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Abstract

The estimation of the implied volatility is the one of most important topics in

option pricing research. The main purpose of this chapter is to review the

different theoretical methods used to estimate implied standard deviation and

to show how the implied volatility can be estimated in empirical work. The OLS

method for estimating implied standard deviation is first introduced, and the

formulas derived by applying a Taylor series expansion method to Black–

Scholes option pricing model are also described. Three approaches of estimating
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implied volatility are derived from one, two, and three options, respectively.

Regarding to these formulas with the remainder terms, the accuracy of these

formulas depends on how an underlying asset is close to the present value of

exercise price in an option. The formula utilizing three options for estimating

implied volatility is more accurate rather than other two approaches.

In empirical work, we use call options on S&P 500 index futures in 2010 and

2011 to illustrate how MATLAB can be used to deal with the issue of conver-

gence in estimating implied volatility of future options. The results show that the

time series of implied volatility significantly violates the assumption of constant

volatility in Black–Scholes option pricing model. The volatility parameter in the

option pricing model fluctuates over time and therefore should be estimated by

the time series and cross-sectional model.

Keywords

Implied volatility • Implied standard deviation (ISD) • Option pricing model •

MATLAB • Taylor series expansion • Ordinary least squares (OLS) • Black–

Scholes model • Options on S&P 500 index futures

90.1 Introduction

The volatility of the return of the underlying asset is the important factor in option

pricing model (see Merton 1973; Black and Scholes 1973). However, the standard

deviation of the underlying asset return cannot be observed directly (See Merton

1976; Macbeth et al. 1979; Chance 1986). The estimation of the implied volatility

of the underlying asset in option framework becomes the one of most important

topics in option pricing research. There are two main methods developed in the

finance literature to estimate the standard deviation of the underlying asset in option

framework: (1) the historical standard deviation and (2) the implied standard

deviation (called ISD hereafter) derived from the Black–Scholes’ option pricing

model framework (See Hull 2011).

Garman and Klass (1980) study the historical standard deviation by using

open, high, low prices, and closed prices’ data to estimate the standard deviation.

To support the use of historical standard deviation for implied standard deviation

in option pricing model requires that the underlying asset’s rate of return is

stationary over the option’s life, which contradicts the time-varying standard

deviation documented by Schwert (1989).

Since the Black–Scholes’ option pricing model is a nonlinear equation, an explicit

analytic solution for the ISD is not available in the literature (except for at-the-money

call), and numerical methods are used to approximate the ISD (see Latane and

Rendleman 1976; Beckers 1981; Manaster and Koehler 1982; Brenner and

Subrahmanyam 1988; Lai et al. 1992; Chance 1996; Hallerback 2004; Corrado and

Miller 1996, 2004; Li 2005). The derivation and use of the ISD for an option as

originated by Latane and Rendleman (1976) have become a widely used methodol-

ogy for variance estimation. By applying the Newton-Raphson method, Manaster
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and Koehler (1982) provide an iterative algorithm for the ISD. Brenner and

Subrahmanyam (1988) applied Taylor series expansion at zero base to the cumulative

normal function in pricing Black–Scholes option pricing model up to the first-order

term and set the underlying asset price to equal the present value of exercise price to

solve the ISD. Lai et al. (1992) derive a closed-form solution for the ISD in terms of

the delta ∂C/∂S and ∂C/∂E. Following the same approach as Brenner and

Subrahmanyam, Corrado and Miller (1996, 2004) utilize the cumulative normal

function at zero to the first-order term to derive a quadratic equation of the ISD. Then

the ISD can be obtained by solving the quadratic equation. Hallerback (2004) also

derives an improved formula, which is similar to Corrado and Miller’s formula

(1996), to compute the ISD. Later, Li (2005) bases on Brenner and Subrahmanyam’s

approach to expand the expression to third-order term and solve for the ISD with

a cubic equation. Since Li includes third-order term in the Taylor expansion on the

cumulative normal distribution in his derivation, Li claims that his formula of ISD

provides a consistently more accurate estimate of the true ISD than that of Brenner

and Subrahmanyam’s formula.

However, the fact that there are as many estimated ISD of an underlying asset

as the number of different exercise price in options violates the constant

variance assumption used in deriving the Black–Scholes’ option pricing model.

