies on statistical
averaging, one approach is to add low-level timing jitter and high-level software
variations to prevent alignment of the leakage waveforms. Another defence is to
generate artificial noise on the leakage signals to disguise the target information. If
the chip hardware is sophisticated enough to support differential switching (rare)
then whenever a logic 1 changes to 0 there is a corresponding bit that changes a 0 to
a 1, which snuffs out the leakage signal at source.

10.5.4 Fault Attacks

The basic principle behind a fault attack is that if you can induce a temporary fault
into an algorithm the error can be used to reveal secret information. A necessary
pre-requisite is therefore the means to introduce a fault in a non-destructive and con-
trolled manner. This has been practically achieved using spikes on the card power
supply and momentary exposure to bright light. The faults can be induced in thep-
rocessing circuitry or possibly change the state of memory cells. A famous example
of this attack class was used against a RSA implementation [20]. Because RSA is
computationally intensive it is often implemented in two stages with the results being
combined by the Chinese Remainder Theorem (CRT). If you can cause any error
in the processing of a bit within one of the stages there is an elegant method that
directly extracts the secret key by a simple mathematical calculation.

If a smart card device is likely to be subject to fault attacks then there are a number
of countermeasures that can be used effectively. At the chip level, it is possible to
add detectors that should trap the fault insertion attempt e.g. light or voltage glitch
detectors. At the application level, the algorithm could be run multiple times and the
results compared although this could have a significant effect on speed and usability.

10.5.5 Summary and Main Points

It is important to realise that the attacks mentioned in this chapter are not made against
smart cards because their security is weak, but rather than they are identifiable and
easily accessible security components. Except for very low-end devices, the SIM
smart card’s resistance to attack is quite admirable. When it was first introduced,
the SIM’s attack resistance provided far more assurance than the available mobile
phones; however, we should not automatically assume that this is still the case. It is
therefore worthwhile to consider various alternative options for SIM implementations
with respect to our modern categories of cellular usage.

10 Mobile Communication Security Controllers 247

10.6 SIM Implementation Options

In this section, we will consider a range of implementation options for the SIM with
respect to our core security requirements and various categories of cellular usage
described in Sect. 10.4.

10.6.1 Pure Software SIM

Our definition of a Pure Software SIM (PSSIM) is a SIM application written in
software running on a shared computer processing platform that cannot benefit from
any hardware security component. Even before considering the detailed issues, it
should be clear to most readers that this can only reduce rather than increase existing
levels of security protection, and so it is important to try and understand why the
PSSIM is proposed for some market segments.

10.6.1.1 Motivation

The root of the interest in the PSSIM lies in cost reduction and logistics. Although
typical SIM cards are no longer very expensive (few Euros), the mobile industry
deals with very large numbers of them and so even small reductions can result in
saving of millions of Euros. With a PSSIM, it is not anticipated that there would
be a significant saving to the ME manufacturer (apart from the SIM socket cost),
although it may be a little easier to physically construct the product without access
for SIM card insertion/removal. The beneficiary is therefore most likely to be the
MNO (who typically buys/owns the SIM cards), but of course the MNO has most
to lose from compromising the system security. The financial motivation is not only
cost savings from smart card chips, but also the removal (or great simplification) of
the procurement and distribution channels required to get SIMs from the factories
and into mobile devices. The problem is worse for specialist MEs that are effectively
embedded modems used in Telemetry/Machine-to-Machine (T/M2M) applications.
For example, you may ship cars around Europe that have embedded communications
to support local services and telematics, and so ideally you would insert the SIM for
the country of destination. The destination may not be known during manufacture, so
adding the SIM cards is a manual post-fit operation that may be costly and difficult
in terms of physical access. There are some potential technical and tariffing solutions
to this problem; however, they put more emphasis on strong security and it would be
difficult to sell T/M2M equipment without full co-operation from an international
MNO. In the case of general T/M2M, the operational environmental conditions may
be more extreme than for conventional mobile telephony, and so a “special” SIM
card may be needed in any case.

248 K. Mayes and K. Markantonakis

10.6.1.2 Analysis

It is relatively straightforward to write a software program that provides all the core
functionality offered by a SIM. If the algorithm, key management and security poli-
cies are made available by the MNO, then the implementation will also include the
main security functions. If our program has been designed, written and tested accord-
ing to IT best practice then it should resist logical attacks, but alarmingly, none of
the other categories described in Sect. 10.5. Furthermore, because the PSSIM runs
on a non-secured shared platform we have additional security concerns. Other appli-
cations running on the platform may gain access to the memory used by the PSSIM
and use this to monitor/modify critical data and functionality. The other platform
applications may also cause (intentionally or accidentally) run-time performance
and resource problems for the PSSIM that may compromise the SIM’s real-time
duties. Furthermore, if the platform has no boot protection there is no guarantee of
integrity for any of the platform’s operating system and application software. As the
platform is also a communications device there are fears of fast-spreading remote
attacks that typify PCs, such as viruses, worms and trojans. A successful attack on a
PSSIM would seem almost inevitable and that would normally lead to clone devices.

Some MNOs, ill-advisedly, appear prepared to tolerate a level of cloning in their
networks—as evidence from continued use of weak authentication algorithms. How-
ever, this is dangerous, as attacks can rapidly spiral out of control as particularly
easy/lucrative techniques are discovered. PSSIMs would not only simplify attacks,
but also provide convenient clone platforms for use with extracted keys. An attack
on a PSSIM using a secret algorithm would be most severe as it would amount to the
discovery of a “global secret” which may reveal weaknesses that could undermine
all categories of cellular communication.

Aside from discarding almost all of the security measures that have protected the
SIM application, the PSSIM also breaks the very important trust linkage between
the MNO and the SIM manufacturer. For the PSSIM the MNO may have to share
its algorithms, data, policies, secret keys and PINs with ME manufacturers. Whilst
SIM manufacturers are set up as high security companies (and often generate much
of the sensitive data for MNOs), this is not normally the role/capability of the ME
manufacturer.

It is difficult to have any confidence in the personalisation and lifecycle man-
agement (including migration) of the PSSIM and its associated data. For example,
personalisation of a conventional SIM is normally carried out in a very secure envi-
ronment (usually by the SIM manufacturer) and relying on the integrity of the smart
card platform. If we are using other parties in a different environment, to config-
ure a platform that cannot guarantee its integrity, or resist simple attacks, we could
completely compromise the core security solution.

10 Mobile Communication Security Controllers 249

10.6.1.3 PSSIM Summary

Despite the temptation to reduce costs and simplify logistics, it is strongly rec-
ommended that a PSSIM solution should not be used. It is vulnerable to a wide
range of security attacks and undermines proven trust relationships and manage-
ment processes. PSSIMs would almost certainly result in clones and problems may
become fast-spreading once attacks exploit the communications capability of MEs.
The use of PSSIMs in some restricted categories of cellular usage is dangerous
because revealing secret information such as proprietary algorithms and security
policies may become a risk for all categories of usage. This risk is not just from
technical attack, but disclosure of this sensitive information to third parties that are
not specialist security/trust companies.

10.6.2 Hardware Shared Security Software SIM Solution
(HS-SSIM)

The SIM is not the only application in an ME that may require security assurance
and following-on from the discussions on the PSSIM, it is clear that some specialist
hardware support is essential. The hardware must protect the particular application,
its operational processes and sensitive data, but to do this it must also protect the
integrity of the processing platform itself. The conventional SIM card and TPM (see
Sect. 10.7) approaches are examples of additional and specialisthardware security
processor modules that may help protect applications from attack. However, this
section focuses on the use of the existing/main ME processor to implement the SIM,
which we will refer to as a hardware shared software SIM (HS-SSIM). This differs
from the PSSIM because the chosen ME processor has some specialist security
enhancements. By way of example, this section will consider the “TrustZone” [21]
from Advanced RISC Machines Limited (ARM).

The ARM is a 32-bit RISC processor architecture that is used in a wide range of
embedded systems such as mobile phones and PDAs. The ARM architecture is com-
plemented by a number of security extensions under the overall name of “TrustZone”.
Key components of the TrustZone architecture are presented and summarised/quoted
below:

• a TrustZone CPU that is used to run trusted applications isolated from normal
applications, and to access the memory space reserved for trusted applications,

• secure on-chip boot ROM to configure the system,
• on-chip non-volatile or one-time programmable memory for storing device or

master keys,
• secure on-chip RAM used to store and run trusted code such as Data Rights Man-

agement (DRM) engines and payment agents, or to store sensitive data, such as
encryption keys,

250 K. Mayes and K. Markantonakis

• other resources, peripherals, that can be configured to allow access by trusted
applications only.

It offers two separate and parallel execution environments that run on the same
processor. This is achieved through virtualisation which is responsible for deciding
whether the currently executing application should run as normal or secure code. The
decision controls the restrictions (e.g. which peripherals it can access) and privileges
(e.g. access to certain memory locations) that apply to the application. As there is
only one physical processor, a very close cooperation is required between the hard-
ware and software components, in order to guarantee that the overall architecture
behaves as a single well-defined system. The measures used to control the execu-
tion environment should make TrustZone more secure than the PSSIM solution, but
only if the TrustZone software maintains its operational integrity and the underlying
hardware functions correctly even when subject to attack.

A core element of the TrustZone functionality is the “Secure Monitor” entity which
is responsible for performing the necessary checks and switches between secure and
non-secure states. It is up to the processor to enforce the correct data and peripheral
access policies depending on the actual execution state, e.g. secure or non-secure.
The TrustZone platform also offers a secure boot process using cryptographically
signed boot-strap code in ROM. The TrustZone software (TZSW) is at the centre
of the platform’s execution environment. It offers the ability to execute native code
or interpreted applications. This interpreter is based on the Small Terminal Interop-
erability Platform (STIP) which is developed by GlobalPlatform [11] and in theory
permits applications to run in a protected and sandboxed environment.

10.6.2.1 Motivation

The motivation to take this approach is similar to that of the PSSIM and for logistics
reasons, it is most desirable for the T/M2M categories of cellular usage. From a cost
minimisation viewpoint, it suggests improved security compared with the PSSIM
whilst avoiding the cost of an additional security module. There may also be interest
in using the method of software upgrades (re-flashing) to also correct/upgrade the
SIM functionality.

10.6.2.2 Analysis

The HS-SSIM is a compromise solution that should offer improved security with
respect to a PSSIM; however it may be difficult to achieve tangible assurance that this
is actually the case. We are reliant on the HS-SSIM software to control secure/non-
secure processing and reliant on the underlying hardware to implement the necessary
execution and data storage controls. Unless these components have been evaluated
to a known standard (e.g. Common Criteria) or lab-tested by a MNO, one must
assume that these components may be vulnerable. The difficulty in trying to achieve

10 Mobile Communication Security Controllers 251

a level of assurance is further compounded if software elements may be upgraded
(or re-flashed) post-issue, as is often the case in a ME. This upgrade mechanism
potentially provides an added security risk and the changes to the software could
invalidate previous security evaluations. The hardware could be evaluated against
known attacks, although resistance is usually a combination of hardware, operating
system and application measures. However, the design of the processor is likely to
be a compromise between the performance needed for normal use and the measures
needed for secure execution. It might be expected that this compromise would lead
to less protection and slower execution compared with a dedicated hardware security
module such as a SIM card. The literature review reveals that the core of the Trust-
Zone’s functionality is not currently promoted (due to its increased size) for smart
card products. In fact, the core functionality of TrustZone provides secure access to
smart cards, suggesting that the technologies are expected to co-exist. Although all
software may run in the secure core of the platform, it is advised that only security
sensitive code is shielded for trusted execution as the extra checks increase the overall
size and complexity of the platform software.

The last point is significant as one of the main motivations of the HS-SSIM was
to provide added security without adding an extra chip. If as the TrustZone suggests,
there may be added cost for the main processor and its memories and increased power
consumption, the benefits of the HS-SSIM compared to adding a specialist hardware
security module are eroded.

10.6.2.3 HS-SSIM Summary

The HS-SSIM should in practice be more secure than the PSSIM, because it has
some logical features that are aimed to support secure execution. However, from
a security assurance viewpoint there may be little difference unless the hardware,
platform operating/system environment are evaluated to a known standard and then
do not change post-issue. Without this assurance one has to assume that whilst the
solution may resist some logical attacks, it will be vulnerable to other techniques.
It is also questionable whether adding complexity to the main processor is the best
solution and indeed whether it is possible to achieve effective assurance on a device
that is shared by non-secured applications. The justification to use the HS-SSIM was
to avoid an extra chip and the associated cost, however, adding secure execution
capability to the main processor appears not without its own costs.

10.6.3 Standalone HW Security SIM Solution

Our definition of a Standalone Hardware Security SIM (SH-SIM) is the conventional
SIM smart card used in GSM and UMTS communications. It relies on a specialised
security microcontroller chip with a security optimised operating system that has
an implementation of at least the SIM application and associated (MNO specific)

252 K. Mayes and K. Markantonakis

algorithms and data. It is assumed that the whole platform and SIM application have
been tested as resistant to all known attacks, to a level of assurance that satisfies the
standards/requirements of individual MNOs. Furthermore, the SH-SIM is person-
alised in a secure environment prior to issue to customers and/or insertion in a ME.
In key management terms, security critical keys (and PINs) have been pre-loaded
onto the SIM during personalisation and these fields will not be changed thereafter.
Post-issue re-personalisation is not possible and migration to a new network requires
physical replacement of the SH-SIM. Changing to a new ME simply requires mov-
ing the SH-SIM to the new ME. A SH-SIM from a particular MNO might support
algorithm migration, but the new algorithm and switching mechanism would have
been pre-loaded onto the SH-SIM.

10.6.3.1 Motivation

The motivation to keep the existing SH-SIM is that it has done a remarkably good job
of securing communication in mobile networks. Changing anything to do with the
SH-SIM is therefore a risk that could have serious impact on a MNO’s business and
reputation. Moving from a well-proven security solution to an even better-proven
security solution of course has merit. For example, upgrading from a 2G authentica-
tion method to the 3G milenage method is well advised as the introduction of mutual
authentication and an improved open algorithm design would strengthen the system
security.

10.6.3.2 Analysis

Although there are some arguments to avoid the SH-SIM to reduce costs there are also
arguments to keep it. For example, the size of SH-SIM devices varies enormously;
whilst a typical device might have a 32 kbyte Electrically Erasable Programmable
Read-Only Memory (EEPROM), some MNOs are using Mbyte devices and highly
advanced Gbyte SIM7 devices are available [22]. If MNOs no longer supplied their
own physical SIMs, but made use of a Hardware Security Module (HSM) built
into a ME, the HSM would either be dimensioned very large (and expensive) to
accommodate all MNOs, or would be too small for some. Advanced MNOs might
want a HSM with USB interfaces [23] and Single-Wire-Protocol [24] capability
to enable Near Field Communication [25] services; however other MNOs may not
wish to pay for this. There are also cost factors around crypto-coprocessors that are
necessary to support extra services that use public key cryptography. It is therefore
important to realise that by providing its own SH-SIM the MNO can always ensure

7 It is interesting to note that the traditional limitations of the SIM smart card (small memory, slow
interface and restricted CPU) have been overcome by technology advances, albeit at added cost
compared to a traditional SIM.

10 Mobile Communication Security Controllers 253

that the cost and capability of the SH-SIM matches its current and planned business
requirements.

In the SH-SIM, the MNO is providing the complete package for its security. It can
ensure that the combination of the chip, operating system, applications are not only
functionally correct, but have been adequately tested against known attacks. There
is sometimes criticism of SH-SIMs in that they claim to be tamper resistant, but are
not evaluated to common criteria standards, and so the level of security offered to
support cellular usage is unclear. The reason for this is partly due to cost, but also the
rapid deployment rates in mobile communication that can mean a SH-SIM lifecycle
is shorter than the time needed for a common criteria evaluation. However, while
there remains no agreed and practical assurance level for a SH-SIM, it will be far
more difficult (than it should be) to argue its superior security credentials compared
to say a PSSIM. It would therefore be very useful to have MNOs adhere to a set
of industry-wide best-practice criteria for SH-SIM devices (perhaps from the GSM
Association [26]).

Any post-issue changes to the SH-SIM are completely controlled by the MNO
and tend to affect data and added applications rather than the core SIM security and
the OS/platform. The MNO can also ensure that all critical functionality, keys and
data are personalised in a secure environment pre-issue, often by means of a highly
trusted third party (e.g. SIM manufacturer).

It should be noted that all the good security properties of the SH-SIM arise from
the chip and the associated operational and management processes. The smart card
body has almost no useful role in normal operation and most of the card plastic is
discarded before insertion into the ME. The body may help in production as standard
smart card production machines may be used, which helps to keep costs down. The
body also helps by providing portability which allows a SH-SIM to be swapped
between MEs.

In principle, if the SH-SIM chip was prepared and personalised as if it were to go
into a card body, but was actually soldered onto a ME circuit board and connected
via its normal interface then the operational security would be identical to the current
SH-SIM arrangement, except that the SH-SIM would not be removable. This could
be a problem for conventional telephony as there can be legal requirements that allow
a customer to migrate his ME to an alternative MNO; however, this might not be the
case for T/M2M communications. Embedding the SH-SIM would result in a fixed
network ME that would need to be replaced if there was any problem with the ME
or the SH-SIM chip/account. Migration might still be possible if it were feasible to
place the SH-SIM chip in a small socket. In this case, the MNO migration would be a
job for a technician. This requirement may not however be unreasonable for T/M2M
systems.

10.6.3.3 SH-SIM Summary

The conventional SH-SIM has proven itself as an effective security module for mobile
communications and any change is a potential risk that must be properly understood

254 K. Mayes and K. Markantonakis

and justified. One positive example of this is the SH-SIM migration from 2G to
3G security, as this has been rigorously investigated and improves system security
with the addition of mutual authentication and an improved open algorithm. The
large variation in the types and costs of smart cards used by different MNOs for
various market systems suggests that any SH-SIM equivalent provided by the ME
risks being over or under specified with corresponding impact on costs and services.
An advantage of the SH-SIM is that operators supply the whole package including
hardware/OS, applications and data, and so can control the level of security assurance
and ensure resistance to all known attacks. It would perhaps be better for the industry
if more effort was directed toward best-practice criteria for SH-SIMs, so comparisons
with say PSSIM solutions could be more easily made in future. The conventional
preparation and use of the SH-SIM ensures that personalisation is carried out by
a trusted party in a secure environment and that the SH-SIM may be subsequently
managed by the MNO in a secure manner. The importance of these last points is
often overlooked when proposing alternative solutions to the SH-SIM. If a SH-SIM
chip is prepared in the normal manner then in principle it could be included on a ME
PCB for T/M2M communications and provide the same security as the removable
SH-SIM. The disadvantage is that MNO migration may not be possible or require
technician services.

10.7 Trusted Platform

It should be clear from the fore-going discussions that the security of mobile commu-
nications has relied to a significant extent on a specialised tamper-resistant microcon-
troller embedded within the SIM smart card module. Because this small computer
platform has been specified, implemented and tested by the MNO and/or its suppliers,
the MNO can trust it. Furthermore, as the SIM is owned and managed by the MNO
this trust is not eroded during the SIM lifecycle. However, the need for manageable
trust in a processing platform is not restricted to mobile communications. The PC
world, via the Trusted Computing Group8 [27] , has driven forward the Trusted Plat-
form Module (TPM) concept. The main motivation behind the development of the
TPM specifications was the difficulty in a modern/complex PC to verify whether it
is running “uncorrupted” software. If for example the underlying operating system
(e.g. Windows or Linux) cannot provide such assurance, there can be little confi-
dence that any applications will perform correctly. Fundamentally, the TPM goal is
to prove that the PC is in a state that can be trusted to run applications and process
data. Note that in contrast with a SIM, the TPM is not intended to be portable or
removable, but rather inextricably bound to one and only one platform (and usually
in the form of a chip). It securely stores asymmetric keys which can be used in order
to protect sensitive data like other keys, certificates and passwords. The TCG states

8 Note the Trusted Computing Platform Alliance (TCPA) was the predecessor to the Trusted
Computing Group (TCG).

10 Mobile Communication Security Controllers 255

that “Trust is the expectation that a device will behave in a particular manner for
a specific purpose” [28]. The TCG specifications state that a TPM device“ should
provide at least three basic features: protected capabilities, integrity measurement
and integrity reporting.”

• Protected capabilities include specific commands and functionality that hold exclu-
sive permission to specific “shielded” platform resources. These resources could
for example be memory locations or registers (for holding sensitive data, keys and
integrity measurements) and also management of cryptographic primitives and
other keys. The protected capabilities play a crucial role in verifying the correct
operation of the platform.

• The TPM should be in a position to reliably collect information that reflects the
TPM host’s software state (i.e. integrity measurements) and place it in the rel-
evant integrity storage locations. This information will be used for subsequent
verification.

• Platform attestation enables the integrity measurements (which reflect the TPM
host’s software state) to be reliably reported. This then enables a verifier to decide
how much trust should be placed in the status of the platform.

10.7.1 Roots of Trust

To a great extent the required levels of assurance are achieved through the TPM’s
roots of trust.

• Root of Trust for Measurement (RTM)
• Root of Trust for Storage (RTS)
• Root of Trust for Reporting (RTR)

The RTM is a trusted entity that can generate a reliable integrity measurement
for at least one process running on the underlying platform. The TPM specifications
define the RTM as “the root in the chain of transitive trust” [28]. The RTM is typically
implemented as the normal platform engine controlled by a particular instruction set
(the so-called ‘Core Root of Trust for Measurement’ (CRTM)). On a PC, the CRTM
may be contained within the BIOS or the BIOS Boot Block (BBB), and is executed
by the platform when it is acting as the RTM [42]. The CRTM is the first component
to be executed during an authenticated boot process (see Sect. 10.7.2).

The RTS is a trusted component that is responsible for providing confidentiality
and integrity for stored TPM data, e.g. cryptographic keys and the Platform Config-
uration Registers (PCRs) used for storing integrity measurements.

The RTR is a trusted entity responsible for providing various integrity measure-
ments (integrity digests) on information stored in the RTS. Secure storage involves
both encryption and sealing. Sealed data is bound to a set of platform measurements
(i.e. that define the state of the platform) that must be present in order for data to be
decrypted. This will provide the necessary reassurance that the platform will obtain

256 K. Mayes and K. Markantonakis

access to “sensitive information”, i.e. the sealed message, only if it exists in a known
configuration.

10.7.2 Authenticated Boot and Secure Storage

During the platform boot process the CRTM and TPM enable each of the components
in the system (including hardware and software) to be reliably measured and the
resultant measurements to be stored in a set of Platform Configuration Registers
(PCR) located in the TPM. The integrity measurements simply involve a SHA-1
digest of the code to be loaded. The TPM is agnostic to the underlying operating
systems (OS) or applications and provides no assurance regarding their inherent
security. Verification simply reports pre-runtime configuration information and it is
up to the OS, applications and external verifiers to judge the trustworthiness of the
PC platform and permitted actions.

Providing secure storage functionality requires that the TPM should be tamper
resistance and preferably be able to detect and report any tampering attempts. At the
same time, secure storage requires the provision of cryptographic functionality (for
the integrity and confidentiality) of data. For example, the concept can be further
expanded to include the association of keys and data with passwords and/or met-
rics that depict the platform/software state). The TPM specifications make specific
references to the required cryptographic functionality that should be offered, e.g.
RSA [29], SHA-1 [30,31], random number generation [32]. A detailed review of
TPM [33] is beyond the scope of this paper, but critical components can be seen in
Fig. 10.6.

10.7.3 Ownership

The concept of TPM ownership is very important. Originally, some concerns were
voiced as TPMs may have permitted a third party such as an equipment provider or

Fig. 10.6 TPM component architecture [28]

10 Mobile Communication Security Controllers 257

OS supplier taking control of a PC that was bought/owned by a user. The response
was to put the user in control, by requiring the user to “opt-in” and take ownership of
the device. The TPM may come with some pre-installed keys and certificates (which
can be changed) that will provide the foundation for various platform operations.
Opting-in means that the user is guided through a number of steps, e.g. generating
further cryptographic keys, and formalising and defining the behaviour of the TPM.

Having, very briefly, examined the core functionality of TPM, it is becoming
evident that in principle it could also be utilised by a range of applications requiring
secure storage, enhanced authentication and additional platform/application security.
Some of the proposed TPM usage scenarios are summarised in [34–36]. For a general
purpose security component to be considered trustworthy by application providers
it must clearly prove its security credentials and capabilities. The TCG proposes
that the ISO-15408 [37] Common Criteria security evaluation standard should be
utilised, in order to evaluate and certify TCG products and platforms. The TCG is
working towards the development of common criteria protection profiles (PP) and
guidelines that will assist the security evaluation of TPM devices. Although the TPM
device is embedded into the PC motherboard, it could also be used in a variety of
other devices9 such as PDAs and mobile phones. In the next section, we examine
the TCG’s efforts to apply the TPM to mobile communications through the Mobile
Trusted Platform (MTM) specification.

10.7.4 Mobile Trusted Platform (MTP)

Among the main missions of the TCG is the provision of trusted platform specifica-
tions for a number of devices (including MEs) that require information security assur-
ance. The Mobile Trusted Module (MTM) [38] specification and the corresponding
MTM reference architecture specifications were published in September 2006 and
2007 respectively. The TCG’s definition of trusted computing (in terms of making
sure that hardware and software behave as “expected”) remains the driving force for
the development of the MTM specifications. One of the quoted aims is to complement
the existing functionality (of the operating system, hardware/software, SIM/USIM)
with additional assurance that will enhance the overall security of the ME.

In common with the TPM, the MTM is responsible for protecting keys and other
confidential information in secure storage. It might not be implemented on chip
[39] and could even be a virtualisation layer making use of a TPM. The MTM
defines two main types of MTM ownership, i.e. the Mobile Local-Owner Trusted

9 https://www.trustedcomputinggroup.org/specs/

https://www.trustedcomputinggroup.org/specs/

258 K. Mayes and K. Markantonakis

Module (MLTM), which is similar to the TPM model and the Mobile Remote-Owner
Trusted Module (MRTM). The latter (MRTM) is a significant departure from the user
controlled “opt-in” approach and allows remote entities (such as service providers,
communication carriers, device manufacturers) to access and control their own space
within the platform. In order to maintain clear boundaries between the entities and
the operations that are allowed, the concept of “engines” is introduced. Each engine
corresponds to an aforementioned owner and it has exclusive control over its data
protection mechanisms. Some engines are considered mandatory (critical services)
and other discretionary. The specifications state that mandatory engines are owned
and controlled by a MRTM whereas the discretionary engines may be owned by a
MLTM. There is also the role of Device Owner, which determines the remaining
engines in the mandatory domain and determines all engines in the discretionary
domain.

The significance of the change in ownership should not be overlooked. The user
acceptance for TPM in the PC world is established through the “opt-in” process,
however MRTM could see more management control in the hands of third parties.
In the case of SIM card control, this has been justified by the MNOs remaining the
legal owners, however the ME is normally bought/owned by the user.

Similar to the TPM, the MTM should be able to clearly demonstrate adequate
levels of resistance to a wide range of attacks (see Sect. 10.5). However, the exact
details of the fundamental threats, countermeasures and the planned Common criteria
Protection Profile (PP) have not yet been fully finalised. Achieving an acceptable level
of trust may prove more difficult for a MTM that uses a software abstraction layer.

10.7.4.1 MTP Use Cases

A relatively complete list of MTM use case scenarios is defined in [40]. In principle,
the MTM can be implemented in many devices with relatively restricted process-
ing capabilities including mobile phones and PDAs. Any application (e.g. Digital
Rights Management, ticketing, payment, network access) requiring a level of plat-
form integrity could in principle benefit from the underlying MTM specifications.

The MTM use cases will be influenced by the following three MTM charac-
teristics. First, the specification introduces the secure boot of an MTM engine. This
implies that on top of the standard functionality of data protection and platform attes-
tation, the engine must boot into a pre-defined software state or not at all. Second,
the MTM engine should have the ability to perform runtime checks on the integrity
of software components. Finally, the local and remote TPMs essentially implement
subsets of the TPM functionality. The TCG proposes these characteristics for MEs,
but not for any other type of platform.

10 Mobile Communication Security Controllers 259

10.7.4.2 Comparison of MTP and UICC

The TCG developed the MTM specifications, in order to address specific needs of the
mobile security. The fact that both the TPM and MTM standards are open and widely
available encourages to some extent the acceptance of the technology and enables
expert peer reviews. However, acceptance will not be sustainable in the long term if
the technology does not deliver against its promises or any serious issues or flaws are
identified. Fundamentally, the underlying hardware (which is the cornerstone of the
security assurance) and software specifications must not only be properly defined, but
correctly implemented by all suppliers of compatible MEs. Therefore, it remains to
be seen whether all real ME products will be able to demonstrate, (through evaluation
and operation), long-term sustainability against security threats and vulnerabilities.
The latter is of particular importance, as many problem issues are discovered only
after products are deployed.

In almost all the above issues, smart card technology is delivering its aims. This
is partly because it is a complete customised and tested package (e.g. chip/OS/
application), but also because its functionality is relatively restricted and simply,
because it has proved itself over many years of practical use. Therefore, smart card
design, operational and security requirements are well understood by chip developers,
smart card manufacturers and MNOs.

The only reference known to the authors at of the time of writing this article,
attempting to categorise the appropriate uses of smart cards and TPM (in terms of
machine or user authentication scenarios) is presented in [41] and summarised in
Table 10.1.

However, although the authors have not verified this analysis, it does appear that
the two technologies can be considered as complementary. Although the table is
not directly aimed at mobile communications there is a split between authentication
of the user and the computer/machine. This split is not just related to the security

Table 10.1 Suitable uses of TPM and smart cards [41]

User/Machine authentication
scenarios

Smart card Trusted Platform Module (TPM)

User ID for virtual private network
(VPN) access

Yes No

User ID for domain logon Yes No
User ID for building access Yes No
User ID for secured e-mail Yes No
Host computer ID for VPN access No Yes
Host computer ID for domain

access
No Yes

Host computer ID for attestation
(that is, authentication of
software applications)

No Yes

260 K. Mayes and K. Markantonakis

properties of the smart card or TPM, but also the fact that the user account, security
and data tends to be personalised separately in a secure environment, independent of
the PC/ME that is eventually used.

10.8 Summary

The role of the traditional SIM smart card has been described as a tamper-resistant
module for supporting authentication and encryption in mobile networks. The capa-
bility to strongly resist known security attacks is fundamental to its existence and this
is underpinned by both the design and implementation of the hardware, operating
system and application software. The SIM memory size and crypto functionality for
different MNOs (and market sectors) can vary significantly and cost sensitivity means
there is no such thing as “one-size-fits-all”. The SIMs are normally pre-personalised
in a secure environment before issue to customers and the detailed requirements and
related security processes tend to be MNO specific. It is common for there to be a
strong trust relationship between the MNO and the SIM manufacturer as the supplier
is trusted with and often generates, much of the most sensitive security data associ-
ated with SIMs. The personalisation of the SIM is not only vital to normal operation,
but also the lifecycle management of the SIM. The authority to make changes to the
SIM after issue is underpinned by an ownership model whereby the MNO always
retains ownership of the SIM card and facilitated by management keys pre-stored on
the SIM during personalisation. The removable nature of the SIM smart card means
that a number of migration scenarios, which are sometimes a legal requirement, are
supported. A user may migrate to a new ME, but keep an old SIM card, or migrate
to a new MNO by swapping that network’s SIM card. Occasionally, it is possible
to migrate to a new account type or even to a back-up security algorithm without
changing the SIM card.

The SIM card has proven itself, over a long period of time, to be capable of
maintaining the security of mobile communications, and so it would take some very
compelling reasons to take the considerable risk of changing to an alternative solution.
One of the reasons might be to reduce the cost of SIM card supply, meaning not just
the card itself, but the whole logistics, storage and distribution process. Another
reason is that some newer cellular usage categories may have physical, distribution
and environmental constraints that make it awkward to accommodate the normally
personalised SIM card.

The two most interesting new cellular categories to consider are PDA/Smart and
T/M2M. The former is an example of a high-end/expensive device, becoming virtu-
ally a connected and portable PC. Whilst the MNO is in control of communications
security and may influence ME features and servers, the ME itself is often under
some form of control from the ME manufacturer and perhaps more open to applica-
tion developers independent of the MNO’s influence. The T/M2M is a good contrast
as it is not issued to “real users”, may have fixed/custom functionality requiring a
specialised ME and is likely to be very cost sensitive.

10 Mobile Communication Security Controllers 261

One might suggest for either of these categories that a Pure Software SIM (PSSIM)
could be used, as the logical implementation of a SIM application on most processors
would be possible. However, this would be extremely foolhardy as the implementa-
tion would be trivial to attack, risking exposure of not only secret keys, but details
of confidential information and possibly secret algorithms. Clones would be simple
to arrange even on the attacked MEs, dragging security levels down to those of old
analogue systems. It is therefore strongly recommended that a PSSIM is not consid-
ered under any circumstances, but rather solutions that can leverage from some kind
of tamper-resistant hardware.

The T/M2M MEs might be considered as candidates for the Hardware Shared
Software SIM (HS-SSIM), in order to save the cost of a new hardware security
module that may be difficult to insert/remove in practice. Intuitively, the HS-SSIM
should offer more security than PSSIM, however, it may be difficult to provide suf-
ficient assurance to MNOs on security, and also on vendor independence. Normally,
the MNOs provide the whole SIM “package” i.e. an appropriately sized chip, OS,
application and personalised data all tested against known attacks and competitively
sourced from multiple suppliers. In the case of the HS-SSIM, the MNO has to fit
onto a proprietary third-party platform that is a compromise design for supporting
both normal and secure processing environments. There is likely to be reliance on
critical software to handle the split between operation modes and it is difficult to see
how the same levels of attack resistance could be achieved compared to a normal
SIM card and indeed some product literature seems to deny support for smart card
emulation. A formalised security evaluation would go along way to provide assur-
ance; however, it is not clear if it is at all feasible to even consider this on a general
purpose platform, especially if the processor code may need upgrading to support
normal operation. The effort and time required for evaluations would probably not
be merited and incompatible with the short lifecycle of processor chips used in ME
production.

As an alternative to the HS-SSIM, the T/M2M could make use of an existing TPM
chip. However, a T/M2M type of ME is likely to be of limited functionality and so
would not be expected to already have a TPM. If one considers an important function
of a TPM to be the support for an authenticated/secure boot, a T/M2M device may be
installed and permanently powered and so may only boot once in its lifetime. Control
over distribution and installation may obviate the need for any special control over
the boot function.

It is difficult to identify a cost/logistics argument for investing in an embedded
TPM for a T/M2M, rather than a conventional SIM smart card; however, it is con-
ceivable that one might exist. The TPM is normally designed as a hardware security
module and so in principle is capable of proving its security capabilities in a formal (or
widely accepted) evaluation. However, this may not be the case if the MTM version
is not fully implemented in the chip, but uses ME proprietary software to interface
with a TPM. To progress the general argument further we will assume that sufficient
assurance might one day prove possible and that the underlying TPM provides an
appropriately dimensioned secure storage and execution environment that could be
used for a SIM equivalent. The first observation to make is that the TPM would

262 K. Mayes and K. Markantonakis

need to be dimensioned to accommodate the demands of the most demanding MNO
and indirectly this may have a cost impact on the less demanding MNOs. A second
and far more fundamental observation is that the normal processes and methods for
secure SIM card personalisation could not be used. If personalisation is to be carried
out in a secure environment then the MNO might need to either use ME manufac-
turers/suppliers (who are not usually security/trust specialists) or ship the MEs to a
trusted party (such as a SIM manufacturer). The risk of the first option and cost of
the second would seem to undermine the case for adding a TPM for cost saving and
logistics simplification. Personalisation in a non-secure environment would be likely
to contradict many MNOs’ security policies and would not be recommended due to
the risk of disclosing secret keys, sensitive data and secret algorithms/functionality.
There is also the question of access to the initial management keys to personalise
the platform and the fundamental question of ownership and management rights of a
device that is deemed to be owned by the customer. Most migration scenarios would
not be supported unless re-personalisation is possible, which MNOs may regard as
a major security risk and there is an open question about the transfer of keys and
management rights between competing parties.

The PDA/Smart could well have a TPM/MTM installed by default and so the chip
cost justification would not be an issue; however, the significant problems around
personalisation, ownership, management and migration would remain. The TPM
could be seen as a complementary technology to the SIM card that could ensure the
integrity of the PDA/Smart platform. This would be particularly useful as PDA/Smart
devices would likely have Internet connectivity and require protection from common
perils such viruses and trojans etc. The TPM/MTM would be a useful resource for
application providers whose security requirements are less demanding as MNOs and
might otherwise offer solutions on completed untrusted platforms. This may move
some control from the MNOs towards the owner of the TPM. Who the owner should
be is a matter for business debate rather than security analysis.

It would appear that the arguments for providing an alternative SIM implemen-
tation on the grounds of reducing costs and simplifying distribution logistics are
not clearly compelling for any type of cellular usage. However, there is still the
unsolved problem of coping with physical and environmental constraints (particu-
larly in the T/M2M case) that would better suit an embedded chip. One solution is
for the SIM suppliers to provide personalised chips, but not the smart card body.
These would maintain SIM card functionality and security, but could be embedded
directly onto a ME’s PCB by a ME manufacturer. This could provide better temper-
ature and physical characteristics and avoid the need for the SIM socket. Aside from
the extra controls, management and cost at the ME manufacturer, the MEs would
be permanently customised to a particular MNO, which might fragment a manufac-
turer’s stock and production capability. Once deployed, the MEs would be bound to
a single MNO/SIM and this lack of migration may not be acceptable to customers
or MNOs in the long run. A variant would be to put the SIM chip in a socket (much
smaller than a SIM card socket), so that a common batch of MEs could be subse-
quently configured for various MNOs. Migration would then be possible, but would
probably require technician support which is not necessarily out of the question for

10 Mobile Communication Security Controllers 263

T/M2M deployments. In theory, one could use the personalised SIM chip approach
in any phone, although the added migration difficulties suggest that the removable
SIM smart card is still generally the more convenient option.

10.8.1 Value Added Service Management

The situation for value-added service management is less clear than the core SIM
functionality and there are a number of different scenarios that need to be addressed
in a standardised and consistent manner.

• For the MNO, the attraction of a SIM-hosted value-added service is that the SIM’s
capabilities and the functionality that it offers is completely specified and con-
trolled by the MNO. A disadvantage is that the types of services have to date been
fairly limited compared to the possibilities offered by modern MEs. Attempts to
improve the sophistication of SIM applications have often been frustrated by lim-
ited support of the relevant standards by MEs. The MNO can decide to offer SIM
security capabilities to ME hosted applications by means of APIs; however, con-
sidering the range of ME platform types and the many models in use (of varying
levels of standards compliance), it is difficult to achieve a ubiquitous solution.

• The ME manufacturer sees the application management problem from another
angle. The manufacturer will know its ME models intimately; however, there may
be little interest in having an “open” application capable of running on MEs from
competing manufacturers. If attempting to secure these applications through the
SIM, the manufacturer might require a dialogue with all MNOs that use its MEs,
to confirm that essential functionality is available. In fact, it is very unlikely that
all MNOs could guarantee this support as SIM product capabilities are quite vari-
able, and so the manufacturer may conclude that the most reliable and predictable
strategy is to rely on the capabilities of the ME alone. For example, a developer
can currently create an application and send it to Nokia for signature (based on a
developer registration process), that is then checked when the application is loaded
onto the ME. An obvious disadvantage of this approach is that the personalised
and tamper-resistant storage and functional properties of the SIM card are not
exploited to secure the applications.

• A third-party service provider may have security requirements; however, they
may not share the ME manufacturer’s confidence in the ME platform (and ideally
would want the application to run on all MEs). The SIM is promoted by MNOs as
a secure platform, however, without proof of a best-practice/independent security
evaluation, it may be difficult to demonstrate adequate assurance levels to a third
party. This problem could in principle be overcome, but there would also need
to be more consistency/standardisation regarding the provision of SIM resources
and third-party access to them. For example, a Java Card-based SIM could host
an added application, but not if the MNO policy was to prevent third-party access.

264 K. Mayes and K. Markantonakis

Alternatively, the MNO could welcome third-party access, but then deploys low
cost SIMs that have no spare memory to fit extra applications.

• The prospect of MEs having NFC capability and being able to emulate contact-less
smart card readers and contactless smart cards has great potential for innovative
new services. Some of these services will relate to financial transactions or the
exchange of sensitive data and so security support is critical. In current NFC trials,
the MEs have a separate Security Element (SE) that can be regarded as a Java
capable smart card chip embedded in the ME. This again raises difficulties around
personalisation and assurance. If a bank provided the SE then it may be satisfied
with the security level and control/management of the chip; however, what if many
banks or other types of application provider all insist on their own security levels
and management methods? The MNOs are not keen on the separate SE chip and
propose controlling the NFC functionality via the SIM card using Single Wire
Protocol. This may satisfy MNOs, but may not be very helpful to other parties that
wish to secure their NFC applications and services.

None of the value-added service security approaches described above do an ideal
job. A possible way forward would be to use the SIM in a limited way that exploits its
personalisation, key storage, remote management and security algorithms, without
making great demands for memory or processing resources. An application devel-
oper would want to be assured that this support would be available from most SIMs
and there should be no non-technical barriers (strategy/policy) that would prevent
him using it. The applications themselves could sit in the ME providing there was an
execution environment that was reasonably secured. If this environment was under-
pinned by some ME hardware then from an assurance viewpoint, the application
provider would want a standardised and evaluated chip(s) that is used in most MEs,
rather than a range of proprietary solutions.

10.8.2 Concluding Remarks

From a security and practical viewpoint, there seems little wrong with the long
standing practice of using SIM applications implemented as easily replaceable smart
card devices, to underpin core security requirements. The alternative approaches that
were considered do not clearly or convincingly reduce costs or simplify logistics and
come with great risk of compromising current and proven levels of security and
assurance. The most promising alternative device is the TPM (and the MTM variant)
as it may become a standard feature on many MEs and can in principle, provide
some tangible (evaluated) level of security. However, the TPM seems most suited
as a complementary solution, rather than a replacement for the SIM. The TPM is
well suited to protecting the general integrity of the ME platform and adding some
security support to value-added applications, particularly in high-end PDA/Smart
MEs. An interesting further study would be to determine how the SIM, TPM and
other ME security resources could best be used in combination.

10 Mobile Communication Security Controllers 265

There is some justification for doing away with the removable smart card in
T/M2M applications due to physical/environmental restrictions. The suggested solu-
tion that does not compromise security and still provides means for migration (albeit
with technician support) is to provide SIMs in the form of personalised chips for
insertion into small sockets on the ME PCBs. It is suggested that SIM and ME
manufacturers investigate the practicalities and costs associated with this approach.

The secure management of valued added services is not considered to be well
handled by any of the individual technologies addressed in this paper. The existing
SIM card approach should do more to help in this respect otherwise there will be little
choice, but to seek other solutions even if they are less secure, more costly and diffi-
cult to manage. An important aspect for application/service providers is to have SIM
security capabilities that they can rely on being present, regardless of the particular
MNO and ME model. Therefore, the requirement is for an industry-wide/standards
response rather than ad hoc solutions from particular MNOs. Specifically, the MNOs
could be encouraged to agree an industry-wide best practice guide for the security
evaluation of SIM cards or equivalents. For cost and time constraint reasons, it may
not be practical to carry out independent security evaluations and so it might be
sufficient for SIM Vendors to self certify their products against the industry guide-
lines. Similarly, the MNOs could consider establishing an industry wide, minimum
set of functionality/APIs available to support applications in the ME. To be clear,
this would not just be a standardisation exercise, but an initiative to ensure that the
SIMs procured by MNOs should always support the minimal APIs. Furthermore,
exploitation of the SIM capabilities should not be hindered by complex negotiations
with MNOs, but perhaps by a simple registration and signing process, similar to
those used for ME application developers.

Acknowledgments Originally published in Elsevier Information Security Report 13 (2008); repro-
duced with kind permission of Elsevier.

References

1. Anderson R (2008). Security engineering: a guide to building dependable distributed systems.
John Wiley, New York.

2. German Federal Office for Information Security (2011). Protection Profiles. [Online Available]
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCC-
undITSEC/SchutzprofileProtectionProfiles/schutzprofileprotectionprofiles_node.html .

3. EVITA project (20082011). E-Safety vehicle intrusion protected applications. http://www.
evita-project.org.

4. Hersteller Initiative Software (HIS), Working Group Security (2010). SHE Secure hardware
extension version 1.1.

5. ISO 11898 (20032007). Road vehicles Controller area network (CAN).
6. National Institute of Standards and Technology (2001). FIPS-140-2: Security requirements for

cryptographic modules.
7. Trusted Computing Group (2011). TPM Main Specification Version 1.2. [Online Available]

http://www.trustedcomputinggroup.org/resources/tpm_main_specification.

https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/SchutzprofileProtectionProfiles/schutzprofileprotectionprofiles_node.html
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/SchutzprofileProtectionProfiles/schutzprofileprotectionprofiles_node.html
http://www.evita-project.org
http://www.evita-project.org
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

266 K. Mayes and K. Markantonakis

8. Russell R (2008). Virtio: Towards a de-facto standard for virtual I/O devices. ACM SIGOPS
Operating Systems, Review (42).

9. Debian GNU/Linux FAQ (2011). Basics of the Debian package management system. [Online
Available] http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html.

10. RSA Laboratories (2004). Cryptographic Token Interface Standard 2.2.
11. Universitat Politecnica de Valencia (2012). XtratuM A hypervisor specially designed for real-

time embedded systems. [Online Available] www.xtratum.org.
12. Standaert FX, Malkin T, Yung M (2009). A unified framework for the analysis of side-channel

key recovery attacks. Springer-Verlag, Berlin.
13. IEEE 1609. Draft standards for wireless access in vehicular environments.
14. ISO 15408 (2007). Information technology Security techniques Evaluation criteria for IT

security.
15. Scheibel M, Wolf M (2009). Security risk analysis for vehicular IT systems A business model for

IT security measures. Embedded Security in Cars Workshop (escar 2009), Dsseldorf, Germany.
16. European Commission Information Society (2012). Emergency call (eCall). [Online Available]

http://ec.europa.eu/information_society/activities/esafety/ecall/index_en.htm.
17. Poulsen K (2010). Hacker Disables More Than 100 Cars Remotely. The WIRED Magazine.
18. Eisenbarth T, Kasper T, Moradi A, Paar C et al. (2010). On the power of power analysis in the

real world: A complete break of the KeeLoq code hopping scheme. Springer-Verlag, Berlin.
19. Koscher K et al. (2010). Experimental security analysis of a modern automobile. IEEE Sym-

posium on Security and Privacy (SP).
20. Checkoway S et al. (2011). Comprehensive experimental analyses of automotive attack sur-

faces. USENIX association.
21. Rouf I et al. (2010). Security and privacy vulnerabilities of in-car wireless networks: A tire

pressure monitoring system case study. USENIX association.
22. OVERSEE project (2009–2012). Open Vehicular Secure Platform. http://www.oversee-project.

com.

http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html
http://ec.europa.eu/information_society/activities/esafety/ecall/index_en.htm
http://www.oversee-project.com
http://www.oversee-project.com

Chapter 11
Security of Embedded Location Systems

G. P. Hancke

Abstract Determining the location and movement of objects or people is a core
requirement in a number of embedded systems. To ensure that the location infor-
mation gathered by embedded devices is accurate, the underlying method of loca-
tion systems must be secure and reliable. This chapter provides an overview of the
basic approaches for determining location information in embedded systems. The
resilience of these methods against advanced attacks are discussed, along with pro-
posals for securely verifying physical location estimates. Finally, the security aspects
of global navigation space systems (GNSS) used for location information in embed-
ded applications are briefly discussed.

11.1 Introduction

Technology is intended to make our lives easier. We are surrounded by a collection
of devices with embedded computational intelligence that assists us in our daily
tasks. Much has been written and spoken of over the years about the reliability
and security of embedded systems, and with good reason. Embedded systems are
often used to provide services that are crucial to our safety and security, such as an
aircraft’s autopilot or programmable logic controllers regulating industrial processes.
System developers spend a significant amount of resources testing their software and
hardware to ensure that systems such as these work reliably. It is, however, sometimes
the case that these systems must interact with, and rely on, systems that are less secure.

The use of wireless communication and the introduction of mobile and pervasive
computing have facilitated the growth of location-aware applications, which have
the capability to recognise and react to the physical context of individual devices [1].

G. P. Hancke
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, UK
e-mail: gerhard.hancke@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 267
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_11,
© Springer Science+Business Media New York 2014

268 G. P. Hancke

There are an increasing number of embedded systems, used in safety and security
sensitive applications, which incorporate location information into their core func-
tionality. Embedded systems that rely on location information, either from internal
or external sources, are responsible for aviation and maritime navigation, emergency
response and rescue operations, high-value asset or vehicle tracking, and even rail
signalling and train control.

As location information becomes more significant the interest in the topic of
security of localisation schemes in embedded systems is increasing and numerous
secure localisation schemes have been proposed [2, 3]. In these systems, location
systems verify the position of individual devices, and by implication the events
observed by these devices. Location metrics are also used as a basis not only for
overarching system functionality, but also for other underlying technical procedures,
such as determining routing paths and performing key management [4, 5]. A failure
to obtain accurate and reliable information about a device’s location could therefore
significantly effect the performance of individual devices and the validity of the
system as a whole. It is therefore important that embedded systems are designed to
generate location information that is secure and reliable. The underlying components
of an embedded location system should therefore be resistant to location fraud,
whereby the system is made to generate incorrect location information by a malicious
entity, and yet still function in a safe and reliable manner.

Embedded location information can be obtained in a number of ways. This chapter
provides an overview of existing approaches for implementing location systems
in embedded systems in Sect. 11.2, and evaluates whether the underlying location
estimation methods are resilient against intentional attacks and operational errors.
Current proposals for securely verifying physical position estimates are explained and
the practical challenges that need to be addressed in implementing these methods are
discussed in Sect. 11.4. As global navigation space systems (GNSS) are a particularly
prominent location system, which often provides location information in embedded
systems, we discuss the security issues in these systems in Sect. 11.5, with a particular
emphasis on the global positioning system (GPS).

11.2 Embedded Location Systems

Location information systems are used in a variety of environments and applications,
and as a result there are different opinions as to what should be defined as a location
system in the context of embedded systems. For example, the ISO 24730 [6] standard
states that a Real-Rime Locating System (RTLS) is a wireless system with the ability
to determine the locations of an item anywhere in a defined space at a point in time
by measuring the physical properties of the radio link. However, it also suggests that
certain methods for locating an object that are based on radio frequency identification
(RFID) should not be classified as RTLS. In practice, however, RFID is often used to
track objects in a number of applications. For the purpose of this chapter a location

11 Security of Embedded Location Systems 269

system is defined as any scheme that could be used to infer the location or movement
of entities at any given time.

Embedded location systems consist of two basic types of devices: the target nodes
that the system is designed to track and reference nodes that have a known location.
The location system must be able to determine the location of the nodes based on their
interaction with the reference nodes. To accomplish this the location system needs
to estimate the physical relation between the target node and the reference nodes
using a position estimation method. The location of the node is then determined
from the position estimates and the locations of the reference nodes. Boukerche
et al. [2] define an additional component for location systems called the localisation
algorithm, which could use the calculated node locations to determine the location
of additional nodes. This third component is often found in systems with limited
reference nodes where nodes rely on each other to build a network, such as wireless
sensor networks (WSN), but is probably of less importance in embedded systems
where reference nodes effectively covers all the areas of interest, e.g. GPS. This
chapter concentrates on the latter approach, where all embedded devices have access
to the required number of references.

A location system can be infrastructure based, i.e. the reference nodes collect
physical estimates that are used by the system to determine a target node’s location,
or a location system can also be terminal, or target node, based. In the latter scenario
the node determines its own location based on interaction with the reference nodes.
A location system can also be built on a combination of these two approaches. To
determine the relation between the tracked node and reference nodes the system can
use range-dependent or range-independent methods, as shown in Fig. 11.1. In each
case, the verifiers V are trying to determine whether the prover P is within distance d.
Range-dependent methods measure properties of the physical communication chan-
nel that is influenced by the distance between the nodes. Examples of these properties
are the amplitude of the received signal, and the direction or the time-of-flight of the
communication. Range-independent methods do not measure physical properties of

VV

V
V

V V
PPd d

d

d

d

d

1

1

2
2

3
3

3

1

1

2
2

(a) (b)

Fig. 11.1 Relationship between tracked node and reference nodes. The verifiers V use the estimated
distance d to the prover P to determine its location. a Range-independent system with location area.
b Range-dependent system with location point

270 G. P. Hancke

P

V V dd

Fig. 11.2 Range-dependent and range-independent relative location systems with a single reference
node. The verifier V is trying to determine whether the prover P is within distance d

the communication channel, instead relying on the concept of a ‘location-limited’
channel that only allows successful communication if the nodes have line-of-sight
or are a short distance apart. RFID is an example of a range-independent technology
because the token and the reader are assumed to be in close proximity if a transac-
tion took place. This assumption is based on the fact that the operational range of
the system is only up to a few meters.

If three or more reference nodes have determined their relation with regards to the
node then the system can determine the absolute location of that node using multilat-
eration, trilateration (with distance measurements) or triangulation (with communi-
cation angle measurement). If range-independent methods are use the exact location
cannot be determined, but the system can identify an area in which the node is likely
to be located. It is also common in some tracking systems to only have a single
reference node and only determine the relative location of the embedded device. For
example, the system only determines whether the device passed a specific reference
node or is currently located close to a specific node. Examples of range-dependent
and range-independent relative location systems are shown in Fig. 11.2.

11.3 Security and Resilience of Location Information

As location information gathered by embedded systems become more significant to
sensitive and valuable services the location system must be designed to be secure
and reliable. A system’s underlying components should therefore be resistant to
location fraud, i.e. an attacker causing the system to generate incorrect location
information, and also provide reliable and accurate location information regardless
of the security mechanisms implemented. Location systems are most reliant upon
position estimation, the method used to estimate the physical relationship between
the target nodes and the reference nodes. The analysis in this Section is therefore
targeted at the security and practical aspects of position estimation methods most
often used in current location systems. For the purpose of this section the operational
environment of a system is assumed to be as follows:

11 Security of Embedded Location Systems 271

• The embedded location system consists of a target node and reference nodes.
The system tries to determine the locations of the target node based only on its
interaction with the references nodes.
• The location of the target node can be calculated by the back-end or alternatively

by the target node itself.
• The system can either calculate absolute location, based on the combination of

measurements originating from multiple reference nodes, or relative location based
on the observation resulting from a single reference. In the case of a single refer-
ence, the underlying physical measurement should be secure and reliable enough
to provide useful location information without the need to collect collaborating
measurements from other multiple reference nodes.

This Section assumes that the location system has been designed with security
in mind. For example, we assume that nodes can be identified and authenticated.
This prevents unauthorised parties from masquerading as either valid reference or
target nodes. If an attacker could simply clone a target node or ‘spoof’ signals from
reference nodes, without having to circumvent any security mechanisms it would
clearly compromise the location calculations by both terminal and infrastructure-
based systems regardless of which positioning methods are used. For example, an
attacker could just introduce additional reference nodes linked with false locations
into the system, as was practically illustrated by Tippenhauer et al. [7] on a wireless
local area network (WLAN) location system. In reality, some systems generate loca-
tion information without basic security services, as will be discussed in Sect. 11.5.
However, this Section aims to introduce advanced attack strategies and illustrate that
basic security is not enough to safeguard location information.

Having introduced the operational and security aspects of the location service it
is time to describe the two basic attack threats that could undermine the integrity
of location information, even if basic, application-layer security mechanisms are in
place. We introduce these attacks in the context of an infrastructure-based system,
but these are equally relevant to terminal-based systems. If the location system is
secured the reference nodes can be seen as verifiers (V), and the target node as a
prover (P), i.e. the target node is providing proof of its location and the reference
nodes should verify the validity of this information.

A relay attack involves an attacker attempting to misrepresent a prover’s true loca-
tion. The attacker uses a proxy-prover, i.e. fake target node, and a proxy-verifier, i.e.
fake reference node, to relay the transactions between the real verifier and prover via
another communication channel. It does not matter what application layer protocols
or security algorithms are used as the attacker just relays all the application layer
data, thereby ensuring that both the verifier and the prover always receive the data
they expect [8]. As a result, the real verifier cannot distinguish between the prover
and proxy prover and the verifier therefore concludes that the prover is located at
the position occupied by the proxy. The effect of a relay attack on the distance mea-
surement between a verifier and prover is illustrated in Fig. 11.3. Both the verifier
and the prover are honest and unaware of the attack. This attack was first described

272 G. P. Hancke

VV

PP'

'

Fig. 11.3 A relay attack where the response of a legitimate target node P is forwarded by a proxy
reference node V ≥ to a proxy target node P ≥

Fig. 11.4 A compromised
node P modifies the physical
characteristics of its com-
munication to convince a
reference node that it is at a
different positions P ≥

PPV '

as ‘mafia fraud’ in [9] and is also known as a ‘wormhole’ attack in sensor-network
literature [10].

Distance fraud occurs when the prover is fraudulent, i.e. the attacker is the device
expected to prove its location, or the prover has been compromised, and tries to
convince the verifiers that it is at a different location than is actually the case. In this
case ‘compromised’ could indicate that the attacker has recovered the prover’s secret
key material, but it could also mean that the attacker has managed to tamper with the
prover to such a degree that it is providing false position estimates. For example, a
device’s clock speed could be increased so that it replies faster or the communication
channel can be manipulated without having to circumvent application layer security
mechanisms [11, 12]. The effect of distance fraud on the distance measurement
between a verifier and prover is illustrated in Fig. 11.4. Distance fraud is discussed
in [13] and has mainly been described in the context of a infrastructure-based system
where a compromised target attempts to misrepresent its location. It is, however, also
applicable to terminal-based systems where it is possible that the reference nodes
can be compromised. It should be noted that if the target node has access to at least
one legitimate reference node then the possible fraudulent locations are reduced as
the resultant position must correspond with the physical estimates provided by the
legitimate node. For example, if two of the three nodes in the trilateriation process
is compromised, as illustrated in Fig. 11.5, then the target node must still be located
at a fixed distance from the remaining legitimate node. In some radio systems this
distance may be large, and because of natural variations in the radio environment or
the propagation time a system might disregard a node if it diverges notably from a
majority of nodes.

11 Security of Embedded Location Systems 273

Fig. 11.5 Two compromised
reference nodes V ≥2 and V ≥3
generate incorrect distance
measurements, which result
in node P appearing at posi-
tion P ≥

P
P

V

V

V 3''
'

2

1

Fig. 11.6 A compromised
node P appears to be at
position P ≥ by shortening the
distance to reference node V1
and enlarging the distances to
reference nodes V2 and V3

P

P

V

V

V

1

2 2

'

11.3.1 Security and Resilience of Position Estimation Methods

A location system relies on the fact that the physical relation between reference nodes
and the target node can be estimated. If these estimates are somehow modified by
a malicious entity, or if the estimate cannot be accurately made due to operational
errors, then the overall localisation process will be adversely affected. Čapkun and
Hubaux [14] have shown that in the case of trilateration, and the principle extends
to multilateration, a node located outside the triangle cannot prove that it is inside
without shortening the distance measured to at least one of the reference nodes. This
principle is illustrated in Fig. 11.6. Similarly, a node located inside the triangle cannot
prove to be at a different position without shortening the distance measured to at least
one of the nodes. An additional important consideration is that embedded location
systems are required to be reliable in various environments while also taking into
account limited resources as a result of practical constraints, such as cost, power
and node size. Estimates should therefore be resilient against errors and practical
to implement. In this Section we analyse three popular estimation methods against
these requirements. A summary of the analysis is given in Table 11.1.

274 G. P. Hancke

Ta
bl

e
11

.1
C

om
pa

ri
so

n
of

po
si

tio
n

es
tim

at
e

m
et

ho
ds

fo
r

R
T

L
S

M
et

ho
d

L
oc

at
io

n
ty

pe
Te

ch
no

lo
gy

re
qu

ir
em

en
ts

Se
cu

ri
ty

vu
ln

er
ab

ili
tie

s
R

es
ili

en
ce

/a
cc

ur
ac

y
C

om
m

en
ts

A
ng

le
of

ar
ri

va
l

(A
oA

)

A
bs

ol
ut

e
D

ir
ec

tio
na

la
nt

en
na

ar
ra

ys
in

re
fe

re
nc

e
no

de
s.

A
cc

ur
at

e
no

de
or

ie
nt

at
io

n
M

ul
tip

at
h

er
ro

rs
in

te
rm

in
al

-b
as

ed
sy

st
em

s,
or

if
re

fe
re

nc
e

no
de

is
m

ob
ile

,i
tw

ou
ld

ha
ve

to
be

or
ie

nt
at

ed
ea

ch
tim

e
be

fo
re

m
ea

su
re

m
en

t

R
es

is
ta

nt
to

di
st

an
ce

fr
au

d
if

re
fe

re
nc

e
no

de
s

ar
e

sy
nc

hr
on

is
ed

.R
es

is
ta

nt
to

re
la

y
w

ith
un

fo
rg

ea
bl

e
ch

an
ne

l
te

ch
ni

qu
es

R
ec

ei
ve

d
si

gn
al

st
re

ng
th

(R
SS

)

A
bs

ol
ut

e
re

la
tiv

e
Pa

th
-l

os
s

m
od

el
or

po
si

tio
n

ca
lib

ra
tio

n.
Si

gn
al

st
re

ng
th

m
ea

su
re

m
en

t
R

el
ay

at
ta

ck
di

st
an

ce
fr

au
d

D
ep

en
de

nt
on

re
gu

la
r

up
da

te
s

of
pa

th
-l

os
s/

ca
lib

ra
tio

n
E

as
y

to
at

ta
ck

(a
m

pl
if

y
or

at
te

nu
at

e
si

gn
al

)

R
ec

ei
ve

d
si

gn
al

(‘
In

ra
ng

e’
)

A
bs

ol
ut

e
re

la
tiv

e
C

om
pa

tib
le

w
ith

an
y

co
m

m
un

ic
at

io
n

D
is

ta
nc

e
fr

au
d

D
ep

en
de

nt
on

co
m

m
un

ic
at

io
n

ra
ng

e
m

od
el

/e
st

im
at

e.
U

nf
or

ge
ab

le
ch

an
ne

lm
ay

in
tr

od
uc

e
po

ss
ib

le
er

ro
rs

(f
al

se
ne

ga
tiv

es
)

R
es

is
ta

nt
to

re
la

y
w

ith
un

fo
rg

ea
bl

e
ch

an
ne

lt
ec

hn
iq

ue
s

T
im

e
of

ar
ri

va
l

(T
oA

)
A

bs
ol

ut
e

re
la

tiv
e

R
ef

er
en

ce
an

d
ta

rg
et

no
de

s
ne

ed
hi

gh
fr

eq
ue

nc
y,

sy
nc

hr
on

is
ed

cl
oc

k.
R

F
ch

an
ne

lm
us

ta
llo

w
m

ea
su

re
m

en
t

of
pr

op
ag

at
io

n
tim

e

D
is

ta
nc

e
fr

au
d

D
ep

en
ds

on
cl

oc
k

sy
nc

hr
on

is
at

io
n

an
d

fr
eq

ue
nc

y
D

et
ec

ts
re

la
y

at
ta

ck
if

tr
an

sm
is

si
on

is
au

th
en

tic
at

ed
,m

et
ho

d
re

lie
s

on
ta

rg
et

no
de

’s
tim

e
m

ea
su

re
m

en
ts

o
al

w
ay

s
vu

ln
er

ab
le

to
di

st
an

ce
fr

au
d.

U
ltr

as
on

ic
ra

ng
in

g
no

ts
ec

ur
e

D
if

fe
re

nc
e

tim
e

of
ar

ri
va

l
(D

To
A

)

A
bs

ol
ut

e
R

ef
er

en
ce

no
de

s
ne

ed
hi

gh
fr

eq
ue

nc
y,

sy
nc

hr
on

is
ed

cl
oc

ks
.R

F
ch

an
ne

l
m

us
ta

llo
w

m
ea

su
re

m
en

to
f

pr
op

ag
at

io
n

tim
e

D
is

ta
nc

e
fr

au
d

D
ep

en
ds

on
cl

oc
k

sy
nc

hr
on

is
at

io
n

an
d

fr
eq

ue
nc

y
R

es
is

ta
nt

to
re

la
y

if
tr

an
sm

is
si

on
au

th
en

tic
at

ed
.U

ltr
as

on
ic

ra
ng

in
g

no
ts

ec
ur

e

R
ou

nd
tr

ip
tim

e
(R

T
T

)
A

bs
ol

ut
e

se
rv

ic
e

R
ef

er
en

ce
no

de
ne

ed
hi

gh
fr

eq
ue

nc
y

cl
oc

k.
R

F
ch

an
ne

lm
us

ta
llo

w
se

cu
re

m
ea

su
re

m
en

to
f

ro
un

d
tr

ip
tim

e

D
ep

en
ds

on
cl

oc
k

fr
eq

ue
nc

y
di

st
an

ce
bo

un
di

ng
ch

an
ne

ls
co

ul
d

in
tr

od
uc

e
po

ss
ib

le
er

ro
rs

(f
al

se
ne

ga
tiv

es
)

R
es

is
ta

nt
to

di
st

an
ce

fr
au

d
an

d
re

la
y

w
ith

di
st

an
ce

bo
un

di
ng

pr
ot

oc
ol

.U
ltr

as
on

ic
ra

ng
in

g
no

ts
ec

ur
e

11 Security of Embedded Location Systems 275

11.3.1.1 Angle of Arrival

Angle of Arrival (AoA) determines the direction from which a target node’s trans-
mission has been received. The reference node has a number of direction sensitive
antennas measuring the angle between the direction from which the transmission
was received and a reference direction. The position of a target node can then be
calculated using triangulation using the measured angles from at least two reference
nodes located at known locations. Position estimation using AoA requires the refer-
ence nodes to contain complex antenna arrays, which could increase costs if these
are not already present in the system, such as in the case of cellular base stations.
This method alone is not suited to relative location systems with only one reference
node as a single angle only provides a vector of possible location points. In terms
of security, simple AoA is vulnerable to both relay attacks and distance fraud if an
attacker can alter the angle by reflecting or transmitting transmissions from different
directions to individual reference nodes [12]. Distance fraud can be mitigated if the
reference nodes share a synchronised clock. If this is the case, the reference nodes
only accept measurements from a target node if the transmission was received at the
same time, or within minimal time window, to ensure that the node could not change
position between transmissions. However, this is difficult if the system normally
has to deal with multi-path effects. Relay attacks can be mitigated by implementing
unforgeable channels, which would allow the reference nodes to detect a proxy target
node. AoA does not really allow for a single reference node to determine the relative
location of another node. A single node can therefore only determine the direction,
and not the distance, to another node. As such, it cannot be secured against relay it
is therefore not suited to the requirements defined earlier for an RTLS.

11.3.1.2 Received Signal Strength

Received signal strength (RSS) position estimation is based on the principle that
signal weakens as it is transmitted over a distance. In theory, a reference node could
therefore estimate the distance to a target node if it knew the signal output power of
that node. The target node’s location can be determined using trilateration if at least
three reference nodes, with known locations, obtain a distance estimate. RSS can also
be used in relative location schemes, with one reference node determining if a target
node is in close proximity, and in terminal-based schemes. Measuring the received
signal is a relatively straight forward task for the reference nodes, but RSS distance
estimation also requires an accurate path-loss model to estimate distance, especially
if communication is not line-of-sight. Formulating such a model, or alternatively
‘mapping’ the signals strengths within an area of interest based on calibration mea-
surements might be time consuming or not at all practical. For example, this is not
practical if the system needs to deal with slow or fast fading effects, or if the envi-
ronment changes often, e.g. shipping containers that are constantly moved around
a warehouse obstruct line-of-sight or attenuate signals. RSS is vulnerable to simple
distance fraud as it is straight forward for an attacker to amplify or attenuate the signal

276 G. P. Hancke

to commit distance fraud. RSS could also be used in a simplified range-independent
systems, i.e. the target node is within communication range. This variant is less reliant
on a path-loss model, an exact signal strength measurement is not required and can
be made resistant to relay attacks when combined with device characterisation and
unforgeable channel techniques, as will be discussed in Sect. 11.4.

11.3.1.3 Time of Flight

Time of flight (ToF) encompasses three distance estimation methods: Time of arrival
(ToA), Time difference of arrival (TDoA) and Round trip time (RTT). All three
these methods estimates distance between the target and reference node based on the
propagation speed of the transmission medium and the propagation time between the
target node and the reference node. All three methods can be used in terminal-based
systems, although only ToA and RTT are suitable for relative location systems.
One reference node using the TDoA method would not be able to estimate the
distance to a target node as it needs multiple readings to determine a location. The
propagation speed of radio waves in air approaches the speed of light. Apart from
radio frequency (RF) ultrasound channels have been used in ToF systems, e.g. [15].
The propagation speed of sound is much slower than that of light, so it is easier to
obtain high spatial resolution using simple hardware. This property, however, makes
ultrasound vulnerable to a relay attack where messages are forwarded over a faster
RF channel.

ToA requires that the target node records the time it transmits t0 and that the
reference node records the time it received the transmission t1. The propagation time
between the nodes tp = t1−t0 can then be used to estimate the distance between them.
ToA is a costly method since each node must contain a reliable, high-frequency clock,
which is synchronised with all the other node’s clocks to ensure accurate distance
estimates. The resolution of the distance estimate is dependent on the frequency of
the clocks and how closely the are synchronised. ToA is also vulnerable to distance
fraud as the distance estimate is dependent on the transmit time provided by the target
node. The node can decrease the distance be increasing t0 or increase the distance
by decreasing t0.

In TDoA the reference nodes record the time when the transmission was received.
The reference node does not receive a transmit time from the target node, like is the
case for ToA, but it does know that the same transmission was sent at the same time
to the other reference nodes. If the target node has to transmit to each reference node
in turn the delay between transmissions will be recorded. The reference nodes then
estimate the position based on the difference in the time that the transmission takes to
reach each of them. The DToA method also requires that each node contain a reliable,
high-frequency clock, which is synchronised with all the other nodes’ clocks to ensure
accurate distance estimates. The resolution of the distance estimate is dependent on
the frequency of the clocks and how closely the are synchronised. DToA is also
vulnerable to distance fraud as the target cannot manipulate the time differences by
controlling when it transmits to each reference node, taking into account that the

11 Security of Embedded Location Systems 277

system assumes that all transmissions were sent at the same time. Both TDoA and
ToA methods could potentially detect simple relay attacks if the extra distance over
which the communication is relayed will increase the propagation time beyond the
accepted operational limits.

Reference nodes in RTT systems will measure the time from when they sent a
transmission until it received a response from the target node. The distance estimate
can then be calculated as d = c · tm−td

2 where c is the propagation speed, tp is
the one-way propagation time, tm is the measured total round-trip time and td is
the target node’s processing delay between receiving a transmission and sending a
response. Methods using RTT have the advantage that these do not require the nodes
to have synchronised clocks and only the reference node needs a reliable, high-
frequency clock. Combined with distance-bounding protocols the RTT method have
the potential to be resistant to distance fraud and relay attacks, as will be discussed
in Sect. 11.4.

11.4 Securing Position Estimation Methods

Secure location system proposals based on statistical aggregation methods often
assume that there are multiple reference nodes [16, 17], or that a single reference
node can obtain multiple types of position estimates [18], which can collaborate
with each other to detect anomalies in target nodes’ behaviour. For example, a node
attempting distance fraud in an RSS system, by amplifying its signal, could have its
transmission received by a number of reference nodes outside its normal range of
communication. It is therefore possible that the node’s transmission was received by
two nodes whose observed areas should under legitimate circumstance not overlap.
This approach is cannot be relied upon in all cases, especially if the attacker used
a directional antenna to amplify the signal to a specific node. In a relay attack one
reference node might receive the transmission from the proxy while another reference
node, in another area, inadvertently receives the same transmission from the actual
target node. Once the system starts to calculate the location of the node this situation
will be detected and the fraudulent action identified. This method of making the
underlying position estimates robust is a good solution if there is a high concentration
of reference nodes, or if cost constraints allow for target nodes that can provide
multiple types of positioning information, e.g. angle of arrival and time-of-flight.
However, in industrial systems, where networks are more structured, the number of
reference nodes might be the exact amount required to locate the object within a set
area, with possibly only a few additional nodes to provide redundancy. This method
is not suitable for relative location systems where there is only one reference node,
and also cannot detect relay attacks that originate from outside the area covered,
e.g. the attacker has stolen a device and has left the area covered by the location
system, but left a proxy node in its place and none of the reference nodes will pick
up transmissions from the real target node.

278 G. P. Hancke

A common approach for preventing relay attacks is to construct unforgeable chan-
nels. If the reference node could physically verify whether the source of the trans-
mission is the target node then relay attacks can be detected. The basic principle in
this case is that the proxy target node will not be able to impersonate the real target
node if it cannot exactly replicate the communication channel. For example, Alkassar
et al.suggested that channel-hopping radio is difficult to track and thus difficult to
relay [19]. The reference node can also try to uniquely identify the target node by
using the physical characteristics of the channel. Rasmussen and Čapkun [20] pro-
posed that a reference node can construct a unique ‘fingerprint’ for each target node
by using the attributes of the received RF signal and there has been several practical
examples of sensor network nodes and RFID tokens being identified by measuring
unique characteristics at the physical communication layer [21–23]. These methods
do not allow for accurate distance estimates, so are only suitable for verification
within range-independent location services, and also do not protect against a fraudu-
lent node. Further proposals hide additional information within the transmitted data.
In a scheme by Hu et al. [10], geographical information, referred to as packet leashes,
are added to transmitted data. Kuhn [24] proposed that the target node transmits a
hidden ‘watermark’ along with the data, which is subsequently revealed, so that
the reference node can retroactively check whether the positioning transmission it
received was transmitted by the target node. An attacker would not be able to extract
this information and relay the response without introducing a significant delay, which
is then detected by the reference node. This method was suggested for GPS where
the sender is trusted, and therefore it does not protect against a fraudulent target node
committing distance fraud.

Distance-bounding protocols determine an upper bound for the physical distance
between two communicating parties based on the Round-trip-time (RTT) of cryp-
tographic challenge-response pairs. The format of the challenge-response pairs are
specifically designed to allow for an accurate time measurement, e.g. choosing a
response that takes a predictable or constant time to calculate. These protocols,
if designed correctly, and implemented on a suitable communication channel can
detect both relay and distance fraud attacks. Distance-bounding was first proposed
by Brands and Chaum [13] in 1994 and since then distance-bounding protocols have
become popular for doing secure neighbour detection [25] and proving proximity
in relative location systems, such as in RFID and contactless smart card applica-
tions [8]. Time-of-flight distance-bounding protocols are dependent on time mea-
surements made at the physical layer of the communication channel to accurately
calculate the distance between the prover and verifier. This means that the security
of the distance bound depends not only on the cryptographic protocol itself but also
on the practical implementation and the physical attributes of the communication
channel. Clulow et al. [12] show how an attacker can gain a timing advantage by
exploiting the time allowed by the verifier for the transmission of redundant data,
such as framing and error correction, at the packet level of the communication layer,
and also define four principles that govern the practical implementation of secure
distance-bounding protocols. Hancke et al. [11] also demonstrated how the attacker
can achieve similar timing benefits at the physical level, i.e. by exploiting time delays

11 Security of Embedded Location Systems 279

in the coding and modulation stages of RF transceivers. Both these papers illustrate
that systems planning to use distance-bounding protocols must implement special
low-latency channels as conventional communication channels are designed for reli-
able data transfer and therefore feature redundancy and timing tolerances, which
introduce timing uncertainty for an attacker to exploit. The practical implementation
of a suitable distance-bounding channel still remains a technical challenge. Cur-
rently, there are two basic ideas proposed in literature. The first approach is to work
with the current communication channel principles and try to add distance-bounding
functionality, as Capkun et al. [26] has done with an Ultra-WideBand (UWB) sys-
tem, while taking into account the possible security risks. The second approach is to
construct a new channel with the correct security properties, e.g. [27, 28].

The aforementioned methods could provide the means to help secure positioning
measurements. If the location system is based on methods using statistical aggre-
gation the multiple position estimates also act as a measure for error correction. In
other words, an erroneous estimate could be detected and rejected if it differs signif-
icantly from the other estimates. However, both unforgeable channels and distance
bounding rely on physical characteristics of the communication channel or nodes. In
certain environments the reliability of the location information is important and any
security mechanism should be resilient to possible errors. If the system dealt with
nodes of low complexity, then care must be taken that the proposed techniques do
not cause operational failures due to node tolerances. Unforgeable channels require
that the physical characteristics of nodes are characterised before being used, i.e.
there has to be some prior calibration of the node’s measurements and the system
must store the resultant ‘fingerprint’. This ’fingerprint’ should take into account any
outside influence on the channel but if the node is mobile, or functions in a envi-
ronment that changes, the node’s uniquely identifiable physical characteristics could
change, in which case the reference node could fail to authenticate the target node.
For example, the node’s radio environment could dynamically change or the node
could be moved a physical location with additional radio noise or objects that might
affect communication, such as metal containers, could be placed in the vicinity. As
a result, no position estimates for this target node is reported and the system loses
track of its location.

Distance-bounding protocols provide some redundancy in terms of the distance
estimate because the round trip exchange is done multiple times during a protocol
run. However, if a communication error occurs during the timed exchange stage of
the distance-bounding protocol the resultant cryptographic verification of challenge-
response pairs will fail in most proposals and the system will not locate the target
node. Some distance bounding proposals can be made resistant to communication
errors by using either a bit-error threshold [27], where the verifier accepts a defined
number of errors, or by applying an error-correction code (ECC) [29] to the challenge
and response bit-streams, and then correcting any bit errors during the verification
stage. Distance-bounding exchanges increase verification time and accurately timing
exchanges might not be possible on limited devices, so this approach might not be
usable in some operational environments.

280 G. P. Hancke

11.5 Global Navigation Satellite Systems

A major source of location information in embedded systems is GNSS, such as
GPS (US), GLONASS (Russia) and the forthcoming Galileo (EU) and Co mpass
(China). The large-scale use of GNSS for position, navigation and time (PNT) data
is the result of such systems’ ubiquitous availability, i.e. it is available everywhere
on earth, accuracy and the relatively low cost of use. There are numerous proposals
for location-based services incorporating non-GNSS technology, which include the
use of mobile network base stations or terrestrial radio (LORAN), but the issue of
availability inhibits these systems reaching the scale of GNSS. Even though mobile
infrastructure offers the advantage that it could work indoors it is generally limited
to developed areas, for example it is of limited use to a shipping vessel out at sea,
and its continued operation is dependent on private enterprise. LORAN has been
largely decommissioned and it is not yet certain how widely the enhanced version
(eLORAN) will be deployed.

11.5.1 GPS Security

The US GPS is currently the most widely used GNSS. A number of GPS satellites
continuously broadcasts their location, together with the time the message was sent.
GPS receivers then use TOA to estimate the distance to each observed satellite.

Figure 11.7 illustrates the GPS based location sensing and triangulation method.
In the figure, di represents the distance of ith satellite from Earth. c is the speed of
light (299,792,458 m/s). ΔT is the time difference of signal sent from the satellite
and received on the Earth.

Fig. 11.7 GPS based location sensing and triangulation

11 Security of Embedded Location Systems 281

di
2 = (xi − x)

2 + (yi − y)
2 + (zi − z)

2
(11.1)

d j
2 = (x j − x)

2 + (y j − y)
2 + (z j − z)

2
(11.2)

dk
2 = (xk − x)

2 + (yk − y)
2 + (zk − z)

2
(11.3)

By solving (11.3), and after error corrections we get, [X, Y, Z] where X = longi-
tude, Y = latitude, and Z = altitude.

If a receiver can observe at least four different satellites it can calculated its own
location, global co-ordinates and elevation. GPS satellites transmit their information
on two basic signals:

• The precision P(Y) signal used by military receivers features an encryption mech-
anism and therefore only a transmitter with the correct shared key can generate it
and only a receiver with the correct key can track it.
• The crude access (C/A) signal used by civilian receivers provides no security

mechanisms.

Both signals are transmitted using direct-sequence spread-spectrum (DSSS) mod-
ulation. In DSSS the data is multiplied with a pseudo-random sequence, the spreading
code, of much higher frequency than the original signal. This ‘spreads’ the signal
power across the frequency spectrum, making it difficult to clearly distinguish the
transmitted signal without knowledge of the spreading code. However, a receiver that
knows the spreading code can recover the original signal by correlating the incoming
signal with the code. In GPS systems the C/A signal is transmitted using a short,
publicly known spreading code. This allows the signal to be demodulated by anyone.
The P(Y) signal is, however, transmitted using a long, secret spreading code. Only
receivers that knows the secret code will be able to reliably reconstruct the P(Y) sig-
nal. Similarly, an attacker without the code will not be able to generate and transmit
a valid signal.

The security of GPS became a very public matter because of its use in the navi-
gation of both military and civilian unmanned aerial vehicles (UAV) [30]. However,
the security vulnerabilities of the GPS system and the increasing reliance of sensi-
tive applications on global positioning were issues already pointed out more than
a decade before. In 2001 the US Department of Transportation highlighted vul-
nerabilities in transport infrastructure relying on GPS in the ‘Volpe’ report [31].
This report also make recommendations to mitigate these security issues, including
cryptographic authentication and verifying signals’ angle-of-arrival. A decade later
security vulnerabilities remain while the use of GPS in critical applications have
increased dramatically, a situation affirmed in a 2011 report by the Royal Academy
of Engineering [32] emphasising the reliance on, and the vulnerabilities of, GNSS
in general.

Three main methods were identified of what was termed ‘intentional interference’,
i.e. malicious entities trying to destabilise the system.

• Jamming: Wholesale disruption of P(Y) and C/A signals by transmitting radio
interference.

282 G. P. Hancke

• Meaconing: Rebroadcasting of legitimate P(Y) and C/A signals that results in an
incorrect position being reported, essentially a relay attack whereby legitimate
signals are selectively delayed. By delaying the signals the attacker makes the
distance between device and the satellite appear larger than it really is.
• Spoofing: Creation of C/A signals with the purpose of causing a incorrect location

to be reported.

At the time of the Volpe report the equipment needed to perform meaconing or
spoofing was expensive and bulky. Technology has moved on from then and with
the advent of software defined radios the transmission of GPS signals has become
significantly easier and cheaper. These days GPS signals could feasibly be received,
relayed or created with open source software, such as GNU Radio [33], and a small,
generic software radio platform such as the Ettus Universal Software Radio Platform
(USRP) [34]. There are several publications in the public domain detailing practical
strategies for spoofing GPS signals [35, 36]. In practice, spoofing a location to a
receiver that is locked onto legitimate sources is not trivial. Simply transmitting a
stronger signal will not necessarily convince a receiver to lock onto this new signal.
The most efficient method for successfully spoofing a location was first presented
by Humprhreys et al. [36]. Figure 11.8 illustrates this attack with A being a signal
generated by the attacker, G being the genuine signal and the triangle indicating which
signal the receiver is currently locked onto. When the attacker initially transmits his
spoofed signal to receiver remains locked on the genuine signal. The attacker then
aligns his signal with the legitimate signal, with the receiver locking onto the larger
combined signal. The attacker then slowly increases the amplitude of his signal and
shifts his signal, causing the receiver to remain locked on his signal.

Although it is not as elegant an exploit, jamming is just as big a threat as meaconing
and spoofing. The loss of GPS services potentially disrupt a wide range of services
usually taken for granted. In October 2011, the Royal Navy jammed GPS signals
off the coast of Scotland as part of pre-planned military exercises, but had to stop
doing so because of safety considerations when the navigation systems of fishermen,
who had not received the advanced warning, stopped functioning [37]. Small scale
GPS jammers are widely available for on-line purchase and marketed as personal

Fig. 11.8 Sequence for spoof-
ing a GPS channel. A attack
signal, G genuine signal and
Δ showing the signal locked
onto by the receiver

A

A

A G

G

G

11 Security of Embedded Location Systems 283

privacy devices (PPD), which can jam both GPS and mobile communication. These
products are claimed to be intended for people who wish to prevent third parties from
tracking them using location-based services but unfortunately such a device can just
as easily be used by thieves to disable asset and vehicle tracking systems. PPDs
could also unintentionally effect much more critical applications. A good example
of this is a Federal Aviation Authority investigation into the reason why a GPS-based
landing systems used at New Jersey’s Newark Airport suffered from periodic breaks
in reception. PPDs used by truckers on the nearby freeway were eventually identified
as the cause [38].

11.5.2 Future Efforts on Securing GNSS

Redesigning GNSS to allow for secure civil location services will in all likelihood
not happen anytime soon and securing civil location services does not appear to be an
immediate concern. GPS III, which is scheduled for deployment in 2014, introduces
a second civilian channel and a ‘Safety of Life’ channel, alongside a backward
compatible civilian channel, but none of these channels provides for any security
mechanisms. GPS III does include improved anti-jamming and security measures on
the military channel. Only one of Galileo’s five forthcoming services does allow for
jamming resistance and encryption. This service, ‘public regulated services’ (PRS),
could potentially alleviate secure location issues for some systems as it is intended
not only for defence purposes, but also for law enforcement and emergency services
in addition to selected critical telecommunication, energy and transport applications.
Access to this channel will, however, be regulated and only authorised parties will
be able to use a PRS-capable receiver, so it is likely that this service will not be
implemented in most products intended for the civilian market [39].

Of course, if security mechanisms were ever to be implemented on civilian chan-
nels this might adversely affect their ubiquitous usability and their reliability. For
example, a cryptographic solution would need a suitable key management system,
which would allow for timely key distribution to both transmitters and receivers. This
especially adds to the complexity and cost of the receiver, and some users with lim-
ited security needs might not be satisfied with a system where they could lose service
out in the wilderness or on the ocean because their device was unable to receive a key
update. This means that the responsibility rests on systems designers to find ways
to improve existing receiver architectures, hardening these against simple attacks,
to take GNSS security risks into account when designing location services, and to
incorporate adequate fail-safe measures, such as back-up non-GNSS solutions.

284 G. P. Hancke

11.6 Conclusion

As location information gathered by embedded systems become more significant,
the embedded location systems used must be designed to be secure and reliable.
A location system’s underlying components must therefore be resistant to location
fraud, whereby the system is made to generate incorrect location information by a
malicious entity, and yet continue to function reliably. There are numerous proposals
for implementing secure position estimation methods, which are meant to be resilient
against intentional attacks and operational errors. Although some of these proposals
are arguably useful in certain situations, all of these approaches exhibit some practical
security weaknesses so there is still scope for research and development work in
this area. GNSS is a major source of location information for embedded systems
found in numerous scenarios where reliability is crucial, such as air traffic control
and military applications. Despite its importance, GNSS has only limited security, a
situation which has been recognised but is unlikely to be rectified anytime soon. This
means that at this stage the onus is on the designer of GNSS receivers, and embedded
designers, to ensure that their systems are made resistant to jamming, meaconing and
spoofing attacks as much as is possible.

References

1. C.A. Patterson, R.R. Muntz and C.M. Pancake. ‘Challenges in Location-Aware Computing’.
IEEE Pervasive Computing, Vol. 2, No. 2, pp 80–89, June 2003.

2. A. Boukerche, H.A.B. Oliveira, E.F. Nakamura and A.A.F. Loureiro. ‘Secure Localization
Algorithms for Wireless Sensor Networks’. IEEE Communications Magazine, Vol. 46, No. 4,
pp 96–101, April 2008.

3. A.I.G-T. Ferreres, B.R. Alvarez and A.R. Garnacho. ‘Gauranteeing the Authenticity of Location
Information’. IEEE Pervasive Computing, Vol. 7, No. 3, pp 72–79, July 2008.

4. Y. Zhou, Y. Fang and Y. Zhang. ‘Securing Wireless Sensor Networks: a Survey’. IEEE Com-
munications Surveys & Tutorials, Vol. 10, No. 3, pp 6–28, September 2008.

5. X. Chen, K. Makki, K. Yen and N. Pissinou. ‘Sensor Network Security: A Survey’. IEEE
Communications Surveys & Tutorials, Vol. 11, No. 2, pp 52–73, 2009.

6. ISO/IEC 24730. Information technology - Real-time locating systems (RTLS).
7. N.O. Tippenhauer, K.B. Rasmussen, C. Popper and S. Čapkun. ‘Attacks on Public WLAN-

based Positioning Systems’. Proceedings of ACM/Usenix International Conference on Mobile
Systems, Applications and Services (MobiSys), 2009.

8. G.P. Hancke, K. Mayes, and K. Markantonakis. ‘Confidence in Smart Token Proximity: Relay
Attacks Revisited’. Elsevier Computers& Security, June 2009.

9. Y. Desmedt, C. Goutier and S. Bengio. ‘Special Uses and Abuses of the Fiat-Shamir Passport
Protocol’. Advances in Cryptology (CRYPTO), Springer-Verlag LNCS 293, pp. 21, 1987.

10. Y.C. Hu, A. Perrig and D.B. Johnson. ‘Packet Leashes: A Defense Against Wormhole Attacks
in Wireless Networks’. Proceedings of INFOCOM, pp. 1976–1986, April 2003.

11. G.P. Hancke and M.G. Kuhn. ‘Attacks on “Time-of-Flight” Distance Bounding Channels’.
Proceedings of First ACM Conference on Wireless, Network Security (WISEC’08), pp. 194–
202, March 2008.

12. J. Clulow, G.P. Hancke, M.G. Kuhn, T. Moore. ‘So Near and Yet So Far: Distance-Bounding
Attacks in Wireless Networks’. European Workshop on Security and Privacy in Ad-Hoc and
Sensor Networks (ESAS), Springer-Verlag LNCS 4357, pp. 83–97, September 2006.

11 Security of Embedded Location Systems 285

13. S. Brands and D. Chaum. ‘Distance Bounding Protocols’. Proceedings of Advances in Cryp-
tology (EUROCYPT ’93), Springer-Verlag LNCS 765, pp 344–359, May 1993.

14. S. Čapkun and J-P. Hubaux. ‘Secure Positioning in Wireless Networks’. IEEE Journal of
Selected Areas in Communications, Vol. 24, No. 2, pp. 221–232, February 2006.

15. A. Harter, A. Hopper, P. Steggles, A. Ward and Paul Webster. ‘The Anatomy of a Context-
Aware Application’. Proceedings of Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, MOBICOM’99, pp. 59–68, August 1999.

16. Z. Li, W. Trappe, Y. Zhang and B. Nath., ‘Robust Statistical Methods for Securing Wireless
Localization in Sensor Networks’. Proceedings of the International Symposium on Information
Processing in Sensor Networks, 2005.

17. L. Lazos and R. Poovendran. ‘SeRLoc: Secure Range-Independent Localization for Wireless
Sensor Networks’ Proceedings of the 3rd ACM workshop on Wireless, Security, pp. 21–30,
2004.

18. L. Lazos and R. Poovendran, ‘Hirloc: High-Resolution Robust Localization for Wireless Sensor
Networks’. IEEE Journal on Selected Areas of, Communication, Vol. 24, No., pp. 233246.
February 2006.

19. A. Alkassar, C. Stuble and A. Sadeghi. ‘Secure Object Identification: or Solving the Chess
Grandmaster Problem’. Proceedings of New Security Paradigms, Workshop, pp. 77–85, 2003.

20. K.B. Rasmussen and S. Čapkun. ‘Implications of Radio Fingerprinting on the Security of
Sensor Networks’. Proceedings of IEEE SecureComm, 2007.

21. B. Danev, T.S. Heydt-Benjamin and Srdjan Capkun. ‘Physical-layer Identification of RFID
Devices’, Proceedings of USENIX Security Symposium, 2009.

22. B. Danev and S. Capkun. ‘Transient-based Identification of Wireless Sensor Nodes’. Proceed-
ings of the ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN), 2009.

23. G. DeJean and D. Kirovski. ‘RF-DNA: Radio-Frequency Certificates of Authenticity’. Pro-
ceedings of International Workshop Cryptographic Hardware and Embedded Systems (CHES
2007), Springer-Verlag LNCS 4727, pp. 346–363, September 2007.

24. M.G. Kuhn. ‘An Asymmetric Security Mechanism for Navigation Signals’. 6th Information
Hiding Workshop, Springer-Verlag LNCS 3200, pp 239–252, May 2004.

25. P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin, S. Čapkun and J-P
Hubaux. ‘Secure Neighborhood Discovery: A Fundamental Element for Mobile Ad Hoc Net-
working’. IEEE Communications Magazine, February 2008.

26. N.O. Tippenhauer and S. Capkun. ‘ID-based Secure Distance Bounding and Localization’.
Proceedings of European Symposium on Research in Computer Security (ESORICS), 2009.

27. G.P. Hancke and M.G. Kuhn. ‘An RFID Distance Bounding Protocol’. Proceedings of
IEEE/CreateNet SecureComm, pp. 67–73, September 2005.

28. J. Reid, J.M.G Nieto, T. Tang and B. Senadji. ‘Detecting Relay Attacks with Timing-Based
Protocols’. Proceeding 2nd ACM Symposium on Information, Computer and Communications,
Security, pp. 204–213, March 2007.

29. D. Singelée, B. Preneel. ‘Distance Bounding in Noisy Environments’. European Workshop on
Security and Privacy in Ad-Hoc and Sensor Networks (ESAS), Springer-Verlag LNCS 4572,
pp. 101–115, 2007.

30. Drone Hijacking? Thats Just the Start of GPS Troubles. Wired.com, July 2012. http://www.
wired.com/dangerroom/2012/07/drone-hijacking/all/

31. Vulneribility Assessment of the Transportation Infrastructure Relying on the Global Positioning
System. John A. Volpe National Transportation Systems Center, 2001.

32. Global Navigation Space Systems: Reliance and Vulnerabilities, Royal Academy of Engineer-
ing, March 2011.

33. GNU Radio http://gnuradio.org
34. Ettus http://www.ettus.com
35. N.O. Tippenhauer, C. Popper, K.B. Rasmussen and S. Capkun. ‘On the Requirements for Suc-

cessful GPS Spoofing Attacks’. Proceedings of ACM Communication and Computer Security
(CCS), October 2011.

http://www.wired.com/dangerroom/2012/07/drone-hijacking/all/
http://www.wired.com/dangerroom/2012/07/drone-hijacking/all/
http://gnuradio.org
http://www.ettus.com

286 G. P. Hancke

36. T.E. Humphreys, B.M. Ledvina, M.L. Psiaki, B.W. O’Hanlon and P.M. Kintner. Assessing
the Spoofing Threat: Development of a Portable GPS Civilian Spoofer. Proceedings of GNSS
Conference, September 2008.

37. Military jamming of GPS in Scotland suspended. BBC, October 2011. http://www.bbc.co.uk/
news/uk-scotland-highlands-islands-15242835

38. GPS Jamming: No Jam Tomorrow. The Economist, March 2011.
39. Galileo System Overview, European Space Agency. http://www.esa.int/esaNA/galileo.html

http://www.bbc.co.uk/news/uk-scotland-highlands-islands-15242835
http://www.bbc.co.uk/news/uk-scotland-highlands-islands-15242835
http://www.esa.int/esaNA/galileo.html

Chapter 12
Automotive Embedded Systems Applications
and Platform Embedded Security Requirements

Jan Pelzl, Marko Wolf and Thomas Wollinger

Abstract Contemporary security solutions in the automotive domain usually have
been implemented only in particular applications such as electronic immobilizers,
access control, secure flashing, and secure activation of functions or protection of
mileage counter. With cars, which become increasingly smart, automotive security
will play a crucial role for the reliability and trustworthiness of modern automotive
systems. In this chapter, we will introduce the topic of automotive security and
provide motivation for security in embedded automotive platforms.

