
Chapter 15

Spreadsheets

Abstract In this chapter, we explore the possibilities for data exchange offered by the Office Open
XML (OOXML) standard. Many of the office suites have adopted OOXML for their spreadsheets,
word processing, and presentation tools. We demonstrate the kinds of functionality that can be built
using the tools in the XML package to interface with XML -based spreadsheets from within R. Ex-
amples include: reading an entire xlsx file into an R data frame (or list of data frames, one per sheet);
extracting and setting cell values in a worksheet; and adding style information on cells, R plots to
sheets, and rda files to the xlsx archive. While the focus is on Excel and xlsx files, the ideas presented
in this chapter can be extended to other spreadsheet applications, e.g., Google Docs and Open Office,
and to other office tools, e.g., Word and PowerPoint. The ROOXML [19] package provides the basic
infrastructure for Microsoft Office, and, for example, RWordXML provides facilities for working with
word processing files.

15.1 Introduction: A Background in Spreadsheets

Spreadsheets have had a questionable reputation in the field of statistics. Statisticians have published
papers warning users about the computational algorithms in spreadsheets [8, 9], e.g., they can produce
negative variances, and it is a commonly held opinion that a comma-separated format is preferable to
a spreadsheet because it is easy to use with a variety of statistical software languages. For example, in
the online manual, R Data Import/Export [12] , it states that

The most common R data import/export question seems to be “how do I read an Excel spreadsheet”. . . . The first
piece of advice is to avoid doing so if possible! If you have access to Excel, export the data you want from Excel
in tab-delimited or comma-separated form, and use read.delim() or read.csv() to import it into R.

While this is often a reasonable approach, there is potentially much more information in the spread-
sheet file format, e.g., data formatted as currency, dates, times, etc., which would be lost in the export.
Of course, the situation is often more complex than that and there are many reasons why statisticians
may need or even want to use spreadsheets. Moreover, spreadsheets are a widely used format for data
storage and exchange as evidenced by the question “how do I read an Excel spreadsheet?”

When the ISO standardized the Office Open XML format [4] for spreadsheets, word processing
documents, and presentations, all the major office suites, including MicroSoft Office [13], Apple
iWork [2], Libre Office [7], KOffice [6], and Open Office [1] incorporated variants of OOXML. The
widespread adoption of this standard creates a compelling argument for using spreadsheets as an
exchange format. In working with OOXML, we have found many advantages to this format:

501
DOI 10.1007/978-1- - -0_14614 7 00 5, © Springer Science+Business Media New York 20149

, , Use R!,. Nolan and D. Temple LangD XML and Web Technologies for Data Sciences with R

502 15 Spreadsheets

• The xlsx file contains meta information about (among other things) the data format. This informa-
tion can be used to automate the reading of the data, removing the need for us to specify column
classes, quotes, comment characters, character encoding, etc. Using this meta information can
both simplify the task of reading data from a spreadsheet into R and make it more verifiable and
reproducible.

• The workbook may have multiple spreadsheets or spreadsheets that are not simple tables, e.g.,
they can contain ragged arrays or multiple tables. In this case, the simple solution of using the
“Save As” feature to create a CSV file requires multiple exports or results in a potential loss of
information.

• The OOXML format makes it relatively easy to extract data into R in a programmatic, repeat-
able, reproducible fashion. By programmatically extracting the data from the spreadsheet into R,
we eliminate the possibility of working with data that differ from the spreadsheet. That is, we
eliminate the “middle man” and extra steps in the exchange. If the spreadsheet changes, and we
have not exported it as CSV since it was changed, then we will be working with the wrong data.
Furthermore, we may need to repeat this process multiple times or want to keep a record of what
we have done, and hence will want to access the data in the spreadsheet programmatically.

• The GUI-nature of the spreadsheet makes it a useful format for displaying the results of statistical
data analysis. For example, the spreadsheet recomputes dependencies when cell values change,
and graphical displays can be included directly in the display, as well as interactive controls. We
may want to use the spreadsheet as a report format that contains plots, pivot tables, and formulas
that recompute cell values and charts when inputs are updated. Additionally, a spreadsheet can
provide attractive titles, headers, etc.

• The OOXML format also makes it relatively easy to generate spreadsheets from R in a program-
matic, repeatable, reproducible fashion, including generating tables, formulas, and charts. If the
data change, then we can repeat this generative process reliably to revise the xlsx file.

• The OOXML spreadsheet can be treated as a queryable, updateable database. This is very different
from thinking of the spreadsheet as something to “throw away” after exporting the data as CSV.
For example, we can query the database for hyperlinks, footnotes, and other meta-information.

As data analysts, we want to remain current with the emerging technologies for accessing and pre-
senting quantitative information, and build new tools to access and publish data in these technologies.
We have developed several R packages that take advantage of the XML structure of OOXML docu-
ments to work with spreadsheets from within R. These are RExcelXML [18], ROpenOffice [20], and
RGoogleDocs [23].

The focus in this chapter is on the RExcelXML package, which provides an R interface with xlsx

documents. However, ROpenOffice and RGoogleDocs behave similarly; they offer an R interface
with Open Office and Google Docs documents, respectively, that are based on the same principles
developed in RExcelXML. These packages offer functionality for R users to both query and mod-
ify the contents of workbooks and worksheets. The essential theme is that because the spreadsheet
is a zip archive that contains XML structured content, we can manipulate this content from within
R. Furthermore, the basic approach demonstrated here carries over to word processing documents
and presentation files that follow the OOXML format. For example, the RWordXML package [24]
offers facilities for accessing common elements from within R of an OOXML word processing docu-
ment. These packages are by no means complete and polished. Instead, they serve as case studies for
exploring the power of an XML -based data format and how it can be used within R.

There are several other R packages for working with Excel spreadsheets. These in-
clude XLConnect [16], xlsReadWrite [17], gdata [27], RExcel [10], RODBC [14],
WriteXLS [15], dataframes2xls [25], and xlsx [3]. Some of these have more limited scope,

15.2 Simple Spreadsheets 503

such as gdata and xlsReadWrite, and most work only with the older xls format. The pack-
age xlsx works with the xlsx format. XLConnect handles both formats and is very robust. The
XLConnect and xlsx packages take an entirely different approach from RExcelXML and are based
on a Java library for working with xlsx files. The approach is an excellent one as it piggy-backs on
the development of toolkits in another language so the focus need only be on making the methods
in these other toolkits available in R. When that happens, a lot of functionality becomes immediately
available in R, and updates to the toolkit happen as the other toolkit developers revise their software.
One downside, however, is that it is not easy to add specialty functionality, such as adding an rda file
to the archive.

The packages described in this chapter are not as robust as, e.g., XLConnect. Our intention here
is to demonstrate an alternative XML -based approach for working with OOXML formatted files. The
goal is to provide an example of how an R programmer might design a package to handle spreadsheets
that leverages knowledge of OOXML and generic tools for handling XML. We describe the philosophy
behind this implementation and the advantages gained.

Finally, we should also mention interactive spreadsheet capabilities with R. When we create a
spread/work-sheet from within R, the results are fixed. It is possible to add code to the worksheet,
and workbook generally, which can make calls back to R to dynamically compute values within the
worksheet using the R engine. This is feasible on Windows via DCOM (Distributed Component
Object Model). With DCOM , we can communicate with Microsoft Excel, Word, PowerPoint, and
various other applications as they are running. With this connection, we can programmatically query
and modify the spreadsheets, documents, presentations directly from within R in much the same way
that we can here. For example, we can access sheets, cells, and so on. The way we access these is very
different, but the document model is very similar.

This chapter includes discussion of both high- and intermediate-level functions that we have cre-
ated to interface with OOXML formatted spreadsheets. The approach we take is to first put in place
functionality that handles the vast majority of spreadsheets easily and simply. Next, by delving more
deeply into SpreadsheetML (the OOXML vocabulary for spreadsheets), we see how a few basic tools
for accessing XML from within R can provide the programmer with the flexibility to handle more
complex formats. We describe these functions that give easy access to the XML spreadsheet structure,
e.g., functions to extract and insert values and formulas in cells and to work with styles. Finally, with
an understanding of OOXML, we use these intermediate-level functions and the generic tools in the
XML [21] and Rcompression [22] packages to produce customized functionality to, e.g., add R plots
to a spreadsheet, extract meta information from complex spreadsheets, and use the xlsx archive to
store atypical auxiliary data such as an rda file.

15.2 Simple Spreadsheets

Many workbooks consist of a single spreadsheet with a simple rectangular collection of values, where
the columns correspond to variables and the rows to records, and there may be a header row at the
top of the sheet to indicate column names. When this is the case, we typically want to read these data
simply and directly into a data frame, just as we may read a CSV-formatted file into a data frame with
read.csv(). The function read.xls() in RExcelXML does this for us. It determines which columns and
rows have data in them and the type of data in each column, and it extracts the values in the cells of
the spreadsheet into a data frame. We demonstrate how to use it with two examples.

504 15 Spreadsheets

15.2.1 Extracting a Spreadsheet into a Data Frame

Our first example demonstrates how to use read.xls() with a spreadsheet that contains only one simple
sheet. The first row contains a header column, and the data are arranged in a simple rectangular form.

Example 15-1 Extracting Data from a World Bank Spreadsheet

The World Bank (http://www.worldbank.org/) provides financial and technical assistance
to developing countries. In 2010, the Bank launched an Open Data Website (http://data.
worldbank.org/) that provides access to their data, including Excel tables and reports on topics
such as GDP, education, health, and the environment. For example, the World Development Report
2011 on Conflict, Security, and Development [29] has an accompanying Excel spreadsheet [28]. This
spreadsheet includes 50 years of data relevant to civil war, terrorism, and trafficking for different
countries. A subset of rows and columns has been extracted into a smaller spreadsheet and appears in
the screenshot in Figure 15.1. We see that it has six columns/variables, each beginning with a variable
name. The columns "Year" and "Cwbattledeaths" are numeric, whereas the others contain
character strings.