Chance (1996) assumes different exercise prices result in different ISDs,

which violate the constant variance assumption used in deriving the Black–Scholes’

option pricing model. Under the existence of a call at-the-money assumption,

Chance uses Brenner and Subrahmanyam’s formula to calculate the at-the-money’s

ISD. Chance then applies Taylor series expansion to the difference of the call

options in terms of the first and the second-order terms. The drawback of Chance’s

method is the constraint of the use only for at-the-money option price. In other

words, if the underlying asset price deviates from the present value of the exercise

price and the call option price is not available (or unobservable) in the market, then

Chance’s formula for the ISD may not apply. Later, Ang et al. (2009, 2012) relax

the constraint in Chance’s method and develop three formulas which depend on

a Taylor series expansion and utilize single, two, and three options, respectively, to

estimate implied volatility.

The purpose of this chapter is to review the different theoretical methods used to

estimate ISD and to show how the implied volatility can be estimated in empirical

work. We use the data from options on S&P 500 index futures in 2010 and 2011 to

illustrate how MATLAB can be used to deal with the issue of convergence in

estimating implied volatility of options on index futures. This chapter is organized

as follows. In Sect. 90.2, we review the OLS method used in estimation of the ISD

in Black–Scholes’ option pricing model and expand this method to estimate the

implied volatility of the underlying asset for options on the index futures. Then, in

Sect. 90.3, we introduce the formulas of implied volatility developed by Ang

et al. (2012) which apply a Taylor series expansion to the Black–Scholes option

pricing model. The process and results of empirical work on estimating ISD for

options on S&P 500 index futures are shown in Sect. 90.4. Finally, Sect. 90.5

represents the conclusions of this study.
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90.2 Estimating the Implied Standard Deviation with OLS
Method

Black and Scholes (1973) and Merton (1973) derive the European call option

pricing model on a stock as follows:

C¼ SN d1ð Þ � Ke�rtN d2ð Þ
d1 ¼ 1n S=Kð Þ þ rþs2=2ð Þt½ �=s ffiffiffi

t
p

d2 ¼ d1 � s
ffiffiffiffiffi
t,

p (90.1)

where C is the call premium, S is the underlying stock price, K is the exercise price,

r is the instantaneous risk-free rate, t is the time to the maturity, s is the standard

deviation of the underlying asset rate of return on annual basis, and N(x) is the

standard cumulative normal distribution function up to x.

The sensitivities, or first partial derivatives, of the call option formula in

Eq. 90.1 with respect to the change of the volatility of the underlying stock can

be derived as

∂C
∂s

¼ S
ffiffiffi
t

p
N0 d1ð Þ ¼ S

ffiffiffi
t

p

S
ffiffiffiffiffiffi
2p

p e�d21=2 (90.2)

where N0(x) is the standard normal probability density function at value x.

Equation 90.2 shows the positive relationship between the call option price and the

volatility of the underlying stock. Since a call option has no downside risk (except for

its cost), increasing risk of the underlying stock simply enlarges the probability that the

option will end up in the money by expiration (hence, with a larger intrinsic value).

The OLS method for estimating implied standard deviation is first proposed by

Whaley (1982). Although Whaley’s original intent for this method was to improve

upon the existing weighting techniques, his ordinary least squares (OLS) approach

can also be used to derive the implied standard deviations (ISD) for call options. To

begin the development of his method, Whaley applies a Taylor series expansion

around some initial value of the standard deviation and omits higher-order terms.

Mathematically, this is expressed as

CM
j, t ¼ CT

j, t s0ð Þ þ ∂CT
j, t

∂s

�����s ¼ s0

 !
ss � s0ð Þ þ ej, t, (90.3)

j ¼ 1, 2, . . . , Jð Þ

where Cj,t
M denotes the market price for the option j at time t, Cj,t

T is the theoretical

model price estimated by Eq. 90.1 for the option j at time t based on an estimated

value for the ISD (s0), s0 is the estimated ISD evaluated from some initialization

value up to some minimum level of tolerance of error, ss denote the true or actual
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ISD which we are looking for, and ej,t is the random disturbance term for option j at

time t. By rearranging Eq. 90.3, we can obtain

CM
j, t � CT

j, t s0ð Þ
h i

þ s0
∂CT

j, t

∂s

�����s ¼ s0

 !
¼ ss

∂CT
j, t

∂s

�����s ¼ s0

 !
þ ej, t (90.4)

j ¼ 1, 2, . . . , Jð Þ

since Cj, t
M is observable in market

∂CT
j, t

∂s

���s ¼ s0
� �

and Cj, t
T (s0) can be evaluated at

any given value s0 by using Eqs. 90.1 and 90.2.

