
Chapter 11
Trading a Mean-Reverting Asset with Regime
Switching: An Asymptotic Approach

Eunju Sohn and Qing Zhang

11.1 Introduction

This chapter is concerned with mean-reversion trading with regime switching. It is
a continuation of the study developed in Zhang and Zhang [15]. In [15], a mean-
reversion trading rule was considered. The objective was to buy and sell the as-
set so as to maximize an overall return. They followed the dynamic programming
approach and used the associated HJB equations (quasi-variational inequalities) to
characterize the value functions. They showed that the solution to the original opti-
mal stopping problem can be obtained by solving two quasi-algebraic equations. In
addition, they obtained sufficient conditions in the form of a verification theorem.
Nevertheless, only the basic mean-reversion model with constant equilibrium was
considered in [15]. It is important to extend the results to account for more realistic
settings. It is the purpose of this chapter to consider the mean-reversion model in
which the equilibrium is subject to random jumps governed by a two-state Markov
chain and to study the corresponding trading rules.

A mean-reversion model is often used in financial and energy markets to capture
price movements that have the tendency to move towards an “equilibrium” level.
Studies that support the mean-reversion stock returns can be traced back to the 1930s
(see Cowles and Jones [3]) in empirical literature. The research was furthered by
many researchers including Fama and French [6], and Gallagher and Taylor [7]
among others. In addition to stock markets, mean-reversion models are also used to
characterize stochastic volatility (see Hafner and Herwartz [8]) and asset prices in
energy markets (see Blanco and Soronow [1] and de Jong and Huisman [4]). See
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also related results in option pricing with a mean-reversion asset by Bos, Ware and
Pavlov [2].

Trading rules in financial markets have been studied for many years. For exam-
ple, an investment capacity expansion/reduction problem was considered in Merhi
and Zervos [11]. Under a geometric Brownian motion market model, the authors
used the dynamic programming approach and obtained an explicit solution to the
singular control problem. A more general diffusion market model was treated by
Løkka and Zervos [10] in connection with an optimal investment capacity adjust-
ment problem. More recently, Johnson and Zervos [9] studied an optimal timing of
investment problem under a general diffusion market model. The objective was to
maximize the expected cash flow by choosing when to enter an investment and when
to exit the investment. An explicit analytic solution was obtained in [9]. Recently,
Dai et al. [5] provided a theoretical justification of trend following trading. In par-
ticular, the underlying stock price was formulated as a geometric Brownian motion
with regime switching. Two regimes were considered: the up trend (bull market) and
the down trend (bear market). The switching process was modeled as a two-state
Markov chain which is not directly observable. The trading decisions were based on
current information represented by both the stock price and historical information
with the probability in the bull phase conditioning to all available historical price
levels as a proxy. Assuming trading one share with a fixed percentage transaction
cost, they showed that the strategy that optimizes the discounted expected return is
a simple implementable trend following system. This strategy was characterized by
two threshold curves for the conditional probability in a bull regime signaling buy
and sell, respectively. The main advantage of this approach is that the conditional
probability in a bull market can be obtained directly using actual historical stock
price data through a differential equation.

In this chapter, we focus on a mean-reversion model in which its equilibrium
is subject to random jumps. Such model can be applied to assets with a “stair-
case” price behavior. We consider trading involving both buying and selling actions.
The objective is to buy and sell the underlying asset sequentially in order to maxi-
mize a discounted reward function. Slippage cost associated with each transaction
is imposed. We assume that a fixed percentage slippage cost is incurred with each
transaction. In general, this is a class of challenging problems because a closed-form
solution is difficult to obtain. In this chapter, we consider the case in which the un-
derlying Markov chain jumps frequently between its two states. This leads to a class
of singular perturbation problems. The idea is to approximate the value functions
of the original problem by the value functions of a limiting problem. The limiting
problem is easier to solve. The solution of the limiting problem leads to admissible
trading rules that are typically as good as the optimal ones for the original problem.
There are substantial studies along the line of singular perturbations. We refer the
readers to Sethi and Zhang [13] and Yin and Zhang [14] for related literature. In
this chapter, we study the problem using the dynamic programming approach and
establish the associated HJB equations (quasi-variational inequalities) for the value
functions. Following a viscosity solution approach, we establish asymptotic prop-
erties of the value functions. Then using a numerical example, we show how the
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solution for the limiting problem can be used to construct a set of trading rules for
the original problem.

This chapter is organized as follows. In Sect. 11.2, we formulate the problem
under consideration. In Sect. 11.3, we study properties of the value functions and
the associated HJB equations. In Sect. 11.4, we provide asymptotic properties of
the value functions and describe the corresponding limiting problem. In Sect. 11.5,
we demonstrate further related approximation schemes. A numerical example is
given in Sect. 11.6 in which the closed-form solution obtained in [15] is used to
construct a trading rule for the original problem. The performance of the trading
rule is provided in this example. Finally, some concluding remarks are provided in
Sect. 11.7. Some technical definitions and assumption verification details are given
in Appendix.