We read the contents of the spreadsheet into the data frame with the following call to read.xlsx():

cwd = read.xlsx("WorldBank/MiniWDR.xlsx", header = TRUE)

The names of the variables in the data frame match the values in the first row of the spreadsheet. We
confirm this with

names(cwd)

[1] "Countrycode" "Country" "Year"
[4] "RegionA" "RegionB" "Cwbattledeaths"

Also, we check that the character strings and numeric values in the spreadsheet are stored in R as
factor and numeric data types, as we might expect:

sapply(cwd, class)

Countrycode Country Year
"factor" "factor" "numeric"
RegionA RegionB Cwbattledeaths
"factor" "factor" "numeric"

15.2.2 Extracting Multiple Sheets from a Workbook

The read.xlsx() function has a few additional arguments to handle somewhat more complex work-
books than the one-table, one-sheet workbook in Example 15-1 (page 504). For example, if a work-
book has multiple sheets, we can specify the sheet that we want to read via the which parameter. If
there are multiple header rows at the top of the spreadsheet, then we can use the skip argument to
specify the number of rows to ignore. Moreover, we can read multiple sheets into a list of data frames
by supplying a vector to which. All of the arguments that control the import of a spreadsheet can be

http://data.worldbank.org/
http://data.worldbank.org/
http://www.worldbank.org/

15.2 Simple Spreadsheets 505

Figure 15.1: World Bank Excel Report on Conflict. This screenshot shows the simple structure of
an Excel spreadsheet, which is an extract of the spreadsheet provided by the World Bank Report
2011 on conflict security and development for different countries in different years. The workbook
contains only one sheet, which has six columns including the name of the country, year, and the
number of deaths due to civil war battles. This information was downloaded from http://data.
worldbank.org/ in September 2011.

passed a vector. This way, we can specify how to handle each sheet independently. We demonstrate
how to use these vector arguments in the next example.

Example 15-2 Extracting Federal Exchange Commission (FEC) Data from Multiple Worksheets

The US Federal Election Commission (FEC) is an independent regulatory agency set up to disclose
campaign finance information and oversee the public funding of US federal elections. The FEC makes
its data publicly available at http://www.fec.gov/. One example is its six-month summary, for
the first half of 2011, of contributions from Political Action Committees (PAC) and other committees
to incumbents running for re-election in the House of Representatives [5]. These data are provided in
an Excel workbook (see Figures 15.2 and 15.3), which contains three worksheets. We are primarily
interested in the first of these. Although the data in the first sheet are in a rectangular form, the sheet

http://www.fec.gov/
http://data.worldbank.org/
http://data.worldbank.org/

506 15 Spreadsheets

has a title that occupies the first three rows, the fourth row is empty, and the fifth row contains column
headers, which we would like to use as variable names.

Figure 15.2: FEC Spreadsheet Report of Campaign Contributions. The screenshot shows the format
of the first worksheet in the Excel spreadsheet 12Top50HouseIncumbentByCPAC6Months.
xlsx. Notice that the column names appear in row five, the data begin in row six, and the first
column has no column name. The spreadsheet was downloaded from http://www.fec.gov in
September 2011.

To extract the data, we use the read.xlsx() arguments which, skip, and header to specify that we
want the data in the first sheet and that we want to skip the first four rows and use the next row as a
header. That is,

FEC = "FEC/12Top50HouseIncumbentByCPAC6Months.xlsx"
top50 = read.xlsx(FEC, which = 1, skip = 4, header = TRUE)
names(top50)

[1] "Candidate" "State" "District" "Party" "Receipts"

dim(top50)

[1] 50 5

The second sheet contains additional information (see Figure 15.3), which we can read into R with
a second call to read.xlsx(). Instead, we demonstrate how to read the data from both worksheets into
R at once with

top50 = read.xlsx(FEC, which = 1:2, header = c(TRUE, FALSE),
skip = c(4,0))

http://www.fec.gov

15.2 Simple Spreadsheets 507

The return value is a list of two data frames. The second data frame contains the values from
"Sheet2". Note that there is no header in this sheet, i.e., the data begin in the first row. This means
the variable names in R are generic, as would happen with read.csv(). We confirm this with

names(top50[[2]])

[1] "V1" "V2" "V3"

Figure 15.3: Second Worksheet in an FEC Workbook. This screen shot shows the contents of the sec-
ond worksheet of 12Top50HouseIncumbentByCPAC6Months.xlsx. It has no column names
and column C contains currency amounts that contain dollar signs and commas. When we read this
sheet into R with read.xlsx(), each column is extracted into a vector in a data frame and given a
generic name, e.g., "V1", and the cell values are converted into the appropriate type, e.g., the cur-
rency is converted to numeric.

The read.xlsx() function identifies the types of the columns and collapses them to the appropriate
type in R, e.g., we convert the currency to numeric, not strings with "$", i.e.,

sapply(top50[[2]], class)

V1 V2 V3
"numeric" "factor" "numeric"

Note also that we convert "INCUMBENT" to a factor rather than a string. In addition, if there are
blank regions in the data rectangle, then we convert these to missing values.

508 15 Spreadsheets

15.3 Office Open XML

The basic function read.xlsx() handles most cases where the data are in a simple rectangular form.
How we do this is by extracting information from the XML documents within the xlsx archive. The
read.xlsx() function uses the core tools in the XML package to extract cell values, find cell formats,
etc. When we have more complex spreadsheets that, e.g., have a more flexible format, we can use these
same tools to extract content. Rather than converting a worksheet into a data frame all in one step, we
provide functions that access various components of the xlsx file. These intermediate-level functions
offer functionality between the high-level approach of read.xlsx() and the basic parsing functions of
XML (see Chapters 3, 4, and 5). To use these intermediate-level functions, we need to have some
knowledge of the xlsx archive because these functions are not as all-inclusive as read.xlsx(). In this
section, we describe the basic structure of the xlsx archive and how information is stored in it. This
will give us enough understanding to handle more complex extractions and to also create spreadsheets
from within R that contain, e.g., R plots.

15.3.1 The xlsx Archive

The Office Open XML (OOXML) standard [4, 26] uses a zip archive to store the contents of a spread-
sheet, word document, or presentation, e.g., PowerPoint or Libre Office. The zip files contain data files
as well as files that indicate the relationships between the content files. To explore the zip archive and
the contents of its files, we examine the xlsx archive for the simple spreadsheet shown in Figure 15.4.

The documents for this spreadsheet are packaged in a zip archive that contains several directories
and about 20 files. There is one file for each worksheet and each image, in addition to files that contain
information about styles. Other files contain information that is used to connect the styles and images
to the spreadsheet that uses the styles or “contains” the images. We access the files in the archive with
the excelDoc() function. This function creates an object which allows us to treat the zip file as a list
in R and access the individual files it contains. We call it with:

ed = excelDoc("test.xlsx")

The excelDoc() function relies on the Rcompression package to provide general access to the zip

archive (without writing the files on disk). It provides a convenient interface to the zipArchive()
function in Rcompression. We can examine ed to find that our simple spreadsheet consists of 22 files
with the following names:

names(ed)

[1] "[Content_Types].xml"
[2] "_rels/.rels"
[3] "xl/_rels/workbook.xml.rels"
[4] "xl/workbook.xml"
[5] "xl/styles.xml"
[6] "xl/theme/theme1.xml"
[7] "xl/worksheets/sheet2.xml"
[8] "xl/worksheets/_rels/sheet1.xml.rels"
[9] "xl/worksheets/_rels/sheet2.xml.rels"
[10] "xl/drawings/_rels/drawing1.xml.rels"

15.3 Office Open XML 509

Figure 15.4: Example Spreadsheet. This screenshot shows a small spreadsheet that has a few inter-
esting features. There are two sheets. On the first sheet, the column header for the third column is
formatted in a bold-face, red font, and the values in this column are computed using a formula and
formatted as a percentage. A PNG file is included on this sheet as well. The second sheet, called
"Images", contains two PNG files: a photo and an R plot.

[11] "xl/drawings/_rels/drawing2.xml.rels"
[12] "xl/worksheets/sheet1.xml"
[13] "docProps/thumbnail.jpeg"
[14] "xl/media/image1.png"
[15] "xl/drawings/drawing2.xml"
[16] "xl/drawings/drawing1.xml"
[17] "xl/media/image2.JPG"
[18] "xl/sharedStrings.xml"
[19] "xl/media/image3.png"
[20] "docProps/core.xml"
[21] "xl/calcChain.xml"
[22] "docProps/app.xml"

This structure is quite similar across all xlsx files (and is similar to Libre Office, etc.). At its root,
the xlsx archive contains an XML file called [Content_Types].xml and three directories:
rels/, xl/, and docProps/. Here, we see that the xl/ directory contains a central workbook file

named workbook.xml and files for the two worksheets called worksheets/sheet1.xml and
worksheets/sheet2.xml. The core content of the file the user sees is found in this application-

510 15 Spreadsheets

specific directory. The other directories contain information about the data and how they are to appear
in the application’s interface.

OOXML defines XML vocabularies for spreadsheets, as well as word processing documents and
presentations. These are SpreadsheetML, WordprocessingML, and PresentationML, respectively. The
word processing and presentation archives have similar structures, where the xl/ directory is re-
placed by one specific to the document type, e.g., a word/ directory is used in the word processing
zip archive. In the following sections, we examine the SpreadsheetML vocabulary and some of the
auxiliary files in the archive. We see that the xlsx document is organized in a distributed manner. The
information in the spreadsheet can be stored in a single file, but has been organized for maximum
re-use of parts of a document and maximum flexibility in replacing parts, etc. It is confusing at first
with the large number of files and level of indirectness, but the structure is quite sensible.

