
Chapter 8
A Novel Approach to the Hankel Transform
Inversion of the Neutron Diffusion Problem
Using the Parseval Identity

J.C.L. Fernandes, M.T. Vilhena, and B.E.J. Bodmann

8.1 Introduction

The neutron diffusion equation is still one of the most frequently employed
equations for nuclear reactor neutronics calculations, although its limitations are
well known [GoLeVi09,ViSeGo04]. The equation is obtained under the assumptions
that scattering is isotropic in the laboratory coordinate system and the region of
interest is considered piecewise homogeneous, so that the diffusion coefficients
are invariant under spatial transforms like translation and others. It is well known
that such a derivation of diffusion theory rests on certain assumptions, i.e. the flux
being sufficiently smooth especially by virtue of neutron absorption or production,
which is reasonable since the mean free path is typically larger than the dimensions
of the fuel cell and moderator space geometry. The solution of the diffusion
equation system is thus an average description of a large number of neutrons, where
fluctuations (higher moments) are neglected [LeEtAl08]. Further, the continuous
energy distribution of neutrons is reduced by the use of energy groups (in the present
case two).

8.2 Multi-group Steady State Neutron Diffusion

Our starting point is the steady state multi-energy group neutron diffusion equation,
with the usual diffusion, removal, out-scattering, fission, and in-scattering terms.
Here Dg is the diffusion coefficient for energy group g, Δr = r−1∂r(r∂r) represents
the radial part of the Laplace operator in cylindrical coordinates. Note that we
assume translational symmetry of the neutron flux φg along the cylinder axis and
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thus ∂zzφ = 0. ΣRg are the respective removal cross section, Σg→g′ ,Σg′→g (g �= g′)
the out- and in-scattering cross sections, νgΣ f g the fission cross section times the
average neutron yield per fission, χg the spectral weight of energy group g ∈ [1,G],
ke f f the effective multiplication factor, and Sg a generic source term per energy
group:

−DgΔrφg +

(
ΣRg +

G

∑
g′=1

Σ s
g→g′

)
φg = χg

G

∑
g′=1

νg′Σ f g′φg′

+
G

∑
g′=1

Σg′→gφg′ + Sg. (8.1)

The diffusion problem is subject to the boundary conditions of zero current
density at the center of the cylinder Dg(∂φg/∂ r)(0) = 0 and zero flux at the
boundary; that is, φg(R) = 0.

8.3 The Hankel-Transformed Problem

The diffusion problem (8.1) previously introduced may be solved by the use of the
zero order Hankel transform

f̄ (ξ ) = Hn[ f (r);r → ξ ] =
∫ ∞

0
r f (r)Jn(rξ )dr

(here n = 0) that renders (8.1) a nonhomogeneous problem and may be cast into
matrix form. As an example we show the equation for two energy groups:

(
D1ξ 2 +ΣR1 −(χ1νΣ f 2 +Σ12

)
−(χ2νΣ f 1 +Σ21

)
D2ξ 2 +ΣR2

)(
φ̄1

φ̄2

)
=

(
S̄1

S̄2

)
.

In shorthand notation, the equation reads M(ξ )Φ̄ = S̄. In general M(ξ ) is invertible,
so that

det(M(ξ )) = A(ξ )B(ξ )− μ12μ21 �= 0,

with A(ξ ) = D1ξ 2 + ΣR1, B(ξ ) = D2ξ 2 + ΣR2, μ12 = χ1νΣ f 2 + Σ12 and μ21 =
χ2νΣ f 1 +Σ21. The solution for the system in transformed variables is

Φ̄ = (det(M(ξ )))−1
(

B(ξ )S̄1 + μ12S̄2

μ21S̄1 +A(ξ )S̄2

)
.

In what follows, we introduce a simplification, that does not compromise the
generality of the procedure, and consider a source term for group g = 1, only. Then
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φ̄1 = B(ξ )
S̄1

det(M(ξ ))
, φ̄2 = μ21

S̄1

det(M(ξ ))
,

and upon applying the inverse Hankel transformation one may determine the
analytical solution of the problem [Fe11].

8.3.1 Fast Flux Solution

Application of the inversion formula yields

φ1 =

∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

S̄1 dξ ,

which together with the Hankel inversion theorem and Parseval’s identity allows us
to derive the desired result.

Theorem 1 (The Hankel inversion theorem). If
√

r′ f (r′) is piecewise continuous
and absolutely integrable on the positive half of the real line, and if γ ≥ − 1

2 , then
f̄γ (ξ ) = Hγ [ f (r′);r′ → ξ ] exists and

∫ ∞

0
ξ f̄γ(ξ )Jγ (ξ r′) dξ =

1
2
[ f (r′+)+ f (r′−)].

