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Abstract

We illustrate a framework to model joint distributions of multiple asset returns

using a time-varying Student’s t copula model. We model marginal distributions

of individual asset returns by a variant of GARCH models and then use

a Student’s t copula to connect all the margins. To build a time-varying structure

for the correlation matrix of t copula, we employ a dynamic conditional corre-

lation (DCC) specification. We illustrate the two-stage estimation procedures for

the model and apply the model to 45 major US stocks returns selected from nine

L. Kang

Department of Finance, Antai College of Economics and Management, Shanghai Jiao Tong

University, Shanghai, China

The Options Clearing Corporation and Center for Applied Economics and Policy Research,

Indiana University, Bloomington, IN, USA

e-mail: lkang@indiana.edu; kanglong@gmail.com

C.-F. Lee, J. Lee (eds.), Handbook of Financial Econometrics and Statistics,
DOI 10.1007/978-1-4614-7750-1_52,
# Springer Science+Business Media New York 2015

1431

mailto:lkang@indiana.edu
mailto:kanglong@gmail.com


sectors. As it is quite challenging to find a copula function with very flexible

parameter structure to account for difference dependence features among all

pairs of random variables, our time-varying t copula model tends to be a good

working tool to model multiple asset returns for risk management and

asset allocation purposes. Our model can capture time-varying conditional

correlation and some degree of tail dependence, while it also has limitations

of featuring symmetric dependence and inability of generating high tail

dependence when being used to model a large number of asset returns.

Keywords

Student’s t copula • GARCH models • Asset returns • US stocks • Maximum

likelihood • Two-stage estimation • Tail dependence • Exceedance correlation •

Dynamic conditional correlation • Asymmetric dependence

52.1 Introduction

There have been a large number of applications of copula theory in financial

modeling. The popularity of copula mainly results from its capability of

decomposing joint distributions of random variables into marginal distributions

of individual variables and the copula which links the margins. Then the task of

finding a proper joint distribution becomes to find a copula form which features

a proper dependence structure given that marginal distributions of individual vari-

ables are properly specified. Among many copula functions, Student’s t copula is

a good choice, though not perfect, for modeling multivariate financial data as an

alternative to a normal copula, especially for a very large number of assets.

The t copula models are very useful tools to describe joint distributions of multiple

assets for risk management and asset allocation purposes. In this chapter,

we illustrate how to model the joint distribution of multiple asset returns under a

Copula-GARCH framework. In particular, we show how we can build and estimate

a time-varying t copula model for a large number of asset returns and how well

the time-varying t copula accounts for some dependence features of real data.

There are still two challenging issues when applying copula theory to multiple

time series. The first is how to choose a copula that best describes the data. Different

copulas feature different dependence structure between random variables. Some

copulas may fit one particular aspect of the data very well but do not have a very

good overall fit, while others may have the opposite performance. What criteria to

use when we choose from copula candidates is a major question remaining to be

fully addressed. Secondly, how to build a multivariate copula which is sufficiently

flexible to simultaneously account for the dependence structure for each pair of

random variables in joint distributions is still quite challenging. We hope to shed

some light on those issues by working through our time-varying t copula model.

Under a Copula-GARCH framework, we first model each asset return with

a variant of GARCH specification. Based on different properties of asset returns,

we choose a proper GARCH specification to formulate conditional distributions of
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each return. Then, we choose a proper copula function to link marginal distributions

of each return to form the joint distribution. As in marginal distributions of each

return, the copula parameters can also be specified as being dependent on previous

observations to make the copula structure time varying for a better fit of data. In this

chapter, we have an AR(1) process for the conditional mean and a GJR-GARCH

(1,1) specification for the conditional volatility for each return. We employ

a Student’s t copula with a time-varying correlation matrix (by a DCC specification)

to link marginal distributions. Usually the specified multivariate model contains

a huge number of parameters, and the estimation by maximum likelihood estimator

(MLE) can be quite challenging. Therefore, we pursue a two-stage procedure,

where all the GARCH models for each return are estimated individually first and

copula parameters are estimated in the second stage with estimated cumulative

distribution functions from the first stage.

