
Chapter 16
Advanced Modeling of Oxide Defects

Wolfgang Goes, Franz Schanovsky, and Tibor Grasser

Abstract During the last couple of years, there is growing experimental evidence
which confirms charge trapping as the recoverable component of BTI. The trapping
process is believed to be a non-radiative multiphonon (NMP) process, which is also
encountered in numerous physically related problems. Therefore, the underlying
NMP theory is frequently found as an important ingredient in the youngest BTI
reliability models. While several different descriptions of the NMP transitions are
available in literature, most of them are not suitable for the application to device
simulation. In this chapter, we will present a rigorous derivation that starts out
from the microscopic Franck–Condon theory and yields generalized trapping rates
accounting for all possible NMP transitions with the conduction and the valence
band in the substrate as well as in the poly-gate. Most importantly, this derivation
considers the more general quadratic electron–phonon coupling contrary to several
previous charge trapping models. However, the pure NMP transitions do not suffice
to describe the charge trapping behavior seen in time-dependent defect spectroscopy
(TDDS). Inspired by these measurements, we introduced metastable states, which
have a strong impact on the trapping dynamics of the investigated defect. It is found
that these states provide an explanation for plenty of experimental features observed
in TDDS measurements. In particular, they can explain the behavior of fixed as well
as switching oxide hole traps, both regularly observed in TDDS measurements.

16.1 Introduction

For a long time, the research in bias temperature instability (BTI) was dominated
by variants of the reaction–diffusion (RD) model [1–8], discussed in [9]. In the
course of the last decade it was realized that the concept of the RD model cannot
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explain BTI [8, 10, 11]. At the same time, a new measurement technique called
time-dependent defect spectroscopy (TDDS) emerged, which indicated that some
sort of charge trapping is involved in BTI. This method is capable of detecting
single charge emission events from individual defects [12–18] in recovery traces
that last up to a few hundred seconds. Thus TDDS allows for the analysis of the
recoverable component of BTI and opened the doors toward in-depth investigations
of the physical trapping mechanism underlying BTI. For a detailed description of
this measurement method see [19].

First variants of charge trapping models relied on elastic hole tunneling of
holes between the substrate and oxide defects [20–24]. However, these models
show a negligible temperature dependence, which is in contrast to what has been
observed experimentally. Other variants were based on the famous Shockley–Read–
Hall (SRH) model [25] and modified to account for the tunneling effect [26]
and the thermal activation of BTI [27, 28]. For the latter, transition barriers were
phenomenologically introduced to reproduce the observed temperature dependence.
They were reasoned by non-radiative multiphonon (NMP) transitions but were
not rigorously derived from a microscopic theory [29–39]. The underlying theory
provides a rigorous framework for the description of the charge transfer process
between the substrate and the oxide defects in BTI. Hence, this theory forms the
basis of our multi-state model and will be discussed in detail at first. Subsequently
they will be simplified to make them applicable for analytical calculations.

Furthermore, TDDS studies demonstrated that the trapping dynamics must
involve metastable states as well as thermal but field-insensitive transitions. This
observation suggested a bistable BTI defect, which features quite complicated
trapping dynamics including two-step capture and emission processes. This kind
of defect also allows for different transition paths, which can explain the dual trap
behavior seen in TDDS. For validation of this new model, we will evaluate the
simulation results to the experimental data obtained from TDDS.

16.2 Benchmarks for a BTI Model

As a result of the continuous downscaling of the device geometries, single charge
detrapping events have become visible as discrete steps in the BTI recovery
curves. These steps came into the focus of scientific interest so that measurement
techniques, such as TDDS, have become frequently employed. The TDDS relates
these steps to several single charging or discharging events [12, 13, 18] of defects
and therefore allows for the analysis of individual oxide defects and their trapping
behavior. As such, the findings from TDDS [14–17] are used as criteria for the
development of an atomistic BTI model and are listed in the following:

(i) The plot in Fig. 16.1 reveals that the defects exhibit a strong, nearly exponential
stress voltage dependence of τc. Empirically, this dependence can be described
by exp(−c1Fox + c2F2

ox). However, it differs from defect to defect, implying
that it is related to certain defect properties.
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Fig. 16.1 Left: The capture time constants τc as a function of Vg for two defects at different
temperatures extracted from a single device. Open and closed symbols mark measurements
carried out at 125◦C and 175◦C, respectively. The τc curves show a strong field acceleration and
temperature activation. However, the observed field acceleration does not follow the 1/Id ≈ 1/p
dependence (dot-dashed line) as predicted by the conventional SRH model. Right: The emission
time constants τe for single defects gathered from the TDDS for varying recovery gate voltages.
The two distinct field dependences (upper and lower panel) suggest the existence of two types of
defects present in the oxide. The defect #1 shows different field behaviors depending on whether
the device is operated in the linear or the saturation regime during the measurement (not shown
here). This suggests that the electrostatics within the device are responsible for the two distinct
field dependences. It is noteworthy that the drop in τe goes hand in hand with the decrease in the
interfacial hole concentration p (dot-dashed line)

(ii) The time constant plots show a marked temperature dependence, which be-
comes obvious by the downward shift of the τc curves at higher temperatures.
The activation energies extracted from Arrhenius plots are about 0.6eV.

(iii) One type of the oxide defects (“fixed oxide hole traps”) has a τe that remains
unaffected by changes in Vg [40, 41].

(iv) The other type (“switching oxide hole traps”) shows a drop in τe toward lower
Vg [40–42].

(v) The τe of both types shows a temperature activation with a large spread
(0.6–1.4 eV).

Furthermore, it was found that several TDDS recovery traces display random
telegraph noise (RTN) when studying a device at certain bias conditions [14].
After a while, this RTN signal vanishes and does not reoccur during the remaining
measurement time. The termination of the noise signal is ascribed to hole traps
which change to their neutral charge state and remain therein. This kind of noise
is termed temporary RTN [14] (tRTN) since it occurs only for a limited amount of
time. A similar phenomenon called anomalous RTN (aRTN) was discovered earlier
by Kirton and Uren [27]. Therein, electron traps were observed, which repeatedly
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produce noise for random time intervals. During the interruptions of this RTN
signal, the defects dwell in their negative charge state generating no RTN noise
signal. The behavior of these traps was interpreted by the existence of a metastable
defect state. Unfortunately, there exist only a quite limited amount of noise data so
that no reliable statistics can be generated. Nevertheless, it is viewed as a stringent
requirement that the sought BTI model can also capture these noise phenomena in
principle.

16.3 Previous Modeling Attempts

Early BTI modeling attempts relied on the classical reaction–diffusion model [1,
2, 5–7] or variants thereof [3, 5, 8] accounting for dispersive diffusion [3, 8] and
three-dimensional effects [10,11]. Even though these models are still popular, it has
been demonstrated that the underlying concept cannot describe the basic feature of
BTI (see [9]). As an alternative explanation for BTI, charge trapping based on elastic
electron tunneling was previously suggested. However, this process exhibits a far too
weak temperature dependence as compared to measurements. The next evolution of
trapping models rested upon SRH theory combined with elastic tunneling, thereby
mimicking an inelastic and thus temperature-activated trapping process. To its
disadvantage, the underlying trapping process is not specified within the general
SRH framework and can therefore not be linked to simulations based on well-
founded atomistic theories. A prototype version of this SRH model was proposed
by McWhorter [26], who extended the SRH equations by the factor exp(xt/x0)
in order to account for the effect of electron tunneling. Since this model suffers
from a weak temperature dependence of τc and small time constants, Kirton and
Uren [27] incorporated a term with field-independent energy barriers ΔEb. This
“ad hoc” introduction of barriers has been motivated by the theory of non-radiative
multi-phonon transitions (NMP) process [38]. However, Kirton and Uren did not
provide a detailed theoretical derivation based on NMP theory. Nevertheless, their
work must be regarded as a substantial improvement in the interpretation of charge
trapping at semiconductor–oxide interfaces. In this variant, the capture and emission
time constants read

τc = τ0 exp

(
xt

x0

)
exp(β ΔEb)

Nv

p

{
1, Et > Ev

exp(−β ΔEt) exp(β q0Foxxt),Et < Ev
(16.1)

τe = τ0 exp

(
xt

x0

)
exp(β ΔEb)

{
exp(β ΔEt) exp(−β q0Foxxt), Et > Ev

1, Et < Ev
(16.2)
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Fig. 16.2 Two fits of the Kirton model to the TDDS data. The symbols stand for the measurement
data and the lines represent the simulated time constants. Left: When the Kirton model is optimized
to the hole capture times τc, reasonable fits can be achieved but τe is predicted three orders of
magnitudes too low. Right: Alternatively, a good agreement can be obtained for the hole emission
times τe but with a strong mismatch of the capture times τc for Et > Ev. From this it is concluded
that the Kirton model is not capable of fitting τc and τe at the same time

where the trap level Et is defined as

Et(xt) = Ev +Et,0 −Ev,0︸ ︷︷ ︸
=ΔEt

−q0xtFox (16.3)

with Et,0 and Ev,0 denoting the trap level and the valence band edge in the absence
of an electric field.