12.1 Introduction: Smart Embedded Platform Automotive

Modern vehicles, especially when considering vehicles of the premium segments,
are equipped with more than 50 embedded microcontrollers, the so-called Electronic
control units (ECU). The ECUs provide a growing diversity of system functions to
control most processes in the car such as engine control, steering and braking sys-
tems, multimedia and entertainment systems, anonymous driving equipment and
information systems (like navigation systems and traffic control). These applications
are realised as embedded systems and range from simple control units to high-end
processors whose computing power approaches that of current PCs. These ECUs are
connected via various vehicular buses (e.g. CAN, MOST, LIN, etc.) forming a com-
plex highly networked and distributed system. The Controller Area Network (CAN)
bus is a synchronic serial bus connecting different ECUs [5]. The primary reason for

J. Pelzl (B) · M. Wolf · T. Wollinger
ESCRYPT GmbH, Embedded Security, Bochum, Germany
e-mail: jan.pelzl@escrypt.com

M. Wolf
e-mail: marko.wolf@escrypt.com

T. Wollinger
e-mail: thomas.wollinger@escrypt.com

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 287
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_12,
© Springer Science+Business Media New York 2014

288 J. Pelzl et al.

the CAN bus was to reduce the cable harness size and thereby, the weight as well
as the cost. Media oriented systems transport (MOST) is a bus developed especially
for the transfer of multimedia data in automobiles. MOST is a serial bus system for
audio, video and data signals using fibre optic cable. The Local interconnect network
(LIN) bus has been introduced for the inexpensive communication with intelligent
sensors and actors in the vehicle. The LIN bus is typically used in connecting the
vehicle doors or seats.

This heterogeneous, multi-rank communication in-vehicle network is in today’s
vehicles extended by connecting mobiles devices (like smart phones) to the multi-
media ECU. Considering the fact, that today the cost for electronics and software
is approaching 30 % of all manufacturing costs of the vehicles, the network and the
ECUs will be even more important in the future. Figure 12.1 illustrates the possible
communication connections a vehicle will have that connect all ECUs using differ-
ent on-board automotive buses within a complex network. In addition to the internal
communication, future vehicles will support more and more external communica-
tion. Local wireless communication like Wi-Fi or Dedicated short range communi-
cation (DSRC) will support communication with other vehicles (Vehicle-to-Vehicles
communication - V2V) and to the infrastructure (Vehicle-to-Infrastructure commu-
nication - V2I). Infrastructure, in this case, can be any device the vehicles will com-
municate with in the future such as traffic lights, traffic control centre, gas stations, or
traffic signs. The global wireless communication using Universal Mobile Telecom-
munications System (UMTS), GSM/GPRS, Tetra or others will allow direct vehicle
communication such as automatic emergency calls (eCall) in case of an accident
[16]. In addition, common computer interfaces will become more and more usual in
vehicles as well. The communication to user specific devices will be for example via
USB, Bluetooth or Ethernet. Global Positioning System (GPS) and Galileo reception
will be supported for future positioning applications and services.

The massive innovation through electronic technology as well as the network com-
munication in today’s vehicles and the fact that safety improvements are expected
using vehicle-to-vehicle and vehicle-to-roadside units communication (V2X com-
munication), underlines the importance of functional integrity in this context. Critical
examples include electronic safety aid systems, like local danger warnings, traffic

Fig. 12.1 Vehicular on-board network and external communications interfaces

12 Automotive Embedded Systems 289

light pre-emption, or electronic emergency brakes. While these functionalities should
improve safety, new security requirements need to be considered in order to prevent
malicious attacks. Attacks can be manifold and can have many different motivations,
and could manifest themselves for example as apparent malfunctions or influencing
traffic flow with faked messages. IT security is increasingly considered in the auto-
motive domain; however, it is only introduced to niche applications like electronic
immobilizers, access control, secure flashing, and secure activation of functions or
protection of the mileage counter. Hence, the vast majority of software and hardware
systems in current cars are not equipped with security functionality. The reason is
that in the past, car IT systems did not need security functions, because there was
very little incentive for malicious manipulation. Secondly, security tends has tended
to be an afterthought in automotive IT system, because the achievement of the core
function is the focus when designing a system. Future security designs should con-
sider the whole communication links, e.g. from the sensor which records a physical
variable to the controller that reacts to the data representing the variable value. Note
that the sensor could be installed deep within the vehicle whereas the controller could
be many kilometres away in a service facility. Hence, one needs to secure the internal
system components (like the sensors and platforms/ECUs), critical applications (e.g.
motor control or user applications), and communication links between internal and
external communication devices as well as the infrastructure devices and support
applications. Considering the V2X communication, the channel starts within one
vehicle passing information to another vehicle and/or infrastructure via a wireless
channel. The receiving party performs actions based on the incoming data, which
could have critical effect such as slowing down because of a dangerous situation.

12.1.1 Smart Communication Platform

With increasingly powerful CPUs and the demand for information technology in the
automotive domain, manifold smart communication platforms are likely to emerge in
the next few years. Common concepts plan to route all communication of a vehicle
with the outside world via a central smart platform. Such a platform provides all
required communication capabilities as well as the necessary security mechanisms
to protect critical assets such as valuable data and privacy. Typical future applications
will include V2X communication, including communication from vehicle to vehicle
and vehicle to infrastructure such as roadside units (traffic lights, toll collection
and/or parking garage). Furthermore, the on board network will have the possibility to
connect via the Internet to home networks and provide information about automated
systems of the driver’s home. Moreover, intelligent transport systems (ITS) will
increasingly depend on smart communication platforms to provide, for example,
intelligent traffic management for the connected car as well as location based services
for the driver.

Integration of mobile phones and smart phones via different communication
interfaces such as Bluetooth, wireless local area network (WLAN) or near field

290 J. Pelzl et al.

communication (NFC) is currently under investigation by automotive manufactur-
ers. As an example, mobiles might replace the traditional key fob for accessing the
car. Driver specific configurations of the car (e.g. favourite radio settings, naviga-
tion, etc.) will be provided by the link to such mobile user devices. Furthermore, the
integration of Internet connectivity into cars and usage of dedicated services pro-
vided via the Internet such as infotainment applications (e.g. media streaming) or
office applications (email and word processing) in cars will increase. Many future
applications will require smart and secure platforms in order to protect assets such
as valuable data and guarantee privacy.

12.1.2 Smart After-Market Platform

From a business perspective, modern cars offer the possibility for the manufacturer
to make money on the road. Similar to the recent development in the mobile phone
sector, smart platforms in cars additionally allow for interesting after-sales models to
provide additional value and commercial services to the driver. Technically speaking,
a communication platform in a car together with respective security mechanisms
bears the potential to be used as a platform for after-market sales. Examples include
on-demand business models, for example, for content such as video and music on
demand or location based services such as ticketing applications for parking.

Furthermore, customisation of in-car electronics via software applications and
configuration becomes possible. With applications on such a platform, the driver of
a car might choose different skins for the head unit and the interaction with the car.
As another example, linking home automation with the in-car network in order to
provide information about the status of the driver’s home at any time is currently
being developed for in-car platforms. Combined with security, software application
markets comparable to existing markets for applications for mobile phones are feasi-
ble for the automotive domain. For car manufacturers, feature activation and custom
configuration of cars on the road, including consumer electronics and engine control
are within reach. With such a system, a driver could for example buy more engine
power for the weekend trip.

From a business point of view, after-sales will only work if security measures
enforce the business model and prevent fraud. From a dependability point of view,
security becomes inevitable in order to enforce safety.

12.1.3 Smart Future Platform

In future, many additional applications based on smart platforms are imaginable and
extend current existing business-models and possibilities. As an example, smart traf-
fic management systems will increasingly use the possibility to connect interactively
to smart automotive platforms in order to obtain real-time information about the

12 Automotive Embedded Systems 291

status of a car in terms of speed, destination, and other sensor information. On the
other hand, traffic information will be evaluated and transmitted instantaneously by
such platforms in order to provide optimal traffic routing and prevent traffic jams. Col-
laboration between platforms and integration with public transport systems extend
the information exchange to other forms of transportation and allow for optimisation
of traffic in a more cooperative manner. Consequently, reduction of CO2 emission
can be optimised by optimal usage of cars. Saving energy or avoiding traffic jams
might be achieved by creating specific incentives for drivers such as, for instance,
free parking in particular areas and times, intelligent management of car sharing or
car pools of companies

With the dawn of electric cars, new business models and requirements in conjunc-
tion with energy distribution arise. In this context, charging electric cars will become
one of the logistic challenges of the next generation since the process of charging
takes at a lot of time and when considering millions of electric cars. It also requires a
highly sophisticated distribution of energy from the power plants to the batteries of
cars. Secure measurement of energy, secure transmission of control data as well as
security for new business models in the area of smart grid and smart metering all add
demands for supporting security mechanisms in future automotive platforms. One
basic requirement of all of these applications is security, in order to provide a trusted
and reliable system and defend against fraud and manipulative attacks.

12.2 Security Aspects of Smart Embedded Automotive Platforms

In general, we have the same goals for automotive security as in most other IT
security systems. Hence, we want to achieve the following security properties for the
embedded automotive platforms:

• Confidentiality (e.g. for trade secrets and know-how).
• Authenticity/Integrity (e.g. for original OEM software).
• Availability (e.g. for vehicle safety functionality).
• Non-Repudiation (e.g. for error or driving logs).
• Privacy (e.g. for latest navigation destinations).

It is very important to note that all the measures implemented to provide and ensure
the security properties must themselves be protected against malicious manipula-
tions (also referenced as the “security of security mechanisms”). Thus, the following
section gives an overview of potential attackers, attack paths and resulting secu-
rity threats in the automotive domain together with some real-world examples and
countermeasures.

292 J. Pelzl et al.

12.2.1 Automotive Attackers

Automotive systems will need to defend against different types of potential attackers.
These attackers may have different levels of access to the vehicle, different expertise
and different financial resources. A summary of the different attacker types and the
attack potential can be found in the Table 12.1. Table 12.1 classifies the different
resources of the attacks in three levels, namely low, medium and high. Hence, con-
sidering the financial strength of an attacker, low would indicate that the attacker has
some hundred dollars and he will be able to buy normal equipment like a computer
or laptop. The medium attacker has however for example some thousand dollars and
therefore can buy special equipment (like more expensive measuring equipment).
The attacker rated high can essentially buy whatever is needed for the attack, like
special purpose key search machines.

It should be noted that we have to protect the vehicles against third party attackers
but also against the vehicle owner/driver. The latter case may be most relevant when
the owner could benefit financially from a successful attack, e.g. saving some money
using additional features without payment, or reducing tax or insurance fees as well
as inflating the resale value of the vehicle. Even more dangerous are tuning activities
that may not only causes illegitimate warranty claims, but also increase the safety risk
to the driver and the other travellers. The garage worker can risk human lives by using
counterfeit spare parts with or without the knowledge of the owner of the vehicle.
Even more damage can be caused by competitors or suppliers who can try to gain
economical advantage or cause bad publicity. Professional criminals have extensive
knowledge and financial capability to carry out successful attacks and then to make
money from the sale of stolen vehicles or parts. As with all IT systems, automotive
platforms may be targeted by amateur hackers (or script kiddies) that attack systems
for fun and reputation. Although these attackers may not have criminal intent, they
can educate criminals and cause very damaging publicity.

12.2.2 Automotive Attack Paths

The introduction gave us a brief overview on how complex today’s vehicles are, with
many potential points of attack. In the following section, we present the different
layers or attack perimeters a potential attacker can use to mount an attack. As shown in
Fig. 12.2, automotive attack paths can be generally classified into in-vehicle (interior)
attacks and attacks that can be mounted externally (exterior).

12 Automotive Embedded Systems 293

Ta
bl

e
12

.1
A

tta
ck

er
s

in
th

e
au

to
m

ot
iv

e
do

m
ai

n

R
ef

er
en

ce
cl

as
si

fic
at

io
n

E
xe

m
pl

ar
y

Ta
rg

et
T

im
e

Te
ch

ni
ca

l
Te

ch
ni

ca
l

Fi
na

nc
ia

l
ac

co
rd

in
g

[1
]

au
to

m
ot

iv
e

ro
le

kn
ow

le
dg

e
fr

am
e

ex
pe

ri
en

ce
eq

ui
pm

en
t

re
so

ur
ce

s

0:
Sc

ri
pt

ki
dd

ie
s

D
ri

ve
r

L
ow

H
ig

h
L

ow
L

ow
L

ow
1:

C
le

ve
r

ou
ts

id
er

s
G

ar
ag

e
w

or
ke

r
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
2:

K
no

w
le

dg
ea

bl
e

in
si

de
rs

Pr
of

es
si

on
al

th
ie

f
H

ig
h

M
ed

iu
m

M
ed

iu
m

H
ig

h
M

ed
iu

m
3:

Fu
nd

ed
or

ga
ni

sa
tio

ns
C

om
pe

tit
or

s,
co

un
te

rf
ei

ts
,

ac
.r

es
ea

rc
h

H
ig

h
H

ig
h

H
ig

h
H

ig
h

H
ig

h

294 J. Pelzl et al.

Fig. 12.2 Different attack perimeters of an attacker on a vehicle

12.2.2.1 In-Vehicle Attack Paths (Interior)

In-vehicle attack paths cover all attacks, where the attacker needs to be physically
present and needs access to the vehicle interior by being able to open at least a door
or the bonnet of the car.

Internal plugs (I1):
Most prominent attacks today (e.g. mileage manipulations or vehicle theft) use stan-
dardised on-board interfaces such as On-board diagnosis (OBD) or USB interfaces,
which exist in all modern vehicles to easily access vehicular on-board electronics and
on-board infotainment units, respectively. Thus, attackers can use physically stan-
dardised attack equipment and standardised protocols. The only individual adaptions
needed are carmaker or car model individual parameters or commands, which can
often be found on the Internet, while dedicated security mechanisms such as user
authentication at OBD-level, are rather seldom implemented

On-Board Communication Attacks (I2):
For the on-board communications attacks, the attacker goes beyond obvious inter-
faces such as OBD or USB and directly connects to the internal vehicle bus system,
which is normally a CAN bus system [5]. For attacks, using the internal bus system,
the engine hood or some hatch in the interior has to be opened and some wires or bus
connectors have to be attached directly with the attacking device (e.g. a laptop using
a standard CAN card). Once successfully connected, this attack can use the generally
standardised, publicly available protocols to generate commands and attempt para-
meter modification. Similar to today’s I1 interfaces, dedicated security mechanisms
such as user authentications are generally not implemented.

12 Automotive Embedded Systems 295

Simple Attacks on Hardware Level:
Simple attacks at the hardware level comprise all attacks, which can be executed
with basic know-how and some simple equipment in a limited time frame, such
as manipulating unprotected flash memories, completely deactivating or replacing
certain devices, cutting wires or accessing proprietary debug interfaces.

Sophisticated Attacks on Hardware Level:
The attacks one can conduct directly on the hardware are usually very complex and
can only be performed successfully by highly skilled experts. These attacks include
bypassing dedicated hardware tamper protection measures such as special enclo-
sures, tamper response mechanisms and/or carrying out sophisticated side-channel
attacks [12].

12.2.2.2 External Attack Paths (Exterior)

External attack paths cover all attacks where the attacker does not need direct physical
access to the car. Moreover, for some external attack paths, the attacker can be a great
distance away, for instance using the Internet for access.

Near-Field Wireless Attacks (E3):
E3-level attacks misuse externally available near field wireless interfaces such as
Bluetooth or the wireless car key interface to attack the vehicle without touching the
car physically. However, the attacker usually has to be near the car.

Short-Range Wireless Attacks (E2):
E2-level attacks misuse externally available short-range wireless interfaces such as
Wi-Fi or V2X communication interfaces [13] to attack the vehicle and without being
directly noticeable around the car.

Long-Range Wireless Attacks (E1):
E3-level attacks misuse externally available long-range wireless interfaces such as
UMTS cellular network interfaces or other long-range vehicular communication
interfaces such as Radio Data System (RDS) or Global Positioning System (GPS),
where the attacker is not in sighting distance, but can be kilometres away.

Logical Attacks (E0):
Logical attacks will be conducted by misusing an inherent logical or systematic fault
of the overall IT (security) design or the corresponding (backend) implementation
to compromise the vehicular IT system. Hence, logical attacks typically exploit
vulnerabilities in the corresponding backend IT infrastructure or any indirect vehicle
access, for instance, by any kind of malware, where attacks can be executed from
anywhere in the Internet. Logical attacks also include social engineering, which
exploits human weaknesses, typically by trying to trick a person to reveal sensitive
and valuable information.

296 J. Pelzl et al.

12.2.3 Automotive Security Threats and Risks

Not every potential attack path introduced in Sect. 12.2.2 implies a real security threat
or risk. In fact, the actual security risk is the resulting product of two factors, the
complexity and hence the likelihood of a certain attack path and the corresponding
damage a successful attack would yield in worst case. For determining the likelihood
of a certain attack path there exist some qualitative metrics as proposed for instance
by the common criteria (CC) [14] which are linked to the individual attacker model
(cf. Sect. II.1 12.2.1). The impact can in turn be divided into at least three damage sub
categories. Thus, a successful attack can have safety (up to fatal casualties), financial
(stolen car) or privacy (monitoring) implications.

However, security risk analyses of modern vehicles are not straightforward and
there are unfortunately no standardised methodologies and procedures available.
However, there are some best practice approaches such as [15]. Applying such an
approach to a current vehicle, could yield the security risk evaluation as presented
in Table 12.2.

12.2.4 Security of Automotive Safety Mechanisms

The most important security objective is the protection of automotive safety and
hence all automotive-safety-related components, communications, functions and
interfaces. This includes protection against any direct malicious encroachments to
all dedicated passive (e.g. belts, airbags, [near] accident detection) and active safety
mechanisms (e.g. Anti-lock braking system (ABS), Electronic stability program
(ESP), lane assistant), but in particular all driving-related components and functions
(e.g. vehicle steering, braking or shifting).

However, indirect safety encroachments, which do not directly target a dedicated
safety component, can also lead to serious safety threats. This is true for instance,
for security attacks, which enable the installation of potentially unsafe counterfeit
components. Another example is unauthorised modification, for example, of the
odometer, which may result in a safety problem if the unofficial manipulation could,
accidentally change or overwrite critical safety functionality. Finally, it is important
to realise that there are many sub-systems, such as windscreen wipers, infotainment
units, or seat adjustments, which appear non-safety critical yet, could cause safety
problems if they act without control while driving, due to a security attack.

12 Automotive Embedded Systems 297

Ta
bl

e
12

.2
E

xa
m

pl
es

of
au

to
m

ot
iv

e
se

cu
ri

ty
ri

sk
ev

al
ua

tio
ns

A
ut

om
ot

iv
e

sy
st

em
A

tta
ck

lik
el

ih
oo

d
Po

te
nt

ia
ld

am
ag

e
Se

cu
ri

ty
ri

sk
Sa

fe
ty

Fi
na

nc
ia

l
Pr

iv
ac

y

T
he

ft
pr

ot
ec

tio
n

(e
le

ct
ro

ni
c

im
m

ob
ili

ze
r,

co
m

po
ne

nt
id

en
tifi

ca
tio

n)

H
ig

h
L

ow
H

ig
h

N
/A

H
ig

h

D
ri

ve
tr

ai
n

sy
st

em
s

(e
.g

.A
B

S,
E

PS
)

L
ow

M
ed

iu
m

L
ow

N
/A

M
ed

iu
m

A
ct

iv
e

sa
fe

ty
sy

st
em

s
(e

.g
.a

ir
ba

g)
L

ow
M

ed
iu

m
L

ow
N

/A
M

ed
iu

m
D

at
a

st
or

ag
e

(e
.g

.o
do

m
et

er
,e

rr
or

co
de

s,
ev

en
td

at
a

re
co

rd
er

)
H

ig
h

L
ow

H
ig

h
H

ig
h

H
ig

h

In
fo

ta
in

m
en

t(
e.

g.
ra

di
o,

G
PS

na
vi

ga
tio

n)
H

ig
h

L
ow

M
ed

iu
m

-H
ig

h
L

ow
H

ig
h

E
xt

er
na

lc
om

m
un

ic
at

io
n

sy
st

em
s

(e
.g

.I
nt

er
ne

ta
cc

es
s,

pr
op

ri
et

ar
y

au
to

m
ak

er
sy

st
em

s,
V

2X
)

M
ed

iu
m

L
ow

L
ow

M
ed

iu
m

M
ed

iu
m

L
oc

al
w

ir
el

es
s

co
m

m
un

ic
at

io
n

sy
st

em
s

(e
.g

.B
lu

et
oo

th
an

d
ty

re
pr

es
su

re
m

on
ito

ri
ng

sy
st

em
)

M
ed

iu
m

L
ow

L
ow

M
ed

iu
m

M
ed

iu
m

L
oc

al
w

ir
ed

co
nn

ec
tio

n
(e

.g
.

O
B

D
-I

I)
H

ig
h

L
ow

L
ow

L
ow

M
ed

iu
m

298 J. Pelzl et al.

12.2.5 Security of Automotive Legal Applications

Another important security objective is the protection of all automotive components,
communications, functions and interface, which enforce effective legal restrictions.
Examples of attack targets could include:

• Legal restrictions regarding environmental laws (e.g. exhaust control, engine con-
trol, fuel detection. mandatory maintenance intervals). An attack might increase
engine performance, but reduce efficiency.

• Legal restrictions regarding fiscal laws (e.g. odometer, identification, and restric-
tions related to tax reductions and payments). An attack might seek to avoid or
reduce payments.

• Legal restrictions regarding traffic and labour laws (e.g. max speed, TV activation
while driving, tachograph for maximum driving periods). An attack might seek to
improve driver comfort and/or profit at the expense of (other’s) safety.

• Legal restrictions regarding export laws (e.g. export-restricted equipment such as
night vision equipment or export-restricted markets). An attacker might wish to
circumvent political objectives.

12.2.6 Security of Automotive Business Models

The protection of automotive business models is a financially oriented security objec-
tive and covers all automotive components, communications, functions and interface,
which enforce a vehicle-based (aftermarket) business model. Examples of some
mainly financially relevant automotive applications are:

• Component or feature activation, where the Original Equipment Manufacturer
(OEM) usually has already installed all necessary components (e.g. a fully
equipped infotainment unit) in the car, but has it not yet completely activated
it. This would be in order to sell customers enhanced features (e.g. special multi-
media decoders, extended information) using an on-demand base business model,
for instance.

• There are several pay-as-you-drive business cases such as pay-as-you-drive car
insurances, pay-as-you-drive car taxes, pay-as-you-drive car leasing or car rental,
or pay-as-you-drive warranty or maintenance plans.

• There are special discounts for renting or buying a car based on some special
car usage restrictions (e.g. limited usage locations, limited usage periods, limited
mileage, limited performance values etc.) or for some dedicated car “branding”
(e.g. some mandatory advertisement at every car startup),

• There is an aftermarket software and information business (e.g. in-car app store).
• In future there may even more sophisticated automotive business applications

such as third party hardware rentals (e.g. a third party pays to use in-car hardware

12 Automotive Embedded Systems 299

resources), smart grid integration use cases for electric vehicles, or the commercial
use of the car as a sensor for local traffic, weather, or road conditions.

12.2.7 Automotive Privacy Aspects

The last but not least important security objective is privacy, which usually means
the privacy of vehicle owners, drivers, and passengers, and their data. Since modern
cars create, process, store and communicate more and more information, privacy
becomes an increasingly important issue. Although driving a vehicle has never been
fully anonymous, there are several (new) automotive privacy concerns, including:

• Location privacy with respect to vehicle external parties. For instance, location
information may leak via unique identifiers for V2X applications, tolling applica-
tions, or, any wireless identification tokens (e.g. tyre pressure monitoring system,
in-car radio-frequency identification (RFID) components, wireless access autho-
risation tokens for private garages etc.).

• Location privacy with respect to vehicle internal parties. An attack might proceed
for instance by (manually) reading out the “last trips” navigation list or by inter-
nally logging the vehicle location with software applications for pay-as-you-drive
services or by any other in-vehicle software application with access to the vehicle
location data.

• General vehicle usage privacy, which includes usage time, speeds, or even logged
vehicle control activities, for instance, from the automotive black box called “the
event data recorder” or the digital tachograph for large commercially driven vehi-
cles.

• Personal privacy, which means all personal information, which is or will be
processed and/or stored in vehicles such as vehicular access permissions, per-
sonal address books, personal phone or Internet access histories or even personal
health data; for instance, with regard to the new mandatory eCall system [16].

• Vehicle maintenance or service activity privacy (if feasible), which enforce some
effective restrictions about vehicular maintenance (e.g. car inspections) or service
activities (e.g. fueling/charging, parking activities).

12.2.8 Real-World Automotive Security Incidents

The “history” of automotive security virtually starts with the introduction of first
electronic components into mass production vehicles in the early 1990s. The first
attacks targets were electronic theft protection mechanisms, which always sent the
same unprotected “password,” which could easily be intercepted and replayed. Other
attack targets, which still apply today, include unauthorised manipulations of Engine

300 J. Pelzl et al.

control unit (ECU) software (chip tuning) to circumvent effective legal or safety
restrictions (cf. Sect. 12.2.3), or mileage manipulations.

The introduction of external wireless communication interfaces such as the cellu-
lar network interface for GM’s OnStar system extended the attack surface again, even
though real-world attacks remained rare and mostly affected third-party aftermarket
components [17]. The most prominent academic proof-of-concept attack in the 2000s
was probably the complete break of the Keeloq remote key entry system [18], which
is used by many major OEMs. Keeloq is a proprietary cryptographic authentication
protocol, which replaced the simple to hack plain password remote entry systems
of the early 1990s. However, Keeloq had some inherent cryptographic weaknesses
and, even worse, it was deployed using an insecure key management approach based
on a few globally unique keys, which once discovered could be easily reused for
other cars. Some current (2011) very prominent real-world attacks, even though they
were executed by academics, were the comprehensive attacks done by the Center
for Automotive embedded systems security (CAESS). The first [19] successfully
demonstrated over a range of experiments, both in the lab and in road tests, the abil-
ity for unauthorised control of a wide range of automotive functions and completely
ignore driver input including disabling the brakes based on prior internal physical
access. The second attack [20] successfully demonstrated external remote attacks
showing that “exploitation is feasible via a broad range of attack vectors (including
mechanics tools, CD players, Bluetooth and cellular radio), and further, that wire-
less communications channels allow long distance vehicle control, location tracking,
in-cabin audio exfiltration and theft”. Another currently and prominent real-world
attack, which is particularly related to vehicular privacy, successfully demonstrated
how the complete lack of protection for the mandatory vehicle Tyre pressure moni-
toring system (TPMS) could lead to serious privacy and security vulnerabilities [21].

Furthermore, the future already promises some further important application chal-
lenges for automotive security. A short-term example is the (mandatory) introduction
of eCall [16], which gives assistance (e.g. in case of car accident) based on an inherent
cellular network connection for voice and emergency data communication. A mid-
term example (around 2015) is the introduction of vehicle-to-infrastructure (V2I) or
vehicle-to-vehicle (V2V) communication systems, as foreseen by the correspond-
ing automotive manufacturer car-2-car communication consortium (C2C-CC) . Both
examples will introduce the mass-market application of long-range wireless inter-
faces for remote car access, and potentially affect the vehicle driving behaviour based
on information received from external parties.

12.2.9 Examples of Automotive Security Mechanisms

Nowadays, IT security is deployed in manifold ways in modern cars. Starting with
the communications inside the cars and between cars and the outside world, up to
hardware and software security measures, one can find many security implementa-
tions in the automotive domain.

12 Automotive Embedded Systems 301

12.2.9.1 Communication Security

One of the most prominent aspects for vehicle security is communication security. As
already mentioned in the introduction, modern vehicles have many internal and exter-
nal communication channels and interfaces that require adequate protection against
malicious manipulations or encroachments into confidentiality or privacy. In general,
we can distinguish between in-vehicle wired communications and vehicle-external
wireless communications. Examples for in-vehicle wired communications are the
following.

• Interior-based in-vehicle wired communication (e.g. USB, SD card).
• Basic in-vehicle wired communication (e.g. on-board diagnosis).
• Extended in-vehicle wired communication (e.g. CAN, LIN).
• Expert in-vehicle wired communication (e.g. test and debug interfaces, on-chip).

Examples for vehicle-external communications that required adequate protection
are the following.

• Low-range wireless vehicle communication (e.g. Bluetooth, tyre sensors).
• Mid-range wireless vehicle communication (e.g. Wi-Fi, V2X systems).
• Long-range wireless vehicle communication (e.g. cellular network communica-

tions such as UMTS, GSM).
• One-way wide-range wireless vehicle communication (e.g. FM radio, GPS, traffic

message channel).

12.2.9.2 Software Security

Another potential security target is automotive software. Due to its flexibility and
cost-efficiency, software more and more replaces most electromechanical solutions.
However, from the security perspective, software is also much easier to manipu-
late or to replace without authorisation than electro-mechanical solutions. Moreover,
automotive software can currently be duplicated almost free of costs. This makes
automotive software especially susceptible to malicious encroachments that may be
difficult to detect even by proficient investigators. Hence, efficient security mecha-
nisms for automotive software are required including:

• Software authenticity/integrity protection.
• Software runtime protection.
• IP and expertise theft prevention.
• Authenticated software updates.
• Data confidentiality and privacy.
• Data availability.
• Data access control.

302 J. Pelzl et al.

12.2.9.3 Hardware Security

Finally, automotive hardware is one of the earliest security targets in the automo-
tive domain. Even though hardware manipulations are often more costly and more
difficult than software manipulations or communication encroachments, they can be
very powerful and effective and are particularly difficult to protect against. Hence,
efficient security mechanisms for automotive hardware components are required for
instance:

• Hardware integrity and safety protection.
• Enforcing technical, legal, or environmental restrictions.
• Enforcing a dependable base for most upper-layer security mechanisms.
• Preventing fabrication and installation of counterfeits.

12.3 Smart and Secure Open Automotive Platforms Platform

The integration of communication interfaces into automotive networks as well as
the combination of different applications on the same ECU result in many security
requirements to be addressed in today’s automotive platforms. This section intro-
duces the concept of an Open vehicular secure platform (OVERSEE). OVERSEE
[22] is realised through a European research project and describes an open vehicular
IT platform that provides a protected standardised in-vehicle runtime environment
and onboard access and communication point. Therefore, the main objectives of
the OVERSEE platform are the IT security and dependability. Hence, OVERSEE
enforces a strong level of isolation between independent applications and seeks to
ensure that vehicle functionality and safety cannot be harmed by any other appli-
cation. Today, every new automotive project causes the development of a new and
project specific Electronic Control Unit (ECU), which causes immense costs and
project risks. Furthermore, currently no obtainable universal device is able to con-
nect vehicle internal and external networks in a secure and common way. The idea
of OVERSEE can be split in the following two main parts:

1. Open platform for the execution of OEM and non-OEM applications.
2. Secure single point of access to ITS communications.

In the following section, we describe the concept of virtualisation in OVERSEE,
the underlying security services architecture and security implementation.

12.3.1 OVERSEE Virtualisation

The automotive applications running on an OVERSEE platform are executed in pro-
tected runtime environments for maximum dependability and security.

12 Automotive Embedded Systems 303

Fig. 12.3 OVERSEE vehicular security architecture

Applications are prevented from influencing each other. In addition, OVERSEE
allows secure communication to connected networks. To achieve this goal, virtuali-
sation is one of the main concepts. The applications are executed in runtime environ-
ments, which are abstracted from the physical hardware. The runtime environments
for applications are called partitions. Partitions could be:

• Single application partitions with or without Operating System (OS) / Real Time
Operating System (RTOS).

• Clusters (with or without OS/RTOS) serving more than one application.
• Clusters could be static (fixed set of applications).
• Dynamic (e.g. application store approach).

The different partitions with typical applications are shown in the figure below.
The partitions are controlled by the virtualisation system. Virtualisation offers a

temporal and spatial partitioning platform to execute several execution environments
on one physical Electronic code unit (ECU) with very low overhead, yet increasing
the reliability of the applications. The virtualisation has the following benefits:

• Application independence.
• Uniform view of system resources (hardware and software).
• System resources are controlled in a deterministic way.
• Hardware independence.
• Uniform system view through a standardised programming interface.
• Increased portability by providing a virtual machine.

From a cost perspective, the OVERSEE platform reduces the initial costs for
hardware and efforts as well as the follow-up costs and efforts for later system
modification, certification, and validation. New applications can be added or modified
without affecting the other partitions in the system. Only those parts of the system
that change must be re-certified or re-validated. It facilitates parallel development
and an easy integration process.

The OVERSEE approach uses the XtratuM hypervisor [11] to realise the virtuali-
sation. The approach is beneficial because of the intensive consideration of security,

304 J. Pelzl et al.

dependability and reliability issues within the development. The programming inter-
faces for developing applications are publicly available. Hence, developers are able
to quickly and efficiently develop new automotive applications and integrate security
and dependability aspects right from the start. The communication interface is based
on existing standards and therefore it is possible to connect most recent and new vehi-
cle internal and external networks with only small effort. As security issues are an
integral part, connecting new networks would be possible without the fear of creating
new backdoors for attackers. The security of communication via OVERSEE and with
the applications executed on OVERSEE will be based on a small and well-defined
message and command set. The access of applications executed on OVERSEE to
the communication interfaces as well as the incoming interfaces is protected by a
message filtering firewall. The firewall is customisable by user policy rules.

12.3.2 OVERSEE Security Services Architecture

The virtualised architecture enables different runtime environments to run in paral-
lel on the same platform with different levels of trustworthiness. This enables the
creation of secure and isolated services, which can be reached over dedicated chan-
nels. The need for integrity and trustworthiness can be limited to a minimal number
of modules in this way and evaluated separately from the user specific part of the
OVERSEE platform. Based on such a trusted base, further enhanced security ser-
vices can be added. In this section, the general architecture of the security concept
will be explained.

As seen in Fig. 12.4, the architecture involves a hardware security module (HSM)
developed by the EVITA project [3]. The EVITA HSM provides many services and
features serving as a base for the security concept. The HSM is logically coupled to
the security service partition of the OVERSEE platform which provides a secure and
isolated runtime environment for security services in general. This security services
can be requested by the other partitions through secured communication channels.

The EVITA HSM adheres to a large extent to the TPM specification [7] and
therefore can assure the secure boot process of OVERSEE. The secure boot process
starts with the authentication of the XtratuM hypervisor, the secure I/O partition
and the security services partition. The hash values of the actual configuration of
these partitions are compared with the known configuration values of the platform
in the HSM. Based on the comparison, many actions can be taken and/or enforced
by the architecture. One action would be to restrict access to cryptographic keys by
coupling the correct hash value of the system configuration to the access rights of
cryptographic keys stored in the HSM. Furthermore, the HSM can provide signed
attestations of the system configuration, which can be used by external entities to
remotely validate the integrity of the system.

Today’s systems usually start from a stand-by (or hibernated) state which excludes
the secure boot process. Furthermore, the fact that harmful changes can only
be recognised in the next boot process already can cause severe security flaws.

12 Automotive Embedded Systems 305

The parallel execution of the security service partition can react in such a situation.
The integrity of specific memory areas or stored data can be periodically validated on-
the-fly or after specific actions like warm-start or software installation. The actions
upon recognition of non-expected configuration can vary from just giving notifica-
tions up to stopping partitions. The security of stored data is assured by services for
encrypting individual files. A possible candidate for an encrypting file system would
be dm-crypt.1 The key material for the encryption is stored in the HSM, providing a
sealed storage. The file system of the user partitions are provided by the secure I/O
partition using Virtio [8].

The OVERSEE architecture provides a central point for handling software instal-
lations, providing a mandatory verification procedure by means of authorisation,
integrity, authenticity, compatibility and dependencies. The software package struc-
ture is based on a standardised Debian package [9]. The central handler serves as a
proxy between the partitions and the repositories and validates the packages before
forwarding to the destination and initiating an installation. It also provides func-
tionality for updating whole partition images or the hypervisor. The direct services
provided by the security service partition can be summarised as follows:

Fig. 12.4 OVERSEE security architecture

1 dm-crypt is a Linux device-mapper target that provides transparent encryption of block devices
using the new Linux 2.6 crypto API (cf. http://www.saout.de/misc/dm-crypt/).

http://www.saout.de/misc/dm-crypt/

306 J. Pelzl et al.

• A controlled interface to cryptographic functions and key material hosted by the
HSM.

• Central handling of authentication and authorisation information.
• Certificate handling.

The interface to the security module is based on the PKCS#11 [10] specifica-
tion which is supported by most of the security modules (e.g. smart cards, hardware
security modules, etc.). This enables the use of other security hardware instead of
the EVITA HSM. The PKCS#11 interface is tunnelled to the other partitions by a
proxy communicating with a PKCS#11 client driver hosted at the other partitions.
The OVERSEE PKCS11# proxy design enables parallel access to the cryptographic
functions and objects of the security hardware. It also provides a layer for restrict-
ing access of the individual services for each partition sending a request over the
PKCS11# proxy.

The central handling of authentication and authorisation data is enabled by a Light-
weight directory access protocol (LDAP) server (e.g. OpenLDAP) by the security
service partition. This server can be invoked by the other partitions via NSS (Name
Switch Service) or LDAP based PAMs (Pluggable Authentication Modules). Also
direct usage of the LDAP server through look-up services can be used to retrieve data
to validate information as authorisation or roles of a specific user, partition or any
other entity. Further functionalities like single sign-on are built upon this infrastruc-
ture. The access right to the LDAP server and individual data is restricted in the
partition level. The security service partition also provides services for handling
certificates and security tokens like certificate validation and creation. Furthermore,
services for importing security attributes or objects (e.g. cryptographic keys, new
users) are provided by the certificate handler. The secure key storage in the HSM
enables the storage of public keys (e.g. OEM public key) at the beginning of the
vehicle lifecycle.

12.3.3 OVERSEE Security Implementation

Concerning data, software and hardware manipulation there are two security levels
to achieve:

1. Avoiding manipulation: Every state of the system is continually controlled by the
security mechanism in real time, which attempts to determine that the system is
in a secure state at any point in time.

2. Detecting manipulation: If the system has been temporarily forced into an insecure
state, the security mechanism will detect this within a finite number of steps
after this event. Practically, we are often interested in real-time or near real-time
detection.

While it is desirable to secure crucial vehicle components such as the complete
engine, this seems to be out of scope today. Hence, we focus on securing the CUs

12 Automotive Embedded Systems 307

connected to the internal buses. The overall security goals can easily be sum-
marised, to avoid and detect manipulation, in order to maintain software and hard-
ware integrity. If confidentiality is required, it should be provided for direct channels
and side-channels (signal leakage). From an IT-security point of view, security con-
trollers form a basis for secure platforms in automotive applications. The general term
security controller refers to special microprocessors protected against active (tam-
pering and other invasive attacks) and passive (timing attacks, simple differential
power analysis, internal collision attacks, EM analysis, template attacks and many
others) physical attacks. They offer a number of pre-implemented cryptographic ser-
vices such as DES/3DES, AES, hash functions, long number arithmetic for public
key operations, RSA, ECC, secure generation of random numbers,. These crypto-
graphic functionalities are often implemented as co-processors. Security controllers
are also able to store data in secured memory, e.g. the data can be written once, but
can afterwards only be read out or only used by the security controller for crypto-
graphic operations. Most of these controllers are smart card derivations delivered in
traditional microcontroller packages (e.g. DIL, TSSOP, DSO, etc.). Such security
controllers possess 8-, 16- or 32-bit central processing units with clock frequencies
between 8 and 66 MHz, 2–16 kBs RAM, 16–256 kB ROM and up to 400 kB Electri-
cally Erasable Programmable Read-Only Memory (EEPROM). There are, however,
security controllers with larger (up to several MBs) EEPROM and ROM.

As an advantage, such controllers are special-purpose high-security solutions
with well-understood hardware and firmware architectures and thoroughly evaluated
and certified security by state certification bodies within formalised certification
procedures (e.g. by FIPS 140-2 [6] or Common Criteria (CC) [14] Protection Profiles
(PP) [2]). Security controllers are already available on the market and can be produced
relatively quickly after developing the corresponding embedded software application,
resulting in relatively low manufacturing costs (prices in the range of one to several
Euros for high volumes).

At the same time, there are several technical drawbacks impeding their potential
widespread adoption in automotive applications:

• Relatively low computational performance in view of the need of real-time reaction
in safety-relevant applications.

• Relatively low data transmitting capabilities, which may prevent standard secu-
rity controllers from controlling broadband in-car communication and external
interfaces on-line.

• Relatively narrow range of operational conditions. For example, the allowed tem-
perature range is as a rule from −20 to +85 degrees Celsius, which is to be
compared to the required values for automotive applications from −40 to +105
degrees Celsius. For solving these problems, some modifications in the hardware
core through semiconductor manufacturers may be necessary.

• Typical lifetime of a smart card chip is usually shorter than that of a car.

More recently, security controllers specific to the automotive domain have
evolved. As an example, automotive ICs with Secure Hardware Extension (SHE) pro-
vide a specific security extension tailored to typical use-cases in the

308 J. Pelzl et al.

automotive domain [4]. Security hardware for the next generation of automotive
communication systems is a hot topic in industrial research. Secure and trustworthy
intra-vehicular communication is the basis for trustworthy communication among
cars or between cars and the infrastructure. Therefore, the objective of the E-safety
Vehicle Intrusion Protected Applications (EVITA) project [3] is to design, verify, and
prototype a security architecture for automotive on-board networks where security-
relevant components are protected against tampering and sensitive data are protected
against compromise when transferred inside a vehicle. By focusing on the protec-
tion of the intra-vehicle communication EVITA complements, other e-safety related
projects that focus on the protection of the vehicle-to-X communication. Compared
to SHE, EVITA offers additional security functionality for many (future) use-cases
in the automotive domain.

12.4 Conclusions

In this chapter, we introduced the notion of automotive security. Contemporary secu-
rity solutions in the automotive domain are usually applied to niche applications such
as electronic immobilizers, access control, secure flashing, and secure activation of
functions or protection of the mileage counter. The primary reason is that legacy car
IT systems did not need security functions, because there was very little incentive
for malicious manipulation. Secondly, security has tended to be an afterthought in
automotive systems, because the achievement of the core function is the focus when
designing a system.

In the last decade, automotive security has evolved from considering individual
niche products to a more holistic view. New approaches in automotive security con-
sider the system view of the car, and in future, networks of cars and infrastructure.
Consequently, security is required in many stages of automotive systems including
the internal system components, the applications, the communication links between
internal and external communication devices as well as the infrastructure devices
and applications. With cars, which become increasingly smart, automotive security
will play a crucial role for the reliability of future automotive systems.

References

1. K. Finkenzeller, RFID Handbook: Radio-Frequency identification fundamentals and
applications, Wiley, 1999.

2. European Technical Standards Institute (ETSI), http://www.etsi.org.
3. M. Mouly, M-B Pautet, The GSM System for Mobile Communications, Cell & Sys.

Correspondence 1992.
4. Third Generation Partnership project (3GPP), http://www.3gpp.org

http://www.etsi.org
http://www.3gpp.org

12 Automotive Embedded Systems 309

5. ETSI SAGE Group (originally), 3G Security; Specification of the MILENAGE algorithm set:
An example algorithm set for the 3GPP authentication and key generation functions f1, f1*,
f2, f3, f4, f5 and f5*; Document 1: General, 3GPP TS 35.205.

6. Security Algorithms Group of Experts (SAGE), www.portal.etsi.org/sage/.
7. NIST, Advanced Encryption Standard, FIPS 197, 2001, http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf
8. 3GPP, Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile

Equipment (SIM - ME) interface (Release 1999) 3GPP TS 11.14 V8.18.0, 2007–06.
9. The Java Card Forum http://www.JavaCardforum.org/

10. 3GPP, Security mechanisms for the (U)SIM application toolkit; Stage 2 (Release 5) TS 23.048
V5.9.0, 2005–06.

11. GlobalPlatform, GlobalPlatform Card Specification, 2006.
12. 3GPP, Specification of the Subscriber Identity Module -Mobile Equipment (SIM - ME) interface

(Release 1999) TS 11.11 V8.14.0 (2007–06).
13. International Standard Organisation, “ISO/IEC 7816, Information technology - Identification

cards - Integrated circuit(s) cards with contacts- Part 4 Interindustry commands for inter-
change”, http://www.iso.org, 1995

14. David Wagner and Ian Goldberg, “GSM Cloning”, ISAAC Berkley, http://www.isaac.cs.
berkeley.edu/isaac/gsm.html, 1998

15. Anderson Ross, Kuhn Markus, “Tamper resistance - a cautionary note ”, second USENIX
workshop on electronic Commerce Nov 1996.

16. Paul Kocher, “Timing Attacks on Implementations of Diffie-Hellman RSA DSS and Other
Systems”, Advances in Cryptology - CRYPTO ’96, LNCS 1109, 104–113, 1996.

17. Paul Kocher, Joshua Jaffe and Benjamin Jun,“Differntial Power Analysis, Advances in Cryp-
tology - CRYPTO ’99, LNCS1666, 388–397, 1999.

18. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryp-
tology”, Vol. 4 No. 1, 1991.

19. Kumar Sandeep et al, “How to break DES for e8,980 ”, CHES 2006, http://www.crypto.ruhr-
uni-bochum.de

20. Eli Biham, Adi Shamir, “Differential Fault Analusis of Secret Key Cryptosystems”, Technicon
Computer science dept - Technical report CS0910.revised, 1997.

21. Tiago Alves and Don Felton. TrustZone: Integrated hardware and software security: Enabling
trusted computing in embedded systems. www.arm.com, July 2004.

22. Mayes Keith and Markantonakis Konstantinos, On the potential of high density smart cards,
Elsevier, Information Security Technical Report Vol11 No3 2006.

www.portal.etsi.org/sage/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.JavaCardforum.org/
http://www.iso.org
http://www.isaac.cs.berkeley.edu/isaac/gsm.html,
http://www.isaac.cs.berkeley.edu/isaac/gsm.html,
http://www.crypto.ruhr-uni-bochum.de
http://www.crypto.ruhr-uni-bochum.de

Chapter 13
Analysis of Potential Vulnerabilities
in Payment Terminals

Konstantinos Rantos and Konstantinos Markantonakis

Abstract Payment systems fraud is considered in the center of several types of
criminal activities. The introduction of robust payment standards, practices and pro-
cedures has undoubtedly reduced criminals’ profit, and significantly hardened their
work. Still though, all payment systems’ components are constantly scrutinised to
identify vulnerabilities. This chapter focuses on the security of payment terminals, as
a critical component in a payment system’s infrastructure, providing an understand-
ing on potential attacks identified in the literature. The attacks are not only limited
to those aiming to insult terminals’ tamper-resistance characteristics but also include
those that target weak procedures and practices aiming to facilitate the design of
better systems, solutions and deployments.

13.1 Introduction

Payment systems have always been high on the list of attractive targets due to their
ubiquity and the ease of exploitation of compromised assets.1 The introduction of
smart cards has significantly reduced credit and debit card losses. However, fig-
ures reveal that fraudsters have been seeking alternative paths to attack payment
systems and their actions constantly shift to adapt to new trends and practices in

1 Figures reveal that payment card fraud is one of the most profitable attacks for fraudsters
and costly for the card payments industry to defeat. In the U.S. alone, card fraud costs the card
payments industry an estimated US$8.6 billion per year [1].

K. Rantos (B)

Technological Educational Institute of Kavala, Kavala, Greece
e-mail: krantos@teikav.edu.gr

K. Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, United Kingdom
e-mail: k.markantonakis@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 311
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_13,
© Springer Science+Business Media New York 2014

312 K. Rantos and K. Markantonakis

payments technology. As with any system’s security, some could argue that it is the
attackers that implicitly drive technology, which then has to face new challenges and
exploitation methods.

EMV payment standards were introduced to fortify the highly vulnerable
magnetic-stripe cards-based payments with the deployment of chip cards accom-
panied by an extensive list of security measures adopted to make the system robust.
One of the key components that comprise this security chain is the payment termi-
nal used to accomplish a transaction, whose security with an emphasis on attacks
against them is examined in this chapter. Most of the attacks presented in this chapter,
although being against the UK’s EMV payment system Chip and PIN,2 they do not
directly attack Chip and PIN. They rather target vulnerabilities left in the card pay-
ment system, whilst magnetic stripe acceptance remains an option. The majority
of the attacks rely on the work carried out by the Security Group of the Computer
Laboratory in Cambridge University.

The security introduced by EMV in payments is complemented by another
set of specifications defined and published by the Payment Card Industry (PCI—
www.pcisecuritystandards.org), which is seeking high security levels for the data
relating to payment transactions. Five major payment card brands,3 who also founded
the PCI Security Standards Council (PCI SSC) developed and incorporated in their
data security compliance programs the PCI data security standard (PCI DSS) [5], a
set of requirements for cardholder data protection.

Deployed EMV payment systems, such as the Chip and PIN has been successful in
reducing the fraud types it was designed to address. Counterfeit fraud is at its lowest
levels since records began. Fraud has shifted away from the face-to-face environment
to card-not-present [23], where currently EMV Chip and PIN has no impact. How-
ever, there are numerous occurrences of proven fraudulent activity, mainly related to
the Chip and PIN, which include but are not limited to the following:

1. May 2006: Skimming attack at Shell stations in the UK, although on a very
limited scale, resulted in more than £1 m losses in customers’ accounts.4 Fraud-
sters were able, through tampered payment terminals, to record card numbers
and PINs and create cloned magnetic-stripe on cards used for money withdrawal
and payment transactions in more security relaxed environments. Following the
skimming attack, Shell had temporarily stopped using PIN-based cardholder
verification and reverted to the traditional handwritten signature.

2. February 2007: Cambridge security experts managed to relay valid account data
between a genuine cards and a remote genuine terminal (via tampered card
and terminal) to successfully complete a transaction to which the legitimate

2 Chip and PIN (http://www.chipandpin.co.uk) is the UK’s flavour of EMV introduced in 2004 and
fully rolled-out in February 2006.
3 Listed in alphabetical order: American Express, Discover Financial Services, JCB International,
MasterCard Worldwide and Visa Inc.
4 http://news.bbc.co.uk/2/hi/uk_news/england/4980190.stm

www.pcisecuritystandards.org
http://www.chipandpin.co.uk
http://news.bbc.co.uk/2/hi/uk_news/england/4980190.stm

13 Analysis of Potential Vulnerabilities in Payment Terminals 313

cardholder did not consent [17].5 The attack is known as “relay attack” and is
described in Sect. 13.3.7.

3. November 2007: The same team from Cambridge tapped the communications
between the card and the PIN entry device (PED), for two popular PEDs,
and managed to intercept all necessary information for producing counterfeit
magnetic-stripes on cards capable of cash withdrawal from automated teller
machines (ATMs) that rely only on magnetic stripe information.

4. August 2008: UK Police recovered a PIN pad tampering kit together with fake
cards. Advertisements about selling the know-how to bypass terminals, together
with guidance and a proprietary bluetooth transmitter and receiver for $4,000
appeared in forums in the same period. The hack was based on a vulnerability on
communication interception, i.e. on tapping into an unencrypted communication
channel on PEDs,6 and involved stolen re-engineered PEDs installed into retail
outlets.

5. October 2008: Tampered terminals from China and Pakistan used in shops and
supermarkets,7 as reported by Dr. Joel Brenner, allowed card details to be relayed
over mobile networks to overseas fraudsters for producing cloned magnetic-
stripe cards mainly used for card-not-present transactions and cash withdrawal.
The fraudsters masterfully opened the terminals, perfectly resealed them so that
tampering could not be spotted unless carefully examined by professionals, and
put them back in the supply chain to be exported to Britain, Ireland, the Nether-
lands, Denmark and Belgium. The simplest way to spot a tampered device, was
through weighing them instead of disassembling them. To avoid being immedi-
ately spotted, the criminals used the cloned cards two months after the informa-
tion had been stolen.

To be able to perpetrate the aforementioned attacks, fraudsters have to compro-
mise one of the components that comprise the payment system, including the termi-
nal, and bypass security measures and/or procedures deployed to make the system
robust. Although the majority of the terminals are evaluated and certified under high
assurance levels of corresponding certification schemes, such as the requirement
for all PEDs (PIN pads) deployed in UK to be evaluated to an Assurance Level of
EAL4+ under the Common Criteria methodology [19], research in this area and the
aforementioned incidents have shown that there are still ways to bypass those strong
security mechanisms for the benefit of the attacker.

This chapter starts with an introduction to payment terminals and their security
characteristics based on the applicable security standards. Logical, physical and
procedural attacks that have managed or can be used to bypass their security features
are described in the following sections.

5 http://www.theregister.co.uk/2007/02/06/card_security_attack/
6 http://www.theregister.co.uk/2008/08/13/pin_security_analysis/page2.html
7 http://www.telegraph.co.uk/news/uknews/law-and-order/3173346/Chip-and-pin-scam-has-
netted-millions-from-British-shoppers.html

http://www.theregister.co.uk/2007/02/06/card_security_attack/
http://www.theregister.co.uk/2008/08/13/pin_security_analysis/page2.html

314 K. Rantos and K. Markantonakis

13.1.1 EMV Standard

EMV specifications were developed to facilitate secure interoperable credit and debit
applications and the required interaction between point of sale terminals and chip
cards where the payment application is stored. Prior to the introduction of chip based
cards, the payments card industry was fighting against high-motive criminals with
magnetic stripe cards with additional security features such as cardholder details
embossing, use of holograms, and the use of cardholder verification code (CVC).8

Security evaluated Integrated Circuit or Chip Cards was the next step.
EMV introduced the following main security features for payment transactions:

• Authentication Methods. Used for authenticating the card and verifying the legit-
imacy of integrated circuit card (ICC)-resident data.

– Static data authentication (SDA): SDA is an off-line authentication method
where the terminal verifies the issuer’s signature on a set of card specific data,
namely signed static authentication data (SSAD) [14]. Due to the static nature of
the authentication data the same set is used in all transactions throughout a card’s
lifetime. Moreover, SSAD are provided to the terminal during authentication
in the clear, hence easily intercepted by adversaries while in transit. These
properties result in a weakness in the system in which SDA cards can be subject
to attacks, such as replay based attacks or creation of skimmed and counterfeit
EMV cards (SDA cloning) [13]. Although not the most secure method, the
attacks are only relevant for off-line usage, which is usually limited to low value
transactions.

– Dynamic data authentication (DDA): DDA goes beyond examining against
card data alteration and checks that a card is genuine by verifying the existence of
a valid card resident cryptographic key. This is done with the creation of a digital
signature by the card, namely signed dynamic authentication data (SDAD), on
ICC-resident and dynamically generated data including a terminal-provided
nonce. DDA eliminates the threat of replay attacks, hence DDA is not subject to
the attacks that SDA is, and counterfeit cards can be identified even for off-line
transaction authorisation. However, as will be described later, due to lack of
message binding, i.e. the VERIFY (PIN) command is not bound in some way
to the generation of SDAD, DDA is subject to a different type of attack known
as a man-in-the-middle or “wedge” attack.

– Combined data authentication (CDA): CDA is a method that combines DDA
and Application Cryptogram Generation which is required on-line for verifying
transaction details. This combination distinguishes CDA from DDA and is the
method that ensures that the transaction cryptogram has not been corrupted.9

8 Aka card verification value (CVV or CVV2), card validation code (CVC or CVC2) or Value, or
Card Security Code
9 As Professor Chris Mitchell points in his Lecture Slides (Available: http://www.isg.rhul.ac.uk/cjm/
IY5601/IY5601_B_060205_83-156.pdf) CDA, if appropriately used, makes EMV robust against
wedge attacks.

http://www.isg.rhul.ac.uk/cjm/IY5601/IY5601_B_060205_83-156.pdf
http://www.isg.rhul.ac.uk/cjm/IY5601/IY5601_B_060205_83-156.pdf

13 Analysis of Potential Vulnerabilities in Payment Terminals 315

To achieve that, EMV requires the card’s signature to also include the card’s
application cryptogram, which carries details about the transaction.

• Cardholder verification method (CVM): EMV defines more robust verification
methods for the cardholder to protect against lost or stolen card type of fraud [3].
Without removing the traditional hand-written signature based authentication and
on-line PIN verification (available in some debit markets) EMV provides plaintext
and enciphered (for DDA/CDA cards) off-line PIN verification.

• Off-line and On-line transaction authorisation: EMV offers the terminal and
the card the ability to decide whether to approve transactions off-line, decline
transactions off-line, or request on-line authorisation of the transaction based on
a risk analysis made during the transaction and on pre-defined values.

• Secure messaging between the card and the issuer: It is used to ensure the
integrity the commands and data and the confidentiality of some data (e.g. PIN
update) sent by an issuer to the card.

The above security features protect EMV based payment transactions which typ-
ically consist of the following steps:

• Card Initialisation: the card returns the answer-to-reset (ATR) sequence.
• Application Selection: the terminal selects one of the payment applications avail-

able on the card.
• Read Application Data: from the chip: including primary account number, card-

holder name, expiration date, CVM list, and issuer’s public key and certificate.
• Off-line Data Authentication: card and terminal choose a data authentication

method, one of SDA, DDA or CDA, based on their capabilities.
• Cardholder Verification: A method supported by the terminal and the card is cho-

sen for verifying the cardholder including one of: on-line PIN, off-line encrypted
PIN, or off-line plaintext PIN.

• Terminal Action Analysis: Following a risk analysis based on results from on-
line data authentication, checks on the chip’s authorisation to participate in the
transaction, checks from the terminal’s side to determine whether there is a need
for on-line processing, and considering rules in the terminal and the chip, the
terminal requests for on-line approval, off-line approval, or off-line decline.

– If the terminal decides to proceed off-line, it asks the card for a transaction
certificate (TC).

– If the terminal decides to go on-line, it asks the card for an authorisation request
cryptogram (ARQC)

– If the terminal decides to reject the transaction, it asks the card for an application
authentication cryptogram (AAC).

Note that the terminal’s decision on the transaction might be altered by the card.
• Card Action Analysis: On a similar action analysis performed by the terminal,

the card also performs a risk management to protect the issuer from fraud and its
decision could be to go on-line (sending to the issuer an ARQC), to decline the

316 K. Rantos and K. Markantonakis

transaction off-line (sending an AAC), or to approve it off-line (computing and
sending a TC).

• On-line Processing: If terminal and card decide for on-line approval, a request
is sent by the terminal to the issuer for authorisation and on-line authentication.
The response might also carry an authentication response cryptogram (ARPC), an
issuer authentication cryptogram which is sent to the card for verification [15].

13.2 Current Terminal Status

This section outlines existing terminal technology and the current status of security
requirements as these are dictated by standards and commonly accepted practices.

13.2.1 Types of Terminals

EMV specifications [20] define a payment terminal as “the device used in conjunc-
tion with the ICC at the point of transaction to perform a financial transaction. The
terminal incorporates the interface device and may also include other components
and interfaces such as host communications.” Based on this definition, many ter-
minal derivations are specified based on attendance, connectivity, capabilities and
configurations [20].

A terminal typically comprises of at least the following functional components
which are not necessarily standalone parts and can be combined and/or integrated
into others:

• Interface device (IFD) [aka card reader or card acceptance device (CAD)]: it is the
unit that can communicate with the card and in the case of an ICC, exchange data
with it. It is a very appealing component as its direct contact with the card allows
tampering for intercepting communications that take place with the card during a
transaction.

• PIN entry device (PED) (aka PIN pad): in markets that use PIN at Point of Sale it
is the unit used by the cardholder to enter the card’s PIN.

• Point of sale (POS): it is the unit that controls the other components and the
payment application.

An additional component that becomes more essential when the POS comprises of
a set of units that work together to provide the required terminal functionality, is the
terminal management system (TMS). The TMS has the overall control of the payment
process and can be used to parameterise the system. Networking devices (such as
switches and routers) are also necessary for the communications with the acquirer
to complete on-line transactions but these are typically not part of the terminal.

13 Analysis of Potential Vulnerabilities in Payment Terminals 317

Configurations marketed by vendors include the following:

• Standalone terminals: they do not require any additional components for complet-
ing the transaction, as they contain a card reader (magnetic stripe or chip-based),
payment application, PED, network connectivity (Ethernet, wireless, GSM, GPRS)
and a receipt printer.

• POS integrated: the payment terminal is integrated with the merchant’s point-
of-sale which provides much of the required functionality, except for the PED
which might be a separate device connected via USB or RS-232 and typically
with built-in logical and physical security.

• Unattended self-payment terminals: they have all the necessary interfaces
(reader, PIN pad, network connectivity) and functionality (payment application)
for completing the transaction and (optionally) providing a receipt. They are typi-
cally used by gas/petrol stations and as parking, ticketing and vending machines.

• Wireless payment terminals: standalone or POS integrated ones which have a
wireless interface to the networking infrastructure. This is a crucial difference for
these terminals as the deployment of wireless communications in the cardholder
data environment opens the door to many additional attacks related to intercepting
and manipulating over the air communications, or to the wireless infrastructure [4].

The evolution of terminals and the inclusion of additional functionality has
allowed vendors to market multiple configurations to satisfy the diversified needs
of various environments. Terminals are now connected to open public networks giv-
ing adversaries remote access to them and accommodate all sorts of connectivity
interfaces, such as wireless. They are using common operating systems and share
resources with other applications hosted on the same equipment. All the above,
although useful in terms of functionality, offer intruders alternative paths to attack
and make payment terminals subject to common operating systems vulnerabilities
and malicious code attacks.

13.2.2 Where does Security Apply?

Terminal security should be an integral part of the overall payment system, similarly
to any other computing device, and each of the components that comprise it should
adopt the appropriate security mechanisms to mitigate the risk associated with their
functionality. The requirements set by commonly adopted standards, internationally
accepted evaluation criteria, common practices and guidelines, will reduce the risk
without eliminating it. Flaws might be introduced by components that are not part
of the target of evaluation or by inadequate security policies and procedures.

Security breaches can occur in any layer of the payment terminal stack as this is
depicted in Fig. 13.1.

• At the application layer, logical separation of the applications running at the ter-
minal and use of dedicated working space (sandboxing and memory protection

318 K. Rantos and K. Markantonakis

Fig. 13.1 Terminal layers

through segmentation and virtualization) allows data to be used exclusively by the
application and prevent unauthorised access during processing.

• Storage of cardholder data, even in encrypted form, in a merchant’s database might
be an appealing target for the attacker who will attempt to exploit alternatives and
gain unauthorised access through these, most likely, less secure systems.

• Use of common PC operating systems makes terminals subject to the same types
of attacks as all other computing equipment with the same platform. Malware
infection including the most dangerous rootkits, remote command shells, packet
sniffers and Trojan-driven key loggers are some of these threats these terminals
have to face. VISA has identified in [31] the three high-level areas of vulnerabili-
ties for POS environments, which are Remote Access Security, Host Security and
Network Security. This highlights the need to deal with a merchant’s environment
similarly to any other sensitive computing environment.

• The deployment environment and personnel’s security awareness, training and
practices also significantly affect system’s security. These diversities impose differ-
ent requirements and the corresponding operating environments may be enhanced
by additional controls and practices to further mitigate identified risks.

• The shift towards a connected sophisticated device paves the way to new explo-
rations by adversaries as the increased functionality is bound to introduce vulner-
abilities. Attacks can now be mounted remotely since payment devices are now
networking nodes. Therefore terminals’ network security has to be an integral part
of the overall security of the payment system and transaction. The wireless inter-
face, where applicable, is also a very attractive target for fraudsters who explore
the technological advances and the ease by which air transmitted data can be
intercepted. The threats related to wireless payments are the following:

– Unauthorised card read: Unauthorised reader used for reading and storing card
information.

– Eavesdropping: Listening into the communication between the card and reader
during a point-of-sale transaction

– Relay attack: Using unauthorised card read and relaying card responses from
an intermediate device to another device at a distant point-of-sale.

13 Analysis of Potential Vulnerabilities in Payment Terminals 319

Wired connections also have their flaws where lack of hard-wired connections
between the different units, such as being able to “detach a PED from its terminal
by simply pulling the wire out” [19] introduces similar vulnerabilities.

PCI has set the cornerstones regarding the assets that need protection and the types
of measures that have to be deployed by stakeholders while it allows merchants
to deploy their own “compensating controls” to satisfy DSS requirements if the
suggested methods cannot be used. The core PCI specifications, issued as security
standards against which vendors are encouraged to seek compliance, focus on the
following three key components.

• PCI data security standard (PCI DSS): comprises a set of requirements for
protecting cardholder data, applicable to all entities involved in a transaction,
i.e. merchants, processors, acquirers, issuers, services providers and third parties
authorised to manage cardholder data. It explicitly defines the types of transaction
related data, namely Account Data, that need to be protected and categorizes them
into Cardholder Data and Sensitive Authentication Data [5] (Table 13.1).

• PCI PIN transaction security (PCI PTS): aims to protect the PIN in PIN process-
ing devices (PIN-PADs, hardware security modules (HSM)s, Unattended Payment
Terminals).

• PCI payment application-data security standard (PA-DSS): aims to protect
sensitive cardholder data in payment applications of software vendors.

PCI standards are only applicable if PANs are stored, processed or transmitted,
while PCI DSS [5] explicitly prohibits storage of Sensitive Authentication Data after
authorisation, even in encrypted form. It is only the PAN, expiration date, service
code, and cardholder name that can be stored by merchants, so that transaction data
are traceable for management purposes, in which case precautions for safe storage
must be used [6]. Although these restrictions do not preclude that sensitive data can

Table 13.1 PCI data categorization

Cardholder data Sensitive authentication data

Primary account number (PAN)
(unique payment card number
that identifies the issuer and the
particular cardholder account.
Typically embossed on the card
but also contained on the
magnetic stripe and the chip)

Full magnetic stripe data or
equivalent on a chip

Cardholder name (the name of the
cardholder as this is also
printed on the card)

CAV2/CVC2/CVV2/CID

Expiration date (also printed on the
card)

PINs/PIN blocks

Service code

320 K. Rantos and K. Markantonakis

be leaked through alternative channels, as it is demonstrated by the attacks described
here, additional measures that can be used to mitigate the risk include end-to-end (aka
point-to-point) encryption [8, 27–29], tokenization [30], masking [5], truncation and
data suppression [26].

13.3 Types of Attacks

Transaction security and terminal security are closely coupled and the latter can
be considered a key component in the infrastructure deployed to protect payment
transactions. As in any other type of attack, criminals seek for the weakest link in
the transaction environment to exploit and this might be provided by the terminal.
Terminals pose an attractive challenge for criminals to exploit, sometimes mainly due
to their direct accessibility, such as the unattended ones in petrol stations, vending
machines, or kiosks. According to [25] “Once a criminal has access, investigators
familiar with this type of attack report that it only takes crooks about 30 s to remove
the entire card device from a gas pump and replace it with an identical one fitted with
electronic skimmers”. Then the terminal becomes a valuable source of cardholders’
data.

Due to chips’ advanced security properties many attacks aim for the less secure
features left on the card mainly for backward-compatibility as well as for cross-border
interoperability, i.e. the card’s magnetic stripe mechanism and data. The attacks
described here mainly target hybrid systems that support both chip and magnetic
stripe transactions. They seek to bypass the advanced security features of the chip and
downgrade the system’s security by “fooling” the system to accomplish a magnetic
stripe based only transaction. They exploit vulnerabilities in applications, terminal
design (hardware), deployment and operational policy (such as choosing to use low
cost SDA only cards with the inherent vulnerabilities instead of the more advanced
DDA cards).

13.3.1 Attacking the Supply Chain

The majority of security measures taken to protect terminals focus on their opera-
tional status. However, many attacks are mounted prior to installation at merchant’s
premises, mainly exploring weak procedures in the supply chain. This highlights the
need to secure terminals throughout the device life cycle and the delivery process,
i.e. during manufacturing, in transit, temporary storage, distribution, repair, disposal,
and while being installed.

Supply chain attacks typically involve device (components or modules) tampering
to enable unauthorised access to cardholder and sensitive data. For instance, prior to
being provided to a merchant or acquirer, a PC-based terminal might be loaded with
malicious code which intercepts account data and transfers them to an adversary.

13 Analysis of Potential Vulnerabilities in Payment Terminals 321

The aforementioned allegations that hit the news in 200810 about Chip and PIN card
readers in Europe, were stating that tampered readers were used to copy swiped
card details and relay account data over the telephone network to remotely operating
organised crime syndicates in Pakistan and China.

The devices were physically tampered with extra hardware either during manu-
facturing or supply. They were subsequently given to merchants, who unwittingly
became part of the attacker’s network, supplying their customers’ card data to the
fraudsters. The scam success was based on the sophisticated device tampering which
left no external signs of device interference and therefore was very difficult even for
the professionals to spot.11 Moreover, the scam was not immediately identified, since
the fraudsters were patient enough to wait for at least two months (after they had
collected the relayed data and used them for producing cloned cards) before they
started using these cards. It was only after the cloned cards were started being used
that experts identified the attack through alerts on charges anomalies that triggered
fraudulent activity. The scam has contributed significantly to the total number of
compromised account details in 2008 (more than 280 million accounts [25]).

This is only one example of how a tampered terminal might reach the merchant’s
premises and become part of the infrastructure. One should not overlook the fact that
the terminal might not reach the merchant through the legal predefined secure path
but it might be a previously stolen one or one that has been obtained by a fraudster
through legal means, manipulated by the fraudster and then put into operation at
a merchant’s location where security measures are relaxed enough to allow such a
deployment [25]. Use of a non-certified or unauthorised terminal, poses an additional
threat to the merchant.

Anti-tampering mechanisms should be deployed to protect against physical pen-
etration attempts using means of drilling, lasers, chemical solvents substances,
opening covers, splitting the casing (seams) and using ventilation openings [7]. Pay-
ments brands use state-of-the-art equipment for an initial assessment of the device’s
integrity using X-rays, which allow the assessor to identify any additional unautho-
rised modules in the terminal [25]. As with physical tampering where extra hardware
is installed in the device, tampering can also have the form of malicious code injection
and execution.

Assuming that devices leave the manufacturing stage intact, according to afore-
mentioned standardised specifications and other security requirements, there are
several measures that can be taken regarding the post-manufacturing secure han-
dling and management of terminals, a set of which is issued by the Secure POS
Vendor Alliance. This set highlights the need to define and manage rigorous pro-
cedures to securely handle “storage and transport, transfer of accountability from

10 Details were given by the US National Counterintelligence Executive, Dr Joel Brenner in
a Daily Telegraph interview, http://www.telegraph.co.uk/news/uknews/law-and-order/3173346/
Chip-and-pin-scam-has-netted-millions-from-British-shoppers.html.
11 Johnston et al. [21] demonstrated that bypassing tamper-indicating security, aka security seals,
can sometimes be quite trivial.

http://www.telegraph.co.uk/news/uknews/law-and-order/3173346/Chip-and-pin-scam-has-netted-millions-from-British-shoppers.html
http://www.telegraph.co.uk/news/uknews/law-and-order/3173346/Chip-and-pin-scam-has-netted-millions-from-British-shoppers.html

322 K. Rantos and K. Markantonakis

manufacturer to the entity performing the initial key loading, device authentication,
key management, incident response, outsourcing, and auditing” [24].

13.3.2 Exploiting Inadequate Security Measures

Although the aforementioned measures refer to protecting the device prior to its
installation at merchant’s location, there are also several issues that have to be con-
sidered regarding proper device management during its operation lifecycle. Negligent
and insecure deployment and usage or management of the terminal (such as service
and replacement), non-compliant to vendor’s recommendations or the security policy
of the retail store poses a significant threat to the payment system’s security.

Several incidents that can lead to a security breach originate from the weakest
link in an otherwise adequately protected system, that is human interaction. Security
unaware personnel or lack of expertise can help adversaries bypass strict security
measures and gain unauthorised access to the terminal and its components. Examples
include but are by no means limited to the following incidents:

• Ad-hoc use of a payment terminal at conferences, forums, fairs or events, by
inexperienced staff.

• Leaving authorised technicians unattended during any repairs.
• Leaving builders unattended or not inspecting their work (allowing them, for

instance, to install a microcamera).
• A bogus engineer claiming to be a terminal technician and walks into the mer-

chant’s premises for onsite maintenance purposes or for fixing an allegedly mal-
functioning terminal.

The first line of defence for merchants is to safeguard unauthorised physical access
to the terminal. Typical access restriction measures can be taken, including moni-
toring through CCTV cameras to detect terminal replacement and tampering. Such
measures however, should not contradict the need for protecting cardholder data,
especially sensitive ones, such as PIN numbers entered on the pad or data printed on
the card, such as CVV. PINs entered by cardholders not acting in due diligence, must
not be subject to unauthorised disclosure due to a misplaced and/or misconfigured
CCTV monitoring system to which fraudsters might easily gain unauthorised access
and intercept video footage.

There should be a balance between merchant’s assets protection and user’s privacy.
For instance, due to security reasons, the merchant might have to look away while
the card is being used so that he/she will not be accused of shoulder surfing. This
practice however, constitutes a vulnerability to the system as is the case with the
relay attack described in Sect. 13.3.7 where the adversary might try to use his/her
own unauthorised components during transaction processing.

13 Analysis of Potential Vulnerabilities in Payment Terminals 323

13.3.2.1 Wireless Communications

A (potentially unprotected) wireless interface is also a candidate point of failure
through which adversaries can intrude to the protected networking perimeter and
bypass other efficient security measures deployed according to the merchant’s policy.
Fraudsters can intercept the required communications by listening to the air interface
in order to capture all transmitted data (mainly targeting unencrypted traffic), or by
deploying fake/rogue access points in order to route legitimate traffic through them.

Even if wireless infrastructure is not deployed as part of the payment system,
e.g. is used for the rest of communications at the retailer’s environment or is part of
neighbouring networking, measures should be taken so that traffic is not accidentally
or deliberately routed via these unauthorised networks. Strong wireless authenti-
cation and encryption, access control and network segmentation are some of the
mechanisms that should be deployed to prevent information leakage and unautho-
rised access to network resources. PCI has issued corresponding recommendations
for wireless networks used in a merchant’s environment, being part of the cardholder
data environment (CDE) or not [4].

Exploiting insecure wireless networks was one of the simplest, yet most profitable
attacks carried out in the USA, which brought to the criminals information of more
than 40 million credit cards stolen by sniffing data from vulnerable wireless networks
to capture credit card numbers, PINs and other account information.12

13.3.2.2 Merchants’ IT Systems

Merging payment terminals and systems with the rest of the computing equipment
and IT infrastructure introduces new threats to the infrastructure and creates alterna-
tive paths to be exploited. The old, yet still effective, SQL injection attacks, which
allow hackers to gain unauthorised access to the system and get cardholder data
stored in it are only one example. Using this technique, a group of hackers managed
to steal more than 130 million debit and credit card details from the systems of five
retailers in the US.13 Although such an attack is not directly related to a terminal it
demonstrates the new threats that merchants are likely to face, emerging from the
use of new generation terminals with advanced functionality and features in terms
of applications support.

Another method of credit card fraud which targets high-volumes of cardholder
data, is through breaching payment companies’ and large retailers’ systems where
these data are held. If they are not adequately protected, e.g. unencrypted, or
encrypted using vulnerable key management procedures, or unmasked, it is quite
likely that the attackers will find a way to eliminate or bypass the network security
perimeter and gain unauthorised access to them. Data logging, eavesdropping, elec-
tronic monitoring or even compromising emanation from components of a point of

12 http://www.theregister.co.uk/2008/08/06/id_fraud_hacking_case/
13 http://www.theregister.co.uk/2009/08/17/heartland_payment_suspect/

http://www.theregister.co.uk/2008/08/06/id_fraud_hacking_case/
http://www.theregister.co.uk/2009/08/17/heartland_payment_suspect/

324 K. Rantos and K. Markantonakis

sale device, wiretapping, pinhole cameras and redundant equipment are some other
methods that fraudsters are likely to deploy in order to reach the illegitimate profit
they are seeking.

13.3.3 Skimming

Skimming is the act of illegitimately copying account related data on a card’s mag-
netic stripe in order to produce a fraudulent copy of the victim’s card that can success-
fully participate in payment transactions. It is a common way of attacking payment
systems14 as it can be performed on unattended terminals to gather a high volume
of account data without alerting the cardholder or the stakeholders, as opposed to
targeting a specific card, e.g. through card stealing. In 2008, in Europe alone, there
were 10,302 attacks reported [2].

Although the source of the intercepted data can be any component of the pay-
ment system that handles them insecurely, terminals provide the necessary physical
interface to the fraudster for mounting such an attack and therefore can be used
as the vehicle for creating skimmed cards. Data sent to acquiring bank are com-
monly unencrypted [12] and therefore easily intercepted, while those exchanged
between the chip card and the terminal included all the information needed to make
a fake magnetic stripe card. The industry responded to this threat and since January
2008 the international payments schemes have mandated the use of unique secu-
rity codes in chip data, namely icard verification value (CVV for ICCs) to mitigate
the risk of magnetic stripe clones being created from data intercepted from chip-
based transactions.15 iCVV enables issuers to identify fraudulent use of chip data in
magnetic-stripe read transaction processing. Magnetic-stripe based transactions are
still subject to skimming. Physically and/or logically tampered terminals, dedicated
card readers hidden under the counter desk, or terminals that do not adequately pro-
tect data transmission, such as wireless data transmission in the clear can provide an
adversary all the necessary data for card skimming.

A common skimming practice is the use of small electronic devices, known as
skimmers, that are masterfully positioned within the card-reader interface, e.g. a card
slot of an ATM, in such a way that they cannot be easily detected, especially by an
unaware cardholder, and have the capability to copy the information stored in the
card’s magnetic stripe. They are typically combined with microcameras pointing to
the PIN pad, by transparent PIN pad overlays that record cardholders’ keystrokes, or
by even more sophisticated devices, such as thermal cameras [22], used for capturing
the corresponding PIN.

Although skimming has traditionally been targeting magnetic stripe cards, where
card copying is feasible with a skimming device, more sophisticated attacks for
stealing data from chip based cards also emerge. Chip cloning, as opposed to mag-

14 Skimming devices are even sold on Internet forums for about 8,000e.
15 According to [23], at the end of 2011, more than 134 million UK cards had unique iCVV.

13 Analysis of Potential Vulnerabilities in Payment Terminals 325

netic stripe skimming, is not practically feasible especially for sensitive data such
as private and symmetric keys. Therefore, attacks on chip-cards typically aim for
stealing static card data and creating legitimate appearing cards with limited/reduced
functionality. Such an attack is even more attractive in countries that still use the tradi-
tional magnetic-stripe based payment schemes. This allows attackers to successfully
use the fraudulent cards abroad for less-secure magnetic-stripe based transactions.

EMV SDA cards are more vulnerable to card skimming due to the following:

• PIN transfer from PED to an SDA-enabled card is only in the clear within the
confines of a tamper responsive unit, hence the PIN can be intercepted from an
undetected tampered device. Note that if the IFD is separate from the PED the
transmission should be encrypted.

• Use of static data across multiple authentication instances allows an attacker to
simply mount replay attacks using a seemingly valid card.

If an SDA card transaction is accomplished off-line, the terminal and the merchant
are not able to detect the fraudulent transaction. The card will produce for the terminal
an invalid Transaction Authorisation in the form of TC which cannot be verified by
the terminal (since it does not have the keys). The attack will only be detected if the
transaction goes on-line. In that case, since the rogue card does not have the required
set of keys it cannot compute a valid ARQC (for on-line authorisation) and therefore
will be easily detected by the issuer.

13.3.4 Covert Channels to PINs

One of the most critical data to protect in a transaction is the PIN entered by the
cardholder, typically on a secure PED. Once an adversary gets hold of a lost or
stolen card or manages to create a counterfeit card (magnetic stripe or SDA card)
through skimming (see Sect. 13.3.3), the data necessary for performing ATM cash
withdrawals or even using the SDA card for buying goods on merchant’s site, is
the PIN. Although intercepting communications between card and PED, and device
tampering (see Sect. 13.3.5) are two sophisticated methods that a fraudster can use
to get access to account data and the PIN, they are not the only ones.

Apart from the common and typical ones, where the PIN is held with the card in
the stolen wallet, or stored as a phone number on a stolen mobile, there are many
other PIN interception techniques such as the ones that utilise merchant’s insecure
infrastructure. An easier way to access the PIN is to get it from the merchant’s environ-
ment not as data entered and transmitted over the merchant’s network but indirectly,
through other methods which can be exploited by both insiders and outsiders. As
with any environment, staff can pose a threat either by introducing vulnerabilities,
accidentally or deliberately, or due to their knowledge and potentially expertise.

326 K. Rantos and K. Markantonakis

Covert channels that can be used to harvest cardholder’s data, such as the PIN,
include the following:

• Using the misplaced CCTV camera: a security camera pointing to the till where
the PED is also installed and used by customers for entering their cards’ PINs can
become the source for the PIN in question.

• Wrongly positioned PEDs: PEDs placed in locations where PIN entry is not
obscured or not protected by additional measures such as a shroud, can give third
parties access to a PIN at the time this is entered, through shoulder surfing tech-
niques where an unaware, negligent or distracted user can enter the PIN with no
precautions, such as covering the pad with his/her other hand.

• Hidden microcameras: positioned close to the PED and pointing towards it,
such as a charity box placed on the counter desk or a pinhole camera placed by
unauthorised personnel or technicians.

• PIN pad overlays: they are placed over the original keypad and allow PIN data
capturing. They form a very popular way for unauthorised access to PINs during
cash withdrawal from ATM machines and typically range from the very simple
ones where keystrokes leave a mark on the overlay or are temporarily stored into its
memory, up to the very sophisticated ones where a GSM module is also attached to
it and allows the real-time transmission of captured PINs to the fraudster (possibly
with some other cardholder data if the overlay is combined with a skimming device
deployed on the same terminal or ATM).

• Noted PINs: usually found in stolen or lost wallets.
• Thermal cameras: used shortly after the transaction on the PIN pad can reveal

which keys were pressed based on the keys’ temperature [22].

Unattended terminals are even more susceptible to these types of attacks where
the fraudsters who have physical access to the device can more easily manipulate the
attacked device or the surrounding environment.

13.3.5 PIN/PIN Block Interception and Cracking

Covert channels to PINs are one option for an attacker to obtain these sensitive data
while the other is to attack the points that they are stored or communicated, such as an
insecure communication channel between the card and the IFD. Even if the PED has
all the necessary functionality to protect the PIN by encrypting it before passing it to
the card for off-line verification, this might not be supported by the card, i.e. the card
cannot handle encrypted PINs because it only supports “Plaintext PIN verification”.
SDA cards do not support PIN encryption and therefore PINs are provided only in
plaintext when off-line PIN processing is the selected CVM, hence PIN interception
might be possible through tampering.

Intercepting communications between a PED positioned at an ATM and the finan-
cial institution on the other side of the communication channel would also give

13 Analysis of Potential Vulnerabilities in Payment Terminals 327

attackers access to encrypted PINs.16 The encrypted PIN typically travels through
multiple nodes and HSMs where it is decrypted and re-encrypted with the appropri-
ate keys shared between pairs of HSMs. This process continues until the encrypted
PIN reaches the issuer who has to perform the necessary check for PIN matching.
Attackers may exploit known HSM vulnerabilities, like weaknesses on the secu-
rity API [18], sometimes caused by misconfigurations, in order to get access to the
decryption keys of the HSM and/or gain access to the decrypted PIN.

Key material might also be accessible through reverse-engineering, which gives
the attackers the opportunity to bypass the security measures and disassemble the
code in order to gain unauthorised access to the terminal’s internals and functionality.
An example of such an attack is found in [32] where the authors demonstrated for one
specific device that access to private key material is feasible, although with many pre-
requisites. Such attacks require physical access to the device which, although viable
for insiders or for inappropriately disposed or terminated HSMs, creates another
obstacle for fraudsters as opposed to the remotely mounted attacks that aim for
security breaches through HSMs’ API, or even emissions analysis.

13.3.6 Manipulating the Terminal-Card Interface

Skimming attacks described in Sect. 13.3.3, aim for recording the account data of a
valid card during a transaction. Two other attacks aim for manipulating the messages
exchanged between the terminal and the card, exploring communication protocol
vulnerabilities, without being detected by the participating genuine terminal. More
specifically, with the “wedge” [9] and the “YES card” attacks described in this section
the fraudster intervenes between the terminal and the card to alter the exchanged
messages and deviate from the normal protocol execution. Both take advantage of
the fact that the response to a VERIFY (PIN) command is not authenticated.

An example of a simple, yet allegedly effective, manipulation of this interface
was recently demonstrated for a number of cards in Germany: because of a Y2K
+ 10 flaw around 30 million cards became inoperable in 1st Jan of 2010 because
the chip was unable to recognise the year 2010.17 Apparently, a workaround to this
problem, until properly patching the terminals, was to seal the chip with a small piece
of Scotch tape so to fool the terminal that there is no chip on the card, or the chip is
malfunctioning and therefore “force" it to use the magnetic stripe instead.18

16 http://www.wired.com/threatlevel/2009/04/pins/
17 http://www.google.com/hostednews/afp/article/ALeqM5isP_cJaxnqSGaPVgUy0P3tSvpqrA
18 http://www.spiegel.de/wirtschaft/soziales/0,1518,670433,00.html

http://www.wired.com/threatlevel/2009/04/pins/
http://www.google.com/hostednews/afp/article/ALeqM5isP_cJaxnqSGaPVgUy0P3tSvpqrA
http://www.spiegel.de/wirtschaft/soziales/0,1518,670433,00.html

328 K. Rantos and K. Markantonakis

13.3.6.1 Wedge Attack

A wedge attack is one where a malicious dedicated device, typically under the
attacker’s control, is placed between the merchant terminal and a genuine card to
intercept and manipulate data exchanged between those two (the details of such an
intermediary device are given in [9]). It typically allows a criminal “to use a genuine
card to make a payment without knowing the card’s PIN” [9, 16]. The attack, as
the authors claim, although cannot be used on ATMs, is proven to work not only
for card-not-present attacks but also for use at point of sale, and differs to the “YES
card” attack in that it can be used even if the merchant goes on-line for transaction
authorisation.

The attack is a man-in-the-middle one where the adversary tries to bypass PIN
verification by convincing the terminal that PIN verification was successful and
the card that a different cardholder authentication method is used, i.e. handwritten
signature. To achieve that, the adversary suppresses the VERIFY (PIN) command,
formats and sends to the terminal a response (the value 0x9000), which now considers
that PIN verification was successful. The VERIFY PIN command never reaches the
card which now believes that the cardholder was verified using another method,
such as a handwritten signature. Fooling the terminal is feasible because the card’s
response on a PIN check request is not properly authenticated. The same method can
be successfully deployed even on a DDA capable card.19

Cardholder verification method results are not communicated to the card (typically
during an application cryptogram generation request) and therefore the legitimate
card has no means to identify the type of method actually used and therefore cross-
check the result with its own transaction records. Terminal verification results (TVR)
[15] focus on failure codes, and in the case of a successful authentication, they do
not carry any information about the details of it or the method used to authenticate
the cardholder.

With the wedge attack, the authorisation cryptogram is created by the genuine card
and therefore the attack cannot be detected even if it goes on-line. Although some card
generated data sent to the issuer during on-line authorisation in an issuer proprietary
field, called issuer application data (IAD), can reveal the type of authentication
used, not all acquirers’ terminals can parse this information correctly and therefore
compare it with their own transaction record. Such a comparison would reveal the
inconsistencies between the card’s and the terminal’s records and would result in
declining the transaction.

Similarly, a solution proposed in [9] suggests inclusion of the cardholder verifi-
cation method result (CVMR) in the transaction authorisation computed by the card.
The CVMR contains the cardholder verification result together with the method
used for this (e.g. PIN or handwritten signature) and is stored by the terminal. Upon
passing the CVMR to the card, it can check against its own records regarding the
verification method and verify the accuracy of it. If another man-in-the-middle attack

19 http://www.lightbluetouchpaper.org/2009/08/25/defending-against-wedge-attacks/

http://www.lightbluetouchpaper.org/2009/08/25/defending-against-wedge-attacks/

13 Analysis of Potential Vulnerabilities in Payment Terminals 329

occurs manipulating CVMR, e.g. replacing “PIN OK” message with “Signature”, it
will be the terminal’s responsibility to perform a similar check.

As previously mentioned, given current EMV specifications, CDA capable cards
are robust against wedge attacks. The attack would also be prevented if the messages
exchanged during a transaction were linked together instead of being independent,
a property that allows an adversary to inject malicious messages in between and
manipulate the legitimate ones.

13.3.6.2 YES Card

A YES card attack is fairly similar to a wedge attack and executed using a counterfeit
card that has account data from a stolen card copied on it,20 but is modified so that it
can accept any PIN. Although a wedge attack can work with any genuine card and will
succeed even if the transaction goes on-line, a YES card on-line transaction will be
immediately spotted as fraudulent, as the fake card does not have the necessary keys
to create a valid cryptogram for issuer’s checks. However, it benefits compared to
the wedge attack in that it does not require the use of additional malicious hardware.

In this attack, fraudsters exploit two vulnerabilities of the static nature of an SDA
card:

1. The card’s response to PIN verification is not supported by an authentication
mechanism and can be replayed or generated by an unauthorised entity.

2. The transaction authorisation is checked only if the terminal goes on-line and
forwards it to the card issuer. If the risk analysis made for the transaction does not
require on-line verification, the message authentication code (MAC) generated
by the card is wrongly accepted by the terminal and successfully completes a
transaction.

A “YES card” attack is accomplished with a card which typically has the following
characteristics:

• The card contains an authorisation cryptogram that might have been intercepted
during a past successful transaction.

• The card responds to a CHECK PIN command with the value 0x9000, i.e. suc-
cessful, for any argument (PIN) passed with the command.

• The card will typically generate an error message and terminate the transaction if
the terminal seeks on-line authorisation to avoid being detected.

The attack scenario is as follows:

• The attacker using a cloned/forged SDA card which carries all static data of a
genuine EMV SDA card (certificates and application data), aims for merchants

20 The attack is only successful with SDA cards used off-line and not with DDA or CDA cards,
or on-line transactions as the fraudster cannot have access to the keys necessary for card data
authentication.

330 K. Rantos and K. Markantonakis

and transactions that most likely will complete off-line21 constituting the attack
undetectable at the time that it is performed. Since an SDA card is authorised using
only static data, card details and digital signature can be intercepted and replayed
in a subsequent transaction.

• The next step is cardholder authorisation where the cardholder has to enter the
card PIN which is in turn forwarded to the card for a validity check. Given that
the card is a “YES card” it will respond with a 0x9000 value, meaning that PIN
check is successful, for any PIN value.

• The card generates an (invalid) TC on transaction data as a response to a terminal’s
authorisation request. As the transaction terminates without going on-line, there
are no checks being performed on the presented TC as the terminal does not have
the necessary key set, and therefore the forged data go undetected. It is only when
these data are sent to the card issuer that the fraud is identified but by that time the
fraudster has already walked out with the goods in hand. Note that the forged card
cannot produce a valid TC as it does not have the valid set of keys for the specific
card and therefore if the transaction goes on-line for authorisation purposes the
issuer’s checks will fail and the transaction will be declined.

13.3.7 Relay Attacks

In a relay attack, a genuine card and the cardholder participate in a remote transaction,
essentially paying for goods purchased by a fraudster and for which the cardholder
never consented. There are a lot of prerequisites for this attack to succeed with the
most demanding one being the use of a tampered terminal, which has to commu-
nicate with a bogus card during a genuine card transaction. Tampering, as with the
other attacks, can be done either by the merchant or to a bunch of terminals during
manufacturing or prior to being delivered to an unsuspected merchant. In the former
case, the risk is very high for a merchant to accept since a few bogus transactions
combined with cardholders’ disputes can reveal the attacks’ origins, hence the source
is easily identified.

Moreover, given that the details of the attack are known, the attack can be very
easily detected, even after the very first fraudulent transaction. However, it cannot be
underestimated mainly because tampering might be simply the result of malicious
software being injected into the terminal, hence multiple terminals controlled by a
fraudster can be used for this purpose in a manner unpredictable by fraud detection
tools.

The attack described in [10, 17] requires collusion of two or more persons and a
tampered terminal. All communications between a genuine card and the tampered

21 According to http://www.dailymail.co.uk/news/article-389084/Millions-danger-chip-pin-
fraudsters.html: “Of the 6.2billion transactions on a credit, debit or charge card carried out every
year in this country, one in five happens ‘off-line’, meaning the chip and pin terminal does not
connect to the cardholder’s bank.”

http://www.dailymail.co.uk/news/article-389084/Millions-danger-chip-pin-fraudsters.html
http://www.dailymail.co.uk/news/article-389084/Millions-danger-chip-pin-fraudsters.html

13 Analysis of Potential Vulnerabilities in Payment Terminals 331

terminal are relayed to a bogus/manipulated card which communicates with another
remote genuine terminal. Tampered terminal and card create a transparent communi-
cation bridge between legitimate card and terminal. Therefore goods are purchased
by the legitimate cardholder, who unwittingly participates in a bogus transaction,
that is never dispatched to the genuine cardholder. The authors used the mafia-fraud
example introduced in [11] to demonstrate how a card used for paying for lunch at
a restaurant ends up being charged for buying a diamond from an adjacent jewellery
shop.

The tampered terminal, which as previously mentioned accepts a genuine card
for a legitimate transaction, has the following characteristics:

• It relays all communications with the genuine card to the bogus card and is able
to receive data from it. This can be accomplished using either wireless interface
controlled by the fraudsters or wired communications considering though that the
delays introduced by the use of this channel are not significantly expanding the
card-terminal interface latency.

• It appears to and interfaces with cardholders as a genuine one.
• It prohibits communications with the issuer.
• It synchronises genuine and counterfeit card and controls delays that would result

in transaction termination due to excessive delays in card-terminal (genuine one)
interface, even though “existing smart card systems are tolerant to very high
latencies” [17]. Even in that case though some responses expected by the gen-
uine terminal can be requested in advance.

Countermeasures against this attack, described in [17], are based on distance
bounding protocols and include setting upper limits on the acceptable delay between
a request and a response, based on the acceptable distance between card and terminal.
Although, a viable solution for dedicated devices, it might not be acceptable for com-
puting platforms that incorporate POS functionality to which a terminal is attached
or integrated, possibly consisting of mobile components, and therefore delays might
be affected by a number of factors, such as computational and network load at the
time the transaction takes place.

13.4 Conclusions and Future Considerations

This chapter focused on issues related to terminal security and on methods that can
be used to bypass their security features. The majority of the attacks presented here
require physical access to the terminal and, in most cases, infringement of its integrity.

However, as technology shifts towards terminals’ integration with the rest of
the computing platform and the terminal becomes part of the IT infrastructure of
merchants, the possibility of exploiting other vulnerabilities to launch the same or
similar attacks, cannot be excluded. Therefore, future deployments will also have to
consider the following:

332 K. Rantos and K. Markantonakis

• Vulnerabilities introduced by the use of common operating systems typically
designed without considering the requirements of a payment system and its pecu-
liarities, not to mention, lack of a necessary security certification

• Terminals connected to open networks (IP-enabled devices) with widely used and
standardised communication protocols that paves the way for remote attacks. If
this is to be used in conjunction with networking capable cards (e.g. new generation
Java Cards), there will be more security issues to resolve, as new exploitation paths
are bound to be created for attackers.

It is worth mentioning that some of the attacks described here can be avoided by
using DDA22 or CDA-enabled cards and by using on-line transactions. Although this
increases the cost of the infrastructure, it provides the means for the stakeholders to
reduce losses resulting from the use of SDA cards. Moreover, financial institutions do
not only depend on terminals’ security to counteract these attacks but continuously
invest on, deploy and enhance back end systems with advanced fraud engines that
can effectively detect abnormal transactions indicating possible attacks. As more
sophisticated attacks enter the scene suitable countermeasures provided by EMV and
adopted by stakeholders to mitigate the associated risks, will prove a very valuable
and effective asset in their constant effort to reduce loss figures.