Theorem 2 (Parsenval’s relation). If the functions f (r′) and g(r′) satisfy the
conditions of Theorem 1 and if f̄γ (ξ ) and ḡγ(ξ ) denote the Hankel transforms of
order γ ≥− 1

2 , then

∫ ∞

0
r′ f (r′)g(r′) dr′ =

∫ ∞

0
ξ f̄γ(ξ )ḡγ(ξ ) dξ .

Making use of the theorem with f̄0(ξ ) = B(ξ )J0(rξ )
det(M(ξ )) and ḡ0(ξ ) = S̄1, establishes

that

∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

S̄1 dξ =

∫ ∞

0
r′H−1

0

{
B(ξ )J0(rξ )
det(M(ξ ))

}
S1(r

′) dr′ ,

and by definition the following identity holds:

H−1
0

{
B(ξ )J0(rξ )
det(M(ξ ))

}
=

∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

J0(r
′ξ ) dξ .

The physically meaningful range of nuclear parameters implies 0 < μ12μ21
A(ξ )B(ξ ) < 1,

so that
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B(ξ )
A(ξ )B(ξ )− μ12μ21

=
1

A(ξ )
+

1
A(ξ )

O

((
μ12μ21

A(ξ )B(ξ )

)2
)

,

which by virtue of the fact that
(

μ12μ21
A(ξ )B(ξ )

)
� 1 allows to safely neglect higher-order

terms. The integral may be evaluated [Ba54] as

∫ ∞

0
ξ

J0(rξ )
A(ξ )

J0(r
′ξ ) dξ =

{
1

D1
I0(

√
α1r′)K0(

√
α1r) for 0 < r′ < r

1
D1

I0(
√

α1r)K0(
√

α1r′) for r < r′ < ∞,

where αg = ΣRg/Dg. Here, I0 and K0 are the modified Bessel functions and outside
of the cylinder the source term is identically zero. The solution for the fast flux is
then

φ1 =
K0(

√
α1r)

D1

∫ r

0
r′I0(

√
α1r′)S1(r

′) dr′

+
I0(

√
α1r)

D1

∫ R

r
r′K0(

√
α1r′)S1(r

′) dr′.

8.3.2 The Thermal Flux Solution

The procedure for the thermal flux follows similar steps to the ones introduced in
the solution scheme for the fast flux. Using the inversion formula

φ2 = μ21

∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

S̄1 dξ

together with Theorem 2,

∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

S̄1 dξ =

∫ ∞

0
r′H−1

0

{
J0(rξ )

det(M(ξ ))

}
S1(r

′) dr′

and, by definition,

H−1
0

{
J0(rξ )

det(M(ξ ))

}
=

∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

J0(r
′ξ ) dξ .

Using arguments analogous to those for the fast flux, we arrive at

H−1
0

{
J0(rξ )

det(M(ξ ))

}
=

1
(ΣR2D1 −ΣR1D2)

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
α1)2 J0(r

′ξ ) dξ
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− 1
(ΣR2D1 −ΣR1D2)

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
α2)2 J0(r

′ξ ) dξ

=

⎧⎨
⎩

I0(
√α1r′)K0(

√α1r)−I0(
√α2r′)K0(

√α2r)
(ΣR2D1−ΣR1D2)

for 0 < r′ < r,

I0(
√α1r)K0(

√α1r′)−I0(
√α2r)K0(

√α2r′)
(ΣR2D1−ΣR1D2)

for r < r′ < ∞,

so that the thermal flux is

φ2 = c1

(
K0(

√
α1r)

∫ r

0
r′I0(

√
α1r′)S1(r

′) dr′

+ I0(
√

α1r)
∫ R

r
r′K0(

√
α1r′)S1(r

′)dr′

−K0(
√

α2r)
∫ r

0
r′I0(

√
α2r′)S1(r

′)dr′

−I0(
√

α2r)
∫ R

r
r′K0(

√
α2r′)S1(r

′) dr′
)
,

where c1 =
μ21

(ΣR2D1−ΣR1D2)
.

Because of the similarity of the solutions the integral expressions may be used to
formulate both solutions as

φ1 = T1[S1](r) and φ2 = c1(D1T1[S1](r)−D2T2[S1](r)),

where

Tg[ f ](r) =
K0(

√αgr)

Dg

∫ r

0
r′I0(

√αgr′) f (r′)dr′

+
I0(

√αgr)

Dg

∫ R

r
r′K0(

√αgr′) f (r′)dr′.

