
Chapter 4
Scale Invariance and Some Limits in Transport
Phenomenology: Existence of a Spontaneous
Scale

B.E.J. Bodmann, M.T. Vilhena, J.R.S. Zabadal, L.P. Luna de Oliveira,
and A. Schuck

4.1 Introduction

In transport phenomenology it is a common practice to express equations for con-
tinuous quantities such as fluxes, current densities among others, in a dimensionless
fashion, i.e. independent of scales. This may be understood from the fact that
transport phenomena in fluids are the continuum limit of scalable multi-particle
distributions and their respective flows [Kr97], [LeLa12], [Po94]. If from the
physical point of view one respects the microscopic origin of fluids, then these
equations, when scaled to the microscopic or particle level such as the mean
free path or the mean inter-particle distance, should break scale invariance or
invariance under dilatation transformation. Nevertheless, physical parameters that
are typically present in the equations establish a connection of the macroscopic
with the microscopic world by their relations to distributions. For instance, the
diffusion parameter is linked with particle distributions manifest in Avogadro’s
number together with the multi-particle system’s equation of state. The microscopic
or macroscopic cross sections reflect particle interaction probabilities typical for the
physical forces that drive the dynamics of the particle ensemble in consideration.
One could continue this reasoning with many other examples.

While for multi-particle systems the continuum limit seems adequate and is
sufficient as long as mean(-field) values are sufficient and effects due to fluctuations
may be neglected. Theoretically, if one starts with the complete physics of the
many-particle system, mean values and all higher significant moments can be
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determined; however, this is not possible in practice. Hence, there seems to be
no smooth transition between a distributional continuous and a particle picture
without resorting to additional techniques such as stochastic models that translate
distributions into ensemble descriptions. In the distributional picture one assumes
in principle an uncountable set of constituents, whereas the latter (particle picture)
is based on a countable set. Moreover, if there were a natural transition between
the continuous (macro) and the discrete (micro) scale, there would be need for
a hybrid description below a certain micro-scale [GrPi07]. Such a “natural”
transition was not found until now and thus is a supporting argument in favor
of our reasoning, to look for a transition by means of a spontaneous symmetry
breaking, that as the present discussion will show has the broken scale invariance as
a consequence. In other words, what to look for is whether it is in principle possible
to consider the discrete limit, starting from the continuous description together with
a spontaneously broken invariance.

Since it is not obvious at all, how to get a mechanism that transforms a symmetric
case into a non-symmetric one, we recall that the fact to break a symmetry is nothing
else than obtaining an asymmetry, which in turn may be interpreted as a reference
quantity, i.e. a normalization. In order to show how transformations, their invariants,
asymmetry, and normalization are related, we should start from a transport equation,
determine the Lie invariants and determine the generator for symmetry breaking
from some of these operators, we adopt a simpler procedure based on geometry
arguments, that nevertheless have its replica in differential geometry. Although we
show by means of hyperspace arguments and geometric properties of that space
how to identify the generator for symmetry breaking, the analogue way should in
principle work for differential geometry-based arguments, but that are certainly very
much more complicated to identify and handle as compared to the procedure that
we present in the following.

4.2 A Geometric Invariant

As a next step we introduce a geometric space–time invariant for hydrodynamical
quantities. To this end, consider a hydrodynamical flux j (momentum transport
for instance) and associated (energy) density ρ that in a static limit reduce to
the thermodynamic density ω (inner energy), that may be determined from the
thermodynamic density of a sufficiently small control volume in motion with the
flux contribution subtracted. The geometric relation for the respective densities
and hydrodynamical flux shall obey the first fundamental form of Gauss for the
differential quantities [SaToBa06]

dω2 = dρ2 − dj2 = gμνd jμd jν . (4.1)

Here, in the right-hand side of the equation, we have made use of the sum convention
that implies in summation over double appearing indices and gμν is the metric
tensor. In this equation, if dω2 is an invariant, then it could well serve as a local
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reference scale and is defined by invariance under a set of some transformations,
that have to be determined. Note that, at this point, the existence of an invariant will
lead to the most general form of local transformations.

Any transformation in momentum transport is then generically given by

jμ → jμ + εkμ( j) .

Inserting the changes into the shell equation (4.1) yields the infinitesimal change in
the metric tensor:

δ (dω2) = δ (gμν )
︸ ︷︷ ︸

≡0

d jμ d jν + gμνδ (d jμ)d jν + gμνd jμδ (d jν )

= ε
(

∂kμ

∂ jν
+

∂kν
∂ jμ

)

d jμ d jν = εGμνd jμ d jν .

Taking into account the causality constraint one determines the modified metric
Gμν in terms of σgμν = Gμν with σ = 1

4 gμνGμν , where σ represents a local scale
factor, which in turn defines the constraints for the most general flux dependence of
the infinitesimal transformation by kμ( j):

Gμν −σgμν =

(

∂kμ

∂ jν
+

∂kν

∂ jμ

)

− 1
2

gμν ∂kλ

∂ jλ = 0. (4.2)

The specific form of the transformation may be determined using a power
expansion of kμ( j); that is,

kμ = 0aμ + 1
1aμ

ν jν + 2
1aν

ν jμ + 1
2aμ

νλ jν jλ + 2
2aν

νλ jλ jμ + 2
2aλ

νλ jν jμ +O( j3).