Whaley (1982) then applies OLS, which minimizes the sum of squared residuals,

to achieve a single, weighted s from the options on a particular stock. The actual

estimation procedures begin from a linearization of the option pricing model around

0, and then OLS is applied to Eq. 90.4. The process thus proceeds in an iteration

manner until the estimated ISD ŝs satisfies an acceptable tolerance of

ŝs � s0
s0

����
���� < Q, (90.5)

where Q is a small positive number where Whaley(1982) uses Q equal to 0.0001 as

the acceptable tolerance of estimated error and ŝs is the estimate for the true ISD ss
for the market option price. If the tolerance criterion is not satisfied, ŝs becomes the

new initialization value and the OLS procedure is repeated.

The OLS method also can be applied to estimate the ISD for options on index

future with the similar procedure of a Taylor series expansion (See Wolf 1982; Park

et al. 1985; Ramaswamy et al. 1985; Brenner et al. 1985). The call options on index

future derived by Black (1975, 1976) are given by

CF
t ¼ e�rt FtN d3ð Þ � KN d4ð Þ½ �

d3 ¼ 1n Ft=Kð Þ þ s2f =2
� �

t
h i�

sf
ffiffiffi
t

p

d4 ¼ d3 � sf
ffiffiffi
t

p
,

(90.6)

where Ct
F is the model price for a call option on index future at time t, Ft is the

underlying index future price at time t, K is the exercise price of the call option on

index future, t is the option’s remaining time to maturity in terms of a year, r is the

continuous annualized risk-free rate, sf
2 is the instantaneous variance of returns of

the underlying index future contract over the remaining life of the option, and N(x)

is the standard cumulative normal distribution function up to x.

There is similar procedure with Whaley’s method to calculate the ISD for options

on S&P 500 index futures. The ISD is obtained by first choosing an initial estimate,

s0, and then using Eq. 90.7 to iterate towards the correct value as follows:

CF
t, j � CF

t, j s0ð Þ ¼ s1 � s0ð Þ ∂CF
j, t

∂s

�����s ¼ s0

 !
, (90.7)
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where CF
t,j denotes the market price of call option j at time t, CF

t,j (s0) is the

theoretical price of call option j at time t given s equal to s0, s0 is the initialized

estimate of the ISD, s1 ¼ estimate of the true ISD from iteration,
∂CF

t, j
∂s

���s ¼ s0
� �

is

the partial derivative of the call option on index future with respect to the standard

deviation evaluated at a s0. In the context of the Black (1976) option pricing model,

the partial with respect to the standard deviation of the underlying index future can

be expressed explicitly as

∂CF
t, j

∂s
¼ Fte

�rt ffiffiffi
t

p
N

0
d3ð Þ ¼ Fte

�rt
ffiffiffi
t

p
ffiffiffiffiffiffi
2p

p e�d23=2, (90.8)

where d3 is defined as in Eq. 90.6 and N0(x) is the standard normal probability

density function at value x. The partial derivative formula in Eq. 90.8 is also called

Vega of a call option on index futures which is represented the rate of change

of the value of a call option on index futures with respect to the volatility of

the underlying index futures. The iteration proceeds by reinitializing s0 to equal

s1 at each successive stage until an acceptable tolerance level in Eq. 90.5 is

attained.

90.3 Estimating the Implied Standard Deviation with Taylor
Series Expansion Method

In this section, we first introduce the exact closed-form solution in for the ISD under

the condition that the underlying asset price equals the present value of the exercise

price. Then we discuss Ang et al.’s (2012) alternative formulas to estimate the ISD

by applying a Taylor series expansion to the Black–Scholes option pricing model

under the relaxation of the previous restrictive condition.

