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Abstract

Recent studies have extended the Black–Scholes model to incorporate either

stochastic interest rates or stochastic volatility. But, there is not yet any
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comprehensive empirical study demonstrating whether and by how much each

generalized feature will improve option pricing and hedging performance.

This chapter fills this gap by first developing an implementable option model

in closed form that admits both stochastic volatility and stochastic interest rates

and that is parsimonious in the number of parameters. The model includes many

known ones as special cases. Based on the model, both delta-neutral and single-

instrument minimum-variance hedging strategies are derived analytically. Using

S&P 500 option prices, we then compare the pricing and hedging performance of

this model with that of three existing ones that respectively allow for (i) constant

volatility and constant interest rates (the Black–Scholes), (ii) constant volatility

but stochastic interest rates, and (iii) stochastic volatility but constant interest

rates. Overall, incorporating stochastic volatility and stochastic interest rates

produces the best performance in pricing and hedging, with the remaining

pricing and hedging errors no longer systematically related to contract

features. The second performer in the horse race is the stochastic volatility

model, followed by the stochastic interest rate model and then by the

Black–Scholes.

Keywords

Stock option pricing • Stochastic volatility • Stochastic interest rates •

Hedge ratios • Hedging • Pricing performance and Hedging performance

98.1 Introduction

Option pricing has, in the last two decades, witnessed an explosion of new models

that each relaxes some of the restrictive assumptions underlying the seminal Black

and Scholes (1973) model. In doing so, most of the focus has been on the counter-

factual constant volatility and constant interest-rate assumptions. For example,

Merton’s (1973) option pricing model allows interest rates to be stochastic but

keeps a constant volatility for the underlying asset, while Amin and Jarrow (1992)

develop a similar model where, unlike in Merton’s, interest rate risk is also priced.

A second class of option models admits stochastic conditional volatility for the

underlying asset but maintains the constant interest-rate assumption. These include

the Cox and Ross (1976) constant elasticity of variance model and the stochastic

volatility models of Bailey and Stulz (1989), Bates (1996b, 2000), Heston (1993),

Hull and White (1987a), Scott (1987), Stein and Stein (1991), and Wiggins (1987).

Recently, Bakshi and Chen (1997) and Scott (1997) have developed closed-form

equity option formulas that admit both stochastic volatility and stochastic interest

rates.1 Their efforts have, in some sense, helped reach the ultimate possibility of

1Amin and Ng (1993), Bailey and Stulz (1989), and Heston (1993) also incorporate both stochastic

volatility and stochastic interest rates, but their option pricing formulas are not given in closed

form, which makes applications difficult. Consequently, comparative statics and hedge ratios are

difficult to obtain in their cases.
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completely relaxing the Black–Scholes assumptions of constant volatility and

constant interest rates. As a practical matter, these sufficiently general pricing

formulas should in principle result in significant improvement in pricing and

hedging performance over the Black–Scholes model. While option pricing theory

has made such impressive progress, the empirical front is nonetheless far behind.2

Will incorporating these general features improve both pricing and hedging effec-

tiveness? If so, by how much? Can these relaxed assumptions help resolve the well-

known empirical biases associated with the Black–Scholes formula, such as the

volatility smiles [e.g., Rubinstein (1985, 1994)]? These empirical questions must be

answered before the potential of the general models can be fully realized in

practical applications.

In this chapter, we first develop a practically implementable version of the

general equity option pricing models in Bakshi and Chen (1997) and Scott (1997)

that admits stochastic interest rates and stochastic volatility, yet resembles to the

extent possible the Black–Scholes model in its implementability. We present

procedures for applying the resulting model to price and hedge option-like

derivative products. Next, we conduct a complete analysis of the relative empir-

ical performance, in both pricing and hedging, of the four classes of models that

respectively allow for (i) constant volatility and constant interest rates (the BS
model), (ii) constant volatility but stochastic interest rates (the SI model), (iii)
stochastic volatility but constant interest rates (the SV model), and (iv) stochastic

volatility and stochastic interest rates (the SVSI model). As the SVSI model has all

the other three models nested, one should expect its static pricing and dynamic

hedging performance to surpass that of the other classes. But, this performance

improvement must come at the cost of potentially more complex implementation

steps. In this sense, conducting such a horse race study can at least offer a clear

picture of possible trade-offs between costs and benefits that each model may

present.

Specifically, the SVSI option pricing formula is expressed in terms of the

underlying stock price, the stock’s volatility, and the short-term interest rate.

The spot volatility and the short interest rate are each assumed to follow

a Markov mean-reverting square-root process. Consequently, seven structural

parameters need to be estimated as input to the model. These parameters can

be estimated using the Generalized Method of Moments (GMM) of Hansen

(1982), as is done in, for instance, Andersen and Lund (1997), Chan et al. (1992).

2There have been a few empirical studies that investigate the pricing, but not the hedging,

performance of versions of the stochastic volatility model, relative to the Black–Scholes model.

These include Bates (1996b, 2000), Dumas et al. (1998), Madan et al. (1998), Nandi (1996), and

Rubinstein (1985). In Bates’ work, currency and equity index options data are used to test

a stochastic volatility model with Poisson jumps included. Nandi does investigate the pricing

and hedging performance of Heston’s stochastic volatility model, but he focuses exclusively on

a single-instrument minimum-variance hedge that involves only the S&P 500 futures. As will be

clear shortly, we address in this chapter both the pricing and the hedging effectiveness issues from

different perspectives and for four distinct classes of option models.
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Or, they can be backed out from the pricing model itself by using observed option

prices, as is similarly done for the BS model both in the existing literature and in

Wall Street practice.

In our empirical investigation, we will adopt this implied parameter approach to

implement the four models. In this regard, it is important to realize that the BS

model is implemented as if the spot volatility and the spot interest rates were

assumed to be time varying within the model, that is, the spot volatility is backed

out from option prices each day and used, together with the current yield curve, to

price the following day’s options. The SI and the SV models are implemented with

a similarly internally inconsistent treatment, though to a lesser degree. Since this

implementation is how one would expect each model to be applied, we chose to

follow this convention in order to give the alternatives to the standard BS model the

“toughest hurdle.” Clearly, such a treatment works in the strongest favor of the BS

model and is especially biased against the SVSI model.

Based on 38,749 S&P 500 call (and put) option prices for the sample period from

June 1988 to May 1991, our empirical investigation leads to the following conclu-

sions. First, on the basis of two out-of-sample pricing error measures, the SVSI

model is found to perform slightly better than the SV model, while they both

perform substantially better than the SI (the third-place performer) and the BS

model. That is, when volatility is kept constant, allowing interest rates to vary

stochastically can produce respectable pricing improvement over the BS model.

However, in the presence of stochastic volatility, doing so no longer seems to

improve pricing performance much further. Thus, modeling stochastic volatility is

far more important than stochastic interest rates, at least for the purpose of pricing

options. It is nonetheless encouraging to know that based on our sample, both the

SVSI and the SV models typically reduce the BS model’s pricing errors by more

than half, whereas the SI model helps reduce the BS pricing errors by 20 % or more.

While all four models inherit moneyness- and maturity-related pricing biases, the

severity of these types of bias is increasingly reduced by the SI, the SV, and

the SVSI models. In other words, the SVSI model produces pricing errors that are

the least moneyness or maturity related. This conclusion is also confirmed when

the Rubinstein (1985) implied-volatility-smile diagnostic is adopted to examine

each model.

Two types of hedging strategy are employed in this study to gauge the relative

hedging effectiveness. The first type is the conventional delta-neutral hedge, in which

as many distinct hedging instruments as the number of risk sources affecting the

hedging target’s value are used so as to make the net position completely risk

immunized (locally). Take the SVSI model as an example. The call option value is

driven by three risk sources: the underlying price shocks, volatility shocks, and shocks

to interest rates. Accordingly, we employ the underlying stock, a different call option,

and a position in a discount bond to create a delta-neutral hedge for a target call

option. That closed-form expressions are derived for each hedge ratio is of great value

for devising hedging strategies analytically. Similarly, for the SV model, we only

need to rely on the underlying stock and an option contract to design a delta-neutral
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hedge. Based on the delta-neutral hedging errors, the same performance ranking of

the four models obtains as that determined by their static pricing performance, except

that now the SVSI and the SV models and the SI and the BS models are respectively

pairwise virtually indistinguishable. This reenforces the view that adding stochastic

interest rates may not affect performance much. However, it is found that the average

hedging errors by the SVSI and the SV models are typically less than one-third of the

corresponding BS model’s hedging errors. Furthermore, reducing the frequency of

hedge rebalancing does not tend to reduce the SV and the SVSI models’ hedging

effectiveness, whereas the BS and the SI models’ hedging errors are often doubled

when rebalancing frequency changes from daily to once every 5 days. Therefore, after

stochastic volatility is controlled for, the frequency of hedge rebalancing will have

relatively little impact on hedging effectiveness. This finding is in accord with Galai’s

(1983a) results that in any hedging scheme, it is probably more important to control

for stochastic volatility than for discrete hedging [see Hull and White (1987b) for

a similar, simulation-based result for currency options].

To see how the models perform under different hedging schemes, we also look at

minimum-variance hedges involving only a position in the underlying asset. As

argued by Ross (1995), the need for this type of hedges may arise in contexts where

a perfect delta-neutral hedge may not be feasible, either because some of the

underlying risks are not traded or even reflected in any traded financial instruments

or because model misspecifications and transaction costs render it undesirable to

use as many instruments to create a perfect hedge. In the present context, both

volatility risk and interest rate risk are, of course, traded and hence can, as indicated

above, be controlled for by employing an option and a bond. But, a point can be

made that it is sometimes more preferable to adopt a single-instrument minimum-

variance hedge. To study this type of hedges, we again calculate the absolute and

the dollar-value hedging errors for each model. Results from this exercise indicate

that the SV model performs the best among all four, while the BS and the SV

models outperform their respective stochastic interest rate counterparts, the SI and

the SVSI models. Therefore, under the single-instrument hedges, incorporating

stochastic interest rates actually worsens hedging performance. It is also true that

hedging errors under this type of hedges are always significantly higher than those

under the conventional delta-neutral hedges, for each given moneyness and matu-

rity option category. Thus, whenever possible, including more instruments in

a hedge will in general produce better hedging effectiveness.

