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Linear regression is a widely applicable modeling tool, but it is not appropriate 
when the correct model should be nonlinear in the parameters. Such is the case 
when the study endpoint is a binary variable. The model becomes nonlinear because 
what is being modeled is the probability that a case experiences the event of interest 
or that a case is in a particular category of the binary response. As a probability must 
fall between 0 and 1, the linear regression model cannot accommodate it. In this 
chapter, we examine this important principle, develop the logistic regression model 
as an alternative, and consider several examples of this modeling strategy from the 
research literature.

�Logistic Regression Model

Often the study endpoint of interest is a binary outcome, for example, whether or 
not a man’s PSA level exceeds 4.0 or whether the result of a prostate biopsy is posi-
tive or negative for cancer. When the endpoint is binary, a linear regression model is 
no longer optimal. Let’s consider why. Recall that a linear regression model for the 
population of units with, say, two regressors for simplicity, takes the form:

μy = α + β1X + β2Z.

Now, in the case of a binary response, Y takes on only two values, which can be 
represented as 1 if the unit experiences the event of interest and 0 otherwise. The mean 
of Y is then a proportion; in particular, the proportion of cases experiencing the event 
of interest in the population, or the probability of experiencing the event of interest. 
Let’s let P represent that probability. Then the linear regression model becomes

P = α + β1X + β2Z.
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One could estimate such a model with OLS, but it’s not the best strategy. The 
primary problem is that the right-hand side (rhs) of this equation is misspecified. 
The reason is that a probability has to be within the range 0–1, but the rhs of this 
equation is not constrained to produce only that range of values. It’s entirely possi-
ble to get estimated probabilities <0 or >1 with this model. Therefore, a better 
approach is to find a function for the rhs that is also constrained to stay between 0 
and 1. There are two such functions, and they are depicted in Fig. 7.1. The plots 
show how a probability is related to a single variable, x, through these functions.

We see here that, instead of the probability having a linear relationship to x—as 
would be true of the linear regression function—its curve is S shaped, always 
remaining within the bounds of 0 and 1. The solid line is for the probit function, 
which is used in probit regression, and the dashed line is for the logit function, which 
is used in logistic regression. We focus only on the logit function in this primer, as it 
is the preferred technique in medical research for a binary study endpoint. The pro-
bit function is used extensively in other fields, such as economics and other social 
sciences. However, as we shall see, the logit function lends itself to the interpretation 
of explanatory variable effects in terms of “odds ratios,” which is intuitively appeal-
ing. The probit function does not have this property. Substantively, however, both 
modeling techniques result in the same conclusions about the sign and significance 
of explanatory variable effects on the study endpoint (DeMaris 2004).

Fig. 7.1  Logit and probit functions giving the probability that a variable “x” takes on specific 
values. Reprinted with permission of John Wiley and Sons, publishers, from DeMaris (2004)
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The logistic regression model for a probability, as a function of two regressors, is
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(7.1)

The rhs here is the algebraic formula that produces the dotted curve in Fig. 7.1 
(except the curve in Fig. 7.1 only uses x, rather than α + β1X + β2Z). In the event that 
“exp” is not familiar: “exp()” refers to the exponential function. “Exp(a)” means to 
raise Euler’s constant to the value of a. Euler’s constant is approximately equal to 
2.72. For example, exp(2) is 2.722 = 7.398. Euler’s constant has a considerable 
amount of importance in both calculus (Anton 1984) and statistics (DeMaris 2004). 
The natural logarithm is the inverse function for the exponential function. The 
natural logarithm of a is the number we have to raise Euler’s constant to in order to 
get a. For example, ln(7.398) = 2 because 2.722 = 7.398. Moreover, exp(ln(a)) = a 
and ln(exp(a)) = a. Hence, the natural logarithm and exponential functions go hand 
in hand.

Because the rhs of (7.1) is a complex nonlinear function, it’s not very easy to 
interpret the βs to describe how the regressors affect the probability. But the model 
can be transformed into a more interpretable version by applying the logit transfor-
mation to both sides of the equation. The logit transformation of the left-hand side 
is: ln[P/(1−P)], where “ln” refers to the natural logarithm (I use “log” interchange-
ably with “ln” in this primer). Substituting the rhs of (7.1) in place of P in the logit 
transformation gives us the transformation for the rhs of the equation in (7.1). The 
result is the logistic regression equation:
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(7.2)

The expression inside the parentheses, P/(1 − P), is the odds of event occurrence. 
The odds is just the ratio of two probabilities. (Recall that, although it seems gram-
matically incorrect, the odds is treated as singular.) In this case it’s the ratio of the 
probability the event occurs to the probability it does not occur. The odds is intui-
tive for most people. For example, 2-to-1 odds, or an odds of 2, indicates that the 
event is twice as likely to happen as not. This means that the probability of event 
occurrence must be 0.667, since 0.667/0.333 = 2. The left-hand side of (7.2) is 
therefore the log of the odds (or log-odds) of event occurrence. The rhs is the same 
as in linear regression. So the βs are interpretable as the change in the log-odds per 
unit increase in a given regressor, holding the other regressor constant. This still 
isn’t entirely satisfactory, since it’s hard to get a feeling for what a change in the 
log-odds means. Therefore, we can write the equation yet once more, in terms of 
the odds itself:
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(7.3)
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Now, let’s consider what happens to the odds if we increase X by one unit while 
holding Z constant:

	

P

P
X Z X Zx1

11 1 2 1 2 1−
= + + + = + ++| exp( ( ) ) exp( )exp( ).a b b a b b b

	
(7.4)

What happens is the original odds (which equals exp(α + β1X + β2Z)) gets multiplied 
by exp(β1). Therefore, we can say that each unit increase in X, holding Z constant, 
magnifies the odds by exp(β1). This provides a convenient way to describe how each 
independent variable affects the odds of event occurrence. We just exponentiate the 
relevant regression coefficient to find the magnitude of the (multiplicative) change in 
the odds for a unit increase in the regressor. Exp(β1) is called the odds ratio (since it’s 
the ratio of the odds in (7.4) to the odds in (7.3), above) and is often the preferred way 
of presenting logistic regression results.

