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    Abstract     Cancer is the leading cause of death worldwide. Despite improvements 
in diagnosis and treatment over the past two decades, cancer continues to present a 
serious challenge to oncologists, especially when the disease has already spread to 
a distant site at the time of diagnosis. The high degree of variation in gene expres-
sion, observed not only in tumors arising from different tissues but also in tumors 
arising from the same tissue, and sometimes in distinct areas of the same tumor, is 
likely to be responsible for evolutionary adaptation and consequently tumor 
survival. 

 Cellular heterogeneity has historically been viewed solely as the result of genetic 
instability. However, it has now become increasingly clear that changes in gene 
expression that occur without altering the DNA sequence—better known as  epigen-
etic changes —can likewise contribute to tumorigenesis. Elucidating the mecha-
nisms that account for cancer heterogeneity will be essential to the design of new 
drugs capable of overcoming the major limitations of current therapies. These limi-
tations include the treatment of cancers able to escape immune surveillance or adapt 
to chemotherapy regimens as well as invasive and metastatic cancers. 

 Here, we review recent progress in the understanding of tumor genetics and 
 epigenetics and translate these fi ndings into potential clinical practice.  
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        Introduction 

 The word  cancer  comes from the Latin translation of  karkinoma ; the term was 
derived by Hippocrates (460–370 B.C.) from the Greek word for crab,  karkinos . 
 Karkinoma  was used by the Greek physician to describe a malignant growth because 
veins spreading outward from the tumor mass reminded him of crab claws. Due to 
these angiogenesis observations, Hippocrates is considered the fi rst person to clearly 
recognize the difference between malignant and benign tumors. We now know that 
apart from their histological features, other substantial differences occur between 
these two groups of tumors, including the presence in malignant tumors and the 
absence/infrequency in benign tumors of phenotypic instability [ 1 ,  2 ]. Inherent 
instability of tumor cells is a widespread phenomenon in cancer that drives tumor 
progression through the generation of more aggressive subtypes undergoing a posi-
tive Darwinian selection. Starting from Boveri’s suggestions of genetic instability in 
cancer [ 3 ], many groundbreaking discoveries have been made in recent decades in 
the fi eld of molecular biology, making it increasingly clear that genetic instability is 
not the only driving force for tumor progression. Epigenetic modifi cation of DNA 
or of chromatin-associated proteins, a heritable change in gene expression or cel-
lular phenotype caused by mechanisms other than changes in the underlying DNA 
sequence, can lead to critical changes in gene function and drive tumor progression 
to an invasive cancer. It has also been proposed that cancer-initiating mutations 
could even follow an epigenetic disruption of progenitor cells [ 4 ]. Thus, epigenetics 
might play an important role in both cancer pre-initiation and progression. 

 Understanding  cancer diversity  is crucial to achieve improved diagnosis and 
patient treatment. Indeed, the elucidation of the mechanisms that allow cancer cells 
to constantly adapt and evolve during the course of the disease will help prevent 
cancer growth and progression. Importantly, due to their potential reversible out-
come, epigenetic changes are being investigated as potential therapeutic targets, and 
this has led to the development of new anticancer drugs. 

 In the fi rst part of this chapter, we will summarize major genetic and epigenetic 
pathways involved in the pathogenesis of human cancer. In the second part, we will 
focus on one of the best-defi ned models for genetic and epigenetic progression, 
colorectal cancer (CRC). Finally, we will discuss how emerging information about 
genetic and molecular diversity can be used to assess cancer risk and/or guide 
therapy.  

    Genetic Instability 

 Chromosome instability (CIN) and microsatellite instability (MSI) are the major 
genetic instability pathways that can lead to cancer pathogenesis. In the following 
paragraphs, we will consider the most important molecular contributors toward the 
progressive loss of a stable karyotype thereby initiating and sustaining cancer. 
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    Chromosome Instability 

 CIN refers to an increased rate of the loss or gain of whole or large sections of 
 chromosomes during cell division. This increased rate of unbalanced chromosomal 
rearrangement eventually leads to a multistep accumulation of genetic abnormali-
ties, including amplifi cation of proto-oncogenes and inactivation of tumor suppres-
sor genes, which may directly promote tumor cell growth. For instance, loss of 
tumor suppressor genes often results from the loss of genetic information inherited 
from one parent, a phenomenon known as the loss of heterozygosity (LOH) [ 5 ]. 

 An imbalance in chromosome number is also referred to as  aneuploidy . Although 
aneuploidy can be detected at early steps of malignant transformation, and even in 
certain premalignant lesions, the number of chromosomal aberrations usually 
increases with tumor progression [ 6 – 8 ]. Whether chromosome abnormalities can be 
both the cause and the effect of cancer is still under investigation. Similarly, the 
scientifi c community is divided over the assignment of the origin of chromosomal 
abnormalities. Many studies suggest that aneuploidy arises from the inability to 
faithfully ensure equal segregation of chromosomes during mitosis [ 9 ,  10 ]. This 
mitotic chromosomal instability has been mainly correlated to numerical and func-
tional abnormalities of centrosomes. Indeed, the presence of multiple centrosomes 
can lead to multipolar mitosis, enabling the survival of tetraploid cells and the gen-
eration of an aneuploid population that evolves to become genetically unstable and 
tumorigenic [ 11 ]. However, it should be considered that centrosome abnormalities 
effectively destabilize chromosomes only in cells with a compromised spindle 
checkpoint function. Usually, cell cycle checkpoint activation slows or arrests cell 
cycle progression, thereby allowing for effi cient repair and thus preventing trans-
mission of DNA damage to the progeny [ 12 ,  13 ]. The fate of damaged cells mainly 
depends on the status of the p53-dependent G1 cell cycle checkpoint pathway 
[ 14 ]. In the presence of p53, mutant cells are rapidly eliminated through cell cycle 
arrest and/or apoptosis, whereas a defective p53 pathway permits their propaga-
tion. Consistent with this, loss of p53 function is associated with increased aneu-
ploidy [ 15 – 17 ], gene amplifi cation [ 18 ], point mutation [ 19 ], and homologous 
recombination [ 20 ]. 

 Cyclin-dependent kinases (CDKs) are targets of checkpoints that control entry 
into the next phase of the cell cycle. The activity of CDKs is frequently deregulated 
in tumor cells due to genetic or epigenetic alterations of CDK–cyclin complexes or 
to downregulation of several CDK inhibitors including p21CIP/WAF, p27KIP, and 
p16INK4A [ 21 ]. Centrosome amplifi cation can be correlated with multiple genes of 
the cell cycle engine. For instance, centrosome duplication is controlled by CDK2/
cyclin E complex, which is inhibited by p21CIP/WAF [ 22 ,  23 ]. Thus, overexpres-
sion of cyclin E or p21CIP/WAF inhibition results in centrosome amplifi cation. 
Mutational inactivation of p21CIP/WAF is infrequent [ 24 ]; however, aberrant 
p21CIP/WAF promoter gene methylation is common in cancer and results in strik-
ingly reduced expression of its regulated protein [ 25 ]. These fi ndings lead to the 
idea that aneuploidy may not be only genetic in origin. 
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 In addition to defects in either cell cycle machinery or checkpoints as potential 
causes of CIN, other mechanisms, such as telomere erosion, may be involved in the 
generation of unstable cells. Telomeres are specialized DNA structures located at 
the end of chromosomes with an important role in the prevention of chromosome 
fusion [ 26 ]. Normal somatic cells show a progressive loss of telomeres during DNA 
proliferation due to end replication problems of DNA polymerase, eventually lead-
ing to replicative senescence. Telomere erosion has been linked to both tumor sup-
pression and genetic instability. Dysfunctional telomeres activate DNA damage 
response. In the setting of a competent p53 pathway, this initiates senescence and 
apoptotic programs to inhibit tumorigenesis, whereas in cells with mutant p53, dys-
functional telomeres promote genome instability and progression to cancer [ 27 ,  28 ]. 
Telomere-related CIN results from repeated breakage–fusion–bridge cycles 
(BFBCs), and this is thought to be a key event in tumorigenesis of different tissues, 
including colon [ 29 ], cervix [ 30 ], and blood [ 31 ]. 

 Like telomere erosion, DNA palindrome formation can lead to genetic instability 
by initiating BFBCs [ 32 ]. However, it is unknown how palindromes form, although 
they appear early in cancer progression. 

 Every cell division presents a chance for mutations. Because stem cells have the 
property of self-renewal, any mutation conferring a selective growth advantage 
occurring in the stem cell compartment will be perpetuated into its progeny. This 
genetic lesion, in turn, can lead the daughter cells to acquire new properties through 
additional cycles of genetic aberrations. This concept has been well demonstrated 
for chronic myeloid leukemia (CML). Following radiation exposure, the BCR/ABL 
oncogene is likely to induce genetic instability in CSCs that predisposes the prog-
eny to increased BFBCs [ 33 ]. Such important fi ndings can also be applied to che-
motherapy and explain why sequential treatment with multiple tyrosine kinase 
inhibitors still fails to completely eradicate the disease [ 34 ]. 

    The Opposing Roles of Aneuploidy 

 Although the so-called aneuploidy hypothesis postulates that an abnormal chromo-
some number can drive tumor progression, some researchers have argued that aneu-
ploidy is only a benign side effect of transformation [ 35 ]. Indeed, several lines of 
evidence demonstrate that an altered karyotype can decrease the rate of cell prolif-
eration or even cause cell death. Using centromere-associated protein E (CENPE) 
heterozygous animals, which develop whole chromosome aneuploidy in the absence 
of mutations that compromise chromosome segregation fi delity, Weaver et al. have 
found that aneuploidy promotes tumorigenesis in some contexts and inhibits it in 
others [ 36 ]. Specifi cally, low rates of CIN promote tumors, whereas high rates of 
CIN cause cell death. Thus, aneuploidy can act both as a tumor inducer and a tumor 
suppressor. Such an effect is also analogous to chemotherapy-induced genetic insta-
bility, in which high levels of DNA damage lead to cellular death and tumor regres-
sion. The most probable explanation for the impairment of cell fi tness is the  gene 
dosage hypothesis  in which gains or losses of whole chromosomes immediately 
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alter the dosage of hundreds of genes in a cell, leading to imbalances in critical 
proteins [ 37 ]. The possible resulting changes include the alteration of the function 
of a specifi c protein, the defect of stoichiometric-sensitive complexes, the favoring 
of promiscuous molecular interactions, and the accumulation of improperly folded 
or aggregated proteins negatively affecting cell proliferation. However, aneuploid 
cells are often able to trigger adaptive dosage compensation responses at the pro-
teome level which may be accelerated by aneuploid-induced genetic instability, 
suggesting the existence of a functional and destabilizing positive feedback loop of 
aneuploidy in cancer. 

 The role of aneuploidy in tumorigenesis remains poorly understood. It is con-
ceivable that cellular outcome is dependent on the extent of aneuploidy induced. 
This could explain why aneuploidy can be compatible with normal growth and 
development. Polyploidy is common, for example, in the liver, where frequent mul-
tipolar mitosis yield diverse hepatocyte populations, some with aneuploidy [ 38 ]. 
Interestingly, the genetic variation found in hepatocytes is postulated to be an 
advantage for liver function by allowing the cellular selection of discrete hepatocyte 
populations to expand and protect the organ from certain injury and poisonous sub-
stances [ 38 ].   

    Microsatellite Instability 

 MSI refers to length alterations of mononucleotide or dinucleotide repeats (e.g., 
TTTT or CACACA) located mostly in intronic DNA sequences. MSI is mainly due 
to errors during DNA replication and to a defective post-replicative repair system. 
Indeed, defects in both DNA mismatch repair (MMR) and base-excision repair 
(BER) systems have been identifi ed in MSI-positive tumors. The DNA sequences 
repaired by the MMR system are residual mismatches that have evaded proofread-
ing during replication. Base mispairs, if not corrected by the MMR system, may 
cause nucleotide transitions or transversions, allowing a novel base to alter the 
authentic genetic sequence. Importantly, the role of MMR proteins in the repair 
process can be uncoupled from the MMR-dependent cell-killing response, the latter 
being based on the ability of MMR proteins to trigger checkpoint activation and 
apoptosis in response to DNA damage [ 39 ,  40 ]. 

 In late 1993 [ 41 ], altered CA repeats in colon cancer were correlated for the fi rst 
time to a mutation in a gene which codes for a factor essential for replication fi delity 
or repair. At the same time, Lynch syndrome (also termed hereditary nonpolyposis 
CRC, HNPCC) was associated with germ-line mutations to one of two MMR genes, 
human mutL homologue 1 (hMLH1) or human mutS homologue 2 (hMSH2), with 
mutations of other MMR genes being rare [ 42 – 45 ]. hMLH1 and hMSH2 genes 
were also reported as inactivated via promoter DNA methylation in a sporadic sub-
set of MSI-positive tumors [ 46 ,  47 ]. In the remaining tumors, no identifi able MMR 
gene mutations were found, indicating that additional factor(s) could have been 
responsible for the MSI phenotype [ 48 – 52 ]. 
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 Although CIN and MSI can be distinguished from one another by their  molecular 
characteristics, evidence suggests that there might be some degree of overlap. In a 
study by Goel et al., 3.4 % of the analyzed CRCs showed the coincidence of MSI-
high (MSI-H) and LOH events [ 53 ], and in the poorly metastatic KM12C cell line, 
both patterns of genetic instability were found to coexist [ 54 ].   

    Epigenetic Instability 

 The term epigenetics is defi ned as the heritable but potentially reversible changes in 
gene expression that occur without alterations in the DNA sequence [ 55 – 58 ]. 
Epigenetic modifi cations include DNA methylation, histone modifi cations, and 
microRNAs (miRNAs). Accumulating evidence indicates that these modifi cations 
are profoundly altered in human cancers. The key players of such complex pro-
cesses comprise a long list of enzymes cooperating together and include DNA 
methyltransferases (DNMTs), methyl-CpG binding proteins, histone modifying 
enzymes, chromatin remodeling factors, transcription factors, and chromosomal 
proteins. 

    DNA Methylation 

 DNA methylation involves the addition of a methyl group to the 5′ position of the 
cytosine pyrimidine ring. In mammals, this phenomenon occurs exclusively at a cyto-
sine followed by guanine (CpG). About 70–80 % of CpG sites contain methylated 
cytosines in somatic cells [ 59 ]. Although the CG dinucleotides are present along all 
chromosomes, the CG density is higher in some areas than others [ 60 ]. These so-
called CpG islands are present in the promoter and exon regions of approximately 
40 % of mammalian genes and regulate gene expression. Several experiments have 
shown that methylation of promoter CpG islands plays an  important role in gene 
silencing [ 61 ], genomic imprinting [ 62 ], X-chromosome inactivation [ 63 ], the silenc-
ing of intragenomic parasites [ 64 ], and carcinogenesis [ 65 ,  66 ]. 

 Although the origin of aberrant DNA methylation patterns remains to be estab-
lished, several studies have suggested that alterations in the DNA methylome could 
be directly affected by diets that are defi cient in folate and methionine; exposure to 
metals, such as arsenic, lead, and chromium; and infl ammation or viral/bacterial 
infection, i.e., chronic infl ammatory bowel disease (IBD) and  Helicobacter pylori  
infection of gastric epithelial cells [ 67 ]. 

 Epigenetic factors play a critical role in development, dictating the rules that 
establish and maintain  stem cell identity . Loss of cellular identity leads to an 
increased ability to grow and proliferate, ultimately causing the onset of cancer. 
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Oct4, Nanog, and Sox2 transcription factors are expressed by embryonic stem 
cells (ESCs) during development, conferring pluripotency [ 68 – 71 ], but are 
repressed through promoter hypermethylation during adulthood [ 72 ,  73 ]. In the 
context of cancer, expression of these ESC-associated genes occurs [ 74 ] in accor-
dance with the idea that cancer arises through the dedifferentiation of fully com-
mitted and specialized cells or from “maturation arrest” of stem cells [ 75 ]. 
Specifi cally, DNA hypomethylation has been found in a variety of human cancers 
[ 76 – 84 ] and affects not only Oct4, Nanog, and Sox2 but a long list of genes. The 
extent of hypomethylation has been correlated with tumor grade and prognosis in 
liver, breast, and ovarian cancers [ 85 – 87 ], but not in prostate cancer [ 88 ]. Thus, 
the inappropriate epigenetic (re)activation of tissue-specifi c genes plays a critical 
role in cancer. 

 DNA hypomethylation in tumors also occurs at repetitive sequences. Half of the 
human genome consists of highly repeated, interspersed DNA sequences, and recent 
studies have highlighted that their hypermethylation represents a mechanism to pre-
vent chromosomal instability, translocation, and gene disruption caused by the reac-
tivation of transposable elements, such as SINE (short interspersed elements), LINE 
(long interspersed elements), and HERV (human endogenous retroviruses) 
sequences. Indeed, loss of methylation at these elements contributes to oncogenic 
transformation or tumor progression [ 89 – 91 ]. 

 Besides DNA hypomethylation, de novo methylation within the promoter region 
of tumor suppressor genes has also been observed in cancer. The retinoblastoma 
gene (Rb) was the fi rst classic tumor suppressor gene in which CpG island hyper-
methylation was detected [ 92 ,  93 ]. Following this discovery, other tumor suppressor 
proteins including von Hippel–Lindau (VHL), INK4A, E-cadherin, MLH1, and 
breast cancer 1, early onset (BRCA1) were found to be silenced in cancer through 
hypermethylation of their promoters [ 46 ,  94 – 100 ]. The so-called CpG island meth-
ylator phenotype (CIMP) was fi rst described by Toyota et al. in 1999 [ 101 ]. In their 
study, two distinct types of hypermethylation were found: one appearing as a result 
of the aging process and the other, specifi c for cancer. Age-related methylation was 
shown to be very frequent in primary CRCs, while cancer-related methylation was 
relatively infrequent and never observed in normal colon mucosa. Detailed analysis 
of this latter type of methylation revealed a prominent pattern, suggesting the pres-
ence of a hypermethylator phenotype in a subset of CRCs. The authors concluded 
that through its ability to silence multiple genes simultaneously, CIMP can be con-
sidered functionally equivalent to genetic instability, resulting in the rapid accumu-
lation of multiple molecular aberrations with a potential to trigger the neoplastic 
process. Additional work from other groups has suggested that promoter hyper-
methylation of tumor suppressor genes can follow the formation of transcriptionally 
inactive chromatin [ 102 ]. From this point of view, hypermethylation could be held 
responsible for maintaining gene silencing, rather than initiating it. Importantly, 
hypomethylation or hypermethylation may not result in gross changes in gene 
expression per se, as cancer appears to be linked to a global epigenetic disequilib-
rium [ 103 ]. 
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    DNA Methyltransferase and Polycomb Genes: Key Players 
in Epigenetic Silencing 

 The enzymes directly responsible for CpG island hypermethylation of tumor 
 suppressor genes are the DNMTs. Both increased expression and increased activity 
of DNMTs have been found in human cancers, including colon cancer [ 104 – 107 ]. 
Polycomb group (PcG) proteins have been suggested to serve as recruitment plat-
forms for DNMTs [ 108 ,  109 ], helping maintain the transcriptional repression of 
target genes through many cycles of cell division. PcG genes are organized in two 
multiprotein complexes, Polycomb repressive complex 2 (PRC2) and 1 (PRC1), 
which have been implicated in silencing initiation and stable maintenance of gene 
repression, respectively [ 110 ]. 

 Among the most studied PRC1 members is B-cell-specifi c Moloney murine leu-
kemia virus integration site 1 (Bmi-1), which contributes to CSC self-renewal in part 
by inactivating the INK4A-ARF locus-encoded p16INK4A and p14ARF proteins, 
thus delaying the onset of senescence [ 111 ]. However, Bmi-1 can also act in an 
INK4A independent manner, for example, modulating Wnt and Notch pathways 
[ 112 ]. Enhancer of zeste homologue 2 (Ezh2), the histone methyltransferase of 
PRC2, plays a master regulatory role in controlling stem cell differentiation [ 113 ], 
cell proliferation [ 114 ], early embryogenesis [ 115 ], and X-chromosome inactivation 
[ 116 ]. Moreover, a functional link between dysregulation of Ezh2 and repression of 
E-cadherin during cancer progression has been reported, suggesting a critical role for 
this PcG gene in the invasive process [ 117 ]. A correlation between the cell cycle 
machinery and Ezh2-mediated epigenetic gene silencing has also been demonstrated. 
Specifi cally, CDKs have been found to phosphorylate Ezh2, maintaining its onco-
genic and gene-silencing functions, and ultimately contributing to the aggressive phe-
notype of tumors [ 118 ]. Briefl y, many cancer types show an overexpression of Ezh2, 
predicting poor prognosis, metastasis, and chemoresistance [ 119 – 124 ]. A signifi cant 
association between polymorphisms of the Ezh2 gene and cancer risk/outcome has 
been reported for the fi rst time in lung cancer [ 125 ] and more recently in CRC patients 
[ 126 ], thus introducing the concept of epigenetic polymorphism testing for cancer 
therapy. However, our comprehension of the precise role of PcGs in tumorigenesis 
and mechanisms of their regulation remains incomplete. While there are about 15 
unique PcG genes in Drosophila [ 127 ], in mammals there are multiple orthologues of 
many PcGs, making possible hundreds of different combinations to assemble multi-
protein complexes. Further studies are needed to complete this puzzle and obtain 
useful information to develop new ways to treat, cure, or even prevent cancer.   

    Histone Modifi cations 

 The histones constitute a family of small basic proteins that are involved in the 
packaging of eukaryotic DNA. Histone N-terminal tails may undergo many 
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enzymatic posttranslational modifi cations, including acetylation, methylation, 
phosphorylation, ubiquitylation, and sumoylation. These modifi cations provide an 
important regulatory platform for processes such as gene transcription and DNA 
damage repair. For instance, acetylation of the lysine residues at the N terminus of 
histone proteins leads to chromatin relaxation by reducing the affi nity between his-
tones and DNA. Decompaction of the chromatin structure allows accessibility of the 
DNA by RNA polymerase II (Pol II), stimulating gene transcription. 

 The combination of histone posttranslational modifi cations is thought to give rise 
to a  histone code  that is interpreted by an array of diverse proteins. These proteins 
can be divided into three classes: “readers,” “writers,” and “erasers.” Misreading, 
miswriting, and mis-erasing of histone methylation marks can be associated with 
oncogenesis and progression [ 128 ]. Mixed lineage leukemia (MLL) is an example 
of cancer driven by epigenetic alterations involving histone modifi cations [ 129 ]. 
These leukemias are characterized by translocations of the MLL gene, which nor-
mally methylates histone H3 on lysine 4 (H3K4), a mark typically associated with 
gene activation. MLL translocations encode MLL fusion proteins that have lost 
H3K4 methyltransferase activity and possess the ability to reprogram differentiated 
myeloid cells into multipotent CSCs. Changes in global histone modifi cation pat-
terns have also been observed in other cancers, including lymphoma, breast, colon, 
bone, cervix, lung, testis, neuroblastoma, osteosarcoma, and prostate [ 130 – 132 ]. 
Particularly, global loss of monoacetylation and trimethylation of histone H4 has 
been reported as a common hallmark of human tumor cells [ 130 ].  

    miRNAs 

 miRNAs are short noncoding RNAs that bind to complementary mRNA molecules, 
promoting their degradation and/or translation into a protein. Studies suggest that 
the human genome may encode over 1,000 miRNAs, a limited number compared 
with the number of mRNAs, typically estimated at ~30,000 [ 133 ]. However, miR-
NAs may regulate hundreds of mRNAs, affecting a range of processes, including 
organismal development and the establishment and maintenance of tissue differen-
tiation [ 134 ,  135 ]. Importantly, an epigenetic crosstalk between miRNAs and DNA 
methylation has been reported. Specifi cally, a wide range of tumor suppressor miR-
NAs has aberrant methylation profi les in human cancers. Mir-127 and mir-124 are 
examples of the fi rst two miRNAs identifi ed that undergo transcriptional inactiva-
tion by CpG island hypermethylation [ 136 ,  137 ]. Epigenetic repression of these 
molecules leads to changes in histone modifi cations; thus, epigenetic modifi cations 
are profoundly linked to each other. Figure  14.1  shows a summary of both genetic 
and epigenetic mechanisms that drive cell transformation and promote cancer devel-
opment and progression.
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        The Genetic and Molecular Diversity of Colorectal Carcinoma 

 CRC is a leading cause of cancer deaths worldwide. Roughly, three molecular sub-
types of CRCs have been described: CIN, MSI, and CIMP. A small subgroup of 
tumors also exists in which none of these phenotypes have been detected [ 138 ]. 

 According to the CIN pathway, the classical multistep pathway of colon carcino-
genesis proposed by Vogelstein et al. in 1988, CRC develops as a result of the 
pathologic transformation of a normal colonic epithelium into a dysplastic epithe-
lium and ultimately into an invasive cancer through an adenomatous polyp. Aberrant 
crypt foci (ACF), microscopic surface abnormalities fi rst identifi ed in carcinogen- 
treated rodents [ 139 ] and later in human colon [ 140 ], are postulated to be a  precursor 
to the adenoma due to the presence of molecular and genetic abnormalities, i.e., 
MSI [ 141 ]. Particularly, ACF formation is initiated by mutations in the adenoma-
tous polyposis coli (APC) tumor suppressor gene [ 142 ]. APC is considered a strong 
negative regulator of the Wnt pathway, being part of the β-catenin destruction 
 complex, which also includes the scaffold proteins axin or conductin/axin2, casein 
kinase I (protein kinase CKI), and glycogen synthase kinase 3β (GSK3β). In normal 
cells, this complex phosphorylates β-catenin, leading to its ubiquitination and 
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destruction by proteasome 26 S [ 143 ]. Loss of APC leads to β-catenin accumulation 
in the cytosol, binding to cytosolic T cell-factor/lymphoid-enhancer-factor (Tcf/
Lef) proteins, translocation of the resulting complex to the nucleus, and activation 
of transcription [ 144 ]. Target genes include c-myc and cyclin D1 [ 145 ,  146 ]. Thus, 
one effect of APC inactivation is proliferation of the affected cells. 

 The importance of APC dysfunction in colon cancer is well established. 
Individuals who inherit a defective allele of the APC gene suffer from familial ade-
nomatous polyposis (FAP), an autosomal dominant disease in which thousands of 
colonic polyps, many of which will progress to cancer if not removed, are devel-
oped during childhood and adolescence [ 147 ]. Furthermore, somatic mutation of 
the APC gene is found in the majority of sporadic CRC [ 148 ]. APC has usually been 
implicated in CIN, but this is still a matter of debate. Michor et al. have developed 
a mathematical approach for the cellular dynamics of colon cancer initiation, show-
ing that genetic instability is an early event and thus a driving force of tumorigene-
sis, since a small number of CIN genes are suffi cient to initiate colorectal 
tumorigenesis before APC inactivation [ 149 ]. 

 ACF are considered microadenomas. In Vogelstein’s model, the progression 
from microadenoma to intermediate adenoma is accompanied by K-ras activation 
[ 150 ]. The K-ras gene encodes a 21-kD protein (p21ras) involved in G protein- 
mediated signal transduction. Ras mutations usually lead to constitutive activation 
of the signaling pathways controlling cell proliferation and differentiation [ 151 ]. 
After the formulation of Vogelstein’s theory, K-ras mutations were actually reported 
to occur in every step of colon carcinogenesis. Such an idea was supported by two 
observations: (1) both small and large adenomas sometimes have the same inci-
dence of K-ras mutations and (2) K-ras mutations can be heterogeneous within the 
same carcinoma [ 152 – 154 ], suggesting a correlation to late tumorigenesis. By using 
a different sampling method to collect tumor DNA, Ishii et al. showed that K-ras 
mutations are instead homogeneous within the same carcinoma, and therefore they 
do not occur in late carcinogenesis [ 155 ]. 

 The transition from an intermediate adenoma to a late adenoma is characterized 
by the loss of the deleted in colorectal cancer (DCC) tumor suppressor gene. 
Identifi ed in 1990 by Fearon et al. within a previously described LOH region at 18q, 
the DCC gene encodes a protein which has been suggested to allow intestinal cell 
migration from the base to the top of the glandular crypts by reducing cell–matrix 
contacts and reinforcing cell–cell contacts through association with ezrin/radixin/
moesin and merlin (ERM-M) proteins [ 156 ,  157 ]. Mutations of both DCC alleles 
contribute to tumor development by disrupting such contacts. In addition to DCC, 
SMAD2 and SMAD4 tumor suppressor genes are the targets of 18q LOH [ 158 ,  159 ]. 
Whereas mutations of DCC and SMAD2 seem to be very rare in CRC [ 160 ,  161 ], 
SMAD4 inactivation is likely to be involved in advanced stages such as distant 
metastasis [ 162 ]. 

 Finally, allelic loss of the p53 tumor suppressor gene allows a growing tumor 
with multiple genetic alterations to evade cell cycle arrest and apoptosis, thus per-
mitting a late adenoma to progress to carcinoma [ 150 ]. 
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 In summary, Vogelstein’s colon carcinogenesis model includes fi ve key steps: 
(1) APC gene mutation leads to hyper-proliferation and (2), in succession, the for-
mation of a class I adenoma; (3) a class II adenoma forms following K-ras activa-
tion; (4) loss of DCC is then responsible for class III adenoma formation; and 
(5) invasive cancer requires mutation of the p53 gene [ 150 ]. 

 Our understanding of the molecular pathogenesis of CRC has advanced signifi -
cantly since Vogelstein’s model was initially proposed, resulting in several recon-
siderations of the so-called Vogelgram. We now know that many more genes and 
steps may be involved. Some of the early evidence that there were multiple molecu-
lar pathways to CRC came from identifi cation of different histological and genetic 
features between CRCs in Lynch syndrome and CRCs developing through the 
Vogelstein’s adenoma–carcinoma sequence. Lynch-associated CRCs are more com-
monly right sided, often poorly differentiated or mucin-producing, and have a dense 
lymphocytic infi ltrate and a Crohn’s-like reaction. Genetically, as we have already 
discussed, Lynch-associated CRCs are characterized by mutations in the DNA 
MMR system which are likely responsible for MSI. As shown in 1999 by Salahshor 
et al., mutations in APC and p53 are not necessary for initiation and progression of 
such MSI-positive CRC [ 163 ]. These types of tumors carry instead a mutation in the 
type II TGF beta receptor (TGFβR2) resulting in the inhibition of the TGFβ signal-
ing pathway and a low metastatic rate. In accordance, Warusavitarne et al. have 
demonstrated that restoring TGFβ signaling reduces tumorigenicity and increases 
invasion and metastasis in MSI-H CRC cell lines [ 164 ]. 

 Additional evidence of the existence of multiple adenoma–carcinoma sequences 
came from the classifi cation of colorectal polyps into two major groups: conventional 
adenomas and serrated polyps, the latter including hyperplastic polyps (HP), sessile 
serrated adenoma (SSA), sessile adenomas (SA), and mixed polyps [ 165 ]. Serrated 
polyps are usually found in the left colon, are smaller in size than adenomatous pol-
yps, and have erroneously been considered as benign in nature. However, an equiva-
lent to the adenoma–carcinoma sequence has recently been suggested for adenomas 
arising from those polyps, which includes an activating mutation in the BRAF gene 
as the initiating event triggering the malignant transformation of the polyp [ 166 ]. 
Somatic molecular alterations associated with serrated polyps also include K-ras 
mutations, hMLH1, and MGMT methylation, the prevalence of which varies accord-
ing to the subtype of serrated polyp [ 167 ]. The evidence that serrated polyposis is a 
genetic predisposition is accumulating. Its genetic basis is yet to be fully determined, 
though a small number of patients have reported mutations in mutY homolog ( E. 
coli ) (MUTYH) [ 168 ], phosphatase and tensin homolog (PTEN) [ 169 ], and ephrinB2 
(EPHB2) genes [ 170 ]. Figure  14.2  illustrates how different pathogenic pathways can 
be involved in initiation and progression of right- versus left-sided colon cancers.

   One of the intriguing questions is whether the three above-described pathways of 
colon carcinogenesis initiate in identical cells or whether three different cells are the 
targets of multiple mutations. Over the last decade, the opinion on cancer biology 
has drastically changed. Contrary to the longstanding clonal evolution model 
described by Nowell in the late 1970s [ 171 ], the CSC hypothesis has recently 
 proposed that not every cell of the body could be the target of malignant 
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transformation. The limited lifespan of a committed cell is likely shorter than the 
time necessary to accumulate tumor-inducing genetic changes. Therefore, cancer-
initiating capability could be a unique feature of the long-lived, self-renewing stem 
cells [ 172 ]. The CSC hypothesis is neither a universal model for all cancers nor for 
all patients with the same disease. While some cancers have been hypothesized to 
initiate as a stem cell disease, they may then progress by clonal evolution of their 
CSCs, as CRC has been suggested to do through CIN [ 173 ]. The aforementioned 
pathways of colon carcinogenesis could be derived from three different CSCs. 
Importantly, epigenetic modifi cations are likely to occur in these cells prior to the 
fi rst gatekeeper mutation. Indeed, fi ve lines of evidence suggest the existence of an 
epigenetically disrupted progenitor-cell population from which tumors arise: 
(1) tumor-related properties are stable but reversible; (2) global epigenetic changes 
must precede the earliest genetic alterations as they are always found, even in benign 
neoplasms; (3) cloned mouse melanoma nuclei can differentiate into normal mouse 
cells, indicating tumor properties can be reprogrammed and therefore are epigeneti-
cally controlled; (4) neoplastic clones can be maintained solely by a small popula-
tion of cells with stem cell properties; and (5) the tumor microenvironment can 
affect the epigenetic state of progenitor cells [ 4 ]. Consistently, aberrant promoter 
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methylation of several genes (p16, MINT31, MINT2, MINT1, MGMT, hMLH1 
HLTF, and SLC5A8) has been observed in ACF, thus confi rming that epigenetic 
disruption is a primary rather than a secondary event in colon tumorigenesis [ 174 –
 176 ]. From this point of view, tumor heterogeneity and progression could be 
explained independently of genetic clonal evolution. This means that the ability to 
metastasize may not require subsequent mutation and clonal selection within a large 
tumor mass but could be an intrinsic feature of the progenitor cell from which the 
tumor arises. Unfortunately, no unifying theory has emerged to explain cancer ori-
gin and progression. This is an urgent challenge to address in the future in order to 
achieve targeted cancer therapies.  

    Cancer Diversity: From Players to Clinical Application 

 Early FAP and Lynch syndrome diagnoses and appropriate CRC follow-up care can 
improve survival. Genetic tests for both diseases have been developed. These detect 
mutations in the APC and MMR genes (MSH2 and MLH1), respectively, and can 
be used to assess risk and guide treatment decisions. Unfortunately, the accuracy of 
tests to detect germ-line mutations in candidate genes continues to be challenging 
[ 177 ,  178 ] and triggers debate over the ability of a proposed test to predict respon-
siveness to chemotherapy. For instance, a few research groups have recently evalu-
ated classical MMR genes as predictive or prognostic biomarkers for colon cancer, 
and according to the most recent study, they are independent predictors of disease- 
free survival (DFS) in patients with stage III colon cancer receiving adjuvant 5-FU–
oxaliplatin combination therapy (FOLFOX) [ 179 – 183 ]. Important fi ndings about 
the utility of knowing the MSI status of non-MMR genes to select patients for che-
motherapeutic treatment have recently came from Dorard et al., which have consid-
ered in their study a previously unknown mutation in the gene encoding the 
chaperone heat shock protein (HSP) 110. HSP110 T 17  intronic DNA microsatellite 
mutations in MSI CRC result in the loss of HSP110 exon 9 and expression of a 
truncated protein, HSP110ΔE9, increasing tumor sensitivity to anticancer agents 
such as oxaliplatin and 5-FU [ 184 ]. 

 Throughout this chapter, we have provided evidence to support the epigenetic 
origin of cancer. Importantly, as we gain insight into the functional signifi cance of 
global changes in chromatin structure, and as new tools for specifi c and effi cient 
detection of epigenetic marks become available, there will be an enormous oppor-
tunity to develop markers for disease diagnosis and drug response, as well as strate-
gies to prevent further disease progression. In this context, the recent advent of 
microarray technologies has allowed the identifi cation of epigenetic signatures for 
different cancers. Each tumor type has been suggested to have a specifi c “hyper-
methylome” [ 185 ], thus defi ning CpG hypermethylation maps for a growing list of 
primary tumors, including glioblastoma [ 186 ], acute myeloid leukemia [ 187 ], ovar-
ian carcinoma [ 188 ], astrocytoma [ 189 ], and colon cancer [ 190 ]. As the list of tumor 

M.G. Francipane and E. Lagasse



377

suppressor genes that are silenced through promoter hypermethylation grows, a 
 correlation with response to therapy is investigated. For instance, transcription 
 factor AP-2 epsilon (activating enhancer binding protein 2 epsilon), also known as 
TFAP2E, has recently been found to be hypermethylated in CRC patients correlat-
ing with the overexpression of the Wnt antagonist Dickkopf-related protein 4 
(Dkk4) and chemoresistance [ 191 ]. Thus, the importance of epigenetic modifi ca-
tions in predicting patient prognosis and response to chemotherapy is increasingly 
recognized by several studies. Epigenetic markers may be detected easily in circu-
lating DNA (cirDNA) in the plasma or other bodily fl uids. For instance, circulating 
methylated septin (SEPT) 9 DNA in plasma is considered a biomarker for CRC 
[ 192 ]. However, further studies are needed to clearly defi ne specifi c markers for 
accurate cancer detection and risk assessment. Consistently, the fi rst epigenome- 
wide DNA modifi cation profi ling of plasma or other bodily fl uids from cancer 
patients has been provided only recently by Cortese et al. in the context of prostate 
cancer [ 193 ]. 

 Importantly, due to their reversibility, epigenetic changes are being investi-
gated as potential therapeutic targets, leading to the development of new antican-
cer drugs. The fi rst generation of Food and Drug Administration (FDA)-approved 
epigenetic- based drugs includes two DNA-demethylating agents, 5-azacytidine 
(AZA) and decitabine (DAC), and two histone deacetylase (HDAC) inhibitors, 
vorinostat (Vo) and valproic acid (VA). These drugs were developed for the treat-
ment of blood diseases, in particular myelodysplastic syndromes (MDS), against 
which they were reported to be highly effective, leading to signifi cant improve-
ments in patient quality of life and survival [ 194 ]. Although epigenetic drugs in 
clinical trials for hematological malignancies have been successful, results were 
much more disappointing for solid tumors, probably because CSCs in solid 
tumors are confi ned to a niche that is less reachable by these drugs. Moreover, 
epigenetic drugs were reported to be toxic, triggering common side effects includ-
ing nausea, vomiting, diarrhea, and myelosuppression. Nevertheless, the observa-
tion that low doses of DNMT and HDAC inhibitors together are able to reverse 
gene silencing associated with promoter methylation has created much interest. 
Particularly, the combination of HDAC and DNMT inhibition has been reported 
to be very effective (and synergistic) in inducing apoptosis, differentiation, and/or 
cell growth arrest in human lung, breast, thoracic, leukemic, and colon cancer cell 
lines [ 195 ]. Combining current cancer treatments with distinct chromatin remod-
eling factors may reduce the effective drug concentration and related systemic 
toxicity; however, other questions remain to be addressed. Specifi cally, pleiotro-
pic effects and the lack of specifi city of epigenetic drugs continue to pose impor-
tant implications for clinical treatment. Indeed, epigenetic drugs have recently 
been reported to be able to wake up metastasis- related genes [ 196 ]. This fi nding 
strongly highlights the need to accurately assess the clinical effectiveness and 
side effects of putative epigenetic treatments before human testing. This can only 
be achieved through a full comprehension of cancer dynamics at the cellular and 
molecular level.  
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    Concluding Remarks 

 One of the main unresolved problems of current available therapeutic treatments for 
cancer is the lack of selectivity combined with the lack of effi cacy. To design a more 
successful approach and possibly achieve complete tumor regression, it will be nec-
essary to identify the genetic as well as the epigenetic alterations underlying cancer 
etiology and progression, not only for each cancer, but probably for each patient. In 
conclusion, cancer can be viewed as a complex adaptive system [ 197 ]. Cancer cells 
evolve and adapt to resist the death-inducing stimuli they are subject to. As opposed 
to old-fashioned chemotherapy, emerging and future personalized therapies will 
help controlling the occurrence of unstable cells with acquired multidrug resistance 
by targeting only tumor cells while sparing normal cells and tissues.     
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