We apply our model to modeling log returns of 45 major US stocks selected from

nine sectors with a time span ranging from January 3, 2000 to November 29, 2011.

Our estimation results show that AR(1) and GJR-GARCH(1,1) can reasonably well

capture empirical properties of individual returns. The stock returns possess fat tails

and leverage effects. We plot the estimated conditional volatility on selected stocks

and volatility spikes which happened during the “Internet Bubbles” in the early

2000s and the financial crisis in 2008.We estimate a DCC specification for the time-

varying t copula and also a normal copula for comparison purposes. The parameter

estimates for time-varying t copula are statistically significant, which indicates a

significant time-varying property of the dependence structure. The time-varying

t copula yields significantly higher log-likelihood than normal copula. This improve-

ment of data fitness results from flexibility of t copula (relative to normal copula) and

its time-varying correlation structure.

We plot the time-varying correlation parameter for selected pairs of stocks under

the time-varying t copula model. The correlation parameters fluctuate around

certain averages, and they spike during the 2008 crisis for some pairs. For

45 asset returns, the estimated degree-of-freedom (DoF) parameter of the t copula
is around 25. Together with the estimated correlation matrix of the t copula, this
DoF leads to quite low values of tail dependence coefficients (TDCs). This may

indicate the limitation of t copulas in capturing possibly large tail dependence

behavior for some asset pairs when being used to model a large number of asset

returns. Nevertheless, the time-varying Student’s t copula model has a relatively

flexible parameter structure to account for the dependence among multiple asset

returns and is a very effective tool to model the dynamics of a large number of asset

returns in practice.

This chapter is organized as follows. Section 52.2 gives a short literature review

on recent applications of copulas to modeling financial time series. Section 52.3

introduces our copula model where we introduce copula theory, Copula-GARCH

framework, and estimation procedures. In particular, we elaborate on how to

construct and estimate a time-varying t copula model. Section 52.4 documents

the data source and descriptive statistics for the data set we use. Section 52.5 reports

estimation results and Sect. 52.6 concludes.
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52.2 Literature Review

Copula-GARCH models were previously proposed by Jondeau and Rockinger

(2002) and Patton (2004, 2006a).1 To measure time-varying conditional depen-

dence between time series, the former authors use copula functions with time-

varying parameters as functions of predetermined variables and model marginal

distributions with an autoregressive version of Hansen’s (1994) GARCH-type

model with time-varying skewness and kurtosis. They show for many market

indices, dependency increases after large movements and for some cases it

increases after extreme downturns. Patton (2006a) applies the Copula-GARCH

model to modeling the conditional dependence between exchange rates. He

finds that mark-dollar and yen-dollar exchange rates are more correlated

during depreciation against dollar than during appreciation periods. By a similar

approach, Patton (2004) models the asymmetric dependence between “large cap”

and “small cap” indices and examines the economic and statistical significance of

the asymmetries for asset allocations in an out-of-sample setting. As in above

literature, copulas are mostly used in capturing asymmetric dependence and tail

dependence between times series. Among copula candidates, Gumbel’s copula

features higher dependence (correlation) at upper side with positive upper tail

dependence, and rotated Gumbel’s copula features higher dependence

(correlation) at lower side with positive lower tail dependence. Hu (2006) studies

the dependence structure between a number of pairs of major market indices by

a mixed copula approach. Her copula is constructed by a weighted sum of three

copulas–normal, Gumbel’s, and rotated Gumbel’s copulas. Jondeau and Rockinger

(2006) model the bivariate dependence between major stock indices by a Student’s

t copula where the parameters are assumed to be modeled by a two-state Markov

process.

The task of flexibly modeling dependence structure becomes more challenging

for n-dimensional distributions. Tsafack and Garcia (2011) build up a complex

multivariate copula to model four international assets (two international

equities and two bonds). In his model, he assumes that the copula form has

a regime-switching setup where in one regime he uses an n-dimensional normal

copula and in the other he uses a mixed copula of which each copula component

features the dependence structure of two pairs of variables. Savu and Trede (2010)

develop a hierarchical Archimedean copula which renders more flexible parameters

to characterize dependency between each pair of variables. In their model,

each pair of closely related random variables is modeled by a copula of a

particular Archimedean class, and then these pairs are nested by copulas as

well. The nice property of Archimedean family easily leads to the validity of the

1Alternative approaches are also developed, such as in Ang and Bekaert (2002), Goeij and

Marquering (2004), and Lee and Long (2009), to address non-normal joint distributions of asset

returns.
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joint distribution constructed by this hierarchical structure. (Trivedi and

Zimmer 2006) apply trivariate hierarchical Archimedean copulas to model

sample selection and treatment effects with applications to the family health-care

demand.