References

1. Aite Group: Card Fraud in the United States: The Case for Encryption. January 2010. Available:
http://www.aitegroup.com

2. ENISA, ATM crime: Overview of the European situation and golden rules on how to avoid it.
August 2009. Available: www.enisa.europa.eu

3. EMVCo. A Guide to EMV. Version 1.0. May 2011. http://www.emvco.com
4. PCI, SSC Wireless Special Interest Group Implementation Team - Information Supple-

ment: PCI DSS Wireless Guideline. Available: https://www.pcisecuritystandards.org/pdfs/
PCI_DSS_Wireless_Guidelines.pdf

5. Payment card Industry (PCI) Data Security Standard: Requirements and Security Assessment
Procedures. Version 2.0. October 2010. Available: https://www.pcisecuritystandards.org

6. PCI, SSC: PCI Data Storage Do’s and Dont’s. Available: https://www.pcisecuritystandards.
org/pdfs/pci_fs_data_storage.pdf

7. PCI Encrypting PIN Pad (EPP) - Security Requirements, v2.1. January 2009. Available: https://
www.pcisecuritystandards.org/documents/epp_security_requirements.pdf

8. Payment Card Industry (PCI) Point-to-Point Encryption. September 2011, Available: https://
www.pcisecuritystandards.org

9. Murdoch, S. J., Drimer, S., Anderson, R., and Bond, M.: Chip and PIN is Broken. IEEE
Symposium on Security and Privacy (2010) pp 433–444.

10. Anderson, R., Bond, M., and Murdoch, S. J.: Chip and SPIN. Computer Security Journal v 22
no 2 (2006) pp 1–6.

11. Desmedt, Y., Goutier, C., and Bengio, S. Special uses and abuses of the Fiat-Shamir passport
protocol. In Advances in Cryptology CRYPTO 87: Proceedings (1987), vol. 293 of LNCS,
Springer, p. 21.

22 From 1st January 2011 schemes mandated that all new and replacement cards support DDA.
At the end of 2011, 98 million DDA cards were in issue in the UK [23].

http://www.aitegroup.com
www.enisa.europa.eu
http://www.emvco.com
https://www.pcisecuritystandards.org/pdfs/PCI_DSS_Wireless_Guidelines.pdf
https://www.pcisecuritystandards.org/pdfs/PCI_DSS_Wireless_Guidelines.pdf
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf
https://www.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf
https://www.pcisecuritystandards.org/documents/epp_security_requirements.pdf
https://www.pcisecuritystandards.org/documents/epp_security_requirements.pdf
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org

13 Analysis of Potential Vulnerabilities in Payment Terminals 333

12. Murdoch, S.J., EMV flaws and fixes: vulnerabilities in smart card payment systems. Available:
http://www.cl.cam.ac.uk/sjm217/talks/leuven07emv.pdf

13. Everett D. Chip and PIN Security. Available: http://www.smartcard.co.uk/Chip and PIN Secu-
rity.pdf

14. EMV Iintegrated Circuit Card Specifications for Payment Systems - Book 2: Security and Key
Management. Available: https://www.emvco.com

15. EMV Iintegrated Circuit Card Specifications for Payment Systems - Book 3: Application
Specification. Available: https://www.emvco.com

16. Murdoch, S. J., Drimer, S., Anderson, R., and Bond, M.: EMV PIN verification "wedge"
vulnerability, February 2010. Available: http://www.cl.cam.ac.uk/research/security/banking/
nopin/

17. Drimer, S., and Murdoch, S. J.: Keep your enemies close: Distance bounding against smartcard
relay attacks. In USENIX Security Symposium, August 2007. Available: http://www.usenix.
org/events/sec07/tech/drimer/drimer.pdf

18. Centenaro, M., Focardi, R., Luccio, F., Steel, G.: Type-based analysis of PIN processing APIs.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 5368. Springer, Heidelberg
(2009).

19. The UKCARDS Association: Security guidance for card acceptance devices - Deployed in the
face-to-face environment.

20. EMV Integrated Circuit Card Specifications for Payment Systems: Book 4 - Cardholder, Atten-
dant, and Acquirer Interface Requirements, June 2008. Available: www.emvco.com.

21. Johnston, R. G., Garcia, A. R., and Pacheco, A. N.: Efficacy of tamper-indicating devices.
Journal of Homeland Security (April 2002).

22. Mowery, K., Meiklejohn, S., Savage, S.: Heat of the Moment: Characterizing the Efficacy
of Thermal Camera-Based Attacks. In 5th USENIX Workshop on Offensive Technologies,
August 2011. Available: http://www.usenix.org/events/woot11/tech/final_files/Mowery.pdf

23. Financial Fraud Action UK: Fraud - The Facts 2012. Available: http://www.
financialfraudaction.org.uk

24. SPVA Lifecycle of a Secure Payment Device: Post Manufacturing Stage, June 2011, Available:
www.spva.org.

25. Mastercard, Understanding Terminal Manipulation at the Point of Sale. Available: http://www.
mastercard.com/us/company/en/docs/Terminal_Manipulation_At_POS.pdf

26. Visa Best Practices for Primary Account Number Storage and Truncation. Available: http://
usa.visa.com/download/merchants/PAN_truncation_best_practices.pdf

27. European Association of Payment Service Providers for Merchants. Point-to-Point Encryption
and Terminal Requirements in Europe. May 2011. Available: http://www.epsm.eu

28. VISA, Guide to Data Field Encryption. Available: http://www.visacemea.com/ac/ais/uploads/
AIS_Guide_0610_Data_Field_Encryption.pdf

29. Mastercard Worldwide, An Analysis of End-to-end Encryption as a Viable Solution
for Securing Payment Card Data. Available: http://www.mastercardacquirernews.com/pdfs/
encryptionAnalysis.PDF

30. Visa Best Practices for Tokenization Version 1.0. Available: http://usa.visa.com/download/
merchants/tokenization_best_practices.pdf

31. CISP Bulletin, Top three POS system vulnerabilities identified to promote data security
awareness. November 2006. Available: http://usa.visa.com/download/merchants/top_three_
pos_system_vulnerabilities_112106.pdf

32. Bond, M., Cvrcek, D., and Murdoch S.J.: Unwrapping the Chrysalis, In: Technical report, No.
592, 2004, Cambridge, GB, p. 15, ISSN 1476–2986.

http://www.cl.cam.ac.uk/sjm217/talks/leuven07emv.pdf
http://www.smartcard.co.uk/Chip
https://www.emvco.com
https://www.emvco.com
http://www.cl.cam.ac.uk/research/security/banking/nopin/
http://www.cl.cam.ac.uk/research/security/banking/nopin/
http://www.usenix.org/events/sec07/tech/drimer/drimer.pdf
http://www.usenix.org/events/sec07/tech/drimer/drimer.pdf
http://www.usenix.org/events/woot11/tech/final_files/Mowery.pdf
http://www.financialfraudaction.org.uk
http://www.financialfraudaction.org.uk
www.spva.org
http://www.mastercard.com/us/company/en/docs/Terminal_Manipulation_At_POS.pdf
http://www.mastercard.com/us/company/en/docs/Terminal_Manipulation_At_POS.pdf
http://usa.visa.com/download/merchants/PAN_truncation_best_practices.pdf
http://usa.visa.com/download/merchants/PAN_truncation_best_practices.pdf
http://www.epsm.eu
http://www.visacemea.com/ac/ais/uploads/AIS_Guide_0610_Data_Field_Encryption.pdf
http://www.visacemea.com/ac/ais/uploads/AIS_Guide_0610_Data_Field_Encryption.pdf
http://www.mastercardacquirernews.com/pdfs/encryptionAnalysis.PDF
http://www.mastercardacquirernews.com/pdfs/encryptionAnalysis.PDF
http://usa.visa.com/download/merchants/tokenization_best_practices.pdf
http://usa.visa.com/download/merchants/tokenization_best_practices.pdf
http://usa.visa.com/download/merchants/top_three_pos_system_vulnerabilities_112106.pdf
http://usa.visa.com/download/merchants/top_three_pos_system_vulnerabilities_112106.pdf

Chapter 14
Wireless Sensor Nodes

Serge Chaumette and Damien Sauveron

Abstract This chapter addresses the key points of wireless sensor nodes: applica-
tions, constraints, architecture, operating systems, and security concerns. It does not
pretend to be exhaustive but to provide the major references on these topics.

14.1 Introduction

Huge advances in Microelectromechanical systems (MEMS) and Wireless commu-
nications in the last decade of the twentieth century gave birth to new paradigms,
where cheap, small size communicating sensors have been developed and integrated
in many devices and large hardware/software environments. In this chapter, we target
standalone wireless sensing devices, so-called wireless sensor nodes, which means
that we focus on the device itself and not on the way it can be integrated within a
global wireless sensor network. These small hardware pieces are becoming a key
component of the digitization of the real world, thanks to their ease of deployment
and the benefits that they can bring to human life in general, like infrastructure man-
agement (such as power grids) and environmental protection for instance. They are
quite different from expensive isolated sensors (i.e., not intended to be a part of a
whole swarm) and achieve complex measurements (related to a given phenomenon),
and subsequent computation operations. Indeed, the strength of small sensor nodes
is their ability to self-organize as a large network which enables measurement very
close to a possibly dangerous phenomenon. They can cover a wide area and so are
able to observe the evolution and spreading of complex events. In Sect. 14.2 we

S. Chaumette (B)
LaBRI,University of Bordeaux, Bordeaux, France
e-mail: serge.chaumette@labri.fr

D. Sauveron
University of Limoges, Limoges, France
e-mail: damien.sauveron@unilim.fr

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 335
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_14,
© Springer Science+Business Media New York 2014

336 S. Chaumette and D. Sauveron

will show that wireless sensor nodes are used in both military and civil applications,
health care, and power grid monitoring, among many other domains. In Sect. 14.3 we
address constraints, like cost, energy-consumption, and network management (even
though, as explained above, this last point is not a central topic of this chapter). In
Sect. 14.4 the generic architecture of a wireless sensor node and the major features
of the associated operating systems are described. We eventually present the security
concerns in Sect. 14.5.

14.2 Applications

It is widely acknowledged that the first uses of advanced sensing technologies were
military. In 1949, the US Navy announced its intention to exploit passive sonars
for anti-submarine warfare (ASW) purposes using hydrophonic sensors deployed on
the seafloor. In 1961, the sound surveillance system (SOSUS) [4] provided deep-
water long-range detection capabilities, which were successfully used during the
Cold War. It is now used by national oceanographic and atmospheric administration
(NOAA) to observe a number of natural phenomena like submarine earthquakes [51]
or the activities of some animals [22]. However, the concept of Distributed Sensor
Networks only appeared in the early 1980’s, driven by defense advanced research
projects agency (DARPA) through a first program which was followed in 2001,
due to evolution in the domain of MEMS, by the sensor information technology
(SensIT) program [43]. The primary goals of SensIT were the creation of a new class
of software for distributed microsensors, the development of novel methods for ad
hoc networking of deployable microsensors and the extraction of right and timely
information from a sensor field. Typical military applications of sensors are related
to the collection of information that can be used to enforce situation management:

• monitoring friendly forces, equipment, and ammunition;
• battlefield surveillance;
• reconnaissance of opposing forces and terrain;
• targeting (e.g., for missiles);
• battle damage assessment;
• nuclear, biological, and chemical attack detection and reconnaissance.

Since early 2000, the number of civil applications has increased. Sensors now
permit the creation of low-cost monitoring systems. Many domains, for instance
biology, climatology, geology, etc., benefit from integrated sensors and sensor net-
work technology. These sensors can for instance be used:

• to alert the civilian population when a volcanic eruption is going to occur [67] and
to collect data without any risk to compromise the physical integrity of the persons
in charge of taking the samples [65];

• to detect forest fire [37] or floodings [15];
• to forecast environmental pollution;

14 Wireless Sensor Nodes 337

• to observe animals in their living environment without human presence [42, 49];
• to help farmers collect accurate measures of phenomena, which have a potential

impact on their agricultural production [16].

As mentioned in the introduction, sensors can also be used in:

• health care, like telemonitoring of human physiological data [41], tracking and
monitoring doctors and patients inside a hospital, environmental control in office
buildings [54], etc.;

• infrastructure protection by monitoring bridges, tunnels, pipelines, power grids,
etc.;

• home automation and smart environments [32], interactive museums [54], vehicle
tracking and detection [60], etc.

Beyond these well-known applications, some other are much more unusual. For
example, Simon et al. [61] propose to use a large number of cheap sensors communi-
cating through an ad hoc wireless network, to detect and accurately locate shooters in
urban environments. Their system supports multiple sensors failures, provides good
coverage and high accuracy, and is capable of overcoming multipath effects.

14.3 Constraints

As illustrated in the above section, Wireless Sensor Nodes can be used for an
extremely wide range of applications. However, they suffer from several constraints
that need to be known and understood in order to properly target their possible
domains of use.

14.3.1 Costs: Production Versus Performance

When a phenomenon needs to be observed, the decision to use wireless sensor nodes
or classical sensors is mostly based on technical reasons. For instance, when consider-
ing the ability of the system to observe the spreading and evolution of a phenomenon
to measure, it appears that a wireless sensor network is probably a good candidate
because it allows wider and more accurate geographic coverage. Nevertheless, the
financial cost of building the sensing system is also a prominent parameter. A wire-
less sensor network can be composed of a few to several thousands1 devices and the
overall price of the sensing system may thus be huge. To be viable, their production

1 In practice very few applications use thousands of nodes. However theoretically, for instance, in
military applications like battlefield surveillance, a huge number of nodes may be required. The
biggest wireless sensor networks publicly known that have ever been built are: a system based
on MyriaNed and composed of more than 1000 nodes [14, 38]; an 800 nodes network called
the “Largest Tiny Network Yet” deployed at Berkeley [5] in 2001; WISEBED [21] which is made of

338 S. Chaumette and D. Sauveron

cost should remain very low (for example less than 1$/node). Indeed, even if not all
networks are composed of thousands of nodes, there can be several networks oper-
ating in parallel for different purposes and thus the total number of nodes can still be
huge. At the same time, they should offer good performance to sense phenomena and
if required enough computing power to handle data locally, so as to overcome the
network-related constraints and usage consequences such as energy-consumption
(see below). Thus, their design is always the result of a trade-off between perfor-
mance and cost. Obviously there is no hidden cost due to the deployment of wires
(and associated devices) as can be found in classical networks, since by definition
wireless sensor nodes do not require any infrastructure, however, in some cases there
may be a cost for a wireless sensors spectrum licence.

14.3.2 Energy

To enable the sensors to operate during their whole mission time, energy saving is
a major concern of both the manufacturers and the users, even though it is widely
acknowledged that designing energy efficient communication components is a chal-
lenging task. Furthermore, it still remains that even with a power-efficient radio fre-
quency (RF) technology, the energy consumption due to the communication between
two nodes follows at best an inverse-square law of their distances. For this reason, to
save power, it is needed to ‘split’ long distances between two communicating nodes
by using multi-hop communication and routing [24]. Software is thus also largely
involved in the energy-saving process. However, this way to communicate implies
more cooperation between the nodes of the network in order to relay messages using
power-efficient routing algorithms. It is thus a challenge to design low duty cycle
radio circuits to relay messages between neighbors without losing any message.
Strategies based on “wakeup on demand” (using two radios) [59] or “adaptive duty
cycles” [68] are being studied to circumvent this problem. Another solution is to
setup a network backbone with a subset of nodes that remain active.

In addition, it is possible to minimize [8] power consumption in a multi-hop
sensor network, by processing sensed data locally to minimize transmission. The
economy comes from the fact that the cost to transmit a large quantity of raw data
coming from the sensor is more important than the cost of locally processing them,
extracting the useful information, and eventually sending these information over the
wireless network. Even if it is true that communication consumes a large quantity
of energy in a sensor architecture, it still remains that the rest of the hardware and
especially the processing unit must also be designed to be efficient. At software level,
the operating system, protocols, algorithms, etc., must also be power-efficient and
thus power-aware.

(Footnote 1 continued)
around 750 nodes but split in several subnetworks; the architecture described in [7] that uses 273
sensors and 47 wireless nodes to monitor nectarine orchard.

14 Wireless Sensor Nodes 339

When battery capacity cannot be sufficient, solar cells [20] can be added to supply
additional power. But they increase the manufacturing cost and are not suited to all
deployments. However, other power scavenging methods, which enable wireless
nodes to be completely self-sustained exist [55], at least as prototypes. Among these
methods are those using temperature gradients, human power, wind or air flow,
vibrations [56], etc.

14.3.3 Management: Self and Decentralized

When large-scale wireless sensor networks are deployed, relying on a centralized
base station that would manage the topology and the routing is by nature not pos-
sible. This is due, among other parameters, to the cost in terms of energy spent to
communicate over large distances. However, even though it is true that lower cost (in
terms of energy consumption) multi-hop communication can be used to reach a base
station, it still remains that in the particular case where nodes are mobile, the base
station can become physically unreachable. Thus, wireless sensor networks often
rely on decentralized management. For instance the decisions related to routing are
computed locally based on information collected from neighbors using algorithms
that once again optimize the energy consumption of the system.

In addition, it must be remembered that the nodes are deployed in a possibly
adverse environment where they must thus operate without any human intervention.
Therefore, configuration, adaptation, maintenance, and repair should be performed
in an autonomous manner [24]. The nodes then need to have self-management and
context-awareness capabilities [50], like self-organization and self healing. These
require the ability to adapt configuration parameters according to changes in the
environment, such as network disruption (the goal here being to maintain a given
network topology) and to support self-protection (the ability to detect and protect
against attacks). These are two fundamental features.

14.4 Architecture and Operating System

There are a plethora of readily available wireless sensor nodes which combine diverse
hardware architectures with various operating systems. To try and make things clear,
this section describes a tentative generic architecture of a node and the main fea-
tures that are usually supported by the associated operating systems. Figure 14.1
presents the architecture. The sensing unit is the aim for which the sensor node has
been designed. The rest of the unit is needed: to process the acquired data items or
those received from neighbor nodes; to communicate with neighbor nodes; to supply
power to all the boards and components. As can be seen, the sensing, power, and
communication units exchange/communicate over buses such as general purpose
input/output (GPIO), secure data input/output (SDIO), universal serial bus (USB),

340 S. Chaumette and D. Sauveron

Fig. 14.1 Generic architecture of a wireless sensor node

serial peripheral interface (SPI), Inter-Integrated Circuit (I2C), the two latter being
the most commonly used. As illustrated in Fig. 14.1, a direct memory access (DMA)
bus can even be used so as to save the computing cycles of the processor.

As aforementioned, energy supply and management are crucial in sensors. The
power unit may be a simple battery or it can generate part (or all) of the necessary
power using solar cells, or even MEMS-based advanced technologies.

14.4.1 Sensing Unit

Figure 14.1 shows that a sensing unit can integrate several sensors and analog to dig-
ital converters (ADCs). The crucial hardware element of a sensor node are obviously
the sensors themselves (even though the other components are also of major impor-
tance). Their goal is to monitor changes of some external physical phenomenon and
to output a continuous analog signal as a function of time, which then needs to be
converted to a digital value. The choice of the embedded sensors is done by the man-
ufacturer depending on the physical phenomena to observe. It should also be noted
that many architectures now support the notion of shields that are purpose-specific
sensor boards, that can be plugged in depending on the target application. Thanks to
the advances in MEMS, there exist sensors for most physical values, from heart rate
to temperature (an illustrative list of sensors is given Table 14.1). The readers inter-
ested in building their own node with specific sensors are referred to a later chapter
where the Arduino platform (a Do It Yourself open hardware platform) is described.
A sensor that requires power to measure a physical information is called active while
one that derives power from the energy provided by the sensed phenomenon is called
passive.

To convert the signal produced by a sensor to information that can be handled by
the processing unit, an ADC must be used to digitize the analog values. A bus is then
used to feed the processing unit with the resulting digital information. As can be seen
in Fig. 14.1, an ADC can be shared by different sensors. The decision of having one
single ADC for several sensor units or one ADC per sensor unit or even not to embed

14 Wireless Sensor Nodes 341

Table 14.1 Examples of
sensed phenomena and asso-
ciated sensors

Type of sensed phenomena Example of sensor

Acoustic Microphone
Chemical pH sensor
Electromagnetic Magnetometer
Flow Anemometer
Humidity Hygrometer
Mechanical Tactile sensor
Motion Accelerometer
Optical Photodiode
Position Gps
Pressure Barometer
Radiation Radioactivity counter
Temperature Thermocouple

any ADC is done by the manufacturer based on the nature of the information (for
instance, in terms of sampling frequencies and in terms of resolution) that the sensor
is designed to measure. Multiplexing at ADC level can be used for sensors whose
monitored information does not change with high frequency (or at least remains
under a given threshold).

Although this will not be detailed here, sensor nodes can also integrate actuators
such as LEDs, motors, etc.

14.4.2 Processing Unit

The processing unit provides the computing power of the system and connects the
sensing and the communication modules. It consists in a processor and different kinds
of memory banks: a nonvolatile memory (for instance Flash memory or EEPROM)
to store the programs (application(s) and OS) and a volatile fast memory (different
brands of RAM are possible) to store the objects used by the operating system (like the
application stack), the sensed data items, etc. The processor can be of different types:
field programmable gate array (FPGA), digital signal processor (DSP), application-
specific integrated circuit (ASIC), or microcontroller. The latter embeds memories
and several additional hardware features such as a clock generator.

However, if DSPs and FPGAs are special purpose energy-efficient processors that
can be used for some well-defined and simple sensing tasks, they are not suitable for
setting up a modular architecture. In the sensor network context, the sensing tasks
can vary a lot, the overall hardware configuration can be modified by adding a new
sensor, and the software layers must then be able to redefine the sensing operations.
It is acknowledged that a microcontroller is the best solution when dynamic code
loading and updating are required. For instance, it makes it possible to load post-
issuance new energy-efficient software components and protocols. It is less powerful

342 S. Chaumette and D. Sauveron

than a DSP or a FPGA, but easier to program (in C or assembly language). The main
drawback of DSPs is their lack of flexibility when reprogramming is needed, whereas
the drawback of an FPGA is that its production and design costs remain high. An
ASIC provides the best performance, but again reconfiguration is difficult to achieve.
Most of the time ASICs are used to complement microcontrollers or DSPs in low
level tasks, such as wireless communication.

From an architectural point of view, the processing unit can be organized according
to the Von Neumann (for FPGAs and ASICs) or Harvard (or even Super Harvard)
architectures (for DSPs or microcontrollers).

14.4.3 Communication Unit

The communication unit, i.e., the transceiver, may be an optical device like in the
Smart Dust motes project [50], but most of the time, it is an RF device. However,
as aforementioned in Sect. 14.3.2, hardware is not sufficient and software multi-
hopping is the most efficient and usual way to communicate in sensor networks.
Therefore, different types of short-range and energy-efficient radio technologies are
used such as those based on IEEE 802.15.4 like ZigBee [29], WirelessHART [62],
ISA100.11a [64]; IEEE 802.11 [23] like WiFi; IEEE 1451 [45]; or other proprietary
technologies. Because of its high-power consumption when switching the RF module
on and off, Bluetooth is not used very often. Although there are not many benchmarks
available, the reader interested in a comparison between these technologies can refer
to the three following papers [46, 48, 63].

14.4.4 Major Features of Operating Systems

The operating system of a WSN is a small software layer linking the application layer
to the hardware layer. It enables applications to interact with the hardware resources
through services or libraries and is in charge of scheduling and prioritizing tasks. It
can manage memory, power, etc. In addition, it provides application developers with
a few basic abstractions and paradigms to express their algorithms. For example, to
support concurrent tasks, they often provide either a multithreaded or an event-based
programming environment [24].

Nevertheless, there is most of the time no clear separation between the operating
system and the applications running on top of it. WSN operating systems generally
consist of a number of selectable lightweight modules which are linked together at
compilation time to create a monolithic program code which is in charge of sensing,
processing, and managing communications. Some other operating systems provide
an indivisible system kernel along with a set of library components for building
applications [24]. More details on some common operating systems like TinyOS
[33], SOS [36], Contiki [26] or LiteOS [17] can be found in [24].

14 Wireless Sensor Nodes 343

14.5 Security Concerns

Until recently, most attacks on wireless sensor nodes have targeted the protocols
used to communicate between nodes integrated in a network, therefore the intrinsic
security of the nodes themselves is a major concern. For instance, nodes can be cap-
tured and then tampered with since they often operate in an adversary environment.
We first address security of the nodes before presenting the main network-related
concerns.

14.5.1 Security of Wireless Sensor Nodes

In our opinion, tamper resistance will be an important feature of sensing nodes
operating in adverse environments (which is the most common case). In 2000, the
authors of [18] mentioned the need for tamper resistance; however, because of the
(low) cost constraint, they assumed that tamper protection for sensor nodes was
limited. They even recommended not to use unattended sensors for some military
missions where classified algorithms have to be used. It is true that developing tamper
resistant nodes will be more expensive at the beginning of the production due to all
the stages needed to be able to provide a high trust regarding the added security
mechanisms. However, based on the smart card experience, one can think that the
price will certainly quickly decrease when the production process will integrate these
constraints.

Until 2006, node-capture has been considered for instance in [28, 53] that only
the resilience of the network has been addressed. The proposed approaches were
based on algorithmic solutions, e.g., through routing protocol [25], instead of a
tamper-resistant mechanism, or based on redundancy to cross-check measures for
consistency. The first studies [10, 11, 27] which have targeted the security of nodes
themselves were done quite recently. Benenson et al. [10, 11] have developed a
“design space for physical attacks” on nodes and have provided a framework for
realistic security analysis in wireless sensor networks. Attacks (e.g., via a JTAG Test
Access Port, via the Bootstrap Loader) against unattended sensor nodes in the field
were discovered and countermeasures were proposed. For example, detection by its
neighbors of the removal of a node through the communication protocol or by the
node itself using for example an acceleration sensor, and if the removal is detected
then the node is revoked of the network in the first case or it erases its confidential data
in the second case. Side-channel attacks were only mentioned in the conclusions by Z.
Benenson et al.; however, these threats have been considered by K. Eagles et al. [27].
In this chapter, the authors have developed a comparative threat analysis framework
and a methodology to catalog threats, vulnerabilities, attacks, and countermeasures
for smart cards (contact and contactless) and wireless sensor network nodes. One
of the goals of their research was to determine security lessons learned from the
world of smart cards that could be applied to the nodes of a wireless sensor network.

344 S. Chaumette and D. Sauveron

They clearly conclude that the nodes are subject to many attacks that exist on smart
cards, and that tamper resistance features that are implemented within smart cards
should also be considered for nodes.

Despite the very interesting conclusions of these studies, it is surprising to note that
very few efforts have been made in this direction to improve the security of nodes.
However, in 2010, Bialas published two papers [12, 13] in which he considered
security issues of sensors used for high-risk applications. Among his contributions,
he proposed Common Criteria-related security design patterns for the development
of sensors’ security features. This is an important step. However, applications with
crucial security and reliability requirements, such as the studied sensors in charge
of detecting methane in a mine [12], have not been subject to real Common Criteria
evaluation and certification processes. A high level of trust for sensor nodes will
only exist when Common Criteria certificates will be issued. However, the company
named “Ultra Electronics 3eTI” seems close to deliver the first commercial sensing
product that can reach such a level of assurance [1]. They manufacture a product
called “EnergyGuard Appliance 3e-723” [2] which is a real-time energy monitoring
and control system with built-in security mechanisms that allows energy managers
to analyze usage at the building and base/campus level. The webpage of the product
[3] claims it has been validated FIPS 140-2, Level 2, that Common Criteria EAL2
and EAL4 are pending and that it complies with DoDD 8500.1 and DoDD 8100.2.

In parallel and regardless of the conclusions of the paper by Eagles et al., three
papers [30, 34, 35] have been published which exploit the network to attack the nodes
themselves. Here is what the authors have been able to achieve. In [34], they com-
promised a Von Neumann architecture-based sensor with a classical stack attack. In
[35], it is explained how a mal-packet carrying only specially crafted data can exploit
memory-related vulnerabilities and utilize existing application code in a Harvard-
based architecture sensor to propagate itself without disrupting sensor’s functional-
ities. In [30], the authors succeeded in achieving a remote code injection attack on
a Harvard-based architecture sensor, which was considered impossible before. This
attack enables adversary to gain full control of the target sensor and for example
to inject a worm that can then propagate through the wireless sensor network and
possibly create a sensor botnet, or eavesdrop the network, etc.

To counter these recent attacks, Hu et al. present in [39] the design and imple-
mentation of a trusted sensor node, called trustedFleck. It uses a commodity trusted
platform module (TPM) chip to extend the capabilities of a standard wireless sensor
node (Fleck) to provide security services such as message integrity, confidential-
ity, authenticity, and system integrity. In addition, they provide services like secure
software update and remote attestation.

The reader interested in software remote attestation approaches like SWATT [58]
and ICE-based [57] schemes must be aware that attacks [19] exist against them and
that a hardware root of trust is certainly the best reliable solution. Recently a debate
[31, 52] concluded that while software-based code attestation is a useful security
primitive, its design principles are not yet fully understood. The last advance [47] on
this topic at the time of writing this chapter does not target sensor nodes.

14 Wireless Sensor Nodes 345

14.5.2 Security in Networks of Wireless Sensor Nodes

As mentioned in the introduction of this section, most of the classical attacks that
have been studied until now are related to the network protocols and not to the nodes
themselves. Classical attacks like replay, packet injection, or corruption are well
known and will thus not be described here. It should also be noted that operations
like data aggregation and clock synchronization [44] will not be presented here in
spite of the security issues that they raise, because they are application specific.

14.5.2.1 Denial-of-Service Attacks

A first class of security concerns in a sensors network is related to availability. Indeed,
it is very easy for an adversary to stop the network operation with Denial-of-Service
(DoS) attacks [66].

For example at physical layer, a jamming attack can be achieved by interfering
on radio frequencies used by the sensor network. This kind of attack is very efficient
since in most of the topologies, it does not require an important number of “attacking
nodes” to perform it. However, some countermeasures to make it more complex have
been developed, like:

• using spread-spectrum communication [e.g., Frequency-Hopping Spread Spec-
trum (FHSS)] which forces attackers to jam on a wide frequency band;

• jamming detection which enables the nodes to be switched in low consumption
mode and awakened periodically to check if the jamming attack is still in progress.

Tampering with a node is also considered a DoS attack, since once captured, it is
possible to destroy it or try to compromise it. Currently suggested countermeasures
consist in:

• disabling the node and deleting its information when it believes that it has been
compromised. It should be noted, however, that this is not very satisfactory, since
the node is no longer available, which is the goal of DoS.

• camouflaging or hiding nodes in their physical environment [9], but this is not an
information technology-based countermeasure!

At link-layer level, a DoS can be achieved with collision attacks which may consist
in exploiting the medium access control backoff and retransmission procedures. In
addition, even if collisions occur for only a few bits, the sending node should send its
packet again, thus consuming more energy (this is an exhaustion attack). Fortunately,
this can be partially addressed using error correcting codes and best-effort delivery
protocols.

At network-layer level, a DoS can be achieved using routing loop attacks [44]
to create loops in message routes so that messages are constantly forwarded around
this loop, draining batteries of the nodes involved in the loop, and preventing the
message from reaching its final destination.

346 S. Chaumette and D. Sauveron

At transport-layer level, a flooding attack can be performed by repeatedly request-
ing new connections to a given node which then undergoes a memory exhaustion and
thus refuses further connections from legitimate nodes. A desynchronization attack
can also be achieved to elicit resource-costly retransmissions [24].

14.5.2.2 Routing Attacks

There are a large number of possible attacks on routing protocols [6]. Here are a few:

• the blackhole attack in which an attacker attempts to be on the path of one or
more routes to drop all the traffic so that the transmitted data never reach their
destination. A variant is the selective forwarding attack, in which the attacker
drops only the data matching certain criteria. This latter is more difficult to detect
than a blackhole attack.

• the sinkhole attack is another variant of the blackhole attack, in which the traffic
is not dropped, but disrupted or tampered.

• the rushing attack [40] in which an attacker exploits the nature of the route dis-
covery procedure of on-demand routing protocols to increase its probability to be
chosen as an intermediary node between a source and a destination.

• the sybil attack consists in an attacker presenting multiple (impersonated or false)
identities to the other nodes of the network to influence the decision taken in
cooperation inside the network (for instance to become a part of the route). Imper-
sonation can be done with node or base station identities [44]. A variant of the
sybil attack exists for geographic routing protocols where an attacker claims to be
at several locations (instead of impersonating an identity) simultaneously with the
hope to be chosen as a forwarding node.

• the wormhole attack in which two colluding attackers using an out-of-band channel
between them, divert most of the traffic from the rest of the network. This then
enables attacks like blackhole, sinkhole, etc.

While using wireless link encryption and authentication mechanisms can prevent
most attacks from an outsider of the network, it cannot be effective against an inside
attack, coming from a compromised node. As seen in this section, there are many
possibilities to compromise a node and thus an intrusion detection system (IDS) is
clearly an additional security mechanism that can help protecting the system.

14.5.2.3 Conclusion on Security

To the best of our knowledge, at the time of writing these lines, there is not yet
any publicly available cheap wireless sensor node which would implement tamper-
resistant features so as to provide a high level of trust and that could be deployed in
a real network to defeat all aforementioned attacks.

14 Wireless Sensor Nodes 347

Acknowledgments The authors want to thank the reviewers for their constructive comments which
were helpful to improve this chapter.

References

1. 3eti: Company overview http://www.ultra-3eti.com/assets/1/7/3eTI_-_Company_Overview_
(07--26-2011).pdf

2. Datasheet of energyguard appliance 3e–723 http://www.ultra-3eti.com/assets/1/7/3e-723_
EnergyGuard.pdf

3. Energyguard appliance 3e–723 webpage product http://www.ultra-3eti.com/products/sensor_
networks/energyguard_appliance/

4. Globalsecurity.org. sound surveillance system (sosus). http://www.globalsecurity.org/intell/
systems/sosus.htm

5. Largest tiny network yet (2001). http://webs.cs.berkeley.edu/800demo/
6. Secure routing in wireless sensor networks: attacks and countermeasures (2003). doi:

10.1109/SNPA.2003.1203362. http://dx.doi.org/10.1109/SNPA.2003.1203362
7. Integrated smart sensing systems (2007). http://dpi.projectforum.com/isss/11
8. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a sur-

vey. Computer Networks 38(4), 393–422 (2002). doi: 10.1016/S1389-1286(01)00302-4. http://
www.sciencedirect.com/science/article/pii/S1389128601003024

9. Anjum, F., Sarkar, S.: Security in sensor networks. In: Mobile, Wireless and Sensor Networks:
Technology, Applications and Future Directions. John Wiley & Sons.

10. Becher, E., Benenson, Z., Dornseif, M.: Tampering with motes: Real-world physical attacks
on wireless sensor networks. In: in 3rd International Conference on Security in Pervasive
Computing (SPC (2006).

11. Benenson, Z., Cholewinski, P.M., Freiling, F.C.: Vulnerabilities and attacks in wireless sensor
networks. Wireless Sensors Networks Security pp. 22–43 (2007). http://www1.informatik.uni-
erlangen.de/filepool/publications/zina/attacker-models-bookchapterIOS_Press.pdf

12. Bialas, A.: Common criteria related security design patterns alidation on the intelligent
sensor example designed for mine environment. Sensors 10(5), 4456–4496 (2010). doi:
10.3390/s100504456. http://www.mdpi.com/1424-8220/10/5/4456/

13. Bialas, A.: Intelligent sensors security. Sensors 10(1), 822–859 (2010). doi:
10.3390/s100100822. http://www.mdpi.com/1424-8220/10/1/822/

14. Bisscheroux, M.: Largest deployment of myrianed wireless nodes (2010). http://wsn.chess.nl/?
p=50

15. Bonnet, P., Gehrke, J.E., Seshadri, P.: Querying the physical world. IEEE Journal of Selected
Areas in Communications 7(5),10–15 (2000).

16. Burrell, J., Brooke, T., Beckwith, R.: Sensor and actuator networks- Vineyard computing:
sensor networks in agricultural production. IEEE Pervasive Computing 3(1), 38–45 (2004).
doi: http://dx.doi.org/10.1109/MPRV.2004.1269130

17. Cao, Q., Abdelzaher, T.: liteos: a lightweight operating system for c++ software development in
sensor networks. In: Proceedings of the 4th international conference on Embedded networked
sensor systems, SenSys ’06, pp. 361–362. ACM, New York, NY, USA (2006). doi: http://doi.
acm.org/10.1145/1182807.1182855.

18. Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor net-
work security. Tech. Rep. 010, NAI Labs, The Security Research Division Network Asso-
ciates, Inc. (2000). http://www.cs.umbc.edu/courses/graduate/CMSC691A/Spring04/papers/
nailabs_report_00-010_final.pdf

19. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of software-based
attestation of embedded devices. In: Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pp. 400–409. ACM, New York, NY, USA (2009). doi:
http://doi.acm.org/10.1145/1653662.1653711.

http://www.ultra-3eti.com/assets/1/7/3eTI_-_Company_Overview_(07--26-2011).pdf
http://www.ultra-3eti.com/assets/1/7/3eTI_-_Company_Overview_(07--26-2011).pdf
http://www.ultra-3eti.com/assets/1/7/3e-723_EnergyGuard.pdf
http://www.ultra-3eti.com/assets/1/7/3e-723_EnergyGuard.pdf
http://www.ultra-3eti.com/products/sensor_networks/energyguard_appliance/
http://www.ultra-3eti.com/products/sensor_networks/energyguard_appliance/
http://www.globalsecurity.org/intell/systems/sosus.htm
http://www.globalsecurity.org/intell/systems/sosus.htm
http://webs.cs.berkeley.edu/800demo/
http://dx.doi.org/10.1109/SNPA.2003.1203362
http://dpi.projectforum.com/isss/11
http://www.sciencedirect.com/science/article/pii/S1389128601003024
http://www.sciencedirect.com/science/article/pii/S1389128601003024
http://www1.informatik.uni-erlangen.de/filepool/publications/zina/attacker-models-bookchapterIOS_Press.pdf
http://www1.informatik.uni-erlangen.de/filepool/publications/zina/attacker-models-bookchapterIOS_Press.pdf
http://www.mdpi.com/1424-8220/10/5/4456/
http://www.mdpi.com/1424-8220/10/1/822/
http://wsn.chess.nl/?p=50
http://wsn.chess.nl/?p=50
http://dx.doi.org/10.1109/MPRV.2004.1269130
http://doi.acm.org/10.1145/1182807.1182855.
http://doi.acm.org/10.1145/1182807.1182855.
http://www.cs.umbc.edu/courses/graduate/CMSC691A/Spring04/papers/nailabs_report_00-010_final.pdf
http://www.cs.umbc.edu/courses/graduate/CMSC691A/Spring04/papers/nailabs_report_00-010_final.pdf
http://doi.acm.org/10.1145/1653662.1653711.

348 S. Chaumette and D. Sauveron

20. Chandrakasan, A., Amirtharajah, R., Cho, S., Goodman, J., Konduri, G., Kulik, J., Rabiner,
W., Wang, A.: Design considerations for distributed micro-sensor systems. In: Proceedings of
the IEEE 1999 Custom Integrated Circuits Conference, pp. 279-286 (1999).

21. Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D.: Wisebed: An open large-
scale wireless sensor network testbed (2010). http://dx.doi.org/10.1007/978-3-642-11870-8_
6.10.1007/978-3-642-11870-8_6

22. Clark, C.W., Mellinger, D.K.: Application of navy iuss for whale research. The Journal of the
Acoustical Society of America 96(5), 3315–3315 (1994). doi: 10.1121/1.410808. http://link.
aip.org/link/?JAS/96/3315/1

23. Crow, B., Widjaja, I., Kim, J., Sakai, P.: IEEE 802.11 Wireless Local Area Networks. IEEE
Communications Magazine pp. 116–126 (1997).

24. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Prac-
tice. Wireless Communications and Mobile Computing. Wiley (2010). http://books.google.fr/
books?id=8c6k0EVr6rMC

25. Deng, J., Han, R., Mishra, S.: A performance evaluation of intrusion-tolerant routing in wireless
sensor networks. In: Proceedings of the 2nd international conference on Information processing
in sensor networks, IPSN’03, pp. 349–364. Springer-Verlag, Berlin, Heidelberg (2003). http://
dl.acm.org/citation.cfm?id=1765991.1766015

26. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for
tiny networked sensors. In: Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks, LCN ’04, pp. 455–462. IEEE Computer Society, Washington, DC,
USA (2004). doi: http://dx.doi.org/10.1109/LCN.2004.38.

27. Eagles, K., Markantonakis, K., Mayes, K.: A comparative analysis of common threats, vul-
nerabilities, attacks and countermeasures within smart card and wireless sensor network node
technologies. In: Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2 international conference
on Information security theory and practices: smart cards, mobile and ubiquitous computing
systems, WISTP’07, pp. 161–174. Springer-Verlag, Berlin, Heidelberg (2007). http://dl.acm.
org/citation.cfm?id=1763190.1763209

28. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In:
In Proceedings of the 9th ACM Conference on Computer and Communications Security, pp.
41–47. ACM Press (2002).

29. Farahani, S.: ZigBee Wireless Networks and Transceivers. Newnes, Newton, MA, USA (2008).
30. Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture devices. In:

Proceedings of the 15th ACM conference on Computer and communications security, CCS
’08, pp. 15–26. ACM, New York, NY, USA (2008). doi: http://doi.acm.org/10.1145/1455770.
1455775. http://doi.acm.org/10.1145/1455770.1455775

31. Francillon, A., Castelluccia, C., Perito, D., Soriente, C.: Comments on efutation of on the
difficulty of software-based attestation of embedded devices (2010).

32. Frank, R.: Understanding Smart Sensors. Measurement Science and Technology 11(12), 1830
(2000). doi: http://dx.doi.org/10.1088/0957-0233/11/12/711

33. Gay, D., Levis, P., Culler, D.: Software design patterns for tinyos. ACM Trans. Embed. Comput.
Syst. 6 (2007). doi: http://doi.acm.org/10.1145/1274858.1274860.

34. Goodspeed, T.: Exploiting wireless sensor networks over 802.15.4. In: ToorCon 9 (2007).
35. Gu, Q., Noorani, R.: Towards self-propagate mal-packets in sensor networks. In: Proceed-

ings of the first ACM conference on Wireless network security, WiSec ’08, pp. 172–
182. ACM, New York, NY, USA (2008). doi: http://doi.acm.org/10.1145/1352533.1352563.
http://doi.acm.org/10.1145/1352533.1352563

36. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system
for sensor nodes. In: Proceedings of the 3rd international conference on Mobile systems,
applications, and services, MobiSys ’05, pp. 163–176. ACM, New York, NY, USA (2005). doi:
http://doi.acm.org/10.1145/1067170.1067188.

37. Hefeeda, M., Bagheri, M.: Wireless sensor networks for early detection of forest fires. In:
IEEE 4th International Conference on Mobile Adhoc and Sensor Systems, MASS 2007, 8–11
October 2007, Pisa, Italy, pp. 1–6. IEEE (2007). doi: http://dx.doi.org/10.1109/MOBHOC.
2007.4428702

http://dx.doi.org/10.1007/978-3-642-11870-8_6.10.1007/978-3-642-11870-8_6
http://dx.doi.org/10.1007/978-3-642-11870-8_6.10.1007/978-3-642-11870-8_6
http://link.aip.org/link/?JAS/96/3315/1
http://link.aip.org/link/?JAS/96/3315/1
http://books.google.fr/books?id=8c6k0EVr6rMC
http://books.google.fr/books?id=8c6k0EVr6rMC
http://dl.acm.org/citation.cfm?id=1765991.1766015
http://dl.acm.org/citation.cfm?id=1765991.1766015
http://dx.doi.org/10.1109/LCN.2004.38.
http://dl.acm.org/citation.cfm?id=1763190.1763209
http://dl.acm.org/citation.cfm?id=1763190.1763209
http://doi.acm.org/10.1145/1455770.1455775.
http://doi.acm.org/10.1145/1455770.1455775.
http://dx.doi.org/10.1088/0957-0233/11/12/711
http://doi.acm.org/10.1145/1274858.1274860.
http://doi.acm.org/10.1145/1352533.1352563.
http://doi.acm.org/10.1145/1067170.1067188.
http://dx.doi.org/10.1109/MOBHOC.2007.4428702
http://dx.doi.org/10.1109/MOBHOC.2007.4428702

14 Wireless Sensor Nodes 349

38. Heukoop, C.V.: Alwen 1000 node experiment. In: Elektronica (2010). http://wsn.chess.nl/wp-
content/uploads/2010/02/AlwEN-1000node-exp-Elektronica-janfeb2010.pdf

39. Hu, W., Tan, H., Corke, P., Shih, W.C., Jha, S.: Toward trusted wireless sensor networks. ACM
Trans. Sen. Netw. 7, 5:1–5:25 (2010). doi: http://doi.acm.org/10.1145/1806895.1806900.

40. Hu, Y.C., Perrig, A., Johnson, D.B.: Rushing attacks and defense in wireless ad hoc network
routing protocols. In: Proceedings of the 2nd ACM workshop on Wireless security, WiSe
’03, pp. 30–40. ACM, New York, NY, USA (2003). doi: http://doi.acm.org/10.1145/941311.
941317. http://doi.acm.org/10.1145/941311.941317

41. Johnson, P., Andrews, D.C.: Remote continuous physiological monitoring in the home. Journal
of Telemedicine and Telecare 2(2), 107–113 (1996).

42. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences with
zebranet. SIGPLAN Not. 37, 96–107 (2002). doi: http://doi.acm.org/10.1145/605432.605408.
http://doi.acm.org/10.1145/605432.605408

43. Kumar, S., Shepherd, D.: SensIT: Sensor Information Technology for the warfighter. In: Pro-
ceedings of the 4th Conference on Information Fusion, pp. 3–9. Montreal, Canada (2001).

44. Larsson, A.: Report on the state of the art of security in sensor, networks (2011).
45. Lee, K.: Ieee 1451: A standard in support of smart transducer networking. In: Proceedings of

IEEE Instrumentation and Measurement, vol. 2, pp. 525–528. IEEE (2000). http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=848791

46. Lennvall, T., Svensson, S., Hekland, F.: A comparison of WirelessHART and ZigBee for indus-
trial applications. In: Factory Communication Systems, 2008. WFCS 2008. IEEE International
Workshop on, pp. 85–88 (2008). doi: http://dx.doi.org/10.1109/WFCS.2008.4638746

47. Li, Y., McCune, J.M., Perrig, A.: Viper: verifying the integrity of peripherals’ firmware. In:
Proceedings of the 18th ACM conference on Computer and communications security, CCS
’11, pp. 3–16. ACM, New York, NY, USA (2011). doi: http://doi.acm.org/10.1145/2046707.
2046711

48. Lopez, J., Roman, R., Alcaraz, C.: Analysis of security threats, requirements, technologies and
standards in wireless sensor networks. In: A. Aldini, G. Barthe, R. Gorrieri (eds.) Foundations
of Security Analysis and Design V, Lecture Notes in Computer Science, vol. 5705, pp. 289–338.
Springer Berlin/Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03829-7_10.

49. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks
for habitat monitoring. In: Proceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, WSNA ’02, pp. 88–97. ACM, New York, NY, USA (2002).
doi: http://doi.acm.org/10.1145/570738.570751.

50. Mills, K.: A brief survey of self-organization in wireless sensor networks. Wireless Commu-
nications and Mobile Computing 7(7), 823–834 (2007).

51. Nishimura, C.E., Conlon, D.M.: Iuss dual use: Monitoring whales and earthquakes using sosus.
Marine Technology Society Journal 27(4), 13–21 (1994).

52. Perrig, A., van Doorn, L.: Refutation of n the Difficulty of Software-Based Attesta-
tion of Embedded Devices (2010). http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-
refutation.pdf

53. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. COMMUNICA-
TIONS OF THE ACM 47(6), 53–57 (2004).

54. Rabaey, J.M., Ammer, M.J., da Silva, J.L., Patel, D., Roundy, S.: Picoradio supports ad hoc
ultra-low power wireless networking. Computer 33, 42–48 (2000). doi: 10.1109/2.869369.
http://dl.acm.org/citation.cfm?id=619053.621512

55. Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power Sources for Wireless
Sensor Networks. pp. 1–17 (2004). http://www.springerlink.com/content/b0utgm8ahnphll3l

56. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for
wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003). doi: http://www.
sciencedirect.com/science/article/pii/S0140366402002487

57. Seshadri, A., Luk, M., Perrig, A., Doorn, L., Khosla, P.: Scuba: Secure code update by attestation
in sensor networks. In: in Proceedings of ACM Workshop on Wireless Security (WiSe6). ACM,
pp. 85–94. Press (2006).

http://wsn.chess.nl/wp-content/uploads/2010/02/AlwEN-1000node-exp-Elektronica-janfeb2010.pdf
http://wsn.chess.nl/wp-content/uploads/2010/02/AlwEN-1000node-exp-Elektronica-janfeb2010.pdf
http://doi.acm.org/10.1145/1806895.1806900.
http://doi.acm.org/10.1145/941311.941317.
http://doi.acm.org/10.1145/941311.941317.
http://doi.acm.org/10.1145/605432.605408.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=848791
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=848791
http://dx.doi.org/10.1109/WFCS.2008.4638746
http://doi.acm.org/10.1145/2046707.2046711
http://doi.acm.org/10.1145/2046707.2046711
http://dx.doi.org/10.1007/978-3-642-03829-7_10.
http://doi.acm.org/10.1145/570738.570751.
http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
http://dl.acm.org/citation.cfm?id=619053.621512
http://www.springerlink.com/content/b0utgm8ahnphll3l
http://www.sciencedirect.com/science/article/pii/S0140366402002487
http://www.sciencedirect.com/science/article/pii/S0140366402002487

350 S. Chaumette and D. Sauveron

58. Seshadri, A., Perrig, A., Doorn, L.V., Khosla, P.: Swatt: Software-based attestation for embed-
ded devices. In: In Proceedings of the IEEE Symposium on Security and Privacy (2004).

59. Shih, E., Bahl, P., Sinclair, M.J.: Wake on wireless: an event driven energy saving strategy
for battery operated devices. In: MobiCom ’02: Proceedings of the 8th annual international
conference on Mobile computing and networking, pp. 160–171. ACM, New York, NY, USA
(2002). doi: http://dx.doi.org/10.1145/570645.570666

60. Shih, E., Cho, S.H., Ickes, N., Min, R., Sinha, A., Wang, A., Chandrakasan, A.: Physical
layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In:
Proceedings of the 7th annual international conference on Mobile computing and networking,
MobiCom ’01, pp. 272–287. ACM, New York, NY, USA (2001). doi: http://doi.acm.org/10.
1145/381677.381703.

61. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., Framp-
ton, K.: Sensor network-based countersniper system. In: Proceedings of the 2nd international
conference on Embedded networked sensor systems, SenSys ’04, pp. 1–12. ACM, New York,
NY, USA (2004). doi: http://doi.acm.org/10.1145/1031495.1031497.

62. Song, J., Han, S., Mok, A., Chen, D., Lucas, M., Nixon, M., Pratt, W.: Wirelesshart: Applying
wireless technology in real-time industrial process control. In: Proceedings of the 2008 IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 377–386. IEEE Com-
puter Society, Washington, DC, USA (2008). doi: 10.1109/RTAS.2008.15. http://dl.acm.org/
citation.cfm?id=1440456.1440604

63. Song, J., Han, S., Mok, A.K., Chen, D., Lucas, M., Nixon, M.: WirelessHART: Applying
Wireless Technology in Real-Time Industrial Process Control. In: Real-Time and Embedded
Technology and Applications Symposium, 2008. RTAS ’08. IEEE, vol. 0, pp. 377–386. IEEE,
Los Alamitos, CA, USA (2008). doi: http://dx.doi.org/10.1109/RTAS.2008.15

64. Surhone, L., Tennoe, M., Henssonow, S.: Isa100.11a. VDM Verlag Dr. Mueller AG & Co. Kg
(2010). http://books.google.fr/books?id=F_BMYgEACAAJ

65. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring volcanic eruptions
with a wireless sensor network. In: Wireless Sensor Networks, 2005. Proceeedings of the
Second European Workshop on, pp. 108–120. IEEE (2005). doi: http://dx.doi.org/10.1109/
EWSN.2005.1462003

66. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Computer 35, 54–62 (2002).
doi: http://dx.doi.org/10.1109/MC.2002.1039518.

67. Wright, R., Flynn, L., Garbeil, H., Harris, A., Pilger, E.: Automated volcanic eruption detection
using MODIS. Remote Sensing of Environment 82(1), 135–155 (2002). doi: http://dx.doi.org/
10.1016/S0034-4257(02)00030-5

68. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping
for wireless sensor networks. IEEE/ACM Trans. Netw. 12, 493–506 (2004). doi: http://dx.doi.
org/10.1109/TNET.2004.828953.

http://dx.doi.org/10.1145/570645.570666
http://doi.acm.org/10.1145/381677.381703.
http://doi.acm.org/10.1145/381677.381703.
http://doi.acm.org/10.1145/1031495.1031497.
http://dl.acm.org/citation.cfm?id=1440456.1440604
http://dl.acm.org/citation.cfm?id=1440456.1440604
http://dx.doi.org/10.1109/RTAS.2008.15
http://books.google.fr/books?id=F_BMYgEACAAJ
http://dx.doi.org/10.1109/EWSN.2005.1462003
http://dx.doi.org/10.1109/EWSN.2005.1462003
http://dx.doi.org/10.1109/MC.2002.1039518.
http://dx.doi.org/10.1016/S0034-4257(02)00030-5
http://dx.doi.org/10.1016/S0034-4257(02)00030-5
http://dx.doi.org/10.1109/TNET.2004.828953.
http://dx.doi.org/10.1109/TNET.2004.828953.

Chapter 15
Near Field Communication

Gerald Madlmayr, Christian Kantner and Thomas Grechenig

Abstract Near field communication (NFC) is a radio frequency (RF) based proxim-
ity coupling technology allowing transactions within a range up to 10 cm. With NFC,
a key technology is on its way into the consumer’s most personal device, allowing
the customer to use his devices for secure services such as payment or ticketing
but also for service initiation or data exchange. Interoperability is one of the most
important goals to be achieved prior to the roll out of devices and services, in order
to satisfy the consumer’s expectations. This chapter deals with different operating
modes and use cases that can be implemented with NFC technology with the main
focus on mobile phones. This high level description is backed up with a look into the
hardware architecture for NFC as well as the software stack in mobile phones. The
chapter ends with a description of tags and tag formats for the NFC ecosystem.

15.1 Introduction

Radio frequency identification (RFID) technology is used in many daily applications.
For the consumer, RFIDs are unnoticed and simple to use, they offer a popular
alternative to conventional communication channels. Starting with simple access
control possibilities up to complex data memories, quite different applications can
be realized. A further development represents NFC [16], a technology for the fast
and uncomplicated exchange of small amounts of data. It opens new perspectives

G. Madlmayr (B) · C. Kantner · T. Grechenig
Research Group for Industrial Software (INSO), Vienna University of Technology,
Vienna, Austria
e-mail: gerald.madlmayr@inso.tuwien.ac.at

C. Kantner
e-mail: christian.kantner@inso.tuwien.ac.at

T. Grechenig
e-mail: thomas.grechenig@inso.tuwien.ac.at

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 351
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_15,
© Springer Science+Business Media New York 2014

352 G. Madlmayr et al.

regarding the application development on all kind of consumer devices. Nowadays,
NFC is being introduced to mobile phones.

NFC is an amendment to the existing contactless smart card systems, but still
compatible to them. It is presented in ISO 18092 (NFCIP-1), supporting cards com-
pliant to ISO 14443 [9] and Sony’s proprietary FeLiCa system as well as NFC’s
own communication method. NFC allows wireless transactions over a distance of
up to 10 centimetres. This is part of the Touch and Go philosophy giving the user
a new dimension of usability. Hence, NFC-enabled handsets allow the consumer to
interactively participate in the Internet of Things in a way like never before.

Consumers can use their handsets to retrieve further information by touching tags
integrated within posters, products, or shelves. Alternatively, the handset itself can
be used as a transponder, and therefore provides additional functionality in terms
of applications and identification. This vision requires interoperability on differ-
ent layers and a common agreement of industry players integrating technology and
applications.

15.2 NFC Technology

15.2.1 Physical Layer

On the physical layer, NFC data are exchanged by two inductively coupled coils,
one per appliance, generating a magnetic field with a frequency of 13.56 MHz. The
field is modulated to facilitate data transfers. For communication, one device acts
as the initiator (starting the communication), whereas the other device operates in
target mode (waiting for the initiator). Typically, two devices are involved in the
communication [3].

The roles of the devices, initiator and target, are assigned automatically during the
listen-before-talk concept, which is part of the mode switching of NFC. In general,
each NFC device acts in target mode. Periodically, the device switches into initiator
mode in order to scan the environment for NFC targets (= polling) and then falls
back into target mode. If the initiator finds a target an initiation sequence is used to
establish communication before exchanging data.

NFC distinguishes two operation modes for communication: passive and active
modes (Fig. 15.1).

15.2.1.1 Passive Mode

In passive mode only the device that starts the communication (the initiator) produces
the 13.56 MHz carrier field. A target introduced to this field may use it to draw
energy, but must not generate a carrier field of its own. The initiator transfers data by
directly modulating the field, the target by load modulating it. In both directions, the

15 Near Field Communication 353

Engery
Initiator to Target

Data
Initiator to Target

Data
Target to Initiator

ASK modulated data Load modulated data

Only one NFC device (Initiator) provides energy, 2nd device in passive
mode

t

Data
Initiator to Target

Data
Target to Initiator

ASK modulated data ASK modulated data

Both devices in active Mode
t

Fig. 15.1 Active and passive operation mode of an NFC device [13]

coding complies with ISO14443 or FeLiCa, respectively. This enables NFC devices
to communicate with existing contactless smart cards. The term load modulation
describes the influence of load changes on the initiator’s carrier field’s amplitude.
These changes can be perceived as information by the initiator. Depending on the
size of the coils, ranges up to 10 cm and data rates of 106, 212, and 424 kbits/s are
possible.

15.2.1.2 Active Mode

When in active mode, both appliances generate an RF field. Each side transmits
data by modifying its own field, using an amplitude shift keying (ASK) modulation
scheme. Advantages compared to passive mode include a larger operating distance

354 G. Madlmayr et al.

NFC
Initiator

NFCPhone
Target

NFC
Reader/Writer Terminal

NFC
CardEmulation

RFID
Transponder

NFC peer-to-peer-Mode Reader/Writer-Mode Card Emulation-Mode

Phone PhoneRFIDPhone

Fig. 15.2 Different operating modes of an NFC device [13]

(up to 20 cm) and higher transmission speeds (eventually over 1 MBit/s). To avoid
collisions, only the sending device emits a electromagnetic field; the receiving entity
switches off its field while listening. If necessary, these roles can change as often as
needed [13].

15.2.2 Use Cases and Applications

An NFC compliant device offers the following modes of communication (Fig. 15.2):

15.2.2.1 Reader/Writer Mode:

In this mode, an NFC system acts as an ordinary reader for contactless smart cards. If
two or more cards are present in the reader’s carrier field one is selected using an anti-
collision algorithm. NFC also takes care of sensing whether the chosen card is ISO
14443-A/B or FeLiCa compliant. The method used for anti-collision is dependent
on the type of card detected. This mode causes the NFC device to act as an active
device. From an application’s view, there is no difference between a conventional
and an emulated terminal, accesses to the contactless token proceed equally [3].

Operating in this mode, the NFC device can read and alter data stored in NFC
compliant passive (without battery) transponders. Such tags can be found on e.g.
a SmartPoster allowing the user to retrieve additional information by reading the tag
with an NFC device. Depending on the data stored on the tag, the NFC device takes
an appropriate action. If e.g. a URI was found on the tag the handset could open a
Web browser.

15.2.2.2 Card Emulation Mode:

Card emulation mode is the reverse of reader/writer mode; a contactless token is
emulated in passive mode. Due to the fact that the card is only emulated, it is possible
to use one NFC device in place of several real smart cards. Which card is presented to
the reader depends on the situation and can be influenced by software. Additionally,

15 Near Field Communication 355

an NFC device can contain a secure element to store the information for the emulated
card in a secure way [3].

In this case, an external reader cannot distinguish between a smart card and an
NFC device in card emulation mode. This mode is useful for contactless payment
and ticketing applications, and a single NFC-enabled handset is capable of emulating
multiple contactless smart card applications.

15.2.2.3 Peer-to-Peer Mode:

This mode is specific to NFC. After having established a link between the two partici-
pants (the method is equal to ISO 14443-A), a transparent protocol for data exchange
can be started. The data block size can be chosen freely, with an maximum transmis-
sion unit (MTU) limited to 256 bytes. The main purpose of this protocol is to enable
the user to send his/her own data as soon as possible (i.e. after a few milliseconds).
In a peer-to-peer session, the initiator is always in active mode, whereas the target
may be active or passive. This helps the target to reduce its energy consumption
and is therefore especially useful if the initiator is a stationary terminal (e.g. a ticket
machine) and the target a mobile device (e.g. a mobile phone) [3].

The NFC peer-to-peer mode (ISO 18092) allows two NFC-enabled devices to
establish a bidirectional connection to exchange contacts, bluetooth pairing infor-
mation, or any other kind of data [10]. Cumbersome pairing processes are a thing of
the past thanks to NFC technology. To establish a connection, a client (NFC peer-to-
peer initiator) is searching for a host (NFC peer-to-peer target) to setup a connection;
then the near field communcation data exchange format (NDEF) is used to transmit
the data.

15.3 Hardware Integration

In order to provide all three application modes, a mobile has to include an NFC chip,
a secure element, and a host controller. Their tasks and functionality will be outlined
in the following sections.

15.3.1 NFC Chip

The NFC hardware in the mobile phone has to take over various tasks. One core
functionality of the NFC chip is the analogue front end which is responsible for
modulating and demodulating the 13.56 MHz carrier signals from the antenna to
digital signals. Additionally, the communication between the host controller as well
as the secure element (if present) is part of the chip. The NFC chip is managed by
the host controller and an appropriate software stack with an API which is available

356 G. Madlmayr et al.

to the developer. The functions of the NFC chip will most likely be an integrated
part of future baseband processors in order to reduce costs and save valuable space
in mobile devices.

15.3.2 Secure Element

The secure element is typically a smart card controller which is capable of emulat-
ing a real smart card. For security purposes, it is typically constructed in a tamper
proof way. The software architecture of a typical secure element provides an envi-
ronment, where applications are downloaded, personalized, managed, and removed
independently with varying life cycles (e.g. using Global Platform functionality). It
is also possible that the secure element is completely emulated in software. There
are already general purpose CPUs in the market that support a trusted execution
environment (TEE) where data can be processed in a secure way (e.g. ARM with its
TrustZone architecture).

Payment or ticketing applications place high demands on security of the secure
element. The chip must be highly reliable and robust to withstand different kinds of
attacks. Also the manageability of the secure element is an important property [2].
Actually, a secure element function is not mandatory in an NFC device, although
such devices cannot be used for card emulation mode.

• Security: Security implies confidentiality, integrity, availability, and authentica-
tion. Security as defined in ISO 14980 is: ‘The purpose of information security is
to ensure business continuity and minimize business damage by preventing and
minimizing the impact of security incidents.’

• Manageability: A secure element can contain applications and data from different
sources. Hence, means for application and data management need to be available.
There should also be the possibility to remotely lock the secure element in case of
loss or theft.

A secure element has to provide the following functionality [11]:

• Secure memory: A secure memory is necessary to store sensitive data like private
keys, root certificates, and personal data.

• Cryptographic functions: Protocols for secure data exchange usually rely on cryp-
tographic functions to provide security for the sensitive data, as this information
must not leave the secure element without encryption.

• Secure environment for code execution: A secure element has to contain a unit to
execute code in a secure way which cannot be monitored.

The secure element can be implemented in different ways in a mobile device.
Smart cards or secure smart card chips are possible options for a secure element,
whereas the following implementations are common for an NFC enabled handset:

• Embedded secure element as a chip

15 Near Field Communication 357

• Subscriber identity module (SIM) Card
• Secure digital card (SD-Card)

For the communication with the secure element application protocol data units
(APDU) are used. The communication interface is standardized in the ISO standard
for smart cards, ISO 7816. In order to link the secure element to the NFC Chip and
the host controller, different interfaces are considered:

• Single wire protocol (SWP) to link a Universal Integrated Circuit Card (UICC) to
the NFC chip

• SigIn-SigOut-Communication (S2C) for linking the NFC chip with embedded
secure elements or SD-Cards [19]

• ISO 7816 interface for the communication between the host and the secure element.

Java Card OS is a widespread platform for the secure element which is already
an industry standard for chip cards and is getting more and more popular for SIM
cards as well.

15.3.3 Host Controller

The host controller has to manage the NFC chip on the one side (e.g., reading/writing
data to a tag, switching between application modes) as well as to communicate with
the secure element on the other side (e.g., to view the content of a card application
stored on the secure element). The communication between the NFC chip and the
host controller is handled by the host controller interface (HCI). The communication
between the host controller and the secure element is not specifically standardized,
but is based on APDUs as defined in ISO 7816-4. In case the secure element is
the UICC, the communication is routed through the cell phone baseband chipset
via the radio interface layer (RIL) which holds control over the UICC. In case of
the embedded secure element or an SD-Card, it depends on the integration of the
hardware within the phone.

Figure 15.3 shows the logical parts of each component and how they communicate
with each other.

To save space, the embedded secure element and the NFC chip can be packaged
into one chip. The chipset manufacturer NXP for example offers such a product
under its PN65 series. This type of chip has a so-called SmartConnect architecture
(see Fig. 15.4).

Thus the secure element, in this case NXP’s SmartMX, can operate in the different
modes [13]:

• Wired: In wired mode, the embedded secure element can be accessed by the host
controller through the NFC chip. Therefore, an application running on the phone
is able to fetch data stored on the secure element. The secure element is not visible
to an external reader and therefore card emulation is disabled.

358 G. Madlmayr et al.

Com Interface
(ISO, USB)

Com Interface
(UART, USB)

Kernel/Core OS

ISO7816
T=1/T=0 NFC HAL

Middleware/JVM

Java APIs

Host
OS

ACP

H
os

t C
on

tr
ol

le
r

NCI

UICC

Smartcard OS
(e.g Java Card)

Transport
Interface

(ISO, USB)
HCI

SWP
Interface

NFC Controller (NFC IC)

Firmware

HCI Interface

Com
Inter-
face

SWP
Inter-
face

CLF
Inter-
face

A
nt

en
na

(C
LF

=
C

on
ta

ct
le

ss

F
ro

nt
en

d)S2C

Secure Element
(embedded)

Smartcard OS
(e.g Java Card)

Transport
Interface (ISO,

USB)

RIL (Radio Interface Layer)

Fig. 15.3 Architecture for the integration of NFC into a mobile phone

NFC
IC

Secure
Element

Host
Controller

External
Reader

Interal
Mode of
Secure
Element

External
Mode of
Secure
Element

Peer-to-Peer
Mode

Fig. 15.4 SmartConnect architecture for NFC chips with an embedded secure element [13]

• Virtual: In virtual mode, the embedded secure element represents a virtual card and
the NFC chip is in card emulation mode. The secure element cannot be accessed
from an application running on the phone.

• Off: In this case the secure element is turned off, the communication with the
secure element is not possible at all and the NFC chip can be used in reader/writer
mode or for peer-to-peer (P2P) communication.

This is a special form of integrating both, NFC chip and an embedded secure
element into a mobile phone. Handset manufactures like Nokia (3220, 6131, 6212)
or Samsung (X700n, Nexus S, and Nexus Galaxy) use variants (one chip and two
chip solutions) of this architecture in their phones.

15 Near Field Communication 359

15.4 NFC and Linux

The Linux kernel is used in an increasing number of computer platforms and Android
is one of the most famous members of the Linux family. Besides Desktop and Server
environments, Linux is used in many embedded devices such as Internet routers
and connected consumer electronics. NFC has the potential to greatly enhance the
user experience for such devices and so far, several initiatives have been started to
integrate NFC into Linux environments:

• Native Android support: Google has integrated NXP’s FRI library with a kernel
driver for the PN544 chip. The whole SW architecture focuses on NXP NFC
hardware and is maintained by NXP and Google. The software supports all main
NFC features: reader/writer mode, secure element support for card emulation,
basic SWP support, and peer-to-peer mode.

• Open NFC for Android: This is similar to the native approach, but with the focus
on Inside Secure hardware. Android phone manufacturer would be responsible for
the integration of Open NFC on their own products [8].

• libnfc: libnfc implements NFC functionality completely in the user space and thus
depends on the existing drivers. Furthermore, the library is platform independent.
It supports reader/writer mode and peer-to-peer functionality [22].

All the above-mentioned initiatives are incomplete and either miss out particular
features or are focused on certain hardware. This adds justification to a new approach
which is starting to implement NFC support into the linux kernel: Linux NFC Sub-
system as of kernel 3.1 [14]. The NFC Linux Subsystem follows the principles of
Linux open source projects:

• Vendor independent (drivers are needed for new hardware)
• Portable Operating System Interface (POSIX) compliant
• Sockets and Netlink for data exchange and device control

The first included drivers are for devices based on NXP chips PN533 (via USB)
and PN544 (via I2C).

At the moment, the Linux Subsystem provides only limited functionality, but work
is ongoing to eventually support all NFC features, including full support for card
emulation. Currently, Nokia and OpenBossa [7] are working on this implementation
goal.

15.5 NFC Integration in Android

In the following section, the software architecture for the integration of the NFC
hardware architecture into an operating system will be described. This is shown for
Google’s Android operating system and the NXP NFC hardware platform (native
Android support). To have a sound understanding on what the NFC chips exactly do,
an overview of the components is given first.

360 G. Madlmayr et al.

A
nt

en
na

(C
LF

=
C

on
ta

ct
le

ss

F
ro

nt
en

d)

PN51x

80C51

BFL

SWP

S2C

PN53x

PN544

S
m

ar
tM

X

PN65

U
IC

C

HCI

FRI/HAL (Host Controller)

SWP: Single Wire Protocol
HAL: Hardware Abstraction Layer
BFL: Basic Function Library
HCI: Host Controller Interface
CLF: Contactless Frontend
S2C: SigIn-SigOut-Connection

Fig. 15.5 Different chip variants of NXP’s PN-family

15.5.1 NFC Chip

The Nexus Galaxy ships with a PN65 chip (see Fig. 15.5) which contains different
hardware and software components, such as [20]:

• A PN512 NFC transmission module for contactless communication at 13.56 MHz.
• A micro controller (80C51 core with 32 kbyte of ROM and 1 kbyte of RAM)

running the firmware for the PN512 transmission module. The combination of the
micro controller and the PN512 is also called PN531.

• An additional interface and software stack to use a SIM card as the secure element.
Therefore, the chip needs to implement the so-called SWP.

• A secure smart card chip. In this case, a P5CN072 Secure Dual Interface PKI Smart
Card Controller, SmartMX, which can be used as the embedded secure element.
This secure element is running a Java Card OS.

The chip used in this phone supports both an embedded secure element as well as
a secure element implemented within the SIM card. The software running on the host
is thus able to send commands to the NFC chip through the host controller interface
in order to user either the embedded or SIM card secure element to emulate a virtual
smart card.

From an integration point of view, it does not make any difference if the handset
manufacture uses the PN544 or the PN65 as both chips have the same interfaces and
use the same pin layout. The only difference is the SmartMX with is included in the
PN65 which cannot be directly contacted from outside the chip.

15 Near Field Communication 361

15.5.2 API for the NFC Chip

The NFC software stack running on the host of an Android OS-based device is
called the forum reference implementation (FRI) and is already part of Android
since Version 2.3 (Gingerbread). The stack is implemented in pure ANSI C and
communicates with the /dev/pn544 device of the Android variant of the Linux kernel.
On top of the native NFC software stack, there is a Java native interface (JNI) layer
that builds the bridge to the Android Java development environment for the Android
developer. Finally, the android system development kit (SDK) provides Java APIs
which can be used by any app running on the device in order to communicate with
the NFC chip in the phone. This API can be used for reader/writer mode, P2P mode,
detecting external fields, or targets as well as switching on and off the card emulation
mode (Fig. 15.6).

On the J2ME platform, there is already an API standardized for this purpose: Con-
tactless Communications API (JSR257). This JSR was released in 2006 and describes
the necessary interfaces in order to allow contactless transactions with a J2ME appli-
cation running on the handset. Thus, this API makes use of the read-er/writer mode
as well as the NFC peer-to-peer mode. The JSR257 already implements the near
field communication data exchange format (NDEF) and the basic record type defin-
itions (RTD) published so far by the NFC-Forum [12]. Unfortunately, the Android
implementation and the J2ME implementation are not compatible.

NfcAdapter

NfcService

NativeNfcService

Android NFC API, Java Layer
(part of Android since Version 2.3)

Header-Files (generated automatically with „javah“ during build)

Java Native Interfaces Classes (C++ Code)

JNI glue Layer (com_android_nfc.h + cpp Files)

to be found in Android GIT repo /packages/apps/NFC

javah

NXP FRI: native C Code + Header Files
(to be found in Android-GIT Repo /external/libnfc-nxp)

Linux Kernel with PN544 driver (/dev/pn544)

links
against

Android Core
Framework

(to be found in
Android GIT repo
/framework/base/
core/java/
android/nfc)

AIDL
Interfaces

Android Application using NFC

Fig. 15.6 Software stack for the integration of an NFC chip into a handset; by the example of the
Google Nexus S/Nexus Galaxy

362 G. Madlmayr et al.

15.5.3 API for the Secure Element Access

Additionally, an API is required to access the secure elements in the phone. Accessing
the embedded secure element within the PN65 can be done through the SmartConnect
architecture and the FRI. The embedded secure element first needs to be switched
into wired mode. Then a communication channel has to be established. After that
APDUs can be sent to the smart card chip to read and write information from the
secure memory.

Accessing the SIM card involves more software (SW) layers. The host controller
of an Android OS-based device cannot directly talk to the SIM card, but must use
functions from the radio baseband controller which finally connects to SIM Card.
Thus, the host controller needs to send commands to the radio interface layer (RIL)
which then talks to the SIM Card. As the RIL is a proprietary implementation and
full control of the UICC is not mandatory for Android, it is up to the phone man-
ufacturer to support the necessary RIL functions. The open source project secure
element evaluation kit (SEEK) from G&D is for example providing tutorials and an
open source stack for accessing the SIM card from an Android application. Phone
manufacturers can use this module and integrate it into their Android variant. Google
investigates the integration of full UICC access into the official Android code. So far
the official implementation is not available.

The GSM association (GSMA) as well as the SIM Alliance agreed on an API for
accessing the secure element as well as the security mechanisms using the UICC as
the secure element [5, 6, 21]. SEEK already supports the Version 1.01 of the SIM
Alliance’s API specification as well the authentcation using PKCS#15.

The JSR177 takes over this part on the J2ME platform. The intended goal of this
API was to provide the cryptographic functionality of a smart card chip to J2ME
applications. The use of a secure storage for Digital Rights Management (DRM)
certificates and digital signatures was also a use case during the definition. With the
introduction of NFC and the use of a smart card chip for tag emulation, this API
received a boost in importance. In 2007, a maintenance release was published [11]
(Fig. 15.7).

The Blackberry OS also comes with NFC functionality and therefore provides an
API for using contactless functionality. This new API is available since SDK 7 and
allows access to the secure element (which can be either embedded or in the UICC)
as well as the use of the reader/write and P2P mode.

15.5.4 Security

When looking at security of NFC different aspects are relevant. There are different
threat models and attack scenarios for NFC usecases [15]. The most valuable infor-
mation is stored in the secure element. Hence, this component is implemented as a
separate hardware chip in the mobile device. Access to the secure element is possible

15 Near Field Communication 363

NXP PN544 Hardware Radio Module + UICC

Linux Kernel

NXP Forum Reference Implementation (FRI) Radio Interface Layer (RIL)

Android NFC API
(part of Android since Version 2.3)

JSR 257 is the J2ME equivilant

G&D’s SmartCard API (SEEK)
(not part of Android 2.3, approved by SIM Alliance)

JSR 177 is the J2ME equivilant

NfcAdapter SEService

Android Application using NFC and access to the secure element/UICC

Fig. 15.7 APIs for accessing the different functionalities in an NFC-enabled handset

through the contactless interface of the NFC chip or through an application running
on the host controller.

Accessing data in the secure element usually requires the appropriate keys. The
most common authentication between an external reader and a secure element is
a three pass mutual authentication using symmetric keys. After the authentication,
a secure channel is established which allows the two parties to exchange data in a
secure way. Although the data stream is routed through the NFC chip, eavesdropping
information at this point is useless as the communication is encrypted.

Accessing data in the secure element from an application running on the device is
the big advantage of NFC in comparison to usual smart cards. The communication
is possible through SEEK (Android) or the JSR177 (J2ME). As these APIs provide
access to the secure element of the device special care must be taken in order to
restrict the access to those APIs.

All applications using these restricted APIs must be signed with an appropriate
certified key. This mechanism is called access condition policys (ACP) enforcement.
The ACP is part of the operating system and validates the signature of the application
running on the host. In this case, there are certificates (PKCS#15) on either the SIM
card or on the phone that are used to validate the signatures of applications that wish
to access the secure element.

As the ACP is part of the operating system and therefore implemented in software
it can be modified. Especially for systems which are available as open source (e.g.,
Android), the ACP is easy to disable . Nevertheless, it provides at least an additional
barrier to accessing and hacking the UICC from malware and the attacker/customer
would also have to root his device and flash a custom ROM into it.

For J2ME, there is an attack method which abuses the fact that there is no byte
code verification of an application installed on the device. Thus through modifications
in the byte code an application is able to access resources which normally are not
available (e.g., accessing the filesystem) [4].

364 G. Madlmayr et al.

15.6 NFC Tags

In order to allow each NFC device to read and decode the data from NFC Tags, the
NFC Forum has defined four different types of NFC Forum compliant tags as well
as a data format for storing NFC relevant data structures on such a tag.

15.6.1 Tag-Types

The NFC Forum has agreed on the following four tag types.

Type 1: Type 1 Tag is based on ISO/IEC 14443A. This tag type is read and re-write
capable. The memory of the tags can be write protected. Memory size can
be between 96 bytes and 2 kbytes. Communication Speed with the tag is
106 kbit/s. Example: Innovision Topaz

Type 2: Type 2 Tag is based on ISO/IEC 14443A. This tag type is read and re-write
capable. The memory of the tags can be write protected. Memory size can
be between 48 bytes and 2 kbytes. Communication Speed with the tag is
106 kbit/s. Example: NXP Mifare Ultralight, NXP Mifare Ultralight C

Type 3: Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4.
This tag type is pre-configured at manufacture to be either read and re-
writable, or read-only. Memory size can be up to 1 Mbyte. Communication
Speed with the tag is 212 kbit/s. Example: Sony Felica

Type 4: Type 4 is fully compatible with the ISO/IEC 14443 (A&B) standard series.
This tag type is pre-configured at manufacture to be either read and re-
writable, or read-only. Memory size can be up to 32 kbytes; For the com-
munication with tags APDUs according to ISO 7816-4 can be used. Com-
munication speed with the tag is 106 kbit/s. Example: NXP DESfire, NXP
SmartMX with JCOP.

The specifications for the tag types are available for free from the NFC-Forum
website [1]. Note that Mifare Classic is not an NFC forum compliant tag, although
reading and writing of the tag is supported by most of the NFC devices as they ship
with an NXP chip. Due to its reported security weaknesses, the NXP Mifare Classic
should be regarded as obsolete and not recommended for new systems [18].

15.6.2 NFC Data Exchange Format (NDEF)

The NFC forum has defined a structure for writing data to tags or exchanging it
between two NFC devices. The format is called NDEF. A so-called NDEF message
can contain multiple different NDEF records also referred to as record type definitions
(RTD). An NDEF message has to contain at least one RTD. An RTD is an information

15 Near Field Communication 365

set for a single application, as an RTD may only contain isolated information such
as text, a uniform resource indicator (URI), Multipurpose Internet Mail Extensions
(MIME) media type, a business card or pairing information for other technologies.
The different RTD specifications are available from the NFC Forum website. NDEF
is a binary data format with a TLV (tag/length/value) structure. The maximum size of
a standard NDEF record is 232-1 Bytes. As lots of NFC applications do not need so
much data, the NDEF specification defines a so-called short record with a maximum
length of 255 Bytes. Payloads of NDEF records can include nested NDEF messages
or chains of linked chunks.

An NDEF record includes three parameters to describe its payload [17]:

• The payload length: The payload length indicates the number of bytes in the
payload.

• The payload type: The NDEF payload type identifier indicates the type of the
payload. NDEF supports URIs, MIME media type constructs, and an NFC-specific
type format as type identifiers. By indicating the type of a payload, it is possible
to hand over the payload of the records to the appropriate application on the NFC
device.

• The payload identifier: The payload may contain an absolute or relative URI as
the payload identifier. The use of an identifier enables payloads that support URI
linking technologies to cross-reference other payloads.

The structure of an NDEF record is shown in Fig. 15.8. The header additionally
includes the following parameters in the first byte:

• Message begin (MB): Indicates whether this is the first NDEF records of the NDEF
message or not.

• Message end (ME): Indicates whether this is the last NDEF records of the NDEF
message or not.

• Chunk flag (CF): The chunk flag bit can be set to segment the payload into multiple
record with are serialized with one message.

Fig. 15.8 Structure of an
NDEF record

Type Length

MB TNFILSRCFME

Payload Length 3

Payload Length 0

Payload Length 1

Payload Length 2

ID Length

Type

ID

Payload

01234567

366 G. Madlmayr et al.

• Short record (SR): The short record bit is set to ‘1’ in case the record size is not
longer than 255 bytes.

• ID length (IL): This bit is set the record contains the payload identifier and payload
identifier length.

15.7 Conclusion

NFC integrates sophisticated RFID and smart card technology into mobile devices.
Although the industry has been pushing the technology through the NFC Forum
since 2003, it seems to be the integration of NFC into Google’s Android platform (in
2010) that has finally pushed the technology into the consumer market. Thus, NFC
is on the verge of becoming a ubiquitous technology like bluetooth and WiFi.

The combination of existing contactless applications such as credit card payment
and the upcoming NFC capabilities like P2P provides the basis for complete new
interaction models between the virtual and physical worlds.

References

1. Nfc-forum. http://www.nfc-forum.org/
2. Bishwajit, C., Juha, R.: Mobile Device Security Element. Mobey Forum, Satamaradankatu

3 B, 3rd floor 00020 Nordea, Helsinki/Finland (2005)
3. Dillinger, O., Langer, J., Madlmayr, G., Muehlberger, A.: Near field communication in embed-

ded systems. In: Proceedings of the Embedded World Conference 2006, vol. 01, p. 7 (2006)
4. Gowdiak, A.: Java 2 micro edition (j2me) security vulnerabilities. In: Proceedings of the Hack

in the Box Security Conference (2004)
5. GSM Association: GSMA NFC UICC Requirement Specification Version 2.0. GSMA London

Office, 1st Floor, Mid City Place, 71 High Holborn, London WC1V 6EA, United Kingdom,
2.0 edn. (2011). 2st Revision

6. GSM Association: NFC Handset APIs and Requirements v2.0. GSMA London Office, 1st
Floor, Mid City Place, 71 High Holborn, London WC1V 6EA, United Kingdom, 2.0 edn.
(2011). 2st Revision

7. openBossa Inc.: openbossa website. http://www.openbossa.org/ (2011)
8. InsideSecure: The Open NFC Project, (2011). http://www.open-nfc.org/
9. International Organization for Standardization: ISO/IEC 14443 Part 1–4: Proximity cards

(2003)
10. International Organization for Standardization: ISO/IEC 18092: Near Field Communication -

Interface and Protocol (NFCIP-1) (2004)
11. Java Community Process (SM) Program: Java Security and Trust Services API (SATSA). http://

java.sun.com/products/satsa/ (2004). JSR177 Final Release
12. Java Community Process (SM) Program: Java Contactless Communications API. http://jcp.

org/en/jsr/detail?id=257 (2006). JSR257 Final Release
13. Kunkat, H.: NFC und seine Pluspunkte. Electronic Wireless 01, 4–8 (2005)
14. Linux Kernel Organization Inc.: The Linux Kernel Archives, (2011). http://www.kernel.org/
15. Madlmayr, G., Langer, J., Schaffer, C., Scharinger, J.: Nfc devices: Security and privacy. In:

S. Jakoubi, S. Tjoa, E.R. Weippl (eds.) Proceedings of the 3rd International Conference on

http://www.nfc-forum.org/
http://www.openbossa.org/
http://www.open-nfc.org/
http://java.sun.com/products/satsa/
http://java.sun.com/products/satsa/
http://jcp.org/en/jsr/detail?id=257
http://jcp.org/en/jsr/detail?id=257
http://www.kernel.org/

15 Near Field Communication 367

Availability, Reliability and Security, vol. 03, p. 6. DEXA Society, IEEE Computer Society
(2008)

16. Michahelles, F., Thiesse, F., Schmidt, A., Williams, J.R.: Pervasive RFID and Near Field
Communication Technology. IEEE Pervasive Computing 6(3), 94–96, c3 (2007). doi:http://
doi.ieeecomputersociety.org/10.1109/MPRV.2007.64

17. NFC Forum: Nfc data exchange format (ndef). www.nfc-forum.org/resources/ (2007). Letzter
Zugriff am 10.3.2008

18. Nohl, K.: Cryptanalysis of crypto-1. http://www.cs. virginia.edu/ kn5f/Mifare.
Cryptanalysis.htm (2008). Letzter Zugriff am 12.12.2008

19. NXP: S2C Interface for NFC (2005). http://www.nxp.com
20. NXP: PN65 — Near Field Communication (NFC) SmartConnect Module in a single package

(2006). http://www.nxp.com
21. SIMalliance Limited: Open Mobile API specification V2.02. SIMalliance Limited, 29/30

Fitzroy Square, London W1T 6LQ, 2.02 edn. (2011). 2st Revision
22. Verdult, R., Conty, R.: libnfc.org - Public platform independent Near Field Communication

(NFC) library, (2011). http://www.libnfc.org/

http://doi.ieeecomputersociety.org/10.1109/MPRV.2007.64
http://doi.ieeecomputersociety.org/10.1109/MPRV.2007.64
http://www.cs.
http://www.nxp.com
http://www.nxp.com
http://www.libnfc.org/

Chapter 16
The BIOS and Rootkits

Graham Hili, Keith Mayes and Konstantinos Markantonakis

Abstract There exist many documents, guidelines and application-level programs
attempting to secure various operating systems (OS), but there is much less doc-
umentation and software for protecting lower levels subsystems such as the Basic
Input Output System (BIOS). Security professionals are well aware that the security
on any system is as strong as its weakest link as an attacker will seek to break into a
system with the least amount of effort. In this chapter we will focus on the BIOS, and
describe its main functions as well as the potential for attacks and countermeasures.
After discussing the BIOS and analysing how it might be compromised, we will go
on to consider rootkits. Installing a rootkit is often the next stage of an attack once
the BIOS has been compromised, allowing the attack to take full control of the target
system. We will discuss what rootkits actually are, how to identify that a system has
been infected with a rootkit, and how to try and prevent such attacks in the first place.
It should be note that the issues raised in this chapter have also provided justifica-
tion for specialist hardware security measures such as the Trusted Platform Module
(TPM) [1–3] described in Chap. 4.

16.1 The BIOS

The Basic Input/Output System, sometimes referred to as the “boot loader” or
“system loader”, has a very important function. This piece of software, which is

G. Hili (B) · K. Mayes · K. Markantonakis
Information Security Group, Smart Card Centre, Royal Holloway,
University of London, London, United Kingdom
e-mail: hili.graham@gmail.com

K. Mayes
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis
e-mail: k.markantonakis@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 369
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_16,
© Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-7915-4_4

370 G. Hili et al.

located within an integrated circuit embedded on the motherboard of personal com-
puters or servers, is the first piece of software that is executed when the system starts
up. The initial function of the BIOS is to perform a power-up test on hardware com-
ponents. After these tests have been performed, it will initialise the hardware to a
known state. The last step performed by the BIOS is to search and locate a valid OS
on a secondary storage device and boot it up.

16.1.1 The BIOS Subsystem Functionality

The BIOS performs various power-up tests on the system hardware. For examples,
the Random Access Memory (RAM) presence, capacity and parity of stored data
may be checked. The BIOS may also perform tests to identify that certain important
hardware components such as a keyboard are connected to the system. If the entire
set of tests is successful, the BIOS will move on to the next step and initialise all
hardware to a default level.

After the hardware has been properly checked and initialised, the BIOS will try
to locate the Operating System (OS). The BIOS needs to keep information about the
connected devices to find the OS. This information is stored on the BIOS integrated
circuit in a non-volatile memory, often called the BIOS RAM. If a valid OS is
located, it will be transferred into the main computer RAM and eventually booted
up. From this point forward the OS has full control of the system. The OS will
carry out further system customisation, identification and initialisation of connected
devices, such as network cards or smart card readers. At this stage, OS services and
third-party applications start running.

The BIOS typically provides a basic User Interface (UI). This UI is usually menu
driven, but on newer BIOS versions an enhanced windowed graphical user interface
(GUI) is provided. The UI/GUI application can be used to modify the BIOS settings.
Such settings can include, but are not limited to, general BIOS information, devices
that are eligible for booting the OS, and various BIOS parameters such as system
time and BIOS password.

In older systems, such as those using MS-DOS [4] the OS was loaded in real
mode. In real mode the OS and applications (See Fig. 16.1) could access any part
of the memory as there was no enforced memory protection and segregation. In this
mode BIOS fulfilled another very important function, being the only component
used to perform input and output operations to and from secondary storage. More
recent OS implementations are more secure as they work in protected mode. In this
mode the memory is segmented into different areas so that the memories used by
applications and OS are isolated from one another. Furthermore, in protected mode
the input and output to secondary storage is done via dedicated drivers and subsystem
components instead of the BIOS. Therefore on newer systems, the BIOS lie idle once
the OS has been booted, as indicated in Fig. 16.2.

The BIOS has continued to evolve over the past few years with the introduction of
virtual machines and faster network connectivity. Newer and more advanced BIOS

16 The BIOS and Rootkits 371

Fig. 16.1 BIOS in real mode

Fig. 16.2 BIOS not used in
newer systems after OS is
loaded

systems can be configured to load virtual machines instead of just one local OS. This
allows for different OS to coexist on the same computer.

On the newest systems the conventional BIOS is effectively replaced with a boot
process called Unified Extensible Firmware Interface BIOS (UEFI) [5–7], which
provides much more flexibility for virtual machine integration and hardware auto-
detection, as well as faster boot time. Despite this advance, the term BIOS is still
widely used in the computer industry to refer to the piece of software that boots up
a particular system or server.

16.2 Attacks on the BIOS Subsystem

There is no shortage of individuals and organisations that would attack all aspects of
IT systems so what actually gets attacked depends on the likely benefit to the attacker.
Therefore, the obvious question is why would an attacker attempt to compromise
the BIOS subsystem? The BIOS provides limited functionality and does not hold
important user data, however, it controls which OS is loaded on a particular system.
This is a very interesting and powerful target for an attacker, who may seek to load
an alternative and perhaps malicious OS instead of the original.

As previously mentioned, the BIOS have the start-up system configuration para-
meters stored in the BIOS non-volatile memory. One important parameter used by
the BIOS during boot time is the location of the original OS. Changing this parame-
ter alone would result in a different OS being loaded. An attacker could use such a

372 G. Hili et al.

strategy to gain complete control of a system, especially if the attacker has temporary
physical access to that system.

To protect the set of critical stored parameters, a traditional BIOS includes a
password protection mechanism, so the user is prompted for a password before the
BIOS loads the UI to edit the configuration parameters. Although the password
provides an added layer of security, it is far from being an adequate protection
mechanism and the following is a list of methods that have been used to bypass this
protection:

• Using a backdoor password.
• Cracking the password BIOS via software.
• Deleting the BIOS RAM via software.
• Deleting the BIOS RAM via hardware.

A backdoor password is usually a password that is built into the BIOS software
by the manufacturer of the system. This method of bypassing the password security
feature is used by a system administrator to gain control over the BIOS after a user
has forgot his or her password, or perhaps to recover a machine after a disgruntled
employee has changed the BIOS password before leaving a company. Developers
often provide such a method to recover the BIOS in user computers and the passwords
can usually be found in the BIOS or motherboard manuals. For more advanced
systems, such as servers, the administrator typically had to call the manufacturer and
give the machine ID or serial number in order to get the password.

Another method for legitimately recovering the BIOS password is to use a software
application that can either be downloaded from the BIOS or motherboard vendor
websites. The password has to match with the locally stored copy and in older BIOS
versions this was stored in clear text within the BIOS RAM. Newer BIOS versions
store only the hash of the password, which has added some security, but perhaps
not to the extent that one might think. The BIOS has limited memory for storing
information and so only part of the hash value may be used, which increases the
potential for collisions (multiple data sets that have the same hash value). Cracking
a password using a specialist software utility, typically takes anything from few
seconds to few minutes, depending on the processor being used. A search on the
Internet can find several utilities including software used on the Microsoft Windows
OS e.g. CMOSPWD [8] and !BIOS [9].

Some of the software used to crack passwords can also be used to clear the
BIOS configuration parameters completely, as is the case with CMOSPWD, which
alone could wreck the normal operation of the system. Unfortunately, a malicious
attacker will not think twice about clearing the BIOS configuration data of a target
machine. Another common way to clear the BIOS configuration is to remove the on-
board system battery. The BIOS parameters are stored in a small RAM and this only
represents a non-volatile memory while a continuous source of power is supplied.
When the system is switched off, the RAM relies on a small back-up battery and so
if this is removed or disconnected the stored configuration data will be lost. Note that
this strategy would not work if the BIOS non-volatile storage was based on EEPROM
or Flash memory.

16 The BIOS and Rootkits 373

The most popular means of clearing the BIOS configuration data is via software,
as this method is less invasive and means the attacker does not need to tamper with
the hardware or necessarily be physically close to the target machine. It is also worth
noting that certain motherboard vendors provide specific proprietary ways to clear
the BIOS data. For example, on older Toshiba laptop systems, connecting a special
dongle to the parallel port could clear the BIOS configuration parameters.

16.2.1 Countermeasures to BIOS Attacks

It is difficult to protect against physical BIOS attacks without a trusted hardware
module [10, 11] of some kind (see Sect. 3.6). If an attacker has physical access to
the system, he could probably clear the BIOS data in one way or another. The first
protection mechanism that is simple yet effective is to enclose sensitive systems
in special metal enclosures that discourage physical tampering. These enclosures
will make a physical attack more difficult and time consuming, but cannot prevent
a determined attacker from succeeding. Obviously drawbacks to such protection
include the added cost, space and weight requirements.

Another control that could be in place is to make the BIOS boot only from a
certain secondary storage device. This can eliminate the fact that compromised OS
can be loaded on a system. Unfortunately, this is a BIOS specific functionality and
not supported by all systems.

16.3 Rootkits

In this section we will begin to explore rootkits, although in these few pages we can
only skim over what has become a major topic in information security research, with
attack methods evolving all the time.

16.3.1 Introduction to Rootkits

The term rootkit is actually made up of two words; “root” and “kit”. The former has it
origins in UNIX-like OS, where logging in as root on gives the user full administrative
control over the system. This is useful for administration purposes, such as installing
a new system wide component or adding a new user account or user group. The term
“kit” is commonly used by system administrators to refer to a set of applications that
carry out a certain task or administrative process. Therefore, the term rootkit implies
a set of applications that potentially give a user unlimited control over a system.

