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    Abstract     The progression of a tumor cell mass beyond 2 mm is critically  dependent 
on neoangiogenesis. Angiogenic factors secreted by tumor cells, infi ltrating macro-
phages, and stromal cells aggressively promote proliferation and migration of 
 endothelial cells. The nascent primitive vasculatures are usually morphologically 
and functionally abnormal due to several features such as the lack of a vascular 
smooth muscle cell layer, abrupt change of the blood vessel diameter, tortuosity, and 
leakiness. Those characteristics which alter the blood fl ow and the transport of mol-
ecules in tumors led to the discovery of the enhanced permeability and retention 
(EPR) of nanosize molecules in tumor tissues. Following its discovery, various anti-
cancer nanoconstructs have been developed with the EPR effect as a central mecha-
nism for tumor targeting. However, the development of these nanodrugs has been 
hampered by a slow progress towards the clinic. Only nine nanomedicines have 
been approved for anticancer treatment for the last 26 years. In this chapter, we 
discuss various aspects that may explain the limited transition for an effi cient 
 anticancer nanomedicine. The specifi city of the tumor vasculature, the discrepancy 
in tumor biology, the role of animal tumor models, and the physicochemical 
 characteristics of nanoconstructs are closely examined. This chapter provides new 
considerations for successful development of EPR-based anticancer 
nanomedicine.  
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  Abbreviations 

   EPR    Enhanced permeability and retention   
  VEGF    Vascular endothelial growth factor   
  VEGFR    Vascular endothelial growth factor receptor   
  bFGF    Basic fi broblast growth factor   
  TGF    Tumor growth factor   
  MMP    Matrix metalloproteinases   
  NO    Nitric oxide   
  EBD    Evans blue dye   
  SMANCS    Styrene co-maleic acid conjugated neocarzinostatin   
  TDT    Tumor doubling time   
  HPMA     N -(2-hydroxypropyl)methacrylamide   
  RES    Reticuloendothelial system   

         Introduction 

 Angiogenesis is fundamental for many biological processes such as development, 
reproduction, and wound healing and has been implicated in the progression of a 
variety of diseases including diabetic retinopathy, rheumatoid arthritis, age-related 
macular degeneration (AMD), psoriasis, and tumor progression [ 1 – 4 ]. The early 
stages of the tumor development are characterized by the aberrant activation of 
oncogenes,  inhibition of tumors suppressor genes, and modifi cations of genes that 
directly and indirectly control cell proliferation, all as a result of the accumulation 
of discrete genetic changes and epigenetics alterations [ 5 ]. Once the tumor has 
reached a certain size, the tumor propagation and progression will be dependent on 
the immediate environment. In 1889, Stephen Paget proposed the “seed and soil” 
hypothesis based on the concept that the microenvironment of a developing tumor 
is a crucial regulator of its growth and expansion [ 6 ]. The capacity of transplanted 
tumor cells to promote blood vessel formation was demonstrated by Greenblatt and 
Shubik [ 7 ] and Ehrmann and Knoth [ 8 ] who demonstrated that a diffusible factor 
produced by tumor cells can induce neovascularization. In the early 1970s, 
Folkman proposed that the tumor growth is essentially dependent on the establish-
ment of its own vascular supply [ 9 ,  10 ]. Independent of the cellular origin of the 
cancer, angiogenesis is the critical step for the growth of tumours beyond 2 mm as 
well as the development of metastasis. The activation of tumor angiogenesis relies 
essentially on the balance between the pro-angiogenic factors and the anti-angio-
genic factors. 

 The induction of the tumor vasculature growth is termed the “angiogenic switch” 
[ 11 ,  12 ] and is dependent on the increased expression of the pro-angiogenic genes 
and/or a decreased expression of anti-angiogenic factors. Many potential regulators 
of angiogenesis have been identifi ed including acidic fi broblast growth factor 
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(aFGF), basic fi broblast growth factor (bFGF), vascular endothelial growth factor 
(VEGF), transforming growth factor-α (TGF-α), transforming growth factor-β 
(TGF-β), hepatocyte growth factor (HGF), tumor necrosis factor-α (TNF-α), angio-
genin, interleukin (IL)-8, angiopoietins, angiotensin (ANG)-II, bradykinin, and 
prostaglandins [ 1 ,  13 – 17 ]. Negative regulators of angiogenesis were also identifi ed 
and included factors such as thrombospondin [ 18 ], the 16 kDa fragment of prolactin 
[ 19 ], angiostatin [ 20 ], endosatin [ 21 ], and vasostatin [ 22 ]. 

 The increased expression of these angiogenic factors has been demonstrated in 
several types of cancer and has been associated with increased permeability of the 
tumor vasculature compared to normal blood vessels [ 23 – 25 ]. Further, angiogenic 
factors have been associated with structural aberrations of the tumor blood vessels 
(for review see [ 26 ]). The higher permeability of the tumor blood vessels favors the 
accumulation of macromolecules and lipids in the interstitium of the tumor for 
extended periods of time. This feature of the tumor vasculature led to the character-
ization of the enhanced permeability and retention (EPR) effect of macromolecular 
drugs in solid tumors [ 27 ]. The EPR effect is the result of the distinctive vascular 
permeability of solid tumors [ 28 ] and infl ammatory tissues [ 29 ]. The characteriza-
tion of this phenomenon allowed the development of the fi rst anticancer nanomedi-
cine by Maeda: styrene co-maleic acid conjugated neocarzinostatin (SMANCS) for 
the treatment of hepatocellular carcinoma [ 30 ]. Following this discovery, several 
laboratories have developed EPR-based nanomedicine. The main advantage of the 
EPR-based anticancer nanomedicines is their altered pharmacokinetics caused by 
their hydrodynamic diameter as it exceeds 7 nm, a size suffi cient to escape kidney 
fi ltration and urinary excretion [ 31 ,  32 ]. These nanoconstructs can exhibit prolonged 
circulatory half-life, high area under the concentration/time curve (AUC), and 
higher partition into tumor tissues [ 33 – 36 ]. Since the fi rst nanomedicine was devel-
oped in 1986, the Food and Drug Administration (FDA) and several agencies world-
wide have approved over 30 nano-therapeutics for clinical use, 11 of which are for 
the detection and treatment of various cancers. Despite the improvement in the 
design and targeting effi ciency of these nanomedicines to the tumor site, the transi-
tion from the bench to the clinic is particularly slow. In this chapter, we will present 
an overview of the mechanisms involved in neovascularization, as well as the spe-
cifi c characteristics of the tumor vasculature. We will also discuss the critical con-
siderations that might infl uence nanomedicine targeting effi ciency to solid tumors 
utilizing tumor vasculature permeability.  