When the underlying stock price equals the present value of the exercise price

(i.e., S ¼ Ke�rt), the Eq. 90.1 can be reduced as follows:

C ¼ S N s
ffiffiffi
t

p
=2ð Þ � N �s

ffiffiffi
t

p
=2ð Þ½ �

¼ S 1� 2N �s
ffiffiffi
t

p
=2ð Þ½ �

¼ S 2N s
ffiffiffi
t

p
=2ð Þ � 1½ �:

(90.9)

Based on the characteristics of existence and uniqueness of the inverse cumula-

tive normal distribution, an exact closed-form solution for the ISD in Eq. 90.9 can

be derived as

s
ffiffiffi
t

p ¼ 2N�1 Sþ Cð Þ= 2Sð Þ½ �: (90.10)

Ang et al. (2012) apply Taylor’s formula to the cumulative normal functions in

Eq. 90.1 at base ln S=Ke�rtð Þ= s
ffiffiffi
t

pð Þ up to the second-order terms, then the

2482 C.-F. Lee and T. Tai



European call option in Eq. 90.1 can be rearranged as a quadratic equation of s
ffiffiffi
t

p
plus the remainder term as follows1:

s2t 4 Sþ Ke�rtð Þ � S� Ke�rtð Þln S=Ke�rtð Þ½ � � 4s
ffiffiffi
t

p ffiffiffiffiffiffi
2p

p
2C� Sþ Ke�rtð Þ

þ 8ln S=Ke�rtð Þ S� Ke�rtð Þ 1þ ln S=Ke�rtð Þ=4ð Þ2
� �

� Sþ Ke�rtð Þln S=Ke�rtð Þ=4
h i

þ e ¼ 0:

(90.11)

Dropping the remainder term e, the ISD can be obtained by solving the root of

quadratic equation function in Eq. 90.11. Since Ang et al. (2012) utilize four times

of a Taylor series expansion method to derive the quadratic function of a European

call option and the remainder terms are omitted, the ISD calculated by Eq. 90.11 is

not an exact formula. Therefore, the effectiveness of using Eq. 90.11 to estimate the

ISD depends on the deviation of the underlying stock price (S) from the present

value of exercise price (Ke�rt).

Moreover, Ang et al. (2012) derive the second alternative formula for estimating

ISD by using two call options,C1 and C2, on the same underlying stock but at

different exercise, K1 and K2, respectively (here we assume K1 < K2). By applying

Taylor series expansion to Eq. 90.1 for two call options at K2 for C1 and at K1 for

C2, respectively, we can obtain

C1 ¼ C2 � e�rtN ln S=K2e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2

� �
K1 � K2ð Þ þ e1, (90.12)

C2 ¼ C1 � e�rtN ln S=K1e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2

� �
K2 � K1ð Þ þ e2: (90.13)

Here e1 and e2 are the remainder terms of C1 at K2 and C2 at K1 from Eq. 90.1.

Dividing both sides of Eqs. 90.12 and 90.13 by e�rt (K2�K1) and simple manip-

ulations produce the same left-hand side of (C1–C2)/e
�rt(K2�K1).

Then applying the inverse function of cumulative normal function on both sides

and after using the Taylor’s formula yields the following equations:

N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � ¼ ln S=K1e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2þ �1, (90.14)

N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � ¼ 1n S=K2e
�rtð Þ= s

ffiffiffi
t

p� �� s
ffiffiffi
t

p
=2þ �2, (90.15)

where Z1 and Z2 are the remainder terms of Taylor’s formulas derived from

Eqs. 90.12 and 90.13, respectively. After combining Eqs. 90.14 and 90.15 and

dropping the remainder terms (Z1 + Z2), the quadratic function of s
ffiffiffi
t

p
can be

shown as

1The details of the derivation of Eq. 90.10 can be found in Ang et al. (2012) paper.

90 Implied Volatility: Theory and Empirical Method 2483



s
ffiffiffi
t

p� �2 þ 2N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � s ffiffiffi
t

p� �
� ln S2= e�2rtK1K2

� �	 
¼ 0: (90.16)

Thus, the ISD can be solved as

s
ffiffiffi
T

p ¼ �N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � þ ffiffiffi
z

p
when S > K1

�N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þ½ � � ffiffiffi
z

p
whenS � K1 � K2

�

z ¼ N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þð Þ	 
2 þ ln S2=e�2rtK1K2

� �
:

(90.17)

It is clear that if stock price is less than the lower exercise K1 (i.e., then

both call options are out of the money), and if we had chosen the value with

the plus sign of
ffiffiffi
z

p
in Eq. 90.17, ISD calculated by Eq. 90.17 will be

overstated. The advantage of this formula is that a sufficient condition to calculate

ISD by Eq. 90.17 only requires that there existed any two consecutive call

option values with different exercise prices. But, the accuracy of this

formula will depend on the magnitude of the deviation between these two exercise

prices.

