
Chapter 5
Distributed Mobile Computer Vision: Advances,
Challenges and Applications

Niki Martinel, Andrea Prati and Christian Micheloni

Abstract The role of mobile devices has shifted from purely passively transmitting
text messages and voice calls to proactively providing any kind of information that
is also accessible to a PC. The recent advances in the field of micro technology have
also made possible to include a camera sensor in any mobile device. This innovation
is now attracting both the research community and the industries that aim to develop
mobile applications that exploit recent computer vision algorithms. In this chapter
we provide an analysis of the recent advances of mobile computer vision, then we
discuss the current challenges that the community is currently dealing with. Next, an
analysis of two recent case studies where mobile vision is used for augmented reality
and surveillance applications is discussed. Finally, we introduce the next challenges
in mobile vision where the mobile devices are part of a visual sensor network.

5.1 Introduction

Mobile devices are defined to be Web-enabled devices that are used not in a fixed
location but they have been conceived and designed to be portable and usable in
mobility. Typical mobile devices include Web-enabled mobile phones and Web-
enabled pocket-sized PersonalDigital Assistants (PDAs) [44]. The firstmobile phone
appeared onDetroit police cars in 1921. These devices were communicating together
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with a single high-power antenna installed on a skyscraper that allowed a transmission
range of about a hundred kilometers. Twenty five years later the technology had
reached the commercial service level.

Two main technological innovations allowed such rapid growing and they are
still pushing the design of new, faster and more highly-featured devices. Over the
years the advent of transistors boosted mobile device technology: the possibility of
building tiny and sophisticated electronic components enabled phone companies to
design a large number of models with many advanced features. The other important
aspect—strictly connected with the diffusion of mobile devices—was the innovation
of the communication infrastructure. Nowadays the community is talking about the
fourth generation of mobile networks that should achieve a 1GB/s transmission data
speed. The new, more reliable and faster network infrastructures pushed more and
more the mobile device companies to design and develop new, more sophisticated
and innovative, mobile devices that take advantage of these resources.

Mobile devices were initially designed with a single physical keyboard, now
they are equipped with touch-screens technologies borrowed by Personal Digital
Assistans (PDAs) and other handheld devices: the keyboard has been replaced by a
screen that allows the user to interact with a graphical interface using fingers or other
pointing devices. These, togetherwith fastermicroprocessors, allow an excellent user
experience and make the tasks of multimedia processing and data logistic possible
on the fly.

Historically speaking, the PDAs can be seen as the first generation of mobile
devices. A PDA is a handheld computing device that combines multiple functions
and features including telephone, fax, Internet and networking or other form of dif-
ferent connectivity capabilities. These devices are mainly used by users that need
to compute operations while moving, simply called “Mobile Computing”. Before
that such features were provided only by laptops or desktop computers. The PDA
is the first step to a future trend that would be later defined as “Technological Con-
vergence” [17]. The next generation of mobile computing, mainly represented by
smartphones, will foster the convergence of communication, computing and con-
sumer electronics, three traditionally distinct industries with quite low interoperabil-
ity. While mobile phones were previously equipped with a simple address book and
agenda, now a smartphone has several features such as a camera, a voice control
system and so on. In other words, a smartphone can be seen as a mobile phone with
computer capabilities that allows it to interact with computerized system, send email
and access to the web.

We are now in an era where the communication and computing environment is
moving to interact with the physical environment or even become part of it. Mark
Weiser, chief scientist at Xerox PARC and considered the father of Ubiquitous Com-
puting, claimed that in the 21st century the technology revolution will move into
“the every, the small and the invisible”. That is what is really happening now: the
information processing moves to the background so as humans concentrate on the
tasks, not on the tools. The technology is viewed as a tool to serve the needs of peo-
ple, not something to depend on. Weiser suggested that the most deep technologies
are those that disappear (“Disappearing Technology”). They weave themselves into
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the fabric of everyday life until they are indistinguishable from it. The concepts of
access anywhere, anytime, from any device are intertwined with the progress of the
network infrastructures and with the aspects of convergence.

5.2 Chapter Contributions

Mobile devices are an inseparable part of our society now.The role of such devices has
shifted frompurely passively transmitting textmessages and voice calls to proactively
providing any kind of information that is also accessible to a PC. In particular, due
to the advances in smart and micro technology, camera sensors are now a standard
component in all mobile devices. This innovation is now attracting both the research
community and the industries that aim to design and develop applications that exploit
the powerful features of mobile devices and combine them together with the more
advanced computer vision and image processing techniques.

In this chapter, we contribute to the research in distributed smart cameras intro-
ducing the most relevant advancements in mobile computer vision. Then we discuss
the main challenges faced by the mobile vision community such as: (1) the limited
energy, (2) the limited storage, (3) the limited computational capabilities, (4) the
wireless network communication, (5) the scalability of applications. Next, we dis-
cuss two main research studies where computer vision techniques and distributed
frameworks are used for mobile applications of augmented reality and security pur-
poses. Finally we introduce the concept of smartphone networks, where the mobile
device is part of a visual sensor network.

5.3 Mobile Computer Vision

A few years ago, it was very difficult to imagine that in the near future digital cameras
would become a standard component of mobile devices. In these days, such devices
have achieved a good level of maturity and they are now equipped not only with
camera sensors, but with various other sensors such as accelerometers, gyroscopes,
and GPS receivers. The exponential evolution of image and video processing devices
with ever increasing computational capability equippedwith high-resolution cameras
and hardware-accelerated graphics has opened to a broad and new emerging research
area that exploits the mobile device camera for applications of computer vision
technologies. The broadband wireless network connection also enables mobility
applications to use the acquired video data to initiate queries and exchanges of
informationwith othermobile devices or higher computational power infrastructures.
Though it is still in its infancy, it has attracted much attention from both industry
and academia. This is not surprising, since we are indeed in an era of transition
from a focus on PC-based computing to a greater emphasis on smart devices and
cloud-based computing.



96 N. Martinel et al.

Among themultitude ofmobile applications that have been designed to exploit the
images coming from device cameras for computer vision applications, we can gener-
ally group them into three main clusters: location-based services, mixed/augmented
reality, and car safety applications. These topics have become very popular in recent
years, largely in the context of consumer applications where user-centered visual
computing is essential.