15.3.2 The Workbook

The workbook file called xl/workbook.xml keeps track of the worksheets, global settings and
other shared components of the workbook. It points to the worksheets via its <sheets> node as
shown with xmlRoot(ed[["xl/workbook.xml"]]):

<workbook
xmlns="http://schemas.../spreadsheetml/2006/main"
xmlns:r="http://...officeDocument/2006/relationships">
<fileVersion appName="xl" lastEdited="5"

lowestEdited="5" rupBuild="21405"/>
<workbookPr showInkAnnotation="0" autoCompressPictures="0"/>
<bookViews>
<workbookView xWindow="0" yWindow="0" windowWidth="25600"
windowHeight="14840" tabRatio="500" activeTab="1"/>

</bookViews>
<sheets>
<sheet name="Sheet1" sheetId="1" r:id="rId1"/>
<sheet name="Images" sheetId="2" r:id="rId2"/>
</sheets>
<calcPr calcId="140000" concurrentCalc="0"/>
<extLst>
<ext xmlns:mx="http://.../mac/excel/2008/main"
uri="{7523E5D3-25F3-A5E0-1632-64F254C22452}">
<mx:ArchID Flags="2"/>

</ext>
</extLst>
</workbook>

We see that neither the worksheet itself nor its file name appears in the workbook. Instead, there is
an r:id attribute which we use to determine that the first worksheet file name is xl/worksheets/
sheet1.xml. The information to tie the workbook and worksheet files together is stored in a re-
lationships (i.e., .rels) file. This extra layer of indirection can be a bit messy to work with, but it
is also very flexible. We describe it in greater detail in Section 15.7 where we provide examples of
adding a worksheet to a workbook and an image to a worksheet.

15.3 Office Open XML 511

15.3.3 Cells and Worksheets

We next examine the contents of the worksheet XML file for the first sheet, i.e., sheet1.xml. The
root node of this document has eight children with the following names:

sheet1 = xmlRoot(ed[["xl/worksheets/sheet1.xml"]])
names(sheet1)

dimension sheetViews sheetFormatPr sheetData
"dimension" "sheetViews" "sheetFormatPr" "sheetData"
pageMargins pageSetup drawing extLst

"pageMargins" "pageSetup" "drawing" "extLst"

The <dimension> element is:

sheet1[["dimension"]]

<dimension ref="A1:C4"/>

It has a ref attribute that specifies the extent of the rectangular region containing any data in the sheet.
The actual cell values are found in the <sheetData> node. There is one <row> element for each
row in the spreadsheet containing content. We examine the first <row> node in <sheetData> with
sheet1[["sheetData"]][[1]]. This returns the row with the column headers, "Record",
"Value", and "Percent":

<row r="1" spans="1:3">
<c r="A1" t="s"> <v>0</v> </c>
<c r="B1" t="s"> <v>1</v> </c>
<c r="C1" s="1" t="s"> <v>2</v> </c>
</row>

We see that there is a <c> (for cell) element for each nonempty cell in the row. The <v> child
of <c> contains the value of the cell. These are 0, 1, and 2, rather than the strings for the column
headers "Record", "Value", and "Percent", as might be expected. The reason for this is that
to optimize the use of strings, a single instance of each unique string is stored in a shared strings table
for all the worksheets and their cells, and not in the cell’s node. This shared table is stored in a separate
file called xl/sharedStrings.xml in the xlsx archive. The cells then reference the string by its
index in the shared table. The standard uses zero-based counting so the value of 0 in the A1 cell refers
to the first element in the shared strings table. We know that the value refers to a shared string and not
the number 0 because the t (type) attribute on the parent <c> has a value of "s" to denote that the cell
contains a string data type. Also, the s (style) attribute on the third cell references style information
for that cell.

In our example, the shared string table is small, with only four entries, and the first entry contains
the string "Record". We confirm this with ed[["xl/sharedStrings.xml"]]

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<sst xmlns="http://schemas.../spreadsheetml/2006/main"

count="4" uniqueCount="4">
<si> <t>Record</t> </si>
<si> <t>Value</t> </si>
<si> <t>Percent</t> </si>

512 15 Spreadsheets

<si> <t>Total</t> </si>
</sst>

The "Total" string is in the fourth row of the first column of the spreadsheet. The second sheet
has no strings, just images so has no entries in this table. If a string is used multiple times, possibly
in multiple worksheets, then this approach to storing strings can be very efficient. For example, the
spreadsheet in Example 15-1 (page 504) repeats each country name 50 times, once for each year
of reporting. Rather than having 50 cells with "Afghanistan" as the value in <v>, there are 50
references to the shared string "10". This is very similar to R ’s factor type.

Lastly, we examine the second row of the worksheet (sheet1[["sheetData"]][[2]]) to
find:

<row r="2" spans="1:3">
<c r="A2"> <v>1</v> </c>
<c r="B2"> <v>27</v> </c>
<c r="C2" s="2"> <f>B2/B4</f> <v>0.67500000000000004</v> </c>
</row>

In this row, the value 1 found in the A2 cell corresponds to the number 1 because <c> has no t
attribute so the type defaults to number. The third cell in the row, i.e., C2, has two children, <f> and
<v>. The <f> element contains a formula and <v> contains the cached value from the last time the
formula was calculated. Notice also that this value is 0.675..., rather than 68% as seen in Figure 15.4.
The “68%” is a representation of this value. It appears in Excel as 68% because of the formatting
applied to it and specified by this style, i.e., the parent <c> has a style of "2" that is used to format
the cell value.

15.4 Intermediate-Level Functions for Extracting Subsets of a Worksheet

Data can be organized quite flexibly in a spreadsheet, and when the contents of the worksheet are not
in a simple tabular form, read.xlsx() may give us lots of NAs where there are holes in the table. That
is, spreadsheets may be well formatted for people to view and not for data exchange. When this is the
case, we may want to work more directly with the xlsx archive and the sheet files in order to extract
subsets explicitly rather than getting all of the cells in one go. Of course, we can use read.xlsx() to
extract all of the data from the sheet as one huge data frame and work within R to clean it up. However,
we may instead want to use the structure of the spreadsheet to extract specific pieces of data.

Another spreadsheet made available by the FEC at http://www.fec.gov/press/
summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx provides information about
PAC contributions in the first half of 2011 (see Figure 15.5). It contains three tables in one sheet.
The rows in each table correspond to the source of the contribution, e.g., corporate, labor. The first
table provides information about funds received, the second about disbursements, and the third con-
tributions. Blank lines in rows 2, 4, 14, 16, 18, 28, 30, and 32 visually separate the tables from each
other and from rows that report column totals for the tables. Notice also that the first table has two
columns for each reporting year; one holds the number of receipts and the other the total amount of
funds received. The other tables have only one column of information per year.

There are many ways that we may want to organize these data in R. We take a simple approach
and create separate data frames for each table in the worksheet. When the data are in R, we can
combine and restructure them into a single data frame more suitable for analysis. Our goal here is

http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx
http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx

15.4 Intermediate-Level Functions for Extracting Subsets of a Worksheet 513

to demonstrate how to work with the Excel file as we extract pieces of a worksheet to create a data
frame.

Figure 15.5: FEC Worksheet with Multiple Tables. This screenshot shows an Excel spreadsheet
published on the Web by the Federal Election Commission. It holds three tables that disclose the
source of political contributions by ("Receipts", "Disbursements", and "Contributions
to Candidates, Parties and other Committees"). It was downloaded from http:
//www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx
in October, 2011.

15.4.1 The Excel Archive in R

To begin our extraction, we call excelDoc() to access the files within the xlsx archive:

FECExcelDoc = excelDoc("FEC/1pac6mosummary11.xlsx")

Although the ExcelArchive object is of interest for several tasks, users will typically want to
work with a Workbook object as this is the entity that contains the worksheets and data.

http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx
http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx

514 15 Spreadsheets

15.4.2 The Excel Workbook in R

The workbook() function creates a different view of the xlsx file, i.e., an object that has class
Workbook. This is an object with two slots: content, which is an XML document, and name, which
is a vector of length 2 giving the name of the xslx file and the name of the XML file that is associated
with this workbook. The name is used to remember from whence the content came so that we can
save any changes we make to the correct place.

The workbook() function takes either the name of the xslx file or the ExcelArchive object and
returns an object of class Workbook. We pass it the archive with

wbFEC = workbook(FECExcelDoc)

The Workbook class has methods for the names() and [[functions. The names() function returns
the names of the worksheets it contains. We see that for our workbook we have three sheets with the
typical Excel names:

names(wbFEC)

rId1 rId2 rId3
"Sheet1" "Sheet2" "Sheet3"

These are the titles that appear in the tabs along the bottom of the Excel app.
The [[method allows you to extract an individual worksheet, either by name or by position. The

following are equivalent:

ws1 = wbFEC[[1]]
ws1 = wbFEC[["Sheet1"]]

The return value is an object of class Worksheet.

15.4.3 The Excel Worksheet in R

A Worksheet is an object that represents the sheet in the archive. An object of this class describes
the sheet in the archive, not its data/contents, i.e., it describes the sheet symbolically. We can think of
it like a data frame or matrix. For example, we can ask for its dimensions, e.g.,

dim(ws1)

[1] 43 16

This tells us that there are 43 rows and 16 columns of active cells in the first worksheet of our work-
book. This function ignores the empty columns and rows before and after the main block of data, but
it does not ignore the empty columns and rows within the populated region.

In addition to extracting a worksheet with the [[operator, we can use getSheet() directly to
retrieve worksheets as a list of Worksheet objects, e.g.,

sheets = getSheet(wbFEC, which = 1)

In the next example, we will extract the cell values from the middle table (labeled
"Disbursements") of the first worksheet. We will perform three extractions to build the data
frame. First, we will extract the first column and use these cell values as row names in the data frame.

