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Abstract

The literature on range volatility modeling has been rapidly expanding due to its

importance and applications. This chapter provides alternative price range

estimators and discusses their empirical properties and limitations. Besides, we

review some relevant financial applications for range volatility, such as value-at-

risk estimation, hedge, spillover effect, portfolio management, and microstruc-

ture issues.

In this chapter, we survey the significant development of range-based vola-

tility models, beginning with the simple random walk model up to the condi-

tional autoregressive range (CARR) model. For the extension to range-based

multivariate volatilities, some approaches developed recently are adopted, such

as the dynamic conditional correlation (DCC) model, the double smooth transi-

tion conditional correlation (DSTCC) GARCH model, and the copula method.

At last, we introduce different approaches to build bias-adjusted realized range

to obtain a more efficient estimator.

Keywords

Range • Volatility forecasting • Dynamic conditional correlation • Smooth

transition • Copula • Realized volatility • Risk management

74.1 Introduction

Financial volatility is a key input in derivative pricing, asset allocation, investment

decisions, hedging, and risk analysis; volatility modeling thus has became an

important task in financial markets, and it has held the attention of academics and

practitioners over the last three decades. Nevertheless, following Barndorff-Nielsen

and Shephard (2005) or Andersen et al. (2003), financial volatility is a latent factor

and hence it cannot be observed directly. Financial volatility thus can only be

estimated using its signature on certain known market price processes; when the

underlying process is more sophisticated or when observed market prices suffer

from market microstructure noise effects, the results are less clear.

It is well known that the time series of asset prices usually exhibit volatility

clustering or autocorrelation. In incorporating the characteristics into the dynamic

process, the generalized autoregressive conditional heteroskedasticity (GARCH)

family of models proposed by Engle (1982) and Bollerslev (1986) and the stochastic

volatility (SV) models advocated by Taylor (1986) are two popular and useful

alternatives for estimating and modeling time-varying conditional financial volatility.
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However, as pointed by Alizadeh et al. (2002), Brandt and Diebold (2006),

Chou (2005), and others, both GARCH and SV models are inaccurate and inefficient,

because they are based on the closing prices of the reference period, failing to use the

information content inside the reference. In other words, the path of the price inside the

reference period is totally ignored when volatility is estimated by these models.

Especially in turbulent days with drops and recoveries in the markets, the traditional

close-to-close volatility indicates a low level, while the daily price range shows

correctly that the volatility is high.

The price range, also known as high/low range or range volatility, is basically

defined as the difference between the highest and lowest market prices over a fixed

sampling interval. The price range has been known for a long time and has recently

experienced renewed interest as a proxy of the latent volatility. The information

contained in the opening, highest, lowest, and closing prices of an asset is widely

used in Japanese candlestick charting techniques and other technical analysis

indicators, such as the directional movement indicator (DMI). Early applications

of range in the field of finance can be traced to Mandelbrot (1971) and the academic

work on the range-based volatility estimator which began in the early 1980s.

Several authors, back to Parkinson (1980), developed several volatility measures

which were far more efficient than the classical return-based volatility estimators.

Building on the earlier results of Parkinson (1980), many studies1 showed that one

can use the price range information to improve volatility estimation. In addition to

being significantly more efficient than the squared daily return, Alizadeh et al. (2002)

also demonstrated that the conditional distribution of the log range is approximately

Gaussian, thus greatly facilitating maximum likelihood estimation of stochastic vol-

atility models. Moreover, as pointed out by Alizadeh et al. (2002) and Brandt and

Diebold (2006), the range-based volatility estimator appears robust to microstructure

noise such as bid-ask bounce. By adding microstructure noise to the Monte Carlo

simulation, Shu and Zhang (2006) also supported the finding of Alizadeh et al. (2002)

that range estimators are fairly robust toward microstructure effects.

Cox and Rubinstein (1985) explained the problem that despite the elegant theory

and the support of simulation results, the range-based volatility estimator has

performed poorly in empirical studies. Chou (2005) argued that the failure of all

the range-based models in the literature is caused by their ignorance of the temporal

movements of price range. Using a proper dynamic structure for the conditional

expectation of range, the conditional autoregressive range (CARR) model, pro-

posed by Chou (2005), successfully resolves this puzzle and retains its superiority

in empirical forecasting abilities. The in-sample and out-of-sample volatility fore-

casting using S&P 500 index data shows that the CARR model does provide

more accurate volatility estimator compared with the GARCH model. Similarly,

1See Garman and Klass (1980), Beckers(1983), Ball and Torous (1984), Wiggins (1991), Rogers

and Satchell (1991), Kunitomo (1992), Yang and Zhang (2000), Alizadeh et al. (2002), Brandt and

Diebold (2006), Brandt and Jones (2006), Chou (2005, 2006), Cheung (2007), Martens and van

Dijk (2007), Chou and Wang (2007), Floros (2009), Chou et al. (2009), and Chou and Liu (2010,

2011).
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Brandt and Jones (2006) formulated a model that is analogous to Nelson’s (1991)

EGARCH model but uses the square root of the intraday price range in place of the

absolute return. Both studies find that the range-based volatility estimators offer

a significant improvement over their return-based counterparts. Moreover, Chou

et al. (2009) extended CARR to a multivariate context using the dynamic condi-

tional correlation (DCC) model proposed by Engle (2002a). They found that this

range-based DCC model performs better than other return-based volatility models

in forecasting covariances. In this chapter, we also review alternative range-based

multivariate volatility models in Sect. 74.3.

