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Abbreviations

ANN Artificial neural network
ATR Attenuated total reflectance
CCD Coupled charge device
CV Coefficient of variation
EEFS Excitation-emission fluorescence spectroscopy
FF Front face
FT Fourier transform
IRE Internal reflection element
MIR Mid-infrared
MLR Multiple linear regression
MSE Multiple standard error
NIR Near-infrared
NMR Nuclear magnetic resonance
OPL Optical path length
PCA Principal component analysis
PCR Principal component regression
PLSR Partial least-squares regression
PLS Partial least squares
PLSDA Partial least-squares discriminant analysis
RA Right angle
RHM Resampling by half-means
SD Standard deviation
SFS Synchronous fluorescence spectroscopy
SHV Smallest half-volume
SLDA Stepwise linear discriminant analysis
SMD Squared Mahalanobis distances
SMLR Stepwise multiple linear regression
SVM Support vector machines

10.1  Introduction

Spectroscopic techniques have emerged in food analysis as rapid and very useful 
tools for determining a great variety of chemical parameters. They provide elegant 
solutions to face analytical challenges. In spite of the intense research on 
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spectroscopic techniques during the twentieth century, the application of such tech-
niques has been delayed due to the spread of chromatography, which allows an easy 
 quantitative interpretation of results, and the lack of suitable sample presentation 
techniques, chemometric tools to calibrate and standardize instruments, intuitive 
chemometric tools, and standardized protocols for spectroscopy. However, the 
necessity of reducing the analytical time and cost, the high number of parameters 
and properties to be simultaneously controlled at the different steps of the food and 
feed chains, and the increasing demand for online techniques, as well as the relative 
limit of traditional techniques to solve some analytical questions faced by the con-
trol laboratories and industries, have rekindled interest in spectroscopy techniques. 
Furthermore, instrumental improvements such as the introduction of interferometry 
methodology and the diode array detector, the availability of new sample-handling 
accessories, the miniaturization of instruments, the computer facilities, and the exis-
tence of software specially designed to extract and to use the information  contained 
in spectra have contributed to the development of near-infrared (NIR), mid-infrared 
(MIR), Raman, and fluorescence spectroscopies. These significant improvements 
have led to less complicated and expensive instruments that could be used on a regu-
lar basis at any laboratory without requiring any special skills or training.

In the field of fats and oils quantitative applications are relatively recent 
 compared to qualitative methodologies. These quantitative procedures have bene-
fited from new ways of calibration (e.g., signal-transduction calibration), adapted 
accessories for sample presentation (e.g., ATR, IR cards, and mesh cells), and 
adopted new procedures of spectra interpretation (e.g., 2D correlation spectros-
copy). The great variety of optical materials and sampling approaches makes the 
spectroscopic  techniques much more versatile than other methodologies, which 
explains the growing interest in developing quantitative applications. Although 
there are only few standard methodologies for olive oil analysis based on spectros-
copy (e.g., determination of dienes and trienes by ultraviolet spectroscopy, 
COI/T.20/Doc. No 19/Rev. 2), a spectroscopic technique such as Fourier transform 
infrared spectroscopy (FT-IR) can be applied to determine the unsaturation degree, 
oxidation state, moisture  content, trans double bonds, free fatty acids, and the 
 presence of impurities or other edible oils, among many others. Such applications 
require more research to improve calibration performance without losing the 
advantageous feature of being rapid methods. Such research might deliver method-
ologies that could be eligible as standard methods in the future to alleviate complex 
olive oil analysis.

In this chapter, the second and third sections briefly present the theory and instru-
mentation currently used in IR, Raman, and fluorescence spectroscopies for the 
analysis of oils. The fourth section describes data acquisition, and the fifth section 
is dedicated to interpretation of oil spectra. The assignment of the most noteworthy 
bands and the correlation between absorption (or scattering) intensities and chemi-
cal indices are discussed. Part of this chapter (the sixth section) is devoted to the 
data treatment of IR and Raman spectra. In this section, a mathematical model 
 construction in quantitative and qualitative analyses is presented. Finally, the results 
obtained in the determination of chemical values and indices are surveyed in the 
seventh section.
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10.2  Theory

The importance of spectroscopy becomes apparent from a reading of the classic text 
published by Herzberg (1945). However, it was not until recently that dramatic progress 
was made with the advent of IR lasers (e.g., IR circular dichroism) and inteferometric 
methods, the introduction of high-power and pulsed lasers (e.g., hyper-Raman and 
coherent anti-Stokes-Raman scattering), or attenuated total reflection (ATR) spectros-
copy, among others. Thus, spectroscopy is not a static field; it is a quite dynamic and 
innovative area. Regarding vibrational spectroscopy, the basic theory has been described 
in ten or so classic books on spectroscopy, some of which are compilations of data while 
others are comprehensive texts (Wilson et al. 1955; Williams and Norris 2001; Li-Chan 
et al. 2010a, b). Most practical books usually emphasize the correlation between 
 molecular structural features and frequencies (Socrates 1994), while textbooks are 
devoted to explaining the theory of vibrational spectroscopy (Williams and Norris 2001; 
Diem 1993). Concerning fluorescence spectroscopy, modern manuals explaining the 
fundamentals and applications illustrate the increasing interest in this technique for 
developing applications beyond basic research (Valeur 2002).

The following section will briefly describe those theoretical aspects of IR, Raman, 
and fluorescence spectroscopies that are basic for understanding spectroscopic 
analyses.

10.2.1  Infrared Spectroscopy

Infrared spectroscopy is a technique in which the interaction of electromagnetic 
 radiation with a sample is studied to obtain both qualitative and quantitative chemical 
information. The IR region lies between the red end of the visible spectrum and the 
microwave region. It comprises wavelengths (λ) between 800 and 2.5 × 105 nm. The IR 
region of the electromagnetic spectrum is subdivided into NIR (λ = 0.8–2.5 μm), MIR 
(λ = 2.5–25 μm), and far-IR (λ = 50–1,000 μm). These distinctions are based on the 
nature of the absorptions giving rise to the corresponding spectra, as well as  differences 
in instrumental design and experimental approach. All are parts of vibrational spectros-
copy and arise from transitions between vibrational energy levels (Banwell 1994).

The simplest approach to explaining the phenomenon occurring in vibrational 
spectroscopy is to consider the bond between two atoms of masses m1 and m2 as 
behaving as a tiny spring of “strength,” or force constant k (N*m−1). The system will 
vibrate at some natural resonance frequency ν (s−1) given by Hooke’s law:
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where μ is the “reduced mass” [m1m2/(m1 + m2)]. This approach is used to explain 
the observed difference in absorption frequencies between different functional 
groups on the basis of different force constants or reduced masses.

However, the quantum theory needs to be considered here. The energy E (J) of a 
photon of wavelength λ (m) is

 
E h h

c
= =n

l
.
 

In this equation h (Js) is Planck’s constant and c (ms−1) is the velocity of light.
Hooke’s law for a simple harmonic oscillator model predicts a potential energy 

curve as a parabolic function of the interatomic distance. The potential energy is 
minimized at the equilibrium nuclear distance. Increasing interatomic distance leads 
to increased potential energy in a continuous manner. In a quantum mechanical 
approach (corpuscular theory), however, only certain energy levels are permitted. 
These energy levels are given by
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where n = 0,1,2… is the vibrational quantum number. Transition between energy 
levels can only occur in discrete steps when sufficient energy E is provided, i.e.,

 D nE h= .  

Transitions occur when n ≥ ± 1. The molecule will absorb the energy of the pho-
ton if it precisely matches the energy that is required for the transition between 
energy levels and when there is a change in the dipole moment associated with the 
vibration. The transitions in which n = ± 1 are called fundamental vibrations and they 
are observed in MIR spectroscopy. The energy required to stimulate these transitions 
occurs at wavelengths between 2,500 and 25,000 nm (4,000–400 cm−1).

In fact, vibrating bonds are anharmonic oscillators. When the interatomic distance 
becomes very small, atomic repulsion causes the potential energy to rise dramatically. 
As the interatomic distance increases, the bond will initially stretch and eventually 
break. This anharmonic behavior can be incorporated into the Schrödinger equation 
and leads to a new expression for permitted energy levels:
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where xe is a small and positive anharmonicity constant.
As a result of anharmonicity, energy levels become closer as n increases and 

 transitions of the type n = ± 2, n = ± 3, or overtones are allowed. In addition, a 
 combination band is produced when the photon excites simultaneously the vibration of 
two or more interatomic bonds that are sufficiently close to influence their respective 
vibrations. Combinations and overtones are seen at higher energy (lower  wavelength) 
and occur in the NIR region (800–2,500 nm; 10,000–4,000 cm−1). These bands  
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have lower intensity than fundamental bands. Figure 10.1 illustrates the anharmonic 
oscillator and the different associated energetic transitions (Barrow 1973; Williams 
and Norris 2001; Skoog et al. 1992).

10.2.2  Raman Spectroscopy

Raman spectroscopy involves a scattering process. When the electric field E interacts 
with a molecule, it exerts the same force on all electrons in the molecule and tends to 
displace them from their original position around the positively charged nuclei. The 
displacements result in an induced dipole moment π in the molecule that is proportional 
to the electric field:

 p a= E,  

E

To

Wavenumber (cm-1)

Inter-atomic distance

Fundamental
band

Overtone
band

hn

2hn
Tf

Overtone
band

Fig. 10.1 Anharmonic oscillator and associated energetic transitions. Legend: E potential energy,  
Tf fundamental transition, To overtone transition

D.L. García-González et al.



341

where α is the electric polarizability. Since π depends on α as well as E, the properties 
of the molecule can change π. In this context, α varies with time as a consequence of 
the vibrations of the molecule since the ease with which electrons may be displaced 
by the electric field depends on how tightly they are bound to the nuclei, which in 
turn depends on the interatomic distance.

When the electric field interacts with a vibrating molecule, the induced dipole 
moment has three components contributing to its time dependence. The first is a 
component vibrating with the frequency of the incident light. According to classical 
electromagnetic theory, an oscillating dipole radiates energy in the form of scattered 
light. Thus, the first component, light of the incident frequency (νRay), will be scat-
tered. This is the phenomenon of Rayleigh scattering. The second component is the 
one vibrating at a frequency that is the sum of the frequencies of the incident light 
and the molecular vibration. The scattered light arising from this second component 
is known as anti-Stokes Raman scattering (νR(aSt)). The third component is the vibration 
at a frequency given by that of the incident light minus the molecular vibrations. 
This is called Stokes scattering (νR(St)) (Grasseli and Bulkin 1991; Diem 1993; 
Schrader 1996).

Figure 10.2 shows an energy diagram of the Raman scattering effect and illustrates 
a schematic and simplified Raman spectrum. To simplify the presentation, only two 
electronic states (the ground and the first excited) and three vibrational states of 
each of them are shown. The intensity of the anti-Stokes Raman scattering bands of 
frequency < R(aSt) is lower than the intensity of Stokes Raman scattering bands of 
frequency < R(St) in view of the difference in population of the ground excited 
 electronic states in a set of molecules at room temperature (Baranska et al. 1987). 
The Raman spectra studied and presented later on in this chapter concern only 
Raman Stokes scattering bands.

10.2.3  Fluorescence Spectroscopy

Fluorescence spectroscopy is a type of electromagnetic spectroscopy in which the 
 fluorophore groups included in the samples are excited using a beam of light. Usually 
ultraviolet light is used and the emission of light of a lower energy is observed; typi-
cally, but not necessarily, the emission is in the visible range of the electromagnetic 
spectrum. In particular, conventional fluorescence spectroscopy provides an emission 
spectrum for a fixed excitation wavelength or an excitation spectrum for a fixed emis-
sion wavelength. The emission spectra are obtained by recording the signal of an 
 emission monochromator at different wavelengths (λem) for a constant excitation wave-
length (λex), usually at a wavelength of high absorption. On the other hand, the excita-
tion spectra are obtained by recording the signal from the excitation monochromator at 
different wavelengths (λex), maintaining a constant emission wavelength (λem). The 
spectra provide information for both qualitative and quantitative analyses about fluoro-
phore groups present in the sample. However, the applications of fluorescence spectros-
copy in the characterization of edible oils are scarce because the  fluorescence 
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Fig. 10.2 (a) Raman scattering effect occurring during illumination of sample with monochro-
matic light. (b) Part of resulting Raman spectrum. Legend: E electronic state, I light-scattering 
intensity (log scale), νRay frequency of Rayleigh line, νR(aSt) frequency of anti-Stokes Raman line, 
νR(St) frequency of Stokes Raman line (Adapted from Baranska et al. 1987)

characteristics of fluorophores are affected by the matrix. Although molecular fluores-
cence spectroscopy is a highly sensitive technique, a severe overlap of excitation and 
emission makes the spectra difficult to interpret (Patra and Mishra 2002). The fluores-
cence spectra can also be affected by the attenuation of the absorption intensity due to 
the absorption of the excitation wavelength (primary inner effect) and the emission 
wavelength (secondary inner effect) (Sikorska et al. 2004). These  phenomena are more 
evident when working with right angle (RA) instruments (Lakowicz 1999). In RA 
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instruments, the collection of the fluorescence beam is collected at a right angle to the 
incident light. In other words, the emission is measured at 90° in relation to the excita-
tion beam. In contrast, in modern front face (FF) instruments, the fluorescence beam is 
collected at an approximately 22–30° angle relative to the incident beam. This geome-
try minimizes the inner filter effects compared to RA instruments.