�Estimation of Logistic Regression Coefficients

Logistic regression models are not estimated with OLS. Instead, we use one of the 
most important estimation techniques in statistics: maximum likelihood estimation. 
The way this works is as follows. For any unit sampled from the population, we can 
express the probability that Y = 1 for that unit as

	 P y P Py y( ) ( ) .= = − −1 1 1

	

This is called the Bernoulli probability distribution function. So, for that unit, the 
probability that his or her y is 1 is P P P1 1 11( )− =− . And the probability that his or 
her y is 0 is P P P0 1 01 1( )− = −− . The formula just expresses those probabilities in a 
compact form. Note that P varies over cases, since people’s risks for an event vary 
from person to person. Now, the probability that we get a particular collection of 
ones and zeros for our Ys in any sample is just the product of all those Bernoulli 
functions over all of the sample cases (this is the same principle we use to figure the 
probability of getting three heads in a row in three coin tosses: it’s (0.5)(0.5)
(0.5) = 0.125). That joint probability is

	
P P Py y( ) ( ) .y = − −∏ 1 1

	
(7.5)

where P(y) here represents the probability associated with the complete collec-
tion of ones and zeros in the sample, and the large “π” indicates the multiplication 
together of several terms. The function in (7.5) is called the likelihood function for 
the logistic regression model. Recall that P is a function of the regressors and their 
effects (i.e., the βs), as shown in (7.1) above. So, substituting (7.1) for P in (7.5) 
makes it clear that (7.5) is a complex function of the βs. In fact, once the sample has 
been gathered, the Xs and Ys are fixed. So P(y) in (7.5) is then only a function of α 
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and the βs. In maximum likelihood estimation, we choose as values for the α and the 
βs those values that maximize the likelihood function. These are then the parameter 
values that would have made the researcher’s sample of Ys most likely to have been 
observed (hence the name “maximum likelihood”). The estimation process is an 
iterative scheme in which a series of successive approximations is used to find the 
solution to a collection of nonlinear simultaneous equations. When this solution is 
found, the parameter estimates can then be plugged back into (7.5) to arrive at an 
estimated likelihood or probability of observing the sample Ys. This is sometimes 
reported in logistic regression results in log form, i.e., one may see “log likelihood” 
reported in a logistic regression table. However, this quantity is of no particular 
interest in and of itself and can be safely ignored.

�An Example

Recall the 2002 GSS data used to illustrate multiple linear regression in the previous 
chapters. In that same survey, respondents were asked about whether or not they had 
health insurance. Figure 7.2 shows how the question was presented and coded, along 
with the responses for 2,755 respondents giving valid responses to the question.

Here, “IAP” means inapplicable. We see that the vast majority of respon-
dents—86.6 %—have health insurance. Only 13.4 % of respondents do not have 
health insurance. (Ten respondents said either that they did not know whether they 
had health insurance or gave no answer to the question.) What kinds of people don’t 
have health insurance, then? To find this out, we can perform a logistic regression 
using this variable as the study endpoint. However, we will recode it so that 1 = no 
health insurance and 0 = has health insurance. The new variable is called “unin-
sured.” Also, we only use the 1,773 respondents who had valid data for all variables 
in the analysis. The results are shown in Table 7.1.

HLTHPLAN R HAD MEDICARE OR MEDICAID

Description of the Variable
855. Do you have any health insurance, including Medicare or
Medicaid?

Percent N Value Label
1 YES

13.4 2 NO
86.6  2,387  

  52,322  0 IAP
7 8 DONT KNOW
3 9 NO ANSWER

100.0 Total

368

55,087

Fig. 7.2  Distribution of insured status for GSS respondents
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The table shows the explanatory variables used in the model (“Predictor”), the 
regression coefficients (“b”), the standard errors of the regression coefficients 
(“SE(b)”), the exponentiated regression coefficients (“Exp(b)”), the test statistic for 
testing whether each regression coefficient is significant (“z”), the p value for the 
test statistic (“p value”), and a 95  % confidence interval for the exponentiated 
regression coefficients (“95 % CI”). Four decimal places are used throughout so that 
some of the example computations can be illustrated. In the bottom half of the table, 
beginning with “Model χ2,” are several measures of the goodness of the model that 
will be explained below.

�Interpreting the Coefficients

Several of the individual coefficients are significant. Thus we see that older respon-
dents, women, the more educated, and those with more income are all less likely to 
fall into the uninsured category. Compared to Whites, however, those of other races 
than Black (the “Other race” variable) are more likely to be uninsured. On the other 
hand, Blacks are no different from Whites in the probability of being uninsured, 
controlling for other factors in the model. The “Exp(b)” column converts the coef-
ficients into odds ratios for easy interpretation. Thus, each additional year of educa-
tion magnifies the odds of being uninsured by a factor of 0.881. To express this in 
terms of a percent change in the odds, we use the transformation 100 × [exp(b) − 1]. 
That is, each year of education reduces the odds of being uninsured by about 
100 × [0.881 − 1] = −11.9, or 11.9 %. The odds of being uninsured for those of other 
races is 2.129 times greater than the odds for Whites. Or, the odds of being unin-
sured for those of other races is 100 × [2.129 − 1] = 112.9 % greater than for Whites. 
The other odds ratios are similarly interpreted.

Table 7.1  Logistic regression of uninsured status on explanatory variables in the GSS

Predictor b SE(b) Exp(b) z p value 95 % CI

Intercept 2.3205 0.4394 – 5.2811 <0.0001 –
Age −0.0278 0.0057 0.9730 −4.8772 <0.0001 (0.9620–0.9830)
Female −0.5581 0.1521 0.5720 −3.6693 0.0002 (0.4250–0.7710)
Education −0.1265 0.0277 0.8810 −4.5668 <0.0001 (0.8350–0.9300)
Income −0.0967 0.0132 0.9080 −7.3258 <0.0001 (0.8850–0.9320)
Black 0.0250 0.1980 1.0250 0.1263 0.8994 (0.6960–1.5120)
Other race 0.7558 0.2383 2.1290 3.1716 0.0015 (1.3350–3.3970)
Model χ2 161.2327 <0.0001
Df 6
H-L χ2 12.1883 0.1430
Df 8
Pseudo R1

2 0.1041
Pseudo R2

2 0.2004
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�Predicted Probabilities

Suppose we would like to get the estimated probability of being uninsured, based on 
the model, for a particular profile of person: a 25-year-old male of race other than 
Black or White, with a high-school education and average income (mean income is 
13.773 here). Here’s how we go about it. First, let’s get the estimated log-odds of 
being uninsured for this person by evaluating the equation using their characteristics:

Log (P P/ ( )) . . ( ) . ( ) . ( ) . ( .1 2 32 0 028 25 0 558 0 0 127 12 0 097 13 7− = − − − − 773 0 756 1 0 484) . ( ) . .+ = −

Then this person’s estimated odds of being uninsured is obtained by exponentiat-
ing this result:

Exp(−0.484) = 0.616.