Recently, many studies have used high-frequency data to get an unbiased and

highly efficient estimator for measuring volatility; see Andersen et al. (2003) and

McAleer and Medeiros (2008) for a review. The volatility built by nonparametric

methods is called realized volatility, which is calculated by the sum of

nonoverlapping squared returns within a fixed time interval. Martens and van

Dijk (2007) replaced the squared return with the price range to get a more efficient

estimator, namely, the realized range. In their empirical study, the realized range

was a significant improvement over realized return volatility. In addition,

Christensen and Podolskij (2007) independently develop the realized range and

showed that this estimator is consistent and relatively efficient under some specific

assumptions.

The remainder of the chapter is laid out as follows. Section 74.2 introduces the

price range estimators. Section 74.3 describes the range-based volatility models,

including univariate and multivariate ones. Section 74.4 presents the realized range.

The financial applications of range volatility are provided in Sect. 74.5. Finally, the

conclusion is showed in Sect. 74.6.

74.2 The Price Range Estimators

A few price range estimators and their estimation efficiency are briefly intro-

duced and discussed in this section. The price ranges which can be calculated

by the daily opening, highest, lowest and closing prices are readily available

for many assets. Most data suppliers provide daily highest/lowest prices as

summaries of intraday activity. For example, Datastream records the intraday

price range for most securities, including equities, currencies, and commodi-

ties, going back to 1955. Thus, range-based volatility proxies are easily calcu-

lated. When using this record, the additional information yields a great

improvement when used in financial applications. Roughly speaking, knowing

these records allows us to get closer to the real underlying process, even if we

do not know the whole path of asset prices. For an asset, let’s define the

following variables:

Ot ¼ the opening price of the tth trading day.

Ct ¼ the closing price of the tth trading day.

Ht ¼ the highest price of the tth trading day.

Lt ¼ the lowest price of the tth trading day.

2032 R.Y. Chou et al.



The efficiency for the Parkinson (1980) estimator intuitively comes from the fact

that the price range of intraday trading gives more information regarding the future

volatility than two arbitrary points in this series (the closing prices). Assuming that

the asset price follows a simple diffusion model without a drift term, his estimator

ŝ2
P can be written as follows:

ŝ2
P ¼ 1

4 ln 2
lnHt � ln Ltð Þ2: (74.1)

But instead of using two data points, the highest and lowest prices, four data

points, the opening, closing, highest, and lowest prices, might also give extra

information. Garman and Klass (1980) proposed several volatility estimators

based on the knowledge of the opening, closing, highest, and lowest prices. Like

Parkinson (1980), they assumed the same diffusion process and proposed their

estimator ŝ2
GS as

ŝ2
GK¼ 0:511 ln Ht=Ltð Þ½ �2 � 0:019 ln Ct=Otð Þ ln Htð Þ þ ln Ltð Þ � 2ln Otð Þ½f �

�2 ln Ht=Otð Þln Lt=Otð Þ�½ g � 0:383 ln Ct=Otð Þ½ �2:
(74.2)

As mentioned in Garman and Klass (1980), their estimator can be presented

practically as ŝ2

GK
0 ¼ 0:5 ln Ht=Ltð Þ½ �2 � 2ln2� 1½ � ln Ct=Otð Þ½ �2: Molnár (2012)

showed that in the absence of high-frequency data, returns normalized by their

estimator are, approximately, distributed normally.

The price path cannot be monitored when markets are closed; however, Wiggins

(1991) found that both the Parkinson estimator and Garman-Klass estimator were

still biased downward compared to the traditional estimator, because the observed

highs and lows were smaller than the actual highs and lows. Garman and Klass

(1980) and Grammatikos and Saunders (1986), nevertheless, estimated the potential

bias using simulation analysis and showed that the bias decreases with an increasing

number of transactions. Therefore, it is relatively easy to adjust the estimates of

daily variances to eliminate the source of bias.

Because the Parkinson (1980) and Garman and Klass (1980) estimators

implicitly assumed that log-price follows a geometric Brownian motion with no
drift term, further refinements were made by Rogers and Satchell (1991) and

Kunitomo (1992). Rogers and Satchell (1991) added a drift term in the stochastic

process that could be incorporated into a volatility estimator using only daily

opening, highest, lowest, and closing prices. Their estimator ŝ2
RS can be written as

follows:

ŝ2
RS ¼

1

N

Xt

n¼t�N

ln Hn=Onð Þ ln Hn=Onð Þ � ln Cn=Onð Þ½ �
þ ln Ln=Onð Þ ln Ln=Onð Þ � ln Cn=Onð Þ½ �:

(74.3)
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Rogers et al. (1994) reported that the Rogers-Satchell estimator yields theoret-

ical efficiency gains compared to the Garman-Klass estimator. They also reported

that the Rogers-Satchell estimator appears to perform well when changing drift

with as few as 30 daily observations.

