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Preface

Driven by technological improvements, the noninvasive nature of cameras,
affordable prices, security concerns, and federal government grants to aid fighting
terrorism, camera utilization has become an integral component of our daily lives.
Cameras are pervasively used for surveillance and monitoring applications such as
traffic monitoring, monitoring commercial vehicles, and surveillance at schools
and parks.

Current video surveillance systems operate in Close-Circuit Television
(CCTV), where data collected by camera are analyzed by operator or stored on a
central server for further processing. While capabilities of video-processing and
communication systems have significantly increased in the recent years due to
advances in video sensing technologies, the amount of data being produced by
such systems is becoming increasingly difficult to manage. For instance, video
sequence of HDTV format (1920 9 1080 pixels) at 30 frames per second with 24
bits depth per pixel requires 0.5 gigabytes per second in uncompressed form. The
department of defense estimates a 5,000 times increase in the amount of sensor
data for future assets in Theater and the amount of data produced by development
systems like the DARPAs Autonomous Real-Time Ground Ubiquitous Surveil-
lance Imaging System (ARGUS-IS) will be comparable to the 72 gigabytes that
the human vision sends to the brain. Current and future systems will not be able to
provide the bandwidth required to transport increasingly higher amounts of data.
Furthermore, analyzing and understanding terabytes of data in real-time require
computer architectures with capability far beyond the currently available systems
and processing power of backend servers. Current and future communication
systems, even with the most advanced video compression architecture, will not be
able to provide the required bandwidth to transport such a datastream.

Smart cameras are capable of analyzing video data in the camera, close to the
sensor, thus limiting the amount of data to be transported. Enhancing smart
cameras with communication allows for collaborative scene and event analysis,
usually in real-time, which further reduces the need for a central server. Events
detected in one camera can be transmitted to a surrounding camera for contextual
and geographical-related interpretation. Smart cameras can operate in stationary or
mobile mode.

The benefit of this approach is illustrated in the following two real-life case
studies. In the first example (Fig. 1a) a set of cameras are used for fall detection.
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Each camera can cover only a partial area of the entire scene. To detect a fall the
entire body must be available. In our example, only part of the body can be seen by
each camera, none of which can infer a fall with this partial information. The
collaboration will allow the camera to exchange partial information, which can be
combined to infer the fall.

In the second example, consider cameras mounted on cars, with car-to-car
communication capabilities. Figure 1b shows a traffic situation in which a pedes-
trian crossing the street cannot be seen by the driver of an incoming car. The
pedestrian is occluded by a stationary car, which has the pedestrian in its field of
view. This information can be sent to surrounding cars, so that their drivers can
avoid an accident.

The design and deployment of collaborative smart cameras is a difficult task,
which can be tackled only with multidisciplinary expertise. At the lowest level
within single camera, VLSI expertise is required for designing optimal and smart
CCD that can provide low-level operation on pixels. Computer architects are
needed to design dedicated systems that reflect the behavior of most image
understanding algorithms. The image processing expert will provide sound image
understanding algorithms and machine learning method for information fusion.
Communication expertise is required to design better protocols and paradigms for
real-time information exchange.

Despite its relatively young age, research in multi-camera networks is becoming
increasingly popular. The ACM/IEEE international conference on ‘‘Distributed
Smart Cameras’’ is established and is the venue for researchers and developers to
convene and discuss the most recent advances in the field. A comprehensive survey
of the activities in this field has been provided in the book by Aghajan and
Cavallero [1].

Fig. 1 Efficient visual perception with cooperative cameras a Cooperation detection of emer-
gency situations in nursing homes b Occluded pedestrian becomes visible through cooperation
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In this book, emphasis has been placed on embedded architecture for smart
cameras and mobility, thus complementing the books by Aghajan et al. [1] and
Bhanu et al. [2], whose emphasis has been mostly on fundamentals, algorithm and
software, and stationary systems.

This book is organized into three main parts that better categorize the contri-
bution. The first part deals with architecture and design flow, the second part
handles smart cameras in the mobile environment, and the last part applications.

Part I consists of four chapters and covers architectures of smart cameras and
their design flow. In Chap. 1, Wolf provides an overview of platforms and
architectures for embedded smart cameras. The contribution analyzes algorithmic
needs at high-level and presents various platforms with their expected perfor-
mance. In Chap. 2, Ahmadinia and Watson give an overview of System-on-Chip
solutions for smart camera. Chip miniaturization and increased density is leading
the way to system integration in a single chip with the advantage of performance,
robustness, miniaturization, and power saving. Ahmadinia and Watson investigate
the landscape and present the recent development in System-on-Chip solution for
imaging. Emphasis is put on processors, communication infrastructure, and
memory. In Chap. 3 Bobda et al. present the benefit of using reconfigurable
devices such as FPGA in embedded smart camera. Their smart camera is presented
as prototyping platform, along with the hardware/software partitioning for vision
application. A hardware middleware architecture is introduced, which has the
capability of reducing communication delay among smart cameras, while reducing
design burdens and increasing interoperability. Part I is completed with the con-
tribution of Mefenza et al., which deals with design and verification of embedded
smart cameras. An integrated design and verification based on OpenCV and
SystemC is presented, which allows entire hardware/software systems to be cap-
tured at a high level of abstraction. Subsequent refinements are then performed
until the final implementation, with the possibility of prototyping the entire design
in the RazorCam, an FPGA-based camera designed at the University of Arkansas.

Part II deals with smart cameras in mobile environment. In Chap. 5, Martinel
et al. give an overview of the landscape and recent developments in distributed
mobile computer vision. They use case studies (augmented reality and surveil-
lance) to illustrate the advantages of mobile and distributed computer vision.
Future challenges on the integration of mobile devices as node in visual sensor
networks are discussed. In the seventh chapter, Velipasalar et al. discuss the use of
wearable cameras for automatic fall detection and activity classification. Methods
for event detection and classification are explained and case studies conducted
with the embedded CITRIC platform. In Chap. 6, Almagambetov and Velipasalar
use embedded smart cameras mounted on vehicles to detect and track taillights of
vehicles in front, recognize common alert signals, and counting the cars passing on
both sides of the vehicle. They present the design and implementation of a robust
and computationally lightweight algorithm for a real-time mobile vision system.
Their emphasis is on low-power, with process scenes entirely on the microprocessor
of an embedded smart camera.
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Applications of distributed smart cameras are the subject of Part III. In Chap. 8,
Wang and Aghajan first review detection and tracking approaches using single
camera. Thereafter, they explore methods to combine images from multiple
sources to enable tracking in a distributed smart camera network. As application,
room occupancy estimation is used. In Chap. 9, Lee et al. discuss a self-organized
and scalable multiple-camera system for tracking across cameras with nonover-
lapping field of views. Using GPS locations of uncalibrated cameras, detection of
camera link relationships is done based on routing information provided by Google
Maps. Unsupervised learning is used here to compute network properties such as
transition time and brightness transfer function. Self-organization is enforced by
unsupervised learning, which allows to improve the scalability of the system. In
Chap. 10, Chen et al. discuss the use of soft-biometric features for person iden-
tification. Such features, which are invariant to illumination and view changes, are
integrated into the feature representation of a target. A reference set is used for
track association, instead of the appearance of targets in different cameras. The
reference set acts as a basis to represent a target by measuring the similarity
between the target and each of the individuals in the reference set. In Chap. 11,
Talla et al present a new technique for processing large and complex images,
especially SAR images. The method performs computation in parallel and is based
on a new modeling of textural parameters of a generic order n [ 1 equivalent to
the classical formulation, but which is no longer based on the co-occurrence matrix
of order n [ 1. While the work at first glance seems not connected to the topic of
the book, a closer look shows that the presented parallel approach could be used
for distributed processing and fusion of large images taken from different satellites
or different UAVs with different perspectives. This extends the applicability field
of multi-camera network to distributed remote sensing.

In the last chapter, Banerjee et al. present the use of smart camera as part of a
set-up for distracted driver avoidance. The camera is used to analyze the pose and
behavior of car occupancy to infer dangerous driving situations.

Fayetteville, AR, March 2014 Christophe Bobda
Syracuse, NY Senem Velipasalar
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Chapter 1
Platforms and Architectures for Distributed
Smart Cameras

Marilyn Wolf

Abstract Embedded computer vision places huge computational demands on smart
cameras; in addition, these systems must often be designed to consume very low
power and be inexpensive to manfuacture. In this chapter, we consider computa-
tional platforms for both smart cameras and networks of smart cameras. A platform
is a combination of hardware and software that provides a set of features and ser-
vices for an application space. We first compare a broad range of computing fabrics
suitable for embedded computer vision: FPGAs, GPUs, video signal processors, and
heterogeneous multiprocessor system-on-chip. We then look at approaches to the
design of a platform for distributed services in a smart camera network.

1.1 Introduction

Computer vision is a highly computationally-intensive task; there is effectively no
limit to the amount of computation that one can reasonably use in complex vision
tasks. Smart cameras, as platforms for embedded computer vision, must be designed
to provide high-performance computing. And like other embedded computing sys-
tems, they must be designed to meet other constraints as well: low energy and power
utilization, real-time performance, and low cost.

In this chapter, we will examine platforms for embedded computer vision.
A platform is a combination of hardware and software that provides operations and
services. Platform-based design is widely used in the semiconductor industry, with
smart phone platforms being a prime example. Some of the platforms used for smart
cameras are based on platforms originally designed for multimedia computing. Com-
puter vision and multimedia share some common characteristics since both deal with

M. Wolf (B)

School of ECE, Georgia Institute of Technology, 777 Atlantic Drive NW,
Atlanta, GA 30332, USA
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image sequences. However, many multimedia compression algorithms are designed
to require only integer arithmetic whereas many computer vision algorithms require
floating-point arithmetic.

We can extend the notion of a platform beyond a single camera to a network of
cameras. A uniform platform that provides abstract services, such as data communi-
cation, allows algorithm designers to develop applications efficiently. Not only does
a distributed computing platform abstract away details of network interfaces, but it
can also provide higher-level services such as data synchronization protocols that
are non-trivial to correctly implement.

We will start with a brief discussion of the embedded computer vision design
space. Section 1.3 describes the variety of computational fabrics available for smart
cameras. Section 1.4 expands on the discussion of fabrics to consider the design of
heterogeneous multiprocessors, notably multiprocessor system-on-chip. Section 1.5
describes platforms and techniques for distributed smart camera networks.

1.2 The Design Space

We can define several traditional computer system metrics relevant to embedded
vision systems. The term performance is traditionally used in computer system design
to refer to execution speed. Throughput and latency are both important computing
performance metrics that are relevant to embedded vision. Throughput measures the
number of computations finished per unit time; frames per second is a simple exam-
ple of a vision-oriented throughput metric. Relating algorithm-oriented throughput
metrics to CPU-level metrics such as clock speed is challenging due to the complex-
ity of both the algorithms and of processor architectures. Latency measures the time
required to finish a given calculation. Modern processors provide higher throughput
by pipelining several operations [25]. Latency at the algorithmic level often has to
do with the temporal relationships between inputs and outputs. For example, a filter
that compares successive frames will have a latency of at least two frame periods
independent of the capabilities of the underlying platform.

Energy and power are important metrics for virtually all modern computer sys-
tems. Energy consumption determines battery life of battery-powered systems; power
consumption determines heat generation, which affects the system cost and can even
determine whether the processor can operate [61]. These metrics are very important
to embedded computer vision systems. The cost of delivering power to a smart cam-
era is a significant component of installation cost. Computer vision may be performed
using cell phones that are battery powered. Physically small smart cameras can be
deployed in many interesting applications and provide new views of the subject that
provide better results than the traditional ceiling-mounted cameras. High power con-
sumption causes the camera to generate heat, which may not be compatible with
many operating environments. At higher heat levels, active cooling may be required,
increasing the camera’s size, cost, and noise.
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A proper understanding of the characteristics of applications is the key to both per-
formance and energy optimization in software design. The operations and memory
characteristics of the application need to be properly matched to the computing plat-
form to meet performance requirements without wasting either hardware resources or
energy. Application characteristics are frequently measured using simulation studies;
simulation provides the most accurate measurement of both operator and memory
parallelism. We do not know of a detailed study of the characteristics of computer
vision algorithms. However, we can learn something from studies performed on
multimedia algorithms such as video compression. Fritts [17, 18] performed a set of
experiments on the original MediaBench benchmark suite. Their experiments showed
that the benchmarks exhibit about 10 iterations per loop for video algorithms. Fritts
also introduced path ratio as a metric to measure the control content of a loop body,
P R = nexec

nbody
, where nbody is the total number of instructions in the loop’s body

and nexec is the number of loop body instructions actually executed. Experiments
showed that video benchmarks exhibited a path ratio of about 0.8, indicating that
many of these loops contain conditional evaluations. Tallu et al. [53] performed a
series of experiments to evaluate the available parallelism in multimedia applica-
tions. They created several configurations of the SimpleScalar CPU simulator with
different numbers of available resources. The largest CPU had extensive microarchi-
tectural resources, including an issue width of 16, 16 integer ALUs, 8 multipliers,
and a 16-kB data cache. These configuraitons allowed them to evaluate the amount
of CPU resources that each program could absorb. They measured nine benhmark
programs, most of which showed a value of instructions per cycle (IPC) of less than
four.

Numerical characteristics are critical to the success of embedded vision systems.
Computer vision often uses performance to describe metrics related to accuracy.
Numerical methods link the algorithmic and computational views of performance:
insufficient numerical accuracy causes vision algorithms to become unacceptably
inaccurate; numerical computations performed to unnecessary degrees of accuracy
consume energy, chip area, and sometimes execution speed. When vision algorithms
are implemented on general-purpose CPUs, IEEE Standard 754 provides several
levels of precision [15] and algorithm designers may simply perform all computations
at a precision that eliminates accuracy problems. Embedded vision systems, because
they must meet multiple metrics such as power consumption, often require more
careful attention to the required accuracy of algorithms.

Soderquist and Leeser [50] describe in detail numerical algorithms for division
and square root, two closely related operations. They identify several metrics for the
evaluation floating-point division: latency, area, throughput, complexity, and inter-
actinos with other operations. (We would also add energy per operation as another
important metric that has become increasingly important since the 1997 publication
of that article.) They identify two major types of algorithms: multiplicative and sub-
tractive. Based on a series of experiments, they conclude that subtractive algorithms,
based on the Sweeney/Robertson/Tocher or SRT algorithms, provide superior over-
all performance. SRT-based algorithms also make less use of other floating-point
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resources, making it easier to pipeline operations. Wang and Leeser [59] developed
the VFloat library which generates floating-point units for reconfigurable systems.
VFloat allows designers to specify the bitwidths for operations and to mix fixed-point
and floating-point in a system through the use of conversion modules.

Given these requirements, embedded vision system designers have several choices
for the computing platform used at a vision node. We can identify two axes for the
implementation space. One, which is often referred to as a fabric, relates to the design
and manufacture of digital components. Field-programmable gate arrays (FPGAs),
programmable processors, graphics processing units (GPUs), and semicustom VLSI
are all fabrics that provide very different benefits and costs. The other major axis
relates to architecture, namely the degree of homogeneity or heterogeneity of the
computing platform. Heterogeneous multiprocessors are used in many applications
because they provide high-levels of performance at lower energy/power and cost.
We will see that many embedded computing platforms make use of heterogeneous
architectures.

1.3 Fabrics

VLSI technology provides system designers with a variety of computational fabrics,
resulting in a wide range of performance/energy/cost trade-offs. The fabric categories
described here are not entirely mutually exclusive. For example, FPGAs often make
use of small embedded processors and some platform FPGAs include large, semi-
custom embedded CPUs.

This section describes the varieties of computational fabrics for smart cameras.
The next section describes FPGAs, followed by GPUs in Sect. 1.3.2, programmable
processors in Sect. 1.3.3, and video signal processors in Sect. 1.3.4.

1.3.1 Field-Programmable Gate Arrays

Modern field-programmable gate arrays (FPGAs) provide not only a great deal of
logic, but also on-chip memory and specialized structures for DSP. For example, the
Xilinx 7 series family [9] has several features: blocks of 32K-bit dual-ported RAM,
ranging from 13 M-bit for the Artix-7 family to 68 M-bit for the Virtex-7 family;
and DSP slices with a 25 × 18 multiplier, 48-bit multiplier, and pre-adder, ranging
from 740 DSP units for the Artix-7 family to 3,600 for Virtex-7. The Altera Stratix
V family [8] includes embedded memory blocks as well as variable-precision DSP
blocks ranging from 9×9 to 54×54, a 64-bit accumulator, internal coefficient mem-
ory, and pre-adder/subtractor. Many FPGAs also include specialized components for
high-performance networking.

Gudis et al. [22] describe a framework for FPGA-based heterogeneous multi-
processors for computer vision. The FPGA contains a set of accelerators connected
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by a crossbar. A memory controller connects the accelerators to bulk memory through
video DMA controllers; the bulk memory is shared with an ARM host processor.
The ARM processor runs a vision service framework that provides an API for video
services. The framework provides C++ classes for video drivers, resource manage-
ment, and vision services. Farabet et al. [16] developed the NeuFlow architecture
for FPGA-based computer vision. They use a dataflow style for accelerators; the
accelerators are connected in a 2-D mesh. A smart DMA unit connects the mesh to
bulk DRAM. The smart DMA provides multiple ports, each of which can operate
independently.

1.3.2 Graphics Processing Units

Graphics processing units (GPUs) are widely used in desktops and laptops to perform
graphics functions; they are also increasingly used in mobile devices. GPU archi-
tectures are still evolving as VLSI device densities increase, but broadly speaking
we can identify some common characteristics of GPUs. They make use of single-
instruction multiple data (SIMD) architectures; SIMD is well-suited to graphics
algorithms because the screen can generally be divided into independent regions.
They make use of small, localized memories near the processing elements to provide
large memory bandwidth to the function units. They also provide limited-precision
floating-point arithmetic.

Relatively little work has been done to implement computer vision algorithms on
GPUs. Fung and Mann [19] described the OpenVIDIA library for computer vision
algorithms on GPUs. For example, they used the vertex processor, rasterizer, and
fragment processor to compute a Hough transform forl line detection. They also
implemented a Harris corner detector that could be used for feature tracking. In
a separate article [20] they discussed the use of GPUs for computer vision algo-
rithms. They identified several features of GPUs that are useful for computer vision:
local caching well-suited to spatially-coherent accesses; on-the-fly integer/floating-
point conversions, non-pageable pinned memory, and streams for paralel processing.
Li et al. [35] implemented a face detection algorithm based on the Haar transform on
an Intel platform that contained both a GPU and CPU. Wang et al. [58] implemented
object removal using OpenCL.

Nagendra described a method for analyzing the performance of automotive image
sensors and demonstrated results from GPUs [42]. Those experiments benchmarked
an object detection algorithm by Viola and Jones [57] using an Nvidia 7800GTX
GPU and a 3 GHz Xeon processor. Although this GPU is more powerful than those
typically found in mobile applications, they reported speedups of several hundred
times over the CPU.
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1.3.3 Programmable Processors

Programmable von Neumann processors fetch instructions from a memory, then exe-
cute the instruction. Computer architects have devised a wide range of machines that
fit the von Neumann model. Computer vision systems often employ three variations:
the central processing unit (CPU), digital signal processor (DSP), and video signal
processor (VSP). The term CPU is a broad brush term for a processor that is not
optimized for the application at hand. CPU and reduced instruction set computer
(RISC) processor are often treated as synonymous, although not all CPUs are RISC.
CPUs are often used to run operating systems and user interfaces; they are also often
used to perform tasks that are not amenable to processor optimizations. DSP is also a
term that has been used without regard to particular meaning, but the term originally
applied to processors with two features: a hardware multiplier and separate memories
for instructions and data. Hardware multipliers, although less expensive today, were
considered a novelty for quite some time; the AT&T DSP-16 [5], widely regarded as
the first DSP, included a multiplier configured for use in multiply-accumulate oper-
ations. The DSP-16 also provided separate instruction and data memories, known as
a Harvard architecture; this architecture is strictly different from the von Neumann
model, which combines instructions and data in a single memory. However, machines
with separate instruction and data caches are often classified as DSPs. We will discuss
VSPs below; these machines combine some aspects of DSPs with mechanisms for
highly parallel instruction execution. After discussing VSPs, we will briefly touch
upon enhancements to programmable processors.

Processors can be supplemented by a variety of mechanisms to enhance important
operations. Specialized instructions, co-processors, and vector units are all examples
of common enhancements to processors.

Many early operations in computer vision systems exhibit regular access patterns
and relatively simple numeric properties. For example, the Haar transform is a wavelet
transform that computes sums and differences of numbers and division by

√
2. These

operations can be efficiently mapped onto loops on integer processors. Given the
prevalence of loops in digital signal processing, DSPs typically provide support for
efficient loop operation. The TI 674x VLIW DSP [29] uses the SPLOOP mechanism
to implement software pipelining. In software pipelining, instructions are generated
that perform different phases of several loop operations simultaneously; the code
is generated so that each iteration uses a different part of the CPU resources. This
technique normally requires recoding the loop into three sections: prolog, kernel,
and epilog. The SPLOOP mechanism generates the required sequence of instructions
for software pipelining based upon a single iteration of the loop that is kept in an
internal buffer. The loop iteration buffer also reduces memory bandwidth and energy
requirements.

Many general-purpose processors now include multimedia operations; the Intel
MMX instruction set is one such example [44]. These instructions take advantage
of the fact that the CPU datapath’s carry chain can be split to perform several
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simultaneous operations on subwords. Such instructions are limited to integer oper-
ations on shorter word lengths.

A co-processor is closely tied to the execution unit of the processor. A co-processor
responds to an instruction opcode and is dispatched by the execution unit. (In contrast,
the accelerators we will discuss below appear more as I/O devices and are not asso-
ciated with opcodes.) Floating-point operations are often organized as co-processors
but more complex operations are also performed in this way. For example, the TI
C55x DSP [28] provides processors for pixel interpolation, motion estimation, and
for DCT/IDCT.

Vector units were originally developed for scientific computation. Many numer-
ical algorithms are expressed as matrix and vector operations. Vector units directly
perform operations such as vector addition and multiplication. Such units are infre-
quently used in computer vision platforms. However, they are available on other
embedded platforms. For example, the Quovira MPC5676R [49], designed for auto-
motive engine control, includes two Power Architecture CPUs and a floating-point
vector processing unit.

1.3.4 Video Signal Processors

Video signal processors (VSPs) were originally developed for multimedia applica-
tions such as video/audio compression and decompression. VSPs are at the core of
embedded computer vision systems.

VSPs are organized as very-long instruction word (VLIW) processors. A VLIW
processor has a staticially-scheduled instruction stream; in comparison, superscalar
processors use hardware in the CPU’s execution unit to dynamically schedule instruc-
tions. VLIW instructions that are similar in scope to a RISC instruction are organized
into packets. At run time, the processor fetches a packet and executes the instructions,
usually simultaneously but in some cases over a few cycles. The compiler’s job is to
generate instructions and packets that are optimized for performance (and perhaps
energy consumption) while adhering to two forms of correctness constraints: the
ordering of instructions into packets must not violate the data dependencies implied
by the program; and the packets must not violate the allocation constraints imposed
by the limitations on available hardware in the CPU.

Several parts of the VSP microarchitecture have received attention: the allocation
of PEs, register file organization, crossbars, and off-chip vs. on-chip memory. The
number of processing elements puts one upper bound on the number of parallel
operations that can be performed by the machine. Another upper bound is given by
the number of ports on the register file: a binary operator would require three ports,
two for the operands and one for the result. The delay of a register file increases
superlinearly with the number of ports [14]. The number of processing elements
required depends on the balance of other architectural parameters, such as the number
of ports in the register file and the clock rate [13]. A VLIW machine relies on the
compiler’s ability to combine registers and function units in a variety of combinations
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places stress on the interconnect network between the registers and function units.
Crossbars are typically used to connect the registers, function units, and memory in
a VSP [12]. VSPs tend to have flatter memory hierarchies than do general-purpose
CPUs because multi-level caches tend to provide smaller benefits for the access
patterns of multimedia applications [14].

Modern VSPs such as the TI 320C6727B [30] illustrate these principles:

• The CPU contains a total of eight function units organized into two clusters.
Each cluster contains a data addressing unit for data transfers, a multiplier, and
arithmetic, logical, and branch operators.

• Each cluster has a 32-entry register file that is accessible to all the function units
in the cluster.

• The processor supports floating-point multiplication, addition, and subtraction.
• On-chip memory provides RAM for program and ROM for program and data.

A program cache is also available.

1.4 Heterogeneous Architectures

Multiprocessors are often used in high-performance computing, including embedded
computer vision. A single processor, even a VLIW machine, often does not provide
enough computational throughput for complex vision applications. Multiprocessors,
beyond providing sheer computational horsepower, allow a complex vision pipeline
to be spread across multiple processors, providing an efficient mapping from appli-
cation to architecture. Multiprocessors may be implemented in custom VLSI or
FPGAs.

Multiprocessors are now common in desktop and laptop computers. These proces-
sors are known as multicores because they use several identical CPUs, each known
as a core, connected by a network to a set of caches. This homogeneous architecture
allows operating systems to migrate tasks and manage performance, power consump-
tion, and thermal behavior. However, multicores are not widely used in embedded
applications. Austin et al. [3] evaluated a workload consisting of applications that
included speech recognition, computer vision, video compression, graphics, and
communications; based on trends in 2004, they showed that this workload would
require computation rates about 16 times that provided by a 2 GHz Intel Pentium 4
processor. Multicores are also less energy-efficient than specialized alternatives. As
a result, many embedded computing platforms are heterogeneous multiprocessors.

We first introduce multiprocessor system-on-chip platforms as examples of
heterogeneous architectures. We then discuss accelerators for computer vision
applications. We close with a brief discussion of interconnect for single-chip
multiprocessors.
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Fig. 1.1 Organization of a typical heterogeneous MPSoC

1.4.1 Multiprocessor System-on-Chips

A multiprocessor system-on-chip (MPSoC), as shown in Fig. 1.1, is a single-chip sys-
tem including multiple programmable processors, memory, and I/O. Wolf et al. [64]
discuss the history of MPSoCs in general; single-chip multiprocessors gained com-
mercial acceptance in the embedded space well before their appearance in general-
purpose systems. Given the aggressive performance and energy requirements of
multimedia applications, embedded multimedia has been a driving force in the devel-
opment of MPSoCs. While some MPSoCs are homogeneous configurations of the
same processor type connected by an interconnect network, many MPSoCs are het-
erogeneous and contain several different types of processors. MPSoCs often make
use of specialized accelerators that perform key, well-defined operations at high rates
and low energy consumption. MPSoCs also provide a set of I/O devices tailored to
an application space.

Many embedded vision systems make use of the MPSoCs developed for multi-
media applications, either for plug-powered home entertainment systems or multime-
dia processors for cell phones and tablets. A multimedia MPSoC typically contains
several elements:

• a RISC processor used for system control, operating system, and some miscella-
neous multimedia computations;

• a VSP to execute multimedia kernels;
• accelerators for key operations such as DCT, motion acceleration, or display oper-

ations;
• on-chip memory;
• I/O devices for standard interfaces such as USB as well as video- and audio-centric

I/O standards such as HDMI and SPDIF.

The TI TMS320DM814x Da Vinci processor [31] is an example of a modern
multimedia MPSoC. It provides a media acceleration processor in parallel with its
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VLIW and ARM cores. The HDVICP2 processor is designed primarily to support
video, image, and audio compression and decompression. Some of its modules may
be useful for computer vision operations: the iME3 accelerator performs motion
estimation, iPE3 performs intraprediction estimation, CALC3 performs forward and
inverse transforms, and the iLF3 performs deblocking filtering.

The Mobileye EyeQ [51] is an MPSoC designed to support automotive computer
vision applications. Its major components include:

• two ARM CPUs, one for utility functions and the other for vision algorithms that
are not well suited to hardware acceleration;

• an engine for image scaling, preprocessing, and image pattern classification;
• a tracker engine;
• a lane detection engine that identifies lane marks and road geometry;
• an engine for convolver, image pyramid comptuations, edge detection, and image

filters;
• a 4 × 4 interconnection network.

1.4.2 Accelerators

Multimedia processors typically rely on accelerators for a significant fraction of their
computation budget. The set of accelerators for multimedia has been well-explored.
The design space for computer vision accelerators has not been mapped out to the
same extent. One significant difference between the two is that multimedia acceler-
ators usually require only fixed-point computation of limited precision; in contrast,
many computer vision algorithms require floating-point arithmetic to provide suffi-
cient accuracy.

Motion estimation is the most computationally expensive step in MPEG-style
video compression and therefore has received a great deal of attention. Block match-
ing motion estimation compares a current block (a) to a macroblock in a reference
frame (b) in order to find the offset for the current macroblock relative to the ref-
erence frame. A common objective is to minimize the sum-of-absolute-difference
(SAD) error between the two frames, where the SAD can be written as

∑

1≤i≤N

∑

1≤ j≤N

≥a(i, j) − b(i + mx , j + my)≥ (1.1)

A search over possible motion vectors m produces the motion vector that provides
the best match between the reference and current macroblocks. The problem was
originally formulated as a full search over the reference area but modern algo-
rithms perform heuristic searches that cover only a subset of the reference area.
Even with less-than-full search, block motion estimation requires a great deal of
memory bandwidth. Yang et al. [68] developed an accelerator for motion estimation.
Their architecture took advantage of the access patterns created by the correlation of
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the current block to successive areas of the reference block; it shifted one set of pixels
from function unit to function unit while holding the other set in place. Schlessman
et al. [47] extended a motion estimation architecture for shape recognition; this archi-
tecture used the correlation function performed for motion estimation to compare an
image region to target shapes.

Disparity analysis of two images is a basic process in stereo vision. Barnard and
Thompson [4] used an iterative algorithm to compute the likelihood of matches
between features in images. Zitnick and Kanade [69] developed an algorithm for
generating disparity maps including occlusion detection. Morat et al. [41] developed
a method to evaluate the accuracy of stereo vision systems for cars. Their method is
based on the accuracy with which the 3-D scene can be reconstructed from stereo
data. Gudis et al. [23] developed an FPGA-based stereo vision system. Their system
iteratively builds and processes six levels of Gaussian pyramids. At each level, the
previous level’s disparity estimate is used as an initial value for search. A shiftable
window unit computes sum-of-absolute-differences for candidate disparities to pro-
duce a disparity map; the SAD unit is fed by a three-port memory with each word
corresponding to eight pixels. A disparity optimizer refines the disparity results,
followed by estimation of invalid disparity values produced by the previous stages.
Their accelerator used a six-port external memory.

The discrete cosine transform (DCT) has also received a great deal of attention.
2-D DCT is often implemented as a pair of 1-D DCT operations and a transposition,
although direct 2-D DCT is becoming more common. The forward 1-D 8-point DCT
transform of f (i) is given by

F(u) = 1

2
C(u)

∑

1≤i≤N

f (i) cos

[
πu(2i + 1)

16

]
(1.2)

where C(i) = 1√
2

for i = 0 and 0 otherwise. The 1-D DCT processor by Ruetz

et al. [45] is one example of a hardware-oriented algorithm for DCT; it computes
four-point inner products and some additional additions and subtractions. A variety
of vision algorithms have been developed to exploit the DCT.

The Lucas-Kanade optical flow algorithm [38] is a good candidate for accelera-
tion: it is widely used and combines regular memory access patterns with a significant
numerical core. Given the partial derivatives (or differences) of a frame I as Ix , Iy, It ;
we talk about a pixel in the frame as I (x, y). We compute the optical flow based on
an n × n window in the frame. We want to compute the vx , vy motion vectors as:

[
vx

vy

]
=

[∑
1≤i≤n

∑
1≤ j≤n Ix (i, j)2 ∑

1≤i≤n
∑

1≤ j≤n Ix (i, j)Iy(i, j)∑
1≤i≤n

∑
1≤ j≤n Ix (i, j)Iy(i, j)

∑
1≤i≤n

∑
1≤ j≤n Iy(i, j)2

]−1

×
[∑

1≤i≤n
∑

1≤ j≤n Ix (i, j)It (i, j)∑
1≤i≤n

∑
1≤ j≤n Iy(i, j)It (i, j)

]
(1.3)
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Schlessman et al. [46] designed an optical flow accelerator that made use of custom-
designed limited-precision floating-point operators. The first step in the optical flow
computation is a convolution of a 2 × 2 mask with the image; since the values of
the mask are ±1 this operation is straightforward. The next step is to compute AT A
and AT Gt where A = [Gx G y]. Careful organization of this computation limits the
complexity of this step. The most computaionally expensive step is a matrix inversion
required on AT A. The matrix to be inverted is of size 2 × 2, which allows the form
of the inversion to be simplified. However, the reciprocal of the matrix determinant
must stilll be computed; the reciprocal is the most expensive operation required for
the algorithm. The unit uses the Symmetric Bipartite Table Method [48], which
performs a second-order Taylor approximation. A table lookup is at the core of this
algorithm; the size of the table was reduced to 210 × 15 + 210 × 5 bits.

The mixture-of-Gaussians approach algorithm is widely used for adaptive back-
ground elimination. An algorithm by Horprasert et al. [27] is one example. Several
Gaussian models are kept, each with a different estimate of the state of each pixel. The
algorithm first compares Gaussians of each model to find matches; it then updates
Gaussian mean and variance and updates the weights. A pixel α is characterized as√

X−μx
σx

. The Y, Cr, and Cb color components of each pixel are weighted relative to
their average value a, combined and compared to a threshold to determine whether the
pixel should be classified as foreground or background. The algorithm keeps several
sets of pixel statistics (typically four sets) to account for varying image statistics over
space and time; a weighting function is used to rank the usefulness of the Gaussians.
Schlessman et al. [46] also described a hardware architecture for Horprasert et al.’s
algorithm. It performed three major functions: comparison of match Gaussians to
pixel intensity; updating of means and variances; and updating of Gaussian weights.

Image pyramids are widely used in vision algorithms. The Laplacian pyramid was
introduced by Burt and Adelson [6] as a method for image compression. They use a
Gaussian function such as

g(x) = 1√
2πσ

e
−x2

2σ2 (1.4)

to smooth the image, then subtract the filtered image gl from the original gl−1 giving
a prediction error Ll(i, j) = gl−1(i, j) − gl(i, j). They then apply the operation on
gl to produce gl+1, repeating the operation several times to create the image pyramid.

Clemons et al. [7] developed the EFFEX accelerator that can support several
feature extraction algorithms, including SIFT, FAST, and HoG. Consider SIFT [37]
as an example. The algorithm is designed to provide results that are invariant on a
variety of image transforms, including scaling, rotation, and translation. An image
pyramid is built with a series of Gaussian smoothed images; smoothing is performed
with a series of !-D Gaussian functions in x and y. Features are detected at ech level
of the pyramid by computing image gradient and magnitude from the pixels Ai j :

Mi j =
√

(Ai j − Ai+1, j )2 + (Ai j − Ai, j+1)2 (1.5)

Ri j = atan2(Ai j − Ai+1, j , Ai, j+1 − Ai j ) (1.6)
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The resulting key is described using blurred samples in the region around the key; the
samples are performed at two levels of the image pyramid. The EFFEX accelerator
architecture includes several function units. A one-to-many comparison unit com-
pares an operand to 16 other values, returning the number of values that are greater
than/less than the operand. A convolution MAC performs an inner product on two
floating-point vectors. A gradient unit uses the Sobel convolution kernel to compute
the gradient of an image patch. Their memory is organized into 2-D patches; software
that feeds the accelerator stores the image pixels in patch order; a single patch can
be read by the accelerator by reading only one DRAM row. They compared their
architecture to CPU and GPU implementations and showed that it provided improved
frame rate per unit area.

1.4.3 Interconnect

Packet-based or flit-based networks-on-chips (NoCs) have been widely studied for
single-chip multiprocessors. Many multicore processors use bus-based communica-
tion fabrics but other network architectures are also used in system-on-chip designs.
Wolf surveys networks-on-chips [61].

Transaction-oriented NoCs are used in large systems-on-chip, notably cell phone
processors. These networks augment the core, packet-based network with network
adapters that deal with their host processor at a transaction level consisting of a block
of data, a destination address, and a set of QoS requirements. The network adapters
schedule packets on the network based on both QoS requirements and the current
state of the network. Weber et al. [60] describe a QoS-oriented service model for
NoCs. They divide time into epochs as a time granularity for arbitration. A global
epoch is composed as a set of local epochs, each of which corresponds to a set
of thread requests to a target or set of targets. Bandwidth allocations are set by
the application. The network adapter uses a credit mechanism to keep track of a
thread’s use of bandwidth. Once a thread’s credit counter goes negative, the thread is
demoted. van der Wolf and Henriksson [63] identified the interface to bulk DRAM as
a critical bottleneck for video processing systems. van der Wolf and Geuzebroek [62]
describe QoS mechanisms for SoCs. They identified a set of traffic parameters for
QoS-oriented traffic:

• bandwidth;
• the number of transactions in a burst;
• burstiness gap, or the time between bursts;
• transaction size;
• the ratio between reads and total transactions;
• the addressing relation between consecutive transactions;
• the maximum number of outstanding transactions;
• QoS class;
• average or maximum latency requested.
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Xu et al. [67] studied network-on-chip designs using as a benchmark data from
a smart camera gesture recognition system [65]. Their data showed frame-oriented
periodicities as well as variations in traffic from frame to frame. In another study [66],
they studied traffic from an H.264 decoder as well as the gesture recognition system.
They showed that different parts of the vision pipeline generated different amounts
of data and that an asymmetric network provided significant power savings over a
symmetric network that provided equal bandwidth to all processing elements.

1.5 Distributed Camera Networks

Single cameras are often insufficient to cover a given scene, requiring the use of
camera networks. A basic decision is whether to stream video to a remote node for
processing or to perform at least some processing in-camera. Standard streaming
systems can be used to deliver video streams to remote nodes. IP camera refers to a
camera that sends a video stream over a network using the Internet Protocol. A variety
of IP cameras are available with various combinations of wired and wireless network
connections. Cloud-based analysis offers simplified algorithms at the expense of
increased network traffic.

In this section, we consider the architecture of distributed camera networks. We
first consider the software platform used to support distributed computing from the
smart camera nodes. We then consider two types of algorithms that have been devel-
oped for distributed camera networks: calibration and tracking. Both these prob-
lems illustrate techniques used to generate compact descriptions that can be shared
between cameras without transmitting full video.

1.5.1 Distributed System Architectures

Doblander et al. [11] designed a software architecture for distributed smart camera
systems. Their architecture includes a DSP framework and a SmartCam framework.
The SmartCam framework is designed to run on the network processor, on top of
a standard operating system such as Linux. Communication is organized around a
publish-subscribe model that abstracts messages from the underlying communica-
tion mechanisms. Communication is performed using mailboxes; large video data
objects are not copied but rather identified by reference. The DSP framework abstracts
the hardware and communication, supports dynamic loading/unloading of tasks; and
management of on-chip and off-chip resources. The DSP algorithm component model
is an extension of the Texas Instrumetns XDAIS model. The framework monitors
several resources in order to satisfy QoS requirements: CPU utilization, DMA, mem-
ory limits, PCI bus load, memory usage, execution and communication times. The
system provides fault tolerance using dynamic reconfiguration and QoS adaptation.
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Lin et al. [36] describe the software architecture of a distributed gesture recogni-
tion system. They used model-based design techniques to create a service-oriented
architecture. Services consisted of vision operations such as contour following and
ellipse fitting. A middleware layer provided generic operations used to mediate
between the application and particular services: data dispatch, service registration,
dynamic binding, etc. It was also responsible for service scheduling and routing
messages between services. Three types of messges are provided: service discovery;
incoming service binding; and service access.

MPI [21] is widely used for parallel and grid computing. Communication between
processes is organized around communicators. Communicators support both point-
to-point communication between pairs of processes and collective communication
between sets of processes. MPI is not widely used to build distributed embedded sys-
tems, but some efforts to develop MPI variants suitable for real-time embedded com-
puting have been made. eMPICH [40] is designed for memory-constrained systems;
they compared two approaches to building such a library and compared the object
code size required for each. Kanevsky et al. [32] describe MPI/RT, whichprovides
MPI-style communication with quality-of-service (QoS) requirements. It supports a
time-driven communication model that specifices communication requirements over
a time interval. An event-driven model allows QoS parameters to be used to control
the start or stop of an application or data transfer. A priority-driven model specifies
priorities for communication channels. Agbaria et al. [1] developed LMPI as a light-
weight implementation of MPI. Their design distinguishes server nodes which run
an MPI package and process nodes which provides basic communication operations.
Processes on process nodes communicate with LMPI servers on server nodes, relying
on the server nodes to perform MPI functionality. Ly et al. [39] developed an MPI
implementation for FPGAs. They note that such systems must deal efficiently with
three types of interaction: software-to-software; software-to-hardware accelerator;
and accelerator-to-accelerator. They developed a DMA engine that uses burst trans-
actions on memory to improve the performance of MPI transactions. They designed
a non-blocking, non-interrupting request operation to allow software-hardware inter-
actions to take maximum advantage of allowable parallelism. They also introduced
an MPI_Coalesce() function to coalesce several MPI messages into a single
physical operation whose performance can be optimized by the underlying hard-
ware.

