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Abstract

This paper examines two asymmetric stochastic volatility models used to describe

the volatility dependencies found in most financial returns. The first is

the autoregressive stochastic volatility model with Student’s t-distribution

(ARSV-t), and the second is the basic Svol of JPR (Journal of Business and
Economic Statistics 12(4), 371–417, 1994). In order to estimate these models, our

analysis is based on the Markov Chain Monte Carlo (MCMC) method. Therefore,

the technique used is a Metropolis-Hastings (Hastings, Biometrika 57, 97–109,
1970), and the Gibbs sampler (Casella and George The American Statistician
46(3) 167–174, 1992; Gelfand and Smith, Journal of the American Statistical
Association 85, 398–409, 1990; Gilks et al. 1993). The empirical results concerned

on the Standard and Poor’s 500 Composite Index (S&P), CAC 40, Nasdaq,

Nikkei, and Dow Jones stock price indexes reveal that the ARSV-t model provides

a better performance than the Svol model on the mean squared error (MSE) and

the maximum likelihood function.

Keywords

Autoregression • Asymmetric stochastic volatility • MCMC • Metropolis-

Hastings • Gibbs sampler • Volatility dependencies • Student’s t-distribution •

SVOL • MSE • Financial returns • Stock price indexes

62.1 Introduction

Stochastic volatility (SV) models are workhorses for the modelling and prediction

of time-varying volatility on financial markets and are essential tools in risk

management, asset pricing, and asset allocation. In financial mathematics and finan-

cial economics, stochastic volatility is typically modelled in a continuous time setting

which is advantageous for derivative pricing and portfolio optimization. Neverthe-

less, since data is typically only observable at discrete points in time, in empirical

applications, discrete-time formulations of SV models are equally important.

Volatility plays an important role in determining the overall risk of a portfolio

and identifying hedging strategies that make the portfolio neutral with respect to

market moves. Moreover, volatility forecasting is also crucial in derivatives trading.

Recently, SV models allowing the mean level of volatility to “jump” have been

used in the literature; see Chang et al. (2007), Chib et al. (2002), and Eraker

et al. (2002). The volatility of financial markets is a subject of constant analysis

movements in the price of financial assets which directly affects the wealth of

individual, companies, charities, and other corporate bodies. Determining whether

there are any patterns in the size and frequency of such movements, or in their cause

and effect, is critical in devising strategies for investments at the micro level and

monetary stability at the macro level. Shephard and Pitt (1997) used improved and

efficient Markov Chain Monte Carlo (MCMC) methods to estimate the volatility

process “in block” rather than one point of time such as highlighted by

Jacquier et al. (1994), for a simple SV model. Furthermore, Hsu and Chiao (2011)

1698 A. Hachicha et al.



analyze the time patterns of individual analyst’s relative accuracy ranking in earnings

forecasts using a Markov chain model by treating two levels of stochastic persistence.

Least squares and maximum likelihood techniques have long been used in

parameter estimation problems.

However, those techniques provide only point estimates with unknown or approx-

imate uncertainty information. Bayesian inference coupled with the Gibbs sampler is

an approach to parameter estimation that exploits modern computing technology.

The estimation results are complete with exact uncertainty information. Section 62.2

presents the Bayesian approach and the MCMC algorithms. The SV model is

introduced in Sect. 62.3, whereas empirical illustrations are given in Sect. 62.4.

62.2 The Bayesian Approach and the MCMC Algorithm

The Bayesian approach is a classical methodology where we assume that there is a set

of unknown parameters. Alternatively, in the Bayesian approach the parameters are

considered as random variables with given prior distributions. We then use observa-

tions (the likelihood) to update these distributions and obtain the posterior distributions.

Formally, let X¼ (X1, . . . , XT) denote the observed data and y a parameter vector:

P
y
X

� �
/ P

X

y

� �
� P yð Þ

The posterior distribution P(y/X) of a parameter y/ given the observed data X, where
P(X/y)denotes the likelihooddistributionofXandP(y)denotes thepriordistributionofy.

It would seem that in order to be as subjective as possible and to use

the observations as much as possible, one should use priors that are non-informative.

However, this can sometimes create degeneracy issues and one should choose

a different prior for this reason. Markov Chain Monte Carlo (MCMC) includes the

Gibbs sampler as well as the Metropolis-Hastings (M-H) algorithm.