11.2 Problem Formulation

Let Xt ∈ R denote a mean-reverting diffusion with regime-switching governed by

dXt = a(b(αt)−Xt)dt+σ(αt)dWt , X0 = x, (11.1)

where a > 0 is the rate of reversion, b( j), j = 1,2, is the equilibrium level for each
state, σ( j) > 0, j = 1,2, is the volatility, αt ∈ {1,2} is a two-state Markov chain,
and Wt is a standard Brownian motion. In this chapter, we assume that αt and Wt are
independent.

Let h(x) be a smooth function. We consider the model in which the asset price is
given by St = h(Xt). For example, the function h(x) = ex is used in Zhang and Zhang
[15]. In this chapter, we consider h(x) that equals ex except when x is large. The main
reason for specifying h(x) is to facilitate subsequent analysis without affecting much
of the applicability.

Let

0 ≤ φ1 ≤ ψ1 ≤ φ2 ≤ ψ2 ≤ ·· · (11.2)

denote a sequence of stopping times. A buying decision is made at φk and a selling
decision at ψk, k = 1,2, . . ..

We consider the case that the net position at any time can be either flat (no stock
holding) or long (with one share of stock holding). Let i = 0,1 denote the initial net
position. If initially the net position is long (i = 1), then one should sell the stock
before acquiring a share. The corresponding sequence of stopping times is denoted
by Λ1 = (ψ1,φ2,ψ2,φ3, . . .). Likewise, if initially the net position is flat (i = 0), then
one should first buy a stock before selling a share. The corresponding sequence of
stopping times is denoted by Λ0 = (φ1,ψ1,φ2,ψ2, . . .).

In addition, we consider the problem with at most N round trips of trading. We
use the notation Λ n

1 =(ψ1,φ2,ψ2,φ3, . . . ,φn,ψn) and Λ n
0 =(φ1,ψ1,φ2,ψ2, . . . ,φn,ψn)

to label the corresponding stopping times limited to n round trips for n= 0,1, . . . ,N.
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Let 0<K < 1 denote the percentage of slippage (or commission) per transaction.
Given the initial states X0 = x, α0 = α , and initial net position i = 0,1, the reward
functions of the decision sequences {Λ n

i , n = 0,1, . . . ,N} are given as follows:

Jn
i (x,α,Λ n

i ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

{
n

∑
k=1

[
e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)

]
}

, if i = 0,

E

{

e−ρψ1Sψ1(1−K)

+
n

∑
k=2

[
e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)

]
}

, if i = 1,

(11.3)

where ρ > 0 is the discount factor.
For i = 0,1 and n = 0,1, . . . ,N, let V n

i (x,α) denote the value functions with the
initial state (X0,α0) = (x,α) and initial net positions i = 0,1. That is,

V n
i (x,α) = sup

Λn
i

Jn
i (x,α,Λ n

i ). (11.4)

Remark 11.1. In (29), we allow the equalities, i.e., one is allowed to buy and sell
at the same time. Nevertheless, owing to the existence of the positive slippage cost
K, simultaneous buying and selling only cause negative returns and therefore are
automatically ruled out by optimality conditions.

Let Q = (qi j) denote the generator of αt and let A denote the generator of
(Xt ,αt), i.e.,

A f (x,α) = a(b(α)− x)
∂ f (x,α)

∂x
+

σ2(α)

2
∂ 2 f (x,α)

∂x2 +Q f (x, ·)(α),

where Q f (x, ·)(α) = qα1 f (x,1)+ qα2 f (x,2), α = 1,2.
In Fig. 11.1, a sample path of (Xt ,αt) is provided. The picture was generated

using the Monte Carlo method with

a = 0.8, b(1) = 3, b(2) = 1, σ (1) = 0.7, σ (2) = 0.3, Q =

(−0.91 0.91
0.62 −0.62

)

, X0 = 1.

It is clear from Fig. 11.1, when αt = 1, the equilibrium b(1)= 3 serves as an attractor
for Xt pulling it upwards; when αt switched to 2, the new equilibrium b(2) = 1 pulls
Xt downwards and so on.

