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Abstract A biomarker is usually used as a diagnostic or assessment tool in medical
research. Finding a single ideal biomarker of a high level of both sensitivity
and specificity is not an easy task; especially when a high specificity is required
for a population screening tool. Combining multiple biomarkers is a promising
alternative and can provide a better overall performance than the use of a single
biomarker. It is known that the area under the receiver operating characteristic
(ROC) curve is most popular for evaluation of a diagnostic tool. In this study,
we consider the criterion of the partial area under the ROC curve (pAUC) for the
purpose of population screening. Under the binormality assumption, we obtain the
optimal linear combination of biomarkers in the sense of maximizing the pAUC
with a pre-specified specificity level. Furthermore, statistical testing procedures
based on the optimal linear combination are developed to assess the discriminatory
power of a biomarker set and an individual biomarker, respectively. Stepwise
biomarker selections, by embedding the proposed tests, are introduced to identify
those biomarkers of statistical significance among a biomarker set. Rather than for
an exploratory study, our methods, providing computationally intensive statistical
evidence, are more appropriate for a confirmatory analysis, where the data has been
adequately filtered. The applicability of the proposed methods are shown via several
real data sets with a moderate number of biomarkers.
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1 Introduction

A biomarker is a biological indicator in showing absence, presence, or the condition
of a disease, and it can be used to determine the status of a subject, the effectiveness
of a treatment, and so on. Ideally, a biomarker with both high sensitivity and
specificity for accurate prediction is expected. However, it is not easy to find such a
biomarker in practice. Combining biomarkers provides an alternative to improve the
performance of currently available ones. For example, the serum prostate-specific
antigen (PSA) is a well-accepted prognostic biomarker to screen for prostate cancer.
However, this test has a low specificity and therefore might lead to over-diagnosis.
Besides PSA, several potentials are investigated, please see [11]. Nevertheless, no
single biomarker among them outperforms PSA, and therefore, more investigators
propose the use of a combination of PSA and others. Please see [1, 9].

The receiver operating characteristic (ROC) curve is the most popular graphical
tool in evaluation of the diagnostic power of a biomarker. It provides an exhaustive
look at the relationship between sensitivity and specificity of a biomarker. The
area under the ROC curve (AUC) is proposed for an efficient summarization. In
some applications, investigators place their emphasis only on a part of the curve.
For example, a high level of specificity is required for a biomarker serving as a
population screening tool. As a consequence, a biomarker is assessed on the partial
area under the ROC curve (pAUC) in a region of specificity above some level. See
[13] and the reviews by [4, 16].

This study focuses on combining multiple continuous-scaled biomarkers into one
single diagnostic or predictive rule for disease with emphases on assessment of each
biomarker. For better interpretability, we propose the use of a linear combination
for information summarization. The discriminatory power of a linear combination
of biomarkers is evaluated on the pAUC. The optimal linear combination, which
provides the best discriminatory power among all combinations, is the target
solution of research interest. In addition to the global predictability, some insights
into the importance of an individual biomarker can be obtained from the coefficients.
However, it needs to incorporate sampling variation for statistical significance.

In presence of multiple biomarkers, a traditional way is fitting a multiple logistic
regression model to the data set for medical diagnosis. For example, see [20].
Alternatively, seeking the maximal discriminatory power, Su and Liu [17] derived
the explicit form of the best linear combination in terms of AUC under a binormal
model. Following their study, [6] found a solution, that dominates any others in
some scenarios. Nevertheless, the dominating scenarios are not universal. Pepe and
Thompson [12] and Pepe et al. [14] proposed the use of empirical AUC estimates in
finding the optimal linear combination. In our earlier study, we found that not only
the analytical derivation but also the computation became much more complicated
under the pAUC criterion, please refer [2].

Recently, due to newer and better biotechnology, big data are generated easily
and related analytical tools are demanding. In developing a binary classification,
which is parallel to a diagnostic rule, several algorithm-based approaches have been
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proposed by directly using either AUC or pAUC as the objective function, such
as [3, 5, 7, 8, 10, 15, 22, 23]. However, these algorithm-based methods are unable
to accommodate statistical evidence into variable selection. It motivates our study
in developing some stepwise approaches, embedding adequate statistical tests, to
identify important biomarkers for data sets of a moderate size. In which, a biomarker
is discarded or selected based on the statistical evidence from data, not only on a
computational prospect.