Ang et al. (2012) further extend this approach to include a third option to

derive the third formula. Similar to Eq. 90.16, if there is a third call option C3

with the exercise price K3, then the following Eq. 90.18 must hold for K2, K3

and C2, C3.

s
ffiffiffi
t

p� �2 þ 2N�1 C2 � C3ð Þ=e�rt K3 � K2ð Þ½ � s ffiffiffi
t

p� �
� ln S2= e�2rtK2K3

� �	 
¼ 0: (90.18)

Given the constant variance assumption in Black and Scholes option model, the

following Eq. 90.19 is thus derived by subtracting Eq. 90.18 from Eq. 90.16 as

follows:

s
ffiffiffi
t

p ¼ ln K3=K1ð Þ= 2 N�1 C1 � C2ð Þ=e�rt K2 � K1ð Þð Þ � N�1 C2 � C3ð Þ=e�rt K3 � K2ð Þð Þ� �	 

:

(90.19)

An advantage of using Eq. 90.19 rather than Eq. 90.17 to estimate the ISD is to

circumvent the sign issue that appears in Eq. 90.17. However, a drawback of using

Eq. 90.19 is that there must exist at least three instead of two call options for

Eq. 90.17. Equation 90.19 provides a simple formula to calculate ISD because all

option values and exercise price are given and the inverse function of the standard

cumulative normal function also available in the Excel spreadsheet. Ang

et al. (2012) state that this third formula in Eq. 90.19 is more accurate method for

estimating ISD based on their simulation results.
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90.4 Illustration of Estimating Implied Standard Deviation by
MATLAB

The data for this study for estimating ISD include the call options on the S&P

500 index futures which are traded at the Chicago Mercantile Exchange (CME).2

According to Eq. 90.6, we need the information of market call option price on

S&P 500 index, the annualized risk-free rate, S&P 500 index futures price,

exercise price, and maturity date on the contracts as input variables to calculate

the ISD of call option on S&P 500 index futures. Daily closed-price data of S&P

500 index futures and options on S&P 500 index futures was gathered from

Datastream for two periods of time: the options expired on March, June, and

September, 2010; options expired on March, June, and September, 2011; and the

S&P 500 index future from October 1, 2008, to November 4, 2011. The S&P

500 spot price is based on the closed price of S&P 500 index on Yahoo! Finance3

during the same period of S&P 500 index future data. The risk-free rate used in

Black model is based on 3-month Treasury bill from Federal Reserve Bank of

St. Louis.4 The selection of these futures option contracts is based on the length of

trading days. The futures options expired on March, June, September, and Decem-

ber have over 1 year trading date (above 252 observations), and other options only

have more or less 100 observations. Therefore, we only choose the futures options

with longer trading period to investigate the distributional statistics of these ISD

series. Studying two different time periods (2010 and 2011) of call options on S&P

500 index futures will allow the examination of ISD characteristics and move-

ments over time as well as the effects of different market climates.

The tolerance level used is the same formula as shown in Eq. 90.5, and let the

tolerance level Q equal to 0.000001 as follows:

s1 � s0
s0

����
���� < :000001

This chapter utilized financial toolbox in MATLAB to calculate the implied

volatility for futures option that the code of function is as follows5:

Volatility ¼ blsimpv Price, Strike, Rate, Time, Value, Limit, Tolerance, Classð Þ

2Nowadays Chicago Mercantile Exchange (CME), Chicago Board of Trade (CBOT), New York

Mercantile Exchange (NYMEX), and Commodity Exchange (COMEX) are merged and operate as

designated contract markets (DCM) of the CME Group which is the world’s leading and most

diverse derivatives marketplace. Website of CME group: http://www.cmegroup.com/
3Website of Yahoo! Finance is as follows: http://finance.yahoo.com
4Website of Federal Reserve Bank of St. Louis: http://research.stlouisfed.org/
5The syntax and the code from m-file source of MATLAB for Implied Volatility Function of

Futures Options are represented in Appendix 1. The detailed information of the function and

example of calculating the implied volatility for futures option also can be referred on MathWorks

website: http://www.mathworks.com/help/toolbox/finance/blkimpv.html
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where the blsimpv is the function name in MATLAB; Price, Strike, Rate, Time,

Value, Limit, Tolerance, and Class are input variables; Volatility is the annualized

ISD (also called implied volatility). The advantages of this function are the allow-

ance of the upper bound of implied volatility (Limit variable) and the adjustment of

the implied volatility termination tolerance (Tolerance variable), in general, equal

to 0.000001.