Regarding the location-based services, industry has put a lot of effort to achieve
real-time visual image recognition for these applications. Deployments of such sys-
tems include Google Goggles [13], Nokia Point and Find [34], Kooaba [20] and
Snaptell [3]. A specialized case is represented by Leafsnap [21] which is an elec-
tronic field guide that uses visual recognition software to help identify tree species
from photographs of their leaves. In essence, all these applications start from a snap-
shot image taken by a user on a mobile device. Then, the photo is matched against
a pre-annotated image database to extract useful information that is provided to the
user. In the recent years, the problems of image retrieval [12], landmark [24] and
location [39] recognition using appearance-based features have also been deeply
investigated by the community. In order to achieve their objectives, these methods
match appearance features against a large database of location-tagged images [42].
In [48] authors propose a system for determining a user’s location from a mobile
device via image matching. The authors first build a “bootstrap database” of images
of landmarks and train a CBIR algorithm on it. Since the images in the bootstrap
database are tagged with keywords, when a query image is matched against the boot-
strap database, the associated keywords can be used to find more textually related
images through a web search. Finally, the algorithm is applied to the images returned
from the web search to produce only those images that are visually relevant.

Mixed/augmented reality mobile video gaming is another area which has caught
the attention of many. With the increasing quality and spatial resolution of mobile
device cameras we have now high level of augmented reality where real-time interac-
tion is possible. Another motivation of the spreading of AR solutions is the diffusion
of available Software Development Kit (SDK) for efficiently and timely construct
your own mobile AR application. Two examples above all: Qualcomm Vuforia [35]
which is generic SDK for optimized augmented reality and object recognition and
has been used bymore than 3,500mobile apps world wide; and Sentisight [33] which
is a SDK for object recognition, computer vision and augmented reality used in a
number of mobile vision applications.

Although, it is a matter of fact that, for some applications, we may need superior
devices as they typically have much more computational capacity and additional
sensors, enabling computationally expansive mobile applications on the fly. A recent
demonstration of an outdoor mobile augmented reality application running on a
cell phone is Nokia’s MARA project [14]. The system does not perform any image
analysis, instead it uses an external GPS for localization and an inertial sensor to
provide orientation. PhoneGuide [9] is one of the first object recognition systems
performing the computation on a mobile phone, instead of sending the images to a
remote server. The system employs a neural network trained to recognize normalized
color features and is used as a museum guide. Similarly, in [28] authors propose a
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novel framework to support AR for painting onmobile devices. In [18, 22, 46] recent
techniques for tracking and occlusion handling in an AR framework were discussed.
In [40] authors introduce a mobile system based on a hand-held device, GPS sensor,
and a camera for roadside sign detection and inventory. Their algorithm was efficient
enough to ensure good quality results in mobile settings. In the context of augmented
reality, in [11] authors use a modified version of the SIFT algorithm for object
detection and recognition in a relatively small database of mobile phone imagery of
urban environments. The system uses a client-server architecture, where a mobile
phone client captures an image of an urban environment and sends it to the server for
analysis. The SURF algorithm has been used successfully in a variety of applications,
including an interactive museum guide [5]. Local descriptors have also been used
for tracking. In [43] authors track SURF features using video coder motion vectors
for mobile augmented reality applications. The challenges of real-time recognition
and camera pose estimation system for planar shapes were addressed in [16]. The
proposed system performs shape recognition by analyzing contour structures and
generating projection-invariant signatures. Similarly, in [41] SIFT features are used
for recognition, tracking, and virtual object placement. Camera tracking is done by
extracting SIFT features from a video frame, matching them against features in a
database, and using the correspondences to compute the camera pose. In [10], the
monoSLAM system estimates the hand-held camera’s motion from the live image
stream to achieve high AR performance. In [15], an AR rendering pipeline that
supports global illumination techniques was proposed.

Another interesting and diffused field of application of mobile vision is the appli-
cations for car safety. In this case, the smartphone is positioned in front of the car
and used for both analyzing the scene outside (ahead situation) or inside the car. Two
existing products deserve special mention. CarSafe [49] uses rear and rear-facing
front cameras for in-vehicle applications. The rear camera is used for monitoring
distances from other vehicles and for tracking lane changes, whereas, rear-facing
front camera tracks the driver’s head position and direction as well as eyes and blink-
ing rate as indicators of microsleep, drowsiness, and distraction. iOnRoad [19] uses
Qualcomm’s FastCV mobile-optimized computer vision library for frontal collision
warning and lane departure warning. It also monitors headway and can be used for
identifying and locating other cars in the field-of-view.
All of these applications pose a unique set of challenges.

5.4 Challenges

The proliferation of mobile and hand-held devices, along with advances in mul-
timodal and multimedia technologies, are producing a new wave of applications
that enable users to quickly and more naturally perform many tasks. These include:
finding music, videos, and business listings; surfing the Web; sending a short text
message; interacting with social media Web sites; just to mention a few. Mobility
is central to this growing number of applications. It is a matter of fact that, as the
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number of smartphones and emerging devices continue to grow, user demand for
newmultimodal andmultimedia interfaces that allow them to interact with the device
while in mobility. Speech recognition and text-to-speech synthesis, are recent exam-
ples of this. Over the next few years, we expect to see multiple variants of speech and
image processing technologies on smartphones to be features as standard as a key-
board. This is partially driven by regulatory requirements prohibiting texting while
driving, and the need to provide a natural and a more compelling user interface with
hands-free, eyes-free operation.

Another driver to the mobile revolution is cloud computing. It is significantly
reducing the cost for deploying and maintaining large-scale mobile media services
and enabling location-aware technologies for video, music, speech, and language to
be more readily available as Web services. Indeed, developers can easily access such
technologies through Web services application programming interfaces (APIs) that
take advantage of standards such as HTML-5 and W3C EMMA [45].

The convergence of media and mobility is not only creating new opportunities,
but also opening to a new set of challenges. In addition to the challenge posed by
the limited battery life of mobile devices, we can find three prominent challenges in
mobile vision when compared with traditional computer vision applications.

First of all, although the computational capacity of mobile devices is constantly
increasing, it is still not sufficient to handle large-scale visual computing tasks. From
this perspective, migrating much of the computation to powerful devices or to the
cloud is essential. But, what part of the processing should be performed on themobile
client, and what part is better carried out by the server? On one hand, processing
images is now possible on mobile devices in seconds or less. On the other hand,
transmitting an image could take tens of milliseconds over a high speed wireless
link. There are several possible architectures we can think about

• Themobile client transmits a query image to the server. The algorithms run entirely
on the server, including an analysis of the query image. The final result is then sent
back to the device as in a standard client-server architecture.