A quick search on the Internet will find various rootkits, both in source code and
executable formats, for various OS. A reliable search for such code can be conducted

http://dx.doi.org/10.1007/978-1-4614-7915-4_3

374 G. Hili et al.

on the SANS website [12]. There are also rootkit-creation applications; a common
one called Mpak [13] (the site always changes due to the nature of the software). If
you look deeper, you will even find service companies offering to develop custom
rootkits for specific OS. In fact, there is a thriving black market on the Internet for
the sale of either full rootkits or zero day attacks that can be converted into rootkits.
The trading sites are difficult to find and access is usually only granted to people who
are formally introduced by some existing member of the “community”.

The choice of rootkit will depend on the system OS. For example, a famous rootkit
called t0rn [14] was targeted for Linux [15] platforms and effected common system
administration applications. A particular rootkit may have several components to
carry out its intended purpose. For example, a rootkit will need a process to install
the kit (installation phase), which will usually be an application layer process. After
a successful installation, the rootkit will delete any temporary files that where used
or downloaded in order to cover its tracks (clean-up phase). The installed rootkits
are usually complicated pieces of software with many interconnected sub compo-
nents, ranging from OS to application layer components, and are designed to remain
undetected. One such example of how a rootkit manipulates the OS or applications
to remain undetected is by modifying the application used to list the directories and
files on a system. When a user invokes the compromised application to list files and
directories, the listing will not show files related to the rootkit itself.

Some newer rootkits can also work at the kernel level. Attacking the kernel level
would ensure that the rootkit will have complete control over the OS. The rootkit
would then be able to load and delete OS modules as necessary. An example would
be to show the user that an antivirus module has been loaded in main memory, but
in fact the rootkit loaded a fake antivirus.

Rootkits are now beginning to target hypervisors [16–19]. A hypervisor is a virtual
OS manager, this is used to host several OS on a single system. This technique is
becoming very popular on high-end servers as it allows more resources of a system
to be used concurrently. Targeting the hypervisor is a very powerful use of a rootkit
and an attacker can then present a completely different system to a user than what is
actually going on in the background. Rootkit attacks on hypervisors is another major
research topic and a detailed discussion is beyond the scope of this chapter. In the
remainder of the chapter we will focus on rootkit infection of traditional systems.

16.4 Rootkit Infections

In this section, we will introduce some concepts related to the threat of rootkit
infection. There is a misconception by some users and administrators that because
they have an antivirus application and/or firewall they are secure from such threats.
Such applications will detect many attacks, but they are far from fool proof and can
still get “rooted” (rootkit infected).

For machines that are connect to the Internet, an attacker will likely prefer to mount
a remote attack rather than trying to physically compromise the machine. There are

16 The BIOS and Rootkits 375

Fig. 16.3 Example of a drive
by download attack

several strategies for remote attacks such as “drive by download”, “phishing”, or
even directly attacking the network. Here we will just cover some common attack
methods and the reader is referred to [20, 21] for more detailed coverage.

One common remote attack starts by modifying an existing and legitimate web-
server accessible via the Internet. For example assume that website http://ABCXYZ.
com is a very popular site. The attacker will first attack the webserver where this site
is hosted. Once this webserver is under the control of the attacker (gaining control
usually involves putting a rootkit on the server), he will insert some malicious scripts
that will run when a user lands on the target website.

When a user’s web browser accesses the familiar/legitimate site http://ABCXYZ.
com (Steps 1 and 2 in Fig. 16.3), the infected server will download a small payload
script (Steps 3 and 4) that will run on the user machine to download the full rootkit
to the user machine (Steps 5 and 6).

Once the rootkit is on the user machine it will start executing. Usually, the first
objective is for the rootkit to install itself in a safe area of the hard disc. After this is
achieved, the rootkit will start running and modifying the components available on
the local machine. Modifications include, but are but not limited to, removing the anti
virus protection, opening particular ports on the local machine and modifying the OS
so that the user will not notice such changes. Once the rootkit is fully installed, the
attacker will have full control of the machine and will usually also install spyware
software on the victim machine. The spyware will harvest the user’s sensitive and
private information, such as passwords, PINs and account details etc.

Another approach is to exploit vulnerabilities found on common applications that
are installed on target machines. One such attack was to exploit a vulnerability found
in Adobe Acrobat Reader that executed a harmful script contained in PDF docu-
ments [22]. The attacker had to craft a special portable document format file (PDF).
This file was meant to appear legitimate, for example it could be a document con-
taining information regarding popular topics, a game tutorial or a business document
such as in invoice. The document could be sent to the victim via an email message

http://ABCXYZ.com
http://ABCXYZ.com
http://ABCXYZ.com
http://ABCXYZ.com

376 G. Hili et al.

or perhaps downloaded by the user from a web server. When this document arrives
at the victim machine, the user will try to open it via Acrobat Reader. When opening
the document, the data will cause a buffer overflow and a malicious script will be
executed, resulting in the download of a rootkit to the target machine.

A rootkit is often equipped with multiple methods to infect a particular OS and will
try to exploit as many vulnerabilities as possible to increase its chances of success.
It is also possible to commission the development of custom rootkits for specific
purposes. Specialist rootkit developers are typically motivated by financial gain and
can not only develop a rootkit, but also provide support for their software! It is not
easy to find such companies on the Internet, but they can be found by looking into
forums and being introduced to them by someone they trust. Usually, these trusted
people are called “runners” in the hacker community lingo.

16.4.1 Detection of Rootkits

Detecting a rootkit on an infected machine is not an easy process[23–25]. This is
due to the fact that if the OS is compromised, it and the applications that depend on
it, will not behave as intended. Output from commonly used system administration
commands, will be altered. For example, when compiling the list of processes on
a compromised system, the rootkit will not report all running processes. Another
example would be when listing all opened ports; the compromised ports used to
control the rootkit will not be listed.

The big question is of course is how can we identify something that is designed to
hide its existence? There have been applications written to help system administrators
to identify rootkits, but there is no sure-fire solution for all scenarios. Here we will
describe some software tools that can be used and briefly mention how to identify a
rootkit infection via other methods such as behavioural analysis. Again, the methods
listed here are not the only ones that can be used, and the list is by no means exhaustive.

The most important thing to keep in mind if you suspect your OS has been infected
by a rootkit is not to trust your loaded OS at all. Having an OS on a CD-ROM is
very handy as it should be read-only and serves the purpose of providing a method
to load an OS that is fully under our control and trustworthy. A common live CD
(a full OS on a CD-ROM) used for such a purpose is BackTrack [26], which uses a
powerful Linux-based OS.

Searching the Internet for rootkit removers will yield a large number of results.
Some of these results are from well-known companies such as Sophos [27] and
Symantec, although there is no software that will discover all rootkits. This is due
to the fact that rootkit developers also know about these tools and they write their
rootkits to be as stealthy as possible. Another problem is that rootkit removers from
free or not well-known suppliers might themselves be malicious.

The most common way to check for rootkits on a system is by using integrity
checking methods, which in principle can be reliable and generate few false positives.
To carry out such a check we need to have a clean bootable and trusted OS, be it on

16 The BIOS and Rootkits 377

a USB stick or preferably on CD-ROM. We boot from this media to have a clear and
trusted OS before checking the integrity of files on the local hard disc. Of course
these days we are accustomed to loading OS and application patches on an almost
daily basis and so the difficulty of maintaining the latest reference integrity check
values should not be underestimated.

An integrity check will typically make use of a simple cryptographic hash algo-
rithm, a common hash algorithm that has been used for such a purpose is MD5 [28]
due fast performance even on large files. The MD5 result from a file can be cross
checked with a value that we know is correct and perhaps obtained via a trusted ref-
erence site. It is important to note that the MD5 algorithm is no longer recommended
for use and so there is potential for attackers to target the hash values that are meant
to help safeguard the system security.

Two common software applications used for integrity checking are called Tripwire
[29] and AIDE [30]. They are both widely used in corporate environments and
reasonably well regarded by information security experts. The tools compute the file
integrity checks for the target machine and then cross reference them with hashes
from clean systems or from the website of the OS vendor. However, rootkits might
also modify such software applications to redirect them to malicious sources of hash
results making them report that everything is OK even though the rootkit is installed
on the system.

The common integrity check method, although very easy to use and very reliable,
has its limitations. One of the limiting factors is that this method is not intended to be
used on the user’s data files. This is due to the fact that these types of files may change
very frequently from normal usage, whereas executable and application files should
only change when there is an upgrade. Therefore, the rootkit checking tools may
simply ignore the directories where users store their data, which can lead to another
problem. If the rootkit is hidden somewhere in a user data file, then even if we manage
to clean the system after reloading the OS, the users will start working again with
their infected files and the payload for the rootkit may be downloaded yet again.

Another method to detect rootkits is to dump the main memory of a system while
it is running the compromised OS. The rootkit will have to be loaded like any other
process when it infects an OS. The fact that it is not shown by normal OS functions
does not mean it is not there. If a memory dump is done, we can then analyse this
dump file in a debugger on a trusted system. If the memory dump can be captured
correctly then the method is effective and any rootkit should show up. The problem
with such a method is that it is very specialised, requires low-level knowledge of
the OS, and is time consuming. Analysing a memory dump is not at all trivial, as it
will contain thousands of lines in machine code. Modern OS implementations have
applications to capture dumps; for example, Windows has the sysdm.cpl application,
but again, this method should not be trusted if you suspect that the system has
been compromised. The best way is to use an external application and run it from
a CD-ROM. If you are trying to capture a Windows memory dump, a tool to use is
DebugDiag [31] from Microsoft. There exist other third party tools that can be found
by doing a search on the Internet, although caution is advisable when considering
tools from little known suppliers.

378 G. Hili et al.

A further method that can be used to detect the presence of rootkits is the behav-
ioural analysis of applications. Again, this is a specialised and very time-consuming
process involving analysis of running applications perhaps within a debug envi-
ronment. For example, if we are using a local standalone application, the network
transmissions could be a strong indication that the system has been compromised.
Unfortunately modern applications are increasingly complex with many OS API
calls and links to external servers, so rootkit analysis is difficult and can lead to a
large number of false positives. A free Windows debugger is called OllyDBG [32],
but many alternatives are available.

16.4.2 Removal of Rootkits

The removal of a rootkit from a system is not at all an easy process and it can consume
a significant amount of expert IT admin support. There is no shortage of tools, both
free and commercial; however, none of them work on all rootkits. A starting point
could be Sophos Anti-Rootkit [33], which has received some good reports and it is
free for personal use.

The complexity of today’s OS implementations and applications make it extremely
difficult to completely understand if a system call is legitimate or not. Many experts
in the field of rootkits believe that the most reliable solution to a rootkit compro-
mised systems is simply to re-install the OS. However, it should be appreciated that
reloading the OS alone does, not make the machine “clean” and it is necessary to
sanitise all the user data to prevent against re-infection.

Most documentation on how to clean rootkits recommends disconnecting the
system from the network, which might not always be feasible, especially if the
system is supporting mission critical activities that are unaffected by the rootkit.
Furthermore, disconnecting the system from the network might change how the
rootkit behaves. For example, once the rootkit cannot detect an active network it
may stop sending data to the network interface.

Of course the best way to defend against rootkits attacks is to try very hard
to keep them out in the first place, by observing best practices and policies for
IT/Information security. This may include making sure that the users of the system
do not run applications in super user mode, which gives them full control of the
system. While in normal user mode, a rootkit will not have full privileges to write to
the protected area of the OS.

Common Internet security software such as antivirus and firewall provides a
worthwhile protective barrier against rootkit installation and can remove some infec-
tions, but it cannot be expected to defend against zero day attacks. When using Inter-
net security software it is important to use all the features that might help to protect
the system against rootkits. For example, an email verification process could be used
on a mail server to try to identify problems and suspicious behaviours in incom-
ing mail messages. A secure proxy layer might also be used to identify potential
malicious websites.

16 The BIOS and Rootkits 379

It should not be overlooked that the user is an important part of the security
barrier. Education is important as an informed and motivated user is a security asset
whereas a naive and/or careless user is a liability. If users are on their guard when
opening suspicious emails from unknown senders and can refrain from clicking on
odd web links and email attachments then there should be fewer rootkit infections.
Furthermore, users can be encouraged to report any “odd” IT behaviour that might
help with rootkit detection. Unfortunately, due to the sophisticated and evolving
nature of the threat, user education will not eradicate the problem and even the best
experts are caught out from time to time.

16.5 Conclusion

In this chapter, we started by introducing the BIOS as a low-level software component
used to boot up computer systems. We emphasised the vital importance of the BIOS
and that if it is compromised it could undermine the security protection provided by
the OS and applications. We also looked at ways that the BIOS could be attacked
and how we might protect against this.

We introduced the subject of rootkits and how they are used (effectively) by
attackers to take control of a system, often as a follow on to a successful BIOS
attack. We considered example methods (that were not totally satisfactory) for the
detection, and removal of rootkits; not forgetting the fact that the user has a significant
role to play in the prevention of malware infection.

There has been a lot of past research into attacks and countermeasures exploiting
the BIOS and/or rootkits and this chapter provided just a brief introduction. However,
it is worth noting that much of the past work has been based on computers in the
conventional form of PCs and laptops; whereas the future may be more dominated by
mobile phones. We are already seeing great interest from legitimate users in rooting
their phones to bypass controls that they consider to be unwanted or unfair. Mobile
phones are increasingly complex, rushed to market and in general have a range of
OS types that are often based on proprietary and secretive solutions. The prospect
of mobile phones being targeted for more malicious and possibly fast spreading
BIOS/rootkit attacks seems quite probable. Fortunately, the situation is not hopeless
and the interested reader is referred to Chap. 4 which describes how specialised
trusted hardware could be used to address the rootkit problem.

References

1. Mitchell, Chris, ed. "Trusted computing." Institution of Electrical Engineers, 2005.
2. Pearson, Siani, and Boris Balacheff. Trusted computing platforms: TCPA technology in context.

Prentice Hall PTR, 2003.
3. Grawrock, David. "The Intel safer, computing initiative." ISBN-10976483262 (2005).

http://dx.doi.org/10.1007/978-1-4614-7915-4_4

380 G. Hili et al.

4. An Inside Look at MS-DOS, Tim Paterson, http://www.patersontech.com/Dos/Byte/
InsideDos.htm.

5. Intel Web Site, Defining the interface between the operating system and platform firmware,
http://www.intel.com/technology/efi/.

6. Hu, Yin, and Haoyong Lv. "Design of Trusted BIOS in UEFI Base on USBKEY." Intelligence
Science and Information Engineering (ISIE), 2011 International Conference on. IEEE, 2011.

7. ZHOU, Zhen-liu, et al. "Research and Implementation of Trusted BIOS Based on UEFI."
Computer Engineering 8 (2008): 062.

8. CmosPwd Website, http://www.cgsecurity.org/wiki/CmosPwd.
9. Bios320 download site, http://www.technibble.com/downloads/misc/BIOS320.exe.

10. Ghaleh, Hossein Rezaei, and Shahin Norouzi. "A new approach to protect the OS from off-
line attacks using the smart card." Emerging Security Information, Systems and Technologies,
2009. SECURWARE’09. Third International Conference on. IEEE, 2009.

11. Hendricks, James, and Leendert Van Doorn. "Secure bootstrap is not enough: Shoring up
the trusted computing base." Proceedings of the 11th workshop on ACM SIGOPS European
workshop. ACM, 2004.

12. System Administration, Networking, and Security Institute, http://www.sans.org/.
13. MPac Article, By Robert Lemos, SecurityFocus, http://www.theregister.co.uk/2007/07/23/

mpack_developer_interview/.
14. System Administration, Networking, and Security Institute, What is t0rn rootkit?, Paolo

Craviero, http://www.sans.org/security-resources/malwarefaq/t0rn_rootkit.php.
15. What Is Linux: Overview of the Linux Operating System, http://www.linux.com/learn/new-

user-guides/376-linux-is-everywhere-an-overview-of-the-linux-operating-system.
16. Rutkowska, Joanna, and Rafa Wojtczuk. "Preventing and detecting Xen hypervisor subver-

sions." Blackhat Briefings USA (2008).
17. Gavrilovska, Ada, et al. "High-performance hypervisor architectures: Virtualization in hpc

systems." Workshop on System-level Virtualization for HPC (HPCVirt). 2007.
18. Leinenbach, Dirk, and Thomas Santen. "Verifying the microsoft hyper-v hypervisor with vcc."

FM 2009: Formal Methods (2009): 806–809.
19. Microsoft, Introduction to the Hypervisor in Windows Server 2008, http://www.microsoft.

com/en-us/server-cloud/hyper-v-server/overview.aspx.
20. Stone-Gross, Brett, et al. "Your botnet is my botnet: analysis of a botnet takeover." Proceedings

of the 16th ACM conference on Computer and communications security. ACM, 2009.
21. Mavrommatis, Niels Provos Panayiotis, and Moheeb Abu Rajab Fabian Monrose. "All your

iframes point to us." (2008).
22. Adobe Systems, Adobe Security Bulletin, http://www.adobe.com/support/security/advisories/

apsa09-01.html.
23. Levine, John, Julian Grizzard, and Henry Owen. "A methodology to detect and character-

ize kernel level rootkit exploits involving redirection of the system call table." Information
Assurance Workshop, 2004. Proceedings. Second IEEE International. IEEE, 2004.

24. Kruegel, Christopher, William Robertson, and Giovanni Vigna. "Detecting kernel-level rootkits
through binary analysis." Computer Security Applications Conference, 2004. 20th Annual.
IEEE, 2004.

25. System Administration, Networking, and Security Institute, RootKit Investigation Procedures,
Sans Reading Room, http://www.sans.org/score/checklists/rootkits_investigation_procedures.
pdf.

26. BackTrack, Linux Security Distribution, Offensive Security, http://www.backtrack-linux.org/.
27. Sophos Ltd official website, http://www.sophos.com/.
28. A study of MD5 Attacks: Insight and Improvements, J. Black, M. Cochran, T. Highland, http://

www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf.
29. TripWire (Community Version) official website: http://www.tripwire.org/.
30. AIDE official website: http://aide.sourceforge.net/.
31. Microsoft, Debug Diagnostic Tools version 1.1, http://www.microsoft.com/download/en/

details.aspx?displaylang=en&id=24370.

http://www.patersontech.com/Dos/Byte/InsideDos.htm
http://www.patersontech.com/Dos/Byte/InsideDos.htm
http://www.intel.com/technology/efi/
http://www.cgsecurity.org/wiki/CmosPwd
http://www.technibble.com/downloads/misc/BIOS320.exe
http://www.sans.org/
http://www.theregister.co.uk/2007/07/23/mpack_developer_interview/
http://www.theregister.co.uk/2007/07/23/mpack_developer_interview/
http://www.sans.org/security-resources/malwarefaq/t0rn_rootkit.php
http://www.linux.com/learn/new-user-guides/376-linux-is-everywhere-an-overview-of-the-linux-operating-system
http://www.linux.com/learn/new-user-guides/376-linux-is-everywhere-an-overview-of-the-linux-operating-system
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/overview.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/overview.aspx
http://www.adobe.com/support/security/advisories/apsa09-01.html
http://www.adobe.com/support/security/advisories/apsa09-01.html
http://www.sans.org/score/checklists/rootkits_investigation_procedures.pdf
http://www.sans.org/score/checklists/rootkits_investigation_procedures.pdf
http://www.backtrack-linux.org/
http://www.sophos.com/
http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
http://www.tripwire.org/
http://aide.sourceforge.net/
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24370
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24370

16 The BIOS and Rootkits 381

32. OllyDbg Debugger, Official Website http://www.ollydbg.de/.
33. Sophos Anti root kit personal edition, http://www.sophos.com/en-us/products/free-tools/

sophos-anti-rootkit.aspx.

http://www.ollydbg.de/
http://www.sophos.com/en-us/products/free-tools/sophos-anti-rootkit.aspx
http://www.sophos.com/en-us/products/free-tools/sophos-anti-rootkit.aspx

Chapter 17
Hardware Security Modules

Stathis Mavrovouniotis and Mick Ganley

Abstract Hardware Security Modules/(HSMs), also known as Tamper Resistant
Security Modules (TRSMs), are devices dedicated to performing cryptographic func-
tions such as data encryption/decryption, certificate management and calculation of
specific values such as card verification values (CVVs) or Personal Identification
Numbers (PINs). What these devices offer is tamper response, the capability to detect
any attacks on their surface and securely delete the sensitive content stored in their
memory. Such devices are manufactured to meet specific criteria [e.g. Federal Infor-
mation Processing Standard (FIPS)] and must be appropriately managed throughout
their whole lifecycle. Together with encryption algorithms, cryptographic functions
and vendor provided functionalities, they host one or more cryptographic keys that
respond to automated or manual commands. Physical security and key management
are essential in order to protect the confidentiality and integrity of the keys and
these requirements are properly described in various standards. Due to the specific
functionality of HSMs, there have been many published attacks via the command
interface, which reinforces the need for adequate controls, both physical and logical,
around these devices.

17.1 Introduction

The first question that needs to be addressed is what is meant by a Hardware Security
Module (HSM)? In order for a device to be classified as an HSM, it must belong to

S. Mavrovouniotis (B)

20 Pandrosou Str, P. Faliro, 17564 Athens, Greece
e-mail: mavrovouniotis@gmail.com

M. Ganley
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, United Kingdom
e-mail: mick.ganley@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 383
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_17,
© Springer Science+Business Media New York 2014

384 S. Mavrovouniotis and M. Ganley

the family of Tamper Resistant Security Modules (TRSM) or Secure Cryptographic
Devices (SCD), which are physically secure devices and/or tamper responsive,
meaning that any attempt at penetration of the device will cause immediate era-
sure of all secret information stored in the memory of that device [1]. An HSM is any
hardware device, with some level of tamper-resistance,1 which is used for crypto-
graphic processing. Of course, this rather broad definition would include smart cards
and other devices that are discussed elsewhere in this book. It would also include,
for example, devices used at the network level to provide high-speed encryption,
devices for issuing/signing certificates for a Certification Authority (CA), devices
using for time stamping, etc. Another good example is that of retail Point of Sales
terminals (POS terminals) used for processing “Chip and PIN” transactions, which
have a security core that is frequently referred to as an HSM.

The HSM itself is either a peripheral device to the host computer or bus-connected.
Nowadays, most peripherally connected HSMs communicate with the host machine
via Ethernet or fibre cable, but in the past a variety of communication protocols
were usually supported; customers would choose the protocol that best suited the
required transaction throughput and available budget. As well as having a port to
allow communication with the host computer, HSMs usually support a variety of
other input/output methods, for example smart card reader, key pad, a dedicated
management port, printer port, a CD/DVD drive to allow software loading, or a
console cable in order to perform the HSM management or the key ceremonies. In
simple terms, therefore, an HSM has many of the characteristics of a PC, the main
differences being the limited functionality and the physical and logical security of
the device, which will be described later in the chapter.

17.2 HSM Usage

Clearly an HSM can be used in any situation where high-grade cryptographic security
is required. An HSM is most commonly a hardware device or a Payment card industry
(PCI) card that responds to commands sent to it by an application, via a vendor-
specified application programming interface (API). It is generally straightforward to
modify the API to meet customer requirements; this may be done by the customer or,
more usually, by the HSM vendor. HSM software/firmware is digitally signed, either
directly or indirectly, using a vendor private key and verified using the corresponding
public key installed in the HSM as part of the manufacturing process. Examples of the
use of HSMs include the protection of personal data (e.g. health records, databases,
etc), bulk encryption (e.g. satellite broadcasting) and trusted third-party services
(certificate authorities, signature authorities, etc).

A typical 3-tier architecture containing an HSM is depicted in 17.1.

1 The term “tamper resistant”, in this context includes “tamper-evident” and “tamper-detective”
that will often appear in this chapter and which can be used interchangeably, as well as “tamper
responsive” which refers to the reaction of the device in a tamper attack.

17 Hardware Security Modules 385

Fig. 17.1 A typical 3-tier
architecture including an
HSM

Web Server

App Server

DB Server

HSM

A message for the application server would be sent to HSM for cryptographic
processing, prior to being sent to the next tier of the process. In a case of encryption
of financial record, the data would be received by the web server and would then be
passed to the application server. The application server would then, with the aid of
the HSM, encrypt the data to pass on to the DataBase server to be stored.

In a case of a financial transaction, the application server would pass the financial
data to be verified to the HSM, which would calculate, on the fly, a cryptographic
value [(such as a Card Verification Value (CVV)] with the corresponding key Card
Verification Key (CVK) and compare it with the value provided in the transaction, in
order to approve or decline the transaction. As stated earlier, we will focus on HSMs
used in the financial sector. Such an example is their use in “Chip and PIN” payment
cards, such as a debit or credit cards. The two principal areas where HSMs are used
with such cards are:

• data preparation, card personalisation and Personal Identification Number (PIN)
mailer printing, as part of the issuing process;

• transaction processing.

In terms of card personalisation, a variety of secret or sensitive values need to be
generated and loaded onto the card; these include a number of cryptographic keys
(symmetric keys used during transaction processing and asymmetric keys, together
with certificates, used for authentication purposes), as well as cryptographic values,
such as a PIN and CVVs (CVV / CVV2 / iCVV). These values are typically generated
with the use of specific cryptographic keys PIN Verification Key (PVK) for PIN,
CVK for CVV values—we will call them functional keys in general) during the
data preparation process (the data generation creates the demographic data) and then
transmitted to the card personalisation system for loading onto the card. The PIN
itself may need to be transmitted to another organisation for printing on some form
of PIN mailer. The protection of such data, during generation, transmission and
loading/printing, is provided by HSMs.

During transaction processing, at least in the online case, an HSM is used by the
card issuer to ensure the integrity of transaction messages. In the particular case of
the card being used at an Automatic Teller Machine (ATM) to withdraw cash, the
PIN is encrypted by the ATM and sent to the issuer for verification, possibly via

386 S. Mavrovouniotis and M. Ganley

an acquiring organisation. The acquirer would use an HSM for PIN translation and
message integrity purposes.

Obviously, the overall handling of Chip and PIN cards is far more complicated
than the rather brief description provided above. Each part of the issuing process and
each part of the acquiring process requires specific keys for specific cryptographic
functions, and an HSM is present in each step of this process. We will discuss key
usage later in the chapter, but hopefully the above serves to illustrate HSM usage
within this single financial application. Continuing with the above example, it is clear
that HSMs must support a variety of cryptographic mechanisms, such as:

• cryptographic algorithms, such as DES (although no longer accepted), 3-DES,
AES, RSA, SHA-1, SHA-256;

• cryptographic key management, including key generation, key derivation, key
distribution, key storage, etc;

• data encryption, in particular PIN encryption techniques;
• data integrity, including Message Authentication Code (MAC) generation and

verification, digital signature generation and verification;
• CVV generation and verification;
• PIN generation and verification, PIN translation;
• chip cryptographic keys generation and transmission, cryptographic values gen-

eration and verification.

A typical HSM used solely in financial applications will support all of the above
functionality including many PIN generation/verification, PIN block formats, key
management techniques, MAC algorithms and encryption modes. The sheer number
of commands that are supported by an HSM, including many that are not actually used
by the application(s), raises a number of security concerns that we will investigate
later in this chapter.

Whilst it may be tempting simply to provide a range of “primitive” functions for
an HSM and allow application developers to build more complex functions from
these primitives, this would have an adverse effect on performance and could have
serious implications for the security of command processing. Security evaluation of
such a solution would also be difficult, as discussed later in this chapter. Instead,
an HSM API will typically include many rather complicated functions, often with
a range of options. For example, in the Chip and PIN application discussed earlier,
a single HSM command used by an acquirer could involve PIN translation, including a
format change, data decryption using one key and then re-encryption using a different
key (even possibly a different mode of encryption) and MAC verification followed
by the generation of a new MAC.

The typical format of a command for an HSM used in a payment transaction
would be:

• Command header

– Command code
– Command data

17 Hardware Security Modules 387

Table 17.1 Sample HSM command and responses messages

Command message (with comments)
Header Typically for use by the calling application
Command code Unique command identifier
Source PIN encryption key Encrypted using a local key
Destination PIN encryption key Encrypted using a local key
Source MAC key Encrypted using a local key
Destination MAC key Encrypted using a local key
Source PIN block format e.g. ISO 9564 format 0 [2]
Destination PIN block format May be the same as the source format
Source MAC mode e.g. ISO 9797 algorithm 3 [3]
Destination MAC mode May be the same as the source format
PIN block data (Optional) depends on PIN block formats
PIN block Encrypted with the source PIN key
Message data Transaction data
Source MAC MAC on message data, using source MAC key
Command trailer (Optional)
Response message (with comments)
Header Typically for use by the calling application
Response code Unique response identifier
Error code e.g. 00 = no errors
PIN block Encrypted with the destination PIN key
Destination MAC MAC on message data, using destination MAC key
Response trailer (Optional)

• Command trailer

The corresponding response message is:

• Response header

– Response code
– Error code
– Response data

• Response trailer

So, for example, an acquirer command that involves a PIN translation and a MAC
verification and new MAC generation is described in Table 17.1:

In the above command, errors may occur in a variety of ways, for example:

• key parity errors, if using DES or 3-DES (stored keys may have become corrupted);
• an invalid PIN block format or MAC mode;
• a PIN block error (e.g. format of the plaintext PIN block does not match the

specified format);
• MAC verification failure;
• command syntax error.

388 S. Mavrovouniotis and M. Ganley

In the event of an error being detected the HSM should return an appropriate error
code and continue to the next transaction. As already mentioned, a crucial function
of an HSM is the protection of secret data, in particular cryptographic keys and PINs.
In a following section, we consider HSM key management in more detail.

17.3 HSM Physical Security

The purpose of an HSM is to provide high-grade cryptographic security and a crucial
aspect of this security is the physical security of the device. It must be emphasised,
however, that this is only one aspect of HSM security—attacks via the HSM’s API
and procedural aspects of HSM security are equally important. Indeed, it could be
argued that an HSM’s physical security is the easy part; a physical attack is likely to
be detected quickly, whereas a logical or procedural attack might never be detected!

An HSM’s primary defence against physical attack is based around the concept
of a tamper-resistant core, which is an HSM sub-system that contains all the sen-
sitive components. As the most common approach, the security core will provide
battery-backed volatile memory for the storage of plaintext cryptographic keys (such
as the Host Master Key (HMK), discussed later) and all cryptographic processing
will be performed within the core system. The tamper-resistant features of the core
sub-system mean that should attack on the core be detected then the contents of
the secure memory will be immediately deleted (“zeroised”). Typically, HSM soft-
ware/firmware is stored in a combination of ROM and E2PROM and so will not
be deleted if the device is tampered. The ANSI X9.24-1 standard [4] mandates the
following:

An HSM must have features that resist successful tampering, which includes penetration
without zeroisation of security parameters, unauthorised modification of the HSM’s internal
operation or insertion of tapping mechanisms or non-intrusive eavesdropping methods to
determine, record or modify secret data; such features must include one or more of the
following:

• tamper-detection mechanisms, which must be active regardless of the HSM’s
power state;

• physical barriers to make successful tampering infeasible;
• sufficient resistance to tampering, so that successful tampering requires an extended

period of time (absence of an HSM from its authorised location should be noticed
before the tampered device is returned to resume cryptographic operations);

• the HSM’s construction is such that successful tampering will cause visible damage
to the device that is likely to be noticed after the device has been returned to
its authorised location but before cryptographic operations are resumed—i.e. a
tamper-evident feature.

Immaterial of the use of an HSM, because of its nature, the physical controls
around it are very strict. This would most commonly mean the HSM is located within
a high security area, probably locked inside a secure cabinet, under dual physical

17 Hardware Security Modules 389

controls (each cabinet door would require two controls—for example, two keys, a
key and a combination or a key and a biometric) or a similar and equally effective
approach. Consequently, an attacker would find it very difficult to remove an HSM
from its normal location without detection—unless he is an employee with physical
access and rights to do so anyway—this is why the dual control should be enforced
and actually the second person should not by default be entitled to be around the
specific cabinet. However, the same may not be true for other types of HSM (e.g. the
security core of a retail PIN pad). In general, therefore, the primary defence of an
HSM against physical attack is the tamper-detection circuitry, which must zeroise
secure memory as soon as an attack is detected.

Attacks that must be defended against include:

• drilling or otherwise penetrating the security core;
• low temperature attacks;
• attacks involving variations in voltage or current;
• power analysis or timing attacks (members of a class of attacks known as “side

channel” attacks).

Typical defences against such attacks include wrapping the entire security core in
some form of fine-grained electronic mesh and then encasing the core in epoxy resin.
An attacker attempting to penetrate the resin is likely to break the mesh. If the mesh
is broken or damaged in some way then the zeroisation circuitry is immediately
triggered.

Other HSM defences include the use of physical locks, micro-switches, light-
sensitive diodes, mercury tilt-switches, temperature sensors and sensors to detect
variations in voltage and current. Side channel attacks are unlikely to be successful
unless the attacker is able to penetrate the core (in which case a side channel attack
is probably unnecessary!) and in any case HSM vendors usually build in defences
against such attacks. Important note: Some of these controls can be enabled or dis-
abled, so it must be stressed that they can protect the HSM only when activated. An
HSM is considered as an HSM only if it has these controls activated!

Many early HSMs used by the financial industry had only rudimentary tamper-
detection mechanisms, often no more than a couple of micro-switches to detect
when an HSM’s casing was opened. This could be easily by-passed by an attacker
and so in such circumstances the physical and access security of the computer centre
environment became the principal defence against an attacker. Nowadays, HSM
security is usually evaluated against standard requirements and we now move on to
consider such evaluations.

17.4 HSM Security Evaluation and Approvals

Although there are a number of standards detailing security requirements for cryp-
tographic modules, for example ISO 13491 [5, 6], most HSMs used in the financial

390 S. Mavrovouniotis and M. Ganley

sector are evaluated against the requirements of the Federal Information Processing
Standard (FIPS) 140-2 [7]. Devices used in some government applications may also
need to be evaluated against the Common Criteria requirements (e.g. [8]).

More recently, a PCI standard for HSM security has been published (PCI-HSM,
see [9]) and we will briefly consider this standard at the end of this section. For the
time being, however, we will concentrate on FIPS 140-2. The FIPS 140-2 standard
(“Security Requirements for Cryptographic Modules”) specifies security require-
ments in 11 different areas and covers 4 different security levels, with level 1 being
the lowest and level 4 being the highest. Each level builds on the previous level. The
following table, copied from the FIPS 140-2 standard summarises the requirements
for the different levels:

The term Operational environment refers to the management of the software,
firmware and/or hardware components required for the module to operate. The abbre-
viations PP and EALx refer to the Common Criteria Protection Profile and Evaluation
Assurance Level x, respectively (see [8]).

There is little purpose to be served in a detailed discussion of FIPS 140-2 in this
chapter, but the following points are noted:

• devices approved to FIPS 140-2 level 1 or level 2 provide limited protection for
cryptographic keys and other sensitive data; such devices are not appropriate for
many financial applications; indeed, the example given in the standard of a device
that could achieve level 1 approval is a PC encryption board;

• HSMs used in financial applications are typically approved to level 3 or 4; note
however that for particularly sensitive applications the physical security require-
ments of level 3 may not be acceptable except in secure environments;

• there is a large “gap” between the level 3 and level 4 requirements, in particular
the requirement for a formal model for design assurance; some HSMs meet the
level 4 requirements in many areas and yet only receive approval to level 3;

• FIPS 140-2 evaluation does not consider side-channel attacks, such as power analy-
sis, nor does it include command manipulation attacks, based on the device’s API;
this latter topic has already been discussed briefly and will be considered further
later in this chapter. Level 3 is the approved level by all payment schemes security
requirements.

Level 4 approval is hard to achieve and currently (early 2012) very few products
have been approved to this level:

Those products with certificate #235 and lower were evaluated against the earlier
FIPS 140-1 standard. A complete list of all FIPS 140 approved products can be found
at [10]. The list gives an overall security level for each approved product, but also
includes those areas where the overall level has been exceeded.

As previously mentioned, the PCI-HSM standard [9] has recently appeared and
lists its security requirements in 4 categories (Tables 17.2 and 17.3):

• A: Physical security
• B: Logical Security
• C: Device Security during Manufacture

17 Hardware Security Modules 391

Ta
bl

e
17

.2
Su

m
m

ar
y

of
FI

PS
14

0-
2

se
cu

ri
ty

re
qu

ir
em

en
ts

L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

C
ry

pt
og

ra
ph

ic
m

od
ul

e
sp

ec
ifi

ca
tio

n
Sp

ec
ifi

ca
tio

n
of

cr
yp

to
gr

ap
hi

c
m

od
ul

e,
cr

yp
to

gr
ap

hi
c

bo
un

da
ry

,a
pp

ro
ve

d
al

go
ri

th
m

s
an

d
ap

pr
ov

ed
m

od
es

of
op

er
at

io
n;

de
sc

ri
pt

io
n

of
cr

yp
to

gr
ap

hi
c

m
od

ul
e,

in
cl

ud
in

g
al

lh
ar

dw
ar

e,
so

ft
w

ar
e

an
d

fir
m

w
ar

e
co

m
po

ne
nt

s;
st

at
em

en
to

f
m

od
ul

e
se

cu
ri

ty
po

lic
y

C
ry

pt
og

ra
ph

ic
m

od
ul

e
po

rt
s

an
d

in
te

rf
ac

es
R

eq
ui

re
d

an
d

op
tio

na
li

nt
er

fa
ce

s;
sp

ec
ifi

ca
tio

n
of

al
li

nt
er

fa
ce

s
an

d
of

al
li

np
ut

an
d

ou
tp

ut
pa

th
s

D
at

a
po

rt
s

fo
r

un
pr

ot
ec

te
d

cr
iti

ca
l

se
cu

ri
ty

pa
ra

m
et

er
s

lo
gi

ca
lly

or
ph

ys
ic

al
ly

se
pa

ra
te

d
fr

om
ot

he
r

da
ta

po
rt

s
R

ol
es

,s
er

vi
ce

s
an

d
au

th
en

tic
at

io
n

L
og

ic
al

se
pa

ra
tio

n
of

re
qu

ir
ed

an
d

op
tio

na
lr

ol
es

an
d

se
rv

ic
es

R
ol

e-
ba

se
d

or
id

en
tit

y-
ba

se
d

op
er

at
or

au
th

en
tic

at
io

n
Id

en
tit

y-
ba

se
d

op
er

at
or

au
th

en
tic

at
io

n

Fi
ni

te
st

at
e

m
od

el
Sp

ec
ifi

ca
tio

n
of

fin
ite

st
at

e
m

od
el

;r
eq

ui
re

d
st

at
es

an
d

op
tio

na
ls

ta
te

s;
st

at
e

tr
an

si
tio

n
di

ag
ra

m
an

d
sp

ec
ifi

ca
tio

n
of

st
at

e
tr

an
si

tio
ns

Ph
ys

ic
al

se
cu

ri
ty

Pr
od

uc
tio

n
gr

ad
e

eq
ui

pm
en

t
L

oc
ks

or
ta

m
pe

r-
ev

id
en

ce
Ta

m
pe

r
de

te
ct

io
n

an
d

re
sp

on
se

fo
r

co
ve

rs
an

d
do

or
s

Ta
m

pe
r

de
te

ct
io

n
an

d
re

sp
on

se
en

ve
lo

pe
;E

FP
or

E
FT

a

O
pe

ra
tio

na
le

nv
ir

on
m

en
t

Si
ng

le
op

er
at

or
;e

xe
cu

ta
bl

e
co

de
;a

pp
ro

ve
d

in
te

gr
ity

te
ch

ni
qu

e

R
ef

er
en

ce
d

PP
s

ev
al

ua
te

d
at

E
A

L
2

w
ith

sp
ec

ifi
ed

di
sc

re
tio

na
ry

ac
ce

ss
co

nt
ro

l
m

ec
ha

ni
sm

s
an

d
au

di
tin

g

R
ef

er
en

ce
d

PP
s

pl
us

tr
us

te
d

pa
th

ev
al

ua
te

d
at

E
A

L
3

pl
us

se
cu

ri
ty

po
lic

y
m

od
el

lin
g

R
ef

er
en

ce
d

PP
s

pl
us

tr
us

te
d

pa
th

ev
al

ua
te

d
at

E
A

L
4

C
ry

pt
og

ra
ph

ic
ke

y
m

an
ag

em
en

t
K

ey
m

an
ag

em
en

tm
ec

ha
ni

sm
s:

ra
nd

om
nu

m
be

r
an

d
ke

y
ge

ne
ra

tio
n,

ke
y

es
ta

bl
is

hm
en

t,
ke

y
di

st
ri

bu
tio

n,
ke

y
en

tr
y/

ou
tp

ut
,

ke
y

st
or

ag
e

an
d

ke
y

ze
ro

is
at

io
n

Se
cr

et
an

d
pr

iv
at

e
ke

ys
es

ta
bl

is
he

d
us

in
g

m
an

ua
lm

et
ho

ds
m

ay
be

en
te

re
d

or
ou

tp
ut

in
pl

ai
nt

ex
tf

or
m

Se
cr

et
an

d
pr

iv
at

e
ke

ys
es

ta
bl

is
he

d
us

in
g

m
an

ua
lm

et
ho

ds
m

ay
be

en
te

re
d

or
ou

tp
ut

en
cr

yp
te

d
or

w
ith

sp
lit

kn
ow

le
dg

e
pr

oc
ed

ur
es

E
M

I/
E

M
C

b
47

C
FR

FC
C

c
pa

rt
15

,s
ub

pa
rt

B
,

cl
as

s
A

(b
us

in
es

s
us

e)
ap

pl
ic

ab
le

FC
C

re
qu

ir
em

en
ts

(f
or

ra
di

o)

47
C

FR
FC

C
pa

rt
15

,s
ub

pa
rt

B
,

cl
as

s
B

(h
om

e
us

e)

392 S. Mavrovouniotis and M. Ganley

Ta
bl

e
17

.2
Su

m
m

ar
y

of
FI

PS
14

0-
2

se
cu

ri
ty

re
qu

ir
em

en
ts

L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

Se
lf

-t
es

ts
Po

w
er

-u
p

te
st

s:
cr

yp
to

gr
ap

hi
c

al
go

ri
th

m
te

st
s,

so
ft

w
ar

e/
fir

m
w

ar
e

in
te

gr
ity

te
st

s,
cr

iti
ca

lf
un

ct
io

n
te

st
s;

co
nd

iti
on

al
te

st
s

D
es

ig
n

as
su

ra
nc

e
C

on
fig

ur
at

io
n

m
an

ag
em

en
t

(C
M

);
se

cu
re

in
st

al
la

tio
n

an
d

ge
ne

ra
tio

n;
de

si
gn

an
d

po
lic

y
co

rr
es

po
nd

en
ce

;
gu

id
an

ce
do

cu
m

en
ts

C
M

sy
st

em
;s

ec
ur

e
di

st
ri

bu
tio

n;
fu

nc
tio

na
l

sp
ec

ifi
ca

tio
n

H
ig

h-
le

ve
l

la
ng

ua
ge

im
pl

em
en

ta
tio

n

Fo
rm

al
m

od
el

;
de

ta
ile

d
ex

pl
an

at
io

ns
(i

nf
or

m
al

pr
oo

fs
);

pr
ec

on
di

tio
ns

an
d

po
st

co
nd

iti
on

s

M
iti

ga
tio

n
of

ot
he

r
at

ta
ck

s
Sp

ec
ifi

ca
tio

n
of

m
iti

ga
tio

n
of

at
ta

ck
s

fo
r

w
hi

ch
no

te
st

ab
le

re
qu

ir
em

en
ts

ar
e

cu
rr

en
tly

av
ai

la
bl

e

a E
nv

ir
on

m
en

ta
lf

ai
lu

re
pr

ot
ec

tio
n

an
d

en
vi

ro
nm

en
ta

lf
ai

lu
re

te
st

in
g

b
C

od
e

of
Fe

de
ra

lR
eg

ul
at

io
ns

(C
FR

)
an

d
Fe

de
ra

lC
om

m
un

ic
at

io
n

C
om

m
is

si
on

(F
C

C
)

c E
le

ct
ro

m
ag

ne
tic

In
te

rf
er

en
ce

/E
le

ct
ro

m
ag

ne
tic

C
om

pa
tib

ili
ty

17 Hardware Security Modules 393

Table 17.3 Products approved to FIPS 140-2 overall level 4

Certificate # Vendor Product

1505 IBM IBM 4765 cryptographic coprocessor security module
1340, 956, 235,

146, 123,
112

AEP Networks advanced configurable cryptographic
environment (ACCE) various versions

1174, 930 Hewlett Packard Atalla cryptographic sub-system (ACS)
661, 524 IBM IBM eServer cryptographic coprocessor security module
541 AEP Networks AEP enterprise CM
118 IBM IBM eServer zSeries 900 CMOS cryptographic

coprocessor
116 IBM IBM 4758-002 PCI cryptographic coprocessor (miniboot

layers 0 and 1)
115 Thales Secure generic sub-system (SGSS)
40 IBM IBM S/390 CMOS cryptographic coprocessor
5 IBM IBM 4758 PCI Cryptographic coprocessor (miniboot

layers 0 and 1)

• D: Device Security between Manufacture and Initial Key Loading

Many of the requirements for physical security are derived from the level 3 FIPS
140-2 requirements, although requirement A2 includes some side-channel attacks,
such as power analysis. The logical requirements are generally more strict than the
corresponding FIPS 140-2 requirements, in particular the key management require-
ments. Of particular interest, however, is requirement B9, which states:

“The HSM’s functionality shall not be influenced by logical anomalies such as (but
not limited to) unexpected command sequences, unknown commands, commands in
a wrong device mode and supplying wrong parameters or data which could result in
the HSM outputting the clear-text PIN or other sensitive information.”

We will return to this topic later in this chapter.
Currently, only three products are listed on the PCI web site [11] as having been

approved against the PCI-HSM requirements, namely the, HP Atalla Ax160, Thales
payShield 9000 and Tokheim Crypto HSM+ devices.

17.5 HSM Management

Under normal operating conditions, HSMs are intended to work without any manual
intervention. However, there are many HSM activities that require some form of
human input, for example:

• HSM installation and initialisation, including generation of the highest level local
key (the HMK, if used);

• define users and corresponding authorisations;

394 S. Mavrovouniotis and M. Ganley

• generation, import/export and installation of other keys;
• configuration; for example, communication parameters and security policy;
• state changes, such as putting the HSM off-line to the host or requiring special

authorisation for sensitive functions (e.g. key loading);
• enabling and disabling of commands;
• enabling and disabling of PIN block formats;
• audit functions;
• diagnostics and problem solving;
• other tasks, such as those relating to real-time clock management (e.g. “set time”);
• firmware and other software (e.g. licence files) updates.

Such activities have in the past required direct access to the HSM, via a dedicated
management port, while some HSM vendors now offer a “remote” solution for man-
aging HSMs. This has many advantages in terms of personnel and time, especially
when trying to manage a large number of geographically dispersed HSMs. Remote
access requires additional security mechanisms to be in place, in particular mutual
authentication between operators and HSMs and confidentiality of transmitted data.

Regardless of the actual mechanism employed, all management activities must
be governed by detailed and rigorously enforced procedures. Security incidents are
far more likely to occur because of poor management than an attacker somehow
compromising a physically secure HSM located in a data centre.

An HSM’s security policy can be configured to cover items such as:

• number of HMK components—as described later in the chapter;
• minimum number of components for plaintext key entry;
• enabled commands and PIN block formats;
• denying the use of single-length DES;
• minimum PIN length—for the incoming PIN from a transaction;
• various key export/import options (e.g. ANSI X9.17 not permitted);
• types of keys that can be exported or imported;
• permitted number of key check value characters;
• permitting clear PINs to be input or output, for example when PIN translation is

performed;
• data encryption and decryption options;
• audit options;
• authorisation options.

The above configuration options are reasonably standard across most HSMs used for
the processing of financial transactions, but vendors will typically offer a range of
other configuration possibilities, for example:

• preventing a single-length DES key masquerading as a double- or triple-length
key;

• encrypted decimalisation tables, i.e. tables used to map hexadecimal characters to
decimal digits;

• weak PIN checking;

17 Hardware Security Modules 395

• minimum HMAC length for verification;
• specific restrictions on individual commands.

One area of concern for HSM management relates to the entry of plaintext key
components which are combined to form a secret value, such as a cryptographic key.
Such components are typically received from a partner organisation, are in paper
form and must be entered by (trusted) security officers into the HSM, inside which
they are combined to form the clear key, which is then output encrypted under the
HMK. The issue is the entry of the components, which is usually done via some form
of terminal, such as a PC, which leads to the possibility of the components being
captured during entry (e.g. via a key logger or some form of device connected to the
communication line to the HSM). In the past, such concerns have been mitigated by
strict procedural controls but nowadays the payment industry is demanding that key
components be entered via a more secure mechanism. For instance, requirement 13
of the PCI-PIN security requirements [1] states:

“The mechanisms used to load keys, such as terminals, external PIN pads, key
guns, or similar devices and methods are protected to prevent any type of monitoring
that could result in the unauthorized disclosure of any component.”

One possibility would be the use of a secure retail PIN Entry Device (PED),
approved against the PCI-PED security requirements [12]. HSM vendors are now
actively seeking ways to meet this particular requirement. We will discuss the key
management procedures in more detail in the next chapter.

17.6 Key Management

As mentioned before, different keys are used for different cryptographic processes
and the whole of the proper functioning of the cryptographic model relies on the pro-
tection and proper use of the keys, which is the main principle of cryptography, as
mentioned in all cryptography related publications. An HSM is essentially a crypto-
graphic engine and it serves no useful purpose if secret or private cryptographic keys
are exposed to an attacker during command processing. Hence, such keys must never
appear in plain form outside the secure confines of the HSM. There is one exception
to this rule, namely that if a key is required to appear in plain form outside the HSM
then it must be in the form of two or more components and strict procedures must be
followed to enforce the principles of dual control and split knowledge—ensure that
the components cannot exist in the hands of one individual at any point in time. PCI-
PIN Security Requirements [1] together with payment schemes standards, provide
specific requirements about how the safety of the participating keys is preserved,
during all phases of a key management lifecycle. In order to address this part of the
chapter, we split the keys into three main categories as below:

1. Storage keys: keys such as the HMK, which is used to encrypt other keys when
stored.

396 S. Mavrovouniotis and M. Ganley

2. Transport keys: keys that are used to encrypt keys during key exchange, e.g. a Key
Encrypting Key (KEK).

3. Functional keys: keys used to perform specific cryptographic functions and gen-
erate respective cryptographic values, such as PVKs, CVKs, chip authentication
keys, PIN block encryption keys, etc.

There are two principal methods for protecting keys used by an HSM:

Method 1. Store all keys inside the secure memory of the HSM; in this case, when
sending a command to the HSM a pointer to the key to be used must be
included in the command message. This technique has one significant
drawback, namely that if the HSM is tampered and loses its keys then all
the keys must be reloaded into the HSM. In addition, if multiple HSMs
are used (for reasons of throughput and/or redundancy) then all the keys
must be loaded into each HSM.

Method 2. A single key, which we have already termed a “HMK” is loaded into the
HSM and all other keys are encrypted with the HMK and stored in some
form of key database accessible to host applications; this database can
exist either on the database server of a 3-tier model, or as a file within a
mainframe system.

Of course, if the HSM loses its HMK then the key must be reloaded into the HSM,
but unlike method 1 this is the only key that needs to be reloaded. The drawback in
method 2 is that should the HMK be somehow compromised then all the other keys
in the system are potentially compromised as well. For this reason, strict procedures
must be in place to protect the HMK, including plaintext storage of the key in com-
ponent form under dual control and split knowledge. The HMK must be a “strong”
key, for example a triple-length 3-DES key or an AES-256 key. It goes without say-
ing that, regardless of the HSM key management technique, all keys that are stored
inside the HSM should be backed-up. Interestingly enough, there is no mandate for
backing up keys, only that if the keys are to be backed-up the same controls used for
the production keys should be also enforced on the backup keys (e.g. requirement
27 of the PCI-PIN standard [1]).

Remark on terminology: Method 2 is the most commonly used HSM key man-
agement technique. This means that in general:

• function specific keys must be transferred encrypted under a transport key, such
as a KEK;

• function specific keys and transport keys must be stored encrypted under a HMK,
summarised in the Table 17.4:

Protecting the confidentiality of keys is one issue that is addressed by the methods
described above, but it is equally important to protect the integrity of such keys. In
particular, it must not be possible for an attacker to modify a key or to use a key for
a purpose for which it is not intended. The requirements that “keys must be used
only for their sole intended purpose” and that “cryptographic keys ever present and
used for any function must be unique (except by chance) to that device” are basic

17 Hardware Security Modules 397

Table 17.4 Matrix of different types of keys and their storage/exchange

Function/key Storage keys Transport keys Functional keys

Storage In components Under HMK Under HMK
Exchange Not applicable In components Under KEK

principles for protecting the keys and are two very important requirements of PCI
standard for PIN Security requirements [1, requirements 19 and 20].

The key management is performed by a team of custodians, chosen and managed
in a way that the principles of dual control and split knowledge are met. The role
of custodian is crucial—they have access, although controlled, to all cryptographic
material, together with physical access to the HSMs. Thus, the custodians must
be appropriately trained, the key management procedures must be very well docu-
mented, and audit trails must exist and be maintained for every activity relating to key
management: key generation, import/export, key storage/retrieval, key back up, key
replacement or destruction and arguably most importantly key compromise. Once
these basic principles are met and the HSMs as well as the keys are appropriately
protected, the chances of key compromise are minimal.

If an attacker were to try and attack the keys themselves he would be looking for
the following [13]:

• production keys used in the test environment, allowing the technical support staff
to attack the key structure;

• PINs not protected by a secure PIN block, allowing “dictionary” attacks;
• failure to use approved cryptographic devices for PIN processing;
• cryptographic keys non-random, non-unique and never change;
• hard copy keys in the clear or in clear-text halves;
• few, if any, procedures documented; and,
• no audit trails or logs maintained.

We give two simple examples to illustrate the importance of these requirements:

Example 1 Suppose a double-length 3-DES key is encrypted using (some variant of)
the HMK in Electronic Codebook (ECB) mode—this is a very common encryption
mode and it is analysed in relevant bibliography. The attacker could replace the
second half of the encrypted key with the left half of the key, so that the modified key
is really a single-length DES key masquerading as a double-length key. The HSM
could be used with the modified key to generate sufficient data to allow a brute-force
attack on the left half of the key. This could then be used to expose the right half of the
original key. This attack can be prevented by a variety of techniques. For example,
the HSM could be configured to prevent such a key masquerade, by checking that all
parts of a double or triple-length key are different. We will discuss a more generic
technique shortly. �

Example 2 Suppose a key is designated as a PIN encryption key (so, in particular,
there is no HSM function that allows the key to be used to decrypt a PIN block).

398 S. Mavrovouniotis and M. Ganley

Header
(16 ASCII characters)

Optional Header Blocks (ASCII
characters, variable length

Encrypted Key Data
(variable length, ASCII encoded)

Key Block Authenticator
(8 ASCII characters)

Fig. 17.2 TR-31 key block

If the attacker can change the key usage so that it appears to the HSM as a (generic)
data encryption/decryption key then the key could be used to decrypt PIN blocks.
One method, whereby, it may be possible to change key usage is via a combination
of key export and key import. Until recently, HSM vendors used proprietary meth-
ods for local key management but were generally forced to use a “lowest common
denominator” approach for exchanging keys among HSMs of different vendors. This
approach usually involved exporting a key, encrypted under some higher-level KEK,
using the ANSI X9.17 standard [14, now withdrawn), and in most cases when the key
was encrypted under the KEK the original key usage could no longer be determined.
Consequently, the attacker could easily import the key back into the HSM system as
a different key type. HSM vendors have long recognised the importance of key usage
and have employed a variety of techniques to ensure that a key is only used for its
intended purpose. For example, different key types can be encrypted under different
variants of the HMK, in some cases different variants are also used for different key
parts. IBM HSMs use Control Vectors to define exactly how keys can be used by the
HSM. Whilst such techniques can provide some level of protection for keys, the two
examples above illustrate their limitations. �

The ANSI X9.24-1 standard [4] for retail financial key management mandates
that keys must, amongst other things:

• be protected against disclosure and misuse;

and that 3-DES keys must:

• exist in a “key bundle”;
• be secret and randomly or pseudo-randomly generated;
• have integrity, so that each key in the bundle cannot be altered in an unauthorised

manner;
• be used as specified by the particular mode;
• be considered as a fixed quantity, in that it is not possible to manipulate part of the

key, and that the key cannot be “unbundled”.

Although the standard relates primarily to 3-DES keys, clearly the same requirements
make sense for any secret or private key. The ANSI TR-31 standard [15] specifies
a technique for meeting the requirements of X9.24-1 via the use of “key blocks”.
Although TR-31 is specifically for key distribution, it has been adopted and refined
by some HSM vendors as a method of protecting local keys when encrypted under
the HMK (Fig. 17.2).

The Key Data is encrypted using a variant of the KEK used to protect the key
block, in Cipher Block Chaining (CBC) mode, with bytes 0–7 of the Header as the
Initial Vector (IV). The Key Block Authenticator is a MAC over the rest of the key

17 Hardware Security Modules 399

Table 17.5 TR-31 key block header

Byte(s) Field Comments

0 Version ID Value = A; current version
1–4 Key block length Total length of key block
5–6 Key usage e.g. key encryption, data encryption
7 Algorithm e.g. DES, 3-DES, AES
8 Mode of use e.g. encrypt only
9–10 Key version number e.g. version of key in the key block or used to

indicate that the key is a key component
11 Exportability e.g. no export permitted
12–13 Number of optional blocks Number of optional header blocks
14–15 Reserved for future use Value 00

block data, calculated using a different variant of the KEK. The key block Header
governs the use of the key contained within the key block and has the following
structure (Table 17.5):

As mentioned, the TR-31 key block mechanism has been adopted and refined by
some HSM vendors for local protection of keys using the HMK. Whilst the local
use of key blocks will greatly improve the security of HSMs against the type of “key
manipulation” attack described earlier, vendors are constantly battling against the
need to maintain backwards compatibility for legacy systems and so the benefits of
key blocks are nullified to a certain extent. There will still be potential problems
involving key manipulation until all HSM vendors have introduced key blocks and
legacy systems have been upgraded. This will be hopefully enforced in the next
versions of PCI standards and payment schemes security requirements.

In conclusion, if the keys are administered in a proper way, and the HSMs are
physically protected, an attacker, as the last resort, will focus on the attacks for
command manipulation, which are addressed in the next section.

17.7 Command Manipulation Attacks

The final topic discussed in this chapter is that of HSM attacks based on the HSM’s
API, which we will designate “command manipulation attacks”. This subject has
already been mentioned a number of times and it is worth recalling requirement B9 of
the PCI-HSM standard: “The HSM’s functionality shall not be influenced by logical
anomalies such as (but not limited to) unexpected command sequences, unknown
commands, commands in a wrong device mode and supplying wrong parameters or
data which could result in the HSM outputting the clear-text PIN or other sensitive
information.”

400 S. Mavrovouniotis and M. Ganley

Two rather simple attacks have already been outlined, namely the use of a single-
length DES key masquerading as a double-length key and changing key usage via a
combination of key export and key import.

In the latter example, a PIN encryption key had its use changed to that of a data
encryption/decryption key to allow PIN blocks to be decrypted. This same attack
could also be used to decrypt keys in some earlier models of HSMs. A recent paper
by Bortolozzo et al. [16] details a variant of this attack on a number of commercially
available devices that support the PKCS#11 API [17].

Before describing some more sophisticated command manipulation attacks, it is
worth asking the question as to whether such attacks are feasible in real-life. For
example, some assumptions about the attacker need to be made:

• the attacker has detailed knowledge of the HSM and its command structure;
• the attacker is in a position to send commands to a “live” HSM;
• the attacker has access to live data, including keys (encrypted under the HMK)

and transaction data;
• the attacker has knowledge of “standard” algorithms but does not generally have

knowledge of proprietary techniques used by the HSM;
• the attacker may have physical access to the HSM but is not in a position to carry

out sensitive management functions.

Financial institutions argue that these are not realistic assumptions and that physical
restrictions, procedural arrangements, host configuration settings and comprehensive
audit trails make impossible such types of attack. Whilst this may be true for some
organisations, there is absolutely no guarantee that all organisations using an HSM
have such stringent security regimes. It is probably the case that an “outsider” would
find it extremely difficult to attack the system via command manipulation, hence the
likely attacker would almost certainly be an “insider”, probably with a number of
system privileges.

The logging of HSM transactions in audit trails is potentially a major deterrent to
an attacker, but somebody with detailed system knowledge may be able to get round
that. If the attacker can directly access the HSM’s host port then there may be no
audit trail anyway. Finally, one problem with most audit trails is that they contain so
much information that nobody bothers to look at them, at least not until it is too late!

So, the above assumptions are probably “not unreasonable” and a number of
command manipulation attacks could perhaps be carried out by a privileged “insider”.
If the reader thinks this is an unduly pessimistic view of the security of HSM systems
in financial institutions then he or she should read the article “Why Cryptosystems
Fail” by Ross Anderson [18] or Anderson’s book “Security Engineering” [19]. Many
papers on command manipulation attacks have been written in recent years, with the
most comprehensive treatment being given in Jolyon Clulow’s MSc thesis [20]. One
of the techniques described in this thesis is that of finding a single-length DES key via
a “parallel search” technique, initially proposed in [21]. Here, by obtaining the same
plaintext encrypted under many different keys, an exhaustive search to compromise
one of the keys (but you cannot specify which one) can be speeded up significantly.
For example, if 2k single-length DES keys all encrypt the same block of data then

17 Hardware Security Modules 401

an exhaustive key search would expect to find one of the keys after an average of
255-k attempts. This technique forms the basis for a well-publicised attack [22] on
the IBM 4758 HSM, summarised below.

Remark 1 The IBM 4758 HSM has been approved to FIPS 140-1 level 4 (see
Table 17.3). The attack does not invalidate this approval, as the FIPS 140 security
requirements do not cover API attacks. Although the published attack was specifi-
cally against the IBM 4758 HSM, which has long since been withdrawn, the basic
idea is still applicable to possible attacks against modern devices. �

Step 1. Use the parallel search technique to obtain the value of a single-length key,
KDATA. This requires the use of the Encrypt function to generate the known
plaintext/ciphertext pairs.

Step 2. Use the parallel search technique again, to obtain the value of a double-
length KEK, which allows key export (KEKEXPORTER). The trick that
allows this step is to make both halves of the KEK the same. This time,
the corresponding plaintext/ciphertext pairs are obtained by exporting the
known key, KDATA.

Step 3. Export all keys using the known key KEKEXPORTER and decrypt them at
leisure.

One interesting aspect of this attack was the development of a DES search engine,
based on an FPGA at a cost of less than $1,000, to carry out the searches in steps 1
and 2 in, approximately, 24 h for each stage.

A number of papers have been written on attacks on the IBM 3624 PIN verification
technique (for example, [20, 23, 24]). This is a standard PIN generation algorithm
and is implemented in most HSMs used in card payment systems.

One major benefit of this technique is that there is no need for the card issuer
to maintain a database of (encrypted) PINs. Instead, a Customer PIN can always be
regenerated or verified from input values, namely Account Related Data (ARD, for
example the card’s Primary Account Number), a PVK, a Decimalisation Table and an
Offset. Specifically, the ARD, PVK and Decimalisation Tables are used to generate
a Derived PIN, which is then combined with the Offset, to form the Customer PIN.
This algorithm is described in Fig. 17.3. Note that the Derived PIN is a transitory
value only—it never appears outside the HSM. In general, HSMs that support this
PIN generation method have two specific commands:

• verify a Customer PIN;
• generate an Offset for a given Customer PIN.

The second command is to allow a customer to change his or her PIN. Note that the
Derived PIN does not change, so that if a customer changes a PIN then the Offset
must change to compensate.

One possible attack on this method (using the second command) is to run the
command whilst making successive changes to the Decimalisation Table. Whenever
the generated Offset is different from the correct value, the attacker can deduce one or
more digits of the Derived PIN, from which the corresponding digits of the Customer

402 S. Mavrovouniotis and M. Ganley

Customer PIN

Offset Add

Derived PIN

Ciphertext (16 hex)

Decimalisation Table Decimalise

Account Related Data (ARD)

PIN Verification Key(PVK) Encrypt

Fig. 17.3 IBM 3624 PIN generation algorithm

PIN can be calculated. This attack requires a maximum of 15 calls to the HSM.
A slightly less efficient attack, which uses only the PIN verify command, involves
modifying the Decimalisation Table, as above, to ascertain the PIN digits (but not
their positions), via returned error codes, and then repeat the process this time also
modifying the Offset. On average, this attack will reveal a Customer PIN in about
20 calls to the HSM.

In a third attack, it may be possible to compromise PINs for other customers
via the use of insecure PIN blocks, when just one Customer PIN is known. For
example, if the PIN for Customer X is known then the PIN for Customer Y could
be translated to a PIN block format that does not involve an account number (e.g.
ISO 9564, format 1) and then translated back to a format that involves the ARD of
Customer X. By using the command to generate an Offset the PIN for Customer Y
can be calculated. This attack requires only 3 calls to the HSM. The first two attacks
described above can be easily defeated by using an encrypted Decimalisation Table,
but this will not defend against the third attack.

One especially clever attack first described in Clulow’s thesis (not involving the
IBM 3624 algorithm) uses a combination of PIN verify and PIN translate commands
to compromise PINs; essentially PINs are “flip-flopped” between different PIN block
formats and error codes returned by the PIN verify command can be used to determine

17 Hardware Security Modules 403

the PIN digits. The details of the attack are rather complicated and are not given here,
but the interested reader should consult [20].

The above gives only a flavour of the types of command manipulation attacks that
are possible. The crucial point is that many of these attacks are quite ingenious and
use only “standard” HSM commands, so HSM vendors must be very careful when
trying to satisfy requirement B9 of the PCI-HSM standard [9].

What, then, can be done to mitigate such attacks? The following suggestions
would at least be a good starting point in addressing the problem:

Enabling and disabling functions: The golden rule should be that only those HSM
features that are actually required should be enabled; this includes HSM commands,
PIN block formats, PIN algorithms, etc; all other features should be disabled. In
particular, enabling the generation of plain text PINs is a major risk, and is the only
HSM related risk that is mentioned in a preventive measures paper, published by
USSS and FBI [25].

Security policy: The HSM’s security policy should be configured as “tightly” as
possible, subject to the requirements of applications calling the HSM.

Key blocks: HSM vendors should introduce key blocks as soon as possible and
customers should ensure that they are using this feature.

Formal methods of analysis: Some formal approaches to the analysis of HSM
command sets have been defined (for example, the previously mentioned paper by
Bortolozzo et al. [16]), although the results have been rather “patchy”. HSM vendors
should think about collaborating in the development of some sort of tool to enable
formal analysis.

Vigilance: HSM vendors and HSM users should monitor academic papers describ-
ing new command manipulation attacks and (if necessary) modify HSMs as soon as
possible to defend against such attacks. In addition, regular analysis of HSM com-
mand sets should be conducted by vendors, especially following major new releases
or significant customisations.

Procedures: HSM users must ensure that all HSM-relevant procedures are strictly
enforced, in particular that no unauthorised access to an HSM’s host port is possible
and that audit logs of HSM transactions are regularly monitored.

Whilst the above defences cannot guarantee immunity to command manipulation
attacks, they would certainly make the attacker’s life a lot more difficult.

17.8 Conclusions

In this chapter we have explained what we mean by an HSM, given some usages for
HSMs (focusing primarily on the financial sector) and described the key management
regime supported by many HSMs. Here we have also described two very simple
attacks on the HSM’s API that exploit weaknesses in the key management structure.

We then moved on to discuss the physical security of HSMs and HSM security
evaluation, in particular against the requirements of FIPS 140-2. One specific require-
ment of the PCI-HSM standard was also highlighted, essentially that an HSM API

404 S. Mavrovouniotis and M. Ganley

should be immune to command manipulation attacks. Following a short discussion
on HSM management, we moved back to the topic of API attacks and outlined a
variety of (known) attacks that demonstrate the difficulty of meeting the PCI-HSM
requirement. We concluded the discussion on command manipulation attacks by
suggesting a variety of defences that could be used to reduce the likelihood of such
attacks being successful.

References

1. “Payment card industry PIN Security Requirements”, version 1.0, September 2011.
2. ISO 9564–1, “Financial services - Personal Identification Number (PIN) management and

security - Part 1: Basic principles and requirements for PINs in card-based systems”, 2011.
3. ISO 9797–1, “Information technology - Security techniques - Message Authentication Codes

(MACs) - Part 1: Mechanisms using a block cipher”, 2011.
4. ANSI X9.24-1, “Retail Financial Services Symmetric Key management, Part 1: Using Sym-

metric Techniques”, 2009.
5. ISO 13491–1, “Banking - Secure cryptographic devices (retail), Part 1: Concepts, requirements

and evaluation methods”, 2007.
6. ISO 13491–2, “Banking - Secure cryptographic devices (retail), Part 2: Security compliance

checklists for devices used in financial transactions”, 2005.
7. FIPS 140–2, “Security Requirements for Cryptographic Modules”, 2001, with some updates

in December 2002.
8. “Common Criteria for Information Technology Security Evaluation”, see http://www.

commoncriteriaportal.org/.
9. “Payment card industry (PCI) Hardware Security Module (HSM) Security Requirements”,

version 1.0, April 2009.
10. http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm.
11. https://www.PCIsecuritystandards.org/approved_companies_providers/approved_pin_

transaction_security.php.
12. “Payment card industry (PCI): POS PIN Entry Device, Security Requirements”, version 2.1,

January 2009.
13. “PIN Security Program: Auditor’s Guide", version 2, January 2008, see http://usa.visa.com/

download/merchants/visa_pin_security_program_auditors_guide.pdf.
14. ANSI X9.17, “Financial institution key management (wholesale)”, 1985.
15. ANSI X9 TR-31, “Interoperable Secure Key Exchange Key Block Specification for Symmetric

Algorithms”, 2010.
16. M. Bartolozzo, R. Focardi, M. Centenaro & G. Steel, “Attacking and Fixing PKCS#11 Security

Tokens”, ACM Conference on Computer and Communications, Security, 2010, pp. 260–269.
17. PKCS#11, “Cryptographic Token Interface Standard”, version 2.20, RSA Laboratories, June

2004.
18. R. Anderson, “Why cryptosystems fail”, Proceedings of the 1993 ACM Conference in Com-

puter and Communications Security, pp. 215–227. See also, http://www.cl.cam.ac.uk/users/
rja14/wcf.html.

19. R. Anderson, “Security Engineering”, (2nd Edition), Wiley, 2008.
20. J. Clulow, “The Design and Analysis of Cryptographic Application Programming Interfaces

for Security Devices”, version 4.0, M.Sc. Thesis at University of Natal, Durban, South Africa,
dated 17 January 2003.

21. Y. Desmedt, F. Hoornaert & J.J. Quisquater, “Several Exhaustive Key Search Machines and
DES”, EUROCRYPT 86, 1986, pp 17–19.

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
https://www.PCIsecuritystandards.org/approved_companies_providers/approved_pin_transaction_security.php
https://www.PCIsecuritystandards.org/approved_companies_providers/approved_pin_transaction_security.php
http://usa.visa.com/download/merchants/visa_pin_security_program_auditors_guide.pdf
http://usa.visa.com/download/merchants/visa_pin_security_program_auditors_guide.pdf
http://www.cl.cam.ac.uk/users/rja14/wcf.html
http://www.cl.cam.ac.uk/users/rja14/wcf.html

17 Hardware Security Modules 405

22. R. Clayton & M. Bond, “Experience Using a Low-Cost FPGA Design to Crack DES Keys”,
presented at the CHES 2002 Workshop Francisco, 1st August. (http://www.cl.cam.ac.uk/rnc1/
descrack/DEScracker.pdf).

23. M. Bond & P. Zieliński, “Decimalisation Table Attacks for PIN Cracking”, University of
Cambridge Computer Laboratory, Technical Report 560, dated February 2003. (http://www.
cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf).

24. R. Anderson & M. Bond, “Protocol Analysis, Composability and Computation”; see http://
www.cl.cam.ac.uk/rja14/Papers/bond-anderson.pdf.

25. Joint USSS/FBI Advisory February 2009, see http://usa.visa.com/download/merchants/
20090212-usss_fbi_advisory.pdf.

http://www.cl.cam.ac.uk/rnc1/descrack/DEScracker.pdf
http://www.cl.cam.ac.uk/rnc1/descrack/DEScracker.pdf
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf
http://www.cl.cam.ac.uk/rja14/Papers/bond-anderson.pdf
http://www.cl.cam.ac.uk/rja14/Papers/bond-anderson.pdf
http://usa.visa.com/download/merchants/20090212-usss_fbi_advisory.pdf
http://usa.visa.com/download/merchants/20090212-usss_fbi_advisory.pdf

Chapter 18
Security Evaluation and Common Criteria

Tony Boswell

Abstract Security evaluation of embedded devices presents a number of challenges,
primarily because the relevant attacks for a particular device are determined by the
software application that ultimately runs on or uses services from the embedded
device, but the device is often designed and evaluated before details of this appli-
cation context are known. This chapter examines how the common criteria (CC)
security evaluation scheme can be used for embedded devices, and how current
directions in the evolution of CC provide a particular opportunity to deal effectively
with embedded device security.

18.1 Introduction

This chapter is concerned with security evaluation and certification of embedded
devices, and focuses mainly on use of the common criteria (CC) because of its
combination of generality (i.e. the ability to deal with a wide range of types of security
functionality and security products), and its history of application and evolution in
fields relevant to embedded devices. However, comparisons with two other evaluation
schemes applicable to some types of embedded device (FIPS 140 and Payment Card
Industry, PIN Transaction Security: PCI-PTS) are also given, demonstrating ways
in which CC has learnt from other schemes, and how other schemes have adopted
aspects of CC.

The sections below first discuss the basics of the embedded device security prob-
lem as they relate to security evaluation, then look at a basic model for evaluating
embedded devices and then introduce the CC, discussing examples of their appli-
cation to embedded devices. It is the continuing evolution of CC that is probably
of most importance for embedded devices, since it seems likely that they will need

T. Boswell (B)
SiVenture, Unit 6, Cordwallis Park, Clivemont Road, Maidenhead, Berkshire SL6 7BU, UK
e-mail: tony.boswell@siventure.com

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 407
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_18,
© Springer Science+Business Media New York 2014

408 T. Boswell

Fig. 18.1 Layering model for
embedded devices

specific interpretation in the same way as for smart cards, building on and extending
work that is already under way in some other areas (such as payment terminals).

For the purposes of this chapter, the basic model of an embedded device and its
use in a larger IT system is illustrated in Fig. 18.1.

The model simply envisages that an embedded device is destined to be built into
some larger user-facing device, referred to here as an application artefact (i.e. a
physical thing such as a media player or mobile phone handset). The artefact in turn
makes application software visible to a user, and enables them to interact with the
application. Ultimately, the user is focused on using one or more applications (rather
than the artefact, or the embedded device). The application software needs to be
delivered to the user in some way, and therefore depends on the application artefact
to do this. Similarly, the application artefact depends on the embedded device to
supply some of its functionality. The security dependencies that arise from this are
illustrated in Fig. 18.2.

This means that the security requirements of the embedded device must also
consider its future context of use. If certification of the embedded device is to be
really useful then the security evaluation must support the needs of the dependent
layers above it.

18.2 Security Evaluation Issues

Because in general an embedded device has its security evaluated independently
of the application context a fundamental difficulty arises: how are the evaluators to
take into account the way in which “the device provides environment” and resources
for an arbitrary unknown artefact? The same uncertainty exists for the evaluation
of the application artefact, which has a definite purpose [such as a secure signature
device, or an integrated circuit (IC) for playing media] but where the particular
application software and its precise assets, peer entities, protocols and surrounding
system security features will typically be unknown at the time of the artefact security
evaluation.

Of course a number of functions provided by the device will be obviously security-
related, and thus likely to be used to implement critical security mechanisms for the

18 Security Evaluation and Common Criteria 409

Fig. 18.2 Dependencies between layers in the embedded device model

application—these reflect the functional dependencies in Fig. 18.2. Cryptographic
functions, a random number generator and authentication functions in the hardware
would be typical examples of these. Not only must these functions be implemented
correctly, but they must also operate in a generally secure manner, reflecting the
“security reliance” dependencies in Fig. 18.2. The exact use of these functions by
the application artefact, and the critical dependencies of the application software
may be unknown when the embedded device is evaluated, and yet are clearly impor-
tant in determining the assurance level that the device can reach, and the scope of
functionality that should be analysed.

In evaluating the security of the embedded device, it is therefore necessary
to make, and write down, assumptions about how it is to be used. This makes
explicit the security assumption dependencies in Fig. 18.2, and also clarifies what the
“security reliance” means for a particular device—for example, it should clarify
whether the embedded device provides resistance to fault induction or whether it
is a responsibility of its environment (i.e. the artefact and application). Making the
assumptions visible is important both for use during the evaluation and to enable the
creator of an application artefact or application software to select a suitable embed-
ded device. Visibility means that an evaluator can judge not only whether the security

410 T. Boswell

functions are completely and correctly present in the embedded device, but can also
check whether sufficient guidance is provided with the device to enable the developer
of the next level product to produce a secure implementation using it.

As an example: communication of confidential data between the embedded device
and some other element of an application artefact (perhaps a separate memory chip)
may represent a vulnerability if the data travel over an unprotected bus. The bus
might therefore be protected in one (or indeed both) of two ways: the data might be
encrypted, or access to the bus might be prevented by putting tamper-resistant ele-
ments in the application artefact itself. If the encryption approach is adopted, then the
embedded device will need to include this functionality as part of its evaluated secu-
rity requirement (along with any associated authentication between it and the element
that it communicates with, and key management functions). If the tamper-resistance
approach is used then, when evaluating the embedded device, it is important to note
that it assumes such protection as part of its security context.

Certain security features in the device might be subject to enabling and disabling
(e.g. different countermeasures may be enabled in different power states or lifecycle
states) or selection between alternatives with different levels of security countermea-
sures, and might therefore require the artefact or application developer to understand
how to do this correctly. For example, some functions such as random number gener-
ation or data signing might be provided at different speeds according to their security
level (e.g. quality of randomness or resistance to fault-induction, respectively). The
evaluation also needs to check this information in the guidance documentation, once
again to ensure that it supports a secure implementation of a dependent product.

In many cases the embedded device will have a target type of application artefact
that is expected to use it (e.g. a media player or mobile phone handset), and a type
of application software that is expected to run on it. Thus, some design assumptions
can be made about the way in which it will be used, and about a range of iden-
tifiable security features related to these usages, generally having different levels
of security assurance. In some cases the context may be determined by third-party
specifications; an example of an emerging approach that provides a rich functionality
“medium assurance” environment is the trusted execution environment specified by
GlobalPlatform in [21–23]. In cases such as this, where a sufficiently definite and
ubiquitous set of security assumptions, requirements and functions can be defined
for an embedded device (or artefact), a common security evaluation requirement can
be defined—in CC this is known as a Protection Profile (PP): the characteristics of
a PP and some example PPs are discussed later.

In evaluation terms, combining separately evaluated products, or incorporating
one previously certified product into another evaluated product (as the application
artefact incorporates the embedded device) is referred to as composition. Histori-
cally, it has proven difficult to evaluate composite products in a satisfactory way, but
the most successful approach has been the application of CC to smart card products,
where there are typically two separate evaluations: first of the IC alone and then of
the IC together with its operating system and application software. The main diffi-
culty arises from the different states of knowledge of the evaluators of each separate
part: in general it is assumed that these separate evaluations will be performed by

18 Security Evaluation and Common Criteria 411

different evaluation laboratories, and possibly under different national schemes. This
is discussed later, in the section “CC Interpretation and Supporting Documents”.

An important part of the security evaluation is of course to determine the types of
attacks that must be considered for an embedded device. Of course the evaluation will
need to include logical checks of the correct implementation of the security functions
and their resistance to bypass (alternative methods of achieving an objective without
passing through the intended controls) or tampering attacks (e.g. buffer overflows, or
unexpected signal combinations), but the more difficult and time-consuming aspects
are often the attacks on the hardware. Once again it is necessary to look ahead to
the attacks on an application artefact, and from this the embedded device’s secu-
rity responsibilities can be deduced. In general there are three particular types of
hardware-related attack that need to be considered for the application artefact1:

• Physical attacks, based on accessing and/or modifying device features such as
printed circuit board (PCB) tracks or buses on ICs, sensors or filters, random
number generator or device test interfaces.2

• Side-channel attacks (e.g. using statistical analysis of variations in power or elec-
tromagnetic emanations to determine a cryptographic key).

• Fault-induction attacks (e.g. inducing processing faults by applying voltage or
frequency glitches, operating at an out-of-specification temperature, or by applying
a laser to critical components on an IC).3

This classification of attacks focuses on the type of underlying vulnerability that an
attacker searches for. However, there are several other ways of characterising types
of attacks, and one more is noted here, because it focuses on the need to make use
of the attacked device when exploiting a vulnerability:

• Destructive attacks: these render the embedded device (or application artefact) non-
functional as a side effect of the attack. However, the attacker gains knowledge
that typically enables construction of a fake, cloned or simulated device. These
attacks may also be used to gather information about a target device in order to
carry out one of the other types of attacks below.

• Disfiguring attacks: these damage the appearance of the device (or application
artefact) so that there is no reasonable possibility of making use of the original
artefact in any role where it is inspected: the visible changes would arouse sus-
picion. Such attacks may be of use to an attacker if the artefact does not need
to be inspected when it is used, or perhaps where it is not inspected closely
(e.g. a contactless application might allow the disfigured artefact to be concealed
but still held close enough to an interface device to carry out a transaction while a
fake artefact is presented and seems to the payment attendant to be in use).

1 In some cases, different types of attacks may be combined into a more complex attack scenario
(e.g. some attacks may be used to gather information or otherwise enable a further attack).
2 For further discussion of physical attacks (and indeed other attack examples in the context of CC
and smart cards), see [12].
3 See Chap. 9 of [5], or [12] for discussion of fault-induction attacks.

412 T. Boswell

• Non-invasive attacks: these leave the device (or application artefact) undamaged
and essentially the same as before the attack (at least in physical terms: it may
have been changed logically).

This exploitation-oriented view also draws attention to the number and types of
samples of the artefact needed to prepare and carry out an attack. Some attacks may
need only a physical sample of the artefact (e.g. to locate target components in relation
to the tamper-resistance mechanisms), while others may need a functional device.
There may be a further distinction between a functional device that holds operational
cryptographic keys (and therefore can carry out real transactions), and one that holds
expired or test keys: in some application contexts (e.g. payment terminals), it may
be much harder for an attacker to obtain samples with operational keys.

The developer’s main challenge is of course to find an appropriate balance between
the cost of the device and the security that it provides, and this cost will include the
financial cost to evaluate it, and the amount of time taken to complete a satisfactory
evaluation. A simple partitioning of the security requirements between the compo-
nents of an application system will tend to make evaluations shorter and cheaper,
because the attack paths to be considered are more straightforward and can there-
fore be attempted (and hopefully dismissed as infeasible) relatively quickly. In the
earlier example where the embedded device was exchanging confidential data with
another component over a bus, an appropriate encryption method (using well-tried
techniques and algorithms) is likely to be quicker and cheaper to evaluate than a
complex tamper-resistance mechanism (which must protect both ends of the com-
munication). A tamper-resistance technique will generally require a number of exper-
imental attempts to defeat the mechanism, perhaps requiring relatively sophisticated
test tools and a number of attempts to improve the practical aspects of attack tech-
nique. Recognising a good encryption technique that would render attacks on the
bus futile will usually be quicker than the tamper-resistance experiments.

The embedded device may have further security considerations if it makes use
of third-party intellectual property (IP), or reuses elements of another device from
the developer. This may mean that there is a reusable “module” for which a suitable
evaluation result has already been obtained (although of course this will be subject
to some assumptions about how the reusable part is used, which must be checked
as part of an evaluation). However, it can also mean that the device is vulnerable to
reuse of attack methods from another device (cf. the attack described in [11]). Where
a high security device reuses protection features present in a lower security device,
this attack reuse becomes especially important.

18.2.1 The Security Evaluation Model

Based on the discussion above, the basic model of security evaluation of an embed-
ded device used here reflects the three layers in Fig. 18.2: embedded device, appli-
cation artefact and application software. It assumes three corresponding evaluations.

18 Security Evaluation and Common Criteria 413

First the embedded device is evaluated and certified against its low-level security
requirements, resulting in a certificate and a “composition interface” which describes
the security information needed to develop and evaluate the next level product and
to meet the assumptions of the device evaluation. Next the application artefact is
evaluated against its own security requirements, demonstrating that the embedded
device correctly meets the relevant security requirements of the artefact, and that the
artefact satisfies the assumptions placed on it by the embedded device. This results
in a certificate and composition interface for the artefact. Finally the application soft-
ware is evaluated, adding further security requirements, showing that the obligations
placed on it by the artefact have been met, and resulting in the top level security
certification.

In reality, the same evaluation method may not always be applied at each layer.
However, the general principle that some formal evidence-based process is required
to check that each lower layer object fulfils security requirements of the higher layer,
and that the higher layer object satisfies the assumptions of its lower layer component,
seems necessary. This model is reflected in a number of different real-world schemes
(including FIPS 140 and PCI PTS (PIN Transaction Security), as discussed below).

18.2.2 Structure and Use of the Common Criteria

The CC provide a way to perform independent, standardised, internationally recog-
nised security evaluations and certifications of software and hardware products. CC
is fully described in [1–3] (and, in terms of the evaluators” tasks, in [4]).4 Further
discussion of the evaluation process can be found in [5].

The essence of a CC evaluation is that a product is submitted as a target of
evaluation (TOE) by its developer to an evaluation laboratory that has been accredited
by the relevant national certification scheme [an evaluation laboratory is also known
as an information technology Security Evaluation Facility (ITSEF) or CommerciaL
Evaluation Facility (CLEF)], along with a set of evaluation deliverables including the
security requirements set out in a specific CC form known as a security target (ST).
The requirements for these evaluation deliverables are determined by the assurance
level claimed in the ST, and are defined in part 3 of the CC. The evaluation is then
carried out by the evaluation lab with reference to the three parts of the CC ([1–3]),
using the evaluation methodology defined in the common evaluation methodology
(CEM) [4].5 Once it has completed evaluation and achieved certification, a product
is listed on the international CC website at [26].

4 The three parts of CC have also been adopted as international standard ISO 15408, and the
common evaluation methodology (CEM) as ISO 18045.
5 For description of a more specific “vulnerability-centric” approach to evaluation, involving
a more specific model of interaction with the developer, see the UK scheme document SIN 092
“Vulnerability-centric Evaluation: Improving Evaluations by Putting Vulnerabilities First” at http://
www.cesg.gov.uk/servicecatalogue/CCITSEC/Pages/Formal-Documentation.aspx.

http://www.cesg.gov.uk/servicecatalogue/CCITSEC/Pages/Formal-Documentation.aspx.
http://www.cesg.gov.uk/servicecatalogue/CCITSEC/Pages/Formal-Documentation.aspx.

414 T. Boswell

A CC certificate applies to a specific version of a product, and therefore when the
developer changes the product the resulting version is no longer certified. Depending
on the nature of the changes involved, the developer may be able to undertake a
process known as “maintenance” in which the changes are described in the form
of an impact analysis, and (subject to certain conditions) the certification may be
updated with a Maintenance Report (this is then attached to the certified product
entry on the CC website). If the changes are more significant [e.g. if they directly
affect the implementation of the security functional requirements (SFRs)], then a re-
evaluation is required; however, even in this case the evaluators will generally reuse
as much of the evidence and conclusions from the previous evaluation as possible.
More details of the CC maintenance process are given in [15].

Common criteria is implemented as a national scheme in each country that chooses
to use it.6 To avoid the need to separately evaluate and certify a product in each
country, however, most countries that use CC are signatories to the common criteria
recognition arrangement (CCRA).7 The CCRA provides for two types of signa-
tories: certificate authorising participants, who both produce their own certificates
(via a national certification body: CB) and recognise those produced by other cer-
tificate authorising participants, and certificate consuming participants, who do not
issue their own certificates but undertake to recognise those issued by the certificate
authorising participants. It is important to note that international recognition under
the CCRA only applies up to an assurance level of EAL4 (as defined in CC part 3 [3]).

At the time of writing, there are 26 countries in the CCRA, of which 16 are
certificate authorising. These countries provide representatives to the bodies that
manage and maintain the CC (e.g. producing new versions of CC and CEM, and
issuing supporting guidance documents)—primarily the common criteria manage-
ment committee (CCMC) and common criteria development board (CCDB).

Within Europe, there is an additional grouping of CBs under the SOGIS mutual
recognition agreement [25]. Members of this group recognise certificates issued by
other certificate authorising SOGIS members at assurance levels of up to EAL7.

The main source of reference for CC (including the criteria themselves, certified
products, the CCRA, and the international evaluation infrastructure) is the interna-
tional website at [26].

6 In fact there are a number of other applications of CC below the national level, with Certification
Bodies that are not national government organisations. However, since these organisations cannot
produce internationally recognised certificates as described later, they are ignored for the purposes
of this chapter.
7 Both CCRA and senior officials group information system security (SOGIS) discussed later allow
a participant not to recognise a certificate from another member where national security issues are
involved, or where the specific case would conflict with other national law.

18 Security Evaluation and Common Criteria 415

18.2.3 Structure of Common Criteria

The CC consists of three parts:

• Part 1. Introduction and General Model [1]: this part defines the terminology used
in CC, the basic actors, principles and objects involved, and how the criteria are
applied to achieve the evaluation of a product. It includes the requirements for
writing ST and Protection Profiles.

• Part 2. Security functional components [2]: this part is effectively a catalogue
of templates for specifying common security functionality, and for identifying
potential dependencies between security functions (e.g. between cryptographic
operations and management of the keys that they use, or between auditing and
identification of users instigating a recorded action). It is the source of most of the
SFRs included in a product’s ST.

• Part 3. Security assurance components [3]: this part is a catalogue of assurance
requirements, and defined combinations of these requirements that are identified
as evaluation assurance levels (EALs). Assurance levels and their use in PPs are
discussed in more detail below.

In addition to the criteria themselves, there is also a definition of the activities required
to evaluate some of the assurance requirements in CC part 3; this is found in the
Common Evaluation Methodology (CEM) [4]. The CEM is followed by evaluators,
and represents the common definition of evaluation activities that underlie the CCRA.

18.2.3.1 Protection Profiles and Security Targets

In a CC evaluation, the baseline document defining the scope of the evaluation and
the assurance level is the ST. The scope of the evaluation includes identification of
the evaluated version(s) of the product, the configurations of the product that are
considered, and the security functionality covered by the evaluation. The detailed
content of an ST is described in Annex A of CC part 1 and includes the SFRs that
the product implements. Usually SFRs are drawn from CC part 2, but CC part 1 also
describes how to define new extended SFRs.

The ST is a critical document for the evaluators, because it defines the scope
of the evaluation work that needs to be done, but it is also a critical document for
potential users of the TOE, and for developers who intend to build products that
rely on the TOE. In the context of embedded devices, it is therefore important that
the developer of an application artefact that will use a certain embedded device
examines the ST for that device to confirm that the functions needed by the artefact
have been included in the scope of the embedded device evaluation. Similarly, the
developer of application software to run on the application artefact should confirm
that the application artefact ST includes the necessary supporting functions for the
application software (and that the evaluation scope includes the configuration(s) of
the artefact that the application software needs). As a particular example, at both

416 T. Boswell

of these levels the specific cryptographic functions included in the evaluation scope
will be important to the user of an evaluated product.

A PP is essentially a product-independent ST: it includes all of the content of an
ST except for the TOE Summary Specification. A PP can be used to set requirements
for a type of TOE, and therefore to achieve a degree of standardisation of the security
expectations for that type of device. The intention of a PP is that STs will be written
to claim compliance with it (the process for evaluating STs and PPs, including com-
pliance of an ST to a PP, is included in the CEM [4]), and that this thereby allows
comparison of similar evaluated products (because they are all evaluated against a
common base requirement), and assists in building composite TOEs.

18.2.4 Assurance Requirements and Assurance Levels

CC includes the definition of seven standard hierarchic assurance levels in part 3 [3],
with the lowest being EAL1 and the highest EAL7. Each assurance level is defined
in terms of an increasingly demanding and wide-ranging set of assurance require-
ments that define evidence and evaluation activities in the areas of: design informa-
tion (ADV), developer testing (ATE), guidance documentation (AGD), development
lifecycle and delivery (ALC), and vulnerability analysis (AVA).

However, an ST does not have to adhere rigidly to the pre-defined assurance levels:
it may also take a basic assurance level and augment it by adding requirements from
a higher assurance level, or requirements that are not included in any assurance
level. For example, CC part 3 includes the definition of a set of requirements for a
developer’s approach to flaw remediation (ALC_FLR).

Smart cards have typically used assurance levels based on EAL4 or EAL5 for
both hardware and software aspects, but usually with augmentations to higher level
requirements for development environment security (ALC_DVS) and vulnerability
analysis (AVA_VAN). In this context it is worth recalling the earlier note that inter-
national recognition of CC certificates under the CCRA is limited to EAL4, although
between SOGIS participants recognition is up to EAL7.

18.2.5 CC Interpretation and Supporting Documents

Although the CC documents provide a standard for specifying and evaluating assur-
ance in a set of functional requirements, the CC definitions (of both SFRs and assur-
ance) are at quite a high level. Furthermore, the origins of these requirements were in
software, rather than hardware, and this is reflected in the way some of the require-
ments and evaluation activities are defined. It has therefore proven necessary to
provide additional interpretation of what CC means in certain areas and for cer-
tain types of TOE. Such interpretation can be described in PPs or in CC supporting

18 Security Evaluation and Common Criteria 417

documents, both of which have been used extensively to provide interpretation for
evaluating smart card hardware and software.

For smart cards, the main supporting documents are [6–9]. These cover the general
ways in which CC requirements need to be applied to the types of deliverables
and lifecycles applicable to smart card hardware and software, the requirements on
evaluation labs that undertake smart card evaluations, the ways of calculating attack
potentials applicable to smart cards (see the separate discussion of attack potentials
below), and the ways in which the problem of composition (discussed above) is dealt
with in the case of smart cards. In particular, the approach to composition requires
that the evaluators of the dependent TOE (e.g. a smart card application) will check
that the dependencies and assumptions between the TOEs match in terms of the ST
content,8 and that the developer’s guidance for use of the lower level TOE (the smart
card IC) and the assumptions it makes about its security environment, have been
appropriately followed. Because it is unlikely that a lower level TOE will be able to
implement its security functions perfectly (at least not at a reasonable cost), it has
also proven necessary for a summary of the evaluation results for the lower level TOE
to be passed on to the evaluators of the dependent device, and a specific mechanism
has been defined to support this (see, in particular, [9]). This transfer of evaluator
information (e.g. about intrinsic susceptibilities of an IC to side-channel or fault
induction attacks) enables efficient and effective analysis of attacks that are carried
out via the IC, but that ultimately affect the operating system or application software.
For example: the evaluator of the composite TOE can check sensitive fault induction
scenarios identified for the IC so that they can confirm not only that IC guidance has
been followed, but that it is effective for protecting the specific functions used in the
dependent TOE.

The main PP used for smart card ICs [10] is discussed as an example PP below.

18.2.6 Attack Potential Calculations

Probably the most important part of a CC evaluation (at least for the higher assur-
ance levels such as those used by smart cards) is the vulnerability analysis activ-
ity described under the AVA_VAN family in CC part 3. The main requirement of
AVA_VAN states:

The evaluator shall conduct penetration testing, based on the identified potential vulnerabil-
ities, to determine that the TOE is resistant to attacks performed by an attacker possessing
<L> attack potential.

where <L> is one of: Basic, Enhanced-Basic, Moderate or High (which of these
applies is determined by the assurance level). The general method for calculating
attack potentials is given in Annex B of the CEM, but for smart cards a different

8 In terms of assurance levels (EALs) in particular: at present the CC requirement for composition
of a lower level product into a higher level one generally means certifying the lower level product
at the same or higher assurance level as the higher one.