While our discussion is mainly focused on results obtained using the entire

sample period and under specific model implementation designs, robustness of

these empirical results is also checked by examining alternative implementation

designs, different subperiods, as well as option transaction price data. Especially,

given the popularity of the “implied-volatility matrix” method among practitioners,

we will also implement each of the four models and compare their pricing and

hedging performance, by using only option contracts from a given moneyness–

maturity category. It turns out that this alternative implementation scheme does not

change the rankings of the four models.
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The rest of the chapter proceeds as follows. Section 98.2 develops the SVSI option

pricing formula. It discusses issues pertaining to the implementation of the formula and

derives the hedge ratios analytically. Section 98.3 provides a description of the S&P

500 option data. In Sect. 98.4 we evaluate the static pricing and the dynamic hedging

performance of the four models. Concluding remarks are offered in Sect. 98.5.

98.2 The Option Pricing Model

Consider an economy in which the instantaneous interest rate at time t, denoted
R(t), follows a Markov diffusion process:

dR tð Þ ¼ yR � kRR tð Þ½ �dtþ sR
ffiffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ t 2 0; T½ �, (98.1)

where kR regulates the speed at which the interest rate adjusts to its long-run

stationary value yR
kR

and oR ¼ {oR(t) : t 2 [0, T]} is a standard Brownian motion.3

This single-factor interest rate structure of Cox et al. (1985) is adopted as it requires

the estimation of only three structural parameters. Adding more factors to the term

structure model will of course lead to more plausible formulas for bond prices, but it

can make the resulting option formula harder to implement.

Take a generic non-dividend-paying stock whose price dynamics are described

by

dS tð Þ
S tð Þ ¼ m S; tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ t 2 0; T½ �, (98.2)

where m(S, t), which is left unspecified, is the instantaneous expected return and oS

a standard Brownian motion. The instantaneous stock return variance, V(t), is
assumed to follow a Markov process:

dV tð Þ ¼ yv � kvV tð Þ½ �dtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dov tð Þ t 2 0; T½ �, (98.3)

where again ov is a standard Brownian motion and the structural parameters have

the usual interpretation. We refer to V(t) as the spot volatility or, simply, volatil-

ity. This process is also frugal in the number of parameters to be estimated and is

similar to the one in Heston (1993). Letting r denote the correlation coefficient

between oS and ov, the covariance between changes in S(t) and in V(t) is

3Here we follow a common practice to assume from the outset a structure for the underlying price

and rate processes, rather than derive them from a full-blown general equilibrium. See Bates

(1996a), Heston (1993), Melino and Turnbull (1990, 1995), and Scott (1987, 1997). The simple

structure assumed in this section can, however, be derived from the general equilibrium model of

Bakshi and Chen (1997).
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Covt[dS(t), dV(t)] ¼ rsSsvS(t)V(t)dt which can take either sign and is time

varying. According to Bakshi et al. (1997, 2000), Bakshi and Chen (1997),

Bates (1996a), Cao and Huang (2008), and Rubinstein (1985), this additional

feature is important for explaining the skewness and kurtosis-related biases

associated with the BS formula. Finally, for ease of presentation, assume

that the equity-related shocks and the interest rate shocks are uncorrelated4:

Covt(doS, doR) ¼ Covt(dov, doR) ¼ 0.

By a result from Harrison and Kreps (1979), there are no free lunches in

the economy if and only if there exists an equivalent martingale measure with

which one can value claims as if the economy were risk neutral. For instance, the

time t price B(t, t) of a zero-coupon bond that pays $1 in t periods can be

determined via

B t; tð Þ ¼ EQ exp �
ðtþt

t

R Sð Þds
� �� �

, (98.4)

where EQ denotes the expectation with respect to an equivalent martingale measure

and conditional on the information generated by R(t) and V(t). Assume that the

factor risk premiums for R(t) and V(t) are, respectively, given by lR R(t) and lvV(t),
for two constants lR and lv. Bakshi and Chen (1997) provide a general equilibrium
model in which risk premiums have precisely this form and in which the interest

rate and stock price processes are as assumed here. Under this assumption, we

obtain the risk-neutralized processes for R(t) and V(t) below:

dR tð Þ ¼ yR�kR R tð Þ½ �dtþ sR
ffiffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ (98.5)

4This assumption on the correlation between stock returns and interest rates is somewhat severe

and likely counterfactual. To gauge the potential impact of this assumption on the resulting option

model’s performance, we initially adopted the following stock price dynamics:

dS tð Þ
S tð Þ ¼ m S; tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ þ sS,R

ffiffiffiffiffiffiffiffi
R tð Þ

p
doR tð Þ t 2 0; T½ �,

with the rest of the stochastic structure remaining the same as given above. Under this more realistic

structure, the covariance between stock price changes and interest rate shocks is Covt[dS(t),
dR(t)] ¼ sS,RsR R(t)S(t)dt, so bond market innovations can be transmitted to the stock market

and vice versa. The obtained closed-form option pricing formula under this scenario would have

one more parameter sS,R than the one presented shortly, but when we implemented this slightly

more general model, we found its pricing and hedging performance to be indistinguishable from

that of the SVSI model studied in this chapter. For this reason, we chose to present the more

parsimonious SVSI model derived under the stock price process in Eq. 98.2. We could also make

both the drift and the diffusion terms of V(t) a linear function of R(t) and oR(t). In such cases, the

stock returns, volatility, and interest rates would all be correlated with each other (at least globally),

and we could still derive the desired equity option valuation formula. But, that would again make

the resulting formula more complex while not improving its performance.
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dV tð Þ ¼ yv � kvV tð Þ½ �dtþ sv
ffiffiffiffiffiffiffiffiffi
V tð Þ

p
dov tð Þ, (98.6)

where kR � kR þ lR and kv � kv þ lv . The risk-neutralized stock price process

becomes

dS tð Þ
S tð Þ ¼ R tð Þdtþ

ffiffiffiffiffiffiffiffiffi
V tð Þ

p
doS tð Þ, (98.7)

that is, under the martingale measure, the stock should earn no more and no less

than the risk-free rate. With these adjustments, we solve the conditional expectation

in Eq. 98.4 and obtain the familiar bond price equation below:

B t; tð Þ ¼ exp �’ tð Þ � R tð ÞR tð Þ½ �, (98.8)

where ’ tð Þ ¼ yR
s2R

B� kRð Þtþ 2 ln 1� 1� e�Btð Þ B� kRð Þ
2B

� �� �
, R tð Þ

¼ 2 1� e�Btð Þ
2B� B� kR½ � 1� e�Btð Þ , and B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R þ 2s2R

p
. See Cox et al. (1985) for an

analysis of this class of term structure models.

98.2.1 Pricing Formula for European Options

Now, consider a European call option written on the stock, with strike price K

and term to expiration t. Let its time t price be denoted by C(t, t). As (S, R, V)
form a joint Markov process, the price C(t, t) must be a function of S(t), R(t),
and V(t) (in addition to t). By a standard argument, the option price must solve

1

2
VS2

∂2C

∂S2
þ RS

∂C
∂S

þ rsvVS
∂2C

∂S∂V
þ 1

2
s2vV

∂2C

∂V2
þ yv � kvV½ �∂C

∂V

þ 1

2
s2RR

∂2C

∂R2
yR � kR R½ �∂C

∂R
� ∂C

∂t
� RC ¼ 0,

(98.9)

subject to C(t + t, 0) ¼ max{S(t + t) � K, 0}. In the Appendix 1 it is shown that

C t; tð Þ ¼ S tð ÞP1 t; t; S;R;Vð Þ � KB t; tð ÞP2 t; t; S;R;Vð Þ, (98.10)

where the risk-neutral probabilities,
Q

1 and
Q

2, are recovered from inverting the

respective characteristic functions [see Heston (1993) and Scott (1997) for similar

treatments]:

Y
j
t, t; S tð Þ,R tð Þ,V tð Þð Þ ¼ 1

2
þ 1

p

ð1
0

Re
e�if ln K½ �f j t, t, S tð Þ,R tð Þ,V tð Þ;fð Þ

if

" #
df,

(98.11)
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for j ¼ 1, 2. The characteristic functions fj are given by

f 1 t; tð Þ ¼ exp � yR
s2R

2ln 1� xR � kR½ � 1� e�xRt
	 

2xR

� �
þ xR � kR½ �t

� ��
� yv
s2v

2ln 1� xv � kv þ 1þ ifð Þrsv½ � 1� e�xvt
	 


2xv

� �� �
� yv
s2v

xv � kv þ 1þ ifð Þrsv½ �tþ ifln S tð Þ½ � þ 2if 1� e�xRt
	 


2xR � xR � kR½ � 1� e�xRtð ÞR tð Þ

þ if ifþ 1ð Þ 1� e�xvt
	 


2xv � xv � kv þ 1þ ifð Þrsv½ � 1� e�xvtð ÞV tð Þ
�
,

(98.12)

and

f 2 t; tð Þ ¼ exp � yR
s2R

2ln 1� x�R�kR
� �

1� e�x�Rt
	 

2x�R

 !
þ x�R�kR
� �

t

" #(

� yv
s2v

2ln 1� x�v þ ifrsv
� �

1� e�x�vt
	 


2x�v

 !
þ x�v�kv þ ifrsv
� �

t

" #

þ ifln S tð Þ½ � � ln B t; tð Þ½ � þ 2 if� 1ð Þ 1� e�x�Rt
	 


2x�R � x�R�kR
� �ð1� e�x�Rt

R tð Þ

þ if if� 1ð Þ 1� e�x�vt
	 


2x�v � x�v�kv þ ifrsv
� �

1� e�x�vt
	 
V tð Þ

)
,

(98.13)

where xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R � 2s2Rif

p
, xv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv � 1þ ifð Þrsv½ �2 � if ifþ 1ð Þs2v

q
,

x�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R � 2s2R if� 1ð Þ

p
, and x�v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv � ifrsv½ �2 � if if� 1ð Þs2v

q
. The price

of a European put on the same stock can be determined from the put–call parity.

