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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE) are a forum where researchers in many theoretical and applied areas, whose
working methodology includes integration, communicate their latest results and
discoveries and create synergies based on their common interest in the use of a
class of general—diverse but interconnected—mathematical procedures.

The first 11 IMSE conferences took place in a variety of venues all over the
world:

1985, 1990: University of Texas–Arlington, USA;
1993: Tohoku University, Sendai, Japan;
1996: University of Oulu, Finland;
1998: Michigan Technological University, Houghton, MI, USA;
2000: Banff, AB, Canada (organized by the University of Alberta, Edmonton);
2002: University of Saint-Étienne, France;
2004: University of Central Florida, Orlando, FL, USA;
2006: Niagara Falls, ON, Canada (organized by the University of Waterloo);
2008: University of Cantabria, Santander, Spain;
2010: University of Brighton, UK.
The 2012 meeting, held in Bento Gonçalves, Rio Grande do Sul, Brazil, July

23–27, and attended by participants from 11 countries on 4 continents, enhanced
even further the IMSE tradition as an important event on the international confer-
ence circuit, which makes it possible for scientists and engineers to talk about their
research interests in a stimulating atmosphere of understanding and cooperation.

As in the past, the organization of IMSE 2012 was of a very high standard;
by way of acknowledgement, the participants wish to thank CNPq, CAPES, and
FAPERGS for their financial support, and Dall’Onder Grande Hotel for special
conditions and discounts, which ensured that the daily proceedings of the conference
took place in pleasant surroundings. Special thanks are due to the members of the
Local Organizing Committee:

Bardo E.J. Bodmann (Federal University of Rio Grande do Sul), Chairman,
Claudio Pellegrini (Federal University of São João Del Rey),
Daniela Buske (Federal University of Pelotas),

vii
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Fernando Carvalho (Federal University of Rio de Janeiro),
Gervasio A. Degrazia (Federal University of Santa Maria),
Haroldo F. de Campos Velho (National Institute for Space Research),
Marco Túllio M.B. de Vilhena (Federal University of Rio Grande do Sul),
Renato M. Cotta (Federal University of Rio de Janeiro),
Ricardo C. Barros (Rio de Janeiro State University).
A distinguishing feature of IMSE 2012 was the increased number of young

researchers who attended and presented their work. It was both reassuring and
gratifying to see that the new generation is ready to join in and help our particular
field of scientific interest move forward.

The next IMSE conference will be hosted by the Karlsruhe Institute of Tech-
nology, Germany, in July 2014. Further details will be posted in due course on the
conference web site.

The peer-reviewed chapters of this volume, arranged alphabetically by first
author’s name, are an expansion of 26 papers from among those given in Bento
Gonçalvez. The editors would like to thank the staff at Birkhäuser for their courteous
and professional handling of the publication process.

Tulsa, OK, USA Christian Constanda
Porto Alegre, RS, Brazil Bardo E.J. Bodmann
São José dos Campos, SP, Brazil Haroldo F. de Campos Velho

The International Steering Committee of IMSE:

C. Constanda (The University of Tulsa), Chairman
M. Ahues (University of Saint-Étienne)
B. Bodmann (Federal University of Rio Grande do Sul)
H. de Campos Velho (INPE, Saõ José dos Campos)
P. Harris (University of Brighton)
A. Kirsch (Karlsruhe Institute of Technology)
M. Lanza de Cristoforis (University of Padova)
S. Mikhailov (Brunel University)
D. Mitrea (University of Missouri-Columbia)
A. Nastase (RWTH Aachen University)
D. Natroshvili (Georgian Technical University)
M. Pérez (University of Cantabria)
K. Ruotsalainen (University of Oulu)
O. Shoham (The University of Tulsa)
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Chapter 1
Multiphase Flow Splitting in Looped Pipelines

L. Alvarez, R.S. Mohan, O. Shoham, L. Gomez, and C. Avila

1.1 Introduction

The Petroleum Industry utilizes parallel and looped pipelines in order to decrease
pressure drop and increase flow capacity. For the looped lines configuration, the flow
splits at an impact tee into 2 lines, which are recombined downstream. In the parallel
configuration, the flow splits into 2 lines, which are not recombined. The looped
pipeline system design has been carried out in the past based on rule of thumb. For
single-phase flow, the splitting of the flow and the corresponding pressure drop can
be determined in a straightforward manner, based on first principles. However, the
two-phase flow case is more complicated and no fundamental understanding of the
splitting flow phenomena. This is the main reason for the lack of publications and
studies in this area. Following is a brief summary of studies published on the parallel
pipeline configurations.

Several studies were published on multiphase flow splitting in impacting tees.
These include [HwSoLa89], [HoGr95], [AzPuGo88a] and [ElSoSi07]. Flow
splitting behavior in steam flood distribution networks was studied in [ChRu92].
The splitting of gas–liquid two phases in 4 parallel pipelines with common inlet
and outlet headers, capable of rotating between 0 and 15◦, was investigated in
[TaEtAl03], where it was found that for the horizontal case, the split is more or
less even between all the pipes. However, for inclined flow, at low gas and liquid
rates, the two-phase mixture prefers to flow into a single line, while stagnant liquid
fills part of the other pipes. In the follow-up paper [TaEtAl06], a rigorous stability
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analysis was presented for the determination of the flow splitting in the lines,
capable of predicting the number of pipes that are filled with stagnant liquid.

No studies have been published for two-phase flow splitting in looped lines, as
operated by the Petroleum Industry. This is owing to the difficulty of measuring
simultaneously the gas and liquid flow rates in each of the looped lines. This is the
gap that the current study attempts to address.

1.2 Experimental Program

A unique experimental facility has been designed, constructed, and instrumented,
which enables acquiring multiphase flow splitting data in both parallel and looped
horizontal pipelines. Figure 1.1 shows a schematic of the splitting facility, which
is divided into three sections: inlet, parallel/looped splitting lines, and separa-
tion/metering sections. The entire splitting facility is constructed of clear PVC.
The inlet section and looped line section are 30 ft long each (L

d = 180), in order to
ensure fully developed flow. The splitting section includes the impacting tee, which
is located at the end of the inlet section.

The air and water mixture flows through the inlet pipe and into the impacting tee,
which splits the flow into the 2 looped pipes (side 1 and side 2). Downstream, each
of the looped lines is connected to a Gas-Liquid Cylindrical Cyclone (GLCC) c©1

compact separator, where the gas and liquid phases are separated and metered. The
2 GLCC c©’s are identical, both instrumented with a gas rotameter to measure the
gas flow rate, and a Micromotion R© for measuring the liquid flow rate. As shown
in Fig. 1.1, pressure transducers are installed at the inlet (upstream of the impacting

Liquid Level Control

Side 2

Side 1

Choke

LC
LC

LC

P

P

F

F

F
F

F

V

V

V

V

Pressure Measurement

Flowrate Measurement

Video

P

P

Fig. 1.1 Schematic of the parallel/looped splitting facility

1GLCC c© - Gas-Liquid Cylindrical Cyclone - copyright, The University of Tulsa, 1994.
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Fig. 1.2 Inlet operational conditions

tee) and on top of each GLCC c© for measurement of the pressure at these locations.
The outlet pressure of the system is kept at atmospheric conditions for all the test
runs.

For the parallel lines configuration tests, the gas was vented off the GLCC c© gas
leg, and the liquid recirculated to the storage tank. For the looped configuration the
gas and liquid were recombined downstream the GLCC c©, and the recombined lines
recombined again to form the looped lines configuration (see Fig. 1.1).

A total of 81 gas–liquid flow splitting experiments have been carried out in both
the parallel and looped configurations. The test matrix is divided into three phases,
as follows:

• Phase 1: Equal Split Conditions. In this phase, the parallel and looped configu-
rations are symmetrical, with the same diameter pipes (2 in.) installed on one line
(side 1) downstream the GLCC c©. Experiments are conducted with valve.

• Phase 2: Uneven Split Conditions. Uneven splitting is achieved utilizing a globe
valve settings of 100, 75, 50, 25, and 10 % open. These experiments were carried
out only for the looped configuration (2-in. diameter pipes).

• Phase 3: Different Diameter Conditions. For this phase, one side (side 1) was
1-in. in diameter, while the other side (side 2) is 2-in. in diameter.

Air and water were used in this study, and the operational conditions are shown
in Fig. 1.2 on a flow pattern map for the inlet conditions, based on the model in
[Ba87].

Note that the legend includes the different transition boundaries (such as stratified
and annular), and the code designated to each transition (such as A–L and J). As
can be seen in the figure, the superficial gas velocities at inlet conditions for all
3 experimental phases are 2, 4, and 6 m/s, while the superficial liquid velocities
are 0.25, 0.50, and 0.75 m/s, resulting in 9 different combinations of Vsg and Vsl
splitting runs, under slug flow conditions.
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1.3 Experimental Results

In this section, typical experimental results are presented for each of the 3 phases of
the study (refer to [Al09] for more details). The results are presented in terms of the
liquid fraction(FLiq1) and the gas fraction(Fgas1) in the line with the valve (side 1).
The fraction of a phase is the flow rate of the phase in line 1 divided by the total
phase flow rate at the inlet, as given by

Fgas 1 =
qgas 1

q gas inlet
, F liq 1 =

q liquid 1

q liquid inlet
,

where q (ft3/sec) is the volumetric flow rate. Note that some of the test runs have
been repeated, demonstrating the repeatability of the conducted tests.

Results Phase 1: Equal Split Conditions. Equal split conditions are obtained for
both parallel and looped configurations. For this phase, all pipes have the same
diameter and the GLCC c©pressures on each side, P1 and P2, are the same. The
splits of both the gas and liquid phases are close to 50–50. Figure 1.3 presents the
results for both the parallel and looped configurations for Vsl = 0.75 m/s and the 3
superficial gas velocities tested.

The 45◦ line represents the equal-phase-splitting line, where the outlets GLRs
are equal to the inlet one. As can be observed in the figure, for both the parallel
and looped configurations, equal split conditions are reached with negligible
discrepancy.

Results Phase 2: Uneven Split Conditions. Table 1.1 and Fig. 1.4 present the
results for Vsg = 4 m/s and the different Vsl’s tested. The results presented are for
valve settings of 100, 75, 50, 25, and 10 % opening. For small valve opening, the

1

Parallel Vsg=2m/s

Looped Vsg=6m/s
Parallel Vsg=6m/s
Looped Vsg=4m/s
Parallel Vsg=4m/s
Looped Vsg=2m/s

0.75

0.5

F
L

iq
 1

0
0 0.5 10.750.25

Fgas 1

Vsl=0.75m/s

0.25

Fig. 1.3 Results for equal split conditions (phase 1, Vsg = 6 m/s)
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Fig. 1.4 Results for uneven split condition (phase 2, Vsg = 4 m/s)
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Fig. 1.5 Mass balance illustration for uneven split condition (phase 2)

gas and liquid flow preferentially through the other line (side 2) without the valve.
A higher tendency for the gas to split preferentially into the line without the valve
(side 2) is clearly observed for low valve settings. Also, the splitting gas fraction
changes with valve setting are more significant, as compared to the liquid–phase
fractions. At the valve setting of 10 % open, all the gas flows preferentially through
side 2, whereby no more gas flows through the choked line. However, there is still
some liquid flowing through this line. Note that for this condition, the liquid fraction
in side 1, Fliq1, does not depend on the inlet liquid flow rate.

The mass balance is satisfied for all the uneven flow runs, namely, that the sum of
the gas and liquid flow rates in the 2 looped lines equal to the respective total inlet
flow rate. This is demonstrated in Fig. 1.5. Figure 1.6 shows the effect of increasing
Vsl at a fixed value of Vsg, showing, respectively, an increasing deviation of the
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Fig. 1.7 Results for uneven split condition with slug flow in looped lines

results from the 45◦ equal splitting line. These results agree with the observation
reported in [ChRu92], [HoGr95], and [FuEtAl95].

Slug flow occurs at the inlet for all the experimental test runs. For almost all the
runs, slug flow also exists in the looped lines. Figure 1.7 shows the results for the
Vsg = 6 m/s and Vsl = 0.75 m/s flow run. As can be seen, for these conditions, slug
flow occurs not only at the inlet but also in both looped lines.

Results Phase 3: Different Diameter Conditions. For this case, side 2 line
remained the same, 2-in. in diameter, while side 1 line was replaced with a
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Fig. 1.9 Schematic of splitting model in parallel/looped pipelines

reduced 1-in. diameter pipe. Figure 1.8 presents the results for Vsg = 4 m/s and
the 3 superficial liquid velocities tested. For a fixed superficial gas velocity, while
increasing the superficial liquid velocity, more liquid tends to flow into the larger
diameter line (side 2), reducing the fraction of liquid flowing in the reduced line
(side 1).

An interesting comparison between the results of phase 2 and phase 3 is presented
in Fig. 1.9, the Vsg = 2 m/s and Vsl = 0.25 m/s run. As can be seen, similar results
are obtained for this case for phase 3 (different diameter lines) and phase 2 run
with a valve setting of 25 % open. This implies that for this particular geometry the
frictional pressure drop drives the flow split.
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1.4 Model Development

This section describes the mechanistic model developed for predicting gas–liquid
two-phase flow splitting in parallel and looped pipelines. The model is capable of
predicting the gas and liquid splitting fractions in each of the lines, as well as the
pressure drop across the system. Figure 1.10 shows a schematic of the model, which
is presented next.

Pressure Drop Model. This sub-model is based on pressure equality in the looped
lines, namely,

ΔPtotal = ΔP1 = ΔP2.

Side 1 line (ΔP1) includes the valve, while side 2 (ΔP2) has no flow restriction.
The pressure drop in each line is given by

ΔPside = ΔPinlet−side +ΔPside−outlet ,

where ΔPinlet−side represents the pressure drop between the inlet and GLCC c© and
ΔPside−outlet is the pressure drop between each GLCC c© and the outlet, including
the side 1 valve (phase 2) and the pressure drop in the GLCC c©. The horizontal
inlet pressure drop (ΔPinlet−side) is determined using the model in [GoEtAl00].
The outlet pressure drop (ΔPside−outlet) includes two components, namely, frictional
and gravitational. The frictional component integrates the valve, several elbows,
instrumentation, and the GLCC c© itself in one fitting, in terms of a resistance
coefficient K defined as

Fig. 1.10 Schematic of splitting model in parallel/looped pipelines
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ΔP f rictional = K1

(ρmix v2
mix

2gc

)
,

where ρmix is the average mixture density (lbm/ft3), vmix is mixture velocity (ft/s),
and gc = 32.17 lbm f t

lb f s2 . The homogeneous no-slip model is utilized to determine the
mixture velocity and density.

Flow Splitting Model. A flow splitting model and algorithm have been developed,
utilizing the pressure drop model. The looped lines geometry, inlet and outlet
pressures, and inlet gas and liquid flow rates are given as input data. The model
predicts the flow split between the two looped lines. A trial and error procedure is
utilized, whereby the split is guessed and the pressure drops in each of the looped
line are calculated. Convergence is achieved when the pressure drop through the
looped lines is equal. The same inlet GLR is assumed to occur in the looped lines.
Note that no multiple solutions are obtained, namely, a unique solution is found for
each of the flow conditions.

1.5 Results and Discussion

This section presents comparisons between the model predictions and experimental
data for both the pressure drop and flow splitting, as presented next.

For phase 2, namely, the 54 unequal split runs, the average pressure drop error
(across the looped configuration) between the model predictions and experimental
data is ±10 %. The proposed flow splitting model predictions have also been
compared with phase 2 experimental runs. Figure 1.11 shows a typical comparison
for the Vsg = 4 m/s and Vsl = 0.75 m/s run, showing a good agreement. Similar
agreement is observed for all 54 runs, comparing experimental data and model
predictions for the liquid fraction (FLiq 1) and the gas fraction (Fgas 1) in the line
with the valve (side 1). For this comparison, the discrepancies between model
predictions and experimental data are within ±15 %, as demonstrated in Fig. 1.12.

Field Case Example. A multiphase splitting in looped lines field case has been
provided by Chevron. The looped lines are 6 in. and 8 in. diameter pipes, which
have the same profile, as shown in Fig. 1.13. The actual flow conditions are given in
Table 1.2, in terms of the total flow rates of the liquid and gas at the inlet (upstream
the splitting into the 2 looped lines), the water cut, specific gravities of the phases
and downstream separator pressure and temperature at the recombination location.

A field design code has been developed, based on the proposed model [Er10].
The developed code has been utilized to run the field case, for determining the
splitting fractions of the gas and the liquid in each of the looped lines. Table 1.3
presents the developed computer code predictions of the gas and liquid splitting
fractions, as well as the results predicted by OLGA. The developed computer code
predicted that 31.5 % of the gas and liquid flows in the 6 in. pipe and 68.5 % of the



1 Multiphase Flow Splitting in Looped Pipelines 11

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

F
 L

iq
 1

F gas 1

Comparison between Experimental Data and
Flow Splitting Model

Vsg=4 m/s and Vsl=0.75 m/s

Experimental Data

Model Prediction

Fig. 1.11 Typical comparison between experimental data and model prediction for flow splitting

0.6

0.5

0.4

0.3

M
o

d
el

 P
re

d
ic

ti
o

n

Experimental Data

Comparison between
Experimental Data and Splitting Model

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Fliq F gas

Fig. 1.12 Comparison between model predictions and experimental data for flow splitting frac-
tions (phase 2)

Table 1.2 Field case flow conditions

Gas specific gravity 0.761
Water specific gravity 1.02
Oil specific gravity 32.2 API
Total gas flow rate 1.3 MMscf/d
Total liquid flow rate 25,581 STB/d
Water cut 46%
Separator temperature 115F◦

Separator pressure 85 psig
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Fig. 1.13 Schematic of field case flow line profile

Table 1.3 Comparison between the OLGA and the computer code predictions

OLGA Current study

Diameter (in.) 6" 8" 6" 8"

Fliq (%) 31 69 31.5 68.5

Fgas (%) 27 73 31.5 68.5

gas and liquid flows in 8 in. pipe. As can be seen in the table, the splitting liquid
and gas fraction predictions show good agreement with the OLGA predictions. The
small difference between the gas fraction predictions is due to the constant GOR
assumption of the generated code.

1.6 Conclusion

The objective of this study is to investigate theoretically and experimentally
multiphase flow splitting in both parallel and looped pipelines. Summary and
conclusions of this study are given below:

1. A novel and unique experimental facility was designed, constructed, and instru-
mented suitable for acquiring pertinent slug flow splitting data. The facility can
be operated in both parallel and looped configurations.

2. A total of 81 experimental runs were conducted. Nine different gas–liquid
superficial velocity combinations under slug flow were employed. Uneven split
condition was generated at 5 different settings (100, 75, 50, 25, and 10 %
opening) of a globe valve installed on one of the looped lines and by utilizing
different diameter looped lines.

3. For Equal Split Conditions, data analysis shows that the equal or even split
condition is reached in both parallel and looped configurations for symmetric
lines. For Uneven Split Conditions, the gas split is significantly more uneven
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than liquid split. The gas–liquid ratio was found to be different in the two looped
lines, and also different from the inlet.

4. For Different Diameter Conditions a similar behavior between the reduced
diameter configuration and the same diameter configuration with valve setting
at 25 % open was observed. This implies that for this particular geometry the
frictional pressure drop drives the uneven split.

5. A mechanistic model is developed for the prediction of the pressure drop and
the gas and liquid split in looped lines. The proposed model is compared with
the experimental data sets acquired in this study. Good agreement was found
between the proposed splitting model predictions and the experimental data with
an average error of ±15 %.

6. A field design code has been developed, based on the proposed model. The
developed code has been utilized to run a field looped lines case. In the absence
of flow split data, the predictions of the code were compared to the OLGA
predictions, showing a good agreement.
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Chapter 2
Green’s Function Decomposition Method
for Transport Equation

F.S. Azevedo, E. Sauter, M. Thompson, and M.T. Vilhena

2.1 Introduction

The Green’s Function Decomposition Method is a methodology to solve the
transport equation in a slab with specular reflection at the boundaries. This method
was initially derived to be applied to a non-typical problem arising from the
asymptotic analysis of a radiative transport problem. In that problem, the equation
to be solved takes the following form:

−μ
∂
∂y

I(y,μ)+λ I(y,μ) =
∫ 1

−1

(σ
2
−β μ ′2

)
I(y,μ)dμ ′, y > 0, (2.1a)

I(y,μ)−ρI(y,−μ) = gb(μ), μ < 0, y = 0 (2.1b)

lim
y→∞

I(y,μ) = 0. (2.1c)

Here λ , σ and β are positive constants and λ > σ . The reflection coefficient ρ is
a nonnegative mensurable function of the angular variable μ and is bounded above
by the unit, i.e.

0≤ ρ(μ)≤ 1.

We note that the domain of this equation is the half plane y > 0 and there is no
internal source term, the whole solution being determined by the boundary term
gb(μ) which is a known mensurable bounded function. For further details, the reader
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is invited to read the paper [AzEtAl11a]. In that paper full details of the theory of
existence and uniqueness of a solution for this problem is presented together with
an important exponential decay estimate for the solution, i.e., the problem (2.1) has
a unique solution I(y,μ) and satisfies the following inequality:

|I(y,μ)| ≤Ce−αy, (2.2)

where the exponent α must satisfy

α <

√
λ
[

λ −
∫ 1

−1

(σ
2
−β μ2

)+
dμ
]

;

here
(σ

2 −β μ2
)+

indicates the positive part of
(σ

2 −β μ2
)
. The constant C is a

function of gb and α .
In view of solving numerically the problem (2.1) we find three difficulties: (1) the

domain is not finite; (2) the scattering kernel, which is not a nonnegative function, is
not bounded below by λ ; (3) the reflecting coefficient ρ(μ) may not vary smoothly
with μ , which typically happens with Fresnel’s reflection.

The first difficulty is overcome by truncating the domain into a finite interval
taking into account the estimate (2.2). The second difficulty means that well-known
iterative methods will not converge easily outside the spectral radius, i.e., when
σ/2−β <−λ , which is the case of most interest in that work. The third difficulty
implies one needs to use a large number of ordinate if one decides to employ any
method involving the discretization of the angular variable. That said we conceived
the Green’s Function Decomposition Method (GFD) with the following features: (1)
It is not iterative (2) It does not involve any discretization of the angular variable.

Here we will not focus on the solution of this very specific problem, showing
how to use the GFD method to solve numerically the transport equation in a slab
with anisotropic scattering kernel and specular reflection at the boundary.

In Sect. 2.2 we present the problem, solve, and reformulate it into an integral op-
erator equation. In Sect. 2.3, we describe the discretization of the integral operators,
resulting in a finite approximation of the problem, which we solve numerically. In
Sect. 2.4, we present numerical results for a broad range of applications.

2.2 Reformulation as an Integral Equation

We consider the following transport equation with anisotropic scattering:

μ
∂ I
∂y

+λ I =
1
2

∫ 1

−1
ω(μ ′,μ)I(y,μ ′)dμ ′+S, y ∈ (0,L), t > 0 (2.3a)

I(y,μ) = ρ0I(y,−μ)+(1−ρ0)B0(μ), y = 0, μ > 0, (2.3b)
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I(y,μ) = ρLI(y,−μ)+(1−ρL)BL(μ), y = L, μ < 0, (2.3c)

where I = I(y,μ) is a radiative intensity, S = S(y,μ) is a source, B := (B0,BL)
indicates the boundary condition, and ω(μ ,μ ′) is the scattering kernel. In order to
establish the existence theory, we assume the following hypothesis: exists ωmax < λ
such that

|ω(μ ,μ ′)| ≤ ωmax. (2.4)

and the function B0(μ) and BL(μ) are absolutely integrable, i.e.:

∫ 1

0
|B0(μ)|dμ < ∞ and

∫ 0

−1
|BL(μ)|dμ < ∞. (2.5)

In order to establish the existence of unique solution for the problem (2.3a)–
(2.3c) and derive from this analysis the operator formulation for the problem, we
firstly show that J(y,μ), defined by

J(y,μ) :=
1
2

∫ 1

−1
ω(μ ,μ ′)I(y,μ ′)dμ ′, (2.6)

admits the representation

J(y,μ) = SgS(y,μ)+SbB, (2.7)

where Sb e Sg are operators in C0([0,L],L∞[−1,1]).

Theorem 1. If B0(μ) and BL(μ) are integrable and the condition (2.4), is satisfied
then (2.3a)–(2.3c) admits the representation (2.7), where Sg and Sb are operators in
C0([0,L],L∞[−1,1]).

Proof. We consider the following auxiliary problem:

μ
∂ I(y,μ)

∂y
+λ I(y,μ) = q(y,μ)

I(y,μ) = ρ0I(y,−μ)+(1−ρ0)B0(μ), y = 0, μ > 0,

I(y,μ) = ρLI(y,−μ)+(1−ρL)BL(μ), y = L, μ < 0. (2.8)

This problem can be solved by the method of ray tracing (see [Mo03], [AzEtAl11b],
[Si95], [Si93], and [BeGl70]) which consists in integrating the transport equation
along the ray direction. The equation

∂ I(y,μ)
∂y

+
λ
μ

I(y,μ) =
1
μ

q(y,μ)
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can be rewritten in the form

∂
∂y

(
e

λy
μ I(y,μ)

)
=

e
λy
μ

μ
q(y,μ).

Now we integrate this equation from in the intervals (0,y) and (y,L) in order to
obtain the expressions

I(y,μ) = I(0,μ)e−
λy
μ +

1
μ

∫ y

0
q(s,μ)e

λ (s−y)
μ ds, (2.9a)

I(y,μ) = I(L,μ)e
λ (L−y)

μ − 1
μ

∫ L

y
q(s,μ)e

λ (s−y)
μ ds. (2.9b)

We note that these expressions are valid for both μ > 0 and μ < 0. Nonetheless,
we will favorite the solution constructed by integrating in the direction of the ray,
that is to say, we will favorite (2.9a) for μ > 0 and (2.9b) for μ < 0. Applying the
boundary conditions given by

I(0,μ) = ρ0(μ)I(0,−μ)+(1−ρ0(μ))B0(μ), μ > 0

I(L,μ) = ρL(μ)I(L,−μ)+(1−ρL(μ))BL(μ), μ < 0

to (2.9a) and (2.9b), we obtain

I(0,μ) = ρ0(μ)I(L,−μ)e−
λL
μ +

ρ0(μ)
μ

∫ L

0
q(s,−μ)e−

λ s
μ ds

+ (1−ρ0(μ))B0(μ), t > 0, μ > 0

I(L,μ) = ρL(μ)I(0,−μ)e
λL
μ − ρL(μ)

μ

∫ L

0
q(s,−μ)e−

λ (s−L)
μ ds

+ (1−ρL(μ))BL(μ), t > 0, μ < 0

We now substitute μ by −μ in the last expression in order to have a linear system
in I(0,μ) and I(L,−μ) valid for μ > 0, as follows:

⎡
⎣ 1 −ρ0(μ)e−

λL
μ

−ρL(−μ)e−
λL
μ 1

⎤
⎦
[

I(0,μ)

I(L,−μ)

]
=

⎡
⎢⎢⎢⎢⎣

ρ0(μ)
μ
∫ L

0 q(s,−μ)e−
λ s
μ ds

+(1−ρ0(μ))B0(μ)
ρL(−μ)

μ
∫ L

0 q(s,μ)e
λ (s−L)

μ ds

+(1−ρL(−μ))BL(−μ)

⎤
⎥⎥⎥⎥⎦. (2.10)

This system has a unique solution since the determinant of the matrix involved is
not zero due to the estimate
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1−ρ0(μ)ρL(−μ)e−
2λL

μ ≥ 1− e−
2λL

μ > 0.

The solution of (2.10) is given by

I(0,μ) =

ρ0(μ)
μ
∫ L

0

(
q(s,μ)ρL(−μ)e

λ (s−2L)
μ +q(s,−μ)e−

λ s
μ

)
ds

1−ρ0(μ)ρL(−μ)e−
2λL

μ
(2.11a)

+
(1−ρ0(μ))B0(μ)+ e−

λL
μ ρ0(μ)(1−ρL(−μ))BL(−μ)

1−ρ0(μ)ρL(−μ)e−
2λL

μ

I(L,−μ) =

ρL(−μ)
μ

∫ L
0

(
q(s,μ)e

λ (s−L)
μ +q(s,−μ)ρ0(μ)e−

λ (s+L)
μ

)
ds

1−ρ0(μ)ρL(−μ)e−
2λL

μ
(2.11b)

+
(1−ρL(−μ))BL(−μ)+ e−

λL
μ ρL(−μ)(1−ρ0(μ))B0(μ)

1−ρ0(μ)ρL(−μ)e−
2λL

μ
.

We substitute (2.11a) and (2.11b) into (2.9a) and (2.9b), respectively, in order to
write I(y,μ) as

I(y,−μ) =

ρL(−μ)
μ

∫ L
0

(
q(s,−μ)e

λ (s−L)
μ +q(s,μ)ρ0(μ)e−

λ (s+L)
μ

)
ds

1−ρ0(μ)ρL(−μ)e−
2λL

μ
e−

λ (L−y)
μ

+
(1−ρL(−μ))BL(−μ)+ e−

λL
μ ρL(−μ)(1−ρ0(μ))B0(μ)

1−ρ0(μ)ρL(−μ)e−
2λL

μ
e−

λ (L−y)
μ

+
1
μ

∫ L

y
q(s,−μ)e

−λ (s−y)
μ ds, μ > 0, (2.12a)

I(y,μ) =

ρ0(μ)
μ
∫ L

0

(
q(s,μ)ρL(−μ)e

λ (s−2L)
μ +q(s,−μ)e−

λ s
μ

)
ds

1−ρ0(μ)ρL(−μ)e−
2λL

μ
e−

λy
μ (2.12b)

+
(1−ρ0(μ))B0(μ)+ e−

λL
μ ρ0(μ)(1−ρL(−μ))BL(−μ)

1−ρ0(μ)ρL(−μ)e−
2λL

μ
e−

λy
μ

+
1
μ

∫ y

0
q(s,μ)e

λ (s−y)
μ ds, μ > 0.

We now interpret (2.12a) and (2.12b) as two integral operators acting on the
functions q(y,μ) and B(μ)
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I(y,μ) = Lμ
g q(y,μ)+Lμ

b B(μ). (2.13)

The superscript μ in Lμ
g and Lμ

b explicits the dependence of the operators on the
angular variable μ .

We now go back to our original problem (2.3) and observe that it takes the form
of the auxiliary problem (2.8) if

q(y,μ) = J(y,μ)+S(y,μ).

Taking into account the representation (2.13), the solution of (2.3) must satisfy

I(y,μ) = Lμ
g [J(y,μ)+S(y,μ)]+Lμ

b B(μ). (2.14)

We recall that J(y,μ) was defined in (2.6) as

J(y,μ) =
1
2

∫ 1

−1
ω(μ ,μ ′)I(y,μ ′)dμ ′

We now substitute μ by μ ′ into (2.14), multiply it by ω(μ ,μ ′), and integrate on
μ ′ ∈ (−1,1):

J(y,μ) =
1
2

∫ 1

−1
ω(μ ,μ ′)

{
Lμ ′

g [J(y,μ ′)+S(y,μ ′)]+Lμ ′
b B(μ ′)

}
dμ ′,

= Lg [J(y,μ)+S(y,μ)]+LbB(μ), (2.15)

where the operators Lg and Lb are given by

Lg =
1
2

∫ 1

−1
ω(μ ,μ ′)Lμ ′

g dμ ′ and

Lb =
1
2

∫ 1

−1
ω(μ ,μ ′)Lμ ′

b dμ ′ (2.16)

Now we write (2.15) as

J(y,μ)−LgJ(y,μ) = LgS(y,μ)+LbB(μ),

i.e.,

(1−Lg)J(y,μ) = LgS(y,μ)+LbB(μ). (2.17)

This equation may be solved whenever the inverse of (1−Lg) exists and its solution
is given by

J(y,μ) = SgS(y,μ)+SbB(μ) (2.18)



2 Green’s Function Decomposition Method 21

with

Sg := (1−Lg)
−1 Lg and Sb := (1−Lg)

−1 Lb. (2.19)

We know that the inverse required here exists provided the norm of Lg is less than 1.
That said, we will estimate the norm of this operator under conditions (2.4) and
(2.5). The operator Lg is given explicitly by

Lgq =
1
2

∫ 1

0
ω(−μ ′,μ)

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρLe
− λ (L−y)

μ ′

μ ′
×

×
∫ L

0

(
q(s,−μ ′)ρ0e

− λ (s+L)
μ ′ +q(s,μ ′)e

λ (s−L)
μ ′
)

ds+
1
μ ′
∫ L

y
q(s,−μ ′)e−

λ (s−y)
μ ′ ds

]
dμ ′

+
1
2

∫ 1

0
ω(μ ′,μ)

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρ0e
− λy

μ ′

μ ′
×

×
∫ L

0

(
q(s,μ ′)ρLe

λ (s−2L)
μ ′ +q(s,−μ ′)e−

λ s
μ ′
)

ds+
1
μ ′
∫ y

0
q(s,μ ′)e

λ (s−y)
μ ′ ds

]
dμ ′

:= A+B. (2.20)

In order to abbreviate the notation we omitted the dependence on μ of ρ0 = ρ0(μ)
and ρL = ρL(−μ). We note that |Lg| ≤ |A|+ |B|, where

|A| ≤ ||q||C0 ωmax

2

∫ 1

0

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρLe
− λ (L−y)

μ ′

μ ′
∫ L

0

(
ρ0e
− λ (s+L)

μ ′ + e
λ (s−L)

μ ′
)

ds

+
1
μ ′
∫ L

y
e
− λ (s−y)

μ ′ ds

]
dμ ′

=
||q||C0 ωmax

2

∫ 1

0

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρLe
− λ (L−y)

μ ′

μ ′
μ ′

λ

(
−ρ0e

− λ2L
μ ′ +1+

+ρ0e
− λL

μ ′ − e
− λL

μ ′
)
+

1
μ ′

μ ′

λ

(
−e
− λ (L−y)

μ ′ +1

)]
dμ ′

=
||q||C0 ωmax

2λ

∫ 1

0

⎡
⎢⎢⎣

ρLe
− λ (L−y)

μ ′
(
−ρ0e

− λ2L
μ ′ +1+ρ0e

− λL
μ ′ − e

− λL
μ ′
)

1−ρ0ρLe
− 2λL

μ ′

+

(
−e
− λ (L−y)

μ ′ +1

)]
dμ ′
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=
||q||C0 ωmax

2λ

⎛
⎝1+

∫ 1

0

⎡
⎣−ρ0ρLe

− λ (3L−y)
μ ′ +ρ0e

− λ (L−y)
μ ′ +ρ0ρLe

− λ (2L−y)
μ ′ −e

− λ (2L−y)
μ ′

1−ρ0ρLe
− 2λL

μ ′

+
−e
− λ (L−y)

μ ′ +ρ0ρLe
− λ (3L−y)

μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′

⎞
⎠

=
||q||C0 ωmax

2λ
+
||q||C0ωmax

2λ

∫ 1

0

⎡
⎣ (ρ0−1)e

− λ (L−y)
μ ′ +ρ0(ρL−1)e

− λ (2L−y)
μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′

=
||q||C0 ωmax

2λ
− fA, (2.21)

with

fA :=
||q||C0ωmax

2λ

∫ 1

0

⎡
⎣ (1−ρ0)e

− λ (L−y)
μ ′ +ρ0(1−ρL)e

− λ (2L−y)
μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′

and

|B| ≤ ||q||C0ωmax

2

∫ 1

0

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρ0e
− λy

μ ′

μ ′
∫ L

0

(
ρLe

λ (s−2L)
μ ′ + e

− λ s
μ ′
)

ds

+
1
μ ′
∫ y

0
e

λ (s−y)
μ ′ ds

]
dμ ′

=
||q||C0ωmax

2

∫ 1

0

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′

ρ0e
− λy

μ ′

μ ′
μ ′

λ

(
ρLe
− λL

μ ′ − e
− λL

μ ′ −

−ρLe
− λ2L

μ ′ +1

)
+

1
μ ′

μ ′

λ

(
1− e

− λy
μ ′
)]

dμ ′

=
||q||C0ωmax

2λ

⎛
⎝∫ 1

0
dμ ′+

∫ 1

0

⎡
⎣ 1

1−ρ0ρLe
− 2λL

μ ′
ρ0e
− λy

μ ′
(

ρLe
− λL

μ ′ − e
− λL

μ ′

−ρLe
− λ2L

μ ′ +1

)
+

(
−e
− λy

μ ′
)]

dμ ′
)

=
||q||C0ωmax

2λ

⎛
⎝1+

∫ 1

0

⎡
⎣ρ0ρLe

− λ (y+L)
μ ′ −ρLe

− λ (y+L)
μ ′ −ρ0ρLe

− λ (y+2L)
μ ′

1−ρ0ρLe
− 2λL

μ ′
+

+
ρLe
− λy

μ ′ − e
− λy

μ ′ +ρ0ρLe
− λ (y+2L)

μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′

⎞
⎠
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=
||q||C0ωmax

2λ
+
||q||C0ωmax

2λ

∫ 1

0

⎡
⎣ (ρ0−1)ρLe

− λ (y+L)
μ ′ +(ρL−1)e

− λy
μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′

=
||q||C0ωmax

2λ
− fB, (2.22)

with

fB :=
||q||C0ωmax

2λ

∫ 1

0

⎡
⎣ (1−ρ0)ρLe

− λ (y+L)
μ ′ +(1−ρL)e

− λy
μ ′

1−ρ0ρLe
− 2λL

μ ′

⎤
⎦dμ ′.

Therefore, using the condition (2.4), we obtain

||Lgq||C0 ≤ |A|+ |B| ≤ ||q||C0 ωmax

λ
− inf( fA + fB)≤ ||q||C0ωmax

λ
≤ ||q||C0 . (2.23)

We observe that 0 < ρ < 1, inf( fA + fB)> 0 and the strict inequality holds:

||Lgq||C0 <
||q||C0ωmax

λ
≤ ||q||C0 .

2.3 Methodology

In this section we describe the discretization of the operators Lg and Lb. For better
comprehension, we firstly deal with the isotropic case in Sect. 2.3.1. In Sect. 2.3.2
we explain the generalization for the anisotropic case.

2.3.1 The Isotropic Case

In this section we will consider the scattering kernel to be isotropic, i.e,

ω(μ ,μ ′) = σ ,

where σ is a constant and σ < λ so that Lg assumes the integral representation

(Lgq)(y) =
∫ L

0
K(s,y)q(s)ds (2.24)
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where

K(s,y) =
1
2

∫ 1

0

⎡
⎣ρ0

μ
q(s)

ρLe−
λ (s−y+2L)

μ + e
λ (s+y−2L)

μ

1−ρ0ρLe−
2λL

μ

⎤
⎦dμ

+
1
2

∫ 1

0

⎡
⎣ρL

μ
q(s)

ρ0e
λ (s−y−2L)

μ + e−
λ (s+y)

μ

1−ρ0ρLe−
2λL

μ
+

1
μ

q(s)e−
λ |s−y|

μ

⎤
⎦dμ (2.25)

In order to construct a discretized version of Sg and Sb, we first represent a
continuous function q : [0,L]→R as a continuous piecewise linear function given by

q̃(y) =
s j+1− y

hs
q(s j)+

y− s j

hs
q(s j+1), s j ≤ y≤ s j+1 (2.26)

where {s j}N+1
j=1 is a uniform mesh consisting of N subintervals whose extreme

points are given by s j = ( j−1)hs with hs =
L
N . We define the interpolation operator

IN : C0[0,L]→C0[0,L] mapping q(s) to q̃(s) in (2.26). The range of IN on C0[0,L]
is the N + 1-dimensional space of first-order finite elements, which will denote
C0

N([0,L])). Since INq→ q for each q ∈C0([0,L]), i.e, IN converges to the identity
in the strong topology, it is natural to approximate Lg by LN

g := INLgIN . Due to the
natural isomorphism ϕN between C0

N([0,L])) and R
N+1 given by

ϕN : C0
N([0,L]))←→ R

N+1

q(y) ←→ [q(s0), . . . ,q(sN),q(sN+1)]
T ,

we represent LN
g by the matrix

W0 := ϕNLN
g ϕ−1

N = ϕNINLgINϕ−1
N =: (wi j)

N+1
i, j=1 ,

where the entries wi j are calculated using the integral representation (2.24) of Lg,
as follows:

Kl,k
g (INq) =

∫ L

0
Kl,k(s,y)q̃(s)ds

=
N

∑
j=1

∫ s j+1

s j

Kl,k(s,y)q̃(s)ds

=
N

∑
j=1

∫ s j+1

s j

Kl,k(s,y)

(
q(s j)+(s− s j)

q(s j+1)−q(s j)

hs

)
ds

=
N

∑
j=1

q(s j)

(
1+

s j

hs

)∫ s j+1

s j

Kl,k(s,y)ds−
N

∑
j=1

q(s j)

hs

∫ s j+1

s j

sKl,k(s,y)ds
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−
N

∑
j=1

(
s j

q(s j+1)

hs

)∫ s j+1

s j

Kl,k(s,y)ds+
N

∑
j=1

q(s j+1)

hs

∫ s j+1

s j

sKl,k(s,y)ds

=
N

∑
j=1

q(s j)

[(
1+

s j

hs

)∫ s j+1

s j

Kl,k(s,y)ds− 1
hs

∫ s j+1

s j

sKl,k(s,y)ds

]

+
N

∑
j=1

q(s j+1)

[
− s j

hs

∫ s j+1

s j

Kl,k(s,y)ds+
1
hs

∫ s j+1

s j

sKl,k(s,y)ds

]

=
N

∑
j=1

q(s j)

[(
1+

s j

hs

)∫ s j+1

s j

Kl,k(s,y)ds− 1
hs

∫ s j+1

s j

sKl,k(s,y)ds

]

+
N+1

∑
j=2

q(s j)

[
− s j−1

hs

∫ s j

s j−1

Kl,k(s,y)ds+
1
hs

∫ s j

s j−1

sKl,k(s,y)ds

]

=
N+1

∑
j=1

wl,k
j (y)q(s j),

where

wl,k
1 =

(
1+

s1

hs

)∫ s2

s1

Kl,k(s,y)ds− 1
hs

∫ s2

s1

sKl,k(s,y)ds

wl,k
j =

(
1+

s j

hs

)∫ s j+1

s j

Kl,k(s,y)ds− 1
hs

∫ s j+1

s j

sKl,k(s,y)ds

− s j−1

hs

∫ s j

s j−1

Kl,k(s,y)ds+
1
hs

∫ s j

s j−1

sKl,k(s,y)ds se 2≤ j ≤ N

wl,k
N+1 = − sN

hs

∫ sN+1

sN

Kl,k(s,y)ds+
1
hs

∫ sN+1

sN

sKl,k(s,y)ds

i.e.,

wl,k
1 =

∫ s2

s1

Kl,k(s,y)ds− 1
hs

∫ s2

s1

sKl,k(s,y)ds

wl,k
j =

∫ s j+1

s j

Kl,k(s,y)ds− 1
hs

∫ s j+1

s j

(s− s j)K
l,k(s,y)ds

+
1
hs

∫ s j

s j−1

(s− s j−1)K
l,k(s,y)ds se 2≤ j ≤ N (2.27)

wl,k
N+1 =

1
hs

∫ sN+1

sN

(s− sN)K
l,k(s,y)ds
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The operator LN
b = INLbIN is obtained directly from Lb:

LbB=
1
2

∫ 1

0

e−
λL
μ ρL(1−ρ0)B0 +(1−ρL)BL

1−ρ0ρLe−
2λL

μ
e−

λ (L−y)
μ dμ

+
1
2

∫ 1

0

e−
λL
μ ρ0(1−ρL)BL +(1−ρ0)B0

1−ρ0ρLe−
2λL

μ
e−

λy
μ dμ , (2.28)

and its associated (N +1)×2 matrix V0 := (vi j)
N+1,2
i=1, j=1 = φNLN

b φ−1
N :

vi,1 =
1
2

∫ 1

0

e−
λ (2L−yi)

μ ρL(1−ρ0)+ e−
λyi
μ (1−ρ0)

1−ρ0ρLe−
2λL

μ
dμ ,

vi,2 =
1
2

∫ 1

0

e−
λ (yi−L)

μ ρ0(1−ρL)+ e−
λ (L−yi)

μ (1−ρL)

1−ρ0ρLe−
2λL

μ
dμ .

The matrices Wσ and Vσ approximating the operators Sg and Sb are obtained,
respectively, from (2.19):

Wσ := (1−σW0)
−1 W0 and Vσ := (1−σW0)

−1 V0.

Note that this notation is consistent when σ = 0.
Once the matrices Wσ and Vσ have been constructed, they are used as vector

Green’s functions for the transport equation, allowing us to solve the unknown I
with a matrix vector multiplication.

2.3.2 The Anisotropic Case

Here we will consider the following anisotropic scattering kernel:

ω(μ ′,μ) =
M

∑
l=0

βlPl(μ)Pl(μ ′), (2.29)

where Pl(μ) is the lth Legendre polynomial and βl are constants.
The kernel (2.29) allows us to define the moments Jl(y) by

Jl(y) =
1
2

∫ 1

−1
Pl(μ ′)I(y,μ ′)dμ ′. (2.30)

Using (2.6), the unknown variable J(y,μ) is written as

J(y,μ) =
M

∑
l=0

βlJl(y)Pl(μ), (2.31)
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and Jl(y) as

Jl(y) =
1
2

M

∑
k=0

βkKl,k
g Jk(y)+Kl,0

g S(y)+
1
2

Kl
bB (2.32)

where the operators Kl,k
g : C0[0,L] → C0[0,L] and Kl

b : (L∞[0,1]×L∞[−1,0]) →
C0[0,L] are given by

Kl,k
g q(y) =

1
2

∫ 1

−1
Pl(μ ′)Lμ ′

g

[
q(y)Pk(μ ′)

]
dμ ′ (2.33)

Kl
bB =

1
2

∫ 1

−1
Pl(μ ′)L

μ ′
b Bdμ ′. (2.34)

The expression (2.32) can be represented by the system

⎡
⎢⎢⎢⎣

1−β0K0,0
g · · · −βMK0,M

g

−β0K1,0
g · · · −βMK1,M

g
...

. . .
...

−β0KM,0
g · · · 1−βMKM,M

g

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

J0(y)
J1(y)

...
JM(y)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

K0,0
g S(y)+K0

b B
K1,0

g S(y)+K1
b B

...
KM,0

g S(y)+KM
b B

⎤
⎥⎥⎥⎦ (2.35)

Now, each operator Kl,k and Kl
b is discretized in a real matrix (N + 1)× (N + 1)

and the system (2.35) is solved as a linear system of dimension (M + 1)(N + 1).
The approximation W l,k for Kl,k

g and V l for Kl
b are constructed similarly these of

isotropic case.

2.3.3 The Calculation of the Coefficient of W l,k (and Wσ )

We observe that the kernels Kl,k(s,y) and sKl,k(s,y) can be integrated analytically
on s. Furthermore, since K(s,y) can be decomposed in the form

Kl,k(s,y) =

=
∫ 1

0
Pl(−μ)Pk(−μ)h0(y− s+L,μ)dμ+

∫ 1

0
Pl(μ)Pk(μ)h0(s− y+L,μ)dμ

+
∫ 1

0
Pl(−μ)Pk(μ)ρLh1(s+y,μ)dμ+

∫ 1

0
Pl(μ)Pk(−μ)ρ0h1(−y−s+2L,μ)dμ

+

∫ 1

0
Pl(−Si(s− y) μ)Pk(−Si(s− y) μ)h2(|s− y|,μ)dμ , (2.36)
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where

h0(y,μ) =
ρ0ρL

1−ρ0ρLe−
2λL

μ

e
λ (y−3L)

μ

2μ
, 0≤ y≤ 2L (2.37)

h1(y,μ) =
1

1−ρ0ρLe−
2λL

μ

e
λ (y−2L)

μ

2μ
, 0≤ y≤ 2L (2.38)

h2(y,μ) =
e−

λy
μ

2μ
,0≤ y≤ L (2.39)

the number of defined integrals to calculate the coefficients of W grows up with N.
In order to explicit this fact, we combine the coefficients of the matrix W (2.27) with
the expression (2.36) resulting in a list of double integrals. Here we omit the index
k and l and use the following notation:

f−0 (y,μ) := Pl(−μ)Pk(−μ)h0(y,μ), f+0 (y,μ) = Pl(μ)Pk(μ)h0(y,μ)

f−1 (y,μ) := Pl(−μ)Pk(μ)ρLh1(y,μ), f+1 (y,μ) = Pl(μ)Pk(−μ)ρ0h1(y,μ)

f−2 (y,μ) := Pl(−μ)Pk(−μ)h2(y,μ), f+2 (y,μ) = Pl(μ)Pk(μ)h2(y,μ)

and we obtain the terms of the sum

∫ s j+1

s j

∫ 1

0
f±0 (si− s+L,μ)dμds =

∫ 1

0

∫ (N+i− j)hs

(N+i− j−1)hs

f±0 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

f±0 (y,μ)dydμ , k = N + i− j,

∫ s j+1

s j

(s− s j)

∫ 1

0
f±0 (si− s+L,μ)dμds

=
∫ 1

0

∫ (N+i− j)hs

(N+i− j−1)hs

(si− y+L− s j) f±0 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±0 (y,μ)dydμ , k = N + i− j,

∫ s j+1

s j

∫ 1

0
f±0 (s− si +L,μ)dμds =

∫ 1

0

∫ (N+ j−i+1)hs

(N+ j−i)hs

f±0 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

f±0 (y,μ)dydμ , k = N + j− i+1,
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∫ s j+1

s j

(s− s j)
∫ 1

0
f±0 (s− si +L,μ)dμds

=
∫ 1

0

∫ (N+ j−i+1)hs

(N+ j−i)hs

(y+ si−L− s j) f±0 (y,μ)dydμ

=

∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f±0 (y,μ)dydμ , k = N + j− i+1,

∫ s j+1

s j

(s− s j)
∫ 1

0
f±0 (s− si +L,μ)dμds

=−
∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±0 (y,μ)dydμ +hs

∫ 1

0

∫ khs

(k−1)hs

f±0 (y,μ)dydμ ,

k = N + j− i+1,

∫ s j+1

s j

∫ 1

0
f±1 (s+ si,μ)dμds =

∫ 1

0

∫ ( j+i−1)hs

( j+i−2)hs

f±1 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

f±1 (y,μ)dydμ , k = j+ i−1,

∫ s j+1

s j

(s− s j)

∫ 1

0
f±1 (s+ si,μ)dμds

=
∫ 1

0

∫ ( j+i−1)hs

( j+i−2)hs

(y− ( j+ i−2)hs) f±1 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f±1 (y,μ)dydμ , k = j+ i−1,

∫ s j+1

s j

(s− s j)
∫ 1

0
f±1 (s+ si,μ)dμds

=−
∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±1 (y,μ)dydμ +hs

∫ 1

0

∫ khs

(k−1)hs

f±1 (y,μ)dydμ ,

k = j+ i−1,

∫ s j+1

s j

∫ 1

0
f±1 (−si− s+2L,μ)dμds =

∫ 1

0

∫ (2N−i− j+2)hs

(2N−i− j+1)hs

f±1 (y,μ)dydμ

=
∫ 1

0

∫ khs

(k−1)hs

f±1 (y,μ)dydμ ,

k = 2N− i− j+2,
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∫ s j+1

s j

(s− s j)
∫ 1

0
f±1 (−si− s+2L,μ)dμds

=
∫ 1

0

∫ (2N−i− j+2)hs

(2N−i− j+1)hs

((2N− j− i+2)hs− y) f±1 (y,μ)dydμ

=

∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±1 (y,μ)dydμ , k = 2N− i− j+2,

∫ s j+1

s j

∫ 1

0
f±2 (|s− si|,μ)dμds

=

∫ 1

0

∫ ( j−i+1)hs

( j−i)hs

f±2 (|y|,μ)dydμ

=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0

∫ ( j−i+1)hs

( j−i)hs

f−2 (y,μ)dydμ , j− i≥ 0
∫ 1

0

∫ (i− j)hs

(i− j−1)hs

f+2 (y,μ)dydμ , i− j ≥ 1

=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0

∫ khs

(k−1)hs

f−2 (y,μ)dydμ , k = j− i+1, k ≥ 1
∫ 1

0

∫ khs

(k−1)hs

f+2 (y,μ)dydμ , k = i− j, k ≥ 1

∫ s j+1

s j

(s− s j)

∫ 1

0
f±2 (|s− si|,μ)dμds

=
∫ 1

0

∫ ( j−i+1)hs

( j−i)hs

(y+(i− j)hs) f±2 (|y|,μ)dydμ

=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0

∫ ( j−i+1)hs

( j−i)hs

(y+(i− j)hs) f−2 (y,μ)dydμ , j− i≥ 0
∫ 1

0

∫ (i− j)hs

(i− j−1)hs

(−y+(i− j)hs) f+2 (y,μ)dydμ , i− j ≥ 1

=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f−2 (y,μ)dydμ , k = j− i+1, k ≥ 1
∫ 1

0

∫ khs

(k−1)hs

(−y+ khs) f+2 (y,μ)dydμ , k = i− j, k ≥ 1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f−2 (y,μ)dydμ , k = j− i+1, k ≥ 1

−
∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f+2 (y,μ)dydμ

+hs

∫ 1

0

∫ khs

(k−1)hs

f±2 (y,μ)dydμ , k = i− j, k ≥ 1.
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This list of integrals motivates us to define the vectors

F0±
k =

∫ 1

0

∫ khs

(k−1)hs

f±0 (y,μ)dydμ , 1≤ k ≤ 2N (2.40a)

G0±
k =

∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±0 (y,μ)dydμ , 1≤ k ≤ 2N (2.40b)

F1±
k =

∫ 1

0

∫ khs

(k−1)hs

f±1 (y,μ)dydμ , 1≤ k ≤ 2N (2.40c)

G1±
k =

∫ 1

0

∫ khs

(k−1)hs

(khs− y) f±1 (y,μ)dydμ , 1≤ k ≤ 2N (2.40d)

F2±
k =

∫ 1

0

∫ khs

(k−1)hs

f±2 (y,μ)dydμ , 1≤ k ≤ N (2.40e)

G2±
k =

∫ 1

0

∫ khs

(k−1)hs

(y− (k−1)hs) f±2 (y,μ)dydμ , 1≤ k ≤ N (2.40f)

Therefore, the coefficients of W given by (2.27) are calculated for 1≤ i≤ N +1 as

wl,k
i1 = F0−

N+i−1−
1
hs

G0−
N+i−1 +

1
hs

G0+
N−i+2 +

1
hs

G1−
i +F1+

2N−i+1

− 1
hs

G1+
2N−i+1 +F 2

i1−
1
hs

G 2
i1

wl,k
i j =F0−

N+i− j−
1
hs

G0−
N+i− j+

1
hs

G0−
N+i− j+1+

1
hs

G0+
N+ j−i+1−

1
hs

G0+
N+ j−i+F0+

N+ j−i

+
1
hs

G1−
j+i−1−

1
hs

G1−
j+i−2+F1−

j+i−2+F1+
2N− j−i+2−

1
hs

G1+
2N− j−i+2+

1
hs

G1+
2N− j−i+3

+ F 2
i j−

1
hs

G 2
i j +

1
hs

G 2
i, j−1, 2≤ j ≤ N

wl,k
i,N+1 =

1
hs

G0−
i −

1
hs

G0+
2N+1−i +F0+

2N+1−i−
1
hs

G1−
N+i−1 +F1−

N+i−1

+
1
hs

G1+
N−i+2 +

1
hs

G 2
N, j (2.41)

where

F 2
i j =

{
F2−

j−i+1, se i≤ j

F2+
i− j, se i > j.

1≤ j ≤ N, 1≤ i≤ N +1, (2.42)

and

G 2
i j =

{
G2−

j−i+1, se i≤ j

−G2+
i− j +hsF

2+
i− j, se i > j.

1≤ j ≤ N, 1≤ i≤ N +1. (2.43)



32 F.S. Azevedo et al.

Each of the vectors (2.40a)–(2.40f) is integrated analytically in y:

F0±
k =

∫ 1

0
f ′±0 (khs,μ)dμ−

∫ 1

0
f ′±0 ((k−1)hs,μ)dμ , 1≤ k ≤ 2N (2.44a)

G0±
k =

∫ 1

0
g′±0 (khs,μ)dμ−

∫ 1

0
g′±0 ((k−1)hs,μ)dμ , 1≤ k ≤ 2N (2.44b)

F1±
k =

∫ 1

0
f ′±1 (khs,μ)dμ−

∫ 1

0
f ′±1 ((k−1)hs,μ)dμ , 1≤ k ≤ 2N (2.44c)

G1±
k =

∫ 1

0
g′±1 (khs,μ)dμ−

∫ 1

0
g′±1 ((k−1)hs,μ)dμ , 1≤ k ≤ 2N (2.44d)

F2±
k =

∫ 1

0
f ′±2 (khs,μ)dμ−

∫ 1

0
f ′±2 ((k−1)hs,μ)dμ , 1≤ k ≤ N (2.44e)

G2±
k =

∫ 1

0
g′±2 (khs,μ)dμ−

∫ 1

0
g′±2 ((k−1)hs,μ)dμ , 1≤ k ≤ N (2.44f)

where the functions f ′±0 , g′±0 , f ′±2 , g′±1 , f ′±2 , and g′±2 are obtained from (2.37)–(2.39):

f ′±0 (y,μ) =
Pl(±μ)Pk(±μ)

1−ρ0ρLe−
2λL

μ

ρ0ρLe
λ (y−3L)

μ

2λ
, 0≤ y≤ 2L (2.45a)

g′±0 (y,μ) =
Pl(±μ)Pk(±μ)

1−ρ0ρLe−
2λL

μ

ρ0ρL(khsλ −λy+μ)
2λ 2 e

λ (y−3L)
μ ,

0≤ y≤ 2L (2.45b)

f ′±1 (y,μ) =
Pl(∓μ)Pk(±μ)

1−ρ0ρLe−
2λL

μ

ρL,0e
λ (y−2L)

μ

2λ
, 0≤ y≤ 2L (2.45c)

g′±1 (y,μ) =
Pl(∓μ)Pk(±μ)

1−ρ0ρLe−
2λL

μ

ρL,0(khsλ −λy+μ)
2λ 2 e

λ (y−2L)
μ ,

0≤ y≤ 2L (2.45d)

f ′±2 (y,μ) = −Pl(±μ)Pk(±μ)e−
λy
μ

2λ
, 0≤ y≤ L (2.45e)

g′±2 (y,μ) = −Pl(±μ)Pk(±μ)(λy+μ− khsλ +hsλ )
2λ 2 e−

λy
μ ,

0≤ y≤ L. (2.45f)
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The solution of the system

⎡
⎢⎢⎢⎣

1−β0W 0,0 −β1W 0,1 · · · −βMW 0,M

−β0W 1,0 1−β1W 1,1 · · · −βMW 1,M

...
...

. . .
...

−β0W M,0 −β1W M,1 · · · 1−βMW M,M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

J0(y)
J1(y)

...
JM(y)

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣

W 0,0S(y)+V 0B
W 1,0S(y)+V 1B

...
W M,0S(y)+V MB

⎤
⎥⎥⎥⎦

(2.46)
provides the vectors Jl(y), 1≤ l ≤M, calculated at the points of the mesh.

This formulation allows us to calculate the coefficients of the matrix with the
cost of order N. We observe that the numerical method does not require that the
condition (2.29) be satisfied. The kernel may be of the form

ω(μ ,μ ′) =
M

∑
l=1

βl fl(μ)gl(μ ′),

where fl e gl are continuous functions. The choice of the Legendre polynomials was
done by physical motivations.

2.4 Numerical Results

The integrals involved in (2.27) were performed by an adaptive Gauss–Legendre
quadrature scheme, which ran with a relative tolerance of 10−8. Numerical exper-
iments show that the round-off error introduced by this quadrature is not relevant
compared to the truncation error.

The validation of our numerical scheme involves two different techniques: study
of convergence when the number of points in mesh changes and comparison of our
results with results previously published in the literature.

For an isotropic scattering kernel, we compared our solution with the work in
[VaSeVi07] using the LT SN method with N = 300, a well-established method in
transport theory. The pointwise comparison is given in Tables 2.1 and 2.2. Looking
at Table 2.2, we observe a very good agreement between the results obtained and
the exact ones.

We also calculate the maximum value of the ratio λ/σ for which the isotropic
transport equation admits a finite solution. This value is obtained from the spectral
radius of the operator Lg. This value is easy to estimate numerically using the
spectral radius of the matrix W0. In Tables 2.3–2.6 we compare our results with
those [NaLo08] and [At96].

We compared the quantity 2J0 obtained for the transport problem with those
obtained by Vargas et al. [VaSeVi07], using the LT SN method with N = 300, a well-
established method in transport theory. Here, we not only calculate the quantities
2J0 but also calculate 2J1 and present pointwise comparisons in Tables 2.7 and 2.8.
These comparisons were chosen in order to show the performance and limitation of
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Table 2.1 Comparison between the values calculated for
∫ 1
−1 I(y,μ)dμ when λ = σ = 1.0, the

source is given by S(y) = −y2 + y, the boundary condition is B0 = BL = 0 and ρ = 0 with the
results published by Vargas et al. [VaSeVi07]

y LT S300 N = 100 N = 200 N = 400 N = 800 N = 1,600

0.0 0.335952 0.335875 0.335928 0.335942 0.335946 0.335947
0.05 0.398459 0.398382 0.398441 0.398456 0.39846 0.398461
0.1 0.452925 0.452842 0.452905 0.452921 0.452925 0.452926
0.15 0.502992 0.502904 0.502971 0.502988 0.502992 0.502994
0.2 0.548165 0.548071 0.548142 0.54816 0.548165 0.548166
0.25 0.587762 0.587629 0.587702 0.587721 0.587726 0.587727
0.3 0.621014 0.620913 0.620989 0.621009 0.621014 0.621015
0.35 0.647477 0.647373 0.647452 0.647471 0.647477 0.647478
0.4 0.666684 0.666579 0.666659 0.666679 0.666684 0.666685
0.45 0.678336 0.678224 0.678305 0.678325 0.67833 0.678332
0.5 0.682233 0.682126 0.682207 0.682228 0.682233 0.682234

Table 2.2 Comparison between the values calculated for
∫ 1
−1 I(y,μ)dμ when λ = σ = 1.0, the

source is given by S(y) = 1/8, the boundary condition is B0 = BL = 1/8 and ρ = 0 with the results
and exact solution published in [VaSeVi07]

y Exact LT S300 N = 200 N = 400 N = 800 N = 1,600

0.0 0.516842 0.516841 0.516829 0.516838 0.516841 0.516841
0.1 0.600637 0.600634 0.600626 0.600634 0.600636 0.600637
0.2 0.647999 0.647997 0.647988 0.647996 0.647998 0.647999
0.3 0.678718 0.678715 0.678707 0.678715 0.678717 0.678718
0.4 0.696308 0.696303 0.696297 0.696305 0.696307 0.696308
0.5 0.702056 0.702053 0.702045 0.702053 0.702055 0.702055

Table 2.3 Comparison between the values calculated for the critical value of σ/λ when ρ = 0
with the benchmark results published by Naz and Loyalka [NaLo08]

L Naz and Loyalka N= 100 N= 200 N= 400 N= 800 N= 1,600

1.0 1.615379 1.615471 1.615403 1.615385 1.615380 1.615379
2.0 1.277102 1.277187 1.277125 1.277108 1.277103 1.277102
4.0 1.108468 1.108551 1.108490 1.108474 1.108469 1.108468
6.0 1.058296 1.058377 1.058317 1.058301 1.058297 1.058296
8.0 1.036402 1.036483 1.036423 1.036407 1.036403 1.036402
10.0 1.024879 1.024959 1.024900 1.024885 1.024881 1.024880
12.0 1.018072 1.018152 1.018093 1.018078 1.018074 1.018073
16.0 1.010766 1.010845 1.010787 1.010772 1.010768 1.010767
20.0 1.007136 1.007214 1.007156 1.007141 1.007137 1.007136

our method. In Table 2.7, when τ0 is a small number, the results from LT SN and
GFD coincide to four digits. In Table 2.8, when τ0 is large, GFD does not perform
well, an easy phenomenon to explain: GFD involves spatial discretization, requiring
a refined mesh to work properly in large domains.
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Table 2.4 Comparison between the values calculated for the critical value of σ/λ
and the solution published by Atalay [At96] and Naz and Loyalka [NaLo08] when
ρ ranges between 0 and 0.99 and L = 0.2

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = .75 ρ = 0.99

N = 400 3.83032 2.95952 2.23566 1.60333 1.02491
N = 800 3.83031 2.95951 2.23566 1.60333 1.02491
Atalay 3.81843 2.94902 2.23324 1.60373 1.02503

Table 2.5 Comparison between the values calculated for the critical value
of σ/λ and the solution published by Atalay [At96] and Naz and Loyalka
[NaLo08] when ρ ranges between 0 and 0.99 and L = 2.0

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = .75 ρ = 0.99

N = 400 1.27711 1.20373 1.13254 1.06444 1.00250
N = 800 1.27710 1.20373 1.13254 1.06444 1.00250
Naz and Loyalka 1.27710 – – – –
Atalay 1.27704 1.20396 1.13287 1.06469 1.00252

Table 2.6 Comparison between the values calculated for the critical value
of σ/λ and the solution published by Atalay [At96] and Naz and Loyalka
[NaLo08] when ρ ranges between 0 and 0.99 and L = 20.0

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = .75 ρ = 0.99

N = 400 1.00714 1.00658 1.00568 1.00398 1.00025
N = 800 1.00713 1.00658 1.00567 1.00397 1.00025
Naz and Loyalka 1.00714 – – – –
Atalay 1.00714 1.00658 1.00568 1.00398 1.00117

Table 2.7 Comparison between the values calculated for 2J0 := I
2π =

∫ 1
−1 μI(y,μ)dμ and 2J1(y)

2π =∫ 1
−1 I(y,μ ′)μ ′dμ ′ when ω = 1.0, the source is given by S(y) = e−y, the boundary condition is

B0 = BL = 1.0, L = 1.0 and ρ = 0 with the results published in [VaSeVi07]

LT S300 GFD400 GFD800

y I 2J1(y)
2π I 2J1(y)

2π I 2J1(y)
2π

0.0 3.514736 −0.682658 3.514725 −0.682651 3.514742 −0.682656
0.2 4.193457 −0.320120 4.193456 −0.320119 4.193467 −0.320119
0.4 4.306992 −0.023298 4.306991 −0.023298 4.307001 −0.023298
0.6 4.162764 0.219718 4.162763 0.219718 4.162773 0.219719
0.8 3.820951 0.418684 3.820951 0.418683 3.820960 0.418684
1.0 3.196350 0.581583 3.196338 0.581579 3.196349 0.581582

That said, we restrict ourselves to small domains in all subsequent calculations
and, in Tables 2.9 and 2.10, present a study of convergence as N varies in two
problems with anisotropic scattering. Looking at these tables, we see that fixing
N = 400 yields a suitable approximation.

In Tables 2.11 and 2.12 we report results for intensity 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ

and flux 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ = 0.5 where the source is given by
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Table 2.8 Comparison between the values calculated for I =
∫ 1
−1 μI(y,μ)dμ and 2J1(y)

2π =∫ 1
−1 I(y,μ ′)μ ′dμ ′ when ω = 1.0, the source is given by S(y) = e−y2/4, the boundary condition

is B0 = 1.0 and BL = 0.0, L = 100.0 and ρ = 0 with the results published in [VaSeVi07]

LT S300 GFD1600 GFD3200

y I 2J1(y)
2π I 2J1(y)

2π I 2J1(y)
2π

0 8.42592 −3.47483 8.429517 −3.466102 8.443685 −3.472449
20 16.9490 0.0700450 16.929820 0.069921 16.945922 0.0699867
40 12.7473 0.0700153 12.734579 0.069921 12.746721 0.0699867
60 8.54702 0.0699940 8.539338 0.069921 8.547520 0.0699867
80 4.34782 0.0699811 4.344098 0.069921 4.348319 0.0699867
100 0.121203 0.0699766 0.120914 0.069845 0.121160 0.0699643

Table 2.9 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0 and ω = 0.5+ 0.2μμ ′, using
GFDN method for some values of N

N 0.0 0.2 0.4 0.6 0.8 1.0

50 2.175512 2.280829 2.221042 2.126824 2.040648 2.003121
100 2.175580 2.280847 2.221039 2.126810 2.040626 2.003093
200 2.175603 2.280852 2.221039 2.126807 2.040621 2.003087
400 2.175611 2.280854 2.221039 2.126806 2.040620 2.003085
800 2.175613 2.280855 2.221040 2.126806 2.040620 2.003084

Table 2.10 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 0.25, L = 1.0 and ω = 0.1−0.8P2(μ)P2(μ ′),
using GFDN method for some values of N

N 0.0 0.2 0.4 0.6 0.8 1.0

50 1.422216 1.420961 1.317678 1.196440 1.081076 0.978663
100 1.422195 1.420936 1.317653 1.196417 1.081055 0.978646
200 1.422189 1.420930 1.317647 1.196411 1.081050 0.978641
400 1.422188 1.420928 1.317645 1.196410 1.081049 0.978640
800 1.422188 1.420928 1.317645 1.196409 1.081048 0.978640

Q(y) = 0, the boundary condition is B0 = 0.5, BL = 1.0, and L = 1.0 for several
values of ω ′, using GFD400 method.

In Tables 2.13 and 2.14 we report results for intensity 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ

and flux 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ = 0.5, the source is given by Q(y) = e−y,

the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0, and ω = 0.5+ β1μμ ′ for
some values of β ′1, using GFD400 method.

In Tables 2.15 and 2.16 we report results for intensity 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ

and flux 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ obey the Fresnel’s Law, the source is

given by Q(y) = −y2 + 1, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0,
and ω = 0.5+β1μμ ′ for some values of β ′1, using GFD400 method.
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Table 2.11 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = 0, the boundary condition is B0 = 0.5, BL = 1.0, and L = 1.0 for some values of ω ′, using
GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

ω = 0.1 0.394085 0.308092 0.295597 0.322948 0.3981832 0.599197
ω = 0.3 0.455255 0.376538 0.366975 0.397257 0.474942 0.670610
ω = 0.5 0.547692 0.481334 0.476855 0.510642 0.589553 0.774877
ω = 0.7 0.704241 0.660817 0.665823 0.703859 0.780781 0.945278
ω = 0.9 1.027922 1.035246 1.061086 1.104359 1.169499 1.285451
ω = 1.0 1.366484 1.428692 1.476816 1.523184 1.571308 1.633516

Table 2.12 Numerical results for 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = 0, the boundary condition is B0 = 0.5, BL = 1.0, and L = 1.0 for some values of ω ′, using
GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

ω = 0.1 0.091348 0.030373 −0.023318 −0.078390 −0.142388 −0.227966
ω = 0.3 0.081589 0.024937 −0.026616 −0.079646 −0.140016 −0.217202
ω = 0.5 0.066771 0.016286 −0.031290 −0.080343 −0.134896 −0.201215
ω = 0.7 0.041587 0.001061 −0.038569 −0.079491 −0.123798 −0.174651
ω = 0.9 −0.010599 −0.031191 −0.052127 −0.073750 −0.096445 −0.120810
ω = 1.0 −0.065226 −0.065226 −0.065226 −0.065226 −0.065226 −0.065226

Table 2.13 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0, and ω = 0.5+β1μμ ′ for some
values of β ′1, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

β1 =−0.4 2.171404 2.287915 2.228408 2.129973 2.039060 1.999342
β1 =−0.2 2.172810 2.285582 2.225975 2.128928 2.039572 2.000564
β1 = 0.0 2.174212 2.283228 2.223519 2.127872 2.040092 2.001812
β1 = 0.2 2.175611 2.280854 2.221039 2.126806 2.040620 2.003085
β1 = 0.4 2.177005 2.278459 2.218536 2.125729 2.041158 2.004384

Table 2.14 Numerical results for 2J1(y) =
∫ 1
−1 I(y,μ)μdμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0, and ω = 0.5+β1μμ ′ for some
values of β ′1, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

β1 =−0.4 −0.179493 −0.043131 0.027270 0.052272 0.042998 0.004747
β1 =−0.2 −0.179721 −0.043268 0.027390 0.052573 0.043322 0.004973
β1 = 0.0 −0.179948 −0.043404 0.027514 0.052879 0.043653 0.005203
β1 = 0.2 −0.180173 −0.043537 0.027644 0.053192 0.043990 0.005439
β1 = 0.4 −0.180398 −0.043668 0.027778 0.053511 0.044333 0.005679
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Table 2.15 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ obey the Fresnel’s Law, the

source is given by S(y) = −y2 + 1, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0, and
ω = 0.5+β1μμ ′ for some values of β ′1, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

η1 = 1.1 e β1 = 0.0 2.139750 2.162119 2.102876 2.020612 1.947920 1.916511
η1 = 1.3 e β1 = 0.0 2.538795 2.543428 2.435245 2.238801 2.007225 1.859391
η1 = 1.5 e β1 = 0.0 2.674822 2.658213 2.532869 2.323659 2.083518 1.931200
η1 = 1.1 e β1 = 0.2 2.283157 2.339636 2.274510 2.111902 1.904883 1.770508
η1 = 1.3 e β1 = 0.2 2.540122 2.539579 2.430887 2.236966 2.008923 1.862644
η1 = 1.5 e β1 = 0.2 2.673850 2.653722 2.528947 2.322986 2.086874 1.936458

Table 2.16 Numerical results for 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ obey the Fresnel’s Law, the

source is given by S(y) = −y2 + 1, the boundary condition is B0 = 0.5, BL = 1.0, L = 1.0, and
ω ′ = 0.5+β1μμ ′ for some values of β ′1, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

η1 = 1.1 e β1 = 0.0 −0.269024 −0.122701 −0.039495 −0.002692 −0.001957 −0.031744
η1 = 1.3 e β1 = 0.0 −0.207152 −0.067573 0.045285 0.109681 0.100084 −0.016932
η1 = 1.5 e β1 = 0.0 −0.151652 −0.024587 0.077688 0.132996 0.115376 −0.009009
η1 = 1.1 e β1 = 0.2 −0.299995 −0.137502 −0.006496 0.072206 0.073990 −0.033573
η1 = 1.3 e β1 = 0.2 −0.207165 −0.067414 0.045887 0.110610 0.101018 −0.016279
η1 = 1.5 e β1 = 0.2 −0.151257 −0.023878 0.078846 0.134400 0.116642 −0.008209

Table 2.17 Numerical results for 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 0.25, L = 1.0, and ω = 0.1+β2P2(μ)P2(μ ′)
for some values of β ′2, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

β2 =−0.8 1.420313 1.4187334 1.316498 1.196469 1.082103 0.980052
β2 =−0.4 1.422188 1.420928 1.317645 1.196410 1.081049 0.978640
β2 = 0.4 1.426277 1.425790 1.320271 1.196412 1.078875 0.975655
β2 = 0.8 1.428517 1.428410 1.321786 1.196498 1.077769 0.974080

Table 2.18 Numerical results for 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ = 0.5, the source is given by

S(y) = e−y, the boundary condition is B0 = 0.5, BL = 0.25, L = 1.0, and ω = 0.1+β2P2(μ)P2(μ ′)
for some values of β ′2, using GFD400 method

y 0.0 0.2 0.4 0.6 0.8 1.0

β2 =−0.8 −0.051574 0.052266 0.101442 0.117132 0.110456 0.087691
β2 =−0.4 −0.052534 0.050794 0.100112 0.116247 0.110036 0.087532
β2 = 0.4 −0.054730 0.047398 0.096981 0.114078 0.108919 0.087067
β2 = 0.8 −0.055999 0.045420 0.095117 0.112738 0.108177 0.086735
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In Tables 2.17 and 2.18 we report results for intensity 2J0 := I
2π =

∫ 1
−1 I(y,μ)dμ

and flux 2J1(y) =
∫ 1
−1 μI(y,μ)dμ when ρ = 0.5, the source is given by Q(y) =

e−y, the boundary condition is B0 = 0.5, BL = 0.25, L = 1.0, and ω = 0.1 +
β2P2(μ)P2(μ ′) for some values of β ′2, using GFD400 method.
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Chapter 3
Integral Neutron Transport and New
Computational Methods: A Review

A. Barbarino, S. Dulla, and P. Ravetto

3.1 Introduction

The neutron transport equation is the basis for the physics simulation of nuclear
reactors and, in particular, for nuclear reactor core design. This equation is a linear
version of the original Boltzmann equation and it is commonly used in its integro-
differential form. Several numerical methods have been derived over the years
to obtain solutions for realistic configurations [LeMi84] and efficient codes are
available to carry out neutronic simulations of multiplying systems [CaNo10].