10.2.4  Band Position and Intensity

In vibrational spectroscopy, the probability of excitation for a particular vibration is 
determined by the so-called selection rules, which can be derived from the applica-
tion of group theory to atomic vibrations in the molecules belonging to different 
classes of symmetry. Some factors tend to modify the band positions (i.e., vibration 
frequencies). The most important factors are the interatomic distances, the spatial 
arrangement groups, the Fermi resonance, the physical state of the sample, the 
polarity of the environment, the formation of hydrogen bonds, and the inductive, 
mesomeric, and field effects of neighboring groups. In this way, the difference in the 
force constant, for example, explain that the stretching frequency of double bonds is 
higher than those of single bonds (Baranska et al. 1987; Grasseli and Bulkin 1991; 
Diem 1993).

Infrared and Raman spectroscopy involve vibrational energy levels of the sample 
molecules that are related primarily to stretching or bending deformations of the 
molecular bonds. However, two main differences should be underlined between IR 
and Raman spectra. First, IR peaks tend to be broad and it is difficult to find a peak 
that is completely free of the influence of adjacent peaks or external parameters. On 
the other hand, a Raman spectrum tends to be composed of a series of isolated 
bands, and water and CO2 have weak Raman scattering properties and, conse-
quently, produce less interference in Raman scattering spectroscopy. Another dif-
ference is that polar groups (such as C = O and O-H) have strong IR absorption 
bands, whereas nonpolar groups (such as C = C and C-C) show intense Raman 
 scattering bands. These two branches of vibrational spectroscopy in fact yield 
 complementary information about molecular vibration, each one contributing to a 
spectral fingerprint of the molecules (Li-Chan 1994).

From a chemical point of view, Raman scattering arises from the change in 
polarizability or shape of the electron distribution in the molecule as it vibrates; in 
contrast, IR absorption requires a change in the intrinsic dipole moment with the 
molecular vibration (Grasseli and Bulkin 1991). More accurately, the Raman band 
intensity is proportional to the expression

 
∂ ∂( )a / ,Q

2

 

where α is the polarizability and Q the normal coordinate of the group of atoms of 
interest. The IR band intensity is proportional to the expression
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∂ ∂( )p / ,Q

2

 

where π is the induced dipole moment of the molecule. Thus, it might be expected 
that the same molecule may give IR and Raman bands with differing intensities and 
band shapes (Baranska et al. 1987).

Concerning fluorescence spectroscopy, to study the band position and intensity it 
is necessary to consider the following issues:

 1. The excitation wavelength used to obtain the emissions spectra should be 
strongly absorbed by the fluorescent compounds; therefore it is recommended to 
obtain the full absorption spectrum of the sample and then select the most appro-
priate wavelength based on the maximum absorption intensities. It is important 
to use an excitation wavelength that is strongly absorbed because the emission 
fluorescence intensity is proportional to the absorption intensity.

 2. Not all of the emission spectrum obtained with the selected excitation wave-
length corresponds to the fluorescent compounds present in the sample. 
According to Stokes’s law of fluorescence states, the wavelength of fluorescence 
radiation is greater than the exciting radiation. Consequently, the emission wave-
lengths should be at least five or ten units larger than the excitation wavelength. 
For example, for an excitation wavelength (λex) at 350 nm, the bands that appear 
in the emission spectrum at wavelengths below 360 nm do not correspond to 
fluorescent compounds.

 3. Other additional considerations that could lead to error are associated with over-
tones. Thus, it is important to note that the overtone area is located at twice the 
wavelength of excitation in the emission spectrum. In the interpretation of the 
spectra it is also convenient to omit the region of the spectrum that is located too 
far from the excitation wavelength (Fig. 10.3).

 4. Primary and secondary inner filter effects are other considerations that should be 
taken into account in the traditional RA techniques (Lakowicz 1999). The inner 
filter effects imply the attenuation of the emission intensity due to the absorption 
of the incident excitation light and emitted light (Sikorska et al. 2004). These 
effects are avoided by working with diluted samples – in the case of oils, 1 % is 
enough. This solution also prevents saturation in the spectrum. Nevertheless, the 
spectra obtained from diluted samples are not always comparable to those 
obtained with original undiluted samples. This difference in the spectra is due to 
the original environment of the samples, which dramatically changes when they 
are diluted, and this could have a significant effect given that fluorescence prop-
erties are extremely sensitive to matrix changes (Strasburg and Ludescher 1995). 
To overcome this problem and examine native samples directly, the FF technique 
is more appropriate.
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Fig. 10.3 Fluorescence emission spectra of virgin olive oils differing in their thermoxidation times 
(hours) collected under two different excitation wavelength: λexc = 270 nm (a) and λexc = 350 nm (b)
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10.3  Instrumentation

Two of the main reasons for the development of new applications of spectroscopic 
techniques are the simplicity of the equipment and the sample presentation. Samples 
can be examined in their gaseous, liquid, or solid states. Enormous progress has 
been made, particularly over the two last decades, on the instrumental front (Diem 
1993; Sharma and Schulman 1999; Li-Chan et al. 2010a).

Spectrometers can be classified according to the radiation source used, either 
thermal or nonthermal. Thermal sources (e.g., quartz-halogen or tungsten-halogen 
lamps) consist of a radiant filament that produces thermal radiation covering a nar-
row or wide range of frequencies in the vibrational spectral range. Nonthermal 
sources (e.g., light-emitting diodes, laser diodes, or lasers) emit narrower bands of 
radiation than those emitted by thermal sources. Another classification of spectrom-
eters is based on the wavelength selection strategy: discrete or continuous wave-
length selection. Discrete wavelength instruments, using filters or light-emitting 
diodes, make it possible to collect the absorbance at specific wavelengths and are 
not widely used. Continuous-spectrum instruments are based on grating monochro-
mator, acousto-optical tunable filter, photodiode array, Fourier transform (FT) inter-
ferometer technologies, or microelectromechanical systems (MEMS) (Osborne 
et al. 1993; Williams and Norris 2001; Blanco and Villaroya 2002).

10.3.1  Near-Infrared (NIR) Spectroscopy

NIR instruments have been widely used for nondestructive rapid analysis in several 
important industries since the early 1970s. In the animal feed, grain, chemical, phar-
maceutical, and food industries, NIR spectroscopy is used in offline, online, and 
inline modes. Several optical approaches have been used in NIR instruments, 
including filters, holographic gratings, acousto-optically tunable filters, light- 
emitting diodes, and the internal and external fitting of optic fibers (Scotter 1997; 
Osborne et al. 1993; Williams and Norris 2001).

Four configurations of spectral collection exist: transmission, transflection, 
 diffuse reflection, and interactance. This has been addressed in detail by Wilson and 
Goodfellow (1994). In oil analysis, transmission and transflection modes are tradi-
tionally used and correspond to specific sample-handling designs. An important 
feature of NIR spectroscopy is that the shorter NIR wavelengths can penetrate 
deeply into the sample; thus, it is possible to obtain spectral data from a thick sam-
ple (i.e., 1–5 mm). In addition, classic crystal and quartz materials are free of absor-
bance in the NIR region.

A transmission cell is used to obtain spectra of liquids and slurries. To make a 
transmission measurement, the sample accessory is placed between the source and 
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the detector. The sample is introduced into the cell specially designed to have a 
constant sample thickness. Transmission cells are usually constituted by two crys-
tal windows separated by spacers of different thicknesses, quartz cuvette of fixed 
thickness (e.g., 1 or 5 mm), or by disposable vials of fixed width (Williams and 
Norris 2001).

Transflection cells are designed for making transmittance measurements with 
instruments that are designed only to collect reflectance spectra (i.e., instruments 
where the source and the detectors are on the same side). A classic transflection cell 
is an aluminum cup covered with a slide glass (crystal or quartz) and having a gold 
plate as reflector. The energy traverses the sample once, is then reflected on the gold 
reflector, and traverses back to the sample before reaching the detector.

10.3.2  Mid-Infrared Spectroscopy

Until recently, MIR spectroscopy has been of limited use for the study of food 
 materials due to a number of drawbacks. Food samples are often opaque and highly 
scattering. Furthermore, they often contain high concentrations of water, which 
absorbs strongly in the MIR region. Food materials, therefore, are not very 

Fig. 10.4 Processing of signals in infrared spectroscopy from interferogram to absorption 
spectrum
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amenable to classic transmission techniques and sampling methods such as pellets 
or mulls (Wilson 1990). A second factor limiting the use of MIR spectroscopy with 
food samples has been that classic instrumental methods suffered from a lack of 
speed and from a low energy level of the sample due to the use of monochromators. 
However, the development of new sampling methods together with FT instruments 
have now made it possible to routinely analyze food samples by MIR spectroscopy 
(Wilson 1990; van de Voort and Ismail 1991).

The use of a Michelson interferometer allows much more energy to reach the 
sample, provides good wavelength reproducibility, and allows spectra to be col-
lected in a very short time. Figure 10.4 shows the basic processing from the inter-
ferogram registered by a Michelson interferometer to transmission and absorption 
spectra. Apart from these combined advantages, it is worth noting that handle sam-
pling is a major issue and is conditioned by the viscosity of the sample. FT MIR 
spectroscopy has made viable sample presentation techniques for edible oils, thus 
overcoming some of their analytical problems with MIR spectroscopy. The most 
important MIR sample presentation techniques applicable to oil analysis are 
 transmission liquid cell and attenuated total reflectance (ATR) crystal, which are 
described in detail by Wilson and Goodfellow (1994). Both methods require a mini-
mum of sample preparation.

10.3.2.1  Transmission Cells

Transmission cells allow for FT-IR analysis in transmission mode. In this mode the 
sample is located in the optical path of the IR beam (I0). Figure 10.5 shows a typical 
transmission cell.

Liquid samples, such as virgin olive oil, are normally injected into the cell to 
form a thin-film squeezed between two windows. There are three main types of 
transmission cell, all employing metal frame plates, windows to enable light to enter 
and leave the sample, and spacers that define the optical path length (OPL). Thus, 
sealed cells employ permanently bonded spacers of a fixed thickness. This first type 
of cell is suitable for quantitative analyses, where an invariable OPL is required. The 

Fig. 10.5 Pictures of a typical transmission cell, demounted, assembled, and set up in FT-IR 
spectrometer
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second kind, the demountable cells, may be dismantled to facilitate cleaning and 
enable the use of spacers with different thicknesses and, hence, different OPLs. 
Finally, piston cells enable the window separation to vary continuously over a range 
of OPLs. In any case, the OPL variations can be controlled by adding an internal 
standard with a known and distinct absorption (Ismail et al. 2006).

Liquid cells enable reasonable quantification of solute concentrations. Practical 
difficulties include the maintenance of a constant (repeatable) OPL and good window 
parallelism (to avoid wedging errors). The cell windows should be constructed from 
a material that is transparent to the MIR beam and, additionally, does not react with 
the samples. Thus, windows are commonly made of polished salt crystals (Table 10.1) 
that transmit IR radiation. Other materials with covalent bonds (e.g., glass) lack this 
property and, in consequence, cannot be used as window material. On the other hand, 

Table 10.1 Main characteristics of window materials used for transmission cells in FT-IR 
spectroscopy

Window  
material

Working  
range (cm−1)

Refractive  
index Advantages/disadvantages

NaCl 40,000–600 1.5 Low cost
Highly hygroscopic; slightly soluble in alcohol;  

breaks easily
KBr 43,500–400 1.5 Low cost; good resistance

Hygroscopic; soluble in alcohol and slightly in ether
KCl 33,000–400 1.5 Low cost

Hygroscopic
CaF2 77,000–900 1.4 Insoluble in water; resists most acids and bases; high 

hardness (suitable for high-pressure works)
Expensive

BaF2 66,666–800 1.5 Insoluble in water
Soluble in acids and NH4Cl; sensitive to mechanical 

shock
CsBr 42,000–250 1.7 Extended IR range

Soluble in water and acids
CsI 42,000–200 1.7 Easier to handle than CsBr

Hygroscopic; does not cleave; easily scratched
AgCl 25,000–434 2.0 Insoluble in water; inexpensive

Darkens under UV radiation; corrosive to metals
KRS-5a 20,000–285 2.37 Insoluble in acids; does not cleave

Slightly water soluble
ZnSe 10,000–555 2.20 Insoluble in water and weak acids and bases

Expensive; brittle; must be handled with care
ZnS 10,000–714 1.5 Insoluble in water and weak acids

Expensive; slightly soluble in acids (HNO3, H2SO4, 
KOH)

aa mixed thallium bromide-thallium iodide
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Fig. 10.6 Spectra of oils collected at different path lengths with KCl cell using spacers of several 
thicknesses (0.015–0.5 mm). Note: Spectra with larger OPL are off-scale
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given the limited energy provided by the IR source, strong absorbance by the solvent 
or nontarget chemicals may dominate the absorbance spectrum, obscuring weaker 
absorbance bands. Therefore, in some cases it is necessary to use very short OPLs 
(below 10 μm), which are difficult to produce and measure reliably.