The paper is organized as follows. In Sect. 2, the sample version of the optimal
linear combination will be defined. In Sect. 3, some testing procedures for the global
and individual discriminatory power will be proposed. Furthermore, two biomarker
selection approaches adopting the proposed tests will be developed. Real example
analyses are given in Sect. 4. We then conclude this paper with a discussion in
Sect. 5.

2 Strong Consistency of the Linear Combination
Estimator Maximizing the pAUC

Let X be a random vector of p biomarkers related to the disease of a subject, and
D be the binary disease status, where D = 1 indicates a subject from the diseased
population, D = 0 indicates a subject from the non-diseased population. Suppose
that

X|D = d ∼ MV N(μd ,Σd), d = 0,1,

where Σ0 and Σ1 are positive definite. For any given real vector a ∈ Rp,

aT X|D = d ∼ N(aT μd ,Qd),

where Qd = aT Σda, for d = 0,1. Let Φ(·) denote the cumulative distribution
function of N(0,1) and Φ−1(·) be its inverse function. Let c(u) = Φ−1(1− u) and
Δμ = μ1 − μ0, then at specificity (1− u), the sensitivity of aT X is equal to

F(a,u) = Φ
(

aT Δμ − c(u)
√

Q0√
Q1

)
.

Therefore, for a false positive rate region (0, t) for some predetermined t ∈ (0,1),
the pAUC of aT X is equal to

pAUC(a) =
∫ t

0
F(a,u)du. (1)

Similar to AUC, the pAUC has the scale invariant property. For identification
purposes, in this study the search for the optimal linear combination vector is
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restricted to the hyper-sphere with an unit radius. Let a∗ be such a pAUC maximizer;
that is,

a∗ = argmaxa∈Ep
pAUC(a),

where Ep = {a| ‖a‖= 1,a ∈ Rp}.
When the population parameters are unknown, the maximum likelihood esti-

mates (MLEs) are employed in a sample version of the optimization problem.
Assume two independent random samples of n0,n1 are drawn from the non-diseased
and diseased populations, respectively. The estimated mean vectors and covariance
matrices are, respectively, denoted as follows: μ̂0, μ̂1, and Σ̂0, Σ̂1. Moreover, let
Δ̂μ = μ̂1 − μ̂0 and Q̂d = aT Σ̂da, for d = 0,1. Replacing the unknown parameters in
(1) by their corresponding MLEs defined above, we have a sample version of pAUC
below:

̂pAUCn(a) =
∫ t

0
F̂n(a,u)du, (2)

where

F̂n(a,u) = Φ

(
aT Δ̂μ − c(u)

√
Q̂0√

Q̂1

)
.

Thus, a∗ of the optimal linear combination is estimated by the maximizer of (2):

ân = argmaxa∈Ep
̂pAUCn(a).

The theorem below shows that ân is a strong consistent estimator of a∗. A sketch of
the proof is provided in Appendix.

Theorem 1. Assume that pAUC(a) in (1) is a continuous function of a and has a
unique maximizer a∗ in Ep. Then ân → a∗ with probability 1 as n0,n1 → ∞.

In real applications, some of the coefficients in the best linear combination were
found to be nearly zero. Numerically, their corresponding biomarkers might have
limited contribution to the combination and thus to the disease prediction. In the
following section, we will discuss how to assess the significance of biomarkers
obtained in our maximizing procedure in terms of their discriminatory power.
The proposed testing procedures will be embedded into our biomarker selection
approaches in order to find a compact biomarker set, which consists of only
significant biomarkers in disease diagnosis.
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3 Hypothesis Testing and Biomarker Selection

3.1 Testing the Discriminatory Power

Considering only the class of linear combinations, we evaluate the global discrimi-
natory power of a set of p ≥ 1 biomarkers, X, by testing the following hypotheses:

H0,g : The biomarker set has no discriminatory power to the disease

versus

H1,g : The biomarker set has a discriminatory power to the disease.