Hong et al. [26] proposed the target container programming model for the design
of tracking systems. Each tracking target is associated with a target container, each
with its own context. Some tracking algorithms require association between several
targets, which is provided by allowing target containers to contain multiple trackers.
They use an equlality checker to determine if two currently active target containers
are, in fact, tracking the same target; in that case, the duplicative target containers
are merged.
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1.5.2 Calibration

Camera systems need to be calibrated in both space (determining what part of the
scene is viewed by each camera) and time (synchronizing the video streams of the
cameras). Hartley and Zisserman analyze the geometry of multi-camera systems in
detail [24]. Devarajan et al. [10] developed a distributed algorithm metric camera
calibration. They model the camera network using two graphs. The communication
graph is based on network connectivity—it has an edge between nodes that directly
communicate; this graph can be constructed using standard ad-hoc network tech-
niques. The vision graph is based on signal characteristics—it has an edge between
two nodes that have overlapping fields-of-view; this graph needs to be constructed
during the calibration process. Each camera is described by one matrix that gives
the rotation and optical center of the camera and another matrix that describes the
camera’s intrinsic parameters (focal length, etc.). An initial calibration estimate is
constructed from a set of common scene points with outliers rejected using RANSAC.
Belief propagation is used to improve the initial result.

Stone and Sekercioglu [52] developed an algorithm for estimating camera over-
lap; their algorithm requires relatively low communication bandwidth between the
cameras. They use SURF to identifiy features in low-quality webcams. They then
match features using a nearest-neighbor algorithm, then calculate the homography
between the points using RANSAC. They compose the feature vectors into a matrix,
then use singular value decomposition to find the principal components of the matrix.
The number of components transmitted can be adjusted based on available band-
width.

Temporal calibration ensures that correct sets of images are compared across
cameras. Consumer-grade cameras can exhibit significant variations in frame rate;
our laboratory measured several consumer video cameras and found variations of
20 % in frame rate between them. Even professional cameras can exhibit some vari-
ation in frame rates that can cause significant temporal registration errors when the
cameras are run for long periods, as is required in many vision applications. Early
multi-camera systems distributed a synchronization pulse to all the cameras; this
technique requires careful engineering and doesn’t work for cameras that are sepa-
rated by a significant distance. Velipasalar and Wolf [56] developed an image-based
algorithm for temporal calibration. They first calibrated the cameras spatially, then
tracked a target that could be seen by the cameras being registered, generating a
video sequence for each. A simple tracker selects an anchor point for the target in
each frame based on the bounding box. Correlation is used to compare the positions
of the anchor points to find the offset between the video sequences that minimized
the tracking discrepancy.
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1.5.3 Tracking

A key problem in tracking with distributed camera networks is to minimize the
amount of data transmitted. This generally requires developing an appearance model
as well as a position indicator; a combination of both position and appearance can be
used to identify targets. Several distributed tracking algortihms have been developed
that illustrate several compact representations for tracking data.

Oh et al. [43] developed an approach called Markov chain Monte Carlo multi-
target tracking (MCMC-MTT). Each smart camera in the system generates obser-
vations yi of a set of targets; the identity and appearance of the targets is not
known in advance. The tracking algorithm partitions these observations into tracks
τ = {y1, . . . , yt } such that the assignment of observations to tracks is as consistent as
possible. When a new observation is made available, the observation must be added
to a track or a new track must be created; the information added by the observation
may cause a previous observation to be moved to a different track. An update to the
set of observations transforms the set of all tracks ω into the new set of tracks ω∀. The
optimization problem’s goal is to maximize the posterior of ω∀. Oh et al. formulated
the search for the maximum-posterior track assignment as a Monte Carlo problem
and proposed several types of moves that generate or destroy tracks, add observa-
tions to tracks, or move observations. Kim and Wolf [33] developed a distributed
algorithm for MCMC-MTT. Their algorithm first estimates local paths using obser-
vations at each camera that partially overlap with the observations of nearby cameras;
it then concatenates local paths. Concatenation does not rely on the appearance of
observations but rathern is based on ownership and path characteristics.

Velipasalar and Wolf [55] developed a multi-camera tracking system for a network
of uncalibrated cameras. They used field-of-view lines to determine the intersection
of regions visible to multiple cameras. Each camera in the system tracks each target;
they then compute the corresponding locations of targets in other cameras’ coordi-
nates to determine when several cameras can simultaneously see the same target.
Their distributed tracking system [54] used MPI as its communication mechanism.
The cameras communicated using non-blocking communication, allowing each cam-
era to post its tracking results and then continue to analyze new frames. They used
point-to-point communication between cameras with overlapping fields of view; no
central message server was required. Each communication consisted of 256 bytes of
data.

Kushwaha and Koutsoukos [34] developed a network algorithm for 3D tracking.
They used the Bhattacharyya coefficient to model the similarity between a reference
target model and an observation and a particle filter for tracking. The particle densities
were not directly transmitted but were instead modeled using a Gaussian mixture
model. Intermediate nodes in the network were used to further reduce network traffic;
these agregation nodes first multiplied Gaussian models from severa cameras, then
reduced the number of components in the result for further transmission.

Arth et al. [2] developed an algorithm for object reidentification in distributed
smart camera networks. This algorithm is used for consistent identification of an
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object across multiple uncalibrated cameras. They identified keypoints using differ-
ences between normalized, Gaussian blurred images, then used principal component
analysis to represent the set of features. To be able to compare two images, they
organized the features into vocabulary trees, with the path thorugh the tree to the
closest feature forming the signature.

1.6 Conclusions

Smart camera system designers have a wide range of computational fabrics on which
to base embedded vision systems. Proper matching of the algorithm to the computing
platform allows the designer to extract maximum accuracy from the system while
meeting other goals such as power consumption. The space of accelerators for com-
puter vision algorithms, however, is not as well understood as that for multimedia
accelerators. Platforms for distributed computer vision are not as well advanced.
Given the broad range of interest in Internet-of-things and networked cyber-physical
devices, we can hold out some hope for the development of distributed computing
platforms that can be leveraged for smart camera networks.

Acknowledgments Thanks to Tom Conte of Georgia Tech for discussions on computer architecture.
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Chapter 2
A Survey of Systems-on-Chip Solutions
for Smart Cameras

Ali Ahmadinia and David Watson

Abstract With the advances in electronic manufacturing technologies, integration
of disparate technologies including sensors, analog components, mixed signal units
and digital processing cores into a single chip has become reality, which is an increas-
ing trend in different application domains, especially for distributed smart camera
products. In this chapter, a survey of existing System-on-Chip solutions for distrib-
uted smart cameras able to capture and intelligently process video in real-time and
communicate with other cameras and sensors remotely is presented.

2.1 Introduction

Smart cameras consist of three main units: Sensing, Processing, and Communications
[18] as illustrated by Fig. 2.1. The sensing unit is responsible for image capture and
may also perform pre-processing before the main processing task(s) are performed.
The processing unit carries the main computation and is therefore the brains of the
smart camera. The processing unit comprises Processing Elements (PEs)—which
include all forms of processors such as Digit Signal Processors (DSPs), hardware
functions/accelerators, and microcontrollers—on- and off-chip memories, and the
communications architecture(s) used for inter- and intra-processor communications
and data movement. The last unit is the communications unit which is responsible for
transmitting the processed/abstracted data to output devices, where the end user can
use it. These three units together make up the architecture of System on Chip (SoC)
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Fig. 2.1 Architecture of smart camera SoC solutions [18]

smart cameras, and are therefore directly responsible for the abstracted representation
of the input data following processing of input data [18].

Since smart camera SoC solutions provide a service to the end user, there are
several Quality of Service (QoS) attributes associated with them. The QoS char-
acteristics of smart camera SoCs encompass attributes such as frame-rate, transfer
delay, image resolution, and video-compression rate [3]. However, as SoC-solutions
for smart cameras are embedded devices, power consumption and resource con-
sumption are also important attributes and should be minimised where possible. The
frame-rate of a smart camera is dependent on the task it is performing. For example,
a smart camera monitoring a car park may require real-time frame-rates of 30 frames
per second (f/s)—in the interests of security; whereas a smart camera monitoring
the flow of traffic on a busy stretch of road may not require real-time frame-rates:
application discretion is required. Transfer delay can impact the frame-rate of the
system and is dependent on the sensing unit used and data-movements of the system
[14], which is directly impacted by the resolution of the input data from the imaging
sensor and any compression methods used.

Each of theses attributes have a direct impact on the energy and resource con-
sumptions of the smart camera SoC, and it is therefore paramount that the processing
unit be optimised for the processing and movement of the input data. One last consid-
eration for QoS in modern-day smart camera SoCs is security, where the collection
of data that is sometimes private can introduce the need for the safe storage and
transmission of data [20]. Smart camera SoC designers must also be aware of the
need for encryption and secure network protocols, as the scale and complexity of
smart cameras evolves. Table 2.1 summarises the QoS requirements of embedded
smart camera SoC solutions.

Smart camera SoCs can be classified based on the decision classification network
depicted in Fig. 2.2. Here we have decomposed the classifications of smart camera
SoC solutions into the SoC used to perform the smart camera functions, such as
processing, display, etc. and the smart camera solution as a whole and how it inter-
acts with the end user. Note, we have abstracted the development/implementation
platform into the SoC sub-categories, as this allows the classification of modern-day
smart cameras more accurately. Smart cameras themselves can perform function(s)
as a standalone agent, or as part of a larger network of smart cameras. The use
of smart cameras in a distributed manner allows more data to be collected about
a scene or environment and therefore allows more astute deductions to be made
about image scenes [18]. The distribution of smart cameras can be wired or wireless,
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Table 2.1 Table of QoS attributes for smart camera SoCs

Attribute Description Sample Operating
Characteristics

Throughput Time required to capture, process,
and output and image

Real-time = 30 f/s

Power consumption Power consumed by all units of the
smart camera SoC: directly impacts
running costs

Within the region of mW
is nominal

Resource
consumption

Computational and memory
resources consumed by the SoC:
directly impacts implementation
costs

Ranges from bytes to
kilobytes

Fig. 2.2 Classification network for smart camera SoC solutions

however distributed smart cameras tend to be wired, as they have more computational
power and are not as focussed on power/resource consumption [18].

Smart cameras are used in a variety of contexts, from surveillance and object
tracking, to medical procedures and smart environments [18]. The use of smart cam-
eras to create intelligent spaces—environments where the status of objects can be
readily ascertained—has been investigated by Manbhai [22]. However the develop-
ment environment is not embedded. With the increase in data available from smart
cameras, the processing of input data has taken on more complex roles, including
the rendering of stereo images for depth perception applications [19]. For a thorough
and complete survey of smart camera SoC solutions related to embedded systems,
we only include design and implementation work relevant to SoC design.

2.2 Sensing Unit

The sensing unit is responsible for image capture and can also be used for pre-
processing images before the main processing is performed. CMOS imaging sensors
are a popular choice for smart cameras as they allow for the access of pixels in a
similar manner to that of random access memory [7]. CMOS sensors also allow
for the fabrication of hardware functions close to the sensor [7], making them
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CMOS 
Sensor

Memory

Pre-
Process

Computation

Sensing Unit

Processing Unit

M
 U

 X
Fig. 2.3 Example architecture of a sensing unit, where the extraction of pixels can be performed
in parallel

suitable for smart camera applications. Examples of this are that by Moorhead and
Binnie [15], where the CMOS camera was capable of carrying out Canny edge detec-
tion on input images, and Heyrman et al. [9] whose CMOS camera was able to select
Regions of Interest (ROI), which were then further processed by the processing unit.
Designers can implement the optimal parallelisation of pixel extraction from CMOS
imagers, allowing them to tailor the sensor the the smart camera’s application. The
90 nm fabrication technology of 2005 required approximately 25 mm2 of silicium for
a parallel output of 64 × 64 pixel sub-window [9], but with modern 20 nm technol-
ogy this could decrease. Lacassagne et al. [12] implement a programmable artificial
retina—a network of pixels that brings processing to the data, as opposed to trans-
ferring data to PEs. Each pixel of the artificial network consists of an ADC and 48
bits of memory and can share data with its four surrounding pixels (neighbours).
This allows data locality to be exploited with high-levels of parallelism implemented
by dedicated hardware functions. Computation is performed using a boolean unit,
which can perform bit-level computation.

A typical architecture of a smart camera sensor based on CMOS technology can
be found in Fig. 2.3. Here we can see how the use of CMOS sensors allows designers
to preprocess input images before they are passed on for further processing at the
processing unit. The ability to extract pixels in parallel makes CMOS sensors an
attractive option for smart cameras, but must also compliment the memory architec-
ture of the SoC, and how data is moved into the processing unit. Figure 2.3 also shows
how the sensing and processing units can overlap when preprocessing is used. In this
example, the preprocessing block can access pixels from the sensor and process them,
before writing them to memory for the processing unit to use.
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2.3 Processing Unit

From Fig. 2.3, we can see the processing unit encompasses the computational agents
of the SoC, the memory subsystem, and implicitly the communications system. We
start with the arrangement of computational resources for smart camera SoCs, and
then move onto the memory and communications subsystems.

2.3.1 Processing Unit: Processing Elements

The Processing Elements (PEs) of SoCs can be Digital signal Processors (DSPs),
microcontrollers, dedicated hardware functions/accelerators, or general-purpose
processors. Bramberger et al. [3] present a distributed embedded smart camera con-
structed from off-the-shelf components. TMS320C6416 DSPs by Texas Instruments
are used as the processors of the SoC and are coupled together with memory via
a PCI bus. The use of DSPs increases the flexibility of the SoC, as changes to the
functionality are implemented in software. However, the use of DSPs for smart cam-
era SoCs can limit the throughput of the system, as the processor’s architecture is
designed for general-purpose use: the memory subsystem can also present a bot-
tleneck [5]. Microcontrollers are typically used to coordinate events of a SoC, but
have been used to implement processing functions, object detection functions [10],
where the 8-bit microcontroller is used to perform the feature extraction. However,
the limited architecture of the microcontroller inhibited realtime QoS requirements
and may be improved by upgrading to a 16- or 32-bit architectures. A Picoblaze
soft-core microcontroller is used by Meng et al. [14] to synchronise and control all
components of a Multiprocessor System on Chip (MPSoC). Each hardware core
consists of a Picoblaze soft-core coupled with a coprocessor interface such, as that
in Fig. 2.4a, to carry out dedicated functions in hardware. However, the flexibility
of the smart camera is only in the ability to reprogram the Picoblaze, and not in the
ability to reconfigure the co-processors.

Creating PEs from hardware functions as coprocessors is an attractive option
for smart camera designers, as they are designed to carry out specific, dedicated
functions within the SoC. PEs can be as simple as frame-grabbing [10], to applying
image processing kernels and object detection functions [11]. Kruijtzer et al. [11]
design smart imaging and motion estimation cores coupled to an ARM9 processor.
The smart imaging core carries out low-level image processing algorithms, such as
applying kernels, calculating histograms, etc., whereas the motion estimation core
performs high-level motion estimation. This system uses the ARM9 to coordinate
and control events, with the SoC implemented on a Field Programmable Gate Array
(FPGA). However, this system requires large amounts of computational resources
due to the generic nature of the PEs. Designers must take care to implement only
time-critical or computationally intensive functions in hardware, in order to justify
the resource utilisation.
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PE
Context 
Register

(a)

(b)

(c)

(d)

Hardware Accelerator

Processing Element

Link from PE to HW

Reconfigurable link

Reconfigurable HardwareReconfigurable Logic

Software 
Configurable Logic

Static Logic

Fig. 2.4 Four ways in which hardware accelerators can be designed and interact with PEs of a
SoC: Static arrangement (a), software programmable arrangement (b), reconfigurable arrangement
with reconfigurable link (c), and reconfigurable arrangement with fixed link (d)

Chan et al. [4] apply dedicated programmable hardware accelerators with an ARM
926EJ-S for object detection/segmentation and face detection. The programmable
morphology coprocessor is capable of performing dilation and erosion tasks based
on the value in its context register (Fig. 2.4b), which is set by the ARM CPU. The
programmable hardware increases the performance of the smart camera SoC, but may
inefficiently utilise hardware resources depending on how they are used at runtime.
This is example of reconfiguring a static hardware arrangement through software
via the use of context registers. Computational resources would be utilised more
efficiently if the physical makeup of the hardware accelerators was modified during
runtime.

Chen et al. [5] implement a stream processor on an FPGA, where the data move-
ments and PEs are optimised for high throughputs. The processing architecture is
designed to be multipurpose, where PEs can be configured to carry out 1 of 6 popu-
lar image processing tasks, such as downsampling and applying 2D kernels. These
PEs can be reconfigured together, to create larger and more powerful PEs which
work together to perform more complex image processing tasks. Figure 2.4d illus-
trates this concept for one reconfigurable hardware accelerator. This reconfigurable
architecture is an example of how smart camera SoCs can be implemented in recon-
figurable hardware to achieve high throughputs and power efficiencies. However, the
applicability of such an architecture is limited by the PEs used in the system, and
how they can collaborate to create more complex processing operations. As smart
cameras become more intelligent, the operations they are required to perform become
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more complex and may therefore increase the size and complexity of reconfigurable
architectures.

Lacassagne et al. [12] evaluate the PowerPC (PPC), which is optimised for mul-
timedia applications through its instruction set and vectorization. The authors found
that the PPC processor is suited to low-level computer vision applications, but its
throughput is limited by its instruction set and internal register architecture. Albani et
al. [1] brought the processing of image data to generic, programmable embedded sys-
tems. A 32-bit RISC processor and vision/neural coprocessor for data processing—
complimented by 512B instruction cache, 1MB RAM, and 512KB FLASH memory.
This system improves design flexibility, as the processor can be reprogrammed to
perform different tasks, as can the neural coprocessor within reason, but again the
physical arrangement of the SoC resources is static.

Oetken et al. [17] also implement a reconfigurable SoC for a smart camera. The
SoC is divided into static and dynamic regions, where an embedded CPU subsystem
is placed in the static region, and the dynamic region can be used for custom hard-
ware accelerators. To accommodate the variability of the hardware that may exist
in the dynamic region, a reconfigurable bus (ReCoBus) is used, which allows con-
nections between master and slave hardware accelerators, as well as the embedded
CPU subsystem. Figure 2.4c illustrates this concept for one hardware accelerator.
A recent example of dynamic reconfiguration for hardware accelerators in SoCs is [8],
which makes use of one controlling PE that has dynamically reconfigurable hardware
accelerators. However, such a large area for dynamic reconfiguration could introduce
overheads for simple tasks that may have to be implemented in dynamic regions.

Table 2.2 summarises the PEs of smart camera SoCs, and their respective advan-
tages and disadvantages. Based on this summary, designers of smart camera SoCs
must make several key design decisions about the computational components of the
smart camera SoC. Firstly, the required computation of the smart camera application:
object detection/tracking, or basic background/foreground segmentation will dictate
the types of PEs in the SoC. Secondly, how the smart camera will be deployed:
will the smart camera perform a dedicated task? Will it be able to perform several
tasks, or even be reprogrammable? Each of these considerations will have a direct
impact on the memory and communications architecture of the SoC, which is dis-
cussed next. FPGAs can be used to create computationally efficient smart camera
SoC-solutions, but can limit the design space of computer vision applications to
specific functions implemented in hardware. Other examples of these techniques are
[2, 4, 13, 16].

2.3.2 Processing Unit: Memory and Communications

The memory architecture of a smart camera SoC must compliment the processing
requirements of the algorithm(s) executing on it [18]. As identified in the previ-
ous section, there are hardware and software solutions for designing smart camera
SoCs: hardware functions and accelerators, and DSPs/microcontrollers respectively.
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Fig. 2.5 Memory and communications architectures used for the works described in this chapter:
shared bus (a), hierarchical (b), streaming (c), and associative mesh (d)

Software solutions increase the flexibility of the smart camera, but rely on caches to
promote data reuse, which may not be effective [18]. On the other hand, hardware
functions and accelerators can decrease the flexibility of the SoC, but are suited to
memory customisations to compliment the data movements of the application. This
section describes how the memory and communications architecture of smart cam-
era SoCs can be tailored to compliment the PEs of a SoC, as well as the algorithms
executing on them.

Meng et al. [14] use a hierarchical communications topology (Fig. 2.5b), where
the top tier contains the system level components of the SoC, such as I/O and timers.
The second tier is responsible for low-level, high bandwidth image capture and
communication tasks. And the bottom tier performs high-level, low-bandwidth data
processing tasks. Each tier is connected using a bridge, and localised communications
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within each tier is performed over a shared system bus. This topology is useful in
defining the high-level blocks of the SoC, and allows designers to abstract themselves
during software design: as the use of bridges creates a unified addressing space. The
second tier contains a DMA engine that can transfer data to and from the localised
external memories of tiers 2 and 3. This limits data accesses over the bridges and
improves data locality and temporality. Such a hierarchy is useful when defining
the computational arrangement of a SoC and allows designers to focus more on the
design and selection of PEs.

Chan et al. [4] create a streaming architecture, similar to Fig. 2.5c, for their smart
camera SoC. To efficiently utilise the system bus bandwidth, the hardware is carefully
designed to avoid bit-width mismatches. The authors use sub-word level parallelism
to address this, where input data is packed and aligned in memory such that the data
of any eight aligned neighbouring pixels of an image are stored as a 64-bit word.
This data arrangement allows the processing of eight 3 × 3 sub-windows at eight
different PEs, creating a SIMD architecture of SW reconfigurable PEs. This is a
low-level approach to extracting data-level parallelism for smart camera SoCs, and
in contrast to the three-tier hierarchy of Meng et al. [14] is a fine-grained approach.
This fine-grained approach allows a more efficient design of the PEs of the SoC,
but can limit the flexibility of the smart camera application: since the PEs perform
dedicated functions. However, the memory and communications architecture can
be easily reused, and new computational functions could added in a plug-and-play
fashion, provided the architecture is designed to accommodate the functions.

A similar stream-based processing architecture is used by Chen et al. [5]. Input
data is moved via data streams over a master system bus. Line buffers are used to give
one PE access to all pixels of 3 × 3 sub-window in one clock cycle where required,
as opposed to the sub-word level parallelism of [4] that provided this parallelism to
many PEs. However, the communications architecture of this work can be recon-
figured to create more powerful PEs by changing/combining their interconnections
through multiplexing. Reconfiguring the communications architecture increases the
level of parallelism and could also be used to switch between different operating
characteristics, such as power consumption and throughput. However, the reconfigu-
ration of many PEs may require more complex interconnections and would therefore
increase wire congestion of the multiplexers, which would have to be considered by
the designer.

The bandwidth of the dynamic region implemented by [17] is limited by the
number of interleaved signals the ReCoBus can implement (6 in this case); however
hardware accelerators can directly access memory allowing high-speed transfers
to and from the dynamic region. Communications between the static and dynamic
regions are achieved through bridging and round robin arbitration. This technique
does require some static switching hardware to ensure static and dynamic regions can
communicate. However, it is a more flexible solution than [5], as the communications
architecture supports variable hardware accelerators.

Lacassagne et al. [12] present an associative mesh (Fig. 2.5d) made-up from a grid
of PEs that readily communicate with each of their eight neighbours. An application
is characterised by an interconnection graph—an asynchronous path where data
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can circulate freely from processor to processor. Each PE contains an 8-bit graph
register that emulates the presence or absence of an incoming value from one of
its eight neighbours. The associative mesh is capable of reconfiguring its purpose
and computation without the need to actively reconfigure the interconnections of
PEs. This system relies on the profiling of an application to obtain the graph and also
requires one PE for each pixel, which could lead to inefficient resource consumptions.

Xu et al. [25] investigate the communications architecture of MPSoCs, where the
traditional bus-based model is replaced by a crossbar to give all processors access to
input data and memories (Fig. 2.5a). Crossbars are a popular bus due to the ability
to connect a large number of master to slaves. For an MPSoC it is important to
consider congestion that may arise over shared buses, as PEs use them to access
shared resources. Despite contributing to the processing of the same input data, this
can be detrimental to performance. Arbitration is used as a means of policing shared
accessed to bus and is often inherent in the bus controller. The authors found that
arbiter controlled bus transactions performed better than processor controlled ones,
and the crossbar provided the greatest average throughput, thus advocating the use
of crossbar switches for MPSoC designs.

Based on these examples, there are several key points to consider when designing
the memory and communications architecture of a smart camera SoC. Similar to the
PEs’ requirements, the memory and communications system must compliment the
data movements and accesses of the intended application. If the smart camera SoC is
intended to achieve a standalone purpose, a highly data-parallel architecture such as
[4] can be used, whereas if the flexibility is key, the stream architecture of [5] may be
more suited. A hierarchical configuration [14] can be used for programmable PEs, as
can crossbar switches [25], and compliments software programming models, which
will reduce development time. However, the nature of the application and number and
types of PEs and memories required in the system will dictate the overall decision of
bus choice. The associative mesh can be considered a combination of the sensing and
processing unit of a smart camera SoC, and can be used where high-throughputs are
required. Hardware accelerator flexibility is best achieved through dynamic recon-
figuration [17], where the memories of the accelerators can be customised to suit the
accelerators’ purpose. However, care is required to design a communications system
that compliments the static and dynamic regions of the SoC.

Designers are free to conceive new memory and communications architecture that
satisfy the requirements of the smart camera SoC, such as the hypercube topology
of [6] which makes use of standard IP components to implement up to a 64-core
MPSoC. However, such an architecture must serve the needs of the SoC and justify
the resource consumptions. Table 2.3 summarises the advantages and disadvantages
of smart camera SoC communication and memory architectures.

2.4 Communications Unit

Smart cameras have quickly become distributed smart cameras, and introduced sev-
eral design challenges. Distributed cameras refer to a system of physically distributed
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camera that may or may not have overlapping fields of view [18], which inevitably
increases the volume of input data to be processed [24]. The increase in the field of
view of the smart cameras increases the information that can be extracted from an
image scene [18, 21, 22]. However, there are several geometric constraints that must
be considered when designing a distributed smart camera system [19], including cen-
tral projection, epipolar geometry, and planar scenes. Bramberger et al. [3] present a
distributed embedded smart camera constructed from off-the-shelf components. The
TMS320C6416 DSP by Texas Instruments is used as the processors of the SoC and
are coupled together with memory via a PCI bus. Network connections are made
through Ethernet and Wireless communications.

Hardware accelerators can also be used to optimise the flow of data to and from
camera nodes. Zarezadeh and Bobda [26] implement an object request broker (mid-
dleware) for distributed smart camera SoCs for FPGA implementation to improve
network performance. The middleware is implemented in hardware and can directly
access the memory of a smart camera. The performance criteria set out or distributed
smart cameras (in terms of the network) are the time taken for packets to arrive at
the receiver, the time to prepare and process packets, and the time taken for pack-
ets to dissipate through the network. Comparisons of the hardware object request
broker to a software broker executing on a PPC 405 show that the hardware bro-
ker achieves lower latencies than the software broker—nearly 100x faster, and also
achieves higher and scalable bandwidths. This study shows that the use of hardware
to create a distributed smart camera network can achieve higher throughputs than
networks controlled by software, and more importantly throughputs that are scalable.

The communications unit of a smart camera SoC is very much dependent on the
environment in which it will be used. As argued by Rinner and Wolf [18], distrib-
uted smart cameras are different from Wireless Sensor Networks (WSNs), as WSNs
involve the processing of small amounts of data and are primarily concerned with
conserving power where possible. Recent works have created wireless smart cameras
such as [23], however with limited functionality. Furthermore, the use of wireless
transmission to propagate information from nodes of a distributed smart camera may
decrease performance when compared to wired transmissions due to the bandwidth
available. The communications unit is primarily concerned with sending abstracted
(processed) data to the end user. However, the protocols that can be used for this
(USB, Firewire, etc.) is not relevant to the overview and discussion of smart cam-
era SoC sensing and processing units, where image output functionality is often an
inherent part of the SoC.

2.5 Summary

Smart camera SoCs are a diverse and complex area of design. Designers must be
aware of the smart camera’s intended application and its resource requirements.
CMOS sensors are the popular choice for the sensing unit due to their ability to
be tailored at the hardware level to incorporate pre-processing modules, and their
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increasing image quality and capture rate. The computational requirements of the
application must be fully satisfied by the SoC’s processing unit. This can be achieved
in several ways through hardware and software development. Software develop-
ment suits programmable, flexible solutions with quick time-to-market constraints.
Software-based solutions focus on DSPs and implicitly design a memory architec-
ture in software by exploiting data locality through caches. Software solutions must
also address the storage and arrangement of program memory for optimal runtime
execution.

Designers must decide on the importance of design flexibility, operating charac-
teristics such as resource and power consumption, and throughput. Software solu-
tions will have a nominal power consumption as their architecture does not change,
however hardware-based solutions have the ability to modify hardware that directly
impacts the power and resource consumption of the SoC—often in a positive way.
Hardware solutions can be dedicated hardware designs hand-crafted for the purpose
of the smart camera applications. These systems tend to boast high degrees of paral-
lelism and often do not require memories for data reuse, as the system is optimised to
use a piece of data once. Hardware solutions can also be more flexible and interfaced
with software solutions as accelerators or coprocessors to carry out computation on
the software side’s behalf. Flexibility can be increased through the use of dynamic
reconfiguration, which allows the resources of hardware accelerators to be rearranged
into new computational engines.

The memory and communications architecture of such hardware solutions must
be carefully designed to decrease memory access bottlenecks. Programmable and
reconfigurable hardware accelerators can access data themselves or be provided
with data through a PE. In both cases, the link between the PE and accelerator
must be optimised for the level of interaction between the hardware and software
side. Furthermore, memory accesses can be performed directly by accelerators and
greatly reduces memory latencies. However, memory coherency must be considered
by the designer and implemented where necessary.

Lastly, creating scalable SoCs for smart cameras, where the number of PEs can
be increased to improve throughput, is a maintenance issue for designers and should
be implemented in systems where flexibility is required. Scalable memory and com-
munications architectures must be used in these cases such as crossbar switches and
hierarchical bus topologies. However, these systems must be carefully designed to
prevent the instantiation of unused or inessential resources. Hierarchical bus topolo-
gies are very scalable through the use of bus-bridges and tier-local memory buffers,
however throughput can be reduced by the levels of arbitration required at each tier.
Hardware-only solutions are the least flexible in terms of communications and mem-
ory architecture, but can be designed such that hardware modules can be instantiated
in a plug-and-play fashion around the memory and communication network. Smart
cameras can also be distributed systems, where data is propagated and/or collected
from node-to-node. In this case, hardware accelerators have been shown to decrease
network latencies and improve the throughput of the system.
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Chapter 3
Reconfigurable Architectures for Distributed
Smart Cameras

Christophe Bobda, Michael Mefenza, Franck Yonga
and Ali Akbar Zarezadeh

Abstract Embedded smart cameras must provide enough computational power to
handle complex image understanding algorithms on huge amount of data in-situ. In a
distributed set-up, smart cameras must provide efficient communication and flexibil-
ity in additional to performance. Programmability and physical constraints such as
size, weight and power (SWAP) complicate design and architectural choices. In this
chapter, we explore the use of FPGAs as computational engine in distributed smart
cameras and present a smart camera system designed to be used as node in a camera
sensor network. Beside the performance and flexibility size and power requirements
are addressed through a modular and scalable design. The programability of the
system is addressed by a seamless integration of the Intel OpenCV computer vision
library to the platform.

3.1 Introduction

The importance of visual sensing and processing is continuously growing. Besides
traditional areas like visual inspection in manufacturing, the processing of image
sequences in order to gain knowledge is a reality in new application fields like
automotive, security, and assisted living. Public access facilities such as airports,
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Fig. 3.1 System design space
for embedded smart camera
nodes in distributed setup

transport stations and banks use camera to increase security. In assisted living for
older people, video processing can be helpful in detecting emergency situations [23].
Cameras are used in high-end cars to detect lane crossing, to measure and manage
the distance to collision, obstacle and pedestrian avoidance, parking assistance, etc.
The huge amount of stationary and mobile cameras already deployed can be lever-
aged to provide valuable information, which cannot be obtained from single isolated
cameras. Current systems use a central computer to process data collected from
dozens of cameras installed at various locations. This approach increases the band-
width requirement as well as the computational requirement of the central process-
ing platform. As consequence a real-time response to events becomes increasingly
unlikely. Collaborative smart cameras can overcome this obstacle by processing
information in-situ and exchanging relevant knowledge with neighbor. In order to
reach this objective, smart cameras should provide computational and communi-
cation resource to (1) handle complex image processing on board, while ensuring
real-time data and knowledge exchange among the cameras. The programmability of
the whole system must be simplified for a broad acceptance in the image processing
community, which consist essentially of software designers.

In a distributed embedded and mobile environment, system design must be done
under size weight and power (SWAP) constraints. Performance is defined by the
nature of computing and communication architectures with component specializa-
tion as the key ingredient in design. However, component specialization increase
programmability burdens and make the use of the resulting platform difficult to
computer vision designers. The relation between architectures and design objectives
is illustrated in Fig. 3.1.

When designing a new architectures, all parameters must considered simultane-
ously for an optimal outcome.

3.2 Survey of Embedded Smart Camera Architectures

Since DVT together with the Georgia Institute of Technology pioneered smart
cameras in 2000 [27], dozens of commercial and non commercial systems were
developed for commercial and academic use, some of which are listed here.
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In [6] a distributed and scalable smart camera for surveillance was presented. This
multiprocessor hardware platform consists of a network of general purpose proces-
sors and digital signal processors. The wireless CITRIC camera introduced in [10]
combines the OmniVision OV9655 with the Intel XScale PXA270 processor. The
MeshEye [17] focusses on low-power and uses an Atmel AT91SAM7S micro con-
troller.

More recently, a survey of smart cameras was presented by Rinner and Wolf [1].
Thereafter the computation is performed in software in almost all existing systems.
High-end PCs are used to provide the required computational power. Most advanced
embedded visual systems use sequential processors like the Intel Xscale or DSPs.

The problem with all those smart cameras on the market is that they are opti-
mized in only one direction. Those using sequential processors are optimized for
programmability and flexibility but not for performance. Those tailored for a custom
computing are difficult to program or not programmable at all.

Some manufactures have recognized the benefit of custom implementation and use
dedicated hardware (FPGA or ASIC) to accelerate a dedicate computation. FPGA-
based platforms were investigated in [1, 3, 34]. In [3] a Xilinx Spartan-3E FPGA
is used as co-processor for pre-processing of video input stream from two cameras.
The result is forwarded to a 400 MHz PXA255 processor for knowledge inference.
The systems in [3, 34] use a single FPGA for video processing. Tasks in [34] are
limited to a single process like the gesture recognition of single hand.

Video processing is a complex task, which requires the coordination of distributed
hardware and software components within a customized run-time architecture to
provide real-time execution of various image understanding and fusion tasks. The
computing infrastructure must be embedded within a camera to provide a versatile
set of interfaces. To address these issues, we have developed a scalable and modular
FPGA-based camera system that provide performance on a small footprint, low power
and flexibility. Using FPGAs, complex tasks can be implemented as dedicated module
on the FPGA logic, while control dominated parts of applications can be implemented
in software either on an embedded processor. The partial reconfiguration capability of
FPGAs allows for hardware restructuring to adapt system functionalities to run-time
changes. Designing for FPGA is a challenging task, in particular for non-hardware
programmers as is usually the case in the computer vision community. To make the
computing platform seamlessly usable Intel’s widely used OpenCV image processing
library has been integrated on the FPGA SoC with the low-level kernel functions,
available as hardware accelerators. Software designers can then gain performance
typically associated with a hardware implementation, while using an interface at a
very high level of abstraction that hides details of the implementation

3.3 Design of an FPGA-Based Smart Camera Platform

Our motivation in designing a new platform was to provide a universal video
processing system, which could be used as prototype or end-product in various
embedded imaging applications. As prototyping platform, resulting environment
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Fig. 3.2 a Modular organization of the FPGA-Based smart camera, and b organization of the
computing and coordination module

would help researchers and developers in their investigations without having to rely
on the cumbersome existing evaluation platforms and workstations. Video process-
ing is mostly streaming based, with CCD and CMOS devices used as entry point for
image acquisition. Processing is then performed in a given number of steps, some of
which can be iterated several times, according to the algorithm. The requirements on
the processing unit in the computation chain differ from problem to problem. While
critical tasks in a real-time environments require more computational power and
therefore a hardware implementation, control tasks are better served with a sequen-
tial processors. At the end of the chain, the computed data can be sent to other units
in a network, displayed on a monitor or simply saved on the platform permanent
storage. A universal platform for embedded environment must provide interconnec-
tion capabilities. Because number of interfaces that can be used for interconnection
is very large, their inclusion in a single platform would have a negative impact on
the size constraint. In order to overcome this limitation, we have designed a modular
systems consisting of a set of components that can be composed in various config-
uration according to user’s needs. The result is a 3D arrangement (Fig. 3.2a) aimed
at reducing the overall size. The modules of the systems are explained below:

• The Video Capture Module: the video capture module used for image acquisition.
It features a CCD/CMOS chip, a lens and a connection interface to the commu-
nication module. Video captured by the CCD/CMOS are provided to the FPGA
computational module via the corresponding interface on the communication mod-
ule. The capabilities of the smart camera can be modified by using a different video
capture module with user’s defined image sensors(CCD or CMOS), image reso-
lutions, speed, etc...

• The Communication Module: The communication architecture is one of the most
important components in a smart camera network. Because the operating environ-
ment is not known a priory, a rich set of interfaces must be provided to allows cam-
era node integration in ubiquitous environments. A single platform with the FPGA
computation module and all commonly needed interfaces would make the system
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on a single module too large, thus negatively impacting the size requirements.
We solved this issue by separating the computation from the communication. The
communication module is solely used to connect the system the rest of the world,
including other cameras in a network. This organization reduces the overall sys-
tem size, since the grow is done the 3rd dimension. The current communication
module provides two USB devices and one USB OTG, one Ethernet, one RS232,
power supply and JTAG configuration connection. A small micro controller is
used to control the data flow between the devices mounted on the communication
module. Also, the configuration of the FPGA can be done at start-up by the micro
controller. While the Ethernet interface provides only wired connection, the USB
interfaces can be used for wired/wireless connection among distributed cameras.

• The Coordinator Module: As the name indicates, the coordinator module controls
the whole system by providing configuration and operational parameters to the
devices in the system. In default configuration, the coordinator module is used
for computation besides system’s control. As shown in Fig. 3.2b, the coordinator
module features a FPGA Virtex-4 FX, DDR memories, connectors, a flash memory,
additional image sensor connector and JTAG debug lines.
With the embedded PowerPC and the surrounding logic, the FPGA provides the
best prerequisites for Hardware/Software implementation needed for efficient
video streaming. The connection to the communication module is done with a
bottom connector, which uses high-speed LVDS signals. A second connector is
available on the top side to attach additional processing modules for applications
that require more performance. Additional computational moduled can be used to
provide more FPGA logic in case the resource on the coordination FPGA are not
enough.
In order to increase the performance of computation inside the FPGA, parallel
accessible DDR memories are used around the FPGA. This allows independent
modules computing in parallel and using different set of data to access separated
memory and reduce contention. Each memory provides 64Mbyte, which is enough
to store several high-resolution images. The parallel connection of the memories
on the FPGA further allows for the implementation of message passing like para-
digms in the FPGA [8]. An additional connector for an image sensor with direct
connection to FPGA, a flash memory, a debug serial RS232 and a JTAG program-
ming/debug interface are also availble on the coordinator module.

• The Processing Modules: For applications with many complex and dedicated func-
tions to be implemented in FPGA, the use of a single coordination and processing
module might not be enough. In this case, the system can be extended with addi-
tionally processing modules. Each processing module is connected on the top side
to the next processing module and on the bottom to the previous processing mod-
ule, the first of which is connected to the coordination module. The processing
modules are built in the same way like the coordinator module, without the flash
memory and the second image sensor input connector.
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Fig. 3.3 a The PICSY camera in a case(a), PICSy internal: controller board featuring an FPGA, a
top connector, flash drive and memory. b The communication module with two USB devices, one
USB OTG, Ethernet interface, UART, GPIO and JTAG interfaces

3.4 Connecting Multiple Cameras

In many application domains, multiple-head cameras can provide additional infor-
mation needed for an efficient processing. A multiple-head camera consist of several
head board attached to a single processing unit. The picture captured by the head
are combined in the processing unit to extract more exact information. A 3D image
reconstruction would be helpful to better identify the contours of objects and increase
the quality control in a production chain. Using the base configuration for this pur-
pose will require to have several camera units working together in order to capture
objects from different perspectives. This increase the cost of the resulting solution.
We avoid this by using multiple-head camera to collect pictures from different area
and fuse the data in the FPGA. Attaching multiple heads camera is done on our
platform by using a dedicated expansion module connected to the coordinator mod-
ule. The expansion module allows for the connection of up to three different camera
heads using high-speed LVDS lines. The LVDS allows modules to communicate on
a distance of up to 15 m without performance penalty.