One key aspect when operating with transmission cells in quantitative analysis is 
to know precisely the OPL to allow a correct calibration. The intensity of the IR 
spectral bands is determined by the OPL, which ultimately means the amount of 
sample between the two windows (Fig. 10.6). Then, an accurate quantitative analy-
sis implies working under a constant and known OPL.

The procedure for determining the OPL is particularly important in demountable 
cells, and it should be carried out after cell assembly and prior to acquiring the spec-
tra to make sure that no significant OPL change has resulted from the manipulation 
of the cell. One procedure consists in acquiring a spectrum with an empty cell. The 
spectrum (Fig. 10.7) recorded from the empty cell is characterized by a sinusoidal line 
with fringes (peaks) and valleys. The OPL is calculated by counting these  interference 
fringes between two wavenumbers and applying the following equation:

 

OPL
n

=
+2 2 1( )

,
n n  

where n is the number of peak-to-peak fringes, and
n1 , n2  are the wavenumbers of the considered range.
Depending on the intensity of the IR band under study, the desirable OPL may 

lie below 100 μm. This short path length entails a difficult sample handling in the 
case of viscous liquids such as edible oils. For that reason, some new accessories 
have been designed for this particular case to ease sample loading (in the absence of 
bubbles) and cell cleaning. Thus, van de Voort (1994) developed a temperature- 
controlled transmission flow cell accessory that allows for the routine use of the 
FT-MIR technique in the quality controls of fats and oils. The instrument is com-
posed of the basic FT-MIR spectrometer, a computer that controls the instrument, a 
temperature controller, the sample-handling accessory inlet, and control valves. 
All components of the sample accessory are heated (usually to 80 ± 0.2 °C) so that 
the sample can easily flow in the lines or the cell. The system includes a bypass line 
to flush out the bulk of the previous sample, which avoids having large samples pass 
through the cell and minimizes the cross contamination. In so doing, it is not neces-
sary to clean the accessory between each spectral acquisition. In summary, an oil 
sample is heated in the test tube block, presented at the input line, and aspirated into 
the cell using the three-way valve.

Another approach to facilitate sampling of viscous oils is based on the concept 
of spectral reconstitution (SR) (van de Voort et al. 2007a). SR involves dilution with 
a less viscous liquid. The spectra of diluted samples are then converted into good 
facsimiles of the spectra of the neat oils, without a priori knowledge of the precise 
dilution factor. The dilution factor is calculated from an internal IR spectral marker 
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that is added to the less viscous liquid and that does not interfere with the bands of 
the sample. The relation of the spectral bands of the marker in the less viscous liquid 
and the diluted samples gives information about the exact dilution factor (van de 
Voort et al. 2008). This procedure eliminates the need for a peristaltic pump, reduces 
sample volumes (from approximately 100 mL to approximately 5 mL), increases 
the number of samples per hour (up to 120 samples/h), and eliminates the need for 
solvent rinses, thereby drastically reducing disposal volumes.

The analysis of viscous samples with transmission cells can also be facilitated by 
the method of signal transduction-dilution. This method has been used mainly to 
measure acidity in mineral and edible oils (Li et al. 2009). In this procedure the 
chemical component to be characterized (e.g., acidity) is extracted with an oil- 
immiscible solvent (e.g., methanol) with a reagent (e.g., hydrogen cyanamide, 
NaHNC ≡ N) that reacts with the chemical component; this results in a measurable 
band. Figure 10.8 shows this stoichiometric reaction and the spectral changes that 
allow an accurate measurement of free fatty acid percentage. This procedure has 
been adapted to be performed in automated (Yu et al. 2009) and portable instru-
ments (Li et al. 2008). The automated instrument (COAT, Thermal-Lube, Pointe- 
Claire, QC, Canada), also used with SR, includes a demountable IR cell, pumps, 
and valves to aspirate the samples, an autosampler for automated analysis, and a 
specific software (UMPIRE) that automatically analyzes different chemical features 
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and performs the mathematical operation necessary for SR (van de Voort et al. 
2007b). On the other hand, the portable instrument (InfraSpec VFA-IR spectrome-
ter, Wilks Enterprise, South Norwalk, CT) is a low-resolution IR spectrometer with 
no moving parts and an electronically modulated (pulsed) source combined with a 
linear variable filter mounted on a detector array (VFA). This instrument has also 
been used coupled with an attenuated total reflection accessory in addition to trans-
mission cells.

Although transmission cells provide a wide range of possible applications, 
some adaptation and new designs have been presented for a better performance in 
particular cases. One of these modifications involves the hyphenation of a FT-IR 
spectrometer and another technique. Transmission flow cells are easier to hyphen-
ate to other techniques in comparison with other FT-IR accessories. Thus, several 
systems have been mounted to connect a separative technique (e.g., HPLC or GC) 
to a transmission cell and a FT-IR detector (Vonach et al. 1997; Ahro et al. 2002; 
Kuligowski et al. 2010). Another modification in the cell is the inclusion of a heater 
to study the oxidative behavior of edible oils (Ismail et al. 2006), also used in NIR 
spectroscopy (Gonzaga and Pasquini 2006). The oxidation of edible oils has also 
been used in disposable cards, whose design is somewhat inspired by classic trans-
mission cells.

10.3.2.2  Disposable IR Cards

Table 10.2 shows a summary of commercial FT-IR cards. The disposable IR cards 
were developed in the 1990s by 3M for the analysis of liquids or spreadable fats. 
The cards are made up of a cardboard holder containing a circular IR-transmitting 
window made of a microporous substrate (polytetrafluoroethylene substrate for 
4,000–1,300 cm−1 or polyethylene substrate for 1,600–400 cm−1 MIR analysis), 
although some manufacturers are commercializing cards of other materials. The 
sample is adsorbed on the mycrocrystaline pores of the film material, resulting in an 

Table 10.2 Commercial FT-IR sample cards and properties

Commercial name Manufacturer/distributor Film materials Pathlength (μm)

3M IR cardsa 3M PEb, PTFEc 10 and 100
PTFE and PTIR cards International Crystal Laboratories PEb, PTFEc Unknown
Real Crystal IR cards International Crystal Laboratories NaCl, KBr, KCl Unknown
DOT.IR cards PSI Performance Systematix PTFE Unknown
ST-IR cards Thermo Scientificd PE, PTFE ~10
aDiscontinued
bPolyethylene
cPolytetrafluoroethylene
dInitially commercialized by Thermo Nicolet
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effective path length of approximately 100 μm. The substrate bands of the micropo-
rous material can be subtracted from the sample spectra. A nonporous ring around 
the aperture prevents the sample from being absorbed by the cardholder. These 
cards were successfully applied to determine trans fatty acid content and the perox-
ide value (PV) of edible oils (Ma et al. 1998, 1999). Another type of IR cards (Type 
2 STIR-PIR cards, Thermo-Nicolet) allows even shorter path lengths but lacks the 
nonporous ring around the aperture, and in consequence there is not consistency 
over time.

An improved version of these IR cards is the IR mesh cell (García-González and 
van de Voort 2009) (Fig. 10.9). Although it can be used for general applications, this 
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cell is particularly adequate for running oxidation at moderate temperatures in a 
wide variety of conditions. The design of this new cell enables one to obtain a fairly 
consistent path length during the entire time of the experiment. This cell is endowed 
with a mesh that entraps the oil sample by means of its inherent surface tension. The 
high surface area provided by the mesh facilitates the rapid oxidation of the oil by 
air at ambient or slightly elevated temperatures with no need of extreme temperature 
conditions. These mesh cells are not disposable and can be easily cleaned and 
reused. Although the effective path length is fairly consistent over the course of the 
experiment, small changes in the sample thickness can been corrected using the CH 
combination band region (4,500–4,100 cm−1) as a reference band (García-González 
and van de Voort 2009). This band provides information on the CH double bonds 
and, thus, on the amount of sample and the OPL. This normalization procedure 
makes it possible to obtain reproducible spectra despite the small changes in the OPL 
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Fig. 10.11 Scheme of working principle of attenuated total reflectance (ATR) and three pictures of 
typical ATR accessories
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over time or between different mesh cells. Thus, Fig. 10.10 shows the significant 
improvement in trans fatty acid calibration when the spectra have undergone nor-
malization by the CH combination band.

10.3.2.3  Attenuated Total Reflectance (ATR)

Methods based on the ATR principle are available in a diverse range of configura-
tions and optical designs. They typically require minimal sample presentation and 
are particularly suited to study highly absorbing samples such as edible oils. The 
spectral information arises from the interaction between the sample and the evanes-
cent wave produced in an internal reflectance element (IRE). Infrared light is sent to 
the crystal at such an angle that it becomes internally reflected. Figure 10.11 shows 
a scheme of the working principle as well as some examples of ATR accessories, 
either multibounce or single-bounce (depending on the number of beam reflections 
within the ATR crystal).

Depending on the geometry and length of the crystal, the light will undergo mul-
tiple reflections before emerging from the crystal. At each reflection an evanescent 
wave is established that decays exponentially into the medium in contact with the 
crystal. If this medium is absorbing, then there will be a transfer of energy from inside 
the crystal to the surrounding medium and the emerging beam will be attenuated. 
ATR does not rely on the sample, which constitutes the surrounding medium, which 
is transparent or transmitting in the conventional sense (Harrick 1967).

ATR allows opaque or highly scattering samples to be used; the only proviso is 
that the sample must make intimate contact with the ATR crystal. This condition is 
fully completed with oil samples. The effective penetration (OPL) at any reflection 
is very short, typically a few microns, so that ATR can be used to overcome the 
strong absorption of materials. Thus, unlike the spectra obtained with transmission 
cells, ATR spectra have no cutoff limit or saturation problem and is suitable to study 
the whole spectra including the most intense bands (Fig. 10.12). A short effective 

0.0

1.0

2.0

3.0

4.0

5.0

A
bs

or
ba

nc
e

10
00

15
00

20
00

25
00

30
00

35
00

Wavenumbers (cm-1)

Cut off limit
0.00

0.08

0.16

0.24

A
bs

or
ba

nc
e

15
00

25
00

35
00

Wavenumbers (cm-1)

10
00

Fig. 10.12 Spectra of an oil collected with an ATR accessory (black line) and a transmission cell 
(red line)

D.L. García-González et al.



357

path length is obtained with no restrictions on the sample thickness, so the sample 
is simply poured onto the ATR crystal. The optical paths are very reproducible from 
one sample to another. ATR then allows easy sample measurement, which is one 
reason that there has been an upsurge in interest in the MIR region (Wilson 1990). 
ATR crystals should be constructed from a material with a high refractive index, 
which is highly transmitting, inert, robust, easily cleaned, and resilient to abrasion 
and corrosion (including dissolution). Classically horizontal ZnSe, Ge, Si, or dia-
mond crystals with 1, 6, or 12 internal reflections are used in oil analysis (van de 
Voort 1994a; Baeten et al. 2005; Abbas et al. 2009). Some disadvantages of ATR 
analysis are the low sensitivity because of the short effective path length (weak 
bands need to be studied with transmission cells), the significant effect that con-
taminations on the crystal might have on the collected spectra, and the need for 
temperature control (the depth of penetration of the IR beam depends on tempera-
ture) (Ismail et al. 2006).

10.3.3  Raman Spectroscopy

In the past, the application of Raman spectroscopy in food science was considered 
to be of very limited use because of fluorescence interference, photodecomposition, 
wavelength calibration, lack of precise frequency base from scan to scan, and the 
difficulty of attaining high-resolution spectra with the classic dispersive Raman 
spectrometer (Chase 1987). However, major instrumental advances have contributed 
to the widespread use of Raman spectroscopy in recent years (Gerrard and Birnie 
1992) and its application in food science (Ozaki et al. 1992; Keller et al. 1993; 
Li-Chan 1996, 2010a).

First was the demonstration, by Hirschfeld and Chase in 1986, that Raman spec-
tra could be obtained with a FT spectrometer equipped with a Nd:YAG laser (NIR 
monochromatic light excitation), a Rayleigh rejection filter, and a germanium detec-
tor. Later on, the development of compact and reliable diode lasers improved the 
quality of the commercially available systems. A third contribution to these devel-
opments was the use of low-noise, multichannel coupled charge device (CCD) 
detectors. By coupling the appropriate laser and a CCD detector to a spectrograph, 
it is now possible to measure Raman spectra in a few seconds without exciting fluo-
rescence. Commercial FT-Raman spectrometers offer a good signal-to-noise ratio, 
a high IR-light throughput, rapid analysis, and the accuracy of wavelength calibra-
tion (Levin and Lewis 1990; Diem 1993; Schrader 1996; Li-Chan et al. 2010a).

FT-Raman spectroscopy is arguably the most versatile and easy-to-use nonde-
structive analytical procedure developed. In fact, glass and water have a very weak 
Raman spectrum, making the technique even easier to use. Samples can be mea-
sured directly in the bottle in the case of an oil. In addition, a spherical cell, such as 
a nuclear magnetic resonance (NMR) tube, allows Raman scattering information to 
be collected easily and rapidly (Schrader 1996). On the other hand, if samples to be 
investigated cannot be transported to the spectrometer, then optical fibers can be 
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used (as in NIR spectroscopy). In the range of FT-Raman spectroscopy, quartz fibers 
have very high transmittance (Lewis et al. 1988; Hendra et al. 1997).

