
Chapter 15
Numerical Solutions of the 1D
Convection–Diffusion–Reaction and the Burgers
Equation Using Implicit Multi-stage and Finite
Element Methods

C.A. Ladeia and N.M.L. Romeiro

15.1 Introduction

In the last decades, developments in computational mechanics motivated extensive
research on numerical solutions that had an important impact on society
[OdEtAl03]. In particular, we are interested in procedures that can be adapted
to problems involving convective, diffusive, and reactive processes. These problems
have a vast applicability (see [GoCoCa00], [TaShDe07], [KuEsDa04]), such as the
simulation of pollution effects in rivers; modeling of the evolution of oil and natural
gas reserves in the underground; modeling of heat transfer problems, dispersion
of pollutants; modeling of cosmological scenarios, analysis in seismology;
phenomenology of turbulence; the theory of shock waves; and in many other
applications.

Usually, the studies employ implicit multi-stage methods combined with the
finite element method to increase the convergence region of the obtained results
(see [DoRoHu00], [Ve04], [RoSa07], [TiYu11]). In this discussion, we consider
the implicit multi-stage method of second-order R11 and fourth-order R22, for the
discretization of the temporal domain and we use three formulations of the finite
element method type for the discretization of the spatial domain, i.e., least squares
(LSFEM), Galerkin (GFEM), and streamline-upwind Petrov–Galerkin (SUPG) to
solve the 1D convection–diffusion–reaction and the Burgers equation.
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15.2 Statement of the Problems

15.2.1 1D Convection–Diffusion–Reaction Equation

We consider the 1D convection–diffusion–reaction problem, consisting in finding
u(x, t) : Ω → R such that

ut(x, t)+ vux(x, t)−Duxx(x, t)+σu(x, t) = f (x, t), in Ω , (15.1)

u(0, t) = u(l, t) = 0 on Γ , (15.2)

u(x,0) = u0(x) ∀x ∈ Ω , (15.3)

where Ω ⊂R is an open bounded domain with boundary Γ = ∂Ω . The coefficients
of (15.1) are v : Ω →R, the velocity field; D ≥ 0, the diffusion coefficient; σ : Ω →
R, the linear reaction coefficient; f : Ω → R, the source term and (15.2) a Dirichlet
boundary, and (15.3) the initial condition. We can rewrite (15.1) as ut +L (u) = f ,
where the spatial differential operator is defined as

L (u) = vux −Duxx +σu (15.4)

and L =Lconv+Ldi f +Lreac represents the sum of the linear convective, diffusive,
and reactive operators, respectively.

15.2.2 Burgers Equation

Here, we consider the Burgers equation problem

ut(x, t)+ u(x, t)ux(x, t)− εuxx(x, t) = f (x, t) in Ω , (15.5)

u(0, t) = u(l, t) = 0 on Γ , (15.6)

u(x,0) = u0(x) ∀x ∈ Ω . (15.7)

The coefficients of (15.5) are given by ε = 1/Re, the coefficient of viscosity of
the fluid, Re the Reynolds number. Further, u(x, t) is the x-component of the fluid
velocity field, f : Ω →R, the source term and (15.6) a Dirichlet boundary condition,
and (15.7) the initial condition, where u0 is a known function. We can rewrite
(15.5) as

ut +L (u) = f ,

where the spatial operator is defined as
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L (u) = uux − εuxx , (15.8)

and L = Lconv +Ldi f represents the sum of the nonlinear and linear convective
and diffusive operators.

15.3 Numerical Methods

15.3.1 Time Discretization

We consider the time parts of (15.1) and (15.5). The time variable is discretized
using the implicit multi-stage methods of second order R11 and fourth order R22

[HuRoDo02]. The implicit multi-stage method is given in incremental form by

Δu
Δ t

−W�ut = wun
t , (15.9)

where the unknown Δu ∈ R
n is a vector with dimension n. The vector Δut is

the partial derivative of Δu with respect to time. The time derivatives in (15.9)
are replaced by spatial derivatives using the differential equations (15.4). The
coefficients in L are assumed smooth for the accuracy analysis.

Δu
Δ t

+WL (Δu) = w[ f n −L (un)]+WΔ f .

Here, Δu is defined in (15.9), where W, Δ f and w depends on each particular
method. We will linearize the convective term of (15.8), which will become a
pointwise linear operator. For illustration we show the compact form for the methods
R11 and R22.

R11 (Crank–Nicolson):

Δu = un+1 − un; Δ f = f n+1 − f n;

W = 1/2; w = 1.

R22:

Δu =

{
un+1/2 − un

un+1 − un+1/2

}
;

Δ f =

{
f n+1/2 − f n

f n+1 − f n+1/2

}
;

W =
1

24

[
7 −1

13 5

]
; w =

1
2

{
1
1

}
.
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15.3.2 Spatial Discretization

We shall now construct a finite-dimensional subspace Vh of V = H1
0 (0, l) formed

by piecewise linear functions of the set of m elements of V denoted by Vh =
[ϕ0, . . . ,ϕm]. The basis functions ϕ j are from the finite element method considering
a partition x0 < x1 < x2 . . . < xm−1 < xm.