The option valuation model in Eq. 98.10 has several distinctive features. First, it

applies to cases with stochastically varying interest rates and volatility. It contains

as special cases most existing models, such as the SV models, the SI models, and

clearly the BS model. Second, as mentioned earlier, it allows for a flexible corre-

lation structure between the stock return and its volatility, as opposed to the perfect

correlation assumed in, for instance, Heston’s (1993) model. Furthermore, the

volatility risk premium is time varying and state dependent. This is a departure

from Hull and White (1987), Scott (1987), Stein and Stein (1991), and Wiggins

(1987) where the volatility risk premium is either a constant or zero. Third, when

compared to the general models in Bakshi and Chen (1997) and Scott (1997), the

formula in Eq. 98.10 is parsimonious in the number of parameters; especially, it is

given only as a function of identifiable variables such that all parameters can be

estimated based on available financial market data.
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The pricing formula in Eq. 98.10 applies to European equity options. But, in

reality most of the traded option contracts are American in nature. While it is

beyond the scope of the chapter to derive a model for American options, it is

nevertheless possible to capture the first-order effect of early exercise in

the following manner. For options with early-exercise potential, compute the

Barone-Adesi and Whaley (1987) or Kim (1990) early-exercise premium, treating

it as if the stock volatility and the yield curve were time invariant. Adding this

early-exercise adjustment component to the European option price in Eq. 98.10

should deliver a reasonable approximation of the corresponding American option

price [e.g., Bates (1996b)].

98.2.2 Hedging and Hedge Ratios

One appealing feature of a closed-form option pricing formula, such as the one in

Eq. 98.10, is the possibility of deriving comparative statics and hedge ratios

analytically. In the present context, there are three sources of stochastic variations

over time, price risk S(t), volatility risk V(t), and interest rate risk R(t). Conse-
quently, there are three deltas:

DS t; t;Kð Þ � ∂C t; tð Þ
∂S

¼ P1 > 0 (98.14)

DV t; t;Kð Þ � ∂C t; tð Þ
∂V

¼ S tð Þ∂P1

∂V
� KB t; tð Þ∂P2

∂V
> 0 (98.15)

DR t; t;Kð Þ � ∂C t; tð Þ
∂R

¼ S tð Þ∂P1

∂V
� KB t; tð Þ ∂P2

∂V
� R tð ÞP2

� �
> 0, (98.16)

where, for g ¼ V, R and j ¼ 1, 2,

∂Pj

∂g
¼ 1

p

ð1
0

Re ifð Þ�1e�i fln K½ � ∂f j
∂g

� �
df: (98.17)

The second-order partial derivatives with respect to these variables are provided

in the Appendix.

As V(t) and R(t) are both stochastic in our model, these deltas will in general

differ from their Black–Scholes counterpart. To see how they may differ, let us

resort to an example in which we set R (t)¼ 6.27 %, S (t)¼ 279,
ffiffiffiffiffiffiffiffiffi
V tð Þp ¼ 22:12 %,

KR ¼ 0.481, yR ¼ 0.037, sR ¼ 0.049, Kv ¼ 1.072, yv ¼ 0.041, sv ¼ 0.284, and

r ¼ �0.60. These values are backed out from the S&P 500 option prices as of July

5, 1988. Fix K¼ $270 and t¼ 45 days. Let DS be as given in Eq. 98.14 for the SVSI

model and DS
bs its BS counterpart, with DS

bs calculated using the same implied

volatility.
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In unreported results, we plot the difference between DS and DS
bs, across different

spot price levels and different correlation values. The correlation coefficient r is

chosen to be the focus as it is known to play a crucial role in determining the

skewness of the stock return distribution. When r is at �0.50 and �1.0, the

difference between the deltas is W shaped, and it reaches the highest value when

the option is at the money. The reverse is true when r is positive. Thus, DS is

generally different from DS
bs. Analogous difference patterns emerge when the other

option deltas are compared with their respective BS counterpart.

We also plot DeltaV and DeltaR and observe the following. (i) The volatility

hedge ratio DV from the SVSI model is, at each spot price, lower than its BS

counterpart (except for deep in-the-money options when r < 0 and for deep out-of-

the-money options when r > 0).5 (ii) The interest rate delta, DR, and its BS

counterpart, DS
bs, are almost not different from each other for slightly out-of-the-

money options but can be dramatically different for at-the-money options as well as

for sufficiently deep in-the-money or deep out-of-the-money calls. For example,

pick r ¼ �1.0. When S ¼ $315, we have DR ¼ 30.94 and DR
bs ¼ 32.35; when

S ¼ $226, we have DR ¼ 0.003 and DR
bs ¼ 0.430. (iii) As expected, out-of-the-

money options are overall less sensitive to changes in the spot interest rate,

regardless of the model used. In summary, if a portfolio manager/trader relies, in

an environment with stochastic interest rates and stochastic volatility, on the BS

model to design a hedge for option positions, the manager/trader will likely fail.

Analytical expressions for the deltas are useful for constructing hedges based on

an option formula. Below, we present two types of hedges by using the SVSI model

as an example.

98.2.2.1 Delta-Neutral Hedges
To demonstrate how the deltas may be used to construct a delta-neutral hedge,

consider an example in which a financial institution intends to hedge a short

position in a call option with t periods to expiration and strike price K. In the

stochastic interest rate–stochastic volatility environment, a perfectly delta-neutral

hedge can be achieved by taking a long position in the replicating portfolio of the

call. As three traded assets are needed to control the three sources of uncertainty,

the replicating portfolio will involve a position in (i) some XS(t) shares of the

underlying stock (to control for the S(t) risk), (ii) some XB(t) units of a t-period
discount bond (to control for the R(t) risk), and (iii) some XC(t) units of another call
option with strike price K (or any option on the stock with a different maturity) in

order to control for the volatility risk V(t). Denote the time t price of the replicat-

ing portfolio by G tð Þ : G tð Þ ¼ X0 tð Þ þ XS tð ÞS tð Þ þ XB tð ÞB t; tð Þ þ XC tð ÞC t; t;K
	 


,

where X0(t) denotes the amount put into the instantaneously maturing risk-free bond

and it serves as a residual “cash position.” Deriving the dynamics for G(t) and
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comparing them with those of C(t, t; K), we find the following solution for the

delta-neutral hedge:

XC tð Þ ¼ DV t; t;Kð Þ
DV t; t;K
	 
 (98.18)

XS tð Þ ¼ DS t; t;Kð Þ � DS t; t;K
	 


XC tð Þ (98.19)

XB tð Þ ¼ 1

B t; tð ÞR tð Þ DR t; t;K
	 


XC tð Þ � DR t; t;Kð Þ
 �
(98.20)

and the residual amount put into the instantaneously maturing bond is

X0 tð Þ ¼ C t; t;Kð Þ � XS tð ÞS tð Þ � XC tð ÞC t; t;K
	 
� XB tð ÞB t; tð Þ, (98.21)

where all the primitive deltas, DS, DR, and DV, are as determined in Eqs. 98.14,

98.14, and 98.16. Like the option prices, these hedge ratios all depend on the values

taken by S(t), V(t), and R(t) and those by the structural parameters. Such a hedge

created using the general option pricing model should in principle perform better

than using the BS model. In the latter case, only the underlying price uncertainty is

controlled for, but not the uncertainties associated with volatility and interest rate

fluctuations.

In theory this delta-neutral hedge requires continuous rebalancing to reflect the

changing market conditions. In practice, of course, only discrete rebalancing is

possible. To derive a hedging effectiveness measure, suppose that portfolio

rebalancing takes place at intervals of length Dt. Then, precisely as described

above, at time t the short call option goes long in (i) XS(t) shares of the underlying
asset, (ii) XB(t) units of the t-period bond, and (iii) XC(t) contracts of a call option
with the same term to expiration but a different strike price K , and invests the

residual, X0, in an instantaneously maturing risk-free bond. After the next interval,

compute the hedging error according to

H tþ Dtð Þ ¼ X0e
R tð ÞDt þ XS tð ÞS tþ Dtð Þ þ XB tð ÞB tþ Dt, t� Dtð Þ

þXC tð ÞC tþ Dt, t� Dt;K
	 
� C tþ Dt, t� Dt;Kð Þ: (98.22)

Then, at time t + Dt, reconstruct the self-financed portfolio, repeat the hedging

error calculation at time t + 2Dt, and so on. Record the hedging errors H(t + jDt), for
j ¼ 1, � � � , J � t�t

Dt . Finally, compute the average absolute hedging error as

a function of rebalancing frequency Dt : H Dtð Þ ¼ 1
J

PJ
j¼1 H tþ jDtð Þj j and the

average dollar-value hedging error: H Dtð Þ ¼ 1
J

PJ
j¼1 H tþ jDtð Þ.

In comparison, if one relies on the BS model to construct a delta-neutral hedge,

the hedging error measures can be similarly defined as in Eq. 98.22, except that
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XB(t) and XC(t) must be restricted to zero and XS(t) must be the BS delta. Likewise,

if the SI model is applied, the only change is to set XC(t) to zero with DS and DR

determined by the SI model; in the case of the SV model, set XB(t) ¼ 0 and let DS

and DV be as determined in the SV model. The Appendix provides in closed form an

SI option pricing formula and an SV option formula.

98.2.2.2 Single-Instrument Minimum-Variance Hedges
As discussed before, consideration of such factors as model misspecification and

transaction costs may render it more practical to use only the underlying asset of the

target option as the hedging instrument. Under this single-instrument constraint,

a standard design is to choose a position in the underlying stock so as to minimize

the variance of instantaneous changes in the value of the hedge. Letting XS(t) again
be the number of shares of the stock to be purchased, solving the standard

minimum-variance hedging problem under the SVSI model gives

XS tð Þ ¼ Covt ds tð Þ, dC t; tð Þ½ �
Var dS tð Þ½ � ¼ DS þ rsv

DV t; tð Þ
S tð Þ , (98.23)

and the resulting residual cash position for the replicating portfolio is

X0 tð Þ ¼ C t; tð Þ � XS tð ÞS tð Þ: (98.24)

This minimum-variance hedge solution is quite intuitive, as it says that if stock

volatility is deterministic (i.e., sv ¼ 0) or if stock returns are not correlated with

volatility changes (i.e., r¼ 0), one only needs to longDS(t) shares of the stock and no
other adjustment is necessary. However, if volatility is stochastic and correlated with

stock returns, the position to be taken in the stock must control not only for the direct

impact of underlying stock price changes on the target option value but also for the

indirect impact of that part of volatility changes which is correlated with stock price

fluctuations. This effect is reflected in the last term in Eq. 98.23, which shows that the

additional number of shares needed besides DS is increasing in r (assuming sv > 0).

