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    Abstract     Chromosomal abnormalities are relevant causes of human infertility, 
affecting 2 –14 % of infertile males. Patients with seminal anomalies could be 
affected by improper meiotic recombination and increased sperm chromosome 
aneuploidy. Since the transmission of a haploid chromosomal asset is fundamental 
for embryo vitality and development, the study of sperm chromosomes has become 
fundamental because intracytoplasmic sperm injection allows fertilization in cases 
of severe male infertility. 

 In this chapter we summarize the data on the incidence of sperm aneuploidy, 
detected by fl uorescence in situ hybridization (FISH), in infertile men with normal 
or abnormal karyotype. The possibility of reducing sperm chromosomal imbalance 
is also reported. 

 Among control males, the lowest aneuploidy rate was detected (range: 
0.09 –0.14 % for autosomes; 0.04 –0.10 % for gonosomes). In infertile patients with 
normal karyotype, the severity of semen alteration is correlated with the frequency of 
aneuploidy, particularly for X and Y chromosomes. Among patients with abnormal 
karyotype, 47,XXY and 47,XYY carriers showed a high variability of sperm aneu-
ploidy both for gonosomes and autosomes. In Robertsonian translocation carriers, 
the increase in aneuploidy rate was particularly evident for total sex disomy, and 
resulted mainly from interchromosomal effect (ICE). In reciprocal translocation 
carriers, a high percentage of unbalanced sperm (approximately 50 %) was detected, 
perhaps mostly related to ICE. 

    Chapter 3   
 Chromosomal Aberrations and Aneuploidies 
of Spermatozoa 

                           Paola     Piomboni     ,     Anita     Stendardi    , and     Laura     Gambera   

        P.   Piomboni (*) •          L.   Gambera    
  Department of Molecular and Developmental Medicine ,  University of Siena , 
  Viale Bracci 14 ,  53100   Siena ,  Italy   

  Center for Diagnosis and Treatment of Couple Sterility ,  S. Maria alle Scotte Hospital , 
  Viale Bracci 14 ,  53100   Siena ,  Italy    
 e-mail: paola.piomboni@unisi.it   

    A.   Stendardi    
  Department of Molecular and Developmental Medicine ,  University of Siena , 
  Viale Bracci 14 ,  53100   Siena ,  Italy    



28

 Sperm chromosomal constitution could be analyzed to obtain more accurate 
information about the causes of male infertility. It would be worthwhile to evaluate 
the benefi ts of a therapy with recombinant Follicle Stimulating Hormone (rFSH) on 
sperm chromosome segregation in selected infertile males.  

  Keywords     FISH   •   Sperm aneuploidy   •   Male infertility   •   Abnormal karyotype  

        Introduction 

 Chromosomal abnormalities are a relevant cause of human infertility, affecting 
2–14 % of infertile males and have been clearly demonstrated to increase proportionally 
with the severity of the spermatological phenotype. Both numerical and structural 
chromosomal aberrations are major contributors to pregnancy loss (Egozcue et al. 
 2000a ), perinatal death, congenital malformations, mental retardation, and behavioral 
anomalies (Hook  1985 ; Hecht and Hecht  1987 ), the latter accounting for the 0.8–1 % 
of live births (Gardner and Sutherland  2004 ). 

 Among the abnormalities, trisomy of chromosomes 13, 18, and 21 and aneuploidies 
of the sex chromosomes constitute the most important load of congenital abnor-
malities. In most cases, autosomal trisomies originate in maternal germ cells, 
whereas sex chromosome aneuploidies are frequently of paternal origin, occurring 
during spermatogenesis (Sloter et al.  2004 ). 

 The term spermatogenesis indicates the processes by which primordial germ cells, 
namely spermatogonia, become haploid sperm cells. Spermatogonia divide by mitosis, 
giving rise to primary spermatocytes, which undergo a meiotic process. Meiosis 
includes two successive cell divisions without DNA replication. During the fi rst 
and second meiotic divisions, homologous chromosomes separate to form haploid 
gametes. At the end of spermatogenesis, the haploid spermatid nucleus contains 23 
chromosomes with one chromatid. Soon after, they are transformed into spermatozoa 
by a morphogenetic process, spermiogenesis. Recently, several lines of evidence have 
linked unexplained male infertility to meiotic defects in pairing, synapsis, and recom-
bination and to an increase in aneuploid sperm (Tempest and Martin  2009 ). 

 Errors during mitotic or meiotic divisions may lead to aneuploid gametes, 
in which autosomes or the sex chromosomes are affected. Aneuploidy, the most 
frequently detected cytogenetic abnormality, is defi ned as the condition of having 
fewer or more than the euploid number of chromosomes. Aneuploidies in male 
gametes may be caused by two main mechanisms: (1) nondisjunction of chromatid 
pairs during mitosis or meiosis II or nondisjunction of homologous chromosomes 
during meiosis I; (2) chromosome lagging near the equator at anaphase followed by 
chromosome loss (Ford et al.  1988 ). 

 The incidence of sperm aneuploidy increases proportionally with the severity of 
the male-factor sterility, including Y chromosome microdeletions, as confi rmed by 
various studies suggesting that, in selected cases, the paternal contribution to aneu-
ploidy in the developing conceptus could be more relevant than expected from 
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general data on aborted fetuses and live births (Gianaroli et al.  2005 ; Magli et al. 
 2009 ; Mateu et al.  2010 ; Kahraman et al.  2006 ; Harton and Helen  2012 ). 