An alternative form of the transport equation can be obtained by spatial integra-
tion of the integro-differential form. A spatially integral equation is thus obtained
[Da58], which has proved very useful to highlight some physical aspects of the
transport phenomenon and also for practical applications. In the special case of
isotropic emissions, by angular integration, the Peierls equation is obtained, which
served as the starting point for the development of the first analytical attempts to
solve the transport problem [CaDePl53], [CaZw67], and also for the derivation
of numerical methods [Ca65]. The integral form of the transport equation yields
also the foundation to the so-called method of characteristics [As72] that has
made an important breakthrough into reactor analysis during the most recent years
[SaSaMo08]. The main interest of the work presented and discussed herewith is the
neutronics of nuclear reactors, although the approach is also extended to radiation
problems that may be encountered in various fields of nuclear engineering and of
other applied sciences.

This work is opened by reviewing the basics of integral neutron transport,
deriving the integral form of the equation for completeness in its most general time-
dependent form. Afterwards, restricting to the Peierls equation, the second-order
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AN method is derived, illustrating the advantageous features of the model.
The presentation of two approaches for the numerical solution of the AN equations
concludes the work.

3.2 The Integral Transport Equation

The integral form of the transport equation can be derived starting from the
integro-differential (Boltzmann form) transport equation and carrying out a spatial
integration along the characteristic line of motion of the particles [PrLa10]. This
procedure is particularly simple in the steady-state situation.

The general integro-differential neutron transport equation is written as

1
v

∂Φ(r,E,Ω , t)
∂ t

+∇ · (ΩΦ(r,E,Ω , t))+Σ(r,E)Φ(r,E,Ω , t)

= S(r,E,Ω , t)

+
∮

dΩ ′
∫

dE ′Σs(r,E ′)Φ(r,E ′,Ω ′, t) fs(r,E ′ → E,Ω ′ →Ω), (3.1)

where the phase space point is defined by the geometric position r, the particle
energy E, and its direction of motion Ω . The quantity Φ is the unknown of the
problem and denotes the total distance traveled by particles per unit volume, energy
and solid angle and per unit time. The material properties are assumed to be constant
in time. The fission term is not written explicitly in (3.1), but it can be easily added in
the r.h.s. of the equation and its structure is the same as that of the integral scattering
term. The collision transfer function for neutrons appearing in the integral scattering
term depends only on the angle between Ω and Ω ′, thus only on the inner product
Ω ·Ω ′, being the material properties isotropic for neutrons at energies of interest for
nuclear reactor theory. The r.h.s. of the equation constitutes the particle emission
density that depends on the unknown particle flux determining the scattering rate.
This equation constitutes a particle balance in phase space and it can be derived
using the approach as originally proposed by Boltzmann for gas kinetics [Bo02],
where the emissions by collisions are treated statistically.

In a time-independent situation, the transport equation (3.1) can be written at
any point r− sΩ belonging to the line along which neutrons are moving. Clearly,
the particle streaming term ∇ · (ΩΦ) = Ω ·∇Φ is simply the directional derivative
along the s variable. Hence, we can write

− dΦ(r− sΩ ,E,Ω)

ds
+Σ(r− sΩ ,E)Φ(r− sΩ ,E,Ω)

= S(r− sΩ ,E,Ω)

+
∮

dΩ ′
∫

dE ′Σs(r− sΩ ,E ′)Φ(r− sΩ ,E ′,Ω ′) fs(r− sΩ ,E ′ → E,Ω ′ →Ω)

≡ Q(r− sΩ ,E,Ω).
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This space first-order equation can be easily integrated along s, thus obtaining

Φ(r,E,Ω) = Φ(r− sΩ ,E,Ω)exp

[
−
∫ s

0
ds′Σ(r− s′Ω ,E)

]

+
∫

ds′Q(r− s′Ω ,E,Ω)exp

[
−
∫ s′

0
ds′′Σ(r− s′′Ω ,E)

]
.

The above equation can be physically interpreted by explicitly noticing that the term

exp

[
−
∫ s

0
ds′Σ(r− s′Ω ,E)

]

is the probability for neutrons to travel between the point r− sΩ and r without
undergoing any collision event. The integral appearing in the argument of the
exponent is also known as optical path length, being the distance s measured in terms
of the local mean free path, and it is an anisotropic quantity, explicitly depending on
both r− sΩ and r and not only on the distance s. The first term on the right-hand
side gives the contribution to the neutron flux at r,E,Ω due to particles that freely
travel from point r− sΩ to point r without suffering any collision. The second term
collects the contributions of all neutrons emitted between r−sΩ and r by scatterings
and external sources that travel to point r without any further collisions.

To obtain an integral form for the time-dependent equation, the Laplace transfor-
mation is applied prior to the space integration. By indicating with p the Laplace
transform variable, we get

− Φ̃(r− sΩ ,E,Ω , p)
ds

+
[
Σ(r− sΩ ,E)+

p
v

]
Φ̃(r− sΩ ,E,Ω , p)

=
∮

dΩ ′
∫

dE ′Σs(r− sΩ ,E ′)Φ̃(r− sΩ ,E ′,Ω ′, p) fs(r− sΩ ,E ′ → E,Ω ′ →Ω)

+ S̃(r− sΩ ,E,Ω , p)+
1
v

Φ(r− sΩ ,E,Ω ,0)

≡ Q̃(r− sΩ ,E,Ω , p).

The above equation has the same structure as the steady-state equation, where the
total cross section has been modified by the addition of the p/v term and the initial
state contribution has been added in the generalized emission density. Therefore,
the integration along the characteristic line can be carried out at each point p in the
Laplace-transformed space, leading to the integral equation

Φ̃(r,E,Ω , p)

= Φ̃(r− sΩ ,E,Ω , p)exp

[
−
∫ s

0
ds′Σ(r− s′Ω ,E)

]
exp
(
− p

v
s
)
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+
∫ s

0
ds′Q̃(r− s′Ω ,E,Ω , p)exp

[
−
∫ s′

0
ds′′Σ(r− s′′Ω ,E)

]
exp
(
− p

v
s′
)
.

In order to obtain the integral form of the transport equation for the angular flux
in the time domain, a Laplace inversion must be carried out. The exponentials of the
form exp(−ps/v) introduce the translated Dirac delta distributions δ (t− s/v). Use
must be made of the convolution theorem to obtain the final form

Φ(r,E,Ω , t)

= Φ(r− sΩ ,E,Ω , t− s/v)exp

[
−
∫ s

0
ds′Σ(r− s′Ω ,E)

]
ϑ(t− s/v)

+Φ(r− vtΩ ,E,Ω ,0)exp

[
−
∫ vt

0
ds′Σ(r− s′Ω ,E)

]
ϑ(s− vt)

+
∫ min(s,vt)

0
ds′Q(r− s′Ω ,E,Ω , t− s′/v)exp

[
−
∫ s′

0
ds′′Σ(r− s′′Ω ,E)

]
,

where ϑ is the Heaviside step function. The first term in the r.h.s. gives the
contribution to the neutron flux at r,E,Ω at time t due to particles that freely travel
from point r−sΩ to point r without suffering any collision. Of course these particles
must depart from the point r− sΩ at an instant prior to t of the flight time s/v and
can appear only once this time has passed, thus justifying the appearance of the
step function. The second term accounts for the initial state, whose contribution
disappears once t becomes larger than the transit time s/v. The third term collects
the contributions of all neutrons emitted between r− sΩ and r by scatterings and
external sources that travel to point r without any further collisions. Also in this
case, the delay due to the finite particle velocity is correctly accounted for. The
upper limit of the integration in the emission density term is the minimum between
the distance that can be traveled by neutrons having velocity v (i.e., vt) and s itself,
for times longer than s/v. If the distance s is taken to be the distance sB(r,Ω) to the
external boundary of a non reentrant body facing vacuum, we arrive at the integral
equation

Φ(r,E,Ω , t)

= Φ(r− vtΩ ,E,Ω ,0)exp

[
−
∫ vt

0
ds′Σ(r− s′Ω ,E)

]
ϑ(s− vt)

+
∫ min(sB(r,Ω),vt)

0
ds′Q(r− s′Ω ,E,Ω , t− s′/v))exp

[
−
∫ s′

0
ds′′Σ(r− s′′Ω ,E)

]
.

After a sufficiently long time, so that the contribution of the initial population has
died out everywhere, we obtain
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Φ(r,E,Ω , t) =
∫ sB(r,Ω)

0
ds′Q(r− s′Ω ,E,Ω , t− s′/v)

× exp

[
−
∫ s′

0
ds′′Σ(r− s′′Ω ,E)

]
. (3.2)

A special form of the integral equation can be derived in the particular case when
Q is assumed to be isotropic, namely

Q(r,E,Ω , t) =
1

4π
Q(r,E, t).

In this case, (3.2) can be integrated over all directions, thus leading to an integral
over the whole volume V and yielding the total flux integral equation

Φ(r,E, t)=
1

4π

∫
dr′Q

(
r′,E, t− |r− r′|

v(E)

) exp

[
−
∫ |r−r′|

0
ds′Σ(r− r− r′

|r− r′| s
′,E)

]

|r− r′|2 .

This is known as Peierls equation, and in the time-independent case it takes the
simpler form

Φ(r,E) =
1

4π

∫
dr′Q

(
r′,E
) exp

[
−
∫ |r−r′|

0
ds′Σ(r− r− r′

|r− r′| s
′,E)

]

|r− r′|2 .

The kernel of the transport integral equation contains all the physical features
of the transport phenomena. Any approximate model introduces some distortion of
such a kernel. Discrete ordinates and spherical harmonics are the most popular ap-
proximate models [LeMi84]; these models are derived from the integro-differential
form and appear in differential form, but they can also be easily given an integral
form, thus clearly highlighting the distortion induced by the approximation of the
kernel.

3.3 The AN Model

A space second-order model taking a diffusive form can be derived from the integral
transport equation by an approximation of the exact transport kernel by means of a
superposition of diffusive kernels [CoRa82]. This procedure can be applied inside
a medium having a constant total cross section. For media characterized by fully
heterogeneous properties, proper continuity conditions must be introduced at the
interfaces between regions. The starting point is thus the transport equation (that we
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write in the one-velocity case, for simplicity)

Φ(r) =
1

4π

∫
dr′
[
γ(r′)Φ(r′)+S

(
r′
)] e−Σ|r−r′|
|r− r′|2 , (3.3)

where γ(r) = Σs(r)/Σ is the number of secondaries emitted per collision. Inside a
homogeneous domain, it is not restrictive to assume Σ = 1, thus measuring distances
in terms of mean free paths. The kernel is now approximated according to a standard
integration formula, as [StZw58]

e−r

4πr2 =
∫ 1

0

e−r/μ

4πrμ2 dμ �
N

∑
α=1

pα
e−r/μα

4πrμ2
α
. (3.4)

If we consider the system of integral equations

fβ (r) =
1

4π

∫
dr′
[

γ(r′)
N

∑
α=1

pα fα(r′)+S(r′)

]
e−r/μβ

μ2
β |r− r′| , β = 1,2, . . . ,N,

(3.5)

we immediately verify by direct summation that the weighted sum of the so-called
pseudo-moments fα is an approximation of the total flux; that is,

Φ(r)�
N

∑
α=1

pα fα(r),

since the sum of the kernels appearing in (3.5) is an approximation of the exact
kernel of (3.3). Recalling the properties of the Green function for the diffusion
equation, the application of the Laplace operator to (3.5) leads to a system of
differential equations for fα , namely

μ2
β ∇2 fβ (r)− fβ (r)+

[
γ(r)

N

∑
α=1

pα fα(r)+S(r)

]
= 0, β = 1,2, . . . ,N. (3.6)

This system of equations, that has become known as the AN model, has the
structure of a multigroup system of diffusion equations with a full coupling
appearing among all groups. Hence, the pseudo-moments fα play the role of
pseudo-energy group fluxes, although they can be related to the angular even parity
fluxes in planar geometry [CoRa82].

It is worth recalling the fact that the approach outlined above can be carried
out on a rigorous basis without approximating the μ integral in (3.4), and thus
obtaining a novel exact formulation of the transport model [CoRaSu85] in terms
of an integro-differential equation. The procedure can even be extended to include
the time dependence [CoEtAl08], obtaining a wave-like time second-order form of
the model.
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There is an alternative route to obtain the AN model, through the simplified
spherical harmonics (SPN) approach. This technique is particularly interesting,
because it leads to a more consistent foundation to the SPN method, which was
introduced in a somewhat arbitrary fashion by Gelbard [Ge61]. In this approach,
the first-order simplified spherical harmonics equations are reduced to a second-
order form by elimination of the odd-order moments and the resulting system is
then diagonalized [CiEtAl02].

The diffusive nature of the AN equations is certainly advantageous for numerical
applications, as will be seen in the next sections. However, this model cannot be
easily extended to treat scattering anisotropy, although some efforts have been made
to include linear anisotropy effects [CoRaSu83]. Also, pseudo-moments cannot be
given a physical meaning except for the special case of slab geometry.

3.4 The Boundary Element Approach

Second-order form equations are particularly suitable for response matrix formu-
lations. Equations can be cast into a form involving only values of the unknowns
at the boundary of the meshes in which the domain is subdivided, thus leading
to a boundary element numerical scheme (BEM) [BrTeWr84]. The resulting
scheme involves a reduction in the dimensionality of the problem with obvious
computational advantages.

The AN equations can be given a BEM formulation [CiEtAl02]. To that end, the
Green functions of the constituent equations are needed in each subdomain having
a constant total cross section. Therefore the following equations are preliminarily
considered:

μ2
α ∇2ϕαβ (r)−Σϕαβ (r)+Σs(r)pα

N

∑
η=1

ϕηβ (r)+δαβ δ (r− r′) = 0,

to explicitly obtain the solution in a standard way, through a sum of exponentials,
namely

ϕαβ (
∣∣r− r′

∣∣) = N

∑
η=1

gηβCαη
e−κη |r−r′|
|r− r′| .

The second-order equations are then multiplied by the Green functions and
integrated over the volume. By application of the Green identity, one obtains the
following result:

c(r) fβ (r)+
N

∑
α=1

[
ϕαβ (

∣∣r− r′σ
∣∣)Jn′,α(r

′
σ )+ Jn′,αβ (r,r

′
σ ) fα(r′σ )

]
=Ψβ (r), (3.7)
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where σ denotes the surface of the volume on which the integration has been
performed. The coefficient c(r) takes the values 0, 1, or 1/2 for values outside
the volume considered, inside or on the boundary, respectively. The above integral
equation shows that the solution at each point is connected to a source volume term,
that is,

Ψβ (r) =
N

∑
α=1

∫
dr′ϕαβ (

∣∣r− r′
∣∣)S(r′),

and to boundary terms involving the pseudo-fluxes and the pseudo-currents de-
fined by

Jn,α(rσ ) = −μ2
α

Σ
∂ fα
∂n

(rσ ),

Jn′,α(r,r
′
σ ) =

μ2
α

Σ
∂ϕαβ

∂n′
(
∣∣r− r′σ

∣∣).
The equation (3.7) shows also that the solution at each point inside the volume

can be reconstructed once the values of the solution at the boundary are known.
By evaluating (3.7) on the boundary, an integral equation for the solution is readily
obtained:

c(rσ ) fβ (rσ )+
N

∑
α=1

[
ϕαβ (

∣∣rσ − r′σ
∣∣)Jn′,α(r

′
σ )+ Jn′,αβ (rσ ,r′σ ) fα(r′σ )

]

=Ψβ (rσ ), (3.8)

which constitutes the basis for the BEM. In fact such equation can be written in
discrete form by applying any discretization scheme to the boundary itself.

At inner interfaces between different meshes, continuity is required for the
physical quantities such as the neutron flux and the corresponding current that are
given in AN form as

Φ(r) =
N

∑
α=1

pα fα(r),

J(r) = −
N

∑
α=1

pα
μ2

α
Σ

∇ fα(r).

The continuity is guaranteed by requesting all the pseudo-fluxes and all the pseudo-
currents to be continuous at any point at an inner interface [CoEtAl10]. At last, an
external surface facing vacuum classical Mark boundary conditions [BeGl70] are
imposed:

−μα
Σ

∂ fα
∂n

(rσ ) = fα(rσ ).
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The above formulation leading to the integral equations (3.8) on mesh boundaries
is particularly suitable to be coded in computational tools based on a response-
matrix scheme. Each mesh is characterized by a response matrix that, once applied
to incoming partial particle currents, can produce exiting partial currents, account
taken for inner sources. This approach has been successfully employed for core
neutronics simulations [CaEtAl08].

3.5 The Spectral Element Approach

The spectral element method (SEM) is a scheme for the spatial discretization
based on a generalized Galerkin method with numerical quadratures formulae
[DeFiMu08]. The method employs a Lagrangian interpolation formula and high
degree polynomials can be used on any given mesh. The basis functions are chosen
to be orthogonal and the Gauss–Lobatto–Legendre quadrature formula is adopted
for the evaluation of integrals, as:

∫ +1

−1
g(ξ )dξ ∼

N+1

∑
k=1

ρkg(ξk) .

The method has been successfully used in fluid-flow applications. Recently it has
been extended to the field of neutron transport [Mu11], [BaEtAl11].

For neutronic applications, the method is derived by multiplying the AN equa-
tions (3.6) by a test function χ� and then integrating over the domain; thus,

−μ2
α

Σ

∫
D

dr∇ fα ∇χ�+
∫

∂D
ds

d fα
dn

χ�+
∫

D
dr

(
−Σ fα +Σs

N

∑
β=1

wβ fβ +S

)
χ� = 0,

which constitutes the weak formulation of the transport problem.
Afterwards, expanding the unknown functions in the same basis functions, we

have

fα (r) =
L

∑
p=1

f̂ p
α χp (r) .

For the SEM method, the basis functions are products of one-dimensional
Lagrange interpolation polynomials built on a Gauss–Lobatto–Legendre quadrature
grid. The general multidimensional configuration can be treated by starting from the
1D situation and taking a tensorial product of the coefficient matrices. Finally, all
equations are recast into the single matrix form [BaEtAl13]

(
μ2

αK+μ2
αB+ΣM

)
ϕ̂α +Σs

N

∑
β=1

wβMϕ̂β =MŜ.
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In two-dimensional Cartesian geometry,

K=
Ly

Lx
(M⊗K)+

Lx

Ly
(K⊗M) ,

where

M=
LxLy

4
(M⊗M) ,

Lx and Ly being the edges of the Cartesian mesh along the x and y coordinates,
respectively. The term B includes the contributions of the boundary terms. The
matrices K and M are known as the stiffness and mass matrices, respectively, and
are calculated with the formulas

Mi j =
∫ +1

−1
χi(ξ )χ j(ξ )dξ = ρiρ j,

Ki j =
K+1

∑
k=1

DkiDk jρk,

where

Di j =
dχ j

dξ

∣∣∣∣
ξ=ξi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PK (ξi)

PK (ξ j)

1
ξi−ξ j

, i �= j,

− (K +1)K
4

, i = j = 1,

(K +1)K
4

, i = j = K +1,

0 elsewhere.

Both continuous and discontinuous Galerkin approaches can be used. When
using the continuous approach, only structured meshes may be adopted and a local
refinement shall propagate, thus increasing the number of points also elsewhere
in the system. Discontinuous schemes are possible, provided some terms are
properly added, allowing more flexibility in the refinement and opening the way
for applications to unstructured meshes configurations.

In order to improve the flexibility of the scheme, it is possible to deform a
Cartesian element by means of a spatial transformation, which determines the
position of the new grid points and the value of the Jacobian associated to them,
to take into account the change in surface and volume, while approximating the
integrals of the weak form. For instance, the so-called transfinite interpolation
technique [DeFiMu08] requires only to specify the parametric description of the
border of the element, and it is able to give both coordinates and Jacobian in a
closed analytical form. In this way the rectangles of the mesh can be fit also for
complicated curved geometries.
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At last, it is also possible to collapse one of the sides of a rectangle to obtain a
triangle, useful for some specific applications in the nuclear field, by using transfi-
nite interpolation in conjunction with a change of the polynomial basis in one of the
directions. More specifically, the Radau polynomials and the corresponding quadra-
ture scheme provide a set of grid points which include just one of the extremes of the
reference domain [−1,+1]. After the tensor product operation with a Lobatto grid
in the other direction, one side remains without degrees of freedom. This side can
be collapsed to a single point using a suitable transformation. The Jacobian in the
collapsed vertex vanishes as expected, but it does not enter the algorithm because
no unknowns are defined on it. The numerical scheme is then perfectly identical to
the previous case. Of course, discontinuos Galerkin can still be applied to deformed
grids, with just a complication in the algebraic form of the interface terms.

3.6 Comparison of Numerical Results

The performance of the BEM applied to the AN equations for neutron transport
calculations has been extensively tested in recent times; the method has shown to
yield accurate results and to be an effective approach for the solution of neutron
transport problems for nuclear reactor simulations. In [CiEtAl02] and [CoEtAl10]
the results of some test calculations are reported for benchmark configurations
usually considered in reactor physics. The method has proved to perform very well
in comparison with standard discrete ordinate techniques and also to be free of
drawbacks such as ray effects associated with the angular discretization in mul-
tidimensional problems. Furthermore, comparisons with Monte Carlo calculations
have shown the excellent level of accuracy that can be attained by AN . The SEM is
also being deeply investigated [BaEtAl13] and may prove to be a powerful tool to
obtain accurate results and to be suitable for simulations in which a high fidelity is
required.

Two classical benchmarks (see [Na71], [KaStSc79]) are now presented, where
the AN model is solved with different numerical schemes. Figure 3.1 shows the
computational domain of the IAEA-EIR2 benchmark, whose cross sections and
source terms are reported in Table 3.1. For the FEM calculations, also the mesh
average size h is indicated. Results are given in Table 3.2, where also the results
produced using the TWODANT SN code [AlEtAl90] are included.

The second benchmark is the “modified” Natelson PWR problem, characterized
by the domain illustrated in Fig. 3.2; the cross sections data and source are given in
Table 3.3. In this case, the absorption rates are calculated and Table 3.4 gathers the
numerical results.

As an example of the capabilities of the combined use of spectral elements and
transfinite interpolation, we present also a test case reproducing in a schematic way
a fuel pin in a square lattice configuration, divided into several concentric rings
representing also the clad and the moderator region (see Fig. 3.3 and Table 3.5).
Only one eighth of the domain is taken into account, using reflective boundary
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Fig. 3.1 IAEA EIR-2 problem domain

Table 3.1 Material properties for the IAEA EIR-2 benchmark problem

Source strength
Region Σt [cm−1] Σs [cm−1] [cm−3 s−1]

D1 0.60 0.53 1.0
D2 0.48 0.20 0.0
D3 0.70 0.66 1.0
D4 0.65 0.50 0.0
D5 0.90 0.89 0.0

Table 3.2 Comparison of the average fluxes for the IAEA-EIR2 benchmark. All values are in
n/(cm2 s)

FEM FEM FEM SEM BEM TWODANT

h = 1.0 cm h = 0.5 cm h = 0.3 cm
ΦD1 1.199869E+1 1.197052E+1 1.196234E+1 1.194591E+1 1.1973E+1 1.1960E+1
ΦD2 6.018141E–1 5.703414E–1 5.608087E–1 5.438439E–1 5.3613E–1 5.3613E–1
ΦD3 1.926494E+1 1.922154E+1 1.920514E+1 1.917657E+1 1.9222E+1 1.9202E+1
ΦD4 9.095288E–1 8.715273E–1 8.599585E–1 8.384864E–1 8.2946E–1 8.3364E–1
ΦD5 1.494612E+0 1.511750E+0 1.516965E+0 1.527069E+0 1.5318E+0 1.5263E+0

conditions on all sides. The central wedge is obtained by collapsing one side, which
has no degrees of freedom because the basis in the radial direction is given by Radau
polynomials.

Table 3.6 shows some results obtained comparing the SEM solution to a finite
element solution, using elements of Courant P1 and P2 type.
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Fig. 3.2 Computational domain for the “modified” Natelson benchmark problem

Table 3.3 Material properties for the “modified” Natelson benchmark problem

Source strength
Region Σt [cm−1] Σs [cm−1] [cm−3 s−1]

D1 0.200000 0.119230 0.00214230
D2 0.200000 0.119230 0.00215024
D3 0.200000 0.119230 0.00217729
D4 0.250000 0.147403 0.01048083
D5 0.200000 0.066703 0

3.7 Conclusions

In this contribution, the integral transport model for neutronic application is
presented. The equation is derived in its most general form directly by spatial
integration of the integro-differential form of the linear Boltzmann equation. For
the time-dependent case a Laplace transform approach is used. The Peierls equation
is then derived for the isotropic emission case.
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Table 3.4 Results of the absorption rates for the modified Natelson PWR problem. All
values are in n/(cm2 s). The first five columns are calculated using the A2 model

FEM FEM FEM SEM BEM S16

h = 1.0 cm h = 0.5 cm h = 0.3 cm
ΦD1 1.7173E–1 1.7722E–1 1.7891E–1 1.8212E–1 1.8052E–1 1.8132E–1
ΦD2 1.4848E–1 1.5257E–1 1.5392E–1 1.5646E–1 1.5693E–1 1.5704E–1
ΦD3 1.7101E–1 1.7688E–1 1.7879E–1 1.8217E–1 1.8101E–1 1.8178E–1
ΦD4 3.1158E–1 3.2670E–1 3.3163E–1 3.4090E–1 3.4673E–1 3.4655E–1
ΦD5 1.3251E–1 1.3559E–1 1.3657E–1 1.3835E–1 1.3481E–1 1.3329E–1

Fig. 3.3 Computational domain for the pin-cell benchmark problem

Table 3.5 Material properties for the pin-cell benchmark problem

Source strength
Region Σt [cm−1] Σs [cm−1] [cm−3 s−1]

D1 1.0 0.5 1.0
D2 1.0 0.5 0.8
D3 1.0 0.5 0.3
D4 1.0 0.5 0.2
D5 1.0 0.5 0.1

The AN approximation is derived by expanding the exact transport kernel as a
superposition of diffusive kernels, leading to a system of second-order differential
equations. Two numerical schemes that have been recently proposed are then
reviewed, the boundary element method and the spectral element method.
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Table 3.6 Relative distance in discrete L2 norm between SEM (with discontin-
uous Galerkin) and FEM solution (at the same number of degrees of freedom)
for the pin-cell benchmark problem

Comparison SEM–FEM Courant P1

K = 9 K = 10 K = 11 K = 12

A1 3.234924E–2 2.706710E–2 2.583746E–2 2.473618E–2
A2 3.539272E–2 2.973357E–2 2.869604E–2 2.773729E–2
A3 4.013103E–2 3.352912E–2 3.429756E–2 3.992359E–2
Comparison SEM–FEM Courant P2

K = 9 K = 10 K = 11 K = 12
A1 2.040621E–2 1.971461E–2 1.772286E–2 1.772286E–2
A2 2.402395E–2 2.293065E–2 2.122532E–2 1.854835E–2
A3 3.097324E–2 2.956092E–2 2.844892E–2 2.592764E–2

The results presented for benchmark configurations and for a system typical
in nuclear reactor core simulations show that both numerical schemes are quite
effective and flexible and they can yield accurate results as compared to finite
element techniques. The development of these schemes could lead to computational
tools appropriate for evaluations where a high fidelity is required.
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Chapter 4
Scale Invariance and Some Limits in Transport
Phenomenology: Existence of a Spontaneous
Scale

B.E.J. Bodmann, M.T. Vilhena, J.R.S. Zabadal, L.P. Luna de Oliveira,
and A. Schuck

4.1 Introduction

In transport phenomenology it is a common practice to express equations for con-
tinuous quantities such as fluxes, current densities among others, in a dimensionless
fashion, i.e. independent of scales. This may be understood from the fact that
transport phenomena in fluids are the continuum limit of scalable multi-particle
distributions and their respective flows [Kr97], [LeLa12], [Po94]. If from the
physical point of view one respects the microscopic origin of fluids, then these
equations, when scaled to the microscopic or particle level such as the mean
free path or the mean inter-particle distance, should break scale invariance or
invariance under dilatation transformation. Nevertheless, physical parameters that
are typically present in the equations establish a connection of the macroscopic
with the microscopic world by their relations to distributions. For instance, the
diffusion parameter is linked with particle distributions manifest in Avogadro’s
number together with the multi-particle system’s equation of state. The microscopic
or macroscopic cross sections reflect particle interaction probabilities typical for the
physical forces that drive the dynamics of the particle ensemble in consideration.
One could continue this reasoning with many other examples.

While for multi-particle systems the continuum limit seems adequate and is
sufficient as long as mean(-field) values are sufficient and effects due to fluctuations
may be neglected. Theoretically, if one starts with the complete physics of the
many-particle system, mean values and all higher significant moments can be
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determined; however, this is not possible in practice. Hence, there seems to be
no smooth transition between a distributional continuous and a particle picture
without resorting to additional techniques such as stochastic models that translate
distributions into ensemble descriptions. In the distributional picture one assumes
in principle an uncountable set of constituents, whereas the latter (particle picture)
is based on a countable set. Moreover, if there were a natural transition between
the continuous (macro) and the discrete (micro) scale, there would be need for
a hybrid description below a certain micro-scale [GrPi07]. Such a “natural”
transition was not found until now and thus is a supporting argument in favor
of our reasoning, to look for a transition by means of a spontaneous symmetry
breaking, that as the present discussion will show has the broken scale invariance as
a consequence. In other words, what to look for is whether it is in principle possible
to consider the discrete limit, starting from the continuous description together with
a spontaneously broken invariance.

Since it is not obvious at all, how to get a mechanism that transforms a symmetric
case into a non-symmetric one, we recall that the fact to break a symmetry is nothing
else than obtaining an asymmetry, which in turn may be interpreted as a reference
quantity, i.e. a normalization. In order to show how transformations, their invariants,
asymmetry, and normalization are related, we should start from a transport equation,
determine the Lie invariants and determine the generator for symmetry breaking
from some of these operators, we adopt a simpler procedure based on geometry
arguments, that nevertheless have its replica in differential geometry. Although we
show by means of hyperspace arguments and geometric properties of that space
how to identify the generator for symmetry breaking, the analogue way should in
principle work for differential geometry-based arguments, but that are certainly very
much more complicated to identify and handle as compared to the procedure that
we present in the following.

4.2 A Geometric Invariant

As a next step we introduce a geometric space–time invariant for hydrodynamical
quantities. To this end, consider a hydrodynamical flux j (momentum transport
for instance) and associated (energy) density ρ that in a static limit reduce to
the thermodynamic density ω (inner energy), that may be determined from the
thermodynamic density of a sufficiently small control volume in motion with the
flux contribution subtracted. The geometric relation for the respective densities
and hydrodynamical flux shall obey the first fundamental form of Gauss for the
differential quantities [SaToBa06]

dω2 = dρ2−dj2 = gμν d jμ d jν . (4.1)

Here, in the right-hand side of the equation, we have made use of the sum convention
that implies in summation over double appearing indices and gμν is the metric
tensor. In this equation, if dω2 is an invariant, then it could well serve as a local



4 Scale Invariance and Some Limits in Transport Phenomenology 59

reference scale and is defined by invariance under a set of some transformations,
that have to be determined. Note that, at this point, the existence of an invariant will
lead to the most general form of local transformations.

Any transformation in momentum transport is then generically given by

jμ → jμ + εkμ( j) .

Inserting the changes into the shell equation (4.1) yields the infinitesimal change in
the metric tensor:

δ (dω2) = δ (gμν)︸ ︷︷ ︸
≡0

d jμ d jν +gμν δ (d jμ)d jν +gμν d jμ δ (d jν)

= ε
(

∂kμ

∂ jν
+

∂kν
∂ jμ

)
d jμ d jν = εGμν d jμ d jν .

Taking into account the causality constraint one determines the modified metric
Gμν in terms of σgμν = Gμν with σ = 1

4 gμν Gμν , where σ represents a local scale
factor, which in turn defines the constraints for the most general flux dependence of
the infinitesimal transformation by kμ( j):

Gμν −σgμν =

(
∂kμ

∂ jν
+

∂kν

∂ jμ

)
− 1

2
gμν ∂kλ

∂ jλ = 0. (4.2)

The specific form of the transformation may be determined using a power
expansion of kμ( j); that is,

kμ = 0aμ + 1
1aμ

ν jν + 2
1aν

ν jμ + 1
2aμ

νλ jν jλ + 2
2aν

νλ jλ jμ + 2
2aλ

νλ jν jμ +O( j3).

Here the coefficients i
2aνλ = i

2aλν are symmetric under interchange of the lower
indices. The symmetry conditions (4.2) then read for the respective terms that go
with a specific power in O( jn):

1. Equality (4.2) puts no restriction except for causality on O( j0) and represents the
Poincaré translation.

2. For O( j1) the scalar coefficient 2
1a is an arbitrary factor, reflecting the dilatation

transformation. In addition, one gets

0 = 1
1aμν + 1

1aνμ − 1
2 gμν 1

1aλ
λ ,

which may be identified with the Lorentz transformation.
3. From the terms that go with O( j2) one obtains

0 = 2 1
2aμν

λ jλ +2 1
2aνμ

λ jλ − 1
2aκ

λκ gμν jλ

+2
(

2
2aν jμ + 2

2aλ gμν jλ + 2
2aμ jν

)
. (4.3)
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Contracting (4.3) by gμν eliminates all terms except for the one in parentheses
and, thus, 2

2aλ ≡ 0. For the remaining coefficients 1
2aμνλ one observes symmetry

under exchange of the second and third index, 1
2aμνλ = 1

2aμλν , which permits one
to rewrite the coefficient in terms of an arbitrary vector cμ and the metric.

1
2aμνλ = gμν cλ +gμλ cν −gνλ cμ .

Note that this contribution has got the characteristics of a conformal translation.
4. All terms with higher powers in O( jn), for all n > 2 vanish identically, because

of symmetry under interchange of indices except for the first one.

Thus, the most general admissible form of the infinitesimal transformation is

kμ = bμ︸︷︷︸
Poincaré

+Λ μ
ν jν︸ ︷︷ ︸

Lorentz

+ λ jμ︸︷︷︸
Dilatation

+2cλ jλ jμ − cμ jλ jλ︸ ︷︷ ︸
Conformal

.

Successive application of the infinitesimal conformal translation yields

jμ → jμ − jν jν cμ

1−2 jλ jλ + jλ jλ cκ cκ
.

From the finite form of the conformal translation one recognizes that these
transformations may turn singular in a sub-manifold, where the denominator
vanishes. Therefore the transformation has to be restricted in cμ such as to define a
diffeomorphism in the physically relevant region of momentum transport space.

4.3 The Hyperspace Hypothesis

The aforementioned transformation analysis made use of the usual 1⊕3 time–space
dimensions, but no link to an asymmetry and normalization was established yet.
Recalling that the invariant was based on geometrical arguments it seems plausible
to extend geometry by adding two extra dimensions, where the asymmetry may
be defined by a difference and the normalization by a sum, respectively, of the
components of these two extra dimensions. Note that one could have chosen another
way introducing curvature into the 1⊕ 3 dimensional space and probably come to
a similar result; however, the advantage of using a hyper-space lies in the fact that
the symmetry group may be represented by linear transformations of the pseudo-
orthogonal group SO(4,2) with the hypercone defined by S6 =

{
j|gαβ jα jβ = 0

}
.

The representation of the pseudo-orthogonal transformation Ω , which transform
the six-flux jα →Ω α

β jβ , shall maintain the hyper-cone invariant, i.e. gαβ Ω α
γ Ω β

δ =

gγδ , where ||Ω || = 1 holds. Together with the restrictions in the parameter space
{cμ} of the conformal translations, the conditions (4.2) in the spirit of the first
fundamental form of Gauss are necessary and sufficient to permit a self-consistent
implementation of a scale.
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One may now use the fact that it is the second fundamental form of Gauss that
contains all curvature properties of a given space [Da94], [Fr97] and interpret the
normal vector on an oriented four-dimensional flux hypersurface as a reciprocal
normalization N−1, which is fixed but may be arbitrarily chosen, and an asymmetry
A, which is then a function of four-flux. One possibility is to define the normalization
and asymmetry by N−1 = j4 + j5 and A = j4− j5, and the shell equation is then

ω2 = N−1A = ( j5 + j4)( j5− j4) = jμ jμ .

For convenience and since we have the freedom to define a scale, i.e. fix the
normalization, we define unitless momentum transport υμ = N jμ with the scale
invariant shell equation and NA dimensionless.

ϖ2 = N−2ω2 = υμ υμ = N A .

An analysis of transformation properties on A and N constitute the next step in the
procedure.

4.4 SO(4,2) Symmetry Breaking

In the following the effect of the subgroups on normalization and asymmetry are
shown. Inspection shall indicate the relevant transformations for the construction of
the generator capable of spontaneously breaking a symmetry.

1. Poincaré translation: The subgroup which leaves the normalization invariant
defines the translation in energy–momentum space:

υμ ′ = υμ +Nbμ , N′ = N, A′ = A+2υμ bμ +Nbμ bμ . (4.4)

2. Lorentz transformation: Maintaining the normalization and the asymmetry con-
stant, the transformation reduces to the Lorentz one, namely

υμ ′ = Λ μ
ν υν , N′ = N, A′ = A.

3. Dilatation: The one parameter subgroup defines the dilatation which leaves
invariant the reduced flux υμ but changes the normalization as well as the
asymmetry:

υμ ′ = υμ , A′ = λA, N′ = λ−1N.

4. Conformal translation: The subgroup with four parameters represents conformal
translations and leaves the asymmetry invariant:

υμ ′ = υμ −Acμ , A′ = A, N′ = N−2υμ cμ +Acμ cμ . (4.5)
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From (4.4) and (4.5) one may identify the Poincaré as well as the conformal
translation as the candidates because they change either the normalization or the
asymmetry. It is remarkable that in a specific system with A = 0, upon transforma-
tion, the asymmetry may turn nonzero. One may verify this by an example, suppose,
that initially equation υμ υμ = 0 holds. Assuming that flux is displaced on the cone
with bμ bμ = 0, then there is still the possibility of getting an asymmetry according to

A′ = A︸︷︷︸
=0

+2bμ υμ +N bμ bμ︸ ︷︷ ︸
=0

,

where bμ υμ �= 0 might play the role of a momentum transfer, which is a typical
interaction feature.

In order to show that from (4.4) and (4.5) one may construct an operator, which
transforms a scale invariant description with

υμ υμ = 0 ,

i.e. A = 0 into a nonvanishing one, one may some sort of “transport” the flux υμ

first by a Poincaré displacement P followed by a conformal translation C and then
return by the inverse sequence. Thus the change after “transport” to the original
system is

[C μ
ν ,Pν

λ ]υ
λ = Nbμ −Acμ ,

where [·, ·] is the usual commutator, which plays the role of a generator and
transforms a specific symmetric description into another equivalent description.

The change from a singular to a finite scale is then

υν [C λ
ν ,Pκ

λ ]gκμ υμ = Nbμ υμ −Acμ υμ .

Even in the limit of a vanishing asymmetry A→ 0, there remains the scale invariant
term Nbμ υμ , which may be nonzero; however, j4 and j5 shall be finite. The fact that
we have found a generator, which transforms a scale invariant description into one
with a scale may be understood as an implementation of a spontaneous symmetry
breaking.

4.5 Conclusions

In the present work we showed the possibility using a dimensionally extended
space, where the extra dimensions allow to define an asymmetry together with a
normalization by a closed line integral defined by commutators of Poincaré and
diffeomorphic conformal displacements applied to a density current, respectively.
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The asymmetry plays the role of an indicator of (spontaneous) symmetry breaking.
We show how starting from a model without a reference scale that a scale emerges
through spontaneous SO(4,2)-symmetry breaking.

The symmetry transformations of the differential shell equation, which transform
any physically meaningful four-flux into a feasible new one (allowed by dynamics)
are diffeomorphisms on the Poincaré group, the dilatation, and the conformal
momentum translation. In order to prepare the playground for Hydrodynamics Field
theory with its usually linear operators we have chosen the group representation by
linear transformations of the pseudo-orthogonal group SO(4,2). We found indeed a
generator defined by the commutation of the Poincaré with the conformal translation
which allows one to change the dimensionless description into one that contains a
scale. Since in a scale invariant theory a scale term breaks dilatational symmetry one
may understand those as a consequence of the breaking of diffeomorphic SO(4,2)
symmetry.

Further, from the ordinary space–time point of view, there is no necessity
for splitting into separate points or any other structural change of space–time
[BoMc73], [So98]. It is the curved flux hypersurface which puts a symmetry
condition on the allowed solutions of the transport equations and belongs in this
sense to these equations.

We are completely aware of the fact that our discussion at the present status is
restricted to the question how spontaneous symmetry breaking in a curved flux space
may explain a spontaneous scale in an ab initio scale invariant model.

In the literature [BuVe95], [FoGrSt11] one finds discussions of space–time
transformations embedded in a higher dimensional (>4) flat hyperspace. In these
approaches the algebra is setup by 15 generators (the Poincaré group, dilatation
and conformal translations). If one applies the before mentioned transformations on
vectors in four-flux space, symmetry considerations are likely to reflect dynamical
properties of the system in consideration.

Although this discussion appears to have a rather academic than practical
character, this reasoning may well be applied for convergence problems, where the
discretization represents a length scale and the continuous limit has to be recovered.
In this case the question would mean that symmetry restoration is considered. It is
noteworthy that in practice the continuous limit in discrete approaches does not
exist, there is a maximum precision that may be achieved. Since the symmetry
argument is independent of numerical specifications, the convergence could be
analyzed by symmetry restoration arguments.
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Chapter 5
On Coherent Structures from a Diffusion-Type
Model

B.E.J. Bodmann, J.R.S. Zabadal, A. Schuck, M.T. Vilhena, and R. Quadros

5.1 Introduction

Turbulent structures are quite common in nature, sometimes not only directly
visible as in fluid flows, meteorological phenomena in the upper atmosphere but
also indirectly observable through measurements usually based on correlation
techniques. These aforementioned picturesque structures are not an effect of mere
fluctuations that are also present in purely dissipative flows [SaCo09], though are of
stochastic origin, because of a clear time ordering. Moreover, if a fluid is described
as an ensemble of atoms or molecules that obeys microscopic laws and collectively
constitutes a stochastic system with laws provided by statistical thermodynamics
and hydrodynamics, then the continuous macroscopic system shall have manifes-
tations with origin in microscopic properties [HoHo03]. Such a reasoning implies
two essential questions: “Why do particles move in an orchestrated way in turbulent
phenomena?”, and more specifically, “How do particles sense their partially phase-
locked position and movement that give rise to vortices and thus turbulence?”
As the following discussion will show, this quest may find some explanation if
one considers the phenomenon as a result of the formation of coherent structures.
However, only an adequate dynamical model that produces such coherent structures
together with a proof that excludes the possibility of a collection of statistical
fluctuations will shed further light on the subject.

Contrary to the particle-based approach, a fluid is considered a continuous entity
and has its associated velocity or momentum field or a related kinetic energy
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distribution [JiBo05]. Thus, at first sight one might accept that there is no need for
the microscopic multi-particle structure of such a field. However, axial and shear
stresses are not sufficient to explain complex vortex structures that are known from
wind tunnel and similar experiments with controlled conditions, unless the stress
tensor itself is based on a specific field model [GuEtAl05], [LuTsKi05]. Hence, we
reason that some missing arguments shall result from the fact that any fluid has last
but not least particles as its constituents.

5.2 Motivation from “Arm-Waving Arguments”

A common starting point for turbulent phenomena are transport equations based on
continuous conservation laws or symmetries (scale, translational invariance among
others) that describe a continuous medium fluid. Further, it is convenient to cast
these transport equations in a dimensionless form, so that in principle one may scale
down the solution up to molecular or atomic dimensions, where clearly such a scale
invariance should break down. Moreover, these transport equations have continuous
translational invariance. Thus, if one simplifies the microscopic particle structure of
the fluid to a pseudo-periodic arrangement of atoms, molecules, or any microscopic
particles that constitute the fluid, then on the average a discrete translational
invariance shall hold, only. This is due to the fact that atoms, molecules are subject
to pseudo periodical perturbations caused by particle–particle collisions along the
direction of motion, in other words translation invariance down to length scales
below the mean free path is in contradiction to the well-established microscopic
structure of matter.

In order to map out our further reasoning, we make use of an “arm-waving
argument” that motivates our discussion that follows. Two thin sheets of a fluid
with an average particle density 1/a3 shall be in relative motion with Δv. In such
a pseudo-crystal model on the average discrete translational invariance holds. Due
to “synchronous” particle–particle collisions slip produces a pseudo-periodic per-
turbation with frequency νS = Δv/a. However, pseudo-periodic perturbations could
give origin to a radiation field with coherent content because of the periodic “phase-
locked” perturbation. The radiation field could be characterized by a pitch frequency
νR∼ νS and a correlated wavelength λ ∼ ac/Δv, where c is the propagation speed of
the radiation field. Numerical values for λ may range depending on the assumptions
as far as hundreds of meters or even more and thus could be responsible for coherent
structures of the same size.

At this point, two observations are in order, first the radiation field that interacts
with other constituents of the fluid does not follow the translational direction but
introduces effects with components perpendicular to the original flow direction, and
second, a model system to be constructed in the further shall represent properties of
fluid constituents as well as interaction mediators. Mediators propagate in general
faster as its origin the constituents movement and thus may well be the reason



5 On Coherent Structures from a Diffusion-Type Model 67

for formation of large (macroscopic) partially coherent structures compared to the
microscopic inter-particle distance scale that gave rise to a continuous approach in
the first place.

5.3 A Coherent Constituent–Mediator Model

5.3.1 The Concept of Coherent States

So far, there is no consensus as to which definition is the most significant one for
coherent structures. In turbulent transport, there is lack of a universal definition
for coherence in an Eulerian frame. Furthermore, quantitative Eulerian measures
of coherence are frame dependent and therefore fail to reflect intrinsic properties of
turbulent flows. Also in a Lagrangian frame [BoEtAl06], [MaEtAl07], [ToBo09],
[Ye02], coherent structures are rather designed to capture properties of chaotic
advection than measuring genuine coherence.

In mathematical physics coherence was introduced as an idealized property
of waves that allows for interference, which is also the fundamental concept of
quantum theory. Historically, coherence was related to a constant phase difference,
manifest in constructive or destructive interference, that may be of spatial, temporal,
spectral, or of more general origin. The introduced measure for coherence in
mathematical physics though makes use of correlation functions between different
waves, based on formal definitions sketched out next.

One assumes that the phenomenon in consideration may be formulated on a
separable complex Hilbert space, which is locally compact, and there exists a well-
defined local measure dμ(x) (a generalized volume in the most simple cases). Any
observable x in this space has a vector representation, and there exists a complex
field φ(x) (usually the wave function) that represents distributional properties of that
observable. Separability guarantees that measurable quantities ΩΩΩ are independent
of representation, shall be integrable, and have bilinear form

∫
φ(x)ΩΩΩψ(x) dμ(x),

including unity (a normalization). Any complete set of vectors that satisfies these
properties defines a manifold of general coherent states.

Following this concept of coherence, it seems that kibitzing Quantum Theory
might be a promising direction. Hence, in the next section we thoroughly de-
duce and construct a simple model starting from Quantum equations that shall
comply with some characteristics of our “arm-waving argument” toy model,
i.e. the fluid constituent–interaction mediator model. To this end, we interpret
constituents in terms of Fermions and identify, as usual in Quantum Field The-
ory, interaction mediators in terms of Bosons, where the fact that we use field
equations, that are also employed in Quantum Theory naturally entails coherence
properties.
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5.3.2 Modeling Coherent Fluid Constituents

A quantum equation, that is exclusively compatible with fermionic degrees of
freedom is the Dirac equation, which we consider in two-component form in the
Weyl representation. Note that although this equation is associated with fermions it
further includes the coupling of fermions to bosons:

ıh̄∂tΦ+− eA0Φ++σσσ(ıh̄c∇∇∇+ eA)Φ+ = mc2Φ−,

ıh̄∂tΦ−− eA0Φ−−σσσ(ıh̄c∇∇∇+ eA)Φ− = mc2Φ+.

Since, the Dirac–Weyl equation is a relativistic equation, and with our fluid
considerations we are far from a relativistic regime, we reduce the equation to
a one component equation similar to a Schrödinger–Pauli equation. This may be
attained relating the time component of the four-vector potential to the mass of
the constituent particle eA0 ≈ mc2, and upon applying the Lorenz gauge condition
∂∂∂A = 0. Further we make use of the usual definitions for the electric field E, the
magnetic induction B and the Bohr magneton μB = eh̄

2mc , respectively:

0 =− h̄2

2mc2 ∂ 2
t Φ+− ıh̄∂tΦ++

h̄2

2m
ΔΦ++μBσσσ

(
B− ı

c
E
)

Φ+

−2ıμBA∇∇∇Φ+− e2

2mc2 A2Φ+.

The closest one can get to a classical model is considering only leading order terms
and assuming weak vector fields, that results in a diffusion alike equation. It is
noteworthy that approaching a classical model does not mean here to use the limit
h̄ → 0 where one ends up with triviality, but keep the minimum terms that still
maintain coherent properties:

−ıh̄∂tΦ++
h̄2

2m
ΔΦ+ = 0.

The essence of this finding is that the diffusion alike equation has an imaginary
diffusion constant |D| = h̄/(2m). Even using typical values for quantum systems
yields orders of magnitudes that are comparable to typical values in classical
diffusion scenarios (∼10−3 cm2 s−1). Hence, it seems that apart from its possible
numerical values for |D|, the factor

√−1 provides coherence properties.

5.3.3 Modeling a Coherent Interaction Mediator

Following an analogue strategy as for the constituents, the starting point is
the equation for boson dynamics, i.e. the time-dependent Maxwell equation.
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For convenience we use the vector potential representation for the electric field
E and the magnetic induction B, respectively:

∇∇∇2φ +
∂
∂ t

(∇∇∇A) =− ρ
ε0
,

(
∇∇∇2A− 1

c2

∂ 2A
∂ t2

)
−∇∇∇

(
∇∇∇A+

1
c2

∂φ
∂ t

)
= μ0j.

Again, we reduce the equation to leading order terms only and for simplicity neglect
also source terms so that the simplified equation system reads

∇∇∇2φ +
∂
∂ t

(∇∇∇A) = 0, ∇∇∇×∇∇∇×A = 0. (5.1)

There is again the possibility to make this equation system coincide with a diffusion-
like equation if the following condition holds:

∇∇∇A =
ı2m

h̄
φ . (5.2)

It is noteworthy that in semi-classical approaches that involve the Schrödinger
equation, the time component of the four-vector potential yields a static and
classical interaction potential, whereas the transverse components of the vector
field remain perpendicular to the propagation direction, which is also known as
the Coulomb gauge. The present condition represents an inhomogeneous Coulomb
gauge condition that relates the transverse with the longitudinal field and may
be considered a closure if interpreted in analogy with the classical closure that
one generally needs to reduce a transport equation to a diffusion equation, by
relating a density gradient to a current density. Upon inserting (5.2) into the second
equation (5.1) one verifies consistency, so that we can use the result as a simple
model for coherent interaction mediator contributions.

5.4 A Simple Model with Coherence Content

The result of the previous two sections is not surprising since the Schrödinger
equation is known to work for solutions that arise either from commutator or from
anti-commutator relations, in other words, it does not distinguish between Fermions
or Bosons. From the derivation of the coherent constituent and mediator model one
observes that the most simple approach needs only one dynamical equation, since
both results have diffusion alike form.

However, fluids in reality are more likely to show a mixture of coherent and
noncoherent contributions so that a simplified model with more realistic properties
shall be represented by a diffusion alike equation with complex diffusion coefficient:
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∂φ(r, t)
∂ t

= D∇∇∇2φ(r, t), D ∈ C. (5.3)

The difference to the classical diffusion equation comes from the fact that the
concept for coherence demands for a flux description in bilinear form of amplitudes
ρ(r, t) = φ ∗(r, t)φ(r, t). It is worth mentioning that for a real diffusion coefficient
the amplitudes φ and the bilinear distribution ρ obey the same diffusion equation,
that is not the case for a purely imaginary diffusion coefficient. Thus a more realistic
solution for the amplitude is a superposition of coherent (wave like) and incoherent
(dissipative) contributions that enter into the distribution in a bilinear form that
furthermore guarantees semi-positiveness of the distribution.

Equation (5.3) describes the dynamics of the model and φ represents the
amplitude field for any space–time point of interest. However, flow phenomena are
typically open systems, i.e. depend on a source term. In our discussion we do not
add a source term to the equation and solve it, but introduce the source contribution
in form of a “continuous initial condition” and without any proof, we assume that
this approach should be reasonable if the source strength is sufficiently weak. In the
present discussion such a limitation is not crucial, since the main focus is put on
coherence that shall represent the turbulent character in a qualitative fashion, rather
than determine a general solution for a complex diffusion equation with an arbitrary
source term.

Let Γ denote the domain of the source which may be continuous or discrete
depending whether there are point, line, surface, or volumetric sources and s ∈ Γ a
vector pointing to one of the countable or uncountable set of point sources of that
domain, then the flow field amplitude φ is a superposition of all contributions from
all point sources of Γ that add up coherently and determine φ(r, t):

φ(r, t) =
∫

Γ
ψ(r,s, t) dμ(s). (5.4)

Here, dμ(s) = Q dδ s and Q is the distribution of source strengths with δ the
dimension of the considered space (usually δ = 2 or 3).

If the distribution that gives rise to the amplitudes is a discrete distribution,
then dμ(s) = ∑i δ (s− qi)dδΓ s, where qi are the locations of the point sources.
For example if there is a superposition of flow amplitude contributions originating
from two point sources, then the description reminds one on the Young experiment.
Alternatively, if the amplitude origin is a line, then dμ(s) = δ (s− q(κ)) dδ s,
where the parameter κ sweeps through all source points. If the source domain Γ
is an effective volume (area, volume or any hyper-volume), then dμ(s) = δ (s−
q({κi})) dδ s with i ∈ {1, . . . ,δΓ } and δΓ is the dimension of the source domain
which does not necessarily coincide with the dimension of the integration domain. In
this representation the parametrization by κi yields an ordinate scheme and sweeps
the whole of the sources’ domain. Thus, independent of the specific form of the
source term, the observed contribution that corresponds to a fluid flow in a bilinear
form is
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Fig. 5.1 Contour plot in the x− y-plane for two subsequent instants from the superposition of
amplitude contributions and resulting density in bilinear form that gives rise to a turbulent character

ρ = φ ∗φ =
∫

Γ
ψ∗(r,s′, t)ψ(r,s, t) dμ(s′)dμ(s).

Besides spatial variations the source may also have a specific characteristics with
time. The way we absorbed a possible source term into the initial condition (limt→0

of (5.4)) represents an instantaneous source term only. Another simple source term
not compatible with this condition is a continuous one, which may be assembled
from the solutions for instantaneous synchronous source rates that are shifted by
an infinitesimal delay and summed up. The procedure of such a superposition is
compatible with a continuous source but cast into a “continuous initial condition.”
This type of approach should be reasonable if the source strength is weak, since
weak sources allow to assume that contributions are linear so that the solution found
for an “instantaneous initial condition” may be used multiply in order to construct
the final distribution, which is also consistent with the fact that the diffusion equation
is invariant under time translations:

ρ =
∫ t

0

∫ t

0
φ̇ ∗(r, t− τ ′)φ̇(r, t− τ) dτ ′ dτ .

For convenience we assume the initial condition in form of its spectral composition
with a Gaussian shape, consider a two-dimensional complex diffusion problem
with the source aligned along the y axis and consider the flow in the direction
of a semi-open plane with x ≥ 0. The following Fig. 5.1 shows two subsequent
snapshots of contour lines that represent the resulting rugged distribution for
t > 0. Differently than the purely diffusive case where the smooth distribution
flattens out with progressive distance, the present case shows fluctuations that
remind on turbulent structures. The fact that we used an approach that was based
on the presence of coherent structures classifies them as turbulent and not mere
uncorrelated fluctuations.

From our reasoning lined out in Sect. 5.3.1 we introduced formally coherence
as the phenomenon that has in a limited space–time domain regions with constant
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Fig. 5.2 Contour plot in the x− y-plane of phase distributions for two subsequent instants

phase relation, resulting from space–time interference integrals. Although the phase
argument with coherent states is a clear statement, a representation for phase-
locking is not that obvious. One possible reproduction for the phase relation is
contour plots with equal phase isolines for φ :

τ(r, t) = tan−1
(

ℑm [φ(r, t)]
ℜe [φ(r, t)]

)
.

Figure 5.2 shows these phase relations, which reflect a remarkable similarity
to the density plots in Fig. 5.1. One incontestable interpretation is that these
phase distributions are responsible for the turbulent fluctuations and thus are a
manifestation of coherence for this type of phenomenon. It is noteworthy that
although the superposition of amplitudes is linear, the observed density is not,
because of its bilinear implementation.

5.5 Conclusions

In the present discussion we focused on the question, how one may make plausible
the phenomenon that individual particles that constitute a fluid, that macroscopically
appears as a continuum, organize their motion in a way to form coherent structures
like eddies. The key to such an understanding may not be found in a purely
macroscopic approach, but needs the microscopic reality of the existence of particles
and their capability to interact with each other by mediators. A typical system that
has those properties is a fermion–boson system, which we called generically the
constituent–interaction mediator model.

Thus one may recognize that probably one of the crucial reasons that stalled
the process of a more profound understanding of the turbulent character in fluid
flows may be due to the missing of a unique and significant definition for coherent
structures. Nevertheless, in a realm that is different than the one of transport
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phenomena, i.e. quantum theory, coherence is one of the key issues and one may
build a meaningful definition for coherence on the formal properties for coherent
states. Moreover, the formal properties that are essential and necessary for coherent
states, no reference to quantum properties is necessary, so that these may be
considered useful also for classical considerations.

A reduction of equations for Fermions and Bosons to a quasi-classical level
showed that the most simple dynamics with coherence properties is supplied by
a diffusion-like equation with complex diffusion coefficient. Our simple model
generated results that are compatible with turbulent appearances manifest in
coherent structures. As the discussion showed, the microscopic particle origin of
matter cannot be ignored because of its breaking of continuous symmetries such as
scaling and translation. Although the resulting solutions for the fluid are continuous,
their origin trace back to some discrete particular structure.

In a previous work [BoEtAl10] a similar reasoning was applied and resulted in
a Reynolds number definition, that compared microscopic to macroscopic scales
(Re ∼ Λv/(λctherm), more specifically a vortex correlation length Λ , that might be
related to a coherence length, and the mean free path (λ , the inverse macroscopic
scattering cross section) that reflects the fact that there exist particle collisions,
moreover the effective displacement speed of the fluid flow (v) and the thermal
velocity (ctherm) that reflects the random walk of the microscopic constituents of the
fluid. The new definition solved two critical points of the traditional formulation. For
ideal fluids the Reynolds number approaches zero (instead of infinity) and the vortex
correlation length that sets up a length scale allows for vorticity from a potential
model, which is incompatible with the traditional expression for vorticity and makes
use of the rotational operation, only.

A considerable number of works literally discard the possibility to understand
turbulence in the end from first principles and focus on numerical analysis of
existent continuous models [BuEa05], [CaEtAl04], [PeHu06], [RuSmHu10],
[vaClWi08], [ZhPr05], without challenging the breaking with sedated paradigms.
Although we presented only a simple model but with the desired properties,
we believe to have opened a doorway for a new theoretical and progressive
understanding of turbulent phenomena by another step into a new but promising
direction.
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Chapter 6
Numerical Simulation of the Dynamics of
Molecular Markers Involved in Cell Polarization

V. Calvez, N. Meunier, N. Muller, and R. Voituriez

6.1 Introduction

Cell polarization is a major step involved in several important cellular processes
such as directional migration, growth, oriented secretion, cell division, mating, or
morphogenesis. When a cell is not polarized molecular markers (proteins CDC42)
are uniformly distributed on the membrane while polarization is characterized by
the concentration of molecular markers in a small area of the cell membrane. In
[WeAlLi03], it has been observed that if the external pheromone concentration
is above a critical concentration, polarization can occur spontaneously. It has
also been observed that cell asymmetry can be driven by an external asymmetric
stimulus.

Cell polarization in yeast cells has been intensively studied during the past
decade. Recently, many models describing cell polarization have been developed.
The majority of these models are based on reaction–diffusion systems where polar-
ization appears as a type of Turing instability [IgDe08], [OnRa07], [LeKeRa06],
or due to stochastic fluctuations [AlEtAl08], other models include cytoskeleton
proteins as a regulatory factor [EuEtAl07], [WeAlLi03]. Many biological studies
have shown that the cytoskeleton plays an important role in polarization. It has
been suggested that the cytoskeleton has a positive feedback on molecular markers
density. Indeed, disruption of transport along the cytoskeleton greatly reduces the
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stability of polar cap [WeAlLi03]. The cell cytoskeleton is a network of long semi-
flexible filaments made up of protein subunits [PhKoTh09]. These filaments (mainly
actin or microtubules) act as roads along which motor proteins are able to perform a
biased ballistic motion and carry various molecules. Molecular markers play a key
role in the formation of these filaments.

Following [HaEtAl09], [CaMeVo10], and [CaEtAl12], in this work we study
models that describe the dynamics of cell polarization. In these models, molecular
markers, such as proteins, diffuse in the cytoplasm and are actively transported
along the cytoskeleton. The resulting motion is a biased diffusion regulated by
the markers themselves. Using numerical simulations and mathematical heuristics,
we observe that the coupling on the velocity field achieves an inhomogeneous
distribution of molecular markers without any external asymmetric field. Such
an inhomogeneous distribution is only due to interaction between molecular
markers.

Throughout this paper, the density of molecular markers (resp. advection field) is
denoted by ρ(t,x) (resp. u(t,x)). The advection is obtained though a coupling with
the membrane concentration of markers. The cell is figured by the domain Ω ⊂ R

n

with n = 1,2 and a part of the boundary of the domain will be the active membrane
denoted by Γ . The time evolution of the molecular markers satisfies the following
advection–diffusion equation, see [HaEtAl09] and [CaEtAl12]:

{
∂tρ(t,x) = DΔρ(t,x)− χ ∇.(ρ(t,x)u(t,x)) , t > 0, x ∈Ω ,

ρ(0,x) = ρ0(x).
(6.1)

There is neither creation nor degradation of molecular markers in the cell, so the
quantity of molecular markers remains constant in time:

M =
∫

x∈Ω
ρ0(x)dx =

∫
x∈Ω

ρ(t,x)dx. (6.2)

This condition is ensured by a zero flux boundary condition on the boundary. A first
simplified step is to assume that the cell is essentially bidimensional and to neglect
curvature effects. The membrane boundary is then a 1D line along the y-axis and
the cytoplasm is parametrized by x = (x,y) ∈ R+×R.

The plan of this work is the following. First, we recall the main mathematical
results of the simplified model in 1D for Ω = (0,∞) and Γ = {x = 0}, see
[CaMeVo10], [CaEtAl12] for more details. Then we study a more realistic model
that includes dynamical exchange of markers on the boundary for a general Ω .
This model was introduced in [HaEtAl09] and studied in [CaEtAl12] in the one-
dimensional case. Here, we will perform a first numerical analysis of this model in
the two-dimensional case, for periodic (in one direction) and bounded (in the other
direction) domain. Finally, we provide a methodology for parameter estimation by
using mathematical heuristics and biological literature.
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6.1.1 One-Dimensional Case

In this section, we study the one-dimensional case on the half line for Ω = (0,∞).
The membrane is then the point Γ = {x = 0}. For the first model, the advection field
towards the membrane is equal to the density of molecular markers on the boundary
ρ(t,0). Then we improve this model by considering that only the trapped molecular
markers on the membrane contribute to the advection field.

6.1.1.1 Simplified Model Set on the Half Line

In [CaEtAl12] the first mathematical study has been done on this model. We define
an advection field u(t,x) for (6.1)

u(t,x) =−ρ(t,0),

in such a case (6.1) reads as (with D = 1 and χ = 1):

∂tρ(t,x) = ∂xxρ(t,x)+ρ(t,0)∂xρ(t,x), t > 0, x > 0, (6.3)

with the following zero flux condition on the boundary {x = 0}, that ensures the
mass conversation (6.2),

∂xρ(t,0)+ρ(t,0)2 = 0.

In [CaEtAl12], it has been proved that solutions of (6.3) blow-up in finite time if
their masses are above a certain critical mass, M > 1, and exist globally in time if
M ≤ 1. Let us first recall the definition of weak solutions of (6.3).

Definition 1. We say that ρ(t,x) is a weak solution of (6.3) on (0,T ) if it satisfies

ρ ∈ L∞(0,T ;L1
+(R+)) , ∂xρ ∈ L1((0,T )×R+) ,

and ρ(t,x) is a solution of (6.3) in the sense of distributions in D ′(R+).

Let us now recall the main results for weak solutions of (6.3).

Theorem 1 (Global existence: M ≤ 1). Assume that the initial data ρ0 satisfies
both ρ0 ∈ L1((1+ x)dx) and

∫
x>0 ρ0(x)(logρ0(x))+ dx < +∞. Assume in addition

that M ≤ 1, then there exists a global weak solution of (6.3).

Theorem 2 (Blow-up: M > 1). Assume M > 1. Any weak solution of (6.3) with
non-increasing initial data ρ0 blows-up in finite time.

Remark 1. It would tempting to interpret blow-up of solutions of the one-
dimensional model as cell polarization. But it is to be noticed that concentration
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of markers on the boundary doesn’t mean polarization. Indeed, consider a radially
symmetric 2D cell case. Equation then reduces to the one-dimensional one. Above
a threshold on the total mass, the convection wins and markers concentrate on the
boundary. In some situations, these markers may be homogeneously distributed on
the boundary and in such a case there is no symmetry breaking.

6.1.1.2 The Model with Dynamical Exchange of Markers at the Boundary

Such a direct activation of transport on the boundary seems to be unrealistic.
Indeed possible occurrence of blow-up in finite time suggests this claim. We
improve the previous model by distinguishing between cytoplasmic content ρ(t,x)
and the concentration of trapped molecules on the boundary that will be denoted
by μ(t). The dynamical exchange of markers at the boundary is done with an
attachment rate kon and a detachment rate ko f f , hence the time evolution of
μ(t) is

d
dt

μ(t) = kon ρ(t,0)− ko f f μ(t). (6.4)

The advection field u(t,x) in (6.1) is now defined by

u(t,x) =−μ(t),

hence (6.1) (with D = 1 and χ = 1) reads as

∂tρ(t,x) = ∂xxρ(t,x)+μ(t)∂xρ(t,x), t > 0, x > 0,

with a modified boundary condition

∂xρ(t,0)+ρ(t,0)μ(t) =
d
dt

μ(t).

This ensures the following mass conservation shared among ρ(t,x) and μ(t):

M =
∫
R+

ρ0(x)dx+μ0 =
∫
R+

ρ(t,x)dx+μ(t).

With (6.4), the self-activation of transport by ρ(t,0) is then delayed in time.
Since the transport speed is bounded μ(t) ≤ M, the solution of the model with
dynamical exchange on the boundary exists globally in time. More precisely it is
possible (see [CaEtAl12]) to prove that it converges towards a nontrivial stationary
state.
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(t,x)ρ

(t,x)μ

Fig. 6.1 Advection field orientation due to actin networks

6.1.2 Two-Dimensional Case: The Model with Dynamical
Exchange of Markers at the Boundary

Let Ω ⊂ R
2 be the cytoplasm domain, as in the one-dimensional case (6.4) we

consider dynamical exchange of markers at the boundary, so for x ∈ Γ we have the
evolution in time of μ(t,x)

∂t μ(t,x) = kon ρ(t,x)− ko f f μ(t,x).

with a modified boundary condition for ρ(t,x) at point x ∈ Γ

(D∇ρ(t,x)− χ ρ(t,x)u(t,x)).�nx =−∂t μ(t,x),

where�nx is the outward normal to Γ . This ensures the following mass conservation
sharing by ρ(t,x) and μ(t,x):

M =
∫

Ω
ρ0(x)dx+

∫
Γ

μ0(x)dx =
∫

Ω
ρ(t,x)dx+

∫
Γ

μ(t,x)dx.

We consider the advection field deriving from a harmonic potential modeling the
transport by actin filaments (cytoskeleton), namely

u(t,x) = ∇c(t,x), where

{
−Δc(t,x) = 0, if x ∈Ω ,

∇c(t,x).�nx = S(x)μ(t,x), if x ∈ Γ .
(6.5)

This advection field orientation is due to the actin networks (see Fig. 6.1).
Actin filaments are attached on the membrane and randomly distributed, there

orientations are mixed up. We also add the external pheromone concentration at
x ∈ Γ which acts by the mating-pheromone MAPK cascade on the actin transport.

In dimension 2, we have global existence for the model without exchange on the
boundary (replacing (6.5) by ∇c(t,x).�nx = S(x)ρ(t,x) if x ∈ Γ ) with Ω = (0,+∞)
×R and Γ = {0}×R. For clarity, we recall this result, see [CaEtAl12] for more
details.
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Theorem 3 (Global existence in dimension 2). Assume that the advection field
satisfies the two following conditions: ∇ ·u≥ 0 and u(t,0,y) ·ee = ρ(t,0,y). Assume
that the initial data ρ0 satisfies both ρ0 ∈ L1((1+ |x|2)dx) and ‖ρ0‖L2 is smaller
than some constant c. Then there exists a global weak solution to (6.1), (6.2).

In the two-dimensional case, for the model with exchange on the boundary, blow-
up or global existence has not been proved yet. In this work, we make a first step in
this direction by using a mathematical heuristic and numerical simulations.

6.1.3 Heuristics

The mathematical analysis performed in [CaEtAl12] has demonstrated that a class
of models exhibit pattern formation (either blow-up or convergence towards a non-
homogeneous steady state) under some conditions. However the main question
still remains unanswered: do these models describe cell polarization or not? Thus
in order to provide a first answer to this question, we will perform numerical
simulations. Our aim is to see if, under some conditions, the model leads to a
concentration of markers, not only on the boundary but as on a small region of the
boundary. In such a case polarization occurs. In order to obtain more information
on the critical value distinguishing the polarized case and the stable case, in the
two-dimensional case we will use a mathematical heuristics that we describe now.

Let x = (x,y) be in Ω = R+×R, and let Γ = {0}×R be the boundary, we have

u(t,x) = ∇c(t,x), where

{
−Δc(t,x) = 0, if x ∈ R+×R,

−∂xc(t,0,y) = S(y)μ(t,y), if y ∈ R,

hence (see, e.g., [Ev98]), it is well known that

c(x,y) =− 1
π

∫
y′∈R

log(
√

(y− y′)2 + x2)(Sμ)(y′)dy′.

The tangential component at the boundary is then given by

u(t,0,y) ·�ey =−H (Sμ)(y) , y ∈ R,

where H denotes the one-dimensional Hilbert transform that we recall now (see,
e.g., [CaPeTa07]) with respect to the y variable:

H ( f μ)(y) =
1
π

p.v.
∫
R

1
y− y′

f (y′)dy′.
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Integrating the main equation (6.1) with respect to x with zero flux condition on
Γ = {x = 0}, we obtain:

∂t

∫
x>0

ρ(t,x,y)dx = D∂yy

(∫
x>0

ρ(t,x,y)dx

)

−χ ∂y

(∫
x>0

ρ(t,x,y)(u(t,x,y) ·�ey)dx

)
.

In the super-critical case, numerical simulations, see [Mu13], suggest that the
density ρ(t,x) concentrates on the boundary {x = 0}. Assuming ρ(t,x,y) =
ν(t,y)δ (x = 0), we can formally write the dynamics of ν(t,y) as

∂tν(t,y) = D∂yyν(t,y)+ χ ∂y (ν(t,y)H (Sμ)(y)) .

Assuming S constant on R and μ(t,y) = kon
ko f f

ν(t,y) for y ∈ R, it reads as

∂tν(t,y) = D∂yyν(t,y)+ χS
kon

ko f f
∂y (ν(t,y)H (ν)(y)) .

The Hilbert transform has a critical singularity to offset the diffusion on this

equation [CaPeTa07]. We have a blow-up if
∫
R

ν(t,y)dy = M is above
2πDko f f

Sχkon
. This

is the first step to observe a critical mass phenomenon and this may lead to blow-up
if the mass is large enough. In this way, we define an order of magnitude for some
parameters.

It is to be noticed that this latter criterion is valid for an infinite domain, namely
y ∈ R. In the case of a cell, the domain will be finite and the existence of such a
dichotomy has not been proved yet. In order to see if such a dichotomy holds true
we will perform numerical simulations. This is the object of the following section.

6.2 Numerical Analysis

We first give a discretization of the convection–diffusion model set on a 1D periodic
domain. This first step allows us introducing the discretization of this model on a
2D domain which is periodic in one direction and bounded on the other direction.

6.2.1 One-Dimensional Case

Let u(t,x) be a given function. We consider the following advection–diffusion
equation on the periodic domain Ω = R/Z
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∂tρ(t,x) = ∂x(∂xρ(t,x)−u(t,x)ρ(t,x)), t > 0, x ∈Ω . (6.6)

Let tn = ndt be the time discretization and {x j = j dx, j ∈ {1, . . . ,Nx}} be the space
discretization of the periodic interval R/Z. Since the equations of the model are
written in a conservative form, the natural framework to be used for the spatial
discretization is the finite volume framework. We hence introduce the control
volume defined for j ∈ {1, . . . ,Nx}

Vj = (x j− 1
2
,x j+ 1

2
). (6.7)

Let ρn
j (resp. un

j+ 1
2
) be the approximated value of the exact solution ρ(tn,x j)

(respectively, u(tn,x j+ 1
2
)), the classical upwind scheme for (6.6) is

ρn+1
j −ρn

j

dt
=

F j+ 1
2
−F j− 1

2

dx
, j ∈ {1, . . . ,Nx},

where the numerical flux F j+ 1
2

and F j− 1
2

are defined by

F j+ 1
2
=

ρn+1
j+1 −ρn+1

j

dx
−Aup(un

j+ 1
2
,ρn

j ,ρn
j+1),

F j− 1
2
=

ρn+1
j −ρn+1

j−1

dx
−Aup(un

j− 1
2
,ρn

j−1,ρ
n
j ),

with the advection numerical flux given by

Aup(u,x−,x+) =

{
ux−, si u > 0,

ux+, si u < 0.
(6.8)

The periodic flux condition on boundary reads as F 1
2
=FNx+

1
2

and we set the value
un

1
2
= un

Nx+
1
2
. The diffusion part is treated implicitly and it is then unconditionally

stable, while the advection term is treated explicitly. The CFL condition of the
scheme is

∣∣∣∣
∣∣∣∣
(

un
j+ 1

2

)
j∈{1,...,Nx}

∣∣∣∣
∣∣∣∣
∞
<

dx
dt

.

We define the column vector ρn =
(

ρn
1 ρn

2 . . . ρn
Nx

)T
. As usual (see, e.g., [Al07]),

the discrete heat matrix A ∈MNx(R) with periodic flux condition on the boundary is
defined by
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2+ dx2

dt −1 −1

−1 2+ dx2

dt

. . .
. . .

