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Abstract In cancer research, genomic studies have been extensively conducted,
searching for markers associated with prognosis. Because of the “large d, small
n” characteristic, results generated from the analysis of a single dataset can be
unsatisfactory. Integrative analysis simultaneously analyzes multiple datasets and
can be more effective than the analysis of single datasets and classic meta-
analysis. In many existing integrative analyses, the homogeneity model has been
assumed, which postulates that different datasets share the same set of markers. In
practice, datasets may have been generated in studies that differ in patient selection
criteria, profiling techniques, and many other aspects. Such differences may make
the homogeneity model too restricted. Here we explore the heterogeneity model,
which assumes that different datasets may have different sets of markers. With
multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time)
models to describe survival. A weighted least squares approach is adopted for
estimation. For marker selection, penalization-based methods are examined. These
methods have intuitive formulations and can be computed using effective group
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coordinate descent algorithms. Analysis of three lung cancer prognosis datasets with
gene expression measurements demonstrates the merit of heterogeneity model and
proposed methods.

1 Introduction

Genomic studies have been extensively conducted, searching for markers associated
with the prognosis of cancer. Data generated in such studies have the “large d, small
n” characteristic, with the number of genes profiled d much larger than sample size
n. In addition, in whole-genome studies, only a subset of the profiled genes are
expected to be associated with prognosis. Thus, the analysis of cancer prognosis
data with genomic measurements demands regularized estimation and selection.

In practical data analysis, genomic markers identified from the analysis of single
datasets are often unsatisfactory. Multiple factors contribute to the unsatisfactory
performance, including the highly noisy nature of cancer genomic data, technical
variations of profiling techniques and, more importantly, the small sample sizes of
individual studies. Recent studies have shown that pooling and analyzing multiple
studies may effectively increase sample size and improve properties of the identified
markers (Guerra and Goldsterin 2009; Ma et al. 2009, and references therein).
Multi-dataset methods include meta-analysis and integrative analysis methods.
Integrative analysis pools and analyzes raw data from multiple studies and can
be more informative than classic meta-analysis, which analyzes multiple studies
separately and then pools summary statistics (lists of identified genes, p-values,
effect sizes, etc.).

In studies such as Ma et al. (2011b), the homogeneity model has been assumed.
Under this model, multiple datasets share the same set of markers. This model
has also been adopted with cancer diagnosis studies and categorical responses
(Ma et al. 2011a and references therein). In practical data analysis, when mul-
tiple datasets are generated in independent studies, heterogeneity (in patients’
characteristics, technical aspects such as profiling protocols, etc) inevitably exists.
Such heterogeneity may make the homogeneity model too restricted. In addition,
data analyses in Ma et al. (2011a;b) show that for some of the identified genes,
the magnitudes of estimated regression coefficients may vary significantly across
datasets. It is possible that the very small regression coefficients are actually zero.
Such an observation further suggests the necessity of relaxing the homogeneity
model assumption.

In this study, we describe cancer survival using AFT (accelerated failure time)
models. Compared with alternatives such as the Cox model, the AFT model has
a significantly simpler objective function and lower computational cost, which is
especially desirable with high-dimensional data. In addition, its regression coeffi-
cients may have more lucid interpretations. As an alternative to the homogeneity
model, we consider the heterogeneity model. It includes the homogeneity model
as a special case and can be more flexible. For marker selection, we adopt
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penalization. The proposed penalization methods are intuitively reasonable and can
be computationally realized using the group coordinate descent algorithms. This
study complements the existing ones by conducting integrative analysis under the
more flexible heterogeneity model and by adopting penalization methods tailored to
this model.

2 Integrative Analysis of Cancer Prognosis Studies

2.1 Data and Model Settings

Assume M independent studies and nm iid observations in study m(= 1, . . . ,M). The
total sample size is n = ∑M

m=1 nm. In study m, denote T m as the logarithm (or another
known monotone transformation) of failure time. Denote Xm as the length-d vector
of gene expressions. Although gene expression data is used as an example in this
study, it should be noted that the proposed methods are also applicable to studies
with other types of genomic measurements. For simplicity of notation, assume that
the same set of genes are measured in all M studies. For the ith subject, the AFT
model assumes that

T m
i = β m

0 +Xm′
i β m + �m

i , i = 1, . . . ,nm. (1)

where β m
0 is the intercept, β m ∈ R

d is the length-d vector of regression coefficients,
and �m

i is the error term. When T m
i is subject to right censoring, we observe

(Y m
i ,δ m

i ,Xm
i ), where Y m

i = min{T m
i ,Cm

i }, Cm
i is the logarithm of censoring time,

and δ m
i = I{T m

i ≤Cm
i } is the event indicator.