15.3.3 Finite Element Method via Least Squares

Using the implicit multi-stage method defined above for the time discretization of
(15.1), the least squares method is applied at each tn+1 in (15.9) n = 0,1,2, . . . ,N,
un, which are assumed to be known. Let the set of test solutions V = H1

0 (0,L) and
the functional

F : V →R, un+1 → F (un+1).

To minimize the functional F with respect to un+1 for n = 0,1,2, . . . ,N, we use the
Gâteaux derivative [BeNa08]. Thus, we can solve the variational problem where
un+1 ∈V is to be found such that

aM(un+1,w) = FM(w) ∀w ∈V.

The problem (15.1)–(15.3) is the solved using LSFEM and considering the subspace
Vh ⊂ V , for n = 0,1,2, . . . ,N. The problem consists then in finding an approximate
solution un+1

h ∈Vh such that

aM(un+1
h ,wh) = FM(wh) ∀wh ∈V.

15.3.4 Finite Element Method via Galerkin Procedure

Using the implicit multi-stage method defined above for the time discretization of
(15.1), the Galerkin method is applied at each tn+1 in (15.9) n = 0,1,2, . . . ,N, un

and are assumed to be known. Let the set V = H1
0 (0,L), then the weak formulation

of the problem is to find un+1 ∈ V such that aG(un+1,w) = FG(w), ∀w ∈ V . To
solve the problem (15.1)–(15.3) using GFEM, we consider the subspace Vh ⊂ V ,
for n = 0,1,2, . . . ,N. Thus, the problem consists in finding an approximate solution
un+1

h ∈Vh such that

aG(u
n+1
h ,wh) = FG(wh) , ∀wh ∈Vh . (15.10)
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15.3.5 Finite Element Method via Streamline-Upwind
Petrov–Galerkin Procedure

The SUPG stabilization for (15.1) is attained by finding uh ∈Vh such that

aG(uh,wh)+ESUPG(uh,wh) = FG(wh) ∀wh ∈Vh,

where ESUPG(uh,wh) indicates the terms of perturbation that are added to the
standard variational formulation (15.10). These terms assure that consistency and
numerical stability is given by the expression

ESUPG(uh,wh) =∑
e j

(P(wh),τR(uh))Ω j ,

where P(w) is a certain operator applied to the test function, τ is the stabilization
parameter, and R is the residual of the differential equation defined by [DoRpHu03]

P(w) = v
∂wh

∂x
,

R = v
∂uh

∂x
−D

∂ 2uh

∂x2 +σuh − f ,

τ =

(
2v
h
+

4D
h2 +σ

)−1

=
h
2v

(
1+

1
Pe

+
hσ
2v

)−1

.

Here, h is the size of the grid, Pe is the Péclet number and v, D and σ are the
coefficients defined in equation (15.1). To solve the problem (15.1)–(15.3) using
SUPG, one considers the subspace Vh ⊂ V for n = 0,1,2, . . . ,N and determines an
approximate solution un+1

h ∈Vh such that

aG(u
n+1
h ,wh)+ESUPG(u

n+1
h ,wh) = FG(wh) ∀wh ∈Vh.

Next, we linearize the convective term in (15.5), which changes the size of the
element in each stage using the information from the previous step [KuEsDa04]
that casts the Burgers equation into a linear local problem.

15.3.6 Linearization of the Convective Term

Upon multiplying both sides of (15.5) by a test function w ∈ V and integrating out
the x-degree of freedom yields

∫ l

0
(ut + uux− εuxx − f )wdx = 0. (15.11)
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A numerical solution to problem (15.5)–(15.7) is constructed in the region 0 ≤ x ≤ l
with boundary conditions specified at x = 0 and x = l. To this end, we consider
the finite dimensional subspace Vh, where the basis functions ϕ j are from the finite
element method considering a partition x0 < x1 < x2 . . . < xm−1 < xm of size

h j = x j − x j−1.

We now construct a test function uh, and the parameters that are to describe the
function uh are the values u0,u1,u2 . . . ,um at the nodes x j. Therefore, we can write
the approximate equation (15.11)

m

∑
j=0

∫ l

0

(
∂u j

∂ t
ϕi(x)+η

∂ϕ j(x)

∂x
ϕi(x)u j

− ε
∂ 2ϕ j(x)

∂x2 ϕi(x)u j − f ϕiu j

)
dx = 0 ∀ϕi, ϕ j ∈Vh,

where η = u0Δ t/h j and Δ t is the time step, and wh = ϕi(x), i = 0,1,2, . . . ,m. Thus,
the Burgers equation becomes a 1D linear local problem.