. . .
. . .

. . . 2+ dx2

dt −1

−1 −1 2+ dx2

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.9)

Periodic flux condition adds the top-right term and the bottom-left term. Next, in
order to use Aup defined by (6.8), we define

(u)+ = max(u,0), (u)− = min(u,0).

The discrete advection matrix B ∈ MNx(R) with periodic flux condition on the
boundary is then defined as in [Al07]

B =
dx2

dt
INx −dx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
un

3
2

)+ (
un

3
2

)−
. . .

. . .(
un

j+ 1
2

)+ (
(un

j+ 1
2

)−

. . .
(

un
Nx− 1

2

)−
(

un
Nx+

1
2

)− (
un

Nx+
1
2

)+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+dx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
un

1
2

)− (
un

1
2

)+

(
un

3
2

)+ . . .
(

un
j− 1

2

)+ (
un

j− 1
2

)−
. . .

. . .(
un

Nx− 1
2

)+ (
un

Nx− 1
2

)−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.10)

We use a standard numerical method to invert the symmetric positive definite
matrix A. Finally, at each time step we resolve

ρn+1 = A−1 Bρn.
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6.2.2 Two-Dimensional Case

We perform numerical simulations on the model with dynamical exchange of
markers at the boundary. In this work, we assume that the cell occupies a disk of
radius r > 0. Furthermore for simplicity, we consider a bounded-periodic domain
Ω = [0,r]× R/2πrZ with Γ = {r} × R/2πrZ. This simplifies our numerical
approach by using finite difference schemes on Cartesian grid. We start with the
numerical study of the equation on ρ by assuming that the advection field u(t,x) =
∇c(t,x) is known. Then we perform the discretization of c.

In this section, for simplicity we fix all the parameter values to 1 except M. Let
us first recall the model with dynamical exchange of markers at the boundary on
Ω = [0,r]×R/2πrZ:

∂tρ = ∇.(∇ρ−ρ ∇c) in (0,r)×R/2πrZ, (6.11)

∂xρ−ρ ∂xc =−∂t μ on {r}×R/2πrZ, (6.12)

∂xρ−ρ ∂xc = 0 on {0}×R/2πrZ. (6.13)

Dynamical exchange markers on active boundary {r}×R/2πrZ is given by

∂t μ = ρ−μ , on {r}×R/2πrZ. (6.14)

Laplace equation on c with inappropriate Neumann conditions on a bounded
domain is ill-posed (see, e.g., [Al07]). In order to handle this problem, we add
the degradation term

−Δc+α c = 0 in (0,r)×R/2πrZ, (6.15)

−∂xc = μ on {r}×R/2πrZ, (6.16)

−∂xc = 0 on {0}×R/2πrZ. (6.17)

We take random initial conditions c, μ0 and ρ0 satisfying the following mass
conservation

∫
Ω

ρ0 +
∫

Γ
μ0 = M. (6.18)

Let tn = ndt be the time discretization and {x j = j dx, j ∈ {1, . . . ,Nx}} (respectively,
{yk = k dy,k ∈ {1, . . . ,Ny}}) be the space discretization of the bounded interval
[0,r) (respectively, periodic interval R/2πrZ). We define the control volume
W( j,k) ⊂ R

2 by

W( j,k) = (x j− 1
2
,x j+ 1

2
)× (yk− 1

2
,yk+ 1

2
).
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Let Pn
( j,k) (resp. μn

k ) be the approximate value of the exact solution ρ(tn,x j,yk)

of (6.11)–(6.13) and (6.18) (resp. μ(tn,yk) of (6.14) and (6.18)). Let c( j,k) be the
approximated value of the exact solution c(x j,yk) of (6.15)–(6.17).

6.2.2.1 Equation for μ

We can resolve at each time step for k ∈ {1, . . . ,Ny}

μn+1
k = μn

k +dt (ρn
k −μn

k ).

6.2.2.2 Equation for c

For simplicity, we call F the numerical flux as in the 1D case, we can write the
following scheme: for ( j,k) ∈ {1, . . . ,Nx}×{1, . . . ,Ny}

F( j+ 1
2 ,k)
−F( j− 1

2 ,k)

dx
+

F( j,k+ 1
2 )
−F( j,k− 1

2 )

dy
−αc( j,k) = 0.

with numerical flux defined by

F( j+ 1
2 ,k)

=
c( j+1,k)− c( j,k)

dx
, F( j− 1

2 ,k)
=

c( j,k)− c( j−1,k)

dx
.

The zero flux boundary condition (6.17) means that F( 1
2 ,k)

= 0 and the boundary

condition (6.16) F(Nx+
1
2 ,k)

= −μn
k for k ∈ {1, . . . ,Ny.} Similarly, the periodic

conditions lead to F( j,Ny+
1
2 )

= F( j, 1
2 )

for j ∈ {1, . . . ,Nx.} We define the column

vector C by C (k+( j− 1)Ny) = C( j,k) with ( j,k) ∈ {1, . . . ,Nx}×{1, . . . ,Ny.} As
before, the rigidity matrix A2D,α is defined by

A2D,α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aα + Id −Id
−Id Aα +2 Id −Id

−Id Aα +2 Id
. . .

. . .
. . .

. . .
. . . Aα +2 Id −Id

−Id Aα +2 Id −Id
−Id Aα + Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the discrete Poisson matrix Aα ∈MNy(R) in 1D with periodic flux condition
on boundary is defined by
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Aα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2+α dx2 −1 −1

−1 2+α dx2 . . .
. . .

. . .
. . .

. . . 2+α dx2 −1
−1 −1 2+α dx2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The flux boundary condition {r}×R/2πrZ generates the right-hand side column
vector of length Nx Ny

Rc =−dx
(
(μn

k )k 0 . . . 0
)
.

We use a standard numerical method to invert the symmetric positive definite matrix
A2D,α and then solve at each time step; that is,

C = A−1
2D,α Rc.

6.2.2.3 Equation for ρ

For simplicity, we call F the numerical flux as in the previous cases, we can write
the upwind scheme as follows:

Pn+1
( j,k)−Pn

( j,k)

dt
=

F( j+ 1
2 ,k)
−F( j− 1

2 ,k)

dx
+

F( j,k+ 1
2 )
−F( j,k− 1

2 )

dy
,

where

un
( j+ 1

2 ,k)
=

cn
( j+1,k)− cn

( j,k)

dx
, un

( j− 1
2 ,k)

=
cn
( j,k)− cn

( j−1,k)

dx
,

and the numerical flux is defined by

F( j+ 1
2 ,k)

=
ρn+1
( j+1,k)−ρn+1

( j,k)

dx
−Aup

(
un
( j+ 1

2 ,k)
,Pn

( j,k),P
n
( j+1,k)

)
,

F( j− 1
2 ,k)

=
ρn+1
( j,k)−ρn+1

( j−1,k)

dx
−Aup

(
un
( j− 1

2 ,k)
,Pn

( j−1,k),P
n
( j,k)

)
.

The zero flux boundary conditions (6.13) leads to F( 1
2 ,k)

= 0, while the flux
boundary conditions (6.12) mean that

F(Nx+
1
2 ,k)

=−μn+1
k −μn

k

dt
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for k ∈ {1, . . . ,Ny}. Similarly, the periodic conditions generate the equality

F( j,Ny+
1
2 )
= F( j, 1

2 )

for j ∈ {1, . . . ,Nx}. We define the column vector Pn by

Pn(k+( j−1)Ny) = Pn
( j,k)

with ( j,k) ∈ {1, . . . ,Nx}×{1, . . . ,Ny}. For simplicity, in what follows we consider
that dx= dy. We define the rigidity matrix A2D ∈MNxNy(R) with A∈MNy(R) defined
by (6.9):

A2D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A+ Id −Id

−Id A+2 Id
. . .

. . .
. . .

. . .
. . . A+2 Id −Id

−Id A+ Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We define the following diagonal matrices for j ∈ {1, . . . ,Nx}, U+
j+ 1

2
∈MNy(R) and

U−
j+ 1

2
∈MNy(R):

U+
j+ 1

2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

(un
( j+ 1

2 ,k−1)
)+

(un
( j+ 1

2 ,k)
)+

(un
( j+ 1

2 ,k+1)
)+

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U−
j+ 1

2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

(un
( j+ 1

2 ,k−1)
)−

(un
( j+ 1

2 ,k)
)−

(un
( j+ 1

2 ,k+1)
)−

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With B ∈MNy(R) defined by (6.10), the discrete advection matrix B2D ∈MNxNy(R)
with zero flux boundary condition in the x-axis direction and periodic flux boundary
condition in the y-axis direction is defined by
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B2D =

⎛
⎜⎜⎜⎜⎜⎝

B
B

. . .

B
B

⎞
⎟⎟⎟⎟⎟⎠
−dx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U+
3
2

U−3
2

. . .
. . .

U+
j+ 1

2
U−

j+ 1
2

. . . U−
Nx− 1

2

U+
Nx+

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+dx

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U−1
2

U+
3
2

. . .

U+
j− 1

2
U−

j− 1
2

. . .
. . .

U+
Nx− 1

2
U−

Nx− 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The flux boundary condition {r}×R/2πrZ imposes this right-hand side column
vector of length Nx Ny:

Rρ =−dx

((
μn+1

k −μn
k

dt

)
k

0 . . . 0

)
.

We use a standard numerical method to inverse the symmetric positive definite
matrix A2D and then resolve at each time step

Pn+1 = A−1
2D (B2DPn +Rρ).

6.2.3 Graphics

With the previous numerical analysis, we implement all numerical simulations using
MATLAB. The results of testing different values of M are shown in Fig. 6.2.

6.3 Conclusion

In this work we have provided a first answer to the following question: do the
nonlinear convection–diffusion models given in [HaEtAl09] and [CaEtAl12]
describe cell polarization or not? To do so, we have used both a mathematical
heuristic and numerical simulations. Numerical simulations were necessary because
the heuristic is only valid for an infinite geometry while the cell is obviously finite.
The numerical simulations ensure that solutions develop symmetry breaking over
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Fig. 6.2 Numerical simulations on Ω = [0,1]×R/2πZ with Γ = {r}×R/2πrZ and all parame-
ters equal to 1. Left: for M = 20 large enough, symmetry breaking appears. Molecular markers are
concentrated on one point of the membrane in finite time. Right: for M = 0.01 small, steady state
is homogeneous in the y-axis

a critical value M∗ given us a first justification of the mathematical heuristic. In a
further work, we will estimate an approximate value of this critical mass.
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Chapter 7
Analytical Study of Computational Radiative
Fluxes in a Heterogeneous Medium

D.Q. de Camargo, B.E.J. Bodmann, M.T. Vilhena, and C.F. Segatto

7.1 Introduction

During the last decades, an increasing number of authors developed a diversity of
approaches concerning radiative transfer for a variety of applications. The common
of these problems is the physical phenomenon of energy transfer by radiation and
conduction in a medium. This phenomenon occurs in a lot of areas, including
optics [LiEtAl06], astrophysics [PiEtAl09], atmospheric sciences [ThSt02], remote
sensing [ShEtAl07], and engineering applications, such as the transport of heat by
radiation [Br92], e.g., laser applications or radiative transfer in cooling processes
[KyGu04] among others.

The propagation of radiation through a homogeneous or heterogeneous medium
suffers changes by isotropic or non-isotropic processes like absorption, emission,
and scattering that enter the mathematical approach in form of a nonlinear radiative
transfer equation. The nonlinearity of the equation originates from a local thermal
description using the Stefan–Boltzmann law, which relates heat transport to the
radiation intensity and thus renders the radiative transfer a radiative-conductive
problem, which we discuss in this work [Oz73], [Po05].

The radiative transfer equation is an integro-differential equation and its com-
plexity derives from the fact that it is described in a phase space that consists of
seven independent variables (three positions, two directions, a frequency and time).
Several methods have been proposed to solve this time-dependent equation in a
plane parallel geometry. In 1981, Levermore and Pomraning [LePo81] deduced
the diffusion theory based on the equation of radiative transfer; in 1986 Ganapol
[Ga86] obtained a numerical solution for the time-dependent transport equation
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using an expansion by Legendre polynomials; Larsen and Pomraning [LaPo91]
showed in 1991 that PN equations are an asymptotic limit of the time-dependent
transport equation.

In general, the equation of radiative-conductive transfer is difficult to solve
without the introduction of some approximations, such as linearization or a
reduction to a diffusion equation, which facilitates the construction of a solution
to an approximate problem. The approach used in this study is not different in
the sense that approximations shall be introduced; nevertheless, the nonlinearity
that represents the crucial ingredient in the problem is solved without resorting to
linearization or perturbation like procedures and to the best of our knowledge
is the first analytical approach of this kind. The solution of the modified or
approximate problem can be given in closed analytical form that permits to calculate
numerical results in principle to any desired accuracy. Moreover, the influence of
the nonlinearity can be analyzed in an analytical fashion directly from the formal
solution.

Solutions found in the literature are typically linearized and of numerical
nature (see, for instance, [As01], [AsEtAl02], [At00], [KrNaDu01], [MeVi83],
[MuEtAl04], [SiTh91], [SpSi96], and references therein). To the best of our
knowledge no analytical approach for a heterogeneous medium as well as consid-
ering the nonlinearity exists so far. A possible reason for considering a simplified
problem (homogeneous and linearized) is that such a procedure makes feasible the
determination of a convergent solution. It is worth mentioning that a general solution
from an analytical approach for this type of problems exists only in the discrete
ordinate approximation for a homogeneous medium as reported in [SeEtAl10].

Various applications allow to segment the medium in plane parallel sheets, where
the radiation field is invariant under translation in directions parallel to that sheet.
In other words the only spatial coordinate of interest is the one perpendicular
to the sheet that indicates the penetration depth of the radiation in the medium.
Frequently, it is justified to assume the medium to have an isotropic structure which
reduces the angular degrees of freedom of the radiation intensity to the azimuthal
angle θ or equivalently to its cosine μ . Further simplifications may be applied
which are coherent with measurement procedures. On the one hand measurements
are conducted in finite time intervals where the problem may be considered
(quasi-)stationary, which implies that explicit time dependence may be neglected
in the transfer equation. On the other hand, detectors have a finite dimension
(extension) with a specific acceptance angle for measuring radiation and thus set
some angular resolution for experimental data. Such an uncertainty justifies to
segment the continuous angle into a set of discrete angles (or their cosines), which
renders the original equation with angular degrees of freedom a set of equations
known as the SN approximation.

In the work [BoViSe11] an analytical approach was discussed and compared
to the nonlinear SN problem of radiative-conductive transfer in a heterogeneous
medium of plane-parallel geometry using a composite method by Laplace transform
and Adomian decomposition [Ad88], here called the DMLT SN method. In the
same reference it was shown that the heterogeneous problem can be expressed
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in a set of homogeneous problems, so that the general solution can be obtained
through a hierarchical algorithm. The Laplace technique opens way to use classical
procedures for linear problems, while the decomposition method allows to separate
the nonlinear contribution of the problem, which is then solved in a recursive
fashion. In the afore cited work, the decomposition of a heterogeneous problem into
a set of homogeneous problems was discussed on a theoretical basis only; however, a
solution was not presented. In the present work this particular procedure is applied to
a specific problem, where the partial solutions are matched at the interfaces between
neighboring sheets due to different physical parameter of each sheet. Thus one
may construct the solution for the heterogeneous problem of radiative-conductive
transfer.

7.2 Radiative-Conductive Transfer

In problems of radiative transfer in plane parallel media it is convenient to measure
linear distances normal to the plane of stratification using the concept of optical
thickness τ which is measured from the boundary inward and is related to the density
ρ , an attenuation coefficient κ and the geometrical projection on the direction
perpendicular to that plane, say along the z-axis, so that dτ = −κρdz. Further,
the temperature is measured in multiples of an arbitrary reference temperature
T (τ) =Θ(τ)Tr, typically taken at τ = 0.

Based on the photon number balance and expressed as a Boltzmann-type
equation one arrives at the radiative transfer equation in a volume that shall be
chosen in a way so that no boundaries, that separate media with different physical
properties, cross the control volume. To this end, five photon number changing
contributions shall be taken into account which may be condensed into the four
terms that follow. The first term describes the net rate of streaming of photons
through the bounding surface of an infinitesimal control volume, the second term
combines absorption and out-scattering from μ to all possible directions μ ′ in
the control volume. The third term contemplates in-scattering from all directions
μ ′ into the direction μ , and last not least a black-body like emission term
according to the temperature dependence of Stefan–Boltzmann’s law for the control
volume.

dI(τ ,μ)
dτ

+
1
μ

I(τ ,μ) =
ω(τ)
2μ

∫ 1

−1
P(μ ,μ ′)I(τ ,μ ′)dμ ′+

1−ω(τ)
μ

Θ 4(τ). (7.1)

Here, I is the radiation intensity, ω is the single scattering albedo, and P(μ)
signifies the differential scattering coefficient or also called the phase function, that
accounts for the rate at which photons are scattered into an angle dμ ′ and with
inclination μ with respect to the normal vector of the sheet. Note that the phase
function is normalized; that is,
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1
2

∫
P(μ)dμ = 1.

Upon simplifying the phase function in plane geometry one may expand the
angular dependence in Legendre polynomials Pn(μ),

P(μ ,μ ′) =
∞

∑
�=0

β�P�(μ ′ −μ),

with βn the expansion coefficients that follow from orthogonality. Further one may
employ the identity for Legendre polynomials using azimuthal symmetry (hence the
zero integral)

P�(μ ′ −μ) = P�(μ)P�(μ ′)+2
n

∑
m=1

(n−m)!
(n+m)!

Pm
n (μ)Pm

n (μ ′)

×
∫ 2π

0
cos(m(φ −φ ′))dφ ′

︸ ︷︷ ︸
=0

,

and write the integral on the right-hand side of (7.1) as

∫ 1

−1
P(μ ,μ ′)I(τ ,μ ′)dμ ′ =

∞

∑
�=0

β�

∫ 1

−1
P�(μ)P�(μ ′)I(τ ,μ ′)dμ ′,

where the summation index refers to the degree of anisotropy. For practical
applications only a limited number of terms indexed with � have to be taken into
account in order to characterize qualitatively and quantitatively the anisotropic
contributions to the problem. Also higher � terms oscillate more significantly and
thus suppress the integral’s significance in the solution. The degree of anisotropy
may be indicated truncating the sum by an upper limit L. The integro-differential
equation (7.1) together with the aforementioned manipulations may be cast into
an approximation known as the SN equation upon reducing the continuous an-
gle cosine to a discrete set of N angles. This procedure opens a pathway to
apply standard vector algebra techniques to obtain a solution from the equation
system.

In order to define boundary conditions we have to specify in more detail the
scenario in consideration. Furthermore we analyze nonlinear radiative-conductive
transfer in a gray plane-parallel participating medium with opaque walls, where
specular (mirror like) as well as diffuse reflections occur besides thermal photon
emission according to the Stefan–Boltzmann law (see [El09] and references
therein). If one subdivides the medium into sheets of thickness Δτ with sufficiently
small depth so that for each sheet a homogeneous medium applies, then for each
face or interface the condition for the upper sheet boundary (at τ = τi) is
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I(τ ,μ) = ε(τ)Θ 4(τ)+ρs(τ)I(τ ,−μ)+2ρd(τ)
∫ 1

0
I(τ ,−μ ′)μ ′dμ ′, (7.2)

with ρs and ρd the specular and diffuse reflections at the boundary, which are related
to the emissivity ε by

ε +ρs +ρd = 1.

For the lower boundary (at τ = τi +Δτ) equation (7.2) applies but with reflected
angles μ → −μ and μ ′ → −μ ′ in the argument of I(τ ,μ(′)). Suppose we have
NS sheets and NS + 1 boundaries, one might think that for a first order differential
equation (7.1) in τ the supply of NS +1 boundary conditions results in an ill-posed
problem with no solutions at all. However, we still have to set up an equation system
that uniquely defines the nonlinearity in terms of the radiation intensity.

The relation may be established in two steps, first recognizing that the dimen-
sionless radiative flux is expressed in terms of the intensity by

q∗r = 2π
∫ 1

−1
I(τ ,μ)μdμ ,

and the energy equation for the temperature that connects the radiative flux to a
temperature gradient is

d2

dτ2 Θ 4 =
1

4πNc

d
dτ

q∗r (τ) =
1

4πNc

d
dτ

(
2π
∫ 1

−1
I(τ ,μ)μdμ

)
, (7.3)

Here Nc is the conduction–radiation parameter, defined as

Nc =
kβext

4σn2T 3
r
,

with k the thermal conductivity, βext the extinction coefficient, σ the Stefan–
Boltzmann constant, and n the refractive index. Note that the radiative flux results
from the integration of the intensity over angular variables, so that the thermal
conductivity is considered here isotropic. Equation (7.3) is subject to prescribed
temperatures at the top- and bottommost boundary, respectively:

Θ(0) =ΘT and Θ(τ0) =ΘB. (7.4)

7.3 Solution by Decomposition Method

The set of equations (7.1) and (7.3), which are continuous in the angle cosine,
may be simplified using an enumerable set of discrete angles following the
collocation method that defines the radiative-convective transfer problem in the SN

approximation
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dIn(τ)
dτ

+
1
μn

In(τ) =
ω(τ)
2μn

L

∑
�=0

β�P�(μn)
N

∑
k=1

ωkP�(μk)Ik(τ)+
1−ω(τ)

μn
Θ 4(τ),

(7.5)

dΘ(τ)
dτ

− dΘ(τ)
dτ

∣∣∣∣
τ=0

=
1

2Nc

N

∑
k=1

ωk(Ik(τ)− Ik(0))μk, (7.6)

for n = 1, . . . ,N, and are subject to the following boundary conditions:

In(0) = ε(0)Θ 4(0)+ρs(0)IN−n+1(0)+2ρd(0)
N/2

∑
k=1

ωkIN−k+1(0)μk,

IN−n+1(τ0) = ε(τ0)Θ 4(τ0)+ρs(τ0)In(τ0)+2ρd(τ0)
N/2

∑
k=1

ωkIk(τ0)μk.

Note that the integrals over the angular variables are replaced by a Gaussian
quadrature scheme with weight factors wk, where k refers to one of the discrete
directions μk.

For convenience we introduce a shorthand notation in matrix operator form,
where the column vector

Φ(τ) = (I,Θ(τ))T = (I1(τ), . . . , IN(τ),Θ(τ))T ,

combines the anisotropic intensities and the isotropic temperature function, the
nonlinear terms and boundary terms from integration (i.e., the temperature gradient
and the conduction radiation intensity at τ = 0) are absorbed in an inhomogeneity:

Ψ =

(
1−ω(τ)

μ1
Θ 4(τ), . . . ,

1−ω(τ)
μn

Θ 4(τ),
dΘ
dτ

(0)− 1
2Nc

N

∑
k=1

ωkIk(0)μk

)T

.

This procedure allows to cast the equation system (7.5) and (7.6) in compact form
of a first order matrix equation

d
dτ

Φ−LMΦ =Ψ , (7.7)

where LM has elements

(LM)nk = δnk(1−δn,N+1)
1
μn

+ fnk for n,k = 1, . . . ,N +1.

Here, δi j is the Kronecker delta and θH the usual Heaviside function; that is,

δi j =

{
1 if i = j,

0 otherwise,
θH(x) =

{
1 if x > 0,

0 otherwise,
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and the factors fnk are

fnk = θH(N−n+1/2)θH(N− k+1/2)
ω(τ)
2μn

L

∑
�=0

β�P�(μn)ωkP�(μk)

+(1−δk,N+1)δn,N+1
μk

2Nc
.

Note that the increment 1/2 in the Heaviside functional was introduced merely to
make the argument positive definite in the range of interest which otherwise could
lead to conflicts with possible definitions for θH(x) at x = 0.

The boundary conditions are combined accordingly, except for the limiting
temperatures (7.4) that are kept separately for simplicity because they would add
only an additional diagonal block leading to a reducible representation and does not
bring any advantage from an algorithmic point of view.

BDI−BMI = Γ . (7.8)

Equation (7.8) has a block form where one block represents forward angle
contributions μ > 0 and the other one backward terms μ < 0 originating from the
top and bottom boundary, respectively. Here, BD is an N×N diagonal matrix, and

BM =

(
0 ρsCN/2 +2ρdG−N/2

ρsCN/2 +2ρdG+
N/2 0

)
,

with CN/2 an N/2× N/2 matrix, which results from column reversion in the
unit matrix, i.e. after mapping column position k to position N/2− k + 1. The
remaining matrices that control the diffuse forward and backward reflection (G±N/2),
respectively, have elements

(G+
N/2)nk = θH(N/2−n+1/2)θH(k−N/2−1/2)μN−k+1ωN−k+1

(G−N/2)nk = θH(n−N/2−n−1/2)θH(N/2− k+1/2)μkωk.

In these expressions the Heaviside functions restrict the nonzero elements to the
off-diagonal blocks with row indices n ∈ {1, . . . ,N/2} and column indices k ∈
{N/2+ 1, . . . ,N} and with row indices n ∈ {N/2+ 1, . . . ,N} and column indices
k ∈ {1, . . . ,N/2}, respectively. The vector representation for the intensity is I =
(I+,I−)T with

I+ = (I1(τ), . . . , IN/2(τ)) and I− = (IN/2+1(τ), . . . , IN(τ)).

The inhomogeneity Γ has the same emission term in each component.

Γn = ε(τ)Θ 4(τ) ∀n.
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Fig. 7.1 Schematic illustration of a heterogeneous medium in form of a multi-layer slab

The principal difficulty in constructing a solution for the radiative-conductive
transfer problem in the SN approximation (7.7) subject to the boundary conditions
(7.8) and (7.4) is due to the fact that the single scattering albedo ω(τ), the emissivity
ε(τ), and the specular and diffuse reflection (ρs(τ) and ρd(τ)) have an explicit
dependence on the optical depth τ , that is the heterogeneity of the medium in
consideration. It is worth mentioning that the proposed methodology is quite general
in the sense that it can be applied to other approximations of (7.1) that make use of
spectral methods, as, for instance, the spherical harmonic PN-, the Chebyshev ChN-
and the Walsi WN-approximation [ViSe99], [ViEtAl99], among others.

In the sequel we report on two approaches to solve the heterogeneous problem
((7.7), (7.8), and (7.4)). The principal idea of this techniques relies on the reduction
of the radiative-conductive transfer problem in heterogeneous media to a set of
problems in domains of homogeneous media. In the first approach we consider the
standard approximation of the heterogeneous medium in form of a multi-layer slab
(see Fig. 7.1). For each of the layers the problem reduces to a homogeneous problem
but with the same number of boundary conditions as the original problem. In order
to solve the unknown boundary values of the intensities and the temperatures at the
interfaces between the slabs, matching these quantities using the bottom boundary
values of the upper slab and the top boundary values of the lower slab eliminates
these unknowns.

In the second approach we introduce a new procedure to work the heterogeneity.
To begin with, we take the averaged value for the albedo coefficient ω(τ),

ω̄ =
1
τ0

∫ τ0

0
ω(τ)dτ ,

and rewrite the problem as a homogeneous problem plus an inhomogeneous
correction. Note that LM as well as Ψ depend on the local albedo coefficient ω(τ).



7 Analytical Study of Computational Radiative Fluxes 99

Since the terms containing the coefficient are linear in ω permits to separate an
average factor ω̄ and the difference ω(τ)− ω̄:

d
dτ

Φ−LM(ω̄)Φ =Ψ(ω̄)+LM(ω(τ)− ω̄)Φ +Ψ(ω(τ)− ω̄). (7.9)

Now, following the idea of the decomposition method proposed originally by
Adomian [Ad88], to solve nonlinear problems without linearization, we handle
equation (7.9), constructing the following recursive system of equations. Here,
Ψ −∑∞

m=0Ψm is a formal decomposition and the nonlinearity is written in terms
of the so-called Adomian polynomials Θ 4(τ) = ∑∞

m=0 Âm(τ). The first equation
of the recursive system is the same as in a homogeneous slab, and the influ-
ence of the heterogeneity is governed by the source term. The homogeneous
problem is explicitly solved in [BoViSe11], so that we concentrate here on the
inhomogeneity:

d
dτ

Φ0−LM(ω̄)Φ0 = Ψ0(ω̄),

d
dτ

Φi−LM(ω̄)Φi = Ψi(ω̄)+LM(ω(τ)− ω̄)Φi−1 +Ψi−1(ω(τ)− ω̄)

for i≥ 1, and

Ψi−1(ω(τ)− ω̄) = (ω̄−ω(τ))Am(τ)(μ−1
1 , . . . ,μ−N

1 ,0)T . (7.10)

Note that the (N + 1)th component of Ψ0(ω̄) contains the inhomogeneous term of
the temperature equation:

(Ψ0(ω̄))N+1 =ΨN+1 =
dΘ
dτ

(0)− 1
2Nc

N

∑
k=1

ωkIk(0)μk.

To complete our analysis considering the boundary conditions, the first equation
of the recursive system satisfies the boundary condition, whereas the remaining
equations satisfy homogeneous boundary conditions. By this procedure we guar-
antee that the solution Φ determined from the recursive scheme and truncated at
a convenient limit M satisfies the boundary conditions of the problem (7.8) and
(7.4). Therefore, we are now in a position to construct a solution with a prescribed
accuracy by controlling the number of terms in the series solution given by (7.10).
From the previous discussion it becomes apparent that it is possible by the proposed
procedure to obtain a solution of the heterogeneous problem by a reduction to a
set of homogeneous problems. To complete the construction of a solution for the
heterogeneous problem, in the next section we present the derivation of the solution
of the SN radiative-conductive transfer problem in a sheet-like homogeneous
slab.



100 D.Q. de Camargo et al.

7.4 Problem Parameter and Numerical Results

To check if the proposed method is appropriate for radiative-conductive transfer
problems in heterogeneous media, we evaluate the behavior of the temperature and
radiative, conductive, and total heat fluxes:

Qr(τ) =
1

4πNc
q∗r Qc(τ) =− d

dτ
Θ(τ) and Q(τ) = Qr(τ)+Qc(τ).

The coefficient β� is defined considering a binomial scattering law which is
given by

β� =

(
2�+1
2�−1

)(
L+1− �

L+1+ �

)
β�−1, 0≤ �≤ L, and β0 = 1.

The medium considered for this consistency test of the method is composed by
two different materials, and each half is considered homogeneous, as illustrated in
Fig. 7.2. The numerical values of the parameters of the problem may be found in
Table 7.1. In Table 7.1, Θ1 and Θ3 are the prescribed temperatures at the top- and
bottommost boundary of the medium (7.4).

Following the idea proposed, the heterogeneous domain was divided into
homogeneous sheets, and for each of these sheets the solution was determined by
the DMLT SN method. Finally, applying the continuity and boundary conditions we
couple the individual homogeneous problems and thus define the last term of (7.9).
The temperature Θ2 shown in Table 7.1 is a result of matching the solution at the
interface.

The numerical results for the temperature profile (Θ ), for radiative (Qr(τ)),
convective (Qc(τ)), and total (Q(τ)) heat fluxes along the optical thickness are
shown in Figs. 7.3, 7.4, 7.5, and 7.6, respectively, for τ ranging from 0 to 1. In this
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2 ,ε2
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4,ρd

4 ,ε4
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3,ρd

3 ,ε3

Fig. 7.2 Definition of a heterogeneous medium by sheet-wise homogeneous domains

Table 7.1 Parameter and properties of the medium, boundary and interfaces

ωI ωII NcI NcII LI LII Θ1 Θ2 Θ3

0.95 0.95 0.05 0.04 0 0 1.5 1.21533 0.0

ε1 ε2 ε3 ε4 ρs
1 ρs

2 ρs
3 ρs

4 ρd
1 ρd

2 ρd
3 ρd

4
0.4 0.6 0.3 0.5 0.2 0.1 0.3 0.2 0.4 0.3 0.4 0.3
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analysis we used N = 200 as quadrature order and the truncation in the Adomian
polynomial series was M = 10.

Since the prescribed temperatures Θ1 and Θ3, on the top and bottom boundary of
the medium are constant, one expects a constant heat flux through the medium as a
manifestation of a steady state, shown in Fig. 7.6.

7.5 Conclusions

The proposed methodology, which is composed by the Laplace transform and the
Adomian decomposition [Ad88], reproduces the exact analytical solution for the
approximate SN problem in the limit M→ ∞. The present study demonstrated that
the idea of reducing the radiative-conductive heat transfer problem in heterogeneous
medium into a set of problems with homogeneous media is valid, so that the
general solution can be obtained through a hierarchical algorithm. The Laplace
technique opens the path to make use of well-established classical methods for
linear problems, while the decomposition method allows to separate the nonlinear
contribution of the problem, and thus allows to solve the equations in a closed form
and recursive fashion.

The solution of the equation system involves computational operations among
scalars, vectors, and matrices. There exist several programming libraries that
implement the necessary functionality for manipulating this set, however with more
or less reliability. More specifically, they usually work with simple problems but fail
to yield numerically trustworthy results for more realistic problems. One objective
of this work was to develop a program of the proposed problem in the programming
language C++, which works for a wider range of parameter sets and allowing
for scalability and optimization of the solution process. A variety of experiments
with several existing libraries showed that all of them lacked satisfactory results in
some of the parameter combinations. The first library we tested was the CLAPACK
(Linear Algebra PACKage for C) [La12], this library does not provide correct
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results, so that we resorted to other libraries some of them based on the codes
available in the book Numerical Recipes in C [PrEtAl02]. Again we verified that
some of the algorithms do not provide valid results for large order matrices. Among
the public domain libraries the GNU Scientific Library (GSL) [Gs12] showed the
best results for this type of problem. Currently we are working on a new open access
library that is suitable for huge matrix systems, where tests so far are promising.
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Chapter 8
A Novel Approach to the Hankel Transform
Inversion of the Neutron Diffusion Problem
Using the Parseval Identity

J.C.L. Fernandes, M.T. Vilhena, and B.E.J. Bodmann

8.1 Introduction

The neutron diffusion equation is still one of the most frequently employed
equations for nuclear reactor neutronics calculations, although its limitations are
well known [GoLeVi09,ViSeGo04]. The equation is obtained under the assumptions
that scattering is isotropic in the laboratory coordinate system and the region of
interest is considered piecewise homogeneous, so that the diffusion coefficients
are invariant under spatial transforms like translation and others. It is well known
that such a derivation of diffusion theory rests on certain assumptions, i.e. the flux
being sufficiently smooth especially by virtue of neutron absorption or production,
which is reasonable since the mean free path is typically larger than the dimensions
of the fuel cell and moderator space geometry. The solution of the diffusion
equation system is thus an average description of a large number of neutrons, where
fluctuations (higher moments) are neglected [LeEtAl08]. Further, the continuous
energy distribution of neutrons is reduced by the use of energy groups (in the present
case two).

8.2 Multi-group Steady State Neutron Diffusion

Our starting point is the steady state multi-energy group neutron diffusion equation,
with the usual diffusion, removal, out-scattering, fission, and in-scattering terms.
Here Dg is the diffusion coefficient for energy group g, Δr = r−1∂r(r∂r) represents
the radial part of the Laplace operator in cylindrical coordinates. Note that we
assume translational symmetry of the neutron flux φg along the cylinder axis and
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thus ∂zzφ = 0. ΣRg are the respective removal cross section, Σg→g′ ,Σg′→g (g �= g′)
the out- and in-scattering cross sections, νgΣ f g the fission cross section times the
average neutron yield per fission, χg the spectral weight of energy group g ∈ [1,G],
ke f f the effective multiplication factor, and Sg a generic source term per energy
group:

−DgΔrφg +

(
ΣRg +

G

∑
g′=1

Σ s
g→g′

)
φg = χg

G

∑
g′=1

νg′Σ f g′φg′

+
G

∑
g′=1

Σg′→gφg′ +Sg. (8.1)

The diffusion problem is subject to the boundary conditions of zero current
density at the center of the cylinder Dg(∂φg/∂ r)(0) = 0 and zero flux at the
boundary; that is, φg(R) = 0.

8.3 The Hankel-Transformed Problem

The diffusion problem (8.1) previously introduced may be solved by the use of the
zero order Hankel transform

f̄ (ξ ) = Hn[ f (r);r→ ξ ] =
∫ ∞

0
r f (r)Jn(rξ )dr

(here n = 0) that renders (8.1) a nonhomogeneous problem and may be cast into
matrix form. As an example we show the equation for two energy groups:

(
D1ξ 2 +ΣR1 −(χ1νΣ f 2 +Σ12

)
−(χ2νΣ f 1 +Σ21

)
D2ξ 2 +ΣR2

)(
φ̄1

φ̄2

)
=

(
S̄1

S̄2

)
.

In shorthand notation, the equation reads M(ξ )Φ̄ = S̄. In general M(ξ ) is invertible,
so that

det(M(ξ )) = A(ξ )B(ξ )−μ12μ21 �= 0,

with A(ξ ) = D1ξ 2 + ΣR1, B(ξ ) = D2ξ 2 + ΣR2, μ12 = χ1νΣ f 2 + Σ12 and μ21 =
χ2νΣ f 1 +Σ21. The solution for the system in transformed variables is

Φ̄ = (det(M(ξ )))−1
(

B(ξ )S̄1 +μ12S̄2

μ21S̄1 +A(ξ )S̄2

)
.

In what follows, we introduce a simplification, that does not compromise the
generality of the procedure, and consider a source term for group g = 1, only. Then
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φ̄1 = B(ξ )
S̄1

det(M(ξ ))
, φ̄2 = μ21

S̄1

det(M(ξ ))
,

and upon applying the inverse Hankel transformation one may determine the
analytical solution of the problem [Fe11].

8.3.1 Fast Flux Solution

Application of the inversion formula yields

φ1 =
∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

S̄1 dξ ,

which together with the Hankel inversion theorem and Parseval’s identity allows us
to derive the desired result.

Theorem 1 (The Hankel inversion theorem). If
√

r′ f (r′) is piecewise continuous
and absolutely integrable on the positive half of the real line, and if γ ≥ − 1

2 , then
f̄γ(ξ ) = Hγ [ f (r′);r′ → ξ ] exists and

∫ ∞

0
ξ f̄γ(ξ )Jγ(ξ r′) dξ =

1
2
[ f (r′+)+ f (r′−)].

Theorem 2 (Parsenval’s relation). If the functions f (r′) and g(r′) satisfy the
conditions of Theorem 1 and if f̄γ(ξ ) and ḡγ(ξ ) denote the Hankel transforms of
order γ ≥− 1

2 , then

∫ ∞

0
r′ f (r′)g(r′) dr′ =

∫ ∞

0
ξ f̄γ(ξ )ḡγ(ξ ) dξ .

Making use of the theorem with f̄0(ξ ) = B(ξ )J0(rξ )
det(M(ξ )) and ḡ0(ξ ) = S̄1, establishes

that

∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

S̄1 dξ =

∫ ∞

0
r′H−1

0

{
B(ξ )J0(rξ )
det(M(ξ ))

}
S1(r

′) dr′ ,

and by definition the following identity holds:

H−1
0

{
B(ξ )J0(rξ )
det(M(ξ ))

}
=
∫ ∞

0
ξ

B(ξ )J0(rξ )
det(M(ξ ))

J0(r
′ξ ) dξ .

The physically meaningful range of nuclear parameters implies 0 < μ12μ21
A(ξ )B(ξ ) < 1,

so that
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B(ξ )
A(ξ )B(ξ )−μ12μ21

=
1

A(ξ )
+

1
A(ξ )

O

((
μ12μ21

A(ξ )B(ξ )

)2
)

,

which by virtue of the fact that
(

μ12μ21
A(ξ )B(ξ )

)
� 1 allows to safely neglect higher-order

terms. The integral may be evaluated [Ba54] as

∫ ∞

0
ξ

J0(rξ )
A(ξ )

J0(r
′ξ ) dξ =

{
1

D1
I0(
√

α1r′)K0(
√

α1r) for 0 < r′ < r
1

D1
I0(
√

α1r)K0(
√

α1r′) for r < r′ < ∞,

where αg = ΣRg/Dg. Here, I0 and K0 are the modified Bessel functions and outside
of the cylinder the source term is identically zero. The solution for the fast flux is
then

φ1 =
K0(
√

α1r)
D1

∫ r

0
r′I0(
√

α1r′)S1(r
′) dr′

+
I0(
√

α1r)
D1

∫ R

r
r′K0(

√
α1r′)S1(r

′) dr′.

8.3.2 The Thermal Flux Solution

The procedure for the thermal flux follows similar steps to the ones introduced in
the solution scheme for the fast flux. Using the inversion formula

φ2 = μ21

∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

S̄1 dξ

together with Theorem 2,

∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

S̄1 dξ =

∫ ∞

0
r′H−1

0

{
J0(rξ )

det(M(ξ ))

}
S1(r

′) dr′

and, by definition,

H−1
0

{
J0(rξ )

det(M(ξ ))

}
=
∫ ∞

0
ξ

J0(rξ )
det(M(ξ ))

J0(r
′ξ ) dξ .

Using arguments analogous to those for the fast flux, we arrive at

H−1
0

{
J0(rξ )

det(M(ξ ))

}
=

1
(ΣR2D1−ΣR1D2)

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
α1)2 J0(r

′ξ ) dξ
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− 1
(ΣR2D1−ΣR1D2)

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
α2)2 J0(r

′ξ ) dξ

=

⎧⎨
⎩

I0(
√α1r′)K0(

√α1r)−I0(
√α2r′)K0(

√α2r)
(ΣR2D1−ΣR1D2)

for 0 < r′ < r,

I0(
√α1r)K0(

√α1r′)−I0(
√α2r)K0(

√α2r′)
(ΣR2D1−ΣR1D2)

for r < r′ < ∞,

so that the thermal flux is

φ2 = c1

(
K0(
√

α1r)
∫ r

0
r′I0(
√

α1r′)S1(r
′) dr′

+ I0(
√

α1r)
∫ R

r
r′K0(

√
α1r′)S1(r

′)dr′

−K0(
√

α2r)
∫ r

0
r′I0(
√

α2r′)S1(r
′)dr′

−I0(
√

α2r)
∫ R

r
r′K0(

√
α2r′)S1(r

′) dr′
)
,

where c1 =
μ21

(ΣR2D1−ΣR1D2)
.

Because of the similarity of the solutions the integral expressions may be used to
formulate both solutions as

φ1 = T1[S1](r) and φ2 = c1(D1T1[S1](r)−D2T2[S1](r)),

where

Tg[ f ](r) =
K0(
√αgr)

Dg

∫ r

0
r′I0(
√αgr′) f (r′)dr′

+
I0(
√αgr)

Dg

∫ R

r
r′K0(

√αgr′) f (r′)dr′.

8.4 Multi-regions

In this section we present the first approximation for a solution in a piecewise
homogeneous medium, where each region (with index κ) has its specific and in
general distinct parameter set [BoEtAl10]. In order to simplify the problem, we
ignore the energy group mixing terms (coupling between different energy groups)
and consider as an approximation the diffusion equation for each group separately.
A more general solution for a coupled system is beyond the scope of the present
work but will be the issue in a future discussion:
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−D(κ)
g Δrφ

(κ)
g (r)+σ (κ)φ (κ)

g = 0, with σ (κ)
g = Σ (κ)

Rg −νΣ (κ)
f g .

Basically two approaches may be used to solve the multi-region problem, the
usual one determines the solution for each region separately and the integration
constants are determined from the matching of the fluxes and current densities at
the boundaries and interfaces, respectively [BoEtAl10]. In the further we follow
a different reasoning, here the solution of the first region is extended to the whole
domain of interest across all N regions with increasing boundaries at R1, . . . ,RN and
the modification of the solution for the change in the parameter set of the second
region is determined by a correction to the already obtained solution. All corrections
for the parameter changes of the successive regions are treated this way, so that the
general solution gets a progressive character. If the solution for region κ is given by

φ (κ)
g , then

φ (κ)
g =

κ

∑
i=1

φgi = φgκ +φ (κ−1)
g ,

where κ ∈ [1, . . . ,N.]
The progressive solution is then determined by a recursive scheme with a finite

recursion depth. The initialization is given by

−Δrφg1 +
σ (1)

g

D(1)
g

φg1 = 0 ,

and the generic recursion steps are

−D(κ)
g Δrφgκ +σ (κ)

g φgκ =

(
D(κ)

g

D(κ−1)
g

σ (κ−1)
g −σ (κ)

g

)

︸ ︷︷ ︸
γ(κ)g

φ (κ−1)
g . (8.2)

Thus, once the solution for the preceding region is known it enters as a source
term in the subsequent equation, which may be solved. The solution for the first
region is the solution for a homogeneous problem:

φ (1)
g (r) = A1J0(λ1r)+B1Y0(λ1r). (8.3)

Here Ai and Bi are constants, J0,Y0 are the Bessel and Neumann functions and λi =

(σ (i)
g )1/2(D(i)

g )−1/2, in our case B1 = 0 in order to render the solution regular at
the origin. The solution for the recursion steps is composed of the aforementioned
homogeneous solution (8.3) plus a particular solution that we will determine in the
following. To this end, the Hankel transform is applied to (8.2), yielding
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D(κ)
g ξ 2φ̄gκ +σ (κ)

g φ̄gκ = γ(κ)g φ̄ (κ−1)
g .

The solutions of the transformed problem are then

φ̄gκ =

(
γ(κ)g

D(κ)
g ξ 2 +σ (κ)

g

)
φ̄ (κ−1)

g .

From the inversion formula of the Hankel transform we get

H−1
0 {φ̄gκ}= φgκ =

∫ ∞

0
ξ

γ(κ)g

D(κ)
g ξ 2 +σ (κ)

φ̄ (κ−1)
g J0(rξ ) dξ .

As already practised in the previous sections the inversion is done using

Theorems 1 and 2, with f̄0(ξ ) = J0(rξ )
D(κ)

g ξ 2+σ (κ)
g

and ḡ0(ξ ) = φ̄ (κ−1)
g , respectively:

φgκ = γ(κ)g

∫ ∞

0
ξ

(
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

)
φ̄ (κ−1)

g dξ

= γ(κ)g

∫ ∞

0
r′H−1

0

{
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

}
φ (κ−1)

g (r′) dr′.

Further, the integral may be solved analytically [Ba54] as

H−1
0

{
J0(rξ )

D(κ)
g ξ 2 +σ (κ)

g

}
=

1

D(κ)
g

∫ ∞

0
ξ

J0(rξ )
ξ 2 +(

√
ακ)2 J0(r

′ξ ) dξ ,

=

{
1

D(κ) I0(
√

ακ r′)K0(
√

ακ r) for 0 < r′ < r,
1

D(κ) I0(
√

ακ r)K0(
√

ακ r′) for r < r′ < R,

with ακ = σ (κ)
g /D(κ)

g . The particular solution may be combined with the homoge-
neous solution in order to compose the general solution by the components φgκ ,

φgκ =
γκ

g

D(κ)
g

K0(
√

ακ r)
∫ r

0
r′I0(
√

ακ r′)φ (κ−1)
g (r′) dr′

+
γκ

g

D(κ)
g

I0(
√

ακ r)
∫ R

r
r′K0(

√
ακ r′)φ (κ−1)

g (r′)dr′

+Aκ J0(λκ r)+BκY0(λκ r).
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8.5 Error Estimates

The error of the solution comes merely from the expansion of the integrand

B(ξ )
A(ξ )B(ξ )−μ12μ21

=
1

A(ξ )
1

1− μ12μ21
A(ξ )B(ξ )

.

For any choice of meaningful nuclear parameter the aforementioned relation

μ12μ21

A(ξ )B(ξ )
< 1

holds and the integral may be approximated by the leading order term of the
integrand’s expansion:

T =
∫ ∞

0
ξ

B(ξ )
A(ξ )B(ξ )−μ12μ21

J0(ξ r)J0(ξ r′) dξ

=
∫ ∞

0
ξ

1
A(ξ )

J0(ξ r)J0(ξ r′) dξ

+
∫ ∞

0
ξ

μ12μ21

A2(ξ )B(ξ )
J0(ξ r)J0(ξ r′) dξ

+
∫ ∞

0
ξ

(μ12μ21)
2

A3(ξ )B2(ξ )
J0(ξ r)J0(ξ r′) dξ + · · · .

The error of the integral is then given by

δT =
∞

∑
n=1

{∫ ∞

0
ξ

1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n

J0(ξ r)J0(ξ r′) dξ
}
.

The final expression for flux is

Φ =
∫ ∞

0
r′T S(r′)dr′

and, consequently, the expression for the error is

δΦ =
∫ ∞

0
r′δT S(r′) dr′

= S0

∫ R

0
r′
[

∞

∑
n=1

{∫ ∞

0
ξ

1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n

J0(ξ r)J0(ξ r′) dξ
}]

S(r′) dr′,
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where 1
A(ξ )

(
μ12μ21

A(ξ )B(ξ )

)n
is a strong monotone decreasing sequence. The dominating

term of the error Eφ (r) is

δφ 1(r) = S0

∫ R

0
r′δT (1)(r′) dr′

= S0μ12μ21

∫ R

0
r′
∫ ∞

0
ξ

1
A2(ξ )B(ξ )

J0(ξ r)J0(ξ r′) dξ dr′.

One may introduce an estimate for the explicit expression A2B, namely

A2(ξ )B(ξ ) = D2
1D2ξ 6 + . . .+Σ 2

R1ΣR2 > (2D1ΣR1ΣR2 +D2ΣR1)ξ 2 +Σ 2
R1ΣR2.

For convenience, we introduce the abbreviations

a = 2D1ΣR1ΣR2 +D2ΣR1, b = Σ 2
R1ΣR2

and estimate the dominant error contribution by

δ (1)φ(r′) <
1
a

∫ ∞

0
ξ

1

ξ 2 +
√

b
a

2 J0(ξ r)J0(ξ r′) dξ

=
1
a

∫ ∞

0
ξ

1

ξ 2 +
√

b
a

2 J0(ξ r)J0(ξ r′) dξ

=

⎧⎨
⎩

1
a I0(
√

b
a r′)K0(

√
b
a r) for 0 < r′ < r

1
a I0(
√

b
a r)K0(

√
b
a r′) for r < r′ < R

=
S0μ12μ21

a

(
K0(

√
b
a

r)
∫ r

0
r′I0(

√
b
a

r′) dr′

+I0(

√
b
a

r)
∫ R

r
r′K0(

√
b
a

r′) dr′
)
.

By a numerical test, one verifies that the error at the center is an order of
magnitude larger than the error at the outer radius R, and both are several orders
smaller than unity. Thus,

{En
φ}∞

n=1 = {E1
φ ,E

2
φ ,E

3
φ , . . .}

is a monotonically decreasing sequence of functions inside the domain [0,R].
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8.6 Conclusions

In this work a novel approach to solve neutron diffusion problems in cylindrical
geometry [DaKhOd11] was developed. The analytical expression found represents
an accurate solution of an approximate problem for the multi-group steady state and
multi-region diffusion equation in cylinder coordinates. An immediate conclusion
that may be drawn from this work is that for neutron diffusion problems the
Parseval identity is a considerably efficient technique to solve this type of problem.
As can be seen from the formulation, the present method provides an analytical
final expression without making use of simplifications. It is noteworthy that from
Parseval’s identity one obtains contributions by Bessel functions that are the
eigenfunctions of the radial Sturm-Liouville problem. If an analytical solution was
obtained by a spectral theory approach, the solution would have been expressed as
an expansion of orthogonal functions with an associated functional basis. Parseval’s
identity indicates a natural basis that should be used by a spectral method approach
and allows to truncate the basis to a small dimension still maintaining an acceptable
precision in the numerical results. It is noteworthy that the eigenvalue spectrum that
may be determined from the set of eigenfunctions seems to be independent of the
geometry considered, which was also indicated in [GoViBo10], where it was called
eigenvalue universality. Concluding, this method in cylindrical geometry can be
considered a reliable tool for solving more general problems in neutron diffusion, for
example, with more energy groups. We further plan to investigate results for a vari-
ety of situations of interest, where we hope to support this new method in the future.
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Chapter 9
What Is Convergence Acceleration Anyway?

B.D. Ganapol

9.1 Introduction

One of the primary objectives of the twelfth in the series of international conferences
on Integral Methods in Science and Engineering (IMSE) is

“. . . to promote new research tools, methods and procedures beyond the specific realms of
mathematics, . . .”

an objective within which convergence acceleration, to be described, clearly falls.
More appropriately, convergence acceleration can be considered “experimental
(applied) mathematics” in contrast to “theoretical mathematics.” More aptly stated
by Feynman [FeLeSa09],

Mathematics is not a science. . . , in the sense that it is not a natural science. The test of its
validity is not experiment.

Also, as has been stated by the author in the past,

Applied (numerical) mathematics is a science, since the test of its validity is experiment.

This presentation will provide the essence of convergence acceleration by
example. Two applications are considered—one in biophysics and the other in
reactor physics. The first is the simulation of self-assembly of proteins responsible
for infectious disease via misfolding. The second is for the characterization of
nuclear reactor transients by the point kinetics equations (PKEs). The connection
between these two applications is dynamics as represented by ordinary differential
equations.

For each application, the underlying (bio) physics will briefly be presented,
followed by the mathematical description. Next, the standard numerical approach is
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Fig. 9.1 A simulation of protein misfolding

outlined followed by application of convergence acceleration to enhance numerical
accuracy. Finally, each application is demonstrated by several illustrative examples.

9.2 Simulation of Abnormal Protein Growth

9.2.1 Biophysical Setting

A prion is an infectious agent promoting protein misfolding thought responsible
for a host of neurodegenerative diseases in mammals. Nobelist Stanley Prusiner
coined the word from the two words “proteinaceous” and “infectious” adding
“on” by analogy to “virion.” Misfolding of proteins is known to be responsible
for Creutzfeldt–Jakob disease and Kuru in humans and Bovine Spongiform En-
cephalopathy (BSE) in animals. Initially, misfolded proteins become a template for
further protein folding as shown in Fig. 9.1 leading to the corruption of cell protein
and disease onset. Misfolding induces fine fibers call fibrils, which grow from their
ends and replicate upon breakage. It is this dynamic behavior that we intend to
simulate.

Recently, in [KnEtAl09] there appeared an article entitled “An Analytical Solu-
tion to the Kinetics of Breakable Filament Self-Assembly.” The title was particularly
novel in that only infrequently will SCIENCE publish an article concerned with
analytical solutions. Realizing that self-assembly must be a nonlinear process only
heightens the mystery of the title and is the primary motivation for the analysis to
follow.
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We begin with the master equation describing the balance of filament growth
from monomers

∂ f (t, j)
∂ t

= 2k+m(t) f (t, j−1)−2k+m(t) f (t, j)

− k−( j−1) f (t, j)+2k−
∞

∑
i= j+1

f (t, i)+ knm(t)ncδ j,nc . (9.1)

Here, f (t, j) is the concentration of filaments of length j and m(t) is the concentra-
tion of free monomers. The terms on the RHS of (9.1) represent, in order from the
equality sign,

• increase in filament length to j by addition of a monomer;
• loss of filaments j by growth to length j+1;
• loss from breakage at any of the j−1 internal links;
• two possible lengths for i > j where breakage results in filaments of length j;
• spontaneous formation of a filament of length nc.

In addition, we use the notation

number density: P(t) =
∞

∑
j=nc

f (t, j),

mass density: M(t) =
∞

∑
j=nc

j f (t, j).

We can show that these moments obey the following moments equations exactly:

dP(t)
dt

= k− [m(t)+(2nc−1)P(t)]+ knm(t)nc + k−mtot ,

dm(t)
dt

= −2 [k+m(t)−nc(nc−1)k−/2]P(t)−ncknm(t)nc ,
(9.2)

where

M(t) = mtot −m(t),

with initial conditions

P(0) = P0, m(0) = mtot −M0.

Our goal is to solve these equations to a high numerical (extreme) accuracy. In
[KnEtAl09], the authors claim an analytical solution and write

P(t) =
mtot

2nc−1
− mtotk−

κ
e−(2nc−1)k−tEi(−C+eκt)+B2e−(2nc−1)k−t ,
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M(t) = mtot

[
1− exp

(
−C+eκt +C−e−κt +

knmnc−1
tot

k−

)]
, (9.3)

where

κ ≡
√

2mtotk+k−,

C± ≡ P0

mtot

√
2mtot

k+
k−
± 1

2
M0

mtot
± kn

mnc−1
tot

2k−
,

B2 ≡ P0

mtot
− 1

3
+

1√
2mtot

k+
k−

Ei(−C+),

and Ei is the exponential integral. Their solution derives from a fixed-point iteration
of one turn in M and two turns in P and neglects O(kn) terms. Clearly, this is not an
analytical solution but an analytical approximation. Nevertheless, a significant result
of their analysis is the establishment of scaling laws, for example the dimensionless
parameter kappa. However, they go on to assert that only by having an analytical
form at hand can such scaling laws be found. Here, we shall show that this assertion
is not true.

9.2.2 Numerical Formulation

A numerical solution is facilitated by recasting (9.2) in vector form by letting

y(t)≡
[

P(t)
m(t)

]
,

to give

dy(t)
dt

= A(y(t))y(t)+S(t),

where

A(y(t))≡
[−k−(2nc−1) −k−− knm(t)nc−1,

nc(nc−1)k− −2k+P(t)−ncknm(t)nc−1

]
, S(t)≡

[
k−mtot

0

]
.

The initial conditions are

y(0)≡
[

P0

mtot −M0

]
.
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A numerical algorithm is found by first discretizing time into uniform steps of
h = [t j, t( j+1)] and integrating over each step to give the algorithm

y0
j+1 ≡ y j,

yl
j+1 =

[
I− h

2
A j+1(yl−1

j+1)

]−1{[
I− h

2
A j

]
y j +

h
2

[
S j+1 +S j

]}
,

(9.4)

where y j is the approximation to y(t j). This is a standard Runge–Kutta second-order
scheme [ShGlTh03], where one can show that

y(t j) = y j(h)+
∞

∑
l=1

al, jh
2l (9.5)

with the dependency of the approximation on h now indicated. Also, note that (9.4)
is nonlinear as y j is in the A- matrix, which requires an additional iteration during
the time step.

To this point, we have derived the classical numerical treatment, which certainly
gives high accuracy for small time steps. Our goal here, however, is to achieve as
high an accuracy as possible in the most straightforward way possible. This will be
through convergence acceleration [Si03].

9.2.2.1 Convergence Acceleration

Consistency, the transition from a purely mathematical to a numerical algorithm
and back, requires taking a limit. This is the case for fixed-point iteration, finite
differences, finite elements, numerical quadrature, summation, and essentially all
numerical processes known. We clearly see this in the above formulation, where the
numerical method depends upon the time discretization (from mathematical formu-
lation to numerical approximation) and the accuracy of the numerical approximation
(from approximation back to the analytical (mathematical) solution) depends upon
the smallness of h, or, in other words, its limit to zero. Thus

y(t j) = lim
h→0

[y j(h)] .

The limit can also be viewed as the limit of the sequence of discretizations

y(t j) = lim
k→∞

[y j(hk)] ,

where the steps hk are essentially “free” to choose restricted only to give t j = jhk. It
is important to emphasize that the numerical approximation, as a limit, is no longer
a single approximation since it is replaced by a sequence of approximations tending
toward their limit

y j(h1),y j(h2), . . . ,y j(hk)→ y(t j).
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The role of convergence acceleration is to simply force convergence to the limit
more rapidly in the sense that one can construct a new sequence y j,k such that (by
component r)

lim
k→∞

[
y j,k−y(t j)

y j(hk)−y(t j)

]
r

= 0.

Now, the numerator approaches the limit faster than the original sequence in the
denominator. In this way, we achieve a higher degree of accuracy with fewer terms.
The key to this procedure, however, is the construction of the faster converging
sequence, which we now consider.

9.2.2.2 Application of Richardsons and Wynn-Epsilon Accelerations

Richardsons deferred limit [Si03] comes directly from the relation between the exact
and approximate solutions (see (9.5))

y(t j) = y j,0(h)+
∞

∑
l=1

a j,l,0h2l , (9.6)

where the initial approximation, based on h, is now called y j,0(h). By continually
refining the time grid by a factor of 2 and sequentially eliminating h2l in (9.6), one
arrives at a recurrence relation for higher-order approximations

y j,0(h) ≡ y j(h),

y j,k(h) ≡
[

22ky j,k−1(h/2)−y j,k−1(h)

22k−1

]
, k = 1,2, . . . .

Now, the higher-order approximation is

y(t j) = y j,k(h)+
∞

∑
l=k+1

al, j,kh2l .

y j,k is the accelerating sequence. The power of this sequence to accelerate is
observed by forming (by component r)

[
y j,k−y(t j)

y j(h)−y(t j)

]
r

=

∞

∑
l=k+1

ar,l, j,kh2l

∞

∑
l=1

ar,l, jh
2l

h2k,

which tends to zero with h and gives an approximation order of 2k.
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To decide when converged, one interrogates the sequences

y j,0(h/2k),y j,k(h); k = 0,1,2, . . .

for convergence by component; that is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e0 ≡ max
r=1,2

∣∣∣∣y j,0,r(h/2k)− y j,0,r(h/2k−1)

y j,0,r(h/2k)

∣∣∣∣< ε ,

eR ≡ max
r=1,2

∣∣∣∣y j,k,r(h)− y j,k−1,r(h)
y j,k,r(h)

∣∣∣∣< ε .

The limitation of Richardsons deferred approach is the requirement that the time
step be continually reduced. To offset this disadvantage, a sometimes more quickly
convergent sequence can be constructed from the nonlinear Wynn-epsilon (W-e)
acceleration [Si03], namely

ε(l)−1 ≡ 0

ε(l)0 ≡ Pl
j or ml

j, l = 0, . . . ,L

ε(l)k+1 = ε(l+1)
k−1 +

[
ε(l+1)

k − ε(l)k

]−1
, k = 0, . . . ,L; l = 0, . . . ,L− k−1.

Here, each subsequent sequence ε(l)k+1 formed by starting from the original sequence
represents an accelerated sequence that can be arranged in the array

ε(0)0 ε(0)1 ε(0)2 . . . ε(0)L−1 ε(0)L

ε(1)0 ε(1)1 ε(1)2 . . . ε(1)L−1

ε(2)0 . . . . . .

. . . ε(L−2)
2

ε(L−1)
1

ε(L)0

Only the entries in the even columns, starting from column zero, are relevant and
the most accurate approximation is usually the last entry in these columns; hence,
we interrogate

εWe ≡
∣∣∣∣∣
ε(L−i)

i − ε(L−i−2)
i

ε(L−i)
i

∣∣∣∣∣< ε , i = 2, . . . ,2[L/2]

for convergence.
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Fig. 9.2 Application of convergence acceleration

Figure 9.2 shows how convergence acceleration is implemented in the algorithm of
(9.4). Say, we are interested in 3 edits, t j, j = 1,2,3. A calculation is now performed
with (9.4) to find the moments at t1 with h = t1. Next, the initial interval [0, t1] is
partitioned by 2, where the added center point is indicated by 1 in Fig. 9.2. A second
calculation for the moments at t1 is performed, now with h = t1/2, thus using the
added edit. The interval is again halved, where the added edits are indicated now
by 2 and the moments at t1 are again determined with the added edits included. In
this way, we are building a sequence of approximations for the moments at t1. Both
Richardsons and W-e accelerations are then applied to this sequence to accelerate
convergence over the sequential grids to determine the high order approximation
at t1. When the moment approximations at t1 are within a desired limit, we move
to the second interval [t1, t2] and repeat the process for the moments at t2 with the
newly converged moments at the end of the first interval as the initial condition.
The calculation is particularly resistant against propagation error since each interval
begins with a highly converged initial condition.

It is possible to confirm the accuracy of convergence acceleration through a
manufactured solution. To do this, we assume a solution which, in this case, is the
starting iterate, of [KnEtAl09], for the fixed-point iteration leading to (9.3)

P0(t) = D+eκt +D−e−κt − ncknmnc−1
tot

2k+
,

M0(t) =
2k+mtotD+

κ
eκt − 2k+mtotD−

κ
e−κt − knmnc

tot

k−
,

(9.7)

with

D± ≡ ncknmnc−1
tot

4k+
± knmnc

totκ
4mtotk+k−

,

P0(0) = M0(0) = 0.

When (9.7) are introduced into (9.2) now including sources Sp and Sm, the
sources can be found. Thus, we are to solve
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dP(t)
dt

=−k−[m(t)+(2nc−1)P(t)]+ knm(t)nc + k−mtot +Sp(t),

dm(t)
dt

=−2[k+m(t)−nc(nc−1)k−/2]P(t)−ncknm(t)nc +Sm(t).

Since we know the solution for these sources, the numerical method should return
the analytical solution of (9.7), which is the diagnostic value of a manufactured
solution giving a precise error assessment.

We now consider an example with parameters

k+ ≡ 5×104M−1s−1,

k− ≡ 2×10−8s−1,

nc = 2,

M0 = 0μM,

P0 = 0μM,

kn = 2×10−5s−1M−1,

mtot = 5μM.

Figure 9.3a shows the moment time evolution. Figure 9.3b illustrates convergence
behavior of the original and three additional sequences accelerations. The latter
three accelerations are offset in time to better view the contrast between them. Each
horizontal line represents the M(t) approximation for a specific grid discretization,
which in this case is hk = 30/2k, k = 0,1, . . . ,7. As observed, the third grid of
Richardsons acceleration nearly outperforms 8 grids of the original calculation.
The W-e is not nearly as effective; while, a W-e/Richardsons acceleration is no
better than the original Richardson acceleration. Since only the original finite
difference sequence is used in Richardsons extrapolation, from this confirmation,
we concluded that convergence acceleration is indeed an effective way to use limited
accuracy data to achieve extreme accuracy results.

Figure 9.4 shows a comparison of the accelerated solution to the analytical
approximation of (9.3). The rapid growth of the prions is clearly evident resulting in
a sigmoid curve. The initial rise comes directly from elongation through monomer
adhesion as represented by the last term in (9.1) and is characterized by (9.7). As
secondary filament breakage and elongation represented by the remaining terms
on the RHS of (9.1) become increasingly important, elongation is arrested and the
sigmoid nature of the evolution emerges.

In addition, the converged accelerated solution seems to indicate a less rapid rise
than the approximate solution and therefore gives a slightly decreased phase lag
time, which is the measure of the onset of a spongiform disease. The phase lag time
is determined by the time from growth initiation to the time found by a tangent from
the inflection point to zero moment as noted in Fig. 9.4.
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Fig. 9.3 (a) Moments evolution and (b) Error by sequence acceleration for a manufactured
solution

To be entirely transparent, it must be remarked that the highly accurate converged
accelerated solution seems to add little to the analytical approximation. It does, how-
ever, provide a confidence in the solution that was lacking. The above formulation
in the larger sense is a demonstration of a new solution paradigm associated with
convergence acceleration, where near analytical accuracies are achievable from the
simplest of finite difference approximations.

Regardless of how the equations are solved, the real impact of their solution
is that they allow the consolidation of experimental results through scaling laws.
In particular, Fig. 9.5 shows that for in vitro experiments varying total insulin
content mtot , the analytical approximation and converged accelerated solution well
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Fig. 9.4 Mass evolution of the filaments indicating the onset of a spongiform disease

represent the data. This has also been shown for other experiments, like Formin-
Binding protein FBP28 [FeEtAl03] in Fig. 9.6. Here, the kinetics parameters have
been derived from the last curve in Fig. 9.6b to predict the first three curves. Both
the converged accelerated and analytical approximation capture the biophysics as
shown in Fig. 9.6a.

While the ability to predict a relatively large number of experiments is quite
remarkable, what about the requirement of an analytical solution or approximation
to be able to derive the scaling laws?

9.2.2.3 Dimensional Analysis

Apparently, the authors of [KnEtAl09] are unaware of dimensional analysis. It is
easy to see that the moments solution depends upon a number of parameters, namely

y(t) = F[k−,k+,kn,mtot ; t,P(t),M(t)],

where

[k+] = T−1,

[k−] = T−1M−1,

[kn] = T−1M−1,

[mtot ] = M,

[t] = T,
[P(t)] = M,

[M(t)] = M.
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Thus, two fundamental units moles (M) and time (T ) characterize the moments
solution. Therefore, from a dimensional analysis even without a solution, the
following two of six or so independent dimensionless quantities emerge

π1 ≡ k−t, π2 ≡ mtot
k+
k−

,

which, when combined, give the additional dimensionless quantity

π7(t) = π2
1 π2 = k−k+mtott

2 = κ2t2/2.

Here, κ represents the rate of multiplication of the filament secondary nucleation.
Since the analytical approximation (9.3) can be recast entirely in terms of these three
dimensionless numbers and the additional quantities
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πP(t)≡ P(t)
mtot

, πM(t)≡ M(t)
mtot

,

they indeed govern the time evolution of the solution.
If the moment equations are solved with convergence acceleration for 2,400

random sets of kinetic data and for several experiments with predetermined kinetic
data, then a plot of dimensionless quantities

π5 ≡ mtot
kn

k−

and π7, remarkably gives the straight line of Fig. 9.7. The equation of this line is

lnπ5 =−1.132−1.414
√

π7(τlag)

which, in the original variables, is

τlag = [ln(1/C+)−1.825]/κ . (9.8)
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To interpret the physics in (9.8) for zero initial conditions, we write

C+ ≡ kn
mnc−1

tot

2k−
,

where kn is the growth from primary nucleation. Hence, the phase lag time has weak
dependence on primary nucleation and strong dependence on κ , which controls
secondary nucleation through k+ and k−. Thus, it is important to include secondary
nucleation in any protein growth studies.

It is important to remark that the constant 1.825 in (9.8) is apparently more
accurate than the 1.718 found in [KnEtAl09] (see also (Knowles, Private commu-
nication)) and makes the phase lag time more accurate, presumably because of the
more accurate converged accelerated solution.

In summary, we began with one of the most standard and fundamental numerical
algorithms for solving a nonlinear ODE and wrapped it in a convergence acceler-
ation. It was then demonstrated that, if indeed, high accurate solutions are desired,
then convergence acceleration is a simple and reliable way to accomplish this. Next,
we consider a second example, which reinforces this conclusion.

9.3 Nuclear Reactor Kinetics

The second example to which convergence acceleration is applied is to nuclear
reactor transients. Here, as we shall see, convergence acceleration can be beneficial
in obtaining solutions which otherwise could not be found. The basic approach is
different from the first example, but is similar in implementation.
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Currently, there are a host of numerical methods applied to simulate reactor
transient behavior, including

• Runga–Kutta (RK) methods;
• exponential transform;
• better basis functions;
• imposed stiffness integrating factors;
• Padé approximants;
• Laplace transform inversion;
• piecewise constant reactivity approximations (PCA);
• converged accelerated finite differences;
• Taylor series (TS) solution.

Until recently, it seemed quite apparent that there was no one universal numerical
algorithm that was suited for both prescribed and nonlinear reactivity insertions.
Fortunately, the landscape has changed with the re-invention of the TS solution,
as will be shown. The TS solution has had a long history and was one of the first
methods to be considered (see [Vi67] and [Vi71]). The method has been modified
many times thereafter (see, for example, [Mi77], [Le95], [AbHa02], and [Ke65]).
We will again consider the TS solution, but now with convergence acceleration.

There are advantages and disadvantages to the TS solution. Two advantages are
that a piecewise continuous reactivity can be considered and both prescribed and
nonlinear reactivities can be treated. In addition, an analytical solution, not in closed
form however, is found. Disadvantages include, lack of closed form solution, and the
evaluation of an infinite series which, in the past, has proven quite difficult. This will
not be the case here.

In the solution to be featured, continuous analytical continuation (CAC) will
be coupled to convergence acceleration to provide a highly accurate numerical
evaluation of the PKEs.

9.3.1 Reactor Transients

9.3.1.1 Reactor Kinetics Equations

The PKEs describing a nuclear reactor transient are

dN(t)
dt

=

[
ρ(t,N)−β

Λ

]
N(t)+

m

∑
i=1

λiCi(t),

dCi(t)
dt

=
βi
Λ N(t)−λiCi(t), i = 1, . . . ,m.

(9.9)

The PKE equations relate the reactor neutron density, N, to changes in the
fissioning and absorbing properties of a reactor, such as from control rod motion.



130 B.D. Ganapol

These changes are characterized by the reactivity ρ , which can be imposed or
depend upon N. As the fission product inventory changes, some elements, called
precursors classified into m-groups i, will produce additional delayed neutrons, from
decay with decay constant λi. The precursors are also being created directly from
fission with a yield of βi, where β is the total yield over all delayed precursors
groups. The neutron generation time from birth to absorption is Λ .

When the Taylor series

y(t)≡
⎡
⎣ N(t)

Ci(t)
ρ(t,N)−β

⎤
⎦=

∞

∑
k=0

⎡
⎣ Nk, j−1

Ci,k, j−1

ρk, j−1−βδk0

⎤
⎦(t− t j−1)

k (9.10)

is placed in (9.9), we find that the Taylor coefficients satisfy the recurrence relation

(k+1)Nk+1, j =
1
Λ

k

∑
l=0

(ρk−l, j−βδk−l,0)Nl, j +
m

∑
i=0

λiCi,k, j,

(k+1)Ci,k+1, j =
βi

Λ
Nk, j−λiCi,k, j.

(9.11)

This procedure is called CAC [Vi71] and helps ensure convergence of the TS
by adjusting the time step appropriately. The initial conditions begin from a critical
reactor, so for the initial interval,

N0,0 = N(0), Ci,0,0 =
βi

λiΛ
N0,0, (9.12)

and for all subsequent intervals,

N0, j = N(t j) =
∞

∑
k=0

Nk, j−1(t j− t j−1)
k,

Ci,0, j = Ci,0(t j) =
∞

∑
k=0

Ci,k, j−1(t j− t j−1)
k.

(9.13)

9.3.2 Numerical Implementation

9.3.2.1 Application of Richardsons and Wynn-Epsilon Accelerations

Richardsons and the W-e accelerations are applied exactly as in the first example.
Every interval begins with a converged accelerated initial condition through either
Richardsons or the W-e acceleration, where now all evaluations are through the
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Table 9.1 1$ step insertion

t N(t)

0.1 7.5908411530517941433239438 E+07
0.2 3.3887149298117696852392218 E+13
0.3 1.5127952595759675797183971 E+19
0.4 6.7534435465850640099244904 E+24
0.5 3.0148825128983764083402778 E+30

TS of (9.10)–(9.13). A difference from Example 1 is that if any interval fails to
converge in 12 sub-grids, the calculation restarts that interval with additional edits
introduced. We allow 212 additions to the original interval. In addition, a passive
time step control is introduced. If the Taylor series fails to converge in 25 terms, the
current interval is subdivided and the calculation restarted. In this way, the Taylor
series will nearly always converge. In addition, we apply the W-e acceleration to
the Taylor series partial sums for acceleration. The entire algorithm is called the
convergence accelerated Taylor series (CATS).

A very convenient verification for CATS, or any other algorithm, exists for step
reactivity insertion. For this first case, reactivity is a step at time zero, i.e., the
instantaneous removal of a control rod. Then (9.9) written in vector form is

dy(t)
dt

= Ay(t),

with initial conditions

y(0)≡
[

1
β1

λ1Λ
. . .

βm

λmΛ

]T

,

gives the solution

y(t) = eAty(0).

If A is diagonalizable such that A = UWU−1, where W is a diagonal matrix of
eigenvalues and U is the matrix of eigenvectors, then

y(t) = UeWtU−1y(0). (9.14)

The results for N(t) from the CATS algorithm for $1 (ρ = β ) reactivity insertion in
a thermal reactor are shown in Table 9.1. The results agree to all 25 places with the
analytical solution (9.14), thus demonstrating true extreme accuracy.