The behavior of the model with respect to the temperature and the oxide field
is illustrated in the left plot of Fig. 16.2 (left). When the trap level lies below the
valence band edge (Et < Ev), τc shows an exponential field dependence. At low
gate biases, the breakdown of the inversion layer gives rise to a drop in the hole
concentration and in consequence to a strong increase in τc. Comparing the model to
the experimental TDDS data, this exponential behavior allows for reasonably good,
approximative fits of τc but is still incompatible with the observed curvature in τc

(see the left fit in Fig. 16.2). τe is experimentally observed to be field insensitive,
which goes hand in hand with (16.2) based on Boltzmann statistics. However, when
accurate Fermi–Dirac statistics (as implemented in device simulators) are employed,
the emission times exhibit a weak field dependence that agrees reasonably well with
the behavior of fixed oxide hole traps (constant emission times) but is incompatible
with the behavior of switching oxide hole traps (a drop at weak oxide fields).
Alternatively, when τe is optimized in the Kirton model (see right fit in Fig. 16.2), a
reasonable fit can be achieved but at the same time a strong mismatch arises for τc in
the range Et > Ev. Furthermore, Fig. 16.2 reveals that the introduction of ΔEb yields
the required temperature activation and larger time constants in agreement with the
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points (ii) and (v) of the TDDS findings. Even though the model can reproduce
several features seen in the TDDS data separately—except for the curvature in τc—
no reasonable agreement with the whole set of measurement data can be achieved.

16.4 NMP Transitions Between Single States

Contrary to the previously discussed charge trapping models, the non-radiative
multiphonon (NMP) theory [37–39] relies on a solid physical foundation. Its
understanding requires the knowledge of fundamental microscopic theories, which
are briefly discussed in the following. In the Huang–Born approximation, a certain
atomic configuration is split into a system of electrons and nuclei, which are
described by two separated Schrödinger equations.

{
T̂e + V̂ee(r)+ V̂en(r;R)+ V̂nn(R)

}
ϕi(r;R) =Vi(R)ϕi(r;R) (16.4){

T̂n +Vi(R)
}

ηiα(R) = Eiαηiα (R) (16.5)

These equations contain Coulomb contributions from the electron–electron (V̂ee),
electron–nucleus (V̂en), and nucleus–nucleus (V̂nn) interactions as well as the kinetic
energies of the electrons (T̂e) and the nuclei (T̂n). The electronic Hamiltonian in
(16.4) depends on the electronic (r) and the nuclear (R) degrees of freedom, where
the latter only enter parametrically. The solution Vi(R) of the electronic Schrödinger
equation (16.4) corresponds to the energy of a certain atomic configuration and acts
as a potential for the nuclei in the Schrödinger equation (16.5). Therefore, Vi(R) is
usually referred to as the adiabatic potential energy. In the Huang–Born approxima-
tion, the nuclei of the atoms are treated as a system of quantum mechanical particles
with quantized states ηiα and discrete energies Eiα . Also the wavefunction of the
composite electron–nucleus system is split into an electronic ϕi(r;R) and nuclear
ηiα(R) part, denoted the electronic and the vibrational wavefunction, respectively.

In the case of charge trapping in BTI, one deals with a process that is frequently
termed “charge transfer reaction” in the theoretical literature. Such a kind of
process must be described by a system consisting of all atoms involved. Since
the trapped charge carrier is exchanged between the defect and the substrate, the
system includes the atoms surrounding the BTI defect as well as the atoms in
the substrate. Altogether, these atoms span a 3N-dimensional space with N being
the number of considered atoms. The adiabatic potential energy surface in this
configurational space is usually visualized in a configuration coordinate diagram
(see Fig. 16.3). Therein, the atomic positions are reduced to a one-dimensional
quantity called configuration coordinate, which allows to describe the correlated
motion of atoms, such as lattice relaxation. In these plots, the adiabatic potential
energy surfaces assume an almost parabolic shape for small atomic displacements
and are thus usually approximated by harmonic quantum oscillators in solid state
theory.
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Fig. 16.3 Adiabatic potentials involved in a charge transfer reaction. Each of the two parabola
corresponds to one charge state of the defect where the left (Vi) one represents the initial and
the right (Vj ) one the final charge state. Their corresponding wavefunctions and eigenenergies are
depicted as solid and dashed lines, respectively. An NMP transition only occurs when the initial and
the final energies coincide as it is the case for Ei3 and E j1. Then the overlap of their corresponding
vibrational wavefunctions enters the calculation of the lineshape function fij and consequently
determines the NMP transition probability

During a charge trapping process, the defect changes from the charge state i to
j, where each of the charge states is represented by its own adiabatic potential in
the configuration coordinate diagram (see Fig. 16.3). The NMP transition rate kij is
then derived from first-order time-dependent perturbation theory using the Franck–
Condon approximation [37, 39, 43, 44].

kij = Aij fij (16.6)

Aij =
2π
h̄
|〈ϕi|V ′|ϕ j〉|2 (16.7)

fij = ave
α ∑

β
|〈ηiα |ηjβ 〉|2 (16.8)

Here, “ave” stands for the thermal average over all initial states “α” and the sum
runs over the final states “β ”. Aij is the electronic matrix element with the adiabatic
operator as a perturbation V ′ and is associated with a simple electronic transition.
The Franck–Condon factor |〈ηiα |ηjβ 〉|2 in (16.8) only gives a contribution when
the initial and the final state have the same energy. If this is the case, this factor
is calculated as the overlap integral of the two vibrational wavefunctions “iα”
and “ jβ ” and corresponds to the respective transition probability (cf. Fig. 16.3).
Calculating the thermal average over the initial states α and summing over the final



416 W. Goes et al.

V(q)
V0(q) V+(q)

V0

V+
V0/+

Vs

q0 q+

Δq

q

qs

IP

Fig. 16.4 The configuration coordinate diagram for an NMP transition. The adiabatic potentials
for the initial and the final states are denoted as V0(q) and V+(q), respectively. They are defined
by their corresponding minima V0 and V+ located at their equilibrium configurations q0 and q+,
respectively. To simplify the mathematical calculations, the axis origin is shifted into the energy
minimum V0

states β yield the lineshape function fij that will be found to govern the gate bias
and temperature dependence of the NMP transition rate. In solids the eigenspectrum
Eiα is usually densely spaced so that there are numerous possible transitions from
the initial charge i to the final charge state j. This lineshape function has its largest
contributions from those energies that lie close to the intersection point (IP) of the
adiabatic potentials. Around this point, the lineshape function is assumed to have a
Dirac peak in the classical limit [45]. This assumption allows for simple analytical
expressions that can be conveniently employed for device simulation.