    Mechanism of Tumor Angiogenesis 

 The origin of the blood vessel formation is different depending on the biological 
process which it serves. During embryogenesis, the de novo formation of blood 
vessel originates from the differentiation of angioblasts into mature endothelial 
cells and their subsequent assembly into tubes, a process called vasculogenesis 
[ 37 ]. Several angiogenic factors such as VEGF, VEGFR-2, bFGF, and TGF-β 
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infl uence angioblast differentiation into mature endothelial cells [ 38 – 40 ]. 
Further development of these native vessels is the result of angiogenesis, a process 
in which new capillaries emerge by sprouting from existing ones [ 37 ]. Distinctive 
signaling mechanisms will promote either venous or arterial differentiation [ 41 ]. 
The recruitment of periendothelial cells such as vascular smooth muscle cells or 
pericytes is essential for the maturation of the blood vessel by inhibiting the endo-
thelial cell proliferation and promoting the formation of extracellular matrix [ 42 ]. 
The periendothelial cells can also assist the endothelial cells to acquire specialized 
functions in different vascular beds [ 42 ]. In contrast, neovascularization taking 
place at postembryonic stage involves essentially angiogenesis as a result of the 
proliferation and migration of differentiated endothelial cells [ 13 ]. With the excep-
tion of few physiological processes such as wound healing and the female repro-
ductive cycle where endothelial cells are transiently activated and proliferating, the 
endothelial cells are largely quiescent in mature vessels. The percentage of endo-
thelial cells entering the cell cycle is only 0.45 % for arteries and arterioles and 
0.11 % for capillaries [ 43 ]. 

 Tumor expansion is marked by a constitutive activation of the “angiogenic 
switch” in most cases [ 11 ]. The newly formed blood vessels will emerge by sprout-
ing from existing ones and sustain tumor growth [ 11 ]. However, recent studies have 
challenged these conceptions and identifi ed several concomitant mechanisms con-
tributing to the neovascularization of tumors. These mechanisms have been mainly 
characterized in the tumor vasculature but their contribution remains poorly 
 understood. New blood vessels can emerge from vasculogenic mimicry where 
tumor cells can line and form a vessel-like structure [ 44 ] or putative cancer stem 
cells can  differentiate into an endothelial cell lineage and contribute to angiogenesis 
[ 45 ]. Other studies have demonstrated the capacity of tumor cells to hijack an exist-
ing blood vessel, a process known as vessel co-option [ 46 ]. In other cases, new 
blood vessels can arise through intussusceptive angiogenesis where one existing 
vessel splits into two new vessels [ 47 ]. Several studies have also demonstrated the 
involvement of bone marrow-derived cells for the repair of adult vessels and the 
expansion of tumor ones. Endothelial cell progenitors can be mobilized from the 
bone marrow and transported through the blood circulation to become incorporated 
into the vascular walls of the growing blood vessels [ 48 ].  

    Tumor Vasculature as a Target for Selective Delivery 
of Nanomedicine 

 Normal vasculature networks consist of arterioles, capillaries, and venules and form 
a well-organized network with dichotomous branching and hierarchic order [ 49 ]. 
Newly formed tumor vessels are usually abnormal in form and architecture with 
narrowed, tortuous, and fragmented blood vessels. In addition, tumor vessels usu-
ally lack a smooth muscle layer and innervation, with defective endothelial linings 
and basement membranes [ 50 ]. Some structures are dilated, saccular, poorly aligned, 
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and heterogeneous [ 51 ]. Many vascular mediators such as bradykinin [ 52 ], 
 prostaglandin [ 53 ], nitric oxide (NO) [ 54 ], peroxynitrite (ONOO − ) [ 29 ], matrix 
metalloproteinases (MMP) [ 29 ], and VEGF [ 55 ] have been shown to play an impor-
tant role in these alterations. 

 As a consequence of these defects, tumor vessels usually harbor wide fenestra-
tions [ 56 ]. The blood fl ow is often irregular with vessels having different diameters 
and abnormal branching patterns. These tumor vessels are leaky and show increased 
permeability to large circulating molecules with fenestration sizes ranging from 
300 nm to 4,700 nm [ 57 – 59 ]. Furthermore, lymphatic drainage of tumor tissues is 
generally defi cient and limits the clearance of macromolecules [ 9 ,  27 ,  60 – 62 ]. 
Evidence for increased endothelial permeability of tumor vessels to large molecules 
was clearly demonstrated by Maeda, 26 years ago, using Evans blue dye (EBD) 
injected intravenously into rodents. After injection the dye bound to albumin in the 
bloodstream and the complex selectively concentrated into tumor tissue [ 28 ]. 
Additional studies using soluble tracers further demonstrated the extravasation of 
large molecules from the tumor vessel [ 63 ,  64 ]. EBD extravasation and accumula-
tion in the tumor was the fi rst demonstration the EPR effect concept [ 28 ]. The accu-
mulation of nanosize drugs in the tumor tissue is time dependent ranging from 
several hours to several days [ 60 ,  65 ]. Maeda’s work demonstrated that the rate of 
accumulation of macromolecules and lipids in the tumor was inversely proportional 
to their clearance rate. Following SMANCS, the fi rst nanomedicine approved and 
used for the treatment of hepatocellular    carcinoma in Japan (see Table  8.1 ), several 
laboratories have developed nanosize drug carriers. But, for the past 20 years, few 
nanomedicines were approved for the chemotherapeutic treatments of various cancers 
as well as for their detection (see Table  8.1 ). Among these formulations, liposome 
nanocarriers achieved signifi cant success such as Doxil, DaunoXome, Depocyt, and 
Myocet (Table  8.1 ). Second- and third- generation types of micellar or polymeric drug 
carriers are currently being developed or evaluated in clinical trials (phase I–III).