A second test is through a manufactured solution as in Example 1. If (9.9) is
solved for reactivity, we find that

ρ(t) = β +
Λ

N(t)
dN(t)

dt
− 1

N(t)

m

∑
i=1

[
βie
−λit +λi

∫ t

0
dt ′e−λi(t−t ′)N(t ′)

]
. (9.15)
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One can now specify N(t) and find the reactivity for that specified neutron density
trace. For example, if

N(t)≡ 1+ f (1− e−αt), (9.16)

then the reactivity from (9.15) is found from

N(t)ρ(t) = β + fΛαe−αt

−
m

∑
i=1

βi

{
e−λit +(1+ f )(1− e−αt)− f

λi

λi−α
(e−αt − e−λit)

}
.

To put (9.16) into an appropriated Taylor series, we write

N(t)≡ 1+ f
(

1− e−αt j−1e−α(t−t j−1)
)
=

∞

∑
k=0

Nk, j(t− t j−1)
k

and

ρ(t)N(t) = H(t− t j−1) =
∞

∑
k=0

Hk, j(t− t j−1)
k,

which implies

N0, jρk, j = Hk, j−
k−1

∑
l=0

Nk−l, jρl, j.

The density and reactivity traces are shown in Fig. 9.8. The number of correct
digits is given in Fig. 9.9, where one observes a minimum of 24-digit agreement.

This seems quite remarkable for an algorithm that was previously thought to
perform so poorly.

9.3.2.2 Demonstration

Table 9.2 gives the neutron density for a prescribed ramp reactivity [ρ = at] of
a = 1$/s for a neutron generation time of Λ = 10−7 s representative of a fast reactor.
The novelty of this solution is that it is able to achieve extremely high neutron
densities. This is an extreme test of any discrete numerical method.

This case has been verified by an entirely different numerical method and again
provides confidence in the CATS algorithm.

As a final application, we consider the Doppler shutdown of a reactor reactivity
transient. For this case, the reactivity behaves as

ρ(t) = at−B
∫ t

0
dt ′N(t ′), (9.17)
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Fig. 9.8 (a) Neutron density and (b) reactivity for a manufactured solution

Table 9.2 Ramp $1/s

t N

0.01 1.010097111E +00
0.10 1.113320112E +00
0.20 1.260559925E +00
0.50 2.136409107E +00
1.00 1.207814197E +03
1.10 3.257593355E +99
1.15 1.028975360+219

where B is the Doppler shutdown reactivity coefficient. The TS coefficients for this
reactivity are

ρ1, j = a,
ρk, j = −BNk−1, j, k = 2, . . . .

(9.18)
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Fig. 9.10 Reactor shutdown transient

The neutron density is shown in Fig. 9.10, which shows how the initial transient
sends the density to high values after which the temperature rises steeply and the
Doppler shutdown reactivity begins to dominate to reduce the density. The algorithm
seems to works flawlessly. Table 9.3 gives the time to the first peak and peak
densities by interrogating the time derivative for a sign change. These are the first
accurately published values for the peak times and densities and can serve as a
valuable benchmark.

In summary, the CATS method enables the Taylor series solution. This is done
by convergence acceleration of the initial points to each interval and CAC to ensure
convergence of the TS. A demonstration indicates that the method can deliver
extreme accuracy by wrapping the TS solution in convergence acceleration.
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Table 9.3 Time to peak and peak neutron density for compensated transients

a B tpeak Npeak

0.1 10−11 2.246634E−01 2.420382E +11
10−13 2.389069E−01 2.898674E +13

0.01 10−11 1.106077E +00 2.012352E +10
10−13 1.155148E +00 2.491178E +12

0.003 10−11 2.910582E +00 5.114160E +09
10−13 3.007602E +00 6.534474E +11

0.001 10−11 7.488766E +00 1.274075E +09
10−13 7.683588E +00 1.721008E +11

9.4 Conclusion

While the application of convergence acceleration to ODEs is not a new idea
[BuSt66], [Gr63], its true application has never been fully appreciated. Most
methods developers seem to consider convergence acceleration as a way to confirm
the performance of a numerical method rather than to be the numerical method
itself. In this presentation, it has clearly been shown that convergence acceleration
is more than simple confirmation to find the order of a numerical method, but is
a pathway to extreme accuracy. While extreme accuracy, 10−7–10−9 relative error,
may not always our the goal, is comforting to know that it is certainly possible if
desired.

More importantly, if, as a numerical methods developer, we are aware of conver-
gence acceleration, then becomes our responsibility and duty to apply convergence
acceleration in order to achieve the most accurate results possible.
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Chapter 10
On the Fractal Pattern Phenomenology
of Geological Fracture Signatures
from a Scaling Law

I. Gioveli, A.J. Strieder, B.E.J. Bodmann, M.T. Vilhena, and A.S. Athayde

10.1 Introduction

Geologic fractures geometry and their connectivity are considered the main features
when it comes to prospection of hydrocarbon reservoirs and also for the search of
aquifers, since it is becoming increasingly important in the question of freshwater
supply [OdEtAl99], [Be00], [PuEtAl01], [DaEtAl06]. Although there is a common
consensus that fractures are commonly caused by stress–strain exceeding the
admissible rock strength, it is save to say that there does not exist yet a quantitative
and concise theory that relates fractures patterns to their origin by compression,
or tension during genesis [Ha85], [RaHu87]. There exist mathematical model
approaches such as the Mohr–Coulomb model, which is far from being a useful
formulation in order to simulate fracture patterns similar to those found in rocky
areas.

The complexity on the fracture pattern genesis as well as the dynamics of
geological fracture pattern formation gives us the motivation to focus our attention
on determining scaling laws, as a first step into a direction that shall reveal in the
future the dynamics that leads to the observed fracture signature. In fact in this work
we show that the fractal dimension of the geological fractures at different scales is
a manifestation of a clean scaling law for the fracture directions.
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It is notable that the directional step length range fits with considerable accuracy
and affine feature in the log-log plane of step length by number of fractures with
grid line intersections (to be introduced in the next section), suggesting a self-
affine mechanism for fracture genesis. Hence, the present discussion is an attempt
to translate the affine property of fracture direction occurrence into a fractal-discrete
scheme, which represents the interactions of the shear or stress field with the
considerable complex set of boundary conditions, established by the geological
profile at each observable scale.

Fractal geometry has been a useful guide for understanding many natural
patterns since it seems to be a common optimization solution used by Nature.
The scale invariant fracture pattern is one of the many examples found in the
geological scenarios where a fractal geometry is verified. In fact, the fracture
hierarchy is composed by successive generations of fractures in different directions
resulting from the multiple ramification of their antecedent (similar to a Cantor set
construction), which reflects somehow the influence of the stress field modification
by the presence of fractures of a given scale. From generation to generation, lengths
diminish suggesting an underlying fractal geometry, which we confirm by our fractal
analysis presented in Sects. 10.3–10.4.

In its consecutive generations (n = 0,1,2 . . .), the hierarchy begins with the
largest fracture scale, which gives rise to successive fracture scale subdivisions.
The total of generations is finite by the fact that the analysis underlying images
are limited by their resolution (i.e., the granular structure of outcrops, aerial
photographs, remote sensing images among others) [Tu97]. Motivated by the
fractal architecture of the fracture hierarchy scheme, which exhibits geometrically
approximate self-similarity [Hi89], [Tu97], the present discussion is dedicated
to the question whether affine characteristics and self-similar structure imposed
by observational findings permit some sort of “reverse engineering” which may
in a future work lead to an fracture pattern description implemented in a fractal
discrete scheme [At99], [Ba04], [Ba84], [CaEtAl94], [CaCh95], [CaChCo03],
[MoBoVa02], [PrVM03]. Such a procedure could replace the usual continuous
formalisms based on mathematical spectral analysis which is in general too
complicated when complex boundary conditions are involved.

The use of the fractal dimension method for geological fracture patterns is not
new in the literature, for instance, in [VoKr04] it was used to analyze the apparent
fracture intensity with their spatial orientation. General aspects of fracture systems
in geological media with scaling laws were considered in [BoEtAl01], where
the principal concern focused on the spatial distribution of fractures, the fracture
intensity, and their self-similar appearance in different scales (see also [LaEtAl02],
[NSEtAl05], [OrMaLa06]). To the best of our knowledge the perspectives that
arise from our present discussion are new, since they may be considered a first step
towards an approach that in a long term may open pathways for a dynamical fracture
pattern genesis simulation beyond the phenomenological implementation, presented
in this work.

Our article presents a study of the fractal dimension for an anisotropic fracture
system which is typical for a selected geological site (Sect. 10.2), more specifi-
cally, homogeneous structural areas in Central Brazil (see Fig. 10.1). The fractal
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Fig. 10.1 (continued)
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dimension was obtained by the Cantor Dust method [VeEtAl90], [VeEtAl91] for
the fracture orientations which permits to establish the spatial fracture frequency
distribution an essential input for the determination of the rock quality index as
shown in [HuPr79].

10.2 Geological Setting of the Studied Areas

The studied areas are located in Central Brazil, in the Tocantins Structural Province
(TSP, [AlEtAl81]). The TSP is a Neoproterozoic continental collision chain
show predominantly north–south alignment. Of principal interest is the Abadiânia
Nappe Thrust Sheet [StSu99], whose pseudo-stratigraphic D1 units are, from
bottom to top: (a) Abadiânia Supersuite (Araxá metasedimentary suite and their
Tectonic Block fragments suite), that correspond to an ophiolitic melange of the
Neoproterozoic collision; and (b) a series of gneissifed units including Padre Souza
Gneiss Suite, Maratá Lithodeme, Brumado Gneiss Suite, and others that are still
being distinguished. The regional extent of the Abadiânia Nappe (D2 structure)
from west to east developed a number of ESE tectonic inflexions, branching thrust
faults and folds (D3 structures) in order to accommodate D3 deformation (see
[StSu99] for details). The final deformation stage (retrogressive D4) corresponds
to localized trans-current faults, controlled by a local stress field related to tectonic
inflexions (see Fig. 10.2). One of the criteria for the choice of the area was good
visibility of fractures over a considerable range of scales in order to analyze the
fracture patterns for possible self-similarity [St93]. The Central Brazil (TSP) was
not subject to younger deformational episodes, which is also the case for the areas
located north, central, and south from the Serra do Fundão Inflexion. The fracture
maps (shown in Fig. 10.2) for the Serra do Fundão in the scale 1 : 97000 were
taken from [St93]. They originate from aerial photographs (1:110 000 scale) and
printed LANDSAT TM5 images (221-072-X, band 5, scale 1:100 000; taken at
the 16th of September of 1990; [St93]). Each fracture map represents the exact
extension of the drainage linear segments, as observed in the aerial photographs and
images.

�

Fig. 10.1 (continued) Geological setting of studied area in Central Brazil. (1) Phanerozoic
sedimentary covers. Tocantins Structural Province; (2) undeformed low-grade meta-sediments;
(3) Deformed low-grade meta-sediments; (4) Medium-grade meta-sediments (ophiolitic melange)
and orthogneisses; (5) Neoproterozoic gneisses, granites, and volcano-sedimentary sequences;
(6) Archean and Mesoproterozoic gneisses, granites, and volcano-sedimentary sequences. Man-
tiqueira Structural Province. (7) Deformed low-grade meta-sediments; (8) gneisses and granites of
the Coastal Complex; (9) Granulytic gneisses of the Juiz de Fora Complex; (10) Cratonic granite-
gneissic units of the (A) Amazonian and (B) São Francisco cratons. (11) Quadrilátero Ferrífero
Greenstone Belt. (12) Main thrust faults
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Fig. 10.2 Fracture maps in the Serra do Fundão region (GO, Brazil; scale 1:97 000), compiled
from aerial photographs of reference Strider (1993). The maps are subdomains of the larger domain
indicated by the box in the Fig. 10.1 and are located as arranged in the figure
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10.3 The Fractal Dimension and Self-similarity Analysis

In order to perform the fractal dimension analysis we introduce in this section the
adopted procedure, which if proven significant indicates the afore announced self-
similarity. From the formal fractal construction point of view, a self-similar object
with fractal dimension D may be divided into N smaller copies of itself scaled
down by a factor r, where the number N is given in terms of the fractal dimension
and the scaling factor by N = 1

rD . From the geometrical construction of the fractal
the number of copies N and the ratio r are known, but the fractal dimension, that
determines the scaling law, may be determined from the relation

D =− logN
logr

.

Note that the construction of the fractal pattern with its self-similarity is not
known a priori but shall be modeled in a progressive investigation, where the
present fractal dimension analysis constitutes a first step. Already in [LiBZ05] it
was pointed out that for natural objects the evidence for self-similarity may not be
obtained by comparison of scales and simple counting of copies N per scale, in
other words N and r, that are known in a theoretical construction of a fractal, are
not directly accessible by observation, so that one has to resort to other techniques.
For natural objects the dimensional Hausdorff–Besicovitch conception may be used,
which may be implemented by a scaling law regression [GoMuMa98] from the box
counting [Hi89], [Ba95] or the Cantor Dust method [VeEtAl90], [VeEtAl91], that
yield the associated fractal dimension. It is noteworthy that each of these methods
gives rise to a different fractal dimension for the same object [GiEtAl93], due to the
fact that each method projects on a specific property that obeys a scaling law and in
this sense they are complementary rather than contradictory. Since form observation
the fracture orientation appears as a significant property in this paper the Cantor
Dust method is used for the determination of the fractal dimension of the fracture
maps. This dimension is a measure for the fracture density anisotropy concerning
the trigonometric fracture orientation. For completeness we present in the following
both methods and their resulting fractal dimensions.

The Cantor Dust method is applied on two-dimensional surfaces, i.e. the
digitalized fracture maps of the Serra do Fundão region), following the reasoning of
[VeEtAl90], [VeEtAl91]. To this end a C++ language program code was developed
to automatically calculate log(R) (length of steps) and log(p) (ratio between total
number of fractures per grid line intersections and total step number). The program
code creates the orthogonal grid lines with varying step length (R) and trigonometric
orientation to determine the fractal dimensions in different orientations. The Cantor
Dust fractal dimension is then determined by the expression:

D = 1− log p
logR

. (10.1)
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Fig. 10.3 The log(p)–log(R) diagram and related fractal dimension by the Cantor Dust method.
(a) Diagram for the whole range of p in a given area. (b) Diagram for the lowermost p values
showing inclination close to unity. (c) Final diagram after eliminating lower and uppermost p
values and showing the inclination of the linear correlation

The fractal dimension is determined from the linear correlation between log(p)–
log(R) (10.1) as shown in Fig. 10.3. In order to avoid errors in the fractal dimension
due to physical limitations of the image (as granularity, for instance), lowermost p
values are eliminated, when they show inclination close to unity (Fig. 10.3b); further
p values larger than 0.8 are also eliminated when they show inclination close to 0
(for a detailed discussion of the cut application, see [VeEtAl91]). After application
of the cuts the fractal dimension is obtained with a correlation coefficients larger
than 0.97, which indicates a clear signature for a scaling law (see Fig. 10.3c).

As already announced before the Cantor Dust method is used in order to measure
the anisotropy of the pattern, therefore the fracture maps are rotated sequentially by
10◦ counter-clockwise and for each orientation from 0 to 180◦ the fractal dimension
is determined. A comparison between the respective orientations may be obtained
using a polar plot, where for each angle the positive length 1−D (i.e., the inclination
of the regressions) is shown in Fig. 10.4. The anisotropy may be cast into two
parameter form using the best fit with an ellipse for each fracture map by a procedure
introduced in [HaFl98] and implemented with the Matlab program library. In the
polar diagrams, the greatest and the smallest axis of the best fit ellipse indicates the
directions of the higher and the lower inclinations of the log(p)–log(R) diagrams.
The measure for anisotropy is then defined by the axis ratio of the best fit ellipse.
Thus, the larger the axial ratio, the larger the anisotropy of the fracture maps.
Figure 10.5 shows the best fit ellipses for the set of fracture maps. Table 10.1
summarizes the found anisotropy parameters for each fracture map which may be
related to the Serra do Fundão region in Fig. 10.2. According to our findings, the
axis ratios range from 1.049 to 1.157.
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Fig. 10.4 Polar diagram of 1−D for different grid orientations

The inclinations found in the log(p)–log(R) plot from the Cantor Dust method
show values in the range of 0.5 and 0.9 which corresponds to fractal dimensions
between 0.5 and 0.1 for each trigonometric orientation and for each selected area.
Figure 10.5 shows that the number of fractures intersecting with the reference grid
is indeed anisotropic, where the ellipses of anisotropy show higher inclination if
there is a larger number of fractures in other directions than the grid orientation;
conversely it shows lower inclinations for a lower number of intersections. These
directions are different for each fracture map area (see Fig. 10.2), where by inspec-
tion one observes differences in the preferred orientation for fractures in each area.

The second method mentioned above—the box counting method—is quite often
used in order to analyze self-similarity. In the context of fracture patterns there
exist applications in the literature, as, for instance, [Hi89], [AnEtAl98], [Ba95],
[Ba01]. Note that by virtue box-counting captures the fracture length distribution
but is not sensitive to the orientation of the pattern, which we believe to be the
principal signature in the process of formation. A formal definition of the box-
counting method may be found in [Fa97]. The basic procedure for the box-counting
method makes use of a cover of the object by two- or three-dimensional boxes
of edge length δ , where a total of Nδ boxes enclose the object completely. Upon
rescaling the length to a fraction of the preceding one establishes a relation between
δ and Nδ . In case of an apparent self-similarity the log(δ )− log(Nδ ) plot yields a
scaling law, i.e., a linear correlation, a manifestation of a fractal dimension.

This definition is closely related to the question of the significance of the
dimension determined by box-counting. The number of boxes (in the present
case squares) of length δ that intersect the pattern is related to the dispersion or
geometrical irregularity of the arrangement at the scale defined by δ . The numerical
value of the fractal dimensions reflects the rapidity with which these irregularities
evolve in the limit δ → 0. For practical applications there are limitations that
have to be taken into account with respect to the maximum and minimum size
of the boxes as exposed in detail in [GoMuMa98]. As an illustration we show
this influence using the Koch curve as a test object with known fractal dimension
D = 1.2618. The box-counting procedure was realized using the public domain
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Fig. 10.5 Best fit ellipse polar plots of the fracture maps (scale 1:97 000) for the Serra do Fundão
region (GO, Brazil). The values on the ellipses represent the inclination in the log(p)–log(R) plot
(a)–(g) for the respective fracture maps of the areas (a)–(g) in Fig. 10.2

software FracAnalysis. The fractal dimension and the box-counting method are
related by the inclination

D =− logNδ
logδ

,

which is illustrated in Fig. 10.6 for different maximum and minimum sizes, as well
as different scale changes.
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Table 10.1 Best fit ellipse parameters for fracture maps (scale 1:97 000) for the
Serra do Fundão region (GO, Brazil)

Fracture map
Large axis
direction

Small axis
direction Axis ratio Ellipse origin

A 74◦ 164◦ 1.049 (−0.008;0.012)
B 7◦ 97◦ 1.171 (−0.067;0.108)
C 58◦ 148◦ 1.05 (−0.002;−0.029)
D 102◦ 12◦ 1.157 (0.045;−0.236)
E 7◦ 97◦ 1.117 (−0.043;0.1064)
F 170◦ 80◦ 1.12 (0.026;0.098)
G 43◦ 133◦ 1.06 (0.01;0.023)

Fig. 10.6 Fractal dimension analysis of Koch’s curve, for different box sizes and box rescaling.
The minimum and maximum box sizes and increments are (a) min = 10, max =180, incr = 11;
(b) min = 7, max = 100, incr = 5; (c) min = 10, max = 110, incr =15; (d) min = 10, max = 110,
incr = 6
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Table 10.2 Fractal dimension of the fracture pattern maps (scale 1:97 000) of the Serra do Fundão,
(Goias, Brazil)

Map A B C D E F G

Fractal dimension 1.3978 1.2608 1.2510 1.3443 1.3246 1.2450 1.1511
No. of fractures 134 128 65 77 108 59 53

The first two plots Fig. 10.6a, b are evaluated using 15 and 20 points, the non-
adequateness of the maximum and minimum box sizes imposes a visible error.
The third plot shows already a reasonable result for the fractal dimension, which
is confirmed by the last plot where the number of box sizes was increased. The
obtained result is in agreement with the theoretical expected value and also validates
the program as a useful tool, once the minimum box size is not smaller than the
smallest visible characteristic length of the curve, which analogously applies for the
maximum box size in comparison with the largest observable characteristic length
(see also [KuUmPa97]).

Application of the box-counting method to the thrusts in Japan yielded fractal
dimensions between 1.05 and 1.60 [Hi89], the same method applied to fracture
patterns observed in a copper mine in Arizona (USA) showed fractal dimensions
between 1.34 and 1.92 [GhDa93]. Another work [Ba95] considered fracture
patterns in the Yucca Mountain region (USA) and obtained numerical values
between 1.12 and 1.16. The differences in the findings for the fractal dimen-
sions are likely to be related to the different histories that caused the fracture
patterns.

Further analyses are based on the digitalized fracture maps of the Serra do
Fundão region (Goias, Brazil) and made use of the program FracAanalysis. The
following procedure was adopted: The smallest admissible box size was chosen
such as to be slightly larger than the smallest fracture size, whereas the largest box
size was fixed in order to contain the whole pattern following the prescription in
[Ba95]. The box size scaling was chosen in step/sizes such that the log–log plot
contained between 15 and 20 points. The results for the box-counting method are
shown in Table 10.2.

From the fact that the double logarithmic plots (Fig. 10.6) show a clear scaling
law permits to interpret the scaling in Table 10.2 in terms of fractal dimensions that
range between 1.1511 and 1.3978. Here the larger fractal dimension corresponds to
the fracture map with a more dense and more complex structure, so that one may
conclude that box-counting captures mainly fracture length density.

From our explanations concerning the two methods, Cantor Dust and box-
counting, it becomes apparent that both methods are rather complementary and not
contradictory, since they measure different properties of a specific map. As expected
Cantor Dust is a method that indicates anisotropy which for a surface map has only
an angular degree of freedom so that the fractal dimension shall be between 0 and
1, whereas the fractal dimensions by box-counting range from 1 to 2. Note that the
same reasoning as in Cantor’s Dust method was proposed by Buffon in 1777 to
determine the numerical value of π but making use of non-isotropy of the method.
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Fig. 10.7 Fracture maps for area A in the Serra do Fundão region (GO). (a) Fracture lineament
map interpreted from satellite images and aerial photographs. (b) Outcrop scale fracture pattern in
the selected area

Figure 10.7 shows a significant correlation of fracture alignments for certain
areas, which indicates that for the further study the Cantor Dust analysis is the
adequate tool for the fractal dimension analysis. Anisotropy is verified determining
the inclination in the log(p)–log(R) plots for a sequence of orientations as shown in
the following sections.
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10.4 Structural Fracture Analysis

In the last section scaling laws for fracture length density as well as anisotropy was
verified using quantities that are related to the technique that allows to determine the
fracture pattern associated fractal dimension. Moreover it is desirable to translate
the procedure variables into those that refer directly to an observational quantity,
the fracture frequency ( f ) and the respective length scale R (i.e., the step length).
The fracture frequency ( f ) is a measure of the fracture quantity in a given rock mass,
which depending on the consideration may be expressed in either of three ways: (a)
the number of fractures per unit volume, (b) the number of fractures per unit area,
and (c) the number of fractures per unit length in a given direction [TeEtAl05],
where the latter is of interest for the remaining discussion.

Recalling that the linear fracture frequency can be defined by the ratio between
the number of fractures that intersect a unit sample step of a given direction and
the length R of this unit step, one may directly relate f , R, and p, where the latter
is known to count the total number of fractures per grid line intersections and total
step number (see (10.1)), so that f = p/R. The fractal dimension from (10.1) may
be cast in to the form

D =− log f
logR

.

For the purpose of simulating or constructing fracture patterns the scaling law
that relates the fracture frequency and the length scale is then given by the
inverse proportionality f = R−D. An alternative interpretation of the linear fracture
frequency is taking its inverse which is the fracture spacing in a given direction.
The direct proportionality of fracture spacing and scaling is a manifestation of
the aforementioned reasoning, that oriented fractures of one generation are the
boundaries for the fractures of the subsequent scale a symmetry feature that a
genuine dynamical equation for fracture pattern formation shall obey.

However, Fig. 10.5 and Table 10.1 show that fracture systems vary from one site
to another in the Serra do Fundão region (GO). This anisotropic fracture distribution
is due to the different fracture patterns present in each area. In fracture map for area
A one identifies a strike slip duplex pattern, as can be seen in the map (Fig. 10.7a),
and in the outcrop (Fig. 10.7b). The fracture lineaments map (Fig. 10.7a) can be seen
as sets of straight lines, where each set may be parametrized by a linear equation
y = ax+b, if one aligns the y-axis from south to north and the x-axis from west to
east, which yields the fracture lineament in vector form λ = (x,y)T (see also [Pi56]).
From the angular distribution, one recognizes six fracture families as shown in the
rose diagram (Fig. 10.8). Each family may be characterized by an average fracture
direction and a mean fracture length. The findings are given in Table 10.3.

From a comparison of Tables 10.1 and 10.4 one observes that the small axis
direction for the best fit ellipse in fracture map A is close to the mean direction
for fracture family 2 (Table 10.3). Fracture family 2 shows the highest fracture
frequency or equivalently resulting in the lower intersection number for this
direction. The highest inclination (highest f ) in Fig. 10.5a is between 70 and 90◦
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Fig. 10.8 Rose diagram for fracture lineaments in area A in the Serra do Fundão (GO) region.
The outer circle represents 30% of the total (135) fracture lineaments in the map area

Table 10.3 Results for vector analysis of fracture lineaments in map A in the Serra do Fundão
(GO) region. Fracture families are distinguished by the rose diagram. The geographic azimuth
angles are transformed into trigonometric ones

Fracture
family
range in ◦

Number
of fractures

Mean
direction◦

Mean
length m

Mean
direction
dispersion

Mean length
variation

Total 000–180 135 120.42 390.83 3.46 36.85
Family 1 010–025 27 021.38 749.19 0.68 59.22
Family 2 165–175 42 169.05 594.99 0.23 42.47
Family 3 135–160 18 145.46 977.05 2.17 105.99
Family 4 120–135 33 122.35 682.14 0.96 52.30
Family 5 095–100 6 098.78 792.12 0.28 115.26
Family 6 075–085 9 079.97 330.83 0.35 37.75

indicating the highest number of intersections. The classification into families may
now be used for simulating a fracture pattern, as shown in the next section.

10.5 Fracture Lineament Map Simulation

The fracture lineament map is then simulated according to the fractal dimension
and taking into account the identified fracture lineament families, represented by
their respective line equation (Table 10.4). The mean direction and length and also
their deviation is then used to define an angular coefficient (a) for each fracture



10 On the Fractal Pattern Phenomenology 151

Table 10.4 Equations defining each fracture lineament family present in map A in the Serra do
Fundão (GO) region. Variation coefficients are presented and defined according to Table 10.3, and
n is a real number

Fracture family
range in ◦ Fracture lineament equation

Number of
simulated fractures

Family 1 010–025 y = (0.3914±0.011913)x∓n7.0313 24
Family 2 165–175 y =±n1.9413 38
Family 3 135–160 y = (−0.6882±0.037977)x∓n14.2278 25
Family 4 120–135 y = (−1.57848±0.016716)x∓n28.9462 20
Family 5 095–100 y = (−6.477923±0.004911)x∓n58.1902 7
Family 6 075–085 y = (5.652498±0.0061)x∓n53.1228 9

0 1 2km

Fig. 10.9 Simulation of fracture map for area A in the Serra do Fundão region (GO, Brazil)

lineament family. Due to the finiteness of the lines it is sufficient to generate a
specific position (x,y) for the whole set of lineaments of a specific family. Since
such a simplification might cause that line segments overlap, such a coincidence
may be reduced in the simulation making use of the constraint given by the fracture
spacing S = RD. Moreover, taking into account that lines of one family are parallel
in the model simulation, b is related to fracture spacing by b = RD

√
a2 +1. Thus,

calculating b for each fracture family and replacing a and b in the linear equation
yields the third column in Table 10.4.

The simulation was implemented in form of a Matlab code using the afore
established rules. For each fracture family a representative was created to construct
the lineament map as shown in Fig. 10.9.

10.6 Conclusion

In the present work we analyzed the fracture pattern in rocks for the Serra do Fundão
region (GO, Brazil), which is the signature for the dynamics of rock evolution
for that region. Our discussion showed that fractal analysis is beyond a mere
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classification scheme but closely related to the dynamics by virtue of a clear self-
similarity signature. We came to this conclusion by the structural geology analysis,
where we distinguished different fracture sets that after parametrization was used
to simulate a fracture lineaments map. These by inspection reproduced some
characteristics of the original map, i.e. the fracture directional arrangement. The
analytical fracture simulation took into account fracture direction and frequency,
and the fractal dimension.

Those quantities are also relevant for rock qualification indexing that consider the
fracture frequency in their computation. As was shown by the Cantor Dust approach,
the fractal dimension can be related to the fracture frequency and fracture spacing
commonly used in structural geology and rock mechanics. Cantor Dust is a one-
dimensional embedding related to anisotropy (depending on the angle only) and
thus the fractal dimension shall be 0 < D < 1, whereas box-counting measures the
length density distribution which implies in a fractal dimension 1 < D < 2. From
our explanation we showed that those different findings are a consequence of the
procedure’s complementary character, because each procedure captures a different
aspect from the same phenomenon.

We are completely aware of the fact that our discussion is far from being
complete. Nevertheless, the clear relation of the scaling law and the reasoning that
fractures of larger scales play the role of boundaries in smaller scales and thus
contemplates a more profound understanding of the fracture pattern signature. In
this sense, a reproduction of our model theory could be implemented in laboratory,
starting with a non-homogeneous and flat material sheet that is stretched beyond its
admissible elastic limit and thus create a fracture pattern that should have a self-
similar signature.

From the theoretical point of view we consider our contribution as a first step
into a direction where the fracture dynamics may be understood in terms of some
sort of inverse engineering, where the fractal scheme may substitute the otherwise
necessary dynamical equation system with its constraints and boundary conditions
in order to establish, which is known as a dynamical model. Such an approach
may open pathways for a progressive modeling of fracture pattern pathology and
in future hopefully for genesis of rock formation with its dependence on cooling
and implications on shear stress fields. Although this may appear speculative, we
at least believe to have shown with the present work that fracture analysis by self-
similarity contains far more information than taxonomic ones, an impression that
works known from the literature quite often transmit.

Of course it would be desirable to shed further light on some of the presented
ideas that we postpone to a future work. An immediate challenge resulting from
the presented discussion is the exploration of the self-similarity underlying scale
invariance which we will cast into a simplified dynamical model for fracture pattern
generation. In parallel, simulations will be improved implementing the combination
of findings by the Cantor Dust and the box-counting method. Works in this direction
may turn useful in the future once a more detailed comprehension of rock history
will give further information for prospection site selections.
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Chapter 11
Spectral Boundary Homogenization Problems
in Perforated Domains with Robin Boundary
Conditions and Large Parameters

D. Gómez, M.E. Pérez, and T.A. Shaposhnikova

11.1 Introduction and Formulation of the Problem

Let Ω be a bounded domain in R
3, with a smooth boundary ∂Ω . We assume that

γ = Ω ∩{x1 = 0} �= /0 is a domain on the plane {x1 = 0}. We denote by G0 the ball
of radius 1 centered at the origin of coordinates. For a domain B, and for δ > 0, we
denote by δB = {x |δ−1x ∈ B}. We set

G̃ε =
⋃

z∈Z′
(aε G0 + εz) =

⋃
j∈Z′

G j
ε ,

where Z
′ is the set of points of the form z = (0,z2,z3) with integer components

z2,z3; aε = C0εα , C0 is a positive number, ε is a small positive parameter that we
shall make converge towards zero, and α is a parameter, α ≥ 1. We define

Gε =
⋃
j∈ϒε

G j
ε , where ϒε = { j ∈ Z

′
: G j

ε ⊂ G̃ε , G
j
ε ⊂Ω , ρ(∂Ω ,G

j
ε)≥ 2ε}.

The number of G j
ε with index j ∈ϒε is |ϒε |= O(ε−2).

In what follows, we set

Ωε = Ω \Gε , Sε = ∂Gε , ∂Ωε = ∂Ω ∪Sε .

D. Gómez
Dpto. Matemáticas, Estadísitica y Computación, Universidad de Cantabria, Santander, 39005
Spain
e-mail: gomezdel@unican.es

M.E. Pérez (�)
Dpto. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria,
Santander, 39005 Spain
e-mail: meperez@unican.es

T.A. Shaposhnikova
Department of Differential Equations, Moscow State University, Moscow, 119992 Russia
e-mail: shaposh.tan@mail.ru
C. Constanda et al. (eds.), Integral Methods in Science and Engineering: Progress
in Numerical and Analytic Techniques, DOI 10.1007/978-1-4614-7828-7__11,
© Springer Science+Business Media New York 2013

155

mailto:gomezdel@unican.es
mailto:meperez@unican.es
mailto:shaposh.tan@mail.ru


156 D. Gómez et al.

We consider the space H1(Ωε ,∂Ω) to be the completion with respect to the norm
H1(Ωε) of the set of functions u ∈ C ∞(Ω ε), u vanishing in a neighborhood of ∂Ω .

Let us consider the eigenvalue problem
⎧⎪⎪⎨
⎪⎪⎩
−Δuε = λ ε uε in Ωε ,

uε = 0 on ∂Ω ,
∂uε

∂ν
+ ε−κ auε = 0 on Sε ,

(11.1)

where ν denotes the unit outward normal vector ν to ∂Ωε on Sε , a≡ a(x) is a strictly
positive continuously differentiable function in Ω and κ is any real parameter.

The variational formulation of (11.1) is: find λ ε , uε ∈H1(Ωε ,∂Ω), uε �= 0, such
that ∫

Ωε

∇uε ∇vdx+ ε−κ
∫
Sε

auε vds = λ ε
∫

Ωε

uε vdx, ∀v ∈ H1(Ωε ,∂Ω). (11.2)

For each fixed ε > 0, problem (11.2) is a standard spectral problem in the couple of
spaces H1(Ωε ,∂Ω)⊂ L2(Ωε), with a discrete spectrum. Let us consider

λ ε
1 ≤ λ ε

2 ≤ ·· · ≤ λ ε
k ≤ ·· · k→∞−−−−−−→∞ (11.3)

the sequence of its eigenvalues repeated according to their multiplicities. Let us
consider {uε

k}∞
k=1 the set of associated eigenfunctions which form an orthonormal

basis in L2(Ωε).
The convergence of the spectrum of (11.2) towards that of the homogenized

problem has been proved in [GoPeSh12]. The homogenized problem depends on the
different values/relations of the parameters κ and α . For the sake of completeness,
we gather in Theorem 1 below the results obtained in Sect. 9 of [GoPeSh12] along
with the corresponding homogenized problems, namely, problems (11.5)–(11.9).

As is well known, problem (11.5) ((11.6), (11.7), (11.8) and (11.9), respectively),
has a discrete spectrum; let us consider

λ1 ≤ λ2 ≤ ·· · ≤ λk ≤ ·· · k→∞−−−−−−→∞ (11.4)

the sequence of its eigenvalues repeated according to their multiplicities and we
denote by {uk}∞

k=1 the set of associated eigenfunctions which form an orthonormal
basis in L2(Ω).

Theorem 1. For each fixed k, k = 1,2,3 . . ., λ ε
k in (11.3) converge towards λk in

(11.4) when ε → 0, where {λk}∞
k=1 are the eigenvalues of

• the Dirichlet problem

−Δu = λu in Ω , u = 0 on ∂Ω , (11.5)

when α ≥ 1 and κ < 2(α−1) or α > 2 and κ ∈ R ;
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• the Dirichlet problem in Ω− ∪Ω+

−Δu = λu in Ω− ∪Ω+, u = 0 on ∂Ω ∪ γ , (11.6)

when α ∈ [1,2) and κ > 2(α−1) ;
• the problem

⎧⎪⎪⎨
⎪⎪⎩

−Δu = λu in Ω− ∪Ω+,

u = 0 on ∂Ω ,

[u] = 0,

[
∂u
∂x1

]
= 4πC0u on γ ,

(11.7)

when α = 2 and κ > 2, where the brackets mean the jump across γ;
• the problem

⎧⎪⎪⎨
⎪⎪⎩

−Δu = λu in Ω− ∪Ω+,

u = 0 on ∂Ω ,

[u] = 0,

[
∂u
∂x1

]
= 4πC2

0au on γ ,
(11.8)

when α ∈ [1,2) and κ = 2(α−1) ;
• the problem

⎧⎪⎪⎨
⎪⎪⎩

−Δu = λu in Ω− ∪Ω+,

u = 0 on ∂Ω ,

[u] = 0,

[
∂u
∂x1

]
= 4πC0hu on γ ,

(11.9)

when α = κ = 2, where h≡ h(x) is the strictly positive continuously differentiable
function defined by

h(x) =
a(x)C0

a(x)C0 +1
, x ∈Ω . (11.10)

This result does not provide bounds for convergence rates of eigenvalues and
the associated eigenfunctions, since it is obtained from general convergence results
for nonlinear stationary problems, and convergence rates for the solutions of these
stationary problems rely on the usual assumption of smoothness of the solution
of the limiting problem. Since we are dealing with eigenvalue problems such an
assumption makes no sense (see Remark 3 in [GoPeSh12] in this connection).

The aim of this paper is to obtain precise bounds for discrepancies of the
eigenvalues and the associated eigenfunctions in terms of the eigenvalue number
and the parameter ε . We emphasize that obtaining these bounds proves to be
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essential in determining, e.g., the time in terms of ε in which certain solutions of the
associated evolution problems can be approached through time-dependent functions
constructed from the homogenized problem (see [Pe08] and [Pe11]). Associated
evolution problems arise, e.g., in Ecology: see [GoPeSh12] for further references
on the model and related works in the literature.

For the proofs, we use a result from the spectral perturbation theory (Lemma 4)
for ε-dependent Hilbert spaces and operators, which provides convergence for the
spectrum when convergence of the associated stationary problems is known. Since
we are dealing with a linear problem, in this paper we obtain a certain smoothness
for the solution of the stationary problem (11.18) (cf. Lemma 5). Consequently,
avoiding the assumptions on smoothness of solutions in [GoPeSh12] we obtain
lower order powers or ε in the bounds for the discrepancies, but in these bounds we
can control the dependence on the data f in the norm of L2(Ω) (cf. (11.23), (11.24)
and (11.29)), which is a usual topology for the spectral problems here considered.
To prove the above-mentioned smoothness, we use a variant of results on interior
estimates of Sobolev norms for solutions of second order elliptic equations with
Dirichlet boundary conditions (cf. [Mo66] and [Sh08]), and Sobolev embedding
theorems which also imply some restriction on the dimension of the space under
consideration.

Section 11.2 contains some preliminary results on the solutions of the stationary
problems (11.16) and (11.18) used to prove the convergence in the rest of the
paper. Section 11.3 contains the convergence results for the stationary problems
(cf. Theorem 2) and the spectral convergence (cf. Theorem 3) for the case α = 2
and κ > 2. Section 11.4 contains the corresponding convergence results for the case
α ∈ [1,2) and κ = 2(α − 1). Both cases provide a critical relation between the
parameters α and κ . These critical relations amount to a critical size of the cavities
for the different values of the parameter κ (in which the dimension of the space is
also involved), implying a nontrivial average on the transmission condition for the
flux throughout γ in the way outlined in Fig. 11.1. The critical case where α = κ = 2
is considered in [GoEtAl12]: the average on γ contains a nonlinear dependence on
a(x) (cf. problem (11.9)). Nevertheless, we outline that certain proofs of results
in [GoEtAl12] are further developed in this paper (cf., e.g., Lemmas 3 and 5).
In addition, the proof of the convergence in Theorem 1 in [GoPeSh12] has been
performed only for the critical case where α = κ = 2; here, we perform in detail the
proof for the other critical cases (cf. problems (11.7) and (11.8)) and, at the same
time, we provide bounds for convergence rates of the eigenelements. For brevity,
we avoid proofs for the rest of the cases (cf. problems (11.5) and (11.6)) but we also
provide the above-mentioned convergence rates.

We emphasize that the spectral problems here considered differ from others in the
literature. As a matter of fact, asymptotics for the eigenvalues of (11.1) for the case
of one single hole has been considered in, e.g., [Ro93]; for a spatial distribution
of the holes periodically distributed let us mention [OlSh95b]; similarly, for a
two-dimensional domain and κ ∈ (0,1) we refer to [Oz96]. For the geometrical
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Homogenized problem:
a linear dependence on a(x)
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Fig. 11.1 Sketch of spectral homogenized problems depending on α and κ

configuration here considered and κ = 0 we mention [LoEtAl97]. Let us refer to the
above-mentioned papers for further references on spectral problems in perforated
domains.

11.2 Preliminary Results

Let us introduce some notation and results which will prove to be useful for the
rest of the paper. In the lemmas below, and in what follows, C denotes a constant
independent of ε . Also, in these lemmas, the constant C does not depend on the
functions w appearing in their statements. See Lemma 1 in [OlSh95a] and Lemma 1
in [LoEtAl97] for the proof of Lemma 1 and 2, respectively.

Lemma 1. There exists an operator Pε from H1(Ωε ,∂Ω) into H1
0 (Ω), such that

for w ∈ H1(Ωε ,∂Ω) we set Pε w = w̃ the function which satisfies: w̃(x) = w(x) for
x ∈Ωε , and

‖w̃‖H1(Ω) ≤C‖w‖H1(Ωε ) and ‖∇w̃‖L2(Ω) ≤C‖∇w‖L2(Ωε ). (11.11)
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Lemma 2. Let P j
ε be the center of the ball G j

ε and let T j
ε denote the ball of radius

b0ε with center P j
ε ( j ∈ϒε); 0 < b0 < 1. Then,

∣∣∣∑
j∈ϒε

∫

∂T j
ε

wds−4πb2
0

∫
γ

wdx̂
∣∣∣≤Cε1/2‖w‖H1(Ω), w ∈ H1

0 (Ω).

Here, and in what follows, x̂ denotes x̂ = (x2,x3).

Lemma 3. Let Πε be Πε = Ω ∩{−ε/2 < x1 < ε/2}. Then, for all w ∈ H1
0 (Ω),

‖w‖L2(Πε ) ≤Cε1/2‖∇w‖L2(Ω), (11.12)

∣∣∣1ε
∫

Πε

wdx−
∫
γ

wdx̂
∣∣∣≤Cε1/2‖∇w‖L2(Ω) (11.13)

and

‖w‖L4(Πε ) ≤Cε1/8‖∇w‖L2(Ω). (11.14)

Proof. We refer to Lemma 2.4 in Sect. II.3 of [MaKh74] for the proof of (11.12)
and (11.13). Besides, we observe that (11.14) can be obtained as a consequence of
the Hölder inequality, namely, from:

‖w‖Lq(Πε ) ≤ ‖w‖λ
Lp(Πε )

‖w‖1−λ
Lr(Πε )

for w ∈ Lr(Πε)

where p≤ q≤ r and 1/q= λ/p+(1−λ )/r, 0< λ < 1 (cf. Sect. 7.1 in [GiTr01], for
example). Now, taking p= 2, q= 4, r = 6 and λ = 1/4, we deduce that ‖w‖L4(Πε ) ≤
‖w‖1/4

L2(Πε )
‖w‖3/4

L6(Πε )
, and, by (11.12) and the embedding of H1

0 (Ω) into L6(Ω), we

obtain (11.14).

For the proofs of Theorems 3, 5, 7, 9, 11, and 13, we use the technique
in Sect. III.4 of [OlShYo92] (cf. also [LoEtAl97] and [OlSh95a] for further
references). For the sake of completeness, we introduce a general strong result
from the spectral perturbation theory: see Theorems 1.4 and 1.7 in Chap. III of
[OlShYo92] for its proof.

Lemma 4. Let Hε and H0 be two separable Hilbert spaces with the scalar products
(·, ·)ε and (·, ·)0, respectively. Let Aε ∈ L (Hε) and A0 ∈ L (H0). Let W be a
subspace of H0 such that ImA0 = {v ∣∣v = A0u : u ∈ H0} ⊂ W . We assume that
the following properties are satisfied:

(C1) There exists an operator Rε ∈L (H0,Hε) and a constant a > 0 such that, for
any f ∈W , ‖Rε f‖ε converge towards a‖ f‖0 as ε → 0.



11 Spectral Boundary Homogenization Problems 161

(C2) Aε and A0 are positive, compact, and self-adjoint operators on Hε and
H0, respectively. Besides, the norms ‖Aε‖L (Hε ) are bounded by a constant
independent of ε .

(C3) For any f ∈W , ‖AεRε f −Rε A0 f‖ε → 0 as ε → 0.
(C4) The family of operators Aε is uniformly compact, i.e., for any sequence f ε in

Hε such that supε ‖ f ε‖ε is bounded by a constant independent of ε , we can
extract a subsequence f ε ′ verifying ‖Aε ′ f ε ′ −Rε ′w0‖ε ′ → 0, as ε ′ → 0, for
certain w0 ∈W .

Let {με
i }∞

i=1 ({μ0
i }∞

i=1, respectively) be the sequence of the eigenvalues of Aε (A0,
respectively) with the usual convention of repeated eigenvalues. Let {wε

i }∞
i=1 and

({w0
i }∞

i=1, respectively) be the corresponding eigenfunctions which are assumed to
be an orthonormal basis in Hε (H0, respectively).

Then, for each fixed k there exists a constant Ck independent of ε and there is
εk > 0 such that for ε ≤ εk,

|με
k −μ0

k | ≤Ck sup‖AεRε u−Rε A0u‖ε

where the sup is taken over all the functions u in the eigenspace associated with
μ0

k , u such that ‖u‖0 = 1. In addition, for any eigenvalue μ0
k of A0 with multiplicity

s (μ0
k = μ0

k+1 = · · · = μ0
k+s−1), and for any w eigenfunction corresponding to μ0

k ,
with ‖w‖0 = 1, there exists wε , wε being a linear combination of eigenfunctions
{wε

j} j=k+s−1
j=k of Aε corresponding to {με

j } j=k+s−1
j=k , such that

‖wε −Rε w‖ε ≤Ck‖AεRε w−Rε A0w‖ε , (11.15)

for a certain constant Ck independent of ε .

For f ∈ L2(Ω), we consider uε ∈ H1(Ωε ,∂Ω) the solution of

∫
Ωε

∇uε ∇vdx+ ε−κ
∫
Sε

auε vds =
∫

Ωε

f vdx, ∀v ∈ H1(Ωε ,∂Ω). (11.16)

It satisfies the following estimates (see Lemma 2.7 and Theorem 2.1 in
[GoPeSh12]):

‖∇uε‖L2(Ωε ) + ε−κ/2‖uε‖L2(Sε ) ≤C‖ f‖L2(Ωε ),

‖ũε‖H1(Ω) ≤C‖ f‖L2(Ωε ).
(11.17)

Let b≡ b(x) be a strictly positive continuously differentiable function in Ω . For
f ∈ L2(Ω), we consider u ∈ H1

0 (Ω) the solution of

∫
Ω

∇u∇vdx+
∫
γ

buvdx̂ =
∫
Ω

f vdx , ∀v ∈ H1
0 (Ω). (11.18)
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Lemma 5. Let u be the solution of (11.18) with f ∈ L2(Ω). Then,

‖u‖H1(Ω) ≤C‖ f‖L2(Ω), (11.19)

‖u‖W 1,4(Ω) ≤C‖ f‖L2(Ω) (11.20)

and

‖u‖L∞(Ω) ≤C‖ f‖L2(Ω). (11.21)

Proof. Taking v = u in (11.18) and using Poincaré inequality we get (11.19).
In order to show (11.20), we consider the function ψ(x) = u(x)exp(g(x)) where

g is defined by

g(x) =

{−b(0, x̂)x1 if x1 > 0
0 if x1 ≤ 0.

Thus, ψ is a solution of

{−∂xi(a
i j ∂x j ψ +biψ) = f in Ω

ψ = 0 on ∂Ω ,

with

ai j(x) = exp(−g(x)), bi(x) =−exp(−g(x))∂xig(x), i, j = 1,2,3.

By the smoothness of b, we can show that ai j = a ji are bounded from below and
from above by strictly positive constants, ai j ∈C0,1(Ω) and bi ∈ L∞(Ω). Then, on
account of the Dirichlet condition for ψ on the boundary, we use an adaptation of
the proof in Theorem 1 in [Sh08] for n = 3, q = 4, and p = 12/7. This can be
summarized as follows: by means of local maps, locally, the problem for ψ can be
transformed into another problem posed in a domain of R3 with a Dirichlet condition
on a plane. Then, a suitable extension of the transformed solution gives the solution
of a problem within the framework of Theorem 1 in [Sh08], and we can apply
both the interior W 1,4 smoothness of the solution in Theorem 5.5.4’ of Sect. V.5 in
[Mo66] and the interior Sobolev estimates in Theorem 1 of [Sh08]. Consequently,
ψ ∈W 1,4

0 (Ω) and we can write

‖ψ‖W 1,4(Ω) ≤C(‖ψ‖L1(Ω) +‖ f‖L12/7(Ω)).

Now, by definition of ψ , the smoothness of b, the embedding of Lr(Ω) into Ls(Ω)
for 1≤ s≤ r ≤ ∞ and (11.19), we obtain
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‖u‖W 1,4(Ω) ≤C‖ψ‖W 1,4(Ω) ≤C(‖u‖L1(Ω) +‖ f‖L12/7(Ω))≤C‖ f‖L2(Ω),

and (11.20) holds.
Finally, (11.21) can be obtained directly from (11.20) and the embedding of

W 1,4(Ω) into L∞(Ω).

In order to prove the convergence, we introduce the test function Wε . Let P j
ε be

the center of the ball G j
ε and we denote by T j

ε the ball of radius ε/4 with center
P j

ε . Let us consider the functions w j
ε ( j ∈ ϒε) as the solutions of the following

problems

⎧⎪⎨
⎪⎩

Δw j
ε = 0 in T j

ε \G j
ε ,

w j
ε = 1 on ∂G j

ε ,

w j
ε = 0 on ∂T j

ε .

(11.22)

We define the function Wε ∈ H1(R3) by extending by 1 for x ∈ Gε and by 0 for
x ∈ R

3 \ ⋃
j∈ϒε

T j
ε . As a matter of fact, for α = 2 w j

ε , used in Sect. 11.3, reads

w j
ε(x) =

|x−P j
ε |−1− (ε/4)−1

(C0ε2)−1− (ε/4)−1 ,

0≤Wε ≤ 1, and the weak convergence Wε ⇀ 0 in H1
0 (Ω), as ε → 0, holds.

11.3 Convergence Results for α = 2 and κ > 2

Theorem 2. Let α = 2, κ > 2, and f ∈ L2(Ω). Let Wε be the function defined by
(11.22). Let uε be the solution of (11.16) and u the solution of (11.18) with b(x) =
4πC0. Then, we have

‖uε −u+Wε u‖2
H1(Ωε )

+ ε−κ‖uε‖2
L2(Sε )

≤Cεmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω), (11.23)

‖uε −u‖2
L2(Ωε )

≤Cεmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω). (11.24)

Proof. Let us consider (11.16) and (11.18) with v = uε − u+Wε u ∈ H1(Ωε ,∂Ω)
and v = ũε − u +Wε u ∈ H1

0 (Ω) as test functions, respectively. Subtracting both
equalities and taking into account that Wε = 1 in Gε , we obtain

‖∇(uε −u+Wε u)‖2
L2(Ωε )

+ ε−κ
∫
Sε

au2
ε ds = I1 + I2 + I3
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where

I1 =

∫
Gε

∇u∇ũε dx,

I2 =−
∫

Gε

f ũε dx,

I3 =
∫

Ωε

∇(Wε u)∇(uε −u+Wε u)dx+4πC0

∫
γ

u(ũε −u+Wε u)dx̂.

Now, considering the volume of Gε , (11.20), (11.17), and (11.12), we obtain

|I1| ≤ ‖∇u‖L4(Gε )|Gε |1/4‖∇ũε‖L2(Ω) ≤Cε‖ f‖2
L2(Ω),

|I2| ≤ ‖ f‖L2(Gε )‖ũε‖L2(Πε ) ≤C‖ f‖L2(Gε )ε
1/2‖∇ũε‖L2(Ω) ≤Cε1/2‖ f‖2

L2(Ω).

Let us estimate I3. Using

∫
Ωε

∇(Wε u)∇wdx =
∫

Ωε

∇Wε ∇(uw)dx−
∫

Ωε

∇Wε ∇uwdx+
∫

Ωε

Wε ∇u∇wdx

for w = uε −u+Wε u, the Green formula for the first integral on the right-hand side
above, and the definition of Wε we have that I3 = I3a + I3b + I3c, where

I3a = ∑
j∈ϒε

∫

∂T j
ε

∂ν w j
ε u(uε −u+Wε u)ds+4πC0

∫
γ

u(ũε −u+Wε u)dx̂,

I3b = ∑
j∈ϒε

∫

∂G j
ε

∂ν w j
ε u(uε −u+Wε u)ds and

I3c =−
∫

Ωε

∇Wε ∇u(uε −u+Wε u)dx+
∫

Ωε

Wε ∇u∇(uε −u+Wε u)dx.

Taking into account the explicit computation of the normal derivatives of w j
ε ,

Lemma 2 and the trace theorem in H1(Ω), we have

|I3a| ≤
∣∣∣ C024

1−4C0ε

∣∣∣
∣∣∣∑

j∈ϒε

∫

∂T j
ε

u(uε −u+Wε u)ds− π
4

∫
γ

u(ũε −u+Wε u)dx̂
∣∣∣
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+
∣∣∣ 4πC0

1−4C0ε
−4πC0

∣∣∣
∣∣∣
∫
γ

u(ũε −u+Wε u)dx̂
∣∣∣

≤ Cε1/2‖∇(u(ũε −u+Wε u))‖L2(Ω).

Then, from the embedding of H1
0 (Ω) into L6(Ω), the boundedness of Wε in H1(Ω),

(11.17), (11.19), (11.20), and (11.21), it follows that

|I3a| ≤Cε1/2(‖∇u‖L4(Ω)‖ũε−u+Wε u‖L4(Ω) +‖u‖L∞(Ω)‖∇(ũε−u+Wε u)‖L2(Ω))

≤Cε1/2‖ f‖2
L2(Ω).

Besides, by the explicit form of the normal derivatives of w j
ε and the definition

of Wε , we can rewrite I3b as

I3b =
1

ε2C0(1−4C0ε)

∫
Sε

uuε ds.

Thus, computing the area of Sε and using (11.21) and (11.17) we get

|I3b| ≤Cε−2‖u‖L∞(Ω)|Sε |1/2‖uε‖L2(Sε ) ≤Cε(κ−2)/2‖ f‖2
L2(Ω).

In a similar way,

|I3c| ≤ ‖∇Wε‖L2(Ω)‖∇u‖L4(Πε )‖ũε −u+Wε u‖L4(Πε )

+|Πε |1/4‖∇u‖L4(Πε )‖∇(ũε −u+Wε u)‖L2(Πε ),

and by the boundedness of Wε in H1(Ω), (11.20), (11.19), (11.17), and (11.14) we
get |I3c| ≤Cε1/8‖ f‖2

L2(Ω)
.

Now, gathering all the above estimates, we conclude that

‖∇(uε −u+Wε u)‖2
L2(Ωε )

+ ε−κ‖uε‖2
L2(Sε )

≤Cεmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω). (11.25)

To obtain (11.23) from (11.25), we consider the Poincaré inequality for the H1-
extension of uε − u+Wε u to Ω given by Lemma 1, Pε(uε − u+Wε u) ∈ H1

0 (Ω),
which satisfies (11.11) for w = uε −u+Wε u.

Finally, from (11.23), the definition of Wε , (11.12), and (11.19), we can write

‖uε −u‖2
L2(Ωε )

≤ ‖uε −u+Wε u‖2
L2(Ωε )

+‖Wε u‖2
L2(Ωε )

≤C(εmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω) +‖u‖2

L2(Πε )
)
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≤C(εmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω) + ε‖∇u‖2

L2(Ω))

≤Cεmin(1/8,(κ−2)/2)‖ f‖2
L2(Ω).

Consequently, (11.24) holds and the theorem is proved.

Theorem 3. Let α = 2 and κ > 2. Let {λ ε
k }∞

k=1 and {λk}∞
k=1 be the eigenvalues of

problem (11.1) and (11.7), respectively. Then, for each fixed k there exists a constant
Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckεmin(1/8,(κ−2)/2). (11.26)

Moreover, for any eigenvalue λk of (11.7) with multiplicity s (λk = λk+1 = · · · =
λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) = 1, there

exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of (11.1)
corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckεmin(1/8,(κ−2)/2). (11.27)

Proof. Let us define H ε = L2(Ωε), H 0 = L2(Ω) with the usual scalar products.
Let us introduce the operators A ε : H ε →H ε , A 0 : H 0→H 0. For f ε ∈H ε ,
we set A ε f ε = uε where uε ∈ H1(Ωε ,∂Ω) is the unique solution of (11.16).
Consequently, the eigenelements of A ε are {((λ ε

k )
−1,uε

k)}∞
k=1 with {(λ ε

k ,u
ε
k)}∞

k=1
the eigenelements of (11.2). In the same way, for f ∈H 0, we set A 0 f = u where
u ∈ H1

0 (Ω) is the unique solution of (11.18) for b(x) = 4πC0. Consequently, the
eigenelements of A 0 are {((λk)

−1,uk)}∞
k=1 with {(λk,uk)}∞

k=1 the eigenelements
of (11.7).

We define Rε : L2(Ω)→ L2(Ωε), as the restriction operator, namely, (Rε f )(x)=
f (x) if x ∈Ωε . We also define W = H1

0 (Ω) which contains the space Im(A 0).
On account of (11.17) and (11.24), it is self-evident that the properties (C1)–(C3)

of Lemma 4 are satisfied. Let us prove property (C4) in Lemma 4. In order to do
this, for the f ε ∈ L2(Ωε), as stated in property (C4), we consider f̂ ε ∈ L2(Ω) the
extension of f ε by zero in Gε . We have that ‖ f̂ ε‖L2(Ω) is bounded by a constant
independent of ε and consequently, there is a subsequence ε ′ → 0 and a certain
f 0 ∈ L2(Ω) such that f̂ ε ′ ⇀ f 0 in L2(Ω). Considering uε ′ = A ε ′Rε ′ f̂ ε ′ and w0 ∈
H1

0 (Ω) solution of (11.18) for b(x) = 4πC0 and f = f 0, we rewrite the proof in
Theorem 2 with minor modifications, and we obtain that ‖uε ′ −w0‖L2(Ωε )→ 0, as
ε ′ → 0. Consequently, property (C4) also holds.

Now, applying Lemma 4, we have that for each fixed k,

∣∣(λ ε
k )
−1− (λk)

−1
∣∣≤Ck sup‖uε ,k−u0,k‖L2(Ωε ) (11.28)
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where the supremum is taken over all the functions fk in the eigenspace associated
with (λk)

−1, fk are such that ‖ fk‖L2(Ω) = 1, uε ,k = A εRε fk, and u0,k = RεA 0 fk.
But (11.24) allows us to assert that

∥∥uε ,k−u0,k
∥∥2

L2(Ωε )
≤Ckεmin(1/8,(κ−2)/2)‖ fk‖2

L2(Ω) ≤Ckεmin(1/8,(κ−2)/2)

for a certain constant Ck independent of ε . From this last inequality, (11.28) reads
|(λ ε

k )
−1− (λk)

−1|2 ≤Ckεmin(1/8,(κ−2)/2) which ensures the boundedness of (λ ε
k )
−1

by a constant independent of ε and consequently the estimate for the eigenvalues
(11.26) holds.

Finally, let us note that the estimate for the eigenfunctions (11.27) also holds
applying (11.15) and (11.24).

11.4 Convergence Results for α ∈ [1,2) and κ = 2(α−1)

Theorem 4. Let α ∈ [1,2), κ = 2(α−1) and f ∈ L2(Ω). Let uε be the solution of
(11.16) and u the solution of (11.18) with b(x) = 4πC2

0a(x). Then, we have

‖uε −u‖2
H1(Ωε )

+ ε−κ‖uε −u‖2
L2(Sε )

≤Cεq‖ f‖2
L2(Ω) (11.29)

where q = 1/4 if α = 1 and q = min{(3α − 2)/4, 3(α − 1)/2, (2−α)/2} if α ∈
(1,2).

Proof. Let us consider formulas (11.16) and (11.18) with v = uε−u ∈H1(Ωε ,∂Ω)
and v = ũε −u ∈ H1

0 (Ω) as test functions, respectively. Subtracting both equalities,
we obtain

‖∇(uε −u)‖2
L2(Ωε )

+ ε−κ
∫
Sε

a(uε −u)2 ds = R1 +R2 +R3

where

R1 =

∫
Gε

∇u∇(ũε −u)dx, R2 =−
∫

Gε

f (ũε −u)dx and

R3 = 4πC2
0

∫
γ

au(ũε −u)dx̂− ε−κ
∫
Sε

au(uε −u)ds.

Now, considering the volume of Gε , (11.19), (11.20), (11.17), and (11.12), we obtain

|R1| ≤ ‖∇u‖L4(Gε )|Gε |1/4‖∇(ũε−u)‖L2(Ω) ≤Cε(3α−2)/4‖ f‖2
L2(Ω), (11.30)
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|R2| ≤ ‖ f‖L2(Gε )ε
1/2‖∇(ũε−u)‖L2(Ω) ≤Cε1/2‖ f‖2

L2(Ω). (11.31)

Let us estimate R3. First, let us note that if α = 1, then κ = 0 and by Lemma 2
|R3| ≤Cε1/2‖∇(au(ũε −u))‖L2(Ω). But, from the smoothness of a, we can write

‖∇(au(ũε −u))‖L2(Ω) ≤C‖∇(u(ũε −u))‖L2(Ω)

≤C[‖u‖L∞(Ω)‖∇(ũε −u)‖L2(Ω)

+‖∇u‖L4(Ω)‖ũε −u‖L4(Ω)].

Thus, using (11.21), (11.17), (11.19), (11.20), and the embeddings of Lr(Ω) into
Ls(Ω) for 1≤ s≤ r ≤ ∞ and H1

0 (Ω) into L6(Ω), we conclude

‖∇(au(ũε −u))‖L2(Ω) ≤C‖ f‖2
L2(Ω) (11.32)

and

|R3| ≤Cε1/2‖ f‖2
L2(Ω) for α = 1. (11.33)

We assume that α ∈ (1,2) and write Yε = ∑
j∈ϒε

(εY +ε j)\G
j
ε = ∑

j∈ϒε
Y j

ε \G
j
ε , where

Y = (−1/2,1/2)3. We introduce the function θε(x) as a solution of the problem

⎧⎨
⎩

Δθε = με x ∈ εY \aε G0,

∂ν θε =−1 x ∈ ∂ (aε G0),

∂ν θε = 0 x ∈ ∂ (εY )\∂ (aε G0),

where με = − 4πC2
0ε2(α−1)−1

1− (aε ε−1)3|G0| . We assume that
∫

εY\aε G0

θε dx = 0. Then, by

rewriting the computation in Sect. 1.4 of [OlSh96] with minor modifications, (cf.
also estimate (36) and Lemmas 1 and 2 in [OlSh96]), we deduce that

‖∇θε‖2
L2(Yε )

≤Cε3α−2. (11.34)

We denote by θ j
ε (x) the solution of the problem posed in Y j

ε \G j
ε .

By means of θε , the integral on Sε can be transformed into a volume integral.
Thus, we can write

∫
Sε

au(ũε −u)ds =− ∑
j∈ϒε

∫

Y j
ε \G j

ε

∇θ j
ε ∇(au(ũε −u))dx−με ∑

j∈ϒε

∫

Y j
ε \G j

ε

au(ũε −u)dx
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and R3 = R3a +R3b +R3c, where

R3a = (4πC2
0 + ε1−κ με)

∫
γ

au(ũε−u)dx̂,

R3b = ε−κ ∑
j∈ϒε

∫

Y j
ε \G j

ε

∇θ j
ε ∇(au(ũε −u))dx

and

R3c = ε1−κ με

[1
ε ∑

j∈ϒε

∫

Y j
ε \G j

ε

au(ũε −u)dx−
∫
γ

au(ũε −u)dx̂
]
.

By definition of με , the trace theorem in H1(Ω), (11.32), and (11.34), it follows
that

|R3a| ≤C(aε ε−1)3‖∇(au(ũε −u))‖L2(Ω) ≤Cε3(α−1)‖ f‖2
L2(Ω),

|R3b| ≤Cε(3α−2)/2−κ‖∇(au(ũε −u))‖L2(Ω) ≤Cε(2−α)/2‖ f‖2
L2(Ω).

In order to estimate R3c, let us define Π̃ε as Π̃ε = Πε \ ⋃
j∈ϒε

Y j
ε . Then

1
ε ∑

j∈ϒε

∫

Y j
ε \G j

ε

au(ũε −u)dx−
∫
γ

au(ũε −u)dx̂

=
1
ε

∫
Πε

au(ũε −u)dx−
∫
γ

au(ũε −u)dx̂

− 1
ε

∫
Gε

au(ũε −u)dx− 1
ε

∫

Π̃ε

au(ũε −u)dx. (11.35)

The two first terms on the right-hand side of (11.35) can be estimated directly by
(11.13) and (11.32):

∣∣∣∣1ε
∫

Πε

au(ũε −u)dx−
∫
γ

au(ũε −u)dx̂

∣∣∣∣≤Cε1/2‖∇(au(ũε −u))‖L2(Ω)

≤Cε1/2‖ f‖2
L2(Ω).
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Besides, using (11.12), (11.32), |Gε | ≤Cε3α−2 and |Π̃ε | ≤Cε2, we obtain

∣∣∣∣1ε
∫

Gε

au(ũε −u)dx

∣∣∣∣≤Cε−1|Gε |1/2‖au(ũε −u)‖L2(Πε ) ≤Cε3(α−1)/2‖ f‖2
L2(Ω),

∣∣∣∣1ε
∫

Π̃ε

au(ũε −u)dx

∣∣∣∣≤Cε−1|Π̃ε |1/2‖au(ũε −u)‖L2(Πε ) ≤Cε1/2‖ f‖2
L2(Ω).

Thus, by definition of R3c and με , |R3c| ≤Cεmin(1/2,3(α−1)/2)‖ f‖2
L2(Ω)

.
Gathering the above estimates, we get

|R3| ≤Cεmin((2−α)/2,3(α−1)/2)‖ f‖2
L2(Ω) for α ∈ (1,2). (11.36)

Now, by (11.30), (11.31), (11.33), and (11.36), we deduce that

‖∇(uε −u)‖2
L2(Ωε )

+ ε−κ‖uε‖2
L2(Sε )

≤Cεq‖ f‖2
L2(Ω), (11.37)

where q = 1/4 if α = 1 and q = min((3α − 2)/4, 3(α − 1)/2, (2−α)/2) if α ∈
(1,2).

To obtain (11.29) from (11.37), we consider the Poincaré inequality for the H1-
extension of uε −u to Ω given by Lemma 1, Pε(uε −u) ∈ H1

0 (Ω), which satisfies
(11.11) for w = uε −u and the theorem is proved.

Theorem 5. Let α ∈ [1,2) and κ = 2(α − 1). Let {λ ε
k }∞

k=1 and {λk}∞
k=1 be the

eigenvalues of problem (11.1) and (11.8), respectively. Then, for each fixed k there
exists a constant Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckεq,

where q = 1/4 if α = 1 and q = min((3α − 2)/4, 3(α − 1)/2, (2−α)/2) if α ∈
(1,2). Moreover, for any eigenvalue λk of (11.8) with multiplicity s (λk = λk+1 =
· · · = λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) =

1, there exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of
(11.1) corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckεq.

Proof. By rewriting the reasoning in proof of Theorem 3 with minor modifications,
Theorem 5 is proved. Now, in order to apply Lemma 4, for f ∈H 0 = L2(Ω), we set
A 0 f = u where u ∈ H1

0 (Ω) is the unique solution of (11.18) for b(x) = 4πC2
0a(x).

Consequently, the eigenelements of A 0 are {((λk)
−1,uk)}∞

k=1 with {(λk,uk)}∞
k=1 the

eigenelements of (11.8). Besides, on account of (11.17) and (11.29), we can check
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that the properties (C1)–(C4) of Lemma 4 are satisfied. Thus, similar arguments to
the proof of Theorem 3 allow us to prove Theorem 5.

11.5 Bounds for Other Values of α and κ

Let us note that the technique here introduced can be extended to the rest of the
values of α and κ for the dimension 3 of the space. For completeness, we state the
precise bounds obtained for the discrepancies of the stationary problems (cf. The-
orems 6, 8, 10, and 12) and the corresponding spectral problems (Theorems 7,
9, 11, and 13). By rewriting the reasoning in proof of Theorems 2 and 4 (3 and
5) with minor modifications, we prove Theorems 6, 8, 10, and 12 (7, 9, 11, and
13, respectively); cf. [GoPeSh12] for some details about the stationary problems.
Theorems 12 and 13 are proved in [GoEtAl12].

Theorem 6. Let α ≥ 1, κ < 2(α − 1) and f ∈ L2(Ω). Let uε be the solution of
(11.16) and u the weak solution of the Dirichlet problem

−Δu = f in Ω , u = 0 on ∂Ω . (11.38)

Then, we have

‖uε −u‖2
H1(Ωε )

+ ε−κ‖uε −u‖2
L2(Sε )

≤Cεmin(1/2,(3α−2)/4,2(α−1)−κ)‖ f‖2
L2(Ω).

Theorem 7. Let α ≥ 1 and κ < 2(α − 1). Let {λ ε
k }∞

k=1 and {λk}∞
k=1 be the

eigenvalues of problem (11.1) and (11.5), respectively. Then, for each fixed k there
exists a constant Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckεmin(1/2,(3α−2)/4,2(α−1)−κ).

Moreover, for any eigenvalue λk of (11.5) with multiplicity s (λk = λk+1 = · · · =
λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) = 1, there

exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of (11.1)
corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckεmin(1/2,(3α−2)/4,2(α−1)−κ).

Theorem 8. Let α > 2, κ ∈ R and f ∈ L2(Ω). Let uε be the solution of (11.16)
and u the weak solution of the Dirichlet problem (11.38). Then, we have

‖uε −u‖2
H1(Ωε )

+ ε−κ‖uε‖2
L2(Sε )

≤Cεmin(1,(α−2)/2)‖ f‖2
L2(Ω).
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Theorem 9. Let α > 2 and κ ∈ R. Let {λ ε
k }∞

k=1 and {λk}∞
k=1 be the eigenvalues of

problem (11.1) and (11.5), respectively. Then, for each fixed k there exists a constant
Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckεmin(1,(α−2)/2).

Moreover, for any eigenvalue λk of (11.5) with multiplicity s (λk = λk+1 = · · · =
λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) = 1, there

exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of (11.1)
corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckεmin(1,(α−2)/2).

Theorem 10. Let α ∈ [1,2), κ > 2(α − 1) and f ∈ L2(Ω). Assume that, in a
neighborhood of {x1 = 0}, Ω coincides with the domain (−T,T )×Θ of R3, where
T is a fixed positive constant and Θ is the domain Ω ∩{x1 = 0} ⊂R

2. Let uε be the
solution of (11.16) and u the weak solution of the Dirichlet problem in Ω− ∪Ω+:

−Δu = f in Ω− ∪Ω+, u = 0 on ∂Ω ∪ γ .

Then, we have

‖uε −u‖2
L2(Ω) ≤Cεmin(κ−2(α−1),2−α)‖ f‖2

L2(Ω).

Theorem 11. Let α ∈ [1,2) and κ > 2(α − 1). Let us assume that the domain Ω
satisfies the assumption in Theorem 10. Let {λ ε

k }∞
k=1 and {λk}∞

k=1 be the eigenvalues
of problem (11.1) and (11.6), respectively. Then, for each fixed k there exists a
constant Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckεmin(κ−2(α−1),2−α).

Moreover, for any eigenvalue λk of (11.6) with multiplicity s (λk = λk+1 = · · · =
λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) = 1, there

exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of (11.1)
corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckεmin(κ−2(α−1),2−α).

Theorem 12. Let α = κ = 2 and f ∈ L2(Ω). Let Wε and h be the functions defined
by (11.22) and (11.10), respectively. Let uε be the solution of (11.16) and u the
solution of (11.18) for b(x) = 4πC0h(x). Then, we have
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‖uε −u+Wε hu‖2
H1(Ωε )

+ ε−2‖uε −u+hu‖2
L2(Sε )

≤Cε1/8‖ f‖2
L2(Ω)

and

‖uε −u‖2
L2(Ωε )

≤Cε1/8‖ f‖2
L2(Ω).

Theorem 13. Let α = κ = 2. Let {λ ε
k }∞

k=1 and {λk}∞
k=1 be the eigenvalues of

problem (11.1) and (11.9), respectively. Then, for each fixed k there exists a constant
Ck independent of ε such that, for sufficiently small ε > 0,

|λ ε
k −λk|2 ≤Ckε1/8.

Moreover, for any eigenvalue λk of (11.9) with multiplicity s (λk = λk+1 = · · · =
λk+s−1), and for any u eigenfunction corresponding to λk, with ‖u‖L2(Ω) = 1, there

exists ũε , ũε being a linear combination of eigenfunctions {uε
k}r=k+s−1

r=k of (11.1)
corresponding to {λ ε

k }r=k+s−1
r=k , such that

‖ũε −u‖2
L2(Ωε )

≤Ckε1/8.
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Chapter 12
A Finite Element Formulation of the Total
Variation Method for Denoising a Set of Data

P.J. Harris and K. Chen

12.1 Introduction

The total variation method for removing the noise in a set of data, typically digital
image data, formulates the underlying optimization problem in terms of a nonlinear
differential equation. Generally, this equation has to be solved numerically, and the
finite difference method has been widely used; unfortunately the subsequent system
cannot be solved by a Newton-type method directly. However, it is possible to obtain
an alternative numerical formulation using the finite element method. Indeed, as
shall be shown here, the properties of the Galerkin finite element method make it
an ideal choice of method for solving the differential equation due to its ability of
implicitly reducing the nonlinearity.

12.2 Formulation of the Nonlinear Differential Equation

Suppose that we have a function z(x,y) which, at the integer values of x and y defines
the intensity levels of a data-set (typically a digital image). However, we assume that
this datum contains an amount of random noise so that

z(x,y) = u(x,y)+η(x,y)
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where u(x,y) represents the unknown underlying exact data and η(x,y) represents
the (also unknown) random error of Gaussian white noise in the data. The objective
of this work is to try and get the best estimate possible of u(x,y). Here it has been
assumed that u is scaled such that 0≤ u(x,y)≤ 1.

The total variation model chooses u to minimize
∫ ∫

Ω
|∇u|dx dy

subject to the constraint

‖u− z‖2 = σ2

where σ is the magnitude of the noise in the data [AuVe97], [YaChYu12],
[DoVo97], [RuOsFa92]. Applying the method of Lagrange multipliers to this
problem leads to the required solution u satisfying the nonlinear differential equation

−α∇ ·
(

∇u√
|∇u|2 +β

)
+(u− z) = 0 (12.1)

subject to the boundary condition

∂u
∂n

= 0

on the whole of the boundary ∂Ω where n is the unit normal vector to ∂Ω . Here
β is small parameter which has been introduced to avoid computational problems
which would arise if ‖∇u‖= 0.

12.3 Finite Element Method

In this section we introduce the finite element method for solving the differential
equation (12.1). A more complete description of the finite element method can be
found in one of the many textbooks on the subject, such as [ZiTa91].

For the Galerkin FEM, we now approximate u by

ũ =
N

∑
i=1

uiφi(x,y) (12.2)

where {φ1(x,y),φ2(x,y), . . . ,φN(x,y)} and {u1,u2, . . . ,uN} are, respectively, a set of
known basis functions and a set of constants to be determined. Here N is the total
number of data-points and in the case of an image will be the total number of pixels.