The null hypothesis H0,g is true if and only if the optimal linear combination of the
biomarker set has no discriminatory power. Or equivalently, the maximal pAUC
that the set can achieve through its linear combinations is not greater than the
reference limit t2/2, which is the pAUC value of the non-informative diagnosis with
a diagonal ROC curve. That is,

H0,g : pAUC(a∗)≤ t2

2
versus H1,g : pAUC(a∗)>

t2

2
.

By maximizing the sample pAUC defined in (2), we obtain the maximal sample
pAUC and use it as the test statistic. That is,

Tg = max
a∈Ep

̂pAUCn(a) = ̂pAUCn(ân) =

∫ t

0
Φ

(
âT

n Δ̂μ − c(u)
√

Q̂0√
Q̂1

)
du.

The null hypothesis H0,g is rejected if Tg is sufficiently large.
Let XT = (XT

i− ,Xi), we consider to assess the contribution of Xi given the
existence of other biomarkers, Xi− . The following hypothesis is tested:

H0,c : Given Xi− , Xi has no discriminatory power to the disease.

The coefficients of the optimal linear combination of X are written as a∗T =
(a∗T

i− ,a∗i ), where a∗i is the corresponding coefficient of Xi. In this problem, we
propose evaluating the biomarker Xi from a∗i . That is, H0,c is equivalent to

H0,c : a∗i = 0.

The test statistic is the estimator of a∗i , denoted by Tc,i = ân,i. The null hypothesis
H0,c is then rejected if Tc,i is either too small or too large.

Due to the complex formulation of the test statistics, the null distribution and
the critical values are estimated by a parametric bootstrapping method. Under the
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null hypothesis, the sampling distribution of the test statistic is estimated. Consider
drawing two independent random samples of size n1 and n0 from the estimated
null distribution. Then using the bootstrap samples to find the test statistic. Repeat
the sampling B times. The critical value(s) is(are) then equal to the correspondent
percentile(s) among these values.

3.2 Biomarker Selection

We now turn to the biomarker selection problem. Assume that all biomarkers are
adequately standardized a priori and denoted the full standardized biomarker set
by X. Let âT

n = (ân,1, . . . , ân,p) be the estimate of the optimal linear combination
as before. The magnitude of |ân,i| is used as an ordering criterion in the following
stepwise biomarker selection approaches. Rearrange the biomarkers according to
their corresponding |ân,i| values in an ascending order. Denoted the rearranged
vector by XT = (X(1), . . . ,X(p)).

We consider two stepwise selection methods: the Forward and the Backward
approaches. Define A as the set of biomarkers under consideration in each step for
convenience. The Forward procedure starts from a null A and tests the contribution
of the potentially most discriminatory biomarker X(p). The biomarker is added to A
if it is significant. Then it consecutively assesses X(p−1), X(p−2) and so on. On the
other hand, the Backward procedure starts from testing the overall discriminatory
power of A = {X}. If an insignificance is obtained, we stop the selection and
conclude that the full biomarker set is independent of the disease. With a significant
global effect, one further determines whether the potentially least discriminatory
biomarker X(1) is significant. Remove the biomarker from A if an insignificant result
is present. Given the result, this procedure consecutively assesses the conditional
contribution of X(2), of X(3), and so on. After evaluating the contribution of every
individual biomarker, we conclude that the biomarkers remaining in A have a
significant contribution to the linear combination in terms of pAUC. The details are
presented below:

Forward Method

Step 1. Set A = /0. Test the marginal effect of X(p) with respect to

H0,(p) : X(p) has no discriminatory power.

If H0,(p) is rejected, add X(p) to A. Go to the next step.
Step 2. Test the significance of X(p−1) with respect to

H0,(p−1) : Given A, X(p−1) has no discriminatory power.
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If H0,(p−1) is rejected, add X(p−1) to A. Go to the next step.
...

Step p. Test the significance of X(1) with respect to

H0,(1) : Given A, X(1) has no discriminatory power.

If H0,(1) is rejected, add X(1) to A. Stop.

Backward Method

Step 0. Set A = {X}. Test the global effect of A with respect to

H0,(0) : A has no discriminatory power.

If H0,(0) is rejected, go to the next step; otherwise, stop and conclude A = /0.
Step 1. Assess X(1) by removing X(1) from A and test the hypothesis,

H0,(1) : Given A, X(1) has no discriminatory power.