 This is particularly true in cases of assisted reproductive techniques, such as 
intracytoplasmic sperm injection (ICSI), that have improved the chances of 
achieving pregnancy also for patients with severe seminal anomalies (Van 
Steirteghem et al.  1993 ,  1996 ), despite an increased incidence of embryo aneu-
ploidies (Verpoest and Tournaye  2006 ; Tesarik and Mendoza  2007 ). In particular, 
it appears that men with severe factor infertility treated by ICSI have an increased 
risk of generating offspring with unbalanced chromosomal constitution (Rimm 
et al.  2004 ; Wen et al.  2012 ). 

 The clinical use of aneuploidy screening should be recommended in patients 
affected by Klinefelter syndrome, structural rearrangement of karyotype, severe 
teratozoospermia, nonobstructive azoospermia, as well as in patients with recurrent 
pregnancy loss or unexplained repeated in vitro fertilization (IVF) failures. 

 The development of the FISH technique, which uses a chromosome-specifi c 
DNA probe detected by fl uorescence microscopy, and its application to the study of 
sperm aneuploidy has made possible the screening of a large number of germ cells 
in a relatively short time. In addition, the simultaneous use of different probes 
allows for the evaluation of aneuploidy frequency for different human chromosomes 
in normal (Fig.  3.1 ) and pathological conditions (Figs.  3.2  and  3.3 ) (Egozcue et al. 
 1997 ; Downie et al.  1997 ; Guttenbach et al.  1997a ; Rives et al.  1999 ; Carrel  2008 ; 
McLachlan and O’Bryan  2010 ). Since 1990, this technique has been used to ana-
lyze chromosome aneuploidies in sperm, and many papers have been published on 
sperm aneuploidies even in control individuals (Downie et al.  1997 ; Guttenbach 
et al.  1997a ; Egozcue et al.  1997 ; Rives et al.  1999 ). Nevertheless, FISH has its 
limits due, for example, to the degree of chromatin condensation since condensa-
tion effi ciency is directly correlated with fl uorescent signal quality (Vidal et al. 

  Fig. 3.1    Fish analysis using different centromeric-DNA probes for the simultaneous detection of 
chromosome 18 ( aqua ), X ( green ) and Y ( red ). Euploid sperm nuclei with 18,X ( green circles ), 
and 18,Y ( red circles ) complements are observed       
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 1993 ; Egozcue et al.  1997 ). Moreover, FISH does not enable one to appreciate the 
difference between nullisomy (the absence of a chromosome) and the absence of 
hybridization, despite the fact that if one of the probes gives a correct signal, the 
absence of a signal from the other probe may be considered evidence of nullisomy 
(Holmes and Martin  1993 ; Bischoff et al.  1994 ). Furthermore, FISH on decon-
densed sperm head only provides information about anomalies in the chromosome 
number, while the analysis of chromosome structural rearrangement is still com-
plex due to the use of locus-specific probes not always able to hybridize. In 
these latter cases, sperm karyotyping, single-sperm polymerase chain reaction, or 
single-sperm typing should be applied to improve the identifi cation of recombina-
tion in specifi c genome areas (Martin  2008 ).

     Sperm karyotyping through a fusion assay was originally used, with the drawback 
of the technique being that it is laborious, technically diffi cult, and only allows for 
studying sperm that are able to fuse with a hamster oocyte, yielding results on a rela-
tively small number of cells. The advent of FISH revolutionized the study of sperm 
chromosome constitution, mitigating many of these problems, except that it no longer 
allowed the whole chromosome complement to be studied in a single cell or structural 
aberrations to be picked up without the use of specially designed probes. 

 Nevertheless, not all 24 chromosomes (22 autosomes plus X and Y chromo-
somes) can be easily assessed in a single cell, and a limited number of fl uorocromes 
are available; therefore 3–5 signals at most are technically feasible.  

  Fig. 3.2    DAPI counterstaining ( a ) and FISH analysis ( b ) showing a disomic 18,YY sperm       

  Fig. 3.3    DAPI counterstaining ( a ) and FISH analysis ( b ) showing a diploid 18,18,YY sperm       
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    FISH Analysis in Normozoospermic Males as Reference 
Value for Aneuploidy Frequency 

 Sperm chromosomal aneuploidies have been investigated by FISH in normal donors 
by various authors. Unfortunately, it is not always easy to compare the results of 
these studies and identify a reference value, mainly because of the differences in the 
frequency and distribution of aneuploidies. This heterogeneity can be ascribed to 
differences in application of the technique, such as sperm decondensation, scoring 
criteria, storage of samples, types of probe, number of sperm scored, or data analysis 
and reporting and donor selection criteria (e.g.,  normozoospermic ,  normozoospermic 
and fertile ,  fertile , or  healthy  men). 

 To provide some useful information on this topic, we compared data from 19 
different studies selected on the basis of donor characteristics and techniques 
(Gambera et al.  2011 ). According to donor selection criteria, we distinguished three 
subgroups:  normozoospermic –  a total of 55 donors with reported normal semen 
parameters according to the World Health Organization (WHO) ( 1999 ,  2010 ) or 
Kruger morphology ( 1986 ) criteria but without information about fertility;  normo-
zoospermic and fertile –  including 57 normozoospermic donors of proven fertility; 
 fertile –  including 37 donors with proven fertility but without information about 
semen parameters. In these studies sperm aneuploidies were evaluated using spe-
cifi c probes for all chromosomes, with the most investigated being 13, 18, 21, X, 
and Y chromosomes mainly because aneuploidies of these chromosomes do not 
preclude embryo development and survival. Overall information about sperm chro-
mosome quantitative alteration was given as the total frequency of aneuploidies. 
The weighted mean of autosomal disomy for each chromosome ranged from a mini-
mum of 0.05 % to a maximum that varied somewhat in the different groups: 
0.14 ± 0.06 % in  normozoospermic and fertile , 0.23 ± 0.08 % in the  normozoosper-
mic  group, and 0.09 ± 0.09 % in  fertile  (Table  3.1 ).