When the distribution of �m
i is known, the parametric likelihood function can be

easily constructed. Here we consider the more flexible case where this distribution
is unknown. In the literature, multiple estimation approaches have been developed,
including, for example, the Buckley-James and rank-based approaches (Buckley
and James 1979; Jin et al. 2003). In this study, we adopt the weighted least
squares estimator (Stute 1996), which to the best of our knowledge, has the lowest
computational cost. This property is especially desirable with high-dimensional
data.

Let F̂m be the Kaplan–Meier estimator of the distribution function Fm of T m.
F̂m(y) = ∑nm

i=1 ωm
i I{Y m

(i) ≤ y}, where ωm
i s are the jumps in the Kaplan–Meier

estimator and can be computed as

ωm
1 =

δ m
(1)

nm , ωm
i =

δ m
(i)

nm− i+ 1

i−1

∏
j=1

(
nm− j

nm− j+ 1

)δ m
( j)

, i = 2, . . . ,nm.

Here Y m
(1) ≤ ·· · ≤ Y m

(nm) are the order statistics of Y m
i s, and δ m

(1), . . . ,δ
m
(nm) are the

associated event indicators. Similarly, let Xm
(1), . . . ,X

m
(nm) be the associated gene
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expressions of the ordered Y m
i s. Stute (1996) proposed the weighted least squares

estimator (β̂ m
0 , β̂ m) that minimizes

1
2

nm

∑
i=1

ωm
i (Y

m
(i)−β m

0 −Xm
(i)
′β m)2. (2)

We center Xm
(i) and Y m

(i) using their ωm
i -weighted means, respectively. Define

X̄m
w =

nm

∑
i=1

ωm
i Xm

(i)/
nm

∑
i=1

ωm
i ,Ȳ

m
w =

nm

∑
i=1

ωm
i Y m

(i)/
nm

∑
i=1

ωm
i .

Let Xm
ω(i) =

√
ωm

i (X
m
(i)− X̄m

w ) and Y m
ω(i) =

√
ωm

i (Y m
(i)− Ȳ m

w ), respectively. With the
weighted centered values, the intercept is zero. The weighted least squares objective
function can be written as

Lm(β m) =
1
2

nm

∑
i=1

(Y m
ω(i)−Xm

ω(i)
′β m)2. (3)

Denote Y m = (Y m
ω(1), . . . ,Y

m
ω(nm))

′ and Xm = (Xm
ω(1), . . . ,X

m
ω(nm))

′. Further denote Y =

(Y 1′, . . . ,Y M′)′, X = diag(X1, . . . ,XM), and β = (β 1′, . . . ,β M ′)′.
Consider the overall objective function L(β ) = 1

n ∑M
m=1 Lm(β m). With this ob-

jective function, larger datasets have more contributions, which is intuitively
reasonable. When desirable, normalization by sample size can be applied.

2.2 Homogeneity Model and Penalized Selection

In Huang et al. (2012) and Ma et al. (2011a;b), the homogeneity model is adopted
to describe the genomic basis of M datasets. Denote β m

j as the jth component

of β m. Then β j = (β 1
j , . . . ,β M

j )′ is the length-M vector of regression coefficients
representing the effects of gene j in M studies. Under the homogeneity model, for
any j(= 1, . . . ,d),

I(β 1
j = 0) = . . .= I(β M

j = 0).

That is, if a gene is identified as associated with prognosis in one dataset, it is
identified in all of the M datasets. Thus, the M datasets have the same sparsity
structure. This is a sensible model when multiple datasets have been generated under
the same protocol. With multiple datasets generated independently, if the analysis
of individual datasets and examination of the protocols suggest a high degree of
similarity, then this model can be adopted.