   To be effi cient for cancer treatment, the size and shape of nanoparticles are criti-
cal for their accumulation at the tumor site [ 66 ]. Several studies have demonstrated 
that both criteria are essential for the longevity of the nanomedicine in the circula-
tion, their distribution to different organs [ 66 ], as well as their recognition and elim-
ination through the reticuloendothelial cells system (RES) [ 67 ]. The RES is 
composed of macrophages present in the liver, spleen, and bone marrow [ 67 ]. 
Generally, particles larger than 100 nm are rapidly eliminated from the circulation 
by the RES [ 68 ,  69 ]. To decrease their recognition by macrophages, several strate-
gies have been developed, for instance, the addition of synthetic polymers such as 
polyethylene glycol (PEG) on the surface to sterically hinder interaction with 
plasma proteins [ 70 ] and reduce opsonization [ 71 ]. 

 Overall, nanomedicine advantages over conventional drugs rely on the EPR 
effect and their improved pharmacokinetics that lower their systemic cytotoxicity. A 
schematic representation of this phenomenon is illustrated    in Fig.  8.1 . Furthermore 
drug delivery nanotechnology allows the controlled release of anticancer drugs and 
might partly circumvent multidrug resistance mechanisms that involve cell-surface 
protein pumps [ 72 ].
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  Fig. 8.1    Differences between normal and tumor tissue in relation to the targeting of nanomedi-
cines by the enhanced permeability and retention (EPR) effect. ( a ) Normal tissue contains tightly 
connected endothelial cells which prevents the diffusion of the nanomedicine outside the blood 
vessel. ( b ) Tumor tissue contains large fenestrates between the endothelial cells allowing the nano-
medicines to reach the matrix and the tumor cells by the EPR effect. VEGF and NO secreted by 
tumor cells, stromal cells, and macrophages increase permeability and stimulate angiogenesis and 
the migration of endothelial cells towards the tumor. A considerable proportion of the nanomedi-
cine never reaches the tumor either due to entrapment or nonspecifi c interaction with collagen 
composing the matrix, or removal through macrophage endocytosis. Nanomedicines tend to con-
centrate at the periphery of the tumor, only a small proportion will diffuse to the center of the tumor       

       Factors Contributing to the EPR Effect 

 Several studies have demonstrated that the EPR effect is dependent on angiogenic 
factors produced from the tumor cells, stromal cells, or other cell types such as 
VEGF, bradykinin, nitric oxide, peroxynitrite, and other cytokines [ 73 – 75 ]. All 
these factors increase blood fl ow and promote diffusion and retention of nanomedi-
cines inside tumors. 

    VEGF 

 The vascular permeability factor or vascular endothelial growth factor (VPF/
VEGF) was originally characterized from guinea pig ascites as a secreted protein 
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inducing vascular permeability [ 76 ] and was later found in various human tumor cell 
lines [ 77 ]. The same protein was also later identifi ed as a specifi c and potent vas-
cular endothelial cell mitogen [ 78 ]. VEGF is highly expressed in most tumors 
(2–30-fold higher than normal tissue) and was shown to contribute to the tumor 
blood vessel structural abnormality [ 79 ]. The contribution of VEGF to the EPR 
effect was demonstrated by Claffey et al. who showed a greater extravasation of 
large molecules in tumors overexpressing VEGF [ 80 ]. 

 VEGF is a homodimeric glycoprotein comprised of two identical subunits [ 78 ]. 
VEGF expression is regulated at the level of transcription by alternative splicing of 
the VEGF gene and the VEGF 165  isoform is the most abundant and assimilated as 
the native soluble heparin-binding endothelial mitogen activator [ 78 ].    Other  VEGF 
isoforms  have been identifi ed and arise from different VEGF splicing such as 
VEGF121, VEGF189 and VEGF206. The VEGF 121  isoform is secreted and fully soluble 
but lacks the heparin binding site, while VEGF 189  and VEGF 206  are largely seques-
tered at the cell surface and extracellular matrix and bind avidly to heparin and 
heparin-like moieties [ 78 ,  81 ]. In addition to the alternative splicing, a proteolytic 
activation of VEGF has been demonstrated for VEGF 165 , VEGF 189 , and VEGF 206  
following plasmin [ 82 ,  83 ] and matrix metalloproteinase (MMP) activations [ 84 ]. 
These patterns of activation regulate bioavailability and bioactivity and also deter-
mine receptor specifi cities. VEGF acts mainly in a paracrine fashion binding to 
receptors expressed at the surface of endothelial cells. VEGF 165  binds to two recep-
tor tyrosine kinases, VEGFR-1 (Flt-1), VEGFR-2 (KDR or Flk-1), as well as 
Neuropilin (NRP)-1 and NRP-2, transmembrane glycoproteins [ 85 ,  86 ]. In addi-
tion, several VEGF-related genes have been identifi ed including VEGF-B, VEGF-C, 
VEGF-D, and placenta growth factor (PlGF) [ 87 ]. These members of the VEGF 
gene cluster undergo alternative splicing with the exception of VEGF-C [ 87 ]. 
VEGF-C and VEGF-D were shown to bind to VEGFR-3 (Flt-4) and promote lym-
phangiogenesis [ 88 ]. 