   Disomies for chromosomes 13, 18, and 21 have been extensively studied and 
provide a statistically signifi cant background for the interpretation of results. The 
disomy rate for each chromosome varied only slightly in the three groups and 
between groups. However, chromosome 21 disomy had a signifi cantly higher inci-
dence in the  normozoospermic  group, suggesting greater susceptibility to nondis-
junction for this chromosome. 

 Sex chromosome disomies were also investigated, and XY disomy frequency 
increased more than twice in comparison with XX and YY disomies. Therefore, it 
seems that errors in meiosis I, giving rise to sperm with XY chromosomes, should 
be more frequent than errors in meiosis II, which generate X or Y disomic sperm 
(Fig.  3.2 ). On the other hand, it must be considered that errors in meiosis I give rise 
to two disomic and two nullisomic sperm, while errors in meiosis II may produce a 
disomic sperm and a nullisomic one. The diploidy rate, evaluated by three fl uores-
cent probes, one for autosomes and two for sex chromosomes, was not statistically 
different among the three groups. 
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 Few extensive studies have reported high aneuploidy frequencies for chromosomes 
14, 21, 22, X, and Y (Shi and Martin  2000a ; Templado et al.  2005 ). A review of the 
available literature revealed only the disomy frequency of 21, X, and Y in reference 
subjects increased. This fi nding could be explained by the hypothesis that chro-
mosomes 21, X, and Y may be prone to recombination reduction or failure during 
meiosis (Shen et al.  1998 ) because they have a single chiasmata (Sun et al.  2004 ), 
which increases the probability of incorrect segregation during meiosis I (Koehler 
et al.  1996 ; Templado et al.  2005 ). 

 A lower incidence of the mean of total aneuploidies in male  normozoospermic and 
fertile  subjects (0.50 ± 0.25 %) is not unexpected since normozoospermia alone does 
not necessarily indicate fully fertile status. Moreover, it is well known that donor age 
and lifestyle, including aspects such as smoking, alcohol consumption, and exposure 
to toxic substances, can affect semen quality. Therefore, the sperm chromosomal 
aneuploidy rate probably varies signifi cantly in time; in addition, the fertile status can-
not be considered constant throughout a person’s life, according to several published 
studies on the effects of age and environmental factors on sperm aneuploidy rate 
(Bosch et al.  2001 ,  2003 ; Naccarati et al.  2003 ; Templado et al.  2011b ).  

    FISH Analysis in Men with Alterations of Sperm Parameters 

 Nearly all studies investigating sperm aneuploidy in infertile men have demon-
strated a signifi cant increase in aneuploidy levels compared to their fertile counter-
parts (Templado et al.  2005 ; Sarrate et al.  2005 ; Miharu  2005 ). The majority of 
studies report around a threefold increase in the sperm aneuploidy rate in 
infertile men. 

 Increases in sperm aneuploidy are strongly correlated with an increasing sever-
ity of infertility: the highest level of aneuploidy was reported in men with severe 
oligoasthenoteratozoospermia and in cases of nonobstructive azoospermia where 
sperm are retrieved from testicular tissue (Vidal et al.  2001 ; Egozcue et al.  2003 ; 
Miharu  2005 ). 

 Furthermore, FISH data have been reported for all seminal phenotypes, includ-
ing oligozoospermia (low concentration), asthenozoospermia (poor motility), and 
teratozoospermia (poor morphology) in infertile males with normal karyotype 
(Bernardini et al.  1997 ,  1998 ; Lahdetie et al.  1997 ; McInnes et al.  1998 ; Storeng 
et al.  1998 ; Pang et al.  1999 ; Ushijima et al.  2000 ; Vegetti et al.  2000 ; Calogero 
et al.  2001a ; Shi and Martin  2001 ; Vidal et al.  2001 ; Egozcue et al.  2003 ; Rives et al. 
 2004 ; Miharu  2005 ; Sarrate et al.  2005 ; Templado et al.  2005 ). 

 In particular, a negative correlation has been reported between sperm aneuploidy 
rate and progressive motility (Ushijima et al.  2000 ; Vegetti et al.  2000 ; Celik-Ozenki 
et al.  2004 ; Collodel et al.  2007 ), normal morphology (Bernardini et al.  1998 ; 
Calogero et al.  2001a ; Ryu et al.  2001 ; Lewis-Jones et al.  2003 ; Carrell et al.  2004 ), 
and nuclear maturity (Kovanci et al.  2001 ). 
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 Nevertheless, seminal alterations such as oligozoospermia, asthenozoospermia, 
and teratozoospermia are often detected simultaneously in the same ejaculate 
because a damaged seminiferous epithelium produces fewer sperm, generally with 
abnormal morphology and, therefore, with decreased motility, as in oligoasthe-
noteratozoospermic (OAT) patients. A high percentage of aneuploid sperm could 
be produced as a result of the negative infl uence of any testicular pathology on 
spermatogenetic processes (Martin et al.  1993 ; Bischoff et al.  1994 ; Spriggs et al. 
 1995 ; Calogero et al.  2001a ). 