10.3.4  Fluorescence Spectroscopy

Fluorescence spectroscopy, like other vibrational spectroscopic techniques, is char-
acterized by its simplicity of sample presentation. To obtain a fluorescence spectrum, 
it is necessary to excite a sample with an energy-specific excitation wavelength (λex), 
which comes from an excitation source, passes through a filter or monochromator, 
and strikes the sample. Then a fluorescent light is emitted in all directions. Some of 
this fluorescent light passes through a second filter or monochromator, dividing the 
light into different emission wavelengths (λem), which reach a detector.

There are two general types of instruments: filter fluorometers, which use filters 
to isolate the incident light and flourescent light, and the most common spectrofluo-
rometers, which use diffraction grating monochromators to isolate the incident 
light. Both types of instrument are composed of excitation sources, normally a 
xenon lamp, filter or monochromator in excitation, filter or monochormator in emis-
sion, and a detector. The detector is usually placed at 90° to the incident light beam 
to minimize the risk of transmitted or reflected incident light reaching the detector. 
The detectors can be classified as single-channel or multichannel. The difference 
between them is based on the number of wavelengths that they can detect at a time. 
Thus, the single-channel detector can only detect the intensity of one wavelength at 
a time. In contrast, the multichannel type detects the intensity at all wavelengths 
simultaneously.

Various light sources may be used as excitation sources, including lasers, photo-
diodes, and lamps such as xenon arcs and mercury-vapor lamps. Of these, only the 
xenon arc lamp has a continuous emission spectrum, with nearly constant intensity 
in the range of 300–800 nm and a sufficient irradiance for measurements down to 
just above 200 nm.

The most common accessory used to analyze the fluorescence spectrum of liquid 
samples, and vegetable oils in particular, are quartz cuvettes with different paths, 
internal widths, and volumes.

In addition to the conventional collection of emission spectra with a single exci-
tation wavelength, some fluorometers can be adapted to conduct analyses under two 
particular modes that provide some advantages over the conventional mode. These 
particular ways of measuring are commonly known as excitation-emission flores-
cence spectroscopy (EEFS) and synchronic fluorescence spectroscopy (SFS).

D.L. García-González et al.



359

10.3.4.1  Excitation-Emission Fluorescence Spectroscopy (EEFS)

EEFS consists in measuring the emission spectra at different excitation wave-
lengths (λex). The result of this measurement is a three-dimensional (3D) 
excitation- emission matrix (EEM). Compared to conventional fluorescence spec-
troscopy, this technique improves the selectivity of the method. Its main advan-
tage is that it enables obtaining simultaneous information about the different 
fluorophores present in a sample. Furthermore, EEFS is useful for selecting the 
most convenient excitation wavelengths to study specific fluorescent compounds 
in complex matrices by conventional fluorescence spectroscopy. The measure-
ments under this mode also have some disadvantages. The spectroscopic param-
eters must be optimized beforehand to avoid Rayleigh scattering caused as a result 
of the overlap between the ranges of wavelengths of excitation and emission. As a 
drawback, this mode consumes a longer analysis time to obtain a matrix (EEM), 
approximately 10 min depending on the spectral ranges used. The statistical data 
treatment is also more sophisticated or requires a preliminary decomposition of 
the information EEM in two-dimensional arrays. For this purpose, parallel factor 
analysis (PARAFAC) is an appropriate way to decompose and interpret 3D data 
matrices (Tena et al. 2012).

10.3.4.2  Synchronous Fluorescence Spectroscopy (SFS)

This technique consists in scanning the signal of two monochromators, the excitation 
and emission, simultaneously, keeping a constant interval of wavelengths (Δλ) 
between excitation (λex) and emission (λem) wavelengths. Three types of SFS proce-
dures can be distinguished depending on the scan rate: (1) constant-wavelength 
SFS, where the interval wavelength (Δλ) between λex and λem is kept constant; this 
is the most widely used SFS procedure; (2) constant-energy SFS, where a frequency 
difference (Δυ) is kept constant; (3) variable-angle SFS, where the excitation and 
emission wavelengths may be varied simultaneously but at different rates. These 
last two types are more difficult to implement, mostly because commercial fluorim-
eters are not endowed with the necessary software for such scans. Thus, a regular 
fluorimeter typically only allows a constant-wavelength SFS. The selection of Δλ 
depends on which fluorophore compounds comprise the analytical targets of the 
study. Most of the reviewed literature on SFS indicates that 3D rendering helps in 
obtaining a better characterization of multifluorophore systems. The resulting 3D 
surfaces are obtained when the ZZ’ axis is represented – the different wavelength 
intervals (Δλ) used in the course of the experiments – versus the XX’ axis, which 
represents the range of synchronous wavelengths scanned. This graph is used to 
determine which Δλ is the most appropriate for obtaining more information about 
particular spectral bands.
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One advantage of total SFS is the narrowing of the bands, which simplifies the 
spectrum by minimizing the spectral overlap. This narrowing of bands depends on 
the selected wavelength interval (Δλ). The high selectivity of the total synchronous 
fluorescence spectra makes this technique suitable for the qualitative analysis of 
complex samples. The main disadvantages of this mode are the difficulty of select-
ing an appropriate Δλ in the case of multicomponent samples and the requirement 
of specific instrumentation and software to take full advantage of the technique 
(monochromator plus driving software).

10.3.5  Online Analysis

In the food industry, monitoring of the process is a major issue in order to optimize 
it and to assure the quality of the end products. To this end, at-line or online ana-
lytical methods can be applied. With at-line methods, samples are taken from the 
 process line and analyzed close to it or in a laboratory. At-line methods are time-
consuming and do not allow one to obtain the required information in due time in 
order to act rapidly (or even instantaneous) on the process. Online methods, where 
the instrument is directly installed in the process line, is more appropriate for pro-
cess monitoring. NIR, MIR, and Raman spectroscopy are techniques that are suit-
able for providing real-time measurements that can be integrated into an industrial 
process. Recent developments have been observed mainly in the setup of adequate 
sensors and software allowing the collecting of spectral information and to use it to 
pilot food processes. Online NIR spectroscopy has several advantages, such as 
speed of measurement, well-developed equipment and devices, absence of a need 
for sample preparation as well as analysis of simultaneous parameters. The main 
disadvantage is the need for robust calibrations and model transfer between instru-
ments (Kondepati and Heise 2008). The online applications of NIR in food systems 
have recently increased significantly. Huang et al. (2008) published a review on 
NIR online analysis of foods such as meat, fruit, grain, dairy products, and bever-
ages. Online MIR spectroscopy is less frequently used in the food industry but has 
several advantages over NIR spectroscopy such as high sensitivity, ability to distin-
guish between very similar structures, and good calibration transfer between 
instruments. Online MIR application suffers mainly from the strong absorption of 
water and the high cost (e.g., fiber optics suitable for MIR analysis are more expen-
sive and less adapted for online control than those suitable for NIR analysis). Few 
studies on the use of MIR for online applications, such as monitoring a fermenta-
tion reaction, have been reported (Bellon-Maurel et al. 1994; Fayolle et al. 2000). 
Unlike MIR online spectroscopy, online Raman spectroscopy has few applications 
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in the food industry. However, it is commonly used in the pharmaceutical process-
ing industry.

Few papers dealing with online use of NIR spectroscopy for the control of 
olive oil, olive pomace, and olive paste have been published. One of the first pre-
liminary studies of the application of online NIR spectroscopic methods in this 
field was published by Hermoso et al. (1999). In this paper, the NIR technique was 
used to measure the oil content and humidity in olive pomace at the decanter. The 
study provided determination coefficients of 0.91 and 0.6 between NIR spectros-
copy and the reference values of oil content and humidity obtained by NMR and 
the drying-oven method, respectively. Jiménez-Márquez et al. (2005) applied NIR 
transmittance spectroscopy to characterize virgin olive oils. Partial least-squares 
(PLS) models were developed for acidity value, bitter taste, and fatty acid compo-
sition. Gallardo-González et al. (2005) used NIR to determine in real time the 
moisture and fat contents of olive pastes and the resulting olive wastes generated 
in the two-phase oil extraction process. Coefficients of determination of 0.90 for 
humidity and 0.91 for oil content in olive paste samples were obtained.

More recently, some authors (Cayuela et al. 2009; Cayuela and Pérez-Camino 
2010) predicted olive fruit and virgin olive oil parameters by directly measuring the 
fruit using NIR. The analyzed parameters were free acidity in olive oil, oil yield 
from physical extraction, oil content referring to fresh weight, oil content referring 
to dry matter and fruit moisture. The results indicated a very good predictive poten-
tial of the methodology and served to encourage improvement in the obtained mod-
els through the enlargement of calibration databases and models.

10.4  Data Acquisition

The data acquisition procedure in IR or Raman spectrometry is not tedious and can 
be done by nonskilled technicians. Basically, the principal steps are as follows: 
preliminary work for data acquisition (e.g., cool the detector with N2 in Raman 
spectroscopy, heat the sample accessory in NIR or MIR spectroscopy), instrument 
performance verification, stabilization, and data collection. These steps are, for the 
most part, described in the technical manual supplied with the instrument. The per-
formance of the instrument is generally checked by various automatic functions that 
are included in the program designed to control the spectrometer. However, before 
each experiment, it is appropriate to collect and store the spectrum of a defined 
standard (e.g., oil or chemical product defined as standard). In so doing, the spectral 
quality and the stability of the spectrometer can be verified each day.

The stabilization procedure is essential for acquiring a high-quality spectrum, 
i.e., a spectrum with a good signal-to-noise ratio. The manual of the instrument will 
contain the reference value normally reached by the spectrometer. To perform this 
work, the more convenient way is by successively collecting the spectral data of the 
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same sample. It is important to do this collection under conditions that will be used 
in practice. The acquisition of a series of spectra before the analytical step allows, 
according to the analytical conditions, the stabilization of the instrumental compo-
nents (e.g., source, detector). The analytical conditions include the number of scans 
to coadd and the resolution of the spectrum. The best way to define these parameters 
is to carry out a repeatability study, changing one of the parameters at a time. In 
comparison to simple univariate analysis, little progress has been made so far in the 
quantification of variability in multivariate analysis. Hence, it is judicious to com-
plete the statistical results from the univariate analysis (SD and CV) with those from 
a multivariate procedure such as cluster analysis. Cluster analysis develops a math-
ematical model evaluating the similarities and dissimilarities between multivariate 
data (Massart and Kaufman 1983). A convenient agglomerative procedure and link-
age distance in the analysis of spectroscopic data are Ward’s method and the city- 
block (Manhattan) distance, respectively (Chap. 12). A low value of the linkage 
distance indicates a high similarity, i.e., a good repeatability.

When the instrument performance has been checked and the stability of the 
instrument achieved, the data collection procedure can be carried out. This step 
includes the reference spectrum acquisition, the sample spectrum acquisition, and 
sample-handling cleaning. The reference spectrum consists of the spectrum of the 
empty sample accessory or the spectrum of a reference compound (e.g., ceramic 
plate in NIR spectroscopy). This step permits the removal of absorbances due to the 
instrument and sample handling used from the sample. Depending on the technique 
and the sample accessory used, the reference spectrum should be collected once a 
day (e.g., NIR) or before each spectral data acquisition (e.g., ATR/FT-MIR). After 
the reference acquisition, the sample is introduced in the sample accessory and its 
spectrum is collected. Before the following data acquisition, the sample must be 
removed and the accessory cleaned (this is not the case with automatic sampling 
methods, as discussed in Sect. 10.3.2.). Then, the cleaned sample handling should 
be spectrally checked to ensure that no residue from the previous sample remains.

10.5  Interpretation of Oil Spectra

The most frequently discussed drawback of spectroscopic techniques is the diffi-
culty of chemically interpreting the spectral data. Separative techniques like chro-
matography generate information (chromatograms) mainly containing well-resolved 
and separate peaks, i.e., discrete information. Infrared and Raman spectroscopic 
techniques generate continuous information (spectra) rich in both isolated and over-
lapping bands. While in chromatography each peak is, in general, characteristic of 
a precise compound, in spectroscopy, the bands are the result of the vibration of one 
or more chemical bonds (e.g., C-H, C = C) present in all the compounds constituting 
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Fig. 10.13 Near-infrared spectrum of a virgin olive oil

the sample. Each band in the spectrum of a mixture contains the sum of the informa-
tion of various molecules.

To make up for the unreadable information on the IR and Raman spectra, it is 
important to study the spectral features of pure chemical products. Edible oils 
mainly contain triacylglycerols (TAGs) whose types and proportion vary according 
to their source. Hence, the study of pure compounds such as TAGs (or fatty acid 
methyl esters) allows the band assignment of the principal absorption (NIR, MIR) 
or scattered (Raman) bands observed in the spectra. Various papers have presented 
the spectral features of pure chemical products (Holman and Edmondson 1956; 
Bailey and Horvat 1972; Sadeghi-Jorabchi et al. 1991; Sato et al. 1991; van de Voort 
et al. 1994b; Hourant et al. 2000; Baeten et al. 2001; Stefanov et al. 2010). In addi-
tion, various companies offer spectral libraries containing the characteristic spectra 
of the compounds concerned.

The analysis of various kinds of samples from different animal and vegetable 
sources permits the interpretation of the most noteworthy bands. The correlation at 
each frequency between the absorption (or scattering) intensity and chemical com-
pounds (or indices) can be calculated using the fatty acid profile determined by gas 
chromatography. These correlation graphs help the analyst to underline the spectral 
features of each oil source and guide the subsequent data analysis.