As mentioned in the introduction, a closed-form solution to the problem is dif-
ficult to obtain. In this chapter, we consider the case in which the Markov chain
jumps frequently between its two states. We aim at the corresponding asymptotic
properties. In particular, we consider case where the generator has the following
form:

Qε =
1
ε

Q̃+ Q̂ =
1
ε

(−λ λ
μ −μ

)

+

(−λ1 λ1

μ1 −μ1

)

,
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Fig. 11.1 Mean-reversion with regime switching (a) A sample path of Xt , (b) a sample path of αt

where ε > 0 is a small parameter, and λ , μ , λ1, and μ1 are positive constants. We
study the convergence of the problem as ε → 0. For related Markov models in con-
nection with manufacturing systems, see Sethi and Zhang [13].

Remark 11.2. The Markov chain αt generated by Qε represents the regime of the
underlying market. We focus on the market with frequent regime changes in αt .
Such a scenario often arises in a prolonged sideways market such as Dow Jones
Industrial Average during the 1960s and 1980s. Its behavior can be captured by our
regime-switching model with a relatively small ε . In this chapter, we aim at models
with a not-so-small ε and construct near optimal trading rules from the optimal
solution of the corresponding limiting problem as ε → 0. A major advantage of our
approach is that one does not have to identify the state of αt , which is difficult during
the period when it is changing rapidly.

The corresponding Markov chain will be labeled as αε
t . Similarly, we use X ε

t for
Xt , Sε

t for St , Jn,ε
i for Jn

i , and V n,ε
i for V n

i from now on to emphasize the dependence
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on ε . Using this notation, the optimal trading problem PN,ε can be written as fol-
lows:

PN,ε :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Jn,ε
i (x,α,Λ n

i )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

{
n

∑
k=1

[
e−ρψk Sε

ψk
(1−K)− e−ρφkSε

φk
(1+K)

]
}

, if i = 0,

E

{

e−ρψ1Sε
ψ1
(1−K)

+
n

∑
k=2

[
e−ρψk Sε

ψk
(1−K)− e−ρφkSε

φk
(1+K)

]
}

, if i = 1,

s.t. dXε
t = a(b(αε

t )−X ε
t )dt+σ(αε

t )dWt , X ε
0 = x,

value fn V n,ε
i (x,α) = supΛn

i
Jn,ε

i (x,α,Λ n
i ), n = 0,1, . . . ,N,

Note that the sequence Λ n
0 = (φ1,ψ1, . . . ,φn,ψn) can be regarded as a com-

bination of a buy at φ1 and then followed by the sequence of stopping times
Λ n

1 = (ψ1,φ2,ψ2, . . . ,φn,ψn). In view of this, we have

V n,ε
0 (x,α)≥ Jn,ε

0 (x,α,Λ n
0 )

= E

{

e−ρψ1Sε
ψ1
(1−K)+

n

∑
k=2

[
e−ρψk Sε

ψk
(1−K)− e−ρφkSε

φk
(1+K)

]
}

−Ee−ρφ1Sε
φ1
(1+K)

= Jn,ε
1 (X ε

φ1
,α,Λ n

1 )−Ee−ρφ1Sε
φ1
(1+K).

In particular, setting φ1 = 0 (recall that Sε
t = h(X ε

t )), we obtain the inequality

V n,ε
0 (x,α) ≥V n,ε

1 (x,α)− h(x)(1+K). (11.5)

Similarly, we can show that

V n,ε
1 (x,α) ≥V n−1,ε

0 (x,α)+ h(x)(1−K). (11.6)

Formally, the associated HJB equations should have the form:

min
{

ρV n,ε
0 (x,α)−A V n,ε

0 (x,α), V n,ε
0 (x,α)−V n,ε

1 (x,α)+ h(x)(1+K)
}
= 0,

min
{

ρV n,ε
1 (x,α)−A V n,ε

1 (x,α), V n,ε
1 (x,α)−V n−1,ε

0 (x,α)− h(x)(1−K)
}
= 0,

(11.7)

for n = 1,2, . . . ,N and α = 1,2. Here, we follow the convention that V 0,ε
0 (x,α) = 0.

Next, we impose conditions on h(x).

Assumption. h(x), h′(x), xh′(x), and h′′(x) are bounded and Lipschitz.
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Example 11.1. An immediate example satisfying the above conditions can be given

as follows. Let h0(x) =

{
ex for x ≤ M,
eM for x > M,

for a fixed M. Take h(x) to be the convo-

lution of h0 with the kernel Ψ (x) = (1/
√

2π)e−x2/2. Validation of these conditions
is provided in Appendix.

Under these assumptions, we can show, following a similar approach as in Sethi
and Zhang [13, Chap. 8], that V n,ε

i (x,α) are the viscosity solutions (see the defini-
tion given in Appendix) of the HJB equations (34).

In this chapter, C (and Ci) are generic positive constants with convention C+C =
C and CC =C, etc.

11.3 Properties of the Value Functions

In this section, we consider the basic properties of the value functions. In particular,
we establish the boundedness and Lipschitz continuity of these functions.

