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                                     What Is Statistics? 

  Question: What’s the difference between accountants and statisticians?  
  Answer: Well, they both work with numbers, but statisticians just don’t have the 
personality to be accountants.  

 Such is the stereotype of statisticians and statistics. Dull, plodding, and con-
cerned with the tedious bean-counting enterprise of compiling numbers and tables 
and graphs on topics nobody much cares about. Nothing could be further from the 
truth. Well, okay, statisticians  are  dull; but statistics is one of the most exciting dis-
ciplines of all. Like astronomy, it’s an investigation of the unknown—and, possibly, 
 unknowable —world that’s largely invisible to the naked eye. But this world is the 
one right under our noses: in terms of the subject of this book, it consists of human 
beings and their health. In this fi rst chapter, we will consider what statistics is and 
why it is essential to the medical enterprise, and to science in general. Here, we 
defi ne the science of statistics and relate it to real-world medical problems. Medical 
research is typically concerned with cause-and-effect relationships. The causes of 
disease or of health problems are important, as are the causal effects of treatments 
on medical outcomes. Therefore, we also discuss in this chapter the notion of a 
causal effect, and we ponder the conditions necessary for inferring causality in 
research. 

    What Statistics Is 

 Statistics is the science of converting data into evidence.  Data  constitute the raw 
material of statistics. They consist of numbers, letters, or special characters repre-
senting measurements of properties made on a collection of cases. Cases are the 
units of analysis in our study. Cases are usually people, but they could be days of 
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the week, organizations, nations or, in meta-analyses, other published studies. 
 Evidence  refers to information pertinent to judging the truth or falsehood of an 
assertion. The heart of statistics is called  inferential  statistics. It’s concerned with 
making inferences about some population of cases. To do that, it uses a sample 
drawn from that population of cases and studies  it  rather than the entire population. 
On the basis of fi ndings from the sample, we estimate some characteristic of a 
population or we judge the plausibility of statements made about the population. 
Let’s take an example.  

    An Example 

 A frequent interest in medical research is HIV transmission and the course of the 
disease for those who are so infected (see, for example, Bendavid et al.  2012 ; Paton 
et al.  2012 ). Suppose a team of medical researchers is interested in the association 
between recreational intravenous drug use (IVDU) and contracting HIV in the USA. 
They believe that needle sharing is the prime means of transmission of this disease 
among the IVDU population. So they want to estimate the proportion of that popu-
lation who is involved in needle sharing, for one thing. Then they want to test the 
hypothesis that needle sharing is a risk factor for becoming HIV positive (HIV+). 
But if they fi nd that needle sharing is, in fact, associated with an elevated risk for 
HIV+, they want to ensure that it is the practice of sharing needles that is the “driver” 
of this association. That is, they need to rule out the possibility that it is some other 
risky behavior associated with sharing needles that is actually causing the associa-
tion. Examples of other risky behaviors possibly associated with both IVDU and 
needle sharing are having unprotected sex, having sex with multiple partners, poor 
hygiene practices, and so forth. 

 This research problem presents several dilemmas. First, the population of inter-
est is  all recreational IV drug users in the USA . Now, what do you think the chances 
are of fi nding that population, let alone studying it? That’s right—zip. Most users 
would not admit to having a drug habit, so we’re unlikely to get very far surveying 
the USA population and asking people to self-identify as recreational IV drug users. 
So our let’s say our team manages to recruit a sample of drug users, perhaps through 
a newspaper or magazine advertisement offering fi nancial remuneration for taking 
part in a study. They fi nd that 50 % of the sample of IV drug users share needles 
with other users. At this point the researchers would like to use this fi gure as their 
estimate of the proportion of all IV drug users in the USA who share needles. How 
should they proceed? Let’s recognize, fi rst, that the population proportion in ques-
tion is a summary measure that statisticians refer to as a  parameter . A parameter is 
just a summary statistic measuring some aspect of a population. Second, the param-
eter is unknown, and, in fact,  unknowable . It’s not possible to measure it directly, 
even though it exists “out there,” somewhere. The best the team can do is to estimate 
it and then fi gure out how that estimate relates to the actual parameter value. We will 
spend much of this fi rst part of the book on how this is accomplished. 
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 Next, in order to test the primary hypothesis about needle sharing being a cause 
of HIV+ status, there has to be a comparison group of non-IV drug users. These 
individuals are much easier to fi nd, since most people don’t engage in IVDU. Let’s 
say the team also recruits a control sample of such individuals, matched with the 
IVDU group on gender, age, race, and education. They then need to measure all the 
relevant variables. This includes the “mechanisms,” aside from needle sharing, that 
they believe might be responsible for the IVDU-HIV+ association, i.e., having 
unprotected sex, having sex with multiple partners, quality of personal hygiene, 
and so forth. In order to fully evaluate the hypothesis, they will conduct a  multi-
variable analysis  (or  multivariate analysis —these terms are used interchangeably). 
HIV+ status will be the primary  study endpoint  (or  response variable ), and needle 
sharing and the other risky behaviors will be the  explanatory variables  (or  regres-
sors, predictors , or  covariates ). The multivariable analysis will allow them to 
examine whether needle sharing is responsible for the (presumed) higher HIV+ rate 
among the IVDU vs. the non-IVDU group. It will also let them assess whether it is 
needle sharing, per se, rather than one of the other risky behaviors that is the driv-
ing factor. We will discuss multivariable statistical techniques in a later section of 
the book. 