Finally, the estimated probability of being uninsured is just the odds divided by 
one plus the odds:

P = 0.616/(1 + 0.616) = 0.381.

Hence, according to the model, this person has about a 38 % chance of being 
uninsured.

�Test Statistics and Confidence Intervals

Maximum likelihood estimation assumes that one’s sample size is reasonably large. 
Under that condition, the regression coefficients have a normal distribution. 
Therefore the test statistic for testing whether each regression coefficient is signifi-
cant is a z test, just like the test statistic for testing that the population mean is a 
particular value from Chap. 3. That is, for any regression coefficient, b, the hypoth-
esis is that the corresponding population regression coefficient, β, is zero. Since b is 
normally distributed we need to find out how many standard deviations b is away 
from zero so we can know how discrepant the sample results are from what we 
would expect under the null. The “standard deviation” in question is the standard 
error of the coefficient, i.e., SE(b). So the test statistic is a z test of the form:

	
z

b

b

b

b
=

−
=

0

SE SE( ) ( )
.
	

That is, the test statistic is just the ratio of the coefficient to its standard error. For 
example, from Table  7.1, the test for whether the effect of age is significant is 
z = −0.0278/0.0057 = −4.8772, with a p value that is <0.0001. It is, indeed, very sig-
nificant. The other z test statistics for the other coefficients are calculated in the 
same manner.

�Test Statistics and Confidence Intervals
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The confidence intervals in the column “95 % CI” are arrived at using the stan-
dard errors of the coefficients, along with the knowledge that the coefficients are 
normally distributed. Because each coefficient is normally distributed, adding and 
subtracting 1.96 standard errors from it gives us a 95 % confidence interval for the 
coefficient. For example, a 95 % confidence interval for the coefficient for being 
female is −0.5581 ± 1.96(0.1521) = (−0.8562, −0.2600). This means we are 95 % 
confident that the effect of being female (vs. being male) on the log odds of being 
uninsured is between −0.8562 and −0.2600. This can easily be converted into a 
confidence interval for the odds ratio [Exp(b)] by exponentiating both values. Thus 
exp(−0.8562) = 0.4250, and exp(−0.2600) = 0.7710, which agrees with the confi-
dence interval shown in the table.

There is also a global test for the utility of the model in logistic regression. This 
is comparable to the overall F test in linear regression discussed in the previous 
chapter. If this is significant, then at least one of the coefficients of the regression in 
the population is nonzero, and we then use the z tests discussed above to discern 
which these are. The global test for logistic regression, however, is not an F test. 
Rather it is a chi-squared test and is called the Model Chi-Squared Test (or the 
Likelihood-Ratio Chi-Squared Test) and is denoted “Model χ2” in Table 7.1. As is 
evident, the test is very significant (p < 0.0001), suggesting that the model is of some 
utility in predicting uninsured status.

�Examining Model Performance

Although a model may be of some utility in predicting the study endpoint, we may 
want to know, in particular, how much utility. There are various ways of assessing 
the model’s “fit” to the data or the model’s “predictive utility.” DeMaris (2004) has 
labeled model fit empirical consistency. This refers to the extent to which the study 
endpoint “behaves” the way the model says it should. On the other hand, he labels 
predictive utility discriminatory power. This property refers to the extent to which 
the model is able to separate, or discriminate, different cases’ statuses on the study 
endpoint from each other. Here we discuss measures of both empirical consistency 
and discriminatory power for the logistic regression model.

Hosmer–Lemeshow Chi-Squared Test.  Define a “case” as a subject experiencing the 
event of interest and a “control” as a subject who does not experience the event. 
A widely used test of empirical consistency for the logistic regression model is the 
Hosmer–Lemeshow test (Hosmer and Lemeshow 2000). The idea behind this 
measure is to use the chi-squared statistic to compare the observed frequencies of 
cases and controls in the sample with their expected values under the model. With 
quantitative variables in a logistic regression model, however, each subject typically 
has a unique predicted probability of being a case. This means that there are as many 
different predicted probabilities of being a case as there are subjects in the sample. 
It might seem reasonable to compare whether subjects really are cases with these 
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probabilities, however, this cannot be done using a chi-squared test. In order to 
maintain the properties necessary for the statistic to have a chi-squared distribution, 
subjects are grouped into categories based on their predicted probabilities of being a 
case. In particular, deciles of risk are formed based on the predicted probabilities of 
being a case. Group 1 consists of the n/10 subjects with the lowest probabilities, 
group 2 the n/10 subjects with the next-lowest probabilities, and so on, up to group 
10, which consists of the 10 % of the sample with the highest predicted probabilities. 
Let P̂  equal the predicted probability of being a case, according to the model. Once 
the 10 groups have been identified, the expected number of cases in each group is 
calculated as the sum of P̂  over all subjects in that group. Similarly, the expected 
number of controls is the sum of (1− P̂ ) over all subjects in the same group. The 
Hosmer–Lemeshow statistic is then the chi-squared statistic for the resulting table of 
observed and expected frequencies. Under the null hypothesis that the model is 
empirically consistent, this statistic has a chi-squared distribution with 8 degrees of 
freedom. A significant χ2 implies a model that is not empirically consistent. Table 7.2 
shows the deciles of risk and the ensuing Hosmer–Lemeshow chi-squared test for 
empirical consistency for the logistic regression model in Table 7.1. This table was 
produced by the SAS software program.