Lemma 11.1. There exists a constant C0 such that

0 ≤V n,ε
i (x,α)≤C0,

for ε > 0, x ∈ R, α = 1,2, i = 0,1, and n = 0,1, . . . ,N.

Proof. In view of the definition of V n,ε
i (x,α), it is clear that they are nonnegative. It

remains to establish their upper bounds. Let

F(x,α) = a(b(α)− x)h′(x)+
σ2(α)

2
h′′(x)−ρh(x).

Then, using Dynkin’s formula, we have

Ee−ρψk Sε
ψk

−Ee−ρφk Sε
φk
= E

∫ ψk

φk

e−ρsF(X ε
s ,αs)ds. (11.8)

It is easy to see that the function F(x,α) is bounded above on R by the boundedness
assumptions on h(x). Let C be an upper bound of F . It follows that

Ee−ρψk Sε
ψk

−Ee−ρφk Sε
φk
≤ CE

∫ ψk

φk

e−ρtdt. (11.9)
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Using the definition of Jn,ε
0 (x,α,Λ n

0 ), we have

Jn,ε
0 (x,α,Λ n

0 ) ≤
n

∑
k=1

(
Ee−ρψk Sε

ψk
−Ee−ρφk Sε

φk

)

≤
n

∑
k=1

CE
∫ ψk

φk

e−ρtdt

≤C
∫ ∞

0
e−ρtdt :=C0.

This implies that 0 ≤V n,ε
0 (x,α)≤C0.

Similarly, letting Ch = sup |h(x)|, we have the inequalities

Jn,ε
1 (x,α,Λ n

1 )≤C0 +Ee−ρψ1h(X ε
ψ1
)(1−K)≤C0 +Ch(1−K) :=C0.

Therefore, 0 ≤V n,ε
1 (x,α)≤C0. This completes the proof. �

Lemma 11.2. V n,ε
i (x,α) are Lipschitz, i.e., there exists C0 such that

|V n,ε
i (x1,α)−V n,ε

i (x2,α)| ≤C0|x1 − x2|.

for ε > 0, x1,x2 ∈ R, α = 1,2, i = 0,1, and n = 0,1, . . . ,N.

Proof. Given x1 and x2, let X1
t and X2

t be solutions of (28) with X1
0 = x1 and X2

0 = x2,
respectively. We claim that: There exists an constant C0 such that for any stopping
time τ ,

∣
∣E

[
e−ρτ(h(X1

τ )− h(X2
τ )
]∣
∣≤C0|x1 − x2|. (11.10)

Let

G(x,y,α) = ab(α)[h′(x)−h′(y)]−a[xh′(x)− yh′(y)]+
σ 2(α)

2
[h′′(x)−h′′(y)]−ρ [h(x)−h(y)].

Then, using the Lipschitz assumptions on h(x), we can see that

|G(x,y,α)| ≤C0|x− y|,

for some constant C0. Then, applying Dynkin’s formula, we have

E
[
e−ρτ(h(X1

t )− h(X2
t ))

]
= h(x1)− h(x2)+E

∫ τ

0
e−ρtG(X1

t ,X
2
t ,αt)dt.

It follows that

∣
∣E

[
e−ρτ(h(X1

t )− h(X2
t ))

]∣
∣ ≤ |h(x1)− h(x2)|+E

∫ ∞

0
e−ρt |G(X1

t ,X
2
t ,αt)|dt

≤C0|x1 − x2|+C0E
∫ ∞

0
e−ρt |X1

t −X2
t |dt.
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Note that

X1
t −X2

t = x1 − x2 − a
∫ t

0
(X1

s −X2
s )ds.

Therefore, X1
t −X2

t = (x1 − x2)e−at. In view of this, we have

∣
∣
∣E

[
e−ρτ (h(X1

t )−h(X2
t ))

]∣
∣
∣≤C0|x1 −x2|+C0E

∫ ∞

0
e−ρt |x1 −x2|e−atdt =C0|x1 −x2|,

which proves the claim. Using this inequality, for any given Λn
i , it is easy to see that

|Jn,ε
i (x1,α,Λ n

i )− Jn,ε
i (x2,α,Λ n

i )| ≤C0|x1 − x2|. �

11.4 Asymptotic Properties

In this section, we study the asymptotic properties of the value functions as ε → 0.
We first characterize the limiting problem and then establish the desired conver-
gence.

Lemma 11.3. For each (x,α), if for some subsequence of ε , V n,ε
i (x,α)→V n,0

i (x,α),

then V n,0
i (x,α) =V n,0

i (x).

Proof. Let τε denote the first jump time of αε
t . Then τε → 0 a.s. as ε → 0. Following

the dynamic programming principle, we have

V n,ε
i (x,α)≥ Ee−ρτε

V n,ε
i (Xτε ,ατε ).