Different from Rogers and Satchell (1991), Kunitomo (1992) used the opening

and closing prices to estimate a modified range corresponding to a hypothesis of

a Brownian bridge of the transformed log-price. This basically tries to correct the

highest and lowest prices for the drift term:

ŝ2
K ¼ 1

bN

Xt

p¼t�N

ln Ĥn=L̂n

� �� �
, (74.4)

where. two estimators Ĥn ¼ Arg
ti

Max
Pti

Pti � On þ Cn � Onð Þ=ti½ � þ Cn � Onð Þf
�

ti 2 n� 1, n½ �j g
�

and L̂n ¼ Arg
ti

Min
Pti

Pti � On þ Cn � Onð Þ=ti½ � þ Cn � Onð Þf
�

ti 2 n� 1, n½ �j g
�
are denoted as the end-of-the-day drift correction highest and

lowest prices. bN ¼ 6/(Np2) is a correction parameter.

Finally, Yang and Zhang (2000) made further refinements by deriving a price

range estimator that is unbiased, independent of any drift, and consistent in the

presence of opening price jumps. Their estimator ŝ2
YZ thus can be written as follows:

ŝ2
YZ ¼ 1

N � 1ð Þ
Xt

n¼t�N

ln On=Cn�1ð Þ � ln On=Cn�1ð Þ
h i

þ k

N � 1ð Þ
Xt

n¼t�N

ln On=Cn�1ð Þ � ln On=Cn�1ð Þ
h i

þ 1� kð Þ ŝ2
RS,

(74.5)

where k ¼ 0:34
1:34þ Nþ1ð Þ= N�1ð Þ . The symbol X is the unconditional mean of X, and

sRS
2 is the Rogers-Satchell estimator. The Yang-Zhang estimator is simply

the sum of the estimated overnight variance, the estimated opening market

variance, and the Rogers and Satchell (1991) drift-independent estimator. The

resulting estimator therefore explicitly incorporates a term for the closed market

variance.

Shu and Zhang (2006) investigated the relative performance of the four range-

based volatility estimators including Parkinson, Garman-Klass, Rogers-Satchell,

and Yang-Zhang estimators for S&P 500 index data and found that the price range

estimators all perform very well when an asset price follows a continuous geometric

Brownian motion. However, significant differences among the various range esti-

mators are detected if the asset return distribution involves an opening jump or

a large drift.
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In terms of efficiency, all previous estimators exhibit substantial improvements.

Defining the efficiency measure of a volatility estimator ŝ2
i as the variance

estimation compared with the close-close estimator, ŝ2, that is,

Eff ŝ2
i

� � ¼ Var ŝ2
� �

Var ŝ2
i

� �
:

(74.6)

Parkinson (1980) reported a theoretical relative efficiency gain ranging from 2.5

to 5, which means that the estimation variance is 2.5–5 times lower. Garman and

Klass (1980) reported that their estimator has an efficiency of 7.4; while the Yang

and Zhang (2000) and Kunitomo (1992) variance estimators resulted in

a theoretical efficiency gain of 7.3 and 10, respectively.

In addition to the variance estimation, Rogers and Zhou (2008) proposed a new

estimator for the correlation based on the opening, closing, high, and low prices of

two asset prices. However, they concluded that the range-based estimator of

correlation does not perform better than the simpler estimator based only on the

opening and closing prices. Nevertheless, it still points to new possibilities for

future research.

74.3 The Range-Based Volatility Models

This section provides a brief overview of the models used to forecast range-based

volatility. In what follows, the models are presented in increasing order of com-

plexity. For an asset, the range of the log-prices is defined as the difference between

the daily highest and lowest prices in a logarithm type. It can be denoted by

Rt ¼ ln Htð Þ � ln Ltð Þ: (74.7)

According to the Christoffersen’s (2002) result applied to the S&P 500 data, the

range-based volatility Rt showed more persistence than the squared return based on

estimated autocorrelations. Thus, the range-based volatility estimator of course

could be used instead of the squared return for evaluating the forecasts from

volatility models, and with the time series of Rt, one can easily construct

a volatility model under the traditional autoregressive framework.

Instead of using the data of range, nevertheless, Alizadeh et al. (2002) focused

on the variable of the log range, ln(Rt), since they found that in many applied

situations, the log range follows an approximately normal distribution. Therefore,

all the models introduced in the section except for Chou’s CARR model are

estimated and forecasted using the log range.

The following range-based volatility models were first introduced with

some simple specifications, including random walk, moving average (MA), expo-

nentially weighting moving average (EWMA), and autoregressive (AR) models.
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Hanke and Wichern (2005) thought that these models were fairly basic techniques

in the applied forecasting literature. Additionally, we also provide some models

with a much higher degree of complexity, such as the stochastic volatility (SV),

CARR, and range-based multivariate volatility models.