To present the main characteristics of NIR, MIR, and Raman spectra, the relevant 
frequencies of pure chemical compounds will be presented and discussed later on. For 
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each technique, the principal correlated frequencies with the total amount of unsatu-
rated fatty acids (UFA = C16:1 + C18:1 + C18:2 + C18:3), monounsaturated fatty acids 
(MUFA = C16:1 + C18:1), polyunsaturated fatty acids (PUFA = C18:2 + C18:3), satu-
rated fatty acids (SFA = C6 + C8 + C10 + C14 + C16 + C18), and iodine value (IV = 1*C
16:1 + 1*C18:1 + 2*C18:2 + 3*C18:3) are displayed in the next paragraph.

Table 10.4 Relevant near-infrared wavelengths (nm) of several lipids and bands that are correlated 
with some chemical indices (R> 0.90)

Lipids

Spectral region

Second overtone First overtone Combination

Tricaprin (C10:0) 1,726, 1,800 2,128
Triolein (cis C18:1) 1,725 2,143
Trilinolein (cis C18:2) 1,665, 1,717 2,143
Trilinoelaidin (trans C18:2) 1,725, 1,800 2,131
Trilinolenin (cis C18:3) 1,665, 1,712 2,143
MUFA 1,724, 1,766 2,358
PUFA 1,162, 1,212a 1,660, 1,698, 1,730a 2,136, 2,176, 2,224, 

2,310a, 2,348a, 2,434a

IV 1,164 1,664, 1,714, 
1,740a, 1,784a

2,144, 2,178, 2,340a, 
2,444a

UFA unsaturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty 
acids, SFA saturated fatty acids, IV iodine value
anegative correlation coefficient

Table 10.3 Assignment of most noteworthy near-infrared absorption 
bands of a virgin olive oil spectrum

Wavelength (nm) Molecule Group Vibration

1,090–1,180 -CH2 C-H Second overtone
1,100–1,200 -CH3 C-H Second overtone
1,150–1,260 -CH = CH- C-H First overtone
1,350–1,430 -CH2 C-H Combination
1,360–1,420 -CH3 C-H Combination
1,390–1,450 H2O O-H First overtone
1,650–1,780 -CH2 C-H First overtone

-CH3 C-H First overtone
-CH = CH- C-H First overtone

1,880–1,930 H2O O-H Combination
2,010–2,020 -CH = CH- C-H Combination
2,100–2,200 -CH = CH- C-H Combination
2,240–2,360 -CH3 C-H Combination
2,290–2,470 -CH2 C-H Combination

D.L. García-González et al.



365

10.5.1  Near-Infrared Spectra

NIR spectra show various overlapping peaks. As seen in the theory section, these 
bands are the result of overtones (first and second) and a combination of fundamen-
tal, largely hydrogenic, vibrations that occur in the MIR region. Various books and 
papers describe the assignment of the major NIR absorption bands (Holman and 
Edmondson 1956; Goddu 1957; Fenton and Crisler 1959; Williams and Norris 
2001; Panford and deMan 1990; Sato et al. 1991; Sato 1994). Figure 10.13 and 
Table 10.3 display, respectively, the NIR spectrum (1,100–2,500 nm) obtained with 
a transmission cell and the assignment of the most noteworthy absorption bands of 
a virgin olive oil.

All studies that have used the NIR region of the electromagnetic spectra have 
shown that oil spectra contain information about the degree of unsaturation (IV) 
(Holman and Edmondson 1956), the total unsaturation (Goddu 1957), the carbon 
number (Wetzel 1983), and the composition of the unsaturated fraction (Sato et al. 
1991). In addition, NIR spectra show specific information about cis isomers, while 
trans isomers have no noteworthy bands.

Sato et al. (1991) showed that mainly two regions of the NIR spectra have par-
ticular features (Table 10.4). First, an absorption intensity near 1,720 nm is charac-
teristic of the first overtone of the C-H vibration of various chemical groups (−CH3, 
-CH2, =CH-) and varies according to analyzed TAGs. In fact, as the degree of unsat-
uration increases, the maximum point observed in the spectra of triolein at 1,725 nm 
shifts to 1,717 nm and 1,712 nm in spectra of trilinolein and trilinolenin, respec-
tively. Second, the absorption band in the area of 2,143 nm, characteristic of the 
C-H vibration of cis-unsaturation, is more intense in polyunsaturated than in mono-
unsaturated fatty acid spectra. Saturated and trans fatty acids show weak peaks and 

Table 10.5 Assignment of most noteworthy mid-infrared bands of a 
virgin olive oil spectrum

Wavenumber (cm−1) Molecule Group Vibration

3,007 cis -CH = CH- C-H ν
2,955 -CH3 C-H ν
2,924 -CH2 C-H ν
2,855 -CH2 and -CH3 C-H ν
1,746 -C = O C = O ν
1,653 cis -CH = CH- C = C ν
1,462 -CH2 C-H δ
1,377 -CH3 C-H δ
1,236 -CH2 C-H δ
1,300–800 Carbon skeleton C-C δ
1,200–1,000 -CO-O- C-O δ
990–960 trans -CH = CH- C-H δ
723 -CH2 C-H δ
ν stretching, δ deformation
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with maxima in the vicinity of 2,128 and 2,131 nm. Wavelengths in the region of 
1,800 nm seem to be characteristic of saturated fatty acids.

A study of 104 samples from 18 different sources (animal and vegetable) showed 
that the spectral features of oils and fats agree with their fatty acid composition as 
determined by gas chromatography (Hourant 1995; Hourant et al. 2000). Oils with 
a high amount of polyunsaturated fatty acids have a maximum absorption band at 
lower wavelengths in the vicinity of 1,720 nm. Moreover, they have higher absor-
bance intensity, in the vicinity of 1,720 and 2,140 nm, than oils rich in monoun-
saturated fatty acids. Sunflower, walnut, and soybean oils present a maximum 
intensity near 1,720 nm, corn and rapeseed oils near 1,722 nm, and peanut, high 
oleic sunflower, and olive oils in the vicinity of 1,724 nm. The spectral regions 
1,100–1,300 and 2,050–2,230 nm also show spectral features characteristic of 
these vegetable species. Table 10.4 regroups the wavelengths showing a high 
coefficient of correlation (greater than 0.90) between the absorption intensities and 
different chemical indices.

10.5.2  Mid-Infrared Spectra

A MIR spectrum of vegetable oil contains well-resolved peaks (3,100–1,700 cm−1) 
and overlapping peaks (fingerprint region, 1,500–700 cm−1) whose assignment is 
more difficult (Socrates 1994). Figure 10.14 displays the MIR spectrum of virgin 
olive oil, while Table 10.5 shows its most noteworthy bands (Fig. 10.14).

Based on the information contained in the MIR spectra, a series of methods has 
been developed to quantify the trans content (AOCS 1988; Sleeter and Matlock 
1989; Ulberth and Haider 1992; van de Voort et al. 1995; Mossoba et al. 1996; 
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Ratnayake and Pelletier 1996), the cis content (van de Voort et al. 1995), the perox-
ide content (van de Voort et al. 1994b), the aldehyde content in thermally stressed 
oils (Dubois et al. 1996), and the free fatty acid content (Ismail et al. 1993). MIR 
spectroscopy was also used in the determination of indices such as the anisidine 
value (Dubois et al. 1996), iodine value (Afran and Newberry 1991; Muniategui 
et al. 1992; van de Voort et al. 1992), saponification number (van de Voort et al. 
1992), and the solid fat index (van de Voort et al. 1996).

The investigation of pure fatty acids underlines the fact that spectral features 
change with the degree of unsaturation (van de Voort et al. 1995). The C-H stretch-
ing vibration of -CH2 and -CH3 groups (2,950–2,800 cm−1),the C = O stretching 
vibration of carbonyl groups (1,745 cm−1), and the C-H bending vibration of -CH2 
and -CH3 groups (1,400–1,200 cm−1) have absorption band intensities that change 
with the degree of unsaturation of the lipid matter. Moreover, the peak centered near 
3,005 cm−1 (C-H stretching vibration of cis -CH = CH-) in the spectrum of triolein 
shifts to higher frequency in the trilinolein (3,010 cm−1) and trilinolenin (3,012 cm−1) 
spectra as the degree of unsaturation rises (Table 10.6). On the other hand, trans 
fatty acids show a peak centered near 3,025 cm−1.

The fingerprint region of pure fatty acids is rich in features indicative of the 
degree of unsaturation, the type of unsaturation (mono- or polyunsaturated), or the 
content of cis and trans isomers. In a range from 1,125 to 1,095 cm−1 (characteristic 
of C-O and C-C stretching vibration), the peak intensities and the shape of the spec-
tra vary with the unsaturation of fatty acids.

A study of 64 samples from 13 sources revealed that certain absorption bands of 
oil spectra vary with their fatty composition (Hourant 1995). The weak peak near 
3,010 cm−1 has a higher intensity as the major fatty acids in the sample are monoun-
saturated or polyunsaturated. Moreover, samples rich in C18:1 (e.g., olive oil) have 
higher absorbance near 2,953 and 2,922 cm−1 than those rich in C18:2.

Table 10.6 Relevant mid-infrared wavenumbers (cm−1) of several lipids and bands that are 
correlated with some chemical indices (R> 0.90)

Lipids

Spectral region

= C-H stretching Fingerprint region

Tristearic (C18:0) – –
Triolein (cis C18:1) 3,005 913
Trielaidin (trans C18:1) 3,025 966
Trilinolein (cis C18:2) 3,010 913
Trilinoelaidin (trans C18:2) 3,025 968
Trilinolenin (cis C18:3) 3,012 913
MUFA 3,011, 2,964 1,425, 1,396, 1,273, 1,134, 1,101, 914
PUFA 2,924, 2,854 1,464, 1,408, 1,313, 1,118
IV 3,011, 2,965, 2,922a, 2,853a 1,429, 1,395, 1,267, 1,132, 1,117a, 

1,098, 922

UFA unsaturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty 
acids, SFA saturated fatty acids, IV iodine value
anegative correlation coefficient
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However, the most important spectral features appear in the fingerprint region. 
Two bands near 1,121 and 1,098 cm−1 show interesting spectral features. The absor-
bance intensity in the vicinity of 1,121 cm−1 shows a positive correlation with the 
amount of oleic acid, while the intensity near 1,098 cm−1 is correlated with the 
amount of linoleic acid (Aparicio and Baeten 1997). In addition, the peak centered 
at 913 cm−1 is not present (or is very weak) in high oleic sunflower and olive oil, 
while it is more intense in samples rich in polyunsaturated fatty acids. Table 10.6 
shows the wavenumbers with a coefficient of correlation between the absorption 

Table 10.7 Assignment of most noteworthy Raman scattering bands of 
a virgin olive oil spectrum

Raman shift (cm−1) Molecule Group Vibration

3,007 RCH = CHR =C-H ν
2,926 -CH2 C-H ν
2,897 -CH3 C-H ν
2,855 -CH2 C-H ν
1,748 RC = OOR C = O ν
1,670 trans RCH = CHR C = C ν
1,655 cis RCH = CHR C = C ν
1,441 -CH2 C-H δ
1,306 -CH2 C-H δ
1,270 cis RCH = CHR =C-H δ
1,100–1,000 -(CH2)n− C-C ν
900–800 -(CH2)n− C-C ν
ν stretching, δ deformation
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intensities and different chemical indices higher than 0.90. The region near 3,010–
2,950 cm−1 and the fingerprint region (1,500–700 cm−1) show the highest correlation 
with the different indices in relation to the degree of unsaturation of the samples.

10.5.3  Raman Spectra

The spectra of edible fats and oils obtained by FT-Raman spectrometers contain 
well-resolved bands with various scattering intensities and shapes. The spectra 
show good signal-to-noise ratios and contain information from different vibrational 
bands (stretching and bending) of various chemical groups. Raman scattering arises 
from the change in the polarizability or shape of the electron distribution in the 
molecule as it vibrates, while, in contrast, IR absorption requires a change in the 
intrinsic dipole moment with the molecular vibration (Grasseli and Bulkin 1991). 
Hence, polar groups (such as C = O and O-H) have strong MIR absorption bands, 
whereas nonpolar groups (such as C = C) show intense Raman scattered bands. 
Because the main feature of unsaturated fatty acids is their content of double bonds 
and their configuration (cis or trans), FT-Raman spectra are of great value in the 
study of lipids. Raman spectroscopy has been used in the determination of the total 
amount of unsaturation (iodine value) and of the cis/trans isomer content of edible 
oils (Bailey and Horvat 1972; Sadeghi-Jorabchi et al. 1990, 1991). Figure 10.15 and 
Table 10.7 display respectively the FT-Raman spectrum and the assignment of the 
most noteworthy bands of a virgin olive oil.