 The expression of VEGF is upregulated by multiple factors including hypoxia. 
Under hypoxia, hypoxia-inducible factor (HIF)-1α dimerizes with the constitutive 
HIF-1β to bind to the hypoxic response element (HRE) present in the promoter of 
the VEGF gene and stimulate its expression [ 89 ]. HIF-1α is involved in the activa-
tion of transcription of many genes involved in the activation of angiogenesis and 
other physiologic processes (for review, see [ 89 ]).  

    Bradykinin 

 Bradykinin (kinin) is a peptide that causes vasodilatation and increased vascular 
permeability. Bradykinin is generated from its precursor kininogen by limited pro-
teolysis by various serine proteases such as kallikrein, cathepsins, and collagenases 
[ 90 ]. Kininogens are multifunctional glycoproteins mainly synthesized in the liver 
but also in the kidneys, salivary glands, and endothelial cells [ 91 ] and circulate in 
human plasma in low (50–68 kDa) and high (80–120 kDa) molecular weight forms 
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[ 92 ]. Bradykinins’ half-life is a few seconds in the plasma and is rapidly degraded 
by proteases such as kininase and angiotensin-converting enzyme (ACE) [ 92 ]. 
A greater synthesis of bradykinin has been reported in several types of cancer [ 52 , 
 93 ] as well as the expression of bradykinin receptor B2 [ 94 ]. The effect of  bradykinin 
appears to be direct as the release of bradykinin triggers vasodilatation and increased 
vascular permeability as well as indirect as mediated by the production of nitric 
oxide through the stimulation of the nitric oxide synthase [ 95 ], prostaglandins [ 96 ], 
and various cytokines such as interleukin-1, interleukin-6, and interleukin-8 [ 94 ]. 
The permeabilizing action of bradykinin was found to be similar to VEGF but 
 mediated through a different pathway.  

    Nitric Oxide (NO) 

 NO is a signaling messenger and contributes to several pathways and biological 
processes. NO is produced from  l -arginine by nitric oxide synthase (NOS) in the 
presence of oxygen. In pathological conditions such as cancer and infl ammatory 
tissue, NO production is largely increased and plays an important role in the extrav-
asation of large molecules and thus contributes to the EPR effect [ 54 ,  60 ]. Increased 
NO production was also associated with the overexpression of the inducible form 
of NOS (iNOS) in the tumor tissues due to the infi ltration of leukocytes [ 97 ]. 

    Moreover, NO to the same extent as oxidized NO products such as peroxynitrite 
contributes to the vascular permeability of solid tumor [ 54 ]. Peroxynitrite (ONOO − ) 
is a reaction product of NO and anion superoxide O2 −  [ 98 ]. The increased produc-
tion of peroxynitrite triggers the maturation of pro-matrix metalloproteinases 
 (pro- MMP) into MMPs, which promotes remodeling of the extracellular matrix and 
contributes to the vascular permeability [ 29 ]. 

 The identifi cation of the factors contributing to the EPR effect has resulted in the 
development of anticancer nanomedicine. However, with the exception of a few 
clinically approved nanomedicines (see Table  8.1 ), many nanoconstructs failed to 
achieve a signifi cant outcome in the clinic. The lack of complete understanding of 
the EPR effect and its specifi c biological implications has so far impaired EPR 
effect- based therapy as a paradigm for cancer treatment. The following describes 
some of the factors that could account for the slow transition of the EPR-based 
nanomedicine to an effective cancer treatment.   

    Animal Models for the EPR Effect 

 The EPR effect has been repeatedly proven in animal models through the use of 
large molecules such as the EBD. EBD binds instantly to plasma albumin which 
results in a large molecular weight complex of about 7 nm diameter that can simu-
late the effect of a nanomedicine. A diameter larger than 7 nm will escape renal 
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fi ltration and urinary excretion [ 31 ], due to the slit diaphragms at the level of the 
podocyte foot of the    glomerulus which prevent the fi ltration of globular plasma 
proteins above this size [ 32 ]. Therefore, large particles can exhibit prolonged circu-
latory half-life, high area under concentration/time curve (AUC), and higher parti-
tioning into tumor tissues [ 33 ]. After 6 h, there is usually a distinct accumulation in 
tumor lesions compared to surrounding tissues. Many nanomedicines have been 
observed to accumulate in tumor tissue from 2-fold and up to 27-fold more than free 
drugs depending on the nanocarrier, the drug encapsulated, and the xenograft tumor 
model used (Fig.  8.2a ).

   The question of whether the results of EPR-based drug targeting in animal mod-
els can be faithfully translated to the clinic remains unanswered. Macrophage infi l-
tration has been demonstrated in a large cohort of cancers. The production of 
VEGF and NO by tumor-associated macrophages (TAM) and their role in cancer 
development is also well documented [ 99 – 101 ]. To determine the anticancer prop-
erties of a given nanomedicine against a specifi c human cancer, it is necessary to 
utilize immunocompromised mice to enable the use of human tumor xenografts. 
However human cancer patients are rarely immunocompromised. A change in mac-
rophage activity in immunocompromised mice [ 102 ] can result in less VEGF and 
NO leading to a tumor with reduced vascular density, which in turn limits the access 
of the nanoconstructs to the tumor. Furthermore, the results obtained from immuno-
compromised models differ from results obtained in immunocompetent mice. 
In various drug delivery systems (conjugates, liposomes, and micelles), the tumor 
accumulation is a 2-fold higher in immunocompetent mice relative to immunocom-
promised ones (see Fig.  8.2b ). Moreover, immunocompetent mice bear murine 
tumors and not human cancer cell lines which further complicate interpretation of 
in vivo animal data and jeopardize its value in predicting the performance of new 
drugs in clinical trials. 