15.4 Intermediate-Level Functions for Extracting Subsets of a Worksheet 515

Then, we extract the data values, and lastly we obtain the row containing the years to use as variable
names in our data frame. We use the example to demonstrate several approaches for accessing specific
regions in the spreadsheet.

Example 15-3 Extracting a Rectangular Region from an FEC Worksheet

We begin by using the typical Excel specification of a column, e.g., A20:A27, to get the row names
for the data frame from the first column of the spreadsheet. We do this with

rowNs = ws1["A20:A27"]
head(rowNs)

[1] "Corp" "Labor"
[3] "Non Connected" "Trade/Member/Health"
[5] "Cooperative" "Corp w/o Stock"

Notice that we need to know the extent of this information (e.g., it is in the first column, rows 20–27)
in order to extract it.

We next extract the numeric content of the worksheet. We are interested in the region C20:M27,
but we first examine a few of the rows with

ws1["c20:J22"]

C D E F G H I J
20 37879047 NA 47418720 NA 63802180 NA 71109926 NA
21 29885976 NA 30138575 NA 36290315 NA 40937852 NA
22 28233944 NA 37672126 NA 62173339 NA 45864976 NA

We see that columns D, F, H, and J contain NAs as these columns are used only for the first table and
we are working with the second table. We can extract only those columns with numbers as follows:

disburse = ws1[20:27, seq(3,13, by = 2)]
disburse[1:3, 1:4]

C E G I
20 37879047 47418720 63802180 71109926
21 29885976 30138575 36290315 40937852
22 28233944 37672126 62173339 45864976

Here we have used R terminology to specify the extent, i.e., rows 20:27 and columns 3, 5, 7, etc. That
is, the [operator has been extended to accept either the spreadsheet cell terminology or R terminology
for subsetting.

Lastly, we demonstrate how to subset the worksheet by “name” and by logicals. For example, we
can extract the row names with

ws1[20:27, "A"]

and we can extract the years from row 19 with

years = ws1[19, c(rep(FALSE, 2), rep(c(TRUE, FALSE), 6))]
years

C E G I K M
19 2001 2003 2005 2007 2009 2011

516 15 Spreadsheets

Now that we have these three pieces, we complete the creation of the data frame for disbursements
with

row.names(disburse) = rowNs
names(disburse) = paste0("Y", years[1,])

The first row in the spreadsheet in Figure 15.5 has a title that spans multiple columns. Extracting
such titles is the topic of the next section.

15.5 Accessing Highly Formatted Spreadsheets

A spreadsheet or workbook can be very effective for displaying data because it allows us to annotate
the data with additional information such as explanations of variables, provenance of the data, units for
variables, and footnotes about particular values or columns. It also allows us to provide rich headers or
titles for columns in each sheet. Often these will be formatted to span multiple columns. One example
of a complex, richly formatted spreadsheet is c07_tabB1.xlsx that we downloaded from the
Census Bureau at http://blueprod.ssd.census.gov/statab/ccdb/. Similar data can
be found at http://factfinder.census.gov/. In the next example, we demonstrate how to
read into R various parts of the spreadsheet, e.g., footnotes and titles that span multiple columns.

Example 15-4 Working with Detailed Titles and Footnotes in a US Census Spreadsheet

If we view the c07_tabB1.xlsx spreadsheet in Excel (or any spreadsheet application), we can see
how the different parts deviate from the simple tabular displays in the earlier examples in this chapter
(see Figure 15.6). There is a title in cell A1. Cells A3 and A4 contain additional qualifying informa-
tion. The data are in columns A–Q and in rows 10–3209, inclusive. The values are formatted with
commas separating the thousands. The headers span three rows with main titles and subtitles. Addi-
tionally, there are footnotes in the document that we want to recover to include in a data description
(see Figure 15.7). In this example, we demonstrate how to handle the header information and retrieve
the footnotes.

We begin by opening the spreadsheet from within R and accessing the sheet called
"Main file". Rather than first call excelDoc() and then pass the workbook() function the
excelArchive object, we provide workbook() with the file name,

wb = workbook("cc07_tabB1.xlsx")
sh = wb[[1]]

Getting the Header

When we look at the document in a spreadsheet application, we can see that the titles and labels for
the columns are above the data and just below the initial title and notes. The titles are recognizable to
humans, but hard to recognize algorithmically. We have "Metropolitan area code", "FIPS
state and county code" (with a footnote index), "County", "Area, 2000 (square
miles)" and "Population". However for the last two of these, the titles span multiple columns
and there are subtitles that connect these to the specific columns. For instance, for "Area, 2000"
we have Total and Rank. For "Population", we have five columns for four different years—
2006, 2005, 2000 and 1990—and an extra column for footnotes associated with the 1990 values. To
the right of these, we have columns for "Rank" and "Persons per square mile of land
area", again within the general title of "Population", and within these there are subcategories

http://factfinder.census.gov/
http://blueprod.ssd.census.gov/statab/ccdb/

15.5 Accessing Highly Formatted Spreadsheets 517

Figure 15.6: US Census Spreadsheet of County Population. This screenshot captures the display
of c07_tabB1.xlsx in Excel. The original file was downloaded in 2008 as an xls file from
http://blueprod.ssd.census.gov/statab/ccdb/ and converted to a 2007 xlsx for-
mat. While this spreadsheet is no longer available on the Web, similar files can be found at http:
//factfinder2.census.gov.

for different years. It is often simpler to specify the names manually, rather than trying to extract them
programmatically. We will show here how we can examine the content of the sheet to programmati-
cally determine which cells are merged.

The important part of this computation is to determine which titles span multiple columns. These
are “merged cells.” 1 We can find which groups of cells act as one by looking at the <mergeCells>
node in the worksheet’s XML document in the slot content. Then for our sheet,

m = getNodeSet(sh@content, "//x:mergeCells", "x")
m[[1]]

<mergeCells count="14">
<mergeCell ref="H8:H9"/> <mergeCell ref="J8:J9"/>
<mergeCell ref="I8:I9"/> <mergeCell ref="D8:D9"/>
<mergeCell ref="E8:E9"/> <mergeCell ref="C6:C9"/>
<mergeCell ref="B6:B9"/> <mergeCell ref="K8:N8"/>
<mergeCell ref="A6:A9"/> <mergeCell ref="O8:Q8"/>
<mergeCell ref="D6:E7"/> <mergeCell ref="F6:Q7"/>
<mergeCell ref="F8:F9"/> <mergeCell ref="G8:G9"/>

</mergeCells>

1 To create these in Excel, you highlight the cells and then right click and select "Format cells". Within this, we
move to the Alignment tab and click OK.

http://factfinder2.census.gov
http://factfinder2.census.gov
http://blueprod.ssd.census.gov/statab/ccdb/

518 15 Spreadsheets

Note that we need to ensure that there is a <mergeCells> node before we subset m as not all work
sheet documents will have a <mergeCells> element.

From the node

<mergeCell ref="A6:A9"/>

we can see that A6, A7, A8, and A9 are merged together. When we access them in the sheet,

sh["A6:A9"]

[1] "Metro- politan area code" NA
[3] NA NA

we see that A7–A9 are NA. Similarly, the node

<mergeCell ref="D6:E7"/>

indicates that the four cells—D6, D7, E6, and E7—are combined; this region in the sheet corre-
sponds to the "Area, 2000 (square miles)" title. The other <mergeCell> nodes locate
the middle-level titles and lowest-level titles in the spreadsheet.

A possible next step would be to merge the names together to get variable names. One approach is
to repeat the values in each of the merged cells and then collapse these down the columns to get the
complete names, e.g., F6 becomes "Population.2006.July.1".

Finding the Footnotes

The footnotes are located at the bottom of the document (see Figure 15.7). They are identified by the
string "FOOTNOTES" in the first column. To locate them, we first need to find the cell containing
that text. We can do this in various ways. One way is to do this directly with R string comparisons.
We can get the values of each cell in the first column and find which matches "FOOTNOTES":

col1 = sh[,1]
start = which(col1 == "FOOTNOTES") + 1L

We can next find the cell in the column that is blank:

end = start + which(is.na(col1[-(1:start)]))[1] - 1L

Now, we can get the content of each footnote with

fn = col1[start:end]

However, several of the footnotes span multiple rows which we want to group together. The pattern
is that a new footnote starts with a number; otherwise the text is to be combined with the previous
line. Unfortunately, this rule is not quite right. The third footnote has three lines and the third of these
starts with the text "1990", which is a year, not the start of a new footnote. We can use a regular
expression that looks for one or two digits at the start and this would suffice in this circumstance. For
example,

i = grepl("ˆ[0-9]{1,2} ", fn)
footnotes = as.character(by(fn, cumsum(i), paste, collapse = " "))

But, let’s look for a more general and robust approach.
If we have to find the footnotes in a more robust manner that avoids the confusion of the "1900",

then we can look at the formatting of the footnotes. To be more specific, we look at the XML content
of the cells containing a footnote. These will have the footnote number in a separate (sub-)node from
the actual text so we need to find the XML node. Since these cells contain text, and text is stored in a

15.5 Accessing Highly Formatted Spreadsheets 519

Figure 15.7: Footnotes in a US Census Spreadsheet. This screenshot displays the footnotes that appear
at the bottom of spreadsheet c07_tabB1.xlsx (see Figure 15.6 for a screenshot of the top of the
spreadsheet). Some footnotes occupy more than one row, e.g., the third footnote appears in rows 3221
through 3223.

shared string table, we must first get the cell value and then use it to look up the corresponding XML
node in the collection of shared strings. To do this, we first collect the identifiers for the cells we want

ids = sprintf("A%d", start:end)
fnNodes = sh[ids, asNode = TRUE]