As for the previous case, suppose that the target call is shorted and that XS(t)
shares are bought and X0(t) dollars are put into the instantaneous risk-free bond, at

time t. The combined position is a self-financed portfolio. At time t + Dt, the
hedging error of this minimum-variance hedge is calculated as

H tþ Dtð Þ ¼ XS tð ÞS tþ Dtð Þ þ X0 tð ÞeR tð ÞDt � C tþ Dt, t� Dtð Þ: (98.25)

Unlike in Nandi (1996) where he uses the remaining variance of the hedge as

a hedging effectiveness gauge, we compute, based on the entire sample period, the

average absolute and the average dollar hedging errors to measure the effectiveness

of the hedge.

Minimum-variance hedging errors under the SV model as well as under the SI

model can be similarly determined accounting for their modeling differences. In the
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case of the SV model, there is still an adjustment term for the single stock position

as in Eq. 98.23. But, for the SI model, the corresponding XS(t) is the same as its DS.

For the BS model, this single-instrument minimum-variance hedge is the same as

the delta-neutral hedge. Both types of hedging strategy will be examined under each

of the four alternative models.

98.2.3 Implementation

In addition to the strike price and the term to expiration (which are specified in

the contract), the SVSI pricing formula in Eq. 98.10 requires the following values

as input:

• The spot stock price. If the stock pays dividends, the stock price must be adjusted

by the present value of future dividends.

• The spot volatility.

• The spot interest rate.

• The matching t-period yield to maturity (or the bond price).

• The seven structural parameters: {kR, yR, sR, kv, yv, sv, r}
For computing the price of a European option, we offer two alternative

two-step procedures below. One can implement these steps on any personal

computer:

Procedure A

Step 1. Obtain a time series each for the short rate, the stock return, and the

stock volatility. Jointly estimate the structural parameters, {kR, yR, sR, kv,
yv, sv, r}, using Hansen’s (1982) GMM.

Step 2. Determine the risk-neutral probabilities, P1 and P2, from the character-

istic functions in Eqs. 98.12 and 98.13. Substitute (i) the two probabilities,

(ii) the stock price, and (iii) the yield to maturity into (98.10) to compute the

option price.

While offering an econometrically rigorous method to estimate the struc-

tural parameters, Step 1 in Procedure A may not be as practical or convenient,

because of its requirement on historical data. A further difficulty with this

approach is its dependence on the measurement of stock volatility. In

implementing the BS model, practitioners predominantly use the implied

volatility from the model itself rather than relying on historical data. This

practice has not only reduced data requirement dramatically but also resulted

in significant performance improvement [e.g., Bates (2000) and Melino and

Turnbull (1990, 1995)]. Clearly, one can also follow this practice to imple-

ment the SVSI model.

Procedure B

Step 1. Collect N option prices on the same stock and taken from the same

point in time (or same day), for any N � 8. Let Ĉn t; tn;Knð Þ be the observed
price and Cn(t, tn, Kn) the model price as determined by Eq. 98.10 with S(t)
and R(t) taken from the market, for the n-th option with tn periods to

expiration and strike price Kn and for each n ¼ 1, . . . , N. Clearly, the
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difference between Ĉn and Cn is a function of the values taken by V(t) and by
F � {kR, yR, sR, kv, yv, sv, r}. Define

ϵn V tð Þ,F½ � � Ĉn t; tn;Knð Þ � Cn t; tn;Knð Þ, (98.26)

for each n. Then, find V(t) and parameter vector F (a total of eight), so as to

minimize the sum of squared errors:

XN
n¼1

ϵn V tð Þ,F½ �2�� ��: (98.27)

The result from this step is an estimate of the implied spot variance and

seven structural parameter values, for date t. See Bates (1996b, 2000), Dumas

et al. (1998), Longstaff (1995), Madan et al. (1998), and Nandi (1996) where

they adopt this technique for similar purposes.

Step 2. Based on the estimate from the first step, follow Step 2 of Procedure A to

compute date-(t + 1)’s option prices on the same stock.

In the existing literature, the performance of a new option pricing model is often

judged relative to that of the BS model when the latter is implemented using the

model’s own implied volatility and the time-varying interest rates. Since volatility

and interest rates in the BS are assumed to be constant over time, this internally

inconsistent practice will clearly and significantly bias the application results in

favor of the BS model. But, as this is the current standard in judging performance,

we will follow Procedure B to implement the SVSI model and similar procedures to

implement the BS, the SV, and the SI models. Then, the models will be ranked

relative to each other according to their performance so determined.

98.3 Data Description

For all the tests to follow, we use, based on the following considerations, S&P

500 call option prices as the basis. First, options written on this index are the most

actively traded European-style contracts. Recall that like the BS model, formula

(98.10) applies to European options. Second, the daily dividend distributions are

available for the index (from the S&P 500 Information Bulletin). Harvey and

Whaley (1992a, b), for instance, emphasize that critical pricing errors can result

when dividends are omitted from empirical tests of any option valuation model.

Furthermore, S&P 500 options and options on S&P 500 futures have been the focus

of many existing empirical investigations including Bates (2000), Dumas

et al. (1998), Madan et al. (1998), Nandi (1996), and Rubinstein (1994). Finally,

we also used S&P 500 put option prices to estimate the pricing and hedging errors

of all four models and found the results to be similar, both qualitatively and

quantitatively, to those reported in the chapter. To save space, we chose to focus

on the results based on the call option prices.
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The sample period extends from June 1, 1988 through May 31, 1991. The

intradaily transaction prices and bid–ask quotes for S&P 500 options are obtained

from the Berkeley Option Database. Note that the recorded S&P 500 index values

are not the daily closing index levels. Rather, they were the corresponding index

levels at the moment when the recorded option transaction took place or when an

option price quote was recorded. Thus, there is no nonsynchronous price issue here,

except that the S&P 500 index level itself may contain stale component stock prices

at each point in time.

The data on the daily Treasury bill bid and ask discounts with maturities up to

1 year are hand collected from the Wall Street Journal and provided to us by Hyuk

Choe and Steve Freund. By convention, the average of the bid and ask Treasury bill

discounts is used and converted to an annualized interest rate. Careful attention is

given to this construction since Treasury bills mature on Thursdays, while index

options expire on the third Friday of the month. In such cases, we utilize the two

Treasury bill rates straddling the option’s expiration date to obtain the interest rate

of that maturity, which is done for each contract and each day in the sample. The

Treasury bill rate with 30 days to maturity is the surrogate used for the short rate in

Eq. 98.1 (and in the determination of the probabilities in Eq. 98.10).

For European options, the spot stock price must be adjusted for discrete divi-

dends. For each option contract with t periods to expiration from time t, we first

obtain the present value of the daily dividends D(t) by computing

D t; tð Þ ¼
Xt�t

S¼1

e�R t;sð ÞsD tþ sð Þ, (98.28)

where R(t, s) is the s-period yield to maturity. This procedure is repeated for all

option maturities and for each day in our sample. In the next step, we subtract the

present value of future dividends from the time t index level, in order to obtain

the dividend-exclusive S&P 500 spot index series that is later used as input into the

option models.

Several exclusion filters are applied to construct the option price data set. First,

option prices that are time stamped later than 3:00 p.m. Central Daytime are

eliminated. This ensures that the spot price is recorded synchronously with its

option counterpart. Second, as options with less than 6 days to expiration may

induce liquidity-related biases, they are excluded from the sample. Third, to

mitigate the impact of price discreteness on option valuation, option prices lower

than $3
8
are not included. Finally, quote prices that are less than the intrinsic value of

the option are taken out of the sample.

We divide the option data into several categories according to either

moneyness or term to expiration. A call option is said to be at the money (ATM)

if its S
K 2 0:97; 1:03ð Þ, where S is the spot price and K the strike; out-of-the-money

(OTM) if SK � 0:97; and in-the-money (ITM) if S
K � 1:03. A finer partition resulted in

nine moneyness categories. By the term to expiration, each option can be classified

as [e.g., Rubinstein (1985)] (i) extremely short term (<30 days), (ii) short term

2668 C. Cao et al.



(30–60 days), (iii) near term (60–120 days), (iv) middle maturity (120–180 days),

and (v) long term (>180 days). The proposed moneyness and term-to-expiration

classifications resulted in 54 categories for which the empirical results will be

reported.

Table 98.1 describes sample properties of the S&P 500 call option prices used in

the tests. Summary statistics are reported for the average bid–ask midpoint price

and the total number of observations, for each moneyness–maturity category. Note

that there is a total of 38,749 call price observations, with deep in-the-money and

at-the-money options, respectively, taking up 32 % and 28 % of the total sample and

that the average call price ranges from $0.78 for extremely short term, deep out-of-

the-money options to $59.82 for long-term, deep in-the-money options.

98.4 Empirical Tests

This section examines the relative empirical performance of the four models.

The analysis is intended to present a complete picture of what each generalization

Table 98.1 Sample properties of S&P 500 index options

Moneyness Term to expiration (days)

S/K <30 30–60 60–90 90–120 120–180 �180 Subtotal

<0.93 0.78 1.33 1.99 2.84 4.88 7.82

{23} {246} {266} {431} {1,080} {1,538} {3,584}

0.93–0.95 1.02 1.91 3.30 5.08 8.14 12.86

{121} {595} {267} {319} {596} {646} {2,544}

0.95–0.97 1.35 3.05 5.35 7.45 10.87 15.91

{488} {1,012} {316} {351} {670} {628} {3,465}

0.97–0.99 2.47 5.53 8.23 10.83 14.19 19.33

{838} {1,020} {312} {336} {676} {706} {3,888}

0.99–1.01 5.27 8.99 11.96 14.55 17.95 23.20

{776} {954} {285} {308} {629} {631} {3,583}

1.01–1.03 9.65 13.17 15.99 18.84 22.06 27.74

{752} {906} {276} {283} {607} {597} {3,421}

1.03–1.05 14.79 17.80 20.80 23.36 26.39 31.91

{675} {844} {241} {264} {542} {501} {3,067}

1.05–1.07 20.20 22.63 25.83 27.83 30.69 35.70

{620} {760} {224} {242} {449} {473} {2,818}

�1.07 41.23 42.28 47.50 49.27 51.34 59.82

{2,143} {2,350} {1,284} {1,355} {2,184} {3,063} {12,379}

Subtotal {6,436} {8,687} {3,471} {3,889} {7,483} {8,783} {38,749}

The reported numbers are respectively the average quoted bid–ask midpoint price and the number

of observations. Each option contract is consolidated across moneyness and term-to-expiration

categories. The sample period extends from June 1, 1988 through May 31, 1991 for a total of

38,749 calls. Daily information from the last quote of each option contract is used to obtain the

summary statistics. S denotes the spot S&P 500 index level and K is the exercise price
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of the benchmark BS model can really buy in terms of performance improvement

and whether each generalization produces a worthy tradeoff between benefits and

costs. We will pursue this analysis by using three yardsticks: (i) the size of the

out-of-sample cross-sectional pricing errors (static performance); (ii) the size of

model-based hedging errors (dynamic performance); and (iii) the existence of

systematic biases across strike prices or across maturities (i.e., does the implied
volatility still smile?).