A summary of the ISD distributional statistics for S&P 500 index futures call

options in 2010 and 2011 appears in Table 90.1. The most noteworthy feature from

this table is the significantly different mean values of the ISD that occur for

different exercise prices. The means and variability of the ISD in 2010 and 2011

appear to be inversely related to the exercise price. Comparing the mean ISDs

across time periods, it is quite evident that the ISDs in 2011 are significantly

smaller. Also, the time-to-maturity effect observed by Park and Sears (1985) can

be identified. The September options in 2011 possess higher mean value of the ISD

than those maturing in June and March with the same strike price.

The other statistical measures listed in Table 90.1 are the relative skewness and

relative kurtosis of the ISD series, along with the studentized range. Skewness

measures lopsidedness in the distribution and might be considered indicative of

a series of large outliers at some point in the time series of the ISDs. Kurtosis

measures the peakedness of the distribution relative to the normal and has been

found to affect the stability of variance (see Lee and Wu 1985). The studentized

range gives an overall indication as to whether the measured degrees of skewness

and kurtosis have significantly deviated from the levels implied by a normality

assumption for the ISD series.

Although an interpretation of the effects of skewness and kurtosis on the ISD

series needs more accurate analysis, a few general observations are warranted at

this point. Both 2010 and 2011 ISD’s statistics present a very different view of

normal distribution, certainly challenging any assumptions concerning normality in

Black–Scholes option pricing model framework. Using significance tests on the

results of Table 90.1 in accordance with Jarque–Bera test, the 2010 and 2011

skewness and kurtosis measures indicate a higher proportion of statistical signifi-

cance. We also utilize simple back-of-the-envelope test based on the studentized

range to identify whether the individual ISD series approximate a normal distribu-

tion. The studentized range larger than 4 in both 2010 and 2011 indicates that

a normal distribution significantly understates the maximum magnitude of devia-

tion in individual ISD series.

As a final point to this brief examination of the ISD skewness and kurtosis, note

the statistics for MAR10 1075, MAR11 1200, and MAR11 1250 contracts. The

relative size of these contract’s skewness and kurtosis measures reflect the high

degree of instability that its ISD exhibited during the last 10 days of the contract’s

life. Such instability is consistent across contracts. However, these distortions

remain in the computed skewness and kurtosis measures only for these

particular contracts to emphasize how a few large outliers can magnify the size

of these statistics. For example, the evidence that S&P 500 future price jumped on
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January 18, 2010, and plunged on February 2, 2011, causes the ISD of these

particular contracts sharply increasing on that dates. Thus, while still of interest,

any skewness and kurtosis measures must be calculated and interpreted with

caution.

One difficulty in discerning the correct value for the volatility parameter in the

option pricing model is due to its fluctuation over time. Therefore, since an accurate

estimate of this variable is essential for correctly pricing an option, it would seem

Table 90.1 Distributional statistics for the ISD series of call options on S&P 500 index futures

Option seriesa Mean

Std.

dev. CVb Skewness Kurtosis

Studentized

rangec Observations

Call futures options in 2010

MAR10 1075

(C070WC)

0.230 0.032 0.141 2.908 14.898 10.336 251

JUN10 1050

(B243UE)

0.263 0.050 0.191 0.987 0.943 6.729 434

JUN10 1100

(B243UF)

0.247 0.047 0.189 0.718 �0.569 4.299 434

SEP10 1100

(C9210T)

0.216 0.024 0.111 0.928 1.539 6.092 259

SEP10 1200

(C9210U)

0.191 0.022 0.117 0.982 2.194 6.178 257

Call futures options in 2011

MAR11 1200

(D039NR)

0.206 0.040 0.195 5.108 36.483 10.190 384

MAR11 1250

(D1843V)

0.188 0.027 0.145 3.739 25.527 10.636 324

MAR11 1300

(D039NT)

0.176 0.021 0.118 1.104 4.787 8.588 384

JUN11 1325

(B513XF)

0.165 0.016 0.095 �1.831 12.656 10.103 200

JUN11 1350

(A850CJ)

0.161 0.018 0.113 �0.228 1.856 8.653 234

SEP11 1250

(B9370T)