 The expression of VEGF and its receptors between commonly used human 
tumor cell lines and their clinically isolated variants differs. It is clearly evident that 
tumor cell lines have pronounced expression of VEGF and its receptors with far less 
variability in comparison to clinical tumors. For example, human breast cancer cell 
lines MCF-7 and MDA-MB-231 expressed VEGFR-1, VEGFR-2, and VEGFR-3 as 
well as the ligands VEGF-A, VEGF-C, and VEGF-D with VEGF-B being found 
only in the MCF-7 cells [ 103 – 108 ]. In contrast, the expression pattern in breast 
cancer tumors collected from patients is more limited to one specifi c type of recep-
tor and/or ligand and more importantly not all tumors tested within this cancer type 
expressed VEGFR and/or its ligand [ 109 – 111 ]. A similar observation was made 
with prostate cancer and lung cancer. 

 Relevant to this is the design of nanomedicine targeted to tumors which relies on 
the conjugation of target ligands that bind strongly to tumor cell-surface receptors 
to increase cell recognition, cell specifi city, and cellular uptake. Galactosamine 
[ 112 ], transferrin [ 113 ], and folate [ 114 ] have been incorporated in nanomedicine 
based on the preferential expression of these molecules by cancer cells. Despite 
promising in vitro studies, these targeted nanomedicines failed to demonstrate sig-
nifi cant benefi t at the preclinical or clinical level [ 115 ]. The discrepancy between 
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  Fig. 8.2    Variability of the different nanocarriers based on their accumulation profi le in the tumor, 
animal models used, and the site of tumor implantation and metastasis in animal model. ( a ) Comparison 
of the proportion of the different nanocarriers accumulation in the tumor [ 184 – 196 ]. ( b ) Comparison 
of the tumoral accumulation of different nanocarriers based on the animal model used [ 184 ,  189 ,  194 , 
 197 – 201 ]. ( c ) Comparison of accumulation of different nanocarriers based on the site of the tumor 
implantation either subcutaneous (s.c.), orthotopic, or metastatic [ 184 – 197 ,  202 ,  203 ]       
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the results obtained from testing specifi c tumor cell lines in tumor models and the 
clinical trials points further to the sampling errors in generalizing the results of from 
specifi c cell line to that of relevant tumors [ 116 ]. 

 A substantial difference between tumor models in animals and those of human 
patients is the progression rate. Animals usually develop a large, clinically relevant 
tumor (>5 mm) 1 week following subcutaneous (SC) tumor cell inoculation, while 
such a tumor volume can take years to develop in a human (Table  8.2 ). This rapid 
progression rate in animal models results in the overestimation of the targeting role 
of the EPR effect. Animal tumors developing quickly presumably produce a large 
quantity of VEGF and vascular mediators to support their rapid growth. In addition 
a 1 gram tumor mass in a 30 gram mouse is about 3 % of its total weight. In humans, 
a comparable tumor would weigh 2–5 kg, which is an advanced tumor stage that is 
not an ideal for utilization of anticancer nanomedicine. Finally, tumors are usually 
implanted SC in animal models, which allow the developing tumors to take advan-
tage of the extensive cutaneous vascular network for extending their blood supply, 
a condition that is rarely encountered in human malignancy.

   Data collected from available literature to date are plotted in Fig.  8.2c . Although 
there is a trend towards higher concentration of nanoconstructs in SC models, the 
results are not conclusive given the limited number of studies. Whether site of tumor 
development can infl uence the effi cacy of the EPR effect remains an unanswered 
question.  

    Tumor Biology Diversity 

    Tumor Doubling Time (TDT) 

 Tumor doubling time (TDT) is an important factor to consider when designing 
EPR-based anticancer nanomedicine. Most cytotoxic drugs selectively target can-
cers by exploiting differential tumor characteristics such as high proliferation rates, 
hypoxia, and genome instability. The TDTs provide a selection trait that is exploited 
by chemotherapeutics that target DNA synthesis and cytoskeleton remodeling. 
Many chemotherapeutic agents fail to cope with rapidly dividing tumors as the 
amount of drug necessary to kill a given number of cells will double with each 
tumor doubling. However, the dose that will elicit dose-limiting toxicity will remain 
the same. A short TDT is well known to be associated with an unfavorable survival 
prognosis [ 117 – 122 ]. TDT is a highly heterogeneous, both within and between dif-
ferent tumor types, stages, and grades. There is a large degree of variation of TDT 
between tumors of different tissue origins. Pituitary adenoma, for example, has an 
extremely long TDT of 506–5,378 days and within the tumor type the TDT varies 
by ten times [ 123 ], while in meningiomas and neurinomas the TDTs are 6.5 days 
and 7.67 days, respectively [ 124 ]. Some tumor types have a high variation of the 
TDT, for instance, lung adenocarcinoma has an extremely high variation in TDT of 
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964-fold [ 125 ] followed by breast cancer with a variation of 117.5-fold [ 126 ] 
(see Table  8.2 ). TDT can also differ according to the specifi c cellular origin within 
a given tissue. Bronchoalveolar cancer, for example, has an extremely varied TDT 
of 36–1,092 days, a variation of 30.3-fold [ 125 ], while small cell lung cancer has a 
TDT of 61.9–120.4, a mere 1.9-fold difference [ 127 ]. In addition, TDT can range 
depending on tumor grade (see Table  8.2 ). Poorly differentiated hepatocellular car-
cinomas corresponding to the Edmonson grade III or IV are highly invasive and 
have a DT of 13–239 days [ 128 ], while well-differentiated tumors corresponding to 
Edmondson grade I or I–II has a signifi cantly extended TDT of 54.7–1,508.3 days 
[ 128 ] (see Table  8.2 ). Interestingly, hepatocellular carcinomas are highly vascular-
ized and the microvessel density (MVD) is not affected by the tumor grade (see 
Table  8.2 ). Astrocytoma also follows this trend with the TDT of grade IV astrocy-
toma, according to the WHO grading system, varying between 1.4 and 319 days, the 
TDT of grade III 30–472 days and the TDT of grade I–II tumors 138–1,045 [ 129 , 
 130 ]. The tumor grade also correlated with the MVD, with higher grade having a 
higher MVD (see Table  8.2 ). The same trend was observed with prostate cancer and 
breast cancer where a high grade correlates with a lower doubling time and a higher 
MVD (Table  8.2 ). 