Statistical goodness-of-fit tests can provide some guidance for selecting copula

models. Chen et al. (2004) propose two simple goodness-of-fit tests for multivariate

copula models, both of which are based on multivariate probability integral trans-

form and kernel density estimation. One test is consistent but requires the estima-

tion of the multivariate density function and hence is suitable for a small number of

random variables, while the other may not be consistent but requires only kernel

estimation of a univariate density function and hence is suitable for a large number

of assets. Berg and Bakken (2006) propose a consistent goodness-of-fit test for

copulas based on the probability integral transform, and they incorporate in their

test a weighting functionality which can increase influence of some specific areas of

copulas.

Due to their parameter structure, the estimation of Copula-GARCH models

also suffers from “the curse of dimensionality”.2 The exact maximum likelihood

estimator (MLE) works in theory.3 In practice, however, as the number of time

series being modeled increases, the numerical optimization problem in MLE will

become formidable. Joe and Xu (1996) propose a two-stage procedure, where in the

first stage only parameters in marginal distributions are estimated by MLE and then

the copula parameters are estimated by MLE in the second stage. This two-stage

method is called inference for the margins (IFM) method. Joe (1997) shows that

under regular conditions the IFM estimator is consistent and has the property of

asymptotic normality and Patton (2006b) also shows similar estimator properties

for the two-stage method. Instead of estimating parametric marginal distributions in

the IFM method, we can estimate the margins by using empirical distributions,

which can avoid the problem of mis-specifying marginal distributions. This method

is called canonical maximum likelihood (CML) method by Cherubini et al. (2004).

Hu (2006) uses this method and she names it as a semi-parametric method. Based

on Genest et al. (1995), she shows that CML estimator is consistent and has

asymptotical normality. Moreover, copula models can also be estimated under

a nonparametric framework. Deheuvels (1981) introduces the notion of empirical

copula and shows that the empirical copula converges uniformly to the underlying

true copula. Finally, Xu (2004) shows how the copula models can be estimated

with a Bayesian approach. The author shows how a Bayesian approach can be

used to account for estimation uncertainty in portfolio optimization based on

a Copula-GARCH model, and she proposes to use a Bayesian MCMC algorithm

to jointly estimate the copula models.

2For a detailed survey on the estimation of Copula-GARCH model, see Chap. 5 of Cherubini

et al. (2004).
3See Hamilton (1994) and Greene (2003) for more details on maximum likelihood estimation.
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52.3 The Model

52.3.1 Copula

We introduce our Copula-GARCH model framework by first introducing the

concept of copula. A copula is a multivariate distribution function with uniform

marginal distributions as its arguments, and its functional form links all the margins

to form a joint distribution of multiple random variables.4 Copula theory is mainly

based on the work of Sklar (1959), and we state the Sklar’s theorem for continuous

marginal distributions as follows.

Theorem 52.1 Let F1(x1), . . ., Fn(xn) be given marginal distribution functions and
continuous in x1,. . . , xn, respectively. Let H be the joint distribution of (x1,. . . , xn).
Then there exists a unique copula C such that

H x1; . . . ; xnð Þ ¼ C F1 x1ð Þ, . . . ,Fn xnð Þð Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
: (52.1)

Conversely, if we let F1(x1), . . ., Fn(xn) be continuous marginal distribution
functions and C be a copula, then the function H defined by Eq. 52.1 is a joint
distribution function with marginal distributions F1(x1), . . ., Fn(xn).