 Among sperm alterations, reduced sperm concentration is reported to be the most 
strongly associated with chromosomal aneuploidies (Ohashi et al.  2001 ; Martin et al. 
 2003a ; Nagvenkar et al.  2005 ) because severe quantitative impairment of spermato-
genesis has been related to qualitative alterations of chromosome recombination 
and segregation during spermatogenesis (Egozcue et al.  2005 ; Miharu  2005 ; Sarrate 
et al.  2005 ). 

 Among chromosomes, gonosomes are the most susceptible to nondisjunction 
because X and Y are generally involved in only one crossover in the pseudoautosomal 
region, and thus if this process remains incomplete, normal disjunction does not occur. 

 Among autosomes, disomies of chromosomes 13, 18, and 21 were found to 
increase in OAT patients with a frequency of more than 3 times higher in comparison 
with  normozoospermic and fertile  controls (Table  3.1 ). Sex chromosomes were par-
ticularly affected by OAT condition: the mean disomy rates resulted in signifi cantly 
increases in all gonosomes and mainly for XY disomy, which was approximately 
eight times higher    than in  normozoospermic and fertile  controls (Table  3.1 ). 

 Taken together, all these data suggest that men with impaired spermatogenesis 
should have reduced genome-wide recombination leading to chromosome-specifi c 
sperm defects. 

 Sperm morphology is considered one of the main criteria for sperm selection 
before an assisted reproductive procedure. Lee et al. ( 1996 ) analyzed the chromo-
somal constitution of human sperm injected into mouse oocytes. Sperm with abnor-
mal head morphology showed a frequency of structural chromosomal aberrations 
approximately four times higher than those with normal morphology. The statement 
that teratozoospermic patients have an aneuploidy rate signifi cantly higher than 
controls has been confi rmed by several authors using multicolor FISH analysis: the 
frequency of chromosome 18 disomy    was approximately eight times greater than in 
 normozoospermic and fertile  controls (Table  3.1 ). Teratozoospermic samples also 
showed a signifi cant increase in the frequency of disomy for sex chromosomes: 
some morphological abnormalities may be more closely associated with chromo-
some imbalance, particularly those involving the sperm head (Sun et al.  2006 ). 

 When a high percentage of macrocephalic, multinucleate, and multifl agellate 
sperm are detected, autosome and gonosome frequencies show an approximately 
tenfold increase, as reported by various authors (Table  3.1 ). Globozoospermia, a 
peculiar sperm head alteration of genetic origin, seems to be strictly associated 
with a higher incidence of sperm aneuploidies (Carrell et al.  1999 ,  2001 ; Moretti 
et al.  2005 ). 
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 While a consensus exists on the role played by severe oligozoospermia and 
teratozoospermia on sperm aneuploidy and diploidy, whether isolated asthenozoo-
spermia affects sperm aneuploidy is less clear. It is often diffi cult to group data 
from asthenozoospermic samples into separate categories due to the concomitant 
alteration of other sperm parameters, such as concentration and morphology. 

 Isolated asthenozoospermia has been reported by few authors (Aran et al.  1999 ; 
Bernardini et al.  2005 ; Collodel et al.  2007 ) analyzing a range of autosomes (1, 4, 8, 
12, 13, 18, and 21) and sex chromosomes: on the whole, increased sperm disomy 
and diploidy rates were detected with respect to the controls. 

 In other cases of absolute asthenozoospermia characterized by systematic sperm 
anomalies of the fl agella, such as stump tail syndrome and Kartagener syndrome, 
abnormal aneuploidy and diploidy rates were confi rmed by different authors (Rives 
et al.  2005 ). In the case of fi brous sheath dysplasia, some studies reported that the 
mean frequency of diploidy (0.43 ± 0.23 %) and sex chromosome aneuploidies 
increased sharply in comparison to controls group (Baccetti et al.  2005 ; Moretti and 
Collodel  2006 ; Piomboni et al.  2007 ).  

    Sperm Aneuploidy in Infertile Male ICSI Candidates to ICSI 

 The advent of ICSI (Palermo et al.  1992 ) revolutionized the treatment of male infer-
tility by allowing patients with severely compromised semen parameters to achieve 
fatherhood. Although sperm with the “best” morphological features are selected for 
injection into the oocyte, this is not an absolute indicator of a normal genetic consti-
tution (Ryu et al.  2001 ; Burrello et al.  2004 ; Celik-Ozenci et al.  2004 ), and the 
transmission of chromosomal abnormalities to offspring is possible. 

 Various researches have shown that prenatal karyotypes of embryos obtained by 
ICSI have higher sex chromosome aneuploidy rates (0.6 % versus 0.2 %) and higher 
autosomal structural alterations (0.4 % versus 0.07 %) than the general neonatal 
population (Veld et al.  1997 ; Bonduelle et al.  1998 ,  2002 ; Van Steirteghem et al. 
 2002 ). Several clinical studies suggested a strong correlation between the aneu-
ploidy rate of male gametes and ICSI outcome: implantation failure, decreased 
pregnancy, and increased miscarriage rates after ICSI have been reported in OAT 
male when FISH analysis demonstrated abnormal aneuploidy and diploidy 
frequencies. 