418 T. Boswell

method is used as described in [8] (in fact this method is based on that used in the
CEM for CC version 2.3). The smart card method in [8] divides the analysis of an
attack into two stages: Identification and Exploitation. It allocates points for each
of these stages in terms of: elapsed time for the attack, expertise required, specific
knowledge of the TOE required by the attacker, number of TOE samples required,
type of equipment required and all types of open samples (i.e. TOE samples with
reduced security) required in order to identify the attack.9

The Identification and Exploitation stages separately assess the difficulty of dis-
covering an attack, and the difficulty of putting it into practice. This reflects the
fact that complex technical work leading to discovery and publication of a potential
vulnerability may be carried out by different individuals and groups, with differ-
ent motivations, as compared to those that would carry out real-world attacks. The
risk-owner (i.e. in general the organisation that owns, or is liable for, the asset) may
put into place a defence-in-depth strategy that tries to make practical exploitation of
any attack more difficult (perhaps using mechanisms in the wider application sys-
tem, such as accountability and audit, detection of fraudulent use and device/user
blocking).10

Thresholds required to achieve each of the attack potential levels <L> above are
listed as part of [8], and it is important to note therefore that potentially successful
attacks may exist above this threshold of difficulty, even for a certified product. This
situation emphasises how important it is for risk owners to understand the types of
attacks that are considered in the evaluation of a device (or application artefact, or
application software) that they are using, and the sort of level of difficulty that would
be involved in attacks above that threshold. Gaining this sort of understanding, and
participating in the setting of requirements in PPs for a technology type is one of the
benefits and activities undertaken by a CC technical community (discussed below).

18.3 Evolution of Common Criteria

An important aspect of CC has been its ability to evolve, whilst retaining the inter-
national recognition of certificates within a growing set of CCRA participants. One
dimension of evolution is the updating of the criteria (and the CEM), in terms of new
versions and releases, which encompass editorial changes, clarifications, changes to
requirements (SFRs and assurance levels) and even major changes in structure and
philosophy of parts of the criteria.

9 For an example in this vein see [11], which notes that in developing this attack (which was based
on physically probing tracks on an IC), the attacker “began by buying chips in bulk for pennies
apiece to experiment with”.
10 Even where risk mitigation of this sort is carried out, the impact of reputation damage needs to be
considered. Although a full discussion of this aspect is outside the scope of this chapter, independent
evaluation and certification under a recognised scheme would be one part of demonstrating that
appropriate care has been taken in implementing security at each component level.

18 Security Evaluation and Common Criteria 419

The other main dimension for evolving CC is the creation of interpretation in
supporting documents and PPs, as discussed above. In recent years, this aspect of CC
evolution has increasingly taken place through the efforts of technical communities.
Several such communities are now working on a new generation of PPs that adopt
an identifiably different style with the aim of making evaluation much more specific
to separate product types and their associated technologies.

18.3.1 CC Technical Communities

When smart cards were first evaluated under CC, a number of significant problems
were found in using the criteria. Many of these arose from the software origins of
the CC, and the specialised hardware-related attacks that were vitally important for
the vulnerability analysis and penetration testing of ICs. Initial attempts to solve
these problems led to different national approaches and therefore a difficulty in
maintaining international recognition of smart card certificates. Frustration with these
early difficulties led to the formation of a CC technical community for smart cards,
which in time produced the PPs and supporting documents that have enabled the
smart card market to become, and remain, one of the major users of CC evaluation
and certification. The smart card technical community is discussed in more detail
in [12], but a critical feature is that it includes representatives from all the main
stakeholder groups and from all the main countries involved in smart card evaluations
and certifications, and thus benefits from technical expertise and experience of the
day-to-day problems of CC evaluations.

The technical community is an essentially collaborative entity, and reduces the
impact of creating new interpretation in the context of a single evaluation (and hence
a single TOE, single developer, single evaluation lab and single CB). The community
adds the wider reflection of the full range of stakeholders and of multiple participants
in each stakeholder role. Furthermore, the community enables the interpretation to
better take into account what is possible and achievable in real-world products, and
the needs and expectations of risk owners.

Technical communities meet regularly and can respond relatively quickly to new
developments (e.g. new publications of attack examples, such as in [11]), and also acts
as a forum for discussing and resolving day-to-day issues arising in evaluations. The
community continues to update the CC supporting documents, and the experience
that underlies their consistent use across different national schemes and evaluation
labs (e.g. by discussion of example attacks and their attack potential calculations).

After the initial creation of a technical community for smart cards, a further com-
munity was created to address the needs of evaluation of payment terminals (including
the harmonisation of different national schemes and the PCI PTS scheme, as dis-
cussed below). This community produced the PP in [18], which includes community-
specific needs such as a bespoke assurance level reflecting different evaluation needs
and priorities for different parts of a payment terminal, and is producing similar

420 T. Boswell

supporting documents to those for smart cards (e.g. to help standardise attack poten-
tial calculations for payment terminals).

The main area of current evolution in CC is in extending this approach to many
other areas (e.g. network devices, protected USB memory sticks, disc encryption
and mobile devices), and to produce a new generation of PPs for each of these TOE
types, as discussed in the following section.

18.3.2 New Generation Protection Profiles

Although the smart card community has produced both Protection Profiles and CC
supporting documents, the starting point was to set down a PP that includes inter-
pretations that match CC assurance requirements to the detail of the technologies,
development and production environments, and attack types that apply to smart
cards. This was then used to establish a base of common international experience
in evaluation. The success of this approach has led to the creation of new technical
communities, each aiming to produce a new style of PP that addresses the problems
and concerns of its technology and usage. The PPs to emerge from this work are
referred to here as “new generation PPs”.

Probably the most important characteristics of new generation PPs are:

• Avoiding reliance on the traditional generic assurance levels in CC part 3. Instead
they define assurance activities that describe specific ways to evaluate the SFRs
and individual assurance requirements to match the technology and the application
domain. An example of such a new generation PP is that for USB devices in [19].

• They are specific in their definition of the tasks of evaluators, enabling consistency
in the conduct of evaluations. The assurance activities are deliberately specific in
their detail, as well as matched to the technology and TOE type, so that it should be
easy to recognise when the evaluation requirement has been met and the assurance
demonstrated.

Embedded devices seem likely to be a part of a number of technical communities (for
example, the existing communities for payment terminals and mobile devices), and
the formation and growth of appropriate technical communities along with creation
of new generation PPs seem likely to be the most appropriate path for dealing with
the security problems of embedded devices, their application artefacts, and their
application contexts.

18.4 Other Security Evaluation Schemes

Although this chapter is mainly concerned with security evaluation using the CC, it
is interesting to compare this approach with other security evaluation schemes that
are also in use for embedded devices. Two such schemes are examined briefly below.

18 Security Evaluation and Common Criteria 421

18.4.1 FIPS 140

The cryptographic module validation program (CMVP) [24] was created in the US [in
fact it is a joint effort from National Institute of Standards and Technology (NIST) and
the Canadian communications security establishment (CSE)], and it is still demanded
primarily for North American markets. The evaluation process is essentially similar to
that of CC: a product is submitted to an independent evaluation lab, with deliverables
as required in [13]. The lab carries out an evaluation against the criteria, produces
a report and sends this to NIST (or CSE), who acts as the “validation authority”
(equivalent to the CB in the CC process). On successful completion of the evaluation,
the product is placed on the list of validated modules on the CMVP website [24].

FIPS 140 is specific to the evaluation of cryptographic modules, in contrast to the
more general scope of CC, and this is reflected in the way the FIPS 140 requirements
are specified in the standard [13]. Included are requirements for the use of only
approved algorithms (meaning that they are approved under a separate FIPS process)
and a number of other approved security functions. This specificity of algorithms
and functions is at a lower level of detail than CC, and is one of the main differences
between the schemes.

FIPS 140 specifies four hierarchic levels, numbered 1–4. Each of the levels
includes requirements on module design (including the flows that can take place
over ports and interfaces), operator roles and associated authentication, tamper pro-
tection, support from the underlying operating system, key management, self-test and
development lifecycle. Level 1 works mainly at the level of the algorithm implemen-
tation to ensure that the module is basically well-designed and follows sound prin-
ciples of cryptographic implementation—this is the only level that can be achieved
by software alone. Level 4 has strong requirements for physical tamper protection,
role-based authentication, controls on manual operations with keys and other require-
ments (requiring EAL4 for the underlying operating system), such that at Level 4
the module can operate without additional physical protection in the environment.

As noted above, there is a specific relationship between FIPS 140–2 and CC in
the sense that the higher FIPS levels invoke CC requirements for the underlying
operating system as part of protecting the cryptographic module. The underlying
difference between CC and FIPS 140 is exemplified in the existence of the Derived
Test Requirements [14] (DTRs) for each of the FIPS 140 levels. This document
takes advantage of the specific type of module to which FIPS 140 is applied, and
its requirements for approved algorithms and functions, to give relatively detailed
instructions to evaluators (and hence to define in a relatively fixed way the activities
that the evaluators undertake).

Perhaps the most appropriate comparison can be made by considering CC’s use
of PPs and supporting documents to specify requirements for specific types of TOE
(such as smart cards). In the new generation CC PPs, there is also a movement
towards providing more detail both about the technology, and about the evaluation
methods (as contained in the defined assurance activities), and this aspect of CC’s
evolution could therefore be seen as incorporating some of the observed advantages

422 T. Boswell

of FIPS 140, whilst retaining the wider scope of product types, the greater degree of
international recognition, and international ownership and management. With this
in mind it is noted that FIPS 140-2 is much less specific with regard to side-channel
and fault induction attacks (which are required to be analysed and tested under the
smart card supporting documents in CC). The DTR states that this aspect of FIPS
140–2 is based only on analysis of developer documents; it does not require evaluator
testing.11

18.4.2 PCI PIN Transaction Security Requirements

PCI PIN transaction security (PTS) is a set of modular security requirements for
payment terminals incorporating PIN entry devices. The scheme is based on the
requirements in [16] and an associated developer questionnaire [17]. As with CC
and FIPS 140, the evaluation is carried out by an evaluation lab that is specifically
approved for this evaluation scheme, with the lab performing analysis and testing,
resulting in a report that is then submitted for acceptance, and recording of successful
products on the list of approved devices on the PCI website [27].

The requirements cover: physical and logical security of the device and the PIN
entry process; integration with the point-of-sale (POS) terminal; secure use of proto-
cols; secure handling of data such as private and public keys, and account data; and
device management (i.e. manufacturing and the process leading to initial key load).
The evaluation approach is similar in many ways to FIPS 140, in that it lists very spe-
cific requirements based on its limited scope of application. Evaluation activities are
also based on following a set of derived test requirements. Although PCI PTS does
cover lifecycle requirements (“device management security requirements”), these
are not validated by the evaluators.

The requirements have adopted the CC idea of attack potential calculations based
on separate Identification and Exploitation phases as in the smart card interpreta-
tion of CC in [8], but with some differences. A CC evaluation is based on a single
attack potential requirement for the entire TOE (and hence all the SFRs that the
TOE implements). However in PCI PTS there is no requirement for the TOE as
a whole, while some (but not all) of the individual requirements make reference to
resisting a certain attack potential. Furthermore, some PCI PTS requirements specify
minimum points required for the Exploitation phase alone. Finally, where minimum
points thresholds are stated, these have different values to the thresholds for CC in
[4, 8].

11 It is interesting to note here that side-channel and fault induction attacks carried out by evaluators
during CC evaluations of smart cards have historically led to the discovery of a variety of potential
vulnerabilities, requiring either changes in the TOE itself, or additional guidance to enable software
developers to mitigate the risks from these attacks. However, smart cards are generally used in
unprotected environments, whereas FIPS 140-2 assumes some degree of physical protection in the
environment except at level 4.

18 Security Evaluation and Common Criteria 423

The PCI PTS requirements are also being incorporated into a CC PP for payment
terminals in [18]12 (discussed as an example PP below), as a result of the desire to
replace the large number of separate national acceptance schemes that a payment
terminal currently has to undergo.

18.5 Example Protection Profiles

This section briefly surveys some PPs relevant to embedded devices. Naturally, much
more could be said about each PP but such a survey is inevitably a hostage to the time
that it is carried out and, given the move towards a new generation of PPs discussed
earlier, it seems most relevant here to indicate features of interest in some of the PPs,
which may give pointers to relevant features for future PPs for embedded devices.

18.5.1 Security IC PP

This PP [10] is the main one used for evaluations of smart card ICs (an older version of
this PP, written for CCv2.3, was also extensively used; both versions have effectively
the same requirements). Its assurance level is EAL4+,13 with the augmentations
increasing the assurance requirement for the development environment and requiring
the TOE to resist an attack potential of High (instead of the default Enhanced-Basic
level at EAL4).

The PP is notable for a number of reasons:

• It defines several extended SFRs (i.e. additional SFRs that are not present in CC
part 2), to cover random number generation (FCS_RNG.1), test mode protection
(FMT_LIM.1 & 2) and support for injection of data into each IC instance (including
a unique identifier) during manufacturing (FAU_SAS.1).

• It contains extensive refinement of the assurance requirements to map them onto
particular aspects of IC development and manufacturing.

• It requires resistance to High attack potential—this required extensive work within
a technical community to create supporting documents [including [8], but also
additional reference materials to support consistent rating of the range of applicable
attacks at this level].

• The PP does not specify any cryptographic operations, even though all of its
original TOEs implemented some. The scope of cryptographic functions covered
by an evaluation is left to be added by the ST author.

12 At the time of writing the PP [18] is based on an earlier set of PCI requirements that were
superseded by PCI PTS. However, the requirements are generally similar and it should therefore be
possible to update [18] to capture the requirements in [16].
13 This shorthand notation means “EAL4 augmented with ALC_DVS.2 and AVA_VAN.5)”.

424 T. Boswell

• The PP allows flexibility about the inclusion of several categories of software
(including test mode software) to be evaluated along with the hardware.

• The SFRs are described according to the structure of the TOE and the functionality
it provides. This improves vastly on the approach taken in some PPs, where SFRs
are listed alphabetically, which tends to leave the mapping to specific aspects of
TOE functionality unclear and therefore liable to inconsistent interpretation by
developers, users, evaluators and CBs.

18.5.2 Payment Terminal (Point of Interaction) PP set

This “PP” is in fact a set of three PPs that are described in a single document [18],
and was mentioned in the earlier discussions of PPs from CC technical communities,
and, in the discussion of the PCI PTS Requirements scheme, as a PP that brings
together a range of separate national and international requirements into a single CC
framework. The three PPs in this set have much of their functionality in common,
and are all subject to the same sort of approval requirements—hence the presentation
of the PPs as a core set of requirements with specified differences (e.g. only two of
the three PPs include magnetic stripe transactions in scope). The assurance level
in this PP is based on EAL2, but applies some requirements from EAL4 to certain
parts of the TOE (typically the parts that handle the main payment system keys),
defines extended assurance requirements,14 and makes a number of refinements to
the assurance requirements. This results in a set of assurance requirements that is
not well-described by reference to the levels in CC part 3 (but which better reflects
the interests and priorities of risk owners), and is therefore given a new name in the
PP: “EAL POI”.

The main points of interest in this PP set are:

• The definition of a bespoke assurance level was a significant divergence from
previous CC practice. The adoption of this level reflects several aspects of the
work of a technical community:

– The community itself was competent to define its true assurance requirement
because it included representatives of the relevant risk owners.

– Writing the assurance requirements in a way that was consistent with existing CC
methodology (and therefore compatible with CCRA), and defining additional
supporting guidance to fill any gaps, was also within the competence of the
community because it included evaluation labs (with experience of evaluation
of such devices) and CBs.

• The assurance level definition is unusual in several ways: it combines elements
of both EAL2 and EAL4; it uses extensive refinement of the requirements (e.g.

14 These are analogous to extended SFRs: they are assurance requirements defined in the style of
CC part 3, but not taken directly from CC part 3.

18 Security Evaluation and Common Criteria 425

to explain what is required in terms of design deliverables); and it applies four
different attack potential thresholds to different parts of the TOE, replacing the
normal CC part 3 vulnerability analysis family (AVA_VAN) with a new family
AVA_POI. The use of the bespoke assurance level is similar in some ways to the
definition of assurance activities in the new generation PPs.

• The PP set has to remain generic in most areas, because it intends to cover a large
variety of different scales and architectures in the implementation of compliant
terminals. This raises the danger that it becomes difficult to map the PP require-
ments (especially at individual SFR level) onto a real TOE—hence there would
be dangers of inconsistent application of the PP. To address this potential prob-
lem the PP includes significant amount of abstract design (e.g. in terms of TOE
architecture and its application context) to structure the elements of the PP (from
threats down to SFRs and assurance requirements).

• As part of its goal of bringing together other security evaluation scheme require-
ments, the PP includes application notes against many of the SFRs to note their
correspondence to these other sources of requirements.

• The PP uses three extended SFRs to deal with random numbers (FCS_RND.1),
proof of identity by the TOE to an external entity (FIA_API.1) and protection
against emanations that might enable side-channel attacks (FPT_EMSEC.1). All
three of these extended SFRs are reused from smart card PPs.

18.5.3 Trusted Platform Module PP

This PP [20] maps a large and relatively complex set of specifications into a CC
framework. The PP therefore demands a much greater investment of effort by the
reader, but benefits (e.g. in reduced ambiguity) from close correspondence to the
main trusted platform module (TPM) specifications. The assurance level in this PP
is EAL4+(ALC_FLR.1, AVA_VAN.4), where the augmentations add a requirement
for a flaw remediation approach and require the TOE to resist an attack potential of
Moderate. Points of interest include:

• The PP applies to hardware, firmware and/or software, depending on the combina-
tion used to implement the TPM—this is similar to the situation that may arise for
a number of embedded devices, where implementation choices of visible security
aspects may need to be left flexible at the time of the PP.

• The PP includes copious references to the main TPM specifications—these help
to establish precision in the meaning of the PP requirements, and ultimately in the
SFRs, which supports consistent use of the PP.

• The PP includes instructions to the ST author regarding parts of the SFRs that need
to be completed in the ST (i.e. where the PP leaves some or all of an SFR for the
ST author). Although such flexibility is a normal part of CC, it is generally helpful
for an ST author to be guided as to the expected and allowed ways to complete the
SFRs, especially in terms of the wider TPM specifications.

426 T. Boswell

• An optional package for revocation functionality is included in the PP. This means
that an ST does not need to implement this package in order to comply with the
PP, but if it chooses to do so then the package can simply be included in the ST.

• The PP leaves some artefact-level implementation items unspecified, but high-
lights them in its objectives for the environment (see OE.Locality and OE.Phys-
ical_Presence in [20]).

• The PP has a strong focus on management operations, which is perhaps a likely
characteristic of embedded security devices; they are likely to have specific initial-
isation and state management aspects that are reflected in SFRs. In several cases,
the SFRs are refined,15 adding a set of specific rules for management operations.
Once again, this links the PP closely to the main TPM specifications.

• An SFR dealing with physical tamper resistance is included and specifies a mini-
mum set of tamper resistance scenarios, allowing the flexibility for other specific
scenarios to be added in the ST, if applicable.

References

1. Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model, Version 3.1 Revision 3, CCMB-2009-07-001, July 2009.

2. Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional
Components, Version 3.1 Revision 3, CCMB-2009-07-002, July 2009.

3. Common Criteria for Information Technology Security Evaluation, Part 3: Security Assurance
Components, Version 3.1 Revision 3, CCMB-2009-07-003, July 2009.

4. Common Methodology for Information Technology Security Evaluation: Evaluation Method-
ology, v3.1 Release 3, CCMB-2009-07-004, July 2009.

5. Mayes K, Markantonakis K (eds) (2008), Smart Cards, Tokens, Security and Applications,
Springer.

6. The Application of CC to Integrated Circuits, version 3.0 revision 1, CCDB-2009-03-002,
March 2009 [Online] http://www.commoncriteriaportal.org/supporting/.

7. Requirements to perform Integrated Circuit Evaluations, version 1.0 revision 1, CCDB-2009-
09-001, September 2009 [Online] http://www.commoncriteriaportal.org/supporting/.

8. Application of Attack Potential to Smart Cards, version 2.7 revision 1, CCDB-2009-03-001,
March 2009 [Online] http://www.commoncriteriaportal.org/supporting/.

9. Composite product evaluation for Smart Cards and similar devices, version 1.0 revi-
sion 1, CCDB-2007-09-001, September 2007 [Online] http://www.commoncriteriaportal.org/
supporting/

10. Eurosmart, Security IC Platform Protection Profile, version 1.0, BSI-PP-0035, 15 June 2007,
[Online]http://www.commoncriteriaportal.org/files/ppfiles/pp0035b.pdf

11. Government Computer News, Engineer shows how to crack a “secure” TPM chip,
[Online] http://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx, (accessed 2
June 2011)

12. Boswell T, Smart card security evaluation: Community solutions to intractable problems, Infor-
mation Security Technical Report, Volume 14 issue 2, May 2009, pp57-69.

13. NIST, Security Requirements For Cryptographic Modules, FIPS PUB 140–2, issued 25 May
2001, with change notices as at 12 March 2002 (The original FIPS 140 standard was FIPS

15 This is an allowed operation on SFRs, subject to certain rules, as described in Sect. 8.1.4 of [1].

http://www.commoncriteriaportal.org/supporting/
http://www.commoncriteriaportal.org/supporting/
http://www.commoncriteriaportal.org/supporting/
http://www.commoncriteriaportal.org/supporting/
http://www.commoncriteriaportal.org/supporting/
http://www.commoncriteriaportal.org/files/ppfiles/pp0035b.pdf
http://gcn.com/articles/2010/02/02/black-hat-chip-crack-020210.aspx,

18 Security Evaluation and Common Criteria 427

140–1; this was superseded by FIPS140-2, and FIPS 140–3 is in draft at the time of writing.
In this chapter, FIPS 140 is used as a general name for the scheme.).

14. NIST, Derived Test Requirements for FIPS PUB 140–2, draft of 4 January 2011.
15. Assurance Continuity: CCRA Requirements, CCIMB-2004-02-009, version 1.0, February

2004, [Online] http://www.commoncriteriaportal.org/files/supplements/2004-02-009.pdf.
16. Payment Card Industry (PCI), PIN Transaction Security (PTS) Point of Interaction (POI) Modu-

lar Security Requirements, version 3.0, April 2010, [Online] https://www.pcisecuritystandards.
org/documents/pci_pts_poi_sr.pdf.

17. Payment Card Industry (PCI), PIN Transaction Security (PTS) Point of Interaction (POI)
Modular Evaluation Vendor Questionnaire, version 3.0, April 2010, [Online] https://www.
pcisecuritystandards.org/documents/pci_pts_poi_vq.pdf.

18. Common Approval Scheme, Point of Interaction Protection Profile, version 2.0, 26 November
2010, [Online] http://www.ssi.gouv.fr/IMG/certificat/ANSSI-CC-cible_PP-2010-10en.pdf.

19. Information Assurance Directorate, Protection Profile for USB Flash Drives, version 1.0, 1
December 2011, [Online] http://www.niap-ccevs.org/pp/pp_usb_fd_v1.0.pdf.

20. Trusted Computing Group, Trusted Computing Group Protection Profile PC Client specific
Trusted Platform Module TPM Family 1.2; Level 2, version 1.1, 10 July 2008, [Online] http://
www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf

21. GlobalPlatform, The Trusted Execution Environment: Delivering Enhanced Security at a
Lower Cost to the Mobile Market, February 2011, [Online] http://www.globalplatform.org/
documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf.

22. Global Platform, GlobalPlatform Device Technology TEE Client API Specification, version
0.17, 27 April 2010, [Online] http://www.globalplatform.org/specificationsdevice.asp.

23. ARM, Building a Secure System using TrustZone Technology, issue C, April 2009, [Online]
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf.

24. Description of the CMVP, and list of CMVP validated modules, [Online] http://csrc.nist.gov/
groups/STM/cmvp/index.html.

25. Mutual Recognition Agreement of Information Technology Security Evaluation Certificates,
version 3.0, January 2010, [Online] http://sogisportal.org/.

26. International Common Criteria website, [Online] http://www.commoncriteriaportal.org.
27. PCI Security Standards council website, [Online] https://www.pcisecuritystandards.org.

http://www.commoncriteriaportal.org/files/supplements/2004-02-009.pdf
https://www.pcisecuritystandards.org/documents/pci_pts_poi_sr.pdf
https://www.pcisecuritystandards.org/documents/pci_pts_poi_sr.pdf
https://www.pcisecuritystandards.org/documents/pci_pts_poi_vq.pdf
https://www.pcisecuritystandards.org/documents/pci_pts_poi_vq.pdf
http://www.ssi.gouv.fr/IMG/certificat/ANSSI-CC-cible_PP-2010-10en.pdf
http://www.niap-ccevs.org/pp/pp_usb_fd_v1.0.pdf
http://www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf
http://www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf
http://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf
http://www.globalplatform.org/documents/GlobalPlatform_TEE_White_Paper_Feb2011.pdf
http://www.globalplatform.org/specificationsdevice.asp
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://sogisportal.org/
http://www.commoncriteriaportal.org
https://www.pcisecuritystandards.org

Chapter 19
Physical Security Primitives

A Survey on Physically Unclonable Functions
and PUF-Based Security Solutions

Ahmad-Reza Sadeghi, SteffenSchulz and ChristianWachsmann

Abstract Physically unclonable functions (PUFs) are an emerging technology and
have been proposed as central building blocks in a variety of cryptographic protocols
and security architectures. Among others, PUFs enable unique device identification
and authentication, binding software to hardware platforms and secure storage of
cryptographic secrets. Furthermore, they can be directly integrated into cryptographic
algorithms and remote attestation protocols. In this chapter, we give an overview of
the concept, properties, and types of intrinsic electronic PUFs, discuss potential attack
surfaces and advanced PUF concepts as well as the most common applications of
electronic PUFs. Further, we show new directions on logically reconfigurable PUFs
(LR-PUFs) and PUF-based remote attestation and discuss open challenges.

19.1 Introduction

Physically unclonable functions (PUFs) are increasingly proposed as central build-
ing blocks in cryptographic protocols and higher level security architectures. Among
others, PUFs enable unique device identification and authentication [44, 47, 54, 62],
binding software to hardware platforms [12, 16, 18, 29], and secure storage of cryp-
tographic secrets [34, 70]. Furthermore, they can be integrated into cryptographic

A.-R. Sadeghi (B)

TU Darmstadt (CASED) and Fraunhofer SIT, Mornewegstraße 32, 64293 Darmstadt, Germany
e-mail: ahmad.sadeghi@trust.cased.de

S. Schulz
TU Darmstadt (CASED) and Macquarie University (INSS), Mornewegstraße 32,
64293 Darmstadt, Germany
e-mail: steffen.schulz@trust.cased.de

C. Wachsmann
TU Darmstadt (CASED), Mornewegstraße 32, 64293 Darmstadt, Germany
e-mail: christian.wachsmann@trust.cased.de

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 429
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_19,
© Springer Science+Business Media New York 2014

430 A.-R. Sadeghi et al.

algorithms [2] and remote attestation protocols [55]. Today, there are already some
PUF-based security products aimed for the market, mainly targeting IP-protection
and anti-counterfeiting applications but also RFID systems [24, 67].

PUFs typically exhibit a challenge/response behavior: when queried with a spe-
cific challenge, the PUF generates a random-looking response that is stable over
time. The security of PUFs depends on intrinsic manufacturing variations making
PUFs physically unclonable and unpredictable. Even the manufacturer of the PUF
should be unable to produce two PUFs with a similar challenge/response behavior.
Furthermore, knowledge of a certain number of challenge/response pairs should not
allow an adversary to predict PUF responses to unknown challenges.

There is a variety of PUF implementations [37]. The most appealing ones for
integration into electronic circuits are electronic PUFs, which come in different
flavors. Delay-based PUFs, such as arbiter PUFs [31, 35, 44] and ring oscillator
PUFs [15, 38, 61] are based on race conditions or frequency variations in integrated
circuits. Memory-based PUFs exploit the instability of volatile memory cells, such
as SRAM cells [16, 21], flip-flops [32, 36], and latches [29, 60]. Finally, coating
PUFs [46, 63, 64] use capacitances of a special dielectric coating applied to the chip
housing the PUF.

In contrast to most cryptographic primitives, whose security can be related to
well-established (albeit unproven) assumptions, the security of PUFs is assumed
to rely on physical properties and is still under investigation. Existing PUF-based
security solutions typically rely on assumptions that have not been confirmed for all
PUF types. For instance, most delay-based PUFs have been shown to be susceptible
to model building attacks that allow emulating the PUF in software [31, 35, 44, 51],
which contradicts the unpredictability and unclonability properties. To counter this
problem, additional primitives must be used: controlled PUFs [14] use cryptography
in hardware to hide the responses of the underlying PUF from an adversary.

Since PUF responses are inherently noisy, they must be combined with error-
correction mechanisms, such as fuzzy extractors [11] that remove the effects of noise
before the PUF response can be processed in a (cryptographic) algorithm. Typically,
the cryptographic and error correcting components and the connecting wires between
them and the PUF must be protected against invasive and side-channel attacks.
Outline. This chapter gives an overview of the concept, properties, and types of
intrinsic electronic PUFs (Sect. 19.2), discusses potential attack surfaces (Sect. 19.3),
and advanced PUF concepts (Sect. 19.4) as well as the most common applications
of PUFs (Sect. 19.5). Further, we show new directions on reconfigurable PUFs and
PUF-based remote attestation (Sect. 19.6) and discuss open challenges (Sect. 19.7).

19 Physical Security Primitives 431

19.2 Physically Unclonable Functions

19.2.1 PUF Concept and Properties

A physically unclonable function (PUF) is a noisy function that is embedded into
a physical object, such as an integrated circuit [1, 37, 45]. When queried with a
challenge c, a PUF generates a response r ≥ PUF(c) that depends on both c and the
unique device-specific intrinsic physical properties of the object containing the PUF.
Since PUFs are subject to noise induced by environmental variations, such as supply
voltage and ambient temperature variations, they return slightly different responses
when queried with the same challenge multiple times.

PUFs are typically assumed to be robust, physically unclonable, unpredictable and
tamper-evident, and several approaches to quantify and formally define their prop-
erties have been proposed (see the paper by Armknecht et al. [1] for an overview).
Informally, robustness means that, when queried with the same challenge multiple
times, the PUF returns a similar response with high probability. Physical unclonabil-
ity demands that it is infeasible to produce two PUFs that cannot be distinguished
based on their challenge/response behavior. Unpredictability requires that it is infea-
sible to predict the PUF response to an unknown challenge, even if the PUF can be
adaptively queried for a certain number of times. Finally, a PUF is tamper-evident if
any attempt to physically access the PUF irreversibly changes its challenge/response
behavior significantly.

The properties of PUFs can either be evaluated theoretically, based on mathemat-
ical models of the underling physical processes [66, 68, 69], or experimentally by
analyzing PUF instances built in hardware [19, 22, 23, 32, 65]. The first approach
has the apparent drawback that mathematical models never capture physical reality
in its full extent, which means that the conclusions on PUF security drawn by this
approach are naturally debatable. The main drawback of the experimental approach
is its limited reproducibility and openness: even though experimental results have
been reported in literature for some PUF implementations, it is difficult to compare
them due to varying test conditions and different analysis methods. Furthermore,
raw PUF data is rarely available for subsequent research, which greatly hinders a fair
comparison.

The security analysis of PUFs is further complicated by the drawbacks of existing
approaches to formalize their security properties. Most PUF security models are not
general enough and exclude certain PUF types (such as in [15, 45]), do not reflect
all properties of real PUF implementations (for example in [2, 15, 16, 45, 52]), or
include security parameters that cannot be determined for real PUF implementations
in practice (such as in [2, 8, 52]). Recently, Armknecht et al. [1] proposed a PUF
security framework that aims at providing security definitions that are compliant
to standard game-based cryptographic security models and that allow engineers to
evaluate and quantify the properties of PUF implementations.

432 A.-R. Sadeghi et al.

19.2.2 PUF Types

There is a broad variety of PUF implementations that are based on very different
physical characteristics, including optical, magnetic, and electrical effects. We focus
on electronic PUFs, which can be easily integrated into electronic circuits without
significant overhead using standard manufacturing processes. These PUFs are of
particular interest since they enable the tight integration of PUFs into cryptographic
primitives and higher level security architectures. Known electronic PUFs can be
categorized as delay-based PUFs and memory-based PUFs, which will be explained
in the following. A more detailed overview of various PUF types, including non-
electronic PUFs, is given by Maes and Verbauwhede [37].

19.2.2.1 Delay-Based PUFs

Delay-based PUFs are based on race conditions or frequency variations in integrated
circuits. The most popular PUFs of this type are arbiter PUFs [31, 35, 44] and ring
oscillator PUFs [15, 38, 61].

Arbiter PUFs. The arbiter PUF is based on race conditions within integrated circuits.
The basic arbiter PUF design has been presented by Lim et al. [31, 33] and consists of
two identically designed signal paths consisting of wires and switching components
and an arbiter at the end of both paths (Fig. 19.1).

The switching components allow the signal paths to be modified according to
an external input, i.e., the PUF challenge. To evaluate the arbiter PUF, both paths
are simultaneously excited with the same impulse signal. Depending on which of
the two signals arrives first at the arbiter, one output bit is generated and used as
PUF response. The delay caused by each signal path depends on the device-specific
manufacturing variations of the transistors in the switching components and their
connecting wires.

In addition, the delays of the signal paths are affected by environmental noise,
such as temperature and supply voltage variations. The impact of noise is reduced
by comparing the delays of both signal paths. Note that, in case the delay difference

Arbiter

c0 c1 cN − 1 cN

Response rExcite

Switch

Challenge

Fig. 19.1 Basic arbiter PUF design (for N bit challenge and 1 bit response)

19 Physical Security Primitives 433

between both signal paths is lower than the setup time of the arbiter, the response bit
is independent of the delays and determined only by random noise (metastability).

Arbiter PUFs can be efficiently implemented on ASIC [31, 33], while implemen-
tations on FPGA seem to be difficult due to placing and routing constraints [37].
Moreover, the delays of the individual components of the signal paths are addi-
tive, which facilitates emulating the challenge/response behavior of the arbiter PUF
in software (Sect. 19.3.1). To thwart these attacks, several variations of the basic
arbiter PUF design have been proposed. The feed-forward arbiter PUF by Lim et al.
[31, 33] uses the challenge and the output of intermediate arbiters to configure the
signal paths. However, this design does not prevent emulation attacks [40, 41] and
generates noisier responses due to increased metastability. As a countermeasure,
Majzoobi et al. [39] propose lightweight secure PUFs, which are based on multiple
interleaved arbiter PUFs. However, Rhrmair et al. [51, 52] show that lightweight
secure PUFs of low complexity can be emulated using machine learning techniques
(Sect. 19.3.1).

Ring Oscillator PUFs. Ring oscillator PUFs typically consist of several identically
designed ring oscillators, which are loops of an odd number of inverters that, once
stimulated, oscillate at a certain frequency. The oscillating frequency of each ring
oscillator depends on the signal delays of its components, which are affected by
manufacturing process variations and environmental noise. Basic ring oscillator PUF
constructions typically do not support challenges. Challengeable ring oscillator PUFs
can be implemented by integrating controllable delay elements into the ring oscillator
circuits. Gassend et al. [13, 15] propose an alternative construction of a challengeable
ring oscillator PUF that uses the challenge to select two out of a set of ring oscillators
and derives a single-bit response based on the ratio of the oscillation frequencies of the
selected ring oscillators. A similar approach by Suh et al. [61] derives the response bit
based on which of the oscillation frequencies is higher (Fig. 19.2). While reducing the
effect of noise on the ring oscillators, these constructions generate a high correlation
between PUF responses [36], which reduces the unpredictability of their responses.

19.2.2.2 Memory-Based PUFs

Memory-based PUFs exploit the power-up behavior of volatile memory cells, such
as SRAM cells [16, 21], flip-flops [32, 36] and latches [29, 60]. These memory cells
are inherently instable circuits that, when an external data signal input is applied,
enter one of two different stable states to store one bit of information. When no
data signal is provided, most cells preferably enter the same state after each power-
up, while some cells always enter a random state. The state the memory cell enters
depends on the physical properties of the underlying transistors, which are affected
by manufacturing process variations and environmental noise. Note that the amount
of unique responses of a memory-based PUF is always limited by the number of its
memory cells, i.e., the size of the underlying memory block.

SRAM PUFs. PUFs based on Static Random Access Memory (SRAM) have been
proposed by Guajardo et al. [16] and Holcomb et al. [21]. The challenge to an SRAM

434 A.-R. Sadeghi et al.

Ring Oscillator 1

Ring Oscillator 2

Ring Oscillator N

MUX

Response r

MUX

Challenge c

Counter

Counter

?
>

...

Fig. 19.2 Basic ring oscillator PUF design by Suh et al. [61]

PUF is a range of memory addresses, while the corresponding PUF response is the
content of the uninitialized memory cells at those addresses.

An SRAM cell consists of two cross-coupled inverters that can store one bit of
information and two additional transistors that are used to read and write data to
the memory cell. Both inverters are typically designed to be identical in order to
maximize write performance. When powered without applying a data signal, the
SRAM cell will enter a state that depends on the threshold voltage mismatch of
its transistors that is affected by manufacturing variations and environmental noise,
in particular ambient temperature variations. SRAM cells with a large threshold
mismatch always enter either the 0 or 1 state, while the state of cells with a small
threshold mismatch is determined only by noise. In practice this means that some
SRAM cells preferably enter the 0 state, others the 1 state, and some enter any of
the two states with about the same probability. Cells that always enter the same state
after power-up can be used as device-specific fingerprint since their behavior mainly
depends on device-specific manufacturing process variations.

SRAM PUFs have been analyzed on FPGAs with dedicated SRAM [16, 17] and
ASICs, including dedicated SRAM chips and SRAM embedded in micro-controllers
[21, 22]. Note that each evaluation of an SRAM PUF requires the underlying SRAM

19 Physical Security Primitives 435

to be powered down and up again, which can be problematic when the SRAM of the
PUF is also used as random access memory by the device containing the PUF.

Butterfly PUFs. Butterfly PUFs have been proposed by Kumar et al. [29]. They
emulate SRAM cells using cross-coupled data latches that, in contrast to SRAM
PUFs, can be easily reset by triggering the set/reset input of the latches. Butterfly
PUFs have been implemented and evaluated on FPGAs by Kumar et al. [29].

Flip-Flop PUFs. Maes et al. [36] propose flip-flops PUFs as an alternative to SRAM
and butterfly PUFs that can be efficiently implemented on FPGAs. Flip-flop PUFs
have been implemented and analyzed on ASIC by Van der Leest et al. [32]. In
contrast to SRAM PUFs, flip-flop PUFs can be easily spread over the whole circuit
to obfuscate the location of the individual flip-flops, which increases the difficulty
of reverse-engineering and invasive attacks against the PUF.

Latch PUFs. Latch PUFs have been presented by Su et al. [59] in the context of
device identification. These PUFs consist of an array of latches built from cross-
coupled NOR gates. The threshold voltage differences of the underlying transistors,
which are mainly caused by manufacturing process variations and affected by envi-
ronmental noise, in particular ambient temperature variations, cause a mismatch in
the latch. Hence, the state of the latches directly after power-up mainly depends on
manufacturing process variations and can be used as device fingerprint. Su et al. [59]
implemented and evaluated latch-based PUFs on ASIC.

19.2.3 Noise Compensation and Privacy Amplification

Many PUF-based applications require PUF responses to be reliably reproducible
while at the same time being unpredictable [1, 2, 37]. However, since PUFs are
inherently noisy and their responses are not uniformly random, they are typically
combined with fuzzy extractors [11]. Fuzzy extractors consist of a secure sketch
that maps similar PUF responses to the same value (noise compensation or error
correction), and a randomness extractor, which extracts full-entropy bit-strings from
a partially random source (privacy amplification).

Fuzzy extractors and secure sketches generally work in two phases (Fig. 19.3):
in the enrolment phase some helper data h and a uniform bit string K (e.g., a cryp-
tographic key) is derived from PUF response r. Helper data h is used later in the
reconstruction phase to recover K from a distorted PUF response r∗ = r + e, where
e is the error caused by noise. An important property of fuzzy extractors and secure
sketches is that, after observing one single helper data value h, there is still some min-
entropy left in r and K , which means that h can be stored and transferred publicly
without disclosing the full PUF response r or secret K [11].

More detailed information on fuzzy extractors and a number of practical instan-
tiations can be found in the work by Dodis et al. [11].

436 A.-R. Sadeghi et al.

Fig. 19.3 Concept of fuzzy
extractors

19.2.4 Characterizing the Unpredictability of PUFs

The unpredictability property of PUFs ensures that it is infeasible to efficiently com-
pute the response of a PUF to an unknown challenge. This is an important property in
PUF-based applications, such as authentication protocols, where the adversary could
forge the authentication if he could predict the PUF response. Note that unpredictabil-
ity should be independent of the operating conditions, such as ambient temperature
and supply voltage variations, which could be exploited by the adversary.

Depending on the application, different degrees of unpredictability are required.
For instance, most PUF-based authentication schemes (Sect. 19.5.1) require a strong
notion of unpredictability, where the adversary can adaptively obtain a certain number
of challenge/response pairs from the PUF of the device under attack and from similar
PUFs on other devices [1]. In other applications, such as PUF-based key storage
(Sect. 19.5.2), a weaker notion of unpredictability is sufficient, where the adversary
is assumed to be unable to obtain challenge/response pairs of the attacked PUF.

The most basic evaluation method that gives a first indication of the unpredictabil-
ity of a PUF is to compute the Hamming weight of its responses, which shows whether
the distribution of the PUF response bits is biased toward ‘0’ or ‘1’. Ideally, both val-
ues should be equiprobable and their fractional Hamming weight1 should be 0.5 %.
An indication of the uniqueness of a PUF can be given by computing the Hamming
distance between responses form different PUFs to the same challenge. In the ideal
case, responses from different PUFs should be independent and thus their fractional
Hamming distance2 should be 0.5 %.

A more precise assessment of the unpredictability and uniqueness of PUF
responses can be done by leveraging statistical tests, such as the DIEHARD [42]
or NIST [53] test suites. However, since these test suites are typically based on a
series of stochastic tests, they can only give an indication about whether the PUF
responses are random or not. Moreover, they often require more input data than typ-
ical memory-based PUF implementations can provide. Another approach to empir-
ically assess the unpredictability and uniqueness of PUFs is estimating the entropy
of their responses based on experimental data. In particular, min-entropy indicates
how many bits of a PUF response are uniformly random. The entropy of PUFs can

1 The fractional Hamming weight is the number of bits in a bitstring that are ‘1’ divided by the
length of the bitstring.
2 The fractional Hamming distance is the number of bits that are different in two bitstrings divided
by the length of the bitstrings.

19 Physical Security Primitives 437

be approximated using the context-tree weighting (CTW) method [71, 72], which is
an algorithm related to data compression that allows estimating the redundancy of
bitstrings [19, 23, 32, 65]. For certain PUF types, the entropy of responses can be
computed under consideration of the physical structure and properties of the PUF.
For instance, Holcomb et al. [22] compute the entropy of SRAM PUFs based on
empirical data under the assumption that the individual bytes of an SRAM array are
independent [22]. Alternatively, similar as in symmetric cryptography, the unpre-
dictability of a PUF can be estimated based on the complexity of the best known
attack against the unpredictability property [1, 37]. For instance, there are attacks [51]
against delay-based PUFs that emulate the PUF in software and allow predicting PUF
responses to arbitrary challenges (Sect. 19.3.1).

Evaluation results in literature are difficult to compare due to varying test condi-
tions, different analysis methods and the fact that no representative data sets are pub-
licly available. Hence, a fair comparison of the unpredictability property of different
PUF instances based on the results in literature is hardly possible. The development
of a common evaluation framework for PUFs and the analysis of PUFs implemented
in the same technology is an important topic for future research.

19.3 Attacks Against PUFs and PUF-Based Systems

19.3.1 Emulation Attacks

Most delay-based PUFs are subject to emulation or model building attacks that allow
emulating the PUF in software [31, 35, 44, 51]. These attacks collect a number of
challenge/response pairs of the PUF and use them to derive a mathematical model,
such as a formula that allows estimating the PUF response to a given PUF challenge.

A number of mitigations against these attacks have been proposed [31, 40, 41],
which are all based on inserting nonlinearity into the delay circuit (Sect. 19.2.2.1).
However, Rhrmair et al. [51] show that these approaches are vulnerable to emula-
tion attacks based on machine-learning techniques, such as logistic regression and
evolution strategies. One approach to counter emulation attacks are controlled PUFs
[15] (Sect. 19.4.1).

19.3.2 Side-Channel Attacks

Side-channel attacks are hardware attacks that aim to extract secret data, such as cryp-
tographic keys, from an electronic component. Hereby, the adversary observes the
behavior (such as the power consumption, electromagnetic radiation, and/or timing
behavior) of the component while it is using the secret data to be extracted. Since the
behavior of the component is typically dependent on the data processed, it can leak

438 A.-R. Sadeghi et al.

information on this data. The fundamental underlying observation is that processing
a data bit of value ‘1’ typically consumes a different amount of power and/or time
than processing a data bit of value ‘0’.

PUFs are typically used in combination with fuzzy extractors (Sect. 19.2.3) and
most PUF-based applications (Sect. 19.5) require the plain PUF responses, i.e.,
before error correction and privacy amplification to be secret. Hence, side-channel
attacks against PUF-based systems typically target the fuzzy extractor to gather
challenge/response pairs and other information that eases emulation attacks on the
underlying PUF (Sect. 19.3.1).

Research on side-channel analysis of PUFs and fuzzy extractors has been recently
started and there are only a few published results. Karakoyunlu et al. [25] and Merli
et al. [43] show side-channel attacks on implementations of common fuzzy extrac-
tors. Furthermore, Merli et al. [43] discuss potential side channel leakages of various
PUF types. However, all known side channel attacks on PUF-based systems target
the fuzzy extractor and are independent of the underlying PUF.

19.3.3 Fault Injection Attacks

Fault injection attacks aim to prompt erroneous behavior in a device by manipulating
it in some way and, when combined with cryptanalysis, can lead to key recovery
attacks. Faults may be injected in many ways, for instance by operating the device
in extreme environmental conditions or by injecting transient faults into specific
components of the device.

Attempts to operate the PUF outside its normal operating conditions, e.g., by
varying its supply voltage or ambient temperature, will most likely affect the chal-
lenge/response behavior and thus the robustness and unpredictability of the PUF.
Moreover, since implementations of fuzzy extractors and the underlying error cor-
rection algorithms are typically not resistant to fault injection attacks and exhibit
data-dependent behavior, fault injection attacks can cause unintended leakage of
PUF-related secret information, such as cryptographic keys bound to the PUF. In
particular, most fuzzy extractors are not secure in case the helper data can be modi-
fied by the adversary [5]. Thus, robust fuzzy extractors have been proposed to prevent
manipulations of helper data [10].

19.4 Advanced PUF Concepts

Several concepts have been proposed to enhance the security properties and func-
tionality of standard PUFs.

19 Physical Security Primitives 439

19.4.1 Controlled PUFs

Most delay-based PUFs are subject to model building attacks that allow emulating
the PUF in software (Sect. 19.3.1). One approach to counter this problem is con-
trolled PUFs by Gassend et al. [15] that use cryptography in hardware to hide the
actual PUF response from the adversary. Controlled PUFs typically apply a cryp-
tographic hash function to the PUF challenges and/or responses, which introduces
nonlinearity and breaks up the link between the actual PUF response and the output
of the controlled PUF. Clearly, this does not address the fundamental weakness of
delay-based PUFs. Moreover, to maintain verifiability of the controlled PUF, error
correction must be applied before the noisy responses of the underlying PUF are
processed by the cryptographic operation, which increases the complexity of the
overall construction. Further, to protect against emulation attacks (Sect. 19.3.1), the
cryptographic component and the error-correction mechanism as well as their con-
necting links must be protected against invasive and side-channel attacks, which may
be hard to achieve in practice (Sects. 19.3.2 and 19.3.3).

19.4.2 Emulatable PUFs

The verification of PUF responses typically requires a database of reference chal-
lenge/response pairs (CRPs). This limits the scalability and efficiency of many PUF-
based solutions and can be a serious drawback in many practical applications. One
approach to counter this issue are emulatable PUFs, which, similar to public-key
cryptography, allow the verification of PUF responses based on a publicly known
mathematical model of the PUF. The concept of emulatable and publicly verifiable
PUFs has been presented by Rhrmair et al. [48–50] as SIMPL systems (SIMulation
Possible but Laborious). A similar concept known as public PUFs has been indepen-
dently presented by Beckmann et al. [3]. The idea of both concepts is that the PUF
can be emulated in software using a mathematical model of the physical properties
of the PUF. However, this computation is assumed to take significantly more time
than evaluating the actual PUF, which can be measured by a verifier in a PUF-based
authentication protocol. This allows for the efficient verification of PUF responses
by any entity with access to the mathematical model of the PUF, while preventing
an algorithmic adversary from impersonating the PUF in the timeframe expected by
the verifier. Concrete implementations of SIMPL systems have been presented by
Rhrmair et al. [50].

Another approach to remove the need for a challenge/response pair database has
been presented by Hammouri et al. [20, 44]. However, in contrast to SIMPL sys-
tems and public PUFs, their approach does not allow the public verification of PUF
responses and requires the mathematical description of the PUF to be secret informa-
tion that is only known to authorized entities, such as a verifier in an authentication
protocol.

440 A.-R. Sadeghi et al.

The security properties of practical instantiations of emulatable PUFs still need
further evaluation.

19.5 Common Applications of PUFs

The most common applications of PUFs are identification, authentication, and secure
key storage.

19.5.1 Device Identification and Authentication

The classical application of PUFs is the identification and authentication of phys-
ical objects, such as electronic devices. In fact, PUFs have been first proposed in
the context of anti-counterfeiting solutions that prevent cloning (i.e., unauthorized
copying) of products. There are many proposals to build identification and authen-
tication schemes based on PUFs for various devices. We focus on solutions that are
applicable to resource-constrained embedded devices, such as RFID systems.

One of the first proposals of using PUFs for RFID is by Ranasinghe et al. [47],
who propose the manufacturer of a PUF-enabled RFID tag to store a set of chal-
lenge/response pairs (CRPs) in a database, which can later be used by RFID readers
to identify the tag. The idea is that the reader chooses a challenge from the database,
queries the tag and checks whether the database contains a tuple that matches the
response received from the tag. One problem of this approach is that CRPs can-
not be re-used since this would enable replay attacks. Hence, the number of tag
authentications is limited by the number of CRPs in the database. This scheme has
been implemented based on arbiter PUFs on RFID tags and its security and usability
has been analyzed by Devadas et al. [9]. A similar approach based on the physical
characteristics of SRAM cells has been proposed by Holcomb et al. [21].

A privacy-preserving PUF-based device authentication scheme has been presented
by Gassend et al. [14]. They suggest to equip each tag with a PUF that is used to fre-
quently derive new tag identifiers. Since readers cannot recompute these identifiers,
the readers have access to a database that stores (ID0, ID1, . . . , IDn) for each legiti-
mate tag, where ID0 is a random tag identifier and IDi = PUF(IDi−1) for 1 ≡ i ≡ n.
To authenticate to a reader, the tag first sends its current identifier ID j and then
updates its identity to ID j+1 = PUF(ID j). The reader then checks whether there is
a tuple that contains ID j in the database. In case the reader finds ID j , it accepts the
tag and invalidates all previous database entries IDk , where k ≡ j to prevent replay
attacks. Another approach to PUF-based authentication by Bolotnyy and Robins [4]
aims to prevent unauthorized tracing of tokens. A similar approach to PUF-based
authentication has been proposed by Bolotnyy and Robins [4]. A major drawback
of these schemes is that tokens can only be authenticated a limited number of times
without being re-initialized, which enables denial-of-service attacks.

19 Physical Security Primitives 441

19.5.2 Secure Key Storage and Key Generation

PUFs can be used to securely bind secrets (such as cryptographic keys) to the physical
characteristics of a device. The concept of PUF-based key storage has been presented
by Gassend [13] and later generalized to physically obfuscated algorithms by Bringer
et al. [7]. Instead of storing the key in nonvolatile memory that is vulnerable to
invasive attacks, the key is extracted from the physical properties of the underlying
hardware each time it is used. This protects the key against unauthorized readout by
invasive attacks, such as probing attacks against nonvolatile memory. Moreover, in
case a tamper-evident PUF is used, any attempt to physically extract the key from
the PUF circuit changes the challenge/response behavior of the PUF and securely
deletes the key bound to the PUF.

Since PUF responses are typically not uniformly random and subject to noise,
they cannot be used directly as cryptographic keys. Hence, privacy amplification,
which adds additional entropy to the PUF response, and error-correction techniques
must be applied before PUF responses can be used as cryptographic keys. The most
common approach to achieve this are fuzzy extractors [11] (Sect. 19.2.3).

Tuyls et al. [62] propose to use a PUF-based key storage for the secret authen-
tication key of RFID tags. Since the key is inherently hidden within the physical
structure of the PUF, obtaining this key by hardware-related attacks is supposed
to be intractable for real-world adversaries [15]. According to Tuyls et al. [62], a
PUF-based key storage can be implemented with less than 1, 000 gates, which is
well within the capabilities of common RFID tags. Other authentication schemes for
RFID exist that use PUF-based key storage to protect against unauthorized tracing
of tokens [6, 54] and relay attacks [26].

19.6 Future Directions

19.6.1 Logically Reconfigurable PUFs

So far, most existing PUFs exhibit a static behavior, while a variety of applications
would benefit from the availability of PUFs whose characteristics can be changed
dynamically, i.e., reconfigured, after deployment. For instance, PUF-based key stor-
age [34, 70] (Sect. 19.5.2) and PUF-based cryptographic primitives [2] may require
that previous secrets derived from the PUF cannot be retrieved any more. Another
examples are solutions to prevent downgrading of software [30] by binding the soft-
ware to a certain hardware configuration, such as a PUF, which require the PUF
behavior to be irreversibly altered upon installation of a software update.

Unfortunately, all known implementations of physically reconfigurable PUFs rely
on optical mechanisms, reconfigurable hardware (such as FPGAs), or novel mem-
ory technologies [30], which all have serious drawbacks in practice. In particular,
optical PUFs cannot be easily integrated into integrated circuits and require expen-

442 A.-R. Sadeghi et al.

sive and error-prone evaluation equipment, while FPGA-based solutions cannot be
realized with non-reconfigurable hardware (such as ASICs) that is commonly used
in practice [37].

In this context, several attempts to emulate physically reconfigurable PUFs have
been made. One of the first proposals was integrating a floating gate transistor
into the delay lines of an arbiter PUF, which allows physically changing the chal-
lenge/response behavior of the PUF based on some state maintained in nonvolatile
memory [33, 34]. Other approaches restrict access to the interface of the PUF and use
part of the PUF challenge as reconfiguration data [30, 31], which, however, works
only for certain PUF types.

The concept and security properties of logically reconfigurable physical unclon-
able functions (LR-PUFs) have been recently formalized by Katzenbeisser et al.
[27]. In contrast to classical, typically static PUFs, LR-PUFs can be dynamically
reconfigured after deployment such that their challenge/response behavior changes
in a random manner without replacing or physically modifying the PUF. The idea is
amending a conventional PUF with stateful control logic that transforms challenges
and responses of the PUF (Fig. 19.4). Katzenbeisser et al. [27] present and evaluate
two different constructions for LR-PUFs that are simple, efficient, and can be easily
implemented.

19.6.2 PUF-Based Remote Attestation

Remote attestation is a mechanism to report the software state of a remote comput-
ing platform (prover) to a verifying party (verifier). This generally requires trusted
hardware to securely record and transmit the system state of the prover to the verifier.
However, trusted hardware is often too expensive for resource-constrained embedded
devices, such as wireless sensor nodes and RFIDs. Hence, software attestation was
proposed as a lightweight alternative that exploits the computational constraints of
a device to make statements about its internal software state [57, 58]. Specifically,

Fig. 19.4 LR-PUF concept

Control
Logic

(State S)

PUF

Input

Reconfigure

Output

Challenge Response

LR-PUF

19 Physical Security Primitives 443

software attestation requires the prover to compute the response R to a given attes-
tation challenge C within a given time frame. When receiving the correct response
in the expected time, the verifier has assurance that only a specific attestation algo-
rithm could have been executed within that time frame. The attestation algorithm is
implemented as a checksum function that iteratively merges information gathered
from the device, such as program memory samples, into the attestation response R.
Hence, a timely and correctly computed attestation response provides assurance to
the verifier that the prover is in the expected system state.

Standard software attestation makes two major assumptions: (1) the computational
capabilities of the prover are known to the verifier and unmodified, and (2) the
attestation algorithm is indeed computed by the prover and not delegated to another
device. In most scenarios, software attestation is thus limited to attest only local
provers such that their identity can be directly verified and undesired communication
interfaces can be disabled. But even a local prover does not always guarantee that
its identity is authentic, e.g., if multiple hardware revisions of apparently identical
devices exist.

To overcome these problems, the attestation response R must be linked to the hard-
ware it was computed on, which can be achieved by using PUFs [55, 56]. The idea is
to include the responses of the prover’s PUF into the computation of R while the soft-
ware attestation is running. To assure that the attestation algorithm is not outsourced,
the PUF is queried sufficiently often to overwhelm all external communication inter-
faces of the prover. Thus, the constraints of the communication interfaces of the
prover are exploited, similar to the computational constraints exploited by standard
software attestation. Due to the uniqueness of the PUF responses and their tight
integration into the attestation algorithm, a correct and timely attestation response R
provides assurance on the identity of a remote device as well as the integrity of its
software state. A practical implementation PUF-based attestation has been presented
by Schulz et al. [28, 56].

19.7 Open Questions and Challenges

Practical PUF Designs. Known electronic PUFs may be compromised since delay-
based PUFs can be emulated using machine-learning techniques (Sect. 19.3.1) and
memory-based PUFs can be read out completely since they have only a limited
response space. While these PUFs can be used in many applications, such as PUF-
based key storage (Sect. 19.5.2) and controlled PUFs (Sect. 19.4.1), that ensure that
the adversary cannot access the challenge/response pairs of the PUF, the use of these
PUFs in applications with strong unclonability and unpredictability requirements,
such as device authentication schemes (Sect. 19.5.1) must be carefully considered.
Moreover, in general PUF responses can be verified only when the verifier has access
to a database of previously recorded challenge/response pairs (CRPs), which may
lead to scalability problems in practice. Hence, one open challenge is the devel-
opment and implementation of novel PUF designs that achieve the requirements

444 A.-R. Sadeghi et al.

of many existing theoretical PUF-based security solutions in literature, including
resistance to emulation attacks, large (ideally exponential) challenge/response space
to prevent complete readout of the PUF, public verifiability (i.e., no CRP database
required to verify PUF response), tamper-evidence, physical reconfigurability, and
small hardware footprint.

Common Evaluation Framework for PUFs. Currently, there is no common evalua-
tion framework for PUFs that allows assessing and quantifying the security properties
of real PUF implementations. The security properties of existing PUF-based security
solutions in literature are proven in PUF security models that are typically not gen-
eral enough and exclude certain PUF types, do not reflect all properties of real PUF
implementations, or include security parameters that cannot be determined for real
PUF implementations in practice. Hence, it is unclear whether these schemes can
actually be implemented securely. Therefore, another open challenge is the develop-
ment of a common evaluation framework for the analysis of PUF implementations
that (1) captures the security properties of PUFs according to modern cryptographic
standards and can be used to assess the security of PUF-based cryptographic schemes
and security solutions, and (2) allows for empirically assessing and quantifying the
most important properties of PUFs, including robustness, physical unclonability,
unpredictability of responses to the same challenge to different PUF instances and
to different challenges to the same PUF instance, and tamper-evidence. A promising
first step in this direction has been presented by Armknecht et al. [1]. However, they
do not consider all security properties of PUFs and do not show how their approach
applies to other PUF implementations than SRAM PUFs.

Side-channel Analysis of PUFs. Many PUF-based applications such as PUF-based
key storage require PUF responses to be inaccessible to the adversary, which is typi-
cally justified by the assumption of the PUF being tamper-evident so that any attempt
to physically access the PUF response (such as an invasive attack) permanently
changes the challenge/response behavior of the PUF. However, even when a tamper-
evident PUF (such as a coating PUF) is used, it is currently unclear whether existing
PUF implementations in integrated circuits leak information on their response over
side channels, such as electromagnetic radiation or power consumption. Hence, the
analysis of the side-channel leakage of known PUF implementations is an interesting
open research problem.

19.8 Conclusion

Physically unclonable functions are a very interesting and promising approach
to increase the security of embedded systems. They open new directions toward
lightweight privacy-preserving protocols based on physical assumptions and cost-
effective tamper-evident storage for cryptographic secrets that even cannot be learned
or reproduced by the manufacturer of the corresponding PUF.

19 Physical Security Primitives 445

However, several aspects of PUFs and their deployment require further research.
Since PUFs are bound to the device in which they are embedded, no other entity
can verify the response r of a PUF to a given challenge c without knowing an
authentic challenge/response pair (c, r) in advance. Current PUF-based protocols aim
at circumventing this problem by providing the reader with a database that contains
a set of challenge/response pairs that act as reference values for the responses of the
interrogated PUF. However, this approach is not scalable and opens the possibility
of replay-attacks. Furthermore, PUFs realizations require careful statistical testing
before they can be safely deployed to real security-critical products, while, to our
knowledge, there is no complete security evaluation framework for PUFs yet.

Acknowledgments This work has been supported in part by the European Commission under
grant agreement ICT-2007-238811 UNIQUE.

References

1. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formal foundation
for the security features of physical functions. In: IEEE Symposium on Security and Privacy
(SSP), pp. 397–412. IEEE Computer Society (2011)

2. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-resilient encryp-
tion based on physically unclonable functions. In: M. Matsui (ed.) Advances in Cryptology
(ASIACRYPT), Lecture Notes in Computer Science (LNCS), vol. 5912, pp. 685–702. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2009)

3. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public physically
unclonable functions. In: S. Katzenbeisser, A.R. Sadeghi (eds.) Information Hiding (IH), Lec-
ture Notes in Computer Science (LNCS), vol. 5806, pp. 206–220. Springer Berlin/Heidelberg,
Berlin, Heidelberg (2009)

4. Bolotnyy, L., Robins, G.: Physically unclonable function-based security and privacy in RFID
systems. In: Conference on Pervasive Computing and Communications (PerCom), pp. 211–
220. IEEE (2007)

5. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Computer and
Communications Security (ACM CCS), pp. 82–91. ACM, New York, NY, USA (2004)

6. Bringer, J., Chabanne, H., Icart, T.: Improved privacy of the tree-based hash protocols using
physically unclonable functions. In: R. Ostrovsky, R. De Prisco, I. Visconti (eds.) Security and
Cryptography for Networks (SCN), Lecture Notes in Computer Science (LNCS), vol. 5229, pp.
77–91. Springer Berlin/Heidelberg, Berlin, Heidelberg (2008)

7. Bringer, J., Chabanne, H., Icart, T.: On physical obfuscation of cryptographic algorithms. In:
B. Roy, N. Sendrier (eds.) International Conference on Cryptology in India (INDOCRYPT),
Lecture Notes in Computer Science (LNCS), vol. 5922, pp. 88–103. Springer Berlin/Heidelberg,
Berlin, Heidelberg (2009)

8. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable func-
tions in the universal composition framework. In: P. Rogaway (ed.) Advances in Cryptol-
ogy (CRYPTO), Lecture Notes in Computer Science (LNCS), vol. 6841, pp. 51–70. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2011)

9. Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design and implementation
of PUF-based unclonable RFID ICs for anti-counterfeiting and security applications. RFID,
2008 IEEE International Conference on pp. 58–64 (2008)

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agree-
ment from close secrets. In: C. Dwork (ed.) Advances in Cryptology (CRYPTO), Lecture Notes

446 A.-R. Sadeghi et al.

in Computer Science (LNCS), vol. 4117, pp. 232–250. Springer Berlin/Heidelberg, Berlin,
Heidelberg (2006)

11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from bio-
metrics and other noisy data. In: C. Cachin, J. Camenisch (eds.) Advances in Cryptology
(EUROCRYPT), Lecture Notes in Computer Science (LNCS), vol. 3027, pp. 523–540. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2004)

12. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-based
secure key storage. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp.
59–64. ACM, New York, NY, USA (2011)

13. Gassend, B.: Physical random functions. Master’s thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology (MIT), The Stata Center, 32
Vassar Street, Cambridge, Massachusetts 02139 (2003)

14. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In:
Annual Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)

15. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In:
ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160.
ACM, New York, NY, USA (2002)

16. Guajardo, J., Kumar, S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for
IP protection. In: P. Paillier, I. Verbauwhede (eds.) Cryptographic Hardware and Embedded
Systems (CHES), Lecture Notes in Computer Science (LNCS), vol. 4727, pp. 63–80. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2007)

17. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions and public-
key crypto for FPGA IP protection. In: Field Programmable Logic and Applications (FPL), pp.
189–195. IEEE (2007)

18. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Brand and IP protection with physical
unclonable functions. In: IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 3186–3189. IEEE (2008)

19. Hammouri, G., Dana, A., Sunar, B.: CDs have fingerprints too. In: C. Clavier, K. Gaj (eds.)
Cryptographic Hardware and Embedded Systems (CHES), Lecture Notes in Computer Science
(LNCS), vol. 5747, pp. 348–362. Springer Berlin/Heidelberg, Berlin, Heidelberg (2009)

20. Hammouri, G., Öztürk, E., Birand, B., Sunar, B.: Unclonable lightweight authentication
scheme. In: L. Chen, M.D. Ryan, G. Wang (eds.) International Conference on Information and
Communications Security (ICICS), Lecture Notes in Computer Science (LNCS), vol. 5308, pp.
33–48. Springer Berlin/Heidelberg, Berlin, Heidelberg (2008)

21. Holcomb, D., Burleson, W., Fu, K.: Initial SRAM state as a fingerprint and source of true
random numbers for RFID tags. In: Workshop on RFID Security (RFIDSec) (2007)

22. Holcomb, D., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint and
source of true random numbers. IEEE Transactions on Computers 58(9), 1198–1210 (2009)

23. Ignatenko, T., Schrijen, G.J., Škorić, B., Tuyls, P., Willems, F.: Estimating the secrecy-rate of
physical unclonable functions with the context-tree weighting method. In: IEEE International
Symposium on Information Theory (ISIT), pp. 499–503. IEEE (2006)

24. Intrinsic ID: Website. http://www.intrinsic-id.com/products.htm (2012)
25. Karakoyunlu, D., Sunar, B.: Differential template attacks on PUF enabled cryptographic

devices. In: Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2010)
26. Kardas, S., Kiraz, M.S., Bingol, M.A., Demirci, H.: A novel RFID distance bounding pro-

tocol based on physically unclonable functions. In: Radio Frequency Identification: Secu-
rity and Privacy Issues (RFIDSec), Lecture Notes in Computer Science (LNCS). Springer
Berlin/Heidelberg, Berlin, Heidelberg (2011)

27. Katzenbeisser, S., Kocabaş, U., van der Leest, V., Sadeghi, A.R., Schrijen, G.J., Schröder,
H., Wachsmann, C.: Recyclable PUFs: Logically reconfigurable PUFs. In: Workshop on
Cryptographic Hardware and Embedded Systems (CHES), vol. 6917, pp. 374–389. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2011)

28. Kocabas, Ü., Sadeghi, A.R., Schulz, S., Wachsmann, C.: Poster: Practical embedded remote
attestation using physically unclonable functions (2011)

http://www.intrinsic-id.com/products.htm

19 Physical Security Primitives 447

29. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract: The butterfly
PUF protecting IP on every FPGA. In: Workshop on Hardware-Oriented Security (HOST), pp.
67–70. IEEE (2008)

30. Kursawe, K., Sadeghi, A.R., Schellekens, D., Skoric, B., Tuyls, P.: Reconfigurable physical
unclonable functions – Enabling technology for tamper-resistant storage. In: Workshop on
Hardware-Oriented Security and Trust (HOST), pp. 22–29. IEEE (2009)

31. Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique to build a
secret key in integrated circuits for identification and authentication applications. In: Sympo-
sium on VLSI Circuits, pp. 176–179. IEEE (2004)

32. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D
flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62. ACM,
New York, NY, USA (2010)

33. Lim, D.: Extracting secret keys from integrated circuits. Master’s thesis, Department of Elec-
trical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), The
Stata Center, 32 Vassar Street, Cambridge, Massachusetts 02139 (2004)

34. Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extracting secret keys
from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
13(10), 1200–1205 (2005)

35. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power sub-threshold
design of secure physical unclonable functions. In: International Symposium on Low-Power
Electronics and Design (ISLPED), pp. 43–48. IEEE (2010)

36. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices.
In: Benelux Workshop on Information and System Security (2008)

37. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of the art and
future research directions. In: A.R. Sadeghi, D. Naccache (eds.) Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pp. 3–37. Springer Berlin/Heidelberg, Berlin,
Heidelberg (2010)

38. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF.
In: Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (2010)

39. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In: International Con-
ference on Computer-Aided Design (ICCAD), pp. 670–673. IEEE (2008)

40. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware security. In:
International Test Conference (ITC), pp. 1–10. IEEE (2008)

41. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for design and implementation of
secure reconfigurable PUFs. ACM Transactions on Reconfigurable Technology and Systems
(TRETS) 2(1), 1–33 (2009)

42. Marsaglia, G.: The marsaglia random number CDROM including the Diehard battery of tests
of randomness. http://www.stat.fsu.edu/pub/diehard/

43. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and fuzzy extractors.
In: J.M. McCune, B. Balacheff, A. Perrig, A.R. Sadeghi, A. Sasse, Y. Beres (eds.) Trust and
Trustworthy Computing (TRUST), Lecture Notes in Computer Science (LNCS), vol. 6740, pp.
33–47. Springer Berlin/Heidelberg, Berlin, Heidelberg (2011)

44. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive
devices. In: Conference on Pervasive Computing and Communications (PerCom), pp. 170–
178. IEEE, Washington, DC, USA (2008)

45. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science
297(5589), 2026–2030 (2002)

46. Posch, R.: Protecting devices by active coating. Journal of Universal Computer Science 4(7),
652–668 (1998)

47. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest proposals for low-
cost RFID systems. In: Auto-ID Labs Research Workshop (2004)

48. Rührmair, U.: SIMPL systems: On a public key variant of physical unclonable functions.
Cryptology ePrint Archive, Report 2009/255 (2009)

http://www.stat.fsu.edu/pub/diehard/

448 A.-R. Sadeghi et al.

49. Rührmair, U.: SIMPL systems, or: Can we design cryptographic hardware without secret key
information? In: I. Černá, T. Gyimóthy, J. Hromkovič, K. Jefferey, R. Králović, M. Vukolić, S.
Wolf (eds.) Current Trends in Theory and Practice of Computer Science (SOFSEM), Lecture
Notes in Computer Science (LNCS), vol. 6543, pp. 26–45. Springer Berlin/Heidelberg, Berlin,
Heidelberg (2011)

50. Rührmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, U., Csaba, G.: Towards elec-
trical, integrated implementations of SIMPL systems. In: P. Samarati, M. Tunstall, J. Posegga,
K. Markantonakis, D. Sauveron (eds.) Workshop on Information Security Theory and Prac-
tices (WISTP), Lecture Notes in Computer Science (LNCS), vol. 6033, pp. 277–292. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2010)

51. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks
on physical unclonable functions. In: ACM Conference on Computer and Communications
Security (ACM CCS), pp. 237–249. ACM, New York, NY, USA (2010)

52. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable functions.
Cryptology ePrint Archive, Report 2009/277 (2009)

53. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M.,
Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom
number generators for cryptographic applications. Special Publication 800–22 Revision 1a,
NIST (2010)

54. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy by physi-
cally unclonable functions. In: A.R. Sadeghi, D. Naccache (eds.) Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pp. 281–305. Springer Berlin/Heidelberg,
Berlin, Heidelberg (2010)

55. Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: Lightweight remote attestation using
physical functions. In: ACM Conference on Wireless Network Security (WiSec), pp. 109–114.
ACM, New York, NY, USA (2011)

56. Schulz, S., Wachsmann, C., Sadeghi, A.R.: Lightweight remote attestation using physical func-
tions. Tech. rep., Center for Advanced Security Research Darmstadt (CASED), Germany,
Mornewegstraße 32, 64293 Darmstadt, Germany (2011)

57. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: Verifying code
integrity and enforcing untampered code execution on legacy systems. In: ACM Symposium
on Operating Systems Principles (SOSP), vol. 39, pp. 1–16. ACM, New York, NY, USA (2005)

58. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: SoftWare-based ATTestation for
embedded devices. In: IEEE Symposium on Security and Privacy (SSP), pp. 272–282. IEEE,
Los Alamitos, CA, USA (2004)

59. Su, Y., Holleman, J., Otis, B.P.: A 1.6pJ/bit 96% stable chip-ID generating circuit using
process variations. In: International Solid-State Circuits Conference (ISSCC), pp. 406–611.
IEEE (2007)

60. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit using process
variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)

61. Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: ACM/IEEE Design Automation Conference (DAC), pp. 9–14. IEEE (2007)

62. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: D. Pointcheval (ed.) Topics in
Cryptology (CT-RSA), Lecture Notes in Computer Science (LNCS), vol. 3860, pp. 115–131.
Springer Berlin/Heidelberg, Berlin, Heidelberg (2006)

63. Tuyls, P., Schrijen, G.J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof
hardware from protective coatings. In: L. Goubin, M. Matsui (eds.) Cryptographic Hardware
and Embedded Systems (CHES), Lecture Notes in Computer Science (LNCS), vol. 4249, pp.
369–383. Springer Berlin/Heidelberg, Berlin, Heidelberg (2006)

64. Tuyls, P., Škorić, B.: Secret key generation from classical physics: Physical uncloneable func-
tions. In: S. Mukherjee, R.M. Aarts, R. Roovers, F. Widdershoven, M. Ouwerkerk (eds.) Am
Iware Hardware Technology Drivers of Ambient Intelligence, Philips Research Book Series,
vol. 5, pp. 421–447. Springer Netherlands, Dordrecht (2006)

19 Physical Security Primitives 449

65. Tuyls, P., Škorić, B., Ignatenko, T., Willems, F., Schrijen, G.J.: Entropy estimation for optical
PUFs based on context-tree weighting methods. In: P. Tuyls, B. Škorić, T. Kevenaar (eds.)
Security with Noisy Data, pp. 217–233. Springer London, London (2007)

66. Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information-theoretic
security analysis of physical uncloneable functions. In: A. Patrick, M. Yung (eds.) Financial
Cryptography and Data Security (FC), Lecture Notes in Computer Science (LNCS), vol. 3570,
p. 578. Springer Berlin/Heidelberg, Berlin, Heidelberg (2005)

67. Verayo, Inc.: Website. http://www.verayo.com/product/products.html (2012)
68. Škorić, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic analysis of capacitive

physical unclonable functions. Journal of Applied Physics 100(2), 024,902–024,902–11 (2006)
69. Škorić, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic analysis of coating

PUFs. Cryptology ePrint Archive, Report 2006/101 (2006)
70. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable functions.

In: J. Ioannidis, A. Keromytis, M. Yung (eds.) Applied Cryptography and Network Secu-
rity (ACNS), Lecture Notes in Computer Science (LNCS), vol. 3531, pp. 99–135. Springer
Berlin/Heidelberg, Berlin, Heidelberg (2005)

71. Willems, F.M.J.: CTW website. http://www.ele.tue.nl/ctw/
72. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: Basic

properties. IEEE Transactions on Information Theory 41(3), 653–664 (1995)

http://www.verayo.com/product/products.html
http://www.ele.tue.nl/ctw/

Chapter 20
SCADA System Cyber Security

Igor Nai Fovino

Abstract Modern industrial systems (e.g. power plants, water plants, chemical
installation, etc.) make large use of information and communication technologies
(ICT). In the past years, those systems started to use public networks (i.e. the Inter-
net) for system-to-system interconnection, to provide new features and services. The
migration from the traditional isolated system approach to an open system approach
exposed these infrastructures to cyber-threats. The scope of this chapter is provide
the reader with an overview of the cyber threats and vulnerabilities affecting the
system control and data acquisition systems (SCADA), i.e. those systems in charge
for monitoring and controlling the industrial processes, providing indications on
possible mitigation techniques.

Keywords SCADA · DCS · Cyber security

20.1 Introduction

Modern industrial systems (e.g. power plants, water plants, chemical installation,
etc.) make large use of ICT technologies. In the past years, those systems started
to use public networks (i.e. the Internet) for system-to-system interconnection. As
a result, thanks to this architectural advance, it was possible to provide new ser-
vices and features. The technological shift from a virtually isolated architecture to
an open (even if regulated) and interconnected system-of-system architecture has
dramatically impacted the security of these installations. The case of Stuxnet [1]
the first malware able to take the control of a field network, made the exposure to
cyber-threats of system control and data acquisition systems (SCADA) extremely
evident. SCADA systems are generally prone to different categories of vulnerabili-
ties: protocol-based vulnerabilities, architectural vulnerabilities but also procedural

I. N. Fovino (B)
Institute for the Protection and Security of the Citizen, Joint Research Centre, European
Commission, via E.Fermi 1, Ispra 21027, Italy
e-mail: igor.nai@gmail.com

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 451
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_20,
© Springer Science+Business Media New York 2014

452 I. N. Fovino

and conceptual weaknesses. The comprehension of these threats is the basis on which
build more secure industrial infrastructures. The scientific community started to pay
attention to the security of SCADA systems only few years ago. For an accessible
survey, we point to [2]. Other surveys analyse more specific topics. Adam et al.,
in [13], presented an interesting high-level analysis of the possible threats to the
SCADA system of power plants, a categorisation of the typical hardware devices
involved and some high level discussion about the intrinsic vulnerabilities of the
common power plant architectures. A more detailed work on the topic of SCADA
security is presented by Chandia et al. [3]. In this work, the authors describe two
possible strategies for securing SCADA networks, pointing out that several aspects
have to be improved in order to secure these architectures. Some works discuss the
security of SCADA communication protocols: for example, Majdalawieh et al. [19]
presented an extension of the DNP3 protocol (we remind here that DNP3 stands for
Distributed Network Protocol, and its a protocol widely used in SCADA systems),
called DNPsec, which tries to address some of the known security problems of that
Master-Slave control protocol (i.e. integrity of the commands, authentication, non
repudiation, etc.). Similar approaches have been presented also by Heo et al. [7]
while Mander et al. [6] presented a proxy-filtering solution aiming at identifying and
avoiding anomalous control traffic. To understand the real exposure of SCADA sys-
tems to cyber-threats, testing campaigns have been conducted in recent years. In this
context Masera et al. [15], presented the results of a field test campaign studying the
real effects of a set of well-identified attack scenarios against the SCADA systems
of an electric distribution station and a real power plant.

The goal of this chapter is to provide to the reader an overview of the main threats
to which SCADA systems are exposed and to provide pointers to possible solutions.
In the following, after providing an overview of a typical SCADA system, through
concrete examples, the major classes of vulnerabilities affecting these systems will
be described and possible mitigation actions will be presented and discussed. 1

20.2 SCADA Architecture Overview

SCADA systems play a relevant role in the control and management of industrial
installation. From a conceptual point of view, they are a “distributed control system”
spread between two networks:

• The Control (or Field) Network: It hosts all the devices that, on one side, control
the actuators and sensors of the physical layer and on the other side provide the
control interface to the process network. A typical control network is composed
of the following macro-elements: Programmable Logic Controller (PLC)-Remote
Terminal Units (RTU) and Actuators. The PLCs receive data from the physical
layer, elaborate on the basis of this data a “local strategy”, and send back to the

1 The content of this chapter summarises the results of the research activity conducted by the author
within the context of the EU funded Escort Project (http://www.escortsproject.eu/)

http://www.escortsproject.eu/

20 SCADA System Cyber Security 453

actuators a set of appropriate commands. Moreover, the same PLCs provide, when
requested, the data received from the physical layer to the SCADA servers in the
process network, and execute the commands received by them.

• The Process Network: It contains the SCADA servers used to keep under control
the physical layer. This network hosts the following elements:

– SCADA server/DCS: In the literature of industrial control system, it is indeed
made distinction between SCADA servers and Distributed Control Systems
(DCS). The former more event driven and oriented to data gathering, the latter
more process-oriented. In the modern world, the differences between SCADA
systems and DCS are becoming more and more weak as the functionalities
provided by these two systems are today almost overlapping. For that reason in
the following they will be presented as if they are the same thing (even if they
are in principle different). The goal of modern SCADA servers and DCS is to
monitor and control processes and events which run in the industrial installation.

– Human Machine Interface (HMI): It provides a user friendly interface between
the operator and the SCADA server.

– OPC Server: OPC [8] stands for OLE for Process Control. It is a suite of stan-
dards defining a set of objects, interfaces and methods to facilitate interoperabil-
ity among industrial control system (ICS) devices. An OPC Server is a software
application that acts as an Application programming interface (API) or protocol
converter. An OPC Server will connect to a device such as a PLC, DCS, RTU
or a data source such as a database or user interface, and translate the data into
a standard-based OPC format. OPC compliant applications such as an HMI,
historian, spreadsheet, trending application, etc., can connect to the OPC Server
and use it to read and write device data. OPC Servers are based on Server/Client
architectures.

– Builder Server: The Builder Server is the server usually used in order to “pro-
gram” the PLCs. In order to work correctly it has to be directly connected with
the control network, to be able to download the control code on the related PLC.

The glue allowing the system components to stay together is constituted by network
devices (switches, transmitters, wireless devices). They are used to deliver data and
commands across all the system. Being the most evident access point to a typical
SCADA system, they are generally protected with traditional cyber-security appli-
ances such as firewalls, intrusion detection systems, etc. Figure 20.1 provides a high
level picture of the SCADA cyber layer, the Process Network and the control network.

20.2.1 SCADA Protocols Overview

The core of every SCADA system is constituted by the suite of communication
protocols used to exchange commands/information between masters and slaves.
SCADA protocols were designed in the 1970s for serial communication and only in
the 1990s they have been “ported” on TCP/IP. Examples of SCADA protocols are

454 I. N. Fovino

SCADA svr/DCS

OPC svr.

Control Network

SCADA protocols
over OPC, over TCP/

IP

SCADA protocols
over TCP/IP

HMI

Queries
over TCP/IP

Builder
Svr.

PLC
configuration
over TCP/IP

PLC Configuration over
Serial Comm.

Exchange
Network

Control Centre
Network

Data to the
Exchange
Servers

Update and Patching Traffic

M
DI

AI

AO

DO

Field Network

Serial Commun.
Through MMS-Profibus-
other SCADA protocols

Serial Commun.
Through MMS-Profibus-
other SCADA protocols

PLC CPU

SCADA protocols over
TCP/IP

M

Field Network

Process Network

PLC
Co-Proc.

PLC CPU

PLC CPU

PLC CPU

PLC CPU
PLC CPU

Fig. 20.1 a High level schema of the SCADA cyber layer, b Control network, c Process network

20 SCADA System Cyber Security 455

Modbus [18], DNP3 [19] (available for both serial and TCP/IP communication chan-
nels), IEC 60870-5 [20], Profibus [21] (serial communication), etc. Several vulnera-
bilities in the SCADA architectures are due to weaknesses of the SCADA protocols.
To understand them, in the following we will provide an overview of one of the
simplest and most used SCADA protocols, Modbus. We can consider this protocol
as a good example to understand the tasks, the structure and the vulnerability classes
associated with all the modern SCADA communication protocols.

20.2.1.1 Modbus

Modbus is an application layer messaging protocol, positioned at level 7 of the OSI
model providing client/server communication between devices connected on differ-
ent types of buses or networks. The Modbus transmission protocol was developed by
Gould Modicon for process control systems. To get interconnected the devices can
use either serial buses or TCP/IP-based communication channels. Almost all man-
ufacturers produce equipment supporting the Modbus protocol and many systems
using such protocols are involved in industrial process. It can be considered as a de
facto industrial standard. The Modbus operates according to a classical master/slave
principle; the protocol allows one master to manage up to 247 slaves. Only the master
initiates a transaction. Such transactions can be: Query/response type (only a single
slave is addressed) or Broadcast/no response type (all slaves are addressed). The
Modbus protocol provides frames for the transmission of messages between master
and slaves. The following steps compose the communication scheme:

1. The master sends a message containing the address of the intended receiver, what
the receiver must do, the data needed to perform the action and a cyclic redundancy
check (CRC) code.

2. The slave reads the message, and if the packet format is correct, it performs the
required task and sends a response back to the master. Such reply usually contains
the slave address, the action performed, the result of the action and a CRC code.
If the initial message was of a broadcast type, there is no response from the
slaves. The master can send another query as soon as it has received the response
message. A time-out mechanism is used to avoid “deadlock” states.

An overview of the security weaknesses of Modbus is presented in Sect. 20.3.4.1.

20.3 SCADA Vulnerabilities and Attacks

Studies on the security of SCADA systems have showed how these systems are far
from being considered secure and safe (we point the readers to the following works
for a comprehensive survey in this context [2, 15]) To classify these vulnerabilities
a multi-layered approach has been adopted: vulnerabilities can be caused by design
errors (in architectures, in processes, in policies, in protocols) and implementation

456 I. N. Fovino

errors (again in protocols, software (SW), policies). Under this light in this chapter
we adopt the following categorisation: architectural vulnerabilities, security policy
vulnerabilities, software vulnerabilities, communication protocol vulnerabilities. In
the following we provide a brief description of these categories.

20.3.1 Architectural Vulnerabilities

These vulnerabilities directly derive from weaknesses of the SCADA architecture
adopted. Modern SCADA architectures are in general not so different in principle
from the architectures used in the 1980s and 1990s for the following reasons:

1. These architectures have been tested for decades and then they are considered
stable and well known.

2. The cost of the deployment of a completely new architecture is not negligible.
3. There is not a clear perception from the process engineers and the line managers

of the benefit of investments in new architectures.

Migrating from an isolated to an open environment, from serial communication
to TCP/IP communication, “traditional SCADA architectures” started to show all
their limits. Process engineers tried to fix the new security problems, following the
examples of the traditional ICT world, without considering that the peculiarities of the
SCADA systems in several situations badly match with the constraints of traditional
ICT security. Examples of architectural vulnerabilities common in typical SCADA
systems are:

• The weak separation between the Process network and the Control Network. Since
the field network is the inner part of the whole architecture, generally it is not
strongly separated from the process network because, apparently, it is improbable
for an attacker to be able to reach this area. However, several studies [12, 16]
have showed how it is indeed relatively easy to reach this part of the network for
someone determined at to damage the target system.

• The lack of authentication between the active components of the SCADA sys-
tem (e.g. actuators-SCADA servers, actuators-RTUs, SCADA-Data exchange
Servers). Since the control network has always been a closed environment, there
was not a need for integrating authentication mechanisms among the different ele-
ments connected on this network. However, today the lack of authentication is an
architectural vulnerability, which can be easily used in order to inflict any sort of
damage (see next sections for details).

• The single point of failure represented by the process firewall (FW) and by remote
access devices [(e.g. authentication servers (Radius server)].

• The scarce attention to network load balancing and redundancy.

Architectural vulnerabilities cannot easily be mitigated due to the impact archi-
tectures have on performance and specific needs of industrial systems. Moreover

20 SCADA System Cyber Security 457

modifications of ICT architecture produce usually high costs for a company since
their application often implies a stop of the production system.

20.3.2 Security Policy Vulnerabilities

An architecturally strong system still is vulnerable if it is badly maintained or badly
used. In other words, a system in order to be considered robust has to be provided
with both technical and policy level security layers. While in general the security
policies related to the physical access to SCADA systems are quite well received and
implemented in industrial systems, the security policies related to ICT in the process
network are in general weak. Usually a core of policies is implemented, but it is the
duplication of the traditional “ICT corporate” set of policies. In several situations
these are not optimally suited for the process environment, and the operators may
simply ignore those that could impact on their daily work. Example of security policy
vulnerabilities can be:

• Lack of patching policies: Security patches are quite invasive (especially in the
Windows world). On SCADA systems is common to find ad-hoc made software.
Patches might interfere heavily with this software. Moreover, several patches
require a system reboot in order to become effective, and the reboot of a SCADA
server for example is an operation that might interfere with the production system.
For that reason, security patching policies are not really popular within the process
network.

• Rare or null antivirus update policies: also antivirus might interfere with the
SCADA software. Moreover, the updates need to grant the access of the process
system to the Internet or to insert into the architecture a parent server able to dis-
patch the new signatures. In reality it is generally preferred to update the signatures
by hand, keeping the process network as isolated as possible.

• Nonrigorous access policies: Access policies are usually well codified, but badly
implemented on the field (e.g. the classical post-it attached on a screen with pass-
word and login data). In that case what fails in the system is the process of security
instruction of the operators.

In the past years international committees released several standards and best prac-
tices taking into consideration the security of industrial systems. Policies for SCADA
systems should be rethought in the light of these standards and best practices. In the
following, we provide a list of committees best practices and standards with indica-
tion about their content/subject of work.

API 1164 (Standard)
American petroleum institute (API) 1164 is an international standard providing guid-
ance to the operators of oil and gas liquids pipeline systems for managing SCADA
system integrity and security. This document embodies the API’s Security Guide-
lines for the Petroleum Industry. This guideline is specifically designed to provide

458 I. N. Fovino

the operators with a description of industry practices in SCADA security, and to pro-
vide the framework needed to develop sound security practices within the operator’s
individual companies.

IEEE 1686 (Standard)
IEEE 1686 is a technical standard defining security requirements for intelligent elec-
tronic devices (IED): This standard defines the general requirements to protect ser-
ial communications between master stations and remote terminal units from cyber
attack, and to strengthen authenticated remote access to maintenance ports in RTUs.

ISO 27001 (Standard)
International organisation for standardisation (ISO) 27001-Information security

management systems provides a model for an information security management
system (ISMS). Even if quite general this standard can be adapted to the peculiar
needs of SCADA systems.

NIST 800-53 (Best Practice)
NIST is a non-regulatory federal agency within the U.S. Department of Commerce.
The NIST 800-53-Recommended Security Controls for Federal Information Systems
and Organisations establishes an overall security program for industrial Information
Systems by defining a series of security controls that embrace the whole life cycle
of the system. The document contains a set of best practices and guidelines.

NERC CIP (Committee)
The North American Electric Reliability Corporation’s (NERC) is the electric reli-
ability organisation (ERO) certified by the Federal Energy Regulatory Commission
to establish and enforce reliability standards for the bulk-power system. NERC CIP
is a committee in charge for the definition of a suite of standards related to different
aspects of the security of the electric world. Nevertheless, several of these standards
might be taken as example also for more generic industrial systems and ICS.

ISA99 (Committee)
The International Society of Automation has created the ISA99 Committee to estab-
lish standards for implementing electronically secure manufacturing and control
systems and security practices and assessing electronic security performance. The
Committee’s focus is to improve the confidentiality, integrity, and availability of com-
ponents or systems used for manufacturing or control and provide criteria for procur-
ing and implementing secure control systems. Of particular interest: ISA-99.01.01
describes concepts and models that form the basis for the ISA99. ISA-99.01.03
prescribes the requirements to establish quantitative system security compliance
metrics for the system under consideration. ISA-99.02.01-2009 establishes an Indus-
trial Automation and Control Systems Security Program. ISA-99.02.02 defines how
to operate an Industrial Automation and Control Systems Security Program. ISA-
99.03.03 defines standards for system security requirements and security assurance
levels.

20 SCADA System Cyber Security 459

IEC 62351 (Committee)
International electrotechnical commission (IEC) 62351 is an international commit-
tee in charge for the definition of a standard for power systems management and
associated information exchange—Data and communications security. Several of its
indications find application in almost all the SCADA systems.

These are only few examples of international standards dealing with the security
of industrial control systems. There are indeed a lot more, dedicated to different
aspects and to different type of industrial architectures.

20.3.3 Software Vulnerabilities

These vulnerabilities are strongly related to the lack of rigorous security patching
policies. Everything in a SCADA system is managed by software and it is impossible
to guarantee that a piece of software is completely “bug free”. Software vulnerabilities
are extremely insidious since potentially they can allow an attacker to take full control
of a target system. It is not possible in this chapter to list software vulnerabilities
typical of SCADA systems, since considering the heterogeneity of these systems
we would be probably obliged to list as “candidate vulnerability” every software
vulnerability discovered till now. However, classical classes of vulnerabilities, which
surely affect SCADA systems, can be the following: Buffer overflows, SQL-injection,
Format String, Web-application vulnerabilities. Moreover to these classes we need
to also add all the vulnerabilities contained in the software deployed into the PLCs.
These “software logics” are normally written without any attention to security issues.
Considering their location (on board of PLCs) it is hardly possible to detect the
presence of vulnerabilities in advance, but at the same time being so close to the
actuators they can be one of the most dangerous sources of threat. For details about
SCADA software vulnerabilities we point to [10].

20.3.4 Communication Protocol Vulnerabilities

Most of SCADA protocols, such as Modbus and DNP were designed several years
ago, for control networks based on serial connections. When Ethernet connections
became widely used as the physical connection layer for local networks, SCADA pro-
tocols were implemented over IP-based protocols, usually TCP. SCADA protocols
usually do not have any protection mechanisms, such as authentication, authorisation,
and encryption, due to their original design for serial cable. Since it is not possible to
summarise in a single book chapter all the detailed vulnerabilities of all the known
SCADA protocols (see for example [11]), in the following sections we highlight
vulnerabilities and possible attacks exploiting intrinsic features of Modbus, using
it as explicative example. Considerations on Modbus vulnerabilities can be easily
extended to the majority of the other SCADA protocols.

460 I. N. Fovino

20.3.4.1 Modbus Vulnerabilities

The delivery of Modbus messages using TCP introduces new levels of complexity
with regard to the reliable dispatching of control packets in a process control envi-
ronment with strong real-time constraints. In addition, it provides attackers with new
means to target industrial systems. Modbus TCP lacks mechanisms for protecting
confidentiality and for verifying the integrity of messages flowing between a mas-
ter and slaves (i.e. it is not possible to discover if the original message content has
been modified by an attacker). Modbus TCP does not authenticate the master and
slaves (i.e. a compromised device could claim to be the master and send commands
to the slaves). Moreover, the protocol does not incorporate any anti-repudiation or
anti-replay mechanisms. The security limitations of Modbus can be exploited by
attackers to damage or take the control of the field network of a SCADA system.
Some key attacks examples:

• Unauthorised Command Execution: The lack of authentication of the master and
slaves implies that an attacker can send forged Modbus messages to a pool of
slaves. In order to execute this attack, the attacker must be able to access the
network that hosts the SCADA servers or the field network. Carcano et al. [12]
showed how it would be possible to create a malware able to perform a similar
operation.

• Modbus Denial-of-Service Attacks: It would be possible to use the power of “main-
tenance commands” such as “forced stand-by”, to disconnect the PLCs from the
network and in this way perform a DoS.

• Man-in-the-Middle Attacks: The lack of integrity checks enables an attacker who
has access to the production network to modify legitimate messages and send them
to slave devices.

• Replay Attacks: The lack of security mechanisms enables an attacker to reuse
legitimate Modbus messages sent to or from slave devices.

• Compromised Masters: Since anti-repudiation mechanisms are not implemented,
it is hard to prove the trustworthiness of malicious masters, which could have been
compromised.

20.4 SCADA Security Countermeasures

In the light of what presented in the previous section, is evident how SCADA systems
need to be protected. In this section, we identified a set of security countermeasures.
Such a list is not intended as exhaustive, but aims at providing to the reader a good
starting point for more ad hoc tailored solutions.