74.3.1 The Random Walk Model

The log range ln(Rt) can be viewed as a random walk. It means that the best forecast

of the next period’s log range is this period’s estimate of log range. As in most

papers, the random walk model is used as the benchmark for the purpose of

comparison.

E ln Rtþ1ð Þ Itj � ¼ ln Rtð Þ,½ (74.8)

where It is the information set at time t. The estimator E[ln(Rt + 1)|It] is obtained
conditional on It.

74.3.2 The MA Model

MA methods are widely used in time series forecasting. In most cases, a moving

average of length N where N ¼ 20, 60, 120 days is used to generate log range

forecasts. Choosing these lengths is fairly standard because these values of

N correspond to 1 month, 3 months, and 6 months of trading days, respectively.

The expression for the N day moving average is shown below:

E ln Rtþ1ð½ Þ Itj � ¼ 1

N

XN�1

j¼0

ln Rt�j

� �
: (74.9)

74.3.3 The EWMA Model

EWMA models are also very widely used in applied forecasting. In EWMA

models, the current forecast of log range is calculated as the weighted average of

the one period past value of log range and the one period past forecast of log range.

This specification appropriately provides the underlying log range series with no

trend.

E ln Rtþ1ð Þ Itj � ¼ lE ln Rtð Þ It�1j � þ 1� lð Þln Rtð Þ:½½ (74.10)

The smoothing parameter, l, lies between zero and unity. If l is zero then the

EWMA model is the same as a random walk. If l is one, then the EWMA model

places all of the weight on the past forecast. In the estimation process the optimal
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value of l was chosen based on the root mean squared error criteria. The optimal l
is the one that records the lowest MSE.

Like the above-mentioned EWMA model, Harris and Yilmaz (2010) combined

the Parkinson range estimator and the open-to-close return to propose a hybrid

EWMA variance model.

ŝHybrid
tþ1 ¼ lŝHybrid

t þ 1� lð Þŝ 0
P, t, (74.11)

where ŝ
0
P ¼ 1

4 ln 2
lnHt � ln Ltð Þ2 þ Ot � Ct�1ð Þ2:

74.3.4 The AR Model

This model uses an autoregressive process to model log range. It combines the

dynamic volatility with the range information. There are n lagged values of past log
range to be used as drivers to forecast one period ahead.

E ln Rtþ1ð Þ½ � ¼ b0 þ bi
Xn
i¼1

ln Rtþ1�ið Þ: (74.12)

Li and Hong (2011) introduced the range-based autoregressive volatility

(AV) model which was first proposed by Hsieh (1991, 1993). Their empirical

study showed that the range-based AV model performs better than the GARCH

model in the in-sample and out-of-sample comparisons.

74.3.5 The Discrete-Time Range-Based SV Model

Alizadeh et al. (2002) presented a formal derivation of the discrete-time SV model

from the continuous-time SV model. The conditional distribution of log range is

approximately Gaussian:

ln Rtþ1 ln Rt � N ln Rþ r ln Rt�1 � ln R
� �

,b2Dt
� �

,
�� (74.13)

where Dt ¼ T/N, T is the sample period, and N is the number of intervals. The

parameter b models the volatility of the latent volatility. Following Harvey

et al. (1994), a linear state space system including the state equation and the signal

equation can be written as

ln R iþ1ð ÞDt ¼ ln Rþ rDt ln RiDt � ln R
� �þ b

ffiffiffiffiffi
Dt

p
u iþ1ð ÞDt: (74.14)

ln f siDt, iþ1ð ÞDt
� ��� �� ¼ g ln RiDt þ E ln f s�iDt, iþ1ð ÞDt


 ���� ���h i
þ e iþ1ð ÞDt: (74.15)
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Equation 74.14 is the state equation and Eq. 74.15 is the signal equation. In

Eq. 74.15, E is the mathematical expectation operator. The state equation errors are

i.i.d. N(0,1) and the signal equation errors have a mean of zero.

A two-factor model can be represented by the following state equation:

ln R iþ1ð ÞDt ¼ ln Rþ ln R1, iþ1ð ÞDt þ ln R2, iþ1ð ÞDt:

ln R1, iþ1ð ÞDt ¼ r1,Dt ln R1, iDt þ b1
ffiffiffiffiffi
Dt

p
u1, iþ1ð ÞDt: (74.16)

ln R2, iþ1ð ÞDt ¼ r2,Dt ln R2, iDt þ b2
ffiffiffiffiffi
Dt

p
u2, iþ1ð ÞDt:

The error terms u1 and u2 are contemporaneously and serially independentN(0, 1)
random variables. Compared with one-factor volatility model for currency future

prices, the two-factor model shows more desirable regression diagnostics. Asai and

Unite (2010) extended this model to capture the leverage and size effects, but their

empirical result did not support Alizadeh et al. (2002) theory; on the contrary, they

showed that the conditional distributions of the selected returns are non-normal.