Then from the nodes in the sheet, we can find the indices of the shared strings

idx = as.integer(sapply(fnNodes, function(x)
xmlValue(x[["v"]]))) + 1L

idx[1]

368

Note that we add 1 to each index since 0-based counting is used in the Excel document. Now we
can locate the shared string nodes. To get the value, we index with idx. We examine the first one to
determine the pattern for which we are looking,

ss = getSharedStrings(wb, asNode = TRUE)
ss[idx][1]

$si
<si>
<r>
<t>1</t>

520 15 Spreadsheets

</r>
<r>
<rPr>
<sz val="12"/>
<rFont val="Courier New"/>
<family val="3"/>
</rPr>
<t xml:space="preserve">

Federal Information Processing Standards...</t>
</r>

</si>

We see in this case that there are two <r> elements making up the shared string node. The first <r>
contains a <t> element that holds a single number, i.e., the number of the footnote. Basically, any
shared string that has two elements is the start of a footnote:

which(sapply(ss[idx], xmlSize) > 1)

si si si si si si si si si
1 3 5 8 10 12 13 15 17

We can collect the strings for the footnotes in the same manner as before with

footnotes = as.character(by(sapply(ss[idx], xmlValue),
cumsum(sapply(ss[idx], xmlSize) > 1),
paste, collapse = " "))

footnotes = gsub("ˆ[0-9] ", "", footnotes)

For example, the third footnote that potentially caused problems is

footnotes[3]

[1] "The Population Estimates base reflects ...
for underenumeration in certain counties and cities."

15.6 Creating and Updating Spreadsheets

Spreadsheets can be useful for displaying the results from a data analysis or for organizing data for
presentation and interactive display. As an example, when preparing an application for permission to
raise tuition for our graduate program, we were provided an Excel template in which to insert the
requested comparison data. The template standardized the information and its presentation, making
the review process more streamlined and consistent. We want to programmatically read this Excel
document and add our data to the existing cells in the worksheet. Moreover, we wish to generate a
new workbook that contains our report and leave the template untouched as a backup. We may even
want to include an rda file containing the source data and a script file with the code that was used
to create the new xlsx archive. That way, we have a self-contained archive for sharing and for future
program updates. We demonstrate how to carry out these various actions with the Excel template
shown in Figure 15.8.

15.6 Creating and Updating Spreadsheets 521

Figure 15.8: Example Report Template in a Spreadsheet. This screenshot shows a spreadsheet called
reportTemplate.xlsx to be completed for a report. A copy of this template needs to be filled
in with each institution’s name and tuition. We need to add a formula for the average tuition for the
public institutions so that the "Public Average" cells will automatically be computed.

15.6.1 Cloning the Excel Document and Entering Cell Values and Formulae

The workbook in Figure 15.8 displays the spreadsheet that we want to fill in by adding data for
comparison institutions (stored in a data frame). It is a simple report with four columns, where the
rightmost column ("% increase") is calculated by a formula from the cells in columns B and C.
We need to fill in the cells in columns A, B, and C. We also want to add formulas to B14 and C14

522 15 Spreadsheets

to compute averages for those rows that correspond to public institutions. (This formula is not part of
the original template.)

Briefly, content can be added to an existing worksheet via simple assignments such as sh[i, j]
= "some text". The row index i can be numeric and the column index can be numeric or the
name of a column, e.g., "B", "AC". Alternatively, Excel syntax can be used, e.g., sh["A3"] = 0.
We can also add more complex objects to the sheet. A vector can be assigned to the worksheet along
either a horizontal or vertical axis, e.g., sh["A2:E2"] = 1:5 sets the cells A2, B2, C2, D2, and
E2 to 1, 2, 3, 4, 5, respectively. Similarly, sh["A2:A6"] = 1:5 sets the cells A2, A3, ..., A6. For
a two-dimensional object on the right-hand side of the assignment, a rectangular collection of cells is
populated. For example, sh["C6:E7"] = matrix(1:6, nrow = 3) sets C6, D6, E6 to 1, 3,
5, respectively and C7, D7, E7 to 2, 4, 6, respectively. When we insert data, we have the choice of
updating only the XML document in memory, or we can also add the updated XML document to the
xslx archive. This is controlled through the update attribute, which takes a logical value indicating
whether to update the archive or not.

Example 15-5 Generating an Excel Report from a Template

Rather than change the template document, we create a clone for our actual report and modify that.
The function excelDoc() creates an Excel document, when the name of the xlsx file that we pass
to it is not found and the create argument is TRUE. In this case, the function creates a new, generic
document that has one empty worksheet. However, if we also provide the name of a spreadsheet in
the function’s template argument, then a copy of that spreadsheet is used as the new document. For
our report, we clone the report template and then access the worksheet we want to fill in as follows:

report = excelDoc("myReport.xlsx", create = TRUE,
template = "reportTemplate.xlsx")

reportWB = workbook(report)
sh = getSheet(reportWB, which = 1)[[1]]

Next we load the comparison data that will be added to the spreadsheet to create the report:

load("comparisons.rda")
head(comparisons)

Institution Pr Time Res11 Res12 NonRes11 NonRes12
1 U Penn Y 2.000 59503 62478 59503 62478
2 USC Y 1.500 43871 46065 43871 46065
3 Cornell Y 1.500 43304 45469 43304 45469
4 CMU Y 1.500 37185 39044 37185 39044
5 Stanford Y 1.125 43953 46151 43953 46151
6 Columbia Y 1.000 44180 46389 44180 46389

In the report, we want to list the institutions in the order of their 2011 resident tuition (in Res11).
We determine this ordering and pull out Berkeley’s values, as follows:

comparisons = comparisons[order(comparisons$Res11,
decreasing=TRUE),]

whichB = which(comparisons$Institution == "Berkeley")
berkeley = comparisons[whichB,]
comparisons = comparisons[- whichB,]

We begin by filling in column A with institution name,

15.6 Creating and Updating Spreadsheets 523

sh[3:13, 1] = comparisons$Institution
sh[15, 1] = berkeley$Institution

Next we add the tuition values:

sh["B3:B13"] = comparisons$Res11
sh["C3:C13"] = comparisons$Res12
sh["B15:C15"] = berkeley[1, c("Res11", "Res12")]

The last step is to add the formulas that compute averages for the public institutions. Different from
putting in values, the formula allows the recipient of the spreadsheet to update the data and recalculate.

The function excelFormula() takes a formula as a string. Below, we determine the rows in the
worksheet to be averaged, and construct the formula as a string,

whichPu = which(comparisons$Pr == "N")
formulaStr = paste0("=AVERAGE(", paste("B", (2 + whichPu),

sep = "", collapse = ","),
")")

Now that we have constructed the formula, we call excelFormula() to assign it to the appropriate cell
in the worksheet:

sh["B14"] = excelFormula(formulaStr)

We similarly construct the formula for cell C4. The same additions can be made to the nonresident
part of the worksheet, which we also do not show here.

The changes that we have made to the spreadsheet have all been made in memory. The actual xlsx

archive has not been updated because the default assignment is to update the parsed document and to
not write the changes to the archive. Our final step then is to update the zip file. We call update(),
passing it the worksheet:

update(sh)

Zip Archive: myReport.xlsx
[1] "[Content_Types].xml" "_rels/.rels" ...
[9] "docProps/core.xml" "xl/calcChain.xml"

[11] "docProps/app.xml"

15.6.2 Working with Styles

In addition to adding content to a worksheet, we can also format the content for display. We can do
this for cells or groups of cells and rows and columns by explicitly specifying the appearance of each
cell. However, it is best to use an extra layer of abstraction where we assign one or more cells a style
that we have separately defined. Then, if we want to update the cell’s appearance, we need only make
changes to the style definition to have all the associated cells change their appearance. This is one of
the benefits of using centralized styles.

We can either define a new style with createStyle() or access the styles in the Excel archive with
getStyles(). Also, getDocStyles() allows us to work directly with the styles in the XML document,

524 15 Spreadsheets

rather than using the R representations that getStyles() returns. Once a style has been defined, we can
use setCellStyle() to assign that style to a cell. We show how in the next example.

Example 15-6 Adding Styles to Cells for an Excel Report

To make it easier to distinguish between public and private universities in the report created in Exam-
ple 15-5 (page 522), we use different color fonts for the institution name: green for public and blue
for private. We create two new styles for this purpose as follows:

ft = Font(sz=12L, face="b")
newStPu = createStyle(sh, font = ft, fg = "00FF00")
newStPr = createStyle(sh, font = ft, fg = "0000FF")

Next we associate each style with the appropriate rows in the worksheet. The variables puRows and
prRows determine which rows in the worksheet correspond to the public and private institutions. We
determined them based on the R variable Pr in comparisons. We assign the two styles to the cells
as follows:

instPu = paste("A", puRows, sep = "")
instPr = paste("A", prRows, sep = "")
instNames = cells(sh)
setCellStyle(instNames[instPu], newStPu)
setCellStyle(instNames[instPr], newStPr)

Since we did not supply the update argument when we called setCellStyle(), we have taken the default
action for this function. This is to update the archive with each modification so there is no need to call
update() at this point.

15.6.3 Inserting Other Content into the Archive

We have seen that the archive is a collection of files, and we also can store additional files in the
archive. The spreadsheet applications will ignore them, but carry them around in the archive for us to
use. Take our report for example. We can add to the archive an rda file that contains the data frame
that was used to produce the report. This addition makes the archive a self-contained document. The
data frame contains all the necessary information to fill in and style the cells, so by storing it in the
archive, the archive has the data needed to reproduce or update the report.