8.4 Multi-regions

In this section we present the first approximation for a solution in a piecewise
homogeneous medium, where each region (with index κ) has its specific and in
general distinct parameter set [BoEtAl10]. In order to simplify the problem, we
ignore the energy group mixing terms (coupling between different energy groups)
and consider as an approximation the diffusion equation for each group separately.
A more general solution for a coupled system is beyond the scope of the present
work but will be the issue in a future discussion:
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−D(κ)
g Δrφ

(κ)
g (r)+σ (κ)φ (κ)

g = 0, with σ (κ)
g = Σ (κ)

Rg −νΣ (κ)
f g .

Basically two approaches may be used to solve the multi-region problem, the
usual one determines the solution for each region separately and the integration
constants are determined from the matching of the fluxes and current densities at
the boundaries and interfaces, respectively [BoEtAl10]. In the further we follow
a different reasoning, here the solution of the first region is extended to the whole
domain of interest across all N regions with increasing boundaries at R1, . . . ,RN and
the modification of the solution for the change in the parameter set of the second
region is determined by a correction to the already obtained solution. All corrections
for the parameter changes of the successive regions are treated this way, so that the
general solution gets a progressive character. If the solution for region κ is given by

φ (κ)
g , then

φ (κ)
g =

κ

∑
i=1

φgi = φgκ +φ (κ−1)
g ,

where κ ∈ [1, . . . ,N.]
The progressive solution is then determined by a recursive scheme with a finite

recursion depth. The initialization is given by

−Δrφg1 +
σ (1)

g

D(1)
g

φg1 = 0 ,

and the generic recursion steps are

−D(κ)
g Δrφgκ +σ (κ)

g φgκ =

(
D(κ)

g

D(κ−1)
g

σ (κ−1)
g −σ (κ)

g

)
︸ ︷︷ ︸

γ(κ)g

φ (κ−1)
g . (8.2)

Thus, once the solution for the preceding region is known it enters as a source
term in the subsequent equation, which may be solved. The solution for the first
region is the solution for a homogeneous problem:

φ (1)
g (r) = A1J0(λ1r)+B1Y0(λ1r). (8.3)

Here Ai and Bi are constants, J0,Y0 are the Bessel and Neumann functions and λi =

(σ (i)
g )1/2(D(i)

g )−1/2, in our case B1 = 0 in order to render the solution regular at
the origin. The solution for the recursion steps is composed of the aforementioned
homogeneous solution (8.3) plus a particular solution that we will determine in the
following. To this end, the Hankel transform is applied to (8.2), yielding
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D(κ)
g ξ 2φ̄gκ +σ (κ)

g φ̄gκ = γ(κ)g φ̄ (κ−1)
g .

The solutions of the transformed problem are then

φ̄gκ =

(
γ(κ)g

D(κ)
g ξ 2 +σ (κ)

g

)
φ̄ (κ−1)

g .

From the inversion formula of the Hankel transform we get

H−1
0 {φ̄gκ}= φgκ =

∫ ∞

0
ξ

γ(κ)g

D(κ)
g ξ 2 +σ (κ)

φ̄ (κ−1)
g J0(rξ ) dξ .

As already practised in the previous sections the inversion is done using

Theorems 1 and 2, with f̄0(ξ ) = J0(rξ )
D
(κ)
g ξ 2+σ (κ)

g
and ḡ0(ξ ) = φ̄ (κ−1)

g , respectively:

φgκ = γ(κ)g

∫ ∞

0
ξ

(
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

)
φ̄ (κ−1)

g dξ

= γ(κ)g

∫ ∞

0
r′H−1

0

{
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

}
φ (κ−1)

g (r′) dr′.

Further, the integral may be solved analytically [Ba54] as

H−1
0

{
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

g

}
=

1

D(κ)
g

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
ακ)2 J0(r

′ξ ) dξ ,

=

{
1

D(κ) I0(
√

ακ r′)K0(
√

ακ r) for 0 < r′ < r,
1

D(κ) I0(
√

ακ r)K0(
√

ακ r′) for r < r′ < R,

with ακ = σ (κ)
g /D(κ)

g . The particular solution may be combined with the homoge-
neous solution in order to compose the general solution by the components φgκ ,

φgκ =
γκ

g

D(κ)
g

K0(
√

ακ r)
∫ r

0
r′I0(

√
ακ r′)φ (κ−1)

g (r′) dr′

+
γκ

g

D(κ)
g

I0(
√

ακ r)
∫ R

r
r′K0(

√
ακ r′)φ (κ−1)

g (r′)dr′

+AκJ0(λκ r)+BκY0(λκ r).
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8.5 Error Estimates

The error of the solution comes merely from the expansion of the integrand

B(ξ )
A(ξ )B(ξ )− μ12μ21

=
1

A(ξ )
1

1− μ12μ21
A(ξ )B(ξ )

.