The table shows the deciles as the “Group” column. The first decile, consisting 
of 177 subjects, is the group with the lowest risks of being uninsured, according to 
the model. It has 7 observed cases and 170 observed controls. According to the 
model, the expected number of cases for this group is 4.78, and the expected num-
ber of controls is 172.22. The other deciles all have higher risks of being uninsured, 
culminating in Group 10, the highest decile of risk, with 180 subjects. For this 
group, there were 60 observed cases and 120 observed controls. The expected num-
ber of cases and controls in this group, according to the model, are 70.92 and 109.08, 

Table 7.2  Deciles of risk and Hosmer–Lemeshow chi-squared test of empirical consistency

Partition for the Hosmer and Lemeshow Test

Group Total
Uninsurd = 1 Uninsurd = 0

Observed Expected Observed Expected

1 177 7 4.78 170 172.22
2 177 4 7.79 173 169.21
3 177 7 10.62 170 166.38
4 177 10 13.12 167 163.88
5 177 16 16.08 161 160.92
6 177 21 19.75 156 157.25
7 177 30 24.48 147 152.52
8 177 36 31.38 141 145.62
9 177 50 42.09 127 134.91
10 180 60 70.92 120 109.08
Hosmer and Lemeshow Goodness-of-Fit test
Chi-square DF Pr > ChiSq
12.1883 8 0.1430
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respectively. The Hosmer–Lemeshow statistic is shown at the bottom of the table as 
12.1883. It is not significant (p = 0.1430). This means that the expected numbers of 
cases and controls (according to model predictions) are not very different from the 
actual numbers of cases and controls. And this suggests that the model is indeed 
empirically consistent or has an acceptable fit to the data. This statistic is also 
reported in the bottom half of Table 7.1 as “H-L χ2.” However, an empirically con-
sistent model may not have much predictive power, as the following discussion 
reveals.

Pseudo-R2 Values.  In multiple linear regression, the most commonly used measure 
of discriminatory power is R2. In logistic regression, because of the binary nature of 
the study endpoint, calculating an R2 measure is far more complicated. Many 
counterparts to R2 have been proposed for use in logistic regression (see, for 
example, Long 1997), but no single measure is consistently used. Additionally, 
many of these do not have the same interpretation as in linear regression. Although 
they typically range from 0 to 1, they cannot be interpreted as the variance in the 
study endpoint explained by the model. In an extensive simulation, DeMaris (2002) 
investigated the performance of eight popular pseudo-R2 measures for logistic 
regression. The two best-performing measures are shown in Table 7.1 as “Pseudo 
R1

2 ” and “Pseudo R2
2.” An advantage to these two measures is that both of them do 

have an explained-variance interpretation. However, they differ as to what the study 
endpoint represents. Pseudo R1

2  (referred to as “explained risk” and denoted “∆̂” by 
DeMaris) assumes that the study endpoint is a true qualitative difference in state. In 
this example, that’s reasonable. Either one has health insurance or one does not. A 
woman is either pregnant or she is not. And so forth. Pseudo R1

2  is then interpreted 
as the variation in the event in question that is accounted for by the logistic regression 
model. In the current example, it’s telling us that about 10 % of whether or not one 
has health insurance is explained by the model. Pseudo R2

2 , on the other hand 
(called the “McKelvey-Zavoina R2” and denoted “ RMZ

2 ” by DeMaris), is more 
appropriate when the binary study endpoint is a crude proxy for a quantitative 
underlying variable. For example, suppose we are studying depressive 
symptomatology. Subjects have all taken the CES-D and have a score on depressive 
symptomatology as a result. But the only information retained for them is whether 
or not their score was >25, a threshold deemed the cutoff for being clinically 
depressed. So all we have recorded on subjects is a binary indicator of whether or 
not they are clinically depressed. In a logistic regression of this binary indicator on 
a set of predictors, our interest might be in how the predictors influence depressive 
symtomatology per se, not just whether someone is clinically depressed. In that 
case, we might want to estimate the variance explained by our model in the 
quantitative underlying variable of depressive symptomatology. Pseudo R2

2  would 
be the measure to use for this. Thus, if whether or not one has health insurance were 
a proxy for a quantitative measure of the extent of health insurance, say, then Pseudo 
R2

2  is telling us the model explains about 20 % of the variance in that underlying 
measure. As a final note, neither Pseudo R1

2  nor Pseudo R2
2  is a routine part of the 
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output of statistical software. For this reason, they are not yet commonly used. So if 
the reader sees a “Pseudo R2” measure reported for logistic regression, he or she 
should not assume that it has an explained-variance interpretation.

The ROC Curve.  Another way to examine discriminatory power for the logistic 
regression model is to examine how well it allows us to correctly classify subjects 
with respect to the study endpoint. This is assessed in the following manner. Obtain 
the model-predicted probabilities of experiencing the event for each subject, in the 
manner illustrated above for our 25-year-old male. If that probability is greater than 
some criterion value, typically taken to be 0.50, classify that subject as a case. If the 
probability is below the criterion, classify that subject as a control. Then compare the 
model-based classification to the subject’s actual status on Y to see how well the model 
leads to correct prediction of the subject’s status on Y. Repeat this operation for all the 
subjects in the sample. Table  7.3 shows the result of this process for the logistic 
regression model in Table 7.1.

We see that, of 241 uninsured cases in the sample, 18 or 7.5 % were correctly 
classified as uninsured by the model. The probability of a case being classified by 
the model as a case is called the sensitivity of classification; therefore sensitivity is 
7.5 % for this model. On the other hand, the probability of a control being classified 
by the model as a control is called the specificity of classification. In this example, 
1,519 out of 1,532 controls were correctly classified as controls. Therefore, specific-
ity is 99. 2 %. One minus the specificity is the false positive rate, i.e., the probability 
of a control being mistakenly classified by the model as a case. In this instance, that 
is 0.8 %. To the extent that sensitivity is greater than the false positive rate, as in this 
instance, the model has value. The probability of a case being classified as a case is 
greater than the probability of a control being classified as a case. On the whole, 
however, the model doesn’t appear to perform all that well, which is also consistent 
with the relatively low pseudo-R2 values in Table 7.1. In all, 1,519 insured subjects 

Table 7.3  Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,519 223 1,742
99.2 % 92.5 %

Uninsured 13 18 31
0.8 % 7.5 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.50
Sensitivity 7.5 %
Specificity 99.2 %
False positive rate 0.8 %
Percent correctly classified 86.7 %
Percent correct by chance 76.5 %
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were correctly classified as “insured” by the model, and 18 uninsured subjects were 
correctly classified as “uninsured.” That means that (1,519 + 18)/1,773 = 0.867 or 
86.7 % of the cases are correctly classified by the model. However, fully 76.5 % 
would be correctly classified just by chance alone. But most of the errors in classi-
fication are for cases. Perhaps classification performance of the model can be 
improved by setting the criterion lower.