The resulting smart camera was named PICSY camera, which stands for Potsdam
Intelligent Camera System. Figure 3.3a shows the camera in the basic configuration
in a case. The internals of the cameras are shown in Fig. 3.3b. The communica-
tion module at the bottom is connected to the coordination module at the top. The
communication module offers many interfaces including two USB-devices and one
USB-OTG, which can be used to provide wireless connection (bluetooth, Zigbee,
WLAN). Wired connection can be done over the Ethernet port or the general purpose
input/output lines.
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Fig. 3.4 Overall design flow
of a smart camera network

3.5 Design Flow

3.5.1 High-Level Specification

In order to tackle the complexity of distributed visual applications, the design of appli-
cations for a set of distributed smart camera usually follow the layered approach of
Fig. 3.4. The highest layer, the application layer, allows for the abstract specifica-
tion of distributed visual applications regardless of the details of image processing.
Knowledge provided by each camera node in symbolic form is used to define the
behavior of the whole system. For instance for a cooperative traffic security applica-
tion, the cooperative behavior could state that if a vehicle detects a pedestrian crossing
the street, then all vehicles in a 300 m radius should be warned. Symbolic expres-
sions like “pedestrian crossing street” and “warn vehicle within 300 m” are used in
this case, without details on their implementation on each vehicle. The knowledge
representation below the application level provides facts extracted from the cameras.
This level describes the environment around each camera. Image understanding is
used to analyze the scene around a single camera and provide a database of facts like
“person on the floor”, “two way road”, and “man running in direction x”) tagged with
the corresponding camera. Image understanding algorithms are capable of tracking
dozens of people in a single camera and infer that someone is running, based on the
change in the frames and the speed of the camera. Input for knowledge extraction is
provided by the lower level image processing, which segments pictures and extracts
objects like rectangle and circle, or even more complex contour. The description at
this level can be executed on any platform, in particular on a workstation, which can
be used for verification and validation before mapping to the computer architecture
inside the camera.

In this chapter, we will assume that upper layers have been implemented and focus
on the implementation at a camera node-level.
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Fig. 3.5 The design flow for an embedded smart camera node

3.5.2 Design Environment for Single Camera Nodes

Once the specification of the overall application has been done and simulated, the
implementation at a node level can be done in the environment illustrated in Fig. 3.5,
which allows for the integration of hardware accelerators in OpenCV applications.

In step 1 (label 1, Fig. 3.5) a designer starts with an application written in C/C++
with image understanding functions, available in an image processing library, (label 2,
Fig. 3.5) either as software or hardware implementation. In order to make the work
easy for people in the image processing community, which essentially consists of
software developers, we build our library around Intel’s widely used image processing
tool OpenCV. This allows developers willing to add new algorithms to write code for
the new architecture in software as usual, and also to migrate existing applications
on the target embedded platform. In order to perform the architecture generation, we
need performance parameters from the functions used in the application. In step 2
(label 3, Fig. 3.5), we first profile the application to acquire performance, area usage
on the FPGA, power consumption of all the functions used, and communication
costs among them. Those parameters are then used to perform the synthesis and
choose the best architecture for the application. The low-level image processing
kernel will be implemented in hardware and available in the IP-library. Functions
implemented in hardware require a device driver to be accessible by the processor.
In [26] we developped a generic driver interface called the streaming data interface
(SDI) that will be used in this framework. It consist of a set of status and command
registers, and functions to access those registers for the communication between the
processor and the function implemented in hardware. The parameterization (label 4,
Fig. 3.5) defines the number and size of the registers and the operation mode of the
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access functions. Finally, the middleware components will be added to the abstract
description of the architecture computed in the synthesis step (label 7, Fig. 3.5) to
complete the description of the SOC architecture These is then provided as input to
the FPGA vendor tool in order to generate the complete SOC.

The integration of hardware accelerators requires some drivers on the operating
system (Linux in this case) side and a bus interface on the hardware side. Also, a
scheduling must be available to serialize the access to shared resources (bus, memory)
if many hardware accelerators are used in the system. To overcome this problem we
designed a generic interface, the streaming data interface (SDI) in hardware and
generic drivers functions in the operating system. Those are containers in which
components can be placed and configured according to the computation to be done.
This architecture offers a wide spectrum of possibilities to connect several hardware
accelerator as low-level function in a computing stream attached to an embedded
processor.

3.5.3 Streaming Data Interface

The SDI, which was originally introduced in [26], is a set of skeletons components
to allow hardware accelerators to be uniformly designed and easily integrated in
the OpenCV environment. It provides data and control signals to link hardware
accelerators together and to access data source and data sink. A set of control and
control and configuration registers is available to avoid a communication between the
processors and the hardware accelerators. A scheduler is used to coordinate access
to share resource such as buffers and memory by hardware and software functions
in the system.

The major focus in developing the SDI was on the implementation of a concept
which connects physical external memory to the several implemented application
oriented processor units, to supply them with required data and to store the processed
results back to memory without intervention of main processor. The SDI is very useful
in image processing where computation takes place in a streaming way. A data source
supplies pixels one by one and sends them to the first processing unit (PU). The PUs
(which are performing the calculations) are cascaded in any number and order like
a chain and finally the last PU is connected to a data sink.

An example of the SDI usage is shown on Fig. 3.6. Captured video frames from
the CCD module are placed into the DDR memory after a conversion from Bayer to
RGB. The processor then process the the video with part of the algorithm in hardware
and parts in software. The result is sent to VGA output module for visualization of
results.
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Fig. 3.6 Integration of SOC for video capture and display with the SDI

3.6 Evaluation of Communication Performance

The evaluation of the platform was done with the base system consisting of the inter-
face module, the coordinator module and the camera head module. Using different
applications implemented in OpenCV with hardware acceleration, we measured the
resource usage, the power consumption and system performance. The results are
explained in Tables 3.1 and 3.2. As case study, we implemented the image segmen-
tation in three different configuration and compared the results.

3.6.1 Resource Usage

To evaluate the resource usage, two designs were compiled with OpenCV running
under Linux on the integrated PowerPC and various IPs implemented in the surround-
ing FPGA logic. A video capture module was used to acquire images from the image
sensor and place them in the memory after format conversion from Bayer to RGB.
Thereafter the processor performed some computation in software and displayed the
result on the VGA. The connection of the hardware for video capture and display
was done using the SDI controller. As shown in Table 3.1, the two implementations
differ only on the Ethernet IP used. In the first case, the more complex XPS LL
TEMAC core is used, leading to an overall resource usage of 94 %, while the use of
the lightweight Ethernet Lite leads in the second case to a resource usage of 74 %.
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Table 3.1 Resource usage for different FPGA configurations on the base system

IP # Slices # Slices FIFO usage FIFO usage
design 1 (%) Design 2 (%) design 1 (%) design 2 (%)

DDR SDRAM 47 29 22 16
cam i2c 2 2
bayer2rgb 1 1
SDI controller 15 15
VGA output 1 1
XPS intc 1 1
LL TEMAC 6
Ethernet lite 7 4
RS232 UART 1 1
Image sensorcap 1 1
Total system 94 94 63

Table 3.2 Power measurement for different FPGA configurations on the base system

Design # Slices (%) FIFO usage (%) Power (Watt)

Empty 0 0 2.69
PowerPC + communication core 67 48 5.64
PowrPC + Ethernet lite 74 32 6.07
PowerPC + LL TEMAC + DMA 94 63 6.6
PowerPC + LL TEMAC + FIFO 87 42 5.67

Using the XPS LL TEMAC increases the size of the memory controller because of
the available DMA-controller. According to the complexity of the image processing
accelerators, FPGA might be enough. In this case, the processing module could just
be replaced by a more powerful one featuring a most powerful FPGA with the same
footprint.

3.6.2 Power Consumption

In the same way, we measured the power consumption by running OpenCV and Linux
on the PowerPC and moving some functions into hardware. The implementation was
done as in the previous case using the base system. According to the hardware load,
the power consumption was measured and documented in Table 3.2.

3.6.3 Case Study

To demonstrate the performance superiority of our system, we implemented a
segmentation algorithm. Segmentation is a basic step in many computer vision
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Fig. 3.7 Foreground compu-
tation using color distortion
and brightness distortion
between background and
current image

application. Because of it’s complexity and it’s streaming and inherent parallel nature,
it is a good candidate for hardware acceleration. We implemented the Horprasert et al.
[19] variation because of its robustness and its capability to deal with shadow detec-
tion. A graphical significance of the algorithm is illustrated in Fig. 3.7. An initially
trained background image BG is compared to the current image I . The decision
for each pixel if it is a foreground or background pixel is primarily based on two
properties: the color distortion C D and the brightness distortion α. The values are
compared to some off-line trained thresholds.

First, we executed the application a standard workstation using OpenCV. The
program needed approximately 23 ms to compute the foreground for a 640 × 480
sized image. This number does not even include the overhead need for grabbing
images and displaying results.

Second, we implemented the same implementation on the PICSy smart camera
using the integrated OpenCV running on Linux, however without hardware accelera-
tion. Compared to the Intel Core2Duo at 3.16 GHz of the workstation the embedded
PowerPC-Processor in the Virtex4-FPGA has a 300 MHz speed is quite slow. As
expected the pure software implementation on the smart camera performed lower
that the pure software implementation on the workstation, with an execution time of
1,598 ms to compute a single frame.

Finally we implemented the segmentation algorithm in hardware with additional
SDI controller to handle the memory access for the background image (Fig. 3.8a).
The DSP slices of the Virtex4-FPGA increase the speed of operations such as mul-
tiplications. The result is obtained in one clock cycle only. To compute C D and α

for two pixels 24 out of the 32 DSPs are needed. The hardware module uses 793
slices which is 9.28 % of the FPGA resource. With a data width of 64 bits two pixels
can be processed per clock cycle. Due to the pipelined chain of hardware modules
(grabbing → bayer to RGB convertion → segmenting) we get the foreground for
two pixels in every clock cycle (50 MHz), thus a delay of 3.07 ms for each frame
(640 × 480).

The time measurements for the software-only and hardware/software
implementations are summarized in Table 3.3. The hardware implementation out-
performs the other two by a factor of 7 (PC) and 325 (camera OpenCV) respectively.
The software solution on the smart camera suffers from the slow memory access of
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Table 3.3 Measurements of the segmentation on different systems

System Time (ms/frame) # Frames/s

PC, 2 × 3.2 GHz, OpenCV ≈23 44
Smart camera, OpenCV in SW ≈1598 2
Smart camera, HW/SW Co-Design 3.07 325

Two SDI controllers for segmentation task, one
handling background, one handling foreground

Example output of the smart
camera

(a) (b)

Fig. 3.8 a Internal FPGA system-on-chip architecture, b video segmentation implemented as hard-
ware/software system in the PICSy

the PowerPC to load and store the image pixels. Grabbing and converting however
is fast because it is already made in hardware. The foreground segmentation is made
independently for each pixel. Therefore the computation time for an image is linear
with its size.

Figure 3.8b shows the system set-up with the PICSy attached to the VGA monitor,
which displays the results of the computation. The connection to the monitor was
done using a VGA adapter module connected to the GPIO-pins of the interface
module.

3.7 Increasing Flexibility with Partial Reconfiguration

The partial reconfiguration capabilities of Xilinx FPGAs can be exploited to increase
the flexibility of the platform, while keeping the performance high. The partial recon-
figuration allows for keeping part of the FPGA unchanged, while replacing some
hardware modules in other regions on the fly. Hardware can be temporally shared



56 C. Bobda et al.

Fig. 3.9 Partial reconfigurable SDI controller

among tasks at run-time without performance loss. Controlling the partial reconfig-
uration partial from the embedded processor make this feature even more attractive
and allows for the realization of self-organization in embedded systems as proposed
in [29]. Self-organization would be helpful to allows surrounding cameras to overtake
the tasks that were running on a node in case of failure.

Exploiting the partial reconfiguration for self-organization however requires the
platform to be tailored for this purpose. The computation architecture within the
smart camera can be reduced to a system on chip in FPGA with Linux running on
the embedded PowerPC. The system can be therefore designed according to the
techniques and recommendation for Partial Reconfiguration (PR) described in [39].

Handling the bitstreams used by the system to reconfigure the FPGA at run-time
requires an efficient file system on the platform. Also, a communication medium
and the protocol for exchanging huge amount of data must be provided to allow for
exchange of bitstream among cameras at run-time. The focus in this section is the
realization of the most critical part, which is the definition and the design of the
partial reconfigurable regions.

The streaming data interface introduced in Sect. 3.5.3 is used to defining the partial
reconfigurable regions and allow data exchange between the hardware accelerators
in these regions and the rest of the system. The controller within the SDI handle the
transfer of data processed by the hardware accelerators in the reconfigurable regions.

Figure 3.9 shows the integration of partial reconfigurable hardware accelerator
in the FPGA-SoC using the SDI. Several reconfigurable processing units can be
implemented in reserved regions on the FPGA delimited by bus macros to enforce
the integrity of signals among reconfigurable regions and the rest of the system.
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Table 3.4 Timing measurements for different size of reconfigurable region

Small Medium Large

Number of CLB 96 192 288
Number of DSP48 8 16 24
Number of BRAM 4 8 12
Number of clock areas 1 2 3
Reconfig. time (ms) 43.637 45.089 49.739
Time std. deviation (ms) 0.879 0.890 0.552

Fig. 3.10 Collaborative
distributed sensing and
processing application

To give an idea of the impact of the utilization of partial reconfiguration in the
FPGA within the smart camera, the reconfiguration time measured from the operating
system is provided for different design and used as indicator in Table 3.4.

Resource assignment in FPGA has a big impact on bitstream size. More than the
number of CLB, their locations into the FPGA contribute to the size of the bitstream.
The FPGA is divided into clock domains and the position of the PR Module in these
areas influences bitstream sizes.

3.8 The Communication Architecture

Collaboration in a distributed camera network is important for event and knowledge
exchange. The design of a collaborative video processing system is not only driven
by the low-level communication infrastructure. High-level functions allowing for
remote access to partial data is a prerequisite for performance, productivity and
interoperability.

Figure 3.10 illustrates an emergency fall scenario, which can only be detected
through a collaboration between two cameras. The person lying on the floor is only
be partially visible by the two cameras. The partial information they see does not
allow them to infer a fall. However, exchanging their partial information such as
contours, histogram and location would will allow the situation to be detected.
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Deploying a collaborative smart camera system like the one previously described
requires a highly efficient communication infrastructure, which can be provided only
by dedicated hardware implementation of complex components in hardware. Such
dedicated architectures always place a programmability burden on designers, who
must deal with low-level communication details in their application. A middelware
approach can help overcome this burden, by providing high-level remote data access
function to designers and making the mapping to the hardware infrastructure trans-
parent to the user.

In this section, we describe a hardware middelware technology, the HardORB,
and it’s integration in smart camera node. The presented middelware is based on an
embedded version of CORBA, which offers many benefits such as standardization by
the Open Management Group (OMG), widely usage in hard real-time systems. The
OMG has adopted CORBA/e for embedded systems as a standard which dramatically
minimizes the footprint and overhead of typical middleware.

Implementing CORBA in FPGA can be done by running CORBA on Linux on
an embedded microprocessor within FPGA. This approach has the advantage of
simplicity but does not meet the performance requirements.

To meet the performance requirements and provide a low-latency and seamless
communication among cameras, the entire ORB engine was implemented in hard-
ware in FPGA, resulting in the Hardware Object Remote Broker (HardORB).

3.8.1 Hardware/Software Architecture for Real-Time
Communication

An ORB is a mechanism for invoking operations on an object in a different remote
process that may be running on the same or a different computer.

A CORBA Object (Fig. 3.11) is identified by an Interoperable Object Reference
(IOR) containing an Object ID. This IOR contains all the information to obtain an
object servant. A stub is a bridge between a client and the ORB, which acts as a
proxy, converts method calls into messages and serializes the input parameters of
an operation call into a General Inter ORB Protocol (GIOP) request message, and
de-serializes reply messages to deliver operation results and exceptions to the client.
A skeleton is a bridge between a servant and the ORB. It converts binary request
packets into native data types and invokes the operation on the servant, and serializes
results and exceptions in the reply to the client. An Interface Definition Language
(IDL) compiler automatically generates stub and skeleton codes from the interfaces
definition in IDL file to software programming languages. The on-the-wire protocol
of CORBA is called GIOP. This protocol defines the different message types (request
or reply) that can be exchanged between client and server applications. The major
GIOP specialization is the Internet Inter-ORB Protocol (IIOP), which is use in TCP/IP
networks.
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Fig. 3.11 CORBA middleware framework

The standardization of CORBA by OMG as object-oriented middleware has led
to dozens of middleware systems developed for commercial and academic use.
Reference [30] presents an embedded middleware for smart camera networks and
sensor fusion has been with proprietary agent-based middleware. In [11] a software
framework supports transparent intra- and interprocessor communication for net-
work of DSCs has been proposed. Those solutions are pure software and do not
meet the real-time communication requirements. There some existing native gate
level implementations of ORBs, mainly exploited in the area of software defined
radio (SDR). The Integrated Circuit ORB (ICO) engine [9, 20] implements a hard-
ware CORBA ORB. PrismTech’s ICO is such an ORB in SDR applications. The
ICO engine, is responsible for implementing the transfer syntax used in CORBA
messages. A complete semantic mapping of CORBA-IDL and GIOP has been inves-
tigated for hardware components for SDR application in [14].

The real-time performance of the Ethernet is determined by factors like protocol
stack traversal times and delays related to complex operating system internal interac-
tions in the end nodes of the network [28]. Stack traversal time and jitter are critical
for real-time performance of the communication infrastructure. The successful usage
of hardware ORBs in the SDR area inspired our solution for embedded smart camera
networks.

3.8.1.1 Overall System Architecture

Figure 3.12 shows the system-on-chip architecture of embedded smart camera system
incorporating hardware ORB component. Data are acquired from or supplied to
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Fig. 3.12 Our developed SoC design for Hardware ORB approach

peripheral components trough input/output streaming channels connected to system
memory. The HardORB is integrated into the System-on-Chip architecture described
in Sect. 3.5.3, with the streaming data interface (SDI).

The embedded processor is used for the software part, while the HardORB is
implemented on the surrounding FPGA logic.

3.8.1.2 The Hardware ORB Architecture

This lower layers of standard TCP/IP stack are implemented in hardware and sup-
ports independent read/write to DDR Memory with the Native Port Interface (NPI) of
the Xilinx Multi-Port Memory Controller (MPMC). Processed information of recent
video frame are held in a reserved location of DDR memory. On a remote request
from a CORBA client in a different smart camera node, the HardORB fetches the
corresponding data from memory and send it to the corresponding node without
processor intervention. The HardORB is then in charge of serializing and deserializ-
ing of data through the GIOP/TCP/IP/Ethernet protocol stack. On the client side, the
HardORB-client manages the low-level transactions, while the HaordORB-Server
does the same on the server side. The internals of the HardORB-Server are illustrated
in Fig. 3.13.

The embedded processor is connected to the trasmission (TX) and reception (RX)
dual port buffers of the MAC layer (Tx Buffer and Rx Buffer) trough the processor
local bus (PLB) slave interface and enables protocol stack on Linux stack. The
main advantage of this architecture is to have the possibility of using other network
services on the operating system. It is even possible to use another auxiliary ORB
as software on the embedded processor and simultaneously handle individual real-
time middleware services in Hardware ORB. As shown in Fig. 3.13, when a new
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Fig. 3.13 The architecture of our developed Hardware ORB Server IP core

packet arrives from the MAC Rx Controller, one copy placed in the Rx Buffer of the
embedded processor and simultaneously forwarded to the HardORB. The HardORB
monitors incoming packets and search for packet of interest, with predefined TCP
port number and CORBA Interoperable Object Reference. Upon detecting a packet of
interest, the interface to the embedded processor is blocked to avoid racing between
hardORB and embedded processor. Relevant data are then fetches from DDR memory
by the Reader Controller, which constructs the TCP/IP message and stores it in the
HardORB Tx Buffer. There are two separate transmission buffers, the Tx Buffer for
the embedded processor and the HardORB Tx Buffer for the HardORB. The ORB
Switch connects one of these two buffers to MAC Tx Controller for transmission.

Figure 3.14 shows the internal architecture of the HardORB-Cliend.
The configuration is similar to HardORB-Server. However the Reader Controller

is replaced by a Writer Controller. Additionally, a transaction must be started by the
embedded processor, which activates the transmission path by writing into a specific
register of HardORB-Client. Data received from remote server enters the systems
through the receive path of HardORB and written in the DDR memory by the Writer
Controller.

The HardORB has a pipelined implementation, which is used to simultaneously
processes data on various layers of the transmission chain, without blocking the
arrival of new data.
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Fig. 3.14 The architecture of our developed Hardware ORB Client IP core

3.9 Evaluation of Communication Performance

3.9.1 Experimental Setup

Performance measurements show the efficiency of the HardORB compared to a pure
Software ORB running on embedded processor. The measurements were performed
with the communication configurations listed below:

(1) GPP(Client) to embedded processor on Smart Camera(Server).
(2) GPP(Client) to HardORB on Smart Camera(Server).
(3) HardORB on the first Smart Camera(client) to HardORB on the second smart

camera(server).

The PICSy smart camera system is used as embedded hardware platform, featuring
a capture module, a coordinator module, a communication module.

The ACE ORB (TAO) [35] is used in this experiment as software ORB (Fig. 3.15b),
and compared to our HardORB module (Fig. 3.15a). It is based on the standard OMG
CORBA reference model with opensource implementation built on the framework
components and patterns provided by adaptive communication environment (ACE)
[21]. Both modules were integrated into a system using OpenCV for computer vision
on the PICSy.

In the first experiment CORBA TAO client and server are executed in software
on the smart camera running Linux kernel 2.6.31 and TAO version 1.7.3 as ORB.
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Software ORB experiment setup Hardware ORB Server experiment setup

Hardware ORB Client and Server experiment setup

(a) (b)

(c)

Fig. 3.15 Experimental setup: a the pure Software ORB on a personal computer and smart camera,
b software ORB on a PC and HardORB in the smart camera, and c HardORB in two communicating
smart cameras

The smart camera is connected to a workstation, which mimics a second smart
camera. The processor is an Intel Core Duo CPU T7500 with 2.20GHz running
Ubuntu Linux release 9.04 with kernel 2.6.28 and TAO version 1.7.4 as ORB. In
both system, the communication architecture is pure software-based. In the second
experiment, the workstation still mimic a smart camera, but the PICSy smart camera
now implements the HardORB.

In a typical collaborative application, the TAO would be responsible for exchang-
ing objects extracted from images by OpenCV between two nodes. OpenCV copies
the processed information in a predefined blocks of memory. The TAO server views
these blocks as CORBA Servant Objects (sequence of data defined in CORBA),
serializes them and send them to the client.

Finally, the third benchmark (Fig. 3.15c) presents a realistic interconnection of two
smart camera systems with fully utilization of HardORBs client and server inside.

In all test scenarios, the measurements have been achieved with a CORBA client
invoking the operation getshortSeq() on a remote CORBA Servant to request a short
sequence value as a result of the operation. In the first and second benchmarks, the
latency was measured using Wireshark network packet analyzer [38]. The invocation
procedure is repeated 1,000 times in order to get a statistically valid average and
standard deviation from the obtained values. As the HardORB client and servant are
used in the third test scenario. An auxiliary Measurement Tool is used to count in the
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Effect of CPU load on software ORB latency. Comparison of latencies between
software and hardware ORBsp

(a) (b)

Fig. 3.16 Performance measurements: a shows how the CPU loads affects the communication
latency, while b shows the performance comparison between hardware and software ORB imple-
mentations

client node for a precise measurement of the number of clock cycles between start
and end of transaction.

The network nodes were connected to each other back-to-back without any other
interfaces, and, to avoid interference from other Ethernet traffic, the whole system
was isolated from the internet during the tests.

In all benchmarks, the whole progress was repeated for different values of the
ShortSequence parameter length, doubling the payload size starting from 32 bytes
up to 1,408 bytes.

In the first case tests were performed with various processor loads. Several
processes for computing the combination of contour and histogram of incoming
video streams executed simultaneously to the ORB software exchanging informa-
tion. The tests were preformed with the network interface speed of 100 Mbps.

3.9.2 Performance Measurement

The performance measurements with the three described scenarios are depicted in
Fig. 3.16a, b.

Figure 3.16 shows that various embedded processor loads have a great impact
on the non-deterministic behavior of the software ORB. In contrary, hardware ORB
treats with incoming network traffic in a deterministic way.

The HardORB server (Fig. 3.16b) reduces the network latency nearly 10 times
toward the software ORB. Figure 3.16b shows that the relative performance gained
is nearly 30 times better than software approach. The software ORB with highly
non-deterministic behavior is not appropriate solutions in distributed smart camera
systems with real-time requirements.
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3.10 Conclusion

Several authors have shown the efficiency of using FPGA for image and video
processing, mostly on evaluation platforms. The use of FPGA for video processing in
embedded environment such as smart cameras however requires many other factors
to be considered. Besides the performance and flexibility available on the FPGAs,
programmability remains one of the key factors for a broad use of those systems. Our
goal in this work was not to necessary to develop image processing algorithms since
decades of knowledge and developments in this area has flowed in available image
and video processing frameworks on the market. Porting the open source framework
OpenCV to the platform was therefore our best choice to increase the acceptance of
the platform in the broad community of image processing research. We provided the
required interfaces and skeletons needed for the integration of hardware accelera-
tors in the system. Currently a dozen of hardware accelerators have been developed
for processing at different levels and integrated into the development framework of
OpenCV. We expect more to be done in the future in order to provide a solid alterna-
tive to the Intel optimization library for OpenCV. The structuration of the hardware
to allow run-time partial reconfiguration.

3.11 Impact of Smart Camera Networks in Self-Organization
Research

Increasing complexity due to rapid progress in information technology is making
systems more and more difficult to integrate and control. Due to the large amount
of possible configurations and alternative design decisions, the integration of com-
ponents from different manufacturers in a working system cannot be done only at
design-time any more. Furthermore the miniaturization of systems makes them more
vulnerable to errors that may occur due to physical degradation, cosmic radiation,
unpredictable interconnect delay on signals within chips.

Systems must be designed to cope with unexpected run-time environmental
changes and interactions. They must be able to organize themselves to adapt to
change and avoid non desirable or destructive behaviour. Self-organization (SO) is
viewed as a means to cope with uncertainty and design of robust systems.

Self-organization is formally defined as a process in which pattern at the global
level of a system emerges solely from numerous interactions among the lower-level
components of the system. Moreover, the rules specifying the interactions among the
system’s components are executed using only local information, without reference
to the global pattern.

Self-organization in computing system is a very old matter of investigation. Sev-
eral optimization algorithms like simulated annealing [24], genetic algorithms [15],
particle swarm optimization [36] and ant algorithms [12] were developed in the past
according to optimization principles available in the nature. The concept of swarm
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intelligence [5] was then invented to name such methods based on the behavior of
natural systems, where a large number of single and interacting entities contribute
locally to a global pattern. A detailed study on the emergence as well as the benefits
and expectation in computing system was done in [7]. In [32], the causal architecture
of a process is use to provide the best answer to its organization. The computational
mechanics, represented by a mathematical object called the ε-machine is used as
method for inferring causal architecture of a given process and for pattern discov-
ery. The computational mechanics is then developed for increasingly sophisticated
types of process: memory less transducers, time series, transducers with memory,
and cellular automata.

Besides the previous development mostly limited to algorithm optimization, SO
was employed in a more coarse grained manner to control systems. Multi-agent
systems [13, 31] for instance was developed as a means for a coordinate and decen-
tralize used of distributed computing resources. The approach of having independent
and interacting agents can further be used to solve problems, which are difficult or
impossible for an individual agent or monolithic system to solve. Examples of such
problems include on-line trading, disaster response, and modelling social structures.

Recently the concept of autonomic computing [16, 37] were introduced at IBM-
research to describe the ability of systems to be more self-managing. The overall
objective of IBM was to designed software able to self-administrating them self in
order to avoid error prone and time consuming configuration that arise when the
administration is performed by humans. Meanwhile IBM claims to have few dozens
of products behaving according to the autonomic principles.

Despite some experiments where the principles of self-organization where expe-
rienced in technical systems in particular in robotics [2, 5, 18, 22] and distributed
manufacturing systems [4, 25, 33], the concepts previously described are mostly
use to improve the functionality of software. Real-life examples that demonstrate
the use of the self-organization properties in embedded systems are lacking. The
purpose of this work is to overcome this deficit by designing a real-life embedded
system according to the principles and gained sufficient experiences to guide us in
the generic design of such kind of systems.

Smart Camera Network could provide a platform for a dual experimental/formal
investigation of distributed cognitive systems. Based on a testbed, which is a dis-
tributed video-based surveillance system consisting of a set of rotating intelligent
cameras, each of which is fixed at different locations or mounted on vehicles, all the
requirements and performance parameters of such systems will be derived in order
to perform a systematic design later. For the design automation of such distributed
vision-based cognitive systems, a design framework can be derived based on the
experiences acquired on the testbed. Such a testbed must rely on very efficient image
understanding algorithms and architectures that was investigate in this work.



3 Reconfigurable Architectures for Distributed Smart Cameras 67

References

1. Aghajan H, Cavallaro A (2009) Multi-camera networks: principles and applications. Academic
Press, Burlington, MA

2. Anderson J, Baltes J (2006) An agent-based approach to introductory robotics using robotic
soccer. Int J Robot Autom 21(2):141–152

3. Blackham B (2006) The development of a hardware platform for real-time image processing.
The University of Western Australia, Perth

4. Bohnenberger T, Fischer K, Gerber C (1999) Agents in manufacturing: online scheduling
and production plant configuration. In: ASAMA ’99: proceedings of the first international
symposium on agent systems and applications third international symposium on mobile agents,
p 66. IEEE Computer Society, Washington, DC, USA

5. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial
systems. Oxford University Press Inc, New York, USA. http://portal.acm.org/citation.cfmid=
328320

6. Bramberger M, Doblander A, Maier A, Rinner B, Schwabach H (2006) Distributed embedded
smart cameras for surveillance applications. IEEE Comput Soc 39:68–75

7. Brunner KA (2002) What’s emergent in emergent computing? In: Trappl R (ed) Cybernetics
and systems 2002: proceedings of the 16th European meeting on cybernetics and systems
research, vol 1, pp 189–192

8. Bobda C, Majer M, Ahmadinia A, Haller T, Linarth A, Teich J (2005) The erlangen slot
machine: a highly flexible FPGA-based reconfigurable platform. In: FCCM2005, pp 319–320

9. Casalino F, Middioni G, Paniscotti D (2008) Experience report on the use of corba as the
sole middleware solution in sca-based sdr environments. In: SDR forum technical conference
(2008)

10. Chen P, Ahammad P, Boyer C, Huang SI, Lin L, Lobaton E, Meingast M, Oh S, Wang S, Yan
P, Yang AY, Yeo C, Chang LC, Tygar D, Sastry SS (2008) Citric: a low-bandwidth wireless
camera network platform. In: Second ACM/IEEE international conference on distributed smart
cameras, pp 1–10

11. Doblander A, Zoufal A, Rinner B (2009) A novel software framework for embedded multi-
processor smart cameras. ACM Trans Embed Comput Syst (TECS) 8(3):24

12. Dorigo M, Stützle T (2004) Ant colony optimization (Bradford books). The MIT Press. http://
www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262042193

13. Franklin S, Graesser A (1997) Is it an agent, or just a program?: a taxonomy for autonomous
agents. In: ECAI ’96: proceedings of the workshop on intelligent agents III., Agent theories,
architectures, and languages, pp 21–35. Springer, London, UK

14. Gailliard G, Balp H, Sarlotte M, Verdier F (2008) Mapping semantics of corba idl and giop to
open core protocol for portability and interoperability of sdr waveform components. In: DATE
’08: proceedings of the conference on design, automation and test in, Europe, pp 330–335

15. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, Reading, MA

16. Hariri S, Khargharia B, Chen H, Yang J, Zhang Y, Parashar M, Liu H (2006) The autonomic
computing paradigm. Cluster Comput 9(1):5–17. http://dx.doi.org/10.1007/s10586-006-
4893-0

17. Hengstler S, Prashanth D, Fong S, Aghajan H (2007) Mesheye: a hybrid-resolution smart
camera mote for applications in distributed intelligent surveillance. In: IPSN’07, pp 360–369

18. Hoeing M, Dasgupta P, Petrov P, O’Hara S (2007) Auction-based multi-robot task allocation in
comstar. In: AAMAS ’07: proceedings of the 6th international joint conference on autonomous
agents and multiagent systems, pp 1–8. ACM, New York. http://doi.acm.org/10.1145/1329125.
1329462

19. Horprasert T, Harwood D, Davis LS (1999) A statistical approach for real-time robust back-
ground subtraction and shadow detection. In: ICCV Frame-Rate WS

20. Humcke F (2006) Making fpgas first class sca citizens. In: SDR forum technical conference

http://portal.acm.org/citation.cfmid=328320
http://portal.acm.org/citation.cfmid=328320
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262042193
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262042193
http://dx.doi.org/10.1007/s10586-006-4893-0
http://dx.doi.org/10.1007/s10586-006-4893-0
http://doi.acm.org/10.1145/1329125.1329462
http://doi.acm.org/10.1145/1329125.1329462


68 C. Bobda et al.

21. Huston SD, Johnson JC, Syyid U (2004) The ACE programmer’s guide: practical design
patterns for network and systems programming. Addison-Wesley, Reading, MA

22. Kaetsu H (1995) Cooperation between the human operator and the multi-agent robotic system:
evaluation of agent monitoring methods for the human interface system. In: IROS ’95: pro-
ceedings of the international conference on intelligent robots and systems, vol 1, p 206. IEEE
Computer Society, Washington, DC, USA

23. Kim K, Medioni GG (2008) Distributed visual processing for a home visual sensor network. In:
IEEE workshop on applications of computer vision, pp 1–6. http://ieeexplore.ieee.org/Xplore/
login.jsp?url=/iel5/4539769/4543991/04544043.pdf?arnumber=4544043

24. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science
220:671–680

25. Maione G, Naso D (2004) Modelling adaptive multi-agent manufacturing control with dis-
crete event system formalism. Intern J Syst Sci 35(10):591–614. http://dx.doi.org/10.1080/
00207220412331297947

26. Mühlbauer F, Rech LOM, Bobda C (2008) Hardware accelerated openCV on system on chip.
In: Reconfigurable communication-centric systems-on-chip workshop 2008

27. Pham D, Alcock R (2003) Smart vision applications. In: Smart inspection systems, pp 157–191.
Academic Press, London. doi:10.1016/B978-012554157-2/50006-7

28. Prytz G, Johannessen S (2005) Real-time performance measurements using udp on windows
and linux. In: 10th IEEE conference on emerging technologies and factory automation 2

29. for blind review, O (2009)
30. Rinner B, Quaritsch M (2008) Embedded middleware for smart camera networks and sensor

fusion. Elsevier, Amsterdam
31. Rosenschein JS (1986) Rational interaction: cooperation among intelligent agents. Ph.D. thesis,

Stanford University, Stanford, CA, USA
32. Shalizi CR (2001) Causal architecture, complexity and self-organization in time series and

cellular automata. Ph.D. thesis, The University of Wisconsin—Madison. Supervisor-Olsson,
Martin

33. Shen W, Norrie DH (2001) Dynamic manufacturing scheduling using both functional and
resource related agents. Integr Comput-Aided Eng 8(1):17–30

34. Shi Y, Tsui T (2007) An fpga-based smart camera for gesture recognition in hci applications.
ACCV 1:718–727

35. TAO http://www.cs.wustl.edu/schmidt/tao-status.html
36. Venter G, Sobieszczanski-Sobieski J (2003) Particle swarm optimization. AIAA J 41(8):1583–

1589
37. White SR, Hanson JE, Whalley I, Chess DM, Segal A, Kephart JO (2006) Autonomic com-

puting: architectural approach and prototype. Integr Comput-Aided Eng 13(2):173–188
38. Wireshark http://www.wireshark.org/
39. Xilinx (2008) Early access partial reconfiguration user guide

http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/4539769/4543991/04544043.pdf?arnumber=4544043
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/4539769/4543991/04544043.pdf?arnumber=4544043
http://dx.doi.org/10.1080/00207220412331297947
http://dx.doi.org/10.1080/00207220412331297947
http://dx.doi.org/10.1016/B978-012554157-2/50006-7
http://www.cs.wustl.edu/schmidt/tao-status.html
http://www.wireshark.org/


Chapter 4
Design and Verification Environment
for High-Performance Video-Based
Embedded Systems

Michael Mefenza, Franck Yonga and Christophe Bobda

Abstract In this chapter, we propose a design and verification environment for
computational demanding and secure embedded vision-based systems. Starting with
an executable specification in OpenCV, we provide subsequent refinements and ver-
ification down to a system-on-chip prototype into an FPGA-based smart camera. At
each level of abstraction, properties of image processing applications are used along
with structure composition to provide a generic architecture that can be automatically
verified and mapped to a lower abstraction level, the last of which being the FPGA.
The result of this design flow is a framework that encapsulates the computer vision
library OpenCV at the highest level, integrates Accelera’s SystemC/TLM with the
Universal Verification Methodology (UVM) and QEMU-OS for virtual prototyping,
verification, and low-level mapping.

4.1 Introduction

Due to their advantages in size, cost, and programmability, embedded cameras have
become a promising alternative to conventional sensors such as RADAR and LIDAR
for gathering information about the surrounding environment. Robotics, driving
assistance systems, autonomous driving cars, and unmanned aerial systems (UAS)
are just few examples of application areas where embedded cameras have been suc-
cessfully introduced. Many studies in the past have aimed at designing complex visual
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systems using embedded cameras for vision-aided flight control [10], tracking [13],
terrain mapping [16], and navigation [11], with considerable achievements.

Despite their huge potential, designing video-based embedded systems remains
challenging due to the many and sometimes conflicting design constraints that must
be simultaneously addressed: high performance, high throughput, low power, or low
density. This complexity is expected to increase in the near future as consumers and
applications demand more functionality and performance. Nevertheless, with the
rapid growing in the field of high-performance and reconfigurable computing, com-
putational requirements of such video-based platforms could efficiently be satisfied
through a combination of hardware and software on a single chip, also referred as
system-on-chip (SoC). In such a decomposition, low-level repetitive computations
are mapped into hardware, while complex reasoning parts are maintained in software.

The design process of a hardware/software system generally starts with a manual
partition of the initial application, in which parallelizable and computational inten-
sive blocks are extracted. Then follows a separate implementation of the sequential
parts in software—using traditional languages such as C—and the parallelizable parts
in hardware—using hardware description languages such as Verilog or VHDL. This
segmentation is a tedious process that requires hardware and software skills as well
as a deep understanding of image processing. Software design environments, such as
OpenCV, are very popular in the software community for the design of video-based
systems. While such frameworks increase the productivity by providing a rich set
of library functions for image, video manipulation, and machine learning, they are
limited to target only general purpose processors. As a consequence, there is a need
to map applications captured in those frameworks onto dedicated hardware/software
architectures while performing verification tasks. Manual translations are time con-
suming, error-prone, and require hardware design skills not available in the image
processing community, the bulk of which is made up of software designers.

In this chapter, the focus is on providing a high-level framework for the rapid
design and verification of embedded vision-based systems. The proposed work
exploits high-level system modeling to define concepts necessary for capturing
vision-based applications through the use of SystemC/TLM. SystemC/TLM has
become the defacto standard for systems-on-chip design and modeling. It is widely
used for development at higher abstraction levels and for system prototyping. After
the high-level specification, model to model transformation rules are developed to
allow subsequent refinements down to a hardware/software implementation. Finally,
verification and analysis models are used to insure the correctness of the final design
regarding the initial system specification.

4.2 Related Work

In this section we review the related work pertaining to the design and verification
of video-based embedded systems. Published literature could be classified in two
categories: hardware/software system design and verification environments.
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4.2.1 Hardware/Software System Design

The review of embedded video processing systems provided in [19] shows that
computation in current embedded systems is performed in software on a general
purpose processor, sometimes optimized for multimedia computation. The system
in [8] uses several digital signal processors on different PCI-boards, while the CITRIC
[9] relies on the Intel XScale PXA270 processor. Considering the growing complex-
ity of applications, the computational requirements of embedded cameras can be
reached only through a combination of hardware and software, which are integrated
today on a single system-on-chip. Usually, hardware and software are developed
separately and the integration is done very late. Bugs become difficult to correct
and hardware architectures are sometimes not optimal. Because of the high cost and
reduce flexibility that will result in the design of a ASIC, this aspect is tackled with
FPGAs in most embedded systems such as [5, 7]. However, the FPGAs were used
as co-processors for a single task fixed at compile-time. For instance, in [7], a Xilinx
Spartan-3E FPGA is used as a co-processor. In [23], a hardware/software implemen-
tation on a Xilinx FPGA platform is presented for a 3D facial pose tracking appli-
cation; the most-computationally intensive part was implemented in hardware while
the remaining were implemented in the soft-core processors. Various architectures
employ programmable DSPs with additional resources, such as special graphics con-
trollers and reconfigurable logic devices, as shown in [21]. These implementations
are done manually using low-level languages, and there is no focus on verifying the
resulting architectures. This approach is tedious and error- prone as we mentioned.