62.2.1 The Metropolis-Hastings

The Metropolis-Hastings is the baseline for MCMC schemes that simulate

a Markov chain y(t) with P(y/Y) as the stationary distribution of a parameter y
given a stock price index X. For example, we can define y1, y2, and y3
such that y ¼ (y1, y2, y3) where each y1 can be scalar, vectors, or matrices.

MCMC algorithms are iterative, and so at iteration t we will sample in turn

from the three conditional distributions. Firstly, we update y1 by drawing a value

y1
(t) from p(y1/Y, y2

(t�1), y3
(t�1)). Secondly, we draw a value for y2

(t) from p(y2/Y, y1
(t),

y3
(t�1)), and finally, we draw y3

(t) from p(y3/Y, y1
(t), y2

(t)).

We start the algorithm by selecting initial values, yi
(0), for the three parameters.

Then sampling from the three conditional distributions in turn will produce a set of

Markov chains whose equilibrium distributions can be shown to be the joint

posterior distributions that we require.

62 A Comparative Study of Two Models SV with MCMC Algorithm 1699



Following Hastings (1970), a generic step from a M-H algorithm to update

parameter yi at iteration t is as follows:

1. Sample yi
* from the proposal distribution pt(yi/yi

(t�1)).

2. Calculate f ¼ pt(yi
(t�1)/yi

*)/pt(yi
*/yi

(t�1)) which is known as the Hastings ratio

and which equals 1 for symmetric proposals as used in pure Metropolis sampling.

3. Calculate st ¼ fp(yi
*/Y, fi)/p(yi

(t�1)/Y, fi), where fi is the acceptance ratio and

gives the probability of accepting the proposed value.

4. Let yi
(t) ¼ yi

* with probability min(1, st); otherwise let yi
(t) ¼ yi

(t � 1).

A popular and more efficient method is the acceptance-rejection (A-R) M-H

sampling method which is available. Whenever the target densities are bounded by

a density from which it is easy to sample.

62.2.2 The Gibbs Sampler

TheGibbssampler(CasellaandEdward1992;GelfandandSmith1990;Gilksetal.1992)

is the special M-H algorithm whereby the proposal density for updating yj equals the
full conditional p(yj

*/yj) so that proposals are acceptance with probability 1.
The Gibbs sampler involves parameter-by-parameter or block-by-block

updating, which when completed from the transaction from y(t) to y(t+1):
1. y1

(t+1) � f1(y1/y2
t , y3

(t), . . . yD
(t))

2. y2
(t+1) � f2(y2/y1

t+1, y3
(t), . . . yD

(t))

.

.

.

.

D. yD
(t+1) � fD(yD/y1

t+1, y2
(t+1), . . . yD � 1

(t+1) )

Repeated sampling from M-H samplers such as the Gibbs samplers generates

an autocorrelated sequence of numbers that, subject to regularity

condition (ergodicity, etc.), eventually “forgets” the starting values y0¼ (y1
(0), y2

(0),

. . . . . . , yD
(0)) used to initialize the chain and converges to a stationary sampling

distribution p(y/y).
In practice, Gibbs and M-H algorithms are often combined, which results in

a “hybrid” MCMC procedure.

62.3 The Stochastic Volatility Model

62.3.1 Autoregressive SV Model with Student’s Distribution

In this paper, we will consider the pth order ARSV-t model, ARSV(p)-t, as follows:

Yt ¼ sx exp Vt=2ð Þ
Vt ¼ f1Vt�1 þ ::::þ fpVt�p þ �t�1

�
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xt ¼
etffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kt= n� 2ð Þp
kt � w2 nð Þ

where kt is independent of (et, �t), Yt is the stock return for market indexes, and Vt is

the log-volatility which is assumed to follow a stationarity AR(p) process

with a persistent parameter jfj ≺ 1. By this specification, the conditional

distribution, xt, follows the standardized t-distribution with mean zero and variance

one. Since kt is independent of (et, �t), the correlation coefficient between xt and �t
is also r.

If f � N(0, 1), then

f1 ¼

XT
t¼1

VtVt�1

 !
� f2

XT
t¼1

Vt�1Vt�2

 !
þ f1

Xt
t¼1

V2
t�1

 !
� 1

and

f2 ¼

XT
t¼2

VtVt�2

 !
� f1

XT
t¼2

Vt�1Vt�2

 !
þ f2

XT
t¼2

V2
t�2

 !
� 1

The conditional posterior distribution of the volatility is given by

p V=Y, Yð Þ / e

1

2 � s2
XT
t¼1

Y2
t e

�Vt

 ! 
� 1

2

XT
t¼1

Vt � f1Vt�1 � f2Vt�2ð Þ2

� 1

2

XT
t¼1

Vtþ1 � f1Vt � f2Vt�2ð Þ2
!