In the following, the NMP transition rates will be derived for a defect which
changes between its neutral (0) and its positive (+) charge state upon hole trapping
or detrapping. The corresponding initial (i = 0) and final ( j =+) potential energy
surface can be expressed as

V0(q) = c0(q− q0)
2 +V0 = c0Δq2 +V0 (16.9)

V+(q) = c+(q− q+)
2 +V+= c+(Δq− qs)

2 +V0 +Vs (16.10)

using the quantities defined in Fig. 16.4 and the shorthands Δq = q− q0, qs = q+−
q0, and Vs =V+−V0. c0 and c+denote the curvature of the adiabatic potentials for the
neutral and the positively charged defect, respectively. Without loss of generality, V0

can be chosen to be zero and will thus be neglected from now on. Note that the two
parabolas are characterized by different curvatures (c0 �= c+), implying that there
exist two intersection points given by

Δq1,2 =
c+qs ±

√
c0c+qs

2 +Vs(c0 − c+)
c+− c0

. (16.11)
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In the literature, this case is usually referred to as quadratic electron–phonon
coupling. For equal curvatures (c0 = c+= c), linear electron–phonon coupling is
obtained, which yields only one intersection point located at

Δq1 =
Vs/c+ q2

s

2qs
. (16.12)

The classical lineshape function for hole capture is obtained from

f0/+(c0,c+,qs,V0,V+) = Z−1
∫
q

e−βV0(q
′)δ
(
V0(q

′)−V+(q
′)
)

dq′ (16.13)

with the partition function

Z =

∫
q

e−βV0(q
′)dq′ . (16.14)

In accordance with the classical limit, the Dirac delta function in (16.13) ensures
that the integral is only evaluated at the intersection point of the two parabolas.
Using the integration rule for Dirac delta functions, this integral evaluates to

∫
Δq

e−βV0(Δq′)δ
(
V0(Δq′)−V+(Δq′)

)
d(Δq′)

=
e−β c0Δq1

2

|2c0Δq1 − 2c+(Δq1 − qs)| +
e−β c0Δq2

2

|2c0Δq2 − 2c+(Δq2 − qs)| (16.15)

and the partition function simplifies to

+∞∫
−∞

e−β c0Δq′2d(Δq′) =
√

π
c0β

. (16.16)

Inserting (16.15) and (16.16) into the definition of the lineshape function (16.13)
leads to [45]

f0/+(c0,c+,qs,V0,V+) = f0/+(c0,c+,qs,Vs)

=
1
2

√
c0β
π

(
e−β c0Δq1

2

|c0Δq1 − c+(Δq1 − qs)| +
e−β c0Δq2

2

|c0Δq2 − c+(Δq2 − qs)|
)
. (16.17)

Keep in mind that the lineshape function may also vanish ( f0/+ = 0) when the two
parabolas do not share a common intersection point. For linear electron–phonon
coupling (c = c0 = c+), the above expression reduces to

f0/+(c,qs,V0,V+) = f0/+(c,qs,Vs) =
1
2

√
cβ
π

e−β cΔq1
2

c|qs| (16.18)
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with

Δq1 =
Vs/c+ qs

2

2qs
. (16.19)

It is emphasized here that the lineshape function is most strongly affected by the
exponential term, where the expression c0Δq1,2

2 can be identified with the energy
barrier from the minimum V0 to the saddle point IP (cf. Fig. 16.4). This NMP
transition barrier can be expressed as

V0/+ =V0(Δq1,2)

=
c0q2

s

( c0
c+
− 1)2

⎛
⎝1±

√
c0

c+
+

Vs(
c0
c+
− 1)

c+q2
s

⎞
⎠

2

, (16.20)

or

V0/+ =

(
Vs + cq2

s

2
√

cqs

)2

(16.21)

for linear electron–phonon coupling. For hole emission the roles of the initial and the
final states are reversed. The corresponding lineshape function f+/0 and the NMP
barrier V+/0 are of the same form as in (16.17) and (16.20), respectively, but have
their subscripts “0” and “+” exchanged.

As will be demonstrated in Sect. 16.7, the NMP transition barrier varies strongly
with the temperature and the gate bias and therefore governs the trapping behavior of
BTI defects. In the following calculations, the above analytical expressions for the
lineshape function are preferred to the Franck–Condon overlap factors since they
can be easily implemented in simple device simulators at computational feasible
costs.

Next, the NMP theory has to be specified for the situation of charge capture and
emission in MOSFETs. Therefore, the energy minima V0 and V+ at the potential
energy surfaces must be linked to the energy of the transferred electron in the band
energy diagram before and after an NMP transition. In a simplified picture, it can be
envisioned that only the energy of the transferred electron changes while the energy
of the other electrons (Ṽ0) remains unaffected. In the following, we discuss a hole
capture1 process, during which an electron is emitted from the energy level Et of
a trap into an energy level E in the substrate valance band state. Then the energy
minima V0 and V+ can be expressed as

V0 = Ṽ0 +Et (16.22)

V+= Ṽ0 +E (16.23)

1It is stressed that the term “hole capture” refers to either a capture of hole from the valence band
into a trap or an emission of an electron from the trap into the valence band. Keep in mind that
both of these processes are equivalent from a physical point of view.
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with Ṽ0 being the energy of the system minus the energy of the transferred electron.
The NMP transition rate is then written as

k0/+ = A0/+(E) f0/+(c0,c+,qs,E −Et). (16.24)

The unknown auxiliary quantity Ṽ0 cancels out in the lineshape function, which only
depends on the energy difference

Vs =V+−V0 = E −Et . (16.25)

The trap wavefunction in the electronic matrix element A0/+(E) is strongly localized
around the defect so that the integrand in (16.7) has its largest contribution at the
defect site and A0/+(E,xt) can be approximated by

A0/+(E,xt) = A0|〈xt|ϕ〉|2 = A0|ϕ(xt)|2

= A1λ (E,xt) . (16.26)

Here, A0 is a not further specified prefactor and ϕ(E) stands for the channel
wavefunction with an energy E . The electronic matrix element is governed by the
exponential decay of the channel wavefunction and can be approximated using a
WKB factor λ (E,xt) for the implementation in simple device simulators.

16.5 NMP Transition with a Whole Band of States

So far, the theoretical foundation for NMP transitions between two certain states
has been discussed. In BTI, however, the oxide defects interact with the whole
conduction or valence band of the substrate so that the current formulation of the
NMP processes must be extended to account for transitions with a multitude of band
states at different energies E . For this reason, one has to introduce a summation over
all possible valence band states n in (16.24). Since the valence band states form a
continuous spectrum, this summation can also be transformed to an integral over a
density of states [46].

∑
n
→ Ω

Ev∫
−∞

Dp(E)dE (16.27)

Using the above transformation, the NMP hole capture rate can be expressed as

kpc
0/+ = Ω

Ev∫
−∞

Dp(E)A0/+(E,xt) f0/+(c0,c+,qs,E −Et)dE . (16.28)
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The density of states Dp(E) can be calculated using a simple expression based on
the parabolic band approximation

Dp(E) = ∑
ν

gνmpν

h̄3π2

√
2mpν(E −Ec) , (16.29)

where gν is the degeneracy of the νth valence band valley and mp its corresponding
effective hole mass. Alternatively, the density of states may originate from a
more sophisticated Schrödinger–Poisson solver that allows for quantized states Eνk

arising from the one-dimensional confinement of the charge carriers in the inversion
layer.

Dp(E) = ∑
ν

gνmpν

h̄2π ∑
k

Θ(E −Eνk) (16.30)

Next, the hole occupancy of the band states ( fp for E) and electron occupancy of
the trap state ( ft for Et) have to be taken into account. Then, the resulting NMP
transition rates read

kpc
0/+ = Ω

Ev∫
−∞

Dp(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E −Et) ftdE . (16.31)

For the case of electron emission,2 the electron is emitted into the substrate
conduction band and thus Dp(E) must be replaced by Dn(E).

kne
0/+ = Ω

+∞∫
Ec

Dn(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E −Et) ftdE (16.32)

The configuration coordinate diagrams of both processes are combined in Fig. 16.5,
which now covers all electron or hole transitions from the defect into the substrate.
Interestingly, the final states span an energy spectrum V+ that can be identified with
band energy diagram including the conduction as well as the valence band. Each of
these states is associated with a distinct position of its adiabatic potential V+(q) and
thus has a different NMP barrier height along with a different transition probability
according to the lineshape function in the transition rates (16.31) and (16.32) (cf.
Fig. 16.6). For hole capture (case A), the defect has to undergo an NMP transition
from the parabola V0(q) to the parabola V+(q). This transition occurs the fastest
when V+(q) cuts the minimum of V0(q). Then the corresponding transition barrier
V0/+ is negligible and the lineshape function f0/+(E) reaches its maximum value.
When hole emission is considered (case B), the roles of the initial and the final states