The above theory allows us to decompose a multivariate distribution function

into marginal distributions of each random variable and the copula form linking the

margins. Conversely, it also implies that to construct a multivariate distribution, we

can first find a proper marginal distribution for each random variable and then

obtain a proper copula form to link the margins. Depending on which dependence

measure used, the copula function mainly, not exclusively, governs the dependence

structure between individual variables. Hence, after specifying marginal distribu-

tions of each variable, the task of building a multivariate distribution solely

becomes to choose a proper copula form which best describes the dependence

structure between variables.

Differentiating Eq. 52.1 with respect to (x1,. . . , xn) leads to the joint density

function of random variables in terms of copula density. It is given as

h x1; . . . ; xnð Þ ¼ c F1 x1ð Þ, . . . ,Fn xnð Þð Þð
Yn
i¼1

f i xið Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
, (52.2)

where c(F1(x1), . . ., Fn(xn)) is the copula density and fi(xi) is the density function for
variable i. Equation 52.2 implies that the log-likelihood of the joint density can be

decomposed into components which only involve each marginal density and

a component which involves copula parameters. It provides a convenient structure

for a two-stage estimation, which will be illustrated in details in the following

sections.

4See Nelsen (1998) and Joe (1997) for a formal treatment of copula theory, and Bouye

et al. (2000), Cherubini et al. (2004), and Embrechts et al. (2002) for applications of copula theory

in finance.
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To better fit the data, we usually assume the moments of distributions of random

variables are time varying and depend on past variables. Therefore, the distribution

of random variables at time t becomes a conditional one, and then the above copula

theory needs to be extended to a conditional case. It is given as follows.5

Theorem 52.2 Let Ot�1 be the information set up to time t, and let F1(x1,tjOt�1),

. . ., Fn(xn,tjOt�1) be continuous marginal distribution functions conditional on
Ot�1. Let H be the joint distribution of (x1,. . . , xn) conditional on Ot�1. Then
there exists a unique copula C such that

H x1, . . . , xn Ot�1j Þ ¼ C F1 x1 Ot�1j Þ, . . . ,Fn xn Ot�1j Þ Ot�1j Þ, 8 x1; . . . ; xnð Þ 2 ℝ
n
:

����

(52.3)

Conversely, if we let F1(x1,tjOt�1), . . ., Fn(xn,tjOt�1) be continuous conditional
marginal distribution functions and C be a copula, then the function H defined by
Eq. 52.3 is a conditional joint distribution function with conditional marginal
distributions F1(x1,tjOt�1), . . ., Fn(xn,tjOt�1).

It is worth noting that for the above theorem to hold, the information setOt�1 has

to be the same for the copulas and all the marginal distributions. If different

information sets are used, the conditional copula form on the right side of

Eq. 52.3 may not be a valid distribution. Generally, the same information set

used may not be relevant for each marginal distributions and the copula. For

example, the marginal distributions or the copula may be only conditional on

a subset of the universally used information set. At the very beginning of estimation

of the conditional distributions, however, we should use the same information set

based on which we can test for insignificant explanatory variables so as to stick to

a relevant subset for each marginal distribution or the copula.

52.3.2 Modeling Marginal Distributions

Before building a copula model, we need to find a proper specification for marginal

distributions of individual asset returns, as mis-specified marginal distributions

automatically lead to a mis-specified joint distribution. Let xi,t be asset i return at

time t, and its conditional mean and variance are modeled as follows:

xi, t ¼ a0, i þ a1, ixi, t�1 þ ei, t, (52.4)

ei, t ¼
ffiffiffiffiffiffiffi
hi, t

p
�i, t, (52.5)

hi, t ¼ b0, i þ b1, ihi, t�1 þ b2, ie
2
i, t�1 þ b3, ie

2
i, t�11 ei, t�1 < 0

� �
: (52.6)

5See Patton (2004).
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As shown in Eqs. 52.4, 52.5 and 52.6, we model the conditional mean as an

AR(1) process and the conditional variance as a GJR(1,1) specification.6

We have parameter restrictions as b0,i > 0, b1,i � 0, b2,i � 0, b2,i + b3,i � 0, and

b1, i þ b2, i þ 1
2
b3, i < 1 . 1(ei,t�1 < 0) is an indicator function, which equals one

when ei,t�1 < 0 and zero otherwise. We believe that our model specifications can

capture the features of the individual stock returns reasonably well. It is worth

noting that Eqs. 52.4, 52.5 and 52.6 can include more exogenous variables to better

describe the data. Alternative GARCH specifications can be used to describe the

time-varying conditional volatility. We assume �i,t is i.i.d. across time and follows

a Student’s t distribution with DoF vi.
Alternatively, to model the conditional higher moments of the series, we can

follow Hansen (1994) and Jondeau and Rockinger (2003) who assume a skewed

t distribution for the innovation terms of GARCH specifications and find that the

skewed t distribution fits financial time series better than normal distribution.