For any choice of meaningful nuclear parameter the aforementioned relation

μ12μ21

A(ξ )B(ξ )
< 1

holds and the integral may be approximated by the leading order term of the
integrand’s expansion:

T =

∫ ∞

0
ξ

B(ξ )
A(ξ )B(ξ )− μ12μ21

J0(ξ r)J0(ξ r′) dξ

=

∫ ∞

0
ξ

1
A(ξ )

J0(ξ r)J0(ξ r′) dξ

+
∫ ∞

0
ξ

μ12μ21

A2(ξ )B(ξ )
J0(ξ r)J0(ξ r′) dξ

+

∫ ∞

0
ξ

(μ12μ21)
2

A3(ξ )B2(ξ )
J0(ξ r)J0(ξ r′) dξ + · · · .

The error of the integral is then given by

δT =
∞

∑
n=1

{∫ ∞

0
ξ

1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n

J0(ξ r)J0(ξ r′) dξ
}
.

The final expression for flux is

Φ =

∫ ∞

0
r′TS(r′)dr′

and, consequently, the expression for the error is

δΦ =

∫ ∞

0
r′δT S(r′) dr′

= S0

∫ R

0
r′
[

∞

∑
n=1

{∫ ∞

0
ξ

1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n

J0(ξ r)J0(ξ r′) dξ
}]

S(r′) dr′,
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where 1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n
is a strong monotone decreasing sequence. The dominating

term of the error Eφ (r) is

δφ1(r) = S0

∫ R

0
r′δT (1)(r′) dr′

= S0μ12μ21

∫ R

0
r′
∫ ∞

0
ξ

1
A2(ξ )B(ξ )

J0(ξ r)J0(ξ r′) dξ dr′.

One may introduce an estimate for the explicit expression A2B, namely

A2(ξ )B(ξ ) = D2
1D2ξ 6 + . . .+Σ2

R1ΣR2 > (2D1ΣR1ΣR2 +D2ΣR1)ξ 2 +Σ2
R1ΣR2.

For convenience, we introduce the abbreviations

a = 2D1ΣR1ΣR2 +D2ΣR1, b = Σ2
R1ΣR2

and estimate the dominant error contribution by

δ (1)φ(r′) <
1
a

∫ ∞

0
ξ

1

ξ 2 +
√

b
a

2 J0(ξ r)J0(ξ r′) dξ

=
1
a

∫ ∞

0
ξ

1

ξ 2 +
√

b
a

2 J0(ξ r)J0(ξ r′) dξ

=

⎧⎨
⎩

1
a I0(

√
b
a r′)K0(

√
b
a r) for 0 < r′ < r

1
a I0(

√
b
a r)K0(

√
b
a r′) for r < r′ < R

=
S0μ12μ21

a

(
K0(

√
b
a

r)
∫ r

0
r′I0(

√
b
a

r′) dr′

+I0(

√
b
a

r)
∫ R

r
r′K0(

√
b
a

r′) dr′
)
.

By a numerical test, one verifies that the error at the center is an order of
magnitude larger than the error at the outer radius R, and both are several orders
smaller than unity. Thus,

{En
φ}∞

n=1 = {E1
φ ,E

2
φ ,E

3
φ , . . .}

is a monotonically decreasing sequence of functions inside the domain [0,R].
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8.6 Conclusions

In this work a novel approach to solve neutron diffusion problems in cylindrical
geometry [DaKhOd11] was developed. The analytical expression found represents
an accurate solution of an approximate problem for the multi-group steady state and
multi-region diffusion equation in cylinder coordinates. An immediate conclusion
that may be drawn from this work is that for neutron diffusion problems the
Parseval identity is a considerably efficient technique to solve this type of problem.
As can be seen from the formulation, the present method provides an analytical
final expression without making use of simplifications. It is noteworthy that from
Parseval’s identity one obtains contributions by Bessel functions that are the
eigenfunctions of the radial Sturm-Liouville problem. If an analytical solution was
obtained by a spectral theory approach, the solution would have been expressed as
an expansion of orthogonal functions with an associated functional basis. Parseval’s
identity indicates a natural basis that should be used by a spectral method approach
and allows to truncate the basis to a small dimension still maintaining an acceptable
precision in the numerical results. It is noteworthy that the eigenvalue spectrum that
may be determined from the set of eigenfunctions seems to be independent of the
geometry considered, which was also indicated in [GoViBo10], where it was called
eigenvalue universality. Concluding, this method in cylindrical geometry can be
considered a reliable tool for solving more general problems in neutron diffusion, for
example, with more energy groups. We further plan to investigate results for a vari-
ety of situations of interest, where we hope to support this new method in the future.
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