If H0,(1) is rejected, add X(1) to A. Go to the next step.
Step 2. Assess X(2) by removing X(2) from A and test the hypothesis,

H0,(2) : Given A, X(2) has no discriminatory power.

If H0,(2) is rejected, add X(2) to A. Go to the next step.
...

Step p. Assess the effect of X(p). If A = {X(p)}, stop; otherwise, remove X(p) from
A and test the following null hypothesis,

H0,(p) : Given A, X(p) has no discriminatory power.

If H0,(p) is rejected, add X(p) to A. Stop.

Note that except in the initial step of the Backward method, there is no early
stopping criterion in both approaches in order to minimize the risk of not taking the
variation of |ân,i| into the ordering criterion at the beginning of the procedure. Note
that at every step, the biomarker set involved is likely to differ, thus the optimal
linear combination should be recalculated for the hypothesis testing. Further, the
two biomarker selection approaches assess the conditional discriminatory power
of one target biomarker at every step and hence the related null hypothesis is
H0,c. For simplicity, one can consider a fixed significance level stepwisely in the
procedure. To control the global type I error rate, a suitable multiplicity adjustment
can be employed. For example, the Bonferroni adjustment suggests a α/p stepwise
significance level in the Forward method, and α/(p+ 1) level in the Backward
method for the global type I error rate to be controlled at α level.
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4 Applications to Real Data Sets

We apply our procedures to two real examples in [6, 19]. By using the raw data
and the standardized data, the optimal linear combinations of the full biomarker
set are both reported in Table 1. We consider the following standardization: every
biomarker in the raw data subtracts the non-diseased group mean and then divides
by its pooled sample standard deviation from the two groups for a more uniform
unit across biomarkers. The two proposed biomarker selection methods with 5%
stepwise significance level are applied on the standardized data. The optimal linear
combinations of the reduced biomarker set are given in Table 1.

The first example is a study of Duchenne Muscular Dystrophy (DMD).The DMD
carriers generally are elevated by certain serum enzymes, not by physical symptoms.
The measurements of three biomarkers of DMD of 87 normal and 38 carrier females
were collected in this data set. The sample means of the three biomarkers in the
normal and carrier groups are, respectively, μ̂T

0 = (3.3932,4.5213,2.4863), μ̂T
1 =

(4.7615,4.5228,3.0105); and the sample covariance matrices are

Σ̂0 =

⎛
⎝ .0316 −.0039 .0024

−.0039 .0065 .0006
.0024 .0006 .0113

⎞
⎠ , Σ̂1 =

⎛
⎝ .7683 −.0050 .3054

−.0050 .0094 −.0064
.3054 −.0064 .2268

⎞
⎠ .

We observe from Table 1 that the contribution of the second biomarker is greatly
downsized by the standardization. In fact, we find that the marginal distributions of
the second biomarker of the two groups do not vary much. Consequently, it should
have a limited discriminatory power. The reason that it has an inflated coefficient
in the optimal linear combination based on the raw data is due to the fact that
it has relatively small variances, which means that it is measured by a greater
unit than other biomarkers. The standardization makes the units of the biomarkers
more uniform. It leads to a more fair comparison across the biomarkers. After data

Table 1 The estimated best linear combination and the corresponding pAUC for the specificity
range (0.9,1) in DMD and atherosclerotic coronary heart disease examples.

Case Method â1 â2 â3 ̂pAUCn

DMD Full set (raw) 0.8350 0.5116 0.2026 0.0888
Full set (Standardized) 0.9895 0.0653 0.1292 0.0888
Forward (Standardized) 0.9657 0.0000 0.2597 0.0885
Backward (Standardized) 0.9657 0.0000 0.2597 0.0885

Case Method lutein TBARS HDL C U A ̂pAUCn

Heart disease Full set (raw) 0.9447 0.3258 0.0265 0.0274 0.0165
Full set (Standardized) 0.7079 0.6754 0.0834 0.1890 0.0165
Forward (Standardized) 1.0000 0.0000 0.0000 0.0000 0.0099
Backward (Standardized) 1.0000 0.0000 0.0000 0.0000 0.0099
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standardization, Table 1 shows that both Forward and Backward approaches select
the first and the third biomarkers. We find that the decrement in the pAUC by
removing the second biomarker is slim.