Based on Procedure B of Sect. 98.2.3, Table 98.2 reports the summary statistics

for the daily estimated structural parameters and the implied spot standard devia-

tion, respectively, for the SVSI, the SV, the SI, and the BS models. Take the SVSI

model as an example. Over the entire sample period 06:1988–05:1991, kv ¼ 0.906,

yv ¼ 0.042, and sv ¼ 0.414. These estimates imply a long-run mean of 21.53 % for

the volatility process. The implicit (average) half-life for variance mean reversion is

9.18 months. These estimates are similar in magnitude to those reported in Bates

(1996b, 2000) for S&P 500 futures options. The estimated parameters for the (risk

neutralized) short-rate process are also reasonable and comparable to those in Chan

et al. (1992). The presented correlation estimate for r is �0.763. The average

implied standard deviation is 19.27 %. As seen from the reported standard errors in

Table 98.2, for each given model the daily parameter and spot volatility estimates

are quite stable from subperiod to subperiod. Histogram-based inferences

(not reported) indicate that the majority of the estimated values are centered around

the mean.

In estimating the structural parameters and the implied volatility for a given

day, we used all S&P 500 options collected in the sample for that day (regardless

of maturity and moneyness). This is the treatment applied to the SI, the SV,

and the SVSI models. For the BS model, however, Whaley (1982) makes the point

that ATM options may give an implied-volatility estimate which produces the

best pricing and hedging results. Based on his justification, we used, for each

given day, one ATM option that had at least 15 days to expiration to back out the

BS model’s implied-volatility value. This estimate was then used to determine

the next day’s pricing and hedging errors of the BS model. See Bates (1996a)

for a review of alternative approaches to estimating the BS model’s

implied volatility.

Observe in Table 98.2 that for the overall sample period, the average implied

standard deviation is 19.27 % by the SVSI model, 19.02 % by the SV, 18.14 % by

the SI, and 18.47 % by the BS model, where the difference between the highest and

the lowest is only 1.13 %. For each subperiod the implied-volatility estimates are

similarly close across the four models. This is somewhat surprising. It should,

however, be recognized that this comparison is based only on the average estimates

over a given period. When we examined the day-to-day time-series paths of the four

models’ implied-volatility estimates, we found the difference between the two

models’ implied standard deviations to be sometimes as high as 6 %. Economically,

option prices and hedge ratios are generally quite sensitive to the volatility input

(see Figlewski 1989). Even small differences in the implied-volatility estimate can

lead to significantly different pricing and hedging results.
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98.4.1 Static Performance

To examine out-of-sample cross-sectional pricing performance for each model,

we use previous day’s option prices to back out the required parameter

values and then use them as input to compute current day’s model-based option

prices. Next, subtract the model-determined price from the observed market price,

to compute both the absolute pricing error and the percentage pricing error. This

procedure is repeated for each call and each day in the sample, to obtain the

average absolute and the average percentage pricing errors and their associated

standard errors. These steps are separately followed for each of the BS, the SI, the

SV, and the SVSI models. The results from this exercise are reported in Table 98.3.

Let’s first examine the relative performance in pricing OTM options.

Overpricing of OTM options is often considered a critical problem for the BS

model (e.g., McBeth and Merville 1979 and Rubinstein 1985). Panel A of

Table 98.3 reports the absolute and the percentage pricing error estimates for

OTM options. According to both error measures, the overall ranking of the four

models is consistent with our priors: the SVSI model outperforms all others,

followed by the SV, the SI, and finally the BS model. For extremely short-term

(<30 days) and extremely out-of-the-money ( SK < 0:93) options, for example, the

average absolute pricing error by the SVSI model is $0.23 versus $0.53 by the BS,

$0.28 by the SI, and $0.25 by the SV model. For this category, the BS model’s

absolute pricing error is cut by more than a half by each of the other three models.

Fix the moneyness category at S
K 2 0:93; 0:95ð Þ . Then, for medium-term

(120–180 days) options, the SVSI model produces an average absolute pricing

error of $0.44 versus $1.38 by the BS, $0.72 by the SI, and $0.39 by the SV model.

For short-term (30–60 day) calls, the absolute pricing errors are $0.44 by the SVSI,
$0.48 by the SV, $0.73 by the SI, and $0.90 by the BS model. Clearly, the

performance improvement is significant for each moneyness and maturity category

in Panel A, from the BS to the SI, to the SV, and to the SVSI model. This pricing

performance ranking of the four models can also be seen using the average percent-

age pricing errors, as given in the same table. Here, the SVSI model produces

percentage pricing errors that are the lowest in magnitude. As an example, take

OTM options with term to expiration of 30–60 days and with S
K 2 0:93; 0:95ð Þ In this

category the BS, the SI, the SV, and the SVSI models, respectively, have average

percentage pricing errors of �54.50 %, �46.20 %, �26.16 %, and �18.85 %. For

long-term options with S
K 2 0:93; 0:95ð Þ and with S

K 2 0:95; 0:97ð Þ, the SVSI model

results in a percentage pricing error that is as low as 0.71 % and 0.30 %, respectively.

For ATM calls, recall that the BS model’s implied-volatility input is backed out

from the (previous day’s) short-term ATM options, which should give the BS model

a relative advantage in pricing ATM options. In contrast, the implied spot variance for

the other models is obtained by minimizing the sum of squared errors for all options of

the previous day. Thus, for ATM options, one would expect the BS model to perform

relatively better. As seen from Panel B of Table 98.3, except for the shortest-term

ATM calls, the SVSI model typically generates the lowest absolute and percentage

pricing errors (especially for longer-term options), followed by the SV, by the SI,
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and finally by the BS model. For the shortest-term options with S
K 2 0:97; 0:99ð Þ and

S
K 2 0:99; 1:01ð Þ , the BS and the SI models perform somewhat better than the

other two.

Panel C of Table 98.3 reports the average absolute and percentage pricing errors

of ITM calls by all four models. While the previous ranking of the models based on

OTM and ATM options is preserved by Panel C, it can be noted that the average

percentage pricing error is below 1.0 % for 12 out of the 18 categories in the case

of the SVSI model, for 8 out of the 18 categories in the case of the SV model, for

three categories out of 18 for the SI model, and for none of the 18 categories in the

case of the BS model. The pricing improvement by the SV and the SVSI

models over the BS and the SI is quite substantial for ITM options, especially

for long-term options.

Some patterns of mispricing can, however, be noted across all moneyness–

maturity categories. First, all four models produce negative percentage pricing

errors for options with moneyness S
K � 0:99 and positive percentage pricing errors

for options with S
K � 1:03, subject to their time to expiration not exceeding 120 days.

This means that the models systematically overprice OTM call options while

underprice ITM calls. But the magnitude of such mispricing varies dramatically

across the models, with the BS producing the strongest and the SVSI model the

weakest systematic biases. Next, according to the absolute pricing error measure,

the SV model seems to perform slightly better than the SVSI in pricing calls with

more than 90 days to expiration. This pattern is, however, not supported by the

percentage pricing errors reported in Table 98.3, possibly because for these rela-

tively long-term calls the two models produce pricing errors that have mixed signs,

in which case taking the average absolute value of the pricing errors can sometimes

distort the picture. According to the percentage pricing errors, the SVSI model does

slightly better than the SV in pricing those longer-term options. Finally, for the BS

model, its absolute pricing error has a U-shaped relationship (i.e., “smile”) with

moneyness, and the magnitude of its percentage pricing error increases as the call

goes from deep in the money to deep out of the money, regardless of time to

expiration. These patterns are reduced by each relaxation of the BS model

assumptions.

98.4.2 Dynamic Hedging Performance

Recall that in implementing a hedge using any of the four models, we follow three

basic steps. First, based on Procedure B of Sect. 98.2.3, estimate the structural

parameters and spot variance by using day 1’s option prices. Next, on day 2, use

previous day’s parameter and spot volatility estimates and current day’s spot price

and interest rates, to construct the desired hedge as given in Sect. 98.2.2. Finally,

rely on either Eqs. 98.22 or 98.25 to calculate the hedging error as of day 3. We then

compute both the average absolute and the average dollar hedging errors of all call

options in a given moneyness–maturity category, to gauge the relative hedging

performance of each model.
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It should be recognized that in both the delta-neutral and the minimum-variance

hedging exercises conducted in the two subsections below, the spot S&P 500 index,

rather than an S&P 500 futures contract, is used in place of the “spot asset” for the

hedges devised in Sect. 98.2.2. This is done out of two considerations. First, the spot

S&P 500 and the immediate-expiration-month S&P 500 futures price generally

have a correlation coefficient close to one. This means that whether the spot index

or the futures price is used in the hedging exercises, the qualitative as well as the

quantitative conclusions are most likely the same. In other words, if it is demon-

strated using the spot index that one model results in better hedging performance

than another, the same hedging performance ranking of the two models will likely

be achieved by using an S&P 500 futures contract. After all, our main interest here

lies in the relative performance of the models. Second, when a futures contract is

used in constructing a hedge, a futures pricing formula has to be adopted. That will

introduce another dimension of model misspecification (due to stochastic interest

rates), which can in turn produce a compounded effect on the hedging results. For

these reasons, using the spot index may lead to a cleaner comparison among the

four option models.

98.4.2.1 Effectiveness of Delta-Neutral Hedges
Observe that the construction and the execution of the hedging strategy in

Eq. 98.22 requires, in the cases of the SV and the SVSI models, (i) the availability

of prices for four time-matched target and hedging-instrumental options, C t; t;Kð Þ,
C t; t;K
	 


,C tþ Dt, t� Dt;Kð Þ, and C tþ Dt, t� Dt;K
	 


, and (ii) the computation

of DS, DV, and DR for the target and the instrumental option. Due to this require-

ment, it is important to match as closely as possible the time points at which the

target and the instrumental option prices were respectively taken, in order to ensure

that the hedge ratios are properly determined. For this reason, we use as hedging

instruments only options whose prices on both the hedge construction day and the

following liquidation day were quoted no more than 15 s apart from the times when

the respective prices for the target option were quoted. This requirement makes the

overall sample for the hedging exercise smaller than that used for the preceding

pricing exercise, but it nonetheless guarantees that the deltas for the target and

instrumental options on the same day are computed based on the same spot price.