20 SCADA System Cyber Security 461

20.4.1 Communication Protocol Countermeasures

It is possible to identify two types of communication protocols into an industrial
installation network: traditional TCP/IP communication protocols and industrial
communication protocols (Modbus, Profibus, DNP3, etc). With regard to TCP/IP
countermeasures, the scientific and technical literature is quite well established. For
that reason, in this section, attention will be paid only to the countermeasures related
to SCADA protocols.

20.4.1.1 SCADA Protocols Countermeasures

The Top ten vulnerabilities of control systems and their associated mitigation 2007
report by North American Electric Reliability Council (NERC) mentions the problem
of SCADA protocols’ vulnerability to cyber attacks, focusing the attention on the
general lack of authentication and integrity preserving methods. In order to overcome
this lack, several mechanisms have been proposed for different protocols. In the
following, we briefly present some of these solutions:

Secure DNP3
This protocol adds both user and device authentication to the DNP3 protocol. It adds
data integrity protection as well. The DNP3 user group started working on this secure
variant in 2002. It released the first specification in 2007. Secure DNP3 provides
protection between master stations and remote outstations. Authentication guarantees
that messages arriving at a device comes from another previously legitimated device.
Secure DNP3 is a modification of the standard DNP3 protocol, and modifies only
the application layer. Thus, Secure DNP3 messages can be transmitted over TCP/IP,
serial links, and all the other physical links suitable for DNP3. Nevertheless, this also
means that it does not address issues specific to the pseudo-transport link and to the
data link.

AGA 12
The American Gas Association (AGA) Cryptography Working Group developed
a suite of open standards (AGA 12) to protect the data transmitted by SCADA
systems, to authenticate the originators of messages on SCADA systems, and to
ensure data integrity. AGA 12 requires that SCADA cyber security equipment can
interoperate, independent of manufacturer or age. Initially, the AGA 12 working
group addressed the problem of providing security features to serial communications
of already installed SCADA systems. This first objective was set up due to the obvious
reason that pipelines have a very long lifetime (7–20 years) and it is too expensive
to replace them just for introducing security features. For more details about AGA
12, we point the readers to the AGA12 part 1 (background, policies and test plans),
part 2 (retrofit link encryption for asynchronous serial communications) and part 3
(protection of networked systems) draft.

462 I. N. Fovino

Secure Modbus
Just like the other SCADA protocols, Modbus is also vulnerable to a huge amount of
attacks due to the lack of authentication and integrity mechanisms. The two possible
solutions to secure Modbus are: (1) To embed the Modbus traffic into an SSL/IPV6
channel (2) to redesign the Modbus protocol to embed appropriate security mecha-
nisms. The first solution can be deployed immediately with the actual technology,
but raises reasonable doubts in term of usability and efficacy once one thinks about
the need of creating a VPN comprising all the PLCs and RTUs of a field network.
The second solution would be ideal in term of performance and manageability, but
at the moment, a standard regarding a secure version of Modbus does not exist. The
only work done in this direction, is a working protocol prototype of Secure Modbus,
embedding authentication and anti-reply mechanisms, proposed by Nai et al. [17].

20.4.2 Filtering Coutermeasures

A quite common security suggestion for SCADA systems is to isolate the process and
field network from the corporate network through firewalls. Modern firewalls are not
able at the moment to understand and then to analyse in depth SCADA protocols.
As described in [15] for maintenance purposes the process network might need
to be accessed by external entities (e.g. remote operators, vendor support services
etc.). In the real world the process network and the external network is in some
way connected. A firewalling architecture is then needed to create a sort of air gap
between the external network and the process network.

The high level objectives of a firewalling architecture for SCADA systems should
be:

• Avoid direct connections between the process network and the Internet. This
abstract rule should protect from (or mitigate the effect of) evident risks such
as:

– Direct bandwidth consumption DoS against the SCADA servers.
– Direct injection of unauthorised control messages.
– Malware infections.
– Integrity and confidentiality breaches.

• Controlled access from the office intranet to the control network. Since the office
intranet (that traditionally is part of the corporate network) is usually used by the
operators, it is natural to grant them access to the process network. However, the
office network is traditionally allowed to access the Internet, and, for that reason,
a PC on this network might act as bridge for malicious external actors aiming at
damage to the process network. The access from the intranet to the process network
should be regulated through authentication, and mechanisms for enforcing the
security of the communication between PC into the intranet and SCADA servers
hosted into the process network should be put in place. A common solution can

20 SCADA System Cyber Security 463

be for example the use of a firewall supporting VPN connections and Radius
(Remote Authentication Dial In User Service) authentication. In this way a point-
to-point encrypted connection could be established between the firewall and the
PC into the intranet. The traffic flowing between this PC and the SCADA server
beyond the firewall is protected against confidentiality and integrity threats while
implementing also authentication mechanisms.

• Secure mechanisms for remote control and maintenance. A firewall for SCADA
systems should allow remote access to the process and field network while ensuring
the properties of security and controlled access listed before.

As said before, while modern firewalls are extremely advanced when called to
analyse traditional ICT traffic, they are not able to analyse in depth the SCADA
protocols. More precisely, while a firewall can easily perform a packet filtering,
blocking unauthorised packets, not knowing the state of the system it is protecting,
it cannot easily understand if a legitimate packet can be used to drive the system into
a critical state. In this field Byres proposed a solution named Tofino [14] that aims at
enforcing the SCADA architecture by filtering at low level each single packet sent
to a target PLC/RTU. Such an approach provides a good protection for single packet
attack scheme; however, still an open issue remains, related to more complex and
subtle attacks. In order to better understand the problem, let us consider the following
example: We have a system with a pipe in which flows high-pressure steam. The
pressure is regulated by two valves (1 and 2). An attacker able to send packets on the
process network sends a DNP3 packet to the PLC controlling the valve 1 in order to
force its complete closure and a command to the PLC controlling the valve 2 in order
to maximize the incoming steam. It is evident how such commands, when considered
locally, are perfectly legitimate, while, altogether will bring the system to a critical
state. In order to mitigate such a risk, it is necessary to provide the firewall with
a detailed, explicit knowledge of the SCADA system under analysis (components,
commands and critical states). Nai et al. [22], proposed a new type of firewall: when a
malicious packet has been injected inside the process network the system could move
from a secure state to a critical state (CS) that is defined by a set of configurations
which might cause system stops, damages, etc. The firewall, while analysing the
packets in search for known signatures, keeps updated a digital representation of the
system physical state. In this way, every time a command brings the virtual image
of the system into a critical state, an alert is raised. Complex SCADA attacks will
be identified. The system virtual image, in particular, aims at representing a portion
of the field system to be monitored. In other words, it is constituted by a collection
of software objects which represent elements like valves, PLCs, actuators etc. The
behaviour of these virtual elements is managed basically in three ways:

1. Analysing the command-response network traffic generated by the real system.
2. According to a behavioural profile.
3. By feeding periodically the virtual system through a synchronisation between

the virtual system and the real system (basically the virtual system manager has
the ability to emulate a SCADA server and, at periodical time intervals directly
interrogates the field devices about their own actual state and configuration).

464 I. N. Fovino

This kind of approach seems to promise good results in fighting against SCADA ICT
attacks, since it has been proved to work also against zero-day attacks.

20.4.3 Monitoring Coutermeasures

Firewalls are powerful security bastions, however, the way in which they work is quite
invasive (they have to stay physically in between the communication end-points to
be effective). The jitters introduced by the presence of firewalls, especially in real-
time networks, might create some problems. For that reason, in the past 10 years,
firewall architectures have been often mixed with intrusion detection architectures
(IDS). IDS techniques have the main characteristic to be passive, i.e. they analyse
the behaviour of a network or of a PC silently without interfering too much with the
environment under control. Traditionally, IDS techniques can be classified into two
families on the basis of the source of information to be analysed:

• Network IDS: Sensors analysing network flows in search of attack proofs.
• Host IDS: Sensors installed on a target server, which analyse the operation it

performs in search of malicious behaviours.

Host-based IDS are quite invasive since they need to be hosted by the same system one
wants to monitor. For that reason, in SCADA systems Network Intrusion Detection
System (NIDS) should be preferred. IDS can be classified also according to the
techniques used to identify the threats:

• Signature-based IDS, which compare the information gathered with signatures
which characterise a target attack.

• Anomaly based IDS, which compare the actual behaviour of the system with a
“behavioural template” in search of deviations from the normal profile, i.e. in
search of anomalies.

Both the techniques can be used in a SCADA system, the first in order to quickly
identify known attacks, limiting the risk of false positives; the second in order to
identify unknown attacks.

20.4.3.1 Limits of Intrusion Detection in SCADA systems

Modern Intrusion Detection systems are quite mature regarding the detection of tra-
ditional ICT threats and attacks; as in the case of firewalls, when speaking of SCADA
traffic, while they are pretty efficient in performing single packet analysis, they gen-
erally fail in detecting complex attacks based on the use of legitimate commands to
drive the system in a critical state. For example, if a malicious user, able in some way
to have an access on the process network, starts to send legitimate Modbus packets
to a pool of slaves (PLC) in order to change the state of the system, a traditional IDS
will not be able to detect it since for it, the Modbus packets (contained in the payload

20 SCADA System Cyber Security 465

of a TCP packet) are just meaningless payload. Only recently some extensions, for
example for Snort (a well known IDS) have been developed in order to allow the
IDS at least to analyse the single packets. In this context Carcano et al. [4] proposed
an intrusion detection technique based on the concept of state analysis. However,
while the technique per se is quite interesting, at the moment cannot be taken into
consideration for use in production systems.

20.4.4 General Architectural Best Practices

Risk assessment has a relevant role in designing secure SCADA architectures, it
enables selection of proper countermeasures during the design phase. A secure archi-
tecture is made by several technical solutions, processes, security procedures and
measures. It is impossible to spot the perfect SCADA architecture for any possi-
ble use and environment. In order to properly design a secure control network, it is
important to consider the specific setting of a SCADA system. Even if most networks
are based on standard IT solutions, SCADA systems have specific characteristics
differing from traditional IT environments. In particular, there are different risks
and priorities. For that reason, when defining security countermeasures for SCADA
installations, it is necessary to keep into consideration the impact that general pur-
pose security countermeasures (e.g. firewalls) might have on the processes. Aspects
such as introduced delays and computational constraints must be analysed and taken
in high consideration.

20.4.4.1 Firewalls and Network Segregation

Firewalls are typically used to separate control networks from corporate networks.
Separating networks highly restricts undesired access to the control system and can
improve network performance by removing nonuseful network traffic. The configu-
ration of firewalls needs specific solution for every organisation. In the following a
set of general rules is described. In architectures without a demilitarised zone (DMZ)
for shared servers:

• All rules should be stateful and specific both for IP address and port;
• Traffic from the corporate network to the control network should be limited only

to packets coming from a controlled set of corporate addresses to a small portion
of control devices, using the address portion of the rule;

• Access to servers should be allowed only from selected corporate IP addresses;
• Rules should forward packets only for ports of specific secure protocols, such as

HTTPS. Allowing HTTP and FTP can be a security risk, even if sometimes they
may be useful or necessary;

• Rules should forbid hosts outside the control network to initiate connections with
hosts on the control network.

466 I. N. Fovino

If a DMZ is used, then it is possible to configure the system avoiding any direct traffic
between the corporate and the control network. All traffic from either side can be
directed to the servers in the DMZ, providing more flexibility for protocols enabled
through the firewall. In particular:

• Inbound traffic to control systems should not be allowed. Access to devices on the
control network should be allowed through the DMZ.

• Outbound traffic through the control network firewall should be minimal, limited
only to strictly necessary services and communications.

• All outbound traffic from the control network to the corporate network should
be restricted using specific rules which restrict source addresses, destination
addresses, services and ports.

A summary can be used as a guide for firewall configuration:

• The base rule set should be “deny all, permit none”.
• Ports and services between the control network environment and the corporate

network should be enabled and permissions granted on a specific case-by-case
basis. There should be a documented business justification with risk analysis and
a responsible person for each permitted incoming or outgoing data flow.

• All permit rules should be both IP address and TCP/UDP port specific, and stateful
if appropriate.

• All rules should restrict traffic to a specific IP address or range of addresses.
• Traffic should be prevented from transiting directly from the control network to

the corporate network. All traffic should terminate in the DMZ.
• Any protocol allowed between the control network and DMZ should explicitly not

be allowed between the DMZ and corporate networks (and vice-versa).
• All outbound traffic from the control network to the corporate network should be

source and destination-restricted by service and port.
• Outbound packets from the control network or DMZ should be allowed only if

those packets have a correct source IP address that is assigned to the control
network or DMZ devices.

• Control network devices should not be allowed to access the Internet.
• Control networks should not be directly connected to the Internet, even if protected

via a firewall.
• All firewall management traffic should be carried on either a separate, secured

management network (e.g. out of band) or over an encrypted network with multi-
factor authentication. Traffic should also be restricted by IP address to specific
management stations.

These should only be considered as guidelines. A careful assessment of each control
environment is required before implementing any firewall rule set. Configuring fire-
walls need to take into account specific requirements and rules, beside the general
rules mentioned before. Even if different organisations need different configura-
tions, it is possible to use best practice documents also for specific requirements and
settings. The industrial automation open networking association (IAONA) offers

20 SCADA System Cyber Security 467

a template for analysing specific needs, assessing protocols, security risks, impacts
and countermeasures [24].

20.4.4.2 Domain Name System

Domain name system (DNS) is primarily used to translate between domain names
and IP addresses. Most Internet services rely heavily on DNS, but its use in control
networks is relatively rare at this time. In most cases there is little reason to allow
DNS requests out of the control network to the corporate network and no reason to
allow DNS requests into the control network. DNS requests from the control network
to DMZ should be addressed on a case-by-case basis. Local DNS or the use of host
files is recommended, as well as the deployment of domain name system security
extension (DNSSEC).

20.4.4.3 SCADA and Industrial Protocols

All SCADA and industrial protocols (for example MODBUS/TCP, EtherNet/IP,
DNP317 and all the others used in ICS), are critical for communications to most
control devices. Almost all of these protocols were designed without security built
in and do not typically require any authentication to remotely execute commands
on a control device. For that reason, they should only be allowed within the control
network and not allowed to cross into the corporate network.

20.4.4.4 System Hardening

Some good practices may help harden SCADA systems.

• Removing or not installing software and functionalities that are not required.
Removing or disabling unused services and ports reduces unauthorised accesses
or use, ease configuring the system, and reduces chances to find an exploitable
vulnerability.

• Physical and logical access to diagnostic and configuration ports should be pro-
tected, since they are usually related to critical services for the correct system
functioning.

• All unused ports should be disabled, preventing unauthorised accesses. Thus, it
is necessary to know exactly which ports and services are used by system com-
ponents. This can be achieved also through the use of port scanners in a test
environment.

• The use of removable devices, such as CDs, USB storage or laptop computers,
should be restricted as much as possible. When it is necessary to use a removable
media, anti-malware testing methods are needed.

468 I. N. Fovino

• Organisations should test that the hardening of the system is robust, secure and
functioning as supposed in the design phase.

20.4.4.5 Account Management

Account and user management is aimed to prevent or reduce unauthorised accesses.

• Organisations should implement a proper password policy. The policy should take
into account password strength and expiration times. If a password cannot be
changed frequently, an alternative protection mechanism may be appropriate. The
policy should also cover the proper password encryption mechanisms.

• Unused default user accounts should be deleted.
• Network devices should support that passwords are encrypted within the device.
• Network devices should support role-based access mechanisms.
• Roles and access rights should be reviewed regularly.
• Default passwords should be changed.
• Critical functions should have stronger authentication methods.
• Each user should have an individual password that should not be communicated

and divulged to any other person, nor stored in insecure places.
• Computer located in unattended places should have mechanisms for authentica-

tion, automatic locking and automatic disconnection.

20.4.4.6 Software Management and Update

Several attacks exploit known vulnerabilities and bugs of software. For this reason,
software management and update procedures are necessary to avoid or recover this
security issues. Actively managing vulnerabilities and related patches is aimed to
reduce or prevent exploitations, and takes less time and efforts than recovering the
system and responding after exploitation has been performed. Organisations should
deploy documentation providing the software patching and hardening policy for
their systems. The policies should be reviewed every year to address new threats
and discovered vulnerabilities. The policy has to be consistent, for example software
patching cannot reinstall software removed for hardening the system, or change
security settings, etc. A typical model of software and patches is based on a pattern
cycling through four phases:

1. Assessment and inventory, aimed to evaluate software components of the system,
possible security threats and vulnerabilities, and whether the organisation can
update software easily.

2. Patch identification, for locating software updates available, for understanding
their relevance and effectiveness, and for determining whether an update responds
to a security emergency or it is a normal software update.

20 SCADA System Cyber Security 469

3. Evaluation, planning and testing, aimed to decide which patched are to be
deployed in the operational environment, to plan when and how to perform soft-
ware updates, and to ensure that the software update conforms to the system,
without compromising its business and operational aspects, using testing in a
realistic operational environment.

4. Development, aimed to actually perform software updated in the operational
environment, minimising the impact on the system.

20.5 Conclusion

Failures caused by cyber attacks against SCADA systems can directly impact on the
operative capabilities of critical systems such as energy grids, water pipelines, but also
air traffic control systems, train control systems etc. In other words, from their security
depend the security and resilience of most of the so-called critical infrastructures.
In this chapter we showed which are the main classes of vulnerabilities affecting
them and which are possible high-level countermeasures. Trends on the evolution
of ICT systems show that in the coming future technologies will converge more
and more towards an integrated, interleaved system of systems. Smart Grids, Smart
Cities, Clouds and the Internet of Things provide a clear indication of this trend. In a
similar context, where industrial systems will be more and more open and accessible
to the rest of the world, cyber-security will be even more important. Topics such
as digital identity (in its broader meaning), process integrity and security, secure
and survivable communication, data provenance will surely be in the top ten of
the cyber-security research rank. The security evolution of SCADA systems (and
more generally of industrial installations) needs to move on different levels: on the
governance level corporate security and industrial security will need to be integrated
in a more coherent vision. New protocols and architectures will be developed to
face the challenges posed by open-integrated architectures. But on top of everything
a strong cyber-security alphabetisation will be needed in the industrial sector. This
evolution will require time and huge economical efforts but our society cannot ignore
the problem anymore. The scope of this chapter was that of raising general attention
to the problem to encourage the scientific, technical and policy-making communities
to work together to make these systems more secure and indirectly make our society
safer.

References

1. Karnouskos S., Stuxnet worm impact on industrial cyber-physical system security. IECON
2011—37th Annual Conference on IEEE Industrial Electronics Society, January 2012.

2. Igure V. M., Laughter S. A. and Williams R. D. “Security issues in SCADA networks”. Com-
puters & Security. 2006 V. 25, N.7, Pages 498–506 Month 10.

470 I. N. Fovino

3. Chandia, R.; Gonzalez, J.; Kilpatrick, T.; Papa, M.; and Shenoi, S.; Security Strategies for Scada
Networks. In Critical Infrastructure Protection, Eric Goetz and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, vol. 253, pp. 117–131, 2007.

4. Carcano, A.; Coletta, A.; Guglielmi, M.; Masera, M.; Nai Fovino, I.; Trombetta, A.; A Mul-
tidimensional Critical State Analysis for Detecting Intrusions in SCADA Systems. Industrial
Informatics, IEEE Transactions on V. 7, I. 2, 2011, Page(s): 179–186.

5. Majdalawieh, M.; Parisi-Presicce, F. and Wijesekera, D.; DNPSec, Distributed Network Pro-
tocol Version 3 security framework. In Proceedings of the Twenty-First Annual Computer
Security Applications Conference (Technology Blitz Session), Tucson, Arizona, USA, 2005.

6. Mander, T.; Nabhani, F.; Wang, L.; Cheung, R.; Data Object Based Security for DNP3 Over
TCP/IP for Increased Utility Commercial Aspects Security. In Proceedings of the Power Engi-
neering Society General Meeting, Tampa, FL, USA, June 24–28, pp. 18. IEEE, Los Alamitos
(2007).

7. Hong, J. H. C. S.; Ho Ju, S.; Lim, Y. H.; Lee, B. S. and Hyun, D. H.; A Security Mechanism
for Automation Control in PLC-based Networks. In Proceedings of the ISPLC ’07. IEEE
International Symposium on Power Line Communications and Its Applications 26–28 March
2007, pp 466–470, Pisa, Italy.

8. OPC: http://www.opcfoundation.org/ Last Access: 11/05/2012
9. Leszczyna, R.; Nai Fovino, I.; Masera, M.; Security Evaluation of IT Systems Underlying

Critical Networked Infrastructures. In Proceeding of the 1st International Conference on Infor-
mation Technology, Gdansk, Poland, 18–21 May 2008.

10. Cagalaban, G.; KIM, T; KIM, S; Improving SCADA Control Systems Security with Soft-
ware Vulnerability Analysis. In Proceedings of the 12th WSEAS International Conference on
Automatic Control, Modeling & Simulation. pp 409–414, 2010.

11. Edmonds, J.; Papa, M.; Shenoi, S.; Security Analysis of Multilayer SCADA Protocols. In
Proceedings of the IFIP Critical Infrastructure Protection 2008. pp 205–221, 2008.

12. Carcano, A.; Nai Fovino, I; Masera, N. and Trombetta, A.; Scada Malware, a proof of Con-
cept. In proceeding of the 3rd International Workshop on Critical Information Infrastructures
Security, Rome, October 13–15, 2008.

13. Creery, A.; Byres, E.J.; Industrial Cybersecurity for power system and SCADA networks IEEE
Industry Application Magazine, July-August 2007.

14. http://www.tofinosecurity.com. Last Access 02/12/2009
15. Dondossola, G.; Masera, M.; Nai Fovino, I.; Szanto, J.; Effects of intentional threats to power

substation control systems. International Journal of Critical Infrastructure, (IJCIS), Vol. 4, No.
1/2, 2008.

16. East, S.; Butts, J.; Papa, M.; Shenoi, S.; A taxonomy of Attacks on the DNP3 Protocol. In
proceedings of the third IFIP international conference on Critical Infrastructure Protection,
Hannover, NH, 2009.

17. Nai Fovino, I.; Carcano, A. and Masera, M.; Secure Modbus Protocol, implementation, tests
and analysis. In Proceeding of the Third Annual IFIP Working Group 11.10 International Con-
ference on Critical Infrastructure Protection, Dartmouth College, Hanover, New Hampshire,
USA, March 22–25, 2009.

18. http://www.modbus.org/
19. http://www.dnp.org/default.aspx; DNP consortium. Last access: 05/01/2012
20. IEC/TC 57 IEC 60870–5-104; http://www.iec.ch; International Electrotechnical Commission.

Last access: 05/01/2012
21. http://www.profibus.com/nc/downloads/downloads/profibus-technology-and-application-

system-description/display/; Profinet Foundation. Last Access: 05/01/2012
22. Nai Fovino, I.; Carcano, A.; Masera, M. and Trombetta, A.; A State Based Intrusion Detection

System for Modbus Protocol. In Critical Information Infrastructures Security. Lecture Notes in
Computer Science 2010. Springer Berlin / Heidelberg. Isbn: 978-3-642-14378-6 pp. 138-150.
Vol. 6027.

http://www.opcfoundation.org/
http://www.tofinosecurity.com.
http://www.modbus.org/
http://www.dnp.org/default.aspx;
http://www.iec.ch
http://www.profibus.com/nc/downloads/downloads/profibus-technology-and-application-system-description/display/;
http://www.profibus.com/nc/downloads/downloads/profibus-technology-and-application-system-description/display/;

20 SCADA System Cyber Security 471

23. Nai Fovino, I. and Masera, M.; A service oriented approach to the assessment of Infrastructure
Security. In Proceeding of the First Annual IFIP Working Group 11.10 International Conference
on Critical Infrastructure Protection, Dartmouth College, Hanover, New Hampshire, USA,
March 19–21, 2007.

24. The IAONA Handbook for Network Security Draft/RFC v0.4, Industrial Automation Open.

Part IV
Practical Examples and Tools

Chapter 21
An Overview of PIC Microcontrollers
and Their Suitability for Cryptographic
Algorithms

Mehari G. Msgna and Colin D. Walter

Abstract The use of microcontrollers is widespread. They occur in most electronic
devices, such as point of sale (POS) terminals, ATMs, printers and traffic signals.
They can differ from each other in terms of architecture, processing capacity, storage
capacity and supported hardware features. The purpose of this chapter is to present a
brief introduction to one group of them which can be used for cryptography, the PIC
microcontrollers, and give a detailed, practical account of how to investigate their
strength against side channel analysis.

Keywords PIC controller · Oscilloscope · Side channel leakage · Trace ·
Differential power analysis.

21.1 Introduction

A microcontroller (µC) is a tiny computer in a single integrated circuit, dedicated
to performing a small number of specific tasks, with limited processing capacity
and limited memory compared to that of a personal computer. It is also known
as a “computer-on-a-chip”. At its heart is a microprocessor, or Central Processing
Unit (CPU), which is a multi-purpose computation engine that is built as a single
integrated circuit. It also has peripheral circuits to perform tasks such as reading
and writing memory contents, converting digital signals to analogue and vice versa,

M. G. Msgna (B)

Information Security Group, Smart Card Centre, Royal Holloway, University of London,
London, United Kindgom
e-mail: mehari.msgna.2011@rhul.ac.uk

M. G. Msgna
Information Network Security Agency, Addis Ababa, Ethiopia

C. D. Walter
Information Security Group, Royal Holloway, University of London, London, United Kindgom
e-mail: colin.walter@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 475
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_21,
© Springer Science+Business Media New York 2014

476 M. G. Msgna and C. D. Walter

and communicating with external devices. Several basic characteristics differentiate
microprocessors from each other and these include the instruction set, the processing
capacity, the available memory and the clock speed. A typical microcontroller has
bit manipulation instructions, access to input/output devices and efficient interrupt
mechanisms.

Microcontrollers do not have an independent interface such as a keypad or screen
display. Instead they are embedded inside larger devices which they control. Normally
a microcontroller is designed to execute a small number of programs in order to
perform a specific job; they cannot be transferred from a television to a printer,
or from a microwave to a washing machine, for example. By including only the
hardware features required for a specific task, their cost can be reduced. However,
some are designed to be reprogrammed for any purpose. They are called general
purpose microcontrollers.

21.2 Microcontroller Structure

Microcontrollers can be classified into different categories based on their family,
architectural design, bus size, processing capacity, memory layout and instruction
set. Figure 21.1 presents values for these criteria. The size of the arguments processed
in a single instruction is generally small, typically 8 or 16 bits.

Microcontrollers with a reduced instruction set computer (RISC) architecture use
simple, single clock cycle instructions. However, for specific tasks, the number of
instructions per application can be reduced by having multiple operations within a sin-
gle instruction which lasts for several clock cycles. This gives a complex instruction
set computer (CISC) architecture. For example, a CISC microcontroller needs only
one instruction to multiply two memory contents whereas a RISC microcontroller
needs four to perform the same task. The details are in Table 21.1. A microcontroller
is said to have a specific instruction set computer (SISC) architecture if its processing
unit and instruction set are customised to do a specific type of job.

Microcontrollers

Bits

8 16 32 64

Memory

External Embedded

Family

Motorola PIC ARM Atmel Philips Siemens Others

Instruction Set

CISC RISC SISC

Architecture

von Neumann Harvard

Fig. 21.1 Classification criteria of microcontrollers

21 An Overview of PIC Microcontrollers 477

Table 21.1 CISC, RISC and equivalent pseudo-code for multiplying two memory contents

mul mem-loc1, mem-loc2 load a, mem-loc1 a ≥ mem-loc1;
load b, mem-loc2 b ≥ mem-loc2;
mul a, b a ≥ a∗b;
store mem-loc1, a mem-loc1 ≥ a;

The two most common microcontroller architectures are von Neumann and
Harvard. Those based on the von Neumann architecture [14, 37] have a single data
bus for fetching program instructions and program data. Both the program instruc-
tions and data are stored in a common main memory. When the microcontroller has
to perform a task, it fetches the instruction first and then the data associated with
it. Harvard architecture microcontrollers use separate buses to access the program’s
instructions and data. Such a configuration allows parallel memory access to occur.
The microcontroller can then fetch both the next instruction and its data simulta-
neously while executing the current instruction. This generally leads to improved
performance.

21.3 Peripheral Interface Controllers

21.3.1 PIC Architecture

Peripheral Interface Controller (PIC) microcontrollers from Microchip Technology
[27] belong to the Harvard architecture family [17, p. 74]. They have different mod-
ules working together to execute installed applications including the Microprocessor
unit (MPU), Program Memory, Data Memory, Bus, Input/Output modules and other
support devices (see Fig. 21.2).

The microprocessor unit (MPU) is the main module of the microcontroller chip. It
performs arithmetic and logic operations, and controls the microcontroller’s status.
The MPU has three main components: the arithmetic logic unit (ALU), Registers
and the control unit (CU). The ALU has three modules: the instruction decoder,
the status register and the accumulator (working register). The instruction decoder
interprets instructions fetched from the device’s program memory. The accumulator
is a register which holds the intermediate result of an arithmetic or logic operation
before the final result is moved to the destination memory location or register. The
final module is the status register, which is used to save or indicate the status of the
processor. It flags exceptions and contains, among other things, the arithmetic status
of the ALU, register bank selection bits and the reset status of the microcontroller.

The MPU also uses registers. These memory locations are used for storing infor-
mation for certain tasks. There are three different types of register in the MPU,
namely the program counter (PC), bank select registers (BSRs) and file select

478 M. G. Msgna and C. D. Walter

MPU

Control Unit

Registers

ALU

Support Devices

I/OPorts

Program Memory

EEPROM

ROM

Data Memory

RAM

bu
s

I/O pins

Support
device pins

Power

Clock

Fig. 21.2 General architecture of microcontrollers

registers (FSRs). The PC stores the memory address of the next instruction to be
executed, BSRs are used to implement direct addressing of the data memory, and
FSRs contain pointers for indirect addressing of the data memory.

The third component of the MPU is the Control Unit, which provides timing and
control signals for all operations in the microcontroller, including both internal and
external read and write operations.

21.3.2 Memory

In general there are two types of memory in microcontrollers: volatile and non-
volatile. Volatile storage is memory where all the previous data are generally lost
within at most a second or so if the power is turned off. Such storage is a form
of random access memory (RAM). On the other hand, non-volatile storage retains
information even when the power source is removed. Examples are read-only mem-
ory (ROM) and electrically erasable programmable read-only memory (EEPROM).
Information stored in ROM cannot be modified. However, contents of EEPROM
can be erased and reprogrammed repeatedly by applying a higher electrical voltage
through the program pin of the microcontroller.

The memory of Harvard microcontrollers is organised into two separate blocks:
the program memory and the data memory. They are on physically separate buses so
that instructions cannot be used as data or vice versa. In von Neumann architectures
the MPU uses a single main memory to store both program instructions and data.

Modern high performance microcontrollers incorporate aspects of both Harvard
and von Neumann architectures. The on-chip cache memory is divided into an

21 An Overview of PIC Microcontrollers 479

instruction cache and a data cache which store copies of values that are used fre-
quently by the MPU. The MPU uses Harvard architecture when accessing the cache.

21.3.3 Other Components

The microprocessor unit (MPU) interacts with external peripheral devices through
the I/O unit, and is connected to the external world through groups of pins known
as ports. These ports can be input, output or bidirectional and each is associated
with a unique register. Data can be read from, or written to, a port by reading from,
or writing to, the register associated with it. The pins of the microcontroller can be
configured to send or receive analogue or digital data.

The Clock is a timing signal which is used to synchronise the microcontroller’s
modules while they execute arithmetic and logic operations or to move data from
one memory location to another. The clock signal can be generated inside the micro-
controller chip or obtained externally via the clock input pin.

The MPU communicates with the program and data memory using a bus, which
is a group of wires connecting the different modules. There are usually two types of
bus: the address bus and the data bus. The former carries the address of a memory
location and its size depends on the logarithm of the number of accessible memory
locations. Once the memory location is accessed its content is transferred to the data
bus. Where the same bus is shared for address and data fetch operations, an extra bit
is added to specify the kind of information on the bus.

Other support modules include timers, analogue to digital and digital to ana-
logue converters (ADCs and DACs respectively), serial and parallel ports, and uni-
versal synchronous/asynchronous receiver/transmitters (USARTs) (see Fig. 21.3).
A timer allows the microcontroller to measure the precise execution time of selected
tasks. A microcontroller can also have subsidiary MPUs, called co-processors, which
generally help with heavy arithmetic and logic operations such as those used in
cryptography [16]. The MPU interacts with external peripherals through serial and
parallel ports [2, 30, 31].

21.3.4 Development Tools

An Integrated Development Environment (IDE) is used to develop software appli-
cations, e.g. the MPLAB from Microchip [24]. It normally has at least the following
features:

• Program editing.
• Support for a range of microcontroller families.
• Program debugging.
• Program loading to the microcontroller.

480 M. G. Msgna and C. D. Walter

MPU

MPU1 MPU2 Serial Port USART Parallel Port DAC

Timer0 Timer1 Timer2 Timer3 ADC

Support Devices

Data Bus

Address Bus

Fig. 21.3 Support modules in a PIC microcontroller

• Program simulation.

The IDE supports high level program development in, for example, C, Basic or
Assembly, and provides a debugger for finding syntactic and semantic errors in the
program code. The simulator [32] enables the program to be tested on a PC, thereby
avoiding the time needed to load the code during prototype verification. The IDE
takes the program file and compiles it into a HEX file of machine code which the
microcontroller can run. Once completed and tested, the compiled program must be
loaded, which is the process of writing the machine code into the internal memory
of the microcontroller. For this, the IDE has to be connected to an external device in
which the microcontroller is mounted, such as the MPLAB ICD 2 (see Fig. 21.4).

21.3.5 Summary

Microcontrollers are used in many aspects of our daily life, ranging from a room
temperature controller to running complex algorithms. They have also been heav-
ily used for implementing cryptographic algorithms such as AES, DES and RSA.
We have reviewed mainly just the architecture of PIC microcontrollers, but most
microcontrollers on the market share similar architectures and design principles.

21.4 AES on a PIC

Cryptography is the art of transforming understandable information into an unfath-
omable form called ciphertext. Only those who possess the secret key can, in

21 An Overview of PIC Microcontrollers 481

Fig. 21.4 A photo of the MPLAB ICD 2

theory, transform the ciphertext back into its original form. Recently, the security
of IT infrastructures has become heavily reliant on embedded systems, such as smart
cards and tokens, which use cryptographic algorithms to provide the security. In the
remainder of the chapter we evaluate the security of two PIC microcontrollers against
one of the main types of attack on embedded systems, differential power analysis,
and illustrate the process in the context of the AES symmetric key algorithm.

21.4.1 Implementation of AES

In October 2001 after an open invitation for a new symmetric key algorithm, the
National Institute of Standards and Technology (NIST) selected Rijndael [9] to
replace the ageing DES. Rijndael is a block cipher algorithm designed by two Belgian
cryptographers, Joan Deamen and Vincent Rijmen. NIST then published Rijndael as
the advanced encryption standard (AES) [13] after fixing the block size to be 128
bits.

AES takes two parameters: the 128-bit plaintext/ciphertext message block and
the secret key. The size of the secret key can be 128 bits, 192 bits or 256 bits. Each
key length makes the algorithm behave in a slightly different way. Using a larger
key size not only offers higher security but also makes the whole process of AES
proportionately longer. AES performs a number of transformation rounds that con-
vert the input plaintext into the final ciphertext output. The plaintext/intermediate
data is represented as a 4 × 4, 4 × 6 or 4 × 8 matrix data block of byes (depending
on the key length) when it is processed by the round functions. Each round con-
sists of several operations, including one that uses a round key derived from the
encryption/decryption key. These functions are: add round key, substitute byte, shift

482 M. G. Msgna and C. D. Walter

128 bit plaintext

add round key

round 1

round 9

round 10

128 bit ciphertext

128bit key

key scheduler

round 1 key

round 9 key

round 10 key

substitute byte

shift row

mix column

add round key

add round key

shift row

substitute byte

Fig. 21.5 The AES encryption process for 128-bit keys

row and mix column. Each function has forward and reverse versions corresponding
to the encryption and decryption operations, respectively. Being a simple xor, the
function for the add round key is the same for both directions. In the other cases the
reverse functions are the appropriately named inverse substitute byte, inverse shift
row and inverse mix column functions. The 10-round encryption process for AES
with a 128-bit key size is illustrated in Fig. 21.5. The larger key sizes require instead
12 and 14 rounds, respectively.

In an experiment AES was implemented in electronic code book (ECB) mode
[11] on two different families of PIC microcontrollers: the PIC16F84A [25] and the
PIC16F876 [26]. The implementation required 32 registers to store the byte values
of the cipher key and input data. The first 16 hold the round key bytes and the last 16
store the input data or intermediate state vector bytes. The implemented algorithm
was tested for correctness against the test vectors published on the NIST website [1].

21.5 Attack Example

Cryptanalysts often analyse the security of encryption systems by modelling cryp-
tographic functions as mathematical objects. Conventional methods such as differ-
ential [4] and linear [21] cryptanalysis are used to find weaknesses in cryptographic

21 An Overview of PIC Microcontrollers 483

algorithms. However, these techniques cannot be used to explore vulnerabilities in the
implementation of cryptographic algorithms on a particular hardware configuration.
In reality, implementations of cryptographic algorithms release information about
the secret key. This information is known as side channel information and could be
used to reveal the secret key of the cryptographic algorithm. Side channel analysis is
the interpretation of the side channel information released by the target device while
running the cryptographic algorithm using the set-up and inputs described in an
attack. Various side channel attacks which use different types of side channel infor-
mation have been proposed. Examples of side channel information are execution time
[10, 18], power consumption [19], electromagnetic emission [36] and faulty com-
putation output [5, 6] from the device under observation.

Power analysis attacks use minute variations in the power consumption of the
device as the side channel information. The objective of an attack is to reveal the
secret key information used in the execution of a cryptographic algorithm. It requires
the attacker to record and analyse the instantaneous power consumption of the device
by measuring variations in voltage or current. The recording produces power traces
which are sequences of frequent, regular, digitised samples of these variations in the
target device. The attacks are classified into various types depending on the number
of power consumption traces that they need and the way they are analysed. The two
most common power analysis attacks types are simple power analysis (SPA) [7, 19]
and differential power analysis (DPA) [19]. DPA is discussed briefly in the following
subsections.

21.5.1 Differential Power Analysis

DPA [19] is more powerful than SPA [7, 19] because the attacker does not need
as much detailed knowledge about the implementation of the algorithm and the
hardware under attack. On the other hand, more side channel information is required.
Instead of trying to derive the secret key directly form the power traces as in SPA,
DPA takes advantage of a statistical analysis methodology to facilitate the recovery
of the secret information. It exploits the dependency of the power consumption of
a cryptographic device on the intermediate data processed by it. The disadvantage
of DPA when compared to SPA is that DPA needs a much larger number of power
consumption traces (typically greater than 1,000).

For DPA to be used on a cryptographic algorithm, the intermediate data normally
needs to be a function of known information, such as plaintext or ciphertext, and
of secret information, which is derived directly from the cipher key in a known
way. This intermediate data can be represented by a function f (p, k), where p is the
known information and k is the secret key. This makes DPA suitable for attacking the
most commonly deployed cryptographic algorithms including the data encryption
standard (DES) [35] and the advanced encryption standard (AES) [13]. In the case
of public key algorithms, it often suffices for the intermediate data to be a function of

484 M. G. Msgna and C. D. Walter

random, uniformly distributed data, rather than known data, and part of the unknown
private key such as an individual bit.

To help understand how DPA works against 128-bit AES, consider the following
example. Let P be the plaintext input, K the first round key (which, in this case, is
the full secret key), M the intermediate value and S the substitute byte function. P ,
K and M are 128 bits long, which means they are all constructed from 16 bytes of
data. Let P ≡, M ≡ and K ≡ be single bytes with the same index from P , M and K . Also,
let M ≡

j be the jth bit of M ≡, where 0 √ j √ 7. Using P ≡ and K ≡, the corresponding
byte of output from the substitute byte function at the start of the next round is

M ≡ = S(P ≡ ∈ K ≡). (21.1)

So the intermediate value to be analysed is the direct output of the substitute byte
function S from the first round.

The attacker runs the algorithm N times with N different known (plaintext) input
blocks P and records the N power traces. As the non-linear substitute byte function
S is a byte operation, it must be performed 16 times, once on each of the 16 bytes
of the data block. The attacker looks at the first round (strictly speaking, round 0)
and considers each byte position in turn, using the formula (21.1) in which P ≡ is
known. Since K ≡ is unknown, the attacker xors all the 256 possible values of K ≡
(0x00 to 0xFF) with P ≡ and generates all the 256 possible values of M ≡. This yields
an N × 256 byte array of intermediate values by considering each of the N plaintext
blocks.

In order to pick the correct value of a key byte out of the 256 candidates, the attacker
considers each possible value of K ≡ in turn. Having selected one for investigation,
he takes the jth bit of M ≡ for some j where 0 √ j √ 7 and splits the power traces
into two sets: W1 which is the set of power traces where M ≡

j = 1 should hold if
the key byte guess K ≡ is correct, and W0 which is the complementary set of power
traces where M ≡

j = 0 should hold. Then the differential power πW is calculated
by subtracting the mean power trace computed over the members of W0 from the
mean power trace corresponding to W1. A function of time t is obtained for the time
interval during which the substitution is performed:

πW (t) = |W1|−1(Δtr∈W1 tr(t)) − |W0|−1(Δtr∈W0 tr(t)) (21.2)

where tr(t) is the power measured at time t for one of the N traces tr . In other
words, for each time t at which power measurements were taken in the N traces, the
attacker computes the difference of the average power consumptions over the two
sets W1 and W2. A typical power trace is given in Fig. 21.8 and some differential
power traces using the above formula are given in Fig. 21.9.

Since there are 256 columns in the N × 256 matrix of intermediate values, the
above calculation has to be repeated 256 times, once for each possible K ≡, and
the resulting differential power traces πW plotted in a graph. The plot of πW is
always close to zero for almost the whole period except for a few noticeable peaks.

21 An Overview of PIC Microcontrollers 485

These peaks are generated at the moments where M ≡
j or related key data is processed

by the microcontroller (µC). From the resulting 256 graphs the K ≡ value that gener-
ates the largest peak is chosen as the correct key byte. This choice can be confirmed
by repeating the calculation on other bit positions j .

The underlying intuition justifying this choice for K ≡ is that in positions where key
data is not used, the calculations are, on average, the same in both sets of data. Hence,
the (average) power used in both cases should be almost the same, with random noise
being cancelled. This leads to no peaks. However, where the calculation is key-
dependent and the correct key byte has been chosen, there will be points during the
calculation where the processed bits are strongly biased in one way for W1 (because
the bit value “1” is processed) and in another way for W0 (because the opposite bit
value “0” is processed). Typically, this may happen if and when M ≡ is placed on the
bus for storing in memory. This causes differential power usage, and hence a peak
because of the different way in which electronic components, such as transistors,
behave with different bit inputs. In between, if the wrong value is chosen for the key
byte one can expect some, but less, bias at points where the byte is used, and the
extent of the bias to depend on how close the wrong value is to the correct value.
This is because not so many traces in W1 are processing a “1”, but the number is
still more than for the traces in W0. It generally results in smaller peaks, although it
requires a more detailed analysis of the circuitry to justify formally. All the bytes of
the secret key can be extracted in this way.

Other functions in a round of the AES can also be attacked using the same tech-
nique to determine the key providing the data input or data output is known.

Since the introduction of DPA, several researchers have proposed countermea-
sures that disturb the dependency of the power consumption on the intermediate data
or function. Examples include masking [8, 15], hiding [22], bus encryption [3, 12]
and constant power consuming differential logic circuits [34]. However, the resulting
implementations may still be vulnerable to second or higher order DPA [23].

21.5.2 Practical Implementation of DPA

The process of recovering a cipher key using DPA involves several steps. These
are: measuring the power consumption traces, calculating the intermediate values,
analysing the traces, plotting the graphs and finally choosing and verifying the correct
keys. In this section we discuss the practicalities of performing these steps to recover
an AES cipher key from the PIC16F84A [25] and PIC16F876 [26] microcontrollers.

21.5.2.1 Triggering the Oscilloscope

When measuring the power consumption of the target device a trigger signal is
needed to enable the oscilloscope to capture the power trace of a particular function

486 M. G. Msgna and C. D. Walter

within the algorithm at the right time. The oscilloscope can be configured to be
triggered by the edge or event of this trigger signal. Once the signal is received, the
oscilloscope updates its memory and screen display. In our case the oscilloscope was
configured to update its display every time the trigger signal rose from 0 to 5 V. This
is known as a positive edge trigger.

The trigger can be delivered in different ways depending on whether one has
control over the internal implementation of the algorithm or not. In the former case, it
is possible to insert a couple of instructions at the point of interest in the implemented
algorithm in order to trigger the oscilloscope from the microcontroller. This is what
has been done for the results presented here. However, it may not be possible for
a commercial device. Then the attacker has to find another way of triggering the
oscilloscope. For example, if the device were a smart card the attacker could design
a custom reader to trigger the oscilloscope at a precise time delay after a message is
sent to the card for encrypting.

The oscilloscope used in our attack was a LeCroy WaveRunner LT264M [33]
which is capable of measuring at a rate of up to 1 billion samples per second (1 GS/s).
The samples have 8-bit accuracy within a pre-selected range. The oscilloscope has to
be connected to the microcontroller using a specialised probe which, in our case, was
the Pomona 6069 A [28], a 1.2 m co-axial cable with 250 MHz bandwidth, 10 M�

input resistance and 10 pf input capacitance. In general, the kit required for a suc-
cessful attack is not expensive if the target device contains no counter-measures.

subsubsectionMeasuring the Power Traces
The power consumption of the microcontroller is measured by the oscilloscope as

a voltage drop across a resistor inserted between the ground pin of the microcontroller
and the ground voltage source. Using a serial RS-232 cable, the microcontroller is also
connected to a computer which initiates each measurement. The overall configuration
of the microcontroller, computer and the oscilloscope is presented in Fig. 21.6. In
general, cables should be kept as short as possible to reduce capacitance in the circuit
and shielding should be introduced if there is a danger of inductance. In particular, a
high-specification short co-axial cable, a probe, is required between the oscilloscope
and the microcontroller. Of course, shielding is essential when EMR is used as a side

Fig. 21.6 Experimental
power measurement con-
figuration for both microcon-
trollers

Oscilloscope Power Trace Computer

Microcontroller

Trigger

Gnd

ΩPower Consumption
Resistor

Plaintext Ciphertext

Power

+5V

0V Clock

4MHz

21 An Overview of PIC Microcontrollers 487

channel source. A detailed circuit diagram of the circuit board on which the PIC was
mounted may be obtained by contacting the authors or through [29].

The current flow from the ground pin of the microcontroller to the ground pin
of the voltage source is small. Hence the resistor value must be small enough in
order not to disrupt the correct operation of the device, but large enough to enable a
precise measurement of the voltage drop across it. Generally, this is closely related
to the oscilloscope’s input impedance. For our tests we used 1 � and 10 � resistors
respectively for the PIC16F84A and the PIC16F876. The voltage drop is captured,
sampled and saved by the digital oscilloscope connected in parallel across the resistor.

Before saving any measurements for analysis, it is important to have the equip-
ment properly warmed up beforehand so that it is all running at a uniform tempera-
ture throughout the data collection phase. Otherwise the results may be inconsistent
because electrical properties change with temperature. This requires the ambient
temperature of the laboratory to be maintained at a constant level for several hours
beforehand, and for the first few measurements in any run to be discarded. The
measurements should then all be taken in a single session.

At the start of the measurement process a plaintext block is sent from the computer
to the microcontroller and the power consumption is recorded while the microcon-
troller runs the algorithm. In our attacks the recorded power traces were sampled at
a rate of 100 MHz for both microcontrollers when they were run with a 5 V power
supply and a clock speed of 4 MHz. A sufficiently high sampling rate is required in
order to isolate the point in the clock cycle when the logic gates process the key bits
from the other points which will contribute unwanted noise to the measurements. The
sampling rate is increased until the desired peaks show in the differential averages
(see Fig. 21.9). In practice the rate is bounded by the limits of the oscilloscope and
the quantity of data that can be stored. Typically, the sample rate is in the order of 26

times the clock speed of the device being investigated but, in our case, the slightly
lower sampling rate of 25 per clock cycle proved adequate.

For most microcontrollers and a reasonable implementation such as those used on
our two PICs, samples from the first 720 to 1200 or so clock cycles after the trigger
should cover the first add round key and substitute byte functions, which is what is
needed. This allows 45–75 cycles for executing each instance of (21.1), depending on
the available instruction set. With 20,000 sample measurements for the PIC16F876
and 50,000 for the PIC16F84A, each recorded with 8-bit accuracy, the individual
files of a trace were not enormous. Around 215 traces had to be obtained but, after
the averaging described in the next paragraph, only 210 averaged traces needed to
be stored for analysis. They were saved in Matlab∗ .dat files [20] as lists mostly of
10-character decimal numbers (11 characters when a sign was necessary), leading to
232 and 570 KB per trace file respectively. Had space been at a premium, two bytes
per sample for a binary representation could easily have been used, thereby cutting
storage by a factor of nearly 6. However, overall, there were totals of around 284 and
700MB of uncompressed data ready to be fed into the analysis stage.

488 M. G. Msgna and C. D. Walter

Fig. 21.7 Differential power traces for the PIC16F84A calculated without and with averaging

21.5.2.2 Noise Reduction

The digital oscilloscope is connected to the microcontroller on two of the oscillo-
scope’s channels, one for measuring power consumption and the other for receiv-
ing the trigger signal. Every time the oscilloscope receives a new trigger signal it
takes new measurements of the voltage drop across the resistor. However, the power
consumption measured by the oscilloscope also includes noise introduced by the
measurement environment. This noise can disturb the dependency of the measured
power on the intermediate data. So, in order to reduce the noise, each plaintext was
sent to the microcontroller 32 times and the average of the 32 power traces was saved
as the final power consumption of the device for the particular plaintext. This cuts
the standard deviation of the random noise by a factor of

√
32. Figure 21.7 illustrates

the effect of this when calculating the differential power πW defined in (21.2): 1,000
single traces were used for the left hand differential power trace, but 1,000 averaged
traces for the right hand trace. The difference is quite visible: the peaks which do not
represent noise now stand out much more clearly from the underlying noise. In com-
mon with all our diagrams, the horizontal axis is the time axis with sample number
as the unit of measurement and the vertical axis gives voltage which is measured in
volts and calibrated relative to its average.

21.5.2.3 Pre-Processing of Power Traces

After the power traces are captured and saved, pre-processing them before calculat-
ing the differential power is important for maximising the efficiency of the attack.
This pre-processing of samples includes but is not limited to alignment of traces,
resampling of captured traces and removal of unwanted traces.

The captured power traces might contain the power consumption of the device
while running unwanted functions before and after that being studied for the DPA
attack. In that case the attacker needs to remove the unwanted samples from each
end of the traces and perhaps from within them. For example, in our attack we
needed the power consumption of the device for the period when the trigger signal

21 An Overview of PIC Microcontrollers 489

Fig. 21.8 Oscilloscope display of averaged power trace and trigger for the PIC16F84A

is high (5 V) since that is when the microcontroller runs the add round key and
substitute byte functions of the first round. However, our measurement also contains
the consumption of the device while executing some other subsequent functions of
AES. That is because the oscilloscope monitors the power consumption continuously,
and stores the samples from the trigger high signal for a set period of time within
its memory capacity rather than only as far as the trigger signal falling to low. Since
we could position the trigger high signal precisely, there were no unwanted samples
at the start of the trace, only at the end. So, unwanted samples outside the period of
interest are removed by aligning the power traces with the trigger signal. In our case,
the rising edge of the trigger signal was clean enough for this to be done accurately,
with aligned samples corresponding to the same point in the microcontroller clock
cycle with an accuracy of less than the sampling period.

In Fig. 21.8, graph C1 shows an averaged power consumption trace for the
PIC16F84A. The scale is 100 mV per vertical division, with the upper and lower
edges giving the range to which the 8-bit sample measurements apply. Graph C2 is
the trace of the trigger signal with 2 V per division. The horizontal scale is 50µs per
division. With a sampling frequency of 100 MHz, the 500µs width means the trace
contains 50 k samples. The power consumption while the trigger is high (5 V) is the
power consumption for the add round and substitute byte functions. Consequently,
as the two graphs are synchronised, we can deduce that only the first 30395 from the
total of 50001 samples belong to the add round key and substitute byte functions of
the AES algorithm. We removed the other samples from each recorded power trace
as they were redundant.

As defined in Sect. 21.5.1, Eq. (21.2), the differential power is calculated by split-
ting the power traces into two sets and taking the difference in their mean values
at each sample position. For this it is necessary to make sure that corresponding
samples lie at the same point in the time axis. This is done using the trigger signal
as a reference. Alignment is the process of moving the trace samples along the time
axis to make sure that the corresponding samples of all the power traces lie at the
same point.

490 M. G. Msgna and C. D. Walter

Fig. 21.9 Plot of πW for one correct and three incorrect key byte guesses for the PIC16F84A

21.5.2.4 DPA Calculation and Results

The usual objective of differential power analysis is to reveal secret information
used by a cryptographic algorithm in a device. For our DPA experiment, 1,000 sets
of 32 power traces were recorded from each target microcontroller while they were
processing different plaintexts. Each set had the same plaintext input and its members
were averaged to yield a trace with reduced noise as described earlier (see Fig. 21.7).

As discussed previously, the differential power trace πW is calculated by using
one bit of the intermediate value M ≡ to split the traces into two sets and taking the
difference of their mean values. (Matlab code for this is available at [29].) Once the
differential power is calculated for each possible key byte value, the resulting 256
πW traces are compared. The graph of πW with the largest spike is assumed to
be that generated by the correct key byte guess. Figure 21.9 shows the plots of πW
for four guesses for the PIC16F84A microcontroller. Out of the four graphs, the last
generates the largest spike and indeed corresponds to the correct guess for K ≡. The
average absolute noise in πW is about 120 µV for the PIC16F84A set-up, which is
about three thousandth of that in an averaged trace where it was around 40 mV. This
is why 1,000 or so trace sets are needed for DPA. More πW plots for the PIC16F84A
are available at [29].

However, when the differential powers were computed for each splitting bit, it
turned out that some correct key bytes generated smaller spikes than some wrong
ones. This means that it is unreliable to deduce the whole key by using only one
bit of the intermediate byte. To eliminate such errors, the average was calculated
for all the differential powers over all the 8 bits of the intermediate byte, and the

21 An Overview of PIC Microcontrollers 491

Fig. 21.10 The PIC16F876: 256 πW s for all possible values of a key byte overlaid on one graph

key byte yielding the maximum was chosen. This turned out to be a much more
reliable indicator of the correct key bytes. Moreover, the number of bits for which
the chosen key byte gives the maximum differential value can be used as an indicator
of the reliability of the choice. (More sophisticated analysis is possible, of course.)
After the analysis, the whole 128 bit AES key was correctly recovered from both
microcontrollers. The choice of key is easily verified by comparing outputs generated
from the same input using the unknown secret key and using the deduced key.

Figure 21.10 shows the plots of all 256 averaged differential powers for one typical
key byte for the microcontroller PIC16F876, superimposed in one graph. Each trace
has already been averaged over 32 instances to reduce the noise, and then averaged
over the 8 bit positions. All differential powers are plotted in gray except the one
generating the highest peak, which is plotted in black. The trace in black is the most
likely to correspond to the correct key and that was always the case for us.

To make this clearer, Figs. 21.11 and 21.12 show just the maximum and minimum
points of the 256 πW traces used in Fig. 21.10. The first graph is the plot of all
maximum values and the second one is the plot of all minimum values. From the
graphs we can see that there is one point standing out clearly above and one point
just below the rest in the maximum and minimum graphs respectively. These two
points both belong to the πW generated by the correct key byte guess. (The physical
properties of logic gate switching mean that local maxima and minima are paired in
the power trace. So the minima display similar properties to the maxima, with the
lowest minimum of the 256 traces identifying the correct key byte. However, they are
not known to contain any information which is not already present in the maxima.
Indeed, interchanging W0 and W1 in (21.2) simply changes maxima to minima and
vice versa.)

492 M. G. Msgna and C. D. Walter

Fig. 21.11 The PIC16F876: maximum points of all the 256 πW

Fig. 21.12 The PIC16F876: minimum points of all the 256 πW

At the point where the highest black peak value is plotted in Fig. 21.10, there
are other smaller peak values in gray. That is because certain incorrect byte values
are sufficiently closely related to the correct values that they perform similar cal-
culations at the critical points during the calculation of (21.1) when side channel
information is released. We have to hope that the calculations are still sufficiently
dissimilar not to generate side channel leakage which could be confused with the
true value. Fortunately, in Fig. 21.11 the maximum points for the correct key byte
are about 25 % larger than the largest maximum points given by any of the other key
byte choices. This is typical for each byte of the secret key K in this implementa-
tion of AES, but it is possible for some correct byte peaks to be indistinguishable
from the peaks of incorrect choices in other circumstances and contexts. Where the
correct value is unclear, the attacker can try all 256 cases to see if any generates

21 An Overview of PIC Microcontrollers 493

the desired AES output. Unlike a brute force task on the whole key, this is feasible
if only one or two key bytes are guessed incorrectly.

The side channel information leaked by both microcontrollers is similar. So,
although the PIC16F876 is superior in terms of performance and storage capac-
ity, both chips still leak a significant level of important side channel information
which is enough to reveal the key of mathematically strong algorithms such as AES.
Better performance may not mean better resistance to side channel attack.

21.6 Conclusion

This chapter started with an introduction to microcontrollers in general and PIC
microcontrollers in particular. We then discussed the different modules of a micro-
controller, and their internal architecture, and briefly described the tools needed to
develop an application for them. Finally, the principal theme was looking at how side
channel information can be used to recover secret keys from them. To that end, we
provided details of the experimental set-up and calculations involved, and illustrated
these in the case of an implementation of AES.

PIC microcontrollers are popular among prototype designers. They are not the
only option available on the market but clearly they are not ideal solutions for use
in the field if side channel leakage could be an issue. In this chapter we have seen
how secret keys can easily be recovered from them using differential power analysis.
This is a powerful method that can be used on any general purpose microcontroller
to retrieve sensitive information. Readers are therefore recommended to use only
microcontrollers with built-in security countermeasures for security applications that
will be used in hostile environments.

References

1. L. E. Bassham, III. The Advanced Encryption Standard Algorithm Validation Suite (AESAVS).
NIST Cryptographic Algorithm Validation Program (CAVP), February 2002. http://csrc.nist.
gov/groups/STM/cavp/documents/aes/AESAVS.pdf

2. M. Bates. Interfacing PIC Microcontrollers: Embedded Design by Interactive Simulation.
Elsevier, 2006.

3. R. M. Best. Preventing Software Piracy with Crypto-Microprocessors. In Proc. IEEE Spring
COMPCON ’80, pages 466–469. IEEE Computer Society, 25–28 Feb, 1980.

4. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Advances
in Cryptology - CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pp. 2–21.
Springer, 1991. http://dl.acm.org/citation.cfm?id=646755.705229

5. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
Advances in Cryptology - CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science,
pp. 513–525. Springer, 1997. http://dl.acm.org/citation.cfm?id=646762.706179

6. D. Boneh, R. DeMillo, R. Lipton. On the Importance of Checking Cryptographic Protocols
for Faults. In Advances in Cryptology - EUROCRYPT ’97, volume 1233 of Lecture Notes

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://dl.acm.org/citation.cfm?id=646755.705229
http://dl.acm.org/citation.cfm?id=646762.706179

494 M. G. Msgna and C. D. Walter

in Computer Science, pp. 37–51. Springer, 1997. http://dl.acm.org/citation.cfm?id=1754542.
1754548

7. Xi Xi Chen. Simple Power Analysis a Threat in Embedded Devices. Master’s thesis, University
of Waterloo, Ontario, Canada, 2004.

8. J.-S. Coron and L. Goubin. On Boolean and Arithmetic Masking against Differential Power
Analysis. In Cryptographic Hardware and Embedded Systems - CHES ’00, volume 1965 of
Lecture Notes in Computer Science, pages 1–14. Springer, 2000.

9. J. Daemen and V. Rijmen. The Design of Rijndael—Information Security and Cryptography.
Springer, Heidelberg, 2002.

10. J.-F. Dhem, F. Koeune, P. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems. A Practical
Implementation of the Timing Attack. In Smart Card Research and Applications—CARDIS
’98, volume 1820 of Lecture Notes in Computer Science, pp. 167–182. Springer, 2000.
http://dl.acm.org/citation.cfm?id=646692.703439

11. M. Dworkin. Computer Security: Recommendation for Block Cipher Modes of Operation.
NIST Special Publication 800–38A. NIST, 2001. http://csrc.nist.gov/publications/nistpubs/
800-38a/sp800-38a.pdf

12. R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, C. Anguille, M. Bardouillet, C. Buatois, and
J. B. Rigaud. Hardware Engines for Bus Encryption: A Survey of Existing Techniques. In
Proc. Design, Automation and Test in Europe (DATE ’05), Vol. 3, pp. 40–45. IEEE Computer
Society, 2005. http://dx.doi.org/10.1109/DATE.2005.170

13. Federal Information Processing Standards. FIPS PUB 197 - Announcing the Advanced Encryp-
tion System (AES), November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.
pdf

14. M. Godfrey and D. Hendry. The Computer as von Neumann Planned It. Annals of the History
of Computing, IEEE, 15(1):11–21, 1993.

15. J. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES. In Cryptographic
Hardware and Embedded Systems—CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 198–212. Springer, 2003.

16. H. Handschuh and P. Paillier. Smart Card Crypto-Coprocessor for Public-Key Cryptography.
In Smart Card Research and Applications—CARDIS 1998, volume 1820 of Lecture Notes for
Computer Science, pages 386–394. Springer, 2000.

17. J. Iovine. PIC Microcontroller Project Book: For PIC Basic and PIC Pro Compilers. McGraw-
Hill, second edition, 2004.

18. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and other Sys-
tems. In Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pp. 104–113. Springer, 1996. http://dl.acm.org/citation.cfm?id=646761.706156

19. P. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. In Advances in Cryptology—CRYPTO
’99, volume 1666 of Lecture Notes in Computer Science, pp. 388–397. Springer, 1999.
http://dx.doi.org/10.1007/3-540-48405-1_25

20. MathWorks™. MATLAB and SIMULINK, MathWorks™ website visited October 2012.
http://www.mathworks.com

21. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology—
EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science, pp. 386–397. Springer,
1994. http://dl.acm.org/citation.cfm?id=188307.188366

22. R. McEvoy, C. Murphy, W. Marnane, M. Tunstall. Isolated WDDL: A Hiding Countermea-
sure for Differential Power Analysis on FPGAs. ACM Trans. Reconfigurable Technol. Syst.,
2(3):1–23, March 2009. http://doi.acm.org/10.1145/1502781.1502784

23. T. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant Software. In
Cryptographic Hardware and Embedded Systems—CHES ’00, volume 1965 of Lecture Notes
in Computer Science, pp. 238–251. Springer, 2000. http://dl.acm.org/citation.cfm?id=648253.
752407

24. Microchip Technology Inc. MPLAB Integrated Development Environment, Microchip, web-
site visited October 2012. http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_
PAGE&nodeId=1406&dDocName=en019469&part=SW007002

http://dl.acm.org/citation.cfm?id=1754542.1754548
http://dl.acm.org/citation.cfm?id=1754542.1754548
http://dl.acm.org/citation.cfm?id=646692.703439
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://dx.doi.org/10.1109/DATE.2005.170
http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf
http://dl.acm.org/citation.cfm?id=646761.706156
http://dx.doi.org/10.1007/3-540-48405-1_25
http://www.mathworks.com
http://dl.acm.org/citation.cfm?id=188307.188366
http://doi.acm.org/10.1145/1502781.1502784
http://dl.acm.org/citation.cfm?id=648253.752407
http://dl.acm.org/citation.cfm?id=648253.752407
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002

21 An Overview of PIC Microcontrollers 495

25. Microchip Technology Inc. PIC16F84A Data Sheet, Microchip website visited October 2012.
http://ww1.microchip.com/downloads/en/devicedoc/35007b.pdf

26. Microchip Technology Inc. PIC16F876 Data Sheet, Microchip website visited October 2012.
http://ww1.microchip.com/downloads/en/devicedoc/30292c.pdf

27. Microchip Technology Inc. Website visited October, 2012. http://www.microchip.com
28. Pomona Electronics. 6069A Scope Probe, website visited October 2012.

www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf.
29. Royal Holloway, University of London. Smart Card Centre website. http://www.scc.rhul.ac.

uk/books/ssed/embedded/chapter_21
30. J. Sanchez and M. Canton. Microcontroller Programming: The Microchip PIC. CRC Press,

2007. http://www.crcpress.com
31. D. Smith. PIC in Practice: A Project Based Approach. Newnes, 2006.
32. V. Soso. PIC Simulator IDE, Oshon Software Project, website visited October 2012.

http://www.oshonsoft.com/pic.html
33. Teledyne LeCroy Corporation, website visited October 2012. http://teledynelecroy.com/

oscilloscope/
34. K. Tiri and I. Verbauwhede. Design Method for Constant Power Consumption of Differential

Logic Circuits. In Design, Automation and Test in Europe, 2005. Proceedings, volume 1, pages
628–633, March 2005.

35. W. Tuchman. A Brief History of the Data Encryption Standard. In Dorothy E. Denning and Peter
J. Denning, editors, Internet Besieged, pp. 275–280. ACM Press, Addison-Wesley Publishing
Co., 1998. http://dl.acm.org/citation.cfm?id=275737.275754

36. W. van Eck. Electromagnetic Radiation From Video Display Units: An Eavesdropping
Risk? Computer Security, 4(4):269–286, December 1985. http://dx.doi.org/10.1016/0167-
4048(85)90046-X

37. J. von Neumann. First Draft of a Report on the EDVAC. Technical report, Moore School of
Electrical Engineering, University of Pennsylvania, June 1945.

http://ww1.microchip.com/downloads/en/devicedoc/35007b.pdf
http://ww1.microchip.com/downloads/en/devicedoc/30292c.pdf
http://www.microchip.com
www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf.
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_21
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_21
http://www.crcpress.com
http://www.oshonsoft.com/pic.html
http://teledynelecroy.com/oscilloscope/
http://teledynelecroy.com/oscilloscope/
http://dl.acm.org/citation.cfm?id=275737.275754
http://dx.doi.org/10.1016/0167-4048(85)90046-X
http://dx.doi.org/10.1016/0167-4048(85)90046-X

Chapter 22
An Introduction to Java Card Programming

Raja Naeem Akram, Konstantinos Markantonakis and Keith Mayes

Abstract Java Cards support a Java virtual machine that interprets code written in
a subset of Java language. This may help programmers with prior knowledge of Java
language to program smart cards. However, the programming paradigm of Java Card
can be articulated as somewhat different than traditional Java programming. In this
chapter, we will provide an introduction to smart card programming using Java Card
and the subtleties of a restricted environment on application design.

Keywords Java Card · Java · Terminal · Programming · Tools · Testing

22.1 Introduction

Smart cards have evolved from a limited, purpose-built fixed function to a dynamic
and multi-application environment. The technology has progressed and we can now
program smart cards in high-level languages like Java and C (e.g. Java Card [5] and
Multos [1]). Nevertheless, the restrictive nature of the smart card environment in
terms of storage, processing, and physical attributes (i.e. size, and power consump-
tion) still play a vital role in application development.

The aim of this chapter is to provide an appreciation of the challenges encountered
by the smart card developers, which have to balance the application requirement and

R. N. Akram (B)

Department of Computer Science, University of Waikato, Hamilton, New Zealand
e-mail: rnakram@waikato.ac.nz

K. Markantonakis · K. Mayes
Information Security Group, Smart Card Centre, Royal Holloway,
University of London, Egham, United Kingdom
e-mail: k.markantonakis@rhul.ac.uk

K. Mayes
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 497
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_22,
© Springer Science+Business Media New York 2014

498 R. N. Akram et al.

resource consumption. In most cases, such considerations are not weighed when
programming for personal computers or powerful servers. Therefore, even if a pro-
grammer knows a smart card supported language (e.g. Java and C), it is still a different
programming style that he or she has to adopt. During this chapter, we take the Java
Card as a running example for smart card programming and assume that readers do
not have any prior knowledge of it. We start with a brief introduction of smart card
and Java Card architectures and their role in application design, programming, and
testing. Furthermore, we extend this discussion into a practical example of a Java
Card application referred to as “My First Applet”.

22.2 Smart Card Programming

In this section, we will look into the Java Card 3 architecture along with a generic
smart card hardware architecture; subsequently discussing how these affect the pro-
gramming model.

22.2.1 Smart Card Architecture

Figure 22.1, illustrates a smart card architecture based on the Java Card 3 specification
[8]. The smart card hardware layer hosts the smart card operating system (SCOS)
and native code. The SCOS is usually implemented in the native language for the
given hardware; however, for performance reasons, cryptographic algorithms are
implemented in hardware and related APIs are in native code.

The SCOS layer will include libraries that are specifically designed for the under-
lying hardware and in the case of Java Card they are accessible only to the Java Card

Smart Card Hardware

Java Card Runtime Environment (JCRE)
Java Card Firewall

Java Card Virtual Machine

System Classes

Applet Framework API

Package A

Smart Card Operating System (SCOS) Native Code

Servlet APIs
Java Card Classic APIs

Strict Java Card Classic Virtual Machine

Package B

Classic
Applet

A1

Classic
Applet

A2

Classic
Applet B1

Package C Package D

Extended
Applet C1

Extended
Applet C2

Extended
Applet D1

Package E Package F

Servlet
E1

Servlet
E2

Servlet
F1

Java Card Connected Frame work Java Card Classic Frame work

Application A Application BApplication C Application DWeb Application E Web Application F

Fig. 22.1 Smart card architecture (Java Card 3 [8])

22 An Introduction to Java Card Programming 499

virtual machine (JCVM). For Multos, and Basic Card [9] an application can directly
access SCOS services via SCOS application programming interfaces (APIs). There-
fore, Java Card is not an SCOS, but a smart card platform; where the Multos and
Basic Card are examples of SCOS. If we have Multos or Basic Card as an SCOS
then there will be no Java Card runtime environment (JCRE) as most of the function-
ality provided by the JCRE is already part of the Multos and Basic Card. The native
code is basically libraries that provide cryptographic services. The rationale behind
having the native code layer is to provide better performance for resource intensive
and time critical services. Above the runtime environment is the application layer,
which is isolated by the platform’s firewall mechanism (e.g. Java Card and Multos
firewalls [10]).

At the application layer, the Java Card 3 supports three different application mod-
els: classic applets, extended applets and Web applications. In this chapter, we will
focus on the classic applet architecture. It is backward compatible with previous Java
Card specifications and to date the most deployed Java Card architecture.

We will discuss the Java Card Connected and Classic frameworks later in this
chapter, but in subsequent sections we describe a generic smart card hardware and
communication framework.

22.2.2 Smart Card Hardware

In a simplistic manner we can describe a smart card hardware as a single silicon chip
that consists of a central processing unit (CPU), random access memory (RAM),
read only memory (ROM) and electrically erasable programmable read only memory
(EEPROM). When programming a smart card, the capabilities of these components
should be considered as they influence the application design. A typical smart card
has a 16 to 32bit CPU, RAM in the range of 8 kB, ROM around 200 kB and perhaps
(max) 64 kB of EEPROM. If a smart card has a Flash memory then it may not require
to have ROM or/and EEPROM.

The components illustrated on the right side of Fig. 22.2 are optional, but most
of the high-end smart cards include them. These components provide dedicated
hardware for cryptographic processing (i.e. crypto-copocessor) and also can include
internal clock multiplier or clock circuitry [12]. The crypto co-processor might sup-

Crypto-Coprocessor

EEPROM Flash ROM

Reset Interrupt RAM

Central
Processing Unit

(CPU)

RNG DES/TDES

AES RSA/EC

Timer Clock Generator

Intrusion DetectorsContactless USB

Fig. 22.2 Block diagram of a generic smart card hardware

500 R. N. Akram et al.

port random number generator (RNG), advanced encryption standard (AES), data
encryption standard (DES), triple DES (TDES) along with public key crypto sys-
tems like Rivest-Shamir-Adleman (RSA). Finally, a modern smart card may support
a USB interface for faster communication with a terminal.

In addition to these storage and processing restrictions, an EEPROM memory
only support limited number of write cycles (approx. 500,000 [13]) which may effect
design considerations [12]. If an application extensively uses an EEPROM location,
it will reach the EEPROM write cycle limit; thereby, disabling the respective memory
cells of the EEPROM, which will render the application code/data inaccessible. One
way to avoid this is to adopt an application design that only writes to the EEPROM
when it is absolutely necessary; otherwise, for all remaining tasks it uses the RAM.

An additional restriction imposed on the application design is based on the non-
existence of a user interface and the application environment in which a smart card is
deployed. In most instances, a smart card acts as a security token with restrictions on
the execution time such as in a transport application. Therefore, combining all these
restrictions ranging from limited hardware support to restricted performance criteria
makes programming for smart card’s a resource-based design. A developer has to
take into consideration all the contributing factors while programming the smart
card including the communication architecture of smart cards. As there is no user
interface, smart cards communicate with a terminal using a (restricted) application
data unit (APDU) framework which is discussed in the next section.

22.2.3 Communication Architecture

To facilitate the communication between applications on a terminal and a smart card,
the ISO/IEC 7816-4 [3] defines an APDU. The structure of the APDU is defined by
the ISO/IEC 7816-4 standard and it is illustrated in Fig. 22.3.

The APDU message sent by a terminal is referred to as the “command APDU” and
the response from a smart card is termed as “response APDU”. Different elements of
command and response APDU are described in Table 22.1. The command header is

CLA INS P1 P2

CLA INS P1 P2 Le

CLA INS P1 P2 Lc Data

CLA INS P1 P2 Lc Data Le

SW1 SW2Data

SW1 SW2

Command Header Command Body

Response
Body

Response
TrailerC

om
m

an
d

A
P

D
U

R
es

po
ns

e
A

P
D

U

Fig. 22.3 Command and response APDUs

22 An Introduction to Java Card Programming 501

Table 22.1 APDU components and their explanations

Command APDU
Field name Byte length Description

CLA 1 byte Instruction class—this indicates
the class of command:
proprietary or interindustry

INS 1 byte Instruction code—this indicates
the instruction to be executed

P1 1 byte Parameter bytes
P2 1 byte
Lc 0, 1, or 3 byte Number of data bytes in the

command APDU
Data 1–65, 535 bytes Data bytes
Le 0, 1, 2, or 3 byte Number of data bytes expected in

response from a smart card
Response APDU
SW1 1 byte Indicates the command processing

status: successful or error
SW2 1 byte
Data 1 - 65, 535 bytes Data bytes

compulsory when using the APDUs to communicate with a smart card. The command
body is optional depending upon the application design and requirements. From
a programming perspective, a developer has to define adequate APDU structure,
data length, both for the terminal and smart card applications. Therefore, we can
articulate that a smart card application developer should also understand the terminal
application’s functionality and requirements.

From a Java Card’s perspective, there are two types of APDUs that a smart card
application can handle: normal and extended APDUs [5]. The normal APDUs has
the Lc length as one byte thus only support 0–256 bytes for the data component of the
command/response APDU. However, Java Cards (version 2.2.2 and 3) also support
an extended APDU that provide the Lc length as two bytes supporting 0–32,767
bytes of data in the command APDU. The reason for this is the Java Card platform
APIs, use a positive short intended to store the size of the APDU’s data component,
which has a range of 0–32,767. Therefore, unlike the ISO/IEC 7816-4 [5] standard
that proposed the Lc of up-to three bytes giving the range of 65,536 (the first byte is
00, where the size of data is represented by byte two and three), Java Cards do not
support them.

502 R. N. Akram et al.

Design

Code Simulate

Testing

Live cards

Testing

Errors/Bugs Found

Field Trials

Testing

Deploy

Fig. 22.4 Smart card application development lifecycle

22.2.4 Application Development Lifecycle

Figure 22.4 illustrates a smart card application development lifecycle. The first step is
to gather the requirements and design the application. This stage should consider the
target application and (smart card) hardware platform, as this will effect the design
considerations. After the design of the application is completed, the next step is to
program the application. Subsequently, it should be simulated as directly testing on
a live hardware will be costly and in some cases difficult to debug. One of the most
important aspect of the application development lifecycle is testing, the more you
test the least time it will take to role out the service. During the testing process, if
there are any bugs found then the development goes back to the application design
and coding. More time spent on this process means saving time and money later, as
going back to design and testing from later stages is more taxing.

Once the testing is completed, the application is then deployed on live smart cards
that are selected for the actual deployment. The loaded application is tested again
to find any possible bugs or design oversights. Further to the testing, the application
should be put into a limited field trial to analyse the overall system and to find any
unforeseeable issues that were not considered at the design stage. To keep the devel-
opment of an application lifecycle simple we skip a few optional stages. For example,
if an application has be to evaluated for its security and functional properties (e.g.
EMV application [6]) then a developer should also include the security evaluation
stage in the lifecycle.

Before we dive into the discussion on Java Card API framework and using them
to program an application, we list some basic points that a developer should keep in
his or her mind at the time of application development.

1. Understand the application requirements and the capability of the targeted smart
card.

2. Base the application on a fault-tolerant robust design. During the lifecycle of an
application, it may encounter unforeseeable commands or combinations of inputs.
Therefore, the application design should have a fail-safe mode, to fall back if an
undefined condition or command is encountered during the execution.

3. Design a clear and concise communication interface (the commands that an appli-
cation will respond to if issued by a terminal).

22 An Introduction to Java Card Programming 503

4. Assign only essential data structures for storage in the EEPROM. Unnecessary
storage in the EEPROM can reduce the life of the application and also the target
smart card.

5. Consider the life of individual data structures. Modern smart cards may provide
garbage collection. However, reducing the use of garbage collection during the
execution of an application will increase its performance.

6. Reuse memory space (variables) within the application, especially data arrays if
they do not create any security vulnerability.

7. Design a thorough and comprehensive testing plan for the application.

22.3 Java Card

In this section, we discuss the recent Java Card specification 3 that has two distinct
editions: Java Card Classic and Connected.

22.3.1 Java Card Classic

The Java Card Classic edition is an incremental evolution to the Java Card 2.2.2 [5]. It
maintains backward compatibility and is designed for resource restricted devices. The
Java Card Classic virtual machine is similar to the previous JCVMs that had a split
architecture. This architecture was divided between on-card and off-card processing
of an application. Before loading an application on to a Java Card, the application code
is analysed by an off-card virtual machine to verify its integrity and compliance with
the Java Card specification. This analysed (pre-processed) application is then loaded
onto a Java Card. The Java Card 3 Classic fixes some bugs, provide clarifications
to the Java Card 2.2.2, along with providing support for security algorithms like
4096-bit RSA and NSA Suite B [2] and minor improvements on how contactless
transactions are processed.

A typical Java Card 3 Classic edition and Java Card 2.2.2 supports the following
features:

1. Boolean, byte and short data types.
2. Single thread execution.
3. Garbage collection (best effort).
4. Single dimension arrays.
5. Exceptions.
6. Java Card remote method invocation (RMI), and ISO/IEC 7816-4 (e.g. APDU)

for off-card communication.
7. Dedicated API to support biometric data.

504 R. N. Akram et al.

Java File

Class File

Export File

Off-Card
 Virtual Machine

Converter

Off-Card
 Installer

On-Card
Virtual Machine

CAP File

Export File

JCVM Applet
On-Card
Installer

Fig. 22.5 Java Card classic edition application development cycle

22.3.1.1 Java Card Classic Application Development Cycle

The traditional Java Card application development cycle is illustrated in Fig. 22.5.
After coding an application, a developer will compile the corresponding Java file to
produce class and export files.

The class file contains the application related bytecode and export file has any
associated configurations. These two files are then converted by the off-card virtual
machine to a CAP1 file and associated export file. The off-card virtual machine also
performs the bytecode verification to check whether the application conforms with
the Java Card specification.

After the generation of the CAP and export file by the off-card virtual machine,
these files are input to the off-card installer that communicates them to an on-card
installer. The on-card installer downloads the application code on to the respective
smart card. Once the application is downloaded it registers itself with the JCVM.
Now the application can execute and communicate with on-card or off-card entities.
In most of the latest smart cards that support the Java Card specification, the Glob-
alPlatform specification2 [4] is used for off-card and on-card installers, along with
post issuance application management.

22.3.2 Java Card Connected

The Java Card Connected edition is being proposed for high-end smart cards. It
contains a scaled down version of Java’s connected limited device configuration
(CLDC) virtual machine that is used in the mobile phones. Therefore, the Java Card
Connected can support the feature rich programming environment provided by the
CLDC virtual machines. It also enables a smart card to communicate concurrently
on a variety of interfaces: using internet protocol (IP), ISO/IEC 7816-4 protocols,
and contactless interfaces (ISO/IEC 14443 [7]).

1 CAP: The Java Card Converted APplet (CAP) is an Java Card interoperable file format used to
deploy an application on smart cards.
2 GlobalPlatform: The GlobalPlatform specification provides a secure, reliable and interoperable
application management framework for a multi-application smart cards.

22 An Introduction to Java Card Programming 505

The Java Card Connected edition moves the smart card into the role of a network
node that is capable of acting as an independent platform providing security and
privacy services. Therefore, the Java Card Connected edition may be the future for
the smart card technology. The features provided by it are listed as below:

1. Support for all common data types except for float and double.
2. Multithreading.
3. Rich APIs like generic connection framework (GCF), servlet, sockets, threads

and transactions, etc.
4. On-card bytecode verification.
5. Automatic garbage collection.
6. Multidimensional arrays.
7. Primitive wrapper classes (e.g. Boolean and Integer), string manipulation classes

(e.g. StringBuffer, StringBuilder, etc.), input/output (I/O) classes (e.g. Reader,
Writer, and Stream), and collection classes (e.g. Vector, Hashtable, Stack, and
Iterator, etc.).

8. Java SE features like generics, metadata, assertions, enhanced for loop, varargs
and static inputs, etc.

In addition to these features, the Java Card Connected edition supports the loading
of a Java application from a Java Archive (JAR) file.

22.3.2.1 Java Card Connected Application Development Cycle

The Java Card Connected application development cycle is illustrated in Fig. 22.6.
The application code is compiled to produce class and resource files along with
supporting libraries. The Java application does not have to be in the CAP file format
for the Java Card Connected edition, as it supports JAR format. Therefore, a packager
will take the output of the compiler (e.g. supporting libraries, class and resource files)
and packages them into a module (it can be either CAP or JAR depending upon the
smart card’s supported format) that is ready to be deployed. This module is then input
to the off-card installer that loads the application to the respective smart card. As
discussed before the Java Card Connected has an on-card bytecode verifier; therefore,
there is no particular need to perform off-card byteode verification.

Java File
Compile/
Build/IDE

Packager
Off-Card
Installer

Class File

Resource
File

Supporting
Libraries

Ready to
Deploy
Module

Smart Card

On-Card
Bytecode
Verifier

Installed
Application

Fig. 22.6 Java Card connected application development cycle

506 R. N. Akram et al.

Although, the application loading is different for the Java Card Classic and Con-
nected editions, most of the modern integrated development environments (IDEs)
can hide these details from the developer. Examples of the IDE for Java Cards are
Net Beans and Eclipse. A developer can use other IDEs, but we choose these two
for this chapter. The configuration details of these IDEs for Java Card development
may be obtained by contacting the authors or through [11].

22.4 Java Card Programming

In this section, we begin with a short description of the traditional Java Card applet
supported by Java Card version 2.2.2 and 3.1 Classic Edition. This will give an
understanding of basic structure of a Java Card applet.

22.4.1 Java Card Applet Architecture

The basic required structure of a Java Card applet is shown in Listing 22.1. Every
applet in the Java Card has to be associated with a package as shown in Fig. 22.1.
A package can have multiple applets and it can be considered as a container on a
smart card that has several components of the respective application.

Listing 22.1 Basic Architecture of a Java Card Applet
1 package myFirstApplet ;
2
3 import javacard .framework.APDU;
4 import javacard .framework.Applet ;
5 import javacard .framework.ISOException;
6
7 public class FirstApplet extends Applet {
8
9 private FirstApplet () {

10 }
11
12 public stat ic void insta l l (byte bArray[] , short bOffset , byte bLength)
13 throws ISOException {
14 new FirstApplet () . register () ;
15 }
16
17 public void process(APDU apduHandle) throws ISOException {
18
19 }
20 }

The import statements includes the Java Card API that a developer may want
to utilise in her applet. For brevity, we do not dive into the discussion of the entire
Java Card API. The first import javacard. f ramework.AP DU statement includes
the APDU support to the applet, which is necessary if the developer requires her
applet to communicate with off-card entities using APDUs. Similarly, develop-
ers also have to import the javacard. f ramework.Applet from which all Java

22 An Introduction to Java Card Programming 507

Card applets have to be derived. The install and process methods listed at lines
12 and 17 are extended from the javacard. f ramework.Applet . The reasons for
implementing these methods in the class is described later in this section. Finally,
javacard. f ramework.I SO Exception is included to enable the applet to handle
and throw exceptions. This is a useful feature for the robust design of an applet that
if used properly can manage any possible errors during the application execution.

The two most important methods that a Java Card applet has to implement are:
install and process. The install method is called by the JCRE to create an instance
of the Applet subclass. In a simplistic manner, it can be explained as registering an
applet with the JCRE. Once an applet is registered, it becomes selectable to an off-card
entity enabling it to communicate with the applet. The install method is invoked at
the end of the application loading, and usually it is requested by the off-card installer.
If JCRE does not execute the install method, then the application is loaded on the
smart card, but it would not be able to communicate with other entities (on-card
or/and off-card). The install method accepts a byte array as an input parameter that
can be sent by the off-card installer to personalise an application. The data items
that a developer wants to execute only once in the lifetime of an applet should be
declared in this method, examples of such data structures can be cryptographic keys
associated with the application and any application personalisation information.

The process method is invoked by the JCRE, when an off-card entity sends an
APDU for the applet. The input parameter of the process method is the APDU object
which contains the byte array containing the APDU sent by the off-card entity. This
method can be considered as the main function of the applet as it acts an interface
between an off-card entity and the functionality implemented by the respective applet.
Depending upon the design of the application, the applet will perform the required
function.

22.5 My First Applet

In this section, we extend the basic structure of the applet to provide an example of
the Java Card application (e.g. loyalty application).

22.5.1 Application Design

As an example, we will develop a simple counter application that can be considered
as a loyalty application. The application stores a value, which can be increased,
decreased or requested by an (off-card) terminal application. Note, in the sample
implementation we do not include any authentication or cryptographic functionality.
The reason behind this is to keep the code short and simple for easy explanation.
A complete loyalty application with additional features is available—from authors.

Our loyalty application on a smart card has a data counter and support four com-
mands as listed:

508 R. N. Akram et al.

Table 22.2 Instruction bytes for individual commands

INS byte Name Description

0xE0 INS_RESET Reset the counter
0xE1 INS_READ Read the counter
0xE2 INS_INCREASE Increase the counter with a value X
0xE3 INS_DECREASE Decrease the counter with a value X

1. Increase value: This command will increase the counter by a value X, where X
is provided as the input to the command.

2. Decrease value: This command will decrease the counter by a value X, where X
is provided as the input to the command.

3. Read value: The terminal application requests the smart card application to pro-
vide the current value of the counter.

4. Reset counter: It resets the counter to the base value, which for our example is
zero.

As per requirements, the only persistent data structure for our application is a
counter value. If the counter value is declared as a byte then it will reduce the APDU
manipulation as APDU data component is also a byte array. However, the size of a
byte is limited to 255 and for this example we consider that a counter value should be
declared as a “short” giving it the value of 33,767. By doing so, we have to convert
the input bytes to short and vice versa.

Each package and its associated applets on a Java Card has a unique identifier
referred as the application identifier (AID). The AID is a 5–16 byte identifier that
consists of two components: registered identifier (RID) and Proprietary Application
Identifier Extension (PIX). The RID is 5 bytes long and compulsory, on the other
hand PIX can be 0–9 bytes long and is optional. If you are developing an application
that would be used either nationally or internationally, you need to get a RID from
designated authorities. However, for the example we do not require this, and you can
use any AID for your example application. Therefore, the defined AID in hexadecimal
format for the example package (myFirst Applet) is 0×D0 0×00 0×00 0×00 0×
62 0×02 0×01 0×0C 0×0E, and for the applet is 0×D0 0×00 0×00 0×00 0×
62 0 × 02 0 × 01 0 × 0C 0 × 0E 0 × 0A.

The loyalty application class byte is set to 0 × C0 and instruction bytes for indi-
vidual commands are listed in Table 22.2.

In the next step, we define error messages that the loyalty application will throw if it
encounters an unrecognisable input. The list of error messages with their descriptions
are listed in Table 22.3. All values shown as the error messages are in hexadecimal
format.

After documenting the basic structure, commands, and error messages, we can
proceed with the development. Any changes to the basic structure, commands or
error messages should be recorded back in the design document to give us a accurate
view of the application’s architecture.

22 An Introduction to Java Card Programming 509

Table 22.3 Loyalty application error messages and their description

Error Name Description

0xF0C0 SW_CLANOTSUPPORTED CLA byte in the command APDU
is invalid

0xF0C1 SW_INSNOTSUPPORTED INS byte in the command APDU is
invalid

0xF0C2 SW_LCNOTSUPPORTED Length of input data is invalid
0xF0C3 SW_INCEXCEEDS The counter value exceeds its limit

(input + counter > limit)
0xF0C4 SW_DECEXCEEDS The counter value become negative

(counter − input < 0)
0xF0C5 SW_INVALID Command structure is invalid
0xF0C6 SW_UNDEFINED Undefined error occurred during

execution

22.5.2 Coding

For brevity we will not list the complete code of the loyalty application here, which
can be obtained by contacting the authors or through [11]; nevertheless, we continue
on the code from Listing 22.1. First we declare the required data structures, which
are illustrated in Listing 22.2.

Listing 22.2 Declarations of Data Structures used in FirstApplet
1 / / Data variable to store the loyalty points
2 private short CounterValue = 0;
3
4 / / FirstApplet specific constants
5 final s tat ic byte CLA = (byte)0xC0;
6 final s tat ic byte INS_RESET = (byte)0xE0;
7 final s tat ic byte INS_READ = (byte)0xE1;
8 final s tat ic byte INS_INCREASE = (byte)0xE2;
9 final s tat ic byte INS_DECREASE = (byte)0xE3;

10
11 / / Applet’s ERROR Status Words
12 final s tat ic short SW_CLANOTSUPPORTED = (byte)0xF0C0;
13 final s tat ic short SW_INSNOTSUPPORTED = (byte)0xF0C1;
14 final s tat ic short SW_LCNOTSUPPORTED = (byte)0xF0C2;
15 final s tat ic short SW_DECEXCEEDS = (byte)0xF0C4;
16 final s tat ic short SW_INCEXCEEDS = (byte)0xF0C3;
17 final s tat ic short SW_UNDEFINED = (byte)0xF0C6;
18 final s tat ic short SW_INVALID = (byte)0xF0C5;

Next, we program the process method that starts with handling the APDUs
(both command and response APDUs), which are illustrated in Listing 22.3. The
statement on line 3 declares a byte array that takes the command APDU from the
apduHandle object. The byte array apduBuffer is used for both command and
response APDUs. The first step in the command APDU handling is to check whether
the command corresponds to the correct format. Therefore, on line 12 we verify
whether the CLA byte of the command APDU is the one supported by the loyalty
application. Next we use the "if” statements that define four cases for the INS byte of

510 R. N. Akram et al.

the command APDU, each associated with the relevant operation of the application.
If the INS byte does not match any of the defined commands then theFirstApplet
throws an SW_INSNOTSUPPORTED exception.

Listing 22.3 Main Functionality of the Loyalty Application
1 public void process(APDU apduHandle) throws ISOException {
2
3 byte [] apduBuffer = apduHandle. getBuffer () ;
4 short temporaryShortValue = 0;
5
6 / / Return i f the APDU is selection APDU
7 if (selectingApplet ()){
8 return ;
9 }

10
11 / / For Command APDUs check their CLA value
12 i f (apduBuffer[ISO7816.OFFSET_CLA]!= CLA){
13 ISOException. throwIt (SW_CLANOTSUPPORTED);}
14
15 / / For Command APDUs check their INS value
16 i f (apduBuffer[ISO7816.OFFSET_INS] = =INS_RESET){
17 CounterValue = 0;
18 return ;
19 }
20
21 i f (apduBuffer[ISO7816.OFFSET_INS] = =INS_READ){
22 converterShortToByte(apduBuffer) ;
23 apduHandle .setOutgoingAndSend((short)0 , (short)2);
24 return ;
25 }
26
27 i f (apduBuffer[ISO7816.OFFSET_INS] = =INS_INCREASE){
28 i f (apduBuffer[ISO7816.OFFSET_LC]= =(byte)0x02){
29 temporaryShortValue = converterByteToShort(apduBuffer ,ISO7816.OFFSET_CDATA);
30 i f (temporaryShortValue <= (short)(CounterValueLimit−CounterValue)){
31 CounterValue = (short)(CounterValue+temporaryShortValue) ;
32 return ;
33 } else{
34 ISOException. throwIt (SW_INCEXCEEDS);}
35 }else{
36 ISOException. throwIt (SW_LCNOTSUPPORTED);}
37 }
38
39 i f (apduBuffer[ISO7816.OFFSET_INS] = =INS_DECREASE){
40 i f (apduBuffer[ISO7816.OFFSET_LC]= =(byte)0x02){
41 temporaryShortValue = converterByteToShort(apduBuffer , ISO7816.OFFSET_CDATA);
42 i f (temporaryShortValue <= CounterValue){
43 CounterValue = (short)(CounterValue − temporaryShortValue) ;
44 return ;
45 }else{
46 ISOException. throwIt (SW_DECEXCEEDS);}
47 }else{
48 ISOException. throwIt (SW_LCNOTSUPPORTED);}
49 }else{
50 ISOException. throwIt (SW_INSNOTSUPPORTED);}
51 return ;
52 }

In case of the first command (INS_RESET), theCounterValue is simply set to
zero. The counter read command (INS_READ) requests the short to byte converter
method and returns the value to the terminal application. The conversion method

22 An Introduction to Java Card Programming 511

copies the byte value of the CounterValue in the first two locations of the byte
array (e.g. apduBuffer), which is then sent as part of the response APDU.

If the terminal application sends anINS_INCREASE command, the loyalty appli-
cation first checks the length of data component of the APDU. If this value is not
2, it will throw SW_LCNOTSUPPORTED exception. After verifying the length of
the input data, it will check whether adding the input value to the CounterValue
would exceed the limit of short data types in Java Card. If it does not, it will add
the value. As the input value is sent as an byte array, so loyalty application has
implemented a helper method (converterByteToShort) to convert an input
byte array to a short value. The INS_DECREASE command is handled in the similar
manner by the loyalty application.

Listing 22.4 shows the helper methods that provide the short to byte conversion
and vice versa. For brevity, we do not explain the rationale behind the statements in
this listing as they are based on bit manipulation and how data is stored in a computer.

Once the coding of the application is completed we compile it using the Java
compiler that will produce a "class” file, which is later converted by the capgen3 to a
CAP file. The compiling and CAP generation process can automatically be handled
by the IDE. After the application is compiled and packaged, it can then be hosted on
to the Java Card simulator.

Listing 22.4 Helper Methods of the Loyalty Application
1 private void converterShortToByte(byte [] inputArray){
2 inputArray[0] = (byte) ((short)(CounterValue & (short)0xFF00)
3 >> (short)0x0008) ;
4 inputArray[1] = (byte) (CounterValue & (short)0x00FF) ;
5 }
6
7 private short converterByteToShort(byte [] inputArray , short arrayOffset){
8 return (short) (((inputArray[arrayOffset] << 8)) |
9 ((inputArray[(short)(arrayOffset+(short)1)] & 0xff))) ;

10 }

22.5.3 Simulating and Testing

A Java Card 2.2.2 offers two flavors of Java Card simulators: CREF and JCWDE.
Both of these simulators offer different features and it would be a good idea to check
which supports the required functionality to simulate a particular application.