• The mobile client processes the query image and transmits (abstract) data. The
algorithms run on the server using the data as query and returns the result to the
device.

• The mobile client downloads data from the server and all the processing is per-
formed on the device. This solution has the advantage to limit the required band-
width (data can be downloaded only when the application starts or whenever they
change), but can be slow due to the limited computational resources of the device.

It is worth emphasizing that this type of applications usually call for a fast response to
address the user’s requirement of a fluid interaction with the device. Therefore, a way
to ensure real-time responses to user interaction will be a major issue to be tackled.
Moreover, the bandwidth requirement is an important issue since connectivity can
be not always available while on move or be in general expensive for the user.

Secondly, most mobile vision applications are driven by large amounts of anno-
tated visual data. For example, to enable vision-based location recognition, a large
collection of street-view images is a prerequisite. How to acquire and process such
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data is a challenge. One way to acquire the data is to harness the massive user-
generated visual databases on the Internet, such as online image/video sharing sys-
tems. But then, a lot of informationmust be either locally stored by the mobile device
or exchanged through the network.

Thirdly, not all mobile devices and smartphones that run the same application are
equal. Some of them have very high computational resources and memory capabili-
ties, while others only have reduced memories and limited computing cycles. What
is more, they may have a reduced network connection speed so as only fewer round
trips between the device and the server can be performed per second. This introduces
the problem of scaling application requirements to each specific device.
Generally, scaling refers to growing computing resources to support an applica-
tion. Vertical scaling is increasing single device capabilities, with powerful and
faster CPUs, more memory, or faster disk I/O. While, horizontal scaling involves
adding additional computational devices to support the overall applications com-
puting requirements, and load balancing across those resources. So, scalability is
generally viewed from a hardware designer perspective. We want to change this
point of view and refer to the scalability as to adapt an application to support mobile
devices that have different features. This aspect will be more clear in the second case
study introduced below.

5.5 Case Studies

In this section two recent case studies that exploit advanced computer vision tech-
niques are described. The former introduces an efficient marker-less approach to
support augmented reality for paintings. While, the latter introduces a cooperative
method to address the challenges of the person re-identification problem using both
mobile devices and remote processing units.

5.5.1 Augmented Reality for Musems

Recognizing paintings and computing the transformation to align the acquired image
of a painting and its image in a database to support Augmented Reality (AR) appli-
cations is nontrivial tasks. Common static computer vision issues (e.g.illumination,
view, scale changes, etc.) are more severe in context of moving cameras as different
effects (e.g.blur, noise, motion, etc.) arise. In addition, reflection of spotlights, image
saturation and image exposure add up for the recognition of the paintings present in
exhibitions.

While specifically designed markers have been the dominant choice by state-
of-the-artARmethods, here amarker-less approach is introduced.Using the principle
of Hough line detection, a method to detect and extract the relevant painting region
(RPR) from a given input image is first applied, then local features are extracted from
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Fig. 5.1 Architecture of the proposed system. The current camera frame is processed by the three
main modules of the system. The first module extracts the RPR. The second module matches
every database image with the current camera frame. Given the best match, the third module uses
the RANSAC homography transformation to overlay the additional content to the current camera
frame

the RPR and matched with a candidate target in the database. RANSAC is used to
detect feature outliers. As the current image may not be aligned with the candidate
target image, extracting global feature from it considerably reduces robustness, so
the homography transformation output by RANSAC is used to sidestep this issue
and align the current RPR to the candidate target RPR. This allows to extract global
feature from the aligned RPR only, thus noticeably improving performance. Then,
a weighted similarity measure is used to compute the final match between image
signatures composed of local and global features. Once a match is found, the same
RANSAC homography is exploited in an AR framework to properly overlay the
additional content to the current frame.

5.5.1.1 System Overview

The architecture of the proposed approach is shown in Fig. 5.1. Three main modules
are used to achieve the proposed goal: (1) the RPR detector module, (2) the matching
module and (3) the AR display module. Given the current camera frame, the RPR
detector module extracts the RPR so as the painting frame and the background are
not considered anymore. Once the RPR is detected, the matching module extracts
the local features from such region and matches them with each candidate target
local features. RANSAC is used to reject matching outliers. Then, the homography
matrix output by RANSAC is used to align the current RPR with the candidate target
RPR from where the global features are extracted. The extracted local and global
features are finally matched with the candidate signature using an affine combination
of similarity measures. Given the best candidate target match, the same homography
transformation output by RANSAC is used to properly overlay the additional content
to the current camera frame.

5.5.1.2 Relevant Painting Region Detector

Assuming that the frames of paintings have elliptical or rectangular shape, the RPR
detector goal is to remove the background and the painting frame to keep only
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Fig. 5.2 RPR detection examples. In a an ideal example where the painting plane is almost aligned
with the given image plane is shown. In b a harder example with severe perspective distortion is
depicted

the portion of the image that contains the painting, i.e. the RPR. To achieve such
objective saving computational cycles, the Randomized Hough Transform (RHT)
method [47] is used. Such technique is based on the standard Hough Transform (HT)
but it avoids the computationally expensive voting procedure. As shown in [47], the
RHT can achieve a computational complexity lower than an upper bound of order
O((nt N n)/nn

min), that is considerably smaller than the order O(N N n−1
a ) of the

standard HT. N and Na are the total number of pixels in the image and the size of
the accumulation array respectively. n is the number of curve parameters, nmin is the
length of the shortest curve in the image, and nt is a small number.

To detect the RPR, we first apply the Canny operator to the grayscale representa-
tion of the current camera frame Q ∈ R

M×N . Then, as shown in Fig. 5.2, the RHT
is used to fit ellipses and rectangles. As a painting may contain more than a single
rectangular or ellipse shaped object, the RPR boundary is selected as the detected
rectangle or ellipse which area is at least r times the input image size. The detected
RPR is denoted as RQ ∈ R

M ′×N ′
where M ′N ′ ≥ r M N and r ∈ [0, 1].