The RExcelXML package uses the Rcompression package to access the files within the xlsx

archive. We can use it for the same purpose, e.g., to access and add an extra file to an archive. In
the following example, we demonstrate two ways to do this. The first uses the excelDoc() function
and [available in RExcelXML. The second approach directly uses the zipArchive() function in
Rcompression; the function on which the excelDoc() relies.

Example 15-7 Adding an rda File to an Excel Archive

We want to add the serialized data frame comparisons to our report myReport.xlsx, which was
created in Example 15-5 (page 522). We begin by opening the archive with the following call to
excelDoc():

report = excelDoc("myReport.xlsx")

Then we serialize the comparisons object to a raw vector and add it to report with:

15.7 Using Relationship and Association Information in the Archive 525

report[["comparisons.rda"]] = serialize(comparisons, NULL)

We can check to see that the rda file is indeed in the archive:

length(report)

[1] 12

names(report)[12]

[1] "comparisons.rda"

Alternatively, we can simply use the zipArchive() function in the Rcompression package to add
the serialized data to the Excel archive with

library(Rcompression)
z = zipArchive("myReport.xlsx")
z[["comparisons.rda"]] = serialize(comparisons, NULL)

Finally, to restore the data frame, we extract it from the archive as a raw vector and use unserial-
ize() as shown here:

rw = report[["comparisons.rda", mode = "raw"]]
head(unserialize(rw))

Institution Pr Time Res11 Res12 NonRes11 NonRes12
1 U Penn Y 2.000 59503 62478 59503 62478
2 USC Y 1.500 43871 46065 43871 46065
3 Cornell Y 1.500 43304 45469 43304 45469
4 CMU Y 1.500 37185 39044 37185 39044
5 Stanford Y 1.125 43953 46151 43953 46151
6 Columbia Y 1.000 44180 46389 44180 46389

15.7 Using Relationship and Association Information in the Archive

When we add a worksheet to a workbook or an image or chart to a worksheet, the relationships be-
tween files in the archive change. This can be complicated and error-prone so if we want to build
functions to make these additions, we need an understanding of the relationships between files in
the archive. For example, the workbook.xml file keeps track of the worksheets, global settings,
and other shared components of the workbook. However, neither the worksheets nor their filenames
are embedded in this file. There is an extra layer of indirection used to connect sheet1.xml to
workbook1.xml. A rels file in the archive is used to tie the pieces of the workbook together,
amongst other relationships. Specifically, xl/_rels/workbook.xml.rels contains informa-
tion to connect the worksheets to the workbook.

We provide two examples in this section demonstrating how to add a worksheet to a workbook and
an image to a worksheet. These use different rels files in the archive. We use these examples to outline

526 15 Spreadsheets

our approach of leveraging XML tools to parse and build XML files for applications. The functions
addWorksheet() and addImage() formalize these examples into more general functionality. We note
that these functions are not polished; they merely offer a starting point for this functionality. The first
example explains the basic approach needed for working directly with XML files in the Office Open
XML archive, in contrast to other approaches that interface with a toolkit from another language, e.g.,
Java , for providing access from within R to the contents of a xlsx file.

We saw in Section 15.3, that workbook1.xml has a <sheets> element with two <sheet>
children, one for each worksheet in the document. Each of these <sheet> elements has a name
attribute that provides the label to display on the tab in the Excel user interface, "Sheet1" and
"Images", respectively, and each has a sheetId attribute, which is used for ordering the sheets in
the display. The <sheet> node does not contain the file name that holds the sheet contents, e.g.,
sheet1.xml; instead, the relationship identifier, r:id on <sheet>, locates this file.

For example, for the sheet labeled "Images", the r:id is "rId2". We look in the file called
xl/_rels/workbook.xml.rels (shown below) for the <Relationship> element that has
an Id attribute value of "rId2". The value of this element’s Target attribute provides the file name
for the sheet. In this case, it is xl/worksheets/sheet2.xml (file names are relative to xl/).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships xmlns="http://.../relationships">
<Relationship Type="http://...calcChain"

Id="rId6" Target="calcChain.xml"/>
<Relationship Type="http://...styles"

Id="rId4" Target="styles.xml"/>
<Relationship Type="http://...worksheet"

Id="rId1" Target="worksheets/sheet1.xml"/>
<Relationship Type="http://...worksheet"

Id="rId2" Target="worksheets/sheet2.xml"/>
<Relationship Type="http://...theme"

Id="rId3"Target="theme/theme1.xml"/>
<Relationship Type="http://...sharedStrings"

Id="rId5" Target="sharedStrings.xml"/>
</Relationships>

Figure 15.9 provides a diagram of the layout of the part of the archive that contains the informa-
tion about the "Images" sheet. In addition to the rels and workbook1.xml files, the file called
[Content_Types].xml provides information on the kind of content in each of the files in the
archive, and app.xml within docProps/ has information pertaining to the layout of the GUI, e.g.,
it indicates the spreadsheet has two pages.

Example 15-8 Adding a Worksheet to a Workbook

In this example we demonstrate how to add a worksheet to a spreadsheet, including updating the
subsidiary XML and rels files in the archive. Our basic approach is to use a template worksheet, i.e.,
a blank sheet.xml that has the structure defined by Office Open XML for sheets. In addition to
adding this worksheet to the archive, we must also update the auxiliary files as shown in Figure 15.9.
That is, we follow the steps below.

• Add a <Relationship> element to workbook.xml.rels. This element has a unique iden-
tifier in its Id attribute and file name of the worksheet in its Target attribute.

• Add a <sheet> element to workbook.xml, which has an r:id that matches the identifier in Id
on the newly created <Relationship> node in the rels file.

15.7 Using Relationship and Association Information in the Archive 527

xl/

worksheets/_rels/

sheet1.xml sheet2.xml

workbook.xml

<sheet
name = "Images"
sheetId = "2"
r:id = "rId2">

workbook.xml.rels

<Relationship
Id = "rId2"
Target =

"worksheets/
sheet2.xml>

[Content_Types].xml

<Override PartName
= "/xl/worksheets/
sheet2.xml" ... />

app.xml

<HeadingPairs>
 ... size = "2"

<TitleOfParts>
... Images

docProps/

Figure 15.9: Diagram of the Interconnections between Files in an Excel Archive. This diagram shows
the connections between various XML and rels files in the Excel Archive. For example, rather than
workbook1.xml containing the names of the worksheet files, e.g., worksheets/sheet2.xml,
it contains a reference to a <Relationship> node in a rels file that holds the worksheet file name.

• Update app.xml to indicate the new size of the workbook and related properties.
• Update [Content_Types].xml with information about the content of the new worksheet

file.
• Insert a generic worksheet into the archive with the file name given in the Target attribute of the

new <Relationship> element.

We carry out each of these steps here. After accessing the archive, we determine how many sheets
are already in the archive. The following code does this and then creates the new sheet’s file name
based on this information:

ed = excelDoc("testAddWS.xlsx")
num = length(grep("xl/worksheets/sheet.*\\.xml", names(ed))) + 1
filename = sprintf("xl/worksheets/sheet%d.xml", num)

We must enter this file name into the rels file, but first we need to determine a unique identifier to
associate with the file name. We extract all <Relationship> nodes from the rels file and construct
a unique identifier based on the number of relationships already present. Here we use tools in XML,
e.g., xpathSApply() to parse and identify node sets:

rels = ed[["xl/_rels/workbook.xml.rels"]]

schemas = "http://schemas.../relationships"
namespace = c(x = schemas)
eids = xpathSApply(rels, "//x:Relationship", xmlGetAttr, "Id",

namespaces = namespace)
relId = sprintf("rId%d", length(eids) + 1L)
relId

[1] "rId7"

528 15 Spreadsheets

Now that we have constructed the unique id and file name for the new worksheet, we can add a
<Relationship> node to the rels document with this information. We use newXMLNode() in
XML to do this as follows:

newXMLNode(
"Relationship",
attrs = c(Id = relId,

Type = "http://schemas.../worksheet",
Target = sprintf("worksheets/%s", basename(filename))),

parent = xmlRoot(rels))

<Relationship Id="rId7"
Type="http://schemas.../worksheet"
Target="worksheets/sheet3.xml"/>

Next, we update the workbook.xml file to include a <sheet> node that points to the
<Relationship> element we just added to the rels file. For convenience, we again use num, the
number of sheets, in the sheet title. We do this with

name = paste("New Sheet", num)
main = "http://schemas.../spreadsheetml/2006/main"
wbook = ed[["xl/workbook.xml"]]
sheets = getNodeSet(wbook, "//x:sheets", c(x = main))
newXMLNode("sheet",

attrs = c(name = name, sheetId = num, "r:id" = relId),
parent = sheets[[1]])

<sheet name="New Sheet 3" sheetId="3" r:id="rId7"/>

The last files that need updating are app.xml and [Content_Types].xml. We do not provide
the code here but instead refer the reader to the addWorksheet() function in RExcelXML for these
final details.

This approach has been generalized and encapsulated into the function addWorksheet(). It takes
the Excel archive and sheet title as arguments. The following call performs the task of adding a new
sheet to a workbook for us:

ed = excelDoc("testAddWS.xlsx")
addWorksheet(ed, name="New Sheet")

Functions similar to addWorksheet() have been developed to add image files and Excel charts to
worksheets. As with the relationship between worksheets and workbooks, the XML describing the
image or chart is not directly contained or referred to in the worksheet. Relationship files are used to
connect the image to the sheet that displays it. Figure 15.10 provides a visual representation of the
relationships for the image displayed in "Sheet1" of the worksheet shown in Figure 15.4.