Accordingly, we can assume �i,t� Skewed T(�i,tjvi,t,li,t) with zero mean and unitary

variance where vi,t is DoF parameter and li,t is skewness parameter. The two

parameters are time varying and depend on lagged values of explanatory variables

in a nonlinear form. For illustration purposes, however, we will only use Student’s

t distribution for �i,t in this chapter.

52.3.3 Modeling Dependence Structure

Normal copula and Student’s t copula are two copula functions from elliptical

families, which are frequently used in modeling joint distributions of random

variables. In this chapter, we also estimate a normal copula model for comparison

purposes. LetF�1 denote the inverse of the standard normal distributionF andF∑,n

be n-dimensional normal distribution with correlation matrix ∑. Hence, the

n-dimensional normal copula is

C u;Sð Þ ¼ FS,N F�1 u1ð Þ, . . . ,F�1 unð Þ� �
, (52.7)

and its density form is

c u;Sð Þ ¼ fS, n F�1 u1ð Þ, . . . ,F�1 unð Þ� �
Yn
i¼1

f F�1 uið Þ� � , (52.8)

where f and f∑,n are the probability density functions (pdfs) of F and F∑,n,

respectively. It can be shown via Sklar’s theorem that normal copula generates

standard joint normal distribution if and only if the margins are standard normal.

6See Glosten et al. (1993).
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On the other hand, let Tv
�1 be the inverse of standard Student’s t distribution Tv

with DoF parameter7 v > 2 and TR,v be n-dimensional Student’s t distribution with

correlation matrix R and DoF parameter v. Then n-dimensional Student’s t copula is

C u;R; nð Þ ¼ TR, n T�1
n u1ð Þ, . . . , T�1

n unð Þ� �
, (52.9)

and its density function is

c u1; . . . ; unð Þ ¼ tR, n T�1
v u1ð Þ, . . . ,T�1

v unð Þ� �
Yn
i¼1

tn T�1
v uið Þ� � ,

where tv and tR,v are the pdfs of Tv and TR,v, respectively.
Borrowing from the dynamic conditional correlation (DCC) structure of

multivariate GARCH models, we can specify a time-varying parameter structure

in the t copula as follows.8 For a t copula, the time-varying correlation matrix is

governed by

Qt ¼ 1� a� bð ÞSþ a Bt�1B
0
t�1

� �þ bQt�1, (52.10)

where S is the unconditional covariance matrix of Bt ¼ (Tn
�1(u1,t), . . ., Tn

�1(un,t))
0

and a and b are nonnegative and satisfy the condition a + b < 1. We assign

Q0 ¼ S and the dynamics of Qt is given by Eq. 52.10. Let qi,j,t be the i,j element

of the matrix Qt, and the i,j element of the conditional correlation matrix Rt can be

calculated as

ri, j, t ¼
qi, j, tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qi, i, tqj, j, t
p : (52.11)

Moreover, the specification of Eq. 52.10 guarantees that the conditional

correlation matrix Rt is positive definite.

Proposition 52.1 In Eqs. 52.10 and 52.11, if
(a) a � 0 and b � 0,

(b) a + b < 1,

(c) All eigenvalues of S are strictly positive, then the correlation matrix Rt is
positive definite.

7In contrast to the previous standardized Student’s t distribution, the standard Student’s

t distribution here has variance as v/(v�2).
8Please see Engle and Sheppard (2001) and Engle (2002) for details on the multivariate

DCC-GARCH models.
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Proof First, (a) and (b) guarantee the system for BtBt
0
is stationary and S exists. With

Q0 ¼ S, (c) guarantees Q0 is positive definite. With (a) to (c), Qt is the sum of
a positive definite matrix, a positive semi-definite matrix, and a positive definite
matrix both with nonnegative coefficients and then is positive definite for all t.
Based on the proposition Eq. 52.1 in Engle and Sheppard (2001), we prove that Rt

is positive definite.