5.5.1.3 Matching

Let RQ and RI be the RPR of the current camera frame Q and the RPR of a database
candidate target image I , respectively. To match RQ and RI two local and global
features have been considered. In particular to match two RPRs with lower com-
putational costs, the Speeded-Up Robust Features (SURF) [4] and the Pyramid of
Histogram of Oriented Gradients (PHOG) [7] features have been used. Both a local
and a global feature have been used as the relevant region detector module may fail,
i.e. only a small area of the painting or the painting with the frame can be extracted.
In such cases, if only global descriptor is extracted non-interesting information is
considered.

Local features: As illumination invariance is intrinsic to SURF [4], such fea-
tures are extracted from the grayscale representation of RQ by exploiting the



102 N. Martinel et al.

standard integral image. The SURF feature detector is based on an approximation

of the Hessian matrix, while the feature descriptor ψ
RQ
F ∈ R

64 describes the
distribution of Haar-wavelet responses within the neighborhood of the detected

interest points ψ
RQ
K = [x, y]. The computed SURF feature vector is denoted as

ψ RQ = 〈ψ RQ
F , ψ

RQ
K 〉.

Given two SURF feature descriptors ψ
RQ
F (q) and ψ

RI
F (i), q, i is defined to be a

match if the similarity

SF (ψ
RQ
F (q), ψ

RI
F (i)) = 1

1 + ‖ψ RQ
F (q) − ψ

RI
F (i)‖2

(5.1)

is higher than a fixed threshold T hs . If that is satisfied, the two matching SURF
feature vectors are analyzed to detect outliers using a RANSAC-based approach
similar to the one proposed in [8]. In particular, given 4 feature correspondences,
the homography HQ,I is computed using the Direct Linear Transformation method.
The process is repeated with t trials, and the solution that has the maximum number

of inliers is selected. A SURF feature keypoint ψ
RQ
K (q) is considered to be an inlier

if the corresponding keypoint projection ̂ψ
RQ
K (q) is consistent with HQ,I within a

tolerance of σ pixels.
Global features: Given HQ,I , that is used to to align the twoRPR regions, namely

RQ and RI . The resulting transformed RPR is denoted as R̂Q . By applying such
transformation to global feature can be extracted in a more reliable fashion as the
edges used to compute the global features are aligned and have similar orientations
to the edges of the candidate target.

PHOG features are extracted from R̂Q to capture information about the shape and
the whole appearance of the painting. Before extracting PHOG features, the trans-
formed RPR region R̂Q is projected into the HSV color space to achieve illumination
invariance. Then, edges and orientation gradients are used to compute the PHOG fea-

ture matrix ρ R̂Q ∈ R
m×3 by concatenating the PHOG histograms extracted from the

three image channels at the different levels of the spatial pyramid. m is the total
number of histogram bins for each image channel.

Candidate target matching: Once local and global features have been extracted,
the two given images Q and I are matched using an affine combination of feature
similarities.

SURF features similarity is computed as

Φψ(ψ RQ , ψ RI ) =
∑

q,i∈match SF (ψ
RQ
F (q), ψ

RI
F (i))

ε + match
(5.2)

where match is the total number of matched SURF features and ε is a small constant
used to prevent division by zero.
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PHOG features are matched using the same similarity function suggested in [27].

Let ρ R̂Q and ρRI be the PHOG feature matrices of R̂Q and RI respectively. The
PHOG similarity is computed as

Φρ(ρ R̂Q , ρRI ) = 1 −
∑

c

λcχ
2(ρ

R̂Q
c , ρRI

c ) (5.3)

where ρ
R̂Q
c and ρ

RI
c are the PHOG features computed for the c-th color channel. λc

is the normalization weight.
As the final objective is to find the database image that gives the best match with

the query image, aminimization task needs to be performed. Towards this end, let I be
the set of all database images, then, the final objective is to find argmaxI∈IΦ(Q, I )
where

Φ(Q, I ) = α Φψ(ψ RQ , ψ RI )

+β Φρ(ρ R̂Q , ρRI ) (5.4)

α and β = 1 − α are the affine coefficients.

5.5.1.4 AR Display

The last module of the proposed system is in charge to overlay the additional con-
tent to the current camera frame Q. As both paintings and the additional content
are planar surfaces, the transformation that needs to compute can be described as an
homography. In this work a feature-based homography computation method is used.
Towards this goal, the same feature-based homography transformation HQ,I com-
puted in Sect. 5.5.1.3 is exploited.As shown inFig. 5.3, using the inverse homography
transformation matrix H−1

Q,I it is possible to overlay the additional content (given in
the original region I coordinate system) to the current camera frame Q.

5.5.1.5 Experimental Results

To show the performance of the proposed method, experiments have been carried out
on adataset built using607publicly available pictures of 70VangGoghpaintings. The
dataset has pictures taken from different viewing angles and with severe illumination
changes. Some pictures come with light reflections and occlusions as well.

Implementation details: The values of the algorithm parameters given in the
following have been selected using 4-fold cross validation:

• RPR boundary: r has been set to 0.55;
• SURF features: features have been extracted using 5 octaves and 4 scale levels;
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(a) (b)

Fig. 5.3 Example of AR. a Reference frame with the additional information to display. b Current
frame with the additional information transformed using the feature-based homography transfor-
mation

Table 5.1 Average nAUC values for different values of alpha (from 0 to 1 with steps of 0.01)

α 0 0.25 0.28 0.5 0.75 1

RPR detection 0.7927 0.8110 0.8320 0.7485 0.6917 0.6281
No RPR detection 0.6368 0.6572 0.6635 0.6470 0.6341 0.6290

Best results are in boldface font

• PHOG features: edges have beeen extracted using the Canny operator, while orien-
tation gradients have been computed using a 3×3 Sobel mask. The extracted HOG
features extracted from the 4 levels of the spatial pyramid have been quantized in
9 bins;

• Matching: The normalization weight vector λ has been set to [0.5, 0.3, 0.2]. The
tolerance σ has been set to 4 pixels and t = 500 trials are performed to compute
H . The matching threshold T hs has been set to 0.85.

To show the performance of the method results have been reported in terms of ROC
curves and normalized Area Under Curve (nAUC) values.

The algorithm has been tested on a standard PC with P4 CPU 2.0GHz, 1GB
RAM, Windows XP and on a Tablet with ARMv7 processor 1GB RAM, Android
4.2.2. In the first test with non-optimized MATLAB code the average recognition
and registration time for a single frame was 0.591s, while in the latter with optimized
code the same activities took 0.632s.