12 FEM For Denoising Data 177

Since (12.2) is not, in general, the exact solution of (12.1) it will not satisfy (12.1)
but will instead satisfy

−α∇ ·
(

∇u√
|∇u|2 +β

)
+(u− z) = r(x,y) (12.3)

where r(x,y) is a residual function. The constants u1 . . .uN are now chosen to make
the residual term small in some sense. The Galerkin method used here requires that
we choose the set of constants {u1,u2, . . . ,uN} such that this residual is orthogonal
to all of the basis functions. This, in turn, means that the residual function cannot
be written as a linear combination of the basis functions, and if the basis function
span a large enough subspace of the solution, space then this will make the residual
“small.”

Applying the Galerkin method to (12.3), and recalling that the inner product of
the residual with the basis functions is zero, leads to the system of equations

∫ ∫
Ω

[
−α∇ ·

(
∇ũ√
|∇ũ|2 +β

)
+(ũ− z)

]
φi dx dy = 0 i = 1,2, . . . ,N (12.4)

Applying Green’s theorem to the first term on the left-hand side of (12.4) yields

∫ ∫
−α∇ ·

(
∇ũ√
|∇ũ|2 +β

)
φi dx dy =

∫ ∫
Ω

(
α∇ũ√
|∇ũ|2 +β

)
·∇φi dx dy

+
∫

∂Ω

(
α∇ũ ·n√
|∇ũ|2 +β

)
φi dC.

(12.5)

As the approximate solution ũ is assumed to satisfy the boundary condition
∂ ũ/∂n = ∂u/∂n = 0, the line integral around the boundary in (12.5) is zero.
Substituting (12.5) into (12.4) gives

∫ ∫
Ω

α

(
∇ũ√
|∇ũ|2 +β

)
·∇φi +(ũ− z)φi dx dy = 0. (12.6)

At this point it is worth noting that the boundary conditions are automatically
incorporated into the finite element formulation, so unlike the finite difference
method, there is no need to give any special treatment to the equations for data
points which lie on the boundary of the domain.

For the finite element method, the domain Ω is now divided into sub-regions or
elements connected together at vertices or nodes. Here the domain is first divided
into small squares where the location of each vertex of the square corresponds to a
data-point (or pixel in the image). In theory, it is possible to use quadrilateral finite
element with bilinear basis functions in each element. However, if such elements
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are used the integrals appearing in (12.6) cannot be evaluated analytically and need
to be found numerically. As the solution process for this problem is an iterative one
(due to the nonlinearity of the governing equations) it is not very desirable to have
to evaluate all of the integrals numerically at each iteration due to the computational
cost involved. An alternative is to divide each square, along one of the diagonals,
into two triangles and use linear basis functions in each triangle. In this case the
integrals in (12.6) can be evaluated analytically and this will speed up the iterative
solution process.

Substituting the basis functions into (12.6) and integrating exactly yields a
system of nonlinear algebraic equations that need to be solved for the coefficient ui

appearing in (12.2). Although the nonlinear equations can be formed by considering
each basis function in turn, in practice, the equations are assembled in an element-
by-element fashion, as in the standard linear finite element method. Further details
of the computational process can be found, for example, in [ZiTa91].

Having formed the system of nonlinear equations, we now have to consider
methods for solving them. Much of the previous work using finite difference
methods has used the fixed-point iteration method to solve the system. In this
work we are going to employ Newton’s method to solve the system. In practice,
the accuracy of the final numerical solution depends on the two parameters α
and β appearing in (12.1). Whilst both have an effect on the overall accuracy of
the method, β has a more significant effect on the convergence (or otherwise) of
Newton’s method. If β is chosen too large, then Newton’s method for solving the
nonlinear equations converges quickly for almost any initial guess of the solution,
but to a very inaccurate solution. However, if β is too small, then unless the initial
guess is close to the final solution Newton’s method does not converge (it tends to
oscillate between two inaccurate solutions rather than diverge to infinity).

An alternative algorithm is to start with a large value of β , say β1 and to use
the data z(x,y) as the initial guess. This will yield an approximate solution ũ1(x,y)
which will be closer to the desired solution u(x,y) than z(x,y). The value of β is now
reduced to β2 and using ũ1(x,y) as the initial solution we obtain ũ2(x,y) which is a
further improvement in the solution. This process is repeated until either a minimum
value of β is reached, or there is no significant improvement in the accuracy of the
solution when β is reduced further.

Varying the parameter α in (12.1) affects the overall accuracy of the method, and
we investigate how α affects the accuracy in numerical results section below.

12.4 Numerical Results

The results presented here are for an n× n grid of data where the ideal values are
such that the central points are 1 and the surrounding data edges are zero. We then
introduce random errors into the data so that we can investigate the accuracy and
efficiency of our finite element for recovering the original data. A typical example
is shown in Fig. 12.1.
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Fig. 12.1 A typical ideal data-set (left), a data-set with random errors or noise (middle) and the
data-set obtained using the finite element method to denoise the data (right)

Fig. 12.2 How the RMS error in the finite element solution varies with β for different sized
data-sets

The plot on the left of Fig. 12.1 shows the original, ideal data. The plot in the
middle shows that data after some random errors (of maximum magnitude 0.1)
have been introduced and the image on the right shows the plot obtained after
applying our finite element method. Here the stopping criteria was when β was
smaller than 10−10.

Figure 12.2 shows how the method converges as the parameter β is reduced for
difference sized data-sets.

This graph shows that the overall error is smaller for larger images, although this
may simply be a artifact of the way in which the RMS error is computed. However,
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Fig. 12.3 How the RMS error in the finite element solution for a 32×32 data-set varies with α

Fig. 12.4 How the min, max, and mean of the optimal value of α varies with image size

in all cases it shows that once β is smaller than around 10−6 there is no significant
reduction in the size of the RMS error, and so there is no computational advantage
to using such values.

Figure 12.3 shows how the RMS error in the final 32× 32 data-set varies with
the parameter α .
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This shows that there is an optimal value of the parameter α . However, the exact
value of this parameter is problem dependent and a data-set with different random
errors would not necessarily have the same optimal value of α . A suggested value
of α can be obtained by analyzing a large number of different cases and taking the
average value of α . Figure 12.4 shows the results of doing this with ten different
data-sets of different sizes.

The results presented in this graph seem to indicate that the optimal value of α
is dependent on the size of the data-sets. However, as this needs to be investigated
further, perhaps using a large number of data-sets to get a better estimate of the
mean optimal value of α .

12.5 Conclusions

The results presented in this paper show that the finite element method can be used
to obtain an accurate solution to the nonlinear differential equation which arises in
total-variation denoising problems. The nature of the differential equation, which
can be expressed as the divergence of a nonlinear vector-valued term, is such that it
is relatively simple to apply the standard Galerkin method to this equation. Further,
as part of this process, the homogenous boundary condition for the differential
equation is automatically incorporated into the formulation meaning that unlike the
finite difference method, we do not have to give any special treatment to the grid-
points or nodes which lie on the boundary of the domain of the equation.

The results in this paper show that the system of nonlinear algebraic equations
which result from using the finite element method to solve (12.1) can be solved
using a algorithm based on Newton’s method. The results also show that once
the parameter β appearing in (12.1) is reduced below approximately 10−6 then there
is no significant improvement in the accuracy of the solution obtained. Further,
the results show that the value of the parameter α appearing in (12.1) has a
major effect on the accuracy of the method and that in each case there is definite
optimal value. However, this value appears to be different for every example, and
so an average value has to be used. More work is needed to establish what the
optimal value is, how it is related to the size of the data-set and how FEM may be
advantageously applied to solving other types of variational models [ChSh85].
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Chapter 13
On the Convergence of the Multi-group
Isotropic Neutron LT SN Nodal Solution in
Cartesian Geometry

E.B. Hauser, R.P. Pazos, and M.T. Vilhena

13.1 Introduction

The Discrete Ordinate Nodal approach (nodal SN approximation) is a well-known
technique to work out multidimensional neutron transport problems. There exists
a vast amount of literature concerning the numerical nodal methods [BaLa90,
BaLa92, ShBe09, Wi71], but the analytical ones are scarce, restricted, for instance,
to the LT SN nodal approach. Briefly speaking, the basic idea of this methodol-
ogy encompasses the transverse integration of the multi-group neutron transport
equation in a multidimensional Cartesian geometry domain, resulting in a coupled
system of one-dimensional SN equations for the average angular fluxes, which are
then analytically solved by the Laplace Transform technique (LT SN method), as in
[BaVi91]. This methodology was applied to these sort of problems, without losing
generality, for isotropic scattering and multigroup energy models. However, to the
best of our knowledge, a convergence analysis of the nodal methods is not found in
the literature, except for the isotropic scattering and a monoenergetic LT SN nodal
approach. Therefore, we extend the convergence analysis for this nodal technique,
[HaPaVi05], now assuming the multigroup model, specializing the study for the
two-dimensional problem. The basic idea relies on the definition of an error with
a proper norm both for the LT SN nodal solution and for the Gaussian quadrature
approximation of the integral scattering term appearing in the neutron transport
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equation. From these definitions, we can determine an error bound estimate for the
two-dimensional LT SN neutron nodal solution, which guarantees the convergence
of the discussed solution to the exact one, when N goes to infinity [FrNa90].

13.2 The Two-Group Discrete Ordinate (SN) Approximation
to the Transport Equation in X,Y Geometry

We consider the steady-state multigroup Boltzmann transport equation in two-
dimensional Cartesian geometry

μ
∂ψg

∂x
(x, y ,ν )+η

∂ψg

∂y
(x, y ,ν )+h(�r,ν ) ψg(x, y ,ν )

= qg(x, y ,ν )+
∫

V
ψg(x, y ,ν ′ )k(ν ,ν ′)dν ′, (13.1)

where g is the energy group, (x , y) represents the particle position in the domain
X = [0,a]× [0,b], ν = (μ ,η) is a point referred to angular coordinates in

V =
{

ν
∣∣ μ2 +η2 ≤ 1

}
,

ψg( x , y ,ν) is the density flux function, h( x , y ,ν) is the collision frequency,
k( x , y ,ν ,ν ′) is the scattering kernel, and qg( x , y ,ν) is the source function.

The discrete ordinate method (SN) is a technique used for obtaining numerical
solutions to the integro-differential equation (13.1). In SN equations the flux scalar
is approximated by quadrature formulas, as has been shown in [LeMi84]. Thus, we
consider the discrete ordinates SN approximation to (13.1), with linearly isotropic
scattering and two energy groups; that is,

μm
∂
∂x

Ψm,g(x,y)+ηm
∂
∂y

Ψm,g(x,y)+σt,gΨm,g(x,y)

=
1
4

[
σs,1,g

N

∑
n=1

wnΨn,1(x,y)+σs,2,g

N

∑
n=1

wnΨn,2(x,y)

]
+Qg(x,y), (13.2)

where Ψm,g(x,y) = Ψg(x,y,μm,ηm) is the angular flux per group in the discrete
direction (μm,ηm ), m = 1 : M with M = N(N + 2)/2, for any even N quadrature
set index, ωm are the angular quadrature weights, σt,g,σs,1,g,σs,2,g are the total t
and scattering s macroscopic cross section per group, and Qm,g(x,y) is the isotropic
interior source term defined in the discrete direction. We assume that the solu-
tions of (13.1) and (13.2) satisfy the same boundary conditions in the discrete
directions.
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Fig. 13.1 S4 discrete directions with level symmetry

In the sequel, we prove that, under suitable restrictions, the solution of (13.2)
converges to the solution of (13.1) as N→ ∞ for N an even number. We choose the
set with level symmetry for the discrete directions Ωm = (μm,ηm ), [LeMi84], as
illustrated in Fig. 13.1 for N = 4.

13.3 The Multigroup Nodal LTSN Formulation
in a Rectangle

We integrate (13.2) with respect to y in the interval [0,b] and obtain

μm
dΨmx,g

dx
(x)+σt,gΨmx,g(x)

− 1
4

[
σs,1,g

N

∑
n=1

wnΨnx,1(x)+σs,2,g

N

∑
n=1

wnΨnx,2(x)

]
= Smx,g(x), (13.3)

where the y-edge average angular flux in the discrete direction Ωm = (μm,ηm) is
defined as

Ψmx,g(x) =
1
b

∫ b

0
Ψm,g(x,y)dy. (13.4)

The source term Smx,g(x), which includes the interior source and the transverse
leakage terms, is
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Smx,g(x) = Qx,g(x)− ηm

b
[Ψm,g(x,b)−Ψm,g(x,0) ] ,

where

Qx,g(x) =
1
b

∫ b

0
Qg(x,y)dy.

The transverse integrated SN equations for the spatial y-direction are obtained in a
similar fashion.

Equation (13.3) form a system of 4M linear ordinary differential equations in the
8M unknown functions: Ψmx,g(x), Ψmy,g(y), Ψm,g(x), Ψm,g(y), g = 1,2. Therefore, for
the x-direction we write

d
dx

Ψmx,1(x)+
σt,1

μm
Ψmx,1(x)

− 1
4μm

[
σs,1,1

N

∑
n=1

wnΨnx,1(x)+σs,2,1

N

∑
n=1

wnΨnx,2(x)

]
=

Smx,1(x)
μm

,

d
dx

Ψmx,2(x)+
σt,2

μm
Ψmx,2(x)

− 1
4μm

[
σs,1,2

N

∑
n=1

wnΨnx,1(x)+σs,2,2

N

∑
n=1

wnΨnx,2(x)

]
=

Smx,2(x)
μm

.

(13.5)

We apply the Laplace transformation with respect to x in (13.5). For g = 1,2 we
use

L
{

Smx,g(x)
}
= Smx,g(s), L

{
Ψmx,g(x)

}
=Ψ mx,g(s),

L

{
dΨmx,g

dx
(x)

}
= sΨ mx,g(s)−Ψmx,g(0).

For m = 1 : M, we obtain the algebraic system of 2M linear equations

sΨ mx,1(s)+
σt,1

μm
Ψ mx,1(s)− σs,1,1

4μm

N

∑
n=1

wnΨ nx,1(s)

− σs,2,1

4μm

N

∑
n=1

wnΨ nx,2(s) =Ψmx,1(0)+
Smx,1(s)

μm
,

sΨ mx,2(s)+
σt,2

μm
Ψ mx,2(s)− σs,2,2

4μm

N

∑
n=1

wnΨ nx,2(s)

− σs,1,2

4μm

N

∑
n=1

wnΨ nx,1(s) =Ψm,2(0)+
Smx,2(s)

μm
.

(13.6)
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One may cast (13.6) in the matrix form

[sI−Ax ]

[
Ψ mx,1(s)
Ψ mx,2(s)

]
=

[
Ψmx,1(0)
Ψmx,2(0)

]
+

1
μm

[
Smx,1(s)
Smx,2(s)

]
, (13.7)

where I is the identity matrix. In (13.7), for each g = 1.2, we defined the
2M-dimensional vector functions

Ψ mx,g(s) =
[

Ψ1x,g(s) Ψ 2x,g(s) · · ·Ψ Mx,g(s)
]T

,

Ψmx,g(0) = [ Ψ1x,g(0) Ψ2x,g(0) · · ·ΨMx,g(0) ]T ,

Smx,g(s) =
[

S1x,g(s) S2x,g(s) · · ·SMx,g(s)
]T

.

In (13.7), we create a novel way to define the 2M×2M matrix Ax, namely

Ax =

[
Ax,11 Ax,12

Ax,21 Ax,22

]
.

Ax is composed of M×M sub-matrices Ax,g′,g, g′,g = 1,2, which are

Ax,11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4σt,1−σs,1,1ω1

4μ1

σs,1,1ω2

4μ1
· · · σs,1,1ωM

4μ1

σs,1,1ω1

4μ2
−4σt,1−σs,1,1ω2

4μ2
· · · σs,1,1ωM

4μ2
...

...
. . .

...
σs,1,1ω1

4μM

σs,1,1ω2

4μM
· · · −4σt,1−σs,1,1ωM

4μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ax,22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4σt,2−σs,2,2ω1

4μ1

σs,2,2ω2

4μ1
· · · σs,2,2ωM

4μ1

σs,2,2ω1

4μ2
−4σt,2−σs,2,2ω2

4μ2
· · · σs,2,2ωM

4μ2
...

...
. . .

...
σs,2,2ω1

4μM

σs,2,2ω2

4μM
· · · −4σt,2−σs,2,2ωM

4μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ax,21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σs,1,2ω1

4μ1

σs,1,2ω2

4μ1
· · · σs,1,2ωM

4μ1
σs,1,2ω1

4μ2

σs,1,2ω2

4μ2
· · · σs,1,2ωM

4μ2
...

...
. . .

...
σs,1,2ω1

4μM

σs,1,2ω2

4μM
· · · σs,1,2ωM

4μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ax,12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σs,2,1ω1

4μ1

σs,2,1ω2

4μ1
· · · σs,2,1ωM

4μ1
σs,2,1ω1

4μ2

σs,2,1ω2

4μ2
· · · σs,2,1ωM

4μ2
...

...
. . .

...
σs,2,1ω1

4μM

σs,2,1ω2

4μM
· · · σs,2,1ωM

4μM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The solution of (13.7) is

[
Ψ mx,1(s)
Ψ mx,2(s)

]
= [sI−Ax ]

−1
([

Ψmx,1(0)
Ψmx,2(0)

]
+

1
μm

[
Smx,1(s)
Smx,2(s)

])
. (13.8)

In order to determine the angular flux, we apply the inverse Laplace transforma-
tion to (13.8). The result is

[
Ψmx,1(x)
Ψmx,2(x)

]
= L −1

{
[sI−Ax ]

−1
([

Ψmx,1(0)
Ψmx,2(0)

]
+

1
μm

[
Smx,1(s)
Smx2(s)

])}
.

Therefore, we obtain

[
Ψmx,1(x)
Ψmx,2(x)

]
= L −1

{
[sI−Ax ]

−1
} [Ψmx,1(0)

Ψmx,2(0)

]

+
1

μm
L −1

{
[sI−Ax ]

−1
}
∗
[

Smx,1(x)
Smx,2(x)

]
,

where ∗ denotes the convolution operation.

Furthermore, in order to determine L −1
{
[sI−Ax ]

−1
}

, we assume that the

matrix Ax = VxDxVx
−1 can be diagonalized and write

L −1
{
[sI−Ax ]

−1
}
= L −1

{[
s VxVx

−1−VxDxVx
−1 ]−1

}

= L −1
{[

Vx (sI−Dx )Vx
−1 ]−1

}
= Vx L −1 { [sI−Dx ]

−1 }Vx
−1. (13.9)

Dx is an 2M− order diagonal matrix of the eigenvalues of Ax and Vx is the matrix
whose columns are the 2M eigenvectors of Ax.

Applying the inverse Laplace transformation, we find that

L −1
{
(sI−Dx)

−1
}
= eDxx,

which, substituted in (13.9), leads to
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L −1{(sI−Ax)
−1}= VxeDxxV−1

x .

As a result, the analytical solution for the two-group SN equations with isotropic
scattering (13.2) is

[
Ψmx,1(x)
Ψmx,2(x)

]
=
[
Vx eDx x Vx

−1 ] [Ψmx,1(0)
Ψmx,2(0)

]
+

1
μm

[
VeDx x Vx

−1 ] ∗
[

Smx,1(x)
Smx,2(x)

]
.

In a similar fashion, we obtain

[
Ψmy,1(y)
Ψmy,2(y)

]
=
[
Vy eDy y Vy

−1 ] [Ψmy,1(0)
Ψmy,2(0)

]
+

1
μm

[
VeDy y Vy

−1 ] ∗
[

Smy,1(y)
Smy,2(y)

]
.

At this point, based on the physics of shielding problems, we assume that the neutron
flux attenuates exponentially with increasing distance from the source, a hypothesis
also assumed in [BaVi91], [HaViBa09], [HaEtAl08], [HaPaVi05], where the only
approximation involved is in the transverse leakage terms.

For instance, in (13.4) we use

Ψmx,1(x,0) =
M

∑
m=1

Cm e−(sign μm)σa x,

where σa = σt−σs, sign μm = 1 if μm > 0 and sign μm =−1 if μm < 0. The solution
is completely determined when we apply the boundary conditions.

13.4 Error Bounds for the Discrete Ordinates Nodal Method
and Two Energy Groups

In this section we extend the mathematical analysis of the error bound estimate and
convergence to the mono-energetic nodal-LT SN solution in a rectangle proposed in
[HaEtAl08]. We discuss the conditions for the convergence of the discrete ordinates
nodal method, LT SN , mentioned in [Ze90], [KaLeHe82], [Kh97], [PaVi99],
[KhSb05a], [KhSb05b], [HaEtAl08]. We define the so-called errors of the approxi-
mated flux and the error in the quadrature formula and then establish a relationship
between both errors in order to give a global estimate of the approximated flux.
We denote the base spaces by Eg = L1

(
Xg × V

)
and the approximating spaces

by EM,g = ∏M
m=1 L1

(
Xg×Ωm). The solutions are studied in the Banach subspaces

defined by

Wg =

{
ψ ∈ Eg

∣∣∣ μ
∂ψ
∂x

+η
∂ψ
∂y
∈ Eg

}
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and, for all m = 1 : M,

Wm,g =
{
{ψm} ∈ EM,g

∣∣∣ μm
∂ψm
∂x +ηm

∂ψm
∂y ∈ L1

(
Xg
)}

.

We define the error functions in the approximate flux, for the energy level g as

εm,g(�r) = ψ(�r,Ωm )−Ψm,g(�r) ,

and error function in the quadrature formula for the energy level g as

τm,g(�r) =
∫

V
σs(Ωm,ν ′)ψ(�r,ν ′)dν ′ −

M

∑
m=1

ωm kmnΨm,g(�r,Ωm).

After subtracting (13.2) from (13.1) and doing some algebraic manipulations, we
obtain the relationships

μm
∂εm,g

∂x
(�r)+ηm

∂εm,g

∂y
(�r)+hm(�r)εm,g(�r) =

M

∑
n=1

wn kmn εn,g(�r)+ τm,g(�r).

Now, multiplying both sides of the last equation by εm,g(�r) and integrating in the
domain X, we arrive at

μm

2

∫ ∫
X

∂ ε2
m,g

∂ x
(�r)d�r+

ηm

2

∫ ∫
X

∂ ε2
m,g

∂ y
(�r)d�r+

∫ ∫
X

hm(�r)ε2
m,g(�r)d�r

=
M

∑
n=1

ωm knm

∫ ∫
X

εn,g(�r)εm,g(�r)d�r+
∫ ∫

X
εm,g(�r)τm,g(�r)d�r;

hence,

∫ ∫
X

hm(�r)ε2
m,g(�r)d�r =

M

∑
n=1

ωm knm

∫ ∫
X

εn,g(�r)εm,g(�r)d�r

+
∫ ∫

X
εm,g(�r)τm,g(�r)d�r+

μm

2

∫ b

0

[
ε2

m,g(0,y) − ε2
m,g(a,y)

]
dy

+
ηm

2

∫ a

0

[
ε2

m,g(x,0)− ε2
m,g(x,b)

]
dx. (13.10)

At this point, we introduce new definitions for the scalar product and norm:

αm =
(

α
)

m=1:M,
〈
α
∣∣β〉=

∫ ∫
X

wm αm (�r)βm(�r )d�r, ‖α ‖2 =
〈
α
∣∣α〉 .
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We assume (see [KaLeHe82] and [PaVi99]) that there is c0 such that h(�r,ν) >
λ ′ − c0 |(ν ) |, ∀(�r,ν) ∈ X× V, where λ ′ = inf

{
lim|ν |−→0 h(�r,ν ) , (�r)ε X

}
.

Then, by (13.10),

∫ ∫
X

(
λ ′ − c0 |(Ωm ) |) ε2

m,g(�r )d�r

≤
M

∑
n=1

ωm knm

∫ ∫
X

εn,g(�r )εm,g(�r )d�r
∫ ∫

X
εm,g(�r )τm,g(�r )d�r

+
μm

2

∫ b

0

[
ε2

m,g(0,y)− ε2
m,g(a,y)

]
dy+

ηm

2

∫ a

0

[
ε2

m,g(x,0)− ε2
m,g(x,b)

]
dx.

Multiplying each term in the above inequality by wm and summing up with
respect to m, we obtain

M

∑
m=1

ωm
(
λ ′ − c0 |(μm,ηm,ξm) |

) ∫ ∫
X

ε2
m,g(�r )d�r

≤
M

∑
m=1

M

∑
n=1

ωm ωn knm

∫ ∫
X

εn,g(�r )εm,g(�r )d�r

+
M

∑
m=1

ωm

∫ ∫
X

εm,g(�r )τm,g(�r )d�r

+
M

∑
m=1

ωm
|μm |

2

∫ b

0

∣∣ε2
m,g(0,y)− ε2

m,g(a,y)
∣∣ dy

+
M

∑
m=1

ωm
|ηm |

2

∫ a

0

∣∣ε2
m,g(x,0)− ε2

m,g(x,b)
∣∣ dx.

We now define

F1,m,g =

√
|μm |

2

∫ b

0

∣∣ε2
m,g(0,y)− ε2

m,g(a,y)
∣∣ dy ,

F2,m,g =

√
|ηm |

2

∫ a

0

∣∣ε2
m,g(0,y)− ε2

m,g(a,y)
∣∣ dx .

Applying the Cauchy–Schwarz inequality using a parameter K0 associated with
k(�r ν ,ν ′) and the quadrature weights, we have

(
λ ′ − c0 max

m=1:M
|Ωm |

)‖ε2
g ‖ ≤ K0‖εg ‖2 + ‖εg ‖‖τg ‖+ ‖F1 ,g ‖ + ‖F2 ,g ‖.

Choosing δ so that
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‖εg ‖ · ‖τg ‖ ≤ 1
2

(
δ ‖εg ‖2 +

‖τg ‖2

δ

)
,

we get

(
λ ′ − c0 max

m=1:M
|Ωm |

)‖ε2
g ‖

≤ K0‖εg ‖2 +
1
2

(
δ ‖εg ‖2 +

‖τg ‖2

δ

)
+ ‖F1 ,g ‖ + ‖F2 ,g ‖.

So, for each energy level g, we obtain the expression

‖εg ‖2 ≤
‖τg ‖2

2δ
+ ‖F1 ,g ‖ + ‖F2 ,g ‖

(
λ ′ − c0 max

m=1:M
|Ωm |

) − K0 − δ
2

,

Finally, defining

‖ε ‖=
√
‖ε1 ‖2 +‖ε2 ‖2,

‖τ ‖=
√
‖τ1 ‖2 +‖τ2 ‖2 ,

we obtain the relationship between the global error ε in the approximate flux and
the error τ in the quadrature formula, with the latter depending on the boundary
conditions, in the form

‖ε ‖2 ≤
‖τ ‖2

2δ
+ ‖F1 ‖ + ‖F2 ‖

(
λ ′ − c0 max

m=1:M
|Ωm |

) − K0 − δ
2

.

The last inequality guarantees the convergence of the two-group nodal LT SN

solution when N increases significantly.

13.5 Conclusions

We have constructed the analytical nodal method, LT SN , to solve numerically the
two-group energy SN equations with linearly isotropic scattering in a homogeneous
x,y geometry. Moreover, we determined an error bound estimate for the two-group
energy LT SN neutron nodal solution, which guarantees the convergence of the
discussed solution to the exact one, when N goes to infinity. Further, we defined
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a proper norm for both the LT SN nodal solution and for the Gaussian quadrature
approximation of the integral scattering term appearing in the neutron transport
equation. The analysis of the convergence of the method gives error bounds of the
approximated angular flux in terms of truncation error in the quadrature formula and
of the boundary conditions.

We have restricted ourselves to SN with two energy groups. This is the reason
why the resulting spectrum contains 2M eigenvalues. In general, though, the SN

problem is allowed to have an arbitrary number G of energy groups. The resulting
spectrum will then contain G×M eigenvalues that have an associated basis for the
G×M− dimensional representation of the solution.
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Chapter 14
Numerical Integration with Singularity
by Taylor Series

H. Hirayama

14.1 Introduction

We consider the integration of the product of a smooth function f (x) and a function
K(x;c) with a singularity in the finite integration interval [a,b]; that is,

I(a,b,c) =
∫ b

a
K(x;c) f (x)dx. (14.1)

This type of integral is difficult to evaluate by the usual numerical methods when
K(x;c) is a singular function such as |x− c|α(log |x− c|)n, with α > −1 a real
number and n > 0 an integer, or (x− c)−1 (the Cauchy principal-value case) or
(x− c)−n, with n > 1 an integer (the Hadamard finite-part case).

For functions with singularities at the end-points of the integration interval, the
integral can be computed numerically by means of a transformation of variable—for
example, the double exponential formula method [TaMo74].

The same can be done when the singularity in |x−c|α(log |x−c|)n lies within the
integration interval, after dividing the interval into two subintervals at the singular
point.

Many numerical integration methods, such as the Chebyshev integration tech-
nique or Gauss-type numerical integration, need to reconstruct their formulas in
accordance with the kind of singularity that K has. Therefore, the integration pro-
gram needs to be adjusted for each type of singularity, which is rather inconvenient.

In this paper, we use Taylor series to split the integral (14.1) into a singular
part, which is computed analytically, and a part without singularity (or with a weak
singularity), which can be computed by standard numerical methods. As mentioned
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earlier, we consider integrals with algebraic and logarithmic singularity, Cauchy
principal-value integrals, and Hadamard finite-part integrals; specifically,

I1 =
∫ b

a
|x− c|α(log |x− c|)n f (x)dx, (14.2)

I2 = p.v.
∫ b

a

f (x)
x− c

dx, (14.3)

I3 = f .p.
∫ b

a

f (x)
(x− c)n dx, (14.4)

where n > 1 is a positive integer and α >−1 is a real number.

14.2 Taylor Series

We begin by explaining the basic ideas behind the expansion of functions in Taylor
series (see [Ra81], [He74], and [HiEtAl07] for details).

Without loss of generality, we consider Taylor series around the origin. Any other
case can be reduced to this one through a translation of the variable. For convenience
and later use, we list three such expansions:

f (x) = f0 + f1x+ f2x2 + f3x3 + f4x4 · · · , (14.5)

g(x) = g0 +g1x+g2x2 +g3x3 +g4x4 · · · , (14.6)

h(x) = h0 +h1x+h2x2 +h3x3 +h4x4 · · · . (14.7)

14.2.1 The Arithmetic of Taylor Series

Arithmetic operations with Taylor series are defined naturally and without diffi-
culty.

1. Addition and subtraction. If h(x) = f (x)± g(x), the coefficients of f , g, and h
(see (14.5)–(14.7)) satisfy

hi = fi±gi.

2. Multiplication. If h(x) = f (x)g(x), then

hn =
n

∑
k=0

fign−i.

3. Division. If h(x) =
f (x)
g(x)

, then
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h0 =
f0

g0
, hn =

1
g0

(
fn−

n−1

∑
k=0

hkgn−k

)
(n≥ 1).

14.2.2 Basic Functions of Taylor Series

Many basic functions satisfy simple differential equations. Using these equations,
we can easily compute such functions of Taylor series.

1. Exponential function. If h(x) = e f (x), then

dh(x)
dx

= h(x)
d f (x)

dx
.

Substituting (14.5) and (14.7) in this differential equation and comparing the
coefficients on both sides, we get

h0 = e f0 , hn =
1
n

n

∑
k=1

khn−k fk (n≥ 1).

2. Logarithmic function. If h(x) = ln f (x), then

f (x)
dh(x)

dx
=

d f (x)
dx

.

Substituting (14.5) and (14.7) in this differential equation and comparing the
coefficients, we arrive at

h0 = log f0, hn =
1

n f0

(
n fn−

n−1

∑
j=1

jh j fn− j

)
.

Similar differential equations and coefficient relationships may be obtained
without difficulty between the coefficients of the Taylor series for other elemen-
tary transcendental functions.

3. Integration and differentiation. These two operations can be performed on Taylor
series in the expected way; thus,

h(x) =
d f (x)

dx
, h(x) =

∫ x

0
f (t)dt

yield, respectively,

h0 = 0, hi = (i+1) fi+1 (i = 1, . . . ,n−1),

h0 = 0, hi =
1
i

fi−1 (i = 1, . . . ,n).
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14.2.3 Numerical Example

As an illustration, we compute the Taylor series at x = 2 for the function

f (x) =
sinx

1+ x2 . (14.8)

This is performed by the C++ program
1 : #include "taylor_template.h"//define Taylor series
2 : typedef taylor_template<double> taylor ;
3 : void main()
4 : {
5 : taylor x, y ;
6 : x = taylor( 2.0, 2.0, 1.0); // x=2.0+1.0(x-2)
7 : y = sin(x)/(1+x*x) ;
8 : cout « y « endl ;
9 : }

where taylor(a,b,c) generates b+ c(x−a).
The output giving the Taylor polynomial of degree 14 for f (x) in (14.8) is

0.181859−0.228717(x−2)+0.0556719(x−2)2 +0.0150774(x−2)3

−0.0156188(x−2)4 +0.00878601(x−2)5−0.00415762(x−2)6

+0.00158541(x−2)7−0.000432293(x−2)8 +2.85231×10−5(x−2)9

+6.359×10−5(x−2)10−5.65745×10−5(x−2)11 +3.2542×10−5(x−2)12

−1.47187×10−5(x−2)13 +5.26657×10−6(x−2)14.

14.3 Integration of Singular Functions

The Taylor series of the function f (x) given by (14.1) is written around a generic
point c as

f (x) = f0 + f1(x− c)+ f2(x− c)2 + · · ·+ fm(x− c)m + · · · . (14.9)

Using (14.9), we split each of the integrals (14.2)–(14.4) into a part, computed
analytically, where the integrand contains the original singularity, and a part
(computed numerically), where the integrand is a smooth function.
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14.3.1 Integrals with Algebraic and Logarithmic Singularity

Integral (14.2) with algebraic and logarithmic singularity becomes

I1 =
∫ b

a
|x− c|α (log |x− c|)n( f0 + · · ·+ fm(x− c)m)dx

+
∫ b

a
|x− c|α (log |x− c|)n( f (x)−{ f0 + · · ·+ fm(x− c)m})dx. (14.10)

The logarithmic factor in the first integral on the right-hand side in (14.10) can
be removed by repeated application of integration by parts with the help of the
formulas

∫ b

a
|x− c|α (x− c)mdx =

[ |x− c|α (x− c)m+1

α +m+1

]b

a
,

∫ b

a
|x− c|α (x− c)m(log |x− c|)ndx =

[ |x− c|α (x− c)m+1

α +m+1
(log |x− c|)n

]b

a

− n
α +m+1

∫ b

a
|x− c|α (x− c)m(log |x− c|)n−1dx.

The second integrand on the right-hand side in (14.10) is

|x− c|α (log |x− c|)n( f (x)−{ f0 + f1(x− c)+ · · ·+ fm(x− c)m})
= |x− c|α (log |x− c|)nO((x− c)m+1),

which is an m-times differentiable function. If we take m large enough, then the
integral of this function can be computed by any one of a number of numerical
procedures.

Since loss of significant digits occurs near x = c, it is difficult to compute the
second integrand in (14.10) with enough accuracy. This can be avoided by taking a
sufficiently large number of terms in the series

f (x)−{ f0 + f1(x− c)+ · · ·+ fm(x− c)m

= fm+1(x− c)m+1 + fm+2(x− c)m+2 + · · ·+ fm+k(x− c)m+k + · · · .
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14.3.2 Cauchy Principal Value Integral

The Cauchy principal value integral (14.3) can be written as

p.v.
∫ b

a

f (x)
x− c

dx = lim
ε→0+

(∫ c−ε

a
+

∫ b

c+ε

)
f (x)
x− c

dx

= p.v.
∫ b

a

f0

x− c
dx+

∫ b

a

f (x)− f0

x− c
dx

= f0 ln

∣∣∣∣b− c
a− c

∣∣∣∣+
∫ b

a

f (x)− f0

x− c
dx. (14.11)

As this formula shows, the singularity is completely removed from the computation
of the integral, which was not possible in the case of an integrand with an algebraic
and logarithmic singular point. Here, the Taylor series expansion leads to

f (x)− f0

x− c
= f1 + f2(x− c)+ f3(x− c)2 + · · · ,

which permits us to attain a sufficiently high computational accuracy by means of

numerical integration. In the example given in Sect. 14.4, we compute
f (x)− f0

x− c
for

|x− c|> 1/10, and f1 + f2(x− c)+ f3(x− c)2 + · · · otherwise.

14.3.3 Hadamard Finite–Part Integral

The Hadamard finite part integral (14.4) is written as

f .p.
∫ b

a

f (x)
(x− c)n dx = f .p.

∫ b

a

n−2

∑
k=0

fk

(x− c)n−k dx+ p.v.
∫ b

a

fn−1

(x− c)
dx

+
∫ b

a

1
x− c

(
f (x)−

n−1

∑
k=0

fk(x− c)k

)
dx

=
n−2

∑
k=0

fk

n− k+1

(
1

(a− c)n−k+1 −
1

(b− c)n−k+1

)

+ fn−1 log

∣∣∣∣b− c
a− c

∣∣∣∣+
∫ b

a

1
x− c

(
f (x)−

n−1

∑
k=0

fk(x− c)k

)
dx.

As seen from this formula, the singularity has been removed completely from the
integral, just as it was in the case of the Cauchy principal value, and numerical
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integration methods can be used to complete the evaluation of the integral. The loss
of significant digits near x = c for the integrand in the last term can be avoided by
taking a sufficiently large number of terms in the Taylor series.

14.4 Numerical Examples

14.4.1 Integration with Algebraic and Logarithmic Singularity

There are papers in the literature dealing with the numerical integration of func-
tions with algebraic singularities (see [HaTo91]) and with logarithmic ones (see
[HaTo87b]), but the author is not aware of any that treat functions exhibiting both
at the same time. We give a simple example of such a case.

Consider

∫ 1

−1

log |x|√|x| exdx =−8.16418166413206192974141914914955390 . . . . (14.12)

Taking the Taylor polynomial of degree 9 for ex around x = 0, we have

ex ≈ 1+ x+0.5x2 +0.166667x3 +0.0416667x4

+0.00833333x5 +0.00138889x6 +0.000198413x7

+2.48016×10−5x8 +2.75573×10−6x9.

Using this expansion and performing the integration by means of the double expo-
nential numerical method with 31 sample points, we obtain the result 2.68e− 11.
This becomes −8.164181664132062366 when the analytic part of the calculation
is added to it. The final number is in agreement to 15 decimal places with (14.12),
which was computed by taking the Taylor polynomial of degree 20.

14.4.2 Cauchy Principal Value Integral

The Cauchy principal value integral has been studied extensively (see [Bi90a],
[El79], and [OgSuMo93]). As a numerical illustration, we choose Hasegawa’s
example [HaTo87a]

p.v.
∫ 1

−1

e4(x−1)

x− 1
2

dx = 0.6705314416507252484932219497926300644 . . . . (14.13)



202 H. Hirayama

The Taylor polynomial of degree 8 for the function e4(x−1) at x = 0.5 is

e4(x−1) ≈ 0.135335+0.541341(x−0.5)+1.08268(x−0.5)2

+1.44358(x−0.5)3 +1.44358(x−0.5)4 +1.15486(x−0.5)5

+0.769907(x−0.5)6 +0.439947(x−0.5)7 +0.219974(x−0.5)8.

The numerical integration part is carried out by means of the double exponential
method with 132 sample points and gives the value 0.819212. Adding the analytic
part, we arrive at 0.670531441650725646, a result that agrees to 15 decimal
places with (14.13). The latter was computed with the Taylor polynomial of
degree 20.

14.4.3 Hadamard Finite Part Integral

For this type, we choose Bialecki’s example (see [Bi90b] and [Pa81])

f .p.
∫ 1

−1

(1− x)1/4(1+ x)−1/4

(x− 1
10 )

dx =− 50π
33/3115/4

=−1.5090274451745640506248 . . . . (14.14)

The Taylor polynomial of degree 6 for the function (x−1)1/4(x+1)−1/4 at x= 0.1 is

0.95107−0.480338(x−0.1)+0.0727785(x−0.1)2−0.164181(x−0.1)3

+0.0326109(x−0.1)4−0.0975269(x−0.1)5 +0.0137508(x−0.1)6;

therefore,

f .p.
∫ 1

−1

(x−1)1/4(x+1)−1/4

(x−0.1)2 dx

≈ f .p.
∫ 1

−1

0.95107
(x−0.1)2 dx− p.v.

∫ 1

−1

0.480338
x−0.1

dx

+

∫ 1

−1

{
(x−1)1/4(x+1)−1/4

(x−0.1)2 −0.95107−0.480338(x−0.1)

}
dx.

The first two terms on the right-hand side are computed analytically, and the rest are
evaluated numerically by means of the double exponential method with 37 sample
points. The numerical part produces the result 0.315936140492676 that changes



14 Numerical Integration with Singularity by Taylor Series 203

to −1.509027445174564 when the analytic part is added to it. The final number
coincides to 16 decimal places with (14.14), which is computed with the Taylor
polynomial of degree 20.

14.5 Conclusion

The singularities in the integrands of the Cauchy principal-value integral and
Hadamard finite-part integral are easily removed when Taylor series are used. We
have shown that these types of integrals can be evaluated without difficulty by many
numerical integration methods. In the case of an algebraic and logarithmic singular
point, we showed that the singularity can be weakened, making such integrals
computable by standard numerical integration methods. This efficient manner of
computation is facilitated by the use of Taylor series.

We point out that other problems can be treated equally successfully by the
method proposed in this chapter, which are otherwise unsolvable; for example, the
Cauchy principal value integral [DaRa75]

T ( f ) = p.v.
1

2π

∫ π

−π
cot
(

1
2 (θ −φ)

)
f (φ)dφ .

Errors can be estimated by means of error analysis techniques for numerical
integration methods.
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Chapter 15
Numerical Solutions of the 1D
Convection–Diffusion–Reaction and the Burgers
Equation Using Implicit Multi-stage and Finite
Element Methods

C.A. Ladeia and N.M.L. Romeiro

15.1 Introduction

In the last decades, developments in computational mechanics motivated extensive
research on numerical solutions that had an important impact on society
[OdEtAl03]. In particular, we are interested in procedures that can be adapted
to problems involving convective, diffusive, and reactive processes. These problems
have a vast applicability (see [GoCoCa00], [TaShDe07], [KuEsDa04]), such as the
simulation of pollution effects in rivers; modeling of the evolution of oil and natural
gas reserves in the underground; modeling of heat transfer problems, dispersion
of pollutants; modeling of cosmological scenarios, analysis in seismology;
phenomenology of turbulence; the theory of shock waves; and in many other
applications.

Usually, the studies employ implicit multi-stage methods combined with the
finite element method to increase the convergence region of the obtained results
(see [DoRoHu00], [Ve04], [RoSa07], [TiYu11]). In this discussion, we consider
the implicit multi-stage method of second-order R11 and fourth-order R22, for the
discretization of the temporal domain and we use three formulations of the finite
element method type for the discretization of the spatial domain, i.e., least squares
(LSFEM), Galerkin (GFEM), and streamline-upwind Petrov–Galerkin (SUPG) to
solve the 1D convection–diffusion–reaction and the Burgers equation.
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15.2 Statement of the Problems

15.2.1 1D Convection–Diffusion–Reaction Equation

We consider the 1D convection–diffusion–reaction problem, consisting in finding
u(x, t) : Ω → R such that

ut(x, t)+ vux(x, t)−Duxx(x, t)+σu(x, t) = f (x, t), in Ω , (15.1)

u(0, t) = u(l, t) = 0 on Γ , (15.2)

u(x,0) = u0(x) ∀x ∈Ω , (15.3)

where Ω ⊂R is an open bounded domain with boundary Γ = ∂Ω . The coefficients
of (15.1) are v : Ω →R, the velocity field; D≥ 0, the diffusion coefficient; σ : Ω →
R, the linear reaction coefficient; f : Ω → R, the source term and (15.2) a Dirichlet
boundary, and (15.3) the initial condition. We can rewrite (15.1) as ut +L (u) = f ,
where the spatial differential operator is defined as

L (u) = vux−Duxx +σu (15.4)

and L =Lconv+Ldi f +Lreac represents the sum of the linear convective, diffusive,
and reactive operators, respectively.

15.2.2 Burgers Equation

Here, we consider the Burgers equation problem

ut(x, t)+u(x, t)ux(x, t)− εuxx(x, t) = f (x, t) in Ω , (15.5)

u(0, t) = u(l, t) = 0 on Γ , (15.6)

u(x,0) = u0(x) ∀x ∈Ω . (15.7)

The coefficients of (15.5) are given by ε = 1/Re, the coefficient of viscosity of
the fluid, Re the Reynolds number. Further, u(x, t) is the x-component of the fluid
velocity field, f : Ω→R, the source term and (15.6) a Dirichlet boundary condition,
and (15.7) the initial condition, where u0 is a known function. We can rewrite
(15.5) as

ut +L (u) = f ,

where the spatial operator is defined as
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L (u) = uux− εuxx , (15.8)

and L = Lconv +Ldi f represents the sum of the nonlinear and linear convective
and diffusive operators.

15.3 Numerical Methods

15.3.1 Time Discretization

We consider the time parts of (15.1) and (15.5). The time variable is discretized
using the implicit multi-stage methods of second order R11 and fourth order R22

[HuRoDo02]. The implicit multi-stage method is given in incremental form by

Δu
Δ t
−W�ut = wun

t , (15.9)

where the unknown Δu ∈ R
n is a vector with dimension n. The vector Δut is

the partial derivative of Δu with respect to time. The time derivatives in (15.9)
are replaced by spatial derivatives using the differential equations (15.4). The
coefficients in L are assumed smooth for the accuracy analysis.

Δu
Δ t

+WL (Δu) = w[ f n−L (un)]+WΔ f .

Here, Δu is defined in (15.9), where W, Δ f and w depends on each particular
method. We will linearize the convective term of (15.8), which will become a
pointwise linear operator. For illustration we show the compact form for the methods
R11 and R22.

R11 (Crank–Nicolson):

Δu = un+1−un; Δ f = f n+1− f n;

W = 1/2; w = 1.

R22:

Δu =

{
un+1/2−un

un+1−un+1/2

}
;

Δ f =

{
f n+1/2− f n

f n+1− f n+1/2

}
;

W =
1

24

[
7 −1
13 5

]
; w =

1
2

{
1
1

}
.
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15.3.2 Spatial Discretization

We shall now construct a finite-dimensional subspace Vh of V = H1
0 (0, l) formed

by piecewise linear functions of the set of m elements of V denoted by Vh =
[ϕ0, . . . ,ϕm]. The basis functions ϕ j are from the finite element method considering
a partition x0 < x1 < x2 . . . < xm−1 < xm.

15.3.3 Finite Element Method via Least Squares

Using the implicit multi-stage method defined above for the time discretization of
(15.1), the least squares method is applied at each tn+1 in (15.9) n = 0,1,2, . . . ,N,
un, which are assumed to be known. Let the set of test solutions V = H1

0 (0,L) and
the functional

F : V → R, un+1→F (un+1).

To minimize the functional F with respect to un+1 for n = 0,1,2, . . . ,N, we use the
Gâteaux derivative [BeNa08]. Thus, we can solve the variational problem where
un+1 ∈V is to be found such that

aM(un+1,w) = FM(w) ∀w ∈V.

The problem (15.1)–(15.3) is the solved using LSFEM and considering the subspace
Vh ⊂ V , for n = 0,1,2, . . . ,N. The problem consists then in finding an approximate
solution un+1

h ∈Vh such that

aM(un+1
h ,wh) = FM(wh) ∀wh ∈V.

15.3.4 Finite Element Method via Galerkin Procedure

Using the implicit multi-stage method defined above for the time discretization of
(15.1), the Galerkin method is applied at each tn+1 in (15.9) n = 0,1,2, . . . ,N, un

and are assumed to be known. Let the set V = H1
0 (0,L), then the weak formulation

of the problem is to find un+1 ∈ V such that aG(un+1,w) = FG(w), ∀w ∈ V . To
solve the problem (15.1)–(15.3) using GFEM, we consider the subspace Vh ⊂ V ,
for n = 0,1,2, . . . ,N. Thus, the problem consists in finding an approximate solution
un+1

h ∈Vh such that

aG(u
n+1
h ,wh) = FG(wh) , ∀wh ∈Vh . (15.10)
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15.3.5 Finite Element Method via Streamline-Upwind
Petrov–Galerkin Procedure

The SUPG stabilization for (15.1) is attained by finding uh ∈Vh such that

aG(uh,wh)+ESUPG(uh,wh) = FG(wh) ∀wh ∈Vh,

where ESUPG(uh,wh) indicates the terms of perturbation that are added to the
standard variational formulation (15.10). These terms assure that consistency and
numerical stability is given by the expression

ESUPG(uh,wh) = ∑
e j

(P(wh),τR(uh))Ω j ,

where P(w) is a certain operator applied to the test function, τ is the stabilization
parameter, and R is the residual of the differential equation defined by [DoRpHu03]

P(w) = v
∂wh

∂x
,

R = v
∂uh

∂x
−D

∂ 2uh

∂x2 +σuh− f ,

τ =

(
2v
h
+

4D
h2 +σ

)−1

=
h
2v

(
1+

1
Pe

+
hσ
2v

)−1

.

Here, h is the size of the grid, Pe is the Péclet number and v, D and σ are the
coefficients defined in equation (15.1). To solve the problem (15.1)–(15.3) using
SUPG, one considers the subspace Vh ⊂ V for n = 0,1,2, . . . ,N and determines an
approximate solution un+1

h ∈Vh such that

aG(u
n+1
h ,wh)+ESUPG(u

n+1
h ,wh) = FG(wh) ∀wh ∈Vh.

Next, we linearize the convective term in (15.5), which changes the size of the
element in each stage using the information from the previous step [KuEsDa04]
that casts the Burgers equation into a linear local problem.

15.3.6 Linearization of the Convective Term

Upon multiplying both sides of (15.5) by a test function w ∈ V and integrating out
the x-degree of freedom yields

∫ l

0
(ut +uux− εuxx− f )wdx = 0. (15.11)
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A numerical solution to problem (15.5)–(15.7) is constructed in the region 0≤ x≤ l
with boundary conditions specified at x = 0 and x = l. To this end, we consider
the finite dimensional subspace Vh, where the basis functions ϕ j are from the finite
element method considering a partition x0 < x1 < x2 . . . < xm−1 < xm of size

h j = x j− x j−1.

We now construct a test function uh, and the parameters that are to describe the
function uh are the values u0,u1,u2 . . . ,um at the nodes x j. Therefore, we can write
the approximate equation (15.11)

m

∑
j=0

∫ l

0

(
∂u j

∂ t
ϕi(x)+η

∂ϕ j(x)

∂x
ϕi(x)u j

− ε
∂ 2ϕ j(x)

∂x2 ϕi(x)u j− f ϕiu j

)
dx = 0 ∀ϕi, ϕ j ∈Vh,

where η = u0Δ t/h j and Δ t is the time step, and wh = ϕi(x), i = 0,1,2, . . . ,m. Thus,
the Burgers equation becomes a 1D linear local problem.

Now, we consider the development for the 1D convection–diffusion–reaction
equation in this case σ = 0, D = ε , and v = η . For the Burgers equation, the value
of the stabilization parameter τ , which is used by SUPG [DoRpHu03], is

τ =
(
(2u/h)2 +9

(
4ε/(h2)

)2 )−1/2
,

where h is the size of the grid and ε = 1/Re, with Re and u defined in (15.5).

15.4 Numerical Results

15.4.1 1D Convection–Diffusion–Reaction Equation

Consider the 1D convection–diffusion–reaction problem (15.1)–(15.3) with the
function f (x, t) = 0 and the initial condition given by a Gaussian distribution

u(x,0) = exp

{
−
(

x− x0

�

)2
}
.

For a linear decay term,−σu, the analytical solution on−∞< x<∞ is [DoRpHu03]

u(x, t) =
exp(−σt)

γ(t)
exp

{
−
(

x− x0− vt
�γ(t)

)2
}
, (15.12)
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Fig. 15.1 Comparisons of the Padé approximants R11 and R22 together with the formulations
(a) GFEM, (b) LSFEM, and (c) SUPG

where

γ(t) =
√

1+
4Dt
�2 .

For this example we consider 0≤ x≤ l, l = 2 the domain of the 1D problem. For

illustration, we present some results with 100 linear elements and

x0 = 1/4, �= 1/25, v = 1, σ = 0.1, C = 1, Pe = 100,

where v and σ are the coefficients of (15.1) and C and Pe are the Courant and Péclet
numbers, respectively.

In Fig. 15.1 we present comparisons between the Padé approximants of R11 and
R22 modified by the formulations GFEM, LSFEM, and SUPG, with Δ t = Δx =
0.02. The analysis of stability and convergence are shown for the time limit t = 1
and compared with the analytical solution (15.12). One observes in Fig. 15.1 that
the implicit multi-stage method of fourth-order R22 modified by the formulations
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Fig. 15.2 Convergence of the numerical results with the grid refinement for the example 1D
convection-diffusion-reaction problem

GFEM, LSFEM, and SUPG smoothed out the numerical oscillations. We present
the errors between the methods evaluated for function grid refinement (h = 1/50,
h = 1/680 and h = 1/1000) in Fig. 15.2 and for function time step refinement (Δ t =
0.5, Δ t = 0.05 and Δ t = 0.01) in Fig. 15.3 using the L2-norm.

15.4.2 The Burgers Equation

We consider an analytical solution for the Burgers equation (15.5) and (15.6) given
by [KuEsDa04]

u(x, t) =
2επ exp(π2εt)sin(πx)

a+ exp(−π2εt)cos(πx)
, a > 1,

with initial condition

u(x,0) =
2επ sin(πx)
a+ cos(πx)

, a > 1,

where ε = 1/Re is the coefficient of viscosity of the fluid and Re represents the
Reynolds number. Let 0 ≤ x ≤ 1 be the domain with the boundary conditions
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Fig. 15.3 Convergence of the numerical results with the time step refinement for the example 1D
convection-diffusion-reaction problem

u(0, t) = u(1, t) = 0. To illustrate some results we used 50 linear elements and
Re = 10000.

Figure 15.4 presents comparisons between the Padé approximants of R11 and R22

modified by the formulations GFEM, LSFEM, and SUPG, respectively, with Δ t =
Δx = 0.02 and as an analysis of stability and convergence we present the results
of the formulations for the upper time limit t = 1 and compare these findings with
the analytical solution (15.12). One observes in Fig. 15.5, that the implicit multi-
stage method of fourth-order R22, modified by the formulations GFEM, LSFEM
and SUPG smoothed out numerical oscillations. We present the errors between
the methods, evaluated for function grid refinement (h = 2/50, h = 2/100, and
h=2/500), in Fig. 15.5 and for function time step refinement (Δ t = 0.03, Δ t = 0.02
and Δ t = 0.01) in Fig. 15.6 using the L2 norm.

15.5 Conclusions

We conclude that the implicit multi-stage method of fourth-order R22, when
complemented by the finite element methods studied here, proved efficient since the
Padé approximant R22 increased the convergence region of the numerical solutions.
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Fig. 15.5 Convergence of the numerical results with grid refinement for the example the Burgers
equation
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Fig. 15.6 Convergence of the numerical results with time step refinement for the example the
Burgers equation

We also note that the LSFEM eliminated the oscillations of numerical solutions
more efficiently than the methods GFEM and SUPG.
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Chapter 16
Analytical Reconstruction of Monoenergetic
Neutron Angular Flux in Non-multiplying Slabs
Using Diffusion Synthetic Approximation

R.S. Mansur and R.C. Barros

16.1 Introduction

In this chapter we describe two analytical reconstruction schemes for the neutron
angular flux for fixed-source one-speed transport problems in slab geometry
[DuHa76]. To be more specific, the spatial reconstruction scheme expresses the
diffusion solution in each spatial cell as a linear combination of two basis functions.
The latter are determined by spectral analysis with boundary conditions assigned
at the cell edges that are given by the spectral nodal results. Thus one obtains a
system of two linear algebraic equations in two unknown expansion coefficients,
which then yield the exact diffusion solution at each point in the cell. Note that the
spectral nodal method for diffusion (SND) is free from all spatial truncation errors.
Moreover, the angular reconstruction scheme yields an approximate angular flux
at any angular direction −1 ≤ μ ≤ 1, μ �= 0, where μ = cosθ , with 0 ≤ θ ≤ π
being the polar angle, θ �= π/2 [LeMi93]. To achieve this goal, we substitute
the local solution within each discretized cell of the spatial grid as determined by
the spatial reconstruction scheme, into the integral source terms of the analytical
first-order form of the neutron transport equation in slab geometry with linearly
anisotropic scattering [LeMi93] and solve the resulting approximate differential
equation analytically. This method is referred to as a synthetic method since it uses
a lower-order model, which is diffusion, to solve a higher-order equation, which is
the neutron transport equation.

Now we outline the content of the remainder of this chapter: in the next section
we describe the spatial and the angular reconstruction schemes of the SND coarse-
mesh solution. Further we present numerical results to a multilayer fixed source
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problem in slab geometry with linearly anisotropic scattering, and then we give a
number of concluding remarks.

16.2 The Spatial and the Angular Reconstruction Schemes
of the SND Coarse-Mesh Numerical Solution

16.2.1 The Spatial Reconstruction Scheme

Let us consider Fig. 16.1 which represents a spatial discretization grid wherein each
cell is also termed node Ωi.

We begin by describing the spectral analysis we perform to the diffusion
equation inside node Ωi in order to obtain the present SND method. Therefore,
it is convenient to write the one-speed slab-geometry diffusion equation in Ωi in the
form

d
dx

J(x)+Σaiφ(x) = Qi, (16.1)

J(x) =−Di
d
dx

φ(x), 0≤ x≤Ωi, (16.2)

where (16.1) is the neutron continuity equation and (16.2) is the classical Fick’s law,
the essence of diffusion theory. Moreover we have defined

φ(x): Neutron scalar flux;
J(x): Total current;
Σai : Macroscopic absorption cross section;
Di: Diffusion coefficient;
Qi: Uniform and isotropic interior source.

At this point we apply the operator 1
hi

∫ x
i+ 1

2
x

i− 1
2

dx in (16.1) and (16.2) to obtain the

discretized balance equations

Ji+ 1
2
− Ji− 1

2

hi
+Σai φ̄i = Qi (16.3)

J̄i =−Di

hi

(
φi+ 1

2
−φi− 1

2

)
. (16.4)

Fig. 16.1 Spatial node Ωi of width hi
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Here we have defined the average values within the spatial cell Ωi as

ḡi =
1
hi

∫ x
i+ 1

2

x
i− 1

2

g(x)dx, g = J or g = φ . (16.5)

Now we write two expressions for solutions of (16.1) and (16.2) in Ωi as

φ(x) = a e−Σai x/ν +φ p, (16.6)

J(x) = b e−Σai x/ν + Jp, (16.7)

where the superscript p denotes particular solutions and for simplicity we have
dropped the subscript i. Then we substitute (16.6) and (16.7) into (16.1) and (16.2)
to obtain the system of two algebraic equations

Σai

(
a e−

Σai x
ν

)
− Σai

ν

(
b e−

Σai x
ν

)
= Qi−Σaiφ

p, (16.8)

−DiΣai

ν

(
a e−

Σai x
ν

)
+b e−

Σai x
ν =−Jp. (16.9)

We determine the particular solutions by setting the right-hand sides of (16.8) and
(16.9) equal to zero. Therefore, we obtain

φ p =
Qi

Σai

,

Jp = 0.

By solving the resulting homogeneous system for nontrivial solution, we obtain

ν =±√Di Σai . (16.10)

As it stands, (16.6) and (16.7) appear as

φ(x) = a e
−
√

Σai
Di

x
+

Qi

Σai

, (16.11)

J(x) = b e
−
√

Σai
Di

x
. (16.12)

Furthermore, the undetermined homogeneous system appears as

Σai a−
√

Σai

Di
b = 0,

−√Di Σai a+b = 0.
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By choosing a= 1, we obtain b=
√

DiΣai , and (16.11) and (16.12) can be written as

φ(x) = e
−
√

Σai
Di

x
+

Qi

Σai

, (16.13)

J(x) =
√

DiΣai e
−
√

Σai
Di

x
.

Therefore, the expressions for the local analytical general solutions of (16.1) and
(16.2), considering (16.10), are given by

φ(x) =C1e
−
√

Σai
Di

x
+C2e

√
Σai
Di

x
+

Qi

Σai

, (16.14)

J(x) =C1
√

DiΣai e
−
√

Σai
Di

x
+C2

√
DiΣai e

√
Σai
Di

x
, x ∈Ωi. (16.15)

Furthermore, to derive the discretized equations of the SND method, we write
two auxiliary equations in the form

φ̄i =
γi

2

(
φi+ 1

2
+φi− 1

2

)
+G(Qi), (16.16)

J̄i =
βi

2

(
Ji+ 1

2
+ Ji− 1

2

)
. (16.17)

In order to determine expressions for γi and βi , we first substitute (16.13) into

(16.16). By using definition (16.5) and defining the diffusion length Li =
√

Di
Σai

, we

obtain

φ̄i =
Li

hi

(
e
−

x
i− 1

2
Li − e

−
x
i+ 1

2
Li

)
+

Qi

Σai
,

which can be substituted into the auxiliary equation (16.16) to obtain

G(Qi) =
(1− γi)Qi

Σai
,

and then

γi = 2
Li

hi
tanh

(
hi

2Li

)
. (16.18)

Using a similar procedure, we obtain an expression for βi which is identical to
(16.18). Therefore, the auxiliary equations (16.16) and (16.17) appear as
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φ̄i =
γi

2

(
φi+ 1

2
+φi− 1

2

)
+

(1− γi)Qi

Σai
, (16.19)

J̄i =
γi

2

(
Ji+ 1

2
+ Ji− 1

2

)
. (16.20)

Now, we substitute (16.19) and (16.20) into (16.3) and (16.4) to obtain

Ji+ 1
2
− Ji− 1

2
= hi γi Qi− hi γi Σai

2

(
φi+ 1

2
+φi− 1

2

)
, (16.21)

Ji+ 1
2
+ Ji− 1

2
=−2 Di

hi γi

(
φi+ 1

2
+φi− 1

2

)
. (16.22)

By summing (16.21) and (16.22) and then subtracting (16.21) from (16.22), we
obtain, respectively,

Ji+ 1
2
=− Di

hi γi

(
φi+ 1

2
−φi− 1

2

)
− hi γi Σai

4

(
φi+ 1

2
+φi− 1

2

)
+

hi γi

2
Qi, (16.23)

Ji− 1
2
=− Di

hi γi

(
φi+ 1

2
−φi− 1

2

)
+

hi γi Σai

4

(
φi+ 1

2
+φi− 1

2

)
− hi γi

2
Qi. (16.24)

To proceed, we substitute the subscript i for the subscript (i + 1) in (16.24) to
write

Ji+ 1
2
=− Di+1

hi+1 γi+1

(
φi+ 3

2
−φi+ 1

2

)
+

hi+1 γi+1 Σai+1

4

(
φi+ 3

2
+φi+ 1

2

)

− hi+1 γi+1

2
Qi+1. (16.25)

By comparing (16.25) and (16.23), we obtain an equation involving three
consecutive node–edge scalar fluxes on the left-hand side, and the sources Qi

and Qi+1 on the right-hand side. This equation is used for the interior nodes Ωi,
i = 2 : I−1.

For the first spatial cell, we set i = 1 in (16.24) to write

J 1
2
=− D1

h1 γ1

(
φ 3

2
−φ 1

2

)
+

h1 γ1 Σa1

4

(
φ 3

2
+φ 1

2

)
− h1 γ1

2
Q1. (16.26)

Furthermore, we introduce the generalized left boundary condition as

J 1
2
= I0−α0φ 1

2
, (16.27)

where I0 is the isotropic incident flux at x = 0 and α0 is an appropriate constant,
which is defined in Table 16.1. Using (16.26) into (16.27), we obtain an equation
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Table 16.1 Boundary conditions

Prescribed Reflexive Vacumm Zero scalar-flux

αm 0.5 0 0.5 ∞
Im Ia 0 0 0
aInput data

involving φ 1
2

and φ 3
2

on the left-hand side, and the source Q1 and I0 on the right-hand

side. This equation is used for the first spatial cell Ω1.
For the last spatial cell, we set i = I in (16.23), and we obtain

JI+ 1
2
=− DI

hI γI

(
φI+ 1

2
−φI− 1

2

)
− hI γI ΣaI

4

(
φI+ 1

2
+φI− 1

2

)
+

hI γI

2
QI . (16.28)

Similarly, we substitute the generalized boundary condition at x = R (see
Fig. 16.1), that is,

JI+ 1
2
= αRφI+ 1

2
− IR,

into (16.28), where IR is the isotropic incident flux at x = R and αR is an appropriate
constant, which is also defined in Table 16.1. The result involves φI+ 1

2
and φI− 1

2
on

the left-hand side, and the source QI and IR on the right-hand side. This equation is
used for the last spatial cell ΩI .

At this point we remark that the parameters αm and Im, m∈ {0,R}, depend on the
boundary conditions assigned to the diffusion equation and are given in Table 16.1.

The expressions for the interior interfaces and boundaries result in an algebraic
linear system with I + 1 equations in I + 1 unknowns φi, i = 1/2 : I + 1/2.
The coefficient matrix of this linear system is symmetric, tridiagonal and has
the characteristic of being diagonal dominant, which discards the use of pivoting
strategies to solve the system for the scalar flux at the node edges [BuFa85].

As mentioned earlier in this chapter, the numerical solution generated by the
SND method has no spatial truncation errors. Therefore, it generates accurate
numerical results, even for coarse discretization grids set up on the domain.

To proceed further with the spatial reconstruction scheme, we first set xi− 1
2
= 0

and xi+ 1
2
= hi, i = 1 : I, in (16.14), which is the analytical solution inside Ωi. As the

values of φ(0) and φ(hi) are determined by the SND method, we solve the system

φ(0) =C1 +C2 +
Qi

Σa1

, (16.29)

φ(hi) =C1 e
hi
Li +C2 e

hi
Li +

Qi

Σa1

, (16.30)

for the two unknowns C1 and C2.
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To conclude the spatial reconstruction scheme, we substitute the constants C1

and C2 back into the local general solution (16.14), so we can evaluate the scalar
flux at any point x ∈ Ωi. We note that all spatial cells of the same material zone
that have the same width may have different pairs of constants C1 and C2 , since the
right-hand side of system (16.14) is generally different in each Ωi, as it depends on
the coarse-mesh results generated by the SND method in accordance with (16.29)
and (16.30).

16.2.2 The Angular Reconstruction Scheme

Once we have described a technique to perform spatial reconstruction within each
spatial node Ωi, i = 1 : I, of the coarse-mesh discretization grid, we proceed to
describing a synthetic method to perform angular reconstructions for any possible
value (except μ = 0) of the direction-of-motion variable μ .

The monoenergetic neutron transport equation in slab geometry with linearly
anisotropic scattering appears as

μ
∂
∂x

ψ (x,μ)+ΣT ψ (x,μ)

=
Σs0

2

∫ 1

−1
ψ(x,μ

′
)dμ

′
+

3
2

μΣs1

∫ 1

−1
μ
′
ψ(x,μ

′
)dμ

′
+

Q
2
, (16.31)

where

ψ (x,μ) : Neutron angular flux in direction μ ;
ΣT : Total macroscopic cross section;
Σs0 : Zero’th-order term of the differential scattering macroscopic cross section;
Σs1 : First-order term of the differential scattering macroscopic cross section.

The zero’th-order term of the differential scattering macroscopic cross section
and the total macroscopic cross section are defined, respectively, by Σs0 = ΣT −Σa

and ΣT = 1
3D +Σs1 [LeMi93].

Therefore, let us use the standard definition of neutron scalar flux and total current

φ(x) =
∫ 1

−1
ψ(x,μ)dμ,

J(x) =
∫ 1

−1
μ ψ(x,μ)dμ.

Moreover, using the expression for the local general solutions (16.14) and (16.15)
in (16.31), we solve the resulting equation analytically for the neutron angular flux
ψ(x,μ), x ∈Ωi. For 0 < μ ≤ 1, the result is
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ψ (x,μ) = ψ (0,μ)e−ΣT
x
μ +

1
μ

2

∑
�=1

C� ξ�
(

e−ΣT
x
μ − e

−Σa
x

ν�

)
Σa
ν�
− ΣT

μ

+
Q

2Σa

(
1− e−ΣT

x
μ
)
. (16.32)

where we have defined ξ� =
Σs0
2 + 3

2 Σs1 μ ν�.
Furthermore, for −1≤ μ < 0 , we obtain the result

ψ (x,μ) = ψ (h,μ)e
−ΣT

h−x
|μ | +

1
|μ |

2

∑
�=1

C� ξ�
(

e
−Σa

x
ν� − e

−ΣT
h−x
|μ | · e−Σa

h
ν�

)

Σa
ν�
− ΣT
|μ |

+
Q

2Σa

(
1− e

−ΣT
h−x
|μ |
)
.

Here, x = 0 is the left-hand edge of node Ωi and x = hi is the right-hand edge of
node Ωi , i.e., 0≤ x≤ hi.

Equations (16.32) and (16.33) are the analytical solutions of the approximate
neutron transport equation for all direction-of-motion variables −1≤ μ ≤ 1, μ �= 0,
wherein we have considered the local general solution for the scalar flux and total
current given by (16.14) and (16.15). We remark that the values of C1 and C2 are
determined by solving the linear system of (16.29) and (16.30), as described for the
spatial reconstruction scheme. Moreover, we see from (16.32) and (16.33) that the
present angular reconstruction scheme is not valid for the particular case of μ = 0.

16.3 Numerical Results

Let us consider a heterogeneous model problem that consists of a three-layer slab
of thickness R = 50 cm and two material zones, represented in Fig. 16.2. Vacuum
boundary conditions apply at x = 0 and x = 50. The central layer has a constant unit
source and the cross sections for the two material zones are listed in Table 16.2.

Fig. 16.2 Model problem

Table 16.2 Parameters for the two material zones

Zone D Σa ΣT Σs1

1 0.33333 0.1 1.0 0.8
2 0.37037 0.2 0.9 0.6
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Table 16.3 Numerical results generated by the synthetic angular reconstruction (S16)

Positon (cm)
Direction S16
Gauss–Legendre

Synthetic angular
reconstruction DD−Sa

16

Percent relative
deviation

2 0.0950125 0.0101181 0.0105915 4.47
8 −0.4580168 0.089064 0.0884181 0.73
15 −0.8656312 0.7213077 0.6725081 7.26
20 −0.0950125 1.5299474 1.5604457 1.95
22 0.0950125 1.7115275 1.7738038 3.51
24 −0.7554044 0.1495803 0.1463598 2.20
49 −0.4580168 0.000703 0.0007441 5.52

Execution time: 18.266 s 818.064 s –
aDiamond difference—Gauss–Legendre S16 [Ly11]

We ran the SND code on a spatial grid composed of one node per layer and the
results for the scalar flux profile as generated with the present spatial reconstruction
are plotted in Fig. 16.3, where we used a step of 0.01 cm to build the graph. The
numerical results generated by the angular synthetic reconstruction are listed in
Table 16.3. In the first column of the table, we present various positions of the
domain where the angular flux were calculated in several directions, positive and
negative, of the conventional Gauss–Legendre S16 angular quadrature [LeMi93],
that are listed in the second column of Table 16.3. The third column lists the
numerical values for the angular flux generated by the offered synthetic diffusion
angular reconstruction method and in the fourth column we have the numerical
values generated by the Diamond Difference (DD) method using the Gauss–
Legendre S16 angular quadrature [LeMi93]. As we see in the fifth column, the
percent relative deviations were generally small, and for the numerical results listed
in Table 16.3, the maximum value of 7.26% occurred at position 15 cm in direction
μ =−0.8656312.
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The results for the neutron angular flux profile as generated with the present
angular reconstruction are plotted in Fig. 16.4, for 16≤ x≤ 28, region where a unit
neutron source is located. The graph indicates that, from the center of the region
to the left side of the domain, the angular flux is higher for the negative directions;
whereas from the center to right, the flux is higher for the positive directions.

16.4 Conclusions

The SND method generates numerical solution with no spatial truncation errors
for one-speed slab-geometry diffusion problems, regardless of the spatial grid
setup on the domain, but apart from computational finite arithmetic considerations.
Therefore, one may be able to solve slab-geometry one-speed diffusion problems
with many fewer spatial cells than standard numerical methods, e.g., the classi-
cal finite-difference method. On the other hand, as a drawback of coarse-mesh
numerical methods, we note that they do not generate localized quantities that
frequently are needed, as the grid points may be considerably away from each
other. Therefore, we have described in this chapter two numerical algorithms to
reconstruct the coarse-mesh solution within each discretization spatial node, i.e.,
the spatial reconstruction scheme and the synthetic angular reconstruction scheme.
According to the numerical results generated for the model problem considered
in the previous section by the present reconstruction schemes, we conclude that
they are reasonably accurate with respect to the direct calculations. In addition, as
we see in the last row of Table 16.3, the offered synthetic angular reconstruction
scheme generates accurate results in much less computational running time than the
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DD−S16 method. Before closing this chapter, we remark that for highly absorbing
optically thin multilayer slabs, the present synthetic angular reconstruction scheme
may not generate accurate results since diffusion theory is not a good model for such
problems.
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Chapter 17
On the Fractional Neutron Point Kinetics
Equations

M. Schramm, C.Z. Petersen, M.T. Vilhena, B.E.J. Bodmann,
and A.C.M. Alvim

17.1 Introduction

In neutron diffusion theory, equations that govern the dynamics of space–time
and the neutron population are called kinetics equations. The kinetics equations
are divided into point kinetics equations and space kinetics equations. In this
work we will emphasize the point kinetics model, more specifically, variations in
the neutron density for small time scales, or equivalently changes in criticality
due to changes of nuclear parameter in small time intervals. The point kinetics
equations describe only the behavior of the neutron density with time, assuming
total separability of time from spatial degrees of freedom but with an a priori known
spatial shape of the density. The point kinetics model, although derived already
decades ago, plays still a significant role in reactor physics and is used to estimate
the power response of the reactor, allowing for control and intervention in the power
plant operation, that may also be helpful to avoid the occurrence of incidents or
accidents.
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The present discussion is an attempt to provide a new method that solves the point
kinetics equations. The new aspect is a fractional kinetics model, which reproduces
the classical model and thus allows to capture effects that differ from the usually
employed hypothesis of Fick. The fractional point kinetics model presented here is
derived thoroughly and solved analytically, which hopefully will mark the beginning
of an extensive theoretical research for future validation and applications of this kind
of approach in nuclear reactor theory.

The subject of fractional calculus has gained considerable importance during
the last two decades, primarily due to its applications in various fields of science
and engineering [EdFoSi02], [OlSp74], [MiRo93], [SaKiMa93], [Po99], [Hi00],
[KiSrTr06], [Ma06]. However, its use in the area of reactor physics is new, and as a
first step into a new direction, we determine an analytical solution for the fractional
neutron point kinetics equation (FNPK). Classical diffusion theory provides a
description that is strictly valid for the neutron flux when the following assumptions
are satisfied [La65]:

1. The absorption probability is considerably smaller than the scattering.
2. The variation of the spatial distribution of neutrons is linear.
3. The scattering is isotropic.

The incompatibility of one of these hypotheses is clear evidence that Fick’s law
needs to be modified. In this sense, the justification of this work is to analyze and
validate a new model of non-Fickian diffusion solutions. Note that hitherto classical
diffusion solutions are still a standard in reactor physics although nuclear interaction
parameter hide properties of local quantum degrees of freedom in opposition to the
nonlocal character of Fick’s law.