To test an application, there are two possible ways: scripting and developing a
terminal application. In this chapter, we only discuss how to use scripts to test the
loyalty application.

A typical terminal application will communicate with the loyalty application by
first selecting the application and then requesting a particular process (i.e. commands
listed in Table 22.2). A simplistic test script in hexdecimal format is shown in Listing
22.5.

3 Capgen: It is part of the Java Card development kit and used to produce CAP files from class files.

512 R. N. Akram et al.

Listing 22.5 A Simple Test Script for Loyalty Application
1 powerup;
2 / / select FirstApplet applet
3 0x00 0xA4 0x04 0x00 0xA0 0xD0 0x00 0x00 0x00 0x62 0x02 0x01 0x0C 0x0E 0x0A 0x7F;
4 / / send counter reset command
5 0xB0 0xE0 0x00 0x00 0x00 0x7F;
6 / / send counter read command
7 0xB0 0xE1 0x00 0x00 0x00 0x7F;
8 / / send counter increase command, increasing the value by 2
9 0xB0 0xE2 0x00 0x00 0x02 0x00 0x02 0x7f ;

10 / / send counter decrease command, decreasing the value by 1
11 0xB0 0xE3 0x00 0x00 0x02 0x00 0x01 0x7f ;
12 / / send counter read command
13 0xB0 0xE1 0x00 0x00 0x02 0x7f ;
14 powerdown;

The first command APDU signals to the JCRE to select the loyalty application.
Next, it resets the counter and then tries to read it. At this point the loyalty application
should send the value zero. The script then requests the loyalty application to increase
the counter value by two and subsequently decrease it by one. Finally, the script tries
to read the counter value that should be returned as one. We can extend the script
in many ways to check the application. The aim during the testing on a smart card
application should be to evaluate all possible commands and scenarios, which enable
the execution of most (preferably all) of the application code. For example, the script
should have some error commands to test the robustness and fault-tolerance of the
loyalty application. The more extensive the testing, the better the end product will
be.

22.6 Conclusion

In this chapter, we described peculiarities of the smart card architecture that a devel-
oper has to consider. Although, the smart card technology has seen rapid development
both in terms of hardware and inclusion of rich features; it is still a resource restricted
device. We then moved to provide a simplistic example of a loyalty application. The
complete code for the loyalty application along with additional examples and tutorial,
readers are advised to check the developer’s section of the book’s official website.

Acknowledgments The authors want to thank the reviewers for their constructive comments which
were helpful to improve this chapter.

References

1. Multos: The Multos Specification. http://www.multos.com/
2. NSA Suite B Cryptography. http://www.nsa.gov/ia/programs/suiteb_cryptography/index.

shtml

http://www.multos.com/
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

22 An Introduction to Java Card Programming 513

3. ISO/IEC 7816–4, Identification cards - Integrated circuit cards - Part 4: Organization, security
adn commands for interchange, (2005). http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=36134

4. GlobalPlatform: GlobalPlatform Card Specification, Version 2.2, (2006). http://www.
globalplatform.org/specificationscard.asp

5. Java Card Platform Specification; Application Programming Interface, Runtime Environment
Specification, Virtual Machine Specification, (2006). http://java.sun.com/javacard/specs.html

6. EMV 4.2: Book 1 - Application Independent ICC to Terminal Interface Requirements, Book 2 -
Security and Key Management, Book 3 - Application Specification, Book 4 - Cardholder, Atten-
dant, and Acquirer Interface Requirements, (2008). http://www.emvco.com/specifications.
aspx?id=155

7. ISO/IEC 14443: Identification Cards - Contactless Integrated Circuit(s) Cards - Proximity
Cards, Part1: Physical Characteristics, Part 2: Radio Frequency Power and Signal Interface,
Part3: Initialization and Anticollision, Part 4: Transmission Protocol, (2008). http://www.iso.
org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728

8. Java Card Platform Specification: Classic Edition; Application Programming Interface, Run-
time Environment Specification, Virtual Machine Specification, Connected Edition; Runtime
Environment Specification, Java Servlet Specification, Application Programming Interface,
Virtual Machine Specification, Sample Structure of Application Modules, (2009). http://java.
sun.com/javacard/3.0.1/specs.jsp

9. BasicCard (Visited June, 2010). http://basiccard.com/
10. Akram, R.N., Markantonakis, K., Mayes, K.: Firewall Mechanism in a User Centric Smart Card

Ownership Model. In: D. Gollmann, J.L. Lanet, J. Iguchi-Cartigny (eds.) Smart Card Research
and Advanced Application, 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010,
vol. 6035/2010, pp. 118–132. Springer, Passau, Germany (2010). DOI http://dx.doi.org/10.
1007/978-3-642-12510-2

11. Royal Holloway, University of London. Smart Card Centre website. http://www.scc.rhul.ac.
uk/books/ssed/embedded/chapter_22.

12. Rankl, W.: Smart Card Applications: Design Models for Using and Programming Smart Cards.
Wiley (2007)

13. Rankl, W., Effing, W.: Smart Card Handbook. John Wiley & Sons, Inc., New York, NY, USA
(2003)

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36134
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36134
http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://java.sun.com/javacard/specs.html
http://www.emvco.com/specifications.aspx?id=155
http://www.emvco.com/specifications.aspx?id=155
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728
http://java.sun.com/javacard/3.0.1/specs.jsp
http://java.sun.com/javacard/3.0.1/specs.jsp
http://basiccard.com/
http://dx.doi.org/10.1007/978-3-642-12510-2
http://dx.doi.org/10.1007/978-3-642-12510-2
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_22
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_22

Chapter 23
A Practical Example of Mobile Phone
Application Using SATSA (JSR 177) API

Lishoy Francis

Abstract SIM as a security token is increasingly being used to secure mobile phone
applications. Sensitive information such as PIN, security keys, etc are stored on the
SIM card. To utilise the SIM functionalities, it is imperative that mobile phone appli-
cations interact with applets available on the SIM. The security features for mobile
applications operating within the J2ME ecosystem are provisioned by SATSA API
Framework. It allows support for cryptography, digital signatures, user credential
management, communication with a smart card, and remote method invocation. The
SATSA APDU Communication API provides support for mobile phone applications
to interact with Java Card applets residing on a smart card, over the ISO7816 interface.
This chapter provides a practical example of a mobile phone application implement-
ing SATSA API. A MIDP 2.0 application or MIDlet that utilises the APDU package
within SATSA API and a Java Card applet were developed. The MIDlet and applet
were tested to work with each other on a PC-based development environment. The
MIDlet was tested on Wireless Toolkit Emulator and the Java Card applet was tested
on Java Card Platform Simulator. Freely available tools were used to create the above
mentioned practical demonstrators.

23.1 Introduction

In this chapter, we show how to develop a Java 2 Platform, Micro Edition (J2ME)
[1] Mobile information device profile (MIDP) [2] application (commonly known
as MIDlet). This MIDlet implements the Security and trust services API (SATSA)
[3] Application protocol data unit (APDU) Communication package. The SATSA
APDU communication application programming interface (API) enables the MIDlet

L. Francis (B)

Information Security Group, Smart Card Centre, Royal Holloway,
University of London, London, UK
e-mail: Lishoy.Francis.2005@live.rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 515
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_23,
© Springer Science+Business Media New York 2014

516 L. Francis

to communicate with a Java Card applet residing on a smart card such as SIM 1[4].
We also show how to develop a Java Card applet that is based on Java Card Framework
v2.2.1 [5]. This applet is developed in order to work with or rather test the MIDlet.
The applet is made capable of processing APDU command messages received from
MIDlet over SATSA interface, and also to respond with the necessary APDU response
messages. Figure 23.1 illustrates the MIDlet, the Java Card applet, and their interac-
tion over the SATSA APDU Communication interface.

Fig. 23.1 Design view

1 SIM stands for Subscriber Identity Module [4] widely used to provision GSM network authenti-
cation security. But, here we refer to SIM as any smart card used in the mobile telecommunications
environment.

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 517

23.1.1 A Brief Overview of SATSA Framework

The Security and Trust Services API (previously known as Java Specification Request
177 or JSR 177) is an optional package within the J2ME framework that provides
security features. This specification supports cryptographic operations, digital signa-
ture services, user credential management, communication with a smart card using
the APDU interface, and Java card remote method invocation (JCRMI). SATSA
connects J2ME and smart card ecosystems such as Java Card framework. SATSA is
defined in four optional packages as described below.

• SATSA-CRYPTO: This optional package defines the cryptographic API. It con-
sists of the following packages,

– java.security package is a subset of J2SE java.security. It defines classes and
interfaces required for the security framework. These include, Key and Pub-
licKey interfaces, and classes such as MessageDigest, KeyFactory, and Signa-
ture

– java.security.spec package is a subset of J2SE java.security.spec. It defines
classes and interfaces for key specifications and algorithmic parameter specifi-
cations. These include, X509EncodedKeySpec, KeySpec, AlgorithmParameter-
Spec, and EncodedKeySpec

– javax.crypto package is a subset of J2SE javax.crypto. It defines the Cipher class
for cryptographic operations such as encryption and decryption. These include,
cryptographic exceptions

– javax.crypto.spec package is a subset of J2SE javax.crypto.spec. It defines
classes for cryptographic key specifications.

• SATSA-PKI: This optional package mainly supports user credential management
and signature services. It consists of the following two packages.

– javax.microedition.securityservice package defines class CMSMessageSigna-
tureService, and CMSMessageSignatureServiceException

– javax.microedition.pki package defines class UserCredentialManager,
and UserCredentialManagerException.

• SATSA-JCRMI: This optional package defines Remote Method Interface (RMI)
interfaces. This package utilises Generic Connection Framework (GCF) and uses
the package, javax.microedition.io which defines GCF Connector that supports
Java Card Remote Method Invocation (JCRMI). SATSA-JCRMI package consists
of the following packages.

– javacard.framework package defines a subset of Java Card API. It includes Java
Card API framework exceptions

– javacard.framework.service package defines a subset of Java Card API. It
includes Java Card API service exception

– javacard.security package defines a subset of Java Card API. It includes a Java
Card API crypto exception

518 L. Francis

– java.rmi package defines a subset of J2SE java.rmi. It includes Remote Interface
and RemoteException

– javax.microedition.jcrmi package defines JavaCardRMIConnection interface,
RemoteStub class and RemoteRef interface.

• SATSA-APDU: This optional package, javax.microedition.apdu, defines APDU-
Connection interface supporting ISO7816-4 [6] APDU-based communications.
This package utilises GCF and uses the package, javax.microedition.io which
defines GCF Connector that supports APDU connections. We implement this API
in our demonstrator.

23.1.2 A Brief Overview of Java Card Framework

Java Card technology has evolved since its inception in 1996. However, the ini-
tial design goals of portability and security have remained as the core part of its
design. Java Card technology enables Java-based applications (commonly known
as “Applets”) to be run securely on resource-constrained devices such as smart
cards. The Java Card Platform specifications were developed and managed by Sun
Microsystems, which is now a subsidiary of Oracle Corporation. The latest Java
Card Platform specification that has been released is version 3.0. Java Card utilises
GlobalPlatform [7] specifications for securely managing applets on a smart card.
Although Java Card is a subset of Java, it differs with Java in many aspects. For
example, it has a limited virtual machine called Java card virtual machine (JCVM),
and has limited programming language constructs. The JCVM differs from any stan-
dard Java virtual machine (JVM). Distinguishing between Java Card and Java is out
of scope of this chapter. The reader is encouraged to explore Java Card technology
further by referring to [5], [8].

23.2 Practical Example

In this section, we show how to develop a MIDP application implementing SATSA
APDU Communication API and a Java Card applet based on Java Card Framework.
We then test that both applications interact with each other, by using Java Card
Platform Simulator and Wireless Toolkit Emulator.

23.2.1 Developing a MIDP Application (MIDlet) Implementing
SATSA APDU Communication API

What You Will Need

• A beginner’s level understanding of J2ME development process/life cycle.

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 519

• A beginner’s level understanding of Eclipse IDE [9].
• Eclipse Integrated Development Environment (IDE) or any similar IDE.
• Oracle/Sun Java Wireless Toolkit for CLDC2 and CDC3 (WTK4 v2.5.2.+), or Java

ME Software Development Kit.
• J2SE (Java Standard Edition) environment installed on development PC.
• Optional:

– A mobile phone supporting J2ME environment (MIDP v2.0+) and SATSA API,
in order to install and test the developed MIDlet.

– A code-signing [10] certificate issued from a trusted certificate authority in order
to implement, sign and access restricted SATSA API.

In This Example We Used

• Eclipse IDE v3.4.1 (Ganymede) running on a PC.
• Oracle/Sun Wireless Toolkit v2.5.2_01.

We design a simple mobile phone application based on MIDP v2.0 [2], i.e. a
MIDlet that would demonstrate a SATSA API. We chose to implement SATSA
APDU Communication API in the MIDlet as this is the basic requirement for any
interaction between the mobile phone and the SIM. This MIDlet would interact with
a Java Card applet, residing on a SIM, that is capable of processing APDU messages.

We setup Oracle/Sun Java wireless toolkit (WTK) on Eclipse IDE v3.4.1
(Ganymede) installed in a PC based operating environment. One may use alter-
nate IDEs, or command-line tools to build MIDlets. WTK is an advanced toolkit for
developing wireless applications that are based on J2ME’s MIDP and Connected lim-
ited device configuration (CLDC). This toolkit is designed to run on mobile phones,
personal digital assistants, and other resource-constrained small mobile devices. The
toolkit includes device emulation environments, performance tuning features, MIDlet
signing, certificate management, integrated Over-the-air (OTA) emulation, push reg-
istry emulation, documentation, etc. WTK implements various device capabilities
using standard APIs. These APIs are defined through Java Community Process (JCP).
The supported APIs in WTK v2.5.2 includes the following as given in Table 23.1. In
J2ME ecosystems, the configuration (e.g. CLDC) consists of a lightweight version of
the JVM, and associated base class libraries. The profile (Mobile information device
profile - MIDP) is built on top of base class libraries. Other APIs exist on top of
the configuration and the profile layers. The configuration and profile are normally
embedded within mobile devices.

We use the following APIs to implement our MIDlet example.

• Security and Trust Services API for J2ME (JSR 177).
• Mobile Information Device Profile (MIDP) 2.0 (JSR 118).
• Connected Limited Device Configuration (CLDC) 1.1 (JSR 139).

2 CLDC stands for Connected Limited Device Configuration.
3 CDC stands for Connected Device Configuration.
4 WTK stands for Wireless Toolkit.

520 L. Francis

Table 23.1 APIs supported in Oracle/Sun WTK v2.5.2

API Description

JSR 248 Mobile service architecture
JSR 185 Java technology for the wireless industry (JTWI)
JSR 139 Connected limited device configuration (CLDC) 1.1
JSR 118 Mobile information device profile (MIDP) 2.0
JSR 75 PDA optional packages for the J2ME platform
JSR 82 Java APIs for bluetooth
JSR 135 Mobile media API (MMAPI)
JSR 172 J2ME web services specification
JSR 177 Security and trust services API for J2ME
JSR 179 Location API for J2ME
JSR 180 SIP API for J2ME
JSR 184 Mobile 3D graphics API for J2ME
JSR 205 Wireless messaging API (WMA) 2.0
JSR 211 Content handler API
JSR 226 Scalable 2D vector graphics API for J2ME
JSR 229 Payment API
JSR 234 Advanced multimedia supplements
JSR 238 Mobile internationalization API
JSR 239 Java binding for the openGL(R) ES API

The design requirements of our simple MIDlet can be summarised as follows,

• MIDlet requires only basic user interactions and no user input.
• MIDlet should display messages on a simple graphical user interface on the screen.
• MIDlet should be able to open SATSA APDU Connection with a smart card.
• MIDlet should exchange and display APDU command/response messages with

the smart card.
• MIDlet should handle and display any error-conditions/exceptions that may be

encountered.

23.2.1.1 Compiling and Building MIDlet Source Code

The full source code of our MIDlet is made available in the Appendix, available at
the end of this chapter. The reader is now encouraged to go through the source code
before continuing to read any further.

Every MIDlet must extend the abstract class MIDlet which is found within
javax.microedition.midlet package. The MIDlet must also override three methods of
this class, such as startApp(), pauseApp(), and destroyApp(). Our MIDlet implements
the command listener found in javax.microedition.lcdui.commandListener package.

The startApp method is incorporated with functions such as opening a SATSA
connection, and exchanging APDU messages over the opened connection. It also

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 521

displays the APDU command and response messages. In order to interact with the
Java Card applet, we need to use a connection based on Generic connection frame-
work (GCF). GCF handles application selection command and logical communi-
cation channel between the MIDlet and a Java Card applet residing on the smart
card.

javax.microedition.apdu.APDUConnection

The above interface in GCF defines how to exchange APDUs with a Java Card
applet installed on a smart card. It also defines other functions such as read Answer-
to-reset (ATR), manage Personal Identification Number (PIN), reset card, etc.

A GCF connection is created by calling Connector.open() method. For establish-
ing a SATSA channel, the Application identifier (AID) of the target Java Card applet
and slot number of the smart card are required to be supplied within the connection
Uniform resource locator (URL). For simplicity, from this point onwards let us call
the GCF connection a SATSA connection. The format of connection URL is shown
as below.

Protocol:[Slot-Identifier];Target=<AID>

where, Protocol parameter is set as apdu or jcrmi. Slot-Identifier is the number
that indicates slot where the smart card is available. By default, this value is set
to 0. The Slot-Identifier field is optional. In case the mobile phone supports more
than one reader/smart card, the Slot-Identifier can be discovered by using a special
property called microedition.smartcardslots that is available by calling the method
System.getProperty(). Target field is either an AID of the Java Card applet or the
SIM application toolkit (SAT).

In our example, the connection URL string is as follows,

String urlSC =
"apdu:0;target=59.92.51.6E.83.6D.71.44.25.64.39.34.90";

With the SATSA connection open, the Java Card applet gets selected by default
and is ready to process any APDUs received from the MIDlet. In order to exchange
any APDU commands, the MIDlet must use exchangeAPDU() method. The SATSA
connection must be closed after use so that the logical channel acquired to commu-
nicate with Java Card applet on the smart card is released. This can be performed by
calling the method Connector.close(). The reader is encouraged to refer to the SATSA
specification available at [3], for more detailed information such as exceptions raised
for the methods discussed.

The following code snippet shows the SATSA connection being opened, with a
Java Card applet with AID 59.92.51.6E.83.6D.71.44.25.64.39.34.90 that resides on
the smart card available in slot number 0, APDU messages being exchanged, and
finally the SATSA connection is closed.

Listing 23.1 SATSA connection being opened by a Java Card applet.
1 byte[] apdu =
2 {
3 //command APDU

522 L. Francis

4 //00 F2 00 00 14
5 (byte) 0x00, (byte) 0xF2, (byte) 0x00, (byte) 0x00,
6 (byte) 0x14
7 };
8

9 String urlSC =
10 "apdu:0;target=59.92.51.6E.83.6D.71.44.25.64.39.34.90";
11

12 //Create and open a connection object
13 ISO_SM_Conn = (APDUConnection)Connector.open(urlSC);
14

15 //send APDU via exchangeAPDU method
16 response = ISO_SM_Conn.exchangeAPDU(apdu);
17

18 //Close connection
19 try{
20 ISO_SM_Conn.close();
21 }//try
22 catch(Exception ex)
23 {
24 ex.printStackTrace();
25 }//catch

Now that we have understood the usage of SATSA APDU Communication API
and after incorporating it in the source code, we shall compile and build the Java
sources. To compile and build the Java sources available in the Eclipse project, one
must choose the Build Project option from the Project menu of Eclipse IDE as shown
in Fig. 23.2. This step would compile the Java source file into Java class file.

The MIDlet requires mandatory security permission, javax.microedition.apdu.aid,
in order to open a SATSA APDU connection. This type of permission is only granted
to MIDlets in the operator, manufacturer, and third-party trusted domains. So it is
important that we add javax.microedition.apdu.aid as the required MIDlet permis-
sion within the application descriptor or manifest file of the project.

MIDlet-Permissions: javax.microedition.apdu.aid

For more information on MIDP security permissions and code-signing, the reader
is advised to refer to [10].

23.2.1.2 Preverification and Packaging the MIDlet

The next step is to preverify the compiled MIDlet class. This step is required to be
performed by JVM to ensure the correctness of the class file in accordance to the JVM
specification. For more detailed information on steps involved in preverification, the
reader is encouraged to refer to the JVM specification [11]. In a nutshell, during
the preverification process, information is added to the class file, such as variable
types and operand stack items used. The inlines of all subroutines are added and
jump operations are removed. The whole process is aimed to make verification on
the device more efficient.

The final step is to package the MIDlet to make it ready for testing and deployment.
The application descriptor or the manifest files can be personalised by adding addi-

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 523

Fig. 23.2 MIDlet compile and build

tional information such as MIDlet Name, MIDlet vendor, MIDlet JAR URL, MIDlet
version, etc. A screenshot of application descriptor open in the Eclipse workspace
is shown in Fig. 23.3.

By clicking on the create package option within application descriptor, Eclipse
IDE performs the preverification and the packaging of MIDlet. The result would be
JAR (Java Archive) file and a Java application descriptor (JAD) file. The JAR file is
the Java executable that needs to be installed and run on the target mobile phone.
The JAD file contains all information from application descriptor and informs the
mobile device what to expect within the JAR file. With create package successful
run, you can see that the JAR and JAD files are created in the deployed folder of the
project. The application descriptor or the JAD file of our MIDlet is as follows.

MIDlet-Version: 1.0.0
MIDlet-Vendor: MIDlet Suite Vendor
MIDlet-Jar-URL: SATSAapduMIDlet.jar
MicroEdition-Configuration: CLDC-1.1
MIDlet-1: SATSAapduMIDlet,
satsaapdumidletpackage.SATSAapduMIDlet
MicroEdition-Profile: MIDP-2.0
MIDlet-Permissions: javax.microedition.apdu.aid
MIDlet-Name: SATSAapduMIDlet MIDlet Suite

524 L. Francis

Fig. 23.3 MIDlet application descriptor overview

23.2.1.3 Running the MIDlet on WTK Emulator

Before deploying the MIDlet on the real device, it is important that it is tested on a
mobile phone (WTK) emulator. In order to deploy the MIDlet on the WTK emulator,
one should create a Run Configuration in Eclipse. The target project and emulator
needs to be specified. A screenshot of Run Configuration is shown in Fig. 23.4.

The MIDlet when run on the WTK emulator would ask the user to grant permission
to access the smart card as shown in Fig. 23.5. The permission should be granted to
continue making the SATSA connection.

23.2.1.4 Deploying the MIDlet on a Mobile Phone

In order to test the midlet on a mobile phone supporting SATSA APDU API, one
would require to sign the MIDlet [10]. This would enable MIDlet with required
security privileges to access the smart card available on the SIM reader interface of
the mobile phone. After a successful run of the MIDlet on the emulator and rigorous
testing, it is ready to be installed on the mobile phone. This step can be performed
by using many different methods. Some of these methods are listed as follows. The

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 525

Fig. 23.4 MIDlet run configuration

reader is encouraged to find more details on following steps and adapt to the most
suitable and convenient method.

• Installing the MIDlet over Bluetooth connection setup between mobile phone and
PC.
• Installing the MIDlet over USB interface setup between mobile phone and PC.
• Installing the MIDlet from a memory card inserted on the mobile phone.
• Installing the MIDlet hosted on a webserver via Internet or Over-The-Air.

23.2.2 Developing a Java Card Applet

What You Will Need

• A beginner’s level understanding of Java Card development process/life cycle.
• A beginner’s level understanding of setting Java development environment.
• Oracle/Sun Java Card Development Kit (JCDK/JDK v2.2.+) setup to develop Java

Card applets.
• Optional:

526 L. Francis

Fig. 23.5 MIDlet permission

Table 23.2 AIDs of applet and package

Category RID Length PIX Length Total length

Package 0x59, 0x92, 0x51, 0x6E, 0x6D, 0x71, 0x44, 0x25, 10 15
0x83 5 0x64, 0x39, 0x34, 0x90,

0xA0, 0x01
Applet 0x59, 0x92, 0x51, 0x6E, 0x6D, 0x71, 0x44, 0x25, 8 13

0x83 5 0x64, 0x39, 0x34, 0x90

– A smart card supporting Java Card framework (v2.2+), in order to load, install
and test the developed Java Card applet.

In this Example We Used

• Oracle/Sun Java Card Development Kit v2.2.1 setup on a PC.

For demonstration purposes of SATSA-APDU, a Java Card applet is required
to work in conjunction with mobile phone application, i.e. MIDlet. In this section,
we design a simple Java Card applet that can process APDUs and respond with a
pre-determined message.

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 527

Table 23.3 Command interface - APDU commands

Command name CLA INS P1 P2 Lc Data Le

SELECT 0x00 0xA4 0x04 0x00 0x0C 0x59, 0x92, 0x51, 0x6E, 0x00
0x83, 0x6D, 0x71, 0x44,
0x25, 0x64, 0x39, 0x34,
0x90

TEST 0x00 0xF2 0x00 0x00 NA NA 0x14

Table 23.4 Command interface - APDU responses

Command name Response SW1 SW2

SELECT 0x90, 0x00 0x90 0x00
TEST 0x00, 0xF1, 0x00, 0x00, 0x0D, 0x90 0x00

0x74, 0x72, 0x61, 0x6E, 0x73,
0x6C, 0x61, 0x74, 0x65, 0x63,
0x32, 0x63, 0x78, 0x90, 0x00

23.2.2.1 Application Identifiers (AIDs) of Java Card Applet and its Package

According to Java convention, a Java Card applet class is defined within a package.
Both package and applet requires to be assigned with an Application identifier (AID).
AID is defined in ISO 7816-5 [6]. In our case, we assign the following AIDs as given
in the Table 23.2.

23.2.2.2 Applet Command Interface

We assign a simple command interface for our Java Card applet. It consists of
SELECT and TEST command APDUs. The APDU command message formats are
given in Table 23.3, and APDU response message formats are given in Table 23.4.

23.2.2.3 Compile, Convert, and Run Applet on CREF Simulator

The Java Card Development Kit includes a Java Card Platform Simulator called
C-language Java Card RE (CREF). This is the reference implementation of Java
Card Runtime Environment and is written in C programming language [12]. CREF
simulates persistent memory (EEPROM5) and allows applets to be installed on it. It
allows us to save and restore EEPROM contents to disk files of the host computer.
It performs Input/Output (I/O) over socket interface which simulates all interactions

5 EEPROM stands for Electrically erasable programmable read-only memory. This is a type of non-
volatile memory that is used to store data that must be saved when power is removed, in computers,
smart cards and other electronic devices.

528 L. Francis

with a card reader by supporting communication protocols such as T=1, T=CL,
or T=0. More detailed information of CREF and on how to use, can be found in
user’s guide, within documentation of any Java Card Development Kit [5]. We used
Oracle/Sun’s CREF Java Card Platform Simulator to test the developed applet.

Firstly, we describe the steps to develop the applet. Then run the applet on the
simulator. For more detailed information of development process, reader is required
to refer to Java Card documentation available in any Java Card Development Kit [5].

The source code used in this example is available in the Appendix, at the end
of this chapter. The reader is encouraged to read through and understand the source
code before proceeding to read this section any further. It is recommended to set the
paths of JAVA_HOME and JC_HOME, logically mapped to Java Development Kit
(J2SE) and Java Card Development Kit install directories respectively. In our case,
these variables were set on a PC environment as follows.

set JAVA_HOME=C:\Program Files\Java\j2sdk1.4.2_05
set JC_HOME=C:\java_card_kit-2_2_1

The source code is available in the following path.

C:\java_card_kit-2_2_1\appcodes\testjsrpackage
\Testjsrapplet.java

The following command-line instructions were used to compile the source code
of the applet.

"%Java_Home%"\bin\javac -classpath
C:\java_card_kit-2_2_1\lib\api.jar -g
C:\java_card_kit-2_2_1\appcodes\testjsrpackage
\Testjsrapplet.java

After successful compilation of Java source file with no errors and no warnings,
the resulting class(es) are required to be converted to “java card executable” known
as Java card converted applet (CAP). We convert the class file into CAP by using the
command-line instructions as shown below.

%JC_Home%\bin\converter -exportpath
%JC_Home%\api_export_files -d C:\java_card_kit-2_2_1
\appcodes -applet 0x59:0x92:0x51:0x6E:0x83:0x6D:0x71
:0x44:0x25:0x64:0x39:0x34:0x90 Testjsrapplet -classdir
C:\java_card_kit-2_2_1\appcodes testjsrpackage 0x59:0x92
:0x51:0x6E:0x83:0x6D:0x71:0x44:0x25:0x64:0x39:0x34:0x90
:0xA0:0x01 1.0

Now that we have our CAP file ready, we need to generate the applet download-
script using scriptgen tool available in the Java Card Development Kit. The resulting
script file would contain all the necessary APDUs for downloading the CAP file onto
the virtual-card. For this, we invoke the following command-line instruction.

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 529

Fig. 23.6 Java Card applet running on CREF simulator

%JC_Home%\bin\scriptgen -o C:\java_card_kit-2_2_1
\appcodes\testjsrpackage\testjsrpackage.script
C:\java_card_kit-2_2_1\appcodes\testjsrpackage\javacard
\testjsrpackage.cap

The generated script file would be similar to the one shown in the Appendix 23.4.3
at the end of this chapter. It is to be noted that first 2 lines (powerup and selecting the
installer applet), and the last 3 lines (creating our applet, selecting installer applet
and powerdown) have been added in generated script file.

The next step is to setup the virtual-card image (EEPROM image) that contains
the required applet. For this, run CREF with any suitable name that virtual-card
image should be saved as on the disk. We created the image with the name testjsr-
package.eeprom by invoking the follow command-line instruction.

start %JC_Home%\bin\cref -o C:\java_card_kit-2_2_1
\appcodes\testjsrpackage\testjsrpackage.eeprom

You should now get the confirmation from CREF that the virtual-card image has
been saved, as shown in Fig. 23.6.

With CREF running we load the applet onto the virtual-card image (testjsrpack-
age.eeprom) by using apdutool with script-file (testjsrpackage.script) via the follow-
ing command-line instruction.

%JC_Home%\bin\apdutool C:\java_card_kit-2_2_1
\appcodes\testjsrpackage\testjsrpackage.script

530 L. Francis

If the applet has been successfully loaded and installed onto the virtual-card image,
window running CREF should shut automatically without any error messages. The
CREF exits and saves the virtual-card image as a file on the disk with the name you
had specified. This step needs to be performed only once unless required otherwise
to clear the state of the applet or the virtual-card image. The message-run of script
download using apdutool would look similar to the following.

Listing 23.2 Message-run of script download using apdutool.
1 Java Card 2.2.1 APDU Tool, Version 1.3
2 Copyright 2003 Sun Microsystems, Inc. All rights reserved.
3 Use is subject to license terms.
4 Opening connection to localhost on port 9025.
5 Connected.
6 Received ATR = 0x3b 0xf0 0x11 0x00 0xff 0x00
7 CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 09, a0, 00, 00, 00, 62, 03, 01, 08, 01, Le: 00, SW1: 90, SW2: 00
8 CLA: 80, INS: b0, P1: 00, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
9 CLA: 80, INS: b2, P1: 01, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00

10 CLA: 80, INS: b4, P1: 01, P2: 00, Lc: 1c, 01, 00, 19, de, ca, ff, ed, 01, 02, 04, 00, 01, 0f, 59,
11 92, 51, 6e, 83, 6d, 71, 44, 25, 64, 39, 34, 90, a0, 01, Le: 00, SW1: 90, SW2: 00
12 CLA: 80, INS: bc, P1: 01, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
13 CLA: 80, INS: b2, P1: 02, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
14 CLA: 80, INS: b4, P1: 02, P2: 00, Lc: 20, 02, 00, 1f, 00, 19, 00, 1f, 00, 11, 00, 0b, 00, 2e, 00, 0c,
15 00, eb, 00, 0a, 00, 18, 00, 00, 00, 66, 00, 00, 00,00, 00, 00, 01, Le: 00, SW1: 90, SW2: 00
16 CLA: 80, INS: b4, P1: 02, P2: 00, Lc: 02, 01, 00, Le: 00, SW1: 90, SW2: 00
17 CLA: 80, INS: bc, P1: 02, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
18 CLA: 80, INS: b2, P1: 04, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
19 CLA: 80, INS: b4, P1: 04, P2: 00, Lc: 0e, 04, 00, 0b, 01, 02, 01, 07, a0, 00, 00, 00, 62, 01, 01, Le:
20 00, SW1: 90, SW2: 00
21 CLA: 80, INS: bc, P1: 04, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
22 CLA: 80, INS: b2, P1: 03, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
23 CLA: 80, INS: b4, P1: 03, P2: 00, Lc: 14, 03, 00, 11, 01, 0d, 59, 92, 51, 6e, 83, 6d, 71, 44, 25, 64,
24 39, 34, 90, 00, 8c, Le: 00, SW1: 90, SW2: 00
25 CLA: 80, INS: bc, P1: 03, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
26 CLA: 80, INS: b2, P1: 06, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
27 CLA: 80, INS: b4, P1: 06, P2: 00, Lc: 0f, 06, 00, 0c, 00, 80, 03, 02, 00, 02, 07, 01, 00, 00, 00, 99,
28 Le: 00, SW1: 90, SW2: 00
29 CLA: 80, INS: bc, P1: 06, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
30 CLA: 80, INS: b2, P1: 07, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
31 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 07, 00, eb, 00, 05, 10, 18, 8c, 00, 02, 18, 10, 14, 90, 0b,
32 3d, 03, 03, 38, 3d, 04, 10, f1, 38, 3d, 05, 03, 38, 3d, 06, 03, 38, Le: 00, SW1: 90, SW2: 00
33 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 3d, 07, 10, 0f, 38, 3d, 08, 10, 74, 38, 3d, 10, 06, 10, 72,
34 38, 3d, 10, 07, 10, 61, 38, 3d, 10, 08, 10, 6e, 38, 3d, 10, 09, 10, Le: 00, SW1: 90, SW2: 00
35 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 73, 38, 3d, 10, 0a, 10, 6c, 38, 3d,
36 10, 0b, 10, 61, 38, 3d, 10, 0c, 10, 74, 38, 3d, 10, 0d, 10, 65, 38, 3d, 10, 0e, 10, 63, 38, Le: 00,
37 SW1: 90, SW2: 00
38 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 3d, 10, 0f, 10, 32, 38, 3d, 10, 10, 10, 63, 38, 3d, 10,
39 11,10, 78, 38, 3d, 10, 12, 10, 90, 38, 3d, 10, 13, 03, 38, 87, 00, 18, Le: 00, SW1: 90, SW2: 00
40 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 05, 90, 0b, 3d, 03, 10, 90, 38, 3d, 04, 03, 38, 87, 01, 7a,
41 02, 30, 8f, 00, 03, 3d, 8c, 00, 04, 8b, 00, 05, 7a, 04, 21, 19, 8b, Le: 00, SW1: 90, SW2: 00
42 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 00, 06, 2d, 1a, 04, 25, 75, 00, 41, 00, 02, ff, a4, 00, 0d,
43 ff, f2, 00, 27, 19, 8b, 00, 07, 3b, 19, ad, 01, 92, 5b, 8b, 00, 08, Le: 00, SW1: 90, SW2: 00
44 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 20, 19, ad, 01, 03, ad, 01, 92, 5b, 8b, 00, 09, 70, 22, 19, 8b,
45 00, 07, 3b, 19, ad, 00, 92, 5b, 8b, 00, 08, 19, ad, 00, 03, ad, 00, Le: 00, SW1: 90, SW2: 00
46 CLA: 80, INS: b4, P1: 07, P2: 00, Lc: 0e, 92, 5b, 8b, 00, 09, 70, 08, 11, 6d, 00, 8d, 00, 0a, 7a, Le:
47 00, SW1: 90, SW2: 00
48 CLA: 80, INS: bc, P1: 07, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
49 CLA: 80, INS: b2, P1: 08, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
50 CLA: 80, INS: b4, P1: 08, P2: 00, Lc: 0d, 08, 00, 0a, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, Le: 00,
51 SW1: 90, SW2: 00 CLA: 80, INS: bc, P1: 08, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
52 CLA: 80, INS: b2, P1: 05, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 531

53 CLA: 80, INS: b4, P1: 05, P2: 00, Lc: 20, 05, 00, 2e, 00, 0b, 02, 00, 00, 00, 02, 00, 00, 01, 06, 80,
54 03, 00, 01, 00, 00, 00, 06, 00, 00, 01, 03, 80, 03, 01, 03, 80, 0a, Le: 00, SW1: 90, SW2: 00
55 CLA: 80, INS: b4, P1: 05, P2: 00, Lc: 11, 01, 03, 80, 0a, 07, 03, 80, 0a, 09, 03, 80, 0a, 05, 06, 80,
56 07, 01, Le: 00, SW1: 90, SW2: 00
57 CLA: 80, INS: bc, P1: 05, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
58 CLA: 80, INS: b2, P1: 09, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
59 CLA: 80, INS: b4, P1: 09, P2: 00, Lc: 1b, 09, 00, 18, 00, 08, 7b, 0f, 2d, 08, 03, 0f, 08, 03, 00, 0c,
60 05, 8a, 04, 03, 07, 15, 09, 0b, 06, 09, 0b, 08, Le: 00, SW1: 90, SW2: 00
61 CLA: 80, INS: bc, P1: 09, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
62 CLA: 80, INS: ba, P1: 00, P2: 00, Lc: 00, Le: 00, SW1: 90, SW2: 00
63 CLA: 80, INS: b8, P1: 00, P2: 00, Lc: 0f, 0d, 59, 92, 51, 6e, 83, 6d, 71, 44, 25, 64, 39, 34, 90, 00,
64 Le: 0d, 59, 92, 51, 6e, 83, 6d, 71, 44, 25, 64, 39, 34, 90, SW1: 90, SW2: 00
65 CLA: 00, INS: a4, P1: 04, P2: 00, Lc: 09, a0, 00, 00, 00, 62, 03, 01, 08, 01, Le: 00, SW1: 90, SW2: 00

In order to make the virtual-card image work with our SATSA MIDlet, we can
run the Java Card applet by using the command-line instruction shown below when
needed. CREF would listen to the port 9025 for any APDU commands (for instance,
those received from Wireless Toolkit Emulator).

%JC_Home%\bin\cref -p 9025 -i C:\java_card_kit-2_2_1
\appcodes\testjsrpackage\testjsrpackage.eeprom -o
C:\java_card_kit-2_2_1\appcodes\testjsrpackage
\testjsrpackage.eeprom

The state of the virtual-card image is saved and available for subsequent use,
unless a new image is created and over-written on the existing one. Now that the
virtual-card image is loaded with our applet it is time to test MIDlet’s SATSA APDU
Communication interface.

23.2.3 Results: Testing MIDlet and Java Card Applet

Now, let us test the SATSA MIDlet and Java Card applet together. The Java Card
applet saved on the virtual-card image needs to be running on CREF before we fire-up
the MIDlet to run on WTK Emulator.

%JC_Home%\bin\cref -p 9025 -i C:\java_card_kit-2_2_1
\appcodes\testjsrpackage\testjsrpackage.eeprom -o
C:\java_card_kit-2_2_1\appcodes\testjsrpackage
\testjsrpackage.eeprom

Figure 23.6 shows the Java Card applet running on CREF simulator.
Now let us run the SATSA MIDlet on WTK Emulator. For this, invoke the Run

Configuration of the project as shown in Fig. 23.4 and allow smart card access
permission when requested, as shown in Fig. 23.5.

With the MIDlet successfully opening the SATSA connection, it would send the
command APDU-SELECT implicitly, and followed by the command APDU -TEST.
If there is no error in any of the previous operations, the APDU response from Java
Card applet would be displayed on the MIDlet as shown in Fig. 23.7. After sufficient

532 L. Francis

Fig. 23.7 SATSA MIDlet interacting with Java Card applet

rest, it is recommended that reader try and implement more complex features in the
MIDlet using SATSA APIs and Java Card applets. Please enjoy coding!

23.3 Conclusion

Smart cards implemented with SIM applications are increasingly employed to pro-
vision security in mobile telecommunication systems. The SIM is used to pro-
vide authentication to services, and also for storing sensitive information such as
secret keys and PIN on a mobile phone. In order to utilise the security services
based in the SIM and to interact with the applications installed on it, mobile phone
applications would need to implement an advanced API called SATSA API (JSR
177). The core part of SATSA is the APDU Communication API. This API provides
support for mobile phone applications to interact with Java Card applets residing on
the SIM card over ISO7816 contact interface. In this chapter, we have presented a
practical example of developing a mobile phone application (MIDlet) that imple-
mented SATSA APDU Communication API and a corresponding Java Card applet.
The MIDlet and the applet were enabled to interact with each other on a PC-based
development environment. Both applications were developed and tested by using

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 533

freely available software tools. Additional resources may be obtained by contacting
the authors or through [13].

23.3.1 Source Code of MIDP Application (MIDlet)

Listing 23.3 Source code for SATSAapduMIDlet.java.
1 package satsaapdumidletpackage;
2

3 import javax.microedition.lcdui.Command;
4 import javax.microedition.lcdui.CommandListener;
5 import javax.microedition.lcdui.Displayable;
6 import javax.microedition.midlet.MIDlet;
7 import javax.microedition.midlet.MIDletStateChangeException;
8 import javax.microedition.lcdui.Display;
9 import javax.microedition.lcdui.Form;

10 import java.io.IOException;
11 import javax.microedition.io.Connector;
12 import javax.microedition.apdu.APDUConnection; //SATSA APDU API
13

14 public class SATSAapduMIDlet extends MIDlet
15 implements CommandListener
16 {
17 byte[] apdu =
18 {
19 //command APDU
20 //00 F2 00 00 14
21 (byte) 0x00, (byte) 0xF2, (byte) 0x00, (byte) 0x00, (byte) 0x14
22 };
23

24 byte[] response = null;
25

26 //form object
27 Form form = new Form("SimpleAPDU");
28

29 //exit command object
30 Command exitCmd = new Command("Exit", 1, Command.OK);
31

32 //constructor
33 public SATSAapduMIDlet()
34 {
35 super();
36 }//constructor
37

38 protected void startApp() throws MIDletStateChangeException
39 {
40 //add command to form object
41 form.addCommand(exitCmd);
42

43 //add command listener
44 form.setCommandListener(this);
45

46 //set the display to form object
47 Display.getDisplay(this).setCurrent(form);
48

49 // initialise connection object
50 APDUConnection ISO_SM_Conn = null;
51

534 L. Francis

52 try
53 {
54 form.append("Comms with Contact SE started....\n");
55

56 //construct URL string with Java Card Applet AID
57 //AID is 0x59, 0x92, 0x51x 0x6E, 0x83, 0x6D, 0x71, 0x44, 0x25, 0x64, 0x39, 0x34,
58 0x90.
59 String urlSC = "apdu:0;target=59.92.51.6E.83.6D.71.44.25.64.39.34.90";
60

61 //Create and open a connection object
62 ISO_SM_Conn = (APDUConnection)Connector.open(urlSC);
63

64 //print the apdu send to form
65 form.append("Command APDU to Contact SE −−−>"+ convertByteToHexString(apdu) +"\n");
66 response = null;
67

68 //send APDU via exchangeAPDU method
69 response = ISO_SM_Conn.exchangeAPDU(apdu);
70

71 if(response !=null)
72 {
73 //Last two bytes define the status of the response
74 if (response.length > 2)
75 {
76 //expecting a response of more than 2 bytes long (20 bytes) print response to form
77 form.append("Response APDU from Contact SE <−−−"+ convertByteToHexString(response)
78 +"\n");
79 }//end of if
80 else
81 {
82 //expecting an error code Status Word print response to form
83 form.append("Response to cmd:\n" + convertByteToHexString(response));
84 }//end of else
85

86 response = null;
87 }
88 }//end of try
89 catch(IOException e)
90 {
91 form.append(e.getMessage());
92 e.printStackTrace();
93 }//end of catch
94 finally
95 {
96 if (ISO_SM_Conn != null)
97 {
98 //Close connection
99 try{

100 ISO_SM_Conn.close();
101 }//try
102 catch(Exception ex)
103 {
104 form.append(ex.getMessage());
105 ex.printStackTrace();
106 }//catch
107 }//if
108 }//finally
109

110 }//end of startApp
111

112 protected void pauseApp()
113 {
114 }//end of pauseApp()

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 535

115

116 protected void destroyApp(boolean arg0)
117 throws MIDletStateChangeException
118 {
119 notifyDestroyed();
120 }//end of destroyApp
121

122 //handle Exit Command
123 public void commandAction(Command arg0, Displayable arg1)
124 {
125 if(arg0 == exitCmd)
126 {
127 exit();
128 }//if
129 }//commandAction
130

131 private void exit()
132 {
133 try
134 {
135 destroyApp(false);
136 notifyDestroyed();
137 }//try
138 catch(MIDletStateChangeException ex)
139 {
140 }//catch
141 }//exit()
142

143 //convert a byte array into hexadecimal string
144 private static String convertByteToHexString(byte[] data)
145 {
146 StringBuffer sbuff = new StringBuffer();
147

148 for (int i = 0; i < data.length; i++)
149 {
150 String bufftemp = Integer.toHexString(data[i] & 0xFF);
151 bufftemp = bufftemp.toUpperCase();
152

153 if (bufftemp.length() == 1)
154 {
155 sbuff.append(0);
156 }//end of if
157 sbuff.append(bufftemp + " ");
158 }//end of For
159

160 return sbuff.toString();
161 }//end of convertByteToHexString
162

163 }//end of class SATSAapduMIDlet

23.3.2 Source Code of Java Card Applet

Listing 23.4 Source code for testjsrpackage.java.
1 package testjsrpackage;
2 import javacard.framework.∗;
3

4 public class Testjsrapplet extends Applet
5 {
6 //initialiase command variables
7 private final static byte
8 INS_ONE = (byte) 0xA4; //command SELECT

536 L. Francis

9 private final static byte
10 INS_TWO = (byte) 0xF2; //command TEST
11

12 //response apdu for command TEST
13 byte[] output_buffer2 =
14 {
15 //00 F1 00 00 0F 74 72 61 6E 73 6C 61 74 65 63 32
16 63 78 90 00
17 (byte) 0x00, (byte) 0xF1, (byte) 0x00, (byte) 0x00,
18 (byte) 0x0F, (byte) 0x74, (byte) 0x72, (byte) 0x61,
19 (byte) 0x6E, (byte) 0x73, (byte) 0x6C, (byte) 0x61,
20 (byte) 0x74, (byte) 0x65, (byte) 0x63, (byte) 0x32,
21 (byte) 0x63, (byte) 0x78, (byte) 0x90, (byte) 0x00
22 };
23

24 byte[] output_buffer3 =
25 {
26 //90 00
27 (byte) 0x90, (byte) 0x00
28 };
29

30 //constructor
31 public Testjsrapplet()
32 {
33 }//endo of Testjsrapplet()
34

35 //install method
36 public static void install(byte[] buffer, short offset,
37 byte length) throws ISOException
38 {
39 //register
40 new Testjsrapplet().register();
41 }
42

43 //process method
44 public void process(APDU apdu) throws ISOException
45 {
46 //buffer variable to store apdu buffer
47 byte[] buffer = apdu.getBuffer();
48

49 switch (buffer[ISO7816.OFFSET_INS])
50 {
51 // if SELECT return SW: 9000
52 case (byte) INS_ONE:
53 apdu.setOutgoing();
54 apdu.setOutgoingLength((byte) output_buffer3.length);
55 apdu.sendBytesLong(output_buffer3, (short) 0,
56 (byte) output_buffer3.length);
57 break;
58

59 // if TEST return 00F100000D7472616E736C617465633263789000
60 case (byte) INS_TWO:
61 apdu.setOutgoing();
62 apdu.setOutgoingLength((byte) output_buffer2.length);
63 apdu.sendBytesLong(output_buffer2, (short) 0,
64 (byte) output_buffer2.length);
65 break;
66

67 default:
68 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
69

70 }//end of switch−case construct
71 }//end of process method

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 537

72 }//end of class Testjsrapplet

23.3.3 Java Card Applet Download-Script

Listing 23.5 Source code for testjsrpackage.script.
1 powerup;
2

3 // Select the installer applet
4 0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62
5 0x03 0x01 0x08 0x01 0x7F;
6

7 0x80 0xB0 0x00 0x00 0x00 0x7F;
8

9 // testjsrpackage/javacard/Header.cap
10 0x80 0xB2 0x01 0x00 0x00 0x7F;
11 0x80 0xB4 0x01 0x00 0x1C 0x01 0x00 0x19 0xDE 0xCA
12 0xFF 0xED 0x01 0x02 0x04 0x00 0x01 0x0F 0x59 0x92
13 0x51 0x6E 0x83 0x6D 0x71 0x44 0x25 0x64 0x39 0x34
14 0x90 0xA0 0x01 0x7F;
15

16 0x80 0xBC 0x01 0x00 0x00 0x7F;
17

18 // testjsrpackage/javacard/Directory.cap
19 0x80 0xB2 0x02 0x00 0x00 0x7F;
20 0x80 0xB4 0x02 0x00 0x20 0x02 0x00 0x1F 0x00 0x19
21 0x00 0x1F 0x00 0x11 0x00 0x0B 0x00 0x2E 0x00 0x0C
22 0x00 0xEB 0x00 0x0A 0x00 0x18 0x00 0x00 0x00 0x66
23 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x7F;
24

25 0x80 0xB4 0x02 0x00 0x02 0x01 0x00 0x7F;
26 0x80 0xBC 0x02 0x00 0x00 0x7F;
27

28 // testjsrpackage/javacard/Import.cap
29 0x80 0xB2 0x04 0x00 0x00 0x7F;
30 0x80 0xB4 0x04 0x00 0x0E 0x04 0x00 0x0B 0x01 0x02
31 0x01 0x07 0xA0 0x00 0x00 0x00 0x62 0x01 0x01 0x7F;
32

33 0x80 0xBC 0x04 0x00 0x00 0x7F;
34

35 // testjsrpackage/javacard/Applet.cap
36 0x80 0xB2 0x03 0x00 0x00 0x7F;
37 0x80 0xB4 0x03 0x00 0x14 0x03 0x00 0x11 0x01 0x0D
38 0x59 0x92 0x51 0x6E 0x83 0x6D 0x71 0x44 0x25 0x64
39 0x39 0x34 0x90 0x00 0x8C 0x7F;
40

41 0x80 0xBC 0x03 0x00 0x00 0x7F;
42

43 // testjsrpackage/javacard/Class.cap
44 0x80 0xB2 0x06 0x00 0x00 0x7F;
45 0x80 0xB4 0x06 0x00 0x0F 0x06 0x00 0x0C 0x00 0x80
46 0x03 0x02 0x00 0x02 0x07 0x01 0x00 0x00 0x00 0x99
47 0x7F;
48

49 0x80 0xBC 0x06 0x00 0x00 0x7F;
50

51 // testjsrpackage/javacard/Method.cap
52 0x80 0xB2 0x07 0x00 0x00 0x7F;
53 0x80 0xB4 0x07 0x00 0x20 0x07 0x00 0xEB 0x00 0x05
54 0x10 0x18 0x8C 0x00 0x02 0x18 0x10 0x14 0x90 0x0B

538 L. Francis

55 0x3D 0x03 0x03 0x38 0x3D 0x04 0x10 0xF1 0x38 0x3D
56 0x05 0x03 0x38 0x3D 0x06 0x03 0x38 0x7F;
57 0x80 0xB4 0x07 0x00 0x20 0x3D 0x07 0x10 0x0F 0x38
58 0x3D 0x08 0x10 0x74 0x38 0x3D 0x10 0x06 0x10 0x72
59 0x38 0x3D 0x10 0x07 0x10 0x61 0x38 0x3D 0x10 0x08
60 0x10 0x6E 0x38 0x3D 0x10 0x09 0x10 0x7F;
61 0x80 0xB4 0x07 0x00 0x20 0x73 0x38 0x3D 0x10 0x0A
62 0x10 0x6C 0x38 0x3D 0x10 0x0B 0x10 0x61 0x38 0x3D
63 0x10 0x0C 0x10 0x74 0x38 0x3D 0x10 0x0D 0x10 0x65
64 0x38 0x3D 0x10 0x0E 0x10 0x63 0x38 0x7F;
65 0x80 0xB4 0x07 0x00 0x20 0x3D 0x10 0x0F 0x10 0x32
66 0x38 0x3D 0x10 0x10 0x10 0x63 0x38 0x3D 0x10 0x11
67 0x10 0x78 0x38 0x3D 0x10 0x12 0x10 0x90 0x38 0x3D
68 0x10 0x13 0x03 0x38 0x87 0x00 0x18 0x7F;
69 0x80 0xB4 0x07 0x00 0x20 0x05 0x90 0x0B 0x3D 0x03
70 0x10 0x90 0x38 0x3D 0x04 0x03 0x38 0x87 0x01 0x7A
71 0x02 0x30 0x8F 0x00 0x03 0x3D 0x8C 0x00 0x04 0x8B
72 0x00 0x05 0x7A 0x04 0x21 0x19 0x8B 0x7F;
73 0x80 0xB4 0x07 0x00 0x20 0x00 0x06 0x2D 0x1A 0x04
74 0x25 0x75 0x00 0x41 0x00 0x02 0xFF 0xA4 0x00 0x0D
75 0xFF 0xF2 0x00 0x27 0x19 0x8B 0x00 0x07 0x3B 0x19
76 0xAD 0x01 0x92 0x5B 0x8B 0x00 0x08 0x7F;
77 0x80 0xB4 0x07 0x00 0x20 0x19 0xAD 0x01 0x03 0xAD
78 0x01 0x92 0x5B 0x8B 0x00 0x09 0x70 0x22 0x19 0x8B
79 0x00 0x07 0x3B 0x19 0xAD 0x00 0x92 0x5B 0x8B 0x00
80 0x08 0x19 0xAD 0x00 0x03 0xAD 0x00 0x7F;
81 0x80 0xB4 0x07 0x00 0x0E 0x92 0x5B 0x8B 0x00 0x09
82 0x70 0x08 0x11 0x6D 0x00 0x8D 0x00 0x0A 0x7A 0x7F;
83 0x80 0xBC 0x07 0x00 0x00 0x7F;
84

85 // testjsrpackage/javacard/StaticField.cap
86 0x80 0xB2 0x08 0x00 0x00 0x7F;
87 0x80 0xB4 0x08 0x00 0x0D 0x08 0x00 0x0A 0x00 0x00
88 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x7F;
89 0x80 0xBC 0x08 0x00 0x00 0x7F;
90

91 // testjsrpackage/javacard/ConstantPool.cap
92 0x80 0xB2 0x05 0x00 0x00 0x7F;
93 0x80 0xB4 0x05 0x00 0x20 0x05 0x00 0x2E 0x00 0x0B
94 0x02 0x00 0x00 0x00 0x02 0x00 0x00 0x01 0x06 0x80
95 0x03 0x00 0x01 0x00 0x00 0x00 0x06 0x00 0x00 0x01
96 0x03 0x80 0x03 0x01 0x03 0x80 0x0A 0x7F;
97 0x80 0xB4 0x05 0x00 0x11 0x01 0x03 0x80 0x0A 0x07
98 0x03 0x80 0x0A 0x09 0x03 0x80 0x0A 0x05 0x06 0x80
99 0x07 0x01 0x7F;

100 0x80 0xBC 0x05 0x00 0x00 0x7F;
101

102 // testjsrpackage/javacard/RefLocation.cap
103 0x80 0xB2 0x09 0x00 0x00 0x7F;
104 0x80 0xB4 0x09 0x00 0x1B 0x09 0x00 0x18 0x00 0x08
105 0x7B 0x0F 0x2D 0x08 0x03 0x0F 0x08 0x03 0x00 0x0C
106 0x05 0x8A 0x04 0x03 0x07 0x15 0x09 0x0B 0x06 0x09
107 0x0B 0x08 0x7F;
108 0x80 0xBC 0x09 0x00 0x00 0x7F;
109

110 0x80 0xBA 0x00 0x00 0x00 0x7F;
111

112 // create Testjsrapplet applet
113 0x80 0xB8 0x00 0x00 0xf 0xd 0x59 0x92 0x51 0x6E
114 0x83 0x6D 0x71 0x44 0x25 0x64 0x39 0x34 0x90 0x00
115 0x7F;
116

117 // Select the installer applet

23 A Practical Example of Mobile Phone Application using SATSA (JSR 177) API 539

118 0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62
119 0x03 0x01 0x08 0x01 0x7F;
120

121 powerdown;

References

1. Java Platform Micro Edition (Java ME). http://www.oracle.com/technetwork/java/javame/.
2. JSR-000118 Mobile Information Device Profile 2.0. http://jcp.org/aboutJava/

communityprocess/final/jsr118/.
3. JSR 177 Experts Group. Security and Trust Services API (SATSA) v2.1 for J2ME. http://jcp.

org/aboutJava/communityprocess/final/jsr177/index.html.
4. Third Generation Partnership Project (3GPP). Specification of the Subscriber Identity Module-

Mobile Equipment (SIM-ME) interface (Release 1999). TS 11.11 V8.14.0 (2007–06). http://
www.3gpp.org/.

5. Oracle/Sun Microsystems. Java Card Platform Specification v2.2.1. http://www.oracle.com/
technetwork/java/javacard/downloads/index.html.

6. International Organization for Standardization. ISO/IEC 7816 parts 1–15. 2005. http://www.
iso.org/.

7. GlobalPlatform. Card Specification v2.2. http://www.globalplatform.org/.
8. Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA., 2000.
9. Eclipse Open Source Community. http://www.eclipse.org/.

10. Java Code Signing for J2ME. http://www.oracle.com/technetwork/java/index.html.
11. T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. http://java.

sun.com/docs/books/jvms/.
12. B. W. Kernighan and D. M. Ritchie. The C programming Language. Prentice Hall, 1988.
13. Royal Holloway, University of London. Smart Card Centre website. http://www.scc.rhul.ac.

uk/books/ssed/embedded/chapter_23.

http://www.oracle.com/technetwork/java/javame/
http://jcp.org/aboutJava/communityprocess/final/jsr118/
http://jcp.org/aboutJava/communityprocess/final/jsr118/
http://jcp.org/aboutJava/communityprocess/final/jsr177/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr177/index.html
http://www.3gpp.org/
http://www.3gpp.org/
http://www.oracle.com/technetwork/java/javacard/downloads/index.html
http://www.oracle.com/technetwork/java/javacard/downloads/index.html
http://www.iso.org/
http://www.iso.org/
http://www.globalplatform.org/
http://www.eclipse.org/
http://www.oracle.com/technetwork/java/index.html
http://java.sun.com/docs/books/jvms/
http://java.sun.com/docs/books/jvms/
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_23
http://www.scc.rhul.ac.uk/books/ssed/embedded/chapter_23

Chapter 24
Wireless Sensors (Languages/Programming/
Developments Tools/Examples)

Jérémie Albert, Lionel Barrère, Serge Chaumette and Damien Sauveron

Abstract This chapter focuses on three major wireless sensor node technologies
(Sun SPOTS, Arduino and TinyOS) to help the reader choose what would best fit
his/her applications. Our goal is to provide the basic useful information required to
quickly start working (or just playing) with them in less than a few hours.

24.1 Introduction

As can be seen from the previous chapters (and by doing some basic search on
the Web), there is a large number of different wireless sensors and communicating
objects that are available to be used in real world applications. It is of course impossi-
ble to know all of them and furthermore to learn/explain how to program or use all of
them. Therefore we have chosen a number of architectures/systems/platforms which
we believe are representative both in terms of hardware and of software layers: Sun
SPOT, Arduino, TinyOS. These are also the most widely used in real world applica-
tions. For each of these architectures, we briefly describe it, the software environment
that must be installed to develop for this target and we give basic code examples that

J. Albert (B)
Solutions Architect, Ezakus, Bruges, Belgium
e-mail: jeremie.albert@ezakus.com

L. Barrère
H5 Audits, Paris, France
e-mail: lionel.barrere@h5audits.com

S. Chaumette
LaBRI, University of Bordeaux, Bordeaux, France
e-mail: serge.chaumette@labri.fr

D. Sauveron
University of Limoges, Limoges, France
e-mail: damien.sauveron@unilim.fr

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, 541
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_24,
© Springer Science+Business Media New York 2014

542 J. Albert et al.

Fig. 24.1 A Sun SPOT node

we believe will make it easier for the reader to get started. It should also be noted
that NFC and RFIDs will be major components of the Cyber Physical Space. They
are now combined with sensing capabilities and thus would have a natural space in
this chapter. For example, WIMA USA, which is the leading Near Field Communi-
cation (NFC) event, recently decided on talking about sensor technology. Products
are also becoming available in the medical sector. Nevertheless, these technologies
are covered in a another chapter of this book.

24.2 Sun SPOTs (Sun Small Programmable Object Technology)

24.2.1 Introduction

Sun SPOTs [12] (see Fig. 24.1) are small nodes that host a wireless connection and
that are powered by a battery which is rechargeable by USB. They embed a number of
sensors and actuators. Dedicated sensor boards can be bought/designed and plugged
on top of the other boards to achieve some specific operation or acquire some specific
measures. Thanks to the embedded radio board (IEEE 802.15.4 [5]), Sun SPOTs can
also be used as nodes of a global sensor network. It should be noted that a software
layer supporting mesh networking and including a Link Quality Routing Protocol
(LQRP) is provided, should it be useful. From a user perspective Sun SPOTs and
the associated software environment, provide for quick and easy hardware/software
design. The associated development language is Java, a Sun SPOT application being
a MIDlet.

To summarize, as described by Oracle on sunspotworld.com, “The Sun SPOT is
a Java programmable embedded device designed for flexibility.”

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 543

Fig. 24.2 The different layers
of a Sun SPOT

24.2.2 History

The history of Sun SPOTs started in 2004, when it was decided in the Sun Labs to
create an in-house sensor that would be powerful and easy to program. After Sun
was bought by Oracle, the distribution of Sun SPOTs was suspended for a while.
Nevertheless, the project was still active; for instance, a University Session has been
run at JavaOne 2010 in San Francisco. SUN SPOTs are now developed in the Oracle
labs and have been rebranded and are available to buy on the Web [3].

24.2.3 Hardware Overview

A Sun SPOT is a physically stack of several layers: a battery, a processor board and
a number of sensor boards (see Fig. 24.2). On top of that lies what Oracle calls a
removable Sunroof that both protects the sensors and closes the stack of hardware
boards.

The sensor boards that come with the SPOTs included in the development kit (see
Fig. 24.1) contain:

• Sensing components: a tricolor light sensor, an accelerometer and an IR receiver.
It should be noted that a temperature sensor is embedded on the main (processor)
board.
• Output components: an audio speaker, tricolor LEDs, etc.
• A number of I/O interfaces: 4 digital GPIO pins, 4 analog in lines, an I2C interface,

and a serial line coming from the processor board.

For a complete list of features the reader is referred to the official specifications [13].

544 J. Albert et al.

Fig. 24.3 The Squawk VM compared to the standard Java VM. (Image courtesy of Oracle)

24.2.4 Software Overview

A Sun SPOT runs a small Java Virtual Machine called Squawk [9].1

This virtual machine has been designed for small devices and is thus perfectly
suited for Sun SPOTs. A Software Development Kit is available for download (see
below) that contains the tools that make programming Sun SPOTs, debugging and
testing applications relatively easy. We will be using the latest version (as of writing)
of this kit, i.e. rev8 of v6.0 which is referred to as the yellow release. Squawk obeys
the Java CLDC 1.1 specification and one of its major differences with a standard
Java stack is that most of it is written in Java (see Figs. 24.2 and 24.3).

24.2.5 How to Start with a Sun SPOT

24.2.5.1 Buying a Simple Test Platform

It is possible to buy a basic development kit from Oracle that contains:

• two Sun SPOTs;
• a base station, i.e. a Sun SPOT that does not support stacking of other boards and

is most of the time connected to a PC via a USB cable and used to communicate
with the other SPOTs (referred to as Free Range SPOTs) and to bring data back
to the PC (where it can be processed);
• the required software tools.

1 Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 545

Fig. 24.4 The Sun SPOT
manager tool

24.2.5.2 Installation of the Development Environment

In the tutorials given by Oracle, they use the Netbeans IDE environment. In order
to be consistent, we have decided on using the same environment. We use the 7.1
release, which is freely available from the Netbeans web site [6]. Squawk being a
Java virtual machine, the Java environment is required. In our tests we use a Java 6
JRE installed on a Linux machine.

It is also necessary to install a piece of software called the Sun SPOT Manager (see
Fig. 24.4), which is the heart of the development platform. It is available from the Sun
SPOT web site. The installation process is initiated by going to a web page [10]. The
installation script then checks the configuration. It checks in particular the availability
of a Java Development Kit and of the Ant system [15]. It offers to install Netbeans,
but it is recommended to do so beforehand, since this installation sometimes causes
problems if your station is not in a proper configuration (it may be the case that this
results in an old version of NetBeans being installed). It also installs the Netbeans
Sun SPOT modules. The Sun SPOT development kit uses the RXTX library [8] to
talk with the SPOTs. RXTX provides (among other features) a serial communication
layer for Java applications. If you are using a 64 bit machine, the library that comes
with the Sun SPOT Manager is not the proper one (it is for a 32 bit platform).

546 J. Albert et al.

You thus need to install the 64 bit version yourself (if not already installed). Once
installed (for instance by running apt-get install librxtx-java under
Linux), you must replace the librxtx.so that comes with the Sun SPOT SDK by the
newly installed library. This can be done either by copying your new library in the
SDK libraries installation directory or by linking in that same directory to the 64 bit
version of the library that you have installed.

24.2.6 Hello World (“Shake and Blink”)

24.2.6.1 Description

In this basic application, we will make a Sun SPOT say hello by switching its LEDs
when it is moved quickly (the color depending on the direction in which it is moved)
and switching them off after a while.

24.2.6.2 Coding

The code for this example is quite simple. A Sun SPOT application obeys the MIDlet
specification and thus extends javax.microedition.midlet.MIDlet by implementing
the following major methods:

• startApp(): this method is called when the application is started.
• destroyApp(): this method is called when the application id destroyed.
• pauseApp(): this method is called when the application is paused.

To exit a MIDlet it is required to call the notifyDestroy() method. A MIDlet interacts
with the embedded sensors and the radio communication board via a set of predefined
APIs which are well documented and easy to understand. From a practical point of
view the simplest way to proceed is to copy one of the projects that come with the
SDK, so as to automatically inherit the configuration/compilation/deployment xml
files used by Ant. You simply need to change the name of the project, the names of the
source files (if required) and to update the MANIFEST file, which can be accessed
through the Files tab associated to the project in Netbeans. Listing 24.1 gives the
code of our HelloWorld application, which is straightforward to understand.

Listing 24.1 HelloWorld.java
1 package org . sunspotworld .demo;
2
3 import com.sun . spot . resources .Resources;
4 import com.sun . spot . resources . transducers . IAccelerometer3D;
5 import com.sun . spot . resources . transducers . ITriColorLEDArray;
6 import com.sun . spot . service . BootloaderListenerService ;
7 import javax . microedition . midlet .MIDletStateChangeException ;
8
9 public class HelloWorld extends javax . microedition . midlet .MIDlet {

10

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 547

11 private ITriColorLEDArray LED; /∗ get a ref . to the array of LEDs ∗/
12 private IAccelerometer3D accelerometer ; /∗ get a ref . to the accelerometer ∗/
13
14 protected void startApp () throws MIDletStateChangeException {
15
16 / / Listen to USB input and pass control to the bootloader
17 BootloaderListenerService . getInstance () . s tar t () ;
18 LED = (ITriColorLEDArray)Resources . lookup(ITriColorLEDArray. class) ;
19 accelerometer = (IAccelerometer3D) Resources . lookup(IAccelerometer3D. class) ;
20
21 while (true){
22 try {
23 i f (accelerometer .getAccelX()>1.0) {
24 LED.setOn() ; LED.setRGB(255,0 ,0);
25 Thread. sleep(500);
26 }
27 else i f (accelerometer .getAccelY()>1.0) {
28 LED.setOn() ; LED.setRGB(0,255 ,0);
29 Thread. sleep(500);
30 }
31 else i f (accelerometer .getAccelZ()>1.0) {
32 LED.setOn() ; LED.setRGB(0 ,0 ,255);
33 Thread. sleep(500);
34 }
35 else
36 LED. setOff () ;
37 } catch (Exception ex) {
38 ex. printStackTrace () ;
39 }
40 }
41 }
42
43 protected void pauseApp() { }
44 protected void destroyApp(boolean unconditional)
45 throws MIDletStateChangeException { }
46 }

24.2.6.3 Deployment

Deployment on the SPOT connected to the station is easily achieved in Netbeans
by selecting Build and then Deploy to SPOT from the project menu. It may be the
case that you need to upgrade your Sun SPOT, which can be achieved by using the
Sun Spot Manager. The Manager also enables to check that the SPOT is properly
connected (USB cable) to the station and thus taken into account by the software
environment.

24.2.6.4 Execution

The MIDlet can be launched either by:

1. Resetting the Sun SPOT (by pressing the Control Button at the bottom of the
SPOT).

2. Selecting Run in the menu of the project in Netbeans. By doing so (which of
course requires the SPOT to remain connected to the PC) it makes it possible

548 J. Albert et al.

to see the output (println) of the application in Netbeans, what is useful for
debugging purposes.

24.2.7 Networked Sun SPOTs Applications

24.2.7.1 Description

The application that we are going to show now will use two SPOTs, a free range
SPOT collecting light measurements at regular intervals and sending them to a base
station SPOT that will print them to its standard output so that it can be seen in the
Netbeans interface.

24.2.7.2 Communicating Between SPOTs

Communication between SPOTs is supported by several APIs. Here, for the sake
of simplicity, we will only describe Stream Connections, but packet oriented com-
munications are also available. A connection between two spots is setup using the
following piece of code.

1 StreamConnection conn = (StreamConnection)
2 Connector .open(‘ ‘radiostream : / /nnnn.nnnn.nnnn.nnnn:xxx");

where nnnn.nnnn.nnnn.nnnn stands for the address of the SPOT to connect to and xxx
is a port number (optional). The other SPOT must do the same so that the connection
is established. Thereafter input and output streams can be retrieved in a classical
manner.

1 DataInputStream dis = conn.openDataInputStream() ;
2 DataOutputStream dos = conn.openDataOutputStream() ;

24.2.7.3 Coding

The application is composed of two MIDlets. A first MIDlet called Collector.java is
run on the base station SPOT to collect and print the samples that are sent by the
second MIDlet (Sampler.java) running on the free range SPOT.

Listing 24.2 Collector.java
1 package org . sunspotworld .demo;
2 [. . .]
3
4 public class Collector extends javax . microedition . midlet .MIDlet {
5
6
7 protected void startApp () throws MIDletStateChangeException {
8 try {
9 / / Listen USB input and pass control to the bootloader

10 BootloaderListenerService . getInstance () . s tar t () ;
11 StreamConnection con =

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 549

12 (StreamConnection) Connector .open("radiostream://0014.4F01.0000.3817");
13 DataInputStream in = new DataInputStream(con.openInputStream ()) ;
14
15 while (true) {
16 System. out . println ("Collecting next sample");
17 System. out . println ("Value = " + in . readDouble ()) ;
18 }
19 } catch (Exception ex) {
20 ex. printStackTrace () ;
21 }
22
23 }
24
25 [. . .]
26 }

Listing 24.3 Sampler.java
1 package org . sunspotworld .demo;
2
3 [. . .]
4
5 public class Sampler extends javax . microedition . midlet .MIDlet {
6
7 private ITriColorLEDArray LED; / / get a ref . to the LEDs
8 private IAccelerometer3D accelerometer ; / / get a ref . to the accelerometer
9

10 protected void startApp () throws MIDletStateChangeException {
11
12 try {
13 / / Listen to USB input and pass control to the bootloader
14 BootloaderListenerService . getInstance () . s tar t () ;
15 StreamConnection con=
16 (StreamConnection) Connector .open("radiostream://0014.4F01.0000.21F8");
17 DataOutputStream out = new DataOutputStream(con.openOutputStream()) ;
18
19 LED = (ITriColorLEDArray) Resources . lookup(ITriColorLEDArray. class) ;
20 ILightSensor lightSensor =
21 (ILightSensor) Resources . lookup(ILightSensor . class) ;
22 LED.setOn() ;
23
24 while (true) {
25 LED.setOn() ; LED.setRGB(255, 0, 0);
26 Thread. sleep(500);
27 LED. setOff () ;
28
29 out .writeDouble(lightSensor .getAverageValue ()) ;
30 out . flush () ;
31 Thread. sleep(500);
32
33 LED.setOn() ; LED.setRGB(0 , 255, 0);
34 }
35 } catch (Exception ex) {
36 ex. printStackTrace () ;
37 }
38 }
39
40 [. . .]
41 }

550 J. Albert et al.

24.2.7.4 Deployment and Execution

Deployment and execution is achieved as for the HelloWorld application. It should be
noted that, given the configuration, the Sampler code on the free range SPOT is run by
resetting it and that the Collector on the base station is run using the Netbeans menu
Run feature. Netbeans then displays the output of the SPOT in one of its windows.

Communication between the base station and a standalone application running on
the PC it is connected to will not be described here. An API is provided to achieve
this and is documented in the Sun SPOT Programmers Manual [11].

24.3 Arduino

24.3.1 Introduction and History

Arduino [18, 20] is an open hardware platform and an open-source software stack [1].
It has been designed for diverse research field projects. It can be used for prototyping
innovative ideas as well as teaching classical issues related to embedded systems
programming. The hardware is based on a set of independent boards (named shields),
sensors, lights, motors, etc. that can be connected to each other depending on the
intended objective. Arduino nodes are always made up of a main board and of some
(may be zero) optional devices. The main board is an Atmel AVR processor with
I/O access. Examples of additional shields, sensors, etc. are presented in the next
section. The Arduino project began in Ivrea, Italy in 2005. Massimo Banzi and
David Cuartielles, who founded this project, named it after Arduin of Ivrea (955–
1015). He is the main historical character of this Italian town and was king of Italy
from 1012 to 1014. This project is a fork of the open-source Wiring Platform.

An example of a real world application based on Arduino is MPGuino [16]. This
system allows to get a real-time measurement of the miles per gallon consumption
for 90s (even late 80s) vehicles that use injectors that do not provide this kind of
information. The consumption is given in real-time to the driver using a LCD screen.
This application relies on an open platform called opengauge [7].

24.3.2 Hardware Overview

As explained above, Arduino is a set of independent open hardware and open-source
software. This makes possible the design of non official Arduino-compatible shields.
Figure 24.5 presents the Arduino Duemilanove board which is one of the official
Arduino main boards and the Arduino WiFi shield which is one of the optional
Arduino shields.

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 551

Fig. 24.5 An Arduino main board and a WiFi shield

The Arduino Duemilanove board is based on the ATmega168 (Flash memory
16 KB, SRAM 1 KB and EEPROM 512 Bytes) or ATmega328 (Flash memory
32 KB, SRAM 2 KB and EEPROM 1 KB) 16 MHz microcontroller. It operates
using 5 Volts derived from 6 to 20 Volts input. It has 14 digital I/O pins and 6 analog
input pins. The ATmega328 board version is very similar to the Arduino Uno board.
The Arduino WiFi shield allows an Arduino node to communicate using a WiFi
connection. Among the other related shields are the Arduino Bluetooth shield whose
name speaks for itself.

Arduino hardware and software are available under a copyleft license. However the
name Arduino can only refer to official boards. The non-official Arduino-compatible
products are named using duino name variants (e.g. CraftDuino [4] or SunDuino [14]
to name just two).

Arduino has been designed to test and implement solutions which rely on unusual
electronic hardware combinations. The low cost of classical boards and shields is
also a factor that encourages prototyping with this platform.

24.3.3 Software Overview

The most efficient way to start coding Arduino software is to download the IDE
(Integrated Development Toolkit) from the official website. This IDE is available for
several environments such as Microsoft Windows, Mac OS X and Linux (32 bits and
64 bits) operating systems. It comes with a C/C++ library that is called Wiring (as
explained above). Source code of this IDE (which can also be downloaded from the
official website) is under the GNU Public General Licence v2. Once installed, the

552 J. Albert et al.

Fig. 24.6 Overview of the
Arduino hardware and soft-
ware stacks

IDE enables writing and cross-compiling C/C++ source code for Arduino nodes. It
also allows to easily flash a USB-connected Arduino node.

Figure 24.6 presents a global view of the Arduino hardware and software stacks.
The software stack relies on the avr-gcc (available from the gcc.gnu.org web site)
compiler and the corresponding libc library. Arduino nodes execute code compiled
from C-like source code. The programming paradigm is thus imperative.

24.3.4 How to Start with a Arduino

24.3.4.1 Buying a Simple Test Platform

The best way to learn who the Arduino hardware distributors are is to refer to the
Arduino official website. Arduino Uno boards can be bought for some 30 USD. This
board only provides computing capabilities. As previously explained, Arduino is a
very flexible solution for prototyping, therefore each additional component can be
bought independently from the others.

ZigBee, WiFi and Bluetooth shields are commonly used to provide Arduino nodes
with a wireless communication means. For instance Ethernet shields can be used for
wired Ethernet-based communication. Starter kits often contain numerous devices
that can sense temperature, power, light, torsion, noise, etc. LEDs, push-buttons and
small electric engines are also often provided in these starter kits.

There are also LCD screens (as illustrated in Fig. 24.8) that can be plugged into
Arduino nodes. They are the good illustration of the numerous possibilities given by
this technology.

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 553

Fig. 24.7 Red and yellow
LEDs, push-buttons and an
electric engine

Fig. 24.8 A LCD screen for
Arduino nodes

24.3.4.2 Installation of the Development Environment

Arduino is a very well documented technology. Its official website provides an
Integrated Development Environment (IDE) for Linux, Mac OS X and Microsoft
Windows operating systems. It simplifies the development and the compilation of
suitable C/C++ source code and the installation of the corresponding binaries on
Arduino nodes.

24.3.5 Hello World (“Blinking SOS”)

24.3.5.1 Description

In a classical configuration, Arduino main boards do not have any screen. Therefore
the following source code does not print any “Hello World” character string, but it
blinks the Morse code for “SOS”. It is however a good starting point to understand
the structure of a Arduino program. It is composed of the setup and loop functions
which are both mandatory. The setup function is run once at the start of the program
and the loop function is then ceaselessly called. We make the node say “SOS” thanks
to its led which blinks every second (by means of a timed loop).

554 J. Albert et al.

24.3.5.2 Coding and Deployment

Listing 24.4 HelloWorld.cc
1 int led = 13; / / configure with the pin number for the led on your board
2 int time = 400;
3 int timeShort = time / 4;
4 int timeLong = 3 ∗ time / 4;
5 int delayBetweenSignals = time / 4;
6
7 void setup(){
8 pinMode(led , OUTPUT);
9 digitalWrite (led , LOW);

10 }
11
12 void shortBlink(){
13 digitalWrite (led , HIGH);
14 delay(timeShort) ;
15 digitalWrite (led , LOW);
16 delay(delayBetweenSignals) ;
17 }
18
19 void longBlink(){
20 digitalWrite (led , HIGH);
21 delay(timeLong) ;
22 digitalWrite (led , LOW);
23 delay(delayBetweenSignals) ;
24 }
25
26 void morseCodeS(){
27 longBlink () ;
28 longBlink () ;
29 longBlink () ;
30 }
31
32 void morseCodeO(){
33 shortBlink () ;
34 shortBlink () ;
35 shortBlink () ;
36 }
37
38 void loop(){
39 morseCodeS() ;
40 morseCodeO() ;
41 morseCodeS() ;
42 }

Source code of Listing 24.4 corresponds to our Hello World program and is quite
straightforward to understand. The pinMode function (line 8) configures the pin to
which the led is connected to be an output pin. The digitalWrite function (line 9)
sets the voltage of the pin. The voltage is set to 5V (or 3.3V on 3.3V boards) if
the second parameter is HIGH and is set to 0V (ground) if the second parameter is
LOW. However, if the pin had been configured to be an input pin (using the pinMode
function), writing a HIGH value with digitalWrite would have enabled a 20K pullup
resistor and writing a LOW value would have disabled this pullup. The Morse code
for “SOS” is output using the led of the board.

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 555

Deployment on the node connected to the station is achieved by using the IDE. It
is really straightforward (it can be achieved in one click).

24.3.6 Networked Arduino Application

24.3.6.1 Communication Between Arduino Nodes

Arduino nodes can communicate with each other using short-range communication
technologies such as WiFi, Bluetooth or ZigBee (to do so the main boards have to
be equipped with the required shields).

The following program is very similar to the previous one. For space reasons,
its source code is not completely given here, but it is sufficient to understand com-
munication principles between Arduino nodes. We assume here that the nodes are
equipped with ZigBee enabled shields plugged into their serial I/O interface.

The sender program sets the serial interface speed to 9600 baud. Then it repeats
what follows. First, it sends the value 1 to its serial interface, turns its led on and
waits for 500 ms. Second, it sends the value 0 to its serial port, turns its led off and
waits for 500 ms.

Listing 24.5 Sender.cc
1 int led = 8; / / configure with the pin number for the led on your board (8 here)
2
3 void setup(){
4 / / Start up our serial port
5 / / We configured our XBEE devices at 9600 bps
6 Serial . begin(9600);
7 }
8
9 void loop(){

10 Serial . print (1);
11 digitalWrite (led , HIGH);
12 delay(500);
13 Serial . print (0);
14 digitalWrite (led , LOW);
15 delay(500);
16 }

The receiver program also sets the speed of its serial interface to 9600 baud. It is
of course fundamental that the sender and the receiver choose the same speed. Then,
the node reads incoming data from its serial interface. When data is available, it turns
its led off if the received value is 0 and it turns it on if the received value is 1.

Listing 24.6 Receiver.cc
1 int incomingByte = 0;
2 int led = 8; / / configure with the pin number for the led on your board (8 here)
3
4 void setup(){
5 / / Start up our serial port
6 / / We configured our XBEE devices at 9600 bps
7 Serial . begin(9600);
8 }
9

10 void loop(){
11 i f (Serial . available () > 0) {

556 J. Albert et al.

Fig. 24.9 Overview of the
TinyOS hardware and soft-
ware stacks

12 / / read the incoming byte :
13 incomingByte = Serial . read () ;
14 }
15 i f (incomingByte == ’0’){
16 digitalWrite (led , LOW);
17 }
18 else i f (incomingByte == ’1’){
19 digitalWrite (led , HIGH);
20 }
21 }

As a result, when the receiver is within range of the sender, the two nodes blink
synchronously.

24.4 TinyOS

24.4.1 Introduction

TinyOS [17, 22] is an open-source operating system that relies on the event based
programming paradigm; it has been especially designed for sensor networks. It pro-
vides application developers with an API (see Fig. 24.9) and the underlying stack to
collect data from sensors and to communicate between nodes or with a base station.

The programming language is the NesC, which is an extension of the C language
that makes it possible to define components and their relationships (for instance how
a given component uses the output of another component). Every NesC source code
is composed of two files:

• the first file describes the interfaces that are used / defined by the application (like
a .h header file);

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 557

• the second file contains the implementation (event handlers) of the application
features (like a .c file).

The application and the kernel are compiled and linked together using a cross
compiling approach to get one single executable that can then be uploaded to the
target chip. The goal of this section is to show how TinyOS is different from the
other platforms by giving its main characteristics, therefore we will not enter in any
configuration or compilation details.

24.4.2 Hardware Overview

There are many vendors who have developed hardware supporting TinyOS and the
associated drivers (see Table 24.1).

Each TinyOS hardware configuration is composed of a main board (usually named
a mote) embedding a microcontroler, a wireless communication unit, a power supply,
some control leds and a connector to plug in sensors shields. Figure 24.10a shows
a Crossbow Mica2 mote that is historically the most popular WSN hardware plat-
form. It also shows the two shields, Crossbow MTS300 and Crossbow MTS420.
The Crossbow MTS300 board is equipped with a temperature sensor, a light sensor,
a microphone and a 4 kHz buzzer (Fig. 24.10b). The Crossbow MTS420 board, a
high end one, is composed of a humidity and temperature sensor, a light sensor, a
barometer, a two axes accelerometer and a GPS chip (Sirf Star II) (Fig. 24.10c).

Platforms embedding ZigBee are becoming the standard, and the most popular
configurations, as of writing, are MicaZ, TelosB and IRIS.

Table 24.1 Available TinyOS compatible hardware platforms

Model Networking Architecture Specifications

Crossbow Mica2 433/915 Mhz Atmel ATMEGA 128L 8-bit, 16 Mhz
Crossbow MicaZ 2.4 Ghz, 802.15.4

(ZigBee Baseband)
Atmel ATMEGA 128L 8-bit, 16 Mhz

IRIS 2.4 Ghz, 802.15.4 Atmel ATmega1281 8-bit, 16 Mhz
Mulle Bluetooth Renesas M16C/62 MCU 16-bit, 10 Mhz
TelosB 2.4 Ghz, 802.15.4 Texas Instruments

MSP430
16-bit, 8/16 Mhz

BTnode 433/915 Mhz et
Bluetooth

Atmel ATMEGA 128L 8-bit, 16 Mhz

Imote (Intel Mote) 2.4 Ghz, 802.15.4 Intel XScale 32-bit, 416 Mhz

558 J. Albert et al.

Fig. 24.10 Crossbow Mica2 mote and two sensor shields

24.4.3 How to Start with TinyOS

24.4.3.1 Buying a Simple Test Platform

The first step is to choose a hardware platform. There are many parameters to take
into account: one can decide on a specific configuration because of its cost, its radio
communication baseband, the available sensors, etc. The reader should know that
some motes such as Mica2, MicaZ or IRIS need a base station to be able to connect
to a computer whereas TelosB comes with a built-in USB interface. Internet is the
best way to get a TinyOS platform, each vendor (see Table 24.1) having a sales area
on the web, should you require a quotation.

24.4.3.2 Installing TinyOS

The TinyOS development kit is available as a Debian package. One just has to add
the TinyOS repositories to the Debian /etc/apt/sources.list file. TinyOS can then be
installed as follows:

1 $ apt−get update
2 $ apt−get ins ta l l tinyos−2.1.1

The TinyOS install directory is /opt/tinyos-2.1.1 and contains all what is needed
to use it with Mica or TelosB motes: examples of applications, drivers for most used
sensorboards, etc. The install directory contains two major subdirectories:

• tos, that contains the TinyOS core and the hardware drivers (platforms and sen-
sorboards);
• apps, that contains some example applications.

More configuration details are available in the TinyOS documentation wiki [17].

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 559

24.4.4 Hello World (“Sense and Blink”)

24.4.4.1 Description

In this section we present a simple example that consists in using the temperature
sensor and then showing the sampled value using the embedded leds.

TinyOS compatible hardware platforms do not provide (at least in the basic con-
figurations) any screen to get feedback from the running application. There are thus
two ways to give information to the user:

• the first, the simplest, consists in using the embedded leds;
• the second, the best, is to communicate via a serial interface or over the network

to eventually display information on a desktop.

For this simple example, we have chosen the first approach.

24.4.4.2 Coding

The first file (Listing 24.7) defines which components will be used in the application
and how the events will be handled. The second file (Listing 24.8) contains the
application code, i.e. the functions that handle the events coming from the different
components.

Listing 24.7 DemoSenseApp.nc
1 configuration DemoSenseAppC
2 {
3 }
4 implementation {
5 / / define which implementations will be used
6 components Sense , MainC, LedsC, new TimerMilliC() , new TempC() as Sensor ;
7
8 Sense .Boot −> MainC;
9 Sense .Leds −> LedsC; / / Sense .Leds is implemented by LedsC

10 Sense .Timer −> TimerMilliC;
11 Sense .Read −> Sensor ;
12 }

Listing 24.8 DemoSense.nc
1 module DemoSense
2 {
3 uses {// define the interfaces that are used
4 interface Boot;
5 interface Leds;
6 interface Timer<TMilli>;
7 interface Read<uint16_t>; / / We use the interface Sense .Read with unsigned
8 / / short result
9 }

10 }
11 implementation / / application source code (handlers)
12 {
13 / / sampling frequency in milliseconds
14 #define SAMPLING_FREQUENCY 100

560 J. Albert et al.

15
16 event void Boot.booted() {
17 call Timer. startPeriodic (SAMPLING_FREQUENCY);
18 }
19
20 event void Timer. fired ()
21 {
22 call Leds. led0Toggle () ;
23 call Read. read () ;
24 }
25
26 event void Read.readDone(error_t result , uint16_t data)
27 {
28 call Leds. led0Toggle () ;
29 i f (result == SUCCESS){
30 call Leds.led1On() ;
31 call Leds. led2Off () ;
32 }else{
33 call Leds.led1On() ;
34 call Leds. led2Off () ;
35 }
36 }
37 }
38 }

24.4.4.3 Deployment and Execution

Once the source code of the application is written, it has to be compiled to run on the
target platform. The configurations for the most popular platforms are already defined
in the distribution of TinyOS, therefore compiling for instance for Mica2 motes just
requires to run the make mica2 command. Of course avr-gcc is needed for cross
compiling, but it is automatically installed with TinyOS. Once the application is
compiled, it can be uploaded to the mote. If the mote has an interface to connect to
a host computer, as is the case for the TelosB platform, it can be done through this
interface. In the other cases a base station with a serial or USB interface is needed,
where the target mote must be plugged in. For example in the case of a Mica2 mote
connected through a MIB510 serial base station on the /dev/ttyS0 serial port, the
application is uploaded using the following command:

1 $ make mica2 reinstal l mib510, / dev/ ttyS0

24.4.5 Networking with TinyOS

Networking is needed by most if not all real world TinyOS applications because the
most popular application domain is the collection of data related to the evolution of
some natural phenomenon at different locations. For space reasons, we will not give
here a TinyOS application that would use the network. We just want to emphasise on
the fact that TinyOS is event based, and networking is no exception. Thus, receiving
a message is done by implementing a function that handles an event:

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 561

1 event message_t∗ Receive . receive (message_t∗ bufPtr , void∗ payload , uint8_t len){
2 [. . . .]
3 }

It is also possible to use high level network interfaces for instance by using an IP
stack such as BLIP [2] (Berkeley Low-power IP stack). An IP stack protocol can be
interesting for routing or security reasons, but it depends on the target application
and on the acceptable battery consumption that its use would imply.

24.5 Sensor Network Deployment: An Example

24.5.1 Introduction

In this section, an example of a Sensor Network deployment is presented to illustrate
some common issues which the reader may face during a real deployment. The goal
of the application that we consider is to track a physical phenomenon. Dynamic data
are collected by several sensor nodes which communicate them to their neighbours
using broadcast based communication (routing would not be suitable here because
we need to save energy and to be tolerant to the failure or disconnection of nodes).
A detailed description of the application can be found in [19]. We focus here on the
the main problems we faced when deploying it. Such an application can be used
in different contexts (battlefields, crisis management, etc.) and thus the reader can
imagine any adaptation that would fit his/her own needs. The application does not
only observe the considered phenomenon, but it performs some additional actions
to react to the appearance of specific patterns in the collected data that can mean
potential threats or emerging trends. For example, if some data samples are missing
(there can be several reasons for that which will be discussed later), the application
should use interpolation or extrapolation techniques to provide a continuous view
of the distributed phenomenon. The physical world value that is collected by our
application in this particular example is the temperature.

24.5.2 Hardware Architecture

The Wireless Sensors network which we consider here is composed of Crossbow
Mica2 nodes on top of which are sensor boards measuring temperature (e.g. Crossbow
MTS420—see Sect. 24.4.2). In this configuration, all the nodes do not play the same
role. We can distinguish two categories (see Fig. 24.11):

1. Basic sensor nodes whose role is to take a measurement, to broadcast it and to
forward the values received from the other nodes.

2. Client nodes which are more powerful: they are composed of a station (laptop,
desktop, or any device with a reasonable amount of computing capabilities) that
embeds a Mica2 mote so as to be able to communicate with the basic sensor

562 J. Albert et al.

Fig. 24.11 A sensor network
configuration to sample and
collect a physical value

nodes. These client nodes communicate with other motes to collect the mea-
surement samples in order to build a global view of the overall phenomenon in
the area covered by the network (a global view is thus constructed from local
measurements).

24.5.3 The Time Synchronization Issue

Synchronizing the motes is required to be able to achieve a coherent temporal fusion
of the measurements taken by the different sensors. The synchronization algorithm
cannot only rely on the broadcast and propagation of the time from a single node
as the many delays that can appear during the transmission of a message have to
be taken into account and must be compensated. These delays are due to the time
needed for the sending mote to access the transmission channel, pack and effectively
send the message. For the receiver, these delays are due to the time needed to receive
and process a message. To overcome this issue, we implemented the Flooding Time
Synchronization Protocol [21] by using the Time Stamping library of TinyOS. The
goal is to get an accurate estimation of the time required to receive a message, taking
into account the transmission delays and the local clock drifts (one cannot afford to
embed expensive clocks that would provide small drifts in sensor nodes). The readers
interested in this feature for their applications are encouraged to read [21].

24 Wireless Sensors (Languages/Programming/Developments Tools/Examples) 563

24.5.4 Data Collection, Location and Network Load Issues

The goal of our algorithm is to collect the temperature still keeping track of where
and when each measurement was taken. These measurements are collected by the
client nodes after they have been sent in broadcast mode and propagated over the
network by the basic sensors nodes. Our algorithm is quite simple. Once a basic
sensor node is synchronized, each time its timer is fired it measures the temperature
and broadcasts it. To avoid overloading the network with useless messages (already
dealt with or too old), a time to live (TTL) field is added to the messages. This
is a well-known method: the TTL field is decremented at each hop, and its initial
value can be adapted depending on the radius of the network and on the number of
nodes that are deployed. However when the density of motes in the broadcast range
is high, using a TTL is not sufficient to properly regulate the number of messages
in the network. Therefore in our algorithm, we added a table in which we store the
identifiers of the most recently received messages. When receiving a message, each
mote thus checks if it has already forwarded it, and if this is the case it just discards
it.

It should be noted that a mote will not send its own measurements before being
synchronized, even though it will forward the messages that it receives. This is
typically what happens when we introduce a new mote in a network, the components
of which are already synchronized.

We assume in our application that each mote knows its own location. It should be
noted that in a configuration where only some motes know their location, a triangu-
lation algorithm based on the coordinates of these motes could be used to compute
the location of all the other sensors.

24.5.5 The Problem of Missing Information

When taking measurements in an adverse environment (e.g. a battlefield), which is
often the case, data can be lost for many reasons:

• communication can be jammed because of interference coming from other radio
equipments (or generated by the enemy);
• a sensor can run out of battery power;
• a sensor can be damaged or destroyed.

The question is then to provide the user with a continuous view of the discontin-
uous collected information.

In our application, we addressed this issue in a module in charge of collecting the
individual measurements. For these missing values, it can provide replacements that
can either be interpolated or extrapolated.

564 J. Albert et al.

24.5.6 Conclusion

The goal of this section was to help the reader understand some of the challenges
he/she will face when deploying a wireless sensor node application. We do not
pretend that we covered all the problems, because they depend on the application at
hand. For instance, in many cases it will be necessary to take issues related to energy
and security into account. Nevertheless, most of these issues are addressed in some
form or another throughout this book and the reader is thus encouraged to explore it
thoroughly.

Acknowledgments The authors want to thank the reviewers for their constructive comments which
were helpful to improve this chapter.