52.3.4 Estimation

We illustrate the estimation procedure by writing out the log-likelihoods for

observations. LetY¼ {y,g1, . . .,gn} be the set of parameters in the joint distribution

where y is the set of parameters in the copula and gt is the set of parameters in

marginal distributions for asset i. Then the conditional cumulative distribution

function (cdf) of n asset returns at time t is given as

F x1, t, . . . , xn, t X
��

t�1
,Y

� �
¼ C u1, t, . . . , un, t X

��
t�1

, y
� �

(52.12)

whereXt�1 is a vector of previous observations,C(�|Xt�1,y) is the conditional copula,
and ui,t ¼ Fi(xi,t|Xt�1,gi) is the conditional cdf of the margins. Differentiating both

sides with respect to x1t,. . . . , xn,t leads to the density function as

f x1, t, . . . , xn, t X
��

t�1
,Y

� �
¼ c u1, t, . . . , un, t X

��
t�1

, y
� �Yn

i¼1

f i xi, t X
��

t�1
, gi

� �
,

(52.13)

where c(�| Xt�1,y) is the density of the conditional copula and fi(xi,t| Xt�1,gi) is the
conditional density of the margins. Accordingly, the log-likelihood of the sample is

given by

L Yð Þ ¼
XT
t¼1

log f x1, t, . . . , xn, t Xt�1,Y
�� �

:
�

(52.14)

With Eq. 52.13, the log-likelihood can be written as

L y; g1; . . . ; gnð Þ ¼
XT
t¼1

log c u1, t, . . . , un, t X
��

t�1
, y

� �
þ
XT
t¼1

Xn
i¼1

f i xi, t X
��

t�1
, gi

� �
:

(52.15)

From Eq. 52.15, we observe that the copula and marginal distributions are

additively separate. Therefore, we can estimate the model by a two-stage MLE

procedure. In the first stage, the marginal distribution parameters for each asset are

estimated by MLE, and then with estimated cdf of each asset, we estimate the

copula parameters by MLE. Based on Joe (1997) and Patton (2006b), this two-stage

estimator is consistent and asymptotically normal.
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With our model specifications, we first estimate the univariate GJR-GARCH

(1,1) with an AR(1) conditional mean and Student’s t distribution by MLE. In the

second stage, we need to estimate the parameters for the constant normal copula

and the time-varying Student’s t copula. Let xt ¼ (F� 1(u1,t), . . ., F
� 1(un,t))

0, and
we can analytically derive the correlation matrix estimator Ŝ which maximizes the

log-likelihood of the normal copula density as

Ŝ ¼ 1

T

XT
t¼1

xtx
0
t : (52.16)

As there is no analytical solution for MLE of Student’s t copula, the numerical

maximization problem is quite challenging. Following Chen et al. (2004), however,

with Bt ¼ (Tn
�1(u1,t), . . ., Tn

�1(un,t))
0, we can calculate the sample covariance matrix

of Bt as Ŝ, which is a function of DoF parameter v. By setting Q0¼Ŝ, we can express
Qt and Rt for all t in terms of a, b, and v using Eq. 52.10. Then we can estimate a, b,
and v by maximizing the log-likelihood of t copula density. In the following

sections, we apply our estimation procedure to the joint distribution of 45 selected

major US stock returns.

52.4 Data

We apply our model to modeling log returns of 45 major US stocks from nine

sectors: Consumer Discretionary, Consumer Staples, Energy, Financials, Health

Care, Industrials, Technology, Materials, and Utilities. Table 52.1 shows stock

symbols and company names of the selected 45 companies. We select five major

companies from each sector to form the stock group. The time span ranges from

January 3, 2000 to November 29, 2011 with 2990 observations. We download data

from yahoo finance (http://finance.yahoo.com/). The log returns are calculated from

daily close stock prices adjusted for dividends and splits.