2Note that electron emission corresponds to hole capture into the substrate conduction band.
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Fig. 16.5 A combined configuration coordinate diagram for hole capture and electron emission.
According to the relation V+= Ṽ0 +E, an electron located in an energetically higher band state E is
represented by higher adiabatic potential V+(q). As a consequence, the upper and the lower family
of curves constitute the set of adiabatic potentials V+ associated with the conduction and valence
band, respectively. It is noted that this configuration coordinate diagram remains unchanged for
hole emission and electron capture and can therefore be used for both processes. As such, this
diagram covers all possible NMP transitions of the considered defect with the substrate

are reversed so that the NMP transition proceeds from the adiabatic potential V+(q)
to V0(q). Then the corresponding lineshape function f+/0(E) peaks when V+(q) is
cut in its minimum. Note that the maximal transition rates for hole capture and
emission are associated with different energy levels E , which are frequently referred
to as the switching trap levels3 in literature [47–54]. However, they should not be
confused with the thermodynamic trap levels Et that enter SRH-like formulations
of the charge transfer process used here. The thermodynamic trap level (case C)
is associated with the energy level E , at which the hole capture and emission are
balanced and the two lineshape functions f0/+(E) and f+/0(E) assume the same
value (cf. Fig. 16.6). In the configuration coordinate diagram, this is the case for
the situation when the minima of adiabatic potentials V0(q) and V+(q) are at the
same height. Note that special importance is attached to this energy level with
respect to the equilibrium occupancy of the defect. If the Fermi level is located
above the thermodynamic level, the dominating trapping process is hole emission
and the defect becomes neutral. However, when the Fermi level falls below the
thermodynamic level, the hole capture rate exceeds the hole emission rate and the
defect becomes occupied by a hole.

3Note that the same term “switching trap level” is also used for the thermodynamic trap level for a
switching oxide hole trap introduced in Fig. 16.1.
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Fig. 16.6 Configuration coordinate diagram (left) for a continuum of adiabatic potentials V+(q),
the corresponding lineshape functions (middle), and sketches of the cases A, B, and C (right).
For hole capture, the lineshape function f0/+(E) reaches its maximal value when V+(q) intersects
the minimum of V0(q) and thus the NMP transition has a vanishing barrier V0/+ (case A). When
changing from the configuration coordinate diagram (left) to the lineshape function (middle), the
adiabatic potentials are converted to electron energies according to (16.23). For the hole emission,
the analogous considerations apply as for hole capture. Now the intersection point must lie in the
minimum of V+(q), giving rise to the peak of the lineshape function f+/0(E) (case B). If the minima
of both parabolas coincide, the barriers for both directions have the same heights, which leads to
equaling NMP transition rates (case C)

In semiconductor theory—especially when NBTI in pMOS transistors is
considered—the trapping dynamics is preferentially described in the “hole picture.”
In this case the hole is emitted from a continuum of states where its energy in the
initial state is undefined. By contrast, the hole energy is exactly specified by the trap
level Et in the final state (cf. Fig. 16.7). As a consequence, the trap level Et and the
band states E change their roles. Furthermore, the energy axis of the charge carriers
is inverted so that the energy spectrum of V+ in Fig. 16.5 is flipped in the hole picture
in Fig. 16.7.

V0 = Ṽ0 −E (16.33)

V+= Ṽ0 −Et (16.34)

The energy difference of the adiabatic potentials is then given by

Vs =V+−V0 = E −Et , (16.35)

implying that the same activation energy is required as in the electron picture.
Following the same derivation as for the electron picture, the NMP transition rate
for hole capture reads

kpc
0/+ = Ω

Ev∫
−∞

Dp(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E −Et) ftdE . (16.36)
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Furthermore, the energy of
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It is remarked that the electronic matrix elements A0/+(E,xt) in the hole picture
and in the electron picture equal since they are determined by the same channel
wavefunction. Using the approximation (16.26), the whole set of NMP trapping
rates can be written as

knc = kn
0

+∞∫
Ec

Dn(E) fn(E,Ef)λ (E,xt) f+/0(c+,c0,qs,Et −E)dE (16.37)

kne = kn
0

+∞∫
Ec

Dn(E) fp(E,Ef)λ (E,xt) f0/+(c0,c+,qs,E −Et)dE (16.38)

kpc = kp
0

Ev∫
−∞

Dp(E) fp(E,Ef)λ (E,xt) f0/+(c0,c+,qs,E −Et)dE (16.39)

kpe = kp
0

Ev∫
−∞

Dp(E) fn(E,Ef)λ (E,xt) f+/0(c+,c0,qs,Et −E)dE , (16.40)

where the quantities kn/p
0 are used as shorthands for the product of the prefactors

Ω and A1. “n” and “p” refer to electrons or holes while “c” and “e” stand for
capture and emission processes, respectively. It has to be noted that the integrands
of the above rate equations are usually sharply peaked due to the strong exponential
dependences of the occupancies fp(E) and fn(E) as well as the lineshape functions
f0/+(E) and f+/0(E). Hence, these integrals are solved numerically using adaptive
integration schemes in order to keep the computation costs low and to ensure a
sufficient accuracy of the computed rates.

The above set of rate equations can also be modified to the case where the
defect exchanges charge carriers with the poly-gate by replacing the band edges
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and the Fermi level with their respective values at the poly-gate. They can also
be adapted for an electron trap, whose charge state switches between neutral and
negative. As such, these rate equations form the basis for charge trapping involving
the substrate as well as the gate and could consequently also cover trap-assisted
tunneling occurring via NMP transitions.

16.6 Huang–Rhys Parameter

The employed NMP theory was initially derived for the fluorescence and absorption
spectra of gases and solids, where the Huang–Rhys factor S was introduced to
obtain compact analytical solutions [37]. This quantity corresponds to the number of
absorbed or emitted phonons during an optical transition and thereby characterizes
the shape of two adiabatic potentials V0(q) and V+(q). For quadratic electron–
phonon coupling, the adiabatic potentials are represented by two parabolas that
are shifted against each other and have different curvatures. To define them, we
introduce the quantities S and R (see Fig. 16.8), which are defined as follows:

Sh̄ω = c0q2
s (16.41)

R2 =
c0

c+
. (16.42)

Using the above substitutions, the NMP transition barrier in (16.20) can be
rewritten as

V0/+(Vs) =
Sh̄ω

(R2 − 1)2

(
1±R

√
Sh̄ω +Vs(R2 − 1)

Sh̄ω

)2

. (16.43)

The prefactor ξ0/+(Δq) of the exponential term in (16.17) is of the form

ξ0/+(Δq1,2) =

√
β c0

4π
1

|c0Δq− c+(Δq− qs)| (16.44)

and can be expressed as

ξ0/+(Vs) =

√
β
4π

R√
Sh̄ω +Vs(R2 − 1)

. (16.45)

For linear electron–phonon coupling, one obtains the frequently applied result

V0/+(Vs) =
(Vs + Sh̄ω)2

4Sh̄ω
(16.46)



16 Advanced Modeling of Oxide Defects 425

c0 c+S0h̄ω0S+h̄ω+

V(q)
V0(q) V+(q)

V0

V+Vs

q0 q+

Δq

q

qs

cj

V(q)

V(q)

V0(q)

V0(q) V+(q)

V+(q)

V0

V0

V+

V+

Vs

Vs

q0

q0

q+

q+ q

q

VIP

VIP

Strong Electron-Phonon Coupling

Weak Electron-Phonon Coupling

Fig. 16.8 Left: The configuration coordinate diagram including the Huang–Rhys factors S0 and
S+. The adiabatic potentials are often defined as harmonic oscillators of the form V0(q) =
1/2 Mω2

0 (q− q0)
2 +V0 and V+(q)= 1/2 Mω2

+(q− q+)2 +V+, where ω0 and ω+ are their respective
oscillator frequencies. For an optical transition, the energy delivered by the photon must equal the
energy difference V0(q+)−V+, which is indicated by the upwards arrow and can be expressed as
an integral multiple S0 of h̄ω0. In analogy, S+h̄ω+ equals the energy difference V+(q0)−V0. In
the remainder of this chapter, S0h̄ω0 and S+h̄ω+ will be replaced by Sh̄ω and R2Sh̄ω , respectively.
Right: Strong (top) and weak (bottom) electron–phonon coupling. In the first case the parabolas are
positioned such that the intersection point is situated in between their minima while in the second
case one parabola lies inside the other and the intersection point is located beside the two minima

for the NMP transition barrier with the prefactor

ξ0/+(Δq) =

√
β c0

4π
1

|c0Δq− c+(Δq− qs)| =
√

β
4π

1√
Sh̄ω

. (16.47)