For marker selection, Ma et al. (2011b) adopts penalization and proposes using
the group MCP (gMCP) approach, where the estimate is defined as
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β̂ = argmin
{

L(β )+PgMCP(β )
}
,

with

PgMCP(β ) =
d

∑
j=1

ρ(||β j||Σ j ;
√

d jλ1,γ). (4)

ρ(t;λ ,γ) = λ
∫ |t|

0

(
1− x

λ γ

)
+

dx is the MCP penalty (Zhang 2010). ||β j||Σ j =

||Σ1/2
j β j||2, || · ||2 is the L2 norm, Σ j = n−1X [·, j]′X [·, j], and X [·, j] is the n× d j

submatrix of X that corresponds to β j. In (4), d j is the size of the coefficient group
corresponding to gene j. When the M datasets have exactly matched gene sets,
d j ≡ M. We keep d j so that this formulation can accommodate partially matched
gene sets. When gene j is not measured in dataset k, we take the convention β k

j ≡ 0.
λ1 > 0 is the tuning parameter, and γ > 0 is the regularization parameter (Zhang
2010).

Penalty function (4) has been motivated by the following considerations. In
this analysis, genes are the functional units. The overall penalty is the sum over
d individual penalties, with one for each gene. For gene selection, the MCP
penalization is adopted. In single-dataset analysis, MCP has been shown to have
performance comparable to or better than some of the alternative penalties. For
a specific gene, its effects in the M studies are represented by a “group” of M
regression coefficients. Under the homogeneity model, the M studies are expected to
identify the same set of genes. Thus, within a group, no further selection is needed,
and so the L2 norm is adopted. Note that here we adopt the || · ||Σ j norm, which
rescales the regression coefficient vector by the covariance matrix Σ j , so that the
computation can be less ad hoc.

3 Heterogeneity Model and Penalized Selection

3.1 Heterogeneity Model

When multiple datasets are generated in independent studies, heterogeneity in-
evitably exists (Knudsen 2006). The degree of heterogeneity depends on the
differences in study protocols, profiling techniques, and many other factors. In can-
cer prognosis studies, the effort to unify the sets of identified markers across
independent studies has not been very successful (Cheang et al. 2008; Knudsen
2006). This can also be partly seen from the data analysis in Ma et al. (2011b). Such
observations raise the question whether the homogeneity model is too restricted and
motivates the heterogeneity model. Under the heterogeneity model, one gene can be
associated with prognosis in some studies but not others. This model includes the
homogeneity model as a special case and can be more flexible.

In addition, there are scenarios under which the homogeneity model is concep-
tually not sensible, but the heterogeneity model is. The first is where different
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studies are on different types of cancers (Ma et al. 2009). On the one hand,
different cancers have different prognosis patterns and different sets of markers.
On the other hand, multiple pathways, such as apoptosis, DNA repair, cell cycle,
and signaling, are associated with the prognosis of multiple cancers. The second
scenario is the analysis of different subtypes of the same cancer. Different subtypes
have different risks of occurrence and progression, and it is not sensible to reinforce
the same genomic basis. The third scenario is where subjects in different studies
have different demographic measurements, clinical risk factors, environmental
exposures, and treatment regimens. For genes not intervened with those “additional”
variables, their importance remains consistent across multiple studies. However, for
other genes, they may be important in some studies but not others.

3.2 Penalized Marker Selection

Under the heterogeneity model, the model and regression coefficients have two
dimensions. The first is the gene dimension as in other marker selection studies. The
second, which is unique to integrative analysis, is the study (dataset) dimension. In
marker selection, we need to determine whether a gene is associated with prognosis
in any study at all as well as in which studies it is associated with prognosis. Such
an objective demands two-way selection.

3.2.1 A Two-Step Approach

Since integrative analysis under the heterogeneity model calls for two-way selec-
tion, a natural strategy is to achieve the selection in two steps, with one step for
each way. The first step is to determine whether a gene is associated with prognosis
in any study. As β j = (β 1

j , . . . ,β M
j )′ represent the effects of gene j (= 1, . . . ,d) in

M studies, this step of selection amounts to determining whether ‖β j‖2 = 0. We
propose achieving this step of selection using the gMCP penalization approach.
With genes selected in the first step (i.e., { j : ||β j||2 �= 0}), in the second step, we
determine which prognosis responses (studies) they are associated with. For this
step, we propose applying the MCP approach to each dataset separately. This step
conducts standard single-dataset analysis. Note that although both steps employ the
MCP penalties, they may have different tuning and regularization parameters.