These relationships are slightly more complex than those for sheets because they involve
two files—the PNG file containing the actual image and an XML file called xl/drawings/
drawing1.xml, which holds information about the placement, size, and shape of the images in
the sheet. Following is a snippet of this file:

15.7 Using Relationship and Association Information in the Archive 529

xl/

Worksheets/ drawings/ media/

sheet1.xml

<drawing
r:id="rId1">

_rels/

sheet1.xml.rels

<Relationship
Id="rId1"

Target="../
drawings/

drawing1.xml>

drawing1.xml

<a:blip
r:embed="rId1">

_rels/

drawing1.xml.rels

<Relationship
Id="rId1"
Target="../media/
image1.png>

image1.png

Figure 15.10: Diagram of File Relationships for an Image in a Worksheet. The hierarchy dis-
played here shows the connections between the files pertaining to the image in the worksheet
shown in Figure 15.4. For example, rather than sheet1.xml containing the name of the draw-
ing file (drawings/drawing1.xml), it contains a reference to a <Relationship> that holds
the target file name. Similarly, the name of the image file is determined via the relationship in
drawings/_rels/drawing1.xml.rels that connects drawing1.xml to image1.png.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xdr:wsDr xmlns:xdr="http://...spreadsheetDrawing"

xmlns:a="http://...drawingml/2006/main">
<xdr:twoCellAnchor editAs="oneCell">
<xdr:from>
<xdr:col>2</xdr:col> <xdr:colOff>114300</xdr:colOff>
<xdr:row>4</xdr:row> <xdr:rowOff>139700</xdr:rowOff>
</xdr:from>
<xdr:to>
<xdr:col>3</xdr:col> <xdr:colOff>177800</xdr:colOff>
<xdr:row>13</xdr:row> <xdr:rowOff>12700</xdr:rowOff>
</xdr:to>
<xdr:pic>
...
<xdr:blipFill>
<a:blip xmlns:r="http://...relationships" r:embed="rId1">

...

The <twoCellAnchor> element contains <from>, <to>, and <pic> elements. The <from>
and <to> elements provide the location of the image. These have <col>, <colOff>, <row>, and
<rowOff> children, where <col> and <row> are the (zero-based) indices of the column and row.
The <colOff> and <rowOff> elements are in English metric units (EMU) and they are offsets
measured from the edge of the specified row or column. (An EMU is 1/360,000 of a centimeter.) The

530 15 Spreadsheets

<pic> element holds the information about the image file. The <blip> node contains a relationship
ID that leads to the the file name. Again, rather than explicitly containing the file name, this element
refers to an identifier, which we look up in the rels file associated with this document, i.e., xl/
drawings/_rels/drawing1.xml.rels, to obtain the name of the image file: xl/media/
image1.png.

The addImage() function in RExcelXML handles the creation and editing of these various XML
files much the same way as we did when we added a sheet to a workbook in Example 15-8 (page 526).
We next provide an example of how to use this intermediate-level function.

Example 15-9 Adding an Image to a Worksheet

We continue with the report created in Example 15-5 (page 522) and add an R plot of the data to the
worksheet. While the format of the table in the report was prescribed by the template, we wanted to
add an alternative visual comparison of the tuition values. In this example, we create a dot plot in R
as a PNG file and add that image to the worksheet (see Figure 15.11).

Figure 15.11: Completed Excel Report Template with Dot Plot. This screenshot shows a completed
report. Starting from the blank template shown in Figure 15.8, we filled in cells with values from a
data frame, added styles to some of the cells, inserted formulae into B14 and C14 to compute averages,
and included a dot plot made in R. Also, “hidden” in the xlsx archive is the rda file used to complete
the report.

We use the data from comparisons to create the bar chart. The colors of the dots match the text
color used in the table to distinguish private and public institutions.

cI = comparisons[order(comparisons$Res12, decreasing=TRUE),]
png("TuitionDotChart.png", width=720)
dotchart(cI$Res12, pch=19, col=c("green","blue")[cI$Pr],

labels = cI$Institution, xlab = "2012 Resident Tuition")
dev.off()

15.8 Google Docs and Open Office Spreadsheets 531

The dot plot has been saved as a PNG file, which we now add to the worksheet.
We read the Excel archive and access the spreadsheet with the usual commands:

reportWB = workbook("myReport.xlsx")
sh = getSheet(reportWB, 1)[[1]]

The addImage() function handles all of the details required to add an image to a worksheet. It updates
the appropriate rels files to make the connection between the worksheet and the image; creates a
drawing.xml file containing the image-specific information such as where to place the image in
the sheet; and inserts the PNG file in the archive. The function takes as input, the worksheet in which
to place the image, the name of the image file, and the top left and lower right corners where the image
will be placed.

addImage(sh, "TuitionDotChart.png", from = c(4, 6), to = c(25, 12))

The function also has an update argument with a default value of TRUE so the archive has been
updated with this new information.

15.8 Google Docs and Open Office Spreadsheets

We have primarily focused in this chapter on Excel spreadsheets; however, the same functionality can
be developed for other spreadsheet software that follow the Office Open XML standard. The R pack-
ages RGoogleDocs and ROpenOffice are starting points for handling Google Docs and Open Office
files, respectively. These packages are not as complete as RExcelXML, and the authors invite con-
tributions that will flesh out the functionality. The following example, highlights the similarities and
differences in functionality between the addWorksheet() functions in RExcelXML and RGoogle-
Docs.

Example 15-10 Inserting a Worksheet into a Google Docs Spreadsheet

Google Docs are dynamic documents that are accessible via the Internet. They can be shared with
others and edited simultaneously. They need to be accessed with an Internet connection, login, and
password. This access can be handled programmatically within R. The following two-step process is
described in more detail in Example 10-5. Briefly, we first authenticate by shipping our user id and
password with the following call to getGoogleAuth():

auth = getGoogleAuth("deb.nolan@gmail.com", "my password", "wise")

Note that to access a spreadsheet, we must request “wise” service from Google. Once authenticated,
we get the connection with the following call to the getGoogleDocsConnection() function:

con = getGoogleDocsConnection(auth)

Now that we have established a connection, we use the getDocs() function to retrieve a list of available
documents from the Google Docs account. Given the “wise” constraint, the call below only retrieves
the spreadsheets from the account:

ssdocs = getDocs(con)

Although we needed application-specific code to first access the GoogleDocs spreadsheet, after
we obtain that access, the functions to operate on the spreadsheet are essentially identical to those

532 15 Spreadsheets

Figure 15.12: Example Google Docs Spreadsheet. This screenshot shows a Google Docs spreadsheet
called TestJan3. It has two sheets, "Sheet1" and "NewSheet". The latter was added to the
spreadsheet via a call to addWorksheet() in the RGoogleDocs package.

in RExcelXML. For example, we can add a worksheet to a spreadsheet by calling the function ad-
dWorksheet(), which has a signature very similar to addWorksheet() in RExcelXML:

addWorksheet(ssdocs[[1]], con, title = "NewSheet")

One key difference is that we must pass the connection with each of our function calls. The new
worksheet is shown in Figure 15.12.

15.9 Possible Enhancements and Extensions

Adding Charts to Worksheets

The XML documents for charts can be reused and shared among spreadsheet, presentation, and word
processing applications. Currently, RExcelXML has basic functionality to add a bar chart to a spread-

15.10 Summary of Functions in RExcelXML 533

sheet. Similar to addWorksheet(), the addChart() function uses a template XML document as a
starting point. The function adds this template to the Excel archive and handles updating the relation-
ships between files. The addChart() function is a proof of concept, and can be extended to include
other chart types.

Other OOXML-Formatted Office Suites

As mentioned in Section 15.8, the R packages for handling Google Docs (RGoogleDocs) and Open
Office documents (ROpenOffice) are in the preliminary stages of development. The approach de-
scribed in this chapter with RExcelXML can be extended in a straightforward manner to these other
implementations of the Office Open XML standard. The authors invite contributions that will flesh
out the functionality of these packages.

Word Processing and Presentation Documents

Again, while the focus in this chapter has been on creating and manipulating Excel documents, Office
Open XML includes mark-up for word processing documents (WordprocessingML) and presentations
(PresentationML) in addition to SpreadsheetML. The same general approach to using the XML pack-
age with XML files carries over to creating and modifying Microsoft Word and presentation files,
e.g., RWordXML offers a starting point for creating this interface.

15.10 Summary of Functions in RExcelXML

Understanding the SpreadsheetML vocabulary and structure helps us develop functionality that pro-
vides easy access to cell values, formula, and styles. These functions offer a convenient means for
working with various parts of the xlsx archive. This approach enables the programmer to extend and
customize the interface to the spreadsheet, workbook, and Excel document. Many of these functions
are demonstrated via examples in Sections 15.4 and 15.5. We provide below brief summaries of the
functions available in RExcelXML.

read.xlsx() Retrieve the contents of the worksheets in an xlsx document. The contents are represented
as a list of data frames, one for each worksheet. This function extracts the contents for simple
worksheets (which specifies which sheets in the workbook to extract) and can skip rows (skip),
convert a header to variable names (header), and automatically identify the class of the content of
each column.

excelDoc() Retrieve the ZIP archive of an xlsx document. This function provides access to all of the
files within the archive. It can also create (when create is TRUE) a new Excel document object
from a template (template), which can be supplied in the function call.

workbook() Create a Workbook object from an excelDoc or a file name. The Workbook pro-
vides access to its worksheets through its [[and [methods. The worksheets are Worksheet
objects. See [[and [function descriptions below for how to access and set cells in the worksheet.

getSheet() Retrieve worksheets from a Workbook object or an ExcelArchive object. The return
value is a list of Worksheet objects. The contents of the worksheet can be accessed with [and
cells().

cells() Return a list of all XML cell nodes from a Worksheet object. An XPath expression can be
provided (in the xquery parameter) to restrict the set of nodes returned.