74.3.6 The Range-Based EGARCH Model

Brandt and Jones (2006) incorporated the range information into the EGARCH

model, named by the range-based EGARCH model. The model significantly

improves both in-sample and out-of-sample volatility forecasts. The daily log

range and log returns are defined as the followings:

ln Rtð Þ It�1 � N 0:43þ ln ht, 0:29
2

� �
, rt

�� ��It�1 � N 0; h2t
� �

, (74.17)

where ht is the conditional volatility of the daily log return rt. Then, the range-based
EGARCH for the daily volatility can be expressed by

ln ht � ln ht�1 ¼ k y� ln ht�1ð Þ þ fXR
t�1 þ drt�1=ht�1, (74.18)

where y is denoted as the long-run mean of the volatility process and k is denoted as

the speed of mean reversion. The coefficient d decides the asymmetric effect of

lagged returns. The innovation

XR
t�1 ¼

ln Rt�1ð Þ � 0:43� ln ht�1

0:29
(74.19)

is defined as the standardized deviation of the log range from its expected value. It

means f is used to measure the sensitivity to the lagged log ranges. In short, the

range-based EGARCH model replaces the innovation term with the standardized

log range.
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74.3.7 The CARR Model

This section provides a brief overview of the CARR model used to forecast range-

based volatility. The CARR model is also a special case of the multiplicative error

model (MEM) of Engle (2002b) extended from the GARCH approach. The MEM

model is used to model a nonnegative valued process, such as trading volume,

duration, realized volatility, and range.2 The MEM model provides conditional

expectations of the variables like the GARCH approach and avoids the effect of

zeros as resorting to logs. It can be extended to a multivariate case through the use

of copula functions (Cipollini et al. 2009).

Instead of modeling the log range in the previous parts of this section, Chou (2005)

focused the process of the price range directly.With the time series data of price range

Rt, Chou (2005) presented the CARR model of order (p, q) or CARR (p, q) as

Rt ¼ ltet, et � f :ð Þ,
lt ¼ oþ

Xp
i¼1

aiRt�i þ
Xq
j¼1

bjlt�j,
(74.20)

where lt is the conditional mean of the range based on all information up to time

t and the distribution of the disturbance term et, or the normalized range, is assumed

to have a density function f(.) with a unit mean. Since et is positively valued given

that both the price range Rt and its expected value lt are positively valued, a natural
choice for the distribution is the exponential distribution.

The equation of the conditional expectation of range can easily be extended to

incorporate other explanatory variables, such as trading volume, time to maturity,

and lagged return:

lt ¼ oþ
Xp
i¼1

aiRt�i þ
Xq
j¼1

bjlt�j þ
XL
k¼1

lkXk: (74.21)

This model is called the CARR model with exogenous variables, or the CARRX

model. The CARR model essentially belongs to a symmetric model. In order to

describe the leverage effect of financial time series, Chou (2006) divided the whole

price range into two single-side price ranges, upward range and downward range.

Further, he defined UPRt, the upward range, and DNRt, the downward range, as the

differences between the daily highs, daily lows, and the opening price, respectively,

at time t. This can be expressed as follows:

UPRt ¼ ln Htð Þ � ln Otð Þ, (74.22)

DNRt ¼ ln Otð Þ � ln Ltð Þ: (74.23)

2Please refer to Engle and Russell (1998), Engle and Gallo (2006), and Manganelli (2005).
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Similarly, with the time series of single-side price range, UPRt or DNRt,

Chou (2006) extended the CARR model to the asymmetric CARR (ACARR)

model. In volatility forecasting, the asymmetric model also performed better

than the symmetric model. Chen et al. (2008) proposed a range-based threshold

conditional autoregressive (TARR) model which has superior ability in volatility

forecasting. In addition, Lin et al. (2012) proposed a nonlinear smooth transition

CARR model to capture smooth volatility asymmetries in international financial

markets.

74.3.8 The Range-Based Multivariate Volatility Model

The multivariate volatility models have been extensively researched in recent

studies. They provide relevant financial applications in various areas, such as

asset allocation, hedging, and risk management. Bauwens et al. (2006) offered

a review of the multivariate volatility models. As to the extension of the univariate

range models, Fernandes et al. (2005) proposed one kind of multivariate CARR

(MCARR) model using the formula Cov(X, Y) ¼ [V(X + Y) � V(X) � V(Y)]/2.
Moreover, Lee and Shin (2008) drove conditions for stationarity, geometric ergo-

dicity, and b-mixing with exponential decay. Analogous to Fernandes et al. (2005))

work, Brandt and Diebold (2006) used no-arbitrage conditions to build the covari-

ances in terms of variances. However, this kind of method could substantially apply

to a bivariate case.

Chou et al. (2009) combined the CARR model with the DCC model of Engle

(2002a) to propose a range-based volatility model, which uses the ranges to replace

the GARCH volatilities in the first step of DCC. They concluded that the range-

based DCC model performs better than other return-based models (MA100,

EWMA, CCC, return-based DCC, and diagonal BEKK) through the statistical

measures, RMSE and MAE, based on four benchmarks of implied and realized

covariance.