The main idea of the forthcoming discussion is to correct some problems in
nonclassical diffusion phenomena arising from the highly heterogeneous configu-
ration in nuclear reactors, by solving a fractional diffusion model as the constituent
equation for the neutron density. The fractional diffusion model presented here can
be applied to a large range of neutron cross sections, which is not always the case
in approaches by classical models that make use of the neutron diffusion equation.
Limitations of these approaches occur typically in the presence of neutron draining
close to the border between nuclear fuel and the control rods, or strong neutron
absorption in a boron loaded refrigerant.

The modified laws proposed next allow to broaden the scope and improve the
diffusion theory with respect to the classical framework that describes neutronics,
for example, the transient behavior in a highly heterogeneous reactor core assembly.
In order to improve the classical diffusion theory, we reason that the fractional
point kinetics equation can improve the predictions and, presumably in some
cases, be similar to results from more complicated transport theory approaches.
Here, we solve in closed form the kinetics model based on diffusion theory but
driven by fractional derivatives. To this end we start from the fractional point
kinetics equations model, considering one group of delayed neutron precursors
and constant reactivity. Further, we resort to the decomposition method recently
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applied successfully to a similar type of problem [PeEtAl11a]. Other works along
this line may be found in [BoEtAl10], [Ce10], [PeEtAl11b], [Pe11], [AzEtAl11],
[BoEtAl12], [SeViGo12], [VaSeVi12].

17.2 Derivation of the Fractional Neutron Point
Kinetics Equations

Our starting point is the time-dependent neutron diffusion equation without external
sources; that is,

−∇ · J(r,E, t)−Σt(r,E)φ(r,E, t)

+
∫

∑
j

f j
p(E)(1− β̂ j)ν jΣ f j(r,E

′)φ(r,E ′, t) dE ′

+
∫

Σs(r,E
′ → E)φ(r,E ′, t) dE ′

+∑
i

fi(E)λiĈi(r, t) =
1

v(E)
∂φ(r,E, t)

∂ t
, (17.1)

where J(r,E, t) is the current density, Σt(r,E) is total cross section, φ(r,E, t) is the
neutron flux, Σs(r,E ′ → E) is the energy-dependent scattering cross section, λi is
the decay constant of the neutron precursor group i, Ĉi(r, t) is the concentration of
delayed neutrons precursors of group i, β̂ j is the delayed neutron fraction for the
isotope j and v(E) is the neutron speed. Here, f j

p(E) is the probability that a prompt
neutron will appear as result of fission and fi(E) is the probability that a delayed
neutron will appear due to the decay of an isotope of the precursor group i. Note
that

∫
f j
p(E) dE =

∫
fi(E) dE = 1, i = 1,2, . . . I and j = 1,2, . . .J. The expression

for concentration of delayed neutrons precursors is given by

∫
∑

j
β̂ jiν jΣ f j(r,E

′, t)φ(r,E ′, t) dE ′ −λiĈi(r, t) =
∂Ĉi(r, t)

∂ t
,

where β̂ ji is the delayed neutron fraction for isotope j that will result from an isotope
of the precursor group i. Notice that ∑i β̂ ji = β̂ j.

In many physical problems it has been observed that a diffusion processes does
not follow the Fick law. Such a phenomenon is referred as non-classical diffusion.
Specifically, in the case of a nuclear reactor, some anomalous diffusion phenomena
occur due to the highly heterogeneous configuration. The result is an anomalous
diffusion process that cannot be accurately described by a Fickian diffusion process.
Recently, Nec and Nepomnyashchy [NeNe07] have proposed fractional modifica-
tions to Cattaneo’s constituent equation [ChEtAl08] as a phenomenological model
to describe anomalous diffusion processes. According to these ideas, a version for
the fractional derivative equation of the current density is given by
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τk ∂ kJ(r,E, t)
∂ tk + J(r,E, t) =−D∇φ(r,E, t) , (17.2)

where τ is the relaxation time and k is the anomalous diffusion order. For
processes of sub-diffusion, 0 < k < 1, while for processes of super-diffusion,
1<k<2. The fractional derivative operator ∂ k

∂ tk is defined by the Riemann–Liouville

prescription [OlSp74]. In the limit τk → 0, Fick’s law is recovered and for k→ 1
the Cattaneo equation is obtained, as shown explicitly further down.

We extend the usual derivative by applying the operator τk ∂ k

∂ tk to (17.1) and
adding the ensuing equation to (17.1) itself. Then, omitting, for convenience, the
explicit space, time, and energy dependences in the current density and scalar
neutron flux, we arrive at

−∇ ·
(

τk ∂ kJ
∂ tk + J

)
−Σt

(
τk ∂ kφ

∂ tk +φ
)

+
∫

∑
j

f p
j

(
1− β̂ j

)
ν jΣ f j

(
τk ∂ kφ

∂ tk +φ
)

dE ′

+
∫

Σs

(
τk ∂ kφ

∂ tk +φ
)

dE ′

+∑
i

fiλi

(
τk ∂ kĈi

∂ tk +Ĉi

)
=

1
v

(
τk ∂ k+1φ

∂ tk+1 +
∂φ
∂ t

)
. (17.3)

Replacing expression (17.2) in (17.3), integrating out volume and energy and further
recalling that

∫
f p

j (E) dE =
∫

fi(E) dE = 1,

∫
Σs(r,E

′ → E) dE = Σt(r,E
′)−Σa(r,E

′),

we rewrite (17.3) as

∫ ∫ [
∇ ·D∇φ +

(
∑

j
(1− β̂ j)ν jΣ f j−Σa

)
φ

]
dE dV

+∑
i

∫
λiĈi dV + τk dk

dtk ∑
i

∫
λiĈi dV

=
d
dt

∫ ∫
1
v

φ dE dV + τk dk+1

dtk+1

∫ ∫
1
v

φ dE dV

+τk dk

dtk

∫ ∫ (
Σa−∑

j
(1−βi j)ν jΣ f j

)
φ dE dV . (17.4)
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We assume that the neutron flux and the delayed neutron precursors can be
factorized as a time-dependent amplitude function times a shape function;
that is,

φ(r,E, t) = n(t)G(r,E, t), Ĉi(r, t) =Ci(t)Fi(r, t). (17.5)

Here, n(t) is the neutron density, Ci(t) is the delayed neutron precursor concentra-
tion for group i, and G(r,E, t) and Fi(r, t) are the functions satisfying

∫ ∫
G(r,E, t)

v(E)
dE dV =

∫
Fi(r, t) dV = 1,

∫ ∫ φ(r,E, t)
v(E)

dE dV = n(t),
∫

Ĉi(r, t) dV =Ci(t).

Rewriting (17.4) in terms of the new definitions (17.5) yields

n(t)
∫ ∫ [

∇ ·D∇G+

(
∑

j
ν jΣ f j

)
G

]
dE dV

−n(t)∑
j

∫ ∫
β̂ jν jΣ f jG dE dV

+∑
i

λiCi + τk ∑
i

λi
dkCi(t)

dtk =
dn(t)

dt
+ τk dk+1n(t)

dtk

+ τk dkn(t)
dtk

∫ ∫ (
Σa−∑

j
(1− β̂ j)ν jΣ f j

)
G dE dV, (17.6)

which, on defining reactor-specific parameters, reduces to the FNPK equation for
n(t) and for Ci(t):

n(t)
ρ(t)−β (t)

Λ(t)
+∑

i
λiCi(t)+ τk ∑

i
λi

dkCi(t)
dtk

=
dn(t)

dt
+ τk dk+1n(t)

dtk+1 + τk dkn(t)
dtk

(
1

l(t)
− 1−β (t)

Λ(t)

)
,

n(t)
βi(t)
Λ(t)

−λiCi(t) =
dCi(t)

dt
.

The effective kinetics parameters may be identified by comparison with (17.6) and
represent the reactivity function ρ , the fraction βi of delayed neutrons for precursor
group i, the total fraction β of delayed neutrons, the neutron generation time Λ , and
the mean neutron lifetime l; specifically,
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ρ(t) =
∫ ∫ [

∇ ·D∇G+
(
∑ j ν jΣ f j−Σa

)
G
]

dE dV∫ ∫
∑ j ν jΣ f jG dE dV

,

βi(t) =

∫ ∫
∑ j β̂ jiν jΣ f jG dE dV∫ ∫

∑ j ν jΣ f jG dE dV
,

β (t) =
∑ j
∫ ∫

β̂ jν jΣ f jG dE dV∫ ∫
∑ j ν jΣ f jG dE dV

= ∑
i

βi(t) ,

Λ(t) =
1∫ ∫

∑ j ν jΣ f jG dE dV
,

l(t) =
1∫ ∫

ΣaG dE dV
.

This non-Fickian model includes three additional terms with respect to the

classical point kinetics equations containing the fractional derivatives dk+1n(t)
dtk+1 , dkn(t)

dtk ,

and dkCi(t)
dtk . The physical meaning of these terms suggests that for sub-diffusion

processes the first term is an important contribution to the fast changes in the
neutron density, while the second term represents an important contribution when
the changes in the neutron density are relatively slow, for example, during the start-
up of a nuclear plant involving operational re-conditioning of the reactor. The third
term becomes more important, for example, when the reactor is on shut down. It may
further be useful for the processes in accelerated driven systems (ADS) that are
characterized by a low fraction of delayed neutrons.

Note that for τk→ 0 we recover the classical neutron point kinetics (NPK) model,

n(t)
ρ(t)−β (t)

Λ(t)
+∑

i
λiCi(t) =

dn(t)
dt

,

and for k→ 1 we get Cattaneo’s classical model

n(t)
ρ(t)−β (t)

Λ(t)
+∑

i
λiCi(t)+ τ ∑

i
λi

dCi(t)
dt

=
dn(t)

dt

(
1+ τ

1
l(t)
− τ

1−β (t)
Λ(t)

)
+ τ

d2n(t)
dt2 .

It is noteworthy that the formulation for the neutron precursors concentrations
Ci(t) is identical to the classic model, even with a non-Fickian closure. Usually,
the parameters βi(t), β (t), Λ(t), and l(t) are not considered time-dependant in
point kinetics models. In general the reactivity term shall have time dependence, or
even n(t) dependence, when one considers a reactor dynamics model, unlike other
kinetics parameters.
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17.3 The Solution of the FNPK Equations

In what follows, we solve the FNPK equations for constant kinetics parameters ρ(t),
βi(t), β (t), Λ(t) and l(t). The fractional model is considered for I delayed neutron
precursor groups and given in [PaLaMa11]; that is,

dn(t)
dt

=−τk dk+1n(t)
dtk+1 − τk

[
1
l
+

(
1−β

Λ

)]
dkn(t)

dtk +
ρ−β

Λ
n(t)

+
I

∑
i=1

λiCi(t)+ τk
I

∑
i=1

λi
dkCi(t)

dtk ,

dCi(t)
dt

=
βi

Λ
n(t)−λiCi.

(17.7)

The initial conditions are n(0) = n0 and Ci(0) =
βi

λiΛ
n0, respectively.

To this end, we make use of the decomposition method [Ad94]. In some cases the
Adomian decomposition is known to have slow convergence for large time periods,
so that one may avoid an extensive number of terms in the recursion scheme by
resorting to an analytic continuation method. The analytic continuation consists in
solving for short time steps, so that only a few terms of the decomposition series
are needed and represent already a reasonable result. Moreover, the solution for one
time step is evaluated at the upper time step limit and defines the initial condition
for the next step.

The Adomian decomposition method consists in expanding the neutron density
and concentration of delayed neutrons precursors in a truncated series. The number
of terms (R) considered in the decomposition series is determined by some
convergence criterion:

n(t) =
R

∑
r=0

nr(t), Ci(t) =
R

∑
r=0

Cir(t).

These expansions are inserted into the FNPK equations and a set of first-
order recursive differential equations are constructed according to the following
prescription.

d (n0 + . . .+nR)

dt
= −τk dk+1 (n0 + . . .+nR)

dtk+1

−τk
[

1
l
−
(

1−β
Λ

)]
dk (n0 + . . .+nR)

dtk

+
ρ−β

Λ
(n0 + . . .+nR)+

I

∑
i=1

λi
(Ci0 + . . .+CiR)

dtk
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+τk
I

∑
i=1

λi
dk (Ci0 + . . .+CiR)

dtk ,

d (Ci0 + . . .+CiR)

dt
=

βi

Λ
(n0 + . . .+nR)−λi (Ci0 + . . .+CiR) .

The recursive equation system is given by

dnr(t)
dt
− (ρ−β )

Λ
nr(t)−

I

∑
i=1

λiCir(t) = sr(t),

dCir(t)
dt

− βi

Λ
nr +λiCir = 0,

sr(t) =−τk dk+1nr−1(t)
dtk+1 − τk

[
1
l
+

(
1−β

Λ

)]
dknr−1(t)

dtk

+ τk
I

∑
i=1

λi
dkCi(r−1)(t)

dtk . (17.8)

Casting (17.8) in matrix form yields

dYr(t)
dt

−AYr(t) = Sr(t) , (17.9)

where

Yr(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nr(t)

C1r(t)

...

CIr(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ−β
Λ λ1 . . . λI

β1
Λ −λ1 0 0

... 0
. . .

...

βI
Λ 0 . . . −λI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Sr(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sr(t)

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for r = 0 : R, considering s0(t) = 0. The first solution Y0(t) is determined by the
homogeneous problem with the initial conditions of the original problem.

dY0(t)
dt

−AY0(t) = 0, Y0(0) =
(

n(0) C1(0) . . . CI(0)
)T

, (17.10)

where T denotes transposition.
The solution of (17.10) is obtained using known solutions for first-order differ-

ential equation systems.

Y0(t) = exp(At)Y0(0).
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In the present case the eigenvalues of A are in general distinct, so that the
exponential matrix may be expressed by

exp(At) = Xexp(Dt)X−1,

where X is the matrix containing the eigenvectors of A, X−1 is its inverse and D is
the diagonal matrix with the eigenvalues of A. In order to find the recursive system
solutions, the initial conditions from the second recursion step on are all zero. In
order to solve the recursive system (17.9) we propose to rewrite the system, so
that the fractional derivatives are implemented using the integral Riemann–Liouville
definition of fractional derivatives [OlSp74], given by

dq f (t)
dtq =

1
Γ (1−q)

d
dt

∫ t

0

f (x)
(t− x)q dx, Re(q)> 0, (17.11)

where Γ (1−q) is the Gamma function and q the fractional derivative.
The source term sr(t) given by (17.8) was evaluated according to (17.11) and is

treated as a step function, namely

Sr(t) =
(

ŝr 0 . . . 0
)T

= Sr,

so that the solution of (17.8) may be obtained by the Laplace transformation.
Then the transformed recursive system, written in matrix form (with zero initial
conditions), is

pYr(p)−AYr(p) = Sr(p), (17.12)

where

Yr(p) = L[Yr(t), t→ p], Sr(p) = L[Sr, t→ p] =
1
p

Sr.

The solution for (17.12) is found by Cramer’s rule. In order to find the general
solution, we used the Heaviside inversion method to find the inverse Laplace
transform of Yr(p). Once found the solution of the homogeneous system, the global
solution may be found by repeating the non-homogeneous recursive calculation
with a recursion depth compatible with a desired precision so that one obtains the
final solution of the problem. It is noteworthy that the solution for the neutron
density and for the precursor concentrations found by the outlined method are
sums of exponentials with the same arguments, like in the classic point kinetic
case.
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17.4 Numerical Results

In order to analyze the effect of anomalous diffusion and the relaxation time on the
behavior of the neutron density, the mathematical model (17.7) was solved in ana-
lytical form using the following nuclear parameters obtained from [KiAl04]; that is,

β =
I

∑
i=1

βi = 0.007, λ =
β

∑I
i=1 βi

λi

, Λ = 0.00002, l = 0.00024.

The values of βi and λi are given in Table 17.1. In the sequel, the numerical results
of three cases are reported.

17.4.1 Case A

For the first test case, we calculate the neutron density and concentration of delayed
neutron precursors varying two parameters, the relaxation time (τ) and the order of
anomalous diffusion (k). The results are shown in Table 17.2 for the neutron density
and concentration of delayed neutron precursors. The reactivity was calculated at
two points, sub-critical (ρ = −0.003) and super-critical (ρ = 0.003) for different
times. The findings indicate the behavior of the neutron density and concentration

Table 17.1 Nuclear data for the case studies

Delayed neutrons

βi×10−3 λi(s−1)

0.266 0.0127
1.491 0.0317
1.316 0.1550
2.849 0.311
0.896 1.40
0.182 3.87
ke f f = 1.000008

Table 17.2 Neutron density and concentration of delayed neutron
precursors for the fractional model with τ = 10−4, k = 0.96, ρ =
−0.003 and ρ = 0.003

Density(n)/Concentration(C) ρ =−0.003 ρ = 0.003

n(t = 0.1 s) 0.899653 1.16243
n(t = 1 s) 0.695748 1.69812
n(t = 10 s) 0.556141 2.93924
n(t = 100 s) 0.0637804 549.61
C(t = 0.1 s) 43.1399 43.1881
C(t = 1 s) 42.3437 44.6792
C(t = 10 s) 34.1038 74.445
C(t = 100 s) 3.91323 13,938
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Table 17.3 Neutron density and concentration of delayed neutron precursors for different relax-
ation times (τ) for ρ = 0.003 and k = 0.96

Density(n)/Concentration(C) τ = 10−4s τ = 10−5s τ = 10−6s τ = 0

n(t = 0.1 s) 1.16243 1.13885 1.13633 1.13602
n(t = 1 s) 1.69812 1.6793 1.67726 1.67701
n(t = 10 s) 2.93924 2.92908 2.92797 2.92783
n(t = 100 s) 549.61 496.13 490.892 490.254
C(t = 0.1 s) 43.1881 43.1839 43.1834 43.1834
C(t = 1 s) 44.6792 44.6382 44.6338 44.6332
C(t = 10 s) 74.445 74.2811 74.2632 74.261
C(t = 100 s) 13,938 12583.5 12450.9 12434.7

of delayed neutron precursors with variation in reactivity. One observes a decreased
density and precursors concentration for (ρ =−0.003) with increasing time. Like-
wise, there is an expected growth in density and precursor concentration with time.

17.4.2 Case B

This case considers a varying relaxation time (τ) and reactivity (ρ), maintaining the
anomalous diffusion order (k). The results are shown in Table 17.3 for the neutron
density using a supercritical reactivity and an order of the anomalous diffusion
k = 0.96.

Note that for relaxation times there is an increase in reactivity as well as
concentration. With decreasing relaxation time one observes a decrease in the
neutron density and concentration of delayed neutron precursors. Moreover, with
decreasing relaxation time the solution approaches the classical model.

A graphical illustration of the results presented in Table 17.3 is shown in Fig. 17.1
for the neutron density.

17.4.3 Case C

In the third and final test case, the order of anomalous diffusion is varied, comparing
the classical model (k = 1) with the fractional model and using fixed values for the
reactivity (ρ) and the relaxation time (τ), respectively. The results are shown in
Table 17.4 for different times.

One notices an increase in neutron density and concentration of delayed neutron
precursors as time increases. The effect of anomalous diffusion is to lower the
neutron density as well as the concentration of delayed neutrons with an increase
in anomalous diffusion. Moreover, one perceives an approximation of the solution
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Fig. 17.1 Neutron density for ρ = 0.003 and k = 0.96

Table 17.4 Neutron density and concentration of delayed neutron precursors for different orders
for anomalous diffusion, ρ = 0.003 and τ = 10−4

Density(n)/ k = 0.96 k = 0.97 k = 0.98 k = 0.99 k = 1
Concentration(C)

n(t = 0.1 s) 1.16243 1.15428 1.14725 1.1412 1.13602
n(t = 1 s) 1.69812 1.69131 1.68563 1.68091 1.67701
n(t = 10 s) 2.93924 2.93541 2.93231 2.92982 2.92783
n(t = 100 s) 549.61 527.26 510.967 499.015 490.254
C(t = 0.1 s) 43.1881 43.1866 43.1854 43.1843 43.1834
C(t = 1 s) 44.6792 44.6644 44.652 44.6417 43.1834
C(t = 10 s) 74.445 74.3832 74.3331 74.2929 74.261
C(t = 100 s) 13,938 13,372 12959.3 12656.6 12434.7

of the fractional model to the classical model once the order of anomalous diffusion
approaches the unit value k = 1. The results presented in Table 17.4 are illustrated
in Fig. 17.2.

17.5 Concluding Remarks

From our case studies one finds that the solutions are located between those of
classical kinetics and results from transport approaches. One may reason in a reverse
fashion that the justification for using a fractional derivative may be based on
the following argument. Phenomena in multiplicative media, like neutron chain
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Fig. 17.2 Neutron density for ρ = 0.003 and τ = 10−4

reactions, have a close analogy with the instructions for a Cantor set construction,
which in turn is related to a fractal dimension and thus to some scaling law. From
the definition of the fractional derivative it becomes evident that the order of the
derivative is related to a scaling of the differential with the “effective volume” which
does not necessarily coincide with an integer.

We are aware of the fact that we have neglected so far the important question,
what optimization criterion should be used in order to uniquely determine the order
fractional derivative. In other words to find the answer as to what derivative supplies
with the most adequate solution if compared to classical diffusion or transport
theory. In classical diffusion where Fick’s hypothesis is used, there is put severe
restriction on the constant value of D, where the ratio of nth derivative of the current
density by the n+ 1th derivative of the scalar flux remains constant independent
of n. It is not at all plausible why a diffusion process in multiplicative media shall
obey such a restriction. Investigations in this direction will be focused on in future
work.

Another question that we have not answered in our discussion is the existence
and the specific form of the adjoint flux. At the present stage of the work it
remains open whether this flux may be represented in a factorized form, in this
particular case the adjoint flux would coincide with the classical expression.
However, from the differences found between the classical solution and the
fractional ones one may reason that the classical adjoint flux represents at least a
first approximation for the fractional one, especially because the time dependence
of G and F is weak. Theoretical developments in this direction are already in
progress.
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Chapter 18
On a Closed Form Solution of the Point Kinetics
Equations with a Modified Temperature
Feedback

J.J.A. Silva, B.E.J. Bodmann, M.T. Vilhena, and A.C.M. Alvim

18.1 Introduction

The point kinetics equations with temperature feedback corresponds to a stiff
system of nonlinear differential equations for the neutron density and delayed
precursor concentrations. These variables determine the time-dependent behavior
of the power level of a nuclear reactor and are influenced, for example, by the
position of the control rods. Computing solutions of the equations of point kinetics
provide information on the dynamics of nuclear reactor operation and are useful,
for example, in understanding the power fluctuations experienced during start-up
or shut-down, when the control rods are adjusted. Recently, a large number of
kinetics studies have been reported [PeEtAl11], [NaZa10], which modeled the
time-dependent behavior of a nuclear reactor using point-kinetic equations. As
pointed out by many authors, this system of point kinetics equations is still an
important set of equations. Although its range of applicability has been severely
restricted by the increasing importance of optimal power reactor cores with loose
coupling, they remain very useful in terms of preliminary studies, especially when
control aspects are considered. The presence of temperature feedback is useful to
provide an estimate of the transient behavior of reactor power and other system
variables of the reactor core that are very tightly coupled. In this paper, the point
kinetics equations in the presence of Newtonian temperature feedback are reduced
to a second order nonlinear differential equation in a simple form convenient
for application of Adomian’s method [Ad94], [Ad89]. The basic idea consists
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in expanding the solution in series of functions and the nonlinear term is then
defined by Adomian’s polynomials. Substituting these expansions into the original
equation, a recursive linear system is built, which is then solved analytically. This
technique has been applied to a broad class of problems in physics, mathematics,
and engineering. Here we show a solution in analytical form for the point kinetics
equations with temperature feedback in the presence of one group delayed neutrons
concentration. The reactor is assumed to be initially critical at some steady power
level and a Newtonian feedback model is being assumed for the fuel temperature
equation. The equation that is commonly used to model the temperature variation is
added of a term depending on the square of the neutron population (Zn2). Practical
use of the method is tested with different types of step reactivity input, different
time steps, and different values of Z, and compared with results of the literature,
both numerical and analytical.

18.2 The Kinetic Model with Modified
Temperature Feedback

The model used in this study starts from the point kinetics equations and one group
of precursors as reported in [NaZa10], where n(t) is the neutron population, C(t)
is the concentration of delayed neutron precursors, T (t) is the temperature of the
core, ρ(T ) is the reactivity (which depends on the temperature T ), β is the delayed
neutron fraction, L is the prompt neutrons generation time, and λ is the average
decay constant of the precursors.

dn
dt

= n′(t) =
(

ρ(T )−β
L

)
n(t)+λC(t),

dC
dt

=C′(t) =
β
L

n(t)−λC(t).

This equation system is extended by a perturbation in form of a temperature
feedback, where the perturbation may be understood as a change in the nuclear
system configuration, as a consequence of a heat flow that induces a change in
the temperature. Since the source of heat production are the nuclear processes, we
assume that the thermal change rate may be related to the neutron density, with a
second-order term Zn(t)2:

dT
dt

= T ′(t) = Hn(t)+Z (n(t))2 . (18.1)

In this sense, the equation for the temperature change rate is a perturbation where
the proportionality constant H is a parameter for the influence of the change of
heat flow on the rate of temperature change and Z is another parameter. Thus, the
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linear relation between temperature change rate and neutron density supplies with
a feedback mechanism. As the equation system is formed by first order differential
equations, it is necessary to know the initial conditions of each of the variables to
determine a unique solution of the problem. Thus, we consider the reactor initially
at equilibrium (n′(0) = 0), with known initial power and temperature (n(0), T (0)).
The equilibrium condition allows us to calculate the initial concentration of delayed
neutrons precursors as:

C(0) =
1
λ

(
β −ρ(0)

L

)
n(0).

In the model discussed in this work, the variation of reactivity with temperature
is given by the equation

ρ(T ) = ρ(0)−α [T (t)−T (0)] ,

where ρ(0) is the initial reactivity and α is the fuel temperature reactivity
coefficient. After some algebraical effort, we arrived at almost the same final set
of equations, the only difference being a nonlinear term depending on n3 on the
right-hand side of the equation; that is,

n′′+bn′+ cn = S,

T ′ = Hn+Zn2,

with b = λ − [ρ(0)+αT (0)−β ]/L, c =−λ [ρ−αT (0)]/L, and

S=−α
L

[
T
(
n′ −λn

)
+Hn2 +Zn3]=−α

L
[P+A+B] ,

where P = T (n′ −λn), A = Hn2, and B = Zn3.
The strategy adopted to find the solution consists of using the decomposition

method first, finding the solution to the homogeneous equation, and then solving
the nonlinear terms of the decomposition using Adomian polynomials. The initial
step is to write n and T as sums:

n =
R−1

∑
j=0

n j, T =
R−1

∑
j=0

Tj, S j =−α
L

(
Pj−1 +A j−1−B j−1

)
.

In this way, we can write the homogeneous equation ( j = 0) as

n′′0 +bn′0 + cn0 = 0,
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for which the solution is well known, namely

n0(t) = k1er1t + k2er2t ,

r1 =
−b+

√
b2 +4c

2
, r2 =

−b−√b2 +4c
2

,

k1 =
n′(0)−n(0)r2

(r1− r2)
, k2 =

n(0)r1−n′(0)
(r1− r2)

.

From n0, we can find T0 by integrating (18.1):

∫ t

0
T ′0(τ)dτ =

∫
Hn0(τ)+Zn2

0(τ)dτ ,

T0(t) = T (0)+H
∫ t

0
n0(τ)dτ +Z

∫ t

0
n2

0(τ)dτ .

Evaluating each of the integrals, we have

∫ t

0
n0(τ)dτ =

∫ t

0
[k1er1τ + k2er2τ ]dτ =

k1

r1

(
er1t −1

)
+

k2

r2

(
er2t −1

)

and

∫ t

0
n2

0(τ)dτ =
∫ t

0
[k1er1τ + k2er2τ ][k1er1τ + k2er2τ ]dτ

=
k2

1

2r1

(
e2r1t −1

)
+

k2
2

2r2

(
e2r2t −1

)
+

k1k2

r1 + r2

(
e(r1+r2)t −1

)
.

Then the analytic expression of T0(t) is

T0(t) = T (0)+H

{
k1

r1

(
er1t −1

)
+

k2

r2

(
er2t −1

)}

+Z

{
k2

1

2r1

(
e2r1t −1

)
+

k2
2

2r2

(
e2r2t −1

)
+ +

k1k2

r1 + r2

(
e(r1+r2)t −1

)}
.

The terms with index j > 0 are evaluated in a slightly different way. The
expressions for n0 and T0 are completely analytical, but the equations for n j and
Tj, j > 0 are complex enough to justify the use of a numerical approach; hence,

n′′1 +bn′1 + cn1 =−α
L
[P0 +A0 +B0] .
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As the right-hand side of the previous equation depends on n0 and T0, we have
set a fixed time step, ω , and considered Pj(ω), A j(ω) and B j(ω) constants, so

n′′1 +bn′1 + cn1 =−α
L
[P0(ω)+A0(ω)−B0(ω)] ,

n′′j +bn′j + cn j = Q j−1,

with Q j =−(α/L) [Pj(ω)+A j(ω)−B j(ω)]. The solution of the equation above is
even simpler if we set n′1 = n′′1 = 0 and n1(t) = n1(ω), that is, the solution obtained
for n1 is valid only for” t = ω; therefore,

n1(ω) =
Q0

c
, n′1(ω) = 0, n′′1(ω) = 0,

and for any j > 0,

n j(ω) =
Q j−1

c
, n′j(ω) = 0.

18.2.1 Expansions of Pj

The terms Pj carry the products of the variables, n(t)T (t) and n′(t)T (t). In their
construction terms are grouped together in a way such that each of the Pj depends
only on np and Tp for which p≤ j. Thus, we can construct

P0 = T0(λn0 +n′0),

P1 = T1(λn0 +n′0)+T0(λn1 +n′1)+T1(λn1 +n′1),

P2 = T2(λn0 +n′0)+T2(λn1 +n′1)+T0(λn2 +n′2)

+T1(λn2 +n′2)+T2(λn2 +n′2),

which can be expressed as the recursive relation

P0 = T0
[
λn0 +n′0

]
,

Pj =
j

∑
p=0

Tj
[
λnp +n′p

]
+

j−1

∑
p=0

Tp
[
λn j +n′j

]
.

18.2.2 Expansion of A j and B j in Terms of Adomian
Polynomials

George Adomian wrote in his books [Ad89], [Ad94] that although the expansion
of the nonlinear terms is unique, there are numerous ways to group together the
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terms of such an expansion. The general terms of the “fast conversion” expansion
(accelerated polynomials) for n2 e n3 are (see pages 36 and 37 in [Ad89]).

A0 = H
[
n2

0

]
, B0 = Z

[
n3

0

]
, A j = H

[
n2

j +2n j

j−1

∑
p=0

np

]
,

B j = Z

[
n3

j +3n j

( j−1

∑
p=0

n2
p

)
+3n2

j

( j−1

∑
p=0

np

)
+6n j

( j−2

∑
q=0

j−1

∑
p=q+1

npnq

)]
.

18.2.3 Solution Algorithm

In the following we list the sequence of the algorithm that solves the problem in
closed form.

• We start at some initial time (usually t = 0) and start the recursion with j = 0.
• Entries that are chosen or known beforehand are β , λ , L, H, Z, α , n(t), T (t),

C(t), ω , tmax, ρ , ρ ′, ε (precision, defined only for n).
• From those, we can find the parameters

b = λ +
β − (u+αT (t))

L
, c =

u′+λ (u+αT (t))
L

,

and

r1 =
−b+

√
b2 +4c

2
, r1 =

−b−√b2 +4c
2

,

k1 =
n′(t)−n(t)r2

(r1− r2)
, k2 =

n(t)r1−n′(t)
(r1− r2)

.

• Evaluate n0(t +ω), n′0(t +ω), and T0(t +ω):

n0(t +ω) = k1er1(t+ω) + k2er2(t+ω),

n′0(t +ω) = k1r1er1(t+ω) + k2r2er2(t+ω),

T0(t +ω) = T (0)+H

{
k1

r1

(
er1(t+ω)− er1t

)
+

k2

r2

(
er2(t+ω)− er2t

)}

−Z

{
k2

1

2r1

(
e2r1(t+ω)− e2r1t

)
+

k2
2

2r2

(
e2r2(t+ω)− e2r2t

)
+

+
k1k2

r1 + r2

(
e(r1+r2)(t+ω)− e(r1+r2)t

)}
.
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• Evaluate P0(t +ω), A0(t +ω), and B0(t +ω):

P0 (t +ω) = T0 (t +ω)
[
λn0 (t +ω)+n′0 (t +ω)

]
,

A0 (t +ω) = H
[
n2

0 (t +ω)
]
,

B0 (t +ω) = Z
[
n3

0 (t +ω)
]
.

• Evaluate n1 (t +ω) and T1 (t +ω):

Q0 =
α
L
[P0 (t +ω)+A0 (t +ω)−B0 (t +ω)] ,

n1(t +ω) =
Q0

c
,

T1(t +ω) = H

(
Q0

c

)
(t +ω)−Z

(
Q0

c

)2

(t +ω) .

• From j = 1, the tolerance is tested. Thus, if n j (t +ω)− n j−1 (t +ω) � ε , then
j = j+1; otherwise, j = 0 and t = t +ω .

18.3 Results

The parameters used in the problem were β = 0.0065, λ = 0.07741 s−1, H =
0.05K/MWs, α = 5× 10−5 K−1, L = 0.0001 s, and ε = 10−8, with the initial
conditions n(0) = 10MW, n′(0) = 0MW/s, T (0) = 300K, C(0) = (1/(λL))[β −
ρ(0)]n(0). Also, the parameter Z, the initial condition ρ(0), and the length of the
time step (for the numerical evaluation) were changed to observe their influence in
the final solution. For each case, the reactor power evolution with time is shown in
Figs. 18.1–18.11 for a selection of initial conditions ρ(0).

For ρ(0) = 0.2β :
For a small positive reactivity, divergences were not observed regardless of the
length of the time step. As expected, better approaches are obtained by using smaller
Z and Δ t. Note that for time steps smaller than 1s, the results for Z =±0,001H are
very close to the reference solution.

For ρ(0) = 0.5β :
As expected, smaller values of |Z| give a better approach to the solution, for time
steps Δ t ≤ 1 s.

For ρ(0) = 0.8β :
Something unexpected is observed for the case where ρ(0) = 0.8β . Regardless of
the choice of Z, all the solutions diverge for Δ t = 10 s. But for Δ t = 1 s, the value
of Z = 0.001H provides an excellent approach. In smaller time steps, the error due
to a bad assumption of Z becomes more evident.
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Fig. 18.1 Time evolution of power for ρ(0) = 0.2β and 10 s time step

Fig. 18.2 Time evolution of power for ρ(0) = 0.2β and 1 s time step
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Fig. 18.3 Time evolution of power for ρ(0) = 0.2β and 0.1 s time step

Fig. 18.4 Time evolution of power for ρ(0) = 0.2β and 0.01 s time step
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Fig. 18.5 Time evolution of power for ρ(0) = 0.5β and 10 s time step

Fig. 18.6 Time evolution of power for ρ(0) = 0.5β and 1 s time step
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Fig. 18.7 Time evolution of power for ρ(0) = 0.5β and 0.1 s time step

Fig. 18.8 Time evolution of power for ρ(0) = 0.5β and 0.01 s time step
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Fig. 18.9 Time evolution of power for ρ(0) = 0.8β and 1 s time step

Fig. 18.10 Time evolution of power for ρ(0) = 0.8β and 0.1 s time step
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Fig. 18.11 Time evolution of power for ρ(0) = 0.8β and 0.01 s time step

18.4 Conclusions

Comparing the model that takes into account the second order contribution of the
neutron density with the one which uses only the first order term some conclusions
can be drawn. The first is that, generally, the smaller the contribution of the n2 term
(which consists in a small |Z|), the more the solutions for first order and second
order temperature models coincide.

Second, as the time step taken for the numerical evaluation decreases, the results
improve (for small values of |Z|), but if the second order term is expressive, then the
numerical procedure is likely to diverge, this is not the case for the Adomian-based
approach. A mathematical proof of the convergence of the recursive scheme is a
topic for future work.
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Chapter 19
Eulerian Modeling of Radionuclides in Surficial
Waters: The Case of Ilha Grande Bay (RJ,
Brazil)

F.F. Lamego Simões Filho, A.S. de Aguiar, A.D. Soares, C.M.F. Lapa,
and M.A.V. Wasserman

19.1 Introduction

The mathematical models that represent hydrodynamics and contaminant transport
in water bodies are generally based on conceptual laws or principles expressed by
differential equations. Numerical or numerical-analytical models translate mathe-
matical equations to computational language (e.g., finite differences, finite elements,
finite volumes, or probabilistic models) and have high predictive power and little
loss of information. The uncertainty can be largely reduced with calibration
process and model validation. For these reasons, the recommendation to move
from box-model hydrological models (with high uncertainty level) to hydrodynamic
process-oriented numerical modeling should be considered as an important issue for
radionuclide transport.

The models are equation systems capable to quantify the flow and represent a
practical way to forecast the behavior of water bodies. They are used to infer about
known or hypothetical scenarios, allowing a better understanding of the system
that is fundamental to decision makers, especially in accident situations. In case of
accidental releases of liquid wastes from nuclear power plants, the previous knowl-
edge about the advection and turbulent diffusion pathways in different scenarios is
critical to providing the hydrodynamics basic information to simulate dispersion
of radioactive pollutants. In this work we have used the Database System for
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Environmental Hydrodynamics SisBAHIA that is a computational model applied
to hydrodynamic circulation and advection–diffusion contaminant transport. It is
suitable for natural or man-made water bodies under different meteorological,
fluvial, lacustrine, or oceanographic scenarios and was developed by the Program on
Coastal and Oceanographic Engineering of the Federal University of Rio de Janeiro
since 1987.

19.2 Methodology and Modeling Approach

In all cases pertinent to modeling the transport of water constituents and determining
their fate during a period of about a month, the focus will be in the far field; that
is, in regions sufficiently far from the water outlets, away from the active turbulent
mixing zones typical of the jets that form in the near field of the outlets. In these far
regions, the plumes of constituents, including those of heated water, are passively
transported by the prevailing currents. Thus, in a far field sense, the considered
water constituents, including heat and particulate substances, can be treated as
passive scalars. The passive scalar approach allows the decoupling of the transport
modeling from the hydrodynamic circulation modeling. In this respect, the implicit
hypothesis is that the hydrodynamic circulation in the far field is independent of the
concentration distribution of a given constituent. The decoupling of the transport
model from the hydrodynamic model allows us to neglect the baroclinic forcing
in the latter. Therefore, in order to model the transport of constituents for a given
scenario, the pertinent hydrodynamic circulation will be first modeled. This is
because velocity fields and large-scale turbulence parameters, which are necessary
input data for the transport models, are computed by the hydrodynamic models. The
modeling approach is dependent on the features of the adopted modeling system
that must comply with the physics of the problem. The models for the simulations
of hydrodynamic circulation and transport of contaminants to be used in this project
pertain to a system called SisBAHIA, as described below.

19.2.1 Hydrodynamical Modeling Approach

The hydrodynamics of most part of natural aquatic bodies is extremely complex
due to the irregular geometric shape and also because of the diversity of features
that produce the flow. The main forcing parameters are the winds, river discharges
to the watersheds, tides, and water density. To get forcing data it is necessary to
monitor in situ variations of water level, wind direction and speed, tide currents,
temperature and salinity, because these parameters help to understand the hydrody-
namic processes and establish the conceptual model. The main system attributes for
hydrodynamics are:



19 Eulerian Modeling of Radionuclides in Surficial Waters 261

• The FIST (filtered in space and time) hydrodynamic turbulence model is based
on Large Eddy Simulation (LES) to simulate vortices.

• The model computes flow velocities either on three-dimensional (3D) or on two-
dimensional on Horizontal or vertical averages (2DH).

• The spatial discretization is made through 4th order finite elements with two-
quadratic squares or quadratic triangles or both.

• Sigma transformation is used to vertical discretization resulting in finite element
mesh pile.

• Processing time is faster than 50 times the real time, i.e. one day of circulation is
simulated in less than half hour.

The advection–diffusion contaminant transport modeling can be performed by two
different modules of the system according to computational fluid dynamics (CFD)
formulations. The Eulerian module works with fixed meshes as referential, while
Lagrangian module uses adaptive meshes accompanying the movement of the
particles of the pollutant. The general modeling approach was to include the whole
bay in the modeling domain, and use finite element discretization techniques to
model in proper detail the areas of interest around the Itaorna cove. Figure 19.1
illustrates these techniques, respectively, for the present situation, and for the
situation foreseen the construction of Angra 3. The 3D spatial discretization is done
via a vertical stack of sub-parametric finite element meshes using σ coordinate
transformation along the vertical dimension. That is, if one looks from the top,
one sees the horizontal plane of the domain discretized by a single mesh of finite
elements (see Fig. 19.1). However, in fact, there will be a stack of meshes, one for
every σ level. In this way, vertical discretization is done automatically once the user
defines the number of desired σ levels (usually between 10 and 50). The 3D model
is automatically activated if at least 5 σ levels are requested.

Elements in a mesh are sub-parametric, for that, the variables in each element
are defined by quadratic Lagrangian polynomials whereas the element geometry
is defined by linear Lagrangian polynomials. Elements in a mesh can be quadri-
laterals and/or triangles. Quadrilaterals are preferred, because variables become
bi-quadratic, and thus have a higher accuracy. This discretizing scheme is potentially
of 4th order on the σ planes and of 2nd order on the σ dimension. In addition, the
scheme allows very good representation of domains with complex geometries and
bottom topography, as in the case of Bay of Ilha Grande. Temporal discretization
is done through a second-order implicit factored scheme for nonlinear terms and a
Crank–Nicholson scheme for linear terms. Phase errors are minimized because all
terms in the numerical scheme are centered at the same instant, t = (n+ 1/2)Δ t.
Phase errors are prone to occur in numerical schemes in which all terms are not
centered in the same instant. Open boundaries elevations and current velocities can
be prescribed in many different ways, including synthetic tides generated by given
harmonic constants, and data measured or provided at discrete times. A different
value, and/or phase shift, can be given for each node along any open boundary
segment. Land boundaries can prescribe either normal or imposed directional fluxes
or velocities. Fluxes or velocities can be constant or variable in time (a river
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Fig. 19.1 Modeling domain considered in present (left) and future (right) situation, with the
discretization mesh. The 3D domain is discretized by a stack of 21 finite element meshes. Each
crossing line shown above represents a water column. See above the bathymetric map

discharge curve for instance). Leaky boundaries are allowed. Slip and no-slip
boundaries are allowed, and the equivalent roughness along each boundary node
can be prescribed. Surface and bottom boundary conditions for the 3D model, when
zero velocity is the bottom boundary condition, and the wind stress is the free
surface condition. The model accepts inputs of wind fields that can be variable in



19 Eulerian Modeling of Radionuclides in Surficial Waters 263

space and time. The amplitude of the equivalent bottom roughness can be specified
for each bottom node for computing the bottom stresses, reflecting the type of
material (rock, sand, mud, vegetation, etc.). The computed friction coefficients of
the bottom vary dynamically in time and space. A multi-scale model is employed to
model turbulence with horizontal sub grid scale turbulent stresses based on filtering
techniques, also known as Large Eddy Simulation (LES). Small scale horizontal and
vertical turbulent stresses employ eddy viscosity approach. Eddy viscosity tensor is
anisotropic and dynamically variable in space and time for each node.

19.2.2 Transport Modeling Approach

The main attributes of Eulerian transport modeling are:

• Eulerian advective–diffusive transport module with kinetic reactions is suitable
for simulating the dispersion of dissolved substances.

• It is possible to apply this module for 2DH or to selected layers of 3D
hydrodynamic output.

• Solve scale conflict with adaptive (changing) mesh only around the contaminants.
• Gain factor between modeling time and real time in processing are 5–8 times

faster than FIST3D.

The Eulerian transport model in SisBAHIA solves the following conservation
equation:

∂C
∂ t

+ui
∂C
∂xi

=
1
h

∂
∂xi

(
hDi j

∂C
∂xi

)
− (kd− ks)C+qs(Cs−C), i, j = 1,2 (19.1)

where C(x,y, t) is the concentration averaged over height of the water column or
thickness of a surface layer h(x,y, t), ui(x,y, t) is the velocity component in the xi

direction averaged over h(x,y, t), Di j(x,y, t) is the turbulent diffusion and dispersion
tensor averaged over h(x,y, t), kd is the time rate of mass consumption (kd > 0) or
production (kd < 0), ks(x,y, t) is the time rate of removal of mass due to settling
processes, qs(x,y, t) is the discharge per unit horizontal area at a source region, and
Cs(x,y, t) is the concentration at the source region. For the simulations of reference
contaminants presented here the variable h(x,y, t) is the whole water column. The
time rate of removal of mass due to settling process is computed as

ks =
ln(0.1)
h/VS

if τ0
τ0c
≤ 1−a or τ0

τ0c
−1+a < 2a×R[0,1],

ks = 0 if τ0
τ0c
≥ 1+a or τ0

τ0c
−1+a > 2a×R[0,1],

(19.2)

where VS is a constant characteristic settling velocity given by the user, τ0(x,y, t) is
the stress exerted by the flow at the bottom of the layer with thickness h, and τ0c is
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the critical bottom stress necessary to mobilize the particles settling with velocity VS.
The parameter a is a tolerance parameter between 0 and 0.5, and R[0,1] is a random
number with values between 0 and 1. If the user prescribes values for VS, τ0c, and
a, the model computes ks, which varies in time and space. When τ0/τ0c < (1a)
turbulence is weak and settling occurs (ks > 0). When τ0/τ0c > (1+ a) turbulence
is too strong and there is no settling, since ks = 0. When (1a) < τ0/τ0c < (1+ a)
the settling processes becomes probabilistic. Note that if τ0/τ0c = 1 there is a 50%
chance of occurring settling. As τ0/τ0c→ (1a) the chances of settling increase, and
as τ0/τ0c→ (1+a) the chances decrease. Since ks varies in space and time it is not a
rate constant as kd , which is indeed a constant. ks is a variable local rate of removal
of suspended mass in the water column due to settling. Some models simply use
ks = VS/h, which is the inverse of the maximum settling time (Ts) for a particle
with a settling velocity VS in a water column of height h. Ts can be considered
a characteristic settling time. From a simple geometric reasoning, after a time Ts

all particles should have settled. However, solving the equation for a still water
situation one finds that after a time equal to Ts about 37% of the particles would
remain in suspension. In addition, this simpler formulation allows settling even if,
in reality, the flow is too turbulent for the occurrence of deposition in the bottom.
The formulation in (19.2) is more realistic than the simplified formulation adopted
in other models for two reasons:

• Mass is only removed from the water column, in a given position, when the flow
is such that effective deposition in the bottom might occur. That is, when and so,
the flow is quiescent enough for deposition to occur. The use of a tolerance value
a is to account for the fact that usual criteria for defining critical bottom shear is
not exact. The Shields curve, for instance, is just an adjusted curve in the middle
of a cloud of experimental data.

• In a quiescent flow situation, 90% of the suspended particles will be deposited
after a time equal to Ts. Theoretically 100% should have deposited, thus the
model is still conservative, but not unrealistic.

The terrestrial boundary conditions imposed in present and future scenarios
considered uptake and discharge in Itaorna cove, only discharge for Piraquara cove
and included recirculation effects. At all other land boundary points the prescribed
condition was of zero contaminant flux in the normal direction to the boundary.
For open boundary points presenting inflow situations, the following conditions are
used:

T = T0 +
T −T0

2

(
1− cos

(
π

t− t0
τ

))
when t− t0 ≤ τ ,

T = T ∗ when t− t0 > τ ,
(19.3)

where T ∗(t) are prescribed values, T0 is the value of the concentration calculated
at the boundary point in the instant t0, which is the instant immediately before the
outflow changed to inflow situation, and τ is a prescribed transition period, which
depends on the modeler’s experience or available data. Usual values for τ are in the
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range of half an hour to two hours. This kind of condition is particularly useful in
modeling estuarine boundary conditions. In outflow situations, the model simply
computes the transport equation with no diffusive terms along the open boundary
points.

19.3 Input Data and Boundary Conditions for Simulations

19.3.1 Bathymetry

The bathymetry of Ilha Grande Bay was defined through digitizing nautical charts
edited by the bureau of Hydrography and Navigation (DHN chart numbers 1607,
1633, 1637, and 23100) added of the value of 0.68 cm to correct the reduction level
used for navigation that in the present case correspond to the mean higher low water
(MHLW). Thus, all depth values correspond to the mean level of the bay. These data
were interpolated to generate a bathymetric map (Fig. 19.1) in which a depth value
was assigned for each mesh node.

19.3.2 Astronomical Tide

The propagation of tide wave on the open borders was simulated from the
measurements of water level inside the domain that allow to prescribe the boundary
conditions for them. To simulate the Ilha Grande Bay model it was considered
synthetic tides generated from the harmonic constants from Angra dos Reis Harbor.
The specifications of tide height to the boundaries were calculated in each time
step, using the harmonic constants shown in Table 19.1 from Angra dos Reis. It
was simulated a time interval of 30 days that contained spring and neap tide cycles.
Figure 19.2 shows the tide elevation curves from Angra dos Reis that were used as
boundary condition for the performed simulations.

The positioning of open border 1 is almost perpendicular to tide front that
propagates on the coast mostly form west to east, as well as is also perpendicular
to open border 2, situated in a more sheltered zone. Thus, it is supposed to occur a
phase lag between the two boundaries so the tide wave arrives first in the border one
and sometime later in second border. This discrepancy was estimated to be around
600 s. During effluence conditions the boundary conditions are prescribed as the
tide level oscillation. In order to do that it was used inverse modeling to estimate
tide elevations on the borders, which are based in applying the harmonic constants
from inside the domain (Table 19.1) and use the same overestimation percentage
produced by model results to correct the border values. This was done because we
do not have tide measurements from outside the domain to be used in modeling. On
the other hand, during affluence time, the boundary condition adopted forced the
flow to enter in normal direction (90◦) to the border.
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Table 19.1 Harmonic constants sorted by significance of amplitude
(Angra dos Reis harbor station, Ilha Grande Bay)

Name Period (s) Amplitude (m) Phase(degrees)

M2 44714.16439359 0.2869 1.3799
S2 43200.00000000 0.1649 1.4396
O1 92949.62999305 0.0967 1.4692
M4 22357.08219679 0.0332 0.5664
K1 86164.09076147 0.0535 2.4888
K2 43082.04523752 0.0516 1.2908
N2 45570.05368141 0.0356 2.1349
MS4 21972.02140437 0.0165 2.0408
MN4 22569.02607322 0.0144 6.0327
Q1 96726.08402232 0.0270 1.0818
L2 43889.83274041 0.0164 1.6310
P1 86637.20458000 0.0171 2.2640
2N2 46459.34813490 0.0098 2.2611
M3 29809.44292906 0.0121 3.4137
MU2 46332.00000000 0.0155 1.7054

Fig. 19.2 Tide elevation curves for Angra dos Reis Harbor during one month, showing the forcing
parameters used to model the Ilha Grande Bay, which are generated with the harmonic constants
of Table 19.1

19.3.3 Wind Speed and Direction

The wind data for hydrodynamic circulation modeling could be supplied in several
forms to the model. The data could be from time constant and uniform in space until
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Fig. 19.3 Temporal series of usual winds measured at meteorological station supplied as input
data to the model. The arrows have module proportional to wind speed showed by the color pattern
and also point out the wind direction related to the geographical north

time variable and varied in space. The most common available wind input data are
time variable but uniform in space. To simulate wind patterns typical of the area,
it was selected the local wind regime, characterized by variations between night
time and day time in wind speed and direction. The data used in this work were
extracted from the meteorological station (B15) placed at the area of Nuclear Power
Plants at Ponta Fina (Itaorna Beach) from a time series between 1995 and 1996. The
place where the meteorological tower is situated is appropriated in terms of climate
and geomorphologic aspects. The speed and direction of wind are measures each
15 min, but are manipulated to compose an hourly average value. The data analysis
of this station, belonging to plant operator, allows distinguishing two different wind
stages. A first one starts between 7 and 9 a.m. and finishes between 3 and 5p.m.
with dominant winds showing N and ESSE directions and velocities from 4 to 8 m/s,
which can reach 12 m/s. The second stage ranges from 5p.m. to 7a.m., when occurs
the domination of smaller intensity winds (1–5 m/s) with WSW and SW directions.
Figure 19.3 shows this well-marked behavior of wind regime of Ilha Grande Bay.

19.3.4 River Discharge

The watershed of the bay characterizes as a estuarine system where the mountains
(Serra do Mar) are in direct contact with the sea and the coastal plains practically
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Fig. 19.4 Hydrograph of discharges from Mambucaba River

do not exist. The majority of the rivers is poorly drained and shows in general low
average discharge. They present high steepness because their springs are in high
altitude but with small extension, in order of 15 km, where the larger discharges
occur during the summer. The most important one is Mambucaba River with
drainage basin of 592 km2 that corresponds to 78% of the watershed area. The
average discharge is 27.5 m3/s with the larger values between January and March,
when maximum discharges reach 157 m3/s and smaller values between June and
October when the average and minimum discharges are respectively 14 and 10 m3/s.

The Mambucaba River was used to prescribe the boundary conditions for
terrestrial closed border. As mentioned before, it was prescribed zero for all the
nodes, with exception of Mambucaba River Discharge (Annual Average Discharge,
see Fig. 19.4) as well as the other two points (reception and discharge of seawater)
accounting for a total flux of 120 m3/s only for the scenario 2. The discharge input
values are calculated taking also into account the cross-section area of the river,
reception and discharge points. It was also considered the effect of lateral friction
on closed borders that modifies the friction tension in the bottom, including a sliding
index (between 0 and 1), prescribed in the present case to 0.7.

19.3.5 Hydrodynamic Model Remarks

The main aspects of hydrodynamic modeling are presented for present and future
scenarios.

19.3.5.1 Future Scenario: Angra 1, 2, and 3 Operating with Discharges
in Itaorna and Piraquara

Figure 19.5 presents typical current patterns, respectively, for flooding tides and
ebbing tides. For this case, it is irrelevant to compare situations in spring and neap
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tides because the visual aspect is practically the same. That is so, for the following
reasons:

• The circulation patterns in Itaorna cove are dominated by the inflow discharges
of Angra 1, 2, and 3 at the entrance of the breakwater, and the outflow discharge
of Angra 3. Current patterns in Piraquara cove are mainly affected by the outflow
discharge of Angra 1 and 2.

• Tidal components in the prevailing currents are very small, with magnitudes often
smaller than 0.05 m/s. The changes in the magnitudes of flooding and ebbing tidal
components within Itaorna cove and Piraquara cove, from spring to neap tides are
subtle, in comparison with the prevailing circulation caused by the power plant
discharges.

By examining Fig. 19.5, one sees that the recirculating cells formed by the effluent
jet from Angra 3 are quasi steady, and quite insensitive to tidal conditions. The
aspect of the recirculating cells remains practically the same during flood and
ebb tides. It is interesting to note that during flooding tides the jet form Angra 3
opposes the natural flow in the channel to the North of Sandri Island, producing a
stagnant zone in that region. Conversely, during ebbing tides, the jet from Angra
3 enhances the natural flow. A similar effect also occurs in Piraquara cove, when
natural flooding currents are opposed by the effluent jet from Angra 1 and 2, while
in ebbing tides the jet enhances the flow.

19.3.5.2 Present Scenario: Angra 1 and 2 Operating with Discharge
in Piraquara Cove

Figure 19.6 present typical current patterns, respectively, for flooding tides and
ebbing tides. As discussed in the previous scenario. Also for this case, it is irrelevant
to compare situations in spring and neap tides because the visual aspect is practically
the same, due to the same reasons. Contrary to what is observed in Piraquara cove
for previous scenario (see Fig. 19.5), as one can see in Fig. 19.6, flooding currents
do not create a stagnant zone in front of the stronger effluent jet. Flooding currents
in Itaorna are enhanced by the water intake at the entrance of the breakwater.
Conversely, ebbing currents are opposed by water intake, and a stagnant zone
appears in front of breakwater.

19.4 Transport Model Remarks

This section presents the results of the transport modeling of radioactive elements
present in the released liquid wastes according with the both hydrodynamic
scenarios. In the first, the nuclear plants shut down without any further pumping of
sea water, while the other one still keep pumping and discharging operations at the
same rates. For the sake of conciseness, this paper will present only the dispersion
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Fig. 19.5 Typical current pattern in Future Scenario for flooding (above) and ebbing (below) tides
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Fig. 19.6 Typical current pattern in Future Scenario for flooding (above) and ebbing (below) tides
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Table 19.2 Parameters of a LOCA event causing tritium release (HTO) to Ilha
Grande bay with the values of initial concentration load and requires dilution to
the reference limit

Concentration
HTO initial Pollutant level 3H- Required

Discharge = concentration load seawater dilution of
0.0183m3/s
Pollutant (Bq/m3) (Bq/s) (Bq/m3) source

3H 6.8E +10 3.7E +12 1.11E +06 60,000

simulation of conservative pollutants. In this case, the results for tritium (HTO)
were selected, because it shows the major inventory of radionuclides in the coolant
systems. Loss of coolant accident could result in release of large amounts of tritium
even if the leaks are initially contained in the reactor building. It was analyzed a
scenario for hypothetical accidental tritium release in Ilha Grande Bay of 37 PBq of
HTO in a volume of 66 m3 of coolant after a LOCA event. The waste was released
into the concrete ground around the plant producing a discharge of 0.018 m3/s of
liquid wastes to Ilha Grande Bay during 1 h after the accident (Table 19.2).

It was defined by the licensing the concentration of radioactive material dissolved
or entrained noble gases released from the site shall be limited to 1.11 MBq/m3. This
specification is provided to ensure that the concentration of radioactive materials
released in liquid waste effluents from the site will be less than the concentration
levels specified in 10 CFR 20 (NRC, 2007). The value is applicable to the
assessment and control of dose to the public. It is equivalent to the radionuclide
concentrations which, if inhaled or ingested continuously over the course of a year,
would produce a total effective dose equivalent of 0.5mSv. The discharge input
values are calculated taking also into account the cross-section area of discharge
points. The tritium behavior was considered conservative once it forms the water
molecule like its isotope hydrogen and remains in solution. Even the radioactive
decay was considered negligible for the effect of modeling, once the simulation
time corresponds to less than 10% of its half-live (12,6 years). The modeling results
of tritium dispersion released in Ilha Grande Bay were performed for the period
between 24 h and 1 year after the accident. The reference levels explained above
implicate in an intervention act if the concentration of radioactive material released
from the site exceeding the above limits and immediately restore the concentration
to within the above limits. The results of the 3D analytical-numerical hydrodynamic
model, considering the effects of forcing input data on advection and turbulent
diffusion, showed in the previous section as a velocity field that defines the water
circulation in the Ilha Grande Bay, are the basis to model the transport of HTO. It
should be reinforced the equations showed before applied to model advective and
diffusive transport as well as in case of kinetic reactions of radionuclides occur,
always considering an Eulerian referential At the end of the first day after the
accident, tritium concentrations of up to 1 GBq/m3 close to Itaorna beach could
be observed, which means a dilution required of thousand times in relation to the
limit. However, these values spread on a very limited surface. The tritium dispersion
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Fig. 19.7 Dispersion of HTO plume 3 days after the accident in the scenarios without (above) and
with (below) seawater recirculation

for the two scenarios in the bay as a whole was similar. The differences were
observed between the third and fourteenth day (Figs. 19.7–19.9), time interval in
which the HTO plume with concentrations above the limit reach a maximum spread,
extending in an area with more than 10 km of diameter. In the second scenario, with
pumping and discharge operations, the area occupied by such concentration levels
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Fig. 19.8 Dispersion of HTO plume after 10 days of the accident in the scenarios without (above)
and with (below) seawater recirculation

decreased more quickly in the time interval considered than in the first scenario.
Such difference was caused by the removal of large volume of polluted waters from
the accident site and its dilution in the discharge area, which has minor tritium
concentrations. As a result of the dilution enhancement promoted by keeping the
other plants operating, the tritium reference limit will not be more exceeded starting
from the eleventh day and thereafter. This will occur only after the fifteenth day



19 Eulerian Modeling of Radionuclides in Surficial Waters 275

7470000

7460000

7450000

7440000

7430000

7420000

7410000

7470000

7460000

7450000

7440000

7430000

7420000

7410000

530000 540000 550000 560000

0 10000 20000 30000 40000

0 10000 20000 30000 40000

570000 580000 590000

1.00E+010

1.00E+009

1.00E+008

1.00E+007

1.11E+006

5.00E+005

1.00E+005

1.00E+004

1.00E+003

5.00E+004

5.00E+003

1.00E+010

1.00E+009

1.00E+008

1.00E+007

1.11E+006

5.00E+005

1.00E+005

1.00E+004

1.00E+003

5.00E+004

5.00E+003

530000 540000 550000 560000 570000 580000 590000

N

W E

S

N

W E

S

3H (Bq/m3)

3H (Bq/m3)

Fig. 19.9 Dispersion of HTO plume after 14 days of the accident in the scenarios without (above)
and with (below) seawater recirculation

in the first scenario. Thus, increase the pumping and discharging rates could be
used in the first days after the accident to accelerate the dilution. However, this
operation would be effective only to manage the highest concentrations of the
plume. It has shown no significant difference to the general distribution of HTO
plume in the bay. The plume showed results quite similar in both scenarios for the
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moments corresponding to the 1, 3, and 6 months. After one month, the plume
reach maximum spread in the bay, when concentrations of the order of 50 KBq/m3

could be observed in its major part. Such concentrations are still high and due to the
uncertainties of the incurred effective dose by accumulation of organically bound
tritium (OBT) in seafood it would implicate in the continuous monitoring of fish
species consumed by local populations. After that time, the concentrations quickly
started to decrease. After three months, the estuary would present concentrations
lower than the detection limit (DL) of the technique (11 KBq/m3) applied by the
plant operator in the environmental monitoring program, with the exception of
Ribeira Bay waters where the fish OBT monitoring should be sustained. After six
months, the HTO plume would be completely undetectable. Finally, after one year
of the accident, it is considered that the Ilha Grande Bay would return to its original
condition, once the plume shows concentrations of the same order of the results
obtained by a previous study of tritium routine releases using the same model, after
reaching steady state conditions.

19.5 Conclusions

Model results were remarkably good in reproducing registered water level variations
in all situations. Tidal components and meteorological oscillations were almost
perfectly matched by computational modeling with SisBAHIA R©. Results were
very accurate even during the occurrence of unusual and rapid oscillations. Model
results were very good in reproducing the tidal and local wind components of
the registered currents. However, they were not good in representing the residual
currents. This is quite an interesting fact that should to be exploited in future
research. Transport modeling results showed a fast dilution of tritium in Ilha
Grande Bay according to the circulation scenario, becoming more diluted in case
of the recirculation of seawater promoted by the maintenance of pumping and
discharging operations. However, the reference limit is exceeded at least during the
first 10 days after the accident. The increase of the pumping rate during this period
should be considered as an action to speed up the dilution and mitigate the impact
of the accident. However, according to the linear non-threshold (LNT) paradigm,
the impact of lower concentrations of tritium converted to organically bound form
(OBT) and ingested by human populations and biota of tropical environments
remains unknown. Some further experimental work with tropical biota is necessary
to assess this issue.
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Chapter 20
Fractional Calculus: Application in Modeling
and Control

J. Tenreiro Machado

20.1 Introduction

The generalization of the concept of derivative Dα f (x) to non-integer values
of α goes back to the beginning of the theory of differential calculus. In fact,
Leibniz, in his correspondence with Bernoulli, L’Hôpital (1695), had several notes
about the calculation of D

1
2 f (x). The development of the theory of Fractional

Calculus (FC) is due to the contributions of many mathematicians such as Euler,
Liouville, Riemann, and Letnikov [Ol74], [SaKiMa93], [MiRo93]. In the fields of
physics and engineering, FC is presently associated with the modeling of electro-
chemical reactions, irreversibility, and electromagnetism [Ko84], [ToBa84], [Fe96],
[LeNiNi98], [Hi00], [SaAgMa07], [Ma10], [Ka11]. The adoption of the FC
in control algorithms has been studied [Ro67], [An94], [WeEk94], [Ma97],
[Ma01], [We02], [We03], [Za05], [Ma06], [Ta10], [CaEtAl10], [Di10], [Le11],
[Or11], [BaMaLu11], [BaEtAl12] using the frequency and discrete-time domains.
Nevertheless, this research is still giving its first steps and further investigation is
required. This article introduces the fundamental aspects of the theory of FC and
the modeling and control of dynamical systems.

The paper is organized as follows. Section 20.2 outlines the main mathematical
aspects of the theory of FC. Section 20.3 introduces the main algorithms to
approximate fractional-order derivatives. Sections 20.4 and 20.5 present examples
of the implementation of FC-based models and controllers. Finally, Sect. 20.6 draws
the main conclusions.
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20.2 Main Mathematical Aspects of the Theory
of Fractional Calculus

Can the order of derivatives and integrals be extended to have meaning with any
number irrational, fractional, or complex? Gottfried Leibniz invented that idea in
1695 and exchanged correspondence with Guillaume l’Hôpital about it. The concept
motivated mathematicians, physicists, and engineers to develop the concept of FC
both in theoretical aspects and in practical implementations [MaKiMa11], [Ma11].
This “new” mathematical tool is in fact as old as the standard differential calculus
and has been the subject of research for more than three centuries. Figure 20.1
depicts the time line [MaKiMa10b] of the most important scientific contributions
during 1695–1970. During the last decades FC was recognized to be a splendid
tool to model and to analyze complex dynamical systems and we witnessed the
emergence of a large number of contributions. Figure 20.2 shows the time line
[MaKiMa10a] of many relevant conferences, books, and special issues held during
1966–2010 (interested readers can download the A3 posters from the web site
of Journal of Fractional Calculus & Applied Analysis http://www.math.bas.bg/~
fcaa/).

There are several different definitions of fractional derivatives and their compari-
son is outside the scope of this sub-section. The most used definitions of a fractional
derivative of order α are, respectively, the Riemann-Liouville (RL), Grünwald-
Letnikov (GL), and Caputo (C) formulations [Ki94], [KiSrTr06]:

RL
a Dα

t f (t) =
1

Γ (n−α)

dn

dtn

t∫
a

f (τ)
(t− τ)α−n+1 dτ , t > a, Re(α) ∈ ]n−1,n[ ,

GL
a Dα

t f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
k=0

(−1)k
(

α
k

)
f (t− kh) , t > a, α > 0,

C
a Dα

t f (t) =
1

Γ (n−α)

t∫
a

f (n) (τ)
(t− τ)α−n+1 dτ , t > a, n−1 < α < n,

where Γ (·) is Euler’s gamma function, [x] means the integer part of x, and h is the
step time increment.

These operators capture the history of all past events, in opposition to integer
derivatives that are “local” operators. This means that fractional order systems have
a memory of the dynamical evolution. This behavior has been recognized in several
natural and man-made phenomena and their modeling becomes much simpler using
the tools of FC, while the counterpart of building integer order models leads often
to complicated expressions. The geometrical interpretation of fractional derivatives
has been the subject of debate and several perspectives had been forwarded [Ta95],
[Po02], [Ma03], [Ma09].

http://www.math.bas.bg/~fcaa/
http://www.math.bas.bg/~fcaa/
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Fig. 20.1 Time line of FC during the period 1695–1970 [MaKiMa10b]
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Fig. 20.2 Time line of FC during the period 1966–2010 [MaKiMa10a]
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Using the Laplace transformation, we have the expressions

L
{RL

0 Dα
t f (t)

}
= sαL { f (t)}−

n−1

∑
k=0

sk RL
0 Dα−k−1

t f
(
0+
)
,

L
{C

0 Dα
t f (t)

}
= sαL { f (t)}−

n−1

∑
k=0

sα−k−1 f (k) (0) ,

where s and L denote the Laplace variable and operator, respectively.
The Mittag–Leffler (ML) function Eα (t) is defined as [Kl09], [HaMaSa11]

Eα (t) =
∞

∑
k=0

tk

Γ (αk+1)
, α ∈ C, Re(α)> 0. (20.1)

The function Eα (t) was defined and studied by Mittag–Leffler in the year 1903.
It is a direct generalization of the exponential series. The ML function forms a
bridge between the exponential and the power laws. The first occurs in phenomena
governed by integer order and the second in fractional order dynamics. In particular,
when α = 1 the ML function simplifies and we have E1 (t) = et , while, for large
values of t, the asymptotic behavior yields

Eα (−t)≈ 1
Γ (1−α)

1
t
, α �= 1, 0 < α < 2.

Since the Laplace transform leads to

L {Eα (±atα)}= sα−1

sα ∓a
,

we observe a generalization of the Laplace transform pairs from the exponential
towards the ML, namely from integer up to fractional powers of s.

The more general Mittag–Leffler function, often called two-parameter ML
function, is given by

Eα ,β (t) =
∞

∑
k=0

tk

Γ (αk+β )
, α,β ∈ C, Re(α) , Re(β )> 0. (20.2)

The function defined by (20.1) gives a generalization of (20.2), since Eα (t) =
Eα ,1 (t). This generalization was studied by Wiman in 1905, Humbert and Agarwal
in 1953, and others.

Based on the proposed definitions it is possible to calculate the fractional-order
integrals/derivatives of several functions (Tables 20.1 and 20.2), where H (·), δ (·),
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Table 20.1 Riemann–Liouville fractional derivatives with lower terminal at 0

f (t) RL
0 Dα

t f (t) , t > 0, α∈ R

H (t) t−α

Γ (1−α)

H (t−a)

{
(t−a)−α

Γ (1−α) t > a

0 0≤ t ≤ a

H (t−a) f (t)

{
RL
a Dα

t f (t) t > a
0 0≤ t ≤ a

δ (t) t−α−1

Γ (−α)

δ (n) (t) t−α−n−1

Γ (−α−n) , n∈ N

δ (n) (t−a)

{
(t−a)−α

Γ (1−α) t > a

0 0≤ t ≤ a

tν Γ (ν+1)
Γ (ν+1−α) t

ν+α , ν >−1

eλ t t−α E1,1−α (λ t)

cosh
(√

λ t
)

t−α E2,1−α
(
λ t2
)

sinh(
√

λ t)√
λ t

t1−α E2,2−α
(
λ t2
)

ln(t) t−α

Γ (1−α) [ln(t)+ψ (1)−ψ (1−α)]

tβ−1 ln(t) Γ (β )tβ−α−1

Γ (β−α) [ln(t)+ψ (β )−ψ (β −α)] , Re(β )> 0

tβ−1Eμ ,β (λ tμ ) tβ−α−1Eμ ,β−α (λ tμ ) , β ,μ > 0

Table 20.2 Riemann–Liouville fractional derivatives with lower terminal at −∞

f (t) RL−∞Dα
t f (t) , t > 0, α∈ R

H (t−a)

{
(t−a)−α

Γ (1−α) t > a

0 t ≤ a

H (t−a) f (t)

{
RL
a Dα

t f (t) t > a
0 t ≤ a

eλ t λ α eλ t , t > 0
eλ t+μ λ α eλ t+μ , t > 0
sin(λ t) λ α sin

(
λ t +α π

2

)
, λ > 0, α >−1

cos(λ t) λ α cos
(
λ t +α π

2

)
, λ > 0, α >−1

eλ t sin(μt)
ρeλ t sin(μt +αφ) , λ ,μ > 0

ρ =
√

λ 2 +μ2, φ = arctan
( μ

λ
)

eλ t cos(μt)
ρeλ t cos(μt +αφ) , λ ,μ > 0

ρ =
√

λ 2 +μ2, φ = arctan
( μ

λ
)

and ψ (z) = Γ ′(z)
Γ (z) are the Heaviside, Dirac, and Digamma functions, respectively

[Po99a]. Nevertheless, the problem of devising and implementing fractional-order
algorithms is not trivial and will be the topic of the next sections.
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20.3 Approximations to Fractional-Order Derivatives

In this section we analyze two methods for implementing fractional-order deriva-
tives, namely the frequency-based and the discrete-time approaches, and its impli-
cation in control algorithms.

In order to analyze a frequency-based approach to Dα , 0 < α < 1, let us consider
the recursive circuit [CaHa64], [Ou91], [Ou95] represented in Fig. 20.1 such
that

i =
n

∑
k=0

ik,

Rk+1 =
1
ε

Rk,

Ck+1 =
1
η

Ck,

where ε and η are scale factors, i is the current due to an applied voltage v, and
Rk and Ck are the resistance and capacitance elements of the kth branch of the
circuit.

The admittance Y (ıω) is given by

Y (ıω) =
I (ıω)

V (ıω)
=

n

∑
k=0

ıωCεk

ıωCR+(εη)k ,

where F denotes the Fourier transform operator, ω represents the frequency,
F {i(t)}= I (ıω), F {v(t)}=V (ıω) and ı =

√−1.
Figure 20.2 shows the asymptotic Bode diagrams of amplitude and phase of

Y (ıω). The frequencies of the poles ωk and zeros ω ′k obey the recursive relationships

ω ′k+1

ω ′k
=

ωk+1

ωk
= εη ,

ωk+1

ω ′k
= ε ,

ω ′k
ωk

= η .

From the Bode diagram of amplitude or of phase, the average slope m′ can be
calculated as

m′ =
lnε

lnε + lnη
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Fig. 20.3 Electrical circuit with a recursive association of resistance and capacitance elements

Fig. 20.4 Bode diagrams of amplitude and phase of Y (ıω)

Consequently, the circuit of Fig. 20.3 represents an approach to Dα , 0 < α < 1,
with m′ = α , based on a recursive pole/zero placement in the frequency domain.
As mentioned in Sect. 20.2, the Laplace definition for a derivative of order α ∈
C is a “direct” generalization of the classical integer-order scheme with the
multiplication of the signal transform by the s operator. Therefore, in what concerns
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automatic control theory this means that frequency-based analysis methods have a
straightforward adaptation to their fractional-order counterparts. Nevertheless, the
implementation based on the Laplace definition (adopting the frequency domain)
requires an infinite number of poles and zeros obeying a recursive relationship.
In a real approximation the finite number of poles and zeros yields a ripple in
the frequency response and a limited bandwidth. Based on the Grünwald–Letnikov
definition of a derivative of fractional order α of the signal f (t), Dα f (t) leads to the
expression: This formulation inspired a discrete-time calculation algorithm, based
on the approximation of the time increment h by means of the sampling period T ,
yielding the equation in the z domain

Z {Dα f (t)}
Z { f (t)} =

1
T α

∞

∑
k=0

(−1)k Γ (α +1)
k!Γ (α− k+1)

z−k =

(
1− z−1

T

)α

, (20.3)

where Z denotes the Z-transform operator.
An implementation of (20.3) corresponds to an r-term truncated series given by

Z {Dα f (t)}
Z { f (t)} =

1
T α

r

∑
k=0

(−1)k Γ (α +1)
k!Γ (α− k+1)

z−k.

Clearly, to have good approximations, we must have a large r and a small T .
Expression (20.3) represents the Euler, or first backward difference, approxima-

tion in the so-called s→ z conversion scheme. Another possibility, often adopted in
control system design, consists in the Tustin (or bilinear) rule. The Euler and Tustin
rational expressions, ψ0

(
z−1
)
= 1−z−1

T and ψ1
(
z−1
)
= 2

T
1−z−1

1+z−1 , are often called
generating approximants of zero and first order, respectively. Therefore, the general-
ization of these conversion methods leads to the non-integer order α results [Ma99]

sα ≈
(

1− z−1

T

)α

,

sα ≈
(

2
T

1− z−1

1+ z−1

)α

.