 Few studies published so far have found an effect of sperm aneuploidies on 
the outcome of ICSI (Colombero et al.  1999 ; Calogero et al.  2001b ) and reported 
comparable fertilization rates, clinical pregnancy rates, pregnancy losses, and 
occurrence of neonatal malformations in males with both normal and abnormal 
semen parameters. However, these authors concluded that, although the overall 
ICSI outcome was not signifi cantly correlated with sperm aneuploidy, a ten-
dency to a lower aneuploidy rate was underlined in the male partner of pregnant 
women. 
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 The evaluation of the infl uence of chromosome abnormalities in men with altered 
semen parameters undergoing an Assisted Reproductive Technologies (ART) pro-
cedure could be biased by semen selection methods. Many reports consistently 
found an increase in aneuploidy rates in subfertile men, underlining that conven-
tional sperm separation techniques are not able to exclude aneuploid gametes from 
fertilizing pools (Samura et al.  1997 ; Pfeffer et al.  1999 ; Van Dyk et al.  2000 ). More 
recently, a selection technique based on hyaluronic acid (HA)–sperm binding was 
demonstrated as being able to recover a high percentage of euploid sperm: the 
advantages of HA-mediated sperm selection in relation to ICSI outcome improve-
ment could be due to the decreasing frequency of chromosomal disomy and dip-
loidy, which results in a four- to sixfold reduction in comparison with whole 
semen samples (Jakab et al.  2005 ; Huszar et al.  2007 ). 

 With regard to clinical practice, sperm aneuploidy screening may be recom-
mended especially in those countries, such as Italy, where preimplantation diagno-
sis can be performed only in selected cases and therefore FISH on male gametes 
seems to be the only possible technique for determining the risk of generating 
unbalanced embryos. 

    ICSI with Testicular or Epididymal Sperm 

 Sperm extracted from the epididymis (MESA) or testicular tissue (TESA/TESE) 
have a substantially increased risk of chromosomal abnormalities, and therefore 
FISH investigation appears even more suitable. A high aneuploidy rate in testicular 
sperm recovered from nonobstructive azoospermic (NOA) patients has been widely 
reported (Bernardini et al.  2000 ; Levron et al.  2001 ; Burrello et al.  2002 ; Mateizel 
et al.  2002 ; Palermo et al.  2002 ; Rodrigo et al.  2004 ; Gianaroli et al.  2005 ; Vozdova 
et al  2012 ). These data have not been confi rmed by Martin et al. ( 2000 ), who ana-
lyzed aneuploidy frequencies for chromosomes 13, 21, X, and Y in sperm from 
three men with nonobstructive azoospermia. The authors concluded that NOA 
patients may not have a substantially increased risk of chromosomally abnormal 
sperm, in comparison to healthy men. Nevertheless, in these cases it could be take 
into consideration that only a small number of testicular sperm are available for 
FISH analysis, and this could affect the accuracy of the estimated aneuploidy rate. 

 A higher incidence of chromosomal anomalies in epididymal than in ejaculated 
sperm has also been reported (Bernardini et al.  2000 ; Burrello et al.  2002 ; Palermo 
et al.  2002 ; Levron et al.  2001 ; Rodrigo et al.  2004 ). 

 We therefore can conclude that chromosomal abnormalities affect the ICSI 
outcome when sperm are obtained by MESA and TESE, decreasing the fertilization 
and pregnancy rates and increasing the miscarriage rate. 

 On the whole, embryos originated by azoospermic patients have an increased 
rate of chromosomal abnormalities, and therefore appropriate genetic counseling 
should be offered before ICSI.   
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    Sperm Aneuploidy in Infertile Male Carriers 
of Chromosomal Alterations 

 The incidence of constitutional chromosomal abnormalities is approximately 2 % 
in males with combined indications of infertility (Meschede et al.  1997 ), 5 % in 
oligozoospermic, and 14 % in azoospermic men (Johnson  1998 ). The most common 
karyotype abnormalities in infertile men include numerical sex chromosome alterations 
and Robertsonian translocations (Shi and Martin  2001 ). 

    Numerical Sex Chromosome Abnormalities 

    47,XYY 

 The extra Y chromosome in 47,XYY males may arise by at least two mechanisms: 
paternal nondisjunction at meiosis II after normal chiasmata in meiosis I (84 %) or 
postzygotic mitotic error (16 %) (Robinson and Jacobs  1999 ; Rives et al.  2003a ). 
Males with an extra Y chromosome are generally fertile, and meiotic studies carried 
out in these patients indicated that the extra Y chromosome is frequently lost during 
the premeiotic stages (Thompson et al.  1967 ; Chandley et al.  1976 ). Nevertheless, 
in some cases one X and two Y chromosomes have been detected during prophase 
I as an X univalent plus a YY bivalent (Hulten and Pearson  1971 ; Speed et al.  1991 ; 
Blanco et al.  1997 ). No increase in the frequency of any category of sex chromo-
somal aneuploidy was found in 47,XYY patients by Han et al. ( 1994 ). In contrast, 
several authors (Martini et al.  1996 ; Mercier et al.  1996 ; Morel et al.  1999 ; Lim 
et al.  1999a ; Martin et al.  1999 ; Giltay et al.  2000 ; Wang et al.  2000 ; Moretti et al. 
 2007 ) reported a moderate increase in sex chromosome disomies. 