The DCC model is a two-step forecasting model which estimates univariate

GARCH models for each asset and then calculates its time-varying correlation by

using the transformed standardized residuals from the first step. The related

discussions about the DCC model can be found in Engle and Sheppard (2001),

Engle (2002a), and Cappiello et al. (2006). It can be viewed as a generalization of

the constant conditional correlation (CCC) model proposed by Bollerslev (1990).

The conditional covariance matrix Ht of a k � 1 return vector rt in CCC (rt|Ot � 1

� N(0, Ht)) can be expressed as

Ht ¼ DtRDt, (74.24)

Where Dt a k � k diagonal matrix with time-varying standard deviations
ffiffiffiffiffiffiffi
hi, t

p
of the ith return series from GARCH on the ith diagonal. R is a sample correlation

matrix of rt.
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The DCC is formulated in the following specification:

Ht ¼ DtRtDt,

Rt ¼ diag Qtf g�1=2Qtdiag Qtf g�1=2 ,
(74.25)

Qt ¼ S∘ ii
0 � A� B


 �
þ A∘Zt�1Zt�1 þ B∘Qt�1,Zt ¼ D�1

t � rt,

where i is a vector of ones and ◦ is the Hadamard product of two identically sized

matrices which are computed simply by element multiplication. Qt and S are,

respectively, the conditional and unconditional covariance matrices of the stan-

dardized residual vector Zt that came from GARCH. For the CARR case, the

standardized residual vector Zt
* is calculated from the adjusted conditional

range.3 A and B are estimated parameter matrices. Most cases, however, set them

as scalars. In a word, DCC differs from CCC by only allowing R to be time varying.

It is difficult to introduce the exogenous variables into the DCC model because

of the technical limitations for the mean reverting process. Chou and Cai (2009)

proposed a double smooth transition conditional correlation CARR (DSTCC-

CARR) model.4 In addition to the multi-asset CARR part, the DSTCC-CARR

model builds the smooth transition correlation structure through the standardized

residuals Zt
* of the rescaled range.

E Z�
t Z

0 �
t Ot�1j � ¼ Pt,

h
(74.26)

Pt ¼ 1� G2tð Þ 1� G1tð ÞP 11ð Þ þ G1tP 21ð Þ
� �

þ G2t 1� G1tð ÞP 12ð Þ þ G1tP 22ð Þ
� �

, (74.27)

where the transition logistic functions areGjt ¼ 1þ e�gj sjt�cjð Þ
 ��1

, gj > 0, j ¼ 1, 2.

The symbols cj and gj in the transition function are location and speed parameters,

respectively. Please see Chou and Cai (2009) for the details. Base on this framework,

Cai et al. (2009) used CPI and VIX as transition variables to investigate the

correlations among six international stock indices.

74.3.9 Other Model Extensions

In addition to the classification of range models, Harris et al. (2011) developed

a cyclical volatility model which employs the range to investigate the short and long

3For asset i, zi,t
* ¼ ri,t/li,t

* , where li,t
* ¼ adji � li,t and adji ¼

si

l̂i
. The scaled expected range li,t

* is

computed by a product of li,t and the adjusted coefficient adji which is the ratio of the uncondi-

tional standard deviationssi for the return series to the sample mean l̂i of the estimated conditional

range.
4Silvennoien and Terasvirta (2008, 2009) proposed the smooth transition conditional correlation

GARCH (STCC-GARCH) model and the double smooth transition conditional correlation

GARCH (DSTCC-GARCH) model.
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dynamics of exchange rate volatility. Their results indicated that the cyclical

volatility model performed better than the range-based EGARCH and FIEGARCH

models in computational efficiency and out-of-sample forecast. In contrast to

modeling range directly, some studies put the range into existing models to increase

the explanatory power. For example, Lin and Rozeff (1994) put the estimated range

process into the GARCHmodel and showed that the range estimator was still useful

in explaining the conditional variance.

74.4 The Realized Range Volatility

There has been much research investigating the measurement of volatility due to

the use of high-frequency data. In particular, the realized volatility, calculated by

the sum of squared intraday returns, provides a more efficient estimate for volatility.

The review of realized volatility has been discussed in Andersen et al. (2001),

Andersen et al. (2003), Barndorff-Nielsen and Shephard (2005), Andersen

et al. (2006, 2007), and McAleer and Mederos (2008). Martens and van Dijk

(2007) and Christensen and Podolskij (2007) replaced the squared intraday return

with the high/low range to get a new estimator called realized range.

Initially, we assumed that the asset price Pt follows the geometric Brownian

motion:

dPt ¼ mPtdtþ sPtdzt, (74.28)

where m is the drift term, s is the constant volatility, and zt is a Brownian motion.

There are t equal-length intervals divided into a trading day. The daily realized

volatility RVt at time t can be expressed by

RVt ¼
Xt

i¼1

lnPt, i � lnPt, i�1

� �2
, (74.29)

where Pt,i is the price for the time i � D on the trading day t and D is the time

interval. Then, t � D is the trading time length in a trading day. Moreover, the

realized range RRt is

RRt ¼ 1

4ln2

Xt

i¼1

lnHt, i � lnLt, i�1

� �2
, (74.30)

where Ht,i and Lt,i are the highest price and the lowest price of the ith interval on the
tth trading day, respectively.