16.6.1 Analytical Expressions for the NMP Rates

A second order expansion of the expression (16.43) delivers

V0/+(Vs)≈ Sh̄ω
(1+R)2 +

R
1+R

Vs +
R

4Sh̄ω
V 2

s . (16.48)

If the curvatures c0 and c+ differ, the quantity R deviates from unity. Since R also
enters the above expression for the barrier height, the ratio of the curvatures has a
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Fig. 16.9 The hole capture (V0/+) and emission (V+/0) barrier for an NMP transition. The barrier
heights are calculated as the energy differences between the corresponding minimum and the
intersection point in the hole picture, which yields V0/+ =VIP −V0 =VIP − Ṽ0 +E and ΔV+/0 =

VIP −V+=VIP −Ṽ0 +Et for the capture and the emission barrier, respectively

strong impact on the NMP transition rates (cf. Fig. 16.9). As in the previous section,
Vs can be expressed as

Vs =V+−V0 = E −Et = E −Ev︸ ︷︷ ︸
=−ΔE

+Ev −Et (16.49)

so that (16.48) can be rewritten as

V0/+(ΔE)≈ Sh̄ω
(1+R)2 +

R
1+R

(
Ev −Et−ΔE

)
+

R
4Sh̄ω

(
Ev −Et −ΔE

)2
. (16.50)

In the case of strong electron–phonon coupling (see Fig. 16.8) Sh̄ω 
 |Ev −Et −
ΔE| holds and the third term of (16.50) can be neglected. In order to evaluate the
integral in the hole capture rate (16.39), the following assumptions must be made:

• Assuming the parabolic-band approximation, the valence band density of states
(16.29) is given by Dp(E) = Dp,0

√
ΔE with Dp,0 being an energy-independent

prefactor.
• The occupancy fp(E,Ef) follows Boltzmann statistics.
• The WKB factor is approximated by the factor exp(−xt/x0) with the tunneling

length x0.
• The lineshape function is dominated by the exponential barrier term so that the

prefactor ξ0/+ can be neglected to first order.

With the above simplifications, the hole capture rate (16.39) evaluates to

kpc = kp
0

Ev∫
−∞

Dp(E) fp(E,Ef)λ (E,xt)exp(−βV0/+(ΔE))dE

= kp
0(1+R)3/2pexp(−xt/x0)exp

(
−β
(

Sh̄ω
(1+R)2 −

R
1+R

ΔEt

))
, (16.51)
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where the hole density p is given by the expression

p = Dp,0 exp
(
β (Ev −Ef)

)
β−3/2 Γ (3/2) (16.52)

with Γ (x) being the Gamma function. Motivated by the similarity to the rate
equations in the standard SRH theory, the prefactor kp

0 has been identified with
the hole thermal velocity vth,p times a hole capture cross-section σp. The lengthy
expression in the exponent of the last term of (16.51) can be related to the hole
capture barrier εpc, which is evaluated for E=Ev.

Sh̄ω
(1+R)2 +

R
1+R

Ev −Et =V0/+

∣∣∣
ΔE=0

= εpc (16.53)

This is actually surprising since the NMP transition barrier V0/+(ΔE) is a function
of the hole energy E per definition. However, for strong electron–phonon coupling,
the rate integral (16.39) delivers its largest contribution close to the valence band
edge (ΔE = 0) so that the barrier V0/+(E) can be approximated by V0/+(Ev). As a
consequence, the hole capture rate simplifies to

kpc = vth,pσp(1+R)3/2exp(−xt/x0)pexp(−β εpc) . (16.54)

The hole emission rate is derived from (16.40) using the two relations: First, the
electron occupation function can be replaced by

fn(E,Ef) = fp(E,Ef)exp
(−β (E −Ef)

)
. (16.55)

Second, the ratio of the exponential barrier terms (see Fig. 16.9) gives

exp(−βV+/0)/exp(−βV0/+) = exp(−β (Et −E)) (16.56)

for each band state E . Inserting both relations in (16.40) and using the same
assumptions as before yields the hole emission rate

kpe = vth,pσp

Ev∫
+∞

Dp(E) fn(E,Ef)λ (E,xt)exp(−βV0/+)dE

= vth,pσp(1+R)3/2exp(−xt/x0)pexp(−β εpc)exp(−β (Et −Ef)) . (16.57)

Interestingly, (16.54) and (16.57) closely resemble the rates obtained from the stan-
dard SRH theory except from the exponential barrier terms and even have the same
shape as those of Kirton and Uren. However, the NMP transition barriers derived
above are calculated from the intersection point of two adiabatic potentials—in this
case parabolas—and thus reflect their gate bias dependence governed by the energy
separation between the trap level and the valence band edge according to (16.53).
Even though they rely on a series of approximations, they contain the main physics
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involved in charge trapping. As such, they promote the understanding of the gate
bias and temperature tendencies in charge trapping and allow compact analytical
expressions for the assumption of strong electron–phonon coupling.

16.7 State Diagram of the Multi-State Model

The NMP transition rates derived in the previous sections describe charge transfer
reactions, i.e., the pure charge trapping or detrapping processes. However, the
TDDS studies revealed that some defects are found to disappear on the spectral
maps. This observation can only be reasoned by the existence of metastable states,
in which the oxide defects dwell for a certain amount of time. Furthermore, the
TDDS also reveals gate bias-independent transitions that cannot be related to charge
transfer reactions. These transitions are associated with an activation over thermal
barriers, leaving the charge state of the defect unchanged. Both observations suggest
a bistable defect, which has an additional metastable configuration (marked by
primes) that appears in two charge states (cf. Fig. 16.10). This means that the defect
features two neutral (1, 1′) and two positive (2, 2′) charge states (cf. Fig. 16.10),
where thermal transitions allow for transitions between same charge states (1 ↔ 1′
and 2 ↔ 2′) and NMP transitions between opposite charge states (1 ↔ 2′ and
2 ↔ 1′). The bistable defect described above is the heart of the “multi-state model”
and will be discussed in detail in the following.
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Fig. 16.10 State diagram of the multi-state model. The defect is present in a stable neutral (1) and
a stable positive (2) charge state, where each of them has a second metastable state marked by a
prime (1′ , 2′). The NMP transitions 1 ↔ 2′ and 2 ↔ 1′ occur between different charge states while
the thermal transitions 1 ↔ 1′ and 2 ↔ 2′ between same charge states. Note that the transitions
between the stable states are of main interest since they correspond to the experimentally measured
capture and emission times in BTI. However, they involve intermediate states, which are metastable
and important for the gate-bias and temperature dependence of the overall transition. The stick-
and-ball models correspond to the configurations of a possible defect candidate, i.e., the oxygen
vacancy, which is only shown for illustration purpose
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Fig. 16.11 The state diagram for a two-step process from the state α to γ . The first passage time
of such a process is calculated by (16.59). Consider that the transition rate kγβ , indicated by the
dashed arrow, does not enter this equation

Such defects [55] show complex dynamics between those four states and must
be correctly treated using homogeneous continuous-time Markov chain theory [56].
This theory rests upon the assumption that the future transitions between the states
do not depend on the past of the investigated system. This assumption is justified as
long as the defect relaxes after each transition by interacting with its environment,
thereby losing the memory of its past. In fact, this is the case for both pure thermal
and NMP transitions disregarding special theories, such as recombination-enhanced
defect reaction. The time evolution of such a defect system is described by a first-
order differential equation termed the Master equation.