 Globally, the frequencies of sperm with an abnormal number of sex chromo-
somes range from 0.04% to 19 % depending on the study: the mean XY disomy rate 
increased sharply    (4.43  ±  6.03 %) as shown by an evaluation of comparable data 
from different studies (Table  3.2 ). The general fi nding is that the persistence of an 
extra chromosome in germ cells of 47,XYY males can impair spermatogenesis, 
determining a low sperm count. Since most children of 47,XYY fathers have a nor-
mal karyotype, the extra Y chromosome may presumably be lost during meiosis 
(Shi and Martin  2000b ,  2001 ). Nevertheless some XYY germ cells can complete 
meiosis and produce mature aneuploid sperm.

   Recent review studies (Sarrate et al.  2005 ; Rodrigo et al.  2010 ) indicated that 
3.7 % of the spermatozoa analyzed by FISH carry an extra sex chromosome and that 
diploid sperm ranges from 0 to 3.35 %. 

 On the other hand, males with a mosaic 47,XYY/46,XY showed a lower cumula-
tive rate of sex chromosome aneuploidy in sperm than XYY patients. The mean 
gonosome disomy resulting from comparable data reported in the literature ranged 
from 0.17 ± 0.16 % for XX to 0.48 ± 0.31 % for XY (Table  3.2 ). As regards the risk 
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assessment of the transmission of chromosomal aberration to embryos, Gonzalez-
Merino et al. ( 2007 ) analyzed 47 preimplantation embryos and reported a total 
aneuploidy rate of 32 %.  

    47,XXY, Klinefelter Syndrome 

 Infertile males affected by Klinefelter syndrome (KS) are approximately 3 %, 
increasing up to 11 % among azoospermic men (Foresta et al.  1999 ). These subjects 
are rarely naturally fertile, although assisted reproductive procedures such as ICSI 
offer them a chance at fatherhood. The sperm phenotype among KS males is widely 
heterogeneous, ranging from azoospermia to normozoospermia. 

 The extra X chromosome in males with KS may arise by a paternal nondisjunc-
tion at meiosis I in approximately 50 % of cases (Hall et al.  2006 ). During spermato-
genesis, the extra sex chromosome appears to be eliminated (Shi and Martin  2001 ). 
On the other end, many studies carried out in 47,XXY males detected marked 
increases in sex chromosome disomies and diploid sperm (Guttenbach et al.  1997b ; 
Estop et al.  1998 ; Foresta et al.  1998 ,  1999 ; Okada et al.  1999 ; Rives et al.  2000 ; 
Morel et al.  2003 ; Ferlin et al.  2005 ; Sarrate et al.  2005 ; Templado et al.  2011a ). The 
mean disomy rate increased sharply    for XX (4.64  ±  2.56 %) and XY (11.1 ± 6.89 %), 

      Table 3.2    Sperm aneuploidy frequency in infertile male carriers of chromosomal unbalance 
(Modifi ed from Gambera et al.  2011 )   

 Autosomal disomy (%)  Sexual disomy (%) 

 13  18  21  XX  YY  XY 

  47, XYY  
  Mean ± Standard 

deviation  
  1.65 ± 2.31    1.54 ± 1.53    4.43 ± 6.03  

  Mosaic 
47,XYY/46,XY  

  Mean ± Standard 
deviation  

  0.17 ± 0.16    0.50 ± 0.45    0.48 ± 0.31  

  47, XXY 
Klinefelter 
syndrome  

  Mean ± Standard 
deviation  

  4.64 ± 2.56    0.30 ± 0.46    11.1 ± 6.89  

  Mosaic 
47,XXY/46,XY  

  Mean ± Standard 
deviation  

  0.40 ± 0.31    0.42 ± 0.49    1.22 ± 0.71  

  Robertsonian 
translocations  

  Mean ± Standard 
deviation  

  2.65 ±2.73    0.22 ± 0.27    0.62 ± 0.89    0.65 ± 0.92 
(Total sex 
disomy %)  

  1.20 ± 1.91 
(Diploidy 
%)  
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with an average incidence of 6.3 % (Table  3.2 ). Diploid sperm in these patients also 
increased, ranging from 0.03% to 4.2 %, as did autosomal aneuploidies, reaching 
6.2 % for chromosome 21 (Templado et al  2011a ). 

 In patients with mosaic KS, the frequency of sperm aneuploidy varied according 
to the percentage of 47,XXY cells. Various FISH studies (Chevret et al.  1996 ; 
Martini et al.  1996 ; Lim et al.  1999b ; Okada et al.  1999 ; Rives et al.  2000 ; Ferlin 
et al.  2005 ) have demonstrated an increased frequency of sex chromosome disomy, 
ranging from 0.40% to 1.22 % for XY (Table  3.2 ).   

    Chromosomal Translocations 

 Balanced chromosomal translocations are characterized by breakpoints in two 
chromosomes and repair of the chromosomal fragments with transpositions of 
genetic material between them, without loss of genetic material. 

 Male carriers of these structural alterations generally have a normal phenotype 
while showing a reduced fertility and an increase in spontaneous miscarriage and 
birth defects. 