4.2.2 Verification Environments

Verification for embedded imaging systems is addressed in [3, 25], where a generic
and automatic environment for the verification of image signal processing IPs is pre-
sented. In [25], the verification environment is based on Specman language, while
[3] uses reusable eVC and C-Model. These works however are limited to hard-
ware accelerators. In [18], a specific application system with the co-simulation of
SystemC and RTL is presented. The co-simulation of SystemC TLM is used in a
surveillance camera system using a one-bit motion detection algorithm for portable
applications. The host controller interface (HCI) and the motion detection sensor
(MDS) are implemented using SystemC TLM. The API program is implemented in
C++, while other blocks of this system are implemented using RTL HDL. To ver-
ify co-simulation, HCI, MDS, and API program are operated at a PC workstation.
Co-simulation is used to accelerate the simulation of the system. In [24] video data
and synchronization signals are generated as testbench for the simulation of video
processing IPs. However, simulation without emulation is limited since it does not
catch every error in the RTL systems, especially timing errors. The scope in [22] is
limited to algorithms by formally verifying complex loop transformations like loop
folding, loop distribution, typically applied in the design trajectory of data dominated
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signal and data processing applications. Important part of the systems like interfacing,
communication and data flow component, and memory are not addressed.

None of the existing work does address the high-level system design and sys-
tem verification in tandem. The goal of the framework presented in this chapter
is to provide software designers with a mean to capture their designs at a high
abstraction level and subsequently refine their implementation down to an equiva-
lent hardware implementation, with the final design being emulated into the FPGA.
At each transformation step, the framework will ensure design safety, reliability,
and correctness through a verification process based on the Universal Verification
Methodology (UVM).

4.3 The Design and Verification Approach

For the automatic design and verification of embedded video systems, we propose the
design approach sketched in Fig. 4.1. In the proposed flow, the initial specification
undergoes several transformations. During this process, it must be guaranteed that
a transformation does not produce different results than the original specification.
Therefore, at each level of the design flow, the corresponding abstract representa-
tion of the target architecture is used with the required amount of details to verify
and refine the representation to the lower level by means of structure composition
and structure verification, explained in Sect. 4.3.1.2. As depicted in Fig. 4.1, the
proposed design flow consist in four successive phases: input system specification,
Hardware/Software decomposition, RTL implementation, and system emulation.
Before explaining these steps, concepts and terminologies that are used through-
out this chapter to present the proposed approach will be defined.

4.3.1 Definitions

4.3.1.1 Component Interconnect for Data Access

The Component Interconnect for Data Access (CIDA) is a portable interface module
used for data exchange among software and hardware components in a system-on-
chip. It is classified as a rich interface [6], which means that it could be used to specify
the protocol aspects of component interaction. CIDA helps to model and to inves-
tigate component-based systems by strictly separating the behavioral description of
components from their interaction.

Components are generally designed independently from their context of use and
could be connected together via composition. In computer vision systems, commu-
nication between the different parallel components is very important. Consequently,
streams of data have to be carefully designed in order to maximize the use of par-
allelization. Moreover, memory interfaces play a key role in data transfer because
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Fig. 4.1 Design flow for the automatic transformation and verification of a high-level video-based
application into an RTL representation

of the large memory access requirements. CIDA is very useful in image processing
where computation takes place in a streaming way. It has been designed to allow
efficient data streaming among hardware accelerators and memories. CIDA consists
of two disjoint sets:

• X I set of inputs, composed of generic stream_in ports and memory-mapped
inputs ports. The generic stream_in ports are:

– Data_in < m >: input payload of size m
– valid_in: valid payload at the input
– stop_in: request to continue to feed data at the output. This is an active low

signal.

• X O set of outputs, composed of generic stream_out ports and memory-mapped
output ports. The generic stream_out ports are:

– Data_out < n >: output payload of size n
– valid_out : valid payload at the output
– stop_out : request to continue to feed data at the input. It is an active low signal.

Figure 4.2 shows the internal structure of CIDA. CIDA is a powerful interface
to stream data between hardware modules. It consists of 2 sub-interface modules
(stream-in and stream-out), a set of memory mapped signals, and a scheduler, easily
implementable in SystemC/TLM. The AXI Interconnect of Xilinx [2] is used as
the bus protocol to allow Direct Memory Acess (DMA) to the external memory.
All Processing Units (PU) connected to the CIDA access the memory (for read and
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Fig. 4.2 Internal architecture of the CIDA

write operations) through an AXI master interface capable of burst transfers. CIDA
leverages an internal scheduler to arbitrate the transactions between its streaming
interfaces and the external memory. This scheduler locally handles concurrent read
and write requests between the memory and the PUs attached to the CIDA interface.
The scheduling policy currently used is based on Round-robin, but more complex
scheduling mechanisms could be implemented. A data source, such as the CPU or
the memory, can supply or receive pixels to/from a processing unit in a composition
chain. The computation take place inside PUs and the results are sent either to the
next PU in the chain or back to the data source. The state and the configuration of a
PU is available to the CPU through software defined registers accessible via an AXI
slave interface.

Figure 4.3 presents an example of processing chain where all functionalities of
CIDA are used. The presented structure is made up of n PUs interconnected using
CIDA and that can anytime access external memories for read and write operations.
Here, an external scheduler arbitrates memory requests coming from multiples PUs
through the CIDA components. By using CIDA for component interconnection,
we can define transformation rules and perform an automatic synthesis from the
high-level down to the hardware implementation, while insuring the correctness of
resulting design.

4.3.1.2 Interface-Based Structure Composition

Structure composition consists of putting low-level configurable modules together
in order to build high-level functions. For this purpose, CIDA is leveraged for the
seamless integration of IPs together in the final architecture with transparent data



4 Design and Verification Environment for High-Performance 75

Fig. 4.3 Example of processing chain using CIDA

exchange in the system. The notion of composition can be explained by defining
A/G (Assume/guarantee) interfaces. An A/G interface F = X I, X O, φ I, φO consists
of:

• two disjoint sets X I and X O of input and output variables;
• a satisfiable predicate φ I over X I called input assumption;
• a satisfiable predicate φO over X O called output guarantee.

Two A/G interfaces F and G are said to be syntactically composable, iff the set of
their output variables are disjoint: X O

F

⋂
X O

G = ∅. In our case, two CIDA interfaces
will always be composable due to the fact that an input signal cannot have multiple
drivers, which is a constraint for synthesizable designs.

4.3.1.3 Structure Verification

The main idea behind Structure Verification is to be able to verify that an abstract
interface design meets a requirement specification. This is insured by verifying each
individual element in the composition chain and each interface used. Using veri-
fication methodologies such as assertion-based or coverage-driven, we can prove
that a specification satisfies a given property. Coverage metrics are measures of the
exhaustiveness of a test suite. They measure the quality of verification effort, to which
extends the functionality of a given design under test (DUT) has been verified during
simulation. On the other hand, Assertion-Based Verification (ABV) has proven to
enhance design quality and verification time tremendously [1].
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Fig. 4.4 Description of the Sobel filtering in software. Video reading, Sobel processing, and video
displaying are implemented using the OpenCV library

4.3.2 Level 1: System Specification

The first step in the design flow is the specification of the system which corresponds
to the description of the high-level input application, regardless of the target archi-
tectures. At this stage, only image processing skills are required to define the appli-
cations in executable form in C/C++ using the OpenCV environment. To feed input
data to the application, synthetic videos or a webcam could be used, while any mon-
itor screen maybe used to visualize the output results. An example of specification
is shown in Fig. 4.4 which describes a Sobel filter image processing. The OpenCV
library is leveraged to read data from a video file (line 25), then to process the incom-
ing pixels framewise (line 28), and finally to display the result on the output monitor
(line 31). The verification at this level is done by means of high-level simulation, just
to ensure that the application is running correctly. Simulation results will be saved
and used as reference values during the next refinement steps in order to verify that
the corresponding transformations are correct.

4.3.3 Level 2: High-level Hardware/Software Decomposition

From the application specification in OpenCV, a hardware/software partition is
produced. This decomposition aims to improve the application performance by mov-
ing computational intensive parts of the system to the hardware, while keeping the
complex and reasoning parts in software. At this step, the behavior of the entire system
is captured using a transaction-level model. Transaction Level Modeling (TLM) [20]
is becoming increasingly popular in the industry as the ultimate tool to capture and
verify systems consisting of several software processes and hardware components.
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TLM is particularly appealing because of its compatibility with environments that
use native C/C++.

Given that there is currently no tool for the automatic partition of the design, the
user is in charge of selecting functions to be mapped onto the hardware. This could
be done by using a profiling-based approach, where computational “hot spots” in the
OpenCV application are identified after simulation. At this level of the design flow,
we do not focus on implementation details of the communication among hardware
and software blocks. OpenCV and SystemC are combined in such a way that all
functionalities to provide images, to perform reasoning on extracted features, and to
display results are handled using OpenCV, while SystemC is used to describe the
abstract communication among all the different blocks in the system. To generate
the equivalent SystemC-RTL implementation from the initial OpenCV application,
two successive transformations are required.

4.3.3.1 Transformation I: OpenCV → OpenCV/SystemC-TLM

The objective in the first transformation is to generate from the initial OpenCV appli-
cation, an equivalent hardware/software decomposition, with the hardware being
implemented using SystemC and the component communication being captured
through Transaction-Level Modeling. This partitioning aims at increasing system
performance and is done manually after a profiling of computationally intensive
parts of the input specification.

Transaction-Level Modeling (TLM) is a high-level approach to modeling systems
where details of communication among modules are separated from the details of the
actual implementation of the communication architecture. Communication mecha-
nisms such as buses or FIFOs are modeled with TLM as channels and connected to
other modules using SystemC interface classes. In this chapter, we will refer to such
a class as a SystemC-TLM implementation. At the transaction level, the emphasis is
more on the functionality of the data transfers—what data are being transferred and
from what location—and less on their actual implementation; that is, on the actual
protocol used for data transfer. A transaction is a data structure passed between initia-
tors and targets using function calls. In TLM-2.0, an initiator is a module that initiates
new transactions, and a target, a module that responds to transactions initiated by
other modules. A transaction is characterized by its type (read or write), an address
from where to read or write, a pointer to the data to be transferred, and the phase
of the transaction which indicates the progress status (begin, request, end request,
completed, ...). The same module can act both as an initiator and as a target. This is
the case for a model of an arbiter, a router, or a bus, where transactions are usually
bidirectional.

In the first transformation, the main challenge is to be able to successfully identify
the hardware candidates during the profiling. Many computer vision operations, such
as convolutions, filtering operations, or color conversions work on a pixel-by-pixel,
windows, or matrix basis, and represent excellent candidates for parallel or pipelined
processing. Given that the structure of such operations is well-known, we provided
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Fig. 4.5 HW/SW decomposition of the Sobel processing using OpenCV and SystemC-TLM.
a The Blockwise decomposition. b High-level implementation

a set of template implementations in SystemC-TLM, SytemC-RTL, and RTL where
the user can directly select from in order to speed up the design process.

Upon completion of the profiling, the identified blocks (hardware and software)
are first combined to build a composition chain, reflecting the streaming structure of
an image processing. Then, all hardware candidates are replaced with their SystemC-
TLM implementations. TLM sockets (initiator and target) are also integrated to
the software blocks to allow transactions between hardware and software modules.
Finally, the correctness of the transformation is verified using the UVM. Figure 4.5
sketches an example of such a transformation applied on the Sobel filter processing
of Fig. 4.4. When evaluating the application of Fig. 4.4, the Sobel processing step is
identified as a computational demanding task and will be accelerated in hardware,
while the reading and displaying of images will remain in OpenCV and executed on
the general purpose processor. The program is therefore segmented in three different
blocks: video reading, Sobel processing, and video displaying. For a seamless data
transaction between modules, three instances of TLM classes are created (line 5, 6,
and 7 of Fig.4.5b). Data transaction in this new composition starts with the display
module sending a read request to the target of the Sobel component. If the data buffer
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of the Sobel module is not empty, then a response is sent back with the requested data
as packets of 64 bits. Otherwise, the request transaction will wait for a response from
the Sobel without blocking the system (non-blocking transfer), while the initiator of
the Sobel module will be issuing a read request to the image sensor module for data
acquisition. In this transformation, the focus is not on the implementation details of
the transactions between blocks, but rather on the functionality of the data transfers.

The verification at this level consists of either simulating the entire system using
SystemC or verifying each of the hardware components using UVM. This later option
will require to verify all assertions and coverages at the transaction level.

4.3.3.2 Transformation II: OpenCV/SystemC-TLM →
OpenCV/SystemC-RTL

In this step, all SystemC-TLM modules of the previous transformation will be
replaced with their SystemC-RTL counterparts. The use of TLM allows for faster
simulation and rapid functional verification of the system since it works on transac-
tions. However, it is also important to have a cycle-accurate or semi-accurate model
of the hardware/software system in order to verify not only the timing constraints
but also the functional coverage and to check more aggressively the protocol inside
the parts of the system. We need therefore to rely on a cycle-accurate protocol that
could interface with TLM. For this purpose, CIDA could be leveraged to construct
the structure composition at the cycle-accurate and RTL level. Equivalence checking
will be used to ensure that the system is still equivalent after the transformation.
The verification of each structure composition will be guaranteed by verifying both
the CIDA interface and each module inside the composition. For the verification of
the resulting system, we proposed a generic environment using UVM (see Fig. 4.7)
to verify each IP in the composition chain at the SystemC-RTL level, as well as the
resulting system-on-chip.

When applying the second transformation to the implementation of Fig. 4.5, the
TLM classes of the hardware components are replaced with CIDA interfaces. To
allow communication among hardware and software components, a direct memory
access (DMA) module is used. The DMA operates as a bridge and integrates both
a TLM interface for transactions with the memory and a CIDA interface for com-
munication with hardware components. For a cycle-accurate implementation, data
transactions between hardware modules are synchronized. The software blocks com-
municate with the rest of the system by directly reading or writing data at a specific
location inside the memory. Figure 4.6 illustrates such a transformation.

In the configuration of Fig. 4.6, the Image Display module initiates the processing
by sending to the DMA (through the memory component) a request to place the
processed pixels at a specific location inside the memory. The DMA will then send
a read request to the Image Input for pixel acquisition. Once the raw data are read
and copied in the memory, they will be transmitted to the Sobel module in packets of
64 bits. Such a data transaction reflects the realistic communication pattern existing
between embedded components where the size of the bus is limited; requiring large
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Fig. 4.6 Cycle-accurate modeling of the Sobel processing using SystemC-RTL, TLM classes, and
CIDA interfaces

data to be exchanged as small packets. After the processing, the result will be stored
back in the memory and the DMA module will notify the processor through an
interrupt. Upon reception of the interrupt signal from the DMA, the processed data
will be read from the memory and displayed on the monitor.

Figure 4.7 depicts an abstract representation of the generic system-on-chip that
is used in this chapter to model a high-level application in the OpenCV/SystemC-
RTL environment. The entire environment runs in software on a workstation and
is used to emulate the low-level final architecture on our target platform. The input
video system is modeled using any traditional webcam and the resulting output
will be visualized on a conventional monitor. The refinement from high-level to the
RTL implementation is done by means of structure composition. For this purpose,
CIDA and TLM are used for the seamless integration of hardware components into
the system and for the transparent data exchange among software and hardware
components in the final architecture. We provide a TLM-Specification for the direct
memory access (DMA), which uses TLM-Socket to allow for communication among
hardware and software components on the chip. The bus is specified as a TLM-
Module that accesses a transaction but does act neither as an initiator nor as a target.
The ARM target processor is modeled using QEMU, a generic and open source
machine emulator and virtualizer capable of running operating systems and programs
with good performance. We integrated QEMU in the OpenCV + SystemC-TLM
environment using TLMu [4], a TLM wrapper for QEMU that allows to communicate
with the CPU core using TLM2.0 sockets. The resulting system (OpenCV + SystemC-
TLM + QEMU) is then used to simulate the resul1ting system-on-chip with software
and OS at the transaction-level, with inputs and output provided by the OpenCV.

The inter-block communication in the proposed environment is ensured by CIDA
interfaces and TLM classes, such that by verifying the CIDA and TLM, we will
automatically insure the correctness of the processing chain. The simulation of the
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Fig. 4.7 Abstract representation of the target platform at the system-level

system will allow to verify the software and the hardware parts in the verification
environment, presented in Sect. 4.3.6. The functional coverage and assertion-based
verification of the SystemC-TLM environment is done by integrating UVM into
our environment. The UVM environment contains verification intellectual property
components. The coverage and assertions are integrated into the environment using
SystemVerilog coverage and assertion properties. The processing flow consists of
generating sequences into the UVM environment, sending them to the SystemC-
TLM module, transferring any event or signal needed to the UVM environment for
recording, checking, coverage and assertion analysis.

4.3.4 Level 3: Register Transfer Level Implementation

In this third step, the abstract TLM-description of step two is further transformed into
a structure that can be synthesized by hardware compilers. The refinement includes
the pin and cycle accurate implementation of the communication interface between
software and hardware, a detailed description of the bus model, and a detailed imple-
mentation of buffers and memory. In embedded imaging systems, images are trans-
mitted from a charge coupled device (CCD) or CMOS to the processing subsystem
pixel after pixel. Furthermore, most image processing functions operate on pixel
neighborhoods, which in case of streaming architectures are better served with some
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form of sliding windows and additional buffers to capture the neighborhood of the
pixel currently being considered.

In our environment, we provide a structure consisting of a buffer to hold each line
of pixels for the sliding window and a mask to capture the neighborhood of a pixel.
The buffers are configurable in length and number to match the size of the picture
and neighborhood being used. With such a clear structure for the image processing
block, the function applied on the masks is also a template, whose implementation can
simply be set automatically from the function specification in TLM and additional
user-defined properties. Masks currently available in our environment are: convolu-
tions, generic edge detection, segmentation, and thresholding. In order to translate
the SystemC-TLM description into an RTL implementation that can be synthesized,
we implemented the templates in VHDL and automatically map the description of
level 2 into level 3, without requiring intervention of the user. Transaction parts
that rely on object structures are mapped to software along with the part running in
OpenCV, while the remaining RTL part of SystemC is mapped to our VHDL module
implementation.

4.3.4.1 Transformation III: OpenCV/SystemC-RTL → OS/OpenCV/HW

This step consists of producing the final architecture and to rapidly prototype it
in the FPGA to emulate the system in the field. Since there is no efficient tool
to perform the translation from SystemC to RTL, this transformation will be done
semi-automatically by mapping SystemC cores to pre-designed RTL IPs. The design
of CIDA allows any construction in the SystemC platform to have a corresponding
construction at the RTL level. Equivalence checking is then used to formally prove
that the SystemC model is equivalent to the RTL IP. Since all modules of the envi-
ronment are not synthesizable, some of them will be replaced by the corresponding
resource in the target FPGA. For example the QEMU processor will be replaced by
the Processing System in the target FPGA.

4.3.5 Level 4: Emulation

This is the last step in the design process where the final system is emulated. For this
purpose, we have designed a versatile FPGA-based smart camera, the RazorCam, to
allow for testing in a real-life environments. Our platform implements image process-
ing directly inside the camera, instead of propagating the image to a workstation for
processing. Its compact size and performance facilitates the integration in embedded
environment like cars and UAS. The processing module consists of: one Xilinx Zynq
FPGA, a flash drive, connectors for an infrared camera, a digital camera sensor, and
an analog camera sensor. A TFT monitor can be connected to the platform so that
the user would check the results of its application in real-time.
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4.3.6 The UVM Environment for Verifying SystemC Models

The goal is to propose a generic environment to quickly verify our models after
every transformation during the design process. We present in this chapter an auto-
matic UVM environment (Fig. 4.8) with functional coverage and assertion-based
verification for SystemC-TLM. The base environment is generated according to the
inputs and outputs of the SystemC-TLM systems and contains verification intellec-
tual property components. The result is a complete and working UVM testbench
for SystemC-TLM (with all blocks built and connected) that can be compiled and
simulated. The processing flow consists of generating sequences into the UVM envi-
ronment, sending them to SystemC/TLM module using UVM connect from Mentor
Graphic. Outputs of the hardware accelerator are sent back to the UVM environment
for recording, checking, coverage and assertion analysis. Moreover, the environ-
ment is encapsulated with SystemC/TLM module such that it is possible to drive the
module with either sequences from the environment or sequences from SystemC.
This allows to verify the module either independently or as part of SystemC system-
on-chip. The proposed environment reduces steps in the testbench creation while
providing a high quality of the verification by using a combination of coverage and
assertions. The following section details the capabilities of our environment.

4.3.6.1 Extracting Data

The UVM environment has to drive input ports of a design and observe output ports.
A SystemC parser is used to retrieve the netlist (inputs and outputs) of the DUT.
The netlist is used to generate one class Packet in SystemC, one class packet in
UVM and a SystemVerilog interface. The class packet in UVM is defined as uvm
sequence item and is used to generate sequences in the UVM environment. Sequence
item represents data for the stimulus of the DUT. The stimulus can represent a
command, a bus transaction, or a protocol implemented inside the DUT. The fields
in a Sequence item may be randomized to generate different stimuli. UVM provides
constructs to generate random and constrained packets. The class Packet in SystemC
is used to drive input ports of the DUT and observe output ports of the DUT. The
communication between a packet in SystemC and a packet in UVM is done using
UVM Connect (UVMC). A similar procedure is applied in case of Transaction Level
Modeling (TLM) IP. In TLM, there are 2 types of sockets: initiator and target. An
initiator socket generates a transaction and sends it to a target socket. A transaction
is characterized by the type of transaction (read or write), the address, a pointer to
the data to be transferred and the phase of the transaction. These ccharacteristics are
used to create packets for driving a TLM IP.

4.3.6.2 Sequencer

A sequence implements the procedure to create sequence items. It is a set of packets
with specific values for each field of a packet.The sequencer is responsible for the
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Fig. 4.8 The proposed UVM environment

coordination between sequences and the driver. It reads a packet or transaction from
the sequences module and sends it to the driver. The driver implements the function
seq_item_port.get_next_item to indicate to the sequencer when it needs a new packet
or transaction. It also implements the function seq_item_port.item_done to signal
when it has finished to process a packet or a transaction. This mechanism, similar
to a blocking transport interface, allows the synchronization between the sequences
module and the driver.

4.3.6.3 Driver

This module drives a packet or a transaction to the DUT ports. It receives sequence
items and sends them to the DUT. The driver implements a function uvm_blocking
_put_port to send a packet through UVM Connect (UVMC) to the SystemC side of
the environment. We used a blocking port as a means for synchronization and this
provides enough time to the DUT to process the packet.
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4.3.6.4 UVM-SC Communication

UVM Connect (UVMC) from Mentor Graphic is an open-source UVM-based library
that provides the communication between SystemC Components and SystemVer-
ilog UVM Components using TLM connectivity between them. It also provides
a means for accessing and controlling UVM simulation from SystemC. In the
proposed environment, the communication from UVM to SystemC is done using
tlm_blocking_put_if interface. This interface passes a packet from the driver to the
SystemC/TLM hardware. tlm_analysis_port is used for the communication from
SystemC to UVM. It sends a packet from SystemC/TLM hardware to the moni-
tor. The use of TLM connectivity between UVM and SystemC provides a rapid
simulation.

4.3.6.5 Monitor

This module receives transactions and signals and makes them available to other
components. The communication between the monitor and the coverage module
is done using a simple uvm_analysis_port function. The analysis port is used to
perform non-blocking broadcasts (from one entity to several entities) of transac-
tions from a component to its subscribers. An analysis port can be connected to
more than one component. A subscriber component provides an implementation
of uvm_analysis_imp port. An uvm_analysis_imp receives all transactions broad-
casted by a uvm_analysis_port and implements the analysis interface such as cov-
erage collection. The monitor instantiates a SV interface and maps it to the received
transactions and signals. Assertions are checked inside the SV interface.

4.3.6.6 Functional Coverage

The coverage is integrated into the environment using SystemVerilog coverage
properties. The SystemVerilog functional coverage constructs allow coverage of vari-
ables and expressions, as well as cross coverage between them. In SystemVerilog,
the covergroup construct is used to specify a coverage model. Each covergroup can
include a set of coverage points, cross coverage between coverage points and cov-
erage options. A coverage point can be a variable or an expression. Each coverage
point includes a set of bins associated with its sampled values or its value-transitions.
The bins can be explicitly defined by the user or automatically created. For exam-
ple, a sc_logic variable should have only two possible values: 0 or 1. Therefore, the
coverage of a sc_logic variable can be done with a bin [0:1]; this can be generated
automatically. In the proposed environment, the coverage model is implemented in
a class coverage, subscriber component for the class monitor. We give to users the
possibility to specify an external coverage input file to be used to generate the class
coverage. SystemVerilog syntax must be used to define the coverage inside the file.
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The coverage input file is included inside the class coverage during the generation
of the UVM environment.

4.3.6.7 Assertions

Assertions are integrated into the environment using SystemVerilog assertions and are
implemented to execute protocol or timing checking. They can be used to implement
simple to-complex property/sequence checks for an interface or a protocol. Since in
SystemVerilog, assertions are defined only within an interface, they will be added
into the generated SystemVerilog interface. The purpose of an assertion is to specify
and check a set of properties that is expected to hold true in a given component.
SystemVerilog provides two types of assertions: immediate and concurrent:

• Immediate Assertions: are statements that include a conditional expression to
be tested and a set of statements to be executed depending on the result of the
expression evaluation.

• Concurrent Assertions: provide the means to specify sequential properties and to
evaluate them at discrete points in time such as clock edges.

4.3.6.8 Testbench Generation

UVM will automatically generate a tesbench based on random sequences to drive
the DUT. The base UVM environment can be configured to stop after a certain
number of sequences or to stop after a percentage of coverage has been reached.
This is useful depending on the verification test plan. The DUT encapsulated with
the UVM environment can also be configured to be driven by a SystemC testbench.
In that case, the UVM sequences are ignored and UVM is only used for coverage
and assertion-based verification.

4.4 Experimentations

4.4.1 Emulation Platform

Our emulation platform is the RazorCam [14, 15], a smart camera system offering a
flexible and extensible Hardware/software environment to prototype and to
verify video applications. It is capable of streaming image data from 3 camera sen-
sors, through a leading-edge Xilinx Zynq-7000 for processing and analysis. It offers
several interfaces including UART and Ethernet connectivity. Linux is used as the
embedded operating system on the ARM processor as it offers a solid, familiar plat-
form for development with a feature-rich toolchain. The programmability and the
seamless use of hardware accelerators in image processing application are insured
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Fig. 4.9 The RazorCam embedded platform

through the design and implementation of a Component Interconnect for Data Access
(CIDA). The CIDA allows interfacing amongst hardware accelerators, Hardware and
software through its DMA capabilities. The drivers to control the CIDA from the oper-
ating system have been developed. The Intels OpenCV computer vision library has
been ported to the system and is accessible in the Linux environment. The RazorCam
also features a 320 × 240 Thin Film Transistor (TFT) LCD with serial interface for
image display (Fig. 4.9).

4.4.2 Case Studies

The proposed methodology has been tested on two benchmarks. The first case study
was a new algorithm for line segment detection using weighted mean shift procedures
[17], which has application in lane departure and driving assistance. This was an
extended version of the Sobel filter processing used as case example throughout this
chapter. The processing chain consisted of image acquisition, RGB to Gray color
conversion followed by a sobel edge detection, and a weighted mean shift segment
detection. Figure 4.10 shows the results at the different levels of the design flow. The
result of the emulation is displayed on the TFT display of the RazorCam. The final
architecture in the FPGA performs slighly better than the initial OpenCV code when
clocked at 50 Mhz.

The second case study (Fig. 4.11) was an implementation of a segmentation,
which is at the center of many computer vision applications. The segmentation of
Kim and Chalidabhongse [12] was selected. The method is very robust and includes
shadow detection. An initially trained background image is compared to the current
image using the three red, green, and blue (RGB) color parameters.
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Fig. 4.10 Performance evaluation of the line segment detection. a The original frame. b Simulation
of the pure software implementation. All the different blocks are implemented using OpenCV. c
Simulation of the HW/SW decomposition with SystemC-TLM. d Emulation of the final design on
the RazorCam

Fig. 4.11 Performance evaluation of the segmentation implementation. a Original image.
b OpenCV. c SystemC-TLM. d RTL+Emulation on FPGA

4.4.3 Verification Evaluation

In order to assess the proposed verification framework, all experiments have been
conducted on an Intel Celeron 2.4 GHz machine with 2 GB RAM running Linux. The
generated environment was compiled and simulated using ModelSim from Mentor
Graphic. Table 4.1 shows the number of lines in the DUT, the time to generate the envi-
ronment for the DUT, the CPU simulation time for the DUT, the coverage reached,
and the number of failed assertions for both UVM and SystemC testbenches. The
UVM testbench has been configured to end after 3000 sequences. The SystemVerilog
covergroups for the coverage were automatically derived from the DUT inputs and
outputs and implemented using automatic bins in SystemVerilog. We derived the
assertions to be checked by looking at the specification of the protocol implemented
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Table 4.1 Coverage and assertions verification of the models used in the case studies

UVM testbench SC testbench
SC DUT Size Generation Simulation Coverage Failed Coverage Failed

(lines) time (s) time (s) (%) assertion (%) assertion

Line detection 420 1 34 79 None 58 None
Segmentation 800 1 47 93 None 64 None

in the DUT and how it was implemented.We can observe that the generation of the
UVM environment is fast and practically does not scale with the size of the DUT.
Additionally, we can see that an automatic UVM testbench performs a better coverage
and assertion verification than a manual SystemC testbench.

4.5 Conclusion

In this chapter, a design flow to rapidly prototype a video application from its high
level specification is proposed. The proposed design framework includes OpenCV,
QEMU-OS, SystemC, and a target FPGA for emulation. This work also presents an
automatic UVM environment to improve SystemC/TLM verification and take advan-
tage of UVM capabilities for a more efficient and faster verification of SystemC/TLM
systems. The prototyping environment for video applications allows for software
functional verification, hardware functional verification, and rapid prototyping from
a high-level specification. This environment used in hardware/software co-design can
help to reduce time to market not only of video-based hardware/software systems,
but system-on-chip in general.
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Part II
Smart Cameras in Mobile Environments



Chapter 5
Distributed Mobile Computer Vision: Advances,
Challenges and Applications

Niki Martinel, Andrea Prati and Christian Micheloni

Abstract The role of mobile devices has shifted from purely passively transmitting
text messages and voice calls to proactively providing any kind of information that
is also accessible to a PC. The recent advances in the field of micro technology have
also made possible to include a camera sensor in any mobile device. This innovation
is now attracting both the research community and the industries that aim to develop
mobile applications that exploit recent computer vision algorithms. In this chapter
we provide an analysis of the recent advances of mobile computer vision, then we
discuss the current challenges that the community is currently dealing with. Next, an
analysis of two recent case studies where mobile vision is used for augmented reality
and surveillance applications is discussed. Finally, we introduce the next challenges
in mobile vision where the mobile devices are part of a visual sensor network.

5.1 Introduction

Mobile devices are defined to be Web-enabled devices that are used not in a fixed
location but they have been conceived and designed to be portable and usable in
mobility. Typical mobile devices include Web-enabled mobile phones and Web-
enabled pocket-sized Personal Digital Assistants (PDAs) [44]. The first mobile phone
appeared on Detroit police cars in 1921. These devices were communicating together
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with a single high-power antenna installed on a skyscraper that allowed a transmission
range of about a hundred kilometers. Twenty five years later the technology had
reached the commercial service level.

Two main technological innovations allowed such rapid growing and they are
still pushing the design of new, faster and more highly-featured devices. Over the
years the advent of transistors boosted mobile device technology: the possibility of
building tiny and sophisticated electronic components enabled phone companies to
design a large number of models with many advanced features. The other important
aspect—strictly connected with the diffusion of mobile devices—was the innovation
of the communication infrastructure. Nowadays the community is talking about the
fourth generation of mobile networks that should achieve a 1 GB/s transmission data
speed. The new, more reliable and faster network infrastructures pushed more and
more the mobile device companies to design and develop new, more sophisticated
and innovative, mobile devices that take advantage of these resources.

Mobile devices were initially designed with a single physical keyboard, now
they are equipped with touch-screens technologies borrowed by Personal Digital
Assistans (PDAs) and other handheld devices: the keyboard has been replaced by a
screen that allows the user to interact with a graphical interface using fingers or other
pointing devices. These, together with faster microprocessors, allow an excellent user
experience and make the tasks of multimedia processing and data logistic possible
on the fly.

Historically speaking, the PDAs can be seen as the first generation of mobile
devices. A PDA is a handheld computing device that combines multiple functions
and features including telephone, fax, Internet and networking or other form of dif-
ferent connectivity capabilities. These devices are mainly used by users that need
to compute operations while moving, simply called “Mobile Computing”. Before
that such features were provided only by laptops or desktop computers. The PDA
is the first step to a future trend that would be later defined as “Technological Con-
vergence” [17]. The next generation of mobile computing, mainly represented by
smartphones, will foster the convergence of communication, computing and con-
sumer electronics, three traditionally distinct industries with quite low interoperabil-
ity. While mobile phones were previously equipped with a simple address book and
agenda, now a smartphone has several features such as a camera, a voice control
system and so on. In other words, a smartphone can be seen as a mobile phone with
computer capabilities that allows it to interact with computerized system, send email
and access to the web.

We are now in an era where the communication and computing environment is
moving to interact with the physical environment or even become part of it. Mark
Weiser, chief scientist at Xerox PARC and considered the father of Ubiquitous Com-
puting, claimed that in the 21st century the technology revolution will move into
“the every, the small and the invisible”. That is what is really happening now: the
information processing moves to the background so as humans concentrate on the
tasks, not on the tools. The technology is viewed as a tool to serve the needs of peo-
ple, not something to depend on. Weiser suggested that the most deep technologies
are those that disappear (“Disappearing Technology”). They weave themselves into
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the fabric of everyday life until they are indistinguishable from it. The concepts of
access anywhere, anytime, from any device are intertwined with the progress of the
network infrastructures and with the aspects of convergence.

5.2 Chapter Contributions

Mobile devices are an inseparable part of our society now. The role of such devices has
shifted from purely passively transmitting text messages and voice calls to proactively
providing any kind of information that is also accessible to a PC. In particular, due
to the advances in smart and micro technology, camera sensors are now a standard
component in all mobile devices. This innovation is now attracting both the research
community and the industries that aim to design and develop applications that exploit
the powerful features of mobile devices and combine them together with the more
advanced computer vision and image processing techniques.

In this chapter, we contribute to the research in distributed smart cameras intro-
ducing the most relevant advancements in mobile computer vision. Then we discuss
the main challenges faced by the mobile vision community such as: (1) the limited
energy, (2) the limited storage, (3) the limited computational capabilities, (4) the
wireless network communication, (5) the scalability of applications. Next, we dis-
cuss two main research studies where computer vision techniques and distributed
frameworks are used for mobile applications of augmented reality and security pur-
poses. Finally we introduce the concept of smartphone networks, where the mobile
device is part of a visual sensor network.

5.3 Mobile Computer Vision

A few years ago, it was very difficult to imagine that in the near future digital cameras
would become a standard component of mobile devices. In these days, such devices
have achieved a good level of maturity and they are now equipped not only with
camera sensors, but with various other sensors such as accelerometers, gyroscopes,
and GPS receivers. The exponential evolution of image and video processing devices
with ever increasing computational capability equipped with high-resolution cameras
and hardware-accelerated graphics has opened to a broad and new emerging research
area that exploits the mobile device camera for applications of computer vision
technologies. The broadband wireless network connection also enables mobility
applications to use the acquired video data to initiate queries and exchanges of
information with other mobile devices or higher computational power infrastructures.
Though it is still in its infancy, it has attracted much attention from both industry
and academia. This is not surprising, since we are indeed in an era of transition
from a focus on PC-based computing to a greater emphasis on smart devices and
cloud-based computing.
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Among the multitude of mobile applications that have been designed to exploit the
images coming from device cameras for computer vision applications, we can gener-
ally group them into three main clusters: location-based services, mixed/augmented
reality, and car safety applications. These topics have become very popular in recent
years, largely in the context of consumer applications where user-centered visual
computing is essential.

Regarding the location-based services, industry has put a lot of effort to achieve
real-time visual image recognition for these applications. Deployments of such sys-
tems include Google Goggles [13], Nokia Point and Find [34], Kooaba [20] and
Snaptell [3]. A specialized case is represented by Leafsnap [21] which is an elec-
tronic field guide that uses visual recognition software to help identify tree species
from photographs of their leaves. In essence, all these applications start from a snap-
shot image taken by a user on a mobile device. Then, the photo is matched against
a pre-annotated image database to extract useful information that is provided to the
user. In the recent years, the problems of image retrieval [12], landmark [24] and
location [39] recognition using appearance-based features have also been deeply
investigated by the community. In order to achieve their objectives, these methods
match appearance features against a large database of location-tagged images [42].
In [48] authors propose a system for determining a user’s location from a mobile
device via image matching. The authors first build a “bootstrap database” of images
of landmarks and train a CBIR algorithm on it. Since the images in the bootstrap
database are tagged with keywords, when a query image is matched against the boot-
strap database, the associated keywords can be used to find more textually related
images through a web search. Finally, the algorithm is applied to the images returned
from the web search to produce only those images that are visually relevant.

Mixed/augmented reality mobile video gaming is another area which has caught
the attention of many. With the increasing quality and spatial resolution of mobile
device cameras we have now high level of augmented reality where real-time interac-
tion is possible. Another motivation of the spreading of AR solutions is the diffusion
of available Software Development Kit (SDK) for efficiently and timely construct
your own mobile AR application. Two examples above all: Qualcomm Vuforia [35]
which is generic SDK for optimized augmented reality and object recognition and
has been used by more than 3,500 mobile apps world wide; and Sentisight [33] which
is a SDK for object recognition, computer vision and augmented reality used in a
number of mobile vision applications.

Although, it is a matter of fact that, for some applications, we may need superior
devices as they typically have much more computational capacity and additional
sensors, enabling computationally expansive mobile applications on the fly. A recent
demonstration of an outdoor mobile augmented reality application running on a
cell phone is Nokia’s MARA project [14]. The system does not perform any image
analysis, instead it uses an external GPS for localization and an inertial sensor to
provide orientation. PhoneGuide [9] is one of the first object recognition systems
performing the computation on a mobile phone, instead of sending the images to a
remote server. The system employs a neural network trained to recognize normalized
color features and is used as a museum guide. Similarly, in [28] authors propose a
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novel framework to support AR for painting on mobile devices. In [18, 22, 46] recent
techniques for tracking and occlusion handling in an AR framework were discussed.
In [40] authors introduce a mobile system based on a hand-held device, GPS sensor,
and a camera for roadside sign detection and inventory. Their algorithm was efficient
enough to ensure good quality results in mobile settings. In the context of augmented
reality, in [11] authors use a modified version of the SIFT algorithm for object
detection and recognition in a relatively small database of mobile phone imagery of
urban environments. The system uses a client-server architecture, where a mobile
phone client captures an image of an urban environment and sends it to the server for
analysis. The SURF algorithm has been used successfully in a variety of applications,
including an interactive museum guide [5]. Local descriptors have also been used
for tracking. In [43] authors track SURF features using video coder motion vectors
for mobile augmented reality applications. The challenges of real-time recognition
and camera pose estimation system for planar shapes were addressed in [16]. The
proposed system performs shape recognition by analyzing contour structures and
generating projection-invariant signatures. Similarly, in [41] SIFT features are used
for recognition, tracking, and virtual object placement. Camera tracking is done by
extracting SIFT features from a video frame, matching them against features in a
database, and using the correspondences to compute the camera pose. In [10], the
monoSLAM system estimates the hand-held camera’s motion from the live image
stream to achieve high AR performance. In [15], an AR rendering pipeline that
supports global illumination techniques was proposed.

Another interesting and diffused field of application of mobile vision is the appli-
cations for car safety. In this case, the smartphone is positioned in front of the car
and used for both analyzing the scene outside (ahead situation) or inside the car. Two
existing products deserve special mention. CarSafe [49] uses rear and rear-facing
front cameras for in-vehicle applications. The rear camera is used for monitoring
distances from other vehicles and for tracking lane changes, whereas, rear-facing
front camera tracks the driver’s head position and direction as well as eyes and blink-
ing rate as indicators of microsleep, drowsiness, and distraction. iOnRoad [19] uses
Qualcomm’s FastCV mobile-optimized computer vision library for frontal collision
warning and lane departure warning. It also monitors headway and can be used for
identifying and locating other cars in the field-of-view.
All of these applications pose a unique set of challenges.