∂tπi(t) = ∑
j �=i

π j(t)kji −∑
i�= j

πi(t)kij (16.58)

Here, πi(t) is the time-dependent occupation probability that the defect is in state i
and kij denotes the transition rate from state i to state j. When going from a single
to a multitude of defects, the occupation probabilities must be averaged and become
occupancies. The resulting rate equations, which are of the same form as the above
Master equation, are usually solved in device simulators in order to predict the
degradation for large area devices. Those kind of simulations can also account for
the fact that the defect properties vary from trap to trap. The wide distributions of
the defect properties arise from the amorphous defect environments but also come
from the random dopant fluctuations, which have increasingly attracted scientific
interest during the last several years [18, 57–62]. (For a detailed discussion of this
topic, the interested reader is referred to [63].) For a comparison to the TDDS
data, one is primarily interested in the transition times between stable states.
The metastable states will only be occupied temporarily and are not observable
in experiments. However, they gain their relevance for the overall gate bias and
temperature dependence of two-step processes. The transitions between stable states
are obtained from first-passage times. For a two-step process, the transition time
from a state α to a state γ over a state β (cf. Fig. 16.11) reads

ταγ =
kαβ + kβ γ + kβ α

kαβ kβ γ
=

1
kαβ

+
1

kβ γ
+

1
kβ γ

kβ α

kαβ
. (16.59)
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Fig. 16.12 Simplified state diagrams of hole capture and emission over the metastable states 1′
and 2′. The superscripts of τ denote the intermediate state, which has been passed through during
a complete capture or emission event. Note that there exist two competing pathways for a hole
capture event, namely one over the intermediate state 1′ and one over 2′. Of course, the same holds
true for a hole emission event

The multi-state model with its four states allows for four distinct transition
pathways (see Fig. 16.12), whose first-passage times are listed below:

τ2′
c =

1
k12′

+
1

k2′2
+

1
k2′2

k2′1
k12′

(16.60)

τ1′
c =

1
k11′

+
1

k1′2
+

1
k1′2

k1′1
k11′

(16.61)

τ2′
e =

1
k22′

+
1

k2′1
+

1
k2′1

k2′2
k22′

(16.62)

τ1′
e =

1
k21′

+
1

k1′1
+

1
k1′1

k1′2
k21′

(16.63)

The transition barriers for the partial rates can be extracted from the configuration
coordinate diagram of the bistable defect (see Fig. 16.13). The bistability of
the defect is reflected in the double-well shape of the adiabatic potentials. The
transitions T1↔1′ and T2↔2′ are thermally activated and do not vary with the applied
gate bias. According to transition state theory, they can be expressed as

k11′ = ν0 exp(−β ε11′) (16.64)

k1′1 = ν0 exp(−β ε1′1) (16.65)

k22′ = ν0 exp(−β ε22′) (16.66)

k2′2 = ν0 exp(−β ε2′2) (16.67)

where the barriers εij are defined in Fig. 16.13 and ν0 is the attempt frequency, which
is typically of the order 1013 s−1. The NMP transition rates are evaluated using
(16.37)–(16.40), which contain lineshape functions and thus depend on Vs. The
energy minima in the configuration coordinate diagram of Fig. 16.13 are given by

V1 = Ṽ0 −E (16.68)

V2′ = Ṽ0 + εT2′ −Et (16.69)



16 Advanced Modeling of Oxide Defects 431

q [a.u.]

-1

-0.5

0

0.5

1

1.5

2

2.5
V

  
[e

V
]

Stress

1’

2’

11 2
+

+

-4 0 4 8 12 0 4 8

q [a.u.]

-0.5

0

0.5

1

1.5

2

V
  
[e

V
]

q1 q2q2

q1

q1

ε12

ε2 1
ε2 2 ε22

ε21

ε1 2
ε11

ε1 1
S1

S1

εT2

Et

Fig. 16.13 Left: A schematic of the configuration coordinate diagram for a bistable defect. The
solid and the dashed lines represent the adiabatic potentials for a defect in its positive and
neutral charge state, respectively. The energy minima correspond to the stable or metastable defect
configurations, labeled 1, 1′, 2, and 2′. The present configuration coordinate diagram describes
the exchange of holes with the valence band and thus is associated with a hole capture or
emission process. The stick-and-ball models display a defect in its various stable and metastable
configurations for illustration purpose. Right: Definitions of the used energies and barriers in
the multi-state model. Recall that two adiabatic potentials must be shown for one transition. It
is assumed that an alternative transition pathway with an additional crossing point exists in the
multidimensional atomic configuration space. In order to show both intersections (related to the
transitions 1 ↔ 2′ and 2 ↔ 1′) in one configuration coordinate diagram, the “neutral” potential
must be plotted twice. Obviously, ε22′ = ε2′2 + εT2′ holds

V2 = Ṽ0 −E ′
t (16.70)

V1′ = Ṽ0 −E (16.71)

in the hole picture. Here, the Vi stands for the adiabatic potentials with i being one of
the states in Fig. 16.10. Furthermore, the hole is assumed to be energetically located
at the valence band edge. It is emphasized that the energy εT2′ must be added to Ṽ0

to obtain the correct energy minimum of state 2′.

Et → Et − εT2′ (16.72)

As a consequence, εT2′ modifies the energy differences Vs extracted from the
configuration coordinate diagram

V12′ =V2′ −V1 = E −Et + εT2′ (16.73)

V1′2 =V2 −V1′ = E −E ′
t (16.74)
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and enters the NMP rates

k12′ = vth,nσn

+∞∫
Ec

Dn(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E −Et + εT2′︸ ︷︷ ︸
=V12′

)dE

+ vth,pσp

Ev∫
−∞

Dp(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E −Et+ εT2′︸ ︷︷ ︸
=V12′

)dE (16.75)

k2′1 = vth,nσn

+∞∫
Ec

Dn(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,Et − εT2′ −E︸ ︷︷ ︸
=−V12′

)dE

+ vth,pσp

Ev∫
−∞

Dp(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,Et − εT2′ −E︸ ︷︷ ︸
=−V12′

)dE (16.76)

k1′2 = vth,nσn

+∞∫
Ec

Dn(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E −E ′
t︸ ︷︷ ︸

=V1′2

)dE

+ vth,pσp

Ev∫
−∞

Dp(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E −E ′
t︸ ︷︷ ︸

=V1′2

)dE (16.77)

k21′ = vth,nσn

+∞∫
Ec

Dn(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,E
′
t −E︸ ︷︷ ︸

=−V1′2

)dE

+ vth,pσp

Ev∫
−∞

Dp(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,E
′
t −E︸ ︷︷ ︸

=−V1′2

)dE . (16.78)

The above NMP transition rates along with the thermal transition rates (16.64)–
(16.67) enter the expressions of the capture and emission times (16.60)–(16.63) that
are comparable to time constants observed in the TDDS data. In the next section,
they will be used to evaluate the multi-state model against the TDDS data and allow
a verification of this model.

16.8 Model Evaluation

As outlined in Sect. 16.2, TDDS experiments measure the response of single defects
to different gate voltage or temperature conditions. Based on these data, they give
insight into the behavior of single defects and can thus reveal whether a BTI trapping
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Fig. 16.14 Left: The capture (solid lines) and emission (dashed lines) times of a fixed oxide hole
trap as a function of the gate bias. The symbols stand for the measurement data and the lines
represent the simulation results of the multi-state model. The latter are shown to be in remarkable
agreement with the experimental data. The inset (bottom left) depicts the band diagram of a
MOSFET with the trap levels Et and E ′

t for the case when no bias is applied to the gate. Under
these conditions the trap level E ′

t is located far above the substrate Fermi level and the emission
time remains unaffected by the gate bias. This fact eventually characterizes this defect as a fixed
oxide hole trap Right: The same but for a switching oxide hole trap as presented in the Sect. 16.2.
Compared to the fixed oxide hole trap, it shows a strong gate bias dependence of τe at small gate
biases. In contrast to a fixed oxide hole trap, the Fermi level and the trap level E ′

t coincide there,
resulting in the strong sensitivity of τe to Vg

model reflects the physics of real defects. The time constant plots in Fig. 16.14
depict a fit of the multi-state model against the time constants extracted from the
TDDS measurement data. The following calculations are carried out on a device
simulator that delivers the band energy diagram for the devices used in the TDDS
measurements. With these data, the thermal and the NMP transition rates were
evaluated, which were subsequently used to calculate the capture and emission
times. In these simulation, we accounted for the exchange of charge carriers with
the substrate as well as the gate from the conduction and the valence band. An
evaluation of the TDDS checklist is given below:

(i) The curvature in τc is reproduced by the multi-state model.
(ii) τc shows a marked temperature activation over the whole range of Vg, visible

as a parallel upward shift.
(iii) In general, the multi-state model yields field-insensitive τe as displayed in

Fig. 16.14 (left). It is important to note here that at larger oxide fields this
model also predicts an exponential dependence, which has also been observed
for some defects in RTN measurements [31].

(iv) The multi-state model also allows for a field-dependent τe provided that
the substrate Fermi level and the trap level E ′

t are separated by only a few
hundredth of an electron Volt at small Vg (cf. Fig. 16.14, right).

(v) In both cases, τe is thermally activated.
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The above checklist demonstrates that the multi-state model can reproduce the key
features of the hole capture and emission process correctly, strongly indicating that
the multi-state model can describe the physics of the defects seen in TDDS.