The representation of the SV-t model in terms of a scale mixture is particularity

useful in a MCMC context since it allows for sampling a non-log-concave sampling

problem into a log-concave one. This allows for sampling algorithms which guarantee

convergence in finite time (see Frieze et al. 1994). Allowing log returns to be student-t-

distributed naturally changes the behavior of the stochastic volatility process; in the

standard SV model, large value of jYtj induces large value of the Vt.
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62.3.2 Basic Svol Model

Jacquier, Polson, and Rossi (1994), hereafter JPR, introduced Markov chain tech-

nique (MCMC) for the estimation of the basic Svol model with normally distributed

conditional errors:

Yt ¼
ffiffiffiffiffi
Vt

p
est

log Vtð Þ ¼ aþ d log Vt�1ð Þ þ sn ent

�

est ; e
n
t

� � � N 0; I2ð Þ

LetY¼ (a, d,sv) be the vector of parameters of the basic SVOL, andV ¼ Vtð ÞTt¼1,

where a is the intercept. The parameter vector consists of a location a, a volatility

persistence d, and a volatility of volatility sn.
The basic Svol specifies zero correlation, the errors of the mean, and variance

equations.

Briefly, the Hammersley-Clifford theorem states that having a parameter-set Y,

a state Vt, and an observation Yt, we can obtain the joint distribution p(Y, V/Y)
from p(Y, V/Y) and p(V/Y, Y), under some mild regularity conditions.

Therefore by applying the theorem iteratively, we can break a complicated

multidimensional estimation problem into many sample one-dimensional

problems.

Creating a Markov chain Y(t) via a Monte Carlo process, the ergodic averaging

theorem states that the time average of a parameter will converge towards its

posterior mean.

The formula of Bayes factorizes the posterior distribution likelihood function

with prior hypotheses:

P Y,V=Yð ÞaP Y=V,Yð ÞP V=Yð ÞP Yð Þ

where a is the intercept, d the volatility persistence, and sv is the standard deviation
of the shock to log Vt.

We use a normal-gamma prior, so, the parameters a, d � N, and sv
2 � IG,

(Appendix 1)

Then

P a, d=sv,V, Yð Þ �
Y

P Vt=Vt�1, a, d,svð ÞP a; dð ÞaN

And for sv, we obtain

P s2=a, sv,V,Y
� �

a
Y

P Vt=Vt�1, a, d, svð ÞP s2v
� �

aIG
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62.4 Empirical Illustration

62.4.1 The Data

Our empirical analysis focuses on the study of five international financial indexes:

the Dow Jones Industrial, the Nikkei, the CAC 40, the S&P500, and the

Nasdaq. The indexes are compiled and provided by Morgan Stanley Capital

International. The returns are defined as yt ¼ 100 * (log St � log St�1). We used

the last 2,252 observations for all indexes except the Nikkei, when we have only

used 2,201 observations due to lack of data. The daily stock market indexes are for

five different countries over the period 1 January 2000 to 31 December 2008.

Table 62.1 reports the mean, standard deviation, median, and the empirical

skewness as well as kurtosis of the five series. All series reveal negative skewness

and overkurtosis which is a common finding of financial returns.

62.4.2 Estimation of SV Models

The standard SV model is estimated by running the Gibbs and A-R M-H algorithm

based on 15,000 MCMC iterations, where 5,000 iterations are used as burn-in period.

Tables 62.2 and 62.3 show the estimation results in the basic Svol model and the

SV-t model of the daily indexes. a and d are independent priors.

The prior in d is essentially flat over [0, 1]. We impose stationarity for log(Vt) by

truncating the prior of d. Other priors for d are possible.

Geweke (1994a, b) proposes alternative priors to allow the formulation of odds

ratios for non-stationarity. Whereas Kim et al. (1998) center an informative Beta

prior around 0.9.