Bailey and Horvat (1972) studied the spectral features in the area of 1,660 cm−1 
(C = C stretching vibration) of triolein, trielaidin, trilinolein, and trilinolenin. In 
this region, trans isomers had a peak centered near 1,670 cm−1, while cis isomers 
showed a peak in the vicinity of 1,660 cm−1. Later on, Sadeghi-Jorabchi et al. 
(1991) studied and underlined other characteristics of pure methyl esters in their 
work on the quantification of cis and trans content by FT-Raman spectroscopy. 
They showed the particular features of fatty acids near 3,010 cm−1 (=C-H 

Table 10.8 Relevant Raman shifts (cm−1) of several lipids and bands that are correlated with some 
chemical indices (R> 0.90)

Lipids

Spectral region

= C-H stretching C = C stretching C-H bending

Methyl oleate (cis C18:1) 3,006 1,654 1,439, 1,267
Methyl elaidate (trans C18:1) 2,995 1,667 1,439
Methyl linoleate (cis C18:2) 3,011 1,657 1,440, 1,265
Methyl linolenate (cis C18:3) 3,013 1,657 1,441, 1,266
MUFA 2,890, 2,874a, 2,845
PUFA 3,021, 2,922, 2,884a, 2,870, 2,855a 1,667, 1,642 1,256
IV 3,007, 2,991, 2,911, 2,882a, 2,855a 1,657, 1,646 1,268

UFA unsaturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty 
acids, SFA saturated fatty acids, IV iodine value
anegative correlation coefficient
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stretching vibration) and 1,270 cm−1(=C-H bending vibration). In the area of 
3,010 cm−1 a shift to a higher frequency and an increase in the scattering intensities 
occurs as the degree of unsaturation rises. Similar observations were reported at 
1,660 and 1,270 cm−1. Table 10.8 shows the main characteristics of various methyl 
esters.

The region near 3,010 cm−1 is particularly affected by the major fatty acid com-
ponents (Baeten et al. 1998). In fact, samples relatively rich in polyunsaturated fatty 
acids (e.g., corn, sunflower, and sesame oils) had a more intense scattering band and 
a higher frequency maximum than samples rich in monounsaturated fatty acids 
(e.g., olive oil). This band is also important in the authentication of olive oil (Baeten 
et al. 1996). The usefulness of Raman shifts in the range 2,880–2,840 cm−1 (C-H 
stretching vibration of CH2 and CH3) for varietal discrimination has also been noted 
(Aparicio and Baeten 1998). In this region, samples rich in polyunsaturated fatty 
acids (e.g., rapeseed, sunflower, and walnut oils) have weaker scattering intensities 
than those that have a high content of monounsaturated fatty acids (e.g., olive oil).

The region of 1,660 and 1,265 cm−1 is also characteristic of the fatty acid profile 
of the fat or oil variety studied. Samples rich in polyunsaturated fatty acids such as 
walnut, sunflower, corn, and sesame oils have a maximum near 1,657 cm−1, while 
olive and high oleic sunflower show a maximum near 1,655 cm−1. The intensity at 
these Raman shifts rises with the degree of unsaturation. Near 1,259 cm−1, the scat-
tering intensities increase as the degree of unsaturation decreases. The fingerprint 
region (1,100–700 cm−1) of pure methyl esters and of different oil varieties also have 
information (Sadeghi-Jorabchi et al. 1991). However, the poor signal-to-noise ratio 
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at these frequencies does not allow, at the moment, evaluation of the information. 
Table 10.8 regroups the wavenumbers showing a maximum coefficient of  correlation 
between the absorption intensities and different chemical indices.

10.5.4  Fluorescence Spectra

Vegetable oils are commonly analyzed by fluorescence spectroscopy untreated or 
diluted at 1 % in hexano v/v. In particular, Fig. 10.16 displays the fluorescence spec-
trum of a virgin olive oil in its native form (nondiluted). The bands observed in this 
spectrum have been related to species that are shown in Table 10.9. In this table also 
appears the emission wavelength of these fluorophores. The spectral profile and the 
intensities of these bands dramatically vary with the oxidation degree of the sam-
ples, as was shown in Fig. 10.3. The bands of some fluorescent compounds, such as 
chlorophylls, are more intense than other fluorescent species, although the intensity 
greatly depends on the excitation wavelength. The magnitude of this peak with 
respect to others may cause problems when handling the whole data set. This 

Table 10.9 Emission wavelength associated with fluorophores present in olive oil

Fluorescent compounds λem (nm) Reference

Pigment (chlorophylls and pheophytins) 692–765 Sayago et al. (2007)
α-, β-, and γ-tocopherols, phenols 275–400 Dupuy et al. (2005)
Chlorophyll a and b, pheophytin a and b 600–700
Oxidized products from vitamin E 400–600
Tocopherols and tocotrienols 300–350 Sikorska et al. (2005)
Chlorophylls and pheophytins 660–700
Oxidized product 400
Phenols 300–390 Zandomeneghi et al. (2005)
Chlorophylls and derivatives 640–800
Tocopherols 328 Giungato et al. (2004)
Chlorophyll a 669
Parinaric acid isomerization 406
Vitamin E (oxidized products) 440, 475, 525 Guimet et al. (2004)
Chlorophylls 650 y 700
Chlorophyll a 669 Galeano et al. (2003)
Chlorophyll b 653
Pheophytin a 671
Pheophytin b 658
Hydroxyl radical 452,3 Tai et al. (2002)
K232 y K270 440–445 Kyriakidis and Skarkalis (2000)
Vitamin E derivatives 525
Chlorophylls 681
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problem can be avoided by studying narrower ranges of wavelengths instead of 
processing the information of the entire emission spectra.

10.6  Data Treatment

The main analytical problem with spectroscopic data is to extract the information in 
such a way that it can be used in quantitative analysis. IR and Raman spectra are 
usually the mean of various coadded spectra (normally between 100 and 200). The 
collection of a high number of coadded spectra is allowed by the rapidity of the 
acquisition of a single coadded spectrum in an FT instrument (around a few sec-
onds). The spectra displayed throughout the present chapter are coadded spectra. 
These spectra are a rich source of multivariate data (more than 700 data points) 
where each frequency represents a variable. Various strategies have been proposed 
to investigate the spectral data set and to isolate areas, patterns, or latent variables 
correlated with the information concerned.

Figure 10.17 summarizes the classical steps for building a mathematical model 
(i.e., a quantitative or discriminant equation). The steps are the pretreatment of data, 
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outlier detection, calibration, and validation procedures including chemical, inter-
nal, and external validation.

The following sections briefly describe the data treatments and their respective 
objectives. For a thorough presentation of the ideas in this section, the reader may 
refer to Tabachnick and Fidell (1983), Williams and Norris (2001), and Martens and 
Naes (1989).

10.6.1  Pretreatment of Data

The signal obtained from a spectrometer contains information together with random 
noise. Noise can cause systematic errors in later predictions through the estimated 
calibration parameters. Thus, reducing noise or, in other words, improving the ratio 
of signal to noise is still an advantage.

Various pretreatments of data are available for different objectives, such as, for 
example, to improve the spectral quality (e.g., signal-to-noise ratio), to reduce the 
influence of external variation (e.g., variation produced by the sample-handling 
method), or to resolve the complexity of overlapping peaks (e.g., the combination 
bands or the fingerprint region of MIR spectroscopy). All depend on the objective 
sought, the technique investigated, the instrument and sample accessory used, the 
sample (neat or solution) studied, the type of mathematical model to be built, or the 
researcher’s preferences.

Various algorithms are available to perform smoothing that basically concern 
how to reduce high-frequency ripple noise and, whenever possible, low-frequency 
noise. Thus, conceptually speaking, smoothing is simply a filtering process. From 
the large panoply of algorithms developed for electronic analog and computer sys-
tems from the 1960s to today, algorithms are available in the smoothing routines of 
the software packages developed for IR and Raman spectrometers. These routines 
usually contain algorithms such as moving average filters (Rabiner and Gold 1975), 
the least-squares polynomial smoothing developed by Savitsky and Golay (1964), 
and the classical Fourier smoothing methodology (Williams and Norris 2001; 
Martens and Naes 1989), among others. The running mean algorithm simply 
replaces the value at each point by the mean of the values in a wavelength (or wave-
number) interval surrounding it. The interval is centered at the given point, resulting 
in an odd number of data points per mean (Williams and Norris 2001). The Savitsky–
Golay algorithm, the most familiar method of smoothing in analytical chemistry, is 
an indirect filter that fits the spectrum inside a wavelength (or wavenumber) interval 
with a polynomial by least-squares method. The parameters are the degree of the 
polynomial and the number of points to fit (Savitsky and Golay 1964). Fourier anal-
ysis makes an orthogonal transformation of the spectrum into a sum of sine and 
cosine spectral contributions (Aparicio et al. 1977) that allows certain frequencies 
to be kept (usually low frequencies) and removes those undesired frequencies that 
do contribute to noise (often the high-frequency ripple). The inverse FT is ulti-
mately used for regenerating the spectrum.
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Derivatives allow some compensation for the problems associated with overlap-
ping peaks and baseline variations. Analysts generally use the first and second 
derivatives. This mathematical treatment calculates the tangent at each point of the 
raw spectral data. Each inflection point of the raw spectrum corresponds to a relative 
minimum or maximum of the first derivative spectrum while all maxima and 
minima on the raw spectrum are zero in the first derivative spectrum. The second 
derivative is advantageous for the resolution of overlapping peaks. Each minimum 
of the second derivative spectrum corresponds to a maximum of the raw spectrum, 
and obviously identical comments can be made regarding successive even deriva-
tives (Williams and Norris 2001).

Normalization means changing a group of spectra so that unwanted sources of 
variability are suppressed. This helps the graphical understanding of the spectra and 
can reduce the complexity of the subsequent data treatment necessary to develop a 
calibration from spectroscopic data. The simplest example of this treatment is the 
subtraction of the spectral value at a single wavelength or wavenumber (the so- 
called reference wavelength or wavenumber) from all the spectral values; the result 
is a set of spectra with zero value at the reference wavelength or wavenumber. 
Normalization by closure is an alternative. This normalization consists in dividing 
the signal instrument responses at each wavelength or wavenumber by their sum (or 
mean) in each spectrum. Martens and Naes (1989) suggest this procedure when 
there is no variable that dominates the total sum of original instrument responses, 
but always after a graphical inspection of the ratios between some estimated values 
for independent variables.

Outliers are abnormal, erroneous, or irrelevant observations that can greatly 
influence mathematical model construction. A number of phenomena such as oper-
ator mistakes, noise spikes, instrument drifts, and inconsistent sample-handling 
position can affect a spectroscopic analysis (Williams and Antoniszyn 1987). Thus, 
both objects (cases) and variables can behave as outliers, and they are unavoidable 
in almost all statistical studies. They can only be removed or corrected. During cali-
bration it is important to have them under control as they could decrease the predic-
tion ability of the estimated calibration coefficients. The cross-validation curve can 
give clues about the presence of outliers in the calibration set, e.g., irregular devia-
tions of the fitted curve of MSE versus the number of PLS factors (Martens and 
Naes 1989), although almost all multivariate statistical procedures have algorithms 
for outlier detection (Tabachnick and Fidell 1983). Other algorithms are based on 
leverage (a Mahalanobis distance that measures the position of independent vari-
ables relative to the rest) and residuals (difference between predicted and observed 
values in regression). Leverage is outlier sensitive, and a high leverage observation 
in a regression process means that the calibration set contains outliers. A plot of 
residuals (residuals against wavelength numbers) gives more than graphical infor-
mation because an observation with large residuals indicates the presence of abnor-
mal information (Cook and Weisberg 1982).
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During prediction it is almost compulsory to have methods for detecting abnor-
malities in order to increase the certainty of the predicted results. The detection of 
these possibly abnormal observations can be based on data information such as the 
residual value and the prediction leverage (Martens and Naes 1989) or more classi-
cal methods based on the Mahalanobis distances (De Maesschalck et al. 2000) and 
on potential functions (Jouan-Rimbaud et al. 1999). Robust methods (Geurts et al. 
1990) can also be applied such as resampling by the half-means (RHM) or the 
smallest half-volume method (SHV) (Egan and Morgan 1998; Pell 2000). However, 
most of these multivariate outlier detection techniques are often difficult to under-
stand for nonspecialists and are not an easy matter due to the masking and swamp-
ing effects. The masking effect occurs when one outlier masks a second outlier. In 
this case, the second outlier can be considered an outlier only by itself, not in the 
presence of the first outlier. In the swamping effect, one outlier swamps a second 
observation because the latter can be considered an outlier only in the presence of 
the first one (Ben-Gal 2005). Most analytical chemists want to spend as little time 
as possible looking at the large variety of diagnostics for outlier detection. In conse-
quence, simple methods are needed. For this reason, complete protocols for outlier 
detection have been developed with the maximum information that can be extracted 
from the data (Høy et al. 1998; Fernández Pierna et al. 2002). These protocols 
include not only the determination of classical measurements as Mahalanobis dis-
tance or the leverage value, but also the calculation of the uncertainty present in the 
outputs of the multivariate model, which is calculated as a function of the different 
sources of uncertainty present in the model (Fernández Pierna et al. 2003).

After analysis of the internal and external variables that can affect the mathemat-
ical model, the pretreatment of data should finish with a study of the repeatability 
and reproducibility of the method. The main element of repeatability is the standard 
deviation of a successive collection of spectra of the same sample under the most 
realistic experimental conditions. The repeatability study should include not only 
all the steps included in the data collection procedure (washing of the sample holder, 
sample removal, spectral acquisition), but also a study of the variability observed on 
different days. Reproducibility would imply a collaborative study about the com-
parison of spectral results of selected samples by diverse instruments at different 
laboratories. The results of the repeatability and reproducibility studies firmly deter-
mine the number of replicates of each case (sample) of the calibration and valida-
tion sets and the regions of the spectra that can be used in calibration.