 The primary or metastatic status of a tumor can also cause large fl uctuations. For 
example, primary melanoma may have a DT of 50–377 days [ 131 ], while metastatic 
melanoma may have a DT of 8–212 days [ 132 ]. 

 EPR-based anticancer nanomedicine should consider doubling time variation 
when planning the release mechanism of active chemotherapeutic agents from its 
nanocarrier, as well as the internalization rate of macromolecular complexes into 
tumor cells. For example, a slow-releasing amide bond between the polymer back-
bone and the drug, or slowly internalized liposome, could both be a good choice for 
tumors with a slow DT. In contrast a fast-releasing micelle or an ester bond linkage 
can be a better fi t for rapidly dividing tumors. Generally, EPR-based nanomedicine 
has a wider therapeutic window [ 133 ], an advantage that can be exploited to shape 
dose regimens based on individual patient conditions. A tumor’s inherent sensitivity 
to specifi c chemotherapeutic agents as well as TDT is of the upmost importance in 
designing EPR-based anticancer nanomedicine.  

    Microvascular Density (MVD) 

 The EPR effect is strictly dependent on the vasculature of the tumor with theoretical 
assumption that all tumors independently of their origin, stage, and organs will 
behave identically. However, this concept is drastically challenged by a number 
of reports that show a high diversity in angiogenesis behavior [ 12 ,  51 ,  134 ,  135 ]. 
Nagy et al. have identifi ed six structurally and functionally distinct types of blood 
vessels in human cancers [ 134 ]. Vascular density can provide, in most tumors, a 
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prognostic indication of tumor progression. As shown in Table  8.2 , vascular density 
is largely dependent on the type of cancer and varies largely within each tumor type. 
For instance, renal cell carcinoma is highly vascularized [ 136 ], while the density of 
microvessels appears low in head and neck squamous cell carcinoma [ 137 ] or in 
ovarian carcinoma [ 138 ]. In addition, higher stages of cancer are well correlated 
with higher microvascular density as observed in astrocytoma and prostate cancer 
(Table  8.2 ), while in other types of tumors such as renal cell carcinoma, no direct 
correlation can be established between tumor stage and vascular density (Table  8.2 ). 
Furthermore, metastatic tumors tend to possess higher vascular density compared to 
non-metastatic tumors [ 139 – 143 ]. Another element regarding the EPR effect is the 
secretion of angiogenic factors such as VEGF by the tumor. Vascular permeability 
can be altered by VEGF as well as a wide array of infl ammatory mediators [ 144 ], 
which can affect the extent of nanomedicine accumulation driven by the EPR effect 
and the penetration of the nanoconstruct into the tumor. As mentioned previously, 
there is a large heterogeneity in the expression of VEGF between different types of 
cancers. When designing a nanocarrier, the properties of the targeted tumor tissue 
such as the cancer type, the microvascular density, and the secretion of permeability 
factors such as VEGF should therefore be taken into account in order to take full 
advantage of the EPR phenomenon.   

    Optimization of Drug Nanocarriers for the EPR Effect 

 To optimize the engineering of nanoparticles for specifi c delivery, careful consider-
ation should be undertaken regarding the biology of the tissue being targeted. In 
many instances, the nature of the nanomedicine itself has been a limiting factor that 
negatively impacted its chance of clinical success. The loading of active drug into a 
delivery system can be insuffi cient due to the physical or chemical limitations to 
achieve the critical dose needed to treat the tumor. For example, the HPMA copoly-
mer-paclitaxel conjugate showed insuffi cient drug loading (≤10 %) with a particle 
size in the range of 12–15 nm [ 145 ] and lacked stability due to the use of an ester 
linker [ 146 ]. Consequently insuffi cient tumor tissue accumulation of the drug was 
evident in phase I clinical trials [ 147 ]. Another factor limiting the effi cacy of nano-
medicines is the fast release rate of drug in the circulation. For instance, low molec-
ular weight HPMA copolymer- camptothecin conjugate showed a rapid release of 
drug and quick renal fi ltration and consequent bladder toxicity in phase I clinical 
trials [ 148 ]. The nanomedicine was designed with a labile ester linker, decreasing 
its stability and therefore its tumor accumulation [ 149 ]. In this example, a low 
molecular weight (below the renal excretory threshold of 7 nm) coupled to the tox-
icity associated with a fast release rate resulted in the drug failing to achieve EPR-
based pharmacokinetics. 