If α = 1, then sending ε → 0, we have

V n,0(x,1)≥V n,0(x,2).

Similarly,

V n,0(x,2)≥V n,0(x,1).

Therefore, V n,0(x,1) =V n,0(x,2). �
Let (ν1,ν2) denote the equilibrium distribution corresponding to Q̃, i.e.,

(ν1,ν2) =

(
μ

λ + μ
,

λ
λ + μ

)

.

so that (ν1,ν2)Q̃ = (0,0). Let Xt denote the corresponding mean-reversion process
with mean b = ν1b(1)+ν2b(2) and volatility σ =

√
ν1σ2(1)+ν2σ2(2). The stock

price driven by Xt is denoted by St = h(Xt).
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Given a sequence of σ{Wr : r ≤ t} measurable stopping times

0 ≤ φ1 ≤ ψ1 ≤ φ2 ≤ ψ2 ≤ ·· · ,

one can define the set of stopping times Λ n
i as before for n = 0,1, . . . ,N and i = 0,1.

The limiting problem PN,0 can be defined as follows:

PN,0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max J
n
i (x,Λ n

i )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

{
n

∑
k=1

[
e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)

]
}

, if i = 0,

E

{

e−ρψ1Sψ1(1−K)

+
n

∑
k=2

[
e−ρψk Sψk(1−K)− e−ρφkSφk (1+K)

]
}

, if i = 1,

s.t. dXt = a(b−Xt)dt+σdWt , X0 = x,
value fn V

n
i (x) = supΛn

i
Ji(x,Λ n

i ).

Let A denote the generator of Xt , i.e.,

A f (x) = a(b− x)
df (x)

dx
+

σ2

2
d2 f (x)

dx2 .

The associated HJB equations for the limiting problem should have the form:

min
{

ρV
n
0(x)−A V

n
0(x), V

n
0(x)−V

n
1(x)+ h(x)(1+K)

}
= 0,

min
{

ρV
n
1(x)−A V

n
1(x), V

n
1(x)−V

n−1
0 (x)− h(x)(1−K)

}
= 0,

(11.11)

for n = 1,2, . . . ,N.
The definition of viscosity solution of the above HJB equations is also given in

Appendix. We can show the following lemma, where the uniqueness can be obtained
along the line of Pham [12].

Lemma 11.4. V
n
i (x) are the unique viscosity solutions of the HJB equations (38).

Next, we give the main result of this chapter. We show that the value functions of
the original problem converge to those of the limiting problem. This suggests that
the optimal solution of the limiting problem can be used to construct a trading rule
for the original problem. We refer the readers to Sethi and Zhang [13] for similar
approach in connection with manufacturing systems.

Theorem 11.1. As ε → 0, we have

V n,ε
i (x,α)→V

n
i (x),

for n = 0,1, . . . ,N, i = 0,1, x ∈ R, and α = 1,2.
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Proof. Recall the Lipschitz properties of V n,ε
i in Lemma 11.2. In view of the Arzela–

Ascoli Theorem, for each sequence of {ε → 0}, there exists a further subsequence
(still indexed by ε) such that V n,ε

i (x,α) converges. Denote the limit by V n,0
i (x,α).

Then by Lemma 11.3, V n,0
i (x,α) =V n,0

i (x). It suffices to show that V n,0
i (x) is a vis-

cosity solution of (38) because Lemma 11.4 implies that V n,0
i (x) =V

n
i (x). Following

Lemma A.25 in Yin and Zhang [14], for each i= 0,1, take a function φi(x)∈C2 such
that V n,0

i (x)−φi(x) has a strictly local maximum at any given x0 in a neighborhood
N(x0). Choose xn,ε

i,α ∈ N(x0) such that

V n,ε
i (xn,ε

i,α ,α)−φi(x
n,ε
i,α ) = max

x∈N(x0)
{V n,ε

i (x,α)−φi(x)}.

Then, xn,ε
i,α → x0, as ε → 0. First, fix i = 0. We are to show the following inequality:

min
{

ρV n,0
0 (x0)−A φ0(x0),V

n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)
}
≤ 0. (11.12)

If

V n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)≤ 0,

then (39) holds. Otherwise,

V n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)> 0.

Then there exists N0(x0)⊂ N(x0) such that

V n,ε
0 (x)−V n,ε

1 (x)+ h(x)(1+K)> 0

on N0(x0) for ε small enough. Recall that V n,ε
i is a viscosity solution to (34).