 However, there are other complications to be dealt with. Suppose that some of 
the subjects of the study fail to provide answers to some of the questions? This cre-
ates the problem of  missing data . We can simply discard these subjects from the 
study, but then we (a) lose all of the other information that they did provide and (b) 
introduce selection bias into the study because those who don’t answer items are 
usually not just a random subset of the subjects. This means that those left in the 
sample are a select group—perhaps a more compliant type of individuals—and the 
results then will only apply to people of that type. One solution is that the research-
ers can  impute  the missing data and then still include the cases. Imputation is the 
practice of fi lling in the missing data with a value representing our best guess about 
what the missing value would be were it measured. The state of the art in imputation 
techniques is a procedure called  multiple imputation . Multiple imputation will be 
covered later in the book in the chapter on advanced techniques. 

 The last major issue is that it’s always possible that some characteristic that the 
researchers have not measured might be producing the association between needle 
sharing and HIV+ status. That is, it’s not really needle sharing that elevates 
HIV+ risk. It’s some unmeasured characteristic of individuals that also happens to 
be associated with needle sharing. An unmeasured characteristic that may be infl u-
encing one’s results is often referred to as  unmeasured heterogeneity . The term 
refers to the fact that the characteristic exhibits heterogeneity—i.e., variance—
across individuals that is related to the variation in the study endpoint. The fact that 
it is unmeasured means that there is no easy way to control for it in our analyses. We 
will discuss this problem in greater detail later in this chapter. And we will see one 
possible statistical solution to this problem, called  fi xed-effects regression modeling , 
when we get to the advanced techniques chapter. In sum, statistics allows us to 
address research problems of the foregoing nature and provide answers to these 
kinds of complex questions that are posed routinely in research.  
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    Populations and Samples 

 The population in any study is the  total collection of cases we want to make 
 assertions about . A “case” is the smallest element constituting a single “replica-
tion” of a treatment. Suppose, for example, that you are interested in the effect of 
diet on prostate-specifi c antigen (PSA). You suspect that a diet heavy in red meat 
contains carcinogens that raise the risk for prostate cancer. So you anticipate that a 
red-meat- rich diet will be associated with higher PSA levels. Suppose you have a 
sample of six men from each of two groups: a control group eating a balanced diet 
and a treatment group eating a diet overloaded with red meat. In this case, individual 
men are the cases, since each man eating a particular diet represents a replication of 
the “treatment.” By “treatment,” in this case, we mean diet, of which there are two 
treatment levels: balanced and red-meat rich. Who is the population here? The pop-
ulation we’d ideally like to be talking about is the entire population of adult males 
in the USA. So our 12 men constitute a sample from it.  

    Probability vs. Nonprobability Samples 

 Statisticians distinguish two major classes of samples: probability and nonprobabil-
ity. A  probability sample  is one for which one can specify the probability that any 
member of the population will be selected into it.  Nonprobability samples  do not 
have this property. The best-known probability sample is a simple random sample 
or SRS. An SRS is one in which every member of the population has the same 
chance of being selected into the sample. For example, if the population consists of 
50,000 units and we’re drawing an SRS of 50 units from it, each population member 
has a 50/50,000 = 0.001 chance of being selected. Probability samples provide 
results that can be generalized to the population. Nonprobability samples don’t. In 
our diet study example, if the 12 men were randomly sampled from the population 
of interest, the results could be generalized to that population. Most likely, though, 
the 12 men were recruited via advertisement or by virtue of being part of a patient 
population. If the 12 men weren’t sampled randomly “from” a known population, 
then what kind of population might they represent?  