In another real example, we consider four biomarkers lutein, TBARS, HDL
cholesterol (HDL C), and uric acid (U A) for construction of a classification
tool for atherosclerotic coronary heart disease. A cohort of 434 subjects were
selected for the analysis yielding 72 cases and 362 controls. One obtains an
insignificant conclusion in testing the null hypothesis of normality. For the
non-diseased and diseased groups, the estimated means of the four markers are
μ̂T

0 = (0.1275,0.8845,4.0766,6.7724), μ̂T
1 = (0.1402,0.9337,4.1225,6.9112);

and the two sample covariance matrices are

Σ̂0 =

⎛
⎜⎜⎝

.0034 −.0004 −.0002 −.0051
−.0004 .0285 .0039 .0417
−.0002 .0039 .0488 .0268
−.0051 .0417 .0268 .2846

⎞
⎟⎟⎠ , Σ̂1 =

⎛
⎜⎜⎝

.0043 .0033 .0006 .0067

.0033 .0415 .0019 .0426

.0006 .0019 .0389 .0010

.0067 .0426 .0010 .1504

⎞
⎟⎟⎠ .

From Table 1, the impact of the first biomarker lutein, which has relatively small
variances in the raw data, is downsized by the standardization. Before the biomarker
selection, the first two biomarkers, lutein and TBARS, seem important to the disease
from the magnitudes of their coefficients. However, the two stepwise selections
produce the same conclusion that only the biomarker lutein achieves statistical
significance, although there is a moderate reduction in the pAUC by discarding other
three biomarkers.

5 Discussion

In this study, we focus on disease diagnosis with the presence of multiple biomark-
ers. We consider the class of linear combinations for an effective and easy-to-
interpret summarization of the multiple biomarkers. The diagnostic power of a linear
combination is evaluated upon its pAUC over a clinically relevant threshold region.
In specific, we consider the requirement of a high specificity for the purpose of
population screening.

Under the binormality assumption, the pAUC of a linear combination is esti-
mated by employment of MLEs of the population parameters. In addition, the strong
consistency of the estimated optimal linear combination is proved. We introduce a
testing procedure to assess the overall diagnostic power of a set of biomarkers from
the greatest pAUC it can achieve in the class of linear combinations. Furthermore, a
testing procedure for determining the conditional contribution of a single biomarker
given the existence of other biomarkers is developed. The parametric bootstrap
method is applied to find the critical value(s) of the tests. These proposed tests
are then embedded in two biomarker selection approaches. The applicability of the
proposed methods is illustrated by two real data sets.
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Differing with other algorithm-based marker selection approaches, the proposed
methods select or discard a biomarker based upon the evidence of statistical
significance. As a trade-off, to acquire statistical evidence, our methods necessarily
involve many computations. As such, it decreases the feasibility of these methods
for big data sets. Consequently, our methods are less appropriate in an exploratory
study. We suggest the application of adequate data filtering for dimension reduction
prior to advanced statistical confirmatory analysis, such as the construction of a
diagnostic rule.

Appendix

Proof of Theorem 1. Since E(X|D)2 < ∞, by SLLN, as n → ∞,

μ̂0
a.s.→ μ0, μ̂1

a.s.→ μ1, Σ̂0
a.s.→ Σ0, Σ̂1

a.s.→ Σ1.

Consequently, for any fixed a ∈ Ep,

aT Δ̂μ
a.s.→ aT Δμ , Q̂0

a.s.→ Q0, Q̂1
a.s.→ Q1, and F̂n(a,u)

a.s.→ F(a,u),

since Φ(·) is a continuous function ([18], Theorem 1.10 (i)).
Further, since Φ(·) is bounded, by the dominated convergence theorem,

lim
n→∞

̂pAUCn(a) = lim
n→∞

∫ t

0
Fn(a,u)du =

∫ t

0
F(a,u)du = pAUC(a).

Hence, for any fixed a ∈ Ep, ̂pAUCn(a) → pAUC(a) with probability 1. Since
a∗ = argmaxa∈Ep

pAUC(a) is assumed unique, it implies that for every � > 0,
supa:d(a,a∗)≥� pAUC(a)< pAUC(a∗). As a consequence, according to Theorem 5.7
([21]),

ân → a∗, with probability 1.
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