3.2.2 Composite Penalization

In the analysis of a single dataset, when there is a grouping structure among
covariates, two-way selection can be achieved using composite penalization. The
idea is to use a group penalty for variable selection at the group level and a second
penalty for variable selection at the within-group level. The composite of the two
penalties will then be able to conduct variable selection at both levels.
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In integrative analysis with multiple datasets, we adopt a similar strategy. First
consider the 1-norm gMCP approach, where the penalty takes the form

P1−norm gMCP(β ) =
d

∑
j=1

ρ(‖β j‖1;
√

d jλ ,γ). (5)

‖β j‖1 = ∑M
m=1 |β m

j | is the L1 norm of β j, which can also be viewed as a Lasso
penalty. Other notations have similar implications as with gMCP. With this compos-
ite penalty, the outer penalty has a gMCP form. In integrative analysis, it conducts
selection at the gene level. The inner penalty is Lasso. For a gene with nonzero
effects, it identifies in which study(ies) the gene is associated with prognosis.

In (5), the Lasso penalty is adopted mainly because of its computational
simplicity. In single-dataset analysis, it has been shown that MCP can have better
properties (for example, more accurate selection) than Lasso. Motivated by such a
consideration, we propose the composite MCP (cMCP) approach, where the penalty
takes the form

PcMCP(β ) =
d

∑
j=1

ρ

(
M

∑
m=1

ρ(β m
j ;λ2,b);λ1,a

)
. (6)

Here λ1,λ2 are the tuning parameters, and a,b are the regularization parameters.

Computational algorithm for cMCP . Below we describe the computational
algorithm for cMCP. The two-step and 1-norm gMCP estimates can be computed in
a similar manner.

Consider the group coordinate descent algorithm. This algorithm is iterative and
optimizes over the regression coefficients of one gene at a time. It cycles through all
genes, and the overall iteration is repeated multiple times until convergence. Here
the key is update of estimates for a single group (gene). Unfortunately, the cMCP
approach does not have a simple form for updating individual groups. To tackle this
problem, we adopt an approximation approach. Consider update with the jth group.
By taking the first order Taylor series approximation about β j and evaluating at β̃ j

(the current estimate), the penalty as a function of β k
j is approximately proportional

to λ̃ jk|β k
j | where

λ̃ jk = ρ ′
(

M

∑
m=1

ρ(|β̃ m
j |;λ2,b);λ1,a

)
ρ ′(|β̃ k

j |;λ2,b). (7)

For update with each β k
j , we have an explicit solution:

β̂ k
j = fcMCP(z;λ ) = S1 (z,λ ) , (8)

with S1(z,λ ) = sgn(z)(|z|−λ )+, and z and λ to be defined below.
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Consider the following algorithm. With fixed tuning and regularization
parameters,

1. Initialize s = 0, the estimate β (0) = (β (0)′
1 , . . . ,β (0)′

d )′ = (0, . . . ,0)′, and the vector
of residuals r = Y −Xβ (0);

2. For j = 1, . . . ,d,

(a) Calculate λ̃ jk according to expression (7).

(b) Calculate z j = n−1X [·, j]′r + β (s)
j . X [·, j] is the n× d j submatrix of X that

corresponds to β j.

(c) For k = 1, . . . ,M, update β k(s+1)
j ← fcMCP(zk

j; λ̃ jk), where zk
j is the kth element

of z j.

(d) Update r← r−X [·, j](β (s+1)
j −β (s)

j ).

Update s← s+ 1.
3. Repeat Step 2 until convergence.

We use the L2 norm of the difference between two consecutive estimates smaller
than 0.001 as the convergence criterion. Convergence is achieved for the lung
cancer datasets within twenty iterations. For the proposed methods, in the objective
function, the first term is continuously differentiable and regular in the sense of
Tseng (2001). The penalty term is separable. Thus the coordinate descent estimate
converges to a coordinate-wise minimum of the first term, which is also a stationary
point. Our limited experience suggests that the proposed computational algorithms
are affordable. Among the three approaches, cMCP has the highest computational
cost. With fixed tunings, the analysis of the lung cancer datasets (Sect. 4) takes about
40 s using a regular desktop PC.