As mentioned before, several studies suggest improving efficiency by using the

open and close prices, like Garman and Klass (1980). Furthermore, assuming that Pt

follows a continuous sample path, Martingale, Christensen, and Podolskij (2007)
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proposed integrated volatility and showed this range estimator remains consistent in

the presence of stochastic volatility.

ln Pt ¼ ln P0 þ
ðt
0

msdsþ
ðt
0

ss�dzt, for 0 � t < 1: (74.31)

The obvious and important question is that the realized range should be seriously

affected by microstructure noise. Martens and van Dijk (2007) considered a bias-

adjustment procedure, which scales the realized range by using the ratio of the

average level of the daily range and the average level of the realized range.

Christensen et al. (2009) provided another bias correlation for the realized range

to help divide the high-frequency data to minimize its asymptotic conditional

variance. Both found that the scaled realized ranges perform better than the

(scaled) realized volatility. Todorova (2012) also showed that the adjusted realized

ranges perform better than the daily range for the DAX 30 index.

It is interesting to note that the realized range can be extended to estimate

covariance. Bannouh et al. (2009) used the concept of Brandt and Diebold’s

(2006) non-arbitrage portfolio to propose a realized co-range estimator:

RCRt ¼ 1

2l1l2
RRP, t � l21RR1, t � l22RR2, t
� �

, (74.32)

where RRp,t, RR1,t, and RR2,t are the realized ranges of the portfolio P, asset 1, and
asset 2. l1 and l1 are the weights of two assets in the portfolio (l1 + l2 ¼ 1).

74.5 The Financial Applications of Range Volatility

The range mentioned in this chapter is a measure of volatility. From the theoretical

points of view, it indeed provides a more efficient estimator of volatility than the

return. It is intuitively reasonable due to the further information provided by the range

data. In addition, the return volatility neglects the price fluctuation, especially when

existing a short distance between the closing prices of the two trading days. We can

therefore conclude that the high/low range volatility should contain some additional

information compared with the close-to-close volatility. Moreover, the range is readily

available, which has low cost. Hence, most research related to volatility may be

applied to the range. Bollerslev et al. (1992) and Poon and Granger (2003) provided

extensive discussions on the application of volatilities in the financial markets.

Before the range was adapted by the dynamic structures, however, its application

was very limited.5 Based on the SV framework, Gallant et al. (1999) and Alizadeh,

Brandt, and Diebold incorporated the range into the equilibrium asset pricing

models. Chou (2005) and Brandt and Jones (2006), on the other hand, filled the

5In some studies, range was used as one of the estimators to improve the explanatory power of

models.
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gap between a discrete-time dynamic model and range. Their work creates many

opportunities for future research. In the following sections, we will give a classified

review for the financial applications of range volatility.

74.5.1 Value at Risk

Value at Risk (VaR) is designed to measure the potential loss of the asset. It is widely

used in the financial markets. We can calculate it by VaRt
a ¼ mt + fast, where a is the

given significant level and fa is the left quantile of the distribution F at a. Asai and
Brugal (2012) used an asymmetric heterogeneous ARMA model to fit range for

estimating VaR and showed that the one-step-ahead VaR forecast of the log range

performed well during the global financial crisis. Chen et al. (2012) proposed a range-

based threshold conditional VaR (CAViaR) model which also outperformed other

models during the crisis. Moreover, Brownlees and Gallo (2010) showed that the

daily range performed as well as the ultra-high-frequency data (UHFD) volatility

measure they proposed for VaR prediction. In addition, Shao, Lian and Yin (2009)

used the CARR model to model the realized range in estimating VaR, but it only

performed the same with the realized volatility model. However, Louzis et al. (2012)

found that the adjusted realized range can generate superior VaR estimates.

74.5.2 Hedge

With the development of conditional volatility models, there has been a dramatic

increase in future hedging. From the calculation of minimum variance hedging, the

optimal dynamic hedge ratio can be expressed as ht ¼ rsS,t/sF,t, where r is the

correlation of spot and futures returns and ss,t and sF,t are the standard deviations of
spot and futures returns, respectively. Within frameworks of a constant conditional

correlation (CCC) model and a dynamic conditional correlation (DCC) model,

Chou and Liu (2011) showed that the range-based multivariate volatility model

has more efficiency gain than the return-based approaches.

74.5.3 Volatility Spillover

Volatility spillover can reflect the information flow among financial markets. Most

studies analyze the behavior of volatility spillover by estimating the conditional

variance and covariance. Gallo and Otranto (2008) estimated the weekly range

through a newMarkov Switching bivariate model to show the relevant role of Hong

Kong as a dominant market. Engle et al. (2012) applied daily range to a multivariate

MEM approach which is used to discuss the volatility transmission across East

Asian markets. Chiang and Wang (2011) combined copula functions with a time-

varying logarithmic CARR (TVLCARR) model to investigate the volatility conta-

gion for the G7 stock markets.
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74.5.4 Portfolio Management

Covariance process plays an important role in asset allocation. Based on the

conditional mean-variance framework, Chou and Liu (2010) used Chou

et al. (2009) method to show that the economic value of volatility timing for the

range is significant in comparison to the return. Wu and Liang (2011) did similar

work by incorporating dynamic copulas into an asymmetric CARR model. The

results imply that the range volatility can be extended to practical applications.