16.9 Discussion of the Multi-State Model

In Sect. 16.7, we derived a full set of rate equations that can accurately describe
charge trapping within the multi-state model. However, they rely on complicated
integrals which obscure the gate bias and temperature-dependent behavior of
defects. For this reason, we also provide analytical expressions that promote
understanding of the essential physical behind the mathematical framework.

Following the derivation in Sect. 16.6, the NMP transition rates can be written as

k12′ = vth,pσp(1+R)3/2λ (Ev)pexp(−β ε12′) (16.79)

k2′1 = vth,pσp(1+R)3/2λ (Ev)pexp(−β ε12′)exp(−β (Et − εT2′ −Ef)) (16.80)

k1′2 = vth,pσp(1+R′)3/2λ (Ev)pexp(−β ε1′2) (16.81)

k21′ = vth,pσp(1+R′)3/2λ (Ev)pexp(−β ε1′2)exp(−β (Et −Ef)) (16.82)

with

ε12′ =
S1h̄ω1

(1+R1)2 +
R1

1+R1
(Ev −Et+ εT2′) (16.83)

=
S1h̄ω1

(1+R1)2 − R1

1+R1
(ΔEt − εT2′)+

R1

1+R1
q0xtFox (16.84)

ε1′2 =
S1′ h̄ω1′

(1+R1′)2 +
R1′

1+R1′
(Ev −E ′

t) (16.85)

=
S1′ h̄ω1′

(1+R1′)2 − R1′

1+R1′
ΔE ′

t +
R1′

1+R1′
q0xtFox (16.86)

using (16.3). In analogy to the derivation of the exact NMP transition rates (16.68)–
(16.78), the trap level Et must again be referenced to the minimum 2′ according
to (16.69). This reference of Et is required in the calculation of the NMP barriers
(16.84) and (16.86) as well as the last term of (16.80) following the concept outlined
in Fig. 16.9. With the thermal transitions (16.64)–(16.67) and the above expression
of the NMP rates (16.79)–(16.82), the capture and emission times (16.60)–(16.63)
read

τ2′
c = τ2′

c,min + τp0
N2

p
exp

(
β

R1q0xtFox

1+R1

)
+ τ2′

c,min
N1

p
exp(β q0xtFox) (16.87)
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τ1′
c = τ1′

c,min + τp0
N3

p
exp

(
β

R1′q0xtFox

1+R1′

)
(16.88)

τ2′
e = τ2′

e,min + τ2′ exp

(
−β

q0xtFox

1+R1

)
(16.89)

τ1′
e = τ1′ exp

(
−β

q0xtFox

1+R1′

)
+ τ1′

e,min

(
1+ exp

(
β (E ′

t −Ef)
))

(16.90)

using the definitions

N1 = Nv exp(β (εT2′ −ΔEt)) (16.91)

N2 =
Nv

(1+R1)3/2
exp

(
β

S1h̄ω1

(1+R1)2

)
exp

(
−β

R1(ΔEt − εT2′)

1+R1

)
(16.92)

N3 =
Nv

(1+R1′)3/2
exp

(
β

S1′ h̄ω1′

(1+R1′)2

)
exp

(
−β

R1′

1+R1′
ΔE ′

t

)

× (1+ exp
(
β (ΔE ′

t −ΔEt)
))

(16.93)

τ2′ =
τp0

(1+R1)3/2
exp

(
β

S1h̄ω1

(1+R1)2

)
exp

(
β

ΔEt − εT2′

1+R1

)

× (1+ exp(β εT2′)) (16.94)

τ1′ =
τp0

(1+R1′)3/2
exp

(
β

S1′ h̄ω1′

(1+R1′)2

)
exp

(
β

ΔE ′
t

1+R1′

)
(16.95)

τ2′
c,min = 1/k2′2 (16.96)

τ2′
e,min = 1/k22′ (16.97)

τ1′
c,min = 1/k11′ (16.98)

τ1′
e,min = 1/k1′1 (16.99)

τp0 =
1

σpvth,pNvλ (Ev)
. (16.100)

Recall that the hole capture process can proceed from state 1 over one of the
metastable states 2′ or 1′ to the final state 2 according to the state diagram of
Fig. 16.12. The corresponding capture time constants are denoted as τ2′

c and τ1′
c ,

respectively, and will be discussed in the following. If the transition pathway
T1→2′→2 is preferred, the capture time constant has the same shape as (16.59).

τ2′
c =

k12′ + k2′1 + k2′2
k12′k2′2

(16.101)
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=
1

k12′︸︷︷︸
D

+
1

k2′2︸︷︷︸
C

+
1

k2′2

k2′1
k12′︸ ︷︷ ︸

B

(16.102)

Each summand in the nominator can be dominant, leading to (16.60), which is
characterized by three distinct regimes, namely B, C, and D in Fig. 16.15. At
extremely high negative oxide fields (regime D), k12′ is the dominant rate meaning
that the transition4 T1→2′ proceeds much faster than T2′→2 (cf. Fig. 16.16). Thus
complete capture process (T1→2′→2) is controlled by the second transition T2′→2,
which is much slower and has a time constant of τ2′

c,min. Since this second step is

only thermally activated, τ2′
c does not depend on the oxide field. This is consistent

with (16.87), in which both exponential terms become negligible at extremely high
negative oxide fields. At moderate negative oxide fields (regime C), the rate k12′
approaches the order of k2′1 and even falls below k2′2. In this case the thermal
transition T2′→2 immediately follows the hole capture process from the state 1 to
2′. As a result, the trapping kinetics are governed by the forward rate of the NMP
process T1→2′ . Then τ2′

c shows an exponential oxide field dependence, which is
reflected in the second term of (16.87). At low negative oxide fields (regime B), k12′
is already outbalanced by its reverse rate k2′1 (see Fig. 16.16) and the ratio of both
rates determines the oxide field dependence. This gives an increased exponential

4Keep in mind that the term “transition” does not refer to the duration of the physical process itself,
such as the time it takes an electron to tunnel through an energy barrier. It rather denotes the mean
time until the physical process takes place and the defect change its state.
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Fig. 16.16 A schematic representation of adiabatic potentials in the regimes B, C, and D. The
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thermal transition T2′→2 is not affected by the oxide field

slope originating from the third term of (16.87). The transitions between these three
regimes are smooth so that the capture time becomes curved in its time constant
plots (cf. Fig. 16.16). It emphasized here that the curvature in the capture times are
one of the most obstinate feature for BTI modeling and has only been reproduced
by the multi-state model so far.

However, if the transition over the metastable state 1′ is favored (regime A), the
capture time constant can be formulated using first-passage times:

τ1′
c =

k11′ + k1′1 + k1′2
k11′k1′2

(16.103)

Since the metastable state 1′ is situated above the state 1 by definition, k1′1 
 k11′
holds. Therefore, the expression (16.103) can be approximated by

τ1′
c ≈ k1′1

k11′k1′2︸ ︷︷ ︸
A′′

+
1

k11′︸︷︷︸
A′

, (16.104)
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of τ1′

c

which is characterized by only two regimes (A’ and A”) now. At negative oxide fields
(regime A’), the state 1′ is located high (see Fig. 16.17) so that the transition rate
k1′2 is large compared to k11′ . Then the first term of expression (16.104) vanishes
and the field-dependent transition T1→1′ with a time constant of τ1′

c,min dominates

τ1′
c in (16.104). When reducing the oxide field, the state 1′ is shifted downwards

in the configuration coordinate diagram, thereby decreasing the transition rate k1′2.
At a certain oxide field, k1′2 falls below k1′1 and the first term of the expression
(16.104) becomes dominant (regime A”). As a consequence, τ1′

c is governed by the
field-dependent transition T1′→2, which is reflected in the exponential term of the
expression (16.88). The transition between A’ and A” yields a kink, which is visible
in τ1′

c (cf. Fig. 16.15) but not in the overall hole capture τc time given by

1
τc

≈ 1

τ1′
c
+

1

τ2′
c

. (16.105)

So far, this transition has not been observed in TDDS experiments, which is why
the regimes A’ and A” are not differentiated in Fig. 16.16.