    Robertsonian Translocations 

 Robertsonian translocations are the most common chromosomal anomaly among 
infertile men, characterized by the centric fusion of two acrocentric chromosomes 
(13, 14, 15, 21, 22) and resulting in a 45 chromosome karyotype. The most frequent 
reorganization are t(13q;14q) and t(14q;21q), with an estimated frequency of 0.97 
and 0.20 %, respectively (Frydman et al.  2001 ). Before the report of Plymate et al. 
( 1976 ), testicular function defects were only associated with sex chromosome abnor-
malities (Paulsen et al.  1968 ). Since 1976, many studies have shown that carriers of 
chromosome anomalies, especially translocations, have an altered spermatogenesis 
characterized by severe oligozoospermia (Chandley et al.  1976 ; Veld et al.  1997 ; 
Ogawa et al.  2000 ). In addition, unusual ultrastructural sperm anomalies related to 
immaturity were observed in carriers of Robertsonian translocation (Baccetti et al. 
 2002 ). Spermatogenetic alterations could be a consequence of a chromosomal anom-
aly: the pairing of the reorganized chromosomes during meiotic prophase I gives rise 
to a trivalent confi guration that is prone to segregate in an alternate way, producing 
normal or balanced sperm (Sybenga  1975 ; Vidal et al.  1982 ; Luciani et al.  1984 ). 
Unbalanced sperm are generated by an adjacent segregation pattern, and they could 
be responsible for miscarriages or aneuploid offspring (Egozcue et al.  2000b ). 

 In Robertsonian translocation carriers, FISH analysis demonstrated a percent-
age of normal or balanced sperm ranging from 73.6 up to 91 % (Escudero et al. 
 2000 ; Morel et al.  2001 ; Anton et al.  2004 ; Roux et al.  2005 ; Nishikawa et al. 
 2008 ). Contrasting results showing a high percentage of unbalanced sperm derived 
from adjacent segregation, ranging from 3 % to 36 % (reviewed by Harton and 
Tempest  2012 ).  
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    Reciprocal Translocations 

 Exchanges of genetic material between two or more chromosomes characterize the 
reciprocal translocation. A wide range of different situations is included in this 
structural chromosomal anomaly, each of them unique in individual families, 
depending on the chromosome involved, the size of the translocated regions, and the 
probability of recombination within these regions (Harton and Tempest  2012 ). 
Reciprocal translocations are the most frequent (1/600) structural chromosomal 
anomalies in humans (Estop et al.  1997 ). Among infertile males these chromosomal 
reorganizations are approximately ten times more frequent than in the general popu-
lation (Van Assche et al.  1996 ), and a high level of unbalanced gametes are reported 
in various studies ranging from 29 % up to 81 % (Harton and Tempest  2012 ), with 
an average of 50 % (Shi and Martin  2001 ). 

 The meiotic behavior of reciprocal translocations depends on the chromosomes 
involved in the rearrangement, the position of the breakpoints, the presence of 
crossovers in the translocated chromosomes, and the morphological characteristics 
of the rearranged chromosomes. During meiosis I, segregation of the quadrivalent 
formed among the translocated chromosomes and their normal homologs produces 
a variety of balanced and unbalanced gametes. In the alternate segregation pattern, 
where homologous centromeres move to opposite poles, chromosomally balanced 
or normal gametes are produced. Unbalanced gametes are produced by the other 
segregation patterns, specifi cally adjacent I, adjacent II, and 3:1 segregation. 

 Alternate segregation is the most common meiotic behavior, occurring with a 
frequency of 44–51 %; adjacent I segregants have a frequency of 16–40 %, while 
adjacent II segregants have a lower mean frequency of approximately 9 % (Shi and 
Martin  2001 ), which varied inversely with the length of the shorter centric segment 
(Faraut et al.  2000 ). Finally, 3:1 segregants occur with a mean frequency of 11 % 
(Shi and Martin  2001 ) even if, in some cases, 3:1 segregation is the preferential pat-
tern (Jalbert et al.  1980 ; Estop et al.  1999 ; Van Assche et al.  1999 ) with an unusually 
high rate up to 23.5 % as reported in four different reciprocal translocation carriers 
(Nishikawa et al  2008 ). 

 An analysis of familial cases confi rmed that segregation patterns were specifi c 
for a given translocation, as demonstrated by detection of the same profi le of mei-
otic segregation mode in each family (Rousseaux et al.  1995 ; Cora et al.  2002 ; 
Anton et al.  2004 ; Morel et al.  2004 ; Wiland et al.  2007 ).   

    Interchromosomal Effect 

 The possibility that chromosome rearrangements could interfere with the meiotic 
behavior of chromosomes not involved in translocation led to the concept of inter-
chromosomal effect (ICE), postulated for the fi rst time in humans by Lejeune ( 1965 ). 

 Meiotic segregation of sex chromosomes and autosomes was investigated 
directly on sperm nuclei by FISH by various authors (Rousseaux et al.  1995 ; Blanco 
et al.  2000 ; Vegetti et al.  2000 ; Morel et al.  2001 ; Anton et al.  2004 ), and the results 
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suggested that ICE was generally restricted to translocation carriers with abnormal 
semen parameters. 

 In six carriers of Robertsonian translocations t(13;21) and t(14;22), the interactions 
between chromosome rearrangements and ICE were studied by evaluating aneu-
ploidy and diploidy frequencies of chromosomes 18, X, and Y: the mean percentage 
of sex chromosome disomy as well as the frequency of diploid sperm were signifi -
cantly higher than in controls (Baccetti et al.  2005 ) 

 Therefore, the increase in sperm aneuploidies among Robertsonian translocation 
carriers could be related to ICE, as suggested by many studies (Blanco et al.  2000 ; 
Vegetti et al.  2000 ; Morel et al.  2001 ; Baccetti et al.  2002 ,  2005 ; Anton et al.  2004 ; 
Ogur et al.  2006 ; Chen et al.  2007 ). However¸ a negative effect of an altered testicu-
lar environment on the meiotic process cannot be excluded in any of these studies 
because none of the enrolled subjects with translocations was classifi ed as 
normozoospermic. 