The remaining sample contains 15,041 matched pairs when hedging revision occurs

at 1-day intervals and 11,704 matched pairs when rebalancing takes place at 5-day

intervals. In addition, we partition the target options into three maturity classes, less

than 60 days, 60–180 days, and greater than 180 days, and report hedging results

accordingly.

In theory, a call option with any expiration date and any strike price can be

chosen as a hedging instrument for any given target option. In practice, however,

different choices can mean different hedging effectiveness, even for the same

option pricing model. Out of this consideration, we employ as a hedging instrument

the call option which has the same expiration date as the target option and whose

strike price is the closest, but not identical, to the target option’s.
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Table 98.4 presents delta-neutral hedging results for the four models. Several

patterns emerge from this Table. First, the BS model produces the worst hedging

performance by most measures, the SI shows noticeable improvement according to

the average dollar hedging errors (especially in the 5-day hedging revision catego-

ries) but not so according to the average absolute hedging errors, while the SV and

the SVSI models have average absolute and average dollar hedging errors that are

typically one-third of the corresponding BS hedging errors, or lower. The improve-

ment by the SV and the SVSI is thus remarkable. Second, as portfolio adjustment

frequency decreases from daily to once every 5 days, hedging effectiveness dete-

riorates, regardless of the model used. The deterioration is especially apparent for

OTM and ATM options with S
K � 1:05. It should, however, be noted with emphasis

that for both the SV and the SVSI models, their hedging effectiveness is relatively

stable, whether the hedges are rebalanced each day or once every 5 days. For the BS

and the SI models, such a change in revision frequency can mean doubling their

hedging errors. This finding is strong evidence in support of the SV and the SVSI

models for hedging.

Third, the BS model-based delta-neutral hedging strategy always overhedges

a target call option, as its average dollar hedging error is negative for each

moneyness–maturity category and at either frequency of portfolio rebalancing. In

contrast, the dollar hedging errors based on the SV and the SVSI models are more

random and can take either sign. Therefore, the BS formula has a systematic

hedging bias pattern, whereas the SV and the SVSI do not.

Fourth, the SVSI model is indistinguishable from the SV according to their

absolute hedging errors, but is slightly better than the latter when judged using their

average dollar hedging errors. Similarly, the SI model has worse hedging perfor-

mance than the BS according to their absolute hedging error values, but the reverse

is true according to their dollar hedging errors. This phenomenon exists possibly

because with stochastic interest rates there are larger hedging errors of opposite

signs, so that when added together, these errors cancel out, but the sum of their

absolute values is nonetheless large.

Finally, no matter which model is used, there do not appear to be moneyness- or

maturity-related bias patterns in the hedging errors. In other words, hedging errors

do not seem to “smile” across exercise prices or times to expiration, as pricing

errors do. This is a striking disparity between pricing and hedging results.

98.4.2.2 Effectiveness of Single-Instrument Minimum-Variance Hedges
If one is, for reasons given before, constrained to using only the underlying stock to

hedge a target call option, dimensions of uncertainty that move the target option

value but are uncorrelated with the underlying stock price cannot be hedged by any

position in the stock and will necessarily be uncontrolled for in such a single-

instrument minimum-variance hedge. Based on the sample option data, the average

absolute and the average dollar hedging errors, with either a daily or a 5-day

rebalancing frequency, are given in Table 98.5 for each of the four models and

each of the moneyness–maturity categories. With this type of hedges, the relative

performance of the models is no longer clear-cut. For OTM options with S
K � 1:97,
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the SV model has, regardless of the hedging error measure used and the hedge

revision frequency adopted, the lowest hedging errors, followed by the SVSI, then

by the BS, and lastly by the SI model. For ATM options, the hedging performance by

the BS and the SV models is almost indistinguishable, but still better, by a small

margin, than that by both the SI and the SVSI models, whereas the latter two models’

performance is also indistinguishable. Finally, for ITM options, the BS model has the

best hedging performance, followed by the SV, the SVSI, and then by the SI model.

Having said the above, it should nonetheless be noted that for virtually all cases in

Table 98.5, the hedging error differences among the BS, the SV, and the SVSI models

are economically insignificant because of their low magnitude. Only the SI model’s

performance appears to be significantly poorer than the others’.

The fact that the SI model performs worse than the BS and that the SVSI model

performs slightly worse than the SV suggests that adding stochastic interest rates to

the option pricing framework actually make the single-instrument hedge’s perfor-

mance worse. This can be explained as follows. In the setup of the chapter, interest

rate shocks are assumed to be independent of shocks to the stock price and/or to the

stochastic volatility. Therefore, in the single-instrument minimum-variance hedges,

there is no adjustment in the optimal position in the underlying stock to be taken.

The hedging results in Table 98.5 have shown that if interest rate risk is not to be

controlled by any position in the hedging instrument, then it is perhaps better to

design a single-instrument hedge based on an option model that assumes no interest

rate risk. Assuming interest rate risk in an option pricing model and yet not

controlling for this risk in a hedge can make the hedging effectiveness worse.

In the case of the SV versus the BS model, the situation is somewhat different

from the above. As volatility shocks are assumed to be correlated with stock price

shocks, the position to be taken in the underlying stock (i.e., the hedging instru-

ment) needs to be adjusted relative to the BS model-determined hedge, so that this

single position not only helps contain the underlying stock’s price risk but also

neutralize that part of volatility risk which is related to stock price fluctuations (see

Eq. 98.23). Thus, by rendering it possible to use the single hedging position to

control for both stock price risk and volatility risk, introducing stochastic volatility

into the BS framework helps improve the single-instrument hedging performance,

albeit by a small amount. Nandi (1996) uses the remaining variance of a hedged

position as a hedging effectiveness measure, according to which he finds the SV

model performs better than the BS model. Our single-instrument hedging results are

hence consistent with his, regarding the SV versus the BS model.

It is useful to recall that all four models are implemented allowing both the spot

volatility and the spot interest rates to vary from day to day, which is, except in the

sole case of the SVSI model, not consistent with the models’ assumptions. Given

this practical ad hoc treatment, it may not come as a surprise that when only the

underlying asset is used as the hedging instrument, the four models performed

virtually indifferently, with the magnitude of their hedging error differences being

generally small. As easily seen, if all four models were implemented in a way

consistent with the respective model setups, the single-instrument hedges based on

the SVSI model would for sure perform the best.
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Comparing Tables 98.4 and 98.5, one can conclude that based on a given option

model, the conventional delta-neutral hedges perform far better than their single-

instrument counterparts, for every moneyness–maturity category. This is not sur-

prising as the former type of hedges involves more hedging instruments (except

under the BS model).

98.4.3 Regression Analysis of Option Pricing and Hedging Errors

So far we have examined pricing and hedging performance according to option

moneyness–maturity categories. The purpose was to see whether the errors have

clear moneyness- and maturity-related biases. By appealing to a regression analy-

sis, we can more rigorously study the association of the errors with factors that are

either contract specific or market condition dependent. Fix an option pricing model,

and let ϵn(t) denote the n-th call option’s percentage pricing error on day t. Then,
run the regression below for the entire sample:

ϵn tð Þ ¼ b0 þ b1
S tð Þ
Kn

þ b2tn þ b3SPREADn tð Þ
þb5LAGVOL t�1ð Þ þ b4SLOPE tð Þ þ �n tð Þ,

(98.29)

where Kn is the strike price of the call, tn the remaining time to expiration, and

SPREADn(t) the percentage bid–ask spread at date t of the call (constructed by

computing Ask�Bid
0:5 AskþBidð Þ , all of which are contract-specific variables. The variable,

LAGVOL(t � 1), is the (annualized) standard deviation of the previous day’s

intraday S&P 500 returns computed over 5-min intervals, and it is included in the

regression to see whether the previous day’s volatility of the underlying may cause

systematic pricing biases. The variable, SLOPE(t), represents the yield differential

between 1-year and 30-day Treasury bills. This variable can provide information on

whether the single-factor Cox et al. (1985) term structure model assumed in the

chapter is sufficient to make the resulting option formula capture all term structure-

related effects on the S&P 500 index options. In some sense, the contract-specific

variables help detect the existence of cross-sectional pricing biases, whereas

LAGVOL(t�1) and SLOPE(t) serve to indicate whether the pricing errors over

time are related to the dynamically changing market conditions. Similar regression

analyses have been done for the BS pricing errors in, for example, Galai (1983b),

George and Longstaff (1993), and Madan et al. (1998). For each given option

model, the same regression as in Eq. 98.29 is also run for the conventional delta-

neutral hedging errors, with ϵn(t) in Eq. 98.29 replaced by the dollar hedging error

for the n-th option on day t.
Table 98.6 reports the regression results based on the entire sample period,

where the standard error for each coefficient estimate is adjusted according to

the White (1980) heteroskedasticity-consistent estimator and is given in the

parentheses. Let us first examine the pricing error regressions. For every option
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model, each independent variable has statistically significant explanatory power

of the remaining pricing errors. That is, the pricing errors from each model

have some moneyness, maturity, intraday volatility, bid–ask spread, and term

structure-related biases. The magnitude of each such bias, however, decreases

from the BS to the SI, to the SV, and to the SVSI model. For instance, the BS

percentage pricing errors will on the average be 2.29 points higher when the yield

spread SLOPE(t) increases by one point, whereas the SV and the SVSI percentage

errors will only be, respectively, 0.32 and 0.34 points higher in response.

Thus, a higher yield spread on the term structure means higher pricing errors,

regardless of the option model used. This points out that a possible direction to
further improve pricing performance is to include the yield spread as a second
factor in the term structure model of interest rates. Other noticeable

patterns include the following. The BS pricing errors are decreasing, while

the SI, the SV, and the SVSI pricing errors are increasing, in both the option’s

time to expiration and the underlying stock’s volatility on the previous day.

The deeper in the money the call or the wider its bid–ask spread, the lower the

SI’s, the SV’s, and the SVSI model’s mispricing. But, for the BS model, its

mispricing increases with moneyness and decreases with bid–ask spread.