We can obtain a family of fractional differentiators generated by ψα
0

(
z−1
)
=[

ψ0
(
z−1
)]α

and ψα
1

(
z−1
)
=
[
ψ1
(
z−1
)]α

weighted by the factors p and 1− p,
yielding

ψα
av

(
z−1)= pψα

0

(
z−1)+(1− p)ψα

1

(
z−1) . (20.4)

For example, the Al-Alaoui operator [Al93] corresponds to an interpolation of
the Euler and Tustin rules with weighting factor p = 3

4 . In order to get a rational
expression, the final approximation corresponds to a truncated Taylor series or
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a rational fraction expansion. Due to its superior performance often it is used a
fraction of order r; that is,

ψ
(
z−1)= ∑r

k=0 akz−k

∑r
k=0 bkz−k .

Often it is adopted a Padé expansion in the neighborhood of z = 0 and, since one
parameter is linearly dependent, it is established b0 = 1. The arithmetic mean (20.4))
motivates the study of an averaging method [MaGa09], [MaEtAl10] based on the
generalized formula of averages (often called average of order q ∈ R)

ψα
av

(
z−1)= {p

[
ψα

0

(
z−1)]q +(1− p)

[
ψα

1

(
z−1)]q} 1

q
, (20.5)

where (p,q) are two tuning degrees of freedom, corresponding q to the order
of the averaging expression and p to the weighting factor. For example, when
q = {−1,0,1}, in expression (20.5), we get the well-known expressions for the
{harmonic, geometric, arithmetic} averages.

20.4 Fractional Modeling

In this section a classical fractional-order model is presented.
At high frequencies the electric current in a conductor distributes itself so that

the current density near the surface is greater than that at its core. This phenomenon
is called the skin effect (SE), or electromagnetic diffusion. As will be seen the SE
shows characteristics that are well modeled by means of FC [MaGa12].

For a conductor of length l0 and a sinusoidal field E =
√

2Ẽ sin(ωt), with t and
ω denoting time and frequency, the equivalent electrical complex impedance Z̃ is
given by

Z̃ =
ql0

2πr0γ
J0 (qr0)

J1 (qr0)
, (20.6)

where q2 = −ıωγμ , ε , μ , and γ are the electrical permittivity, the magnetic
permeability, and the conductivity, respectively, and J0 and J1 are complex-valued
Bessel functions of the first kind of orders 0 and 1.

For low and high frequencies Z̃ yields

ω → 0 ⇒ Z̃→ l0
πr2

0γ
, (20.7)

ω → ∞ ⇒ Z̃→ l0
2πr0

√
ωμ
2γ

(1+ ı) . (20.8)
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Expression (20.8) reveals a phenomenon of order α = 1
2 that is not captured

by the standard integer models. Joining the two asymptotic expressions (20.7)
and (20.8), we obtain the simple fractional approximation

Z̃app = Z0

(
1+

ıω
a

)α
, (20.9)

where Z0 = l0
πr2

0γ , a = 4
r2
0γμ and α = 1

2 . It must be noted that, while other

approximations are possible, expression (20.9) has a simple analytical structure
yielding

Z̃app =
l0

πr2
0γ

, Z̃app =
l0

2πr0

√
ωμ
2γ

(1+ ı)

as ω → 0 and ω → ∞, respectively.
Figure 20.5 compares the Bode diagrams of amplitude and phase of E (k0) based

on expressions (20.6) and (20.9) for a conductor with γ = 107 Ω−1 m, l0 = 1 m, r0 =
3.02 10−3 m, μ0 = 1.257 10−6 Hm−1 and μr = 103. We verify this approximation
leads to a very good curve fitting.

20.5 Fractional Control

In this section simple fractional-order control algorithms are presented.
Figure 20.6 illustrates an important aspect of fractional-order controllers, by

using an elemental fractional system in the direct loop with transfer function
G(s) = K

sα , 1 < α < 2. The open-loop Bode diagrams (Fig. 20.7) of amplitude and
phase have a slope of −20 dB/dec and a constant phase of −α π

2 rad, respectively.
Therefore, the closed-loop system has a constant phase margin of π

(
1− α

2

)
rad,

that is independent of the system gain K. This important property is also revealed
by means of the root-locus depicted in Fig. 20.8, illustrating the cases of 0 < α < 1
and 1 < α < 2.

Let us consider K = 1, so that G(s) = 1
sα , and an unit step input R(s) =

1
s in the system represented in Fig. 20.6. The output response will be C (s) =

1
s(sα+1) , or, in the time domain, c(t) = 1− Eα (−tα). Figure 20.9 depicts the

responses for α = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. We observe that the
fractional values “interpolate” the well-known cases of α = {1, 2}. Furthermore,
we note the appearance of a fast initial transient, followed by an extremely slow
convergence for the steady-state value, which is typical of many fractional order
systems.

A popular application of FC is in the area of control [Ma97], [MoEtAl10],
[Pe11], [Vada12] and corresponds to the generalization of the Proportional, Integral,
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Fig. 20.5 Bode diagrams of amplitude and phase of E (k0) for the theoretical and the approximate
expression with γ = 107 Ω−1 m, l0 = 1 m, r0 = 3.02 10−3 m, μ0 = 1.257 10−6 Hm−1 and μr = 103

Fig. 20.6 Block diagram for an elemental feedback control system of fractional order α

and Derivative (PID) algorithm, namely to the fractional PID. The PIλ Dμ by
Podlubny [Po99b] control algorithm has a transfer function given by

Gc (s) = KP +KIs
−λ +KDsμ ,



20 Fractional Calculus: Application in Modeling and Control 291

Fig. 20.7 Open-loop Bode diagrams of amplitude and phase for a system of fractional order 0 <
α < 1

where KP, KI , and KD are the proportional, integral, and differential gains, and λ
and μ are the fractional orders of the integral and derivative actions, respectively.

The diagram of Fig. 20.10 shows that the cases (λ ,μ) = {(0,0) ,(1,0) ,}
{(0,1) ,(1,1)}, correspond to the P, PI, PD, and PID, respectively.

20.6 Conclusions

This paper presented the fundamental aspects of the FC calculus, the main approxi-
mation methods for the fractional-order derivatives calculation, and the implication
of the FC concepts upon the extension of the classical automatic control theory.
Bearing these ideas in mind, several approximate schemes for the calculation
of fractional derivatives, and examples of FC-models and FC-controllers were
described. It was shown that fractional-order models capture phenomena and
properties that classical integer-order simply neglect.
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Chapter 21
Modified Integral Equation Method
for Stationary Plate Oscillations

G.R. Thomson and C. Constanda

21.1 Introduction

Each of the exterior Dirichlet, Neumann, and Robin boundary value problems
associated with the high-frequency stationary oscillations of Mindlin-type elastic
plates is known to have at most one solution in a certain class of functions
(see [Co98] and [ThCo11]). However, in [ThCo97], [ThCo99], [ThCo09a], and
[ThCo10] it was shown that, using classical integral equation techniques, it is
not possible to derive single, uniquely solvable integral equations from which to
construct the solution of the mathematical model. To overcome this drawback, in
[ThCo12b] the solutions were sought in the form of functions satisfying a dissipative
condition on some suitable curve.

Below, we propose an alternative modified method that also yields well-posed
integral equations.

Techniques that resolve the uniqueness difficulties arising in exterior problems in
acoustics and elastodynamics can be found in [Jo74], [Ur78], [Jo84], and [Be90].

Throughout what follows, a superscript T denotes matrix transposition and
x = (x1,x2)

T and y = (y1,y2)
T are generic points in the Cartesian plane R

2, with
corresponding polar coordinates (Rx,θx) and (Ry,θy).

We denote by S+ a domain in R
2 bounded by a simple, closed C2-curve ∂S and

write S− = R
2 \ S̄+. The origin of coordinates is assumed to lie in S+.

Let h0 be the (constant) thickness of the plate, ρ the density, and λ and μ the
Lamé constants of the homogeneous and isotropic plate material, which occupies the

G.R. Thomson
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infinite region S̄−× [−h0/2,h0/2] in R
3. The stationary oscillations of frequency ω

of the plate, when transverse shear deformation is taken into account, are governed
by the system [ScCo93]

Aω(∂x)u(x) = H(x), (21.1)

where u = (u1,u2,u3)
T is a vector characterizing the displacements, H is related to

the averaged (across thickness) body forces and moments, and the matrix operator
Aω(∂x) = Aω(∂/∂x1,∂/∂x2) is defined by

Aω(ξ1,ξ2)

=

⎛
⎝h2μ(Δ + k2

3)+h2(λ +μ)ξ 2
1 h2(λ +μ)ξ1ξ2 −μξ1

h2(λ +μ)ξ1ξ2 h2μ(Δ + k2
3)+h2(λ +μ)ξ 2

2 −μξ2

μξ1 μξ2 μ(Δ + k2)

⎞
⎠;

here h2 = h2
0/12, Δ = ξ 2

1 +ξ 2
2 , and

k2 =
ρω2

μ
, k2

3 = k2− 1
h2 . (21.2)

We define constants k2
1 and k2

2 by

k2
1 + k2

2 =
λ +3μ
λ +2μ

k2, k2
1k2

2 =
μ

λ +2μ
k2k2

3. (21.3)

In what follows it is assumed that

λ +μ > 0, μ > 0, ρω2h2 > μ . (21.4)

These inequalities imply that k2
1, k2

2, and k2
3 are real, positive, and distinct.

Without loss of generality, we restrict our attention to the homogeneous system

Aω(∂x)u(x) = 0, (21.5)

since a particular solution of (21.1) can be constructed in terms of a Newtonian
potential [ThCo98].

The boundary moment–stress operator T (∂x) = T (∂/∂x1,∂/∂x2) is defined by
[ScCo93]

T (ξ1,ξ2)

=

⎛
⎝h2((λ +2μ)ν1ξ1 +μν2ξ2) h2(μν2ξ1 +λν1ξ2) 0

h2(λν2ξ1 +μν1ξ2) h2(μν1ξ1 +(λ +2μ)ν2ξ2) 0
μν1 μν2 μ(ν1ξ1 +ν2ξ2)

⎞
⎠,
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where ν = (ν1,ν2)
T is the unit outward normal to the boundary of the middle plane

of the plate.
The operators Aω(∂x) and T (∂x) are connected by the reciprocity relation, which

states that if u, v ∈C2(S+)∩C1(S̄+), then [ThCo11]

∫

S+

(
uTAω v− vTAω u

)
da =

∫

∂S

(
uTT v− vTTu

)
ds. (21.6)

We denote by Bω the class of functions defined in S− which satisfy the radiation
conditions formulated in [Co98] (see also [ThCo11]) as Rx→ ∞.

Let R, S , and G be 3× 1 vector functions prescribed on ∂S, and let σ ∈
C 1,α(∂S), α ∈ (0,1), be a symmetric 3× 3 matrix function. We now formulate
the exterior boundary value problems (Dω−), (Nω−), and (Rω−) with Dirichlet,
Neumann, and Robin boundary conditions, respectively, as follows:

(Dω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω satisfying (21.5) in S− and

u|∂S = R. (21.7)

(Nω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω satisfying (21.5) in S− and

Tu|∂S = S . (21.8)

(Rω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω satisfying (21.5) in S− and

(Tu+σu)|∂S = G . (21.9)

A function u is said to be regular in S− if u ∈C2(S−)∩C1(S̄−).
The next assertion was proved in [Co98] and [ThCo11].

Theorem 1. (i) Each of (Dω−) and (Nω−) has at most one regular solution.
(ii) If Im(σ) is positive semidefinite, then (Rω−) has at most one regular solution.

21.2 A Modified Matrix of Fundamental Solutions

Let

εm =

{
1, m = 0,

2, m≥ 1,
E(σ)

m (θ) =

{
cosmθ , σ = 1,

sinmθ , σ = 2,

where m is a nonnegative integer, and let

φ (σ)
m (x) =

√
εm Hm(k1Rx)E

(σ)
m (θx), φ̂ (σ)

m (x) =
√

εm Jm(k1Rx)E
(σ)
m (θx),
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υ(σ)
m (x) =

√
εm Hm(k2Rx)E

(σ)
m (θx), υ̂(σ)

m (x) =
√

εm Jm(k2Rx)E
(σ)
m (θx),

ψ(σ)
m (x) =

√
εm Hm(k3Rx)E

(σ)
m (θx), ψ̂(σ)

m (x) =
√

εm Jm(k3Rx)E
(σ)
m (θx),

where k1, k2, and k3 are defined by (21.2) and (21.3), Hm is the Hankel function of
the first kind and order m, and Jm is the Bessel function of the first kind and order m.

We introduce the constants

α2
1 =

k2
2−μ ′k2

3

k2
2− k2

1

, α2
2 =

k2
1−μ ′k2

3

k2
1− k2

2

,

where μ ′ = μ/(λ +2μ). It is easily verified that these constants are strictly positive
if inequalities (21.4) hold and k2

1 is the larger of the roots defined by (21.3).
The radiating wavefunctions are [ThCo09b]

Φ (σ)
m (x) =

(
α1

∂
∂x1

φ (σ)
m (x), α1

∂
∂x2

φ (σ)
m (x),−hk3α2φ (σ)

m (x)

)T

,

ϒ (σ)
m (x) =

(
α2

∂
∂x1

υ(σ)
m (x), α2

∂
∂x2

υ(σ)
m (x), hk3α1υ(σ)

m (x)

)T

,

Ψ (σ)
m (x) =

(
∂

∂x2
ψ(σ)

m (x),− ∂
∂x1

ψ(σ)
m (x), 0

)T

.

Each of these functions satisfies (21.5) in R
2 \ {0} and belongs to Bω . The cor-

responding regular wavefunctions Φ̂ (σ)
m , ϒ̂ (σ)

m , and Ψ̂ (σ)
m are obtained by replacing

φ (σ)
m , υ(σ)

m , and ψ(σ)
m in the above formulas by φ̂ (σ)

m , υ̂(σ)
m , and ψ̂(σ)

m , respectively.
If Dω(x,y) is the matrix of fundamental solutions for Aω(∂x) constructed in

[ThCo09b], it can be shown that for Rx < Ry,

Dω(x,y) =
i

4h2μk2
3

∞

∑
m=0

2

∑
σ=1

{
Φ̂ (σ)

m (x)
[
Φ (σ)

m (y)
]T

+ϒ̂ (σ)
m (x)

[
ϒ (σ)

m (y)
]T

+Ψ̂ (σ)
m (x)

[
Ψ (σ)

m (y)
]T}

. (21.10)

We now consider a modified matrix of fundamental solutions Dω
L (x,y) of the form

Dω
L (x,y) = Dω(x,y)+Lω(x,y), (21.11)

where

Lω(x,y) =
i

4h2μk2
3

∞

∑
m=0

2

∑
σ=1

{
a(σ)

m Φ (σ)
m (x)

[
Φ (σ)

m (y)
]T

+b(σ)
m ϒ (σ)

m (x)
[
ϒ (σ)

m (y)
]T

+ c(σ)
m Ψ (σ)

m (x)
[
Ψ (σ)

m (y)
]T}

, (21.12)
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with arbitrary constants a(σ)
m , b(σ)

m , and c(σ)
m . From (21.12) it is easy to see that

Lω(x,y) = [Lω(y,x)]T, which, in view of (21.11), means that

Dω
L (x,y) = [Dω

L (y,x)]
T ,

since the “unmodified” matrix of fundamental solutions is symmetric [ThCo09b].
Let ϖ(b) be a disk centered at the origin whose radius b is sufficiently small so

that ϖ(b)⊂ S+. We assume that, as m→ ∞ through real, positive values,

a(σ)
m ∼

(
e2k2

1b2

4m2

)m

, b(σ)
m ∼

(
e2k2

2b2

4m2

)m

, c(σ)
m ∼

(
e2k2

3b2

4m2

)m

. (21.13)

It can be shown that if (21.13) holds, then the infinite series (21.12) is absolutely
convergent in the region RxRy > b2.

The wavefunctions satisfy certain orthogonality-type properties, established in
[ThCo09b]. Let

χ(σ1)
m (x) = Φ (σ)

m (x), χ(σ2)
m (x) =ϒ (σ)

m (x), χ(σ3)
m (x) =Ψ (σ)

m (x),

where σ = 1,2 and m = 0,1,2, . . . . The functions χ̂(σ j)
m , j = 1,2,3, are defined in

the obvious way. If ∂C is any closed curve that contains the origin in its interior,
then for m≥ 1,

∫

∂C

{[
χ̂(σ j)

m
]T

T χ̂(νk)
n − [χ̂(νk)

n
]T

T χ̂(σ j)
m
}

ds = 0, (21.14)

∫

∂C

{[
χ̂(σ j)

m
]T

T χ(νk)
n − [χ(νk)

n
]T

T χ̂(σ j)
m
}

ds = 4ih2μk2
3δmnδσν δ jk, (21.15)

∫

∂C

{[
χ̄(σ j)

m
]T

T χ(νk)
n − [χ(νk)

n
]T

T χ̄(σ j)
m
}

ds = 8ih2μk2
3δmnδσν δ jk. (21.16)

Equalities (21.15) and (21.16) also hold for m = 0, σ = 1.
We introduce the modified single-layer and double-layer potentials

V ω
L (ϕ) =

∫

∂S

Dω
L (x,y)ϕ(y)ds(y),

W ω
L (ϕ) =

∫

∂S

[T (∂y)D
ω
L (y,x)]

T ϕ(y)ds(y),

where Dω
L (x,y) is defined by (21.11) and (21.12). These potentials behave in the

same way as the modified potentials discussed in [ThCo12b]. Their properties are
gathered in the next assertion.
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Theorem 2. (i) V ω
L ϕ, W ω

L ϕ ∈Bω .
(ii) If ϕ ∈ C(∂S), then V ω

L ϕ and W ω
L ϕ are analytic and satisfy system (21.5) in

R
2 \ (∂S∪{0}).

(iii) If ϕ ∈C 0,α(∂S), α ∈ (0,1), then the direct values V ω
L0ϕ and W ω

L0ϕ of V ω
L ϕ and

W ω
L ϕ on ∂S exist (the latter as principal value), the functions

V ω+
L (ϕ) = (V ω

L ϕ)|S̄+ , V ω−
L (ϕ) = (V ω

L ϕ)|S̄−

are of class C∞(S+)∩C1,α(S̄+) and C∞(S−)∩C1,α(S̄−), respectively, and

TV ω+
L (ϕ) = (W ω∗

L0 + 1
2 I)ϕ, TV ω−

L (ϕ) = (W ω∗
L0 − 1

2 I)ϕ

on ∂S, where W ω∗
L0 is the adjoint of W ω

L0 and I is the identity operator.
(iv) If ϕ ∈C1,α(∂S), α ∈ (0,1), then the functions

W ω+
L (ϕ) =

{
(W ω

L ϕ)|S+ in S+,

(W ω
L0− 1

2 I)ϕ on ∂S,
W ω−

L (ϕ) =

{
(W ω

L ϕ)|S− in S−,
(W ω

L0 +
1
2 I)ϕ on ∂S

are of class C∞(S+)∩C1,α(S̄+) and C∞(S−)∩C1,α(S̄−), respectively, and we
have TW ω+

L (ϕ) = TW ω−
L (ϕ) on ∂S.

These properties are used in the next section to formulate quasi-Fredholm
integral equations for each boundary value problem.

21.3 Uniquely Solvable Integral Equations

We start with the exterior Neumann problem. Seeking the solution of (Nω−) in the
form v = V ω−

L (ϕ) and taking the boundary condition (21.8) into account, we arrive
at the integral equation

(
W ω∗

L0 − 1
2 I
)

ϕ = S (21.17)

for the unknown density ϕ . In [Co90] it is shown that the Fredholm alternative is
applicable to equations of this kind. Therefore, to prove that (21.17) has a unique
solution, we need to show that the corresponding homogeneous equation

(
W ω∗

L0 − 1
2 I
)

ϕ = 0 (21.18)

has only the zero solution.
Let u = V ω+

L (ϕ) and v = V ω−
L (ϕ), where ϕ satisfies (21.18). Then T v|∂S = 0,

which means that v is a solution of the homogeneous exterior Neumann problem.
By Theorem 1, v = 0 in S̄−; in particular,
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v|∂S =V ω
L0ϕ = u|∂S = 0.

Let

A(σ)
m =

i

4h2μk2
3

∫

∂S

[
Φ (σ)

m (y)
]Tϕ(y)ds(y),

B(σ)
m =

i

4h2μk2
3

∫

∂S

[
ϒ (σ)

m (y)
]Tϕ(y)ds(y),

C(σ)
m =

i

4h2μk2
3

∫

∂S

[
Ψ (σ)

m (y)
]Tϕ(y)ds(y),

and let Rmin be the minimum distance from the origin to ∂S. Then, by (21.10) –
(21.12), we see that for b≤ Rx < Rmin,

u(x) =
∞

∑
m=0

2

∑
σ=1

{
A(σ)

m Φ̂ (σ)
m (x)+B(σ)

m ϒ̂ (σ)
m (x)+C(σ)

m Ψ̂ (σ)
m (x)

+a(σ)
m A(σ)

m Φ (σ)
m (x)+b(σ)

m B(σ)
m ϒ (σ)

m (x)+ c(σ)
m C(σ)

m Ψ (σ)
m (x)

}
. (21.19)

We apply the reciprocity relation (21.6) to u and ū in S+ \ϖ(b). Since u|∂S = ū|∂S =
0, it follows that

∫

∂ϖ(b)

(uTT ū− ūTTu)ds = 0. (21.20)

Substituting (21.19) into (21.20), taking into account that the χ̂(σ j)
m , j = 1,2,3, are

real when their arguments are real, and using (21.14)–(21.16), we find that

∞

∑
m=0

2

∑
σ=1

{
1
2 A(σ)

m ā(σ)
m Ā(σ)

m + 1
2 B(σ)

m b̄(σ)
m B̄(σ)

m + 1
2 C(σ)

m c̄(σ)
m C̄(σ)

m

+ 1
2 Ā(σ)

m a(σ)
m A(σ)

m + 1
2 B̄(σ)

m b(σ)
m B(σ)

m + 1
2 C̄(σ)

m c(σ)
m C(σ)

m +a(σ)
m A(σ)

m ā(σ)
m Ā(σ)

m

+b(σ)
m B(σ)

m b̄(σ)
m B̄(σ)

m + c(σ)
m C(σ)

m c̄(σ)
m C̄(σ)

m
}
= 0. (21.21)

We rearrange (21.21) in two different ways. First, we write

∞

∑
m=0

2

∑
σ=1

{∣∣A(σ)
m
∣∣2(∣∣a(σ)

m + 1
2

∣∣2− 1
4

)
+
∣∣B(σ)

m
∣∣2(∣∣b(σ)

m + 1
2

∣∣2− 1
4

)

+
∣∣C(σ)

m
∣∣2(∣∣c(σ)

m + 1
2

∣∣2− 1
4

)}
= 0.
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If we choose the constants so that, for σ = 1,2 and m = 0,1,2, . . . , either

∣∣a(σ)
m + 1

2

∣∣> 1
2 ,

∣∣b(σ)
m + 1

2

∣∣> 1
2 ,

∣∣c(σ)
m + 1

2

∣∣> 1
2 (21.22)

or
∣∣a(σ)

m + 1
2

∣∣< 1
2 ,

∣∣b(σ)
m + 1

2

∣∣< 1
2 ,

∣∣c(σ)
m + 1

2

∣∣< 1
2 , (21.23)

then

A(σ)
m = B(σ)

m =C(σ)
m = 0, σ = 1,2, m = 0,1,2, . . . . (21.24)

There is another set of restrictions on the constants which ensures that (21.24) hold.
From (21.21) we see that

∞

∑
m=0

2

∑
σ=1

{(
Re
(
a(σ)

m
)
+
∣∣a(σ)

m
∣∣2)∣∣A(σ)

m
∣∣2 + (Re

(
b(σ)

m
)
+
∣∣b(σ)

m
∣∣2)∣∣B(σ)

m
∣∣2

+
(

Re
(
c(σ)

m
)
+
∣∣c(σ)

m
∣∣2)∣∣C(σ)

m
∣∣2}= 0.

Consequently, if

Re
(
a(σ)

m
)
, Re

(
b(σ)

m
)
, Re

(
c(σ)

m
)
> 0, σ = 1,2, m = 0,1,2, . . . , (21.25)

then (21.24) hold.
Now suppose that (21.24) hold. Then, by (21.19), u = 0 in b ≤ Rx < Rmin; so,

from the analyticity of the potentials we deduce that u = 0 in S+ \ϖ(b). Hence,

0 = Tu|∂S =
(
W ω∗

L0 + 1
2 I
)

ϕ,

which, in view of (21.18), implies that ϕ = 0. Thus, we have proved the following
assertion.

Theorem 3. If S ∈C 0,α(∂S), α ∈ (0,1), and the constants in Lω(x,y) are chosen
so that equalities (21.24) hold, then the integral equation (21.17) has a unique
solution ϕ ∈C 0,α(∂S).

We now go over to the exterior Dirichlet problem (Dω−). Seeking the solution
as a modified double-layer potential v = W ω−

L (ϕ) and using (21.7), we arrive at the
equation (

W ω
L0 +

1
2 I
)

ϕ = R (21.26)

for the unknown density ϕ . We claim that the corresponding homogeneous equation
(
W ω

L0 +
1
2 I
)

ϕ = 0 (21.27)

has only the zero solution.
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Suppose that ϕ is a solution of (21.27), and let

u = W ω+
L (ϕ), v = W ω−

L (ϕ).

Then v|∂S = 0, and, since (Dω−) has at most one solution, we see that v = 0 in S̄−;
therefore,

0 = T v|∂S = TW ω−
L (ϕ)|∂S = TW ω+

L (ϕ)|∂S = Tu|∂S. (21.28)

Let

Ã(σ)
m =

i

4h2μk2
3

∫

∂S

[
T (∂y)Φ

(σ)
m (y)

]Tϕ(y)ds(y),

B̃(σ)
m =

i

4h2μk2
3

∫

∂S

[
T (∂y)ϒ

(σ)
m (y)

]Tϕ(y)ds(y),

C̃(σ)
m =

i

4h2μk2
3

∫

∂S

[
T (∂y)Ψ

(σ)
m (y)

]Tϕ(y)ds(y).

Using the symmetry of Dω
L (x,y), we can write u(x) in the same way as (21.19) with

A(σ)
m , B(σ)

m , and C(σ)
m replaced by Ã(σ)

m , B̃(σ)
m , and C̃(σ)

m , respectively. The analysis then
proceeds in exactly the same way as for (Nω−), use being made of the boundary
condition (21.28) when the reciprocity relation is applied.

Under the same conditions as for (Nω−), we find that

Ã(σ)
m = B̃(σ)

m = C̃(σ)
m = 0, σ = 1,2, m = 0,1,2, . . . . (21.29)

Arguing as before, we see that if (21.29) holds, then u = 0 in S+ \ ϖ(b). By
continuity,

0 = u|∂S =
(
W ω

L0− 1
2 I
)

ϕ,

which, in view of (21.27), implies that ϕ = 0. Therefore, the following assertion is
true.

Theorem 4. If R ∈C 1,α(∂S), α ∈ (0,1), and the constants in Lω(x,y) are chosen
so that equalities (21.29) hold, then the integral equation (21.26) has a unique
solution ϕ ∈C 1,α(∂S).

Finally, we consider the exterior Robin problem. If the solution of (Rω−) is
sought in the form u = V ω−

L (ϕ), then, by (21.9), we need to solve the integral
equation

(W ω∗
L0 +σV ω

L0− 1
2 I)ϕ = G . (21.30)
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The corresponding homogeneous equation is

(W ω∗
L0 +σV ω

L0− 1
2 I)ϕ = 0. (21.31)

Let ϕ be a solution of (21.31), and let

u = V ω+
L (ϕ), v = V ω−

L (ϕ).

We see that

(T v+σv)|∂S = 0,

so, assuming that σ is positive semidefinite, from Theorem 1(ii) we deduce that
v = 0 in S̄−; therefore,

v|∂S =V ω
L0ϕ = u|∂S = 0.

The argument then continues in exactly the same way as in the case of (Nω−). If the
constants satisfy the necessary conditions, we arrive at u = 0 in S+ \ϖ(b), which
then leads to

0 = Tu|∂S +σu|∂S = (W ω∗
L0 + 1

2 I)ϕ +σV ω
L0ϕ.

This and (21.31) imply that ϕ = 0. Hence, by the Fredholm alternative, (21.30) has
a unique solution. The following assertion has therefore been proved.

Theorem 5. If Im(σ) is positive semidefinite, G ∈ C 0,α(∂S), α ∈ (0,1), and the
constants in Lω(x,y) are chosen so that (21.24) are satisfied, then (21.30) has a
unique solution ϕ ∈C 0,α(∂S).

We remark that the modified matrix of fundamental solutions Dω
L (x,y) may also

be used to obtain uniquely solvable integral equations of the first kind for the
solutions of (Dω−) and (Nω−) if the constants satisfy appropriate conditions. Such
equations were derived in [ThCo12a] by means of the modified matrix Dω

M(x,y)
constructed in [ThCo12b].

21.4 Modification with a Finite Series

We now modify the matrix of fundamental solutions by adding to it a finite series
of wavefunctions. This leads to uniquely solvable integral equations for a restricted
range of oscillation frequencies.

Let

Dω
L (x,y) = Dω(x,y)+L ω(x,y), (21.32)
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where

L ω(x,y) =
i

4h2μk2
3

M

∑
m=0

2

∑
σ=1

{
a(σ)

m Φ (σ)
m (x)

[
Φ (σ)

m (y)
]T

+b(σ)
m ϒ (σ)

m (x)
[
ϒ (σ)

m (y)
]T

+ c(σ)
m Ψ (σ)

m (x)
[
Ψ (σ)

m (y)
]T}

. (21.33)

The nonnegative integer M and the constants a(σ)
m , b(σ)

m , and c(σ)
m are arbitrary.

Repeating the argument in Sect. 21.3 for (Nω−) and using the potentials obtained
by replacing (21.11) and (21.12) with (21.32) and (21.33), we find that for Rx <Rmin

[see (21.19)],

u(x) =
∞

∑
m=0

2

∑
σ=1

{
A(σ)

m Φ̂ (σ)
m (x)+B(σ)

m ϒ̂ (σ)
m (x)+C(σ)

m Ψ̂ (σ)
m (x)

}

+
M

∑
m=0

2

∑
σ=1

{
a(σ)

m A(σ)
m Φ (σ)

m (x)+b(σ)
m B(σ)

m ϒ (σ)
m (x)

+ c(σ)
m C(σ)

m Ψ (σ)
m (x)

}
. (21.34)

If the constants are chosen so that (21.22), (21.23), or (21.25) are satisfied for σ =
1,2 and m = 0,1,2, . . . ,M, then it is easy to see that

A(σ)
m = B(σ)

m =C(σ)
m = 0, σ = 1,2, m = 0,1,2, . . . ,M. (21.35)

From (21.34) it follows that if (21.35) holds, then for Rx < Rmin,

u(x) =
∞

∑
m=M+1

2

∑
σ=1

{
A(σ)

m Φ̂ (σ)
m (x)+B(σ)

m ϒ̂ (σ)
m (x)+C(σ)

m Ψ̂ (σ)
m (x)

}
. (21.36)

For simplicity, below we write (R,θ) instead of (Rx,θx).

Theorem 6. The function u defined by (21.36) has a zero in R at the origin, of order
at least M−1.

Proof. By (21.36),

u(x) =
2

∑
σ=1

{
A(σ)

M+1Φ̂ (σ)
M+1(x)+B(σ)

M+1ϒ̂
(σ)

M+1(x)+C(σ)
M+1Ψ̂

(σ)
M+1(x)+ · · ·

}
.

It is easy to show that

∂
∂x1

{
JM+1(k1R)E(σ)

M+1(θ)
}
= 1

2 k1
[
JM(k1R)E(σ)

M (θ)− JM+2(k1R)E(σ)
M+2(θ)

]
,
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∂
∂x2

{
JM+1(k1R)E(σ)

M+1(θ)
}
= 1

2 (−1)σ k1
[
JM(k1R)E(3−σ)

M (θ)

+ JM+2(k1R)E(3−σ)
M+2 (θ)

]
;

so, from the definition of the wavefunctions we deduce that

Φ̂ (σ)
M+1(x) =

1√
2

⎛
⎜⎝

α1k1
(
JM(k1R)E(σ)

M (θ)− JM+2(k1R)E(σ)
M+2(θ)

)
(−1)σ α1k1

(
JM(k1R)E(3−σ)

M (θ)+ JM+2(k1R)E(3−σ)
M+2 (θ)

)
−2hk3α2JM+1(k1R)E(σ)

M+1(θ)

⎞
⎟⎠.

Also,

∂ l

∂Rl JM(k1R) =
(

1
2 k1
)l

JM−l(k1R)+
2l

∑
m=2

βmJM−l+m(k1R),

where the βm are constants. Since

J0(0) = 1, Jn(0) = 0, n≥ 1,

we find that (
∂ l

∂Rl JM(k1R)

)∣∣∣∣
R=0

= 0 if M− l ≥ 1.

Consequently, Φ̂ (σ)
M+1 has a zero in R at the origin of order at least M− 1. This

procedure can be repeated for ϒ̂ (σ)
M+1 and Φ̂ (σ)

M+1, and the result follows.

From Theorem 6 we see that by increasing the value of M, we increase the order
of the zero of u in R at the origin and, hence, strengthen the constraints on the func-
tion. It turns out that this increases (or, rather, does not decrease) the lowest value
ω(M), say, of the oscillation frequency for which u can be a nonzero solution of the
homogeneous interior Dirichlet problem. Unfortunately, there is no way of knowing
how many terms we need to take in series (21.33) to ensure that a particular value
of ω is less than ω(M). All we can claim is that by increasing M, we have a greater
chance of eliminating oscillation frequencies at which nonuniqueness can occur.

Suppose that ω < ω(M) and that (21.35) holds. Then u = 0 in S+ and we can
continue the argument of the previous section.

(Dω−) and (Rω−) are treated analogously.
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Chapter 22
Nonstandard Integral Equations
for the Harmonic Oscillations of Thin Plates

G.R. Thomson, C. Constanda, and D.R. Doty

22.1 Prerequisites

In [ThCo97] and [ThCo09a] the problems of high frequency harmonic oscillations
of thin elastic plates with Dirichlet, Neumann, and Robin boundary conditions
were investigated by means of a classical indirect boundary integral equation
method. This method was not entirely satisfactory since, for the exterior problems,
it produced integral equations with nonunique solutions for certain values of the
oscillation frequency, although the actual boundary value problems always had
at most one solution. When a direct method was employed (see [ThCo99] and
[ThCo10]), it was found that uniqueness could be guaranteed only if a pair of
integral equations was derived for each exterior problem. The classical techniques
did not seem to offer any answer to the question of whether the solutions could be
obtained from single, uniquely solvable equations. Below we propose a modified
indirect boundary integral equation method, based on constructing a matrix of
fundamental solutions satisfying a dissipative (or Robin-type) condition on a curve
interior to the scatterer, which answers the above question in the affirmative.

Problems of this nature in two-dimensional acoustics and plane deformation were
addressed in [Ur73] and [Be90].

In the sequel, a superscript T denotes matrix transposition and x = (x1,x2)
T and

y = (y1,y2)
T are generic points in the Cartesian plane R

2, with polar radii Rx and
Ry, respectively.

Let S+ be a domain in R
2 bounded by a simple, closed C2-curve ∂S, and let

S− = R
2 \ S̄+. We assume that the origin of coordinates lies in S+.
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We consider a homogeneous and isotropic elastic plate of density ρ and Lamé
constants λ and μ , which occupies the infinite region S̄− × [−h0/2,h0/2] in R

3,
where h0 = const is the plate thickness. The harmonic oscillations of frequency ω
of the plate, when transverse shear deformation is taken into account, are governed
by the system [ScCo93]

Aω(∂x)u(x) = H(x), (22.1)

where u = (u1,u2,u3)
T is a vector characterizing the displacements, H is related

to the averaged body forces and moments, and the matrix operator Aω(∂x) =
Aω(∂/∂x1,∂/∂x2) is defined by

Aω(ξ1,ξ2)

=

⎛
⎜⎝

h2μ(Δ + k2
3)+h2(λ +μ)ξ 2

1 h2(λ +μ)ξ1ξ2 −μξ1

h2(λ +μ)ξ1ξ2 h2μ(Δ + k2
3)+h2(λ +μ)ξ 2

2 −μξ2

μξ1 μξ2 μ(Δ + k2)

⎞
⎟⎠;

here h2 = h2
0/12, Δ = ξ 2

1 +ξ 2
2 , and

k2 =
ρω2

μ
, k2

3 = k2− 1
h2 . (22.2)

It is assumed throughout that

λ +μ > 0, μ > 0, ρω2h2 > μ . (22.3)

Since a particular solution of (22.1) is readily constructed (see [ThCo98]),
without loss of generality we consider the homogeneous system

Aω(∂x)u(x) = 0. (22.4)

The boundary moment–stress operator T (∂x) = T (∂/∂x1,∂/∂x2) is defined by
[ScCo93]

T (ξ1,ξ2)

=

⎛
⎝h2((λ +2μ)ν1ξ1 +μν2ξ2) h2(μν2ξ1 +λν1ξ2) 0

h2(λν2ξ1 +μν1ξ2) h2(μν1ξ1 +(λ +2μ)ν2ξ2) 0
μν1 μν2 μ(ν1ξ1 +ν2ξ2)

⎞
⎠,

where ν = (ν1,ν2)
T is the unit outward normal to the boundary of the middle plane

of the plate.
We denote by Bω the class of functions defined in S− which satisfy the radiation

conditions formulated in [Co98] (see also [ThCo11]) as Rx→ ∞.
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Let R, S , and G be 3× 1 vector functions defined on the curve ∂S, and let
σ ∈C 1,α(∂S), α ∈ (0,1) be a symmetric 3×3 matrix function. We state the exterior
boundary value problems (Dω−), (Nω−), and (Rω−) with Dirichlet, Neumann, and
Robin boundary data, respectively, as follows:

(Dω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω that satisfies (22.4) in S− and

u|∂S = R.

(Nω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω that satisfies (22.4) in S− and

Tu|∂S = S .

(Rω−) Find u ∈C2(S−)∩C1(S̄−)∩Bω that satisfies (22.4) in S− and

(Tu+σu)|∂S = G .

A function u is said to be regular in S− if u ∈C2(S−)∩C1(S̄−).

Theorem 1. (i) Each of (Dω−) and (Nω−) has at most one regular solution.
(ii) If Im(σ) is positive semidefinite, then (Rω−) has at most one regular solution.

The first assertion is proved in [Co98] and the second one in [ThCo11].

22.2 Fundamental Solutions

We make certain suitable modifications to the matrix of fundamental solutions
constructed in [ThCo09b] for the operator Aω(∂x).

The wavenumbers k2
1, k2

2, and k2
3, where

k2
1 + k2

2 =
λ +3μ
λ +2μ

k2, k2
1k2

2 =
μ

λ +2μ
k2k2

3 (22.5)

and k2 and k2
3 are defined by (22.2), arise naturally in system (22.4) (see [Co98] and

[ThCo09b]). In [ThCo09b] it is shown that all the wavenumbers are real, positive,
and distinct if conditions (22.3) hold.

We introduce the symbols εm and E(σ)
m (θ) by

εm =

{
1, m = 0,

2, m≥ 1,
E(σ)

m (θ) =

{
cosmθ , σ = 1,

sinmθ , σ = 2,

where m is a nonnegative integer. Let

φ (σ)
m (x) =

√
εm Hm(k1Rx)E

(σ)
m (θx), φ̂ (σ)

m (x) =
√

εm Jm(k1Rx)E
(σ)
m (θx),
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υ(σ)
m (x) =

√
εm Hm(k2Rx)E

(σ)
m (θx), υ̂(σ)

m (x) =
√

εm Jm(k2Rx)E
(σ)
m (θx),

ψ(σ)
m (x) =

√
εm Hm(k3Rx)E

(σ)
m (θx), ψ̂(σ)

m (x) =
√

εm Jm(k3Rx)E
(σ)
m (θx),

where θx and θy are the polar angles of x and y, respectively, Hm is the Hankel
function of the first kind and order m, and Jm is the Bessel function of the first kind
and order m. We also write

α2
1 =

k2
2−μ ′k2

3

k2
2− k2

1

, α2
2 =

k2
1−μ ′k2

3

k2
1− k2

2

,

where μ ′ = μ/(λ + 2μ). These constants are also strictly positive if (22.3) holds,
provided that k2

1 is the larger root of (22.5).
The radiating wavefunctions are [ThCo09b]

Φ (σ)
m (x) =

(
α1

∂
∂x1

φ (σ)
m (x), α1

∂
∂x2

φ (σ)
m (x),−hk3α2φ (σ)

m (x)

)T

, (22.6)

ϒ (σ)
m (x) =

(
α2

∂
∂x1

υ(σ)
m (x), α2

∂
∂x2

υ(σ)
m (x), hk3α1υ(σ)

m (x)

)T

, (22.7)

Ψ (σ)
m (x) =

(
∂

∂x2
ψ(σ)

m (x),− ∂
∂x1

ψ(σ)
m (x), 0

)T

. (22.8)

The corresponding regular wavefunctions Φ̂ (σ)
m , ϒ̂ (σ)

m , and Ψ̂ (σ)
m are defined in the

same way, with φ (σ)
m , υ(σ)

m , and ψ(σ)
m replaced by φ̂ (σ)

m , υ̂(σ)
m , and ψ̂(σ)

m , respectively.
Let Dω(x,y) be the matrix of fundamental solutions for Aω(∂x) constructed in

[ThCo09b], where it was shown that, for Rx < Ry,

Dω(x,y) =
i

4h2μk2
3

∞

∑
m=0

2

∑
σ=1

{
Φ̂ (σ)

m (x)
[
Φ (σ)

m (y)
]T

+ϒ̂ (σ)
m (x)

[
ϒ (σ)

m (y)
]T

+Ψ̂ (σ)
m (x)

[
Ψ (σ)

m (y)
]T}

. (22.9)

This decomposition in terms of wavefunctions is used below to modify the matrix
Dω(x,y).

22.3 Modified Fundamental Solutions

Let D be the annular region in R
2 bounded externally and internally by simple,

closed curves ∂S1 and ∂S2, respectively, and let K be a 3×3 matrix whose elements
are such that
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Ki j = K̄ ji for i �= j (22.10)

and either

Im(K11), Im(K22), Im(K33)> 0 (22.11)

or

Im(K11), Im(K22), Im(K33)< 0. (22.12)

The following assertion, proved in [ThCo12], is the main ingredient that informs
our choice of modified matrix of fundamental solutions.

Theorem 2. If u is an analytic solution of (22.4) in D ∪∂S2 such that

u = 0 or Tu = 0 on ∂S1, Tu+Ku = 0 on ∂S2,

where K is such that (22.10) and either (22.11) or (22.12) are satisfied, then u = 0
in D .

We denote by ∂ϖ(a) the circle centered at the origin whose radius a is chosen
so that ∂ϖ(a) lies entirely within S+, and by S−a the infinite region exterior to this
circle. The modified matrix of fundamental solutions Dω

M(x,y) that we envisage is
of the form

Dω
M(x,y) = Dω(x,y)+Mω(x,y), (22.13)

where the columns of Mω(x,y) are regular solutions of (22.4) in S−a ∪ ∂ϖ(a) with
respect to x and satisfy the radiation conditions as Rx→ ∞. We also require that

T (∂x)D
ω
M(x,y)+KDω

M(x,y) = 0, x ∈ ∂ϖ(a), (22.14)

where

K =

⎛
⎝h2μκ 0 0

0 h2μκ 0
0 0 μκ

⎞
⎠ , (22.15)

with

κ = |κ |eiδ , 0 < δ < π. (22.16)

Obviously, this choice of K satisfies the conditions in Theorem 2.
Using arguments similar to those employed in [ThCo11] in connection with the

symmetry of the Green’s tensor for the interior Robin problem, it can be shown that

Dω
M(x,y) = [Dω

M(y,x)]T . (22.17)
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We assume that Mω(x,y) is of the form

Mω(x,y) =
i

4h2μk2
3

∞

∑
m=0

2

∑
σ=1

{
Φ (σ)

m (x)
[
A(σ)

m (y)
]T

+ϒ (σ)
m (x)

[
B(σ)

m (y)
]T

+Ψ (σ)
m (x)

[
C(σ)

m (y)
]T}

, (22.18)

where A(σ)
m , B(σ)

m , and C(σ)
m are 3× 1 vector functions to be determined via (22.13)

and (22.14). It is easily verified that the columns of Mω(x,y) satisfy (22.4) in R
2 \

{0} and the radiation conditions as Rx→ ∞.
For simplicity, from now on we write (R,θ) instead of (Rx,θx). Us-

ing (22.9), (22.13), and (22.18), we see that (22.14) is satisfied if

2

∑
σ=1

{[
T Φ (σ)

m +KΦ (σ)
m
]∣∣

R=a

[
A(σ)

m (y)
]T

+
[
Tϒ (σ)

m +Kϒ (σ)
m
]∣∣

R=a

[
B(σ)

m (y)
]T

+
[
TΨ (σ)

m +KΨ (σ)
m
]∣∣

R=a

[
C(σ)

m (y)
]T}

=−
2

∑
σ=1

{[
T Φ̂ (σ)

m +KΦ̂ (σ)
m
]∣∣

R=a

[
Φ (σ)

m (y)
]T

+
[
Tϒ̂ (σ)

m +Kϒ̂ (σ)
m
]∣∣

R=a

[
ϒ (σ)

m (y)
]T

+
[
TΨ̂ (σ)

m +KΨ̂ (σ)
m
]∣∣

R=a

[
Ψ (σ)

m (y)
]T}

for m = 0,1,2, . . . . This can be written as the 3×3 system of equations

2

∑
σ=1

U (σ)
m
(
A(σ)

m (y), B(σ)
m (y),C(σ)

m (y)
)T

=−
2

∑
σ=1

Û (σ)
m
(
Φ (σ)

m (y),ϒ (σ)
m (y),Ψ (σ)

m (y)
)T
, (22.19)

where

U (σ)
m =

⎛
⎜⎜⎜⎝

[
T Φ (σ)

m +KΦ (σ)
m
]

1

[
Tϒ (σ)

m +Kϒ (σ)
m
]

1

[
TΨ (σ)

m +KΨ (σ)
m
]

1[
T Φ (σ)

m +KΦ (σ)
m
]

2

[
Tϒ (σ)

m +Kϒ (σ)
m
]

2

[
TΨ (σ)

m +KΨ (σ)
m
]

2[
T Φ (σ)

m +KΦ (σ)
m
]

3

[
Tϒ (σ)

m +Kϒ (σ)
m
]

3

[
TΨ (σ)

m +KΨ (σ)
m
]

3

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
R=a

and Û (σ)
m is defined similarly with Φ (σ)

m , ϒ (σ)
m , and Ψ (σ)

m replaced by Φ̂ (σ)
m , ϒ̂ (σ)

m , and

Ψ̂ (σ)
m , respectively.

Let

am = α1
[−(λ/μ)k2

1a2Hm(k1a)+2k2
1a2H ′′m(k1a)+κk1a2H ′m(k1a)

]
,

bm = α2
[−(λ/μ)k2

2a2Hm(k2a)+2k2
2a2H ′′m(k2a)+κk2a2H ′m(k2a)

]
,
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cm =−2mk3aH ′m(k3a)−m(κa−2)Hm(k3a),

dm = α1
[
2mk1aH ′m(k1a)+m(κa−2)Hm(k1a)

]
,

em = α2
[
2mk2aH ′m(k2a)+m(κa−2)Hm(k2a)

]
,

fm =−k2
3a2H ′′m(k3a)− k3a(κ−a)H ′m(k3a)−m2Hm(k3a),

gm = (α1−hk3α2)k1aH ′m(k1a)−κhk3α2aHm(k1a),

hm = (α2 +hk3α1)k2aH ′m(k2a)+κhk3α1aHm(k2a),

im =−mHm(k3a),

where the “prime” symbol denotes differentiation with respect to the argument. The
constants âm, b̂m, . . . , ı̂m are defined analogously, with Jm in place of Hm.

After a lengthy calculation, from (22.6) to (22.8) we conclude that system (22.19)
is equivalent to

Rm(θ)Pm(A
(1)
m , B(1)

m ,−C(2)
m )T +Sm(θ)Pm(A

(2)
m , B(2)

m ,C(1)
m )T

=−Rm(θ)P̂m(Φ
(1)
m ,ϒ (1)

m ,−Ψ (2)
m )T−Sm(θ)P̂m(Φ

(2)
m ,ϒ (2)

m ,Ψ (1)
m )T,

where

Pm =

⎛
⎝am bm cm

dm em fm

gm hm im

⎞
⎠ ,

P̂m =

⎛
⎝âm b̂m ĉm

d̂m êm f̂m

ĝm ĥm ı̂m

⎞
⎠ ,

and

Rm(θ) =
√

εm h2μ
a2

⎛
⎝cosθ cos(mθ) sinθ sin(mθ) 0

sinθ cos(mθ) −cosθ sin(mθ) 0
0 0 (a/h2)cos(mθ)

⎞
⎠ ,

Sm(θ) =
√

εm h2μ
a2

⎛
⎝cosθ sin(mθ) −sinθ cos(mθ) 0

sinθ sin(mθ) cosθ cos(mθ) 0
0 0 (a/h2)sin(mθ)

⎞
⎠ .

By the orthogonality of the trigonometric functions, it suffices to choose the vectors

A(σ)
m , B(σ)

m , and C(σ)
m so that
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(
A(σ)

m , B(σ)
m , (−1)σC(3−σ)

m
)T

=−P−1
m P̂m

(
Φ (σ)

m ,ϒ (σ)
m , (−1)σΨ (3−σ)

m
)T

(22.20)

for σ = 1,2 and m = 0,1,2, . . . . Thus, to construct the modified matrix Dω
M(x,y) we

need to show that Pm is invertible.
We recall some orthogonality-type relations established in [ThCo09b]. If ∂C is

any simple, closed curve containing the origin in its interior, then for m≥ 1,

∫

∂C

{[
χ̄(σ j)

m
]T

T χ(νk)
n − [χ(νk)

n
]T

T χ̄(σ j)
m
}

ds = 8ih2μk2
3δmnδσν δ jk, (22.21)

where

χ(σ1)
m (x) = Φ (σ)

m (x), χ(σ2)
m (x) =ϒ (σ)

m (x), χ(σ3)
m (x) =Ψ (σ)

m (x).

Equality (22.21) also holds for m = 0, σ = 1.

Theorem 3. Pm is invertible for all m≥ 0.

Proof. First, we deal with the case m≥ 1. Consider the system of equations

[
T Φ (1)

m +KΦ (1)
m
]∣∣

R=az1 +
[
Tϒ (1)

m +Kϒ (1)
m
]∣∣

R=az2

+
[
TΨ (2)

m +KΨ (2)
m
]∣∣

R=az3 = 0. (22.22)

This can be rewritten as

TU +KU = 0 on R = a, (22.23)

where

U = Φ (1)
m z1 +ϒ (1)

m z2 +Ψ (2)
m z3. (22.24)

By (22.23), (22.15), and (22.16), on R = a we have

ŪTTU−UTTŪ =−2iμ |κ |(sinδ )
(

h2 |U1|2 +h2 |U2|2 + |U3|2
)

;

so, taking (22.24) into account, we find that

[
Φ̄ (1)

m z̄1 +ϒ̄ (1)
m z̄2 +Ψ̄ (2)

m z̄3

]T [
T Φ (1)

m z1 +Tϒ (1)
m z2 +TΨ (2)

m z3

]

−
[
Φ (1)

m z1 +ϒ (1)
m z2 +Ψ (2)

m z3

]T [
T Φ̄ (1)

m z̄1 +Tϒ̄ (1)
m z̄2 +TΨ̄ (2)

m z̄3

]

=−2iμ |κ |(sinδ )
(

h2 |U1|2 +h2 |U2|2 + |U3|2
)
. (22.25)
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Integrating (22.25) around ∂ϖ(a) and using (22.21), we arrive at

8ih2μk2
3

(
|z1|2 + |z2|2 + |z3|2

)

=−2iμ |κ |(sinδ )
∫

∂ϖ(a)

(
h2 |U1|2 +h2 |U2|2 + |U3|2

)
ds,

which, since 0 < δ < π , implies that z1 = z2 = z3 = 0. We have shown that
system (22.22) has only the zero solution, or, equivalently, that the system

ΘmZ = 0,

where

Θm =

⎛
⎜⎜⎝
[
T Φ (1)

m +KΦ (1)
m
]

1

[
Tϒ (1)

m +Kϒ (1)
m
]

1

[
TΨ (2)

m +KΨ (2)
m
]

1[
T Φ (1)

m +KΦ (1)
m
]

2

[
Tϒ (1)

m +Kϒ (1)
m
]

2

[
TΨ (2)

m +KΨ (2)
m
]

2[
T Φ (1)

m +KΦ (1)
m
]

3

[
Tϒ (1)

m +Kϒ (1)
m
]

3

[
TΨ (2)

m +KΨ (2)
m
]

3

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
R=a

and Z = (z1,z2,z3)
T, has no nonzero solutions; consequently,

0 �= detΘm

=

(√
2h2μ
a2

)3( a
h2

)∣∣∣∣∣∣
cosθ cos(mθ) sinθ sin(mθ) 0
sinθ cos(mθ) −cosθ sin(mθ) 0

0 0 cos(mθ)

∣∣∣∣∣∣

∣∣∣∣∣∣
am bm −cm

dm em − fm

gm hm −im

∣∣∣∣∣∣
= 2
√

2
h4μ3

a5 cos2(mθ)sin(mθ)(detPm).

Since m �= 0, we deduce that detPm �= 0, so Pm is invertible for m≥ 1.
When m = 0, the matrix reduces to

P0 =

⎛
⎝a0 b0 0

0 0 f0

g0 h0 0

⎞
⎠ ,

from which we see that detP0 =− f0 (a0h0−b0g0). Consider the system

[
T Φ (1)

0 +KΦ (1)
0

]∣∣
R=az1 +

[
Tϒ (1)

0 +Kϒ (1)
0

]∣∣
R=az2 = 0. (22.26)

This is not an overdetermined system since the second row is equal to the first row
multiplied by tanθ . Consequently, (22.26) is equivalent to
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([
T Φ (1)

0 +KΦ (1)
0

]
1

∣∣
R=a

[
Tϒ (1)

0 +Kϒ (1)
0

]
1

∣∣
R=a[

T Φ (1)
0 +KΦ (1)

0

]
3

∣∣
R=a

[
Tϒ (1)

0 +Kϒ (1)
0

]
3

∣∣
R=a

)(
z1

z2

)
= 0. (22.27)

System (22.26) can be written as

TU +KU = 0 on R = a,

where

U = Φ (1)
0 z1 +ϒ (1)

0 z2.

Following the argument for the case m≥ 1, we arrive at

8ih2μk2
3

(
|z1|2 + |z2|2

)
=−2iμ |κ |(sinδ )

∫

∂ϖ(a)

(
h2 |U1|2 +h2 |U2|2 + |U3|2

)
ds,

from which we conclude that z1 = z2 = 0. Hence, (22.27) has only the zero
solution, so

0 �=
(

h2μ
a2

)2( a
h2

)∣∣∣∣cosθ 0
0 1

∣∣∣∣
∣∣∣∣a0 b0

g0 h0

∣∣∣∣= h2μ2

a3 cosθ (a0h0−b0g0) ,

which implies that

a0h0−b0g0 �= 0.

It remains to show that f0 �= 0. First, we note that

H ′0(k3a) =−H1(k3a),

H ′′0 (k3a) =−H ′1(k3a) =−H0(k3a)+(1/(k3a))H1(k3a)

=−H0(k3a)− (1/(k3a))H ′0(k3a),

which means that

f0 =−k2
3a2 [−H0(k3a)− (1/(k3a))H ′0(k3a)

]− k3a(κ−a)H ′0(k3a)

= k2
3a2H0(k3a)− k3a(κ−a−1)H ′0(k3a).

Suppose that f0 = 0; that is,

k3aH0(k3a) = (κ−a−1)H ′0(k3a). (22.28)
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Then we also have f̄0 = 0, which implies that

k3aH̄0(k3a) = (κ̄−a−1)H̄ ′0(k3a). (22.29)

By (22.28), (22.29), and (22.16),

k3a
[
H ′0(k3a)H̄0(k3a)− H̄ ′0(k3a)H0(k3a)

]
= (κ̄−a−1)

∣∣H ′0(k3a)
∣∣2− (κ−a−1)

∣∣H ′0(k3a)
∣∣2

=−2i|κ |(sinδ )
∣∣H ′0(k3a)

∣∣2 .
Also, as shown in [Ur73],

H ′0(k3a)H̄0(k3a)− H̄ ′0(k3a)H0(k3a) =
4i

πk3a
,

so

4i
π

=−2i|κ |(sinδ )
∣∣H ′0(k3a)

∣∣2 ;

that is,

2+π|κ |(sinδ )
∣∣H ′0(k3a)

∣∣2 = 0.

But this is impossible since, given that 0 < δ < π , the left-hand side is strictly
positive. Therefore, f0 �= 0, which implies that detP0 �= 0 and, hence, that P0 is
invertible.

Thus, Mω(x,y) can be constructed in the form (22.18) by means of (22.20). As
in [Be90], it can be shown that the infinite series defining Mω(x,y) is absolutely
convergent in the region RxRy > a2. Since y ∈ ∂S wherever we intend to apply this
modification, we have Ry > a, which also means that Rx ≥ a, so the region of interest
to us is a subset of RxRy > a2.

22.4 Modified Integral Equations

Consider the modified single-layer and double-layer plate potentials

(V ω
M ϕ)(x) =

∫

∂S

Dω
M(x,y)ϕ(y)ds(y),

(W ω
M ϕ)(x) =

∫

∂S

[T (∂y)D
ω
M(y,x)]T ϕ(y)ds(y),
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where Dω
M(x,y) is as defined in the preceding section. Since Mω(x,y) is regular in

S−a , these potentials behave in the same way as the corresponding “unmodified”
potentials when x ∈ ∂S.

Theorem 4. (i) V ω
M ϕ,W ω

M ϕ ∈Bω .
(ii) If ϕ ∈ C(∂S), then V ω

M ϕ and W ω
M ϕ are analytic and satisfy system (22.4) in

R
2 \ (∂S∪{0}).

(iii) If ϕ ∈ C 0,α(∂S), α ∈ (0,1), then the direct values V ω
M0ϕ and W ω

M0ϕ of V ω
M ϕ

and W ω
M ϕ on ∂S exist (the latter as principal value), the functions

V ω+
M (ϕ) = (V ω

M ϕ)|S̄+ , V ω−
M (ϕ) = (V ω

M ϕ)|S̄−

are of class C∞(S+)∩C1,α(S̄+) and C∞(S−)∩C1,α(S̄−), respectively, and

TV ω+
M (ϕ) = (W ω∗

M0 +
1
2 I)ϕ, TV ω−

M (ϕ) = (W ω∗
M0 − 1

2 I)ϕ

on ∂S, where W ω∗
M0 is the adjoint of W ω

M0 and I is the identity operator.
(iv) If ϕ ∈C1,α(∂S), α ∈ (0,1), then the functions

W ω+
M (ϕ) =

⎧⎨
⎩
(W ω

M ϕ)|S+ in S+,

(W ω
M0− 1

2 I)ϕ on ∂S,
W ω−

M (ϕ) =

⎧⎨
⎩
(W ω

M ϕ)|S− in S−,

(W ω
M0 +

1
2 I)ϕ on ∂S

are of class C∞(S+)∩C1,α(S̄+) and C∞(S−)∩C1,α(S̄−), respectively, and we
have TW ω+

M (ϕ) = TW ω−
M (ϕ) on ∂S.

These properties are typical of potentials (see, for example, [Co90]). In the proof
of (ii) we take into account the fact that Mω(x,y) is singular at the origin. Also,
symmetry (22.17) ensures that the modified double-layer potential satisfies (22.4).

Using Theorem 2 and the modified potentials, we are able to formulate boundary
integral equations of the second kind representing (Dω−), (Nω−), and (Rω−), each
of which is uniquely solvable for every value of the oscillation frequency ω .

Theorem 5. If R ∈ C 1,α(∂S), α ∈ (0,1), then the unique solution of (Dω−) is
given by

u = W ω−
M (ϕ), (22.30)

where ϕ ∈C 1,α(∂S) is the unique solution of the integral equation

(
W ω

M0 +
1
2 I
)

ϕ = R. (22.31)

Proof. Seeking the solution of (Dω−) in the form (22.30) leads to the integral
equation (22.31) for the unknown density ϕ . Consider the homogeneous adjoint
equation



22 Nonstandard Integral Equations for Plate Oscillations 323

(
W ω∗

M0 +
1
2 I
)

ψ = 0, (22.32)

and let v1 = V ω+
M (ψ), where ψ satisfies (22.32). Then T v1|∂S = 0; also, by (22.14),

we have T v1 + Kv1 = 0 on ∂ϖ(a), so, by Theorem 2, v1 = 0 in S−a ∩ S+. By
continuity, v1|∂S = V ω

M0ψ = 0, which implies that v2 = V ω−
M (ψ) is a solution of

the homogeneous exterior Dirichlet problem. By Theorem 1(i), v2 = 0 in S̄−, so

T v2|∂S = TV ω−
M (ψ)|∂S =

(
W ω∗

M0 − 1
2 I
)

ψ = 0. (22.33)

Combining (22.32) and (22.33) yields ψ = 0. Therefore, according to the Fredholm
alternative (the applicability of which was established in [Co90]), equation (22.31)
has a unique solution ϕ ∈C 1,α(∂S).

Theorem 6. If S ∈ C 0,α(∂S), α ∈ (0,1), then the unique solution of (Nω−) is
given by

u = V ω−
M (ϕ), (22.34)

where ϕ ∈C 0,α(∂S) is the unique solution of the integral equation

(
W ω∗

M0 − 1
2 I
)

ϕ = S . (22.35)

Proof. If the solution of (Nω−) is sought in the form (22.34), then we arrive at the
integral equation (22.35). As above, we consider the homogeneous adjoint equation

(
W ω

M0− 1
2 I
)

ψ = 0. (22.36)

We define v1 = W ω+
M (ψ), where ψ is a solution of (22.36). Then v1|∂S = 0, so,

by (22.14), (22.15), and Theorem 2, v1 = 0 in S−a ∩S+; consequently,

T v1|∂S = TW ω+
M (ψ)|∂S = TW ω−

M (ψ)|∂S = 0.

Hence, v2 =W ω−
M (ψ) is a solution of the homogeneous exterior Neumann problem,

and Theorem 1(i) implies that v2 = 0 in S̄−. In particular,

v2|∂S =
(
W ω

M0 +
1
2 I
)

ψ = 0, (22.37)

so from (22.36) and (22.37) it follows that ψ = 0. As in the proof of Theorem 5, the
assertion now follows from the Fredholm alternative.

Theorem 7. If Im(σ) is positive semidefinite and G ∈ C 0,α(∂S), α ∈ (0,1), then
the unique regular solution of (Rω−) is given by

u = V ω−
M (ϕ), (22.38)
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where ϕ ∈C 0,α(∂S) is the unique solution of

(W ω∗
M0 +σV ω

M0− 1
2 I)ϕ = G . (22.39)

Proof. Assuming that the solution of (Rω−) is of the form (22.38) leads to the
integral equation (22.39) for the unknown density. Once again, we consider the
homogeneous adjoint equation

(W ω
M0 +V ω

M0σ − 1
2 I)ψ = 0 (22.40)

and introduce the function

v1 = W ω+
M (ψ)+V ω+

M (σψ),

where ψ is a solution of (22.40). Then v1|∂S = 0, so, by (22.14), (22.15), and
Theorem 2, v1 = 0 in S−a ∩S+; therefore,

T v1|∂S = Nω
M0ψ +(W ω∗

M0 +
1
2 I)(σψ) = 0. (22.41)

Consider the function

v2 = W ω−
M (ψ)+V ω−

M (σψ).

Taking (22.40) and (22.41) into account, we find that

T v2|∂S +σv2|∂S = Nω
M0ψ +(W ω∗

M0 − 1
2 I)(σψ)+σ

[
(W ω

M0 +
1
2 I)ψ +V ω

M0(σψ)
]

=−σψ +σψ = 0;

hence, v2 is a solution of the homogeneous exterior Robin problem. By Theo-
rem 1(ii), v2 = 0 in S̄−. In particular,

v2|∂S = (W ω
M0 +

1
2 I)ψ +V ω

M0(σψ) = 0,

which, combined with (22.40), yields ψ = 0. Thus, by the Fredholm alterna-
tive, (22.39) has a unique C0,α -solution.

22.5 Numerical Example

In this section, we illustrate the power and efficiency of the boundary integral
equation method by computing the solution of two interior Robin problems for a
material with scaled parameters
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λ = 2, μ = 3, h = 1, ρ =
1

300
, ω = 150,

and boundary conditions described by

G (x) = (10,10,10)T, σ(x) = 10E3,

where E3 is the identity 3×3 matrix. As shown in [ThCo10], the unique solution of
this type of problem is

u = V ω+(G −σϕ)−W ω+(ϕ),

where the density ϕ satisfies the boundary integral equation

(
W ω

0 +V ω
0 σ + 1

2 I
)
ϕ =V ω

0 G

and V ω
0 , W ω

0 , V ω+, and W ω+ are defined in [ThCo10].
All integrals (including those with weakly singular integrands or defined as

Cauchy principal values) have been computed with Mathematica’s internal numer-
ical integration schemes. The boundary basis functions (elements) are piecewise
cubic Hermite splines (cubic polynomials joined with C1 continuity). However, no
continuity has been provided at any of the domain corners. The computation makes
use of a total of 28 collocation points for the full boundary.

Figures 22.1–22.3 show the graphs of the functions ui when the domain is a half
circle.

Fig. 22.1 Graph of u1 for a half circle
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Fig. 22.2 Graph of u2 for a half circle

Fig. 22.3 Graph of u3 for a half circle

Fig. 22.4 Graph of u1 for a wing-shaped domain
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Fig. 22.5 Graph of u2 for a wing-shaped domain

Fig. 22.6 Graph of u3 for a wing-shaped domain

Figures 22.4–22.6 show the graphs of the ui for a wing-shaped domain.
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Chapter 23
A Genuine Analytical Solution for the SN
Multi-group Neutron Equation in Planar
Geometry

F.K. Tomaschewski, C.F. Segatto, and M.T. Vilhena

23.1 Introduction

The analytical solution program for the time-dependent neutron transport equation
has undergone a significant evolution since the work of Case [CaZw67], where the
one-dimensional stationary problem in a slab was solved analytically. There exists
a relevant literature concerning the issue of solving the time-dependent neutron
equation in a planar geometry for an unbounded domain. We mention the works
of Ganapol and Filippone [GaFi82] , Ganapol and Pomraning [GaPo83], Ganapol
[Ga86], Ganapol and Matsumoto [GaMa86], and Abdul [Ab06]. On the other
hand, regarding the literature for bounded domains, we cite the works of Windhofer
and Pucker [WiPu85], Warsa and Prinja [WaPr98], Oliveira et al. [OlCaVi02],
[OlEtAl02], El-Wakil et al. [ElDeSa05], [ElDeSa06], Türeci et al. [TuGuTe07],
Türeci and Türeci [TuTu07], Hadad et al. [HaPiAy08], Coppa et al. [CoEtAl08],
[CoDuRa10], and Cargo and Samba [Ca10].

Recently the double Laplace transform SN method (DLTSN), which solves the SN

time-dependent transport equation for mono-energetic neutrons, either for bounded
and unbounded planar geometry domain [SeViGo08], [SeViGo10] was developed.
In the present work we extend this solution for this sort of problem, now assuming
a neutron multi-group model. To this end, we apply the double Laplace transform
techniques in the multi-group SN equation in the time and spatial variable. Next,
we solve the resulting algebraic equation for the transformed angular flux and
finally, we determine the solution by Laplace transform inversion of the transformed
solution by the LTSN technique in the spatial variable and by the Laplace transform
inversion theorem for the time variable. Due to the analytical character of the
solution, expressed in matrix integral form, we obtain the integration constants of the
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solution for the bounded domain, upon applying the slab boundary condition. For
the unbounded domain, we replace this condition by the boundedness of the angular
flux at infinity. At this point, we mention that this procedure leads to an analytical
representation of the solution in line matrix integral form, which is then evaluated
by the Stehfest numerical scheme [St70] and appears from a computational point
of view a suitable approach, to work out numerically this kind of problem with
a prescribed accuracy either for large or small times [SeViGo08], [SeViGo10].
Finally, we report on numerical results attained by this methodology specialized for
the two-group energy as well as asymptotic behavior of the scalar flux for large
times.

23.2 Time-Dependent Multi-group Transport Equation
for Heterogeneous Domain

In order to construct the general solution, let us initially consider the following
multi-group, time-dependent SN neutron transport problem in a multi-layered slab,
depicted in Fig. 23.1

1
vg

∂
∂ t

ψk
n,g(t,x)+μn

∂
∂x

ψk
n,g(t,x)+σ k

tgψk
n,g(t,x)

=
G

∑
g′=1

σ k
sg′g
2

N

∑
i=1

ψk
i,g′(t,x)wi +Sk

n,g(t,x), (23.1)

for g = 1 : G and k = 1 : K, with the initial condition

ψk
n,g(0,x) = φ k

n,g(x),

subject to the boundary conditions

ψ1
n,g(t,x0) = fn,g(t,x), t > 0, n = 1 : N/2,

ψK
n,g(t,xK) = gn,g(t,x), t > 0, n = (N/2+1) : N,

and the interface angular flux continuity condition

ψk
n,g(t,xk) = ψk+1

n,g (t,xk), k = 1 : K−1.

Here, in standard notation, ψk
n,g(t,x,) is the angular flux for the gth group in the

kth region at position x travelling in the discrete direction μn at time t; vg is the mean
velocity for the gth group; σ k

tg is the total differential cross section for the gth group
in the kth region and σ k

s,g′g is the differential scattering cross section (from group g′
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Fig. 23.1 The multilayered slab domain

into group g) in the kth region, μn and wn are, respectively, the roots and weights of
the Gaussian quadrature scheme.

Applying the Laplace transform technique in (23.1) in the time variable for a
generic slab (kth slab), we come out with

μn
d
dx

Ψ k
n,g(p,x)+σ pk

tg Ψ k
n,g(p,x) =

G

∑
g′=1

σ k
sg′g
2

N

∑
i=1

Ψ k
i,g′(p,x)wi +Qk

n,g(p,x), (23.2)

subject to the boundary conditions

Ψ 1
n,g(p,0) = Fn,g(p), Ψ K

n
2+1,g(p,LK) = Gn,g(p), n = 1 :

N
2
.

Here, Ψ k
n,g(p,x) denotes the Laplace transform in the time variable (t → s) of

ψk
n,g(t,x) with σ pk

tg , and Qk
n,g(p,x) is

σ pk
tg = σ k

tg +
p
vg
, Qk

n,g(p,x) =
1
vg

φ k
n,g(x)+ S̄k

n,g(p,x).

Casting (23.2) in matrix form, we arrive at

d
dx

Ψ k(p,x)−A(p)Ψ k(p,x) = Qk(p,x), (23.3)

where A(p) is a matrix of order NG with entries

ai+N(g−1), j+N(g′−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ k
sg′gw j

2μi
− σ pk

tg
μi

if i = j and g = g′,

σ k
sg′gw j

2μi
if i �= j and g �= g′,

for i = 1 : N and j = 1 : N and for g and g′ ranging from 1 to G. Also, the NG-
dimensional vectors Qk(p,x) and Ψ k(p,x) are defined by

Qk(p,x) =

[
Qk

1,g(p,x)

Qk
2,g(p,x)

]
= (

Qk
1

μ1
, . . . ,

Qk
1

μk
, . . . , . . . ,

Qk
G

μ1
, . . . ,

Qk
G

μN
)T
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and

Ψ k(p,x) =

[
Ψ k

1,g(p,x)

Ψ k
2,g(p,x)

]
=
(

Ψ k
1,1, . . . ,Ψ

k
N,1, . . . ,Ψ

k
1,G, . . . ,Ψ

k
N,G

)T
,

subject to the boundary conditions

Ψ 1
1,g(p,0) =

⎡
⎢⎣

F1,g
...

FN/2,g

⎤
⎥⎦ , Ψ K

2,g(p,LK) =

⎡
⎢⎣

GN/2+1,g
...

GN,g

⎤
⎥⎦.

Applying the LTSN method [GoSeVi00], [Se99] in (23.3), we find the solution

Ψ k(p,x) = X[Ek+(p,x−Lk)+Ek−(p,x)]ζ k +Hk(p,x), (23.4)

where Ek+(p,x) and Ek−(p,x) are the diagonal matrix functions

Ek+(p,x) =

{
edi(p)x if i = 1 : N/2, (di > 0),

0 if i = N/2+1 : N, (di < 0),

Ek−(p,x) =

{
0 if i = 1 : N/2, (di > 0),

edi(p)x if i = N/2+1 : N, (di < 0),

and di(p), i = 1 : N are the eigenvalues in decreasing order and X(p) is the
eigenvector matrix of A(p). Furthermore, the particular solution Hk(p,x) has the
form

Hk(p,x) = Hk+(p,x) + Hk−(p,x)

=
∫ x

Lk

Bk+(p,x−ξ )Q(p,ξ )dξ +
∫ x

0
Bk−(p,x−ξ )Q(p,ξ )dξ ,

where

Bk+(p,x) = XEk+(p,x)X−1,

Bk−(p,x) = XEk−(p,x)X−1.

To find the solution for a generic slab (kth), we perform the Laplace inversion in the
time coordinate of the solution given by (23.4), using the usual definition of Laplace
transform inversion; that is,

ψk
g(t,x) =

1
2πi

∫ c+i∞

c−i∞
Ψ k

g (p,x)eptd p. (23.5)
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To determine the solution for the multi-layered slab we evaluate the integration
constants by solving an algebraic linear system resulting from the application of
the boundary condition and continuity of angular flux at interface. To this point,
we emphasize that based on the good results achieved for the monoenergetic
problem for small and large times [SeViGo08], [SeViGo10], we evaluate the line
integral solution (23.5) and (23.4) by the Gaver–Stehfest numerical scheme [St70],
defined by

f (t) =
ln2

t

N

∑
i=1

Vi f

(
ln2

t

)
,

where N is an even number and Vi is of the form

Vi = (−1)N/2+i
Min(i,N/2)

∑
k=[ i+1

2 ]

kN/2(2k)!
(N/2− k)!(k)!(k−1)!(i− k)!(2k− i)!

.

To complete the analysis of a solution for bounded and unbounded domains, we
replace the far end boundary condition of the slab by the boundedness condition of
the angular flux at infinity.

lim
LK→∞

Ψ K
n,g(p,LK) = 0.

From this assumption, it turns out that the LTSN solution for unbounded domains
for 0≤ x≤ ∞, simplifies to

Ψ k
g (p,x) = XEk−(p,x)ζ k +Hk−(p,x).

Therefore, a similar procedure leads to the following solution for a generic slab (kth
slab) of the problem for an unbounded domain.

ψk
g(t,x) =

1
2πi

∫ c+i∞

c−i∞
Ψ k

g (p,x)ept d p. (23.6)

The angular flux ψk
g(t,x) is now given by (23.6). At this point, it is noteworthy that

the proposed methodology can be applied to other types of boundary conditions, for
instance, reflexive ones.