Table 62.2 Estimation results for the Svol model

CAC 40 Dow Jones Nasdaq Nikkei S&P

s 0.4317(0.0312) 0.4561(0.0421) 0.5103(0.0393) 0.5386(0.0523) 0.4435(0.0623)

a �0.1270(0.0421) 0.0059(0.0534) 0.1596(0.0332) 0.1966(0.0493) �0.1285(0.0593)

d �0.7821(0.0621) 0.0673(0.0317) 0.6112(0.0429) 0.8535(0.0645) 0.7224(0.0423)

Table 62.1 Summary statistics for daily returns

Mean SD Median Skewness Kurtosis

CAC 40 3.7E-04 0.013 5.0e-4 �0.295 5.455

Dow Jones 2.8e-04 0.015 4.0e-4 �0.368 4.522

Nasdaq 2.5e-04 0.014 5.5e-4 �0.523 6.237

Nikkei 3.5e-04 0.005 3.2e-4 �0.698 3.268

S&P 2.8e-04 0.008 4.5e-4 �0.523 5.659

62 A Comparative Study of Two Models SV with MCMC Algorithm 1703



Table 62.2 shows the results for the daily indexes. The posterior of d are higher

for the daily series. The highest means are 0.782, 0.067, 0.611, 0.85, and 0.722, for

the full sample Nikkei.

This result is not a priori curious because the model of Jacquier et al. (1994) can

lead to biased volatility forecast.

Well, as the basic SVOL, there is no apparent evidence of unit of volatility.

There are other factors that can deflect this rate such exchange rate (O’Brien and

Dolde 2000).

Deduced from this model, against the empirical evidence, positive and negative

shocks have the same effect in volatility.

Table 62.3 shows the Metropolis-Hastings estimates of the autoregressive SV

model.

The estimates of f are between 0.554 and 0.643, while those of s are between

0.15 and 0.205.

Against, the posterior of f for the SV-t model are located higher.1 This is

consistent with temporal aggregation (as suggested by Meddahi and Renault

2000). This result confirms the typical persistence reported in the GARCH litera-

ture. After the result, the first volatility factors have higher persistence, while the

small values of F2 indicate the low persistence of the second volatility factors.

The second factorF2 plays an important role in the sense that it captures extreme

values, which may produce the leverage effect, and then it can be considered

conceivable.

The estimates of r are negative in most cases. Another thing to note is that these

estimates are relatively higher than that observed by Asai et al. (2006) and Manabu

Asai (2008). The estimated of r for index S&P using Monte Carlo simulation

is �0.3117, then it is �0.0235 using Metropolis-Hasting. This implies that for each

data set, the innovations in the mean and volatility are negatively correlated.

Negative correlations between mean and variance errors can produce

a “leverage” effect in which negative (positive) shocks to the mean are associated

with increases (decreases) in volatility.

The return of different indexes not only is affected by market structure

(Sharma 2011) but also is deeply influenced by different crises observed in inter-

national market, i.e., the Asian crises detected in 1987 and the Russian one in 2002.

Table 62.3 Estimation results for the SV-t model

CAC 40 Dow Jones Nasdaq Nikkei S&P

F1 0.4548(0.0037) 0.40839(0.0021) 0.5225(0.0065) 0.4348(0.0059) 0.2890(0.0046)

F2 0.5544(0.1524) 0.6437(0.1789) 0.4473(0.1326) 0.4865(0.1628) 0.6133(0.1856)

s 0.0154(0.0294) 0.0205(0.0367) 0.0131(0.0524) 0.0148(0.0689) 0.0135(0.0312)

r �0.02191(0.0625) �0.0306(0.0346) �0.0489(0.0498) �0.0751(0.0255) �0.0235(0.0568)

1We choose p¼ 2 because if p¼ 1 and v!1, the ARSV-t model declined to the asymmetric SV

model of Harvey and Shephard (1996).
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The markets in our sample are subject to several crises that directly affect the

evolution of the return indexes. The event of 11 September 2002 the Russian crisis

and especially the beginning of the subprime crisis in the United States in July 2007

justify our results. These results explored in Fig. 62.1 suggest that periods of market

crisis or stress increase the volatility. Then the volatility at time (t) depends on the

volatility at (t�1) (Engle 1982).

When the new information comes in the market, it can be disrupted and this

affects the anticipation of shareholders for the evolution of the return.
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The resulting plots of the smoothed volatilities are shown in Fig. 62.2. We take

our analysis in the Nikkei indexes, but the others are reported in Appendix 2.

The convergence is very remarkable for the Nikkei, like Dow Jones, Nasdaq, and

the CAC 40 indexes. This enhances the idea that the algorithm used for estimated

volatility is a good choice.

The basic Svol model mis-specified can induce substantial parameter bias and

error in inference about Vt; Geweke (1994a, b) showed that the basic Svol has the

same problem with the largest outlier, October 1987 “Asiatique crisis.” The Vt for

the model Svol reveal a big outlier on period crises.