V n,ε
0 (x,α) must satisfy (45). Necessarily,

ρV n,ε
0 (xn,ε

0,α ,α)−A φ0V n,ε
0 (xn,ε

0,α ,α)≤ 0,

for α = 1,2.
It follows that

ν1(ρV n,ε
0 (xn,ε

0,1,1)−A φ0V n,ε
0 (xn,ε

0,1,1))+ν2(ρV n,ε
0 (xn,ε

0,2,2)−A φ0V n,ε
0 (xn,ε

0,2,2))≤ 0.
(11.13)

Note that

ν1

(
λ
ε

)

(V n,ε
0 (xε

1,2)−Vn,ε
0 (xε

1,1))+ν2

(μ
ε

)
(V n,ε

0 (xε
2,1)−Vn,ε

0 (xε
2,2))

≤ ν1

(
λ
ε

)

[V n,ε
0 (xε

2,2)−φ(xε
2)− (V n,ε

0 (xε
1,1)−φ(xε

1))]

+ν2

(μ
ε

)
[V n,ε

0 (xε
1,1)−φ(xε

1)− (V n,ε
0 (xε

2,2)−φ(xε
2))] = 0.

(11.14)
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Using this inequality and sending ε → 0 in (40) to obtain ρV n,0
0 (x0)−A φ0(x0)≤ 0,

which yields (39). Similarly, we can show

min
{

ρV n,0
1 (x0)−A φ1(x0),V

n,0
0 (x0)−V n−1,0

0 (x0)− h(x0)(1−K)
}
≤ 0.

Thus, V n,0
i (x) is a viscosity subsolution to (38).

To show that V n,0
i (x) is a viscosity supersolution to (38), note that

min
{

ρV n,ε
0 (x0,α0)−A ψV n,ε

0 (x0,α0), V n,ε
0 (x0,α0)−V n,ε

1 (x0,α0)+h(x)(1+K)
} ≥ 0

implies

V n,0
0 (x0)−V n,0

1 (x0)+ h(x)(1+K)≥ 0.

Moreover, following similar argument as in (41), we can show that

ρV n,0
0 (x0)−A ψ0(x0)≥ 0.

Hence,

min
{

ρV n,0
0 (x0)−A ψ0(x0), V n,0

0 (x0)−V n,0
1 (x0)+ h(x)(1+K)

}
≥ 0.

Similarly, we can show the inequality with i = 1. Therefore V n,0
i (x) is a viscosity

supersolution. This completes the proof. �

11.5 Further Approximations

In this section, we show that the value function V
n
i (x) can be further approximated

by taking N to be very large and h(x) to be very close to ex. In this case, we can
use the closed-form solution obtained in Zhang and Zhang [15] to come up with an
approximate solution for the original problem.

Recall the definition of Λi and its N-th round trip truncation Λ N
i . Let

Ji(x,Λi) = limsup
N→∞

J
N
i (x,Λ

N
i )

and V i(x) = supΛi
Ji(x,Λi). It is easy to see that

lim
N→∞

V
N
i (x) =V i(x).

In fact, for each δ > 0, let Λi,δ be a sequence of stopping times such that Ji(x,Λi,δ )≥
V i(x)− δ . Then, noticing that V

N
i (x) is monotonically increasing in N, we have
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V i(x)− δ ≤ Ji(x,Λi,δ ) = limsup
N→∞

J
N
i (x,Λ

N
i,δ )≤ limsup

N→∞
V

N
i (x)≤V i(x).

Next, we consider approximating ex by particular choices of h(x). Recall Ex-
ample 11.1 and the definition of h0(x). For each γ > 0, let Ψγ(x) = (1/γ)Ψ(x/γ)
and hγ(x) be the convolution of h0 and Ψγ . Then, hγ(x) → h0(x) as γ → 0 for
all x. Therefore, we can approximate ex by hγ(x) by choosing a small enough γ
on [−M,M].

In view of these, the original problem with a large N can be approximated by
the limiting problem with a large N and a large M. In the next section, we study a
numerical example demonstrating how these approximations work.

11.6 A Numerical Example

The optimal trading rule in the limiting problem with N = ∞ and h(x) = ex was
treated in Zhang and Zhang [15]. The main result can be summarized as follows.

Lemma 11.5. Let (x∗1,x
∗
2) be a pair satisfying the following conditions:

x∗1 ≤
1
a

(
σ 2

2
+ ab−ρ

)

≤ x∗2, x∗2 − x∗1 > log

(
1+K
1−K

)

,

and

⎛

⎜
⎝

∫ ∞

0
η(t)e−κ(b−x∗1)t dt −

∫ ∞

0
η(t)eκ(b−x∗1)t dt

∫ ∞

0
tη(t)e−κ(b−x∗1)t dt

∫ ∞

0
tη(t)eκ(b−x∗1)tdt

⎞

⎟
⎠

−1
(

ex∗1(1+K)

ex∗1(1+K)/κ

)

=

⎛

⎜
⎝

∫ ∞

0
η(t)e−κ(b−x∗2)t dt −

∫ ∞

0
η(t)eκ(b−x∗2)t dt

∫ ∞

0
tη(t)e−κ(b−x∗2)t dt

∫ ∞

0
tη(t)eκ(b−x∗2)tdt

⎞

⎟
⎠

−1
(

ex∗2(1−K)

ex∗2(1−K)/κ

)
(11.15)

where κ =
√

2a/σ and η(t) = t(ρ/a)−1 exp
(−t2/2

)
.