23.3 Numerical Results

To show the aptness of the proposed solution for the multi-group neutron transport
equation considering bounded as well as unbounded planar geometry domains, let
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Table 23.1 Nuclear parameters

1th region 2th region
L1 = 1.2549 cm L2 = 7.8663 cm

Group 1 Group 2 Group 1 Group 2

vg (cm/s) 107 2×105 107 2×105

σs1g (cm−1) 0.75 0.30 0.90 0.20
σs2g (cm−1) 0.10 0.99 0.05 0.08
σtg (cm−1) 0.90 1.50 1.00 1.20
Sg (cm−1) 1 0 0 0

Table 23.2 Asymptotic behavior of the fast and the thermal scalar flux for times ranging from
10−6 to 100 s

x = 0 x = 1.2549 x = 9.1212

t Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

10−6 4.294645 1.094369 3.210277 1.030643 6.760881(−1) 9.542958(−1)
10−5 5.159098 2.142995 3.962320 1.621230 4.228770(−1) 5.903738(−1)
10−4 5.489941 2.878981 4.229715 2.184906 2.267534(−1) 1.331771(−1)
10−3 5.490147 2.879403 4.229878 2.180869 2.263873(−1) 1.323116(−1)
10−2 5.490067 2.879351 4.229798 2.180824 2.263641(−1) 1.322894(−1)
10−1 5.490092 2.879373 4.229715 2.180049 2.267534(−1) 1.323030(−1)
1 5.490138 2.879414 4.229895 2.180883 2.263849(−1) 1.323030(−1)
10 5.490162 2.879411 4.229898 2.180880 2.263866(−1) 1.323017(−1)
100 5.490153 2.879413 4.229877 2.879414 2.263916(−1) 1.323047(−1)
LTS100 5.490138 2.879397 4.229869 2.180865 2.263851(−1) 1.323009(−1)

us consider a time-dependent, two-group, two-slab problem with constant source of
unitary intensity emitting fast neutrons in the first slab. In this problem we consider
reflexive boundary conditions either for x = 0 and x = L2.

Problem 1. To show the expected asymptotic behavior of the fast and thermal
scalar fluxes for large times, we consider the problem with the parameters displayed
in Table 23.1. The numerical results achieved for the fast and thermal fluxes are
displayed in Table 23.2.

Analyzing the results attained for the fast and thermal scalar flux depicted in
Table 23.2, we observe that the obtained solution gets closer to the stationary one,
when we increase the time from 10−6 to 102 s. We reinforce this argument by
noticing that the stationary solution was obtained by the exact LTSN method, which
converges to the exact solution when N goes to infinity. Therefore, the LTS100 results
adopted for comparison can be considered almost exact.

Problem 2. Now, we show the expected asymptotic behavior of the fast and
thermal scalar flux for the same problem with parameters displayed in Table 23.1, by
increasing the slab thickness from 40 to 70 cm. The results encountered are shown
in Table 23.3 for times of t = 10−2 and t = 50 s.
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Table 23.3 Asymptotic behavior of the fast and the thermal scalar flux obtained by increasing the
slab thickness L2 from 40 to 70 cm

t = 10−2 s
x = 0 x = 1.2549 x = 30.

L Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

40 5.486544 2.877067 4.225630 2.178195 9.892873(−6) 5.783470(−6)
50 5.486545 2.877067 4.225631 2.178195 9.892871(−6) 5.780980(−6)
60 5.486545 2.877067 4.225631 2.178195 9.890461(−6) 5.783470(−6)
70 5.486545 2.877067 4.225631 2.178195 9.891659(−6) 5.784084(−6)
TLTS100 5.486546 2.877070 4.225631 2.178195 9.889937(−6) 5.781673(−6)

t = 50 s
x = 0 x = 1.2549 x = 30.

L Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

50 5.486593 2.877099 4.225674 2.178222 9.893950(−6) 5.783779(−6)
60 5.486593 2.877099 4.225674 2.178222 9.893950(−6) 5.783781(−6)
70 5.486592 2.877099 4.225674 2.178222 9.893949(−6) 5.783782(−6)
TLTS100 5.487100 2.877097 4.225672 2.178222 9.893951(−6) 5.783782(−6)

By similar reasoning and confirmed by the results in Table 23.3, one approaches
the asymptotic behavior of the solutions for the fast and thermal scalar fluxes,
respectively, upon increasing the slab thickness from 40 to 70 cm. Therefore, from
the previous observed asymptotic behavior combined with the proved convergence
of the LTSN solution in the limit N goes to infinity, we present the results for the
fast and the thermal scalar flux for the discussed problem. In Tables 23.4 and 23.5,
we show the fast and thermal scalar fluxes, as a function of position and time, which
are also consistent with the asymptotic behaviors discussed for the fast and thermal
scalar fluxes.

23.4 Conclusion

From the presented analysis, we are confident that the novel contribution of this
work is the determination of an analytical solution for a multi-group time-dependent
SN neutron transport equation in planar geometry for bounded and unbounded
domains. To the best of our knowledge this type of solution is new in literature. It
is worth mentioning that this solution is unique for bounded and unbounded planar
geometry domains. Notice that we need to evaluate the integration constants for
the bounded domain problem only, applying the far end slab boundary condition,
whereas for the unbounded domain problem, we assume the boundedness of the
angular flux at infinity.

Further, we emphasize that increasing the number of energy groups for this kind
of problem does not impose restrictions on the generality of the discussed solution.
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Table 23.4 TLTS100 solution for the fast and the thermal scalar fluxes obtained for the slab

Fast group
t \ x
(s) (cm) 0. 0.62745 1.2549 3.877 6.4991 9.1212

10−6 4.294644 4.074190 3.210277 9.524878(−1) 6.909226(−1) 6.760880(−1)
2×10−6 4.705693 4.478853 3.598998 1.114940 6.393075(−1) 5.647808(−1)
5×10−6 4.964300 4.726437 3.815582 1.185832 6.103102(−1) 4.997250(−1)
10−5 5.159104 4.908164 3.962325 1.187851 5.496722(−1) 4.228770(−1)
2×10−5 5.352904 5.091379 4.115456 1.190888 4.739069(−1) 3.256572(−1)
5×10−5 5.478663 5.211895 4.220056 1.198422 4.096384(−1) 2.385719(−1)
10−4 5.489940 5.222791 4.229714 1.199245 4.014490(−1) 2.267533(−1)
5×10−4 5.490123 5.222961 4.229854 1.199193 4.011776(−1) 2.263863(−1)
10−3 5.490146 5.222984 4.229878 1.199199 4.011795(−1) 2.263872(−1)
10−2 5.490066 5.222903 4.229797 1.199139 4.011470(−1) 2.263641(−1)
10−1 5.490091 5.222936 4.229842 1.199194 4.011793(−1) 2.263887(−1)
1 5.490163 5.223001 4.229895 1.199198 4.011767(−1) 2.263848(−1)

Thermal group
t \ x
(s) (cm) 0. 0.62745 1.2549 3.877 6.4991 9.1212

10−6 1.094369 1.084537 1.030642 9.576160(−1) 9.543845(−1) 9.542957(−1)
2(−6) 1.247224 1.225301 1.107157 9.243359(−1) 9.062088(−1) 9.042936(−1)
5(−6) 1.664906 1.606986 1.335072 8.529935(−1) 7.797904(−1) 7.674408(−1)
10−5 2.142995 2.029739 1.621230 7.738424(−1) 6.191981(−1) 5.903739(−1)
2×10−5 2.588794 2.439552 1.938144 7.041024(−1) 4.233843(−1) 3.683176(−1)
5×10−5 2.856116 2.693800 2.159705 6.915387(−1) 2.554751(−1) 1.623655(−1)
10−4 2.878981 2.716038 2.180490 6.934071(−1) 2.347754(−1) 1.331771(−1)
5(−4) 2.879387 2.716431 2.180854 6.933627(−1) 2.341477(−1) 1.323032(−1)
10−3 2.879403 2.716448 2.180868 6.933665(−1) 2.341474(−1) 1.323020(−1)
10−2 2.879350 2.716398 2.180823 6.933345(−1) 2.341297(−1) 1.322893(−1)
10−1 2.879373 2.716420 2.180849 6.933633(−1) 2.341473(−1) 1.323029(−1)
1 2.879414 2.716460 2.180882 6.933677(−1) 2.341465(−1) 1.323009(−1)

In fact, the LTSN method has shown a good performance to work with SN neutron
transport problems in planar geometry with N as large as 1,500. Moreover, it is
possible to solve this type of problem in unbounded domains, for −∞ < x < ∞, by
the use of the Placzek lemma [CaHoPl53].

Finally, we emphasize that the character of the analytical representation of this
solution for the neutron SN transport equation is not restricted in the sense that
no approximation is made along its derivation and has proven convergence, which
guarantees that this solution converges to the exact one when N goes to infinity.
Thus we attained an exact solution to an approximate problem and focus our future
attention on solving, the multi-group SN neutron kinetic transport equation in planar
geometry.
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Chapter 24
Single-Phase Flow Instabilities: Effect of
Pressure Waves in a Pump–Pipe–Plenum–Choke
System

R.A.M. Vieira and M.G. Prado

24.1 Introduction

Stability is a very important topic in several sciences because it refers to real
observable conditions. In classical mechanics, if a system is described by a set of
differential equations, an equilibrium solution may be determined by setting all time
derivatives equal to zero. This equilibrium solution is also known as the steady-state
solution, fixed point, critical point, and equilibrium point, to name a few.

It is very important to distinguish between mathematical derivation and actual
physical existence of a steady-state solution. An equilibrium solution may be
obtained mathematically but physically may not exist or may never be achieved.
Usually, analytical criteria can be obtained to establish the stability around equilib-
rium solutions without the necessity of solving the set of differential equations.

Several steady-state codes are used to calculate “equilibrium” solutions for
different processes. This is a shortcut to obtain the “expected” steady-state solution,
since the dynamics of the system are neglected.

Taking, for instance, a one-dimensional (1D) problem

ẋ = f (x) , (24.1)

the steady-state solution (x̄) is obtained from the equation

f (x) = 0.
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One can say that around the equilibrium solution, the function x can be expressed
as the summation of the equilibrium solution plus a small disturbance δx(t),
therefore,

x = x̄+δx. (24.2)

Substitution of (24.2) into (24.1) yields

d (x̄+δx)
dt

= f (x̄+δx) . (24.3)

The right-hand side can be expanded using Taylor series

f (x̄+δx) = f (x̄)+ f ′ (x̄)δx+O
(
δx2) . (24.4)

Substituting (24.4) into (24.3), canceling out the terms that are zero at the equilib-
rium solution and neglecting the higher order terms yields to a linearized ordinary
differential equations (ODE) which represents the propagation of small disturbances
around the equilibrium solution. Integration of this equation leads to

δx = δx(0)e f ′(x̄)t , (24.5)

where δx(0) is the value of the initial infinitesimal disturbance. It is clear
from (24.5) that the disturbance will increase, resulting in an unstable equilibrium, if

f ′ (x̄)> 0.

For a two-dimensional (2D) homogeneous linear system, represented by the follow-
ing system of ODE

{
ẋ1 = a1 x1 +a2 x2,

ẋ2 = a3 x1 +a4 x2,
(24.6)

which can be written in matrix notation as

ẋ = Ax,

where

A =

[
a1 a2

a3 a4

]
,

the stability of the equilibrium solution (the origin for this particular case) is based
on the eigenvalues of A, which are provided by
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det(A−λ I) = 0,

where det is the determinant, λ are the eigenvalues, and I is the identity matrix.
Defining the trace (P) and the determinant (q) of the coefficient matrix A as

{
P = a1 +a4,

q = a1a4−a2a3,
(24.7)

the eigenvalues may be written as

λ =
P±
√

P2−4q
2

.

The equilibrium solution is asymptotically stable if, and only if, the eigenvalues
have negative real parts [JL06]. A very useful graph that helps in the understanding
of stability concepts is the phase portrait. This graph illustrates the relationship
between solutions x1 and x2 as time evolves for several different initial conditions.

Figure 24.1 shows a generic phase portrait, which represents a stable equilibrium.
Each path corresponds to a different initial condition and the arrows provide a visual
interpretation of the stability.

A useful tool that can be constructed using the definitions given in (24.7) is the
graph of P versus q. Figure 24.2 shows such graph which is divided into regions
according to the eigenvalues characteristics (real positive, real negative, null or
complex) and repeatability.

If an equilibrium solution attracts all nearby initial conditions, it is said to be
an attractor. If an equilibrium solution repels all nearby initial conditions, it is
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called a repeller. Equilibrium solutions located in the fourth quadrant of Fig. 24.2
are attractors.

The linear system given by (24.6) can be related to the nonlinear case

{
ẋ1 = f1 (x1,x2)

ẋ2 = f2 (x1,x2)
, (24.8)

where f1 and f2 are nonlinear functions. If small disturbances δxi (t) are applied to
the equilibrium solutions (x̄1, x̄2), that is,

xi (t) = x̄i +δxi (t)

i = 1,2
(24.9)

and then (24.9) is substituted in (24.8), the equation of how the propagation of
small disturbances around the equilibrium solution evolves appears. Proceeding
with Taylor expansions, neglecting second and high order terms, the final linearized
system is obtained. In terms of matrix notation, it is given by

ẋ = J|x̄x, (24.10)

where J is the Jacobian matrix. Similar to the linear case, the stability of the steady-
state solution would be given based on the eigenvalues of J, evaluated at each
equilibrium solution:
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J|x̄ =

⎡
⎢⎣a1 =

∂ f1

∂x1
a2 =

∂ f1

∂x2

a3 =
∂ f2

∂x1
a4 =

∂ f2

∂x2

⎤
⎥⎦
∣∣∣∣∣∣∣
x̄

.

It would be asymptotically stable if, and only if, the eigenvalues had negative
real parts. In other words, as (24.10) represents how disturbances are propagated (in
a “linearized” way), if they die-out—meaning they are attracted to the equilibrium
solution—the equilibrium solution of the original nonlinear system (24.8) also exists
and is stable.

For real systems, this linearization process usually leads to easy inequalities
that determine whether or not a solution is stable, which are based on steady-state
parameters. Because of nonlinearities, usually these criteria are only valid in a very
small vicinity of the equilibrium solution.

In addition, another mathematical entity called “limit cycle” exists in the phase
portrait of 2D nonlinear systems and is very important in determining if a steady
state solution exists and if it can be achieved. A limit cycle is an isolated closed
trajectory, meaning that its neighboring trajectories are not closed—they spiral
either towards (stable) or away (unstable) from the limit cycle. If one of the
variables of a limit cycle is plotted against time, a periodic waveform is obtained.
It only exists in nonlinear systems and cannot be determined through LLA. Usually
transient numerical simulation is the only way to confirm the presence or not of such
entity.

Figure 24.3 shows a very interesting situation that may occur in systems
described by (24.8). It represents a phase portrait containing a “locally” stable
equilibrium solution that is surrounded by two limit cycles. The inner one is unstable
while the outer, stable. The internal area of the unstable limit cycle represents the
“basin of attraction” of this equilibrium solution. The equilibrium solution will only
exist if the initial condition is placed inside its basin of attraction. In addition, the
magnitude of any perturbation needs to be small enough to maintain the system
inside this area. If these conditions are not satisfied, the limit cycle, which represents

Stable

Unstable

Stable

Fig. 24.3 Possible phase portrait in a 2D nonlinear system
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a cyclical behavior, will be the final state of the system. This example clearly shows
that criteria based on LLA may be useless.

3D and higher-order nonlinear systems also have a different entity named
“strange attractor.” It represents waveforms that do not have any periodicity and
remain bounded within a definite volume. This particular situation is usually
called chaos. Figure 24.4 shows a well-known strange attractor named Lorenz
attractor—the path never repeats itself and it remains bounded indefinitely
[St01].

Another very important aspect of chaotic systems, in fact a hallmark of chaos,
is the sensitive dependence on initial condition. In non-chaotic systems two very
close initial conditions are expected to evolve similarly in time. This is not what
happens in chaotic systems—at a certain time the two trajectories diverge from
each other and follow different courses of evolution. For practical purposes, this
property of chaotic systems implies something of a grave consequence. Errors in
specifying accurate initial conditions make future predictions inaccurate. Prediction
is impossible beyond a certain time frame. After a specific time, predictions are
unreliable.

Oscillatory behavior is also observed in fluid flow systems. Two phase flow
system instability is a well-known problem in nuclear industry [BoBeTo73],
[LaPo89]. It may cause flow oscillations which can induce boiling crises, disturb
control systems, or cause mechanical damage in nuclear equipment devices. Oil
wells also face production instabilities that usually lead to operational problems to
surface and subsurface equipment. Most importantly, they also cause production
losses [HuGo03].

LLA may also be applied to fluid flow systems to determine analytical stability
criteria. It is not trivial to derive such equations as the governing equations are partial
differential equations (PDE). To obtain easy practical criteria, several simplifying
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assumptions must be made. Most of them may end up reducing the system from
PDE to ODE, to allow the use of LLA based on the eigenvalues of the Jacobian
matrix. There exist other methods based on Laplace transformation and frequency
domain but the resulting criteria are somehow equivalent. It should be noted that the
number of criteria is related to the size of the Jacobian matrix.

The simplifying assumptions combined with the nonlinearities effects may
cause these criteria to fail in several cases, including some very simple systems
[Vi11]. The combination of steady-state simulators and LLA criteria may not be
a good choice in real case situations. Transient simulation seems to be the most
adequate method to determine if a fluid flow system will exhibit or not an unstable
behavior.

24.2 Single-Phase Flow Instabilities Criteria

24.2.1 Static Instability

For fluid flow problems it is useful to describe this “instability” with the concept
of nodal analysis or required pressure versus available pressure. The nodal analysis,
which is done considering steady state equations, consists of selecting a division
point (or node) in a flowing system. This division “creates” two sections: an inflow
section (or available pressure section) which represents the available pressure at the
node that this section can deliver for a certain mass flow rate and the outflow section
representing the required pressure to flow the same mass flow rate. Different values
of flow rates are simulated and the required and available pressures are plotted in a
graph as a function of the flow rate.

Figure 24.5 shows an example of a horizontal pumping system. The two tanks
(T1 and T2) have perfectly constant pressures P1 and P2, respectively. The tanks
are connected through a horizontal pipeline of length (ΔL), internal diameter (d)
and flow cross section area (Ap). The fluid is water, treated as incompressible and
therefore with a constant density (ρ). Assuming that the hypothetical nodal point
is located just after the pump discharge, the nodal analysis curves are shown in
Fig. 24.6. The equilibrium mass flow rate ( ¯̇m) is the one where the required pressure
is equal to the available pressure at the nodal point.

P1=cte

ΔL,d
T1 T2

P2=cte

Fig. 24.5 Horizontal pumping unit
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The available pressure and the required pressure are given, respectively, by

Pavail (ṁ) = P1 +ΔPP (ṁ) ,

Preq (ṁ) = P2 +ΔPF (ṁ) ,

where ΔPP (ṁ) is the pump increment pressure and ΔPF (ṁ) is the friction loss in the
pipe. At the steady-state condition the inflow and outflow pressures must be equal,
yielding

P1 +ΔPP ( ¯̇m) = P2 +ΔPF ( ¯̇m) . (24.11)

To determine whether the equilibrium solution is locally stable or not, one can apply
LLA. For this condition, the differential equation that governs this system may be
written as (assuming the pump to have no inertia) [DeGiRi81]:

P2−P1−ΔPP (ṁ)+ΔPF (ṁ) =−ΔL
AP

dṁ
dt

. (24.12)

Applying a perturbation ṁ = ¯̇m+ δ ṁ in (24.12), performing linearization of pump
and friction terms using Taylor series:

ΔPP ( ¯̇m+δ ṁ) = ΔPP ( ¯̇m)+
dΔPP (ṁ)

dṁ

∣∣∣∣
¯̇m
δ ṁ,

ΔPF ( ¯̇m+δ ṁ) = ΔPF ( ¯̇m)+
dΔPF (ṁ)

dṁ

∣∣∣∣
¯̇m
δ ṁ,

and using the relation giving by (24.11), we obtain the linearized differential
equation
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(
dΔPF (ṁ)

dṁ

∣∣∣∣
¯̇m
− dΔPP (ṁ)

dṁ

∣∣∣∣
¯̇m

)
δ ṁ =−ΔL

Ap

d (δ ṁ)

dt
. (24.13)

Integration of (24.13) leads to

δ ṁ = δ ṁ(0)eB,

where

B =− Ap

ΔL

(
dΔPF (ṁ)

dṁ

∣∣∣∣
¯̇m
− dΔPP (ṁ)

dṁ

∣∣∣∣
¯̇m

)
t. (24.14)

Equation 24.14 reveals that the disturbance will grow (resulting in a local unstable
equilibrium) if

dΔPP (ṁ)

dṁ

∣∣∣∣
¯̇m
>

dΔPF (ṁ)

dṁ

∣∣∣∣
¯̇m
.

As friction is the only parameter that affects the slope of the required pressure and
the pump curve is the one responsible for the slope of the available pressure, the
above instability criterion may be rewritten as

dPavail.

dṁ

∣∣∣∣
eq.

>
dPreq.

dṁ

∣∣∣∣
eq.
. (24.15)

This type of instability is named “static instability” because one may determine
if an equilibrium solution exists based only on the nodal analysis graph—(24.15) is
not even necessary. Take, for instance, the nodal analysis shown in Fig. 24.7.
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Fig. 24.8 Horizontal pumping unit with a plenum

Applying (24.15), we see that the lower equilibrium solution is unstable. One
may come up with this same conclusion without using the criterion. If a positive
disturbance is applied to the lower steady-state solution, as the available pressure is
higher than the required pressure, the system accelerates toward the higher flow rate
(which is not unstable). If a negative perturbation is applied to the same equilibrium
solution, the system dies out, as the required pressure is higher than the available.

On the other hand, statically speaking, the higher flow rate should be stable. It
has a self-control characteristic, meaning that the equilibrium is restored if small
perturbations are applied around this equilibrium solution.

24.2.2 Dynamic Instability

These types of instabilities cannot be determined based on the nodal analysis
graph. Didactically, they are usually classified into categories like pressure–drop
instabilities, density–waves, etc., but from a skeptical point of view, they are based
on the real part of the eigenvalues as previously described.

Figure 24.8 shows a modification in Fig. 24.5, where a plenum with pressurized
air is located at the outlet of pumping system [Gr81], [RoRu78]. The plenum acts
as a buffer tank. A choke is installed downstream of the plenum and the external
pressure downstream of the choke is Pe.

The mass flow rate at the pipe is ṁ1 while the one that leaves the plenum is ṁ2.
Assuming the liquid to be incompressible, the same equation for the system without
plenum (Fig. 24.5) still holds for the liquid flow inside the pipe. The global force
balance equation is

P2−P1−ΔPP (ṁ1)+ΔPF (ṁ1) =−ΔL
Ap

dṁ1

dt
, (24.16)

where P2 is the plenum pressure (hydrostatic and liquid and gas are neglected). The
choke at the outlet is assumed to have no inertia and modeled in [MuYoOkHu09]:

ṁ2 |ṁ2|=
(

C
πd2

c

4

)2

2ρl (P2−Pe) , (24.17)
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where C and dc are the choke flow coefficient and the choke diameter. The plenum
is considered as a passage tank without pressure losses. A mass balance applied to
the liquid phase in the plenum yields

ṁ1− ṁ2 =
dρlVl

dt
=−ρl

dVg

dt
. (24.18)

If the gas behavior is assumed to be isentropic, then

dVg =− Vg

kP2
dP2, (24.19)

Vg =V R
g

(
PR

g

P2

) 1
k

,

where V R
g and PR

g represent some reference state for the gas in the plenum and k is
the gas adiabatic index.

Combining (24.16)–(24.19), applying perturbations around the equilibrium solu-
tion, and linearizing the nonlinear terms, we find the following linearized matrix of
coefficients A, as described in [Vi11]:

A =

[
a1 a2

a3 a4

]
,

where

a1 =
Ap

ΔL

(
dΔPP (ṁ1)

dṁ1

∣∣∣∣
m̄
− dΔPF (ṁ1)

dṁ1

∣∣∣∣
m̄

)
,

a2 =− Ap

ΔL
,

a3 =
kP̄

k+1
k

2

ρlV R
g

(
PR

g

) 1
k

,

a4 =− kP̄
k+1

k
2

ρlV R
g

(
PR

g

) 1
k

(
dΔPC (ṁ2)

dṁ2

∣∣∣∣
m̄

)−1

.

Based on this matrix, we establish the instability criteria [Vi11]

dPavail.

dṁ

∣∣∣∣
eq.

>
dPreq.

dṁ

∣∣∣∣
eq.
, (24.20)
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dΔPP (ṁ1)

dṁ1

∣∣∣∣
m̄
>

dΔPF (ṁ1)

dṁ1

∣∣∣∣
m̄
+

ΔLkP̄
k+1

k
2

ApρLV R
g

(
PR

g

) 1
k

(
dΔPC (ṁ2)

dṁ2

∣∣∣∣
m̄

)−1

, (24.21)

where ΔPC (ṁ2) is the choke pressure drop.
As this system is two dimensional, two criteria are obtained. It should be noted

that the static instability criterion (24.20) appears once more. The second criterion
is given by (24.21). It is clear that the second instability criterion cannot be replaced
by an inspection in the nodal analysis graph. That is why it is named “dynamic
instability.” Being a 2D system, it may exhibit oscillatory behavior (limit cycles).

24.3 Single-Phase Flow Models

24.3.1 Incompressible Model

If one assumes water as incompressible (as it was considered to derive the instability
criteria), the following set of equations needs to be solved, which represents the
pump–plenum–choke dynamics (see Fig. 24.8):

P2−P1−ΔPP (ṁ1)+ΔPF (ṁ1) =−ΔL
Ap

dṁ1

dt
,

ṁ2 |ṁ2|=
(

C
πd2

c

4

)2

2ρl (P2−Pe) ,

ṁ1− ṁ2 = ρl
V R

g

(
PR

g

) 1
k

kP
k+1

k
2

dP2

dt
,

This system was solved using the second-order Runge–Kutta method. A generic
pump curve (for didactic purpose) was used in the simulations. The pump curve was
divided into four segments as shown in Fig. 24.9.

24.3.2 Compressible Model

Under isothermal conditions, the single phase conservation laws are reduced to mass
and momentum balance equations

∂ ρ
∂ t

+
∂ (ρ V )

∂ z
= 0, (24.22)
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∂ ρV
∂ t

+
∂ (ρ VV )

∂ z
+

∂P
∂ z

=−ρgsin(θ)−ϕw, (24.23)

where θ is the angle with the horizontal and ϕw the friction loss term, given by

ϕw =
1
2

f
ρ V |V |

d
,

where f is the Darcy–Weisbash friction factor. The relation between pressure and
density was assumed to be of the type

ρ = ρRec(P−PR).

The discretization of (24.22) and (24.23) was done using a fully implicit first-
order finite difference method on a staggered grid [Pa80] using pressure and fluxes
as variables. Pressure was defined at the cell center, while mass fluxes at the cell
faces [Vi11].

One of the advantages of implicit codes is their ability to use either large or small
time-steps. If it is desired to capture pressure waves, small time steps should be
used, like the ones calculated by the CFL criterion

Δ t ≤min
i

{
Δzi

|ai±Vi|
}
,

where a is the speed of sound in the liquid phase.
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24.4 Application and Discussion

24.4.1 Example 1: Phase Portrait, Incompressible Model

This example considers the incompressible model assuming that the pump behaves
as a fully opened valve for reverse flow. Figure 24.10 shows the nodal analysis (at
plenum position), which presents three equilibrium solutions.

The table below presents the summary of the local linearization analysis
(Table 24.1).

Figure 24.11 shows the transient simulation of a small disturbance applied to
solution 3 (or an initial condition very close to solution 3). As the disturbance is
close enough to the steady-state solution, the perturbation dies out and the system
returns to equilibrium.

Increasing the disturbance, the equilibrium solution is no longer capable of
attracting the system to equilibrium state number 3. The system tends to an
oscillatory behavior, and a limit cycle is obtained. Figure 24.12 shows this
situation.
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Fig. 24.10 Nodal analysis: example 1

Table 24.1 Local linearization analysis: example 1

Solution Flow Rate
(lb/s) Eigenvalues Stability

Stablel1,2 =-0.026 ± 0.183i

0.02288

0.05021

1

2

3

 -0.03027 

l1,2 =-0.022 ± 0.206i

l1 =1.362, l2 =–0.048

Stable

Unstable
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Fig. 24.12 Time plot: disturbance 2, example 1

Two locally stable equilibrium solutions and a stable limit cycle co-exist in this
system. Figure 24.13 shows the phase portrait for several different initial conditions.

It is easily seen that the only way to reach solution 3 is to set the initial condition
close to it. Solution 1 has a larger basin of attraction when compared to solution 3.
Several initial conditions will converge to the external stable limit.
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24.4.2 Example 2: Phase Portrait, Incompressible Model
with Check-Valve

In this example, a single modification is made to Example 1, by adding a check valve
at the pump. Unlike the last example, no reverse flow is allowed through the pump
now. Figure 24.14 shows the nodal analysis for this example. The table following
this figure presents the summary of the local linearization analysis (Table 24.2).

The resulting phase portrait is shown below. Equilibrium solution 1 has changed
to a stable node instead of a stable spiral (Fig. 24.15).
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Table 24.2 Local linearization analysis: example 2

Solution Eigenvalues Stability

Stable

Stable

Unstable

Flow Rate
(Ib/s)

1 0.0000

0.05021

0.022882

3

l1 =3.68, l2 =−45.19 

l1 =1.362, l2 =−0.048

l1,2 =−0.022 ± 0.206i
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Fig. 24.15 Phase portrait: example 2

The stable node (solution 1) attracts all initial conditions that are not sufficiently
close to equilibrium solution 3, which still has an unstable limit cycle surrounding it.
If one compares Examples 1 and 2, the only difference between them is the presence
of a check-valve, which avoids the appearance of the limit cycle.

It should be noted that a dynamic model for the check-valve could lead to
different results but this detailed analysis is beyond the scope of this work.

24.4.3 Example 3: Incompressible Versus Compressible Model

The objective of this example is to compare the two models previously described.
The nodal analysis graph considering the plenum as nodal section is shown in
Fig. 24.16.

Incompressible Model. The instability criterion developed for incompressible
liquid indicates that the equilibrium solution in Fig. 24.16 is an unstable spiral.

The transient solution is shown in Fig. 24.17. A limit cycle takes place (see
Fig. 24.18).
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Fig. 24.17 Transient solution: example 3, incompressible model

Compressible Model. Using this model, which assumes the liquid to have some
compressibility (c = 3 10−6 psi−1) slightly different results are obtained.

Figure 24.19 shows the result of the simulation using a time step (0.01 s) less
than the CFL criterion (in order to capture pressure-waves type propagation).

The transient solution seems to exhibit chaotic characteristics. This oscillation
has the contribution of acoustic instability since traveling pressure waves contribute
to destabilization of the system.

One diagnostic to infer whether the system is chaotic is the sensitivity to initial
condition. Figure 24.20 shows the results for two very close initial conditions for the
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Fig. 24.19 Transient solution: example 3, compressible model

first 40 s of simulation. Only one variable is compared (pressure at pump discharge)
and they are practically following the same path.

Figure 24.21 shows the divergence point around simulation time of 40 s. From
that time on, the paths are different.

If a larger time step is used (0.25 s) and as a consequence the pressure-waves
are missed, the result is similar to the incompressible model given in Fig. 24.17.
Figure 24.22 shows this condition. For such large time step, the pressure waves are
no longer captured. Under this situation, the chaotic behavior and tubing dynamics
disappear and, the dynamic is basically represented by the plenum.
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If an even larger time step is used (1 s) wrong results are obtained. Even the
plenum dynamic is lost and the unstable solution is reached as if it were stable.
Figure 24.23 shows this condition. This may be a pitfall of implicit codes. Some
software developers of implicit codes claim that the use of large time steps is one of
the big advantages of their codes. The use of large time steps, for some conditions,
may cause the physics to be lost, and wrong results may be obtained.

24.4.4 Example 4: Incompressible Versus Compressible Model

This example considers the same data as Example 3. The only difference is the use
of a larger choke opening, leading to a higher equilibrium flow rate.
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Incompressible Model. The analytical criteria establish that the equilibrium solu-
tion is stable (stable spiral). Transient simulation using the incompressible model
“confirms” the stability as shown in Fig. 24.24. No limit cycle is observed and the
only attractor is the equilibrium solution.
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Compressible Model. A different response is obtained using the compressible
model. The dynamics are revealed to be unstable and chaotic (see Fig. 24.25). This
example shows that simplifying assumptions to develop analytical models can lead
to a misrepresentation of reality leading to failure of the criteria.
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24.5 Conclusions

1. There are different attractors in multidimensional nonlinear systems, such as
equilibrium solutions, limit cycles, and strange attractors. LLA provides limited
information regarding a tiny piece of a big puzzle and depending on the initial
condition, the equilibrium solution may never be reached, even though it is stable.
Only numerical simulations can really determine whether or not a dynamic
system is stable.

2. The equations that govern fluid flow are in reality a system of PDEs. Several of
the analytical criteria were obtained by simplification of these PDEs into ODEs
in addition to other simplifying assumptions. The transient simulations showed
that these analytical criteria may fail in some particular situations.

3. A single-phase transient code was developed and several instability examples
were shown. Comparisons relating incompressible vs. compressible models were
also made.

4. Depending on the system being simulated, the selection of the correct time step
is very important. Large time steps may misrepresent reality, since the transient
solution under such circumstances is not able to capture all dynamics. Wrong
results such as stable conditions that should be unstable can be obtained.

24.6 Nomenclature

a Speed of sound
ai Constants in matrix A
A Area
A Coefficient matrix
c Isothermal compressibility
C Choke flow coefficient
d Diameter
D Dimension
f Darcy–Weisbash friction factor
f (x) Generic function of x
f ′ (x) First derivative of generic function of x
g Gravitational acceleration
I Identity matrix
J Jacobian matrix
k Gas adiabatic index
L Length
ṁ Mass flow rate
¯̇m Equilibrium mass flow rate
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P Pressure or trace of a 2 by 2 matrix
q 2 by 2 matrix determinant
Q Volumetric flow rate
t Time
V Velocity or volume
ẋi First derivative of xi

x Column vector of variables xi

ẋ First derivative of column vector x
x̄ Equilibrium solution
z Position

Greek Letters:

δ Disturbance
ϕw Friction loss gradient
λ Eigenvalues
θ Angle with horizontal
ρ Density

Subscripts:

avail. Available
c Choke
eq. Equilibrium
f Friction
g Gas
l Liquid
P Pump or pipe
req. Required

Superscripts:

R Reference
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Chapter 25
Two-Phase Flow Instabilities in Oil Wells: ESP
Oscillatory Behavior and Casing-Heading

R.A.M. Vieira and M.G. Prado

25.1 Introduction

If a system is described by a set of differential equations, an equilibrium solution
may be determined by setting all time derivatives equal to zero. This equilibrium
solution is also known as steady-state solution, fixed point, critical point, and
equilibrium point, to name a few.

Several commercial steady-state two-phase flow codes are used by petroleum
engineers to calculate the “equilibrium” flow rate for oil wells. This is a shortcut
to obtain the “expected” steady-state solution, since the dynamics of the system are
neglected. Steady-state simulators are widely used because they are cheaper and
easy to use when compared to sophisticated transient simulators.

It is very important to distinguish between mathematical calculation and actual
physical existence of a steady-state solution. A steady-state solution may be
mathematically determined but physically may not exist or may never be achieved.

Using as example a two-dimensional (2D) homogeneous linear system, repre-
sented by the system of ordinary differential equations (ODE)

{
ẋ1 = a1 x1 +a2 x2

ẋ2 = a3 x1 +a4 x2
(25.1)

which can be written in matrix notation as

ẋ = Ax,
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where

A =

[
a1 a2

a3 a4

]
.

The stability of the equilibrium solution (the origin for this particular case) is
based on the eigenvalues of A, which are provided by

det(A−λ I) = 0,

where det is the determinant, λ are the eigenvalues, and I is the identity matrix.
If one defines the trace (P) and the determinant (q) of the coefficient matrix A as

{
P = a1 +a4

q = a1 a4−a2 a3
,

the eigenvalues may be written as

λ =
P±
√

P2−4q
2

,

The steady-state solution is asymptotically stable if, and only if, the eigenvalues
have negative real parts [Lo06]. A graph called phase portrait is very useful to
help the understanding of stability. This graph illustrates the relationship between
solutions x1 and x2 as time evolves for different initial conditions.

Figure 25.1 shows a generic phase portrait, which represents a stable equilibrium
solution. Each path corresponds to a different initial condition and the arrows
provide a visual interpretation of the stability.
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Fig. 25.2 Equilibrium solutions stability: linear 2D problems

Figure 25.2, adapted from [Wi09], shows all possible phase portraits for 2D
linear systems. The axes are given by P and q. The fourth quadrant of Fig. 25.2
comprises 2D linear systems where the real part of the eigenvalues is negative
(negative P), representing asymptotically stable solutions.

A quick analysis of the graph reveals the presence of “neutrally stable” entities
named centers. Each different initial condition generates a different center which
is neither “attracted” nor “repelled” by the equilibrium solution. For all other
situations, the paths are attracted or repelled by the equilibrium solution following
lines or spirals.

The most simple and used procedure to check the stability of equilibrium
solutions in nonlinear systems is known as local linearization analysis (LLA). The
linear system given by (25.1) can be related to the nonlinear case

{
ẋ1 = f1 (x1,x2)

ẋ2 = f2 (x1,x2)
, (25.2)

where f1 and f2 are nonlinear functions. If small disturbances δxi (t) are applied to
the equilibrium solutions (x̄1, x̄2):

xi (t) = x̄i +δxi (t) , i = 1,2, (25.3)
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Fig. 25.3 Possible phase portrait of a 2D nonlinear system

and then (25.3) is substituted into (25.2), the equation of how the propagation of
small disturbances around the equilibrium solution evolves appears. Proceeding
with Taylor expansions, neglecting second and high order terms, the final linearized
system is obtained. In terms of matrix notation, it is given by

ẋ = J|x̄ x, (25.4)

where J is the Jacobian matrix. Similar to the linear case, the stability of the steady-
state solution would be given based on the eigenvalues of J, evaluated at each
equilibrium solution.

It would be asymptotically stable if, and only if, the eigenvalues had negative
real parts. In other words, as (25.4) represents how disturbances are propagated (in
a “linearized” way), if they die-out—meaning they are attracted to the equilibrium
solution—the equilibrium solution of the original nonlinear system 25.2 does exist
and is also stable.

For real systems, this linearization process usually leads to easy inequalities
that determine whether or not a solution is stable, which are based on steady-state
parameters. Because of nonlinearities, usually these criteria are only valid in a very
small vicinity of the equilibrium solution. In addition, another mathematical entity
called “limit cycle” exists in the phase portrait of 2D nonlinear systems and is very
important in determining if a steady state solution exists and if it can be achieved.

A limit cycle is an isolated closed trajectory, meaning that its neighboring
trajectories are not closed—they spiral either towards (stable) or away (unstable)
from the limit cycle. If one of the variables of a limit cycle is plotted against time,
a periodic waveform is obtained. It only exists in nonlinear systems and cannot be
determined through LLA. Transient numerical simulation is usually the best way to
confirm the presence or not of such entity.

Figure 25.3 shows a very interesting situation that may occur in systems
described by (25.2). It represents a phase portrait containing a “locally” stable
equilibrium solution that is surrounded by two limit cycles. The inner one is unstable
while the outer, stable. The internal area of the unstable limit cycle represents
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the “basin of attraction” of this equilibrium solution. The equilibrium solution will
only exist if the initial condition is placed inside its basin of attraction. In addition,
the magnitude of any perturbation needs to be small enough to maintain the system
inside this area. If these conditions are not satisfied, the limit cycle, which represents
a cyclical behavior, will be the final state of the system. This example clearly shows
that criteria based on LLA may be useless.

3D and higher-order nonlinear systems also have a different entity named
“strange attractor.” It represents waveforms that do not have any periodicity and
remain bounded within a definite volume. This particular situation is usually called
chaos. Figure 25.4 shows a well-known strange attractor named Lorenz attractor—
the path never repeats itself and it remains bounded indefinitely [St01].

Oscillatory behavior is also observed in fluid flow systems. Two phase flow
system instability is a well-known problem in the nuclear industry [BoBeTo73],
[LaPo89]. It may cause flow oscillations which can induce boiling crises, disturb
control systems, or cause mechanical damage in nuclear equipment devices. Oil
wells also face production instabilities that usually lead to operational problems to
surface and subsurface equipment. Most importantly, they also cause production
losses [HuGo03].

LLA may, in addition, be applied to fluid flow systems to determine analytical
stability criteria. It is not trivial to derive such equations as the governing equations
are partial differential equations (PDE). To obtain easy practical criteria, several
simplifying assumptions must be made. Most of them may end up reducing the
system from PDE to ODE, to allow the use of LLA based on the eigenvalues of the
Jacobian matrix. There exist other methods based on Laplace transformation and
frequency domain but the resulting criteria are somehow equivalent. It should be
noted that the number of criteria is related to the size of the Jacobian matrix.

The simplifying assumptions combined with the nonlinearities effects may cause
these criteria to fail in several cases, including some very simple systems [Vi11].
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The combination of steady-state simulators and LLA criteria may not be a good
choice in real case situations. Transient simulation seems to be the most adequate
method to determine if a well will exhibit or not an unstable behavior.

25.2 Two-Phase Flow Modeling Overview

Figure 25.5 shows the schematic of a production well. There are basically three
domains in the system: casing, tubing, and annular space. One of the extremities of
each domain forms a shared interface called “junction” in this work with the other
domains. The casing domain comprehends the volume between the reservoir and
the junction, while the tubing and the annular space are bounded by the junction
and each respective surface choke.

Three variations are possible: (1) The electrical submersible pumps (ESP) may
be located in front of the perforations (casing not included in the solution domain),
(2) ESP in front of the perforations and the assumption that only gas is separated—
all liquid from reservoir goes inside the tubing and the gas separated to the annular
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Fig. 25.5 Reservoir–casing–tubing–annular space model
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space vanishes—casing and annular space not included in the solution domain—and
(3) no ESP installed—which represents natural flowing wells.

For the ESP case, it is interesting to note that during well start-up, both annular
space and casing feed the pump with liquid. Gas is separated at pump’s intake
(which can be a regular intake or a rotary separator), meaning that at this moment
counter-current flow takes place at annular space. If a steady state situation is
reached, the liquid level at the annular space reaches a constant depth, which is
called “dynamic level.”

Independent of the scenario, each domain must obey the conservation laws and
the junction must receive an appropriate treatment to correctly model the problem,
including the consideration of gas and liquid mass conservation.

Equations and Numerical Solution. The model is based on the drift-flux approach
[ZuFi65], assuming isothermal flow and no mass transfer between phases:

∂ (αgρg)

∂ t
+

∂ (αgρgVg)

∂ z
= 0, (25.5)

∂ (αlρl)

∂ t
+

∂ (αlρlVl)

∂ z
= 0, (25.6)

∂ (αgρgVg +αlρlVl)

∂ t
+

∂P
∂ z

=−ρmgsin(θ)+ϕwt , (25.7)

Vg−Vl =VS, (25.8)

where (25.5) and (25.6) represent, respectively, gas and liquid mass conserva-
tion, (25.7) is the mixture momentum conservation equation (convective terms were
neglected), and (25.8) the slip velocity closure relationship.

Closure relationships must be provided for the slip velocity (VS) and for the two-
phase friction term (φwt). The slip velocity is obtained using the traditional drift-flux
model.

α =
Vsg

C0 (Vsg +Vsl)+Vd
,

where C0 is the distribution parameter and Vd the drift velocity. These two
parameters are obtained from published correlations. For co-current upward flow,
a modification in the correlation stated in [WoGh07] was proposed, while for co-
current downward flow the result in [IsHi05] was used. Because of the lack of
correlations to model counter-current flow, a linear interpolation procedure between
co-current upward/downward has been developed in [Vi11].

The discretization of the equations was done using a fully implicit first-order
finite difference method on a staggered grid [Pa80], with pressure and void fractions
defined at the cell centers and velocities at cell edges, using an upwind scheme.
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Fig. 25.6 Natural casing–annulus separation efficiency: pumped well

(25.5)–(25.8) were discretized in each domain, with some particular adaptations
such as the use of equivalent and hydraulic diameters for annular geometry.

The reservoir was modeled as a source of liquid and gas, following linear
relationships. As the chokes may be under single or two-phase flow conditions,
the model in [Sa84] was used. A proper description of the “junction” was done,
assuring gas and liquid mass conservation as well as pressure continuity [Vi11].

Gas Separation Models. The bottomhole natural gas separation efficiency was
calculated using the model in [Al93]. This model assumes that all liquid coming
from the casing goes through the pump and the liquid inside the annular space is
static. These premises do not satisfy the reality of this work since the liquid within
the annular space may be flowing upward or downward. Because of the lack of
correlations, a modification was proposed in [Vi11].

Figure 25.6 shows the results of the proposed modification for some arbitrary
condition. For the case when the annular liquid flow rate is zero, the correlation
represents Alhanati’s original model itself. If the liquid is getting into the annular
space (positive flow rate) the efficiency is higher since it drags more gas. On the
other hand, if the annular liquid is going inside the intake (negative flow rate) more
gas is dragged into the pump, reducing the separation efficiency.

A simplified rotary separator based on Alhanati’s work [Al93] rotary separator
model can also be used. Figure 25.7 shows a typical curve for the global efficiency
of this equipment, for some arbitrary conditions. As suggested by Alhanati, the
existence of operational conditions in which rotary separators are not effective was
considered in this simplified model.

Pump Model. Electrical submersible pumps are widely utilized in the oil industry.
They are multistage vertical pumps with a diffuser casing that can handle large liquid
volumes. In an artificial lift system, these pumps are installed within a cased hole
well and produce the reservoir while staying “submersed” in the fluid.
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Fig. 25.7 Generic rotary separator efficiency curve
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Free gas directly impacts the pump curve performance deteriorating its ability
to lift liquids. The degree of head deterioration varies from a simple reduction in
performance to more severe problems such as surging and gas-lock.

The pump model used in this work is proposed based on the work presented in
[Du03] and [CaEtAl09]. The calculation is not done stage by stage; instead, it is
considered an average total pressure increment. Figure 25.8 shows a typical curve
performance for some arbitrary intake conditions for different constant gas flow
rates as described in [Vi11]. The stable operational envelope of the pump is assumed
to be the region limited by the surging boundary, the water curve performance and
the no-pressure increment horizontal line.
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25.3 Application and Discussion

25.3.1 Example 1. ESP: Tubing and Annular Space Included
in the Solution Domain. Stability Example

This example considers a pump equipped with a rotary separator. The pump
maximum flow rate is 8,640 B/D and it is located in front of the perforations.
The separator is under-sized as its maximum operational liquid flow rate is about
1,250 B/D. For this scenario, all liquid from reservoir goes to the pump and the gas
separated to the annular space disappears.

The gas split is determined through Alhanati’s model previously described. The
fluids considered in this simulation are air and water. Figure 25.9 shows the nodal
analysis under these premises.

A widely used instability criterion derived from LLA, given in [DeGiRi81], is

dPavail.

dQ

∣∣∣∣
eq.

>
dPreq.

dQ

∣∣∣∣
eq.

. (25.9)

According to this criterion, the solution is unstable if, at the equilibrium flow
rate, the derivative of the available pressure is greater than the required pressure.
Inequality (25.9) does not guarantee that the equilibrium solution in Fig. 25.9 is
unstable. It should be noted that this is just one criterion among several others that
may exist. For complex systems like this example, the other criteria are very difficult
to obtain, even using simplifying assumptions.
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Fig. 25.9 Nodal analysis: example 1
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Fig. 25.10 Transient solution: tubing and reservoir liquid flow rates
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Fig. 25.11 Transient solution: annular space and reservoir liquid flow rates

Figures 25.10 and 25.11 show the results of the transient simulations. The steady-
state condition is reached with a constant dynamic level in the annular space, since
no liquid flows in this domain after 5,000 s.

25.3.2 Example 2. ESP: Neither Casing nor Annular Space
Included in the Solution Domain. Instability Example

The only difference between this example and the last one is the tubing diameter. In
this example, the tubing diameter is smaller than the one used in Example 1—which
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Fig. 25.13 Transient solution: liquid flow rates

increases the required pressure—leading to a smaller liquid equilibrium flow rate.
Figure 25.12 shows the nodal analysis.

One more time (25.9) does not guarantee that the equilibrium solution in
Fig. 25.12 is unstable. Figure 25.13 shows the result of transient simulation. The
equilibrium solution is unstable and no steady-state is obtained. The pump presents
a high frequency oscillatory behavior.

Figure 25.14 shows the oscillatory behavior with a different time scale range,
while Fig. 25.15 shows the oscillatory behavior reached around the equilibrium
solution.

An interesting observation is that the surface flow rates show small amplitudes
while at the pump they are in the order of 1,500 B/D. This is not a desirable
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operational condition for an ESP, especially for a pump with floating impellers.
In a real well, probably the protective relay would shut down the equipment.

25.3.3 Example 3. ESP: Tubing and Annular Space Included
in the Solution Domain. Instability Example

The objective of this example is to determine the influence of the annular space
dynamics in the unstable behavior of Example 2. To solve this problem under
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Fig. 25.16 Transient solution: tubing and reservoir liquid flow rates
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Fig. 25.17 Transient solution: annular space and reservoir liquid flow rates

steady-state conditions, the first thing assumed is that the annular space has reached
a constant dynamic level (no liquid moving inside the annular space) and thus all
liquid coming from reservoir goes into the pump.

The nodal analysis is the same as the one shown in Fig. 25.12. Figures 25.16
and 25.17 show the result of the transient simulation.

The well exhibits an oscillatory behavior, confirming the previous result. It
should be noted that the fluctuations at surface are even smaller while the amplitudes
downhole have increased. In addition, the solution shows more evidence of a chaotic
behavior.
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25.3.4 Example 4: Natural Flowing Well. Casing Heading

If one assumes no ESP installed in the well shown in Fig. 25.5 and that the
annular surface choke is closed, gas accumulates in the annular space due to natural
separation. This gas accumulation increases the pressure at the liquid level, reducing
production and pushing the liquid in annular space into the tubing.

At some point the liquid level reaches the bottom of the tubing and the gas in the
annulus is produced, causing a “gas-lift” effect. When this occurs, the annular space
is depressurized increasing the liquid production from reservoir.

When the annular space pressure is no longer enough to maintain the “gas-lift”,
liquid and gas will start to accumulate in the annular space, increasing its pressure.
At some point, the “gas-lift” process starts over again. This cyclical behavior is
common in naturally flowing wells without packers.

It should be noted that casing heading does not occur in every well without
packer. Figure 25.18 shows the nodal analysis for several gas–liquid–ratios (GLRs),
assuming that all gas goes into the tubing.

One can see that for GLRs over 533 scf/stb, the required pressure curve in the
region around the equilibrium solution starts to present a reverse behavior. Although
the mixture-density reduces as the amount of gas increases (reducing hydrostatic),
friction and acceleration becomes higher, overcoming the hydrostatic reduction.
A well producing under this condition should not exhibit heading, since more gas
into tubing stabilizes the system. Figure 25.19 shows the liquid production at surface
for different GLRs.

As expected, the well does not exhibit casing heading for GLRs equal or greater
than 533 scf/stb. For this situation, friction acts as a stabilizing mechanism (reverse
pressure gradient behavior).
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Fig. 25.19 GLRs comparison

25.4 Conclusions

1. There are different attractors in multi-dimensional nonlinear systems, such as:
equilibrium solutions, limit cycles, and strange attractors. LLA provides limited
information regarding a tiny piece of a big puzzle and depending on the initial
condition, the equilibrium solution may never be reached, even though it is stable.
Only numerical simulations can really determine whether or not a dynamic
system is stable.

2. A two-phase flow code based on the drift flux approach was developed in order to
simulate well configurations without packers. Under this condition, bottom-hole
gas segregation and storage effects were considered. For wells equipped with
ESP, the two-phase flow pump performance as well as separation models were
used. Due to the nonexistence of models for some conditions, some modifications
in similar models were proposed.

3. Examples of casing heading and ESP oscillatory behavior were shown. ESP
oscillatory behavior can only be captured if the performance curves of the devices
are correctly modeled.

25.5 Nomenclature

ai Constants in matrix A
A Coefficient matrix
C0 Distribution parameter
D Dimension
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fi (x1,x2) Generic nonlinear function
J Jacobian matrix
P Pressure or trace of a 2 by 2 matrix
q 2 by 2 matrix determinant
Q Volumetric flow rate
t Time
V Velocity
Vd Drift velocity
VS Slip velocity
Vsg Superficial gas velocity
Vsl Superficial liquid velocity
ẋi First derivative of xi

x Column vector of variables xi

ẋ First derivative of column vector x
x̄ Equilibrium solution
z Position

Greek Letters:

α Gas void fraction
δ Disturbance
θ Angle with horizontal
ρ Density
ϕwt Two-phase friction loss gradient

Subscript:

avail. Available
eq. Equilibrium
g Gas
l Liquid
req. Required
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Chapter 26
Validating a Closed Form Advection–Diffusion
Solution by Experiments: Tritium Dispersion
after Emission from the Brazilian Angra Dos
Reis Nuclear Power Plant

G.J. Weymar, D. Buske, M.T. Vilhena, and B.E.J. Bodmann

26.1 Introduction

As one of the consequences of the last two nuclear accidents (Chernobyl in 1986
and Fukushima in 2011), nuclear safety regulations have progressively improved.
One crucial issue for safety control, emergency plans, and related actions is the
knowledge of dispersion of radioactive substances in the planetary boundary layer.
While monitoring procedures are a standard routine by the controlled release of
Tritium, predicting dispersion of this substance is still a challenge, especially if a
rugged orography is present, such as the environment around the Brazilian nuclear
power plant Angra dos Reis. Although there are available program platforms that
allow to simulate dispersion processes, their underlying models are frequently
too simple, frequently based on simple Gaussian models, so that distributions for
specific scenarios may only be attained by tuning the simulations according to
certain experimental findings instead of predicting them.

The present work is one contribution in a larger program that has the intention to
determine general closed form solutions that allow to match a variety of meteorolog-
ical conditions based on phenomenological approaches for turbulence. A generally
accepted deterministic model makes use of Fickian closure and leads thus to an
advection–diffusion model for dispersion processes. A well-established method that
solves the equation in closed form is based on spectral theory and integral transform,
also known as GILTT (see [BuEtAl11], [BuEtAl12], [MoEtAl09], [MoViBu09],
[ViEtAl12]). The equation has to be complemented by a known wind profile,
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which is usually determined using experimental meteorological data and the micro-
meteorological parameters are calculated from empirical equations established in
the literature.

The closed form solution is then applied to the complete set of experiments
of the Angra campaign using the associated meteorological conditions. From the
comparison of expectation values and measured values the solution is validated and
checked for adequacy. Also some comparisons to other approaches are presented.

26.2 The Advection–Diffusion Approach

Upon developing a mathematical dispersion model one typically faces various
problems. First one has to identify a differential equation that shall represent the
model or the underlying physical law. Once the law/model is accepted as the
fundamental equation one challenges the task of solving the equation in many
cases approximately and analyze the error of approximation and numerical errors
in order to validate its prediction against experimental data. Experimental data
of a stochastic process typically spread around average values, i.e. are distributed
according to probability distributions. Hence, the model shall within certain limits
reproduce the experimental findings. However, the fundamental equation is already
a simplification so that deviations may occur which in general have their origin in a
model error superimposed by numerical or approximation-based errors. In case of a
genuine convergence criterion one may pin down the error analysis essentially to a
model validation. Since in general convergence is handled by heuristic convergence
criteria, a model validation is not obvious.

For a time-dependent regime considered in the present work, we assume that
the associated advection–diffusion equation adequately describes such a dispersion
process, which we test by comparison with other methods in order to pin down
computational errors and finally analyze for model adequacy. In this line we show
with the present discussion that our analytical approach does not only yield a
solution for the three-dimensional advection–diffusion equation but predicts tracer
concentrations closer to observed values compared to other approaches from the
literature, which is also manifest in better statistical coefficients.

Approaches to the advection–diffusion problem are not new in the literature; they
are either based on numerical schemes, stochastic simulations or (semi-)analytical
methods, as shown in a selection of articles (see [ScFi75], [De78], [NiDe81], [Ti89],
[ShSiYa96], [LiHi97]). Note that in these works all solutions are valid for scenarios
with strong restrictions with respect to their specific wind and vertical eddy diffu-
sivity profiles. A more general approach, the advection diffusion multilayer method
(ADMM) approach solves the two-dimensional advection–diffusion equation with
variable wind profile and eddy diffusivity coefficient [MoEtAl06]. The main idea
here relies on the discretization of the atmospheric boundary layer in a multilayer
domain, assuming in each layer that the eddy diffusivity and wind profile take
averaged values. The resulting advection–diffusion equation in each layer is then
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solved by the Laplace transform technique. The generalized integral advection–
diffusion multilayer technique (GIADMT) method [CoEtAl06] is a dimensional
extension to the previous work, but again assuming the stepwise approximation
for the eddy diffusivity coefficient and wind profile. In this work we improve
the solutions of the aforementioned articles and report on a general analytical
solution for the advection–diffusion problem, assuming that eddy diffusivity and
wind profiles are arbitrary functions having a continuous dependence on the vertical
and longitudinal spatial variables.

Our starting equation is the advection–diffusion equation for the simulation
of contaminant or tracer release in the atmospheric boundary layer assuming a
Fickian closure for the turbulence. Here, c̄ represents the mean concentration of a
contaminant (in units of g/m3) and V̄ = (ū, v̄, w̄) is the mean wind velocity (in m/s)
and the domain of interest is a cuboid with 000≤ r≤ L. Here, the shorthand notation
signifies 000 = (0,0,0) and L = (Lx,Ly,h), with h is the height of the atmospheric
boundary layer in units of m. The emission source is approximated by a point source
(hot spot) with constant emission rate Q (in g/s) at position rs = (0,y0,Hs).

∂ c̄
∂ t

+ V̄ ·∇c̄ = ∇ · (K ·∇) c̄+S (26.1)

In the most general case the diffusion term contains a local and anisotropic (3× 3)
diffusion coefficient matrix K, which in the present case we assume to be diagonal
K = diag(Kx,Ky,Kz). The problem is subject to zero flux Neumann-type boundary
conditions on the cuboid bounding surface Γ

K ·∇c̄|r∈Γ = 0

and initial condition (at t = 0)

c̄ = 0 ∀r = (x,y,z) �= rs.

Instead of including an explicit source term into the advection–diffusion equation, a
further constant source flux (∀t) constraint is added to the boundary conditions,

(
V̄ · x̂) c̄

∣∣
r=r0

x̂ = Qδ (y− y0)δ (z−Hs)x̂,

with the unit vector x̂ = (1,0,0) and r0 = (0,y,z).

26.3 A Closed Form Solution

In this section we first introduce the general formalism to solve a general problem
and subsequently reduce the problem to a more specific one, that is solved and
compared to experimental findings.
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26.3.1 General Procedure

In order to solve the problem (26.1) we reduce the dimensionality by one and thus
cast the problem into a form already solved in reference [MoEtAl09]. To this end
we apply the integral transform technique in the y variable and expand the pollutant
concentration as

c̄(x,y,z, t) = RT (x,z, t)Y(y), (26.2)

where R = (R1,R2, . . .)
T and Y = (Y1,Y2, . . .)

T is a vector in the space of orthog-
onal eigenfunctions, given by Ym(y) = cos(λmy) with eigenvalues λm = m π

Ly
for

m = 0,1,2, . . .. For convenience we introduce some shorthand notations, ∇2 =
(∂x,0,∂y)

T and ∂̂y = (0,∂y,0)T , so that (26.1) now reads

(∂tRT )Y+ Ū
(

∇2RT Y+RT ∂̂yY
)

=
(
∇T K+(K∇)T )(∇2RT Y+RT ∂̂yY

)

=
(
∇T

2 K+(K∇2)
T )(∇2RT Y)+

(
∂̂ T

y K+(K∂̂y)
T
)
(RT ∂̂yY).

Applying the integral operator

∫ Ly

0
dyY[F] =

∫ Ly

0
FT ∧Ydy, (26.3)

where F is an arbitrary function and ∧ signifies the dyadic product, and making
use of orthogonality, we rewrite (26.1) as a matrix equation in which the integral
terms are

B0 =
∫ Ly

0
dyY[Y] =

∫ Ly

0
YT ∧Y dy,

Z =
∫ Ly

0
dyY[∂̂yY] =

∫ Ly

0
∂̂yYT ∧Y dy,

W1 =
∫ Ly

0
dyY[(∇T

2 K)(∇2RT Y)] =
∫ Ly

0

(
(∇T

2 K)(∇2RT Y)
)T ∧Y dy,

W2 =

∫ Ly

0
dyY[(K∇2)

T (∇2RT Y)] =

∫ Ly

0

(
(K∇2)

T (∇2RT Y)
)∧Y dy,

T1 =
∫ Ly

0
dyY[((∂̂ T

y K)(∂̂yY)] =
∫ Ly

0

(
((∂̂ T

y K)(∂̂yY)
)T ∧Y dy,

T2 =
∫ Ly

0
dyY[(K∂̂y)

T (∂̂yY)] =
∫ Ly

0

(
(K∂̂y)

T (∂̂yY)
)T ∧Y dy.
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Here, B0 =
Ly
2 I, where I is the identity, the elements (Z)mn =

2
1−n2/m2 δ1, j with δi, j

the Kronecker symbol and j = (m+n)mod2 is the remainder of an integer division
(i.e., one for m+n odd and zero else). Note that the integrals Wi and Ti depend on
the specific form of the eddy diffusivity K. The above integrals are general, but for
practical purposes and for application to a case study we truncate the eigenfunction
space and consider M components in R and Y only, though continue using the
general nomenclature that remains valid. The obtained matrix equation determines
now together with initial and boundary condition uniquely the components Ri for
i = 1, . . . ,M following the procedure introduced in reference [MoEtAl09]:

(∂tRT )B+ Ū
(
∇2RT B+RT Z

)
= W1(R)+W2(R)+RT (T1 +T2).

26.3.2 A Specific Case for Application

In order to discuss a specific case we introduce a convention and consider the
average wind velocity Ū = (ū,0,0)T aligned with the x-axis. We superimpose the
solution after rotation in the x− y-plane in order to transform every instantaneous
solution into the same coordinate frame, i.e. the coordinate frame for t = 0.
By comparison of physically meaningful cases, one finds for the operator norm
||∂xKx∂x|| << |ū|, which can be understood intuitively because eddy diffusion
is observable predominantly perpendicular to the mean wind propagation. As a
consequence we neglect the terms with Kx and ∂xKx.

The principal aspect of interest in pollution dispersion is the vertical concentra-
tion profile that responds strongly to the atmospheric boundary layer stratification,
so that the simplified eddy diffusivity depends in leading order approximation
K→ K1 = diag(0,Ky,Kz), only on the vertical coordinate K1 = K1(z). For this
specific case the integrals Wi reduce to

W1→ (∂zKz)(∂zRT )B,

W2→ Kz(∂ 2
z RT )B,

T1→ 0,

T2→−KyΛB,

where Λ = diag(λ 2
1 ,λ 2

2 , . . .). Then the simplified equation system to be solved is

∂tRT B+ ū∂xRT B = (∂zKz)∂zRT B+Kz∂ 2
z RT B−KyRT ΛB,

which is equivalent to the problem

∂tR+ ū∂xR = (∂zKz)∂zR+Kz∂ 2
z R−KyΛR, (26.4)

by virtue of B being a diagonal matrix.
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Once the problem (26.4) is solved by the GILTT method, the solution of
problem (26.1) is well determined. In reference [MoEtAl09] a two-dimensional
problem with advection in the x direction in stationary regime was solved which has
the same formal structure than (26.4) except for the time dependence. We apply the
Laplace Transform in the t variable, (t→ r) obtaining the following pseudo-steady-
state problem:

rR̃0 +u∂xR̃0 = ∂z
(
Kz∂zR̃0

)−Λ KyR̃0. (26.5)

The x and z dependence may be separated using the same reasoning as already
introduced in (26.2). To this end we pose the solution of problem (26.5) in the form

R̃0 = PC,

where C = (ζ1(z),ζ2(z), . . .)T are a set of orthogonal eigenfunctions, given by
ζi(z) = cos(γlz), and γi = iπ/h (for i = 0,1,2, . . .) are the set of eigenvalues.

Replacing this in (26.5) and using (26.3) with respect to the z-dependent degrees
of freedom, that is,

∫ h

0
dzC[F] =

∫ h

0
FT ∧C dz,

we arrive at the first-order differential equation system

∂xP+HP = 0, (26.6)

where P = P(x,r) and H = B−1
1 B2. The entries of matrices B1 and B2 are

(B1)i, j = −
∫ h

0
uζi(z)ζ j(z)dz

(B2)i, j =
∫ h

0
∂zKz∂zζi(z)ζ j(z)dz− γ2

i

∫ h

0
Kzζi(z)ζ j(z)dz

−r
∫ h

0
ζi(z)ζ j(z) dz−λ 2

i Ky

∫ h

0
ζi(z)ζ j(z)dz.

Following the reasoning in [MoEtAl09], we solve (26.6) applying Laplace
transform and diagonalization of the matrix H = XDX−1, which results in

P̃(s,r) = X(sI+D)−1X−1P(0,r), (26.7)

where P̃(s,r) denotes the Laplace Transform of P(x,r). Here X(−1) is the (inverse)
matrix of the eigenvectors of matrix B−1

1 B2 with diagonal eigenvalue matrix D and
the entries of matrix (sI+D)ii = s+ di. After performing the Laplace transform
inversion of (26.7), we get
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P(x,r) = XG(x,r)X−1ξ ,

where G(x,r) is the diagonal matrix with components (G)ii = e−dix. In addition, the
still unknown arbitrary constant matrix is given by ξ = X−1P(0,r).

The time dependence is obtained upon applying the inverse Laplace transform
definition

R0(x,z, t) =
1

2πi

∫ γ+i∞

γ−i∞
P(x,r)C(z)ert dr .

To overcome the drawback of evaluating a line integral, we perform the calculation
of this integral by the Gaussian quadrature scheme, which is exact if the integrand
is a polynomial of degree 2M−1 in the 1

r variable

R0(x,z, t) =
1
t

aT
(

pR0(x,z,
p
t
)
)
, (26.8)

where a and p are, respectively, vectors with the weights and roots of the Gaussian
quadrature scheme [StSe66].

26.4 Experimental Data and Turbulent Parametrization

For model validation we chose a controlled release of radioactive material per-
formed in 1985 at the Itaorna Beach, close to the nuclear reactor site Angra
dos Reis in the Rio de Janeiro state, Brazil. Details of the dispersion experiment
are described elsewhere [BiEtAl85]. The experiment consisted in the controlled
releases of radioactive tritium loaded water vapor from the meteorological tower
at 100 m height during 5 days (November 28 to December 4, 1984). During the
whole experiment, four meteorological towers collected the relevant meteorological
data. Wind speed and direction were measured at three levels (10, 60, and 100 m)
together with the temperature gradients between 10 and 100 m. Some additional
data of relative humidity were available in some of the sampling sites, and were
used to calculate the concentration of radioactive tritium loaded water in the air
(after measuring the radioactivity of the collected samples). All relevant details, as
well as the synoptic meteorological conditions during the dispersion campaign are
described in [BiEtAl85]. The data from the 5 experiments were used to obtain the
numerical results and are presented in Table 26.1.

The micro-meteorological parameters shown in Table 26.1 are calculated from
equations obtained in the literature. The roughness length utilized was 1 m and the
Monin–Obukhov length for convective conditions can be written as [Za90]

L =−h/k (u∗/w∗)3 ,
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Table 26.1 Micro-meteorological parameters and emission rate for the Angra dos Reis experi-
ments

u(10) u∗ w∗ L h Q
Experiment Period (m s−1) (m s−1) (m s−1) (m) (m) (MBq s−1)

1 1 1.83 0.32 0.46 −809.51 965.09 20.46
2 2.43 0.42 0.60 −1056.86 1259.98 20.46
3 2.76 0.48 0.69 −1214.26 1447.64 20.46

2 1 2.59 0.44 0.63 −1108.58 1321.64 25.34
2 2.21 0.38 0.55 −966.91 1152.75 25.34
3 2.18 0.38 0.54 −951.17 1133.98 25.34

3 1 2.21 0.38 0.55 −966.91 1152.75 20.46
2 1.97 0.34 0.49 −861.23 1026.75 20.46
3 2.61 0.46 0.66 −1146.81 1367.21 20.46

4 1 1.23 0.21 0.31 −539.67 643.40 24.34
2 1.01 0.18 0.25 −440.73 525.44 24.34
3 1.05 0.18 0.26 −456.47 544.21 24.34

5 1 1.95 0.34 0.49 −854.48 1018.71 31.32
2 1.54 0.27 0.39 −674.59 804.24 31.32
3 2.61 0.45 0.65 −1137.81 1356.49 31.32

where k is the von Karman constant (k = 0.4), w∗ is the convective velocity scale
with wind speed U , u∗ = kU/ln(zr/z0) is the friction velocity, where U is the wind
velocity at the reference height zr = 10 m, and h = 0.3u∗/ fc is the height of the
boundary layer with the Coriolis coefficient fc = 10−4.

In the atmospheric diffusion problems the choice of a turbulent parametrization
represents a fundamental aspect for contaminant dispersion modeling. From the
physical point of view a turbulence parametrization is an approximation for the
natural phenomenon, where details are hidden in the parameters that are being used
and have to be adjusted in order to reproduce experimental findings. The reliability
of each model strongly depends on the way the turbulent parameters are calculated
and related to the current understanding of the planetary boundary layer. In terms
of the convective scaling parameters the vertical and lateral eddy diffusivity can be
formulated as in [DeCVCa97], namely

Kz = 0.22w∗h
( z

h

) 1
3
(

1− z
h

) 1
3
(

1− e
4z
h −0.0003e

8z
h

)
, (26.9)

Ky =

√
πσv

16( fm)vqv
, (26.10)

where

σ2
v =

0.98cv

( fm)
2
3
v

(
ψε
qv

) 2
3 ( z

h

) 2
3

w2
∗,
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Fig. 26.1 Scatter diagram of the observed versus predicted maximum ground level concentrations.
Data between lines correspond to a factor of two and five

qv = 4.16
z
h
, ψ

1
3

ε =

((
1− z

h

)2(− z
L

)− 2
3
+0.75

) 1
2

, ( fm)v = 0.16,

σv is the standard deviation of the longitudinal turbulent velocity component, qv is
the stability function, ψε is the dimensionless molecular dissipation rate, and ( fm)v

is the transverse wave peak.
The wind speed profile can be described by a power law uz/u1 = (z/z1)

n

[PaDu88], where uz and u1 are the horizontal mean wind speeds at heights z and
z1, and n is an exponent related to the intensity of turbulence [Ir79].

26.5 Numerical Results

In this study we introduce the vertical and lateral eddy diffusivities ((26.9) and
(26.10)) and the power law wind profile in the 3D-GILTT model to calculate
the ground-level concentration of emissions released from an elevated continuous
source point in an unstable/neutral atmospheric boundary layer.

The validation of the 3D-GILTT model predictions against experimental data
from the Angra site together with a two-dimensional model (GILTTG) are shown
in Fig. 26.1. While the present approach (3D-GILTT) is based on a genuine
three-dimensional description an earlier analytical approach (GILTTG) uses a
Gaussian assumption for the horizontal transverse direction [MoEtAl09]. The 3D-
GILTT approach reproduces acceptably the observed concentrations, although this
simulation did not make use of the terrain’s realistic complexity.

In the further we use the standard statistical indices in order to compare the
quality of the two approaches. Note that we present the two analytical model
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Table 26.2 Statistical comparisons between GILTTG and 3D-GILTT
results

Statistical indices GILTTG 3D-GILTT

NMSE = (Co−Cp)2/Cp Co 2.82 1.44

COR = (Co−Co)(Cp−Cp)/σoσp 0.46 0.59
FA2 = 0.5≤ (Cp/Co)≤ 2 0.32 0.38
FA5 = 0.2≤ (Cp/Co)≤ 5 0.67 0.80
FB = Co−Cp/0.5(Co +Cp) −0.62 −0.59
FS = (σo−σp)/0.5(σo +σp) −0.69 −0.37

approaches, since the earlier one was found to be acceptable in comparison with
other approaches found in the literature and both give a solution in closed form.
The standard statistical indices are NMSE, the normalized mean square error; COR,
the correlation coefficient; FA2 and FA5, the fraction of data (in %) in the cones
determined by a factor of two and five, respectively; FB, the fractional bias and
FS, the fractional standard deviation. The subscripts o and p refer to observed and
predicted quantities, respectively, and C̄ indicates the averaged values. Table 26.2
presents the results of the statistical indices used to evaluate the model performance
[Ha89] and further compare our model to the GILTTG approach. The statistical
index FB indicates whether the predicted quantities (Cp) under- or overestimates
the observed ones (Co). The statistical index NMSE represents the quadratic error
of the predicted quantities in relation to the observed ones. Best results are indicated
by values compatible with zero for NMSE, FB, and FS, and compatible with unity
for COR, FA2, and FA5. The statistical indices point out that a reasonable agreement
is obtained between experimental data and the 3D-GILTT model.

In order to validate the two models we fit the predicted versus observed values
by a linear regression, where the closer their intersect to the origin and the closer
the slope is to unity the better is the approach. The GILTTG approach results in
C̄p = 0.95C̄o + 26.53 with R2 = 0.46 and κ = 0.95, whereas the 3D-GILTT obeys
the result C̄p = 0.86C̄o +27.61 with R2 = 0.59 and κ = 0.99. In order to perform a
model validation we introduced an index

κ =

√
(a−1)2 +

(
b/C̄o

)2
,

where

C̄o =
1
n

n

∑
i=1

Coi,

which if identical zero indicates a perfect match between the model and the
experimental findings. Here a is the slope, b the intersection, Coi of the experimental
data, and C̄o its arithmetic mean. Since the experiment is of stochastic character
whereas the stochastic properties are hidden in the model parameters, considerable
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Fig. 26.2 Linear regression for the GILTTG and 3D-GILTT. The bisector was added as an eye
guide

fluctuations are present. Nevertheless, by comparison (see Fig. 26.2) one observes
that the present approach yields the better description of the data.

26.6 Conclusions

The present work was based on an Eulerian approach to determine dispersion of
radioactive contaminants in the planetary boundary layer. To this end the diffusion
equation for the cross-wind integrated concentrations was closed by the relation of
the turbulent fluxes to the gradient of the mean concentration by means of eddy
diffusivity (K-theory). We are completely aware of the fact that K-closure has its
intrinsic limits so that one would like to remove these inconsistencies. However,
comparisons of predictions by this approach to experimental data have shown that
there are scenarios where this lack is not significantly manifest, which we use as a
justification together with its computational simplicity to perform our simulations
based on this approach. Moreover, the present work may be understood as one tile in
a larger program development that simulates radioactive material dispersion using
analytical resources. In a longer term we intend to build a library that allows to
predict radioactive material transport in the planetary boundary layer that extends
from the micro- to the meso-scale. In this sense this contribution is a step into this
direction.

In the present discussion we restricted our comparison with the two-dimensional
and GILTT approach only, since its usefulness was already proven [BuEtAl10]
and the specification of diffusion and wind profile are identical. Other approaches
like ADMM among others make use of step-wise approximations for K and V
or determine the velocity field from large eddy simulations, in other words they
are not self-contained. Although the measurements were at ground level one could
think that a two-dimensional approach would suffice, the present comparison clearly
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shows the influence of the additional dimension. While in the two-dimensional
approach the tendency of the predicted concentrations is to overestimate the
observed values in the experiments 2 and 3, this is not the case for the results of
the three-dimensional description, mainly because it does not assume turbulence
to be homogeneous. In the remainder of the runs (1, 4, and 5) considerably larger
variations of the mean wind velocity as well as lower wind velocities among others
are not compatible with some of the simplifications that were made in order to obtain
the solution for the studied case (compare the model validation in Fig. 26.2, left and
right). However, the solution method of the advection diffusion equation discussed
here is more general than shown in the present context, so that in principle a wider
range of applications is possible. Especially, other assumptions for the velocity field
and the diffusion matrix are possible and also necessary. In a future work we will
focus on a variety of applications and introduce a rigorous proof of convergence of
the method from a mathematical point of view.
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