Now, we consider the development for the 1D convection–diffusion–reaction
equation in this case σ = 0, D = ε , and v = η . For the Burgers equation, the value
of the stabilization parameter τ , which is used by SUPG [DoRpHu03], is

τ =
(
(2u/h)2 + 9

(
4ε/(h2)

)2 )−1/2
,

where h is the size of the grid and ε = 1/Re, with Re and u defined in (15.5).

15.4 Numerical Results

15.4.1 1D Convection–Diffusion–Reaction Equation

Consider the 1D convection–diffusion–reaction problem (15.1)–(15.3) with the
function f (x, t) = 0 and the initial condition given by a Gaussian distribution

u(x,0) = exp

{
−
(

x− x0

�

)2
}
.

For a linear decay term,−σu, the analytical solution on−∞< x<∞ is [DoRpHu03]

u(x, t) =
exp(−σ t)

γ(t)
exp

{
−
(

x− x0 − vt
�γ(t)

)2
}
, (15.12)



15 Numerical Solutions of the 1D Convection–Diffusion–Reaction 211

GFEM + R11

GFEM + R22
Analytical

S
ol

ut
io

n
LSFEM + R11 

LSFEM + R22
Analytical

SUPG + R11 
SUPG + R22
Analytical

−0.4

−0.2

0

0.2

0.4

0.6

0.8

a

c

b1

χ
0 0.5 1 1.5 2

S
ol

ut
io

n

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

χ
0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

χ
0 0.5 1 1.5 2

Fig. 15.1 Comparisons of the Padé approximants R11 and R22 together with the formulations
(a) GFEM, (b) LSFEM, and (c) SUPG

where

γ(t) =
√

1+
4Dt
�2 .

For this example we consider 0 ≤ x ≤ l, l = 2 the domain of the 1D problem. For

illustration, we present some results with 100 linear elements and

x0 = 1/4, �= 1/25, v = 1, σ = 0.1, C = 1, Pe = 100,

where v and σ are the coefficients of (15.1) and C and Pe are the Courant and Péclet
numbers, respectively.

In Fig. 15.1 we present comparisons between the Padé approximants of R11 and
R22 modified by the formulations GFEM, LSFEM, and SUPG, with Δ t = Δx =
0.02. The analysis of stability and convergence are shown for the time limit t = 1
and compared with the analytical solution (15.12). One observes in Fig. 15.1 that
the implicit multi-stage method of fourth-order R22 modified by the formulations
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Fig. 15.2 Convergence of the numerical results with the grid refinement for the example 1D
convection-diffusion-reaction problem

GFEM, LSFEM, and SUPG smoothed out the numerical oscillations. We present
the errors between the methods evaluated for function grid refinement (h = 1/50,
h = 1/680 and h= 1/1000) in Fig. 15.2 and for function time step refinement (Δ t =
0.5, Δ t = 0.05 and Δ t = 0.01) in Fig. 15.3 using the L2-norm.

15.4.2 The Burgers Equation

We consider an analytical solution for the Burgers equation (15.5) and (15.6) given
by [KuEsDa04]

u(x, t) =
2επ exp(π2εt)sin(πx)

a+ exp(−π2εt)cos(πx)
, a > 1,

with initial condition

u(x,0) =
2επ sin(πx)
a+ cos(πx)

, a > 1,

where ε = 1/Re is the coefficient of viscosity of the fluid and Re represents the
Reynolds number. Let 0 ≤ x ≤ 1 be the domain with the boundary conditions
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Fig. 15.3 Convergence of the numerical results with the time step refinement for the example 1D
convection-diffusion-reaction problem

u(0, t) = u(1, t) = 0. To illustrate some results we used 50 linear elements and
Re = 10000.

Figure 15.4 presents comparisons between the Padé approximants of R11 and R22

modified by the formulations GFEM, LSFEM, and SUPG, respectively, with Δ t =
Δx = 0.02 and as an analysis of stability and convergence we present the results
of the formulations for the upper time limit t = 1 and compare these findings with
the analytical solution (15.12). One observes in Fig. 15.5, that the implicit multi-
stage method of fourth-order R22, modified by the formulations GFEM, LSFEM
and SUPG smoothed out numerical oscillations. We present the errors between
the methods, evaluated for function grid refinement (h = 2/50, h = 2/100, and
h=2/500), in Fig. 15.5 and for function time step refinement (Δ t = 0.03, Δ t = 0.02
and Δ t = 0.01) in Fig. 15.6 using the L2 norm.

15.5 Conclusions

We conclude that the implicit multi-stage method of fourth-order R22, when
complemented by the finite element methods studied here, proved efficient since the
Padé approximant R22 increased the convergence region of the numerical solutions.
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Fig. 15.5 Convergence of the numerical results with grid refinement for the example the Burgers
equation
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Fig. 15.6 Convergence of the numerical results with time step refinement for the example the
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We also note that the LSFEM eliminated the oscillations of numerical solutions
more efficiently than the methods GFEM and SUPG.
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