    Sampling “to” a Population 

 Many samples in science are of the nonprobability type. What can we say about the 
“population” of interest, then? Some statisticians will tell you: nothing. But that 
implies that your sample is so unique, there’s no one else who behaves or responds 
the same way to a treatment. That’s not very realistic. Rather, what we can do with 
nonprobability sample results is use the characteristics of sample participants to 
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suggest a hypothetical population the results might be generalizable to. Much of the 
time in studies of this nature, the sample consists of volunteers responding to a 
newspaper ad announcing a clinical trial. In research involving the human body, one 
could, of course, argue that people are suffi ciently similar biologically that the 12 
men in the example above are representative of men in general. But statistically, at 
least, generalizing to a population requires sampling randomly from it. Another way 
to defi ne the population, however, is to reason in the opposite direction. That is, 
whatever the manner in which the 12 men were recruited for this study, suppose we 
repeat that recruitment strategy and collect 12 men a second time. And suppose we 
repeat it, again, and collect a third group of 12 men. And then suppose we go on and 
on like this, collecting sample after sample of 12 men by repeating the recruitment 
strategy over and over, ad infi nitum. Eventually, the entire collection of men accu-
mulating from all of these samples could be considered the “population.” And our 
original sample of 12 men can then be thought of as a random sample from  this  
population. This has been termed “sampling  to  a population,” as opposed to sam-
pling  from  a population (DeMaris  2004 ), and is one way of defi ning a conceptual 
population that one’s inferences might apply to.  

    Statistics and Causal Inference 

 The scientifi c enterprise is typically concerned with cause and effect. What causes 
elevated PSA levels, for example? Or, what causes prostate cancer? Or, what causes 
prostate cancer to develop sooner rather than later? Statistics can aid in making 
causal inferences. To understand its utility in this arena, however, we fi rst have to 
defi ne what we mean by “cause,” or, more properly, a “causal effect.” The reigning 
defi nition in contemporary science is due to two statisticians, Jerzy Neyman and 
Donald Rubin (West and Thoemmes  2010 ). The Neyman–Rubin causal paradigm is 
simple, mathematically elegant, and intuitive. We normally think of a cause as 
something that changes life’s “trajectory” from what would have transpired were 
the cause not operating. The Neyman–Rubin paradigm simply puts this in mathe-
matical terms.  

    A Mathematical Defi nition of “Causal Effect” 

 Employing, again, the diet-PSA example, suppose a man follows a balanced diet for 
some period of time. His PSA level measured after that period would be denoted 
Yc. And then suppose he were instead to follow a meat-heavy diet for the same 
period. Denote his PSA level after that as Yt. Notice that this scenario is  contrary to 
fact . He can’t follow both diets over the same period; he’s either on one or the other. 
But suspend disbelief for a moment and suppose that’s what he does. The causal 
effect of the steak diet on PSA is defi ned as: Yt − Yc. It is the boost in PSA 
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attributable to the steak diet. So if his PSA is 2.6 on the balanced diet vs. 4.3 on the 
steak diet, the causal effect of diet is 4.3 − 2.6 = 1.7, or the steak diet results in a 
boost in PSA level by 1.7. 

 If we were to apply this regimen to every man in the population and then average 
all of the (Yt − Yc) differences, we would have the  Average Causal Effect , or ACE, 
of the steak diet on PSA. The ACE is often the  parameter  of interest in research. If 
the outcome of interest is a qualitative one, then the true causal effect is defi ned with 
a slightly different measure. So if the man in question has a 30 % chance of develop-
ing prostate cancer on the balanced diet, but a 60 % chance on the steak diet, the 
causal effect of a steak diet on the risk of cancer is 0.60/0.30 = 2. Or, a steak diet 
doubles the risk of cancer for this particular man. The number 2 is called the  relative 
risk  for cancer due to a steak, vs. a balanced, diet.  

    How Do We Estimate the ACE? 

 Because the ACE is contrary-to-fact, and therefore not measurable, how can we 
estimate it? It turns out that the ACE can be estimated in an unbiased fashion as the 
mean difference in PSA levels between men on a balanced vs. a meat diet in a study 
if a particular condition is met. The condition is referred to as the  ignorability  condi-
tion: the treatment assignment mechanism is ignorable if the potential outcomes 
(e.g., PSA levels) are independent of the treatment assignment “mechanism.” What 
this means in practice, using our example, is that there is no a priori tendency for 
those in the steak-diet condition to have higher or lower PSA levels than men in the 
other condition  before the treatments are even applied . The only way to ensure this 
is to  randomly assign  the men to the two diet conditions, and this is the hallmark of 
the clinical trial, or, for that matter, any experimental study. Random assignment to 
treatment groups ensures that,  on average , treatment and control groups are exactly 
the same on all characteristics at the beginning of a study. In this manner, we are 
assured that the treatment effect is a true causal effect and is not an artifact of a 
latent  self-selection factor . It is random assignment to treatment levels that provides 
researchers with the best vehicle for inferring causality.  

    Example of Latent Self-Selection 

 As an example of latent self-selection confounding causal inference in a study, 
regard Fig.  1.1 , below. It shows one possible scenario that could occur in the absence 
of random assignment, such as if we simply study groups of men who have chosen 
each type of diet themselves.