Table 7.4 shows the results of setting the criterion at 0.30 instead of 0.50.
What this table shows is that sensitivity has been improved, but at the cost of 

specificity. Sensitivity is 21.2 % but specificity has dropped to 93.4 %. Nevertheless, 
sensitivity is higher than the false positive rate of 6.6 % But the percent correctly 
classified has also dropped some to 83.6 %. We notice, however, that we are not 
misclassifying the cases as badly as we were in Table 7.3, so there appears to be 
some improvement in that regard.

Since the sample percent uninsured is only 13.59 %, why not try that value as the 
criterion? Table 7.5 shows this result.

Once again, we have improved sensitivity at the expense of specificity, with both 
values now approximately the same—69.7 % and 69.5 %, respectively. And we note 
that sensitivity is more than twice as great as the false positive rate, as well. However, 
this time only 69.5 % of cases are correctly classified, which is actually worse than 
we could do by chance alone! Nevertheless, the accuracy of classification of both 
cases and controls appears to be strongly affected by choice of criterion value.

The idea of varying the classification criterion—as in Tables 7.3, 7.4, and 7.5—
gives rise to the receiver operating characteristic, or ROC, curve. The idea is to 
vary the criterion incrementally from 0 to 1, each time generating a classification 
table such as Tables 7.3, 7.4, and 7.5. Afterwards, a plot of sensitivity against the 
false positive rate, based on the entire collection of classification tables, produces 
the ROC curve. This is shown in Fig. 7.3 for the model in Table 7.1.

The area under the curve, or AUC, is the key measure of interest. (This is also 
called the “concordance index” or the “C” statistic.) It is interpreted as the likelihood 

Table 7.4  Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,431 190 1,621
93.4 % 78.8 %

Uninsured 101 51 152
7.6 % 21.2 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.30
Sensitivity 21.2 %
Specificity 93.4 %
False positive rate 6.6 %
Percent correctly classified 83.6 %
Percent correct by chance 76.5 %
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that a case will have a higher predicted probability of the event than a control 
across the range of criterion values investigated. The diagonal line in the middle of 
the graph represents an AUC of 0.50. This is the minimum AUC a model could 
demonstrate and would suggest a model of absolutely no discriminatory power. 
AUC values above 0.7 generally indicate models with acceptable discriminatory 
power, with higher AUCs implying even better performance. For example, an AUC 
above 0.80 is considered “excellent,” and an AUC above 0.90 is “outstanding” 

Table 7.5  Classification table for being uninsured, based on logistic regression model in Table 7.1

Classified

Observed status

Insured Uninsured Total

Insured 1,065 73 1,138
69.5 % 30.3 %

Uninsured 467 168 635
30.5 % 69.7 %

Total 1,532 241 1,773
86.4 % 13.6 %

Criterion 0.1359
Sensitivity 69.7 %
Specificity 69.5 %
False positive rate 30.5 %
Percent correctly classified 69.5 %
Percent correct by chance 76.5 %
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Fig. 7.3  ROC curve for logistic regression model of uninsured status in Table 7.1
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(Hosmer and Lemeshow 2000). The AUC for the model of uninsured status in 
Table 7.1 is 0.75, which is just in the adequate range, but not great. This suggests 
that the model needs improvement before it would be useful for forecasting.

As a final comment, it should be noted that logistic regression is also used when 
the study endpoint has more than two categories. If these categories represent a 
qualitative variable, the procedure is then called multinomial logistic regression. If 
the categories represent rank order on some attribute but there are not enough cate-
gories to treat the response as a quantitative variable for linear regression, then the 
technique is called either ordered logit modeling or ordinal logistic regression. 
These variants on the logistic regression model see extensive use in the social and 
behavioral sciences, but are not often employed in medical research.

�Applications: Logistic Regression in Action

Logistic regression is an extremely popular tool in medical research. Below we 
present several examples of interesting applications of the technique to different 
medical issues.

�Morbidity Following Kidney Surgery

Abouassaly et al. (2011) studied the effect of patient age on the morbidity of kidney 
surgery associated with renal cell carcinoma. They were concerned that previous 
studies, largely based on single-institution populations, have painted too sanguine a 
picture about outcomes for this patient population. In their words (p. 812): “Better 
assessment of surgical morbidity, particularly in those at highest risk, i.e., elderly 
patients, would allow better preoperative counseling and may suggest the need for 
less invasive therapy in these groups, e.g., active surveillance or ablative therapy.” 
They employed a database of patients treated between 1998 and 2008, containing 
information on all acute care renal hospitalizations in nine of the ten Canadian prov-
inces. They excluded pediatric patients, as well as anyone treated for other than a 
solid or cystic renal mass, leaving a total of 24,578 patients for analysis. Explanatory 
variables included patient age, Charlson score (a measure of comorbidity), year 
(coded as fiscal year category), surgeon and hospital volumes for kidney procedures 
(both coded in quartiles), and patient income level (coded in quintiles). The study 
endpoint for the logistic regression was the probability of the patient having any 
complication after surgery. Table  7.6 is a partial reproduction of their logistic-
regression results table (results for complications after partial nephrectomy as 
another study endpoint, as well as some covariates, are not shown).

The results shown here are for the case of radical nephrectomy surgery. Notice 
that all effects are for qualitative factors, represented as sets of dummy variables. 
There is just one p value reported in the column “Overall p Value” for each qualita-
tive factor. This p value tells us whether that qualitative factor, per se, has a significant 
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effect on the risk of complications. If it does, then we would want to know which 
categories of that factor are “significant.” Each category having a coefficient associ-
ated with it is being compared to the reference group (labeled “Referent” in the table) 
for the dummy variables representing that factor. All effects are being reported as 
odds ratios (OR), with 95 % confidence intervals for the odds ratios in parentheses.