5.4 Challenges

The proliferation of mobile and hand-held devices, along with advances in mul-
timodal and multimedia technologies, are producing a new wave of applications
that enable users to quickly and more naturally perform many tasks. These include:
finding music, videos, and business listings; surfing the Web; sending a short text
message; interacting with social media Web sites; just to mention a few. Mobility
is central to this growing number of applications. It is a matter of fact that, as the
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number of smartphones and emerging devices continue to grow, user demand for
new multimodal and multimedia interfaces that allow them to interact with the device
while in mobility. Speech recognition and text-to-speech synthesis, are recent exam-
ples of this. Over the next few years, we expect to see multiple variants of speech and
image processing technologies on smartphones to be features as standard as a key-
board. This is partially driven by regulatory requirements prohibiting texting while
driving, and the need to provide a natural and a more compelling user interface with
hands-free, eyes-free operation.

Another driver to the mobile revolution is cloud computing. It is significantly
reducing the cost for deploying and maintaining large-scale mobile media services
and enabling location-aware technologies for video, music, speech, and language to
be more readily available as Web services. Indeed, developers can easily access such
technologies through Web services application programming interfaces (APIs) that
take advantage of standards such as HTML-5 and W3C EMMA [45].

The convergence of media and mobility is not only creating new opportunities,
but also opening to a new set of challenges. In addition to the challenge posed by
the limited battery life of mobile devices, we can find three prominent challenges in
mobile vision when compared with traditional computer vision applications.

First of all, although the computational capacity of mobile devices is constantly
increasing, it is still not sufficient to handle large-scale visual computing tasks. From
this perspective, migrating much of the computation to powerful devices or to the
cloud is essential. But, what part of the processing should be performed on the mobile
client, and what part is better carried out by the server? On one hand, processing
images is now possible on mobile devices in seconds or less. On the other hand,
transmitting an image could take tens of milliseconds over a high speed wireless
link. There are several possible architectures we can think about

• The mobile client transmits a query image to the server. The algorithms run entirely
on the server, including an analysis of the query image. The final result is then sent
back to the device as in a standard client-server architecture.

• The mobile client processes the query image and transmits (abstract) data. The
algorithms run on the server using the data as query and returns the result to the
device.

• The mobile client downloads data from the server and all the processing is per-
formed on the device. This solution has the advantage to limit the required band-
width (data can be downloaded only when the application starts or whenever they
change), but can be slow due to the limited computational resources of the device.

It is worth emphasizing that this type of applications usually call for a fast response to
address the user’s requirement of a fluid interaction with the device. Therefore, a way
to ensure real-time responses to user interaction will be a major issue to be tackled.
Moreover, the bandwidth requirement is an important issue since connectivity can
be not always available while on move or be in general expensive for the user.

Secondly, most mobile vision applications are driven by large amounts of anno-
tated visual data. For example, to enable vision-based location recognition, a large
collection of street-view images is a prerequisite. How to acquire and process such
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data is a challenge. One way to acquire the data is to harness the massive user-
generated visual databases on the Internet, such as online image/video sharing sys-
tems. But then, a lot of information must be either locally stored by the mobile device
or exchanged through the network.

Thirdly, not all mobile devices and smartphones that run the same application are
equal. Some of them have very high computational resources and memory capabili-
ties, while others only have reduced memories and limited computing cycles. What
is more, they may have a reduced network connection speed so as only fewer round
trips between the device and the server can be performed per second. This introduces
the problem of scaling application requirements to each specific device.
Generally, scaling refers to growing computing resources to support an applica-
tion. Vertical scaling is increasing single device capabilities, with powerful and
faster CPUs, more memory, or faster disk I/O. While, horizontal scaling involves
adding additional computational devices to support the overall applications com-
puting requirements, and load balancing across those resources. So, scalability is
generally viewed from a hardware designer perspective. We want to change this
point of view and refer to the scalability as to adapt an application to support mobile
devices that have different features. This aspect will be more clear in the second case
study introduced below.

5.5 Case Studies

In this section two recent case studies that exploit advanced computer vision tech-
niques are described. The former introduces an efficient marker-less approach to
support augmented reality for paintings. While, the latter introduces a cooperative
method to address the challenges of the person re-identification problem using both
mobile devices and remote processing units.

5.5.1 Augmented Reality for Musems

Recognizing paintings and computing the transformation to align the acquired image
of a painting and its image in a database to support Augmented Reality (AR) appli-
cations is nontrivial tasks. Common static computer vision issues (e.g.illumination,
view, scale changes, etc.) are more severe in context of moving cameras as different
effects (e.g.blur, noise, motion, etc.) arise. In addition, reflection of spotlights, image
saturation and image exposure add up for the recognition of the paintings present in
exhibitions.

While specifically designed markers have been the dominant choice by state-
of-the-art AR methods, here a marker-less approach is introduced. Using the principle
of Hough line detection, a method to detect and extract the relevant painting region
(RPR) from a given input image is first applied, then local features are extracted from
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Fig. 5.1 Architecture of the proposed system. The current camera frame is processed by the three
main modules of the system. The first module extracts the RPR. The second module matches
every database image with the current camera frame. Given the best match, the third module uses
the RANSAC homography transformation to overlay the additional content to the current camera
frame

the RPR and matched with a candidate target in the database. RANSAC is used to
detect feature outliers. As the current image may not be aligned with the candidate
target image, extracting global feature from it considerably reduces robustness, so
the homography transformation output by RANSAC is used to sidestep this issue
and align the current RPR to the candidate target RPR. This allows to extract global
feature from the aligned RPR only, thus noticeably improving performance. Then,
a weighted similarity measure is used to compute the final match between image
signatures composed of local and global features. Once a match is found, the same
RANSAC homography is exploited in an AR framework to properly overlay the
additional content to the current frame.

5.5.1.1 System Overview

The architecture of the proposed approach is shown in Fig. 5.1. Three main modules
are used to achieve the proposed goal: (1) the RPR detector module, (2) the matching
module and (3) the AR display module. Given the current camera frame, the RPR
detector module extracts the RPR so as the painting frame and the background are
not considered anymore. Once the RPR is detected, the matching module extracts
the local features from such region and matches them with each candidate target
local features. RANSAC is used to reject matching outliers. Then, the homography
matrix output by RANSAC is used to align the current RPR with the candidate target
RPR from where the global features are extracted. The extracted local and global
features are finally matched with the candidate signature using an affine combination
of similarity measures. Given the best candidate target match, the same homography
transformation output by RANSAC is used to properly overlay the additional content
to the current camera frame.

5.5.1.2 Relevant Painting Region Detector

Assuming that the frames of paintings have elliptical or rectangular shape, the RPR
detector goal is to remove the background and the painting frame to keep only
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Fig. 5.2 RPR detection examples. In a an ideal example where the painting plane is almost aligned
with the given image plane is shown. In b a harder example with severe perspective distortion is
depicted

the portion of the image that contains the painting, i.e. the RPR. To achieve such
objective saving computational cycles, the Randomized Hough Transform (RHT)
method [47] is used. Such technique is based on the standard Hough Transform (HT)
but it avoids the computationally expensive voting procedure. As shown in [47], the
RHT can achieve a computational complexity lower than an upper bound of order
O((nt N n)/nn

min), that is considerably smaller than the order O(N N n−1
a ) of the

standard HT. N and Na are the total number of pixels in the image and the size of
the accumulation array respectively. n is the number of curve parameters, nmin is the
length of the shortest curve in the image, and nt is a small number.

To detect the RPR, we first apply the Canny operator to the grayscale representa-
tion of the current camera frame Q √ R

M×N . Then, as shown in Fig. 5.2, the RHT
is used to fit ellipses and rectangles. As a painting may contain more than a single
rectangular or ellipse shaped object, the RPR boundary is selected as the detected
rectangle or ellipse which area is at least r times the input image size. The detected
RPR is denoted as RQ √ R

M ≤×N ≤
where M ≤N ≤ ≥ r M N and r √ [0, 1].

5.5.1.3 Matching

Let RQ and RI be the RPR of the current camera frame Q and the RPR of a database
candidate target image I , respectively. To match RQ and RI two local and global
features have been considered. In particular to match two RPRs with lower com-
putational costs, the Speeded-Up Robust Features (SURF) [4] and the Pyramid of
Histogram of Oriented Gradients (PHOG) [7] features have been used. Both a local
and a global feature have been used as the relevant region detector module may fail,
i.e. only a small area of the painting or the painting with the frame can be extracted.
In such cases, if only global descriptor is extracted non-interesting information is
considered.

Local features: As illumination invariance is intrinsic to SURF [4], such fea-
tures are extracted from the grayscale representation of RQ by exploiting the
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standard integral image. The SURF feature detector is based on an approximation

of the Hessian matrix, while the feature descriptor ψ
RQ
F √ R

64 describes the
distribution of Haar-wavelet responses within the neighborhood of the detected

interest points ψ
RQ
K = [x, y]. The computed SURF feature vector is denoted as

ψ RQ = ∀ψ RQ
F , ψ

RQ
K ⊂.

Given two SURF feature descriptors ψ
RQ
F (q) and ψ

RI
F (i), q, i is defined to be a

match if the similarity

SF (ψ
RQ
F (q), ψ

RI
F (i)) = 1

1 + ‖ψ RQ
F (q) − ψ

RI
F (i)‖2

(5.1)

is higher than a fixed threshold T hs . If that is satisfied, the two matching SURF
feature vectors are analyzed to detect outliers using a RANSAC-based approach
similar to the one proposed in [8]. In particular, given 4 feature correspondences,
the homography HQ,I is computed using the Direct Linear Transformation method.
The process is repeated with t trials, and the solution that has the maximum number

of inliers is selected. A SURF feature keypoint ψ
RQ
K (q) is considered to be an inlier

if the corresponding keypoint projection ψ̂
RQ
K (q) is consistent with HQ,I within a

tolerance of σ pixels.
Global features: Given HQ,I , that is used to to align the two RPR regions, namely

RQ and RI . The resulting transformed RPR is denoted as R̂Q . By applying such
transformation to global feature can be extracted in a more reliable fashion as the
edges used to compute the global features are aligned and have similar orientations
to the edges of the candidate target.

PHOG features are extracted from R̂Q to capture information about the shape and
the whole appearance of the painting. Before extracting PHOG features, the trans-
formed RPR region R̂Q is projected into the HSV color space to achieve illumination
invariance. Then, edges and orientation gradients are used to compute the PHOG fea-

ture matrix ρ R̂Q √ R
m×3 by concatenating the PHOG histograms extracted from the

three image channels at the different levels of the spatial pyramid. m is the total
number of histogram bins for each image channel.

Candidate target matching: Once local and global features have been extracted,
the two given images Q and I are matched using an affine combination of feature
similarities.

SURF features similarity is computed as

Φψ(ψ RQ , ψ RI ) =
∑

q,i√match SF (ψ
RQ
F (q), ψ

RI
F (i))

ε + match
(5.2)

where match is the total number of matched SURF features and ε is a small constant
used to prevent division by zero.
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PHOG features are matched using the same similarity function suggested in [27].

Let ρ R̂Q and ρRI be the PHOG feature matrices of R̂Q and RI respectively. The
PHOG similarity is computed as

Φρ(ρ R̂Q , ρRI ) = 1 −
∑

c

λcχ
2(ρ

R̂Q
c , ρRI

c ) (5.3)

where ρ
R̂Q
c and ρ

RI
c are the PHOG features computed for the c-th color channel. λc

is the normalization weight.
As the final objective is to find the database image that gives the best match with

the query image, a minimization task needs to be performed. Towards this end, let I be
the set of all database images, then, the final objective is to find arg maxI√IΦ(Q, I )
where

Φ(Q, I ) = α Φψ(ψ RQ , ψ RI )

+β Φρ(ρ R̂Q , ρRI ) (5.4)

α and β = 1 − α are the affine coefficients.

5.5.1.4 AR Display

The last module of the proposed system is in charge to overlay the additional con-
tent to the current camera frame Q. As both paintings and the additional content
are planar surfaces, the transformation that needs to compute can be described as an
homography. In this work a feature-based homography computation method is used.
Towards this goal, the same feature-based homography transformation HQ,I com-
puted in Sect. 5.5.1.3 is exploited. As shown in Fig. 5.3, using the inverse homography
transformation matrix H−1

Q,I it is possible to overlay the additional content (given in
the original region I coordinate system) to the current camera frame Q.

5.5.1.5 Experimental Results

To show the performance of the proposed method, experiments have been carried out
on a dataset built using 607 publicly available pictures of 70 Vang Gogh paintings. The
dataset has pictures taken from different viewing angles and with severe illumination
changes. Some pictures come with light reflections and occlusions as well.

Implementation details: The values of the algorithm parameters given in the
following have been selected using 4-fold cross validation:

• RPR boundary: r has been set to 0.55;
• SURF features: features have been extracted using 5 octaves and 4 scale levels;
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(a) (b)

Fig. 5.3 Example of AR. a Reference frame with the additional information to display. b Current
frame with the additional information transformed using the feature-based homography transfor-
mation

Table 5.1 Average nAUC values for different values of alpha (from 0 to 1 with steps of 0.01)

α 0 0.25 0.28 0.5 0.75 1

RPR detection 0.7927 0.8110 0.8320 0.7485 0.6917 0.6281
No RPR detection 0.6368 0.6572 0.6635 0.6470 0.6341 0.6290

Best results are in boldface font

• PHOG features: edges have beeen extracted using the Canny operator, while orien-
tation gradients have been computed using a 3×3 Sobel mask. The extracted HOG
features extracted from the 4 levels of the spatial pyramid have been quantized in
9 bins;

• Matching: The normalization weight vector λ has been set to [0.5, 0.3, 0.2]. The
tolerance σ has been set to 4 pixels and t = 500 trials are performed to compute
H . The matching threshold T hs has been set to 0.85.

To show the performance of the method results have been reported in terms of ROC
curves and normalized Area Under Curve (nAUC) values.

The algorithm has been tested on a standard PC with P4 CPU 2.0GHz, 1GB
RAM, Windows XP and on a Tablet with ARMv7 processor 1GB RAM, Android
4.2.2. In the first test with non-optimized MATLAB code the average recognition
and registration time for a single frame was 0.591s, while in the latter with optimized
code the same activities took 0.632s.

Experiments: In the following we show the performance of the proposed method
as a function of both the scale of the images and the rotation of them with respect to
the target image orientations.

In Table 5.1, nAUC values computed as a function of the similarity normalization
weight α are reported. Each value is computed averaging all the results computed for
images scaled to 1/2, 3/4 and 1/1 of the original image size and for different image
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Fig. 5.4 Recognition performance computed without using the relevant region detector module.
In a test images are rotated by multiples of 45◦. In b test images are not rotated but their scaling
factor has been changed

rotations from 45◦ to 315◦, with intermediate rotations of 45◦. The best results are
achieved for α = 0.28. In light of this, such value has been used in the following
experiments.

In Fig. 5.4 the performance of the proposed method without using the RPR detector
are shown. In Fig. 5.4a results are shown as a function of the rotation of the test
images. The original scale has been used. The method achieves reasonable results
for rotations multiple of 90°. The performance decreases in the other cases. This
is probably due to the changes occurring in the oriented gradients used to compute
the PHOG features. On average, a true positive rate of 49 % is achieved for a false
positive rate of 20 %. In Fig. 5.4b results for different image scales are shown. Thanks
to SURF invariance properties and the pyramidal approach used to compute PHOG,
the performance are not much affected by the scaling issues. In such scenario, an
average true positive rate of 67 % is achieved for a false positive rate of 20 %.

In Fig. 5.5 the performance of the proposed method using the RPR detector are
depicted. In Fig. 5.5a results have been computed for different rotations to the test
images as in Fig. 5.4a. On average, a 71 % true positive rate is reached for a false
positive rate of 20 %. Though, the worst results are reached for rotations of 135◦ and
225°, where a true positive rate of about 59 % is reached for the same false positive
rate of 20 %. If compared to the results shown in Fig. 5.4a, a significant improvement
has been achieved. Most importantly, the performance has increased of about 33 %
for a false positive rate of 0 %. In Fig. 5.5b the results are computed varying the
scale of test images. If compared to Fig. 5.4b, an average improvement of 37 % is
achieved for a false positive rate of 0 %.

In Table 5.2 results of the proposed method are shown as nAUC values. Images
scaled to 1/2, 3/4 and 1/1 of the original image size and rotations from 45◦ to
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Fig. 5.5 Recognition performance computed using the relevant region detector module. In a test
images are rotated by multiples of 45◦. In b test images are scaled down using multiple reduction
factors

Table 5.2 nAUC values computed for test images scaled to 1/2, 3/4 and 1/1 of the original size
and rotated from 0° to 315°(steps of 45◦)

Rotation 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

RPR detection Scale = 0.5 0.9223 0.8025 0.8918 0.7178 0.9020 0.6708 0.8949 0.7518
Scale = 0.75 0.9243 0.8049 0.9032 0.7158 0.9128 0.7010 0.8986 0.8209
Scale = 1 0.9258 0.8233 0.9138 0.7188 0.9180 0.7044 0.9053 0.8226

No RPR detection Scale = 0.5 0.8130 0.5502 0.7015 0.5492 0.6810 0.5476 0.7963 0.6133
Scale = 0.75 0.8104 0.5529 0.7023 0.5510 0.6966 0.5498 0.8082 0.6214
Scale = 1 0.8244 0.5655 0.7026 0.5738 0.7082 0.5585 0.8144 0.6329

315◦ (with steps of 45◦) have been considered. The first three rows show the results
of the proposed method using the proposed RPR detector, while in the last three rows
results have been computed without using the RPR detector. For both such cases the
best results are achieved when the original image size is kept and no rotation is
applied. However, using the relevant region detector, performance increases of more
than 17 % on average. In particular, for rotation of 90°and 180°, an average increment
of 20 % is achieved.

5.5.1.6 Conclusion and Discussion

In this case study, a marker-less method for painting recognition and registration
to support mobile AR applications has been introduced. A RPR detector is used
to extract only the relevant painting region, that is next considered to extract local
features that are matched with a candidate target using RANSAC. The homography
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transformation output from RANSAC is also applied to align the detected RPR to the
RPR of the candidate target. This allows to robustly extract global features that are
finally used, together with local features, to compute the match between the current
frame and the candidate target. Once a valid match is detected, the same homography
transformation output by RANSAC is used to overlay the additional content to the
current frame. The method has been evaluated using a dataset of publicly available
images showing significant achievements.

5.5.2 Cooperative Person Re-Identification

As discussed before, mobile devices with exponentially increasing capabilities have
been recently introduced into the market, thus boosting the development of computer
vision algorithms for mobile devices. Though standard computer vision algorithms
can be ported to mobile devices, the computational costs required and the limited
resources have reduced their applicability. Many problems have been investigated
by the computer vision community especially for security purposes [31]. Despite
this, there is limited work that exploits the cooperation between mobile devices and
a camera network for surveillance purposes.

To monitor a wide area traditional surveillance CCTV systems are still the most
common choice. Despite the benefits of surveillance systems and the advantages of
recent and performing surveillance applications [29], static camera infrastructures
still show several disadvantages. Among of them we find the restricted field-of-views,
the low resolution of most static cameras, and the limited communication bandwidth,
just to mention a few. In this section a client-server system is introduced to tackle
these challenges with particular focus to the task of person re-identification, that is,
the task of assigning the same label to the same person viewed by different cameras
at different time instants. The proposed system brings several advantages as it allows
to monitor a large portion of the environment using moving cameras (i.e. mobile
cameras). It also introduces a better use of resources and reduces the computational
cost of the re-identification. In particular, in this case study the objective is to find
the configuration of the mobile client device that should be used to achieve a real-
time processing while keeping high re-identification performance. To achieve such
objective and save network resources the system limits the exchanged information
-between the device and the server- to data vectors of small dimensions.

5.5.2.1 System Architecture

An overview of the proposed system architecture is shown in Fig. 5.6. The system
flow goes as follow. Given the image of a suspicious person acquired by a camera in
the network, the server computes its signature and sends it to all the mobile devices
(i.e. clients). Once the signature is received, each client starts capturing the scene.
Then, the first acquired frame of a person is sent to the server together with mobile
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Fig. 5.6 Client-server communication overview. The image of a suspicious person acquired by a
camera in the network is sent to the server that routes it to each of the connected mobile devices.
Then, the first image acquired by each mobile device is sent back to the server, that, exploiting a
learnt model, instructs the mobile device about which features have to be extracted to perform the
re-identification

device information regarding its computational and networking capabilities. The
server analyzes the received data and instructs the client with which features should
be extracted to achieve the best re-identification. This process is mainly guided by
a model learned during a separate off-line training phase (details in the following).
Then, each client starts to process the frames to detect the persons blob and to extract
the features as instructed by the server. The computed features are finally matched
with the previously received signature to perform the re-identification. However,
the re-identification performance may not stable over a certain period due to the
changes in illuminations, pose, etc.. To sidestep such issue a server re-configuration
is performed. This is done by forcing the client to send another frame and restarting
the whole procedure.

More in detail, as shown in Fig. 5.7, the proposed system has been designed to
exploit three main phases: (1) an offline training phase, in which the server collects
images and device characteristics (resolution, CPU performance, etc.) to train a clas-
sifier; (2) an online learning phase used to instruct the querying device about which
feature algorithm should be used; (3) a re-identification phase where the selected
feature algorithm is used to extract and match the person acquired by the querying
device with the suspect image sent by the server.

5.5.2.2 Image Complexity and Feature Extraction

The training phase and the re-identification phase share a common step, that is, the
computation of the image complexity and the extraction of image feature.

Images are classified with respect to their complexity by extracting the edges and
corners using Canny and Harris corner detector methods respectively. Let ne be the
number of edges and nc be the number of detected corners for a given image. The
image complexity denoted as C √ [0, 1) is computed as
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Fig. 5.7 Main system training and re-identification steps. A set of training images and the device
complexity clustering model are used to train a balanced neural tree. During the re-identification
phase, frames acquired by the mobile devices are sent to the server together with device details.
The server analyses the input data to select the most discriminative features for re-identification
according to model learnt in the training phase. Then the matching is performed with such features.
If the threshold on feature distances is reached, the system gets re-configured and the querying
devices gets instructed again about what features should be used in the next steps. This allows to
adapt the re-identification performance to the context

C = 1 −
(

α
1

ne + 1
+ β

1

nc + 1

)
(5.5)

where α and β = 1 − α are the normalization weights.
The community has developed a large number of approaches to detect and

describe discriminative patterns of a given image. Scale Invariant Feature Trans-
form (SIFT) [26] and Speed-up Robust Feature (SURF) [4] are two well-known
feature algorithms that achieve great performance under a variety of image transfor-
mations. More recently other feature detector algorithms as BRISK [23], FAST [37],
STAR [1] and ORB [38] have been proposed and designed to be runtime efficient.
A more detailed description of these can be found in the computational performance
evaluation review given in [32]. In our approach we used the aforementioned fea-
ture detectors implemented in the OpenCV libraries. As the FAST and ORB do not
incorporate a descriptor, these features are completed with the Fast Retina Keypoint
(FREAK) descriptor [2].

5.5.2.3 Training Phase

As described in Sect. 5.5.2.2, several feature algorithms can be used but, due to their
different implementations and configurations, they differ in performance and in the
number of features extracted. Differences arise depending on the kind of image and
on the device capabilities as well. An example of this is shown in Fig. 5.8. The key
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Fig. 5.8 Different state-of-the-art features are extracted from two different persons using the same
mobile device with same configuration

Fig. 5.9 Training set example. The first two columns represent the complexity of images captured
from static cameras (ImS) and from mobile device cameras (ImD). Dp represents the performance
index of each device. FA represents the feature algorithm used to compute the match. Finally Q and
T are two performance parameters and refer to the quality index and to the computational times
respectively

idea is to determin -for a given image complexity/structure and for a given device-
the most discriminating features for re-identification.

To achieve such an objective we first partitioned the space consisting of all mobile
devices by clustering it into three different groups on the basis of their capabilities.
The amount of RAM, the frequency and the CPU model (e.g.dual core, quad core etc.)
have been considered to manually cluster devices in: (1) low-performance devices
(LPD), (2) medium-performance devices (MPD), and (3) high-performance devices
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(HPD). This has been accomplished by first manually labeling a set of devices, then
a multiclass SVM has been trained using the one-vs-all method. SVM parameters
have been computed using 4-fold cross-validation.

Then, given a set of training images acquired by mobile devices, the image com-
plexity and the device capabilities are used to compute the performance of each
considered feature algorithm (see Sect. 5.5.2.2). In particular, we measure the fea-
ture extraction time, and a quality parameter (a distance value better discussed in
Sect. 5.5.2.4) to decide whether a feature algorithm can be used or not. If the extrac-
tion times is too high or the quality is too low, the feature algorithm is considered
as not usable on the device that is currently under inspection. It is usable vice versa.
The so computed images complexity, the device type and feature type, form the
input pattern in the training set. The label usable (1) / not usable (0), represents the
label that the classifier should return for such an input pattern. Once the training set
is built, it is used to train a balanced neural tree [30] that is next exploited by the
re-identification phase.

5.5.2.4 Re-identification Phase

During the re-identification phase, the image acquired by the mobile device camera
is used to create the pattern that is input to the trained balanced neural tree such that
the best feature algorithm for re-identification is chosen. Once the feature algorithm
is selected, it is used to extract image features and match the current image with the
signature of the suspicious person given by the camera network.

Feature Learning: The main goal of the learning is to automatically select the
best feature algorithm for the specific type of mobile device making the request. This
operation is required in two different situations: (1) when the client application starts
and sends for the first time a frame to the server and (2) when the re-identification
performance is not stable (i.e. accuracy is decreasing) over a given period of time. In
a typical scenario, the client device sends to the server the first frame and informa-
tion related to its performance (e.g.CPU model, RAM usage etc.). Once the server
receives such information, the complexity of the image is computed and the client
device is classified. A pattern containing the complexity of the images, the device
classification and the type of feature algorithm to use is created and input to the
neural tree classifier. The results of this operation is a packet containing the type of
feature and the parameters that should be used by the client.

Matching metchanism: Once the client receives the configuration packet the
selected feature is used to perform re-identification. This process is executed locally
on-board of the device. Since the exploitable feature represents a subset of the sus-
pect’s signature, only the corresponding subset is used to match the device image
with the suspect. To measure the distance between the features descriptors computed
by the mobile device f eatC and the feature descriptors of the suspicious person
signature f eat S we compute
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Φ( f eatC , f eat S) = 1− 1
∑

c,s√match d( f eatC (c), f eat S(s))/(match + ε)
(5.6)

where d(·, ·) is the L2-norm distance between feature descriptors. ε is a small value
that avoid dividing by zero, and match is the set of matches such that the L2-norm
distance between feature descriptors is lower than a given threshold T hl2. c and
s represent the subset of features matched from f eatC and f eat S respectively.
If the distance Φ( f eatC , f eat S) is higher than a given threshold T h, a system
reconfiguration is required.

5.5.2.5 Experimental Results

In this section we report the performance of the proposed method. First, an analysis
of the feature algorithm is given, then results of the re-identification are presented.

Experimental scenario: Tests have been performed using an Asus TF101 tablet
(device A) and a Samsung Galaxy III smartphone (device B). Both the devices run
Android O.S. version 4.2.1. For each of them two different videos (V1 and V2)
that have 60 and 70 persons respectively, have been used. The video were acquired
with a resolution of 358 × 255 pixels at 30 fps. To calculate which is the best
detector algorithm for the device in use, the computational time required by each
feature algorithm has been computed considering only the time required to detect and
extract the keypoints from the given frame. Other image processing operations on the
captured frame were not considered. The reference frames from the camera network
have been acquired by an AXIS 213 PTZ and an AXIS 221 camera. The default
configuration defined by the OpenCV libraries has been used for STAR, FAST, ORB
and BRISK algorithm parameters.

Training: The first evaluation index taken into consideration to build the training
pattern is the features extraction time. As shown in Fig. 5.10 for both video V1
and video V2, ORB (red lines) is the fastest algorithm in terms of computational
times. The average frame is processed in 0.62 ms. FAST (green chequered) is the
one achieving lowest performance with a processing time of about 0.81 ms.

The second evaluation index taken into consideration is the number of matching
features. Table 5.3 presents the average number of features matched by devices A and
B with the reference images acquired by the two cameras. Best average values are
highlighted in boldface font. FAST algorithm gives the best results with an average of
71 matches. STAR and BRISK match respectively an average of 29 and 21 matches.
ORB achieves the lowest performance with an average of 17 matches.

All such results are then used to form the train set for the balanced neural tree.
Re-identification results: During the re-identification phase the threshold T hl2

was set to 0.25 for both V1 and V2. Similarly T h was set to 0.29. These values were
chosen by using 4-fold cross-validation.

In Fig. 5.11 the matching results of the first 30 frames of one person in video V1
captured using the mobile device A are shown. ORB features have been extracted
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Fig. 5.10 Evaluation results for STAR, ORB, FAST, BRISK feature algorithms on the used devices

Table 5.3 Average number of matching features for both device A and B. The highest average
number of matching features is highlighted in boldface font

Feature type Video 1 Video 2 Average

Device A STAR 31.6 27.1 29.3
ORB 19.1 15.6 17.4
FAST 70.1 72.1 71.1
BRISK 20.8 22.3 21.6

Device B STAR 30.1 26.7 24.2
ORB 18.8 14.6 16.4
FAST 71.3 73.9 72.1
BRISK 20.9 23.0 22.2

from the first 15 frames as instructed by the feature learning mechanism. Then, at
frame 15, the distance value increases to 0.6 due the change of brightness. Such a
value is greater than T h, thus a new configuration from the server was required.
The device was then instructed to extract the FAST features. That results in a new a
distance value of 0.17 between the reference frame and the current image.

Re-identification performance on video V2, where the same device A was used,
are shown in Fig. 5.12. In this case two reconfigurations occurred. At frame 13, FAST
feature detector has been replaced by ORB as the distance of 0.34 was higher than
the threshold. Next, at frame 25 a change of the brightness forced another device
reconfiguration. The STAR feature algorithm was then used.
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Fig. 5.11 Re-identification performance on video V1 using device A. The first 15 frames were
acquired using ORB feature detector. After a change in image brightness, the device got reconfigured
and instructed to use the FAST algorithm

Fig. 5.12 Re-identification performance on video V2 using device A. Three changes of the feature
detector was required. The average distance calculated was around the value of 0.15. Two peaks
occurred respectively at frame 13 and 26

In Fig. 5.13a results of re-identification performance for device A are shown in
terms of ROC curves. The feature algorithms in Sect.5.5.2.2 have been compared to
the proposed adaptive feature algorithm. Results shows that the adaptive algorithm
outperform all other methods with a true positive rate of about 80 % for a false
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Fig. 5.13 Re-identification results in terms of ROC curves. The ROC curves have been computed
using all the frames in V1. In a results are computed for device A. In b results are computed for
device B

positive rate of about 20 %. For the same false positive rate, the other algorithms
achieve a true positive rate of about 37 %.

In Fig. 5.13b, results of re-identification performance using device B are shown.
As for device A, the proposed adaptive algorithm outperform all other algorithms.
In particular, considering a false positive rate of about 40 %, the adaptive algorithm
achieves a true positive rate of 80 %, while other methods have performance of 45 %
on average.

5.5.2.6 Conclusion and Discussion

In this case study a client-server system for re-identification using smart devices has
been introduced. The system allows to save network and computational resources
by exploiting a feature learning mechanism. A training phase is performed to cluster
devices on the basis of their capabilities and to train a classifier to select the best
feature algorithm for a given device and image complexity. Such classifier is used
in the re-identification phase to select which feature should be used to maximize
the re-identification performance. Experimental results that the client-server method
outperforms all other standard methods.

5.6 Smartphone Networks: What Next?

Camera networks have received increasing attention in recent years, in part due
to their many uses in applications ranging from surveillance and security, smart
spaces, urban monitoring, traffic management, etc. Another recent development is
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the diffusion of consumer devices with built-in cameras, e.g., mobile phones, tablets,
and Google Glass. Currently, however, camera networks and these consumer devices
occupy different use spaces. An obvious question then is whether it is possible to
integrate these consumer devices into camera networks, treating these devices as
sensor nodes within the larger camera network infrastructure. In fact, it should be
technically feasible to integrate such consumer devices into more traditional camera
networks and video surveillance infrastructures comprising primarily of stationary
and pan/tilt/zoom (PTZ) cameras. These new camera networks will usher a whole
new set of applications, from crowd-sourced and people-centric surveillance to par-
ticipatory event recording.

However, none of the existing mobile vision applications and frameworks consid-
ers the possibility of multiple consumer devices working together towards common
sensing (or imaging) tasks. Furthermore, these techniques do not explore the possi-
bility of integrating a camera-enabled consumer device into existing (surveillance)
camera networks. The work in [6] is noteworthy in that it hints at the possibility
of setting up a smart camera network comprising mobile phones. This work also
lists the key requirements for setting up such a camera network. Chiefly among
these requirements is the cooperative sensing by the mobile phones comprising the
network [6], however, fails to provide an in depth analysis of the technical chal-
lenges associated with (1) setting up smart camera networks using mobile phones and
(2) integrating camera-enabled consumer devices into existing (surveillance) camera
networks. The greatest shortcoming of the proposal outlined in [6], perhaps, is the
fact that it assumes that mobile devices are stationary. It then essentially treats mobile
cameras as traditional cameras, ignoring the most notable feature of mobile phones,
i.e. mobility. The fact that mobile devices are not stationary makes setting up camera
networks of these phones that much more interesting and challenging at the same
time.

The advances in mobile computing, sensing hardware and communication tech-
nologies combined with the success of mobile vision have made it possible to stretch
the concept of a "‘smart camera"’ to the extreme: every smart device equipped with
a camera (and may be other sensors) can serve as a node in a smart camera net-
work. Setting up ad hoc networks comprising camera-equipped consumer devices or
integrating such devices into existing camera networks poses unique challenges, in
addition to those already mentioned in Sect. 5.4, with regard to stand-alone mobile
vision applications:

• These devices exhibit rapid, jittery, fast and unconstrained motions. Most existing
computer vision algorithms cannot deal with imagery collected under such extreme
motions.

• Depending on the application, it may be required that the (camera) nodes in a
camera network establish a common coordinate system. In case of mobile devices,
no existing calibration algorithms can be readily applied to estimate the extrinsic
parameters of a mobile device, in part because the extreme and unknown motions
these devices go through. The method presented in [25] employs four reference
points (correspondences) whose locations are encoded by means of some location
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sensor (such as, an ultra-sound Cricket receiver). Four low-resolution pictures
(taken from different viewpoints) of a reference point are sufficient to estimate the
location and the orientation of a visual sensor node. There are, however, several
issues with this approach, including the requirement of having this large number
of reference points to be present in the scene and the quality or accuracy of the
calibration.

• For the reasons of the above point, the nodes within the camera network also need
a common clock for the purposes of collaborative sensing. A common clock allows
information captured at multiple nodes to be fused together to construct a more
complete picture of the event in question. Even in the absence of fine-grained
time synchronization, it is often desirable to (time) order lower-level events to
exploit causal relationship and infer higher-order event detection. An interesting
paper on this topic is [36] where the issues related to the time synchronization
in ad-hoc wireless sensor networks are studied. An important result reported in
[36] is that classical clock synchronization algorithms are unsuitable for wireless
sensor networks for two reasons: (1) limited communication range of each node
and (2) high mobility of these nodes. [36] addresses these problems as follows: it
does away with synchronizing clocks at each node. Rather it generates timestamps
using ( unsynchronized) local clocks. These timestamps are shared between nodes.
The timestamps are transformed to the local time of the receiving node. While
this method works well for ad hoc wireless sensor networks, it might not be
straightforward to deploy it on camera networks comprising mobile devices. As
stated earlier, mobile devices can exhibit a very high degree of mobility, which can
make it difficult to ensure that the assumption of connection between two nodes
for the time necessary for the complete exchange of sync messages holds under
all conditions.

• Mobile devices are unique in how these are used. A typical (camera) node in
a camera network is subservient to the network. A mobile device, on the other
hand, is there to serve the need of its user. The user might choose to use this
device to act as a part of a larger camera network. Similarly, a user might remove
this device from the camera network without any notice. A mobile device is not
always on. Even if it is turned on, it may not be pointing the right direction, the
user may not want to use it to record the events that are of interest to the camera
network, the user may be doing some else that is totally unrelated to the sensing
or processing requested by the camera network, etc.. This dynamic availability
of the phone camera is a crucial challenge that must be addressed before we can
integrate mobile devices into camera networks. One possibility is to devise ways
to inform the user that the mobile device is needed by the camera network to carry
out sensing and processing.

• Another challenge of using mobile devices in camera networks has to do with their
motion profile. As mentioned elsewhere in this chapter, mobile devices exhibit
unpredictable and extreme motions, so it is often not easy to estimate the network
topology. Centralized processing, perhaps, represents a good starting point for
estimating network topology when mobile devices are integrated into camera net-
works. Another option might be setup spatially-oriented clusters, where different
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mobile devices are clustered together based upon their locations as estimated by
GPS- or WIFI-based localization.

5.7 Conclusions

Mobile devices are an inseparable part of our society now. In particular, due to
the advances in smart and micro technology, camera sensors are now a standard
component in all mobile devices. This innovation has attracted both the research
community and the industries that aim to build advanced applications that exploit
the powerful features of mobile devices and combine them with the more advanced
computer vision and image processing techniques. In this chapter, we contributed
to the research in distributed smart cameras introducing the most relevant advance-
ments in mobile computer vision, then we discussed the main challenges that the
community for such real-time distributed smart systems is facing at this time. We
also introduced two main research studies where computer vision techniques and
distributed frameworks are used for mobile applications of augmented reality and
security purposes. Finally, we discuss the next challenges in mobile vision where the
mobile devices become part of a visual sensor network.
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Chapter 6
Autonomous Tracking of Vehicle Taillights
and Alert Signal Detection by Embedded Smart
Cameras

Akhan Almagambetov and Senem Velipasalar

Abstract An important aspect of collision avoidance and driver assistance systems,
as well as autonomous vehicles, is the tracking of vehicle taillights and the detec-
tion of alert signals (turns and brakes). In this chapter, we present the design and
implementation of a robust and computationally lightweight algorithm for a real-time
vision system, capable of detecting and tracking vehicle taillights, recognizing com-
mon alert signals using a vehicle-mounted embedded smart camera, and counting
the cars passing on both sides of the vehicle. The system is low-power and processes
scenes entirely on the microprocessor of an embedded smart camera. In contrast to
most existing work that addresses either daytime or nighttime detection, the pre-
sented system provides the ability to track vehicle taillights and detect alert signals
regardless of lighting conditions. The mobile vision system has been tested in actual
traffic scenes and the obtained results demonstrate the performance and lightweight
nature of the algorithm.

6.1 Introduction

A large number of mobile tracking algorithms in existence today require a powerful
centralized processing device (i.e. a full-featured computer) to perform process-
ing on video data streamed from dedicated video cameras. This, however is not
a power-efficient approach and requires significant equipment investment. In an
embedded smart camera, the necessary computer vision operations are performed in
their entirety on the microprocessor of an embedded smart camera board and none
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of the captured frames are stored or transmitted. The camera can communicate event
flags and text-based information (such as the position of detected vehicles) to other
components of the automatic driver assistance system

Significant differences between existing work and the method presented in this
chapter include:

• computationally lightweight tracking during the day and at night;
• reliable classification of vehicle alert signals (brake lights, turn signals);
• detection and counting of passing vehicles in neighboring lanes;
• sophisticated correction and recovery mechanisms, in conjunction with a Linear

Kalman Filter and codebook for robust tracking;
• a sufficiently generalized algorithm for tracking vehicles with varying light config-

urations (single-red lights commonly found in American cars, as well as red-yellow
segmented lights characteristic of European import vehicles);

• an algorithm that runs on the microprocessor of an embedded smart camera.

6.1.1 Background

As reported by the National Safety Council in 2009, about a third of all auto-
mobile accidents that occur in the U.S. constitute rear-end collisions, with 30 %
of them resulting in severe injuries [20]. Due to this fact, various detection sys-
tems have become popular for use with advanced driver-assistance systems (ADAS)
and potential autonomous vehicle applications (i.e. lead vehicle following, collision
avoidance).

Out of the detection systems being researched and marketed at the present time
[27], the ability of computer vision-based systems to provide visual data for other
advanced applications make them appealing for use with taillight detection and
tracking. With the development of embedded smart cameras capable of perform-
ing onboard processing and wireless communication, vision-based mobile tracking
systems with decision capabilities have become a viable application. Other system
types include radar-based [23] and laser-based [29] vehicle detection.

Currently, there exist strict UN [1] and US DOT [21] regulations governing vehi-
cle signal light colors, proportions and configurations. Despite a seemingly wide
range of variations among different car manufacturers, these regulations allow us
to make reasonable assumptions regarding vehicle light colors and symmetry when
developing the algorithm.

Most of the research on vision-based algorithms can be classified into the follow-
ing two categories (features may be shared to increase reliability [22]):

1. Local feature-based: individual frame information is used, extracted via mor-
phology [18] and color/intensity thresholds [26, 28]. Different color spaces may
be employed (RGB [10], HSV [22], YCbCr [19], or Lab [4]); and

2. Temporal information-based: tracking one [12] or many [15] vehicles across
many frames, with interference from other objects (typically encountered during
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daytime [24]—a more challenging scenario). Computationally more intensive
methods, such as mean-shift tracking and particle filters [6], can be used to provide
more reliable results.

Currently, there exist daytime algorithms that focus on detecting vehicles via
object detection methods like Haar and nighttime algorithms that focus on detection
of lights through different threshold techniques. One significant drawback of these
algorithms is that they cannot operate during both daytime and nighttime: the visual
information available from a monocular camera at night is not sufficient for any
state-of-the-art object detection or template matching algorithms; similarly, static-
exposure nighttime detection approaches fail in the daytime.

The proposed algorithm is a lightweight and robust solution for tracking vehicle
taillights and detecting the most common alert signals, such as turns and brakes; it
is capable of processing live camera data on an embedded platform, with no user
interference, despite varying and difficult lighting conditions. The main advantage
of this algorithm over existing work [3, 7, 9, 22, 28] is the ability to track taillights
and detect vehicle signals at night, as well as during the day—a challenging and
computationally expensive task (as shown in [2, 5]).

6.2 Wireless Embedded Smart Camera Platform

CITRIC camera mote [8] is used for the implementation of the algorithms in this
chapter. This device consists of an embedded smart camera and a detachable wire-
less transmitter (mote) for communicating event flags and other textual information
wirelessly. One advantage of this system is that the image sensor is positioned close
to the processor and all of the frames are processed internally, after which they are
discarded. This eliminates any potential privacy concerns associated with tracking
and reduces power utilization and bandwidth waste associated with sending uncom-
pressed video feeds to a central processing device. The smart camera is powered by
Embedded Linux.

6.2.1 CITRIC Camera Board

The CITRIC embedded smart camera board features a color image sensor, storage
and operating memory, as well as a fixed-point microprocessor. It is capable of
processing up to 15 frames per second (fps) with VGA (640 × 480) resolution and
operating uninterrupted on 4 AA batteries for approximately 8 h (time varies due to
the complexity of the algorithms being executed).

At the heart of the CITRIC camera board is a frequency-scalable general-purpose
Intel XScale PXA270 fixed-point microprocessor (manufactured by Marvell) with
supported frequencies of 208, 312, 416, 520 MHz. Included on the chip are 256 kB
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SRAM for latency and power consumption minimization, a USB-Host and camera
interfaces, and a wireless MMX co-processor that is capable of executing eight addi-
tion or four multiply-accumulate operations in parallel during a single cycle, which
significantly speeds up graphics and image manipulation operations (multimedia
encoding and decoding in particular). PXA270 supports Intel’s Speed Step™ tech-
nology, which greatly reduces power utilization during sleep and idle cycles.

The CMOS color image sensor (OmniVision OV9655) is detachable from the
camera board and is interfaced to the microprocessor using a native camera interface.
It is capable of capturing at SXGA (1,280 × 1,024) or lower resolutions and it is
sensitive for capturing in low-light conditions.

Within the same board and connected to the microprocessor are 64 MB (largest
size supported by the PXA270) of 1.8 V mobile SDRAM that is used for storing
temporary information during the run cycle, as well as 16 MB Intel NOR FLASH
used for storing the execution code. As no images are stored during code execution
and the operating memory gets cleaned after each processed frame, this amount of
memory is sufficient for most computer vision algorithms.

During the experiments, the CITRIC camera board was powered through the USB
interface (one of the available power options). No video or individual frames were
transferred to the computer and all of the processing was done on-board.

6.3 System Design

The pseudocode for the proposed method is given in Algorithm 1. The individual
functions are described in greater detail in subsequent sections.

6.3.1 Colorspace

The Y’UV colorspace was used for the embedded smart camera implementation,
since the hardware is capable of providing a Y’UV video stream directly, which
avoids a computationally expensive Y’UV-to-HSI conversion on the microprocessor.
In the Y’UV colorspace, luminance (Y -channel) and color data (U - and V -channels)
are separated, increasing the reliability of color thresholds. With separate color and
brightness channels, it is possible to pick a narrow range of colors using the UV
components, while still describing a wide range of color variations through the use
of the Y component.

As a side note, due to the way the CMOS sensor is accessed during a frame grab
operation, using RGB (GBR 4:2:2) causes fringing artifacts with high-speed objects
in images stored by the smart camera.

Sections of the UV color plane representing taillight color during daytime and
nighttime/dawn/dusk scenarios are shown in Fig. 6.1. The embedded smart camera
implements Y’UV as Y’UV 4:2:2, where for every two chrominance (U or V ) pixels,
there are four luminance (Y ) pixels. Pixel data is stored in a single vector.
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Algorithm 1: Main Algorithm(Frame)

while NoI nterrupt

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Luminanceavg ← ScanFrame(Frame)
if Luminanceavg > T hresholdday

then ColorT hresholds ← T hresholdsday
else ColorT hresholds ← T hresholdsnight

Regions ← DetectCandRegions(Frame)
Blobs ← Morphology(Regions)
for i = Blob1 : BlobN

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Blobi .Area > Areaacceptable
then DiscardBlob(Blobi )

for j = Blob1 : BlobN

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if i ! = j

then

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

comment: Symmetry tests

comment: Y -coordinate = Y

if (YBlobi ≈ YBlob j )

and (AreaBlobi ≈ AreaBlob j )

then PairM ←
StorePair(Blobi , Blob j )

for k = Pair1 : PairM

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

comment: Le f t = L, Right = R

3dHistGenerate(Pairk .L , Pairk .R)

if 3dHistTest(Pairk) < T hresholdBhat
then DiscardPair(Pairk)

else
⎛
CodebookStore(Pairk)

KalmanFiltering(Pairk)

CorrectionMechanisms(Pairk)

SignalDetectionLuminance(Pairk)

SignalDetectionArea(Pairk)

6.3.2 Intensity-Based Threshold Selection

When the algorithm is first initialized, light candidates are automatically detected
and filtered (without user intervention). Detection relies on soft color and brightness
thresholds (U , V , and Y , respectively) in order to outline areas of potential light
candidates. Since thresholds are used in this step, it is necessary to differentiate
between lighting conditions (daytime or nighttime). Using one set of soft thresholds
in all lighting conditions can result in unwanted behavior, such as over-saturation of
the captured image.

Although a different set of thresholds is used for each of the two lighting condi-
tions, the true novelty of the algorithm comes from the fact that the same processing
steps can be used during both daytime and nighttime—something that similar algo-
rithms do not do.
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Fig. 6.1 Color (UV) regions selected for taillight representation

At the start of the algorithm, the entire frame is scanned and the average luminance
level is determined. Based on this level, either “nighttime” or “daytime” thresholds
are used for a set interval, during which it is assumed that no drastic lighting changes
will occur. The luminance level is periodically re-evaluated in order to verify that the
lighting conditions have not changed. Since the brightness levels of nighttime, dusk,
and dawn lighting conditions are very similar, they are grouped into one category of
thresholds; daytime conditions are placed into a separate category.

The thresholds were empirically obtained by analyzing taillight information from
a database of over 400 images taken at various times throughout the day (to account
for changing lighting conditions). The resulting analysis provided broad daytime and
nighttime soft thresholds in the Y’UV colorspace.

6.3.3 Candidate Light Pair Identification

After the average luminance for the first frame is calculated and appropriate soft
thresholds are selected, the algorithm detects potential taillight pairs to be tracked.
This step is automatic, requiring no user input. At this stage, soft color thresholds
are used to avoid eliminating too much information from the image—the resulting
false positive regions do not constitute a problem, since they are eliminated during
later stages of the algorithm. The image obtained in this step is run through a number
of tests before final light candidates are selected. Figure 6.2 provides an illustration
and explanation of this step.

Newer LED taillights and their associated ‘beat frequencies’ [due to duty-cycle
decrease through pulse-width modulation (PWM)] do not affect the detection of
potential taillight pairs.
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Fig. 6.2 A graphical illustration of the initialization process. a Thresholding. b Detected regions.
c Grouping and cleanup

Fig. 6.3 Dawn and Dusk scenarios. Note the high number of false-positives (due to relaxed color
thresholds), which are later successfully eliminated by the algorithm. a Dawn scenario. b Dusk
scenario

6.3.3.1 Candidate Region Detection

Potential light candidates are detected using a set of soft color thresholds for red and
white/yellow colors, most commonly found in vehicle taillights, shown in Fig. 6.2a.
Using soft color thresholds often results in a high number of false-positives, which are
eliminated using symmetry and histogram tests, as well as through the use of tracking
and correction mechanisms (Fig. 6.3a). Both white/yellow- and red-containing areas
are assigned non-zero values, while other areas are assigned a zero-value (Fig. 6.2b).

In order to eliminate areas that may not be the taillights of a vehicle, areas that are
white/yellow and are not adjacent to any red regions are eliminated, while other areas
are preserved and converted into a binary image (Fig. 6.2c). Morphological operations
(closing followed by opening) are applied to the remaining areas to generate “blobs”.
A bounding box is drawn around each “blob” and centroid coordinates are computed.
Steps (a–c), as applied to a video capture, are shown in Fig. 6.4.

For computational efficiency purposes, the area of each potential light candidate
is verified in order to eliminate any regions that fall outside of the acceptable light
dimensions (specified as a percentage of the captured frame area in order to make
the algorithm scalable for higher resolutions). This step also eliminates large areas,
which may pass through the soft color thresholds and do not represent actual vehicle
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Fig. 6.4 Illustration of the various candidate light processing stages. a Captured frame. b Red
components. c White components. d Red/white mixed. e Segmented lights. f Morphology

Fig. 6.5 Examples of interference by the sky (dusk). The top non-taillight region can be eliminated
by the area verification or symmetry tests and results from the use of soft thresholds. a Captured
image. b Processed image

taillights (i.e. red cars, sunset-lit skies, etc). An example of this type of situation
is given in Fig. 6.5. When the areas that fall outside of normal light sizes are dis-
carded, the resulting image processing becomes faster, as explained in the Symmetry
Verification section. It should be noted that this step is without loss of generality
and for efficiency purposes only, since such areas can be eliminated by the proposed
algorithm using two additional tests, discussed below (namely symmetry and 3D his-
togram tests—the final stage of frame cleanup prior to the detected “blobs” getting
stored into the codebook and initialized as new Kalman Filter trackers).

6.3.3.2 Symmetry Verification

The distance between “master” and “slave” blob centroids is calculated along the
Y -axis (Fig. 6.6); a pair is considered to satisfy the symmetry test if the Y -direction



6 Autonomous Tracking of Vehicle Taillights 129

master
slave

slave
x-direction

y-direction

Fig. 6.6 Y -direction symmetry test

Fig. 6.7 Elimination of a red vehicle chassis using symmetry. The red chassis is asymmetrical to
other objects in the frame

distance is less than the height of the “master” blob, in addition to the area of the
slave blob being ±25 % of the master blob. Symmetrical pairs are kept in memory,
while others are discarded.

The symmetry test is performed between all pairs of the light candidate “blobs”.
Since both leading and following vehicles are usually on similar terrain, it is safe to
assume that potential vehicle taillights are symmetrical in the Y -direction. This aids
with the elimination of red car bodies (the chassis of a red vehicle is asymmetrical
to other objects in the frame), as shown in Fig. 6.7.

The total number of pairs that are tested can be expressed as N (N −1)/2, in effect
a complete graph KN , where N represents the number of blobs present at the start of
the symmetry test. Symmetry tests are run until all N (N − 1)/2 blob combinations
are tested. Symmetrical pairs are individually stored as “left” and “right” lights; the
labels are determined by the location of lights relative to each other on the X axis.

6.3.3.3 3D Histogram Test

In special circumstances (especially in high-traffic areas), clusters of brake lights
or other artifacts in adjacent lanes may pass symmetry tests and be considered
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+

Fig. 6.8 Incorrect detection of “symmetrical” light pairs without the use of 3-dimensional his-
tograms (red passing car and right taillight)

Fig. 6.9 A sample set of 3D histograms for a taillight pair. a Left taillight. b Right taillight

“symmetrical pairs”. One example is shown in Fig. 6.8, where a red passing vehicle
is detected and passes the symmetry test with the right taillight.

To mitigate these possible errors, color information is used to construct a 3D
histogram for both left and right lights. Each monochrome color channel is binned
into 8 bins, with m = 512 bins (8 × 8 × 8) representing each light. A sample 3D
histogram for a taillight with an active brake signal is given in Fig. 6.9. Resulting
histograms from “left” and “right” lights are compared using the Bhattacharyya coef-
ficient (Eq. 6.1) [11]. If the coefficient value is higher than an empirically determined
threshold, a match is declared. The empirical threshold was carefully determined by
analyzing several dozen video sequences and the same value is used for all lighting
conditions.

The Bhattacharyya coefficient is:

ρ̂(y) ≡ ρ
⎝
p̂ (y) , q̂

⎞ =
m⎠

u=1

√
p̂u (y) , q̂u, (6.1)

where q̂ = {
q̂u

}
u=1...m and p̂ (y) = {

p̂u (y)
}

u=1...m represent probabilities calcu-
lated by normalizing the m-bin 3D histogram for each light.
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Table 6.1 Data stored for each tracker

Tracker

xmin, xmax , xcentroid 4/4/4 bytes
ymin, ymax , ycentroid 4/4/4 bytes
3-dimensional histogram* 2,048 bytes
Average intensity level 4 bytes
TrackerID 4 bytes

*previous frame only

The mismatched pairs in Fig. 6.8 produce a low Bhattacharyya coefficient and
would not constitute a valid taillight “pair”.

6.3.4 Tracking and Codebook Update

6.3.4.1 Codebook

To make a provision for effective correction mechanisms (discussed in later sections),
as well as to accurately detect vehicle alert signals, a codebook is maintained through-
out the execution of the algorithm for each tracker (data is kept separate for left and
right lights). The data contained in each tracker are shown in Table 6.1.

6.3.5 Kalman Filter Tracking

Any application using system models is inaccurate to some degree, as models can
seldom account for measurement noise and dynamically adjust to varying measure-
ments or other outside changes [13]. The use of a linear Kalman filter (LKF) has
the advantage of generating next state predictions by carefully weighting the current
system state with the prediction, instead of relying on a static model. The weights
placed on the current state and the prediction can be adjusted by adjusting the filter
‘gain’ (K = 0 uses only the predictions, K = 0.5 equates to simple averaging, and
K = 1 uses only the current state to make the predictions), as outlined in Eq. (6.2)
[14, 16, 25]. Another advantage of using LKF is that the entire system state history
does not need to be known in order to generate a prediction (only the current state
and the current prediction are needed to predict system behavior in the next state).

xk = Axk−1 + wk−1, (6.2)

where xk is the estimated next state, xk−1 is the current system state, A is a 4 × 4
movement matrix that expresses how the system state changes from k − 1 to k, and
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Fig. 6.10 Linear Kalman Filter (LKF) operation. Initial values consist of x̂k−1 and Pk−1

wk−1 is the process noise that is assumed to be Gaussian for the purposes of this
application. Note that there is no control input u, therefore the term Buk−1 is set to
zero in Eq. (6.2). All of the necessary matrices are given in the appendix.

LKF can reliably track and predict the future position of an object at time t+1 (xk ),
preventing the loss of objects due to inconsistent detection from frame to frame (i.e.
momentary occlusion of the field-of-view). The LKF tracks the centroid [x, y] of an
object, hence the states of the Kalman filter are the x and y positions, (posx , posy),
as well as the velocity, (vx , vy).

In the measurement calculation outlined in Eq. (6.3), the measurement noise vk

is also assumed to be Gaussian.

zk = H xk + vk (6.3)

The operation of the Kalman filter is given in Fig. 6.10. After the filter is initialized
with arbitrary values x̂k−1 [Eq. (6.4)] and Pk−1, the LKF alternates between time
update (prediction) and the measurement update (correction). Over time, the cal-
culated Kalman filter gain K and the estimation error covariance Pk will become
constant, therefore arbitrary values are sufficient for initializing the Kalman filter.

x̂k−1 =
[

widthimage

2
,

heightimage

2

]
= [x, y] (6.4)

As can be seen from Fig. 6.10, at filter initialization, arbitrary values of x̂k−1 and
Pk−1 are used as inputs to the system. From this point, the Kalman filter alternates
between the prediction and correction states. The predictions for the system state x̂−

k
and estimation error covariance P−

k are generated at time k − 1 (before the actual
measurements are known, hence a superscripted minus sign is used). At time k, the
Kalman filter gain K is calculated, after which the system state x̂k and the estimation
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Table 6.2 Data stored for each Vehicle Object

Vehicle Object

TrackerID le f t Light 4 bytes
TrackerID right Light 4 bytes
Consecutive tracking failures 4 bytes
Removal flag* 4 bytes

*initialized to zero

error covariance Pk are updated with the measurement values. The weighting of the
prediction to the measurement is chosen based on the calculated value of gain K ,
which dynamically adjusts itself for optimal performance.

Every object that needs to be tracked is tracked using the Kalman filter. Due to the
nature of the tracking method, the Kalman filter performs well when tracked objects
are partially or entirely occluded (which is the case with taillight tracking). LKF is
able to track centroids of lights identified as a “working pair” (lights that pass both
symmetry and 3D histogram tests). Once the error between the predicted centroid
coordinates and the centroids of detected light candidates becomes too large, the
correction mechanisms are engaged. If the tracker cannot lock back on the target, it
is discarded.

6.3.6 Vehicle Object Structure

Trackers for light pairs that were matched using both symmetry and 3D histogram
tests are stored within a Vehicle Object (VO) structure, containing data in Table 6.2.

The VO structure simplifies the maintenance of trackers in memory: once the
number of consecutive tracking failures for the VO exceeds the frame-rate equivalent
of 2 s, the VO is destroyed and “orphaned” trackers are cleared.

All possible VOs are tracked (even if trackers are shared), which yields a higher
overall reliability. Erroneously detected VOs are destroyed, leaving only VOs cor-
responding to actual vehicles in Fig. 6.11. V1 is a VO created for vehicle on right,
consisting of trackers T1 and T4, while V2 is a VO for vehicle on left, consisting of
T2 and T3. V3, consisting of T1 and T2, is created (Fig. 6.11b) and subsequently
destroyed (Fig. 6.11c).

6.3.6.1 Passing Vehicle Counter

The approximate number of vehicles passing on the left and right can be deter-
mined by counting valid VO destruction events and referencing the last-good-known
location of the VO. A VO is considered valid only if it can be reliably tracked for
a frame-rate equivalent of at least 2 consecutive seconds. If both lights within the
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Fig. 6.11 Daytime (cloudy) scenario, demonstrating the creation and destruction of VOs

VO were on the left side of the frame when the VO was destroyed, the “Pass Left”
counter is incremented. If both lights within the VO were on the right, a “Pass Right”
event is registered. If the lights within the VO happen to be located on different sides
of the frame when the VO was destroyed, no pass is counted, as it is assumed that the
vehicle accelerated and was “Lost” (these events are counted, however the output is
not displayed). These counters provide valuable information, since vehicles can act
as mobile probes and provide traffic information from locations that are out of reach
of static sensors.

6.3.7 Correction Mechanisms

Three correction mechanisms are used, which take effect in extraordinary situations,
in order to prevent the corruption of the codebook or the divergence of the Kalman
filter. The pseudocode for these correction mechanisms is given in Algorithm 2.

6.3.7.1 Distance Tracking

This mechanism prevents corruption of the codebook and the divergence of the
Kalman filter by eliminating erroneous data (Fig. 6.12).

When multiple potential light candidates are detected (and identified as “pairs”),
the predicted distance between trackers dp is compared with the distance between
detected lights d to determine which of the light candidates are actual lights.
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Algorithm 2: CorrectionMechanisms(dpt−1, L , R, Cn)

comment: Left = L , Right = R, Candidate = C

procedure DistanceTracking(dpt−1, L , R, Cn)

dn ← dist(L , Cn)

for i ← 1 to n
do dist (i) ← abs(dpt−1 − dt,i )

index ← minindex (dist)
R ← Cindex

procedure KalmanFilterErrorCorrection(L , R)

if KalmanError(Lt , Lt,predicted ) >> T hresholdK alman

then
⎛

if 3dHistTest(Lt , Lt−1) > T hresholdBhat
then Lt ← Lt−1

procedure TestFailureCorrection(L , R)

if 3dHistTest(L , R) = f ail or SymTest(L , R) = f ail

then

⎧
⎪⎪⎨

⎪⎪⎩

if 3dHistTest(Lt , Lt−1) > T hresholdBhat
and 3dHistTest(Rt , Rt−1) > T hresholdBhat

then
⎛

Lt ← Lt−1
Rt ← Rt−1

*

*

*

*

t – 1

t

dt-1

dpt-1

++

dt,1

dt,2

dpt

Lt–1
Rt–1

Lt Rt

Legend:
♣ det.light
.... candidate
� detected
.... bound. box
+ centroid
�→ detect. dist.
�→ predicted
.... distance,
* Kalman flt.
.... tracker

Fig. 6.12 Distance tracking correction mechanism

For example, at time t , there are three light candidates. By comparing the predicted
distance from the codebook, dpt−1, with the distance between light candidates dt,1
and dt,2, it is possible to eliminate the mis-detected candidate and prevent codebook
and Kalman filter tracker corruption.
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6.3.7.2 Kalman Filter Error Correction

This scenario occurs when both symmetry and 3D histogram tests are passed by the
light candidates, but the Kalman filter error between the candidate location and the
prediction is too large.

For example, if the left light Lt at time t passes both symmetry and 3D histogram
tests, but has a large error between the detected light centroid location and predicted
location, the 3D histogram for light Lt−1 from the codebook is used and the 3D
histogram test is run between the histograms of Lt and L t−1 (from codebook). If
the 3D histogram test is satisfied, then the codebook is updated with the information
from Lt and the Kalman filter tracker integrates the position information from Lt . If
the candidate light fails the 3D histogram test, it is discarded. A similar procedure is
performed if right light Rt causes a large Kalman filter error.

This particular correction is performed in order to make sure that the Kalman filter
is provided with a new measurement at each frame. When the linear Kalman filter is
applied to images from a static camera, it can compensate for the lack of measure-
ments (prediction over measurement). In the case of a mobile camera, however, a
drastically incorrect prediction at t + 1 would greatly increase the probability of the
Kalman filter diverging.

6.3.7.3 Test Failure Correction

This mechanism is engaged when either the symmetry or the 3D histogram test is
failed by one of the candidate lights at time t .

Two 3D histogram tests are run: one between detected candidate light Lt and
codebook information stored for Lt−1, and the other between candidate light Rt and
codebook information for Rt−1. If both tests are passed, then the codebook is updated
with new light data and the position information is integrated into the Kalman filter
tracker. If these “lookback” tests are failed by at least one light, this data is discarded.

6.3.8 Alert Signal Detection

There are two ways of detecting vehicle alert signals: intensity tracking (applicable to
all vehicle makes and models) and area tracking (mostly foreign cars with segmented
lights).

6.3.8.1 Intensity Tracking

The average intensity of each light is monitored over time. Bounding box coordinates
for lights that passed all required tests (or were corrected) are used to extract intensity
data for each light.
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(a) (b)

Fig. 6.13 Alert signal detection algorithms. a Turn detection. b Brake detection

A standard deviation of the luminance is computed for each light and its value
is updated at every frame [17], as given in Eq. (6.5), which can be converted to a
running standard deviation, given in Eq. (6.6), where p is the power sum average, μ

is the running average (mean), and N is the total number of elements.

s =

√√√√ N
∑N

k=1 x2
k −

(∑N
k=1 xk

)2

N (N − 1)
(6.5)

s =
√

N
(

p − μ2
)

N − 1
(6.6)

If the intensity level exceeds ±3 s around μ, the mean and standard deviation
values are locked against updating and the light is declared to be “on”. If overall
lighting conditions change, the lock is subsequently released.

The detection algorithm features a “safe zone” (marked in light-red in Fig. 6.13,
which illustrates the detection approaches). This detection zone is equal to a frame-
rate equivalent of 1.5 s, during which no decision regarding braking is made. If the
braking action (both lights ‘on’) is still detected after that time, then the system
records the brake signal. Similarly, if one of the lights goes through two complete
cycles within the “safe zone”, a turn is recorded (either a right or left, based on the
light that cycled).

Figure 6.14a–c show the intensity levels for both lights over a number of frames,
their patterns corresponding to a left turn, right turn, and braking, respectively. The
distinctive pattern for each action can be clearly seen in all of the figures.

6.3.8.2 Area Tracking

Another algorithm runs alongside intensity tracking to prevent mis-detection of alert
signals. Vehicle light shapes and sizes vary from manufacturer to manufacturer and
while most domestic cars have one set of lights for signaling turns and braking, most
foreign automobiles have segmented lights. Figure 6.15a demonstrates that turn lights
are located under the main set of lights that are tracked, potentially preventing the
turn light from being detected using the intensity tracking method.
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Fig. 6.14 Luminance level for both lights. a Left turn. b Right turn. c Braking
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Fig. 6.15 Examples of domestic non-segmented and foreign segmented taillights. a Volvo turn. b
Chevrolet Impala. c Ford F-150. d Mercury Cougar

Fig. 6.16 Area change through one compete cycle of a turn signal

The light area changes in unison with the turn signal being on or off, one compete
cycle of which is shown in Fig. 6.16. This fact is used for tracking the area of the
light over time to determine its state. The same set of rules from intensity tracking
(Fig. 6.13) is applied to area tracking, resulting in successful detection of turn signals
regardless of light configuration. Intensity and area tracking methods are combined
via a logical OR statement for robust signal detection. Area tracking plays an impor-
tant role during nighttime detection, since the size of the lights increases when brakes
are applied or turn signals are engaged.

6.4 Main Results

6.4.1 Results on Recorded Video

The initial algorithm was tested on recorded video sequences in MATLAB. Algorithm
steps and approaches were then adjusted before porting it to the embedded camera
platform. Tested scenarios are shown in Table 6.3. As videos were recorded on the
highway, the occurrence of alert signals is not very frequent.

6.4.1.1 Colorspace

Unlike the embedded camera implementation, the recorded videos were processed
in the HSI (hue, saturation, intensity) colorspace.The HSI colorspace is adapted for
computer vision algorithms and it separates the intensity and saturation components
from hue (color) information. The Y’UV thresholds that were empirically derived
from evaluating a database of 400 vehicle taillight pairs were converted to HSI for
use in this part of the experiments.
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6.4.1.2 Discussion

Sunny: total of 839 s (13.98 min), with all vehicles passing on the right. As seen in
Table 6.3, the signal detection rate (turns and brakes) for this scenario is excellent—
being 100 % for all signals. Out of 10 actual passing vehicles, 7 were detected
correctly. The left passing category had a single false-positive detection, which may
have been due to orange construction cones appearing in view.

Cloudy: total of 1,026 s (17.10 min), with some passing vehicle mis-detections
on both sides. Figure 6.11 shows creation and destruction of Vehicle Objects.

Dusk: total of 328 s (5.47 min). As seen in Table 6.3, the signal detection rate for
this scenario is also 100 % for left turn and brake signals. There were no right turn
signals observed. No passing vehicles were observed due to the target vehicle being
on a one-lane highway. Although there were no passing vehicles, the left counter
was incremented by three, possibly due to vehicles turning left at intersections.

Night: least challenging scenario in terms of tracking and detection, since it is a
nighttime video. Signal detection rate is high. Two vehicle objects are created and
tracked for 300 s (5 min), with 1 vehicle passing on right.

Dawn: total of 319 s (5.32 min). All the right turn signals were detected suc-
cessfully. There were no instances of left turns and brakes. Passing vehicles present
on both left and right, with 1 false-positive for the left passing zone and 3 false-
positives for right-side passing. A large number of regions were detected as possible
light candidates, due to use of soft color thresholds at initialization (and pinkish
hue on concrete from rising sun). Most erroneous light candidates are eliminated.
Average execution time per frame is significantly higher due to active correction
mechanisms and tests for eliminating erroneous light candidates.

6.4.2 Embedded Smart Camera Implementation Results

In order to provide a better illustration of the algorithm, the results are broken down
into two sections:

• Section 6.4.2.1 provides the results for vehicle taillight tracking only, meaning
that there is no recognition of vehicle alert signals; and

• Section 6.4.2.2 provides the results for a full implementation of the algorithm,
complete with the detection of vehicle alert signals.

6.4.2.1 Tracking Only

Experiments to test the algorithm on the embedded smart camera were performed in
five lighting conditions, with results obtained from the experiments summarized in
Table 6.4 and described in this section. No color captures were written to FLASH,
as writing color JPEG images to memory takes approximately 53 ms/cycle.



142 A. Almagambetov and S. Velipasalar

Table 6.4 Tracking-only algorithm results on an embedded smart camera

Scene ttotal # frames Detection failure LKF tracker t f rame(ms)
description (s) One light (%) Both lights (%) update rate (%) avg min max

Dawn 257 1,500 30.733 0.0667 69.200 171.33 130 189
Sunny 199 1,097 20.146 —0— 79.763 181.40 131 191
Cloudy 224 1,320 22.121 4.0150 73.788 169.70 131 191
Dusk 252 1,445 18.685 1.8690 73.080 174.39 129 189
Night 305 1,598 3.2541 —0— 97.935 190.86 131 191

Fig. 6.17 Different detection scenarios. a Missing 1 light, b missing both, c tracker not upd.
d Tracker updated

Note: White boxes (“ ”) while white crosses (“+”) represent Kalman filter
updates with new data from lights that were detected and successfully matched to
existing Kalman filter trackers.

The collected data consists of:

• total time of the trial (in seconds);
• number of processed frames;
• percentage of frames, where a detection failure occurred with either one (Fig. 6.17a)

or both lights being undetected, and where the last-known-good location of the
lights was successfully tracked;

• percentage of frames used for updating Kalman filter with new data (Fig. 6.17c, d);
• average, min., and max. processing time per frame.

Case 1 (Dawn): This case was tested at dawn, while tracking a white Honda
Accord vehicle for 4:17 min. The darker lighting conditions take the least amount of
time to process, due to more-or-less even lighting and less interference from glare and
similar-colored objects (which are sometimes recognized as possible taillights and
have to be filtered out). Despite a lower processing time, however, dawn, dusk, and
daytime cloudy scenarios have a greater level of failures, especially failures due to the
loss of a single light. Complete video (high-speed): youtu.be/smzgzAueDH4.

Case 2: (Sunny): A green Volkswagen Passat vehicle was tracked for 3:19 min.
Despite this lighting condition having less failures, a lot of similar-colored objects
had to be filtered using symmetry and Bhattacharyya tests. This led to a signifi-
cantly higher average processing time per frame than any other day, dawn, or dusk
scenario. Nonetheless, the algorithm was capable of analyzing live video using the
embedded camera hardware. The lines protruding out of the right taillight at certain
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parts of the video are caused by the mis-detection of concrete as part of the taillight,
which does not affect the effectiveness of the tracking algorithm. Complete video:
youtu.be/8KMbFTNkYmQ.

Case 3 (Cloudy): In this scenario, a light-blue Hyundai Accent was tracked for
3:44 min, with an average time per frame of 169.70 ms—the lowest among daytime
scenarios, due to uniform lighting, no glare from the pavement/concrete and other
passing vehicles or objects. Complete video: youtu.be/XsqIVVLSGNM.

Case 4 (Dusk): For the dusk scenario, a white Chevrolet Impala was tracked for
4:12 min. The high percentage of Kalman filter tracking failures can be attributed
to the vehicle being on an uneven road, where the height separation between the
centroids due to the tilt of the vehicle was greater than the full height of the master
blob (as explained in Sect. 6.3.3.2. Complete video: youtu.be/xBr9zZFRaCc.

Case 5 (Night): The nighttime scenario caused the least failures, although the
average time per frame was significantly higher (190.86 ms) due to headlight and
street lamp detection and subsequent elimination. In this scenario, a gray Chevro-
let Impala was tracked for 5:05 min. The splatter pattern (a “corona”) around the
taillights is caused by oversaturation, as captured by the camera. Since nighttime
detection is the easiest scenario, the Kalman filter trackers are updated with new data
more frequently. Complete video: youtu.be/JlEFRY99lp4.

6.4.2.2 Full Implementation

The detection algorithm was fully implemented on an embedded smart camera
described in this chapter and is able to track vehicle taillights and detect turn signals
(L and R) and brakes (B). Table 6.5 demonstrates execution times and rates of detec-
tion for this implementation. The ‘gt’ (ground truth) column indicates the number
of times the turn signal or brake has been engaged during the entire video sequence
(dark-gray column on left), followed by the number of detected events (‘det’), as
well as the total number of frames the action lasted (light-gray column on right).

Reliability of taillight detection was dependent on the distance of the target vehicle
from the camera. Lower reliability and tracking failures were observed when the
vehicle was further than 300 ft from the tailing vehicle. Economically speaking,
the cost of an error or an undetected light (resulting in an accident) rises inversely
proportional to the distance between the two vehicles. In this case, the performance
reliability of the system at a distance of 0–300 ft was high.

The scenarios were tested live, using an actual embedded smart camera mounted
on a car. A high detection rate was achieved in varying lighting conditions, with an
average processing time per frame of approximately 186 ms (or 5.38 fps). This is on
a microprocessor with no floating point support and with unoptimized code. Sample
captures are provided in Fig. 6.18, where sensor data is shown alongside processed
frames. Actual captures during the execution of the algorithm were not collected,
since it takes upwards of 53 ms per frame to write the capture to FLASH and may
degrade the tracking performance.
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Fig. 6.18 Sample captures from embedded camera execution (capture on left full-color; right after
embedded camera processing). a1 Left turn, Day (sunny). a2 Right turn, Day (sunny). a3 Brake,
Day (sunny). b1 Left turn, Day (cloudy). b2 Right turn, Day (cloudy). b3 Brake, Day (cloudy). c1
Left turn, Dusk. c2 Right turn, Dusk. c3 Brake, Dusk. d1 Left turn, Night. d2 Right turn, Night.
d3 Brake, Night. e1 Left turn, Dawn. e2 Right turn, Dawn. e3 Brake, Dawn Note �: potential light
candidates; +: LKF trackers; thick white sq. signal detection

6.5 Comparison with Other Algorithms

The taillight tracking algorithm implemented in this chapter was compared to
O’Malley et al. [22] and a Haar-based object detection algorithm implemented in
OpenCV, which was modified for vehicle detection. O’Malley et al. [22] implements
nighttime detection only and is a heavily-cited approach to vehicle tracking. The
Haar-based vehicle detection approach, on the other hand, can only work during the
daytime. A summary of quantitative comparisons is shown in Fig. 6.19.

To the best of our knowledge, the existing algorithms focus on either daytime
or nighttime detection and tracking, but not both simultaneously. In addition, no
current algorithms are able to detect and classify vehicle alert signals in all lighting
conditions. For these reasons, the three algorithms are evaluated only on the reliability
of detection and tracking.

O’Malley et al. [22] implements set-exposure nighttime vehicle lamp detection
and tracking. No daytime detection is possible. The authors use a set exposure to
avoid interference from other light sources, which may degrade the detection perfor-
mance. Figure 6.20 demonstrates the performance of the O’Malley algorithm when
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Fig. 6.19 Quantitative algorithm comparison. Note All algorithms within the same chart were run
on the same platform in order to provide the most accurate comparison. a Reliability of detection and
tracking using the proposed algorithm (red), O’Malley et al. [22] (blue), and Haar-based vehicle
detection (darkgreen). Since the other algorithms are designed for either daytime or nighttime,
0 % detection rates are listed for [22] and Haar object detection-based algorithms for daytime and
nighttime detection, respectively. Although Haar-based vehicle detection seems to have a higher
detection rate, the false-positive rate is upward of 20 % (best-case scenario). b Execution time
comparison between the proposed algorithm (red) and the method in [22] (blue). The shaded areas
represent the possible execution time values (between the minimum and maximum times). Both of
the algorithms were implemented in the same programming language and were run on the same
platform in order to provide the most accurate comparison. c Execution time comparison between
the proposed algorithm (red) and Haar detection (implemented using OpenCV libraries) (green).
The shaded areas represent the possible execution time values (between the minimum and maximum
times). Both of the algorithms were implemented in the same programming language and were run
on the same platform in order to provide the most accurate comparison
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Fig. 6.20 An illustration of tracking through a turn signal using the proposed algorithm (top
row) and the method in [22] (bottom row) using auto-exposure settings. The algorithm in [22] has
problems when there are drastic light shape, color, and intensity changes. In addition, daytime–
nighttime detection requires auto-exposure to adjust for changes in lighting conditions, whereas
the approach in [22] implements the algorithm using a set exposure. a Frame 841. b Frame 845.
c Frame 857. d Frame 862. e O’Malley (841). f O’Malley (845). g O’Malley (857). H O’Malley
(862)

auto-exposure settings are used (critical for daytime/nighttime detection). No other
features, such as codebook, sophisticated Kalman filter correction mechanisms, or
signal detection are implemented in this algorithm.

The daytime detection performance is compared to a Haar-based detection algo-
rithm (that cannot provide nighttime detection), implemented in OpenCV. The false-
positives generated through the use of this detection algorithm are not listed in
Fig. 6.19a, although they can be upward of 20 %. The Haar classifier was trained
with a database of 300 positive and 300 negative training images.

6.6 Summary

Tracking moving objects from a mobile platform can be a challenging task, as both the
background and the foreground are constantly changing. In this chapter, we presented
a standalone system for tracking vehicle taillights and detecting turn and alert signals
from a mobile platform that uses an embedded smart camera to process live video
streams. The novelty of the approach described in this chapter stems from the ability
to track vehicle taillights both during the day and at night, unlike some state-of-the-
art research that either tracks vehicles using Haar wavelets only during the day or
using thresholds only at night. In addition to being able to track vehicle taillights
despite drastic changes in environment lighting conditions, the presented system uses
a single approach for tracking vehicles regardless of illumination, without having to
execute two or more separate algorithms.

We tested the algorithm extensively to ascertain its robustness. Since we used
a modular approach, all of the lightweight algorithms that were designed for this
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implementation can be used for other computer vision applications for Intelligent
Transportation Systems (ITS).

As future work, the algorithm developed in the current chapter may be integrated
with lightweight lane detection. This will aid in the localization of the vehicle in the
scene and taillights can be rejected or verified based on the road perspective (from
the vanishing point obtained from lane detection).

Acknowledgments This work has been funded in part by NSF CAREER grant CNS-1206291.

Appendix

Below are the matrices used for the Kalman filter.

• A: Movement Matrix, which represents how the state of the system changes by
drawing a relationship between the current state of the system at time step k to the
state of the system at the previous time step k − 1, Eq. (6.7). AT represents the
transposed movement matrix A.

A =

⎡

⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ AT =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
Δt 0 1 0
0 Δt 0 1

⎤

⎥⎥⎦ (6.7)

• H : Measurement Matrix, representing the dependency of the measurement on
the system state, Eq. (6.8). HT represents the transposed movement matrix H .

H =

⎡

⎢⎢⎣

1 0
0 1
0 0
0 0

⎤

⎥⎥⎦ H T =
[

1 0 0 0
0 1 0 0

]
(6.8)

• R: Measurement Noise Covariance, (constant) Eq. (6.9).

R =

⎡

⎢⎢⎣

0.2845
0.0045
0.0045
0.2845

⎤

⎥⎥⎦ (6.9)

• Q: Process Noise Covariance, (constant) Eq. (6.10).

Q =

⎡

⎢⎢⎣

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

⎤

⎥⎥⎦ (6.10)
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• Pk−1 (initial estimate): Estimation Error Covariance, Eq. (6.11).

Pk−1(initial estimate) =

⎡

⎢⎢⎣

50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50

⎤

⎥⎥⎦ (6.11)

• I4: 4 × 4 Identity Matrix, Eq. (6.12).

I4 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (6.12)
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Chapter 7
Automatic Fall Detection and Activity
Classification by a Wearable Camera

Koray Ozcan, Anvith Mahabalagiri and Senem Velipasalar

Abstract Automated monitoring of everyday physical activities of elderly has come
a long way in the past two decades. These activities might range from critical events
such as falls requiring rapid and robust detection to classifying daily activities such as
walking, sitting and lying down for long term prognosis. Researchers have constantly
strived to come up with innovative methods based on different sensor systems in order
to build a robust automated system. These sensor systems can be broadly classified
into wearable and ambient sensors. Various vision and non-vision based sensors have
been employed in the process. Most popular wearable sensors employ non-vision
based sensors such as accelerometers and gyroscopes and have the advantage of
not being confined to restricted environments. But resource limitations leave them
vulnerable to false positives and render the task of classifying activities very chal-
lenging. On the other hand, popular ambient vision based sensors like wall mounted
cameras which have resource capabilities for better activity classification are con-
fined to a specific monitoring environment and by nature raise privacy concerns.
Recently, integrated wearable sensor systems with accelerometers and camera on a
single device have been introduced wherein the camera is used to provide contextual
information in order to validate the accelerometer readings. In this chapter, a new
idea of using a smart camera as a waist worn fall detection and activity classifica-
tion system is presented. Therefore, a methodology to classify sitting and lying down
activities with such a system is introduced in order to further substantiate the concept
of event detection and activity classification with wearable smart cameras.
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7.1 Introduction

7.1.1 Motivation

Elderly Healthcare has become a significant area of interest for the researchers in the
recent years. Advancement in the fields of technology, healthcare and medicine have
contributed towards an improved quality of life. U.S Census Bureau [6] predicts
that number of people aged 65 and over relative to those between 15 and 64 is
going to increase to 37 % by the year 2050. Consequentially, the requirement for
a reliable and robust automated system for activity monitoring of elderly people
will become imperative. Activities of elderly can in general be categorized into
two categories: (1) Critical events such as falling down requiring immediate medical
response; (2) Non-critical events such as walking, sitting, lying down etc. which help
in the long term posture and motion analysis for chronic diseases such as arthritis
and neurodegenerative diseases. Thus for an autonomous monitoring system to be
robust, not only should it display accurate and real time capabilities but also be smart
about expending its resources based on the criticality of an event.

7.1.2 Wearable and Ambient Sensors

The type of sensor being used plays a vital role for performed activity. Current state
of the art methods can fundamentally be catergorized into wearable body sensors
and ambient sensors. Wearable sensors have the advantage of not being restricted
to confined environments. At the same time, such systems have limited computa-
tional and power resources at their disposal. The most popular method is the use of
accelerometer based systems.These systems are simple and cost effective. However
they are prone to a lot of false positives. Further, in order to be able to classify subtle
activities, it would require the use of multiple acceleromters placed at strategic loca-
tions which would introduce inconvenience as a wearable system. Ambient sensors
on the other hand provide convenience. However the monitoring is restricted to a
particular region only. While vision based sensors have dominated ambient sensor
systems, other sensors such as acoustic and vibrational sensors have yet to prove
their robustness.

7.1.3 Cameras in Activity Monitoring

Cameras have been very popular choice as ambient vision based sensors. Most of
the times, concerns are raised regarding issues of privacy since such a monitoring
system can make people feel uncomfortable that they are being watched. Recently,
hybrid sensor systems with accelerometers and cameras have been thought of being
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Fig. 7.1 Hierarchical flow chart

effective wearable systems. While accelerometers provide the activity information,
cameras provide contextual information in order to validate the detected activities.
This can help reduce false positives. However, cameras have much more to bring to
the table than just providing contextual information. The means of harnessing such
a potential is objective of this chapter.

Smart cameras, over the years, have gotten better in terms of increased process-
ing capabilities and low power consumption. Such cameras can process sufficient
features in a scene at real time, which might prove to be enough to learn about the
activities in the images captured by the camera.Some of the static embedded cam-
era based systems such as [2, 5] have displayed these capabilities effectively. In
this chapter, a new methodology is introduced with such smart cameras as wearable
sensors. Thus, such a system would not only be able to monitor the subject beyond
restricted environments but also be able to provide contextual information timely.
The privacy concerns with regard to a camera being used as a sensor can be consid-
ered as being alleviated to an extent in the sense that the person being monitored does
not feel as being watched. In the next few sections, an application of fall detection
and activity classification using wearable sensors will be introduced together with
results to validate the methodology.

7.2 Proposed Method

The developed system consists of two different layers. First layer is for the detection
of an event that has been started by the user. Once the event has been detected, the
second layer is used for the classification of this event. Figure 7.1 shows the complete
heirarchical flow.

Fall detection part of the algorithm employs Histogram of Oriented Gradients
(HOG) as image feature descriptive components. HOGs are originally used in human
detection problem by Dalal and Triggs [4] as descriptive components of the training
dataset, which is essentially used for training a model for human silhouette. With
the implementation proposed by [4], the image frame is divided into blocks and
then each block is divided into n cells. For each pixel, the gradient magnitude and
orientation for the grayscale value is calculated for generating histograms of strength
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and orientation for each cell in the image. Apart from HOG histogram generated for
human detection method, for every cell, two separate m-bin histograms are built for
edge strength and orientation. The concatenation of n histograms forms the HOG
descriptive histogram, with the size of m × n components. As it will be described
in detail in the next parts, these descriptors are the key components that are used to
detect the occurrence of both an event and a falling down. When an event is detected,
it is first tested to find out whether it is a fall or not. If the event detected is not a falling
down, then an optical-flow based method is used to classify this particular event as
either sitting or lying down. The complete algorithm description is presented below
in Algorithm 1 along with detailed explanations of event detection and classification
in Sects. 7.2.1 and 7.2.2.

Algorithm 1 Fall Detection and Edge Based Optical Flow for Activity Classification
for All Frames do

if t == 1 (First frame captured) then
Initialize histogram and cell vectors.

else
if Average Intensity √ 30 then

Camera view is occluded.
else

if max(B≤) ≥ ρ then
event Detected = true
if dt

t−1 ≥ τ then
f all Detected = true

end if
end if

end if
if event Detected == true and event ! = fall then

Step1 : (Perform recordings over n consecutive frames)
for t = 1:n do

a: Get the two consecutive images It , It−1
b: Find canny edge images bwt ,bwt−1
c: Subject Edge regions to Optical Flow to get uv

d: Get the mean horizontal and vertical flow vectors
∀ h[t] = mean(real(uv))

∀ v[t] = mean(imag(uv))

end for

Step2 : (Perform analysis on vectors h and v)
a: Calculate running means hmean ,vmean of h and v

b: Classify as sitting or lying based on running means
end if

end if
end for
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7.2.1 Event Detection

First layer of the algorithm is detecting the occurrence of an event. Different from
HOG implementation for human detection, separate histograms of edge orienta-
tion (EO) and edge strength (ES) are constructed. During the course of a falling
down, edge orientations tend to change significantly, which can be observed from
the changes in the gradient orientation histograms. Since falling down is a sudden
and rapid type of movement, the edges in the captured images get blurry as it can
be observed in Fig. 7.2a, b. During the experiments, it has been occurred that using
original HOG may create false positives while walking. Different from the original
HOG, we are not employing all of the cells in each block. Instead, the cells that
do not contain significant edge information in are removed from the computation
autonomously since they do not contribute to the overall edge information. It has
been observed that for the detection of abrupt changes, reduced number of blocks
is sufficient. With the simulations, using only one block gave the desired result of
detecting a falling down sequence. Also, using one block for the image frame helped
us to reduce the processing load of the embedded camera. Therefore, our imple-
mentation uses one block that is divided into 16 cells since using larger number of
blocks would not necessarily improve the efficiency of the proposed algorithm. In
order to improve the robustness of the algorithm for detecting falling downs, we are
not using all of the cells that are fragmented in one block. Instead, the cells that do
not contribute much to the overall edge information are removed autonomously. In
other words, we are employing particular cells, which have significantly large edge
information within the image frame, adaptively. In order to build the histograms,
horizontal(dx) and vertical(dy) gradients are computed first for every pixel within a
cell. Next, these values are used to compute the gradient strength (

√
dx2 + dy2) and

orientation (tan−1(dy/dx)) for each pixel location. With the original HOG algorithm,
for optimal detection purposes the orientation values are placed in a 9-bin histogram,
which covers the angular range 0⊂–180⊂, along with the voting mechanism based on
the gradient strength. Using the same HOG, causes false alarms even with walking
sequences. For instance, an example shown in Fig. 7.4, illustrates a scenario where
“lying down” and “sitting down” were classified as a fall with the HOG implementa-
tion used for people detection. Another example is provided in Fig. 7.5, where the fall
occurs between frames 46 through 60, as walking triggers a false “fall” alarm a little
after frame 30. For our EO histogram, we use 9-bin histograms as in [4], whereas we
use 18 bin for the histogram for making the strength component more descriptive.
Using a more descriptive component for edge strength values give the capability to
detect especially falling down events, which includes significant changes with edge
strength distribution. The histograms that are constructed from every cell in the image
are concatenated to form a multi-dimensional histogram vector. Hence, we have two
descriptive and concatenated histograms for edge strength (ES) and edge orientation
(EO), which allows us the capability for measuring a falling down event.
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Fig. 7.2 Example frames captured by the camera during a fall

7.2.1.1 Dissimilarity Distance

After the feature histograms ES and EO are normalized, the dissimilarity distance
between two histograms (r and s) is calculated using the following formula:

D = 1 −
∑N−1

i=0 (ri − r̄)(si − s̄)
√[∑N−1

i=0
(ri − r̄)2

∑N−1

i=0
(si − s̄)2

] , (7.1)

r̄ = 1

N

N−1∑

i=0

(ri ) , s̄ = 1

N

N−1∑

i=0

(si )

Dissimilarity distance values for ES(DE S) and EO(DE O ) are cross-correlated
in order to attenuate the noise in the signal while emphasizing the peaks for the
detection. To increase the robustness, cross-correlated signal is autocorrelated (d =
(DE S DE O)2). The outcome of this operation is provided in Figs. 7.4c and 7.5.

When the two distances are cross-correlated(or multiplied), proceeded with the
autocorrelation of the resulting feature(or taking the square of it) provides us the
ability to attenuate the gradual motion caused by walking, lying, or sitting. As we
can observe from Fig. 7.5, since the distance values caused by the gradual motion is
attenuated we observe a clear peak corresponding to actual falling down events.

In order to detect if there is an event occurring, we store the distance values dt
t−≤

in an array of B≤ for the last ≤ frames. Therefore, the B≤ saves ≤-many dt
t−≤

values, which is computed between the current frame t and the frame t − ≤, such
that ≤ is an integer value. If the maximum distance value in the buffer array B≤
is larger than a threshold ρ, which has been chosen empirically, it implies that the
occurrence of an event taking place. The ≤ value is chosen to cover one-second
window in order to eliminate potential false positives that could be initiated by a
rapid change between consecutive frames caused by sudden illumination changes,
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Fig. 7.3 Edge strength values corresponding to frames in a Fig. 7.2a, and b Fig. 7.2b, respectively

Fig. 7.4 a False ‘fall’ alarms are generated during lying down and sitting events when using (a) the
original HOG; b proposed approach with fixed number of cells; c proposed approach with adaptive
number of cells
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Fig. 7.5 False ‘fall’ alarm when using the original HOG

Fig. 7.6 Cells before and after a fall event

elongated time difference between captured frames, or camera occlusion etc. As a
result, our algorithm detects an event first in order declare a falling down event next.

7.2.1.2 Adaptive Number of Cells

Different from HOG for human detection problem [4], we propose a method that
adaptively selects the number of cells to be used as the feature descriptor according
to their edge content. The purpose of applying such mechanism to our algorithm is
that cells that contain either no edges or edges with low strength do not contribute to
the purpose of the algorithm, and increase the similarity score between concatenated
histograms. As it is illustrated with Fig. 7.6, a synthetic scenario is provided for
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a falling down event. As can be observed, cells numbered as 1, 2, 5, 6, 9, 10, 13,
and 14 gives minimal or no useful feature to detect fall or differentiate from other
gradual activities. Using the histograms corresponding to these cells with the feature
descriptor would lower the dissimilarity between corresponding frames.

The importance of using adaptive cells can be observed in Fig. 7.4b, c. The peak
of the amplitude value for the dissimilarity distance during a fall is higher for the
same experiment as shown in Fig. 7.4c. A higher dissimilarity value for the same
experiment allows us to have more robust system to detect falling downs with our
algorithm. As an anticipated result, the system is also becomes less prone to false
negatives, i.e., missing fall events. More results presented with the overall experi-
ments regarding to the comparison between adaptive and fixed number of cells are
presented in Sect. 7.3.

For selecting which cells to remove, the maximum amplitude value among the
bins of each cell is found first. Next, the mean and standard deviation of the vector
of maximums is calculated from the n cells in an image frame. Then, the algorithm
ignores the cells whose maximum value are α standard deviation away from the
overall mean of maximum bin values in each cell. Also, it is not only the cells that
are adaptively selected but also the threshold is adaptively selected according to
cell content within current frame. In order to avoid having false positive caused by
removing too many cells in the image frame, the algorithm is allowed to remove at
most half of the number of cells, which is 8 cells for our experiments (Fig. 7.3).

7.2.2 Event Classification

For every frame captured, the algorithm presented in Sect. 7.2 first checks whether
there is an event or not. When there is an event that has been started, then the algorithm
checks if the fall condition is satisfied. In the cases when the event is not a fall, it
performs optical flow calculations to classify the event as either sitting or lying down.
Since fall detection part of the algorithm is more critical compared to the activity
classification part, it has higher priority within the algorithm structure. In this section,
we will further describe the details of fall detection and activity classification parts
of the algorithm.

7.2.2.1 Fall Detection Using Modified HOG

For detecting a falling down event, the dissimilarity distance dt
t−1 is computed

between the current and previous frames. If the computed value is greater than
the threshold τ , a f all event is detected and a fall alarm is declared. For differ-
ent distance values, a typical falling down is plotted in Fig. 7.7. By observing the
maximum of auto-correlated dissimilarity distance values for d E O and d E S over ≤
frames(solid red plot) gives us the measure to detect events when they are in progress.
After an event has been detected, the f all is differentiated by using the dissimilarity
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Fig. 7.7 Plots of different distances for a typical falling down

distance between the current and the previous frames(indicated with solid blue plot).
Whenever the dissimilarity distance is greater than the marked threshold τ in the
image, it is declared as a fall.

As mentioned above, we built two separate histograms that is different from the
descriptive component employed with the original HOG algorithm [4]. The advan-
tage of using such modified algorithm can be observed by looking at the dissimilar-
ity values plotted in Fig. 7.7. In the plot, the distance values attained with original
HOG implementation(dashed curve) and the one with the separate EO and ES his-
tograms(solid blue curve) are demonstrated. As it can be verified, the original HOG
implementation generates false positive when there is not a falling down between
frames 50 and 60.

7.2.2.2 Event Classification Using Optical Flow

As described by Horn and Schunk [3], optical flow vectors are the distribution of
significant velocities of motion of brightness patterns in an image resulting from the
relative motion of objects or a camera. According to [1], four general types specify
the relative motion between the object and a camera:

Type1: Relative object motion at a distance
Type2: Relative object motion towards a camera
Type3: Relative object rotation at a distance
Type4: Relative object rotation about its axis
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Fig. 7.8 a Relative object motion at a distance, b relative object motion towards the camera,
c relative object rotation at a distance, d relative object rotation about its axis

All other types of relative motion can be described by combination of the types given
above. Figure 7.8 provides illustrative descriptions of the four different motions.
Since the motion descriptions are relative, same definitions applies to the situation
where the objects are still and the camera attached to a human waist is moving
around the scene. This realization helped us to develop a methodology for event
classification based on the meaning of optical flow vectors. Vertical, horizontal, and
rotational movements of the camera would provide significant respective velocity
vector components. By separating the overall vector information into horizontal
and vertical velocities and investigating the characteristic behaviours of significant
activities such as sitting and lying down, we were able to develop an algorithm
to detect activities when the subjects are performing experiments with the camera
attached to their waist.

In our proposed algorithm, we provide a fast and accurate method to compute
the optical flow vectors, which can also be feasible to implement on an embedded
smart camera platform. The method is provided in the event classification part of
Algorithm 1. First, the edges in a pair of consecutive image frames are extracted.
Then, based on the features from extracted edges, the optical flow calculation is
restricted to the edge regions instead of entire image. As a result, the optical flow
vectors are analyzed further to perform event classification.

For edge detection, we employed Canny edge detection algorithm, which is known
to be fast and accurate. The optical flow calculations depend on the density of edges.
Hence, the threshold selected for edge detection is important for further processing of
the algorithm. When the threshold is too high, it may result in losing significant edges
causing the loss in the flow vector values. On the other hand, when the threshold is too
low, we might have excess amount of edges, which may increase the computation load
while affecting the accuracy. Therefore, a nominal threshold selection is important
to have balanced trade-off.

In order to simplify embedded system implementation, a fine balance between
speed and accuracy is required. Using a multi-level hierarchial optical flow method
such as Lucas-Kanade (LK) can be computationally quite expensive. Generally, LK
method processes 3–4 levels of pyramid in order to establish detailed optical flow
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Fig. 7.9 Optical flow around the edge regions and a segment of the image with magnified flow
vectors

vectors. However, for our application optical flow calculations on a single level
of pyramid provided sufficient information to differentiate relative motion of the
camera. By looking at the execution times and its resulting accuracy, a nominal
threshold value of 0.5 provided a balanced trade-off between speed and accuracy.

An edge-based optical flow method proposed by [9] can be employed for our
method but it is not feasible since it relies on the fact that complete contours being
available in our image. Hence, we constructed a method depending on global edge
flow directions rather than matching corresponding edge points. After the edges
have been detected, we mark the regions around these edges and apply a single
pyramid level of LK optical flow method. Optical flow vectors calculated along the
edges are displayed in Fig. 7.9. A portion of the image is zoomed in to display
the flow vectors along the edges. Figure 7.10 gives a more detailed insight into the
process.Once the edge regions are identified, pairs of connected edges are considered
in order to evaluate the optical flow between them. Next, we separate the flow vectors
into horizontal and vertical components in order to further analyze the event into
classification. This event classification method is fast and sufficient to analyze the
global displacement of the camera and consequently the movement of subject’s body.

For classification of activities of sitting and lying down, it is important to analyze
the optical flow vectors in an event window. Then, the final classification result
can be considered as a binary classification problem. Generally, we need to analyze
the event over a period of three to four seconds in order to differentiate between
sitting and lying down. In other words, since the videos are captured at 15 fps, our
event window should consist of 45–60 frames. As it is provided in Step 1 of the
event classification of Algorithm 1, after an event has been detected, optical flow
computation is performed over a window size n. For a predefined window size n, we
compute the vertical and horizontal optical flow values around the significant edges.
With the Step 2 of Algorithm 1 we calculate the running mean of horizontal and
vertical flow vectors.

Figure 7.11, shows running mean values of horizontal and vertical vectors for a
typical sitting down event captured with a wearable camera. Also, Fig. 7.12 provides
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Fig. 7.10 Steps involved in finding the optical flow around the edge regions

Fig. 7.11 Horizontal and vertical magnitude of optical flow vectors for a sitting down event
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Fig. 7.12 Horizontal and vertical magnitude of optical flow vectors for a lying down event

the same kind of information for a typical lying down. As it can be observed from
Fig. 7.11, a 60-frame window, which is indicated with a blue arrow, is chosen during
a sitting event and it implies that a dominant vertical flow is observed. Since there
are no other preceding or following event in the current state, dominant vertical
movement of the camera implies that the person is transforming into a sitting state.
In a similar manner, as it can be seen in Fig. 7.12, an elderly person typically sits
down first and then continues to lie down continuously. Sitting duration is marked
with a red arrow, whereas the lying duration is marked with a blue arrow. The first 50
frames indicates sitting down followed by a significantly greater horizontal motion
with the next frames. Therefore, for a typical lying down event the camera can be
assumed to have dominant vertical motion followed by a change in the orientation
to horizontal motion indicating a lying down event. This differentiating information
combined with the contextual information helped us to validate lying over sitting.

7.3 Experimental Results

In order to prove the robustness and efficiency of the proposed algorithm, different
types of experiments have been performed such as:

• Experiments wherein videos are captured with a camera attached at a waist of
different subjects, and then they are later processed on a PC.

• Embedded smart camera experiments wherein images are captured and then
processed on-board in real-time on the microprocessor of the CITRIC camera
board.

7.3.1 Sensitivity and Specificity Comparison

For evaluation of the performance of the falling experiments, sensitivity and speci-
ficity measures described by Noury et al. [7] is preferably used. Therefore, sensitivity
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is the percentage of the falls that are detected with the proposed algorithm while speci-
ficity is defined as the percentage of non-fall (sitting and lying down) that does not
trigger the false alarm signal. Sensitivity and Specificity are defines as:

Sensi tivi t y = T P

T P + F N

Speci f ici t y = T N

T N + F P
, (7.2)

where True Positive (TP) is the system detecting a fall when happened, False Positive
(FP) is detecting a fall when it did not happen, True Negative(TN) is the system not
detecting a fall when fall does not occur, and False Negative (FN) is the system not
detecting a fall when it occurs.

7.3.2 Experiments with People

All of the experiments are performed with a camera attached to a belt around waist
as it can be observed in Sect. 7.3.3. The camera view is positioned to be at the center
of the waist facing the front view of the body. The camera is attached to the waist
because it is stable region of the body representing the actual speed and movement
trajectory of the body. The head, legs and arms of the body tend to be exposed to faster
movement with people’s daily activities. The nature of the experiments is meant for
the subjects to imitate or act as an elderly person while performing. Therefore, it is
rather challenging to recreate a free fall. The consciousness and fear of subjects can
sometimes prevent the subjects’ imitation an actual fall. Even with precautions such
soft cushions in place, it occurred during the experiments that some subjects are too
preventive to perform an ‘actual fall’. Moreover, since the experiments are repetitive,
the performance or attention of the subjects could degrade over time.

The initial set of experiments are recorded with eight different subjects. The video
sequences are recorded with Microsoft� LifeCamTM camera at the frame rate of 30
fps. In order to be on the same line with embedded smart camera application, the
captured image size is 320 ×240 and we are processing only even-numbered frames
in order to have reduced computation load. Again for the purpose of not increasing
the computation load unnecessarily, we used only one block and 16 cells in our
implementation. The other parameters of the algorithm is selected to be ≤ = 17,
ρ = 0.2, and τ = 0.37. In all the experiments, same values have been set. In order
to cover last one second of the movement, ≤ value is selected to be 17. ρ and τ are
selected experimentally for correlation distance thresholds.
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Table 7.1 Falls from standing up position: sensitivity and specificity using different methods

Proposed method Fixed-cell modified histogram Original HOG [4]
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
(%) (%) (%) (%) (%) (%)

Subject1 100 95.24 100 95.24 100 61.84
Subject2 100 90.48 90.91 100 100 66.66
Subject3 100 76.19 100 76.19 100 38.1
Subject4 90.91 80.95 72.73 90.48 100 50
Subject5 90 100 70 100 100 40
Subject6 81.82 85 63.64 90 100 5
Subject7 80 100 70 100 100 72.73
Subject8 60 85 50 95 100 50
Overall 87.84 89.11 77.16 93.36 100 48.04

Table 7.2 Falling from sitting position: sensitivity and specificity

Falling from sitting
Sensitivity (%) Specificity (%)

Subject 1 100 95.24
Subject 2 100 90.48
Subject 3 80 76.19
Subject 4 70 80.95
Subject 5 44.44 100
Subject 6 50 85
Subject 7 27.27 100
Overall 67.39 89.69

7.3.2.1 Fall Experiments

For falling down experiments, 8 different subjects performed 10 falling down from
standing up position and 10 falling down from sitting position. Hence, 80 falls are
imitated from standing up and sitting down position each. Table 7.1 summarizes the
sensitivity and specificity values for falls starting with standing up position with:

• The proposed method with adaptive number of cells,
• When employing fixed number of cells,
• When using original HOG [4].

As it can extracted from table, the proposed method with adaptive number of cells
provides the best overall sensitivity-specificity combinations among three different
approaches.

Sensitivity and specificity results for falls from sitting down position are presented
in Table 7.2. In general, falling from sitting down position is more complicated to
detect compared to falling from standing up position. Since the amount of distance
traveled to hit to the floor is less for sitting position, it is more challenging to detect.



7 Automatic Fall Detection and Activity Classification by a Wearable Camera 167

Table 7.3 Classification rates on 195 sitting and lying down trials

Sensitivity of sitting down Specificity Sensitivity of lying down Specificity
(%) (%) (%) (%)

Subject 1 100 90 90 100
Subject 2 70 100 100 80
Subject 3 90 100 100 90
Subject 4 100 80 80 100
Subject 5 100 100 80 100
Subject 6 90 80 100 100
Subject 7 100 90 90 100
Subject 8 60 80 80 60
Overall 91.26 89.13 89.13 93.20

Fig. 7.13 Example frames captured during a sitting down event in the order of occurrence a, b, c,
d

Therefore, for some subjects falling from a sitting position does not create dissimilar-
ity distances as high as standing up position. Then, the sensitivity rate occurred to be
less than the one for falling from standing up position. Specificity rates in Table 7.2
is computed according to other significant events such as sitting and lying down.
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Fig. 7.14 Example frames captured during a lying down event in the order of occurrence a, b, c, d

7.3.2.2 Sitting and Lying Down Classification Experiments

The experiments for classification are also performed with 8 different subjects with
approximately 10 trials of sitting and lying down each. Table 7.3 presents results
of significant event classification. The overall sensitivity rates are achieved to be
91.26 and 89.13 % for sitting and lying down, respectively. Furthermore, the overall
specificity rates are achieved to be 89.13 % for sitting and 93.2 % for lying down.

Example of captured frames for a typical sitting down event is presented in
Fig. 7.13. Although being not consecutive, the given frames summarize the move-
ment by showing several key frames in the event duration. As it can be seen, sitting
down consists of a gradual vertical movement of the camera with respect to the scene
facing forward.

In Fig. 7.14, some of the key frames of a typical lying down event is presented.
As it can be verified, the lying down event starts with a sitting down first and then it
continues with a transition of lying down that causes a horizontal motion of the scene
captured by the camera. It should also be added that the algorithm is also capable of
detecting lying down movement for the people who are already sitting.

Example frames captured during a falling down are shown in Figs. 7.15 and 7.16.
As we can observe from the figures, falling causes a rapid change in the view causing
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Fig. 7.15 Example frames captured during a fall from sitting position sitting down position in the
order of occurrence a, b, c, d

blurriness. With the help of the sudden change in edge orientations and strengths,
we were able to detect falls with high accuracy.

7.3.3 Embedded Camera Experiments with CITRIC Platform

Fall detection part of the algorithm is implemented and tested on CITRIC embedded
smart camera platform [8], which consists of 624-MHz fixed-point microprocessor,
64 MB SDRAM, 16 MB NOR FLASH. The platform is also capable of wireless
transmission of data with Crossbow TelosB mote. The captured images are processed
on-board and then dropped. Thus, they are neither transferred nor stored due to
privacy concerns. Only when a fall has been detected as a result of the processing
on CITRIC, the corresponding fall alarm and captured frames during the fall may be
sent wireless to emergency response personnel to locate the subject with precision
due to provided scene details in the environment.

Figure 7.17a, b shows the CITRIC platform and its attachment to the belt, respec-
tively. Everyone who performed the experiment wore the camera at a waist level.
Since the camera is facing forward at the waist, it provided beneficial information
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Fig. 7.16 Example frames captured during a fall from standing up position in the order of occurrence
a, b, c, d

Fig. 7.17 a CITRIC platform, (b) which is connected around the waist

regarding the environment. Also, the location of the camera did not interfere with
movement of experimenters.

The results of the experiments with CITRIC platform are presented in Table 7.4.
Experiments have been performed with 3 different subjects including 50 falling down,
15 sitting down along with standing up, and 15 lying down events. The sensitivity rate
of fall trials was in the range 84–86 %. False positive rates, which are wrongly alerted
‘fall’ alarms, are also presented for sitting down, standing up, and lying down in their
corresponding columns. For falling down experiments, false positives represent the
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Table 7.4 Sensitivity and false positive with sitting and lying down on CITRIC platform

Falling down Sitting down & Standing up/Lying down
Sensitivity False positive False positive False positive

Subject 1 43/50 1/50 2/30 2/15
Subject 2 45/50 5/50 1/30 1/15
Subject 3 42/50 0/50 0/30 2/15

situations where a ‘fall’ alarm has been declared before actually falling down. The rate
of false positives for lying down is higher compared to sitting down or standing up.
Intuitively, sitting consists of straightforward motion of going up and down. Hence,
it is less prone to creating false positives compared to lying. The implementation on
the CITRIC platform gave promising results showing the robustness of the proposed
algorithm.

The program developed on CITRIC platform consists of event detection, fall
detection and occlusion handling. Although we tried to develop computationally
light algorithm for optical flow computations, it is not simple enough to perform at
real time along with fall detection. Our future goal is to have the complete algorithm
to run on a smart camera.

Caused by the design of the CITRIC camera, exposure adjustment is done only
once before the program starts. Since it is not adjusted periodically, the implementa-
tion performs well when the lightning intensity is similar in the environment. How-
ever, when the experimenter changes room or opens a door causing sudden changes
of lightning intensity, it may create a false alarm.

7.4 Conclusions

In this chapter, we presented a novel algorithm to detect fall events and other signif-
icant activities like sitting and lying down by a wearable camera. The application is
particularly applicable to elderly health or activity monitoring systems. Fall detection
part of the algorithm employs histograms of edge orientations and strengths while
activity classification part is using optical-flow based approach.

The camera, being worn by the subject, can monitor the environment wherever
the subject may travel including outdoors. Moreover, since the captured images are
not including the scene of the subject, wearable camera approach alleviates the pri-
vacy concerns of the users. Also, on-board processing power of the CITRIC platform
allows the algorithm implementation such that captured images are neither stored
nor transmitted except for the crucial frames that illustrates the course of falling
down. Only when a fall has been detected, an alarm signal may be sent to a emer-
gency response personnel with the images during and after a fall. The images of the
surrounding environment may help the emergency personnel to localize the subject
with accuracy. Considering the fact that GPS (Global Positioning Systems) does not
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provide accurate location information especially indoor environments, surrounding
images may help better localization in a shorter time.

Fall detection part of the algorithm is implemented on an actual smart camera,
which is CITRIC camera platform. Eight different subjects performed over 320 trials
to prove the effectiveness of the algorithm in detecting falls and classifying other
significant activities of sitting and lying down. Furthermore, 50 falls and 30 non-fall
trials were performed with 2 different subjects. Also, the method is tested in outdoor
environments and it is verified with 15 trials with the camera attached to a broomstick
to imitate free falls.

For the fall experiments that start with standing up position, an average detection
rate of 87.84 % is achieved with prerecorded videos. With the embedded smart
camera application, the correct fall detection rate is 86.66 %. Also, the sensitivity
rates of sitting and lying down are 91.26 % and 89.13 %, respectively.

The idea of employing optical flow algorithms can be further extended to classify
other types of human activities.
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Chapter 8
Tracking by Detection Algorithms Using
Multiple Cameras

Zixuan Wang and Hamid Aghajan

Abstract Detecting and tracking people using cameras is a basic task in many
applications such as video surveillance and smart environment. In this chapter, we
review approaches that detect and track targets using a single camera. After that, we
explore the approaches that fuse multiple sources of information to enable tracking
in a camera network. At last, we show an application that estimates the occupancy
in a smart room.

8.1 Tracking by Detection Algorithms Using a Single Camera

8.1.1 Cascaded Classifier

Viola and Jonce [10] propose a visual object detection framework that is capable of
processing images extremely rapidly while achieving high detection rates. It shows
the state of the art performance in the object detection and is widely used in face
detection. They use Haar features and use integral image to speed up the computa-
tion. Other features such as Histogram of Oriented Gradients (HOG) [1] and Local
Binary Patterns (LBP) [6] can also be integrated into this framework. The learn-
ing algorithm bashed on AdaBoost, which selects a small number of critical visual
features and learns a strong classifier by combining a set of weak classifiers. The
learning algorithm iterates T times. In each time, a weak classifier is learned from all
training set using a single feature and the weights are updated according to the error.
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The final hypothesis is a weighted linear combination of the T hypotheses where the
weights are inversely proportional to the training error.

To improve the efficiency and to reduce the false positive rate, a series of classifier
are applied to the image region. The initial classifier eliminates a large number of
negative examples with very little processing. Subsequent layers eliminate additional
negative but require additional computation. After several stages of processing the
number candidates have been reduces radically. Further processing can take any form
such as additional stages of the cascade or an alternative detection system.

8.1.2 Particle Filter

Particle filter has been a successful numerical approximation technique for Bayesian
sequential estimation with non-linear, non-Gaussian models. The posterior proba-
bility can be formulated as follows:

p(xt |y0:t ) √ p(yt |xt )

⎧
p(xt |xt−1)p(xt−1|y0:t−1)dxt−1 (8.1)

where xt and yt denote the hidden state and the observation at time t respectively.
y0:t denotes (y0, . . . , yt ). In the case of linear Gaussian state space models, it can be
solved with close form using Kalman filter. But in practice, due to the non-linearity
of the hidden state, Kalman filter and its approximation are usually not suitable.

p(xt |y0:t−1) =
⎧

p(xt |xt−1)p(xt−1|y0:t−1)dxt−1 (8.2)

p(xt |y0:t ) = p(yt |xt )p(xt |y0:t−1)⎪
p(yt |xt )p(xt |y0:t−1)dxt

(8.3)

where the process is initialized by the prior distribution p(x0|y0) = p(x0), p(xt |xt−1)

is the transition model of the target and p(yt |xt ) is the likelihood model. Particle filter
uses a set of weighted samples {x (i)

t , w
(i)
t }N

i=1 to approximate the posterior distrib-
ution in the filtering. The sample set is propagated by sampling from a designed
proposal distribution q(xt |xt−1, y0:t ), which is called importance sampling. The
importance weights of the particles are updated in each iteration as follows

w
(i)
t √ p(yt |x (i)

t )p(x (i)
t |x (i)

t−1)

q(x (i)
t |x (i)

t−1, y0:t )
w

(i)
t−1,

⎨

i

w
(i)
t = 1 (8.4)

Generally, we can approximate q(x (i)
t |x (i)

t−1, y0:t ) = p(x (i)
t |x (i)

t−1) and therefore

w
(i)
t √ p(yt |x (i)

t )w
(i)
t−1 (8.5)
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8.1.2.1 Color Model

The color model proposed by Pérez et al. [9] is widely used in particle filters.
The observation of the target is represented by an N -bin color histogram extracted
from the region R(xt ) centered at the location xt . It is denoted as Q(xt ) =
{q(n; xt )}n=1,...,N , where

q(n; xt ) = C
⎨

k≤R(Xt )

δ[b(k) − n] (8.6)

where δ is the Kronecker delta function, C is a normalization constant, k is any
pixel within the region R(xt ). By normalizing the color histogram, Q(xt ) becomes
a discrete probabilistic distribution. The similarity between the current observation
Q(xt ) and the reference model Q≥, which is constructed at the initialization step either
manually or from the automatic detector, is evaluated based on the Bhattacharyya
coefficient

d(xt , x0) = ⎩
1 − ρ[Q(xt ), Q≥] (8.7)

⎩[Q(xt ), Q≥] =
N⎨

n=1

⎩
q(n; xt )q≥(n; x0) (8.8)

In order to encode the spatial information of the observation, a multi-part color
model is employed, which splits the targets vertically into two parts. The color
histogram of the two parts are constructed separately and concatenated in parallel as
new histogram. The likelihood is then evaluated as

p(yt |xt ) √ e−λd2(xt ,x0) (8.9)

8.1.3 Boosted Particle Filter

Okuma et al. [7] propose the approach which combines the AdaBoost detector and the
particle filter. The expression for the proposal distribution is given by the following
mixture.

q≥
B(xt |x0:t−1, y0:t ) = αqada(xt |xt−1, yt ) + (1 − α)p(xt |xt−1) (8.10)

where the parameter α can be set dynamically. When α = 0, the algorithm reduces
to the regular particle filter. By increasing α, more importance is placed on the
AdaBoost detections.
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8.1.4 Multiple Instance Learning

Traditional discriminative learning algorithm for training a binary classifier that esti-
mate p(y|x) require a training data set of the form {(x1, y1), . . . , (xn, yn)} where xi

is a feature vector and yi ≤ {0, 1} is a binary label. In the Multiple Instance Learning
framework [11] the training data has the form {(X1, y1), . . . , (Xn, yn)} where a bag
Xi = {xi1, . . . , xim} and yi is a bag label.

The bag labels are defined as

yi = max
j

(yi j ) (8.11)

where yi j are the instance labels, which are assumed to exist, but are not known during
training. A bag is considered positive if it contains at least one positive instance.
MILBoost uses the gradient boosting framework to train a boosting classifier that
maximizes the log likelihood of bags

logL =
⎨

i

log p(yi |Xi ). (8.12)

8.2 Tracking by Detection Algorithms Using Multiple Cameras

8.2.1 Collaborative Particle Filters

Particle filters are conventional in multi-camera tracking. Tracking information from
multiple cameras are fused on the ground plane using homographies.

The homography is defined as a 3 × 3 matrix, where

⎛

⎝
x
y
w

⎞

⎠ = H ·
⎛

⎝
x ∀
y∀
w∀

⎞

⎠ (8.13)

where (x, y, w)T is the homogeneous coordinate on the image plane and (x ∀, y∀, w∀)T

is the homogeneous coordinate on the ground plane. Each camera is calibrated so
the homography of each camera is known. To obtain the location of each people, the
foot position of the tracked people have to be detected. However, this is a difficult
error-prone task. Du et al. [2] solve this problem by exploiting the principal axes of
the targets, the intersections of which give better ground position.

Clustering methods such as Expectation Maximization (EM) [5] can also be used
to fuse the information from multiple cameras.
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8.3 Application: Occupancy Detection

In this work, we attempt to detection the occupancy in a smart environment covered
by camera networks and understand occupancy patterns. Understanding the occu-
pancy patterns benefits energy saving and environment securities etc. Computers
can interact with other appliance in the smart room and the user. Concrete examples
include that the air conditioning is controlled by the current occupancy estimation:
when the number of people in a room is high, the temperature is set to low and when
the room is empty the air conditioner can be turned off to save energy. Another exam-
ple is that the computer can prompt the administrator when the abnormal occupancy
pattern is detected: if the room should be empty at night but one people is detected
during this time period, the computer should notify the security about this case.

Current approaches to occupancy detection take place mostly in commercial build-
ings through the use of passive infrared (PIR) motion detectors. However, motion
detectors have inherent limitations when occupants remain relatively still. Recent
depth sensors including Kinect make motion detection more accurate but they have
the limitation that the object should be within a certain distance. Therefore, to achieve
these goals, we propose to use visual sensors, i.e. video cameras, to monitor the user.
We use the prevalent camera networks to detect the location of the users and thus
estimate the occupancy and further understand the occupancy patterns over time.

8.3.1 Overview

Our proposed system consists of three main components: sensor layer, behavior
layer and service layer. In the sensor layer, low level image processing and computer
vision algorithms are applied to detect human and to estimate the occupancy. The
occupancy confidence are propagated in both temporal and spatial domains to provide
the interface for the behavior layer. In the behavior layer, the occupancy patterns
are modeled by considering the temporal and group information. Finally, in the
service layer, alerts or recommendations are prompts to the user based on the current
occupancy estimation and learned behavior patterns via the decision model. The
system overview is illustrated in Fig. 8.1.

8.3.2 Approach

In this section, we illustrate the algorithms in the sensor layer, which contain four
major components: cascade classifier based on HOG descriptors, motion filter,
geometric filter and confidence propagation module. The outputs of each cascade
classifier are a set of bounding boxes, which contain detections of people from a
single camera. The following motion filter and geometric filter are applied to remove
false positive detections. The confidence propagation method is used to combine
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Fig. 8.2 The pipeline of the algorithm. Each camera has a separate cascade classifier, motion filter
and geometric filter. The outputs are merged at the confidence propagation module to generate the
occupancy detection

the detection results from multiple cameras. The inputs to the confidence propaga-
tion module are bounding boxes from multiple cameras and the final output is the
occupancy detection. The pipeline is shown in Fig. 8.2.

8.3.3 Cascade Classifier

To make our people detector invariant to the viewpoint change, we train four different
cascade classifiers: front, back, left side and right side. We try Haar [10] and HOG
descriptors [1] and find the HOG descriptor can give us the best accuracy and is also
fast to compute.
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False Negative 
Detection

False Positive 
Detection

Fig. 8.3 The false positive and false negative detection examples. The false negative detections are
often caused by movements of the people and the false positive detections are from the cluttered
background such as chairs or bags

A general problem with the cascade classifier is the reliability of the resulting
detection; i.e., not all people are detected in each frame (false negative detections)
and some detections are not caused by a person (false positive detections). These
problems are demonstrated in Fig. 8.3. To address them, we rely on motion filters (see
Sect. 8.3.4) and geometric filters (see Sect. 8.3.5) to remove false positive detections
and rely on confidence propagation module (see Sect. 8.3.6) to recover the false
negative detections.

8.3.4 Motion Filter

The false positive detections are often caused by the background whose appearances
are similar to the human such as π shape objects. One way to remove detections on
those regions is to consider the motion on these objects. The image region of the true
positive detection will contain small motions over time, i.e. 1 min. Whereas, the false
positive detections result from the background stay static for a long time. For this
reason, we compute the dense optical flow at each pixel using the method proposed
by Farneback [3] and define the motion image to remove false positive detections.
The motion magnitude is defined as:

mt (x, y) =
√

V 2
x + V 2

y (8.14)
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Fig. 8.4 An example of the motion image. a Shows the dense optical flow of the frame. b Shows
the motion image when k = 20. The lighter pixels represent that areas are with stronger motion

where Vx and Vy are the x and y components of the optical flow at time t . mt (x, y)

denotes the motion magnitude at time t . We define the motion image as the maximum
of k consecutive motion magnitudes as follows:

Mt (x, y) = k
max
i=0

{mt−i (x, y)} (8.15)

One example of the motion image is shown in Fig. 8.4. We set a threshold to the
detection bounding box: if the average of pixel values in the motion image within
the bounding box is above a threshold, then we keep this detection. Otherwise, we
consider the detection to be false positive and filter it out.

8.3.5 Geometric Filter

We assume that the height of people when sitting are approximately the same and the
horizontal edge of the image plane is aligned with the ground. If these assumptions
are met, the geometric constraints can be used to remove false positive detections.

We define the height of the upper body to be h and the height of the camera to be
H . The angle between the principal axis and the horizontal plane is α. The distance
between the optical center and the ground is H/ sin α. Assume the focal length is f.
The distance from the pixel to the image center is f tan(α − θ). The angle spanned
by each upper body can be derived from the sine law:

h

sin β
= H

sin α cos(α − β)
(8.16)

f β = arctan
h sin α cos α

H + h sin2 α
(8.17)
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Fig. 8.5 The geometry of the camera assuming the height of the detected objects are the same and
the horizontal edge of the image plane is aligned with the ground

0 100 200 300 400 500
20

40

60

80

100

Y coordinates

B
ou

nd
in

g 
bo

x 
si

ze

Fig. 8.6 An example of the people size versus the bottom position of the bounding box. θ = 22.5,
H = 3, h = 0.85, field of view=32. x axis represents the position of the bounding box within the
frame. y axis represents the size of the bounding box satisfying the geometric constraints

The size of the upper body on the image is given by

s = f [tan(α − θ) − tan(α − θ − β)] (8.18)

Figure 8.6 shows an example of the geometric constraints on the bounding box sizes.
We only allow the size of the bounding box to be βs, where 0.8 < β < 1.2 and s is
computed from Eq. 8.18.

8.3.6 Confidence Propagation

We solve the false negative detection problem by using the algorithm we call confi-
dence propagation. We associate a confidence score with each detection and create a
confidence image for each camera. The confidence are propagated in both temporal
and spatial domains to mitigate false negative detections.
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8.3.6.1 Temporal Domain

It is quite frequent that one people was detected in the previous frame but due to the
movement of the body, the same people is missing in the current frame. We need to
propagate the confidence of the detection from past frames via the temporal domain.
We define the temporal confidence propagation as follows:

conf(i, t) =
{

1, if detection at t
eλ(t ∀−t), last detection is at t ∀

where conf(i, t) is the confidence of the i th detection at time t . λ > 0 is the
coefficient to control the confidence propagation in the temporal domain.

8.3.6.2 Spatial Domain

We first consider the spatial propagation within each view. The positions of the
bounding boxes may jitter due to the noise. Therefore, we associate a Gaussian
function with each detection, which is defined as conf(i, t)N (p,α), where p is the
center of the bounding box and σ covariance matrix of Gaussian. In this way, we
construct a confidence image, where each pixel represents the confidence that this
pixel belongs to the foreground.

People detections from a single view are not reliable. Multi-cameras with over-
lapping regions can help us to gain confidence of the people detection. According
to the epipolar geometry [4], for each pair of cameras, which have overlap in their
views, the fundamental matrix between them can be computed and one point on one
image corresponds to an epipolar line on the other image. In this article, we add a
new assumption that, if we know the z value of the point in the world coordinate,
which is the height of the object. We can find the corresponding point rather than the
epipolar line on the other image. The image projection is defined as follows:

s

⎛

⎝
u
v

1

⎞

⎠ = A(R · P + T ) (8.19)

where R is the rotation matrix and T is the transition vector, which are the extrinsic
parameters of the camera. A contains the intrinsic parameters of the camera. R, T
and A can be obtained from the camera calibration. P is the 3D coordinate of the
object and (u, v, 1)T is the homogeneous coordinate of the object on the image
plane. Assume we have two calibrated cameras with parameters: {A(1), R(1), T (1)}
and {A(2), R(2), T (2)}. The object has the height h. Its homogeneous coordinate on
image 1 is x1. We will compute its corresponding homogeneous coordinate on image
2, denoted by x2. Let B be the inverse of A(1) and Q be the inverse of R(1). The
derivation is the following:
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s = h + Q3,1T (1)
1 + Q3,2T (1)

2 + Q3,3T (1)
3

Q3,1 B1x1 + Q3,2 B2x1 + Q3,3 B3x1
(8.20)

P = Q(s Bx1 − t1) (8.21)

x2 = A(2)(R(2) · P + T (2)) (8.22)

where Qi, j represents the element in i th row and j th column in Q. Bi is the i th row

of B. T (1)
i is the i th element in T (i).

We use this relationship to construct a graph called the confidence graph, which
is used to propagate the confidence of the people detection. The graph is constructed
with the following guidelines:

• Each vertex in the confidence graph is a pixel in the confidence image with non-
zero values.

• Two vertices from different views are connected if they are conforming to the
geometric constraints using Equation from 8.20 to 8.22.

• The weight associated with each edge is determined by the similarity of appear-
ances.

First, we use each pixel with non-zero value in the confidence image as one vertex.
The edge between two vertices means the coordinates of two pixels are conforming
to the epipolar geometric constraints. We also define weights to edges, which reflects
the association between two vertices. The weight of the edge is computed from the
similarity of appearances. Here we use the color information to define the weight
of the edge. We adopt the color model in [9] in our application. The color model is
formulated the same way as in Sect. 8.1.2.1.

We use PageRank [8] to propagate the rewards on the social graph. Let M be the
column stochastic matrix. The initial value of the PageRank vector is obtained from
the confidence propagation in the temporal domain. The converged PageRank vector
r is computed from the following equation.

r = βMr +
[

1 − β

N

]

N
(8.23)

where
[

1−β
N

]

N
is an N vector with all entries (1 − β)/N and β is set to 0.85. We

have one PageRank vector associated with each rule, which is computed from several
iterations by using Eq. 8.23.

After PageRank converges, we set a threshold in the confidence image and run
the agglomerative clustering algorithm on the pixels that are above the threshold.
We initialize each pixel which is above the threshold as one cluster and continue
merging two clusters if their distance is less than a threshold. The distance between
two clusters is defined as the distance between their mass centers. If the distance
between any pair of clusters is above the threshold, the merging is complete and
each cluster represents one detection.
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Fig. 8.7 The layout of the iRoom. 8 camera are deployed on the ceiling of the room. Camera 1
and 8 have the frontal view. Camera 3 and 4 have the rear view. Camera 2 has the left side view.
Camera 5, 6 and 7 have the right side view

Fig. 8.8 The views of 8 cameras

8.3.7 Evaluations

We evaluate our algorithm using the dataset collected from a multi-purpose classroom
with 8 Internet cameras. The layout of the room and the deployment of cameras is
shown in Fig. 8.7. The views of 8 cameras are shown in Fig. 8.8.

We manually annotate positive samples on each frame. The negative samples are
generated from images taken from the empty room under different illuminations.
The number of positive samples of each view is 1,000 and the number of negative
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Table 8.1 The first column shows the accuracy using HOG descriptor only. The second shows
the accuracy when the motion filter and the geometric filter are added. The last column shows the
accuracy when the confidence propagation module is added. Each result contains the mean and the
standard deviation

HOG HOG + filters All

0.437 ± 0.128 0.614 ± 0.084 0.693 ± 0.101
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Fig. 8.9 The occupancy pattern of the iRoom over 1 week

samples is 1,000. We set the number of stages to be 20 and the size of the upper body
patch to be 64 × 64.

To compare with the baseline occupancy detection algorithm, we use a video clip
of 10 minutes and evaluate the performance of our algorithm. The class contains 14
students and we sample 10 timestamps to check the accuracy of each method. The
accuracy is defined as 1 − |d − D|/D, where D is the ground truth and d is the
number of people estimated from the algorithm. The results are shown in Table 8.1.

To get the occupancy pattern of the iRoom, we run our occupancy detection
algorithm for one week and the pattern is shown in Fig. 8.9. The starting time is
from Sunday and the ending time is Saturday. We can see there are seven clusters,
which represents each day during one week. We can see that on Sunday, Friday
and Saturday, the room is almost empty and the other weekdays the room is more
occupied.

8.4 Summary

We have presented approaches that detect and track targets using a single camera
and we have also explored the approaches that fuse multiple sources of information
that enables tracking in a camera network. At last, we show an occupancy detection
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algorithm in camera networks. The algorithm combines the appearance, motion and
geometric information and exhibits higher accuracy. Our confidence propagation
algorithm can be integrated with other low level visual processing algorithms includ-
ing localization and tracking.
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Chapter 9
Consistent Human Tracking Over
Self-organized and Scalable
Multiple-camera Networks

Kuan-Hui Lee, Chun-Te Chu, Younggun Lee, Zhijun Fang
and Jenq-Neng Hwang

Abstract In this chapter, a self-organized and scalable multiple-camera tracking
system that tracks human across the cameras with nonoverlapping views is intro-
duced. Given the GPS locations of uncalibrated cameras, the system automatically
detects the existence of camera link relationships within the camera network based on
the routing information provided by Google Maps. The connected zones in any pair of
directly-connected cameras are identified based on the feature matching between the
camera’s view and Google Street View. To overcome the adverse issues of nonover-
lapping field of views among cameras, we propose an unsupervised learning scheme
to build the camera link model, including transition time distribution, brightness
transfer function, region mapping matrix, region matching weights, and feature fusion
weights. Our unsupervised learning scheme tolerates well the presence of outliers
in the training data and the learned camera link model can be continuously updated
even after the tracking is started. The systematic integration of multiple features
enables us to perform an effective re-identification across cameras. The pairwise
learning and tracking manner also enhances the scalability of the system. Thanks to
the unsupervised pairwise learning and tracking in our system, the camera network is
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self-organized, and our proposed system is able to be scale up efficiently when more
cameras are added into the network. Thanks to the unsupervised pairwise learning
and tracking in our system, the camera network is self-organized, and our proposed
system is able to scale up efficiently when more cameras are added into the network.

9.1 Introduction

Tracking humans across multiple cameras has recently attracted lots of interests in the
visual surveillance community. Due to the limited field of view (FOV) of a camera,
a target’s information is no longer available once the target leaves the view of the
camera. Hence, a surveillance system is required to have multiple networked cameras
covering a range of areas. Tracking multiple people across the uncalibrated cameras
with disjoint views is a rather challenging problem. Some researchers aim to structure
it as a re-identification problem and have tried to come up with distinctive features of
the targets, such as SIFT, SURF, covariance matrix, etc [1–7]. The re-identification
is done based on the assumption that these kinds of features are invariant under
different cameras’ views. However, the ideal features for describing humans have not
been discovered yet since the human appearance varies dramatically due to different
perspectives, poses and illuminations when perceived from different cameras. On
the contrary, instead of relying on the complex feature representations, we focus
on solving the tracking problem based on systematically building the pairwise links
among cameras [8]. If there exists a path allowing people traveling between two
cameras without passing through any other camera, we call the two cameras are
directly connected. An entry/exit zone is defined as an area that people tend to enter
in or leave from within a camera’s view. There may be several entry/exit zones in a
camera’s view, and a path between a pair of directly-connected cameras actually only
connects one zone each in these two cameras (see Fig. 9.6 as an example). Given an
identified pair of directly connected camera zones, the temporal/spatial/appearance
relationships between each pair of entry/exit zones in two cameras corresponding
to the path can be characterized by a camera link model. The model enables us
to utilize particular features, which may not be invariant under different cameras,
for re-identification purposes. For instance, due to different lighting conditions and
camera color responses, the same object may appear with different colors under
different views. The brightness transfer function (BTF) [9, 10], which stands for the
mapping of color models between two cameras, can be applied to compensate for
the color difference between two cameras before we compute the distance between
the color histograms of two observations under two directly-connected cameras.
In our system, several components are included in the formulation of the camera
link model, namely transition time distribution, brightness transfer function, region
mapping matrix, region matching weights, and feature fusion weights.

A camera link model is obtained based on the given training data which consists
of two sets of observations detected from a pair of entry/exit zones between
two directly-connected cameras. Each observation includes the time stamp and
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appearance information of the human. If people manually identify the correct corre-
spondences between the observations in these two sets, the camera link model can
be straightforwardly estimated in a supervised manner. For example, the transition
time values between pairs of correct correspondences can be computed based on
the difference between the entry time stamps and exit time stamps, from which the
transition time distribution can be estimated [11, 12]. Supervised learning of camera
link models is less feasible since large amount of human efforts are required, not to
mention the additional efforts required for continuous updating of the learned camera
link models, and how to perform the learning and updating automatically, i.e., unsu-
pervised learning, while obtaining none or limited amount of accuracy degradation
becomes a challenging research topic [14–18]. In our proposed system, inspired by
the concept of feature points matching between two images, the camera link model
is determined based on a fully unsupervised scheme [19] in the training stage. The
camera link model is estimated given the training data without manually labeling the
correspondences in advance. Moreover, in practice, since the connections between
cameras may be arbitrary, the outliers usually exist in the training data for construct-
ing the camera link model between a pair of connected cameras; that is, one departing
from a camera does not enter the other connected camera, or one enters into a camera
does not come from the other connected camera, and these people are called outliers.
Our proposed method also effectively takes care of the presence of the outliers. With
the ability of unsupervised learning and the subsequent continuous update of the
camera link model between a pair of connected zones, it is now possible to scale
up the tracking system to a large number of non-overlapping cameras as long as the
connected zones can be systematically and effectively identified whenever a new
camera is added into the system [20].

Given a camera network consisting of multiple cameras, two pieces of information
are required before the camera link model estimation can be performed: (i) The
system needs to identify which pairs of cameras have link models between them, i.e.,
which pairs are directly connected. Wrong links or redundant links can deteriorate
the tracking performance easily, due to the increased searching range and resulting
in reduced recall rate and increased false positives, not to mention the exponentially
increased computational complexity. (ii) To our observation, the link actually only
connects two entry/exit zones in a pair of directly-connected cameras; that is, if a
person is traveling between two cameras, he/she will likely leave from one particular
zone and enters into the other. Hence, the training data used in camera link model
estimation (and the subsequent re-identification tracking) should only include the
observations happening in these two specific zones in order to avoid too many outliers.
Therefore, to identify which specific zones are linked together is another critical issue
and a systematic method is thus proposed to perform the camera link identification
by incorporating the information from Google Maps and Google Street View.

As shown in Fig. 9.1, our system is divided into two stages, the training stage and
the testing stage. In the training stage, camera link models are estimated between
all the directly-connected camera pairs (more specifically, the pairs of the entry/exit
zones) based on our proposed unsupervised learning scheme. In the testing stage,
the trained models are utilized to facilitate the consistent labeling during the tracking
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Fig. 9.1 System overview

across multiple cameras, and the models are also continuously updated based on
the tracking results. The labels for the tracked targets within a single camera are
generated based on the single camera tracking system proposed in [13, 21].

Our major contributions are to propose an unsupervised method that effectively
estimates the camera link models and to apply the models in the real world sce-
nario for tracking humans across the cameras with non-overlapping views. More
specifically, (1) we formulate the camera link model estimation as an optimization
problem and apply a deterministic annealing method to obtain the optimal solution.
A reliable model is built based on this unsupervised scheme even under the presence
of outliers in the training data. (2) We include the region mapping matrix and region
matching weights, enabling the effective regional matching of colors and textures, in
the estimation process. (3) We systematically determine the feature fusion weights
for testing by integrating multiple features used in the training stage. (4) We build
the complete system to track humans across the cameras deployed in the real world
based on camera link models, which can be continuously updated in the testing stage
in order to refine the model and to adapt to environmental changes. (5) We present
a scalable and self-organized multiple-camera tracking system which automatically
and unsupervisedly identifies the links between cameras, estimates the camera link
model, and tracks objects across the cameras. The only prior information is the user
specified GPS locations of the cameras.

9.2 Camera Link Identification

The camera link model between each pair of directly-connected cameras has been
shown to be effective in tracking human across multiple cameras [8, 16, 22]. Before
the camera link model is estimated, the prior knowledge needed is to identify which
pairs of cameras within the camera network should possess a camera link model.
In this section we introduce how our system detects the existence of links given the
GPS locations of the cameras. The camera link identification includes the following
two modules: link existence detection and connected zones identification.
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Fig. 9.2 An example of the routing associated with camera 0, 1, and 2. a The locations of three
cameras. The shortest route between b camera 0 and 1, c camera 0 and 2, d camera 1 and 2

9.2.1 Link Existence Detection

Given the locations of the cameras, which are easily obtained when setting up the
cameras in the environment, we are able to access the routing information provided by
Google Maps. The routing information contains the possible routes between any pair
of two locations. If there exists one route that connects two cameras without passing
by another camera, we recognize them as directly-connected, and there should be a
link between them. If all the routes between two cameras pass by at least one other
camera, we recognize the link should not exist between these two cameras. Figure 9.2
shows an example of the routing associated with three cameras denoted by C0, C1,
and C2, whose locations are shown in Fig. 9.2a. To our observation, in practice people
tend to follow the similar paths due to the presence of available pathway, obstruct,
and shortest route, so it is reasonable to utilize the estimated paths from Google Maps
as the routing information. Figure 9.2b–d show the shortest routes between each pair
of cameras. Since the route between C1 and C2 passes C0, the system only detects
the links between C0 and C1 as well as C0 and C2.

9.2.2 Connected Zones Identification

There may be several entry/exit zones within a camera’s view. The link between
two directly-connected cameras actually only connects one zone each in these two
cameras. So far, we can only know the existence of the link from the link existence
detection without knowing the specific zones that are connected together. If we can
know the connected zones, we only need to collect the training data, i.e., the exit and
entry observations, from the associated zones so as to reduce large number of outliers
in the training data during the estimation of camera link model and also obtain better
accuracy when tracking the objects.

First of all, all the zones within each camera are detected in an unsupervised man-
ner by using the Gaussian Mixture Model (GMM) based on the collected entry/exit
measurements [22]. Then, we match the camera’s view with the panoramic images
automatically retrieved from Google Street View to estimate the principal orienta-
tion of the camera. The scheme of the street view matching is described as follows:
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Fig. 9.3 The estimation of principal orientation of the camera

(i) given a GPS location, the system can access the images from Google Street View
with different viewing angles θ , pitches ϕ, and foveations f. (ii) Perform feature
point matching between the images and camera’s view. (iii) identify the image with
the maximum number of the matched points, and the corresponding viewing angle θ

offers the principal orientation of the camera. Figure 9.3 shows an illustration of the
scheme, where the camera’s view matches well with one of the panoramic images.
Moreover, the direction of the route is provided by Google Maps according to the
GPS locations. Therefore, given the principal orientations, the direction of the route,
and the detected entry/exit zones, we can determine the two zones that are connected
together.

Figure 9.4 shows an example of the idea. To obtain the information from Google
Maps, we implement a user interface by using Google Maps APIs 3.0.1 In the street
view matching, we adopt SIFT feature [23] for our point matching algorithm. We
divide the viewing angle θ into 24 segments, i.e., θ = 15√ × k, k = 0, 1, 2, . . . , 23.
For each angle, we retrieve a set of 9 images which are the combination of 3 different
pitches ϕ and 3 different foveations f (ϕ = −20, −10, 0; f = 80, 100, 120).
The image resolution used is 640 × 480. Figure 9.4a is the camera’s view, and the
entry/exit zones are marked as red ellipses. Four panoramic images with different
θ from Google Street View are shown in Fig. 9.4b. Figure 9.4c shows the result of
the SIFT feature similarity matching, where the red dot block is the ground truth
of the principle orientation obtained manually. One can see that the number of the
matched points are relatively high from 105√ to 120√, which is close to the ground
truth. Since θ = 0√ stands for the orientation toward north, the principal orientation
of the camera is estimated as toward East, and the left entry/exit zone is at North side
of the view while the right one is at South side of the view. We tried 13 cameras,
and all of their principal orientations can be determined well through the matching
against Google Street View.

1 https://developers.google.com/maps/documentation/streetview/.

https://developers.google.com/maps/documentation/streetview/
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Fig. 9.4 a Camera’s view. Red ellipses are the entry/exit zones. b Four panoramic images from
Google Street View. c Number of the matched SIFT features. Red dot block is the ground truth of
the camera orientation

9.3 Overview of Camera Link Model

The overall system shown in Fig. 9.1 is divided into the training stage and the
testing stage:

9.3.1 Training Stage

Given the camera topology, the directly-connected camera pairs and the correspond-
ing entry/exit zones can be manually identified easily. Training takes place pairwisely
between all the corresponding entry/exit zones pairs of directly-connected cameras.
For each pair, the training data, i.e., two observation sets from a pair of correspond-
ing entry/exit zones, is automatically collected by the single-camera tracking module
[13]. Each entry/exit observation contains temporal, color and texture features of a
person who is entering/leaving the field of view (FOV) of a particular camera. As
mentioned earlier, to construct a camera link model M between two zones, the cor-
respondence in the training data needs to be automatically identified first. Denote X
and Y as the exit and entry observations, within a specific time window, from a pair of
corresponding entry/exit zones in a pair of directly-connected zones (in this chapter,
we used connected zones and connected cameras interchangeably), respectively:

X = ⎧
x1 . . . xN1

⎪
, Y = ⎧

y1 . . . yN2

⎪
, (9.1)

where xi and y j are exit and entry observations, and N1 and N2 are the numbers of
the observations. Inspired by the concept of feature points matching between two
images [19, 20], we formulate the identification of the correspondence as finding
an (N1 + 1) × (N2 + 1) binary matrix P, where each row and column stand for an
exit and entry observation, respectively. The entry Pi j in P is 1 if xi corresponds to
y j ; otherwise, it is 0. The (N1 + 1)th row and the (N2 + 1)th column represent the
outliers. Between a pair of directly connected zones, exit observations are people who
have left one camera’s view, and entry observations are people who have entered into
the other camera’s view within the same period of time window. The matched pairs
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are a pair of exit and entry observations who are the same person. Outliers are the
remaining exit/entry observations who only appear in exactly one camera between
this pair of cameras, either an exit observation from one camera never enters the
other camera later within the specified time window period or an entry observation
to one camera did not exit from the other camera earlier within the specified time
window period. Note that PN1+1, N2+1 has no physical meaning, so all the following
discussion will exclude it automatically.

Analogous to the affine transformation in 2D image points matching [19, 20], the
camera link model serves as the transformation between the observations from two
cameras. The correspondence matrix P is estimated based on the distances between
the feature vectors from the observation sets, and the camera link model (transfor-
mation) is required to compensate for the deviation between the cameras during the
distances calculation. Moreover, the camera link model M can be estimated given a
correspondence matrix P. Hence, it is reasonable to employ an EM-like approach to
iteratively estimate the matrix P and the camera link model M (see Fig. 9.1). In each
iteration, P is obtained by solving a minimization problem given the most recently
estimated M. After that, the model M is estimated based on the newly updated P. In
Sects. 9.4 and 9.5, we will introduce the formulation of the minimization problem
and the estimation of the camera link model including transition time distribution,
brightness transfer function, region mapping matrix, region matching weights, and
feature fusion weights. One will see that our estimation procedure is quite general.
People can always add more features and estimate the corresponding transformation
in the camera link model. The unsupervised learning scheme will take care of the
estimation of the unknown parameters adaptively and systematically.

9.3.2 Testing Stage

In the testing stage, each camera Ci , i = 1 ≤ NC maintains an exit list Li,k for each
entry/exit zone k, within a Tmax -second interval. It consists of the observations Oi,k

of the people who have left the FOV from zone k within this Tmax -second interval,
i.e.,

Li,k =
⎨

O1
i,k, O2

i,k . . . O
|Li,k |
i,k

⎩
. (9.2)

Whenever a person enters a camera’s view, the system finds the best match among
the people in the exit lists corresponding to the linked zones of the directly-connected
cameras. Based on the camera link model, the matching distance between two obser-
vations O1 and O2 can be computed as the weighted sum of distances:

match_dist =
Nfeature⎛

i=1

αi × feature_disti (O1, O2), (9.3)
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where αi is the weight for the distance feature_disti (·) corresponding to the feature i.
In our system, four different features (Nfeature = 4), namely, temporal, holistic color,
region color and region texture features, are utilized to compute distances. Given an
entrance observation, if the lowest distance among all the competing exit observations
from all directly-connected cameras within the time interval is smaller than a certain
threshold, the label handoff is performed; otherwise, we will treat it as a new person
within the camera network. The re-identification results can be further used to update
the camera link models.

9.4 Minimization Problem Formulation

Given the most recently estimated camera link model M, the optimum correspon-
dence matrix ⎝P can be obtained by solving a constrained minimization integer pro-
gramming problem:

⎝P = argmin
P

J (P) (9.4)

s.t. Pi j ≥ {0, 1} ∀ i ⊂ N1 + 1, j ⊂ N2 + 1, (9.5)
N1+1⎛

i=1

Pi j = 1 ∀ j ⊂ N2,

N2+1⎛

j=1

Pi j = 1 ∀ i ⊂ N1, (9.6)

where J (·) is the objective function to be minimized. The constraints (9.5) and (9.6)
enforce one-to-one correspondence (except for the outlier row and column). By
incorporating the soft-assign [19] instead of hard decision all the time, the problem
is relaxed by substituting constraint (9.5) with (9.7)

Pi j ≥ 0 ∀ i ⊂ N1 + 1, j ⊂ N2 + 1. (9.7)

In this way, the variables Pi j are continuous real numbers indicating how likely
the ith exit and the jth entry observations are a matched pair. Moreover, the relaxation
reduces the chance of getting trapped in poor local minima during the optimization
search. By incorporating the deterministic annealing method, the solution eventually
converges at a binary permutation matrix [19]. The objective function J (·) comprises
several cost functions, and each of them stands for a distance function between the exit
and entry observations associated with one specific feature, e.g., time, color, texture.
In the following, we will introduce separately the cost functions considered in the
objective function and explain how a camera link model associates with different
features.
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9.4.1 Temporal Feature

According to our observation, people tend to follow similar paths in most cases due to
the presence of available pathways, obstructs, or shortest routes. Thus, the transition
time t forms a certain distribution ftran(t). Given previously estimated P, we can

get the transition time values Ttran =
⎞

texi t
1 . . . texi t

N1
tentr y
1 . . . tentr y

N2

⎠
, where

texi t
i =

N2⎛

j=1

Pi j

(
yt

j − xt
i

)
∀ i ⊂ N1, (9.8)

tentr y
j =

N1⎛

i=1

Pi j

(
yt

j − xt
i

)
∀ j ⊂ N2, (9.9)

and yt
j and xt

i represent the time stamps of the observations y j and xi , respec-
tively. The transition time is always positive if two cameras have no overlapping area
because the entry time of a person should be greater than the exit time of the correct
correspondence from the other camera. Also, the outliers should lead to zero transi-
tion time. For example, if the kth exit observation is an outlier, Pkj should be zero
for all j ⊂ N2 resulting in texi t

k = 0 according to (9.8). Hence, the optimal solution
of P satisfies the constraints texi t

i ≥ 0, tentr y
j ≥ 0 and Pi j = 0 if yt

j − xt
i ⊂ 0,

which are required to be included in the problem formulation. A set of valid time
values Tvalid that excludes the outliers, i.e., takes only the nonzero entries in Ttran ,
is further established, and the transition time distribution ftran(·) is built based on
the kernel density estimation:

Tvalid = {
t̂
∣∣ t̂ ◦= 0, t̂ ≥ Ttran

} = ⎧
t1 . . . tNvalid

⎪
, (9.10)

ftran (t) = 1

Nvalid

Nvalid⎛

i=1

1

σtran
√

2π
exp

(
− (t − ti )2

2σ 2
tran

)
, (9.11)

where σ 2
tran is the predefined variance of the Gaussian kernel. For each possible

correspondence, we compute the likelihood value ftran

(
yt

j − xt
i

)
given the model

and consider the maximum likelihood estimation, i.e.,
(

1 − ftran

(
yt

j − xt
i

))
is used

as the individual cost. Thus, the total cost can be written as:
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cost time =
N1⎛

i=1

N2⎛

j=1

Pi j

(
1 − ftran

(
yt

j − xt
i

))
(9.12)

=
N1⎛

i=1

N2⎛

j=1

Pi j feature_dist1(xi , y j ).

9.4.2 Holistic Color Feature

The same object may appear differently under two cameras with non-overlapping
views due to illumination changes and different camera color responses. The color
deviation can be modeled as a brightness transfer function (BTF) [9]. The BTF
is applied to compensate for the color difference between two cameras before we
compute the distance between the holistic color histograms of two observations.
Thus, the total cost function for the holistic color feature is:

costholistic_color =
N1⎛

i=1

N2⎛

j=1

Pi j D
(

fBT F

(
yh

j

)
, xh

i

)
(9.13)

=
N1⎛

i=1

N2⎛

j=1

Pi j feature_dist2(xi , y j ),

where yh
j ≥ R

d and xh
i ≥ R

d are the holistic color histograms of the observations, y j

and xi ; D(·) is the distance function between two histograms; fBT F (·) : Rd → R
d

is the BTF, with d being the total bin number of the color histogram.

9.4.3 Region Color and Texture Feature

Since the viewpoints vary in two cameras, some parts of the human body may only be
seen in either one of the cameras’ views. Hence, we divide the human into multiple
regions for more detailed comparison. However, the corresponding regions do not
always cover the same area of the human due to different viewpoints (see Fig. 9.5).
We observe that the entering (or exiting) directions of different people at an entry/exit
zone of a fixed camera are similar, so we use a mapping matrix to link the regions
between two bodies. The histogram extracted from one region of human leaving from
the first camera can be modeled as the linear combination of the histograms extracted
from multiple regions of human entering into the second camera. The snapshots for
a person exiting one camera and entering another are shown in Fig. 9.5b and c,
respectively.
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Fig. 9.5 a Green box is the bounding box of the target. The target is divided into 7 regions
(exclude the head) based on the shown ratios. Each region has predefined label number. b An exit
observation in camera C3. c An entry observation of the same person in camera C4. The red line is
the principal axis. Region 3 in b and region 3 in c do not cover the same areas. The yellow rectangles
cover the same areas on the target. The histogram extracted from region 3 in b can be modeled as
the linear combination of the histograms extracted from six regions in c, and the coefficients are
w3 = [w31 . . . w36]T

First, the principal axis of a person is identified by applying principal component
analysis to the human silhouette which is obtained from the single camera tracking
module [13]. After that, the whole body is automatically divided into head, torso,
and leg regions based on the predefined ratios (Fig. 9.5a). We discard the head region
in the region matching since this part usually has lower discriminability due to its
relatively small area and similar hair/face color information. The torso is further
divided into six regions, and the mapping matrix will be trained for linking two
six-regions from a pair of matched people. Because the leg region usually changes
little under different perspectives, we compute the distance between the two whole
leg regions without further dividing it. The region color histograms extracted from
the region k of the observations xi and y j are denoted as xrhk

i ≥ R
d and yrhk

j ≥ R
d ,

respectively, where k = 1 ≤ 7. As shown in Fig. 9.5, the regions 1–6 are from the
torso, and region 7 is from the leg. We denote the mapping matrix Wmap ≥ R

6×6 as:

Wmap = [w1 . . . w6] , (9.14)

where wk ≥ R
6 is the weighting for linear combination.

Moreover, since some regions may not be visible under both cameras’ views, they
should be assigned with smaller weights in the region feature distance computation.
The cost function is the weighted sum of the distances from all 7 regions

costregion_color =
N1⎛

i=1

N2⎛

j=1

Pi j

[
6⎛

k=1

qk × D
(

ymapk
j , xrhk

i

)
+ q7 × D

(
fBT F

(
yrh7

j

)
, xrh7

i

)]
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=
N1⎛

i=1

N2⎛

j=1

Pi j feature_dist3(xi , y j ), (9.15)

where ymapk
j ≥ R

d is the linear combination of the torso region color histograms⎞
yrh1

j . . . yrh6
j

⎠
≥ R

d×6 with weights wk after applying the BTF,

ymapk
j =

⎞
fBT F

(
yrh1

j

)
. . . fBT F

(
yrh6

j

)⎠
wk, (9.16)

and q = [q1 . . . q7]T denote the weights for all 7 region distances. Note that all the
seven regions are included in the distance computation, but only the torso regions
are considered for the region mapping by using the mapping matrix Wmap.

The texture feature is considered in the similar manner. The local binary pattern
(LBP) [24] is utilized as the texture feature and is expressed as r-dimensional LBP
histograms xr L B Phk

i ≥ R
r and yr L B Phk

j ≥ R
r , where k = 1 ≤ 7. Hence, the cost

function is:

costregion_texture =
N1⎛

i=1

N2⎛

j=1

Pi j

[
6⎛

k=1

qk × D
(

ymapL B Pk
j , xr L B Phk

i

)
+ q7 × D

(
yr L B Ph7

j , xr L B Ph7
i

)]

=
N1⎛

i=1

N2⎛

j=1

Pi j feature_dist4(xi , y j ), (9.17)

where y
mapL B Pk
j ≥ R

r is the linear combination of torso region LBP histograms⎞
yr L B Ph1

j . . . yr L B Ph6
j

⎠
≥ R

r×6 with weights wk .

ymapL B Pk
j =

⎞
yr L B Ph1

j . . . yr L B Ph6
j

⎠
wk (9.18)

Since the LBP is robust to the brightness change [21], the BTF is not applied here.

9.4.4 Maxima Entropy Principle

In deterministic annealing [18, 25], a widely used iterative scheme to solve optimiza-
tion problems, the procedure starts with emphasizing high “uncertainty”, measured
as the entropy, of the entries in P, i.e., to maximize the entropy. The importance of
the maximum entropy principle is gradually decreased by increasing a parameter
β through the iterations. Thus, the cost function is written as the negative of the
entropy:
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costentropy = 1

β

N1+1⎛

i=1

N2+1⎛

j=1

Pi j log Pi j . (9.19)

In the early stage of the training process, the factor β starts with a low value
that raises the importance of this cost function with respect to the overall objective
function J (P), enabling the value Pi j to move freely in the space for searching the
optimum. β is then gradually increased to lower the importance and eventually leads
to convergence. The function (9.19) can also be seen as a barrier function [26] for
the constraint defined in (9.7).

9.4.5 Outlier Cost

Since the presence of outliers is considered, there is an additional term which controls
how large the distance we can tolerate before treating a particular observation as an
outlier. The penalty term is:

costoutlier = −θ

N1⎛

i=1

N2⎛

j=1

Pi j , (9.20)

where θ is a control factor. If θ is set large, for instance, the estimation process is
allowed to tolerate larger distance before treating one as an outlier.

9.4.6 Estimation of P

By incorporating all the cost functions above, our final problem formulation becomes
a convex optimization problem:

⎝P = argmin
P

J (P) (9.21)

s.t. Pi j ≥ 0 ∀ i ⊂ N1 + 1, j ⊂ N2 + 1, (9.22)

N1+1⎛

i=1

Pi j = 1 ∀ j ⊂ N2,

N2+1⎛

j=1

Pi j = 1 ∀ i ⊂ N1, (9.23)

texi t
i =

N2⎛

j=1

Pi j

(
yt

j − xt
i

)
≥ 0 ∀ i ⊂ N1, (9.24)
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tentr y
j =

N1⎛

i=1

Pi j

(
yt

j − xt
i

)
≥ 0 ∀ j ⊂ N2, (9.25)

Pi j = 0 i f yt
j − xt

i ⊂ 0 ∀ i ⊂ N1, j ⊂ N2. (9.26)

The objective function J (P) is the combination of the above cost functions:

J (P) = cost time + costholistic_color + costregion_color

+ costregion_texture + costentropy + costoutlier . (9.27)

Given the current camera link model M = {
ftran, fBT F , Wmap, q

}
, the objec-

tive function is formulated, and P is updated by solving (9.21)–(9.27). Instead of
incorporating the barrier function for constraints (9.24) and (9.25) as is done in our
previous work [19], we use a projection-based convex optimization method [26] to
deal with the constraints (9.24)–(9.26) since it leads to faster convergence in practice.
First of all, given the current estimated camera link model, the objective function
J (P) is convex in P , so the optimum can be obtained by equating the derivative to
zero,

∂ J (P)

∂ Pi j
= 0 → Pi j =

{
e(β(θ−dist i j)−1) i f i ⊂ N1 and j ⊂ N2

e−1 i f i = N1 + 1 or j = N2 + 1
,

(9.28)

where dist i j = ∑Nfeature
k=1 feature_distk(xi , y j ) is the sum of distances. After that, we

project the solution onto the feasible space in which all the constraints are satisfied.
Specifically, (i) Assign the zero values to particular elements to satisfy the constraints
(9.24)–(9.26), like

Pi j =
{

0, yt
j − xt

i ⊂ 0, ∀ i ⊂ N1 and j ⊂ N2

Pi j , otherwise (include outlier row and column)
. (9.29)

(ii) Perform alternately row-column normalization based on Sinkhorn’s theorem
[18, 27] for constraints (9.23). (iii) The cost function (9.19) (maximum entropy) can
be seen as a barrier function for the constraint (9.22) that makes the solution expo-
nential as shown in (9.28), which is always nonnegative, so that the constraint (9.22)
always holds. In this way, P can be updated based on the most recently estimated
camera link model M and the current value of β. Finally, we adopt an innovative
EM-like algorithm to sequentially solve the matrix P and the camera link model in
each iteration. Deterministic annealing is also employed in our estimation process
to obtain the optimal solution [8].

The information obtained from Google Maps not only provides the routes between
two locations but also gives an estimation of the traveling time between them. It
enables us to pose a good initial state of the matrix P before the estimation process
starts. Denote the values of the traveling time estimated by Google Maps as si ,
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i = 1 ≤ K . Note that K may be greater than one if there exist multiple alternative
routes between two cameras. We can have

Pi j =




⎡

0, yt
j − xt

i ⊂ 0, ∀i = 1 ≤ N1 , j = 1 ≤ N2

1
K

K∑
m=1

exp

(
−

(
yt

j −xt
i −sm

)2

2σ 2

)
, otherwise

(9.30)

Since the traveling time is always positive if two cameras have nonoverlapping area,

if the entry time stamp is smaller than the exit time stamp
(

yt
j − xt

i ⊂ 0
)

, it is not

possible for them to be a matched pair, hence Pi j is set as 0. Otherwise, we assume
it takes people roughly the estimated amount of time si to move from one camera
to the other, so Pi j is set as the likelihood based on a parzen window built by sm .
By incorporating this information as prior knowledge to the estimation process, it
enables the system to reach the convergence with fewer iterations than are required
in [8].

9.5 Experimental Results

9.5.1 Camera Link Model Estimation

We set up four cameras C1–C4 around the department building shown in Fig. 9.6,
and the FOVs of the cameras are spatially disjointed (non-overlapping). Cameras do
not need any calibration in advance. The only prior knowledge is the GPS locations
of the cameras which is accessible in real world practice.

Figure 9.7 shows the estimation result of the transition time distribution between
camera C2 and camera C3. There are two 12-minute videos collected from two
cameras as training data, including 104 exit observations from camera C2 and 40
entry observations from camera C3, where 33 pairs of people are matched pairs, i.e.,
there are total 78 outliers (54 %). The results of other approaches [15–18] and the
ground truth are also shown in the figure. The ground truth is obtained by manually
labeling the correspondence and estimate the transition time based on (9.11), namely
supervised learning as in [10] and [11]. Table 9.1 shows the quantitative error report
of the above simulations. The error is calculated as the distance between the estimated
distribution and the ground truth. One can see that our estimation has the smallest
error to the ground truth.

Figure 9.8 gives an example of the estimation results of the brightness transfer
functions. Four curves correspond to four different links, and only the BTFs of the
blue color channel of each are shown here for demonstration purpose. We can see
that the color deviation does exist between different cameras. We do not compare
the results with the ground truth, since it is not easy for human to determine the
ground truth of region mapping matrix Wmap and region matching weights q, which
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Fig. 9.6 Camera topology. Four links are denoted as blue broken lines, and the corresponding
entry/exit zones are denoted as red ellipses. Black rectangles are the other entry/exit zones which
do not have any link between them

Fig. 9.7 Comparison of the distributions of the transition time a between camera C1 and camera
C2, and b between camera C2 and camera C3

are necessary for obtaining the ground truth BTF. Hence, the ground truth of BTF
is not shown here. However, we can justify the effectiveness of BTF and region
mapping matrix Wmap by examining the region histogram matching. For example,
the histogram (blue curve in Fig. 9.9) of region 3 in Fig. 9.5b is compared with the
ones with and without applying camera link model. The red curve in Fig. 9.9 is the
one after applying BTF and region mapping matrix to the histograms in Fig. 9.5c.
The green curve is the histogram of region 3 in Fig. 9.5c. By applying the correct
camera link model, BTF and region mapping matrix Wmap, the one with the cam-
era link model applied gets the better matching which gives preferable similarity
measurement between the same object under two cameras