0.200 0.031 0.152 2.274 6.875 7.562 248

SEP11 1300

(B778PK)

0.185 0.024 0.131 2.279 6.861 7.399 253

SEP11 1350

(B9370V)

0.170 0.025 0.147 2.212 5.848 6.040 470

aOption series contain the name and code of futures options with information of the strike price and

the expired month, for example, SEP11 1350 (B9370V) represents that the futures call option is

expired on September 2011 with the strike price $1,350, and the parentheses is the code of this

futures option in Datastream
bCV represents the coefficient of variation that is standard deviation of option series divided by

their mean value
cStudentized range is the difference of the maximum and minimum of the observations divided by

the standard deviation of the sample
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that time series and cross-sectional analysis of this variable would be as important

as the conventional study of security price movements. Moreover, by examining the

ISD series of each call options on S&P 500 index futures over time as well

as within different time sets, the unique relationships between the underlying

stochastic process and the pricing influences of differing exercise prices,

maturity dates, and market sentiment (and, indirectly, volume), might be

revealed in a way that could be modeled more efficiently. Therefore, we should

consider autoregressive–moving-average (ARMA) models or cross-sectional

time series regression models to analyze the ISD series and forecast the price

of call options on S&P 500 index futures by predicting the future ISD of these

options.

90.5 Summary and Concluding Remarks

The research in estimation of the implied volatility becomes the one of most

important topics in option pricing research because the standard deviation of the

underlying asset return, which is the important factor in Black–Scholes’ option

pricing model, cannot be observed directly. The purpose of this chapter is to review

the different theoretical methods used to estimate implied standard deviation and to

show how the implied volatility can be estimated in empirical work. We review the

OLS method and a Taylor series expansion method for estimating the ISD in

previous literature. Three formulas for the estimation of the ISD by applying

a Taylor series expansion method to Black–Scholes option pricing model can be

derived from one, two, and three options, respectively. Regarding to these formulas

with the remainder terms in a Taylor series expansion method, the accuracy of these

formulas depends on how an underlying asset is close to the present value of

exercise price in an option.

In empirical work, we illustrate how MATLAB can be used to deal with

the issue of estimating implied volatility for call options on S&P 500 index

futures in 2010 and 2011. The results show that the time series of implied

volatility significantly violate the assumption of constant volatility in Black–

Scholes option pricing model. The skewness and kurtosis measures reflect the

instability and fluctuation of the ISD series over time. Therefore, in the

future research in the ISD, we should consider autoregressive–moving-average

(ARMA) models or cross-sectional time series regression models to analyze and

predict the ISD series to forecast the future price of call options on S&P 500 index

futures.

Appendix 1: The Syntax and Code for Implied Volatility Function
of Futures Options in MATLAB

The function name of estimating implied volatility for European call options on

index futures in this chapter are as below:
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Syntax

Volatility ¼ blsimpv Price, Strike, Rate, Time, Value, Limit, . . .Tolerance, Classð Þ

The input variables that can be a scalar, vector, or matrix in the function of

estimating implied volatility are described in Table 90.2

The code from m-file source of MATLAB for implied volatility function of

futures options is shown as below:

function volatility¼ blkimpv(F, X, r, T, value, varargin)
% BLKIMPV Implied volatility from Black’s model for

futures options.
% Compute the implied volatility of a futures price from

the market
% value of European futures options using Black’s model.
%
% Volatility ¼ blkimpv(Price, Strike, Rate, Time, Value)
% Volatility ¼ blkimpv(Price, Strike, Rate, Time, Value,

Limit, . . .
% Tolerance, Class)
%
% Optional Inputs: Limit, Tolerance, Class.
%
% Inputs:
% Price - Current price of the underlying asset (i.e.,

a futures contract).
%

Table 90.2 The description of input variables used in blsimpv function in MATLAB

Price Current price of the underlying asset (a futures contract)

Strike Exercise price of the futures option

Rate Annualized, continuously compounded risk-free rate of return over the life of

the option, expressed as a positive decimal number

Time Time to expiration of the option, expressed in years

Value Price of a European futures option from which the implied volatility of the

underlying asset is derived

Limit (optional) Positive scalar representing the upper bound of the implied volatility search

interval. If Limit is empty or unspecified, the default ¼ 10, or 1,000 % per

annum

Tolerance
(optional)

Implied volatility termination tolerance. A positive scalar. Default ¼ 1e-6

Class (optional) Option class (call or put) indicating the option type from which the implied

volatility is derived. May be either a logical indicator or a cell array of

characters. To specify call options, set Class ¼ true or Class ¼ {‘call’}; to

specify put options, set Class ¼ false or Class ¼ {‘put’}. If Class is empty or

unspecified, the default is a call option
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% Strike - Strike (i.e., exercise) price of the futures
option.