For example, being 80 or older is associated with odds of complications that are 
1.74 times higher than for those who are under 50 (the reference group), controlling 
for the other factors in the model. Or, those 80 or older have 74 % greater odds of 

Table 7.6  Logistic 
regression analysis  
of predictors of  
complications after radical 
nephrectomy (RN)

RN*

OR (95 % CI) Overall p Value

Age category <0.0001
Less than 50 Referent
50–59 0.98 (0.88–1.08)
60–59 1.14 (1.03–1.25)
70–79 1.39 (1.26–1.53)
80 or greater 1.74 (1.52–1.98)

Charlson category <0.0001
0 Referent
1 1.88 (1.73–2.05)
2 3.57 (3.19–4.00)
3 or greater 6.22 (5.18–7.48)

Fiscal yr category <0.0001
1998–1999 Referent
2000–2001 0.99 (0.90–1.09)
2002–2003 1.04 (0.94–1.15)
2004–2005 0.95 (0.86–1.05)
2006–2007 0.68 (0.61–0.75)

Surgeon vol quartile <0.0001
Low Referent
Intermediate 0.83 (0.77–0.91)
High 0.76 (0.69–0.83)
Very high 0.82 (0.74–0.91)

Hospital vol quartile <0.0001
Low Referent
Intermediate 1.02 (0.94–0.91)
High 1.41 (1.28–1.55)
Very high 1.41 (1.28–1.56)

Income quartile 0.039
Very Low Referent
Low 1.06 (0.96–1.17)
Intermediate 1.15 (1.04–1.27)
High 1.15 (1.03–1.27)
Very high 1.13 (1.02–1.26)

Reprinted with permission of Elsevier Publishers from 
Abouassaly et al. (2011)
*C-statistic = 0.66, Hosmer–Lemeshow p = 0.044
†C-Statistic = 0.65, Hosmer–Lemeshow p = 0.73
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complications compared to those under 50. Those having a Charlson score of 3 or 
greater have 6.22 times greater odds of developing complications, compared to 
those with a Charlson score of zero, and so forth. Whether each of these compari-
sons of a category of a factor with the reference group for that factor is significant 
can be discerned from the confidence interval for its odds ratio. If that confidence 
interval does not contain 1.0, then that odds ratio is significant. Returning to our two 
examples, we see that the confidence interval for the OR for age 80 or greater is 
1.52–1.98. This interval does not contain 1.0, so it is significant. This means that the 
odds of complications for those aged 80 or over are significantly greater than for 
those aged less than 50. Or, the confidence interval for the OR for a Charlson score 
of 3 or greater is 5.18–7.48. Again, this interval does not contain 1.0, so this OR is 
significant. Those with a Charlson score of 3 or greater have significantly greater 
odds of complications, compared to those with a Charlson score of zero. What do 
we do if we want to know whether those with a Charlson score of 3 or greater have 
greater odds of complications than those with Charlson scores of 2 (which is not the 
reference group)? What the analyst has to do is simply to change the reference 
group to those with a Charlson score of 2 and rerun the model. Then the OR for 
those with a Charlson score of 3 or greater will be with reference to those with a 
Charlson score of 2. This latter comparison may or may not be of interest. We see 
that several of the ORs are not significant, because their CIs do contain 1.0: the ORs 
for fiscal years 2000–2005, the OR for the intermediate hospital-volume quartile, 
and the OR for the low income quintile fall into this category.

Measures of empirical consistency and discriminatory power are reported at the 
end of the table. The starred (*) entries are for radical nephrectomy (the other two 
entries are for partial nephrectomy, whose results are not shown). We see that the 
AUC (“C-statistic”) is only 0.66. This is not considered acceptable discriminatory 
power for a logistic regression model. We notice, too, that the p value for the 
Hosmer–Lemeshow chi-squared is just significant, at p = 0.044. This also suggests a 
model that does not have a particularly good fit to the data. That very significant 
explanatory variable effects can coexist with a marginally performing model here is 
due to the very large sample size. In this case, there is a considerable amount of 
power for detecting “significant” effects, even though model performance is less 
than impressive on the whole.

�Caffeine, Smoking, and Parkinson Disease

Coffee drinking and cigarette smoking have both been shown, in a number of 
studies, to be associated with a lower risk of developing Parkinson disease, or PD 
(Liu et al. 2012). The authors explain the connection of Parkinson’s with caffeine 
(p. 1200): “It has been hypothesized that caffeine and its major metabolites may 
protect dopaminergic neurons by antagonizing adenosine A2A receptor.” With this 
in mind, Liu and colleagues undertook an evaluation of the influence of caffeine 
intake and smoking on the development of PD in a large cohort of men and women. 
They utilized data from the NIH-AARP Diet and Health Study on AARP members 
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aged 50–71 from six US states and two metropolitan areas. A baseline survey on 
diet and lifestyle, including coffee and cigarette consumption, was answered in 
1995–1996. Then a follow-up survey was conducted in 2004–2006 among surviv-
ing participants to ascertain the occurrence of major chronic diseases such as 
Parkinson’s. After excluding cases with missing data, the sample size was 304,980 
participants, 1,100 of whom had been diagnosed with PD during or after the year 
2000. Caffeine intake was assessed at least 4 years before PD diagnosis for these 
individuals. In studies without random assignment to levels of the explanatory vari-
ables, an important means of control to ensure causal priority is to exclude certain 
cases. The authors explain (p. 1201): “Because caffeine intake was assessed in 
1995–1996 and we were concerned that PD patients might have altered their coffee 
consumption, even prior to PD diagnosis, we excluded 1,094 potential cases diag-
nosed before 2000 from the analyses.” That is, for individuals diagnosed too close 
to baseline (1995–1996), at which coffee consumption was measured, developing 
PD might actually have caused an increase in their coffee consumption. Since cof-
fee consumption is presumed to be a cause of level of risk for PD, these patients 
demonstrating reverse causation had to be excluded from the study. The statistical 
analysis consisted of a logistic regression of PD (coded 1 if the respondent had PD, 
0 otherwise) on caffeine intake plus control variables.

Participants with higher caffeine intake were more likely to be male, Caucasian, 
and less physically active. Caffeine intake was strongly associated with cigarette 
smoking. Higher coffee consumption was associated with a lower risk for PD. But 
once cigarette smoking was controlled in the analysis, this effect only held for caf-
feinated coffee. Moreover, consumption of other caffeinated beverages (e.g., tea, 
soft drinks) was not related to the risk of PD (Liu et al. 2012). The principal findings 
are explained by the authors (p. 1204) and shown in Fig. 7.4:

Duration of smoking was strongly associated with lower PD risk; further adjustment for 
caffeine intake barely changed the risk estimates for smoking (Web Table 3). Joint analysis 
of smoking duration and caffeine intake showed that smoking was associated with lower 
PD risk within each level of caffeine intake (Figure 1; for all subgroups, Ptrend ≤ 0.01). In 
contrast, higher caffeine intake was significantly associated with lower PD risk among 
never smokers (Ptrend = 0.04), but the monotonic trend was less clear among ever smokers. 
Nevertheless, compared with never smokers with low caffeine intake, long-term smokers 
with high caffeine intake had the lowest risk of PD. The statistical test for a potential inter-
action between smoking and caffeine intake was far from statistically significant (P = 0.57).