Experiments: In the following we show the performance of the proposed method
as a function of both the scale of the images and the rotation of them with respect to
the target image orientations.

In Table 5.1, nAUC values computed as a function of the similarity normalization
weight α are reported. Each value is computed averaging all the results computed for
images scaled to 1/2, 3/4 and 1/1 of the original image size and for different image



5 Distributed Mobile Computer Vision: Advances, Challenges and Applications 105

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

o
si

ti
ve

 R
at

e
ROC Curve

Scale = 1 Rot = 0 RPR Detection = False
Scale = 1 Rot = 45 RPR Detection = False
Scale = 1 Rot = 90 RPR Detection = False
Scale = 1 Rot = 135 RPR Detection = False
Scale = 1 Rot = 180 RPR Detection = False
Scale = 1 Rot = 225 RPR Detection = False
Scale = 1 Rot = 270 RPR Detection = False
Scale = 1 Rot = 315 RPR Detection = False

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

o
si

ti
ve

 R
at

e

ROC Curve

Scale = 0.5 Rot = 0 RPR Detection = False
Scale = 0.75 Rot = 0 RPR Detection = False
Scale = 1 Rot = 0 RPR Detection = False

(a) (b)

Fig. 5.4 Recognition performance computed without using the relevant region detector module.
In a test images are rotated by multiples of 45◦. In b test images are not rotated but their scaling
factor has been changed

rotations from 45◦ to 315◦, with intermediate rotations of 45◦. The best results are
achieved for α = 0.28. In light of this, such value has been used in the following
experiments.

InFig. 5.4 the performanceof the proposedmethodwithout using theRPRdetector
are shown. In Fig. 5.4a results are shown as a function of the rotation of the test
images. The original scale has been used. The method achieves reasonable results
for rotations multiple of 90°. The performance decreases in the other cases. This
is probably due to the changes occurring in the oriented gradients used to compute
the PHOG features. On average, a true positive rate of 49 % is achieved for a false
positive rate of 20 %. In Fig. 5.4b results for different image scales are shown. Thanks
to SURF invariance properties and the pyramidal approach used to compute PHOG,
the performance are not much affected by the scaling issues. In such scenario, an
average true positive rate of 67 % is achieved for a false positive rate of 20 %.

In Fig. 5.5 the performance of the proposed method using the RPR detector are
depicted. In Fig. 5.5a results have been computed for different rotations to the test
images as in Fig. 5.4a. On average, a 71 % true positive rate is reached for a false
positive rate of 20 %. Though, the worst results are reached for rotations of 135◦ and
225°, where a true positive rate of about 59 % is reached for the same false positive
rate of 20 %. If compared to the results shown in Fig. 5.4a, a significant improvement
has been achieved. Most importantly, the performance has increased of about 33 %
for a false positive rate of 0 %. In Fig. 5.5b the results are computed varying the
scale of test images. If compared to Fig. 5.4b, an average improvement of 37 % is
achieved for a false positive rate of 0 %.

In Table 5.2 results of the proposed method are shown as nAUC values. Images
scaled to 1/2, 3/4 and 1/1 of the original image size and rotations from 45◦ to
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Fig. 5.5 Recognition performance computed using the relevant region detector module. In a test
images are rotated by multiples of 45◦. In b test images are scaled down using multiple reduction
factors

Table 5.2 nAUC values computed for test images scaled to 1/2, 3/4 and 1/1 of the original size
and rotated from 0° to 315°(steps of 45◦)

Rotation 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

RPR detection Scale = 0.5 0.9223 0.8025 0.8918 0.7178 0.9020 0.6708 0.8949 0.7518
Scale = 0.75 0.9243 0.8049 0.9032 0.7158 0.9128 0.7010 0.8986 0.8209
Scale = 1 0.9258 0.8233 0.9138 0.7188 0.9180 0.7044 0.9053 0.8226

No RPR detection Scale = 0.5 0.8130 0.5502 0.7015 0.5492 0.6810 0.5476 0.7963 0.6133
Scale = 0.75 0.8104 0.5529 0.7023 0.5510 0.6966 0.5498 0.8082 0.6214
Scale = 1 0.8244 0.5655 0.7026 0.5738 0.7082 0.5585 0.8144 0.6329

315◦ (with steps of 45◦) have been considered. The first three rows show the results
of the proposed method using the proposed RPR detector, while in the last three rows
results have been computed without using the RPR detector. For both such cases the
best results are achieved when the original image size is kept and no rotation is
applied. However, using the relevant region detector, performance increases of more
than 17 %on average. In particular, for rotation of 90°and 180°, an average increment
of 20 % is achieved.

5.5.1.6 Conclusion and Discussion

In this case study, a marker-less method for painting recognition and registration
to support mobile AR applications has been introduced. A RPR detector is used
to extract only the relevant painting region, that is next considered to extract local
features that are matched with a candidate target using RANSAC. The homography
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transformation output fromRANSAC is also applied to align the detected RPR to the
RPR of the candidate target. This allows to robustly extract global features that are
finally used, together with local features, to compute the match between the current
frame and the candidate target. Once a valid match is detected, the same homography
transformation output by RANSAC is used to overlay the additional content to the
current frame. The method has been evaluated using a dataset of publicly available
images showing significant achievements.

5.5.2 Cooperative Person Re-Identification

As discussed before, mobile devices with exponentially increasing capabilities have
been recently introduced into the market, thus boosting the development of computer
vision algorithms for mobile devices. Though standard computer vision algorithms
can be ported to mobile devices, the computational costs required and the limited
resources have reduced their applicability. Many problems have been investigated
by the computer vision community especially for security purposes [31]. Despite
this, there is limited work that exploits the cooperation between mobile devices and
a camera network for surveillance purposes.

To monitor a wide area traditional surveillance CCTV systems are still the most
common choice. Despite the benefits of surveillance systems and the advantages of
recent and performing surveillance applications [29], static camera infrastructures
still show several disadvantages.Among of themwefind the restricted field-of-views,
the low resolution of most static cameras, and the limited communication bandwidth,
just to mention a few. In this section a client-server system is introduced to tackle
these challenges with particular focus to the task of person re-identification, that is,
the task of assigning the same label to the same person viewed by different cameras
at different time instants. The proposed system brings several advantages as it allows
to monitor a large portion of the environment using moving cameras (i.e. mobile
cameras). It also introduces a better use of resources and reduces the computational
cost of the re-identification. In particular, in this case study the objective is to find
the configuration of the mobile client device that should be used to achieve a real-
time processing while keeping high re-identification performance. To achieve such
objective and save network resources the system limits the exchanged information
-between the device and the server- to data vectors of small dimensions.