 Following are a few considerations inherent to the design of nanomedicine that 
may signifi cantly infl uence the outcome of EPR-based drug targeting (see Fig.  8.3 ).
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      Internalization of the Nanocarrier 

 The concentration of drug inside the tumor resulting from the EPR effect in a subset 
of highly vascularized tumors does not guarantee the effi cient internalization of the 
drug within the tumor cells. Multiple factors can infl uence the cellular internaliza-
tion process of the nanomedicine. Usually, nanoparticles and polymer-based drug 
delivery systems are internalized by endocytosis, a multistep process that culmi-
nates in the formation of a late endosome which fi nally fuses with a lysosome [ 150 ]. 
Malignant cells have an accelerated metabolism, a high glucose requirement, and an 
increased glucose uptake characterized by the elevated expression of glucose 
transporter proteins (GLUT) [ 151 ]. However, recent studies have shown that many 
 cancer cell lines exhibit limited capacity for endocytosis compared to normal 
cells [ 152 ,  153 ]. 

 Compared to tumor cells, macrophages usually exhibit a higher uptake of 
 nanosized molecules [ 66 ,  154 ] as they can recognize nanomedicine either through 

  Fig. 8.3    Schematic representation of the variables infl uencing the clinical application of a nano-
medicine. The biocompatibility, internalization, and release should be carefully considered when 
designing a nanomedicine utilizing tumor vascular abnormalities for targeted cancer treatment       
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their Toll-like receptor 4 (TLR-4) [ 155 ] or through scavenger receptors [ 156 ]. Much 
work has therefore been devoted to the development of nanoparticles which can 
evade macrophage recognition, resulting in longer circulatory time and increased 
interaction with target tissue. On this basis, polyethylene glycol (PEG) is the poly-
mer most commonly used to enhance in vivo circulatory half-life [ 157 ,  158 ]. Coating 
nanoparticles with PEG results in the formation of a polymeric layer which sterically 
hinders the interaction of nanoparticles with plasma proteins and cell membranes 
[ 159 ] preventing opsonization and phagocytosis by components of the RES [ 160 , 
 161 ]. PEG-liposome-incorporated doxorubicin (Doxil ® ) is approved by the FDA for 
the treatment of ovarian cancer (see Table  8.1 ). Additional polymers such as N-(2-
hydroxypropyl) methylacrylamide (HPMA), polyacrylamide, or poly(vinyl pyrrol-
idone) have also been used to improve the circulation time and steric hindrance of 
nanomedicines [ 162 ,  163 ]. The main disadvantage of this strategy is that it limits the 
interaction of (stealth) nanoconstructs with the tumor cell membrane and subse-
quently reduced internalization and uptake by tumor cells. To improve specifi c uptake 
by endocytosis, several nanoparticles have been coated with receptor ligands such as 
folate [ 164 ] or transferrin [ 165 ] to induce receptor-mediated endocytosis. These coat-
ings increased the accumulation of drug inside tumor cells. However, the practical 
advantages in the management of human tumors in the clinic remain to be proven. 
Following intracellular internalization, active drug should be liberated from the lyso-
somal compartment to reach its cellular target. Mechanisms to escape the lysosomal 
compartment and improve intracellular targeted delivery have been described by 
Breunig et al. [ 166 ]. Another consideration relevant to relatively large sized macro-
molecular nanomedicine is their nonspecifi c interactions with the extracellular 
matrix; to reach tumor cells, nanoconstructs must move through the matrix, a highly 
interconnected network of collagen fi bers that intermingle with proteins such as pro-
teoglycans and glycosaminoglycans. This semisolid barrier could signifi cantly reduce 
the amount of nanomedicine reaching tumor cells, either through nonspecifi c interac-
tion (Fig.  8.1 ) or  simply by impeding convection movements of relatively large sized 
nanoconstructs [ 167 ]. This could lead to nanomedicine being locally concentrated in 
proximity to the capillary that it leaked from without reaching the target tumor cells. 

 Recently, several studies have developed methods to circumvent these limita-
tions such as using of the tumor penetrating peptide, iRGD, which has been shown 
to increase the delivery of nanomedicines in solid tumors by improving its intersti-
tial transport [ 168 ]. Additional therapeutic strategies aiming to normalize the tumor 
vasculature and extracellular matrix in order to improve tumoral penetration of the 
drug have been described (for review [ 51 ,  169 ]).  

    Release Rate 

 Conjugates can be synthesized through covalent linking of drugs to polymeric car-
riers such as SMANCS (Table  8.1 ) [ 30 ]. In comparison, entrapment of drug inside 
a micellar structure requires either covalent or non-covalent bonds (ionic, hydrogen 
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bonds, or hydrophobic) and involves a block polymer or copolymer. Various chemi-
cal bonds such as amide, ester, azide, imine, hydrazone, thioether, and urethane are 
currently used to prepare nanomedicines [ 29 ,  170 ]. Based on the nature of these 
chemical bonds, the release of drug from its carrier can depend on either pH, usually 
acidic pH of the lysosome [ 170 ], temperature [ 70 ], or on enzymatic cleavage [ 171 ]. 
Furthermore, the nature of this bond will determine the release rate; for example, an 
ester bond ensures a rapid release of drug due to an abundance of esterases in 
plasma, whereas an amide bond will show a slower release profi le [ 29 ,  148 ]. 
The comparison of release rates between polymer conjugates, liposomes, and 
micelles nanomedicines after 24 h incubation (Fig.  8.4a ) in different studies showed 
a distinctive profi le. Overall, polymer conjugates and micelles have a comparable 
release rate which is higher than that of liposomes (Fig.  8.4a ). The release profi le of 
liposomes appears relatively homogeneous with a mean value of 24 % (3–39 %), 
while the release profi le of conjugates and micelles appears heterogeneous across 
several studies with a mean value of 39 % (2.5–100 %) and 41 % (2.5–100 %), 
respectively.