To save space, we only plot and calculate descriptive statistics of nine stocks

with each from one sector. Figure 52.1 plots the log returns of those nine selected

stocks, and there are two periods of volatility clusterings due to “Internet Bubbles”

in the early 2000s and the financial crisis in 2008, respectively. We observe that

during the financial crisis in 2008, major banks, such as Citigroup, incurred huge

negative and positive daily returns. Table 52.2 shows the calculated mean, standard

deviation, skewness, and kurtosis for the nine stocks. The average returns for

the nine stocks are close to zero. Major banks, represented by Citigroup, have

significantly higher volatility. Most of the stocks are slightly positively skewed, and

only two have slight negative skewness. All the stocks have kurtosis greater than

three indicating fat tails, and again major banks have significantly fatter tails.

All the descriptive statistics indicate that the data property of individual returns

needs to be captured by a variant of GARCH specification.
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52.5 Empirical Results

52.5.1 Marginal Distributions

We briefly report estimation results for marginal distributions of 45 stock returns.

For convenience, we only show the estimates and standard errors (in brackets) for

nine selected stocks with each from one sector in Table 52.3. The star indicates

statistical significance at a 5% level. Consistent with our observations in Table 52.2,

all the nine stocks have low values of DoF indicating fat tails. The parameter b3,i is

Table 52.1 Symbols and names of 45 selected stocks from nine sectors

Sector Consumer discretionary Consumer Staples Energy

Stock symbol MCD: McDonald’s WMT: Wal-Mart Stores

Inc.

XOM: Exxon Mobil Corp.

HD: Home Depot PG: Procter & Gamble

Co.

CVX: Chevron Corp.

DIS: Walt Disney Co. KO: Coca-Cola Co. COP:

CONOCOPHILLIPS.

TGT: Target WAG: Walgreen Co. DVN: Devon

Energy Corp.

LOW: Lowe’s MO: Altria Group Inc. SLB: Schlumberger

Limited

Sector Financials Health Care Industrials

Stock symbol C: Citigroup Inc. JNJ: Johnson &

Johnson

GE: General Electric Co.

BAC: Bank of

America Corp.

PFE: Pfizer Inc. UNP: Union Pacific Corp.

JPM: JPMorgan Chase &

Co.

ABT: Abbott

Laboratories

UTX: United

Technologies Corp.

USB: U.S. Bancorp MRK: Merck &

Co. Inc.

MMM: 3 M Co.

WFC: Wells Fargo & Co. AMGN: Amgen Inc. BA: Boeing Co.

Sector Technology Materials Utilities

Stock symbol T: AT&T Inc. NEM: Newmont

Mining Corp.

EXC: Exelon Corp.

MSFT: Microsoft Corp. DD: E.I. DuPont de

Nemours & Co.

FE:

FirstEnergy Corp.

IBM: International Business

Machines Corp.

DOW: Dow Chemical Co. PPL: PPL

Corporation

CSCO: Cisco Systems Inc. FCX: Freeport-McMoRan

Copper & Gold Inc.

D: Dominion

Resources, Inc.

HPQ: Hewlett-Packard Co. PX: Praxair Inc. DUK: Duke

Energy Corp.
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Fig. 52.1 The log returns of the nine of our 45 selected stocks with each from one sector have

been plotted
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statistically significant at a 5 % level for eight of the nine stocks indicating

significant leverage effects for stock returns. The parameters in conditional mean

are statistically significant for some stocks and not for others. In Fig. 52.2, we

plot estimated conditional volatility for the stocks MCD, WMT, XOM, and

C. Consistent with Fig. 52.1, we observe MCD and WMT have significant high

volatility in the early 2000s and 2008, while XOM and C have their volatility hikes

mainly in 2008 with C, representing Citigroup, having the highest conditional

volatility during the 2008 crisis.

52.5.2 Copulas

We report estimation results for the time-varying t copula parameters in Table 52.4.