Here the coefficients i
2aνλ = i

2aλ ν are symmetric under interchange of the lower
indices. The symmetry conditions (4.2) then read for the respective terms that go
with a specific power in O( jn):

1. Equality (4.2) puts no restriction except for causality on O( j0) and represents the
Poincaré translation.

2. For O( j1) the scalar coefficient 2
1a is an arbitrary factor, reflecting the dilatation

transformation. In addition, one gets

0 = 1
1aμν + 1

1aνμ − 1
2 gμν 1

1aλ
λ ,

which may be identified with the Lorentz transformation.
3. From the terms that go with O( j2) one obtains

0 = 2 1
2aμν

λ jλ + 2 1
2aνμ

λ jλ − 1
2aκ

λ κgμν jλ

+ 2
(

2
2aν jμ + 2

2aλ gμν jλ + 2
2aμ jν

)

. (4.3)



60 B.E.J. Bodmann et al.

Contracting (4.3) by gμν eliminates all terms except for the one in parentheses
and, thus, 2

2aλ ≡ 0. For the remaining coefficients 1
2aμνλ one observes symmetry

under exchange of the second and third index, 1
2aμνλ = 1

2aμλ ν , which permits one
to rewrite the coefficient in terms of an arbitrary vector cμ and the metric.

1
2aμνλ = gμνcλ + gμλ cν − gνλ cμ .

Note that this contribution has got the characteristics of a conformal translation.
4. All terms with higher powers in O( jn), for all n > 2 vanish identically, because

of symmetry under interchange of indices except for the first one.

Thus, the most general admissible form of the infinitesimal transformation is

kμ = bμ
︸︷︷︸

Poincaré

+Λ μ
ν jν

︸ ︷︷ ︸

Lorentz

+ λ jμ
︸︷︷︸

Dilatation

+2cλ jλ jμ − cμ jλ jλ
︸ ︷︷ ︸

Conformal

.

Successive application of the infinitesimal conformal translation yields

jμ → jμ − jν jν cμ

1− 2 jλ jλ + jλ jλ cκ cκ
.

From the finite form of the conformal translation one recognizes that these
transformations may turn singular in a sub-manifold, where the denominator
vanishes. Therefore the transformation has to be restricted in cμ such as to define a
diffeomorphism in the physically relevant region of momentum transport space.

4.3 The Hyperspace Hypothesis

The aforementioned transformation analysis made use of the usual 1⊕3 time–space
dimensions, but no link to an asymmetry and normalization was established yet.
Recalling that the invariant was based on geometrical arguments it seems plausible
to extend geometry by adding two extra dimensions, where the asymmetry may
be defined by a difference and the normalization by a sum, respectively, of the
components of these two extra dimensions. Note that one could have chosen another
way introducing curvature into the 1⊕ 3 dimensional space and probably come to
a similar result; however, the advantage of using a hyper-space lies in the fact that
the symmetry group may be represented by linear transformations of the pseudo-
orthogonal group SO(4,2) with the hypercone defined by S6 =

{

j|gαβ jα jβ = 0
}

.
The representation of the pseudo-orthogonal transformation Ω , which transform
the six-flux jα → Ω α

β jβ , shall maintain the hyper-cone invariant, i.e. gαβ Ω α
γ Ω β

δ =

gγδ , where ||Ω || = 1 holds. Together with the restrictions in the parameter space
{cμ} of the conformal translations, the conditions (4.2) in the spirit of the first
fundamental form of Gauss are necessary and sufficient to permit a self-consistent
implementation of a scale.
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One may now use the fact that it is the second fundamental form of Gauss that
contains all curvature properties of a given space [Da94], [Fr97] and interpret the
normal vector on an oriented four-dimensional flux hypersurface as a reciprocal
normalization N−1, which is fixed but may be arbitrarily chosen, and an asymmetry
A, which is then a function of four-flux. One possibility is to define the normalization
and asymmetry by N−1 = j4 + j5 and A = j4 − j5, and the shell equation is then

ω2 = N−1A = ( j5 + j4)( j5 − j4) = jμ jμ .

For convenience and since we have the freedom to define a scale, i.e. fix the
normalization, we define unitless momentum transport υ μ = N jμ with the scale
invariant shell equation and NA dimensionless.

ϖ2 = N−2ω2 = υ μυμ = N A .

An analysis of transformation properties on A and N constitute the next step in the
procedure.

4.4 SO(4,2) Symmetry Breaking

In the following the effect of the subgroups on normalization and asymmetry are
shown. Inspection shall indicate the relevant transformations for the construction of
the generator capable of spontaneously breaking a symmetry.