10.6.2  Mathematical Model Construction

The purpose of IR and Raman instruments is to determine the concentration of chemi-
cal variables, such as trans content (i.e., quantitative analysis), or the assessment of 
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qualitative issues, such as authenticity or characterization (i.e., qualitative analysis). 
But to do this, the instrument must be calibrated for converting the IR or Raman opti-
cal signal to the desired quantitative or qualitative measurement. A model needs two 
processes, the calibration, or model design, and the validation, or model verification.

Calibration is usually carried out with chemical parameters (i.e., iodine value) 
quantified by nonspectroscopic techniques, e.g., chromatography. The dependent 
variable (e.g., iodine value) is then qualified as a direct measurement, while the inde-
pendent variable (the spectrum) is described as an indirect measurement. However, it 
is the spectroscopic technique that responds directly to the problem description. For 
example, peptide bonds in proteins are directly represented in the spectrum, whereas 
the so-called direct method Kjeldahl analysis for proteins involves the measurement 
of total nitrogen, which requires several reaction steps and the application of a con-
version factor to amine and protein measurement (Scotter 1997).

Fig. 10.18 Schematic 
presentation of (a) 
multivariate regression 
analysis (MLR), (b) principal 
component regression (PCR), 
and (c) partial least-squares 
regression (PLSR)
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10.6.2.1  Calibration in Quantitative Analysis

Calibration means a formula (linear or nonlinear) establishing a relationship 
between the variation of the spectral data (independent variable) and the chemical 
reference data (dependent variable). The calibration is in fact a regression process 
with a strict pretreatment of data and rigorous analysis of the results.

Since two steps are necessary to achieve a mathematical model construction 
(calibration and validation), two sample sets are necessary, i.e., a set of N samples 
that would be used to construct the equation (calibration set) and a set of M samples 
that would allow studying the precision and the reliability of the equation (valida-
tion set). The number of samples in the validation set should be at least half of the 
calibration set. Moreover, the mean and the standard deviation of the two sample 
sets must be as close as possible, and the validation set must also be a subset of the 
calibration set covering the whole range of values. To assure these conditions and to 
have two homogeneous data sets, i.e., which should cover the experimental region 
uniformly, various methods have been developed and are described in the literature. 
The most common technique is the duplex method (Snee 1977), which is a modifi-
cation of the Kennard and Stone technique (Kennard and Stone 1969). In this 
method, a sequential procedure is applied in order to split the data into two subsets. 
The method starts by selecting the two points that are furthest from each other and 
puts them both in a first set (training). Then, the next two points that are furthest 
from each other are put in a second set (testing), and the procedure is continued by 
alternately placing pairs of points in the first or second set.

Various calibration (or regression) procedures exist, with multiple linear regres-
sion (MLR), principal component regression (PCR), and PLS being the most com-
monly used in spectroscopy. Figure 10.18 shows a schematic design of these 
statistical procedures where the matrix Yij (or y) represents the values of the j-depen-
dent variables (usually chemical analyses) of N (i = 1…N) calibration samples, 
while matrix Xiw (or X) represents the values of w-independent variables (spectral 
wavelengths or wavenumbers) of these N calibration samples. The simple regres-
sion equation can be written, in matrix convention, y = Xb + f, while the objective of 
the calibration by least squares is to minimize the length f = y-Xb whose solution is 
equal to Estimator- b = (X’X)−1 X−1y, where X’ is the transpose matrix X and X−1 is 
the inverted matrix X.

The explanation of a dependent variable (e.g., iodine value) by only one wave-
number is rather difficult, and hence calibration needs to combine more than one 
wavenumber; this is multivariate calibration. Traditional MLR and stepwise multi-
ple linear regression (SMLR) are expressed as

 
y b X bi i= + +∑0 d ,

 

where y is the dependent variable, or analytical reference, Xi(i=1,n) (the independent 
variables) are the spectral data (transformed or not) at the respective n wavelengths 
or n wavenumbers, and bi (i = 0,1,…,N) are the regression coefficients. To achieve 
higher regression values, the analyst might be tempted to increase the number of 
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spectral data in calibration; however, it is judicious to limit the number according to 
the sample number. Tabachnick and Fidell (1983) suggest that the number of sam-
ples should be ten times the number of independent variables. Anyway the MLR 
predictor has a deficient performance when there is collinearity in X, while SMLR 
gives a better prediction when an F-test is used for selecting variables because this 
algorithm enables removal of those Xi-variables that are most nonlinear in their 
response (Tabachnick and Fidell 1983).

Partial least-squares regression (PLSR) was designed to give a plausible solution 
to those studies where there are many collinear variables and a small calibration set, 
that is to say, where the number of variables is greater than cases (spectra), although 
some pitfalls have been described (Defernez and Kemsley 1996). PLSR can be 
applied for one single y-variable and several y-variables. In general PLSR-1 is more 
complex than PCR or PLSR-2 than canonical correlation based on simultaneous 
PCA of X and Y matrices. Martens and Naes (1989) state that calibration methods 
based on PLS regression can give a good understanding of the calibration data and 
a good approximation of many types of nonlinearities. Other alternative is ridge 
regression (Pfaffenberger and Dielman 1990), although it has not been widely used 
in spectroscopy despite the fact that it can be superior to PCR.

One of the most common applications of PCA is in those studies where Xi- 
variables are expected to be collinear. This is the case with spectral analysis (Cowe 
et al. 1985a, b), and PCA is able to express the main information in the variables of 
the raw calibration set by a lower number of variables, so-called principal compo-
nents (Chap. 12). Once the analyst has decided how many principal components are 
necessary for retaining the essential information in X (i.e., applying cross valida-
tion), the rest of the process is similar to MLR, although the application of SMLR 
to PCA is strongly advised (Aparicio et al. 1992). At any rate, the analyst should 
select the best spectral data instead of the whole spectrum as the latter can contain 
large amounts of noise or superfluous information.

The described regression procedures assume that the relationship between the 
independent variables and the dependent variable is linear in nature. However, the 
nonlinear estimation leaves it up to the analyst to specify the nature of the relation-
ship; for example, you may specify the dependent variable to be a logarithmic func-
tion of the independent variables, an exponential function, a function of some 
complex ratio of independent measures, etc. There are many noncategorical nonlin-
ear estimations such as the quasi-Newton method (O’Neill 1971), piecewise nonlin-
ear regression, Hooke–Jeeves method (Hooke and Jeeves 1961), simplex procedure 
(Fletcher and Reeves 1964), Hessian method, and others. Where all these other 
methods fail, the Rosenbrock pattern search method often succeeds. This method 
rotates the parameter space and aligns one axis with a ridge while all other axes 
remain orthogonal to this axis. If the loss function is unimodal and has detectable 
ridges pointing toward the minimum of the function, then this method will proceed 
with accuracy toward the minimum of the function. However, if all variables of 
interest are categorical in nature, or can be converted into categorical variables, the 
correspondence analysis module should also be considered.
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It is important to note that sometimes data are nonlinear. Deletion or appropriate 
weighting of nonlinear variables at the beginning of an analysis can decrease the 
nonlinearity problems. Also, in some cases an appropriate signal preprocessing can 
correct for the nonlinearity. These approaches can perhaps give better predictive 
ability than linear models with original variables or less complex models for the 
same predictive ability; however, alternatively, one may decide to adopt nonlinear 
models such as neural networks, support vector machines (SVM), or local regres-
sion approaches (De Maesschalck et al. 1999).

10.6.2.2  Qualitative Analysis: Classification Protocols

To construct a mathematical model for olive oil characterization or authentication, 
it is important to establish an intelligible, reproducible, valid, and predictive 
approach. Unfortunately, few authors propose a complete procedure to extract and 
use the information contained in IR or Raman spectra. The following sections are 
based on the results obtained with two protocols (Lai et al. 1994).

The first step of these two approaches is identical and concerns the division of 
the sample set into two subsets. As mentioned previously, the first subset 

All samples

SFA UFA

MUFA PUFA

(VOO,HOS,PEA)

(VOO, HOS)

(SUN,SOY)

Equation1

Equation 2

Equation 5 Equation 3

Equation 6 Equation4

Equation 7
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Peanut Sunflower Soybean

Virgin OliveHigh oleic sunflower
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Hydrogentated fish, Tallow

Fig. 10.19 Discrimination 
tree constructed using 
near-infrared and Raman 
spectral data. Legend: SFA 
samples rich in saturated fatty 
acids, UFA samples rich in 
unsaturated fatty acids, 
MUFA samples rich in 
monounsaturated fatty acids, 
PUFA samples rich in 
polyunsaturated fatty acids, 
VOO virgin olive oil, HOS 
high oleic sunflower, PEA 
peanut, SUN sunflower, SOY 
soybean
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(calibration set) is used to construct the discrimination equation, while the second 
subset (validation set) permits the validation of the established model. The sample 
set studied must include all possible combinations of variables and the variation in 
all directions should be as large as possible but limited to the direction of interest 
(Naes and Isakson 1989).

In the procedure suggested by Lai et al. (1994), PCA is used because it consti-
tutes an efficient data reduction method. As mentioned previously, a spectrum con-
tains several hundred variables. But a multivariate statistical analysis requires that 
the case (sample) number exceed the variable number, and as a consequence, a 
reduction in the spectral variable number is necessary. Furthermore, the PCA proce-
dure allows the removal of the apparent redundancy of the variables by transform-
ing the original data into a set of principal component scores. When this is done, a 
rearrangement of the data takes place and the first few PC scores are sufficient to 
describe the information contained in the original variables. This procedure allows 
for data set simplification and the visualization of relationships within the data. 
After applying PCA, Lai et al. (1994) used discriminant analysis to construct a 
mathematical model on the basis of the scores. The squared Mahalanobis distances 
(SMD) are used to classify each case (sample) inside the predetermined groups. 
Later, the SMD from the established group means are calculated for each validation 
spectrum’s PC scores and the new samples will be assigned to the nearest group 
mean. The percentage of correct classifications corresponds to the samples assigned 
to the correct group (i.e., species).

The approach presented by Aparicio and Baeten (1998) uses stepwise linear dis-
criminant analysis (SLDA) to select frequencies and construct the mathematical 
models. SLDA is first applied to each part of the spectrum in such a way that the 
more relevant frequencies from each region are selected. After that, the SLDA pro-
cedure is applied to all the preselected variables and the discriminating equations 
are established on the basis of Mahalanobis distance and F-test (Tabachnick and 
Fidell 1983). The ellipses of the 95 % confidence region are calculated for each 
predetermined group during the calibration step (Aparicio and Baeten 1997). These 
ellipses allow an interpretation beyond the simple location of a validation sample 
and the calculation of the percentage of samples correctly classified during the vali-
dation procedure (Aparicio and Morales 1995). An alternative to these procedures 
could be to apply the Fisher test for removing variables without precise information 
and then apply PCA on the selected variables. The model can be used in an arbores-
cent structure for distinguishing different types of fats and oils (Fig. 10.19).

Also, classical chemometric methods such as partial least squares discriminant 
analysis (PLSDA) (Martens and Naes 1989), and artificial neural networks (ANN) 
(Despagne and Massart 1998) are well-known and proven techniques for both quali-
tative and quantitative analysis of multivariate data. In the case of qualitative analy-
sis, the SVM technique (Vapnik 2000) has been recently proposed and widely used 
in the literature (Burges 1998; Belousov et al. 2002; Fernández Pierna et al. 2004). 
The choice of SVM as classification method is justified by the great performance of 
these methods in all studies, which is mainly due to the uniqueness of the SVM 
solution for the problems of pattern recognition.
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10.6.3  Validation Procedures

Analysts should pay attention to the validation procedures, which include the chem-
ical, internal, and external validations (Fig. 10.17). Chemical validation is the inter-
pretation and the elucidation (band assignment) of the frequencies used in the 
mathematical model. All selected spectral data (frequencies) should have a chemi-
cal or physical explanation in order to avoid regressions obtained by chance. To do 
this step successfully, the study of the spectral features (position and intensity of the 
bands) of pure chemical compounds and the correlation at each frequency between 
the intensities and chemical properties (e.g., determined by gas chromatography) is 
necessary.

Internal and external validations consist in the study of the efficiency and power 
of the mathematical models constructed. Internal validation is done with the sam-
ples involved in the construction of the equation (calibration step). Cross validation 
is a particular internal validation method (Martens and Naes 1989), although there 
are others such as leverage correction or Mallows Cp statistic (Chap. 12). An exter-
nal validation is made by the observation of the quantification (quantitative analy-
sis) or the classification (qualitative analysis) of new samples not used in the 
calibration procedure. The number and characteristics of these samples have been 
clearly established (Aparicio et al. 1992).

In order to perform a correct validation and to indicate the performance of the 
results, different standard expressions taken from basic statistics are applied. 
However, multivariate models are inherently complex, and as a result, theoretical 
advances with respect to the corresponding error analysis are relatively slow. For 
this reason, developing approximate expressions for sample-specific standard error 
of prediction when applying a multivariate model, mainly PLS, has received consid-
erable attention in the chemometric-related literature in recent years (Faber 2000; 
Faber and Bro 2002). This calculation of uncertainty consists in the study of the 
uncertainty present in the outputs of the model. In most cases, this uncertainty is 
calculated as a function of the various sources of uncertainty present in the model 
(Fernández Pierna et al. 2003).