3.2.3 Tuning Parameter Selection

The proposed methods involve the following tuning/regularization parameters: two-
step approach: (λ ,γ) for gMCP and possibly different (λ ,γ) for MCP, 1-norm
gMCP: (λ ,γ), and cMCP: (λ1,λ2,a,b).

Properties of the estimates are jointly determined by the tuning/regularization
parameters. Generally speaking, smaller values of a and b (γ in MCP and gMCP)
are better at retaining the unbiasedness of the MCP penalty for large coefficients, but
they also have the risk of creating objective functions with a nonconvexity problem
that are difficult to optimize and yield solutions that are discontinuous with respect
to λ1 and λ2 (λ ). It is therefore advisable to choose values of a and b (γ) that are big
enough to avoid this problem but not too big. As suggested in Breheny and Huang
(2011) and Zhang (2010), we have experimented with a few values for a and b (γ),
particularly including 1.8, 3, 6, and 10.

In our numerical study, we select tuning parameters via V-fold cross validation
with V = 5. Our limited unpublished simulation suggests that a = 6, b = 6 and
γ = 6 lead to the best performance. We note that such a result does not indicate the
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universal superiority of those values. In practice, searching over multiple possible
values is still needed. With λ (λ1,λ2), one may expect that its value cannot go down
to very small values since there are regions not locally convex (Breheny and Huang
2009; 2011). The criteria over non-locally convex regions may go up and down. To
avoid the unexpectedness of such regions, we select λ (λ1,λ2) where the criterion
first goes up (see Breheny and Huang 2011 for related discussions).

4 Analysis of Lung Cancer Prognosis Studies

Lung cancer is the leading cause of death from cancer for both men and women in
the USA and in most other parts of the world. Non-small-cell lung cancer (NSCLC)
is the most common cause of lung cancer death, accounting for up to 85% of such
deaths (Tsuboi et al. 2007). Gene profiling studies have been extensively conducted
on lung cancer, searching for markers associated with prognosis. Three studies are
described in Xie et al. (2011). The UM (University of Michigan Cancer Center)
study had a total of 175 patients, among whom 102 died during follow-up. The
median follow-up was 53 months. The HLM (Moffitt Cancer Center) study had a
total of 79 subjects, among whom 60 died during follow-up. The median follow-
up was 39 months. The CAN/DF (Dana-Farber Cancer Institute) study had a total
of 82 patients, among whom 35 died during follow-up. The median follow-up was
51 months. We refer to Xie et al. (2011) and references therein for more details on
study designs, subjects’ characteristics, and profiling protocols; 22,283 genes were
profiled in all three studies.

In previous studies such as Xie et al. (2011), the three datasets were combined
and analyzed. Such a strategy corresponds to a special case of the homogeneity
model in the present study. As the three datasets were generated in three independent
studies, heterogeneity is expected to exist across datasets. This can be partly seen
from the summary survival data and profiling protocols. Here we assume the
heterogeneity model and analyze using the two-step method (Table 1), 1-norm
gMCP (Table 2), and cMCP (Table 3). Note that with all methods, the small
magnitudes of regression coefficients are caused by the “clustered” log survival
times. The estimates suggest that different datasets may have different prognosis-
associated genes. This partly explains why published studies have failed to unify
the identified markers across different lung cancer prognosis datasets. As described
in Sect. 1, multiple factors may contribute to this heterogeneity. Without having
access to all the experiment details, we are not able to determine the exact cause of
heterogeneity. Although there are overlaps, different approaches identify different
sets of genes. Such an observation is not surprising and has been made in published
studies such as Ma et al. (2011b).