Even though all four models’ pricing errors are significantly related to each

independent variable, the collective explanatory power of these variables is not so

Table 98.6 Regression analysis of pricing and hedging errors

Coefficient

Percentage pricing errors Hedging errors

BS SI SV SVSI BS SI SV SVSI

Constant �0.05 0.28 0.24 0.11 �0.41 �0.30 0.00 �0.03

(0.03) (0.03) (0.02) (0.02) (0.11) (0.10) (0.05) (0.05)

S/K 0.22 �0.18 �0.20 �0.09 0.34 0.29 0.00 0.03

(0.03) (0.02) (0.01) (0.02) (0.09) (0.08) (0.04) (0.04)

t �0.04 0.04 0.08 0.05 0.03 0.08 0.00 0.00

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

SPREAD �5.24 �4.48 �2.13 �1.57 2.26 1.04 0.32 0.34

(0.12) (0.11) (0.07) (0.08) (0.48) (0.32) (0.23) (0.23)

SLOPE 2.29 1.33 0.32 0.34 �2.09 �2.01 �0.39 �0.39

(0.16) (0.13) (0.08) (0.11) (0.58) (0.65) (0.26) (0.25)

LAGVOL �0.16 0.12 0.06 0.04 �0.31 �0.51 �0.06 �0.05

(0.02) (0.02) (0.01) (0.01) (0.07) (0.05) (0.02) (0.02)

Adj. R2 0.29 0.22 0.12 0.07 0.01 0.01 0.00 0.00

The regression results below are based on the equation:

ϵn tð Þ ¼ b0 þ b1
S tð Þ
Kn

þ b2tn þ b3SPREADn tð Þ þ b4SLOPPE tð Þ þ b4LAGVOL t�1ð Þ þ �n tð Þ,
where ϵn(t) denotes either the percentage pricing error or the dollar hedging error of the n-th call on
date t; S/K and tn, respectively, represent the moneyness and the term to expiration of the option

contract; the variable SPREADn(t) is the percentage bid–ask spread; SLOPE(t) the yield differen-

tial between the 1-year and the 30-day Treasury bill rates; and LAGVOL(t�1) the previous day’s

(annualized) standard deviation of S&P 500 index returns computed from 5-min intradaily returns.

The standard errors, reported in parenthesis, are White’s (1980) heteroskedastically consistent

estimator. The sample period is 06:1988–05:1991 for a total of 38,749 observations
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impressive. The adjusted R2 is 29 % for the BS formula’s pricing errors, 22 % for

the SI’s, 12 % for the SV’s, and 7 % for the SVSI model’s. Therefore, while both the

BS and the SI model have significant overall biases related to contract terms and

market conditions (indicating systematic model misspecifications), the remaining

pricing errors under the SV and the SVSI are not as significantly associated with

these variables. About 93 % of the SVSI model’s pricing errors cannot be explained

by these variables!

As reported in Table 98.6, delta-neutral hedging errors by the BS and the SI

model tend to increase with the moneyness and the bid–ask spread of the target call,

but decrease with the non-contract-specific yield spread and lagged stock volatility

variables. Therefore, the two models are misspecified for hedging purposes, and

they lead to systematic hedging biases. But, overall, these variables can explain

only 1 % of the hedging errors by the two models. And, even more impressively,

none of the included independent variables can explain any of the remaining

hedging errors by the SV and the SVSI model, as their R2 values are both zero.

Finally, when the dollar pricing errors are used to replace the percentage pricing

errors or when the percentage hedging errors are employed to replace the dollar

hedging errors in the above regressions, the sign of each resulting coefficient

estimate and the magnitude of each R2 value in Table 98.6 remain unchanged.

Thus, the conclusions drawn from Table 98.6 are independent of the choice of the

pricing or hedging error measure. Results from these exercises are not reported here

but available upon request.

98.4.4 Robustness of Empirical Results

Using the entire sample period data, we have concluded that the evidence, based on

both static performance and dynamic performance measures, is in favor of both the

SVSI and the SV model. However, it is important to demonstrate that this conclu-

sion still holds when alternative test designs and different sample periods are used.

Below we briefly report results from two controlled experiments.

According to Rubinstein (1985), the volatility smile pattern and the nature

of pricing biases are time period dependent. To see whether our conclusion

may be reversed, we separately examined the pricing and hedging performance

of the models in three subperiods: 06:1988–05:1989, 06:1989–05:1990, and

06:1990–05:1991. Each subperiod contains about 10,000 call option observations.

As the results are similar for each subperiod, we provide the percentage pricing

errors in Panel A and the absolute delta-neutral hedging errors in Panel B of

Table 98.7, for the subperiod 06:1990–05:1991. It is seen that these results are

qualitatively the same as those in Tables 98.3 and 98.4.

We examined the pricing and hedging error measures of each model when the

structural parameters were not updated daily. Rather, retain the structural parameter

values estimated from the options of the first day of each month, and then, for the

remainder of the month, use them as input to compute the corresponding

model-based price for each traded option, except that the implied spot volatility
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Table 98.7 Robustness analysis

Panel A: percentage pricing errors, 06:1990–05:1991

Moneyness Model Term to expiration (days)

S/K <30 30–60 60–90 90–120 120–180 �180

<0.93 BS �76.51 �96.75 �74.73 �78.71 �61.36 �46.83

SI �26.88 �62.89 �38.89 �34.40 �18.68 �5.14

SV �25.05 �35.80 �12.59 �1.25 1.64 8.51

SVSI �20.56 �31.82 �8.15 �3.00 0.58 3.57

0.93–0.95 BS �54.99 �59.06 �31.97 �24.29 �19.28 �12.36

SI �46.25 �46.77 �28.99 �10.62 �9.55 �5.37

SV �26.57 �25.32 �8.57 �1.60 �0.33 1.50

SVSI �28.25 �21.71 �6.26 �2.18 �0.04 0.79

0.95–0.97 BS �34.72 �29.97 �16.71 �12.74 �10.27 �7.33

SI �31.85 �24.18 �16.79 �4.92 �5.35 �4.49

SV �20.09 �13.89 �5.54 �1.68 �0.56 0.61

SVSI �15.83 �13.08 �4.20 �3.29 �0.91 0.18

0.97–0.99 BS �15.93 �10.36 �5.84 �3.22 �3.46 �2.14

SI �15.27 �7.45 �7.22 2.36 �2.05 �1.24

SV �13.09 �7.04 �3.64 0.77 �0.47 0.15

SVSI �12.38 �7.49 �3.37 �0.90 �0.83 �0.33

0.99–1.01 BS �3.92 �1.23 0.62 1.54 0.65 1.99

SI �3.24 �0.09 �0.87 5.22 0.38 �0.09

SV �6.69 �3.43 �1.23 1.22 �0.10 0.14

SVSI �7.46 �4.17 �1.49 �0.33 �0.48 �0.27

1.01–1.03 BS 2.48 3.36 4.17 4.05 3.28 2.93

SI 2.73 3.75 2.78 5.57 1.82 �0.60

SV �0.92 �0.56 0.24 1.44 0.19 �0.24

SVSI �1.41 �1.02 �0.09 �0.59 �0.16 �0.53

1.03–1.05 BS 3.93 4.86 5.35 5.57 4.62 3.41

SI 3.95 4.92 4.08 6.62 2.61 �0.08

SV 1.21 0.74 0.82 1.87 0.39 �0.17

SVSI 0.85 0.19 0.48 0.79 0.08 �0.40

1.05–1.07 BS 3.69 5.07 5.84 6.36 5.12 4.93

SI 3.82 5.08 4.67 6.55 2.87 1.29

SV 1.83 1.52 1.49 2.07 0.51 �0.54

SVSI 1.68 1.18 1.17 1.38 0.32 �0.57

>1.07 BS 1.99 2.98 3.58 4.35 4.00 3.59

SI 2.44 2.90 2.77 4.08 1.93 �1.01

SV 1.43 1.40 1.21 1.47 0.45 �0.69

SVSI 1.38 1.30 1.18 1.18 0.46 �0.40

Panel B: absolute hedging errors (1 and 5 days), 06:1990–05:1991

Moneyness Model

1-day revision

5-day revisionTerm to expiration (days)

S/K <60 60–180 >180 <60 60–180 >180

<0.93 BS NA 0.42 0.48 NA 1.13 0.99

(continued)
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Table 98.7 (continued)

Panel B: absolute hedging errors (1 and 5 days), 06:1990–05:1991

Moneyness Model

1-day revision

5-day revisionTerm to expiration (days)

S/K <60 60–180 >180 <60 60–180 >180

SI 0.46 0.45 0.77 0.82

SV 0.17 0.22 0.18 0.30

SVSI 0.17 0.22 0.18 0.30

0.93–0.95 BS NA 0.40 0.50 NA 0.97 0.95

SI 0.45 0.47 0.73 0.75

SV 0.13 0.25 0.15 0.30

SVSI 0.13 0.25 0.15 0.30

0.95–0.97 BS NA 0.37 0.44 NA 0.96 0.85

SI 0.45 0.44 0.77 0.86

SV 0.16 0.22 0.16 0.29

SVSI 0.16 0.22 0.16 0.29

0.97–0.99 BS 0.39 0.42 0.47 0.72 0.95 0.97

SI 0.33 0.45 0.41 0.66 0.74 0.76

SV 0.14 0.17 0.17 0.16 0.17 0.24

SVSI 0.14 0.17 0.16 0.15 0.17 0.23

0.99–1.01 BS 0.41 0.43 0.50 0.99 0.91 0.89

SI 0.40 0.48 0.50 0.79 0.71 0.78

SV 0.16 0.16 0.17 0.20 0.17 0.28

SVSI 0.16 0.16 0.17 0.19 0.17 0.26

1.01–1.03 BS 0.40 0.46 0.47 0.99 0.89 0.83

SI 0.45 0.44 0.45 0.74 0.71 0.73

SV 0.17 0.17 0.18 0.19 0.20 0.25

SVSI 0.17 0.17 0.17 0.19 0.20 0.25

1.03–1.05 BS 0.45 0.43 0.50 0.88 0.85 0.97

SI 0.46 0.44 0.48 0.71 0.72 0.68

SV 0.17 0.14 0.17 0.18 0.16 0.27

SVSI 0.17 0.14 0.17 0.18 0.16 0.27

1.05–1.07 BS 0.46 0.47 0.51 0.73 0.78 0.77

SI 0.47 0.45 0.50 0.61 0.67 0.68

SV 0.18 0.14 0.22 0.19 0.16 0.24

SVSI 0.17 0.14 0.21 0.19 0.16 0.22

>1.07 BS 0.41 0.45 0.53 0.62 0.70 0.81

SI 0.38 0.46 0.50 0.48 0.64 0.75

SV 0.17 0.15 0.22 0.18 0.19 0.32

SVSI 0.16 0.15 0.21 0.18 0.18 0.31

The reported percentage pricing error is the sample average of the market price minus the model

price divided by the market price. The sample period is 06:1990–05:1991 for a total of 11,979 call

options

The average absolute hedging error for each model is reported based on the subsample period

06:1990–05:1991 (with a total of 6,440 observations)
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is updated each day based on the previous day’s option prices. The obtained

absolute pricing errors for the subperiod 06:1990–05:1991 indicate that the

performance ranking of the four models remains the same as before.