[[and [Subset worksheets in a workbook and cells in a worksheet. The cells can be subsetted via
Excel-style or R -style indexing or a mixture of both, e.g., sheet["A3:B4"], sheet[3:4,
1:2] and sheet[3:4, c("A", "B")] are all equivalent. The update argument controls
whether the zip archive or the XML file only will be modified, e.g.,

534 15 Spreadsheets

sheet["A3:B4", update = FALSE] = 1:4

does not update the archive.
update() Update the contents to an xlsx file (the zip archive) by adding or overwriting existing

entries. For efficiency, many of the functions that create and change the contents of a workbook
have an update argument to control when the archive is updated. This includes, [[and [.

getSharedStrings() Retrieve as a character vector the shared strings of a workbook or worksheet.
getStyles() Retrieve the shared styles for a workbook or worksheet. The return value will be an R

representation of the styles.
getDocStyles() Retrieve the XML<styleSheet> for the ExcelArchive. The return value is

an XMLInternalDocument rather than an R representation of the styles.
createStyle() Define a new style for a cell. The foreground color (fg), fill color (fill), font (font),

alignment (halign and valign), and border (border), among other styles can be specified.
setCellStyle() Set the style for a cell using an existing style.
excelFormula() Construct from a string an Excel formula that can be added to a cell.
addWorksheet() Add an empty worksheet to an Excel archive with the title provided in name.
addImage() Add an image file, e.g., PNG, PDF , to a region of a worksheet. Specify the extent of the

image with from and to.
addChart() Construct an Excel chart and add it to a region of a worksheet.

15.11 Further Reading

The official documentation for OOXML is voluminous, but Part 3 of the documentation provides a
primer with examples and diagrams [4]. Also, [11] provides a brief overview to the documentation
and a discussion of the goals and properties of the standard. Reference [26] offers a brief introduction
to the basics of OOXML.

References

[1] Apache Software Foundation. OpenOffice: The free and open productivity suite; 3.0 New Fea-
tures. http://www.openoffice.org/dev_docs/features/3.0/, 2011.

[2] Apple, Inc. Numbers for iOS: Supported file formats. http://support.apple.com/kb/
HT4642, 2011.

[3] Adrian Dragulescu. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files.
http://cran.r-project.org/package=xlsx, 2011. R package version 0.5.0.

[4] ECMA International. Ecma Office Open XML file formats standard, Part 3:
Primer. http://www.ecma-international.org/news/TC45_current_work/
TC45_available_docs.htm, 2011.

[5] Federal Election Commission. Top 50 house incumbents by contributions from PACs and
other committees, January 1, 2011 – June 30, 2011. http://www.fec.gov/press/
summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx, 2011.

[6] KDE e.V. KOffice: Standards-compliant office and productivity applications. http://
userbase.kde.org/KOffice, 2011.

[7] LibreOffice; The Document Foundation. Calc: The LibreOffice spreadsheet program. http:
//www.libreoffice.org/features/calc/, 2011.

http://www.libreoffice.org/features/calc/
http://www.libreoffice.org/features/calc/
http://userbase.kde.org/KOffice
http://userbase.kde.org/KOffice
http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx
http://www.fec.gov/press/summaries/2012/PAC/6mnth/1pac6mosummary11.xlsx
http://www.ecma-international.org/news/TC45_current_work/TC45_available_docs.htm
http://www.ecma-international.org/news/TC45_current_work/TC45_available_docs.htm
http://cran.r-project.org/package=xlsx
http://support.apple.com/kb/HT4642
http://support.apple.com/kb/HT4642
http://www.openoffice.org/dev_docs/features/3.0/

References 535

[8] B.D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel
2000 and Excel XP. Computational Statistics & Data Analysis, 40:713–721, 2002.

[9] B.D. McCullough and B. Wilson. On the accuracy of statistical procedures in Microsoft Excel
2007. Computational Statistics & Data Analysis, 52:4570–4578, 2008.

[10] Eric Neuwirth. RExcel: Interface between R and Excel. http://cran.r-project.
org/package=RExcel, 2011. R package version 3.2.6.

[11] Tom Ngo. Office Open XML overview. http://www.ecma-international.org/
news/TC45_current_work/OpenXMLWhitePaper.pdf, 2005.

[12] R Core Team. R Data Import/Export, 2012. http://cran.r-project.org/doc/
manuals/R-data.html.

[13] Frank Rice. Introducing the Office (2007) Open XML file formats. http://msdn.
microsoft.com/en-us/library/aa338205(v=office.12).aspx, 2006.

[14] Brian Ripley. RODBC: ODBC database access. http://cran.r-project.org/
package=RODBC, 2011. R package version 1.3-3.

[15] Marc Schwartz. WriteXLS: Cross-platform PERL -based R function to create Excel 2003
(XLS) files . http://cran.r-project.org/package=WriteXLS, 2011. R package
version 2.3.0.

[16] Miria Solutions. XLConnect: Manipulate Excel files from R . http://cran.r-
project.org/package=XLConnect, 2011. R package version 0.2-3.

[17] Hans-Peter Suter. xlsReadWrite: Natively read and write Excel files. http://cran.r-
project.org/package=xlsReadWrite, 2011. R package version 1.5-4.

[18] Duncan Temple Lang. RExcelXML: Tools for working with Excel XML documents. http:
//www.omegahat.org/RExcelXML, 2011. R package version 0.5-0.

[19] Duncan Temple Lang. ROOXML: Simple tools for Open Office XML documents. http:
//www.omegahat.org/ROOXML, 2011.

[20] Duncan Temple Lang. ROpenOffice: Basic reading of Open Office spreadsheets and workbooks.
http://www.omegahat.org/ROpenOffice, 2011. R package version 0.4-1.

[21] Duncan Temple Lang. XML: Tools for parsing and generating XML within R and S-PLUS .
http://www.omegahat.org/RSXML, 2011. R package version 3.4.

[22] Duncan Temple Lang. Rcompression: In-memory decompression for GNU zip and bzip2 for-
mats. http://www.omegahat.org/Rcompression, 2012. R package version 0.94-0.

[23] Duncan Temple Lang. RGoogleDocs: Primitive interface to Google Documents from R . http:
//www.omegahat.org/RGoogleDocs, 2012. R package version 0.7-0.

[24] Duncan Temple Lang and Gabriel Becker. RWordXML: Tools for Open Office word process-
ing XML documents. http://www.omegahat.org/RWordXML, 2010. R package ver-
sion 0.1-0.

[25] Guido van Steen. dataframes2xls: Write data frames to xls files. http://cran.r-
project.org/package=dataframes2xls, 2011. R package version 0.4.5.

[26] Wouter van Vugt. Open XML : The markup explained. http://openxmldeveloper.
org/blog/b/openxmldeveloper/archive/2007/08/13/1970.aspx, 2007.

[27] Gregory Warnes. gdata: Various R programming tools for data manipulation. http://
cran.r-project.org/package=gdata, 2011. R package version 2.12.0.

[28] World Bank Group. WDR2011 dataset. http://databank.worldbank.org/
databank/download/WDR2011Dataset.xlsx, 2011.

[29] World Bank Group. World development report 2011 on conflict, security and development.
http://data.worldbank.org/data-catalog/wdr2011, 2011.

http://data.worldbank.org/data-catalog/wdr2011
http://databank.worldbank.org/databank/download/WDR2011 Dataset.xlsx
http://databank.worldbank.org/databank/download/WDR2011 Dataset.xlsx
http://cran.r-project.org/package=gdata
http://cran.r-project.org/package=gdata
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2007/08/13/1970.aspx
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2007/08/13/1970.aspx
http://cran.r-project.org/package=dataframes2xls
http://cran.r-project.org/package=dataframes2xls
http://www.omegahat.org/RWordXML
http://www.omegahat.org/RGoogleDocs
http://www.omegahat.org/RGoogleDocs
http://www.omegahat.org/Rcompression
http://www.omegahat.org/RSXML
http://www.omegahat.org/ROpenOffice
http://www.omegahat.org/ROOXML
http://www.omegahat.org/ROOXML
http://www.omegahat.org/RExcelXML
http://www.omegahat.org/RExcelXML
http://cran.r-project.org/package=xlsReadWrite
http://cran.r-project.org/package=xlsReadWrite
http://cran.r-project.org/package=XLConnect
http://cran.r-project.org/package=XLConnect
http://cran.r-project.org/package=WriteXLS
http://cran.r-project.org/package=RODBC
http://cran.r-project.org/package=RODBC
http://msdn.microsoft.com/en-us/library/aa338205(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/aa338205(v=office.12).aspx
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://www.ecma-international.org/news/TC45_current_work/OpenXML White Paper.pdf
http://www.ecma-international.org/news/TC45_current_work/OpenXML White Paper.pdf
http://cran.r-project.org/package=RExcel
http://cran.r-project.org/package=RExcel

	Chapter 15 Spreadsheets
	15.1 Introduction: A Background in Spreadsheets
	15.2 Simple Spreadsheets
	15.2.1 Extracting a Spreadsheet into a Data Frame
	15.2.2 Extracting Multiple Sheets from a Workbook

	15.3 Office Open XML
	15.3.1 The xlsx Archive
	15.3.2 The Workbook
	15.3.3 Cells and Worksheets

	15.4 Intermediate-Level Functions for Extracting Subsets of a Worksheet
	15.4.1 The Excel Archive in R
	15.4.2 The Excel Workbook in R
	15.4.3 The Excel Worksheet in R

	15.5 Accessing Highly Formatted Spreadsheets
	15.6 Creating and Updating Spreadsheets
	15.6.1 Cloning the Excel Document and Entering Cell Values and Formulae
	15.6.2 Working with Styles
	15.6.3 Inserting Other Content into the Archive

	15.7 Using Relationship and Association Information in the Archive
	15.8 Google Docs and Open Office Spreadsheets
	15.9 Possible Enhancements and Extensions
	15.10 Summary of Functions in RExcelXML
	15.11 Further Reading
	References