10.7  Potential of Infrared and Raman Spectroscopy

The potential offered by NIR, MIR, and Raman spectroscopy in the determination of 
various chemical compounds and chemical indices has been described, with more or 
less success, by various authors (Williams and Norris 2001; van de Voort 1994; 
Li-Chan 1996; Guillén and Cabo 1997). The following section briefly describes the 
methods used with olive oil, whereas their application in characterization is 
described in Chap. 12.
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10.7.1  Determination of Unsaturation Degree: Iodine Value

As was mentioned earlier, NIR, MIR, and Raman spectrum profiles are strongly 
influenced by the content and type of unsaturated groups. Figure 10.20 presents a 
spectral region of various edible oils and fats for each technique investigated. The 
regions shown are, respectively, the region 2,100–2,200 nm (=C-H vibration) of 
NIR spectra, the region 1,130–1,080 cm−1 (C-C and C-O-C vibration) of MIR spec-
tra, and the region 1,680–1,650 cm−1 (C = C vibration) of Raman spectra.

Fenton and Crisler (1959) published a study showing the potential of NIR spec-
troscopy. They developed, using a series of chemical products, a rapid and reliable 
technique for the determination of the iodine value. The calibration equation was con-
structed with the information contained in the region 2,100–2,200 nm of the NIR 
spectrum. Some years earlier, Sinclair et al. (1952) had described the linear relation-
ship between the number of cis double bonds of unsaturated fatty acid methyl esters 
and the ratio between the absorbance at 2,920 cm−1 (>CH2 vibration) and the differ-
ence between the absorbances at 2,920 and 3,020 cm−1 (=C-H vibration). This study 
was later confirmed by the results achieved by other authors who proposed MIR spec-
troscopy as a technique to determine the degree of unsaturation (Chapman 1965). 
Later, Arnold and Hartung (1971), using the ratio of absorbances at 3,030 cm−1 (=C-H 
vibration) and 2,857 cm−1 (>CH2 vibration), showed the potential of a MIR instru-
ment equipped with a transmission cell for iodine value determinations in fats and 
oils. Using the absorbance of wavenumbers from the same region (3,010 and 
2,854 cm−1), Afran and Newbery (1991) demonstrated the potential of an FT-MIR 
instrument coupled with an ATR accessory. The absorption intensities at 3,007 cm−1 
(=C-H vibration) (Muniategui et al. 1992) and at 1,658 cm−1 (C = C vibration) (Bernard 
and Sims 1980) were also used to determine the total degree of unsaturation.

A FT-MIR/ATR instrument, together with a PLS procedure, was used by van de 
Voort et al. (1992) for determining the iodine value using TAGs as dependent vari-
ables. Spectral information from regions 3,200–2,600 cm−1 and 1,600–1,000 cm−1 
was successfully used. Bailey and Horvat (1972) showed the high correlation 
between the iodine value and the ratio of the scattering intensities in the regions 
1,691–1,626 cm−1 (C = C vibration) and 1,478–1,420 cm−1 (>CH2 vibration) using 
Raman spectroscopy. Later, a Raman spectrometer equipped with a NIR excitation 
and interferometry technology was used by Sadeghi-Jorabchi et al. (1990) to study 
the possibilities offered by the new generation of such instruments in the determi-
nation of iodine value of oils and margarines. The quantitative program designed in 
this study used information from the scattering bands centered at 1,656 cm−1 (=C-H 
vibration) and at 1,444 cm−1. The peaks in the vicinity of 3,010 cm−1 (=C-H stretch-
ing vibration) and 1,270 cm−1 (=C-H bending vibration) also showed a high corre-
lation with the iodine value (Sadeghi-Jorabchi et al. 1991; Baeten et al. 1998).
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10.7.2  Determination of Trans and Cis Content

Infrared methods for determining the trans isomer content of oils and fats are stan-
dardized (IUPAC 1992; AOCS 1988). These methods are based on the absorption 
band at 967 cm−1 (trans CH = CH vibration). However, Lanser and Emken (1988), 
using the peak area of the trans absorbance band at 966 cm−1, estimated the trans 
unsaturation, which agreed with the results obtained by gas chromatography. Belton 
et al. (1988) used FT-MIR combined with ATR to develop a procedure for the esti-
mation of isolated trans double bonds in oils and fats. Sleeter and Matlock (1989) 
developed a FT-MIR procedure for measuring the trans content of oils in a 100-μm 
KBr cell. Ulberth and Haider (1992) used trans-free methylated soybean oil mixed 
with methyl elaidate in combination with a FT-MIR spectral subtraction technique 
and PLS to assess low concentrations of isolated trans double bonds in hydroge-
nated fats such as margarine and shortenings. Then, van de Voort et al. (1995) 
designed a generalized, industrial sample-holder accessory for handling both fats 
and oils. It was incorporated into a FT-MIR spectrometer, and a method using PLS 
calibration was developed to determine the cis and trans contents of neat samples. 
Mossoba et al. (1996) also used attenuated total reflection spectroscopy to calculate 
the total trans content of hydrogenated oils by the information of the spectral region 
between 990 and 945 cm−1.

Using Raman spectroscopy, Bailey and Horvat (1972) also determined the cis/
trans isomer content of edible vegetable oils by measuring the intensities of C = C 
stretching fundamentals near 1,657 and 1,670 cm−1 that are associated with cis and 
trans configurations, respectively. As seen earlier, the use of FT-Raman spectros-
copy has proved to be successful in the determination of total unsaturation of oils 
and margarines (Sadeghi-Jorabchi et al. 1990). Furthermore, Sadeghi-Jorabchi et al. 
(1991) have also used the FT-Raman scattering information from bands centered 
near 1,670, 1,656, and 1,444 cm−1 to estimate various levels of cis and trans isomers 
mixtures. A similar approach was used by Ozaki et al. (1992) to estimate the level 
of unsaturation of a wide range of fat-containing foodstuffs.

10.7.3  Determination of Saponification Number, Solid Fat 
Index, and Free Fatty Acids

Using the information obtained from a FT-MIR spectrometer equipped with an ATR 
accessory and the PLS methodology, van de Voort et al. (1992) proposed a method 
to determine the saponification number. They used the information contained in two 
MIR regions: 3,200–2,600 cm−1 and 1,850–1,000 cm−1. Van de Voort et al. (1996) 
also showed the potential of MIR spectroscopy in the determination of the solid fat 
index. The calibration was done with selected parts of the spectrum: 3,015–
3,005 cm−1, 3,000–2,850 cm−1, 1,750–1,740 cm−1, 1,550–1,050 cm−1, 980–960 cm−1, 
and 750–730 cm−1 by a FT-MIR spectrometer equipped with a flow transmission 
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cell and PLS. Lanser et al. (1991) used peaks near 1,745 and 1,711 cm−1 to construct 
a model allowing the determination of the free fatty acid content in crude oils. The 
C = O carbonyl group of esters is present near 1,746 cm−1, while the carboxylic 
group of free fatty acids has its characteristic peak at 1,711 cm−1. Later, an FT-MIR 
instrument and ATR accessory were successfully used to determine the free fatty 
acid content in oils and fats (Ismail et al. 1993).

10.7.4  Monitoring the Oxidative Process, Measuring  
the Peroxide and Anisidine Values

The potential of FT-MIR instruments for the study of the complex changes that take 
place in a sample involved in an oxidation process has also been investigated (van 
de Voort et al. 1994a). The authors used oils oxidized under various conditions and 
recorded their MIR spectral changes. They identified the most noteworthy bands 
associated with common oxidation end products such as, for example, hexanal, 
decadienal, (E)-butyl hydroxide, demonstrating the usefulness of FT-MIR spectros-
copy to detect oxidative changes.

A method based on FT-MIR spectroscopy was also proposed for the simultane-
ous monitoring of aldehyde formation and the determination of the anisidine value 
in thermally stressed oils (Dubois et al. 1996). The authors added aldehydes to an 
oil sample and thus built a calibration model by PLS.

10.8  Potential of Fluorescence Spectroscopy

Fluorescence spectroscopy is a rapid analytical technique with high sensitivity to 
determine the overall presence of series of compounds. The use of fluorescence to 
analyze olive oils was first proposed in 1925 by Frehse, who studied the possibility 
of detecting the presence of refined olive oil in virgin olive oil by examining the oils 
under a quartz lamp with a Wood filter; another early work showed good prospects 
for characterization of edible oils through fluorimetry techniques (Wolfbeis and 
Leiner 1984). However, this highly sensitive technique has been largely ignored for 
the characterization of edible oils. Only recently has progress been achieved in 
spectrofluorometers and several fluorescence techniques that have been introduced 
to facilitate the analysis of complex food. Thus, fluorescence spectroscopy has con-
siderable potential to characterize virgin olive oils because of the large variety of 
fluorescent compounds (chlorophylls, pheophytins, tocopherols, vitamin E, and 
oxidized compounds) present in them (Sikorska et al. 2004; Guimet et al. 2004; 
Galano et al. 2003). On the other hand, there are remarkable differences between the 
fluorescence spectra of virgin olive oil and the other edible oils (Sikorska et al. 2005), 
which encourages the use of this technique for authentication purposes. The various 
categories of virgin olive oil also show particular emission spectra (Nicoletti 1990).
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Some progress have been made in the development of new methods to detect 
adulteration, such as fraudulent mixtures of olive oil with hazelnut oil (Sayago et al. 
2007), or to detect the oxidation degree of oils (Poulli et al. 2009a, b). The applica-
tion of more advanced methods as EEFS and SFS makes the interpretation of the 
spectra more easy and informative than conventional spectroscopy.

Many fluorescent compounds present in virgin olive oil are involved in oxidation 
(e.g., phenols and vitamin E), and they evolve during different culinary practices such 
as frying. For that reason, fluorescence spectroscopy has recently been applied to eval-
uate the quality of thermoxidized oils (Tena et al. 2009, 2012). Other applications 
include the study of oil deterioration during long-term storage (Sikorska et al. 2008).

10.9  Conclusions

The previous sections have shown the potential of IR, Raman, and fluorescence spec-
troscopic techniques in oil analysis. NIR, MIR, and Raman spectra mainly contain 
information about unsaturated compounds. NIR spectroscopy can be used to deter-
mine the total level of unsaturation and the content of cis isomers. Excitation and 
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emission fluorescence spectra provide information about the minor compounds pres-
ent in olive oil. The low cost and the possibility of coupling the NIR spectrometer to 
classical optical fibers provide a designed technique for implementation in continu-
ous processes. MIR spectroscopy is classically used to determine the content of trans 
isomers, while information about cis isomers exists but is more limited. A MIR spec-
trometer seems to be an appropriate instrument for analytical laboratories. In fact, 
recent studies have demonstrated the great potential of MIR spectroscopy in the 
determination of classic chemical values and oil indices. The potential of this tech-
nique in the monitoring of oxidative processes is an additional advantage.

New developments in the instrumentation of Raman spectroscopy have pro-
moted its importance for oil analysis. Raman spectra mainly contain information 
about cis and trans isomers. Due to the chemical origin of the bands, the informa-
tion contained in the spectrum may be used to develop techniques for the determina-
tion of the total content of unsaturation, the type of unsaturation, and cis/trans 
isomer composition. In addition, a Raman spectrometer does not need a special 
sample-handling accessory and may be coupled to low-cost optical fibers.

In addition to the possibilities offered in quantitative analysis and in monitoring 
oxidative processes, IR and Raman spectroscopy show interesting perspectives in 
the characterization and adulteration detection of virgin olive oil. To compare the 
potential of NIR, MIR, and Raman spectroscopy in this domain, the spectra of 64 
edible oils from seven varieties (corn, soybean, rapeseed, peanut, sunflower, high 
oleic sunflower, and virgin olive oils) were collected (Aparicio and Baeten 1998). 
The Fisher coefficient was used to underline the wavelengths and the wavenumbers 
having the highest power of varietal discrimination. Figure 10.21 displays, for each 
technique studied, the five most discriminant wavelengths or wavenumbers. NIR 
spectral data present Fisher coefficients lower than the data obtained in MIR and 
Raman spectroscopy. Four wavelengths underlined in NIR spectroscopy correspond 
to the C-H vibration of unsaturated groups. On the other hand, the wavenumbers 
extracted in MIR spectroscopy are characteristic of the C-H and C-C vibrations of 
the carbon skeleton and of the C-O of the ester groups. As in NIR spectroscopy, part 
of the Raman spectral data selected corresponds to the C-H vibration of unsaturated 
groups. The other wavenumbers are characteristics of C-H and C = C vibrations. 
Figure 10.10 clearly shows complementarity between vibrational spectroscopy (i.e., 
NIR and MIR spectroscopic techniques). This information can benefit from fluores-
cence spectroscopy, particularly in oxidation studies. Fluorescence spectroscopy is 
very versatile because it makes spectra acquisition possible in different modes 
(EEFS, SFS). These different modes provide several alternatives for a better inter-
pretation of the spectra collected with conventional fluorescence spectroscopy to 
establish definitive and nonspeculative chemical assignments of the spectral bands 
like those in MIR, NIR, and Raman spectra.
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