%
% Rate - Annualized continuously compounded risk-free

rate of return
% over the life of the option, expressed as a positive dec-

imal number.
%
% Time - Time to expiration of the option, expressed in

years.
%
% Value - Price (i.e., value) of a European futures option

from which
% the implied volatility is derived.
%
% Optional Inputs:
% Limit - Positive scalar representing the upper bound of

the implied
% volatility search interval. If empty or missing, the

default is 10,
% or 1000% per annum.
%
% Tolerance - Positive scalar implied volatility termina-

tion tolerance.
% If empty or missing, the default is 1e-6.
%
% Class - Option class (i.e., whether a call or put) indi-

cating the
% option type from which the implied volatility is derived.

This may
% be either a logical indicator or a cell array of charac-

ters. To
% specify call options, set Class ¼ true or

Class ¼ {’call’}; to specify
% put options, set Class ¼ false or Class ¼ {’put’}. If

empty or missing,
% the default is a call option.
%
% Output:
% Volatility - Implied volatility derived from European

futures option
% prices, expressed as a decimal number. If no solution is

found, a
% NaN (i.e., Not-a-Number) is returned.
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%
% Example:
% Consider a European call futures option trading at

$1.1166, with an
% exercise prices of $20 that expires in 4 months. Assume

the current
% underlying futures price is also $20 and that the risk-

free rate is 9%
% per annum. Furthermore, assume we are interested in

implied volatilities
% no greater than 0.5 (i.e., 50% per annum). Under these

conditions, any
% of the following commands
%
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5)
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5,

[], {’Call’})
% Volatility ¼ blkimpv(20, 20, 0.09, 4/12, 1.1166, 0.5,

[], true)
%
% return an implied volatility of 0.25, or 25%, per annum.
%
% Notes:
% (1) The input arguments Price, Strike, Rate, Time, Value,

and Class may be
% scalars, vectors, or matrices. If scalars, then that

value is used to
% compute the implied volatility from all options. If more

than one of
% these inputs is a vector or matrix, then the dimensions of

all
% non-scalar inputs must be the same.
% (2) Ensure that Rate and Time are expressed in consistent

units of time.
%
% See also BLKPRICE, BLSPRICE, BLSIMPV.
% Copyright 1995-2003 The MathWorks, Inc.
% $Revision: 1.4.2.2 $ $Date: 2004/01/08 03:06:15 $
% References:
% Hull, J.C., "Options, Futures, and Other Derivatives",

Prentice Hall,
% 5th edition, 2003, pp. 287-288.
% Black, F., "The Pricing of Commodity Contracts," Journal

of Financial
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% Economics, March 3, 1976, pp. 167-79.
%
%
% Implement Black’s model for European futures options as

a wrapper
% around a general Black-Scholes option model.
%
% In this context, Black’s model is simply a special case of

a
% Black-Scholes model in which the futures/forward con-

tract is
% the underlying asset and the dividend yield ¼ the risk-

free rate.
%
ifnargin< 5
error(’Finance:blkimpv:TooFewInputs’, . . .
’Specify Price, Strike, Rate, Time, and Value.’)
end
switchnargin
case 5
[limit, tol, optionClass] ¼ deal([]);
case 6
[limit, tol, optionClass] ¼ deal(varargin{1}, [], []);
case 7
[limit, tol, optionClass] ¼ deal(varargin{1}, varargin

{2}, []);
case 8
[limit, tol, optionClass] ¼ deal(varargin{1:3});
otherwise
error(’Finance:blkimpv:TooManyInputs’, ’Too many

inputs.’)
end
try
volatility ¼ blsimpv(F, X, r, T, value, limit, r, tol,

optionClass);
catch
errorStruct ¼ lasterror;
errorStruct.identifier ¼ strrep(errorStruct.identifier,

’blsimpv’, ’blkimpv’);
errorStruct.message ¼ strrep(errorStruct.message,

’blsimpv’, ’blkimpv’);
rethrow(errorStruct);
end
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