Also the hole emission process has the possibility to proceed over either the
state 1′ or 2′, with τ1′

e and τ2′
e being the corresponding emission time constants (see

Fig. 16.18). For the transition pathway over 2′, the emission time constant can be
expressed as:

τ2′
e =

k22′ + k2′2 + k2′1
k22′k2′1

(16.106)

Since k2′2 
 k22′ applies, τ2′
e has only two regimes, labeled with the capital letters

F and G in Fig. 16.15.
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τ2′
e ≈ k2′2

k22′k2′1︸ ︷︷ ︸
G

+
1

k22′︸︷︷︸
F

(16.107)

At high negative oxide fields (regime G), the state 1 is shifted upwards so that
k22′ is the dominant rate and the field-dependent NMP transition T2′→1 controls
the transition T1→2′→2. The oxide field dependence T2′→1 is reflected in the second
term of (16.89). At moderate negative oxide fields (regime F), the transition T2′→1
proceeds much faster than T2→2′ . Thus, τ2′

e is determined by the field-insensitive
transition T2→2′ with a time constant of τ2′

e,min. It is pointed out that the regime F
can give an explanation for the field-independent emission time constants observed
for fixed oxide hole traps (cf. Fig. 16.14 left). This is a direct consequence of the
assumed bistability of the defect in the multi-state model.

At a low oxide field (regime E), the state 1′ is further shifted down, which speeds
up the transition T2→1′ and allows the pathway over the metastable state 1′. The
corresponding emission time constant τ1′

e is then given by

τ1′
e =

k21′ + k1′2 + r1′1
k21′k1′1

. (16.108)

For a sufficiently large barrier ε1′1, the rate k1′1 becomes negligible compared to k21′
and k1′2 and the above equation simplifies to

τ1′
e =

1
k1′1

+
k1′2

k21′k1′1
. (16.109)
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In this case, the state diagram reduces to a subsystem that includes the states 1′ and
2 and is marginally disturbed by the rate k1′1. In this subsystem the states 1′ and 2
can be assumed to be in quasi-equilibrium

f1′k1′2 = f2k21′ (16.110)

and the condition f1′ + f2 = 1 is met. Then the trap occupancy f ′t = f1′ is given by

f1′ =
1

1+ k21′
k1′2

=
1

1+ exp(β (E ′
t −Ef))

. (16.111)

From this equation, it follows that the condition k1′2 = k21′ is equivalent to E ′
t = Ef.

Furthermore, this equation can also be used to simplify (16.90) to

τ1′
e = τ1′ exp

(
−β

q0xtFox

1+R1′

)
+

τ1′
e,min

ft′
. (16.112)

If E ′
t falls below Ef at a certain relaxation voltage, the state 1′ becomes occupied

and the emission time τ1′
e is determined by the field-independent transition T1′→1

with the time constant τ1′
e,min. By contrast, if E ′

t is raised above Ef, the state 1′ is
underpopulated thereby slowing down the hole emission process. This occupancy
effect is reflected in the second term, which is sensitive to changes in Ef.

The overall hole emission time τe follows approximately from

1
τe

≈ 1

τ1′
e
+

1

τ2′
e

(16.113)

and is depicted in Fig. 16.15. At a certain oxide field, when the state 1′ is shifted
below state 2, τ1′

e reaches its minimum value and falls below τ2′
e . The resulting drop

in τe is observed as the field dependence characterizing fixed oxide hole traps at
weak oxide fields (cf. Fig. 16.14 right). The drop in τe occurs when the minimum
of the state 1′ passes that of state 2, and is thus related to the exact shape of the
configuration coordinate diagram. It is emphasized here that in the multi-state model
the bistability of the defect allows for fixed as well as switching oxide hole traps
while there is no explanation for these two kinds for defects in other models.

In summary, several features observed in the TDDS data have been quantitatively
reproduced as shown in Sect. 16.8 and qualitatively understood following the above
discussion based on analytical expressions. As such, this model can be regarded as
a suited model to describe hole trapping in BTI.
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16.10 Noise

So far it has been shown that the multi-state model accounts for all features
seen in the time constant plots for the fixed as well as the switching oxide hole
traps. Beyond that, the model can also give an explanation for tRTN observed in
TDDS (see Sect. 16.2). The generated noise stems from defects switching back
and forth between states 2 and 1′. The associated charge transfer reactions T2↔1′
do not involve any intermediate states and are therefore simple NMP processes.
It is remarked here that the transitions T2↔1′ require the energy minima 2 and 1′
in the configuration coordinate diagram to be on approximately the same level at
the relaxation voltage. This is only the case for a group of defects whose energy
minima 1 and 1′ are energetically not far separated. In the TDDS measurements,
the investigated devices are stressed at a high Vg so that the defects are forced
from the state 1 into the state 2 or 1′. During this step, the defects undergo the
transition T1→2′→2 into the state 2 or even further into 1′. The other direct pathway
T1→1′ into the state 1′ or 2 is assumed to go over a large barrier ε11′ . Therefore,
the transition T1→1′ proceeds on much larger timescales compared to T1→2′→2 and
can be neglected. After stressing, the recovery traces are monitored at low Vg or
Fox, respectively, at which the energy minima of the states 2 and 1′ coincide and
noise is produced. However, the state 1 is thermodynamically preferred due to its
energetically lower position compared to the states 2 and 1′. When the defect returns
to its initial state 1, the RTN signal disappears with a time constant of τs

e . The
corresponding transition could be either T2→2′→1 or T1′→1 with a time constant of τ2′

e
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or τ1′
e,min, respectively (cf. Fig. 16.19). The termination of the noise signal after a time

period of τs
e is determined by the minimum of these time constants. Consider that

the NMP barriers ε21′ and ε1′2 must not be too large since otherwise trapping events
will occur too fast and are therefore not detected using a conventional measurement
equipment.

Interestingly, there also exists a type of defect which repeatedly produces noise
for stochastically distributed time intervals (see Sect. 16.2). This kind of noise was
observed for electron traps [27] in nMOSFETS and is referred to as aRTN. Just as in
the case of tRTN, the noise signal is generated by charge transfer reactions between
the states 2 and 1′. The recurrent pauses of the noise signal (see Fig. 16.19) originate
from transitions into the metastable state 2′, which is electrically indistinguishable
from the state 2. These interruptions correspond to the time during which the defect
dwells in this state and no charge transfer reaction can take place. Thereby it has
been presumed that the NMP transition T2′→1 occurs on larger time scales than the
return to the state 2 through the transition T2′→2. The slow capture time constant τs

c
in Fig. 16.19 defines the mean time interval during which noise is observed. Its value
is given by the inverse of the transition rate 1/k22′ . The slow emission time constant
τs

e = 1/k2′2 corresponds to the mean time interval until the next noise period starts.
One should keep in mind that when adopting the concept of aRTN to hole traps

in pMOSFET, it may also explain the tRTN behavior seen in TDDS measurements.
During TDDS stress, this sort of defects are forced into one of the states 2 and
1′ where they produce an RTN signal. As in aRTN, they undergo a transition to
the metastable state 2′ thereby stopping to produce a noise signal. However, this
special sort of defects is characterized by a slow emission time constant τs

e , which
is much larger than the typical measurement time of TDDS. As a consequence, the
next transition back to the state 2 and the subsequent noise period are shifted out
of the experimental time window of TDDS and will not be recorded during the
measurement run. According to this explanation, tRTN can also be explained as a
stimulated variant of aRTN.

In summary, the multi-state model can account for the features from the time
constant plots and is consistent with the observation of tRTN as well as aRTN. This
fact is presented here since it is regarded as an additional support for the validity of
this model.

16.11 Conclusion

With the departure from the established reaction–diffusion model, charge trapping in
BTI has recently attracted scientific interest. Therefore, the nature of charge trapping
has remained vaguely understood for a long time and has been intensively studied
within our group. In this chapter we presented a detailed derivation of our charge
trapping model, termed multi-state model, in which the focus was on correctly
modeling microscopic processes involved in BTI. In order to support understanding
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of the tendencies in this model, we have also given analytical expressions, which
still capture the main physics underlying charge trapping in BTI.

For the verification of our model, we have chosen the TDDS technique since
it allows to analyze the behavior of single defects. The evaluation of our multi-
state model was based on five criteria including the curvature in the capture times,
the gate bias and temperature dependences, and the fixed as well as the switching
oxide hole trap behavior. So far, all these features have only been reproduced by
the multi-state model, which strongly indicates that this model is based on correct
assumptions. Interestingly, the model gives also an explanation for temporary and
anomalous RTN, thereby further corroborating its validity.
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