Let
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

C∗
2

∫ ∞

0
η(t)eκ(b−x)t dt if x ≥ x∗1,

C∗
1

∫ ∞

0
η(t)e−κ(b−x)t dt− ex(1+K) if x < x∗1,

V 1(x) =

⎧
⎪⎨

⎪⎩

C∗
1

∫ ∞

0
η(t)e−κ(b−x)t dt if x < x∗2,

C∗
2

∫ ∞

0
η(t)eκ(b−x)t dt+ ex(1−K) if x ≥ x∗2

(11.16)
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with

(
C∗

1
C∗

2

)

=

⎛

⎜
⎜
⎝

∫ ∞

0
η(t)e−κ(b−x∗1)tdt −

∫ ∞

0
η(t)eκ(b−x∗1)t dt

∫ ∞

0
tη(t)e−κ(b−x∗1)t dt

∫ ∞

0
tη(t)eκ(b−x∗1)t dt

⎞

⎟
⎟
⎠

−1
(

ex∗1(1+K)

ex∗1(1+K)/κ

)

.

If, on the interval (x∗1,x
∗
2), the following inequalities hold

ex(1−K)≤V 1(x)−V 0(x)≤ ex(1+K),

then buying when x ≤ x∗1 and selling when x ≥ x∗2 is optimal.

Example 11.2. In this example, we take

a = 0.8, b(1) = 3, b(2) = 1, σ(1) = 0.7, σ(2) = 0.3,

λ = 0.09, μ = 0.06, λ1 = 0.01, μ1 = 0.02, ρ = 0.5, and K = 0.01.

Then, (ν1,ν2)= (2/5,3/5), b= 9/5, and σ = 0.5. We solve (42) to obtain (x∗1,x
∗
2) =

(1.115,1.455) and the value functionsV i(x). These functions are plotted in Fig. 11.2.
In addition, we vary ε = 0.1, 0.01, and 0.001 and solve the corresponding HJB equa-
tions in (34) (using the explicit finite difference method) with N = ∞. The value
functions V ε

i are also presented in Fig. 11.2. It is clear in this example that V ε
i can

be approximated by V i when ε is small enough.
Next, we use (x∗1,x

∗
2) = (1.115,1.455) to construct the following trading rules for

the original problem:
{

Buy: if X ε
t ≤ x∗1,

Sell: if X ε
t ≥ x∗2.

(11.17)

Using these trading rules, we generate the corresponding reward functions with
a varying ε and N = ∞. In particular, we use Monte Carlo simulations based on (28)
and generate 10 K sample paths. The corresponding reward functions with ε = 1,
0.01, and 0.0001 are plotted in Fig. 11.3. Combining these two figures, one can see
how the constructed trading rules in (44) work for the original problem.

In general, the control policy obtained via a singular perturbation approach not
only work when ε is small but also work for the problem with not-so-small ε . The
performance with ε = 1 can be seen in Fig. 11.3 in which the corresponding re-
ward functions are fairly close to the value functions of the limiting problem, and
therefore, in view of Fig. 11.2, close to those of the original problem.

11.7 Concluding Remarks

In this chapter, we studied the asymptotic properties of the mean-reverting trading
problem. We established the convergence of the value functions and demonstrated
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Fig. 11.2 Value function approximation. (a) V ε
1 (x,1) and V 1(x), (b) V ε

1 (x,2) and V 1(x), (c)
V ε

0 (x,1) and V 0(x), (d) V ε
0 (x,2) and V 0(x)

how the optimal trading rule for the limiting problem can be used to construct a
trading rule for the original problem.

In general, to use an optimal trading rule for the original problem, one needs to
determine the mode (or the state of αε

t ). This typically involves nonlinear filtering as
in Dai et al. [5]. Nevertheless, in this chapter, we showed that this is not necessary
when the jump rates of αε

t is large because the constructed trading rule does not
require the state information of αε

t .
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Fig. 11.3 Reward functions under trading rules constructed from that of the limiting problem.

Appendix

In this appendix, we provide the definitions of viscosity solutions of the HJB equa-
tions (34) and (38). First, we consider (34). For each f (x,α) and φ(x) ∈C2, let

A φ f (x,α) = a(b(α)− x)
dφ(x)

dx
+

σ2(α)

2
d2φ(x)

dx2 +Q f (x, ·)(α).