The corresponding plots of innovation are given by Fig. 62.3 for two models

basic Svol and SV-t for Nikkei indexes. Appendix 3 shows the QQ plot for the other

indexes, respectively, for the Nasdaq, S&P, Dow Jones, and CAC 40 for the two

models. The standardized innovation reveals a big outlier when the market in stress

(Hwang and Salmon 2004).
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The advantages of asymmetric basic SV is able to capture some aspects of

financial market and the main properties of their volatility behavior (Danielsson

1994; Chaos 1991; Eraker et al. 2000).

It is shown that the inclusion of student-t errors improves the distributional

properties of the model only slightly. Actually, we observe that basic Svol model

is not able to capture extreme observation in the tail of the distribution. In contrast,

the SV-t model turns out to be more appropriate to accommodate outliers.

The corresponding plot of innovation for the basic model is unable to capture the

distribution properties of the returns. This is confirmed by the Jarque-Bera normal-

ity test and the QQ plot revealing departures from normality, mainly stemming

from extreme innovation.

Finally, in order to detect which of the two models is better, we opt for two

indicators of performance, such as the likelihood and the MSE. Likelihood is

a function of the parameters of the statistical model that plays a preponderant role

in statistical inference. MSE is called squared error loss, and it measures the

average of the square of “error.” Table 62.4 reveals the results for this measure

and indicates that the SV-t model is much more efficient than the other. Indeed, in

terms of comparison, we are interested in the convergence of two models. We find

that convergence to the SV-t model is fast.

Table 62.4 shows the performance of the algorithm and the consequence of using

the wrong model on the estimates of volatility. The efficiency is at 60 %.

The MCMC is more efficient for all parameters used in these two models. In

a certain threshold, all parameters are stable and converge to a certain level.

Appendices 4 and 5 show that the a, d, s, f converge and stabilize; this shows

the power for MCMC.

The results for both simulated show that the algorithm of SV-t model is fast and

converges rapidly with acceptable levels of numerical efficiency. Then, our sam-

pling provides strong evidence of convergence of the chain.

62.5 Conclusion

We have applied these MCMC methods to the study of various indexes. The

ARSV-t models were compared with Svol models of Jacquier et al. (1994) models

using the S&P, Dow Jones, Nasdaq, Nikkei, and CAC 40.

The empirical results show that SV-t model can describe extreme values to a certain

extent, but it is more appropriate to accommodate outliers. Surprisingly, we have

frequently observed that the best model is the Student’s t-distribution (ARSV-t) with

their forecast performance. Our result confirms the finding from Manabu Asai (2008),

who indicates, first, that the ARSV-t model provides a better fit than the MFSV model

and, second, the positive and negative shocks do not have the same effect in volatility.

Our result proves the efficiency of Markov chain for our sample and the convergence

and stability for all parameters to a certain level. This paper has made certain

contributions, but several extensions are still possible. To find the best results, opt for

extensions of SVOL.
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Appendix 1

The posterior volatility is

P V=Y,Vð Þ / P Y=Y,Vð ÞP V=Yð Þ /
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t¼1
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Fig. 62.4 (continued)
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with

P V=Vt�1,Vtþ1,Y, Ytð Þ / P Yt=Vt,Yð ÞP Vt=Vt�1,Yð ÞP Vtþ1=Vt,Yð Þ

A simple calculation shows that

Y
Vtð Þ ¼ P Vt=Vt�1,Vtþ1,Y, Ytð Þ / 1

V0:5
t

exp
�Y2

t

2Vt

� �
1

Vt
exp � logVt � mtð Þ2

2s2

 !

with

mt ¼
a 1� bð Þ þ b logVtþ1 þ logVt�1ð Þ

1þ b2

and

s2 ¼ s2v
1þ b2

The MCMC algorithm consists of the following steps:

P a, d=sn,V, Yð Þ � N
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Fig. 62.4 Smoothed estimates of Vt, basic SVOL, and SV-t model
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P Vt=Vt�1,Vtþ1,Y,Ytð Þ : Metropolis-Hastings

An iteration (j),

a jð Þ ¼

XT
t¼1

logV
j�1ð Þ

t � b j�1ð ÞXT
t¼1

logV
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s2n
� � j�1ð Þ þ T

By following the same approach, the estimator d at step (j) is given by

d jð Þ ¼
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t�1 logV
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� 	h i
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For parameter sv
2, the prior density is an inverse gamma (IG (a, b)). The
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Appendix 2

See Fig. 62.4

Appendix 3

See Fig. 62.5

Appendix 4

See Fig. 62.6

Appendix 5

See Fig. 62.7
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