5.5.2.1 System Architecture

An overview of the proposed system architecture is shown in Fig. 5.6. The system
flow goes as follow. Given the image of a suspicious person acquired by a camera in
the network, the server computes its signature and sends it to all the mobile devices
(i.e. clients). Once the signature is received, each client starts capturing the scene.
Then, the first acquired frame of a person is sent to the server together with mobile
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CAMERA NETWORK SERVER
LEARNING
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Fig. 5.6 Client-server communication overview. The image of a suspicious person acquired by a
camera in the network is sent to the server that routes it to each of the connected mobile devices.
Then, the first image acquired by each mobile device is sent back to the server, that, exploiting a
learnt model, instructs the mobile device about which features have to be extracted to perform the
re-identification

device information regarding its computational and networking capabilities. The
server analyzes the received data and instructs the client with which features should
be extracted to achieve the best re-identification. This process is mainly guided by
a model learned during a separate off-line training phase (details in the following).
Then, each client starts to process the frames to detect the persons blob and to extract
the features as instructed by the server. The computed features are finally matched
with the previously received signature to perform the re-identification. However,
the re-identification performance may not stable over a certain period due to the
changes in illuminations, pose, etc.. To sidestep such issue a server re-configuration
is performed. This is done by forcing the client to send another frame and restarting
the whole procedure.

More in detail, as shown in Fig. 5.7, the proposed system has been designed to
exploit three main phases: (1) an offline training phase, in which the server collects
images and device characteristics (resolution, CPU performance, etc.) to train a clas-
sifier; (2) an online learning phase used to instruct the querying device about which
feature algorithm should be used; (3) a re-identification phase where the selected
feature algorithm is used to extract and match the person acquired by the querying
device with the suspect image sent by the server.

5.5.2.2 Image Complexity and Feature Extraction

The training phase and the re-identification phase share a common step, that is, the
computation of the image complexity and the extraction of image feature.

Images are classified with respect to their complexity by extracting the edges and
corners using Canny and Harris corner detector methods respectively. Let ne be the
number of edges and nc be the number of detected corners for a given image. The
image complexity denoted as C ∈ [0, 1) is computed as
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Fig. 5.7 Main system training and re-identification steps. A set of training images and the device
complexity clustering model are used to train a balanced neural tree. During the re-identification
phase, frames acquired by the mobile devices are sent to the server together with device details.
The server analyses the input data to select the most discriminative features for re-identification
according to model learnt in the training phase. Then the matching is performed with such features.
If the threshold on feature distances is reached, the system gets re-configured and the querying
devices gets instructed again about what features should be used in the next steps. This allows to
adapt the re-identification performance to the context

C = 1 −
(

α
1

ne + 1
+ β

1

nc + 1

)

(5.5)

where α and β = 1 − α are the normalization weights.
The community has developed a large number of approaches to detect and

describe discriminative patterns of a given image. Scale Invariant Feature Trans-
form (SIFT) [26] and Speed-up Robust Feature (SURF) [4] are two well-known
feature algorithms that achieve great performance under a variety of image transfor-
mations. More recently other feature detector algorithms as BRISK [23], FAST [37],
STAR [1] and ORB [38] have been proposed and designed to be runtime efficient.
A more detailed description of these can be found in the computational performance
evaluation review given in [32]. In our approach we used the aforementioned fea-
ture detectors implemented in the OpenCV libraries. As the FAST and ORB do not
incorporate a descriptor, these features are completed with the Fast Retina Keypoint
(FREAK) descriptor [2].

5.5.2.3 Training Phase

As described in Sect. 5.5.2.2, several feature algorithms can be used but, due to their
different implementations and configurations, they differ in performance and in the
number of features extracted. Differences arise depending on the kind of image and
on the device capabilities as well. An example of this is shown in Fig. 5.8. The key
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Fig. 5.8 Different state-of-the-art features are extracted from two different persons using the same
mobile device with same configuration

Fig. 5.9 Training set example. The first two columns represent the complexity of images captured
from static cameras (ImS) and from mobile device cameras (ImD). Dp represents the performance
index of each device. FA represents the feature algorithm used to compute the match. Finally Q and
T are two performance parameters and refer to the quality index and to the computational times
respectively

idea is to determin -for a given image complexity/structure and for a given device-
the most discriminating features for re-identification.

To achieve such an objective we first partitioned the space consisting of all mobile
devices by clustering it into three different groups on the basis of their capabilities.
The amount ofRAM, the frequency and theCPUmodel (e.g.dual core, quad core etc.)
have been considered to manually cluster devices in: (1) low-performance devices
(LPD), (2) medium-performance devices (MPD), and (3) high-performance devices



5 Distributed Mobile Computer Vision: Advances, Challenges and Applications 111

(HPD). This has been accomplished by first manually labeling a set of devices, then
a multiclass SVM has been trained using the one-vs-all method. SVM parameters
have been computed using 4-fold cross-validation.

Then, given a set of training images acquired by mobile devices, the image com-
plexity and the device capabilities are used to compute the performance of each
considered feature algorithm (see Sect. 5.5.2.2). In particular, we measure the fea-
ture extraction time, and a quality parameter (a distance value better discussed in
Sect. 5.5.2.4) to decide whether a feature algorithm can be used or not. If the extrac-
tion times is too high or the quality is too low, the feature algorithm is considered
as not usable on the device that is currently under inspection. It is usable vice versa.
The so computed images complexity, the device type and feature type, form the
input pattern in the training set. The label usable (1) / not usable (0), represents the
label that the classifier should return for such an input pattern. Once the training set
is built, it is used to train a balanced neural tree [30] that is next exploited by the
re-identification phase.

5.5.2.4 Re-identification Phase

During the re-identification phase, the image acquired by the mobile device camera
is used to create the pattern that is input to the trained balanced neural tree such that
the best feature algorithm for re-identification is chosen. Once the feature algorithm
is selected, it is used to extract image features and match the current image with the
signature of the suspicious person given by the camera network.