Definition 11.1. vn,ε
i (x,α) is a viscosity solution of (34) if the following hold:

(a) vn,ε
i (x,α) is uniformly continuous in x;

(b) for any α0 ∈ {1,2} and x0,

min
{

ρvn,ε
0 (x0,α0)−A φ0vn,ε

0 (x0,α0),

vn,ε
0 (x0,α0)− vn,ε

1 (x0,α0)+ h(x0)(1+K)
}
≤ 0,

min
{

ρvn,ε
1 (x0,α0)−A φ1vn,ε

1 (x0,α0),

vn,ε
1 (x0,α0)− vn−1,ε

0 (x0,α0)− h(x0)(1−K)
}
≤ 0,

(11.18)
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for n = 0,1, . . . ,N, whenever φi(x) ∈ C2 and vn,ε
i (x,α0)− φi(x) has a local

maximum at x = x0; and
(c) for any α0 ∈ {1,2} and x0,

min
{

ρvn,ε
0 (x0,α0)−A ψ0vn,ε

0 (x0,α0),

vn,ε
0 (x0,α0)− vn,ε

1 (x0,α0)+ h(x0)(1+K)
}
≥ 0,

min
{

ρvn,ε
1 (x0,α0)−A ψ1vn,ε

1 (x0,α0),

vn,ε
1 (x0,α0)− vn−1,ε

0 (x0,α0)− h(x0)(1−K)
}
≥ 0,

(11.19)

for n = 0,1, . . . ,N, whenever ψi(x) ∈C2 and vn,ε
i (x,α0)−ψi(x) has a local min-

imum at x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution (resp.
viscosity supersolution).

Finally, we give the definition of viscosity solution of (38). Recall that

A f (x) = a(b− x)
df (x)

dx
+

σ2

2
d2 f (x)

dx2 .

Definition 11.2. vn
i (x) is a viscosity solution of (38) if the following hold:

(a) vn
i (x) is uniformly continuous in x;

(b) for any x0,

min
{

ρvn
0(x0)−A φ0(x0), vn

0(x0)− vn
1(x0)+ h(x0)(1+K)

}≤ 0,
min

{
ρvn

1(x0)−A φ1(x0), vn
1(x0)− vn−1

0 (x0)− h(x0)(1−K)
}≤ 0,

(11.20)

for n = 0,1, . . . ,N, whenever φi(x) ∈C2 and vn
i (x)−φi(x) has a local maximum

at x = x0; and
(c) for any x0,

min
{

ρvn
0(x0)−A ψ0(x0), vn

0(x0)− vn
1(x0)+ h(x0)(1+K)

}≥ 0,
min

{
ρvn

1(x0)−A ψ1(x0), vn
1(x0)− vn−1

0 (x0)− h(x0)(1−K)
}≥ 0,

(11.21)

for n = 0,1, . . . ,N, whenever ψi(x) ∈C2 and vn
i (x)−ψi(x) has a local minimum

at x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution (resp.
viscosity supersolution).

Next, we give a sketch verifying the conditions in Example 11.1, i.e., we show
that h(x), h′(x), xh′(x), and h′′(x) are bounded and Lipschitz.

First note that h0(x) is bounded and Lipschitz. The boundedness and Lipschitz
properties of h, h′, and h′′ follow from the equalities:
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h(x) =
∫ ∞

−∞
h0(x− u)Ψ(u)du,

h′(x) =
∫ ∞

−∞
h0(x− u)Ψ ′(u)du,

h′′(x) =
∫ ∞

−∞
h0(x− u)Ψ ′′(u)du.

Next, we show that xh′(x) is bounded. Note that

xh′(x) = x
∫ ∞

−∞
h′0(u)Ψ(x− u)du,

= x
∫ M

−∞
euΨ(x− u)du,

= x
∫ ∞

x−M
ex−yΨ(y)dy, (with y = x− u)

=
xex
√

2π

∫ ∞

x−M
e−ye−y2/2dy

≤ xex
√

2π

∫ ∞

x−M
e−y2/2dy.

(11.22)

Clearly, it is bounded on (−∞,M]. To see it is also bounded on (M,∞), note also that

xex
√

2π

∫ ∞

x−M
e−y2/2dy ≤ xex

√
2π

(
exp

(−(x−M)2/2
)

x−M

)

. (11.23)

The boundedness follows.
Finally, to see the Lipschitz property of xh′(x), in view of the Mean Value Theo-

rem, it suffices to show that xh′′(x) is bounded. This can be done similarly as in (49)
and (50) by noticing

xh′′(x) = x
∫ ∞

−∞
h′0(u)Ψ

′(x− u)du.
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