1. Poincaré translation: The subgroup which leaves the normalization invariant
defines the translation in energy–momentum space:

υ μ′ = υ μ +Nbμ , N′ = N, A′ = A+ 2υ μbμ +Nbμbμ . (4.4)

2. Lorentz transformation: Maintaining the normalization and the asymmetry con-
stant, the transformation reduces to the Lorentz one, namely

υ μ′ = Λ μ
ν υν , N′ = N, A′ = A.

3. Dilatation: The one parameter subgroup defines the dilatation which leaves
invariant the reduced flux υ μ but changes the normalization as well as the
asymmetry:

υ μ′ = υ μ , A′ = λ A, N′ = λ−1N.

4. Conformal translation: The subgroup with four parameters represents conformal
translations and leaves the asymmetry invariant:

υ μ′ = υ μ −Acμ, A′ = A, N′ = N − 2υ μcμ +Acμcμ . (4.5)
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From (4.4) and (4.5) one may identify the Poincaré as well as the conformal
translation as the candidates because they change either the normalization or the
asymmetry. It is remarkable that in a specific system with A = 0, upon transforma-
tion, the asymmetry may turn nonzero. One may verify this by an example, suppose,
that initially equation υμυ μ = 0 holds. Assuming that flux is displaced on the cone
with bμbμ = 0, then there is still the possibility of getting an asymmetry according to

A′ = A
︸︷︷︸

=0

+2bμυ μ +N bμbμ
︸ ︷︷ ︸

=0

,

where bμυ μ �= 0 might play the role of a momentum transfer, which is a typical
interaction feature.

In order to show that from (4.4) and (4.5) one may construct an operator, which
transforms a scale invariant description with

υμυ μ = 0 ,

i.e. A = 0 into a nonvanishing one, one may some sort of “transport” the flux υ μ

first by a Poincaré displacement P followed by a conformal translation C and then
return by the inverse sequence. Thus the change after “transport” to the original
system is

[C μ
ν ,Pν

λ ]υ
λ = Nbμ −Acμ ,

where [·, ·] is the usual commutator, which plays the role of a generator and
transforms a specific symmetric description into another equivalent description.

The change from a singular to a finite scale is then

υν [C λ
ν ,Pκ

λ ]gκμυ μ = Nbμυ μ −Acμυ μ .

Even in the limit of a vanishing asymmetry A → 0, there remains the scale invariant
term Nbμυ μ , which may be nonzero; however, j4 and j5 shall be finite. The fact that
we have found a generator, which transforms a scale invariant description into one
with a scale may be understood as an implementation of a spontaneous symmetry
breaking.

4.5 Conclusions

In the present work we showed the possibility using a dimensionally extended
space, where the extra dimensions allow to define an asymmetry together with a
normalization by a closed line integral defined by commutators of Poincaré and
diffeomorphic conformal displacements applied to a density current, respectively.
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The asymmetry plays the role of an indicator of (spontaneous) symmetry breaking.
We show how starting from a model without a reference scale that a scale emerges
through spontaneous SO(4,2)-symmetry breaking.

The symmetry transformations of the differential shell equation, which transform
any physically meaningful four-flux into a feasible new one (allowed by dynamics)
are diffeomorphisms on the Poincaré group, the dilatation, and the conformal
momentum translation. In order to prepare the playground for Hydrodynamics Field
theory with its usually linear operators we have chosen the group representation by
linear transformations of the pseudo-orthogonal group SO(4,2). We found indeed a
generator defined by the commutation of the Poincaré with the conformal translation
which allows one to change the dimensionless description into one that contains a
scale. Since in a scale invariant theory a scale term breaks dilatational symmetry one
may understand those as a consequence of the breaking of diffeomorphic SO(4,2)
symmetry.

Further, from the ordinary space–time point of view, there is no necessity
for splitting into separate points or any other structural change of space–time
[BoMc73], [So98]. It is the curved flux hypersurface which puts a symmetry
condition on the allowed solutions of the transport equations and belongs in this
sense to these equations.

We are completely aware of the fact that our discussion at the present status is
restricted to the question how spontaneous symmetry breaking in a curved flux space
may explain a spontaneous scale in an ab initio scale invariant model.

In the literature [BuVe95], [FoGrSt11] one finds discussions of space–time
transformations embedded in a higher dimensional (>4) flat hyperspace. In these
approaches the algebra is setup by 15 generators (the Poincaré group, dilatation
and conformal translations). If one applies the before mentioned transformations on
vectors in four-flux space, symmetry considerations are likely to reflect dynamical
properties of the system in consideration.

Although this discussion appears to have a rather academic than practical
character, this reasoning may well be applied for convergence problems, where the
discretization represents a length scale and the continuous limit has to be recovered.
In this case the question would mean that symmetry restoration is considered. It is
noteworthy that in practice the continuous limit in discrete approaches does not
exist, there is a maximum precision that may be achieved. Since the symmetry
argument is independent of numerical specifications, the convergence could be
analyzed by symmetry restoration arguments.
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