Feature Learning: The main goal of the learning is to automatically select the
best feature algorithm for the specific type of mobile device making the request. This
operation is required in two different situations: (1) when the client application starts
and sends for the first time a frame to the server and (2) when the re-identification
performance is not stable (i.e. accuracy is decreasing) over a given period of time. In
a typical scenario, the client device sends to the server the first frame and informa-
tion related to its performance (e.g.CPU model, RAM usage etc.). Once the server
receives such information, the complexity of the image is computed and the client
device is classified. A pattern containing the complexity of the images, the device
classification and the type of feature algorithm to use is created and input to the
neural tree classifier. The results of this operation is a packet containing the type of
feature and the parameters that should be used by the client.

Matching metchanism: Once the client receives the configuration packet the
selected feature is used to perform re-identification. This process is executed locally
on-board of the device. Since the exploitable feature represents a subset of the sus-
pect’s signature, only the corresponding subset is used to match the device image
with the suspect. To measure the distance between the features descriptors computed
by the mobile device f eatC and the feature descriptors of the suspicious person
signature f eat S we compute
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Φ( f eatC , f eat S) = 1− 1
∑

c,s∈match d( f eatC (c), f eat S(s))/(match + ε)
(5.6)

where d(·, ·) is the L2-norm distance between feature descriptors. ε is a small value
that avoid dividing by zero, and match is the set of matches such that the L2-norm
distance between feature descriptors is lower than a given threshold T hl2. c and
s represent the subset of features matched from f eatC and f eat S respectively.
If the distance Φ( f eatC , f eat S) is higher than a given threshold T h, a system
reconfiguration is required.

5.5.2.5 Experimental Results

In this section we report the performance of the proposed method. First, an analysis
of the feature algorithm is given, then results of the re-identification are presented.

Experimental scenario: Tests have been performed using an Asus TF101 tablet
(device A) and a Samsung Galaxy III smartphone (device B). Both the devices run
Android O.S. version 4.2.1. For each of them two different videos (V1 and V2)
that have 60 and 70 persons respectively, have been used. The video were acquired
with a resolution of 358 × 255 pixels at 30 fps. To calculate which is the best
detector algorithm for the device in use, the computational time required by each
feature algorithm has been computed considering only the time required to detect and
extract the keypoints from the given frame. Other image processing operations on the
captured frame were not considered. The reference frames from the camera network
have been acquired by an AXIS 213 PTZ and an AXIS 221 camera. The default
configuration defined by the OpenCV libraries has been used for STAR, FAST, ORB
and BRISK algorithm parameters.

Training: The first evaluation index taken into consideration to build the training
pattern is the features extraction time. As shown in Fig. 5.10 for both video V1
and video V2, ORB (red lines) is the fastest algorithm in terms of computational
times. The average frame is processed in 0.62ms. FAST (green chequered) is the
one achieving lowest performance with a processing time of about 0.81ms.

The second evaluation index taken into consideration is the number of matching
features. Table 5.3 presents the average number of featuresmatched by devices A and
B with the reference images acquired by the two cameras. Best average values are
highlighted in boldface font. FAST algorithm gives the best results with an average of
71 matches. STAR and BRISK match respectively an average of 29 and 21 matches.
ORB achieves the lowest performance with an average of 17 matches.

All such results are then used to form the train set for the balanced neural tree.
Re-identification results: During the re-identification phase the threshold T hl2

was set to 0.25 for both V1 and V2. Similarly T h was set to 0.29. These values were
chosen by using 4-fold cross-validation.

In Fig. 5.11 the matching results of the first 30 frames of one person in video V1
captured using the mobile device A are shown. ORB features have been extracted
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Fig. 5.10 Evaluation results for STAR, ORB, FAST, BRISK feature algorithms on the used devices

Table 5.3 Average number of matching features for both device A and B. The highest average
number of matching features is highlighted in boldface font

Feature type Video 1 Video 2 Average

Device A STAR 31.6 27.1 29.3
ORB 19.1 15.6 17.4
FAST 70.1 72.1 71.1
BRISK 20.8 22.3 21.6

Device B STAR 30.1 26.7 24.2
ORB 18.8 14.6 16.4
FAST 71.3 73.9 72.1
BRISK 20.9 23.0 22.2

from the first 15 frames as instructed by the feature learning mechanism. Then, at
frame 15, the distance value increases to 0.6 due the change of brightness. Such a
value is greater than T h, thus a new configuration from the server was required.
The device was then instructed to extract the FAST features. That results in a new a
distance value of 0.17 between the reference frame and the current image.

Re-identification performance on video V2, where the same device A was used,
are shown in Fig. 5.12. In this case two reconfigurations occurred. At frame 13, FAST
feature detector has been replaced by ORB as the distance of 0.34 was higher than
the threshold. Next, at frame 25 a change of the brightness forced another device
reconfiguration. The STAR feature algorithm was then used.
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Fig. 5.11 Re-identification performance on video V1 using device A. The first 15 frames were
acquired usingORB feature detector. After a change in image brightness, the device got reconfigured
and instructed to use the FAST algorithm

Fig. 5.12 Re-identification performance on video V2 using device A. Three changes of the feature
detector was required. The average distance calculated was around the value of 0.15. Two peaks
occurred respectively at frame 13 and 26

In Fig. 5.13a results of re-identification performance for device A are shown in
terms of ROC curves. The feature algorithms in Sect.5.5.2.2 have been compared to
the proposed adaptive feature algorithm. Results shows that the adaptive algorithm
outperform all other methods with a true positive rate of about 80 % for a false
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Fig. 5.13 Re-identification results in terms of ROC curves. The ROC curves have been computed
using all the frames in V1. In a results are computed for device A. In b results are computed for
device B

positive rate of about 20 %. For the same false positive rate, the other algorithms
achieve a true positive rate of about 37 %.

In Fig. 5.13b, results of re-identification performance using device B are shown.
As for device A, the proposed adaptive algorithm outperform all other algorithms.
In particular, considering a false positive rate of about 40 %, the adaptive algorithm
achieves a true positive rate of 80 %, while other methods have performance of 45 %
on average.

5.5.2.6 Conclusion and Discussion

In this case study a client-server system for re-identification using smart devices has
been introduced. The system allows to save network and computational resources
by exploiting a feature learning mechanism. A training phase is performed to cluster
devices on the basis of their capabilities and to train a classifier to select the best
feature algorithm for a given device and image complexity. Such classifier is used
in the re-identification phase to select which feature should be used to maximize
the re-identification performance. Experimental results that the client-server method
outperforms all other standard methods.