  Fig. 8.4    Variation of 
nanocarrier release rate and 
accumulation profi le. ( a ) 
Determination of the release 
rate over a 24 h period of 
different nanocarriers across 
several studies [ 162 , 
 204 – 212 ]. ( b ) Comparison of 
the proportion of the different 
nanocarriers accumulation in 
the tumor and various organs 
[ 184 – 197 ,  202 ,  203 ]       
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   In order for a nanocarrier to provide tumor targeting, the carrier should have a 
stable chemical bond with the cargo drug while in circulation. This prevents the 
rapid release of free drug and permits a therapeutic effect at the site of action. 
A rapid drug release from its delivery system in plasma can result in a biodistribu-
tion and toxicity profi le comparable to its related free drug. In contrast, engineering 
a stable linkage between the drug and its carrier can result in a slow release rate at 
the target site and inability to reach the critical therapeutic concentration. The 
release rate of nanoconstructs needs to be tailored for the treatment of a specifi ed 
tumor doubling time (see Table  8.2 ). Thus, the choice of a specifi c linker is critical 
for a favorable anticancer outcome of EPR-targeted nanosystems.  

    Biocompatibility 

 The EPR-based accumulation of active drug inside the tumor rarely exceeds 5 % of 
the total dose of nanomedicine administrated by i.v. injection. The majority of the 
injected dose accumulates in various organs such as liver and spleen and to a minor 
extent kidneys and lungs [ 172 ]. As nanomedicines reach sizes of 7 nm, classical 
pharmacokinetics cannot be accurately applied due to two drastic changes. Firstly, 
nanosized drugs cannot be eliminated by renal glomeruli as they exceed the renal 
threshold of excretion dictated by the pore size in the glomeruli [ 32 ,  173 ]. Secondly, 
their organ distribution is limited to  tissues that have capillaries with large enough 
endothelial fenestrations to allow macromolecular drugs to pass through [ 32 ,  33 ]. 
The EPR effect utilizes the unique characteristic of large gaps between endothelial 
cells that makes up tumor vessels. Usually these gaps can vary from few nanome-
ters to up to 1200 nm in size [ 174 ,  175 ]. At this large size, nanomedicines can 
preferentially accumulate in tumor tissues. However, tumors are not the only 
organs with such large fenestrae as the spleen and liver show similar characteris-
tics. Liver sinusoid can have fenestrae of around 100 nm in humans [ 176 ], whereas 
the spleen has large sinusoid lumina of ~ 5 μm that can support extravasation of 
aged red blood cells [ 32 ]. With such a large fenestration size, great amounts of 
nanosized drugs accumulate in these organs. As shown in Fig.  8.4b  meta-analysis 
of 73 studies over the last 10 years revealed that with all the EPR effect-based 
nanoconstructs that were used, the liver and spleen were the two major organs 
competing with tumor for the nanoconstructs (conjugate, micelles, and liposomes). 
While spleen function can be compensated for by other lymphatic organs, liver 
damage due to the concentration of cytotoxic nanomedicine remains a challenge to 
successful anticancer drug targeting. For example, nanoconstructs of cis-platinum 
have reduced toxicity in the kidney compared to the free drug but result in a dose-
limiting liver toxicity [ 177 ]. 

 Surface modifi cation of the nanomedicine, such as PEGylation, may increase 
their retention in the systemic circulation and favor tumor accumulation. However, 
more than 90 % of PEGylated nanoparticles will still be removed through liver 
clearance within several hours of administration. Studies have demonstrated that as 
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little as ~2 % of the total i.v. administered dose was found in the tumor after 4 h 
[ 172 ]. Thus there is a legitimate safety concern regarding the off target accumula-
tion of the drug delivery system. Ideally, the drug carrier should be eliminated after 
drug release. But, unless the nanocarrier is biodegradable, it will remain in the body 
and be dealt with as a foreign body. The innate elements of the immune system 
could be stimulated nonspecifi cally by these foreign bodies through TLR-4 [ 155 ]. 
Activated macrophages will phagocytose and attempt to degrade the nanocarrier in 
its lysosomal compartment. Failure to do so may lead to the formation of foreign 
body giant cells caused by fusion of multiple macrophages or monocytes [ 178 ] and 
ultimately to the formation of lesions resembling granulomas [ 179 ]. This can poten-
tially result in the pathological formation of a dense fi brous capsule replacing the 
original functional tissue. Another concern in relation to the accumulation of non-
degradable materials is the induction of malignancy resulting from frustrated phago-
cytosis and prolonged infl ammation [ 180 ]. 

 To address these issues, recent work has focused on the development of biode-
gradable and nonimmunologic drug delivery systems containing either enzymati-
cally or reductively degradable spacers such as poly(- d , l -lactide-co-glycoside) 
(PLGA) [ 181 ] or the star HPMA polymer carrier which enable a controlled degra-
dation of the drug carrier [ 182 ,  183 ]. Some of these carriers demonstrate prolonged 
blood circulation and tumor drug accumulation but diffi culties in the reproducibility 
of their synthesis could hamper further clinical development [ 182 ]. 

 To summarize, EPR-related parameters of a nanoparticle delivery platform such 
as long circulatory half-life, reduced elimination, and altered distribution could be a 
double-edged sword. Careful consideration of these parameters is essential for 
effective, safe, and more personalized cancer treatments.   

    Conclusion 

 As a general concept of tumor vasculatures, vascular permeability has allowed 
the development of a variety of anticancer nanomedicines. In theory, the nano-
medicine should decrease systemic toxicity and improve the delivery to the tumor 
site. However, despite high expectations for this targeting strategy, over the last 
26 years, only a few nanomedicines have successfully exploited this concept and 
made the transition to the clinic. Possible reasons for this slow transition are the 
lack of control of essential parameters for a good delivery such as release rate, 
internalization, and biocompatibility. Moreover, the variability of tumors biology 
such as doubling time and microvascular density can infl uence the targeting 
potential of EPR-based nanomedicine. Consideration of these variables as well as 
the development of modular delivery systems of macromolecules can signifi -
cantly hasten the transition of anticancer nanomedicine towards clinical 
application.     
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