In addition, when we used only ATM (or only ITM or only OTM) option prices to

back out each model’s parameter values, the resulting pricing and hedging errors did

not change the performance ranking of the models either. This means that even if one

would estimate and use a matrix of implied volatilities (across moneynesses and

maturities) to accordingly price and hedge options in different moneyness–maturity

categories, it would still not change the fact that the SV and the SVSI models are

better specified than the other two for pricing and hedging. Given that the implied-

volatility matrix method has gained some popularity among practitioners, our results

should be appealing. On the one hand, they suggest that with the SV and the SVSI

models, there is far less a need to engage in moneyness- and maturity-related fitting.

On the other hand, if one is still interested in the matrix method, the SV and the SVSI

models should be better model choices.

Early in the project we used only option transaction price data for the pricing and

hedging estimations. But, that meant a far smaller data set, especially for the

hedging estimations. Nonetheless, the results obtained from the transaction prices

were similar to these presented and discussed in this chapter.

98.5 Concluding Remarks

We have developed and analyzed a simple option pricing model that admits both

stochastic volatility and stochastic interest rates. It is shown that this closed-form

pricing formula is practically implementable, leads to useful analytical hedge

ratios, and contains many known option formulas as special cases. This last feature

has made it relatively straightforward to conduct a comparative empirical study of

the four classes of option pricing models.

According to the pricing and hedging performance measures, the SVSI and the

SV models both perform much better than the SI and the BS models, as the former

typically reduce the pricing and hedging errors of the latter by more than a half.

These error reductions are also economically significant. Furthermore, the hedging

errors by the SV and the SVSI models are relatively insensitive to the frequency of

portfolio revision, whereas those of the SI and the BS models are sensitive.

Given that both the SV and the SVSI models can be easily implemented on

a personal computer, they should thus be better alternatives to the widely

applied BS formula. A regression-based analysis of the pricing and hedging

errors indicates that while the BS and the SI models show significant pricing biases

related to moneyness, time to expiration, bid–ask spread, lagged stock volatility,

and interest rate term spread, pricing errors by the SV and the SVSI models are not

as systematically related to either contract-specific or market-dependent variables.

Overall, the results lend empirical support to the claim that incorporating stochastic

interest rates and, especially, stochastic volatility can both improve option
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pricing and hedging performance substantially and resolve some known empirical

biases associated with the BS model.

The empirical issues and questions addressed in this chapter can also be

reexamined using data from individual stock options, American-style index

options, options on futures, currency and commodity options, and so

on. Eventually, the acceptability of option pricing models with the added

features will be judged not only by its easy implementability or even its

impressive pricing and hedging performance as demonstrated in this chapter

using European-style index calls but also by its success or failure in pricing

and hedging other types of options. These extensions are left for future research.

Appendix 1

Proof of the Option Pricing Formula in Eq. 98.10. The valuation PDE in Eq. 98.9

can be rewritten as

1

2

∂2C

∂L2
þ R� 1

2
V

� �
∂C
∂L

þ rsvV
∂2C

∂L∂V
þ 1

2
s2vV

∂2C

∂V2

þ yv � kvV½ �∂C
∂V

þ 1

2
s2RR

∂2C

∂R2
þ yR � kRR½ �∂C

∂R
� ∂C

∂t
� RC ¼ 0,

(98.30)

where we have applied the transformation L(t) � ln[S(t)]. Inserting the conjectured

solution in Eq. 98.10 into Eq. 98.30 produces the PDEs for the risk-neutralized

probabilities, Pj for j ¼ 1, 2:

1

2

∂2
Q

1

∂L2
þ Rþ 1

2
V

� �
∂
Q

1

∂L
þ rsvV

∂2
Q

1

∂L∂V
þ 1

2
s2vV

∂2
Q

1

∂V2

þ yv � kv � rsvð ÞV½ �∂
Q

1

∂V
þ 1

2
s2RR

∂2
Q

1

∂R2
þ yR � kRR½ �∂

Q
1

∂R
� ∂

Q
1

∂t
¼ 0,

(98.31)

and

1

2

∂2
Q

2

∂L2
þ R� 1

2
V

� �
∂
Q

2

∂L
þ rsvV

∂2
Q

2

∂L∂V
þ 1

2
s2vV

∂2
Q

2

∂V2
þ yv � kvV½ �∂

Q
2

∂V

þ 1

2
s2RR

∂2
Q

2

∂R2
þ yR � kR � s2R

B t; tð Þ
∂B t; tð Þ
∂R

� �
R

� �
∂
Q

2

∂R
� ∂

Q
2

∂t
¼ 0:

(98.32)

Observe that Eqs. 98.31 and 98.32 are the Fokker–Planck forward equations for

probability functions. This implies thatP1 andP2 must indeed be valid probability

functions, with values bounded between 0 and 1. These PDEs must be separately

solved subject to the terminal condition:
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Y
j
tþ t, 0ð Þ ¼ 1L tþtð Þ�K j ¼ 1, 2: (98.33)

The corresponding characteristic functions for P1 and P2 will also satisfy

similar PDEs:

1

2

∂2f 1
∂L2

þ Rþ 1

2
V

� �
∂f 1
∂L

þ rsvV
∂2f 1
∂L∂V

þ 1

2
s2vV

∂2f 1
∂V2

þ yv � kv � rsvð ÞV½ �∂f 1
∂V

þ 1

2
s2RR

∂2f 1
∂R2

þ yR � kRR½ �∂f 1
∂R

� ∂f 1
∂t

¼ 0,

(98.34)

and

1

2

∂2f 2
∂L2

þ R� 1

2
V

� �
∂f 2
∂L

þ rsvV
∂2f 2
∂L∂V
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2
s2vV

∂2f 2
∂V2
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∂V
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2
s2RR

∂2f 2
∂R2

þ yR � kR � s2R
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∂B t; tð Þ∂f 2
∂R

� �
R

� �
∂f 2
∂R

� ∂f 2
∂t

¼ 0,

(98.35)

with the boundary condition:

f j tþ t, 0;fð Þ ¼ eifL tþtð Þ j ¼ 1, 2: (98.36)

Conjecture that the solution to the PDEs (98.34) and (98.35) is, respectively,

given by

f 1 tþ t, S tð Þ,V tð Þ,R tð Þ;fð Þ ¼ exp ur tð Þ þ uv tð Þ þ xr tð Þ þ R tð Þf
þxv tð ÞV tð Þ þ ifln S tð Þ½ �g (98.37)

f 2 t, t, S tð Þ,V tð Þ,R tð Þ;fð Þ ¼ exp zr tð Þ þ zv tð Þ þ yr tð Þ R tð Þf
þyv tð ÞV tð Þ þ ifln S tð Þ½ � � ln B t; tð Þ½ �g (98.38)

with ur(0)¼ uv(0)¼ xr(0)¼ xv(0)¼ 0 and zr(0)¼ zv(0)¼ yr(0)¼ yv(0)¼ 0. Solving

the resulting system of differential equations and noting that B(t + t, 0) ¼ 1 will

respectively produce the desired characteristic functions in Eqs. 98.12 and 98.13.

Both the constant interest rate–stochastic volatility and constant volatility–

stochastic interest rate option pricing models are nested in Eq. 98.10. In the con-

stant interest rate–stochastic volatility model, for instance, the partial derivatives

with respect to R vanish in Eq. 98.30. The general solution in Eqs. 98.37, 98.38,

and 98.40 will still apply except that now R(t) ¼ R (a constant), B(t, t) ¼ e�Rt,

xr(t) ¼ ift, yr(t) ¼ (if – 1)t, and ur(t) ¼ zr(t) ¼ 0. The final characteristic

functions f̂ j for the constant interest rate–stochastic volatility option model are

respectively given by
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f̂ 1 ¼ exp �ifln B t; tð Þ½ � � yv
s2v

2ln 1� xv � kv þ 1þ ifð Þrsv½ � 1� e�xvt
	 


2xv

� �� ��
� yv
s2v
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þ if ifþ 1ð Þ 1� e�xvt
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�
, (98.39)

and
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1� e�x�vt
	 
V tð Þ

)
,

(98.40)

Similarly, the constant volatility–stochastic interest rate option model obtains

with V(t) ¼ V (a constant), xv tð Þ ¼ 1
2
if 1þ ifð Þt , yv tð Þ ¼ 1

2
if if� 1ð Þt , and

uv(t) ¼ zv(t) ¼ 0. The final characteristic functions ef j for the stochastic interest

rate–constant volatility model are

ef 1 ¼ exp
1

2
if 1þ ifð ÞVtþ ifln S tð Þ½ �

�
� yR
s2R

2ln 1� xR � kR½ � 1� e�xRt
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�
, (98.41)

and

ef 2 ¼ exp
1
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, (98.42)
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Expressions for the Gamma Measures. The various second-order partial

derivatives of the call price in Eq. 98.10, which are commonly referred to as

Gamma measures, are given below:

GS � ∂2C t; tð Þ
∂S2

¼ ∂
Q

1

∂S
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ � f 1
if
S

� �
df: > 0: (98.43)
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GS,V � ∂2C t; tð Þ
∂S∂V

¼ ∂
Q

1

∂V
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ �∂
2f 1
∂V

�df:
�

(98.46)

where for g ¼ V, R and j ¼ 1, 2

∂2
Q

j

∂g2
¼ 1

p

ð1
0

Re ifð Þ�1e�ifln K½ � ∂
2f j

∂g2

" #
df: (98.47)
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