5.6 Smartphone Networks: What Next?

Camera networks have received increasing attention in recent years, in part due
to their many uses in applications ranging from surveillance and security, smart
spaces, urban monitoring, traffic management, etc. Another recent development is
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the diffusion of consumer devices with built-in cameras, e.g., mobile phones, tablets,
and Google Glass. Currently, however, camera networks and these consumer devices
occupy different use spaces. An obvious question then is whether it is possible to
integrate these consumer devices into camera networks, treating these devices as
sensor nodes within the larger camera network infrastructure. In fact, it should be
technically feasible to integrate such consumer devices into more traditional camera
networks and video surveillance infrastructures comprising primarily of stationary
and pan/tilt/zoom (PTZ) cameras. These new camera networks will usher a whole
new set of applications, from crowd-sourced and people-centric surveillance to par-
ticipatory event recording.

However, none of the existing mobile vision applications and frameworks consid-
ers the possibility of multiple consumer devices working together towards common
sensing (or imaging) tasks. Furthermore, these techniques do not explore the possi-
bility of integrating a camera-enabled consumer device into existing (surveillance)
camera networks. The work in [6] is noteworthy in that it hints at the possibility
of setting up a smart camera network comprising mobile phones. This work also
lists the key requirements for setting up such a camera network. Chiefly among
these requirements is the cooperative sensing by the mobile phones comprising the
network [6], however, fails to provide an in depth analysis of the technical chal-
lenges associatedwith (1) setting up smart camera networks usingmobile phones and
(2) integrating camera-enabled consumer devices into existing (surveillance) camera
networks. The greatest shortcoming of the proposal outlined in [6], perhaps, is the
fact that it assumes that mobile devices are stationary. It then essentially treats mobile
cameras as traditional cameras, ignoring the most notable feature of mobile phones,
i.e. mobility. The fact that mobile devices are not stationary makes setting up camera
networks of these phones that much more interesting and challenging at the same
time.

The advances in mobile computing, sensing hardware and communication tech-
nologies combined with the success of mobile vision have made it possible to stretch
the concept of a "‘smart camera"’ to the extreme: every smart device equipped with
a camera (and may be other sensors) can serve as a node in a smart camera net-
work. Setting up ad hoc networks comprising camera-equipped consumer devices or
integrating such devices into existing camera networks poses unique challenges, in
addition to those already mentioned in Sect. 5.4, with regard to stand-alone mobile
vision applications:

• These devices exhibit rapid, jittery, fast and unconstrained motions. Most existing
computer vision algorithms cannot dealwith imagery collected under such extreme
motions.

• Depending on the application, it may be required that the (camera) nodes in a
camera network establish a common coordinate system. In case of mobile devices,
no existing calibration algorithms can be readily applied to estimate the extrinsic
parameters of a mobile device, in part because the extreme and unknown motions
these devices go through. The method presented in [25] employs four reference
points (correspondences) whose locations are encoded by means of some location
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sensor (such as, an ultra-sound Cricket receiver). Four low-resolution pictures
(taken from different viewpoints) of a reference point are sufficient to estimate the
location and the orientation of a visual sensor node. There are, however, several
issues with this approach, including the requirement of having this large number
of reference points to be present in the scene and the quality or accuracy of the
calibration.

• For the reasons of the above point, the nodes within the camera network also need
a common clock for the purposes of collaborative sensing. A common clock allows
information captured at multiple nodes to be fused together to construct a more
complete picture of the event in question. Even in the absence of fine-grained
time synchronization, it is often desirable to (time) order lower-level events to
exploit causal relationship and infer higher-order event detection. An interesting
paper on this topic is [36] where the issues related to the time synchronization
in ad-hoc wireless sensor networks are studied. An important result reported in
[36] is that classical clock synchronization algorithms are unsuitable for wireless
sensor networks for two reasons: (1) limited communication range of each node
and (2) high mobility of these nodes. [36] addresses these problems as follows: it
does away with synchronizing clocks at each node. Rather it generates timestamps
using ( unsynchronized) local clocks. These timestamps are shared between nodes.
The timestamps are transformed to the local time of the receiving node. While
this method works well for ad hoc wireless sensor networks, it might not be
straightforward to deploy it on camera networks comprising mobile devices. As
stated earlier, mobile devices can exhibit a very high degree of mobility, which can
make it difficult to ensure that the assumption of connection between two nodes
for the time necessary for the complete exchange of sync messages holds under
all conditions.

• Mobile devices are unique in how these are used. A typical (camera) node in
a camera network is subservient to the network. A mobile device, on the other
hand, is there to serve the need of its user. The user might choose to use this
device to act as a part of a larger camera network. Similarly, a user might remove
this device from the camera network without any notice. A mobile device is not
always on. Even if it is turned on, it may not be pointing the right direction, the
user may not want to use it to record the events that are of interest to the camera
network, the user may be doing some else that is totally unrelated to the sensing
or processing requested by the camera network, etc.. This dynamic availability
of the phone camera is a crucial challenge that must be addressed before we can
integrate mobile devices into camera networks. One possibility is to devise ways
to inform the user that the mobile device is needed by the camera network to carry
out sensing and processing.

• Another challenge of using mobile devices in camera networks has to do with their
motion profile. As mentioned elsewhere in this chapter, mobile devices exhibit
unpredictable and extreme motions, so it is often not easy to estimate the network
topology. Centralized processing, perhaps, represents a good starting point for
estimating network topology when mobile devices are integrated into camera net-
works. Another option might be setup spatially-oriented clusters, where different
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mobile devices are clustered together based upon their locations as estimated by
GPS- or WIFI-based localization.

5.7 Conclusions

Mobile devices are an inseparable part of our society now. In particular, due to
the advances in smart and micro technology, camera sensors are now a standard
component in all mobile devices. This innovation has attracted both the research
community and the industries that aim to build advanced applications that exploit
the powerful features of mobile devices and combine them with the more advanced
computer vision and image processing techniques. In this chapter, we contributed
to the research in distributed smart cameras introducing the most relevant advance-
ments in mobile computer vision, then we discussed the main challenges that the
community for such real-time distributed smart systems is facing at this time. We
also introduced two main research studies where computer vision techniques and
distributed frameworks are used for mobile applications of augmented reality and
security purposes. Finally, we discuss the next challenges in mobile vision where the
mobile devices become part of a visual sensor network.
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