References

1. Arduino web page, http://www.arduino.cc/
2. BLIP (Berkeley Low-power IP stack). http://docs.tinyos.net/tinywiki/index.php/BLIP_

Tutorial
3. Buying Sun SPOTs on the Web. http://www.sunspotworld.com/products/index.html
4. CraftDuino board. http://robocraft.ru/
5. IEEE 802.15.4. http://www.ieee802.org/15/pub/TG4.html
6. Netbeans. http://netbeans.org/
7. Open Source Fuel Efficiency Instrumentation utilities (opengauge). http://opengauge.

googlecode.com
8. RXTX library. http://rxtx.qbang.org/wiki/index.php/Main_Page
9. Squawk Development Wiki. http://java.net/projects/squawk/pages/SquawkDevelopment

10. Sun SPOT Manager installation/launch web page. http://www.sunspotworld.com/
SPOTManager/SPOTManager.jnlp

11. Sun SPOT Programmers Manual. http://www.sunspotworld.com/docs/index.html
12. Sun SPOT world. http://www.sunspotworld.com/
13. Sun SPOTs specification. http://sunspotworld.com/products/
14. SunDuino board. http://www.sunduino.neth.pl/
15. The Apacahe Ant project. http://ant.apache.org/
16. The MPGuino (Miles per Gallon) wiki page. http://ecomodder.com/wiki/index.php/MPGuino
17. TinyOS wiki. http://docs.tinyos.net/. Last seen 03/2012
18. Banzi, M.: Getting Started with Arduino. O’Reilly, Media (2011).
19. Barrère, L., Chaumette, S., De Peretti, C.: Delay tolerant dynamic data collection over a sensor

network. In: Proceedings of the 26th IEEE Military Communications Conference (MILCOM
2007), pp. 1–7. Orlando, Fl., États-Unis (2007). DGA.

20. Margolis, M.: Arduino Cookbook. O’Reilly Series. O’Reilly, Media (2011).
21. Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The flooding time synchronization protocol. In:

SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor
systems, pp. 39–49. ACM Press, New York, NY, USA (2004).

22. P. Levis, S.M., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh,
M., Brewer, E., Culler., D.: Ambient Intelligence, chap. TinyOS: An Operating System for
Sensor Networks, pp. 115–148. Springer (2005).

http://www.arduino.cc/
http://docs.tinyos.net/tinywiki/index.php/BLIP_Tutorial
http://docs.tinyos.net/tinywiki/index.php/BLIP_Tutorial
http://www.sunspotworld.com/products/index.html
http://robocraft.ru/
http://www.ieee802.org/15/pub/TG4.html
http://netbeans.org/
http://opengauge.googlecode.com
http://opengauge.googlecode.com
http://rxtx.qbang.org/wiki/index.php/Main_Page
http://java.net/projects/squawk/pages/SquawkDevelopment
http://www.sunspotworld.com/SPOTManager/SPOTManager.jnlp
http://www.sunspotworld.com/SPOTManager/SPOTManager.jnlp
http://www.sunspotworld.com/docs/index.html
http://www.sunspotworld.com/
http://sunspotworld.com/products/
http://www.sunduino.neth.pl/
http://ant.apache.org/
http://ecomodder.com/wiki/index.php/MPGuino
http://docs.tinyos.net/.

Errata to: Secure Smart Embedded
Devices, Platforms and Applications

Konstantinos Markantonakis and Keith Mayes

Errata to:
K. Markantonakis and K. Mayes (eds.), Secure Smart
Embedded Devices, Platforms and Applications,
DOI 10.1007/978-1-4614-7915-4

Biography for Dr. Keith Mayes in book front matter should read as below:

Keith Mayes B.Sc. Ph.D. (Bath) CEng FIET received his BSc (Hons) in
Electronic Engineering in 1983 from the University of Bath and his PhD degree in
Digital Image Processing in 1987. He is an active researcher/author with over a
100 publications in conferences, books and journals. His interests include the
design of secure protocols, mobile/fixed communications systems and security
tokens/NFC/RFID as well as associated attacks/countermeasures. During his first
degree he was employed by Pye TVT (Philips) which designed and produced TV
broadcast and studio equipment. His PhD was sponsored by Honeywell Aerospace
and Defence and on completion he accepted their offer of a job. In 1988 he started
work for Racal Research where he worked on a wide range of research and
advanced development products and was accepted as a Chartered Engineer.
In 1995 he joined Racal Messenger to continue work on a Vehicle Licence plate
recognition system (Talon) and an early packet radio system (Widanet/Paknet).
In 1996 Keith joined Vodafone as a Senior Manager working within the
Communication Security and Advanced Development group. Early work

The online version of the original book can be found under DOI 10.1007/978-1-4614-7915-4

K. Markantonakis � K. Mayes
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
Egham, Surrey, UK
e-mail: k.markantonakis@rhul.ac.uk

K. Mayes
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices,
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_25,
� Springer Science+Business Media New York 2014

E1

http://dx.doi.org/10.1007/978-1-4614-7915-4
http://dx.doi.org/10.1007/978-1-4614-7915-4

concerned advanced radio relaying systems and involved participation in
international standardisation (ETSI SMG2). Later he led the Maths and Modelling
team and eventually took charge of the Fraud and Security group. During this time
he was training in intellectual property and licensing, culminating in membership
of the Licensing Executives Society and the added responsibility for patent issues
in Vodafone UK. In 2000, following some work on m-commerce and an increasing
interest in Smart Cards he joined the Vodafone International organisation as the
Vodafone Global SIM Card Manager, responsible for SIM card harmonisation and
strategy for the Vodafone Group. In 2002, Keith left Vodafone to set up Crisp
Telecom (www.crisptele.com) and in November 2002 he was also appointed as the
Director of the Smart Card Centre (www.scc.rhul.ac.uk) at Royal Holloway
University of London, reporting to Professor Fred Piper in the world renowned
Information Security Group (www.isg.rhul.ac.uk). Keith is a Fellow of the Insti-
tution of Engineering and Technology, a Founder Associate Member of the
Institute of Information Security Professionals and a member of the editorial board
of the Journal of Theoretical and Applied Electronic Commerce Research
(JTAER). He has also had director experience within a London stock market listed
company and a subsidiary of an American communications company. Recent high
profile activity included leading the expert team that carried out counter-expertise
work on the Ov-Chipkaart for the Dutch transport ministry, following published
attacks on the MIFARE Classic chip card; and acting as General Chair for
ESORICS 2013.

In Chap. 10, following corrections need to be corrected:

Page 235, Section 10.3.2, first paragraph after bullet points, Line 3 should refer
Fig. 10.3.
Page 249, Section 10.6.2, Paragraph 1, Line 6, ‘‘specialisthardware’’, typo - still
need to add a space between the words, i.e. it should read as ‘specialist hardware’.
Page 255, Section 10.7.1 , Paragraph 2, Line 7, ‘‘RTM [42]’’, non-existent ref-
erence—just delete [42] after RTM.
Page 256, Section 10.7.2, Paragraph 2, Line 2, ‘‘resistance’’, typo - still need to
change resistance to resistant.

In Chap. 12, following corrections need to be corrected:

In Section 12.3.3, sentence ‘‘They offer a number of pre-implemented crypto-
graphic services such as DES/3DES, AES, hash functions, long number arithmetic
for public key operations, RSA, ECC, secure generation of random numbers,.’’
should not have a comma before the period.

E2 Errata to: Secure Smart Embedded Devices, Platforms and Applications

www.crisptele.com
www.scc.rhul.ac.uk
www.isg.rhul.ac.uk

Errata to: Secure Smart Embedded
Devices, Platforms and Applications

Konstantinos Markantonakis and Keith Mayes

Errata to:
K. Markantonakis and K. Mayes (eds.), Secure Smart
Embedded Devices, Platforms and Applications,
DOI 10.1007/978-1-4614-7915-4

Page vii, Foreword, Paragraph 3 Line 2: RFID NFC should read ‘‘Radio Frequency
Identity (RFID), Near Field Communication (NFC)’’
Page x, Preface, Paragraph 2 Line 10: FPGA should read ‘‘Field Programmable
Gate Array (FPGA)’’
Page x, Preface, Paragraph 3 Line 16: WSN should read ‘‘Wireless Sensor Nodes
(WSN)’’
Page xi, Preface, Paragraph 1 Line 11: SCADA should read ‘‘Supervisory Control
And Data Acquisition (SCADA)’’
Page xv, Acknowledgements, Paragraph 1 Line 8: Naem should read ‘‘Naeem’’
Page xxxviii, Contributors, Paragraph 4 Line 7: Saarbrcken should be ‘‘Saarbrucken’’
Page 55, Section 3.3.1, Paragraph 1 Line 7: Acorn RISC machine should read
‘‘Advanced Risk Machine’’
Page 100, Section 5.3, Paragraph 2 Lines 7 and 12: GE should read ‘‘Gate
Equivalent (GE)’’
Page 134, Table 6.1, Heading: unit should be ‘‘ls’’ not ‘‘us’’

Capitalization of acronyms was incorrect in the published volume. The corrected
list of acronyms is provided below:

The online version of the original book can be found under DOI 10.1007/978-1-4614-7915-4

K. Markantonakis (&) � K. Mayes
Information Security Group, Smart Card Centre, Royal Holloway, University of London,
Egham, Surrey, UK
e-mail: k.markantonakis@rhul.ac.uk

K. Mayes
e-mail: keith.mayes@rhul.ac.uk

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices,
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4_26,
� Springer Science+Business Media New York 2014

E3

http://dx.doi.org/10.1007/978-1-4614-7915-4
http://dx.doi.org/10.1007/978-1-4614-7915-4

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

3
A

bs
tr

ac
t

R
ad

io
F

re
qu

en
cy

Id
en

ti
fi

ca
ti

on
(R

F
ID

)
ra

di
o

fr
eq

ue
nc

y
id

en
ti

fi
ca

ti
on

(R
F

ID
)

3
1

1
R

ad
io

F
re

qu
en

cy
Id

en
ti

ty
(R

F
ID

)
ra

di
o

fr
eq

ue
nc

y
id

en
ti

ty
(R

F
ID

)
4

1,
li

st
1

1
Id

en
ti

fi
ca

ti
on

F
ri

en
d

or
F

oe
(I

F
F

)
id

en
ti

fi
ca

ti
on

fr
ie

nd
or

fo
e

(I
F

F
)

5
1.

2.
1

4
S

ub
sc

ri
be

r
Id

en
ti

ty
M

od
ul

e
(S

IM
)

su
bs

cr
ib

er
id

en
ti

ty
m

od
ul

e
(S

IM
)

5
1.

2.
1

4
U

ni
ve

rs
al

In
te

gr
at

ed
C

ir
cu

it
C

ar
d

(U
IC

C
)

un
iv

er
sa

l
in

te
gr

at
ed

ci
rc

ui
t

ca
rd

(U
IC

C
)

6
1.

2.
1

3
Id

en
ti

ti
es

(I
D

s)
id

en
ti

ti
es

(I
D

s)
7

1.
2.

2
1

A
ut

om
at

ic
T

el
le

r
M

ac
hi

ne
s

(A
T

M
)

au
to

m
at

ic
te

ll
er

m
ac

hi
ne

s
(A

T
M

)
7

1.
2.

2
1

P
oi

nt
of

S
al

e
te

rm
in

al
s

(P
O

S
)

po
in

t
of

sa
le

te
rm

in
al

s
(P

O
S

)
7

1.
2.

2,
li

st
5

1
P

er
so

na
l

Id
en

ti
fi

ca
ti

on
N

um
be

rs
(P

IN
co

de
s)

pe
rs

on
al

id
en

ti
fi

ca
ti

on
nu

m
be

rs
(P

IN
co

de
s)

9
1.

2.
4

1
S

et
T

op
B

ox
es

(S
T

B
)

se
t

to
p

bo
xe

s
(S

T
B

)
12

1.
2.

7
1

H
ig

h
M

ed
iu

m
or

L
ow

(H
:M

:L
)

hi
gh

m
ed

iu
m

or
lo

w
(H

:M
:L

)
13

1.
3.

1
2

S
ec

ur
it

y
E

le
m

en
t

(S
E

)
se

cu
ri

ty
el

em
en

t
(S

E
)

13
1.

3.
1

2
N

ea
r

F
ie

ld
C

om
m

un
ic

at
io

n
(N

F
C

)
ne

ar
fi

el
d

co
m

m
un

ic
at

io
n

(N
F

C
)

15
1.

3.
2

4
A

pp
li

ca
ti

on
pr

ot
oc

ol
D

at
a

U
ni

t
(A

P
D

U
)

ap
pl

ic
at

io
n

pr
ot

oc
ol

da
ta

un
it

(A
P

D
U

)
17

1.
4.

2
1

M
es

sa
ge

A
ut

he
nt

ic
at

io
n

C
od

e
(M

A
C

)
m

es
sa

ge
au

th
en

ti
ca

ti
on

co
de

(M
A

C
)

17
1.

4.
2

1
K

ey
M

an
ag

em
en

t
S

ys
te

m
(K

M
S

)
ke

y
m

an
ag

em
en

t
sy

st
em

(K
M

S
)

20
1.

6
1

N
ea

r
F

ie
ld

C
om

m
un

ic
at

io
n

(N
F

C
)

ne
ar

fi
el

d
co

m
m

un
ic

at
io

n
(N

F
C

)
21

1.
7

2
R

ea
d

O
nl

y
M

em
or

y
(R

O
M

)
re

ad
on

ly
m

em
or

y
(R

O
M

)
21

1.
7

2
O

pe
ra

ti
ng

S
ys

te
m

(O
S

)
op

er
at

in
g

sy
st

em
(O

S
)

23
1.

7
5

T
ru

st
ed

S
er

vi
ce

M
an

ag
er

(T
S

M
)

tr
us

te
d

se
rv

ic
e

m
an

ag
er

(T
S

M
)

31
T

ab
le

2.
1

2-
D

D
is

cr
et

e
co

si
ne

tr
an

sf
or

m
(D

C
T

)
2-

D
di

sc
re

te
co

si
ne

tr
an

sf
or

m
(D

C
T

)
38

2.
3.

1,
li

st
2

2
L

ev
el

1
(L

1)
le

ve
l

1
(L

1)
38

2.
3.

1,
li

st
2

2
L

ev
el

2
(L

2)
le

ve
l

2
(L

2)
38

2.
3.

1,
li

st
2

2
L

ev
el

3
(L

3)
le

ve
l

3
(L

3)
40

2.
3.

2
2

In
st

ru
ct

io
n

se
t

ar
ch

it
ec

tu
re

(I
S

A
)

in
st

ru
ct

io
n

se
t

ar
ch

it
ec

tu
re

(I
S

A
)

41
2.

3.
2

7
A

dv
an

ce
d

R
IS

C
M

ac
hi

ne
(A

R
M

)
ad

va
nc

ed
R

IS
C

m
ac

hi
ne

(A
R

M
)

46
2.

3.
4,

li
st

3
3

V
oi

ce
-o

ve
r-

IP
(V

oI
P

)
vo

ic
e-

ov
er

-I
P

(V
oI

P
)

(c
on

ti
nu

ed
)

E4 K. Markantonakis and K. Mayes

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

49
A

bs
tr

ac
t

1
C

en
tr

al
P

ro
ce

ss
in

g
U

ni
ts

(C
P

U
)

ce
nt

ra
l

pr
oc

es
si

ng
un

it
s

(C
P

U
)

50
3.

1
3

Jo
in

t
T

es
t

A
ct

io
n

G
ro

up
(J

T
A

G
)

jo
in

t
te

st
ac

ti
on

gr
ou

p
(J

T
A

G
)

51
3.

2
1

V
er

y
L

on
g

In
st

ru
ct

io
n

W
or

d
(V

L
IW

)
ve

ry
lo

ng
In

st
ru

ct
io

n
W

or
d

(V
L

IW
)

51
3.

2
1

D
ig

it
al

S
ig

na
l

P
ro

ce
ss

or
s

(D
S

P
s)

di
gi

ta
l

si
gn

al
pr

oc
es

so
rs

(D
S

P
s)

51
3.

2
3

In
te

gr
at

ed
C

ir
cu

it
(I

C
)

in
te

gr
at

ed
ci

rc
ui

t
(I

C
)

51
3.

2
3

B
it

S
li

ce
P

ro
ce

ss
or

s
(B

S
P

)
bi

t
sl

ic
e

pr
oc

es
so

rs
(B

S
P

)
51

3.
2

3
P

ro
gr

am
m

ab
le

R
ea

d
O

nl
y

M
em

or
ie

s
(P

R
O

M
)

pr
og

ra
m

m
ab

le
re

ad
on

ly
m

em
or

ie
s

(P
R

O
M

)
51

3.
2

3
D

ig
it

al
S

ig
na

l
P

ro
ce

ss
or

(D
S

P
)

di
gi

ta
l

si
gn

al
pr

oc
es

so
r

(D
S

P
)

52
3.

3
4

In
te

gr
at

ed
C

ir
cu

it
(I

C
)

in
te

gr
at

ed
ci

rc
ui

t
(I

C
)

53
3.

3
1

C
om

pl
em

en
ta

ry
M

et
al

O
xi

de
S

em
ic

on
du

ct
or

(C
M

O
S

)
co

m
pl

em
en

ta
ry

m
et

al
ox

id
e

se
m

ic
on

du
ct

or
(C

M
O

S
)

54
3.

3.
2

1
F

ie
ld

P
ro

gr
am

m
ab

le
G

at
e

A
rr

ay
(F

P
G

A
)

fi
el

d
pr

og
ra

m
m

ab
le

ga
te

ar
ra

y
(F

P
G

A
)

55
3.

3.
3

1
A

co
rn

R
IS

C
M

ac
hi

ne
(A

R
M

)
ac

or
n

R
IS

C
m

ac
hi

ne
(A

R
M

)
55

3.
3.

3
1

D
if

fe
re

nt
ia

l
P

ow
er

A
na

ly
si

s
(D

P
A

)
di

ff
er

en
ti

al
po

w
er

an
al

ys
is

(D
P

A
)

56
3.

4
2

S
er

ia
l

P
er

ip
he

ra
l

B
us

(S
P

I)
se

ri
al

pe
ri

ph
er

al
bu

s
(S

P
I)

56
3.

4
2

C
on

tr
ol

A
re

a
N

et
w

or
k

(C
A

N
)

co
nt

ro
l

ar
ea

ne
tw

or
k

(C
A

N
)

56
3.

4
2

U
ni

ve
rs

al
S

er
ia

l
B

us
(U

S
B

)
un

iv
er

sa
l

se
ri

al
bu

s
(U

S
B

)
57

3.
4

2
A

pp
li

ca
ti

on
-S

pe
ci

fi
c

In
te

gr
at

ed
C

ir
cu

it
s

(A
S

IC
s)

ap
pl

ic
at

io
n-

sp
ec

ifi
c

in
te

gr
at

ed
ci

rc
ui

ts
(A

S
IC

s)
58

3.
4

1
E

le
ct

ri
ca

ll
y

E
ra

sa
bl

e
P

ro
gr

am
m

ab
le

R
ea

d
O

nl
y

M
em

or
y

(E
E

P
R

O
M

)
el

ec
tr

ic
al

ly
er

as
ab

le
pr

og
ra

m
m

ab
le

re
ad

on
ly

m
em

or
y

(E
E

P
R

O
M

)
58

3.
4

2
P

er
ip

he
ra

l
In

te
rf

ac
e

C
on

tr
ol

le
r

(P
IC

)
pe

ri
ph

er
al

in
te

rf
ac

e
co

nt
ro

ll
er

(P
IC

)
59

3.
4

1
O

ne
T

im
e-

P
ro

gr
am

m
ab

le
(O

T
P

)
on

e
ti

m
e-

pr
og

ra
m

m
ab

le
(O

T
P

)
61

3.
4.

1
1

S
ta

ti
c

R
an

do
m

A
cc

es
s

M
em

or
y

(S
R

A
M

)
st

at
ic

ra
nd

om
ac

ce
ss

m
em

or
y

(S
R

A
M

)
61

3.
4.

1
1

R
ea

d
O

nl
y

M
em

or
y

(R
O

M
)

re
ad

on
ly

m
em

or
y

(R
O

M
)

62
3.

4.
1

2
O

ne
-T

im
e

P
ro

gr
am

m
in

g
(O

T
P

)
on

e-
ti

m
e

pr
og

ra
m

m
in

g
(O

T
P

)
62

3.
4.

1
3

E
le

ct
ri

ca
ll

y
E

ra
sa

bl
e

P
R

O
M

(E
E

P
R

O
M

)
el

ec
tr

ic
al

ly
er

as
ab

le
P

R
O

M
(E

E
P

R
O

M
)

65
3.

4.
2

2
In

-C
ir

cu
it

-E
m

ul
at

or
(I

C
E

)
in

-c
ir

cu
it

-e
m

ul
at

or
(I

C
E

)

(c
on

ti
nu

ed
)

Errata to: Secure Smart Embedded Devices, Platforms and Applications E5

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

67
3.

5
1

D
if

fe
re

nt
ia

l
E

le
ct

ro
m

ag
ne

ti
c

A
na

ly
si

s
(D

E
M

A
)

di
ff

er
en

ti
al

el
ec

tr
om

ag
ne

ti
c

an
al

ys
is

(D
E

M
A

)
68

3.
6

1
T

ru
st

ed
P

la
tf

or
m

M
od

ul
es

(T
P

M
)

tr
us

te
d

pl
at

fo
rm

m
od

ul
es

(T
P

M
)

72
4.

1
1

T
ru

st
ed

C
om

pu
ti

ng
G

ro
up

(T
C

G
)

tr
us

te
d

co
m

pu
ti

ng
gr

ou
p

(T
C

G
)

72
4.

1
1

T
ru

st
ed

M
ul

ti
-t

en
an

t
In

fr
as

tr
uc

tu
re

an
d

tr
us

te
d

ne
tw

or
k

co
nn

ec
t

tr
us

te
d

m
ul

ti
-t

en
an

t
in

fr
as

tr
uc

tu
re

an
d

tr
us

te
d

ne
tw

or
k

co
nn

ec
t

76
4.

3.
1

4
T

P
M

E
nt

it
y

(T
P

M
E

)
T

P
M

en
ti

ty
(T

P
M

E
)

77
4.

3.
2

T
ab

le
4.

1
P

la
tf

or
m

C
on

fi
gu

ra
ti

on
R

eg
is

te
rs

(P
C

R
s)

pl
at

fo
rm

co
nfi

gu
ra

ti
on

re
gi

st
er

s
(P

C
R

s)
81

4.
3.

4.
2

2
In

it
ia

l
P

ro
gr

am
L

oa
de

r:
IP

L
in

it
ia

l
pr

og
ra

m
lo

ad
er

:
IP

L
10

8
5.

5
4

R
ed

uc
ed

In
st

ru
ct

io
n

S
et

C
om

pu
ti

ng
(R

IS
C

)
re

du
ce

d
in

st
ru

ct
io

n
se

t
co

m
pu

ti
ng

(R
IS

C
)

12
5

6.
3.

1
2

D
at

a
E

nc
ry

pt
io

n
S

ta
nd

ar
d

(D
E

S
)

da
ta

en
cr

yp
ti

on
st

an
da

rd
(D

E
S

)
12

8
6.

3.
1.

3
6

A
dv

an
ce

d
E

nc
ry

pt
io

n
S

ta
nd

ar
d

(A
E

S
)

ad
va

nc
ed

en
cr

yp
ti

on
st

an
da

rd
(A

E
S

)
12

9
6.

3.
1.

4
4

C
ip

he
r

B
lo

ck
C

ha
in

in
g

(C
B

C
)

ci
ph

er
bl

oc
k

ch
ai

ni
ng

(C
B

C
)

13
1

6.
3.

1.
5

1
C

yc
li

c
R

ed
un

da
nc

y
C

he
ck

(C
R

C
)

cy
cl

ic
re

du
nd

an
cy

ch
ec

k
(C

R
C

)
13

4
6.

3.
2

1
O

pt
im

al
A

sy
m

m
et

ri
c

E
nc

ry
pt

io
n

P
ad

di
ng

(O
A

E
P

)
op

ti
m

al
as

ym
m

et
ri

c
en

cr
yp

ti
on

pa
dd

in
g

(O
A

E
P

)
13

4
6.

3.
3

2
C

yc
li

c
R

ed
un

da
nc

y
C

he
ck

(C
R

C
)

C
yc

li
c

re
du

nd
an

cy
ch

ec
k

(C
R

C
)

13
5

6.
3.

3
1

M
es

sa
ge

A
ut

he
nt

ic
at

io
n

C
od

e
(M

A
C

)
M

es
sa

ge
au

th
en

ti
ca

ti
on

co
de

(M
A

C
)

13
6

6.
4.

1
5

P
ub

li
c

K
ey

In
fr

as
tr

uc
tu

re
(P

K
I)

pu
bl

ic
ke

y
in

fr
as

tr
uc

tu
re

(P
K

I)
13

6
6.

4.
1

6
C

er
ti

fi
ca

ti
on

A
ut

ho
ri

ty
(C

A
)

ce
rt

ifi
ca

ti
on

au
th

or
it

y
(C

A
)

13
7

6.
4.

1
1

R
eg

is
tr

at
io

n
A

ut
ho

ri
ty

(R
A

)
re

gi
st

ra
ti

on
au

th
or

it
y

(R
A

)
13

7
6.

4.
1

1
P

oi
nt

of
S

al
e

(P
O

S
)

po
in

t
of

sa
le

(P
O

S
)

13
7

6.
4.

1
2

C
er

ti
fi

ca
te

R
ev

oc
at

io
n

L
is

t
(C

R
L

)
ce

rt
ifi

ca
te

re
vo

ca
ti

on
li

st
(C

R
L

)
13

7
6.

4.
2

4
N

ea
r

F
ie

ld
C

om
m

un
ic

at
io

n
(N

F
C

)
ne

ar
fi

el
d

co
m

m
un

ic
at

io
n

(N
F

C
)

13
9

6.
5

1
S

ec
ur

it
y

E
le

m
en

ts
(S

E
)

se
cu

ri
ty

el
em

en
ts

(S
E

)
14

7
7.

2
4

D
at

a
E

nc
ry

pt
io

n
S

ta
nd

ar
d

(D
E

S
)

da
ta

en
cr

yp
ti

on
st

an
da

rd
(D

E
S

)
14

7
7.

2.
1

5
A

dv
an

ce
d

E
nc

ry
pt

io
n

S
ta

nd
ar

d
(A

E
S

)
ad

va
nc

ed
en

cr
yp

ti
on

st
an

da
rd

(A
E

S
)

14
8

7.
2.

1
2

P
er

m
ut

ed
C

ho
ic

e
1

(P
C

1)
pe

rm
ut

ed
ch

oi
ce

1
(P

C
1)

(c
on

ti
nu

ed
)

E6 K. Markantonakis and K. Mayes

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

14
8

7.
2.

1
2

P
er

m
ut

ed
C

ho
ic

e
2

(P
C

2)
pe

rm
ut

ed
ch

oi
ce

2
(P

C
2)

16
8

7.
5.

3.
1

5
C

hi
ne

se
R

em
ai

nd
er

T
he

or
em

(C
R

T
)

C
hi

ne
se

re
m

ai
nd

er
th

eo
re

m
(C

R
T

)
17

9
C

ha
pt

er
8

2
G

ra
ph

ic
s

P
ro

ce
ss

in
g

U
ni

ts
(G

P
U

s)
G

ra
ph

ic
s

pr
oc

es
si

ng
un

it
s

(G
P

U
s)

8.
1.

1
4

C
om

pu
te

U
ni

fi
ed

D
ev

ic
e

A
rc

hi
te

ct
ur

e
(C

U
D

A
)

co
m

pu
te

un
ifi

ed
de

vi
ce

ac
hi

te
ct

ur
e

(C
U

D
A

)
8.

1.
3

1
C

lo
se

-t
o-

M
et

al
(C

T
M

)
cl

os
e-

to
-m

et
al

(C
T

M
)

8.
2.

1
3

D
at

a
E

nc
ry

pt
io

n
S

ta
nd

ar
d

(D
E

S
)

da
ta

en
cr

yp
ti

on
st

an
da

rd
(D

E
S

)
21

2
9.

2.
3

1
S

id
e-

ch
an

ne
l

A
tt

ac
k

S
ta

nd
ar

d
E

va
lu

at
io

n
B

O
ar

d
(S

A
S

E
B

O
)

S
id

e-
C

ha
nn

el
A

tt
ac

k
S

ta
nd

ar
d

E
va

lu
at

io
n

B
oa

rd
(S

A
S

E
B

O
)

21
8

9.
3.

2.
4

4
P

R
O

M
(P

ro
gr

am
m

ab
le

R
ea

d-
O

nl
y

M
em

or
y)

P
R

O
M

(p
ro

gr
am

m
ab

le
re

ad
-o

nl
y

m
em

or
y)

22
7

10
(A

bs
tr

ac
t)

1
G

lo
ba

l
S

ys
te

m
fo

r
M

ob
il

e
C

om
m

un
ic

at
io

ns
(G

S
M

)
gl

ob
al

sy
st

em
fo

r
m

ob
il

e
co

m
m

un
ic

at
io

ns
(G

S
M

)
22

7
10

(A
bs

tr
ac

t)
1

U
ni

ve
rs

al
M

ob
il

e
T

el
ec

om
m

un
ic

at
io

ns
S

ys
te

m
(U

M
T

S
)

U
ni

ve
rs

al
m

ob
il

e
te

le
co

m
m

un
ic

at
io

ns
sy

st
em

(U
M

T
S

)
22

7
10

(A
bs

tr
ac

t)
1

S
ub

sc
ri

be
r

Id
en

ti
ty

M
od

ul
e

(S
IM

)
su

bs
cr

ib
er

id
en

ti
ty

m
od

ul
e

(S
IM

)
22

8
10

.1
1

N
ea

r
F

ie
ld

C
om

m
un

ic
at

io
n

(N
F

C
)

ne
ar

fi
el

d
co

m
m

un
ic

at
io

n
(N

F
C

)
22

8
10

.1
2

S
ub

sc
ri

be
r

Id
en

ti
ty

M
od

ul
e

(S
IM

)
su

bs
cr

ib
er

id
en

ti
ty

m
od

ul
e

(S
IM

)
22

9
10

.1
1

M
ob

il
e

E
qu

ip
m

en
t

(M
E

)
m

ob
il

e
eq

ui
pm

en
t

(M
E

)
22

9
10

.2
2

T
ot

al
A

cc
es

s
C

om
m

un
ic

at
io

ns
(T

A
C

S
)

to
ta

l
ac

ce
ss

co
m

m
un

ic
at

io
ns

(T
A

C
S

)
23

0
10

.2
.1

2
A

ut
he

nt
ic

at
io

n
C

en
tr

e
(A

uC
)

au
th

en
ti

ca
ti

on
ce

nt
re

(A
uC

)
23

0
10

.2
.1

3
In

te
rn

at
io

na
l

M
ob

il
e

S
ub

sc
ri

be
r

Id
en

ti
ty

—
IM

S
I

in
te

rn
at

io
na

l
m

ob
il

e
su

bs
cr

ib
er

id
en

ti
ty

—
IM

S
I

23
0

10
.2

.1
3

S
ec

re
t

K
ey

(K
i)

se
cr

et
ke

y
(K

i)
23

0
10

.2
.1

4
se

cr
et

ke
y

(K
i)

se
cr

et
ke

y
(K

i)
23

0
10

.2
.1

4
se

ss
io

n
ke

y
(K

c)
se

ss
io

n
ke

y
(K

c)
23

2
10

.2
.1

1
In

te
gr

it
yK

ey
(I

K
)

in
te

gr
it

yk
ey

(I
K

)
23

4
10

.3
.2

6
M

ob
il

e
E

qu
ip

m
en

t
(M

E
)

m
ob

il
e

eq
ui

pm
en

t
(M

E
)

23
8

10
.4

.2
1

O
ve

r
T

he
A

ir
(O

T
A

)
ov

er
th

e
ai

r
(O

T
A

)
24

0
10

.4
.7

5
N

ea
r

F
ie

ld
C

om
m

un
ic

at
io

n
(N

F
C

)
ne

ar
fi

el
d

co
m

m
un

ic
at

io
n

(N
F

C
)

24
0

10
.4

.7
5

S
ec

ur
it

y
E

le
m

en
t

(S
E

)
se

cu
ri

ty
el

em
en

t
(S

E
)

(c
on

ti
nu

ed
)

Errata to: Secure Smart Embedded Devices, Platforms and Applications E7

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

24
3

10
.5

.2
3

F
oc

us
se

d
Io

n
B

ea
m

(F
IB

)
fo

cu
ss

ed
io

n
be

am
(F

IB
)

24
6

10
.5

.4
2

C
hi

ne
se

R
em

ai
nd

er
T

he
or

em
(C

R
T

)
C

hi
ne

se
re

m
ai

nd
er

th
eo

re
m

(C
R

T
)

24
7

10
.6

.1
2

P
ur

e
S

of
tw

ar
e

S
IM

(P
S

S
IM

)
pu

re
so

ft
w

ar
e

S
IM

(P
S

S
IM

)
24

7
10

.6
.1

.1
3

T
el

em
et

ry
/M

ac
hi

ne
-t

o-
M

ac
hi

ne
(T

/M
2M

)
te

le
m

et
ry

/m
ac

hi
ne

-t
o-

m
ac

hi
ne

(T
/M

2M
)

24
9

10
.6

.2
H

ar
dw

ar
e

S
ha

re
d

S
ec

ur
it

y
S

of
tw

ar
e

S
IM

S
ol

ut
io

n
(H

S
-S

S
IM

)
ha

rd
w

ar
e

sh
ar

ed
se

cu
ri

ty
so

ft
w

ar
e

S
IM

so
lu

ti
on

(H
S

-S
S

IM
)

24
9

10
.6

.2
2

A
dv

an
ce

d
R

IS
C

M
ac

hi
ne

s
L

im
it

ed
(A

R
M

)
ad

va
nc

ed
R

IS
C

m
ac

hi
ne

s
li

m
it

ed
(A

R
M

)
24

9
10

.6
.2

6
D

at
a

R
ig

ht
s

M
an

ag
em

en
t

(D
R

M
)

da
ta

ri
gh

ts
m

an
ag

em
en

t
(D

R
M

)
25

0
10

.6
.2

3
S

m
al

l
T

er
m

in
al

In
te

ro
pe

ra
bi

li
ty

P
la

tf
or

m
(S

T
IP

)
sm

al
l

te
rm

in
al

in
te

ro
pe

ra
bi

li
ty

pl
at

fo
rm

(S
T

IP
)

25
1

10
.6

.3
4

S
ta

nd
al

on
e

H
ar

dw
ar

e
S

ec
ur

it
y

S
IM

(S
H

-S
IM

)
st

an
da

lo
ne

ha
rd

w
ar

e
se

cu
ri

ty
S

IM
(S

H
-S

IM
)

25
2

10
.6

.3
.2

3
E

le
ct

ri
ca

ll
y

E
ra

sa
bl

e
P

ro
gr

am
m

ab
le

R
ea

d-
O

nl
y

M
em

or
y

(E
E

P
R

O
M

)
el

ec
tr

ic
al

ly
er

as
ab

le
P

ro
gr

am
m

ab
le

R
ea

d-
O

nl
y

M
em

or
y

(E
E

P
R

O
M

)
25

2
10

.6
.3

.2
3

H
ar

dw
ar

e
S

ec
ur

it
y

M
od

ul
e

(H
S

M
)

ha
rd

w
ar

e
se

cu
ri

ty
m

od
ul

e
(H

S
M

)
25

4
10

.7
2

T
ru

st
ed

P
la

tf
or

m
M

od
ul

e
(T

P
M

)
tr

us
te

d
pl

at
fo

rm
m

od
ul

e
(T

P
M

)
25

4
10

.7
2

T
ru

st
ed

C
om

pu
ti

ng
P

la
tf

or
m

A
ll

ia
nc

e
(T

C
P

A
)

tr
us

te
d

co
m

pu
ti

ng
pl

at
fo

rm
al

li
an

ce
(T

C
P

A
)

25
4

10
.7

2
T

ru
st

ed
C

om
pu

ti
ng

G
ro

up
(T

C
G

)
tr

us
te

d
co

m
pu

ti
ng

gr
ou

p
(T

C
G

)
25

5
10

.7
.1

5
R

oo
t

of
T

ru
st

fo
r

M
ea

su
re

m
en

t
(R

T
M

)
R

oo
t

of
tr

us
t

fo
r

m
ea

su
re

m
en

t
(R

T
M

)
25

5
10

.7
.1

5
R

oo
t

of
T

ru
st

fo
r

S
to

ra
ge

(R
T

S
)

R
oo

t
of

tr
us

t
fo

r
st

or
ag

e
(R

T
S

)
25

5
10

.7
.1

5
R

oo
t

of
T

ru
st

fo
r

R
ep

or
ti

ng
(R

T
R

)
R

oo
t

of
tr

us
t

fo
r

re
po

rt
in

g
(R

T
R

)
25

5
10

.7
.1

6
C

or
e

R
oo

t
of

T
ru

st
fo

r
M

ea
su

re
m

en
t’

(C
R

T
M

))
co

re
ro

ot
of

tr
us

t
fo

r
m

ea
su

re
m

en
t

(C
R

T
M

)
25

5
10

.7
.1

6
B

IO
S

B
oo

t
B

lo
ck

(B
B

B
)

B
IO

S
bo

ot
bl

oc
k

(B
B

B
)

25
5

10
.7

.1
6

P
la

tf
or

m
C

on
fi

gu
ra

ti
on

R
eg

is
te

rs
(P

C
R

s)
pl

at
fo

rm
co

nfi
gu

ra
ti

on
re

gi
st

er
s

(P
C

R
s)

25
6

10
.7

.2
1

P
la

tf
or

m
C

on
fi

gu
ra

ti
on

R
eg

is
te

rs
(P

C
R

s)
pl

at
fo

rm
co

nfi
gu

ra
ti

on
re

gi
st

er
s

(P
C

R
s)

25
7

10
.7

.3
2

M
ob

il
e

T
ru

st
ed

P
la

tf
or

m
(M

T
M

)
m

ob
il

e
tr

us
te

d
P

la
tf

or
m

(M
T

P
)

25
7

10
.7

.4
S

ec
ti

on
ti

tl
e

M
ob

il
e

T
ru

st
ed

P
la

tf
or

m
(M

T
P

)
M

ob
il

e
tr

us
te

d
pl

at
fo

rm
(M

T
P

)
25

8
10

.7
.4

1
M

ob
il

e
L

oc
al

-O
w

ne
r

T
ru

st
ed

M
od

ul
e

(M
L

T
M

)
m

ob
il

e
lo

ca
l-

ow
ne

r
tr

us
te

d
m

od
ul

e
(M

L
T

M
)

25
8

10
.7

.4
1

M
ob

il
e

R
em

ot
e-

O
w

ne
r

T
ru

st
ed

M
od

ul
e

(M
R

T
M

)
m

ob
il

e
re

m
ot

e-
ow

ne
r

tr
us

te
d

m
od

ul
e

(M
R

T
M

)

(c
on

ti
nu

ed
)

E8 K. Markantonakis and K. Mayes

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

25
8

10
.7

.4
3

P
ro

te
ct

io
n

P
ro

fi
le

(P
P

)
pr

ot
ec

ti
on

pr
ofi

le
(P

P
)

26
1

10
.8

1
P

ur
e

S
of

tw
ar

e
S

IM
(P

S
S

IM
)

pu
re

so
ft

w
ar

e
S

IM
(P

S
S

IM
)

26
1

10
.8

2
H

ar
dw

ar
e

S
ha

re
d

S
of

tw
ar

e
S

IM
(H

S
-S

S
IM

)
ha

rd
w

ar
e

sh
ar

ed
so

ft
w

ar
e

S
IM

(H
S

-S
S

IM
)

26
4

10
.8

.1
2

S
ec

ur
it

y
E

le
m

en
t

(S
E

)
se

cu
ri

ty
el

em
en

t
(S

E
)

26
8

11
.2

4
R

ea
l-

R
im

e
L

oc
at

in
g

S
ys

te
m

(R
T

L
S

)
re

al
-t

im
e

lo
ca

ti
ng

sy
st

em
(R

T
L

S
)

27
5

11
.3

.1
.1

1
A

ng
le

of
A

rr
iv

al
(A

oA
)

A
ng

le
of

ar
ri

va
l

(A
oA

)
27

6
11

.3
.1

.3
2

T
im

e
of

ar
ri

va
l

(T
oA

)
ti

m
e

of
ar

ri
va

l
(T

oA
)

27
6

11
.3

.1
.3

2
T

im
e

di
ff

er
en

ce
of

ar
ri

va
l

(T
D

oA
)

ti
m

e
di

ff
er

en
ce

of
ar

ri
va

l
(T

D
oA

)
27

6
11

.3
.1

.3
2

R
ou

nd
tr

ip
ti

m
e

(R
T

T
)

ro
un

d
tr

ip
ti

m
e

(R
T

T
)

27
8

11
.4

2
R

ou
nd

-t
ri

p-
ti

m
e

(R
T

T
)

ro
un

d-
tr

ip
-t

im
e

(R
T

T
)

27
9

11
.4

1
U

lt
ra

-W
id

eB
an

d
(U

W
B

)
ul

tr
a-

w
id

eB
an

d
(U

W
B

)
28

7
12

.1
2

E
le

ct
ro

ni
c

co
nt

ro
l

un
it

s
(E

C
U

)
el

ec
tr

on
ic

co
nt

ro
l

un
it

s
(E

C
U

)
28

7
12

.1
2

C
on

tr
ol

le
r

A
re

a
N

et
w

or
k

(C
A

N
)

co
nt

ro
ll

er
ar

ea
ne

tw
or

k
(C

A
N

)
28

8
12

.1
L

oc
al

in
te

rc
on

ne
ct

ne
tw

or
k

(L
IN

)
lo

ca
l

in
te

rc
on

ne
ct

ne
tw

or
k

(L
IN

)
28

8
12

.1
2

D
ed

ic
at

ed
sh

or
t

ra
ng

e
co

m
m

un
ic

at
io

n
(D

S
R

C
)

de
di

ca
te

d
sh

or
t

ra
ng

e
co

m
m

un
ic

at
io

n
(D

S
R

C
)

28
8

12
.1

2
V

eh
ic

le
-t

o-
V

eh
ic

le
s

co
m

m
un

ic
at

io
n

-
V

2V
ve

hi
cl

e-
to

-v
eh

ic
le

s
co

m
m

un
ic

at
io

n
-

V
2V

28
8

12
.1

2
V

eh
ic

le
-t

o-
In

fr
as

tr
uc

tu
re

co
m

m
un

ic
at

io
n

=
-

V
2I

ve
hi

cl
e-

to
-I

nf
ra

st
ru

ct
ur

e
co

m
m

un
ic

at
io

n
=

-
V

2I
28

8
12

.1
2

U
ni

ve
rs

al
M

ob
il

e
T

el
ec

om
m

un
ic

at
io

ns
S

ys
te

m
(U

M
T

S
)

U
ni

ve
rs

al
M

ob
il

e
T

el
ec

om
m

un
ic

at
io

ns
S

ys
te

m
(U

M
T

S
)

28
8

12
.1

2
G

lo
ba

l
P

os
it

io
ni

ng
S

ys
te

m
(G

P
S

)
G

lo
ba

l
po

si
ti

on
in

g
sy

st
em

(G
P

S
)

29
5

12
.2

.2
.2

6
R

ad
io

D
at

a
S

ys
te

m
(R

D
S

)
ra

di
o

da
ta

sy
st

em
(R

D
S

)
29

5
12

.2
.2

.2
6

G
lo

ba
l

P
os

it
io

ni
ng

S
ys

te
m

(G
P

S
)

gl
ob

al
po

si
ti

on
in

g
sy

st
em

(G
P

S
)

29
6

12
.2

.4
3

A
nt

i-
lo

ck
br

ak
in

g
sy

st
em

(A
B

S
)

an
ti

-l
oc

k
br

ak
in

g
sy

st
em

(A
B

S
)

29
6

12
.2

.4
3

E
le

ct
ro

ni
c

st
ab

il
it

y
pr

og
ra

m
(E

S
P

)
el

ec
tr

on
ic

st
ab

il
it

y
pr

og
ra

m
(E

S
P

)
29

8
12

.2
.6

6
O

ri
gi

na
l

E
qu

ip
m

en
t

M
an

uf
ac

tu
re

r
(O

E
M

)
or

ig
in

al
eq

ui
pm

en
t

m
an

uf
ac

tu
re

r
(O

E
M

)
29

9
12

.2
.8

7
E

ng
in

e
co

nt
ro

l
un

it
(E

C
U

)
en

gi
ne

co
nt

ro
l

un
it

(E
C

U
)

(c
on

ti
nu

ed
)

Errata to: Secure Smart Embedded Devices, Platforms and Applications E9

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

30
0

12
.2

.8
1

C
en

te
r

fo
r

A
ut

om
ot

iv
e

em
be

dd
ed

sy
st

em
s

se
cu

ri
ty

(C
A

E
S

S
)

C
en

te
r

fo
r

A
ut

om
ot

iv
e

E
m

be
dd

ed
S

ys
te

m
s

S
ec

ur
it

y
(C

A
E

S
S

)
30

0
12

.2
.8

1
T

yr
e

pr
es

su
re

m
on

it
or

in
g

sy
st

em
(T

P
M

S
)

ty
re

pr
es

su
re

m
on

it
or

in
g

sy
st

em
(T

P
M

S
)

30
2

12
.3

3
O

pe
n

ve
hi

cu
la

r
se

cu
re

pl
at

fo
rm

(O
V

E
R

S
E

E
)

op
en

ve
hi

cu
la

r
se

cu
re

pl
at

fo
rm

(O
V

E
R

S
E

E
)

30
2

12
.3

3
E

le
ct

ro
ni

c
C

on
tr

ol
U

ni
t

(E
C

U
)

el
ec

tr
on

ic
co

nt
ro

l
un

it
(E

C
U

)
30

3
12

.3
.1

2
O

pe
ra

ti
ng

S
ys

te
m

(O
S

)
op

er
at

in
g

sy
st

em
(O

S
)

30
3

12
.3

.1
2

R
ea

l
T

im
e

O
pe

ra
ti

ng
S

ys
te

m
(R

T
O

S
)

re
al

ti
m

e
op

er
at

in
g

sy
st

em
(R

T
O

S
)

30
3

12
.3

.1
3

E
le

ct
ro

ni
c

co
de

un
it

(E
C

U
)

el
ec

tr
on

ic
co

de
un

it
(E

C
U

)
30

6
12

.3
.2

3
L

ig
ht

w
ei

gh
t

di
re

ct
or

y
ac

ce
ss

pr
ot

oc
ol

(L
D

A
P

)
li

gh
tw

ei
gh

t
di

re
ct

or
y

ac
ce

ss
pr

ot
oc

ol
(L

D
A

P
)

30
6

12
.3

.2
3

N
S

S
(N

am
e

S
w

it
ch

S
er

vi
ce

)
N

S
S

(n
am

e
sw

it
ch

se
rv

ic
e)

30
6

12
.3

.2
3

P
A

M
s

(P
lu

gg
ab

le
A

ut
he

nt
ic

at
io

n
M

od
ul

es
)

P
A

M
s

(p
lu

gg
ab

le
au

th
en

ti
ca

ti
on

m
od

ul
es

)
30

7
12

.3
.3

1
E

le
ct

ri
ca

ll
y

E
ra

sa
bl

e
P

ro
gr

am
m

ab
le

R
ea

d-
O

nl
y

M
em

or
y

(E
E

P
R

O
M

)
el

ec
tr

ic
al

ly
er

as
ab

le
pr

og
ra

m
m

ab
le

re
ad

-o
nl

y
m

em
or

y
(E

E
P

R
O

M
)

30
7

12
.3

.3
2

P
ro

te
ct

io
n

P
ro

fi
le

s
(P

P
)

pr
ot

ec
ti

on
pr

ofi
le

s
(P

P
)

30
7

12
.3

.3
8

S
ec

ur
e

H
ar

dw
ar

e
E

xt
en

si
on

(S
H

E
)

se
cu

re
ha

rd
w

ar
e

ex
te

ns
io

n
(S

H
E

)
30

8
12

.3
.3

1
E

-s
af

et
y

V
eh

ic
le

In
tr

us
io

n
P

ro
te

ct
ed

A
pp

li
ca

ti
on

s
(E

V
IT

A
)

E
-s

af
et

y
ve

hi
cl

e
in

tr
us

io
n

pr
ot

ec
te

d
ap

pl
ic

at
io

ns
(E

V
IT

A
)

33
6

14
.2

2
na

ti
on

al
oc

ea
no

gr
ap

hi
c

an
d

at
m

os
ph

er
ic

ad
m

in
is

tr
at

io
n

(N
O

A
A

)
N

at
io

na
l

O
ce

an
og

ra
ph

ic
an

d
A

tm
os

ph
er

ic
A

dm
in

is
tr

at
io

n
(N

O
A

A
)

33
6

14
.2

2
de

fe
ns

e
ad

va
nc

ed
re

se
ar

ch
pr

oj
ec

ts
ag

en
cy

(D
A

R
P

A
)

D
ef

en
se

A
dv

an
ce

d
R

es
ea

rc
h

P
ro

je
ct

s
A

ge
nc

y
(D

A
R

P
A

)
34

0
14

.4
1

In
te

r-
In

te
gr

at
ed

C
ir

cu
it

(I
2C

)
in

te
r-

in
te

gr
at

ed
ci

rc
ui

t
(I

2C
)

34
5

14
.5

.2
.1

2
D

en
ia

l-
of

-S
er

vi
ce

(D
oS

)
de

ni
al

-o
f-

se
rv

ic
e

(D
oS

)
34

5
14

.5
.2

.1
4

F
re

qu
en

cy
-H

op
pi

ng
S

pr
ea

d
S

pe
ct

ru
m

(F
H

S
S

)
fr

eq
ue

nc
y-

ho
pp

in
g

sp
re

ad
sp

ec
tr

um
(F

H
S

S
)

35
7

15
.3

.2
3

U
ni

ve
rs

al
In

te
gr

at
ed

C
ir

cu
it

C
ar

d
(U

IC
C

)
un

iv
er

sa
l

in
te

gr
at

ed
ci

rc
ui

t
ca

rd
(U

IC
C

)
35

7
15

.3
.2

4
S

ig
In

-S
ig

O
ut

-C
om

m
un

ic
at

io
n

(S
2C

)
S

ig
In

-S
ig

O
ut

-c
om

m
un

ic
at

io
n

(S
2C

)
35

9
15

.4
6

P
or

ta
bl

e
O

pe
ra

ti
ng

S
ys

te
m

In
te

rf
ac

e
(P

O
S

IX
)

P
or

ta
bl

e
op

er
at

in
g

sy
st

em
in

te
rf

ac
e

(P
O

S
IX

)

(c
on

ti
nu

ed
)

E10 K. Markantonakis and K. Mayes

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

36
2

15
.5

.3
3

G
S

M
as

so
ci

at
io

n
(G

S
M

A
G

S
M

A
ss

oc
ia

ti
on

(G
S

M
A

)
36

2
15

.5
.3

4
D

ig
it

al
R

ig
ht

s
M

an
ag

em
en

t
(D

R
M

)
di

gi
ta

l
ri

gh
ts

m
an

ag
em

en
t

(D
R

M
)

36
4

15
.6

.1
4

Ja
pa

ne
se

in
du

st
ri

al
st

an
da

rd
(J

IS
)

Ja
pa

ne
se

In
du

st
ri

al
S

ta
nd

ar
d

(J
IS

)
36

4
15

.6
.2

N
F

C
D

at
a

E
xc

ha
ng

e
F

or
m

at
(N

D
E

F
)

N
F

C
da

ta
ex

ch
an

ge
fo

rm
at

(N
D

E
F

)
36

5
15

.6
.2

1
M

ul
ti

pu
rp

os
e

In
te

rn
et

M
ai

l
E

xt
en

si
on

s
(M

IM
E

)
m

ul
ti

pu
rp

os
e

in
te

rn
et

m
ai

l
ex

te
ns

io
ns

(M
IM

E
)

36
9

A
bs

tr
ac

t
1

B
as

ic
In

pu
t

O
ut

pu
t

S
ys

te
m

(B
IO

S
)

ba
si

c
in

pu
t

ou
tp

ut
sy

st
em

(B
IO

S
)

36
9

A
bs

tr
ac

t
1

T
ru

st
ed

P
la

tf
or

m
M

od
ul

e
(T

P
M

)
tr

us
te

d
pl

at
fo

rm
m

od
ul

e
(T

P
M

)
37

0
16

.1
.1

1
R

an
do

m
A

cc
es

s
M

em
or

y
(R

A
M

)
ra

nd
om

ac
ce

ss
m

em
or

y
(R

A
M

)
37

0
16

.1
.1

2
O

pe
ra

ti
ng

S
ys

te
m

(O
S

)
op

er
at

in
g

sy
st

em
(O

S
)

37
0

16
.1

.1
3

U
se

r
In

te
rf

ac
e

(U
I)

us
er

in
te

rf
ac

e
(U

I)
38

3
17

(A
bs

tr
ac

t)
1

H
ar

dw
ar

e
S

ec
ur

it
y

M
od

ul
es

(H
S

M
s)

H
ar

dw
ar

e
se

cu
ri

ty
m

od
ul

es
(H

S
M

s)
38

3
17

(A
bs

tr
ac

t)
1

T
am

pe
r

R
es

is
ta

nt
S

ec
ur

it
y

M
od

ul
es

(T
R

S
M

s)
ta

m
pe

r
re

si
st

an
t

se
cu

ri
ty

m
od

ul
es

(T
R

S
M

s)
38

3
17

(A
bs

tr
ac

t)
1

P
er

so
na

l
Id

en
ti

fi
ca

ti
on

N
um

be
rs

(P
IN

s)
pe

rs
on

al
id

en
ti

fi
ca

ti
on

nu
m

be
rs

(P
IN

s)
38

3
17

(A
bs

tr
ac

t)
1

F
ed

er
al

In
fo

rm
at

io
n

P
ro

ce
ss

in
g

S
ta

nd
ar

d
(F

IP
S

)
fe

de
ra

l
in

fo
rm

at
io

n
pr

oc
es

si
ng

st
an

da
rd

(F
IP

S
)

38
3

17
.1

2
H

ar
dw

ar
e

S
ec

ur
it

y
M

od
ul

e
(H

S
M

)
ha

rd
w

ar
e

se
cu

ri
ty

m
od

ul
e

(H
S

M
)

38
4

17
.1

1
T

am
pe

r
R

es
is

ta
nt

S
ec

ur
it

y
M

od
ul

es
(T

R
S

M
)

ta
m

pe
r

re
si

st
an

t
se

cu
ri

ty
m

od
ul

es
(T

R
S

M
)

38
4

17
.1

1
S

ec
ur

e
C

ry
pt

og
ra

ph
ic

D
ev

ic
es

(S
C

D
)

se
cu

re
cr

yp
to

gr
ap

hi
c

de
vi

ce
s

(S
C

D
)

38
4

17
.1

1
C

er
ti

fi
ca

ti
on

A
ut

ho
ri

ty
(C

A
)

ce
rt

ifi
ca

ti
on

au
th

or
it

y
(C

A
)

38
4

17
.1

1
P

oi
nt

of
S

al
es

te
rm

in
al

s
(P

O
S

te
rm

in
al

s)
po

in
t

of
sa

le
s

te
rm

in
al

s
(P

O
S

te
rm

in
al

s)
38

4
17

.2
3

P
ay

m
en

t
ca

rd
in

du
st

ry
(P

C
I)

pa
ym

en
t

ca
rd

in
du

st
ry

(P
C

I)
38

5
17

.2
2

C
ar

d
V

er
ifi

ca
ti

on
V

al
ue

(C
V

V
)

ca
rd

ve
ri

fi
ca

ti
on

va
lu

e
(C

V
V

)
38

5
17

.2
2

C
ar

d
V

er
ifi

ca
ti

on
K

ey
(C

V
K

)
ca

rd
ve

ri
fi

ca
ti

on
ke

y
(C

V
K

)
38

5
17

.2
2

P
er

so
na

l
Id

en
ti

fi
ca

ti
on

N
um

be
r

(P
IN

)
pe

rs
on

al
id

en
ti

fi
ca

ti
on

nu
m

be
r

(P
IN

)
38

5
17

.2
3

P
IN

V
er

ifi
ca

ti
on

K
ey

(P
N

K
)

P
IN

ve
ri

fi
ca

ti
on

ke
y

(P
N

K
)

38
5

17
.2

4
A

ut
om

at
ic

T
el

le
r

M
ac

hi
ne

(A
T

M
)

au
to

m
at

ic
te

ll
er

m
ac

hi
ne

(A
T

M
)

38
6

17
.2

4
M

es
sa

ge
A

ut
he

nt
ic

at
io

n
C

od
e

(M
A

C
)

m
es

sa
ge

au
th

en
ti

ca
ti

on
C

od
e

(M
A

C
)

(c
on

ti
nu

ed
)

Errata to: Secure Smart Embedded Devices, Platforms and Applications E11

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

38
8

17
.3

3
H

os
t

M
as

te
r

K
ey

(H
M

K
)

ho
st

m
as

te
r

ke
y

(H
M

K
)

39
0

17
.4

1
F

ed
er

al
In

fo
rm

at
io

n
P

ro
ce

ss
in

g
S

ta
nd

ar
d

(F
IP

S
)

fe
de

ra
l

in
fo

rm
at

io
n

pr
oc

es
si

ng
st

an
da

rd
(F

IP
S

)
39

2
17

.4
T

ab
le

17
.2

C
od

e
of

F
ed

er
al

R
eg

ul
at

io
ns

(C
F

R
)

C
od

e
of

fe
de

ra
l

re
gu

la
ti

on
s

(C
F

R
)

39
5

17
.5

3
P

IN
E

nt
ry

D
ev

ic
e

(P
E

D
)

P
IN

en
tr

y
de

vi
ce

(P
E

D
)

39
6

17
.6

1
K

ey
E

nc
ry

pt
in

g
K

ey
(K

E
K

)
ke

y
en

cr
yp

ti
ng

ke
y

(K
E

K
)

39
7

17
.6

4
E

le
ct

ro
ni

c
C

od
eb

oo
k

(E
C

B
)

el
ec

tr
on

ic
co

de
bo

ok
(E

C
B

)
39

8
17

.6
4

C
ip

he
r

B
lo

ck
C

ha
in

in
g

(C
B

C
)

ci
ph

er
bl

oc
k

ch
ai

ni
ng

(C
B

C
)

39
8

17
.6

4
In

it
ia

l
V

ec
to

r
(I

V
)

in
it

ia
l

ve
ct

or
(I

V
)

40
1

17
.7

4
A

cc
ou

nt
R

el
at

ed
D

at
a

(A
R

D
)

ac
co

un
t

re
la

te
d

da
ta

(A
R

D
)

41
0

18
.2

3
P

ro
te

ct
io

n
P

ro
fi

le
(P

P
)

pr
ot

ec
ti

on
pr

ofi
le

(P
P

)
41

3
18

.2
.1

2
(P

IN
T

ra
ns

ac
ti

on
S

ec
ur

it
y)

P
T

S
(P

IN
tr

an
sa

ct
io

n
se

cu
ri

ty
)

P
T

S
41

3
18

.2
.2

4
in

fo
rm

at
io

n
te

ch
no

lo
gy

S
ec

ur
it

y
E

va
lu

at
io

n
F

ac
il

it
y

(I
T

S
E

F
)

in
fo

rm
at

io
n

te
ch

no
lo

gy
se

cu
ri

ty
ev

al
ua

ti
on

fa
ci

li
ty

(I
T

S
E

F
)

41
3

18
.2

.2
4

C
om

m
er

ci
aL

E
va

lu
at

io
n

F
ac

il
it

y
(C

L
E

F
)

co
m

m
er

ci
aL

ev
al

ua
ti

on
fa

ci
li

ty
(C

L
E

F
)

41
4

18
.2

.2
3

co
m

m
on

cr
it

er
ia

m
an

ag
em

en
t

co
m

m
it

te
e

(C
C

M
C

)
C

om
m

on
C

ri
te

ri
a

M
an

ag
em

en
t

C
om

m
it

te
e

(C
C

M
C

)
41

4
18

.2
.2

3
co

m
m

on
cr

it
er

ia
de

ve
lo

pm
en

t
bo

ar
d

(C
C

D
B

)
C

om
m

on
C

ri
te

ri
a

D
ev

el
op

m
en

t
B

oa
rd

(C
C

D
B

)
41

5
18

.2
.3

4
C

om
m

on
E

va
lu

at
io

n
M

et
ho

do
lo

gy
(C

E
M

)
co

m
m

on
ev

al
ua

ti
on

m
et

ho
do

lo
gy

(C
E

M
)

42
1

18
.4

.1
3

D
er

iv
ed

T
es

t
R

eq
ui

re
m

en
ts

(D
T

R
s)

de
ri

ve
d

te
st

re
qu

ir
em

en
ts

(D
T

R
s)

43
3

19
.2

.2
.2

2
S

ta
ti

c
R

an
do

m
A

cc
es

s
M

em
or

y
(S

R
A

M
)

st
at

ic
ra

nd
om

ac
ce

ss
m

em
or

y
(S

R
A

M
)

45
2

20
.2

2
P

ro
gr

am
m

ab
le

L
og

ic
C

on
tr

ol
le

r
(P

L
C

)
pr

og
ra

m
m

ab
le

lo
gi

c
co

nt
ro

ll
er

(P
L

C
)

45
2

20
.2

2
R

em
ot

e
T

er
m

in
al

U
ni

ts
(R

T
U

)
re

m
ot

e
te

rm
in

al
un

it
s

(R
T

U
)

45
3

20
.2

3
H

um
an

M
ac

hi
ne

In
te

rf
ac

e
(H

M
I)

H
um

an
m

ac
hi

ne
in

te
rf

ac
e

(H
M

I)
45

3
20

.2
4

A
pp

li
ca

ti
on

pr
og

ra
m

m
in

g
in

te
rf

ac
e

(A
P

I)
ap

pl
ic

at
io

n
pr

og
ra

m
m

in
g

in
te

rf
ac

e
(A

P
I)

45
7

20
.3

.2
5

A
m

er
ic

an
pe

tr
ol

eu
m

in
st

it
ut

e
(A

P
I)

A
m

er
ic

an
P

et
ro

le
um

In
st

it
ut

e
(A

P
I)

45
8

20
.3

.2
6

el
ec

tr
ic

re
li

ab
il

it
y

or
ga

ni
sa

ti
on

(E
R

O
)

E
le

ct
ri

c
R

el
ia

bi
li

ty
O

rg
an

is
at

io
n

(E
R

O
)

46
4

20
.4

.3
3

N
et

w
or

k
In

tr
us

io
n

D
et

ec
ti

on
S

ys
te

m
(N

ID
S

)
ne

tw
or

k
in

tr
us

io
n

de
te

ct
io

n
sy

st
em

(N
ID

S
)

(c
on

ti
nu

ed
)

E12 K. Markantonakis and K. Mayes

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

47
5

21
.1

1
C

en
tr

al
P

ro
ce

ss
in

g
U

ni
t

(C
P

U
)

ce
nt

ra
l

pr
oc

es
si

ng
un

it
(C

P
U

)
47

7
21

.3
.1

1
P

er
ip

he
ra

l
In

te
rf

ac
e

C
on

tr
ol

le
r

(P
IC

)
P

er
ip

he
ra

l
in

te
rf

ac
e

co
nt

ro
ll

er
(P

IC
)

47
7

21
.3

.1
1

M
ic

ro
pr

oc
es

so
r

un
it

(M
P

U
)

m
ic

ro
pr

oc
es

so
r

un
it

(M
P

U
)

47
9

21
.3

.4
1

In
te

gr
at

ed
D

ev
el

op
m

en
t

E
nv

ir
on

m
en

t
(I

D
E

)
in

te
gr

at
ed

de
ve

lo
pm

en
t

en
vi

ro
nm

en
t

(I
D

E
)

48
1

21
.4

.1
1

N
at

io
na

l
In

st
it

ut
e

of
S

ta
nd

ar
ds

an
d

T
ec

hn
ol

og
y

(N
IS

T
)

N
at

io
na

l
In

st
it

ut
e

of
S

ta
nd

ar
ds

an
d

T
ec

hn
ol

og
y

(N
IS

T
)

49
8

22
.2

.1
1

Ja
va

C
ar

d
vi

rt
ua

l
m

ac
hi

ne
(J

C
V

M
)

Ja
va

ca
rd

vi
rt

ua
l

m
ac

hi
ne

(J
C

V
M

)
49

9
22

.2
.1

1
Ja

va
C

ar
d

ru
nt

im
e

en
vi

ro
nm

en
t

(J
C

R
E

)
Ja

va
ca

rd
ru

nt
im

e
en

vi
ro

nm
en

t
(J

C
R

E
)

50
8

22
.5

.1
2

P
ro

pr
ie

ta
ry

A
pp

li
ca

ti
on

Id
en

ti
fi

er
E

xt
en

si
on

(P
IX

)
pr

op
ri

et
ar

y
ap

pl
ic

at
io

n
id

en
ti

fi
er

ex
te

ns
io

n
(P

IX
)

51
5

23
.1

1
M

ob
il

e
in

fo
rm

at
io

n
de

vi
ce

pr
ofi

le
(M

ID
P

)
m

ob
il

e
in

fo
rm

at
io

n
de

vi
ce

pr
ofi

le
(M

ID
P

)
51

5
23

.1
1

A
pp

li
ca

ti
on

pr
ot

oc
ol

da
ta

un
it

(A
P

D
U

)
ap

pl
ic

at
io

n
pr

ot
oc

ol
da

ta
un

it
(A

P
D

U
)

51
7

23
.1

.1
1

Ja
va

ca
rd

re
m

ot
e

m
et

ho
d

in
vo

ca
ti

on
(J

C
R

M
I)

Ja
va

ca
rd

re
m

ot
e

m
et

ho
d

in
vo

ca
ti

on
(J

C
R

M
I)

51
7

23
.1

.1
8

R
em

ot
e

M
et

ho
d

In
te

rf
ac

e
(R

M
I)

re
m

ot
e

m
et

ho
d

in
te

rf
ac

e
(R

M
I)

51
7

23
.1

.1
8

G
en

er
ic

C
on

ne
ct

io
n

F
ra

m
ew

or
k

(G
C

F
)

ge
ne

ri
c

co
nn

ec
ti

on
fr

am
ew

or
k

(G
C

F
)

51
7

23
.1

.1
8

Ja
va

C
ar

d
R

em
ot

e
M

et
ho

d
In

vo
ca

ti
on

(J
C

R
M

I)
Ja

va
ca

rd
re

m
ot

e
m

et
ho

d
in

vo
ca

ti
on

(J
C

R
M

I)
51

8
23

.1
.2

4
Ja

va
ca

rd
vi

rt
ua

l
m

ac
hi

ne
(J

C
V

M
)

Ja
va

ca
rd

vi
rt

ua
l

m
ac

hi
ne

(J
C

V
M

)
51

8
23

.1
.2

4
Ja

va
vi

rt
ua

l
m

ac
hi

ne
(J

V
M

)
Ja

va
vi

rt
ua

l
m

ac
hi

ne
(J

V
M

)
51

9
23

.2
.1

2
In

te
gr

at
ed

D
ev

el
op

m
en

t
E

nv
ir

on
m

en
t

(I
D

E
)

in
te

gr
at

ed
de

ve
lo

pm
en

t
en

vi
ro

nm
en

t
(I

D
E

)
51

9
23

.2
.1

12
C

on
ne

ct
ed

li
m

it
ed

de
vi

ce
co

nfi
gu

ra
ti

on
(C

L
D

C
)

co
nn

ec
te

d
li

m
it

ed
de

vi
ce

co
nfi

gu
ra

ti
on

(C
L

D
C

)
51

9
23

.2
.1

12
O

ve
r-

th
e-

ai
r

(O
T

A
)

ov
er

-t
he

-a
ir

(O
T

A
)

51
9

23
.2

.1
12

Ja
va

C
om

m
un

it
y

P
ro

ce
ss

(J
C

P
)

Ja
va

co
m

m
un

it
y

pr
oc

es
s

(J
C

P
)

51
9

23
.2

.1
14

M
ob

il
e

In
fo

rm
at

io
n

D
ev

ic
e

P
ro

fi
le

(M
ID

P
)

M
ob

il
e

in
fo

rm
at

io
n

de
vi

ce
pr

ofi
le

(M
ID

P
)

51
9

23
.2

.1
15

C
on

ne
ct

ed
L

im
it

ed
D

ev
ic

e
C

on
fi

gu
ra

ti
on

(C
L

D
C

)
C

on
ne

ct
ed

li
m

it
ed

de
vi

ce
co

nfi
gu

ra
ti

on
(C

L
D

C
)

52
1

23
.2

.1
1

G
en

er
ic

co
nn

ec
ti

on
fr

am
ew

or
k

(G
C

F
)

ge
ne

ri
c

co
nn

ec
ti

on
fr

am
ew

or
k

(G
C

F
)

52
1

23
.2

.1
3

A
ns

w
er

-t
o-

re
se

t
(A

T
R

)
an

sw
er

-t
o-

re
se

t
(A

T
R

)
52

1
23

.2
.1

3
P

er
so

na
l

Id
en

ti
fi

ca
ti

on
N

um
be

r
(P

IN
)

pe
rs

on
al

id
en

ti
fi

ca
ti

on
nu

m
be

r
(P

IN
)

(c
on

ti
nu

ed
)

Errata to: Secure Smart Embedded Devices, Platforms and Applications E13

(c
on

ti
nu

ed
)

P
ag

e
S

ec
ti

on
P

ar
a

E
xp

an
si

on
(A

bb
re

vi
at

io
n)

C
or

re
ct

fo
rm

52
1

23
.2

.1
4

A
pp

li
ca

ti
on

id
en

ti
fi

er
(A

ID
)

ap
pl

ic
at

io
n

id
en

ti
fi

er
(A

ID
)

52
1

23
.2

.1
4

U
ni

fo
rm

re
so

ur
ce

lo
ca

to
r

(U
R

L
)

un
if

or
m

re
so

ur
ce

lo
ca

to
r

(U
R

L
)

52
3

23
.2

.1
.2

1
Ja

va
ap

pl
ic

at
io

n
de

sc
ri

pt
or

(J
A

D
)

Ja
va

ap
pl

ic
at

io
n

de
sc

ri
pt

or
(J

A
D

)
52

7
23

.2
.2

.1
1

A
pp

li
ca

ti
on

id
en

ti
fi

er
(A

ID
)

ap
pl

ic
at

io
n

id
en

ti
fi

er
(A

ID
)

54
2

24
.1

1
N

ea
r

F
ie

ld
C

om
m

un
ic

at
io

n
ne

ar
fi

el
d

co
m

m
un

ic
at

io
n

54
2

24
.2

H
ea

di
ng

S
un

S
m

al
l

P
ro

gr
am

m
ab

le
O

bj
ec

t
T

ec
hn

ol
og

y
(S

P
O

T
s)

S
un

sm
al

lp
ro

gr
am

m
ab

le
ob

je
ct

te
ch

no
lo

gy
(S

P
O

T
s)

54
2

24
.2

.1
1

L
in

k
Q

ua
li

ty
R

ou
ti

ng
P

ro
to

co
l

li
nk

qu
al

it
y

ro
ut

in
g

pr
ot

oc
ol

55
3

24
.3

.4
.2

1
In

te
gr

at
ed

D
ev

el
op

m
en

t
E

nv
ir

on
m

en
t

(I
D

E
)

in
te

gr
at

ed
de

ve
lo

pm
en

t
en

vi
ro

nm
en

t
(I

D
E

)

E14 K. Markantonakis and K. Mayes

Index

Symbols
3DES, 149

A
Acorn RISC machine (ARM), 55
Advanced encryption standard (AES), 500
AES, 147
Analog signal processing (ASP), 29
Analog-to-digital (A/D), 28
Anti-counterfeiting, 440
Application artefact, 408
Application data unit (APDU), 500
Application-specific instruction set processor

(ASIP), 28
Application-specific integrated circuit

(ASIC), 28, 57
Arduino, 543, 552
Arduino duemilanove, 553
Assurance level, 409
Automotive, 287

automotive attacker, 292
automotive attack paths, 292
automotive security, 291
business models, 298
privacy, 299
security incidents, 299
security of safety mechanism, 296
security threats and risks, 296

Automotive security mechanisms, 300
communication security, 301
hardware security, 302
software security, 301

B
Backdoor password, 372
Basic input output system (BIOS), 369

Berkeley low-power IP stack (BLIP), 563
BIOS RAM, 370
Boot loader, 369
Bricking, 59
Bytecode, 504

C
CAP, 504
Chinese remainder theorem, 152, 166
Clones, 52
Common criteria (CC), 55, 413, 415

assurance level, 413, 416
assurance requirement, 416
attack potential calculation, 417
commercial evaluation facility

(CLEF), 413
common criteria recognition arrangement

(CCRA), 414
common evaluation methodology (CEM),

413, 415
evaluation assurance levels (EAL), 415
example protection profiles, 423
protection profiles, 415
security functional requirements

(SFRs), 414, 415
security target (ST), 413, 415
target of evaluation (TOE), 413

Composition, 410
Controlled PUF, 439
Countermeasures, 164
Crossbow, 559
Cyber physical space, 544

D
Data encryption standard (DES), 500
DES, 147

K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices,
Platforms and Applications, DOI: 10.1007/978-1-4614-7915-4,
� Springer Science+Business Media New York 2014

565

Destructive attacks, 411
Differential electromagnetic analysis

(DEMA), 67
Digital signal processing (DSP), 27, 28
Disfiguring attacks, 411
Drive by download, 375
Dual-rail precharge (DRP), 105

masked dual-rail precharge logic
(MDPL), 105

E
EEPROM, 58, 372
Electrically erasable programmable read only

memory (EEPROM), 499
Electric cars, 291
Electronic control units (ECU), 287
Embedded CPU, 49
Embedded system, 29
Emulatable PUF, 439

F
Fault analysis, 166

countermeasures, 171
faults in DES, 169
faults in RSA signature generation, 168

Fault-induction attacks, 411
Field-programmable gate array (FPGA), 28
FIPS , 140, 407, 421
Flash memory, 372
Flooding time synchronization

protocol, 565
FPGA, 202

advanced encryption standard
(AES), 206

fault attacks, 212
hiding, 211
masking, 211
side-channel attacks, 210

Free range SPOTs, 546
Fuzzy extractor, 435

G
Glue logic, 60
GPS chip, 560

H
Halt and catch fire (HCF), 59
Hardware Trojan, 97, 113
Harvard architecture, 55

I
In-circuit-emulator (ICE), 65
Infineon, 66
Integrity guard, 66
Intel, 52
Intellectual property, 201

IP security, 213
bitstream security, 213
watermarking, 217

Invasive attacks, 145
IRIS, 560

J
Java, 544
Java card, 497, 503

java card , 3, 499
java card applet architecture, 506
java card virtual machine (JCVM), 498

Java card 3 classic, 503
Java card classic, 503
Java card classic application development, 504
Java’s connected limited device configuration

(CLDC), 504
JTAG, 65

M
Masked ROM, 61
Mica2, 559
MicaZ, 560
Microcontroller, 51
Micro-probing, 60
Microprocessor, 51, 52
MIDlet, 544
Motorola, 53
MS-DOS, 370
Multos, 497

N
Near field communication (NFC), 544
NesC, 558
Netbeans IDE, 547
Non-invasive attacks, 146, 411

O
One-time programming (OTP), 62
Open vehicular secure platform

(OVERSEE), 302
EVITA, 304
hardware security module (HSM), 304

566 Index

lightweight directory access protocol
(LDAP), 306

partitioning, 303
secure hardware extension (SHE), 307
security controller, 307
virtualisation, 302
XtratuM hypervisor, 303

Oracle labs, 545

P
Padding, 151
PCI PTS, 407, 422
Physical attacks, 411
Physically unclonable function

(PUF), 215, 429
arbiter PUF, 432
butterfly PUF, 435
delay-based PUF, 432
electronic PUF, 432
fault injection attacks, 438
flip-flop PUF, 435
latch PUF, 435
memory-based PUF, 433
model building attacks, 437
remote attestation, 442
ring oscillator PUF, 433
side channel attacks, 437
SRAM PUF, 433

Power analysis, 56
Protection profile (PP), 410

R
Random access memory (RAM), 370, 499
Random number generator (RNG), 57, 154,

500
Randomness extractor, 435
Read only memory (ROM), 499
Reconfigurable PUF, 441
Reverse engineering, 57
RFID, 544
RISC, 54
Rivest-Shamir-Adleman (RSA), 500
Rootkits, 373
RSA, 149
RXTX library, 547

S
Secure hardware design, 102
Secure key storage, 441
Secure sketch, 435
Security evaluation, 407, 408

Semi-invasive attacks, 146
Sensor network deployment, 563
Side channel analysis, 157

countermeasures, 164
electromagnetic analysis, 163
power analysis, 158

differential power analysis, 161
simple power analysis, 158

timing analysis, 157
Side-channel attacks, 411
Smart card architecture, 498

communication architecture, 500
smart card hardware, 499

Smart card operating system
(SCOS), 498

Smart card programming, 498
application development lifecycle, 502

Smart card security, 145
Smart traffic management systems, 290
Square and multiply algorithm, 151
Squawk, 546
Sun labs, 545
Sun SPOT, 543, 544
Sun SPOT manager, 547
Synchronization algorithm, 564
System loader, 369

T
TelosB, 560
Texas instruments, 51
The security evaluation model, 412

composition, 413
TinyOS, 543, 558, 560
Triple DES (TDES), 500
Trusted execution environment

(TEE), 410
Trusted platform module (TPM), 369
TrustZone, 55

U
Unified extensible firmware interface BIOS

(UEFI), 371
User interface (UI), 370

V
Vehicle-to-infrastructure communication

(V2I), 288
Vehicle-to-vehicles communication

(V2V), 288
Vehicular buses, 287
VLSI design cycle, 96, 97

Index 567

W
Wiring platform, 552
WORM, 60

Z
ZigBee, 554

568 Index

	Foreword
	Preface
	Structure of the Book
	ISG Smart Card Centre—Members Message
	Acknowledgments
	Contents
	Contributors
	Part I Embedded Devices
	1 An Introduction to Smart Cards and RFIDs
	1.1 Introduction
	1.2 Application Requirements
	1.2.1 Mobile Communications
	1.2.2 Banking Cards
	1.2.3 Passports
	1.2.4 Satellite Pay-TV
	1.2.5 Transport Ticketing
	1.2.6 Product Tagging
	1.2.7 Comparing Requirements

	1.3 Contact and Contactless Smart Cards/RFIDs
	1.3.1 Cards with Contacts
	1.3.2 Contactless Smart Cards/RFIDS
	1.3.3 APDU Communication

	1.4 The Range of Smart Card Devices
	1.4.1 Simple ID Tag/Card
	1.4.2 Memory Tag/Card
	1.4.3 Secured Memory Tag/Card
	1.4.4 Secured Microcontroller ID/Tag

	1.5 The Importance of Providing Attack/Tamper-Resistance
	1.6 Mobile and NFC
	1.7 Conventional Smart Card Lifecycle Management Processes
	1.8 Conclusion
	References

	2 Embedded DSP Devices
	2.1 Overview
	2.2 Digital Signal Processing
	2.2.1 The DSP Processor
	2.2.2 The Real-Time DSP System
	2.2.3 The FPGA in DSP
	2.2.4 The ASIP in DSP

	2.3 Embedded DSP Systems
	2.3.1 The Embedded DSP Architecture
	2.3.2 The Embedded DSP Processor and RISC
	2.3.3 Embedded DSP and Security
	2.3.4 Embedded DSP and the Mobile Phone

	2.4 Discussion
	References

	3 Microprocessors and Microcontrollers Security
	3.1 Microcontrollers and Microprocessors Security Needs
	3.2 Historical Development
	3.3 The Microprocessor
	3.3.1 32 Bit Microprocessor Designs
	3.3.2 64 Bit Microprocessor Designs
	3.3.3 RISCs and ARM

	3.4 Security Design of Embedded CPU Architectures
	3.4.1 Security of Embedded CPU Memory
	3.4.2 Security of Embedded CPU Interfaces

	3.5 Advanced Chip Design
	3.6 Conclusion
	References

	4 An Introduction to the Trusted Platform Module and Mobile Trusted Module
	4.1 Introduction
	4.2 The Trusted Platform Module
	4.2.1 Trusted Platform Framework
	4.2.2 Basic Architecture

	4.3 TPM Operations
	4.3.1 TPM Endorsement Key
	4.3.2 TPM Ownership
	4.3.3 Attestation Identity Keys
	4.3.4 Measurement and Reporting Operations
	4.3.5 Migration Model

	4.4 The Mobile Trusted Module
	4.4.1 Basic Architecture and Operations

	4.5 TPM/MTM Technology Contenders
	4.5.1 ARM TrustZone
	4.5.2 M-Shield
	4.5.3 GlobalPlatform Device
	4.5.4 Trusted Personal Devices
	4.5.5 Secure Element
	4.5.6 Comparative Analysis of TPM/MTM Technology Contenders
	4.5.7 What Lies Ahead?

	4.6 Conclusion
	References

	5 Hardware and VLSI Designs
	5.1 Introduction and Motivation
	5.2 VLSI Design Cycle
	5.3 Design Space of Hardware Circuits
	5.4 Secure Hardware Design
	5.4.1 Power Consumption of CMOS Gates
	5.4.2 Countermeasures Against Power-Analysis Attacks
	5.4.3 Verification of Countermeasures by Means of Simulations

	5.5 Instruction-Set Extensions
	5.6 A 32-Bit Processor with ISEs and SCA Countermeasures
	5.7 Testability and Security
	5.8 Hardware Trojans
	5.9 Conclusion and Summary
	References

	Part II Generic Security and Processing Platforms
	6 Information Security Best Practices
	6.1 Introduction
	6.1.1 What is Information Security and Who are the Adversaries?

	6.2 Security Objectives
	6.2.1 Data Assets
	6.2.2 Critical Functions
	6.2.3 The Range of Security Protection

	6.3 Cryptographic Algorithms
	6.3.1 Symmetric Algorithms
	6.3.2 Asymmetric Algorithms
	6.3.3 Other Algorithms/Modes

	6.4 Key/Trust Management
	6.4.1 Asymmetric Key Management
	6.4.2 Trust and Management

	6.5 Security Evaluation and Common Criteria
	6.6 Handling Imperfection
	6.7 Case Study the MIFARE Classic
	6.7.1 Impact

	6.8 Concluding Remarks
	References

	7 Smart Card Security
	7.1 Introduction
	7.2 Cryptographic Algorithms
	7.2.1 Data Encryption Standard
	7.2.2 RSA

	7.3 Smart Card Security Features
	7.3.1 Communication
	7.3.2 Cryptographic Coprocessors
	7.3.3 Random Number Generators
	7.3.4 Anomaly Sensors
	7.3.5 Chip Features

	7.4 Side Channel Analysis
	7.4.1 Timing Analysis
	7.4.2 Power Analysis
	7.4.3 Electromagnetic Analysis
	7.4.4 Countermeasures

	7.5 Fault Analysis
	7.5.1 Fault Injection Mechanisms
	7.5.2 Modelling the Effect of a Fault
	7.5.3 Faults in Cryptographic Algorithms
	7.5.4 Countermeasures

	7.6 Embedded Software Design
	7.6.1 PIN Verification
	7.6.2 File Access

	7.7 In Conclusion
	References

	8 Graphics Processing Units
	8.1 An Introduction to Modern GPUs
	8.1.1 NVIDIA GPUs
	8.1.2 AMD GPUs
	8.1.3 Programming GPUs in High-Level Languages
	8.1.4 Programming GPUs in Assembly
	8.1.5 GPU Performance Bottlenecks

	8.2 GPUs as Cryptographic Coprocessors
	8.2.1 AES on GPUs
	8.2.2 Asymmetric Cryptography on GPUs

	8.3 GPUs in Cryptanalysis
	8.4 Malware Detection on GPUs
	8.5 Malware Targeting GPUs
	8.6 Accessing GPUs from Web Applications
	References

	9 A Survey of Recent Results in FPGA Security and Intellectual Property Protection
	9.1 FPGAs: An Overview
	9.1.1 Structure
	9.1.2 Design Flow
	9.1.3 Technologies

	9.2 Security IPs
	9.2.1 The AES Case
	9.2.2 Performance Evaluation
	9.2.3 Side-Channel Attacks and Countermeasures
	9.2.4 Fault Attacks and Countermeasures

	9.3 IP Security
	9.3.1 Bitstream Security
	9.3.2 Design Security

	9.4 Conclusions
	References

	Part III Applications and Platform Embedded Security Requirements
	10 Mobile Communication Security Controllers
	10.1 Introduction
	10.2 An Overview of the SIM
	10.2.1 The SIM in Operation

	10.3 Security Analysis
	10.3.1 Categories of Cellular Usage
	10.3.2 The Roles in Communication Solutions

	10.4 Security Fundamentals
	10.4.1 Trust Operations
	10.4.2 Initialisation, Personalisation and Key Management
	10.4.3 Authentication/Encryption
	10.4.4 Management of SIM Data and Application
	10.4.5 Migration
	10.4.6 Extended Operations/Value-Added Service Management
	10.4.7 NFC Management

	10.5 Generic Attacks on Smart Cards
	10.5.1 Logical Attacks
	10.5.2 Physical Attacks
	10.5.3 Side Channel Attacks
	10.5.4 Fault Attacks
	10.5.5 Summary and Main Points

	10.6 SIM Implementation Options
	10.6.1 Pure Software SIM
	10.6.2 Hardware Shared Security Software SIM Solution (HS-SSIM)
	10.6.3 Standalone HW Security SIM Solution

	10.7 Trusted Platform
	10.7.1 Roots of Trust
	10.7.2 Authenticated Boot and Secure Storage
	10.7.3 Ownership
	10.7.4 Mobile Trusted Platform (MTP)

	10.8 Summary
	10.8.1 Value Added Service Management
	10.8.2 Concluding Remarks

	References

	11 Security of Embedded Location Systems
	11.1 Introduction
	11.2 Embedded Location Systems
	11.3 Security and Resilience of Location Information
	11.3.1 Security and Resilience of Position Estimation Methods

	11.4 Securing Position Estimation Methods
	11.5 Global Navigation Satellite Systems
	11.5.1 GPS Security
	11.5.2 Future Efforts on Securing GNSS

	11.6 Conclusion
	References

	12 Automotive Embedded Systems Applications and Platform Embedded Security Requirements
	12.1 Introduction: Smart Embedded Platform Automotive
	12.1.1 Smart Communication Platform
	12.1.2 Smart After-Market Platform
	12.1.3 Smart Future Platform

	12.2 Security Aspects of Smart Embedded Automotive Platforms
	12.2.1 Automotive Attackers
	12.2.2 Automotive Attack Paths
	12.2.3 Automotive Security Threats and Risks
	12.2.4 Security of Automotive Safety Mechanisms
	12.2.5 Security of Automotive Legal Applications
	12.2.6 Security of Automotive Business Models
	12.2.7 Automotive Privacy Aspects
	12.2.8 Real-World Automotive Security Incidents
	12.2.9 Examples of Automotive Security Mechanisms

	12.3 Smart and Secure Open Automotive Platforms Platform
	12.3.1 OVERSEE Virtualisation
	12.3.2 OVERSEE Security Services Architecture
	12.3.3 OVERSEE Security Implementation

	12.4 Conclusions
	References

	13 Analysis of Potential Vulnerabilities in Payment Terminals
	13.1 Introduction
	13.1.1 EMV Standard

	13.2 Current Terminal Status
	13.2.1 Types of Terminals
	13.2.2 Where does Security Apply?

	13.3 Types of Attacks
	13.3.1 Attacking the Supply Chain
	13.3.2 Exploiting Inadequate Security Measures
	13.3.3 Skimming
	13.3.4 Covert Channels to PINs
	13.3.5 PIN/PIN Block Interception and Cracking
	13.3.6 Manipulating the Terminal-Card Interface
	13.3.7 Relay Attacks

	13.4 Conclusions and Future Considerations
	References

	14 Wireless Sensor Nodes
	14.1 Introduction
	14.2 Applications
	14.3 Constraints
	14.3.1 Costs: Production Versus Performance
	14.3.2 Energy
	14.3.3 Management: Self and Decentralized

	14.4 Architecture and Operating System
	14.4.1 Sensing Unit
	14.4.2 Processing Unit
	14.4.3 Communication Unit
	14.4.4 Major Features of Operating Systems

	14.5 Security Concerns
	14.5.1 Security of Wireless Sensor Nodes
	14.5.2 Security in Networks of Wireless Sensor Nodes

	References

	15 Near Field Communication
	15.1 Introduction
	15.2 NFC Technology
	15.2.1 Physical Layer
	15.2.2 Use Cases and Applications

	15.3 Hardware Integration
	15.3.1 NFC Chip
	15.3.2 Secure Element
	15.3.3 Host Controller

	15.4 NFC and Linux
	15.5 NFC Integration in Android
	15.5.1 NFC Chip
	15.5.2 API for the NFC Chip
	15.5.3 API for the Secure Element Access
	15.5.4 Security

	15.6 NFC Tags
	15.6.1 Tag-Types
	15.6.2 NFC Data Exchange Format (NDEF)

	15.7 Conclusion
	References

	16 The BIOS and Rootkits
	16.1 The BIOS
	16.1.1 The BIOS Subsystem Functionality

	16.2 Attacks on the BIOS Subsystem
	16.2.1 Countermeasures to BIOS Attacks

	16.3 Rootkits
	16.3.1 Introduction to Rootkits

	16.4 Rootkit Infections
	16.4.1 Detection of Rootkits
	16.4.2 Removal of Rootkits

	16.5 Conclusion
	References

	17 Hardware Security Modules
	17.1 Introduction
	17.2 HSM Usage
	17.3 HSM Physical Security
	17.4 HSM Security Evaluation and Approvals
	17.5 HSM Management
	17.6 Key Management
	17.7 Command Manipulation Attacks
	17.8 Conclusions
	References

	18 Security Evaluation and Common Criteria
	18.1 Introduction
	18.2 Security Evaluation Issues
	18.2.1 The Security Evaluation Model
	18.2.2 Structure and Use of the Common Criteria
	18.2.3 Structure of Common Criteria
	18.2.4 Assurance Requirements and Assurance Levels
	18.2.5 CC Interpretation and Supporting Documents
	18.2.6 Attack Potential Calculations

	18.3 Evolution of Common Criteria
	18.3.1 CC Technical Communities
	18.3.2 New Generation Protection Profiles

	18.4 Other Security Evaluation Schemes
	18.4.1 FIPS 140
	18.4.2 PCI PIN Transaction Security Requirements

	18.5 Example Protection Profiles
	18.5.1 Security IC PP
	18.5.2 Payment Terminal (Point of Interaction) PP set
	18.5.3 Trusted Platform Module PP

	References

	19 Physical Security Primitives
	19.1 Introduction
	19.2 Physically Unclonable Functions
	19.2.1 PUF Concept and Properties
	19.2.2 PUF Types
	19.2.3 Noise Compensation and Privacy Amplification
	19.2.4 Characterizing the Unpredictability of PUFs

	19.3 Attacks Against PUFs and PUF-Based Systems
	19.3.1 Emulation Attacks
	19.3.2 Side-Channel Attacks
	19.3.3 Fault Injection Attacks

	19.4 Advanced PUF Concepts
	19.4.1 Controlled PUFs
	19.4.2 Emulatable PUFs

	19.5 Common Applications of PUFs
	19.5.1 Device Identification and Authentication
	19.5.2 Secure Key Storage and Key Generation

	19.6 Future Directions
	19.6.1 Logically Reconfigurable PUFs
	19.6.2 PUF-Based Remote Attestation

	19.7 Open Questions and Challenges
	19.8 Conclusion
	References

	20 SCADA System Cyber Security
	20.1 Introduction
	20.2 SCADA Architecture Overview
	20.2.1 SCADA Protocols Overview

	20.3 SCADA Vulnerabilities and Attacks
	20.3.1 Architectural Vulnerabilities
	20.3.2 Security Policy Vulnerabilities
	20.3.3 Software Vulnerabilities
	20.3.4 Communication Protocol Vulnerabilities

	20.4 SCADA Security Countermeasures
	20.4.1 Communication Protocol Countermeasures
	20.4.2 Filtering Coutermeasures
	20.4.3 Monitoring Coutermeasures
	20.4.4 General Architectural Best Practices

	20.5 Conclusion
	References

	Part IVPractical Examples and Tools
	21 An Overview of PIC Microcontrollers and Their Suitability for Cryptographic Algorithms
	21.1 Introduction
	21.2 Microcontroller Structure
	21.3 Peripheral Interface Controllers
	21.3.1 PIC Architecture
	21.3.2 Memory
	21.3.3 Other Components
	21.3.4 Development Tools
	21.3.5 Summary

	21.4 AES on a PIC
	21.4.1 Implementation of AES

	21.5 Attack Example
	21.5.1 Differential Power Analysis
	21.5.2 Practical Implementation of DPA

	21.6 Conclusion
	References

	22 An Introduction to Java Card Programming
	22.1 Introduction
	22.2 Smart Card Programming
	22.2.1 Smart Card Architecture
	22.2.2 Smart Card Hardware
	22.2.3 Communication Architecture
	22.2.4 Application Development Lifecycle

	22.3 Java Card
	22.3.1 Java Card Classic
	22.3.2 Java Card Connected

	22.4 Java Card Programming
	22.4.1 Java Card Applet Architecture

	22.5 My First Applet
	22.5.1 Application Design
	22.5.2 Coding
	22.5.3 Simulating and Testing

	22.6 Conclusion
	References

	23 A Practical Example of Mobile Phone Application Using SATSA (JSR 177) API
	23.1 Introduction
	23.1.1 A Brief Overview of SATSA Framework
	23.1.2 A Brief Overview of Java Card Framework

	23.2 Practical Example
	23.2.1 Developing a MIDP Application (MIDlet) Implementing SATSA APDU Communication API
	23.2.2 Developing a Java Card Applet
	23.2.3 Results: Testing MIDlet and Java Card Applet

	23.3 Conclusion
	23.3.1 Source Code of MIDP Application (MIDlet)
	23.3.2 Source Code of Java Card Applet
	23.3.3 Java Card Applet Download-Script

	References

	24 Wireless Sensors (Languages/Programming/ Developments Tools/Examples)
	24.1 Introduction
	24.2 Sun SPOTs (Sun Small Programmable Object Technology)
	24.2.1 Introduction
	24.2.2 History
	24.2.3 Hardware Overview
	24.2.4 Software Overview
	24.2.5 How to Start with a Sun SPOT
	24.2.6 Hello World (``Shake and Blink'')
	24.2.7 Networked Sun SPOTs Applications

	24.3 Arduino
	24.3.1 Introduction and History
	24.3.2 Hardware Overview
	24.3.3 Software Overview
	24.3.4 How to Start with a Arduino
	24.3.5 Hello World (``Blinking SOS'')
	24.3.6 Networked Arduino Application

	24.4 TinyOS
	24.4.1 Introduction
	24.4.2 Hardware Overview
	24.4.3 How to Start with TinyOS
	24.4.4 Hello World (``Sense and Blink'')
	24.4.5 Networking with TinyOS

	24.5 Sensor Network Deployment: An Example
	24.5.1 Introduction
	24.5.2 Hardware Architecture
	24.5.3 The Time Synchronization Issue
	24.5.4 Data Collection, Location and Network Load Issues
	24.5.5 The Problem of Missing Information
	24.5.6 Conclusion

	References

	25 Errata to: Secure Smart Embedded Devices, Platforms and Applications
	Errata to: K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, Platforms and Applications, DOI 10.1007/978-1-4614-7915-4

	26 Errata to: Secure Smart Embedded Devices, Platforms and Applications
	Errata to: K. Markantonakis and K. Mayes (eds.), Secure Smart Embedded Devices, Platforms and Applications, DOI 10.1007/978-1-4614-7915-4

	Index