As the authors made clear, there is no interaction between smoking and caffeine 
intake in their effects on the probability of developing PD. The effects of caffeine 
intake and smoking appear to be cumulative in reducing the risk for PD, with the 
lowest odds of developing PD shown by the group with the last bar on the right in 
the figure. This is the group with high caffeine intake who are either past smokers 
who smoked for 30 or more years or who are current smokers. Their odds ratio of 
0.48 is comparing their odds of PD to those on the far left (with an OR = 1.00), the 
reference category. Thus, the lowest risk group for PD has odds of developing PD 
that are only about half (i.e., 0.48) the odds of those with low caffeine intake who 
never smoked. Controlling for age at baseline, race, physical activity, and gender do 
not alter these findings.
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�PSA as a Predictor of Prostate Cancer

Crawford and colleagues (2011) conducted a nonexperimental study to determine 
the prognostic value of initial PSA levels in men for identifying the risk of develop-
ing prostate cancer (PC). Their contention is that men with a first PSA reading 
between 1.5 and 4.0 face the same future risk of PC as those with a PSA level above 
4.0 in any given examination (Crawford et al. 2011). Their database consisted of 
men in the Health Alliance Plan of Henry Ford Health System between 1997 and 
2008. They were at least 40 years old, had initial PSA values between 0 and 4.0 ng/
mL, and had a minimum of 4years of follow-up after their first PSA. As in the previ-
ous study, exclusionary criteria were employed to exercise control over direction of 
causality (p. 1744):

To assess the future predictive value of a first PSA test, patients could not have been in the 
system for less than 6 months (to rule out the possibility of referral for prostate cancer) and 
patients could not have received a diagnosis of prostate cancer within 6 months of baseline 
PSA (otherwise, possibly representing the PSA that initiated biopsy and diagnosis). These 
exclusionary criteria were designed to ensure temporal separation between the baseline 
PSA and a subsequent diagnosis of cancer.

The study endpoint was a diagnosis of PC, coded 1 for such a diagnosis, and 0 
otherwise. This was then analyzed via logistic regression using initial PSA value as 
the primary predictor. Initial PSA value was dichotomized as <1.5 vs. 1.5–4. The 
authors’ description of their analytic technique is instructive (p. 1744):

Multivariate analysis, adjusting for age and race, was performed using SAS v9.1.3. Initially, 
the relative risk of prostate cancer was determined for all subjects based on a PSA threshold 
of 1.5 ng/mL. The PSA threshold analysis was subsequently stratified by race, controlling 
for age. To determine optimal PSA threshold, receiver operating characteristic curves were 
constructed and then the sums of sensitivity and specificity were evaluated. Area under the 
receiver operating characteristic curve (AUC) was used to determine the predictive ability 
of PSA values for prostate cancer. A perfect test has an AUC of 1.0, whereas a test with no 
diagnostic value has an AUC < 0.5.

Fig. 7.4  Odds ratios for PD 
according to caffeine intake 
(low, moderate, or high) and 
smoking status (Striped 
bars = Never; Gray bars = Past 
Smoker for 1–29 Years; 
Dotted bars = Past Smoker 
for ≥30 Years or Current 
Smoker). Reprinted with 
permission of Oxford 
University Press from Liu 
et al. (2012)
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We notice that the authors mention the statistical software package they used to 
analyze the data as being SAS v 9.1.3. SAS output has been shown in previous 
chapters. We see, also, that some analyses were “stratified” by race, that is, analyses 
were run separately for different racial groups, and included age as a control vari-
able. Apparently the authors explored different PSA cutoffs for the dichotomized 
PSA explanatory variable but found that 1.5 provided the greatest AUC and the best 
values of sensitivity and specificity. Moreover, AUC was used to assess discrimina-
tory power of the model, as has been illustrated above for the GSS example.

The primary study findings are illustrated in Fig. 7.5.
As illustrated in the figure, and emphasized by the authors, men with a baseline 

PSA ≥ 1.5 ng/mL had odds of prostate cancer that were 15 times higher than those 
with PSA < 1.5 ng/mL. For African-American men, those with PSA ≥ 1.5 ng/mL had 
a PC risk that was 19 times higher than those with PSA < 1.5 ng/mL. How good was 
the researchers’ logistic regression model for forecasting PC? The AUC results are 
depicted in Fig. 7.6.

The figure shows that the AUC was 0.873, which suggests excellent discrimina-
tory power for the authors’ model. Sensitivity and specificity, according to the fig-
ure, are both about 0.80.

�Vitamin D Deficiency and Frailty

Another study employing logistic regression and reporting the AUC for the model 
is by Wilhelm-Leen et al (2010). Their primary study endpoint was frailty in older 
persons, described as a “multidimensional phenotype that describes declining phys-
ical function and a vulnerability to adverse health outcomes in the setting of 

Fig. 7.5  Risks of prostate cancer for the entire sample (a) and African-Americans Only (b). 
Reprinted with permission of John Wiley and Sons, publishers, from Crawford et al. (2011)
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physical stress such as illness or hospitalization” (Wilhelm-Leen et  al., p. 171). 
Their hypothesis was that 25-hydroxyvitamin D deficiency would be predictive of 
frailty in older adults, controlling for advanced age and chronic medical conditions. 
They utilized data from the Third National Health and Nutrition Evaluation Survey, 
a nationally representative survey of the health status of persons residing in the USA 
collected in the period 1988–1994. Their sample consisted of 5.048 persons aged 60 
or older with 25-hydroxyvitamin D data available. Frailty was coded as 1 for frail, 
0 for not frail. This was based on respondents having three or more of the following 
conditions: low body weight for height, slow walking, weakness, exhaustion, and 
low physical activity. The authors controlled for several factors in their analysis, 
such as age, sex, and, poverty status, and various comorbidities, such as diabetes, 
chronic lung disease, and chronic kidney disease. The logistic regression results for 
Whites are shown in Table 7.7.