All the three parameters a, b, and v are statistically significant. The estimate a is

close to zero and the estimate for b is close to one. The estimate for v is about 25. As
our estimation is carried out on the joint distribution of 45 stock returns, the

estimate for v shed some light on how much Student’s t copula can capture tail

dependence when used to fit a relatively large number of variables. We also report

the log-likelihood for time-varying Student’s t copula and normal copula in

Table 52.4. As the correlation matrix in normal copula is estimated by its sample

correlation, we did not report it here. We find that time-varying t copula has

significantly higher log-likelihood than normal copula, which results from the

more flexible parameter structure of t copula and the time-varying parameter

structure.

52.5.3 Time-Varying Dependence

Our time-varying t copula features a time-varying dependence structure among all

the variables. The DoF parameter, together with the correlation parameters, governs

the tail dependence behavior of multiple variables. We plot the estimated

Table 52.2 Descriptive statistics (mean, standard deviation, skewness, and kurtosis) for the nine

of our 45 selected stocks with each from each sector

Stock

symbol MCD WMT XOM C JNJ GE T NEM EXC

Mean 3.73E-

04

7.21E-

06

3.15E-

04

�8.05E-

04

1.96E-

04

�2.89E-

04

1.23E-

05

3.65E-

04

4.48E-

04

Std. dev. 0.017 0.017 0.017 0.037 0.013 0.022 0.019 0.027 0.018

Skewness �0.21 0.13 0.02 �0.48 �0.53 0.04 0.12 0.34 0.05

Kurtosis 8.25 7.72 12.52 35.55 17.83 9.99 8.68 8.22 10.58

# obs. 2,990 2,990 2,990 2,990 2,990 2,990 2,990 2,990 2,990
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conditional correlation parameters of t copula for four selected pairs of stock returns
in Fig. 52.3. For those four pairs, the conditional correlation parameter fluctuates

around certain positive averages. The two pairs, MCD-WMT and NEM-EXC,

experienced apparent correlation spikes during the 2008 financial crisis. Moreover,

Fig. 52.4 shows the estimated TDCs for the four pairs. We find that with the DoF

around 25, the TDCs for those pairs of stock returns are very low, though some pairs

do exhibit TDC spikes during the 2008 crisis. The low values of TDCs indicate

possible limitations of t copula to account for tail dependence when being used to

model a large number of variables.

Table 52.4 The estimates and standard errors for time-varying Student’s t copula. Values in

brackets are standard errors. The star indicates the statistical significance at a 5 % level. We also

report the log-likelihood for time-varying t copula and normal copula

Time-varying t copula Normal copula

Parameter estimates

a 0.0031* (0.0002)

b 0.984* (0.0016)

v 25.81* (1.03)

Log-likelihood of copula component

Log-likelihood 40,445.44 38,096.36
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Fig. 52.2 The estimated time-varying conditional volatility for four selected stocks has been

plotted
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Fig. 52.3 The estimated time-varying correlation parameters in t copula for four selected pairs of

stock returns have been plotted
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Fig. 52.4 The time-varying tail dependence coefficient (TDC) for the four selected pairs of stock
returns has been plotted
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52.6 Conclusion

We illustrate an effective approach (Copula-GARCH models) to model the dynam-

ics of a large number of multiple asset returns by constructing a time-varying

Student’s t copula model. Under a general Copula-GARCH framework, we specify

a proper GARCH model for individual asset returns and use a copula to link the

margins to build the joint distribution of returns. We apply our time-varying

Student’s t copula model to 45 major US stock returns, where each stock return is

modeled by an AR(1) and GJR-GARCH(1,1) specification and a Student’s t copula
with a DCC dependence structure is used to link all the returns. We illustrate how

the model can be effectively estimated by a two-stage MLE procedure, and our

estimation results show time-varying t copula model has significant better fitness of

data than normal copula models.

As it is quite challenging to find a copula function with very flexible parameter

structure to account for difference dependence features among all pairs of random

variables, our time-varying t copula model tends to be a good working tool to model

multiple asset returns for risk management and asset allocation purposes. Our

model can capture time-varying conditional correlation and some degree of tail

dependence, while it also has limitations of featuring symmetric dependence and

inability of generating high tail dependence when being used to model a large

number of asset returns. Nevertheless, we hope that this chapter provides

researchers and financial practitioners with a good introduction on the Copula-

GARCH models and a detailed illustration on constructing joint distributions of

multiple asset returns using a time-varying Student’s t copula model.
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