 The question of ICE in reciprocal translocation carriers is still controversial. 
Some authors did not report any evidence of ICE in several reciprocal translocation 
carriers (Van Hummelen et al.  1997 ; Honda et al.  1999 ; Estop et al.  2000 ; Rives 
et al.  2003b ; Oliver-Bonet et al.  2004 ). Some of the analyzed patients had normal 
semen parameters, and therefore the authors suggested that ICE in translocation 
carriers could be restricted to patients with abnormal semen parameters (Vegetti 
et al.  2000 ; Pellestor et al.  2001 ). 

 On the other hand, many reports detected an ICE in different reciprocal translo-
cation carriers (Blanco et al.  2000 ; Oliver-Bonet et al.  2001 ,  2002 ; Baccetti et al. 
 2003 ; Douet-Guilbert et al.  2005 ; Wiland et al.  2007 ; Vozdova et al.  2008 ). 

 All reports support the occurrence of ICE in particular cases of structural chro-
mosome reorganization, depending on the type of reorganization and on the chro-
mosome or chromosomal region involved. However, the increase in aneuploidy and 
diploidy rates in infertile translocation carriers could be feasibly due to altered 
semen quality, as previously reported for infertile males of normal karyotype with 
oligoasthenoteratozoospermia.   

    Sperm Aneuploidy and Hormone Treatment 

 As highlighted so far, errors in sperm chromosome segregation are often observed 
in infertile males, and this is especially negative for candidates for assisted fertiliza-
tion, increasing the failure rate and risk of generating offspring with chromosome 
imbalance. Therefore, it would be useful to develop methods for reducing the rate 
of aneuploidy in sperm. 

 Follicle stimulating hormone (FSH) is known for its role in the initial develop-
ment of Sertoli cells and their stimulation to control spermatogenesis. FSH can 
therefore be used to improve spermatogenesis and fertilizing competence of oligo-
zoospermic males, increasing both spermatogonial population and sperm production 
(Acosta et al.  1991 ,  1992 ; Foresta et al.  1998 ,  2002 ,  2005 ; Baccetti et al.  1997 , 
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 2004 ; Ben-Rafael et al.  2000 ). The administration of FSH can be useful in hypogo-
nadotropic hypogonadism and when sperm alterations associated with normal 
gonadotropin levels suggest functional gonadotropin defi cit. 

 In selected male patients with serum FSH less than 8 mIU/ mL and a frequency 
of sperm aneuploidies greater than 0.6 % according to FISH analysis, 3 months of 
recombinant FSH therapy improved sperm quality and signifi cantly decreased the 
frequency of sperm chromosomal alterations. The average percentage of total aneu-
ploidies dropped by 31.8 %. The general improvement in sperm chromosome seg-
regation was predominantly due to the decrease in diploidies and sex chromosome 
disomies (Piomboni et al.  2009 ). 

 The effect of FSH therapy on spermatogenesis may be explained by fi ndings 
indicating that gonadotropins act as survival factor for spermatogonia and sper-
matocytes regulating the intrinsic and extrinsic apoptotic pathways, by which germ 
cells die in normal adult seminiferous epithelium (Ruwanpura et al.  2008 ).  

    Conclusions 

 Multicolor FISH in decondensed sperm nuclei using probes for sex chromosomes 
and autosomes, particularly chromosomes 1, 13, 18, and 21, allows an accurate 
evaluation of the incidence of sperm aneuploidy and is an appropriate way to analyze 
several thousand cells as well as a few cells in the case of severe oligozoospermic or 
azoospermic patients undergoing testicular biopsies. This technique, developed in 
the 1990s, may be applied for clinical or research aims. By pooling all published 
data from FISH analysis on sperm nuclei, it has become a useful tool in reproduc-
tive counseling for infertile couples (Gambera et al.  2011 ). 

 Using multicolor FISH, errors in chromosomal segregation have been found in 
sperm from normozoospermic or fertile men with a mean incidence ranging from 
0.6 % to 1.45 %. Moreover, the percentage of numerical chromosomal aberrations 
increases in relation to sperm phenotype as in OAT men, suggesting that the risk of 
chromosome malsegregation events increases depending on the severity of testicu-
lar failure. This is also true for infertile males with abnormal karyotypes, which can 
produce a high percentage of gametes with unbalanced chromosomes. Sperm carry-
ing chromosome abnormalities generally have a reduced fertilization potential; 
however, the development of assisted reproductive techniques such as ICSI revolu-
tionized the treatment of male infertility, enabling these patients to procreate but 
increasing the risk of generating embryos with chromosomal unbalances. 

 Therefore, on these bases, information about meiosis and the incidence of even-
tual meiotic abnormalities should be useful in couples undergoing assisted repro-
duction for male infertility factor. 

 No technical procedure of sperm selection can guarantee a choice of gamete 
without chromosomal imbalance; in that case, knowledge of the chromosomal 
constitution of the male gametes in selected cases might suggest the need for a pre-
implantation or prenatal genetic diagnosis. 
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 Further information on the relationships between sperm chromosome unbalance 
and human male infertility could help to promote a correct diagnostic and therapeutic 
approach to infertile couples, even when the cause of infertility is unknown, as in 
idiopathic diagnosis. 

 As regards the progressive improvement of the technique, in the future, the 
introduction of automated systems for multicolor FISH scoring would save time in 
the evaluation of results, which actually implies many hours of microscope viewing, 
which could depend on interoperator variability.     
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