74.5.5 Microstructure Issues

In recent years, there has been a shift in attention to high-frequency data for some

financial assets. It must be noted that the microstructure analysis often accompanies

different levels of microstructure noise.6 Martens and van Dijk (2007) claimed that

the realized range also cannot avoid the bias caused from the microstructure noise.7

However, Akay et al. (2010) showed that the alternative range-based volatility

estimates are relatively efficient and removed the upward bias caused by the

microstructure noise. Kalev and Duong (2008) utilized Martens and van Dijk’s

(2007) realized range to test the Samuelson Hypothesis for the futures contract.8

74.5.6 Other Financial Applications

As mentioned above, range is available and can easily be applied to volatility

issues. Chou et al. (2103) adopted the CARR model to investigate the long-term

impact of terrorist attacks on the maturity, volume, and open interest effects for the

S&P 500 index futures. Corrado and Truong (2007) reported that the range esti-

mator has similar forecasting ability of volatility compared with the implied

volatility. However, the implied volatilities are not available for many assets and

the option markets are insufficient in many developed countries. In such cases, the

range is more practical. Besides, range is often used as one of volatility proxies.

Please refer to Liu and Hung (2010), Patton (2011), Liu et al. (2012), Chen and Wu

(2009), Karanasos and Kartsaklas (2009), and Gallo and Otranto (2008).

In contrast to the range itself, some studies pay more attention to the high and low

prices. Cheung et al. (2009) employed a vector error correlation model (VECM)

6In general, it mainly comes from bid-ask bounce and varies with the sampling frequency.
7For low-frequency data, Alizadeh et al. (2002) showed that the range estimator is efficient and

free of microstructure noise.
8The Samuelson (time-to-delivery) effect means that volatility increases when a futures contract

approaches its delivery date. Ripple and Moosa (2009) also used the realized range to test the

effect of maturity, trading volume, and open interest on crude oil futures. In contrast, Karali and

Thurman (2010) just used the daily range to prove the Samuelson effect.
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to model the dynamic relationship between the high and low prices of stock

indices. Please also see He and Wan (2009) and He et al. (2010) for the relevant

applications.

74.6 Conclusion and Limitations

Volatility plays a central role in many areas of finance. In view of the theoretical

and practical studies, the price range provides an intuitive and efficient estimator of

volatility. In this study, we began our discussion by reviewing the price range

estimators. There has been a dramatic increase in the number of publications on this

work since Parkinson (1980) introduced the high/low range. From then on, some

new range estimators have been considered with opening and closing prices. The

new price range estimators are distributed feasible weights according to the differ-

ences among the highest, lowest, opening, and closing. Through the analysis, we

can gain a better understanding of the nature of range.

Some dynamic volatility models combined with price range are also introduced

in this chapter. They led to broad applications in finance, especially the CARR

model, which incorporates both the superiority of range in forecasting volatility and

the elasticity of the GARCH model. In addition, the range-based volatility models

contribute significantly to the financial applications. Last, the realized range

replaced the squared intraday return of realized volatility with the high/low range

to obtain a more efficient estimator. Although the financial applications of range

volatility are still in its infancy, the possible areas such as risk management,

investment, and microstructure issues are explained in this chapter. Future studies

are obviously required for this topic.

The range estimator undoubtedly has some inherent shortcomings. It is well

known that the financial asset price is very volatile and is easily influenced by

instantaneous information. In statistics, the range is very sensitive to the outliers.

Chou (2005) provided an answer by using the quantile range to get a robust measure

of price range. For example, the new range estimator can be calculated by the

difference between the top and the bottom 5 % observations on average. Also see

Yeh et al. (2009) for further discussion.

In theory, many range estimators in previous sections depended on the assump-

tion of continuous-time geometric Brownian motion. The range estimators derived

from Parkinson (1980) and Garman and Klass (1980) required a geometric

Brownian motion with zero drift. Rogers and Satchell (1991) allowed a nonzero

drift, and Yang and Zhang (2000) further allowed overnight price jumps. Moreover,

only finite observations can be used to build the range. It means the range will

appear with some unexpected bias, especially for the assets with lower liquidity and

finite transaction volume. Garman and Klass (1980) pointed out that this will

produce the later opening and early closing. They also said the difference between

the observed highs and lows will be less than that between the actual highs and

lows. It means that the calculated high/low estimator should be downward biased.

In addition, Beckers (1983) pointed that disadvantaged buyers and sellers may trade
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the highest and lowest prices, so the range values might be less representative for

measuring volatility. Because of the limitations involved and the importance of

range volatility measure, range-based volatility modeling will continue to be

a specialist subject and studied vigorously.
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