   The negative numbers represent inverse relationships. The “−0.75” on the curved 
arrow connecting health awareness with meat diet is a  correlation coeffi cient . It 
means those with greater health awareness are less likely to be on a meat diet. They 

1 Statistics and Causality



7

are probably men who lead healthy lifestyles that include moderate alcohol intake, 
nonsmoking, plenty of exercise, regular medical checkups, etc. The “−1.5” from 
health awareness to PSA levels is a  causal effect . It means that health awareness 
leads to lower PSA levels. Simply looking at the difference in average PSA between 
the two groups of men while ignoring health awareness confounds the true relation-
ship of diet to PSA. There might be no association of diet with PSA (shown by the 
“0” on that path in the diagram). But if health awareness is not “controlled” in the 
study, then the indirect link from meat diet to PSA level through health awareness 
will manifest itself as a positive “effect” of a meat diet on PSA level. This happens 
because ignoring health awareness is equivalent to multiplying together the two 
negative numbers: (−0.75) × (−1.5) = 1.125, and then adding the result to the path 
from meat diet to PSA level. This makes it appear that meat diet has a positive effect 
on PSA level: the “1.125” would appear to be the average PSA level difference 
between the men in the two groups. The take-home message here is simple: only 
random assignment to treatment conditions lets us confi dently rule out latent selec-
tion factors as accounting for treatment effects in a study. In epidemiological and 
other observational—as opposed to experimental—studies, latent selection factors 
are an ever-present threat. They are typically countered by measuring any such 
selection factors ahead of time, and then statistically controlling for them when 
estimating causal effects. Under the right conditions, we can even eliminate  unmea-
sured  factors, as we shall see in the advanced techniques chapter. And we shall have 
more to say about statistical control, in general, later in this primer.  

    Internal vs. External Validity: A Conundrum 

 At this point, we have discussed the nature of causal effects, the advantages of 
random assignment to treatment conditions, and latent selection factors in 
 nonexperimental studies. It is worth noting, as a fi nal issue, that both experimental 
and nonexperimental studies have particular advantages and drawbacks. And both 
are regularly used in medical research. Statisticians speak of a study having 
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  Fig. 1.1    Causal diagram of 
variables affecting PSA level       
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internal vs. external validity.  Internal validity  obtains to the extent that the 
 treatment-group differences observed on a study endpoint strictly represent the 
causal effect of the treatment on the response variable (Singleton and Straits  2010 ). 
 External validity  obtains to the extent that the study’s results can be generalized to 
a larger, known population. As we have noted, experimental studies, in which cases 
are randomly assigned to treatment groups, are ideal for estimating causal effects. 
The gold standard in this genre is the double-blind, placebo-controlled, clinical 
trial. Studies of this nature have a clear advantage in internal validity over nonex-
perimental studies. However, experimental studies may be defi cient in external 
validity. For one thing, it may not be clear what population the study results are 
generalizable to. It is very rare—in fact, unheard of—for researchers to take a ran-
dom sample of a patient population and then randomly assign sample members to 
treatment conditions. Patients are usually a “captive audience”; they are at hand by 
virtue of seeking treatment from a given clinic or hospital. Or they are recruited 
through advertisements for a clinical trial. As they don’t typically represent a prob-
ability sample from a known population, it is not immediately clear what larger 
population they might represent. We can invoke the aforementioned notion of 
“sampling to a population” to justify a kind of generalizability. But the larger pop-
ulation the results might apply to is only hypothetical. A second factor that detracts 
from external validity is that, in actual clinical practice, patients are not randomly 
assigned to treatments. They elect to undergo certain treatments in consultation 
with their physician. Therefore, there is always an element of self-selection operat-
ing in the determination of which patients end up getting which treatments. This 
may lead to a different treatment outcome than if patients were randomly assigned 
to their treatments (Marcus et al.  2012 ). Thus, the pure causal effect observed in a 
clinical trial may not correspond perfectly to the real-world patient setting. 

 Nonexperimental studies often have an advantage in external validity. Many non-
experimental studies are based on probability sampling from a known population. 
Moreover, many follow patients after they have undergone treatments of their own 
choosing—on physician advice, of course. The disadvantage, as noted previously, is 
that nonexperimental study results can always be confounded by unmeasured het-
erogeneity. It is never possible to control for all possible patient characteristics that 
might affect the study results. Hence, nonexperimental studies often suffer from 
questions regarding their internal validity. We shall have much more to say about 
nonexperimental data analysis in subsequent chapters. In the meantime, the next 
chapter introduces techniques for summarizing the main features of a set of data. 
Understanding what your data “look like” is a fi rst step in the research process.        
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