In the original table title (not reproduced here), AUC was reported as 0.767. This 
indicates a model with acceptable discriminatory power. We see, also, that the pri-
mary explanatory variable, vitamin D, has the expected effect. Those with D level 
less than 15 ng mL−1 have an estimated odds of being frail that is over three times 
greater (3.7, to be exact) than those with D levels greater than or equal to 30 ng mL−1. 
And this holds while controlling for age, gender, poverty-to-income ratio (PIR), and 
various comorbidities. As for the other factors, there appears to be no significant 
gender difference in the risk of frailty. But not surprisingly, the probability of being 
frail increases with age, a lower PIR, and the conditions of arthritis, nonskin cancer, 
chronic kidney disease, cardiovascular disease, and diabetes.

�Heat Sensitivity in MS Patients

Sensitivity to environmental heat is a well-known concomitant of multiple sclerosis 
(MS) that exacerbates MS symptoms. Flensner et al. (2011) examined the effects of 

Fig. 7.6  Receiver operating 
characteristic curve for PC 
prediction for all study 
patients. Reprinted with 
permission of John Wiley and 
Sons, publishers, from 
Crawford et al. (2011)
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heat sensitivity on a variety of common MS symptoms. Their data were drawn from 
334 MS sufferers in the Swedish MS Register. Inclusion criteria were being diag-
nosed with MS, having an Expanded Disability Status Score (EDSS) between 0 and 
6.5, and being between 20 and 65 years of age (Flensner et al. 2011). Information 
was gathered from respondents via mailed questionnaires. Heat sensitivity was 
based on a single question: “Are you sensitive to heat?” (Flensner et al. (2011), p. 2). 
This was coded simply “yes” (1) and “no” (0). Table 7.8 presents logistic regression 
results for the effects of heat sensitivity and the EDSS score on several MS symp-
toms. The authors’ table title notes that each symptom is coded “1 = never to some-
times, 2 = usually to always.” We should note that, although the study endpoint for 
logistic regression is usually coded 1 and 0, this coding is not a requirement. Any 
two numerical codes will suffice, provided they are recognized by the software used 
to analyze the data.

As is evident, heat sensitivity has significant effects on six of the eight symptoms 
shown. In all cases, heat sensitivity exacerbates the symptom. For example, those 
who are heat sensitive have odds of fatigue that are about two-and-a-half times 
greater than those who are not heat sensitive. Similar effects are seen for leg weak-
ness, concentration difficulties, pain, paraesthesia, and urination urgency. EDSS is 
also associated with several symptoms. Unique to this analysis is the reporting of a 

Table 7.7  Logistic 
regression results for frailty 
of white respondents

OR 95 % CI

Vitamin D (ng mL−1)
≥30 Reference –
15– < 30 1.0 0.6–1.7
<15 3.7 2.1–6.8

Age (years)
60–69 Reference –
70–79 1.9 1.3–2.8
≥80 2.5 1.4–4.5

Sex
Male Reference –
Female 1.2 0.8–1.8

Poverty to income ratio (PIR)
PIR ≥ 2 Reference –
PIR < 2 1.9 1.3–2.6

Comorbidity
Arthritis 3.8 2.2–6.5
Cancer, nonskin 1.9 1.2–2.9
Chronic liver disease 1.4 0.7–2.7
Chronic lung disease 1.4 0.8–2.3
Chronic kidney disease 1.7 1.1–2.6
Cardiovascular disease 1.8 1.2–2.6
Diabetes 1.6 1.1–2.3

Reprinted with permission of John Wiley and Sons, 
publishers, from Wilhelm-Leen et al. (2010)
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pseudo-R2 value: “R2 Nagelkerke.” For each MS symptom, R2 pertains to the logistic 
regression model containing two predictors: EDSS and heat sensitivity. The 
Nagelkerke R2 is similar to Pseudo R2

2  in Table 7.1 and discussed above. It is a good 
estimate of the quantitative variable that underlies a binary indicator. In this case, in 
which the study endpoints refer to the frequency or intensity of MS symptoms, such 
a quantitative underlying variable is quite plausible. The advantage to the Nagelkerke 
R2 is that it is frequently reported as a standard part of logistic regression software. 
The disadvantage is that, unlike the linear regression R2, Pseudo R1

2, and Pseudo R2
2, 

it does not have an explained-variance interpretation (DeMaris 2002). It simply 
indicates the degree of discriminatory power of the model, on a scale from 0 to 1. 
Apparently, the model demonstrates the greatest predictive efficacy for the study 
endpoint “balance problems.”

This chapter has dealt primarily with binary logistic regression, a technique that 
is appropriate whenever we have a dichotomous outcome variable. But what should 
we do if we have a dichotomous outcome but it represents an event that occurs to 
cases that are followed longitudinally? For example, we might follow patients from 
the time of their diagnosis with a potentially fatal disease to see what factors affect 
whether they die. It turns out that we do not just want to perform a logistic regres-
sion with death as the binary outcome as our analytic strategy. The reason is that we 
want to take account of how long they survive until death, not just whether they die 
or not. There will also be patients who are still alive at the end of the observation 
period. These patients have survival times that are said to be “censored.” Rather than 
just treat these cases as though they are “safe,” we incorporate the censoring into the 
analyses. These nuances of time-to-event data are all readily incorporated into the 
technique called survival analysis, the subject of the next chapter.

Table 7.8  Logistic regression analysis of common MS symptoms on EDSS score and heat sensitivity

MS symptoms

EDSS Heat sensitivity

R2 NagelkerkeOR 95 % CI P-value OR 95 % CI P-value

Fatigue 1.15 0.98–1.32 0.086 2.55 1.48–4.25 <0.001 0.136
Leg weakness 1.51 1.26–1.81 <0.001 2.21 1.24–3.93 0.007 0.274
Spasms 1.79 1.43–2.22 <0.001 1.65 0.77–350 0.194 0.232
Balance problems 1.62 1.34–1.94 <0.001 1.48 0.83–2.65 0.181 0.285
Concentration 
difficulties

1.08 0.92–1.28 0.354 3.40 1.85–6.25 <0.001 0.123

Pain 1.09 0.92–1.29 0.344 3.55 1.87–6.77 <0.001 0.136
Paraesthesia 1.20 1.02–1.41 0.026 2.10 1.21–3.64 0.008 0.095
Urination urgency 1.27 1.05–1.54 0.016 2.75 1.28–5.90 0.009 0.256

Reprinted from Flensner et al. (2011), an open-access journal
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