To provide a more comprehensive description of the three datasets and various
methods, we also conduct the evaluation of prediction performance. Although in
principle marker identification and prediction are two distinct objectives, evaluation
of prediction performance can be informative for marker identification. In particular,
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Table 1 Two-step method: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.004 0.027
200642 at SOD1 0.016 0.016

200650 s at LDHA −0.007 0.044
200694 s at DDX24 −0.031
200747 s at NUMA1 −0.016 −0.022
200772 x at PTMA −0.029 0.034 −0.025
201021 s at DSTN −0.050
201033 x at RPLP0 −0.006
201508 at IGFBP4 0.0004 −0.050

201523 x at UBE2N 0.017
201568 at UQCRQ 0.016 0.000 0.002
201789 at Hs.59719 −0.058

201875 s at MPZL1 −0.015 0.001
202081 at IER2 0.0002 −0.026

202162 s at CNOT8 0.006 0.017 0.001
202176 at ERCC3 0.006

Table 2 1-norm gMCP: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.005
200633 at UBB −0.001
200642 at SOD1 0.0004 2.8E-05

200674 s at RPL32 0.002
200693 at YWHAQ −0.003

200694 s at DDX24 −0.002
200724 at RPL10 0.0005

200772 x at PTMA −0.0002 −0.002
200804 at TMBIM6 −0.001
200972 at TSPAN3 −0.003

200973 s at TSPAN3 0.003
201021 s at DSTN −0.016
201033 x at RPLP0 −0.0005
201173 x at NUDC 0.003
201201 at CSTB 0.005
201508 at IGFBP4 −0.001

201611 s at ICMT −0.001
201645 at TNC 0.003

201729 s at KIAA0100 5.0E-05
201789 at Hs.59719 −0.012
202081 at IER2 −0.002
202146 at IFRD1 −0.0001
202176 at ERCC3 −0.002

202183 s at KIF22 0.002
202413 s at USP1 −0.001
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Table 3 cMCP: identified genes and their estimates.

Probe Gene UM HLM CAN/DF

200041 s at DDX39B 0.005
200633 at UBB −0.001

200674 s at RPL32 0.002
200693 at YWHAQ −0.005

200772 x at PTMA −0.001
200972 at TSPAN3 −0.002

200973 s at TSPAN3 0.002
201021 s at DSTN −0.017
201033 x at RPLP0 −0.0003
201173 x at NUDC 0.001
201201 at CSTB 0.004
201645 at TNC 0.001
201789 at Hs.59719 −0.011
202176 at ERCC3 −0.0003

202183 s at KIF22 0.001
202413 s at USP1 −0.0002

if prediction is more accurate, then the identified markers are expected to be more
meaningful. For prediction evaluation, we adopt a random sampling approach as
in Ma et al. (2009). More specifically, we generate training sets and corresponding
testing sets by random splitting data (with sizes 3:1). Estimates are generated using
the training sets only. We then make prediction for subjects in the testing sets.
We dichotomize the predicted linear risk scores X β̂ at the median, create two risk
groups, and compute the logrank statistic, which measures the difference in survival
between the two groups. To avoid extreme splits, this procedure is repeated 100
times. The average logrank statistics are calculated as 2.17 (two-step), 4.77 (1-norm
gMCP), and 3.70 (cMCP). 1-norm gMCP is the only approach that can separate
subjects into groups with significantly different survival risks (p-value = 0.029).
Based on this prediction evaluation, genes and estimates presented in Table 2 are
suggested as the final results for these three datasets.

5 Discussion

In cancer genomic research, multi-dataset analysis provides an effective way to
overcome certain drawbacks of single-dataset analysis. In most published studies, it
has been reinforced that multiple datasets share the same set of prognosis-associated
genes, that is, the homogeneity model. In this study, for multiple cancer prognosis
datasets, we consider the heterogeneity model, which includes the homogeneity
model as a special case and can be less restricted. This model may provide a way
to explain the failure to unify cancer prognosis markers across independent studies
(Knudsen 2006; Cheang et al. 2008). Under the heterogeneity model, we propose
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three penalization methods for marker identification. Such methods are intuitively
reasonable and computationally feasible. Analysis of three lung cancer studies
demonstrates the practical feasibility of proposed methods.

Under the heterogeneity model, marker selection needs to be conducted in two
dimensions. Methods beyond penalization, for example thresholding and boosting,
may also be able to achieve such selection. Comprehensive investigation and com-
parison of different approaches are beyond the scope of this article. The proposed
methods are based on the MCP penalty, which has been shown to have satisfactory
performance in single-dataset analysis. We suspect that it is possible to develop
similar approaches based on, for example, bridge and SCAD penalties. As in single-
dataset analysis there is no evidence that such penalties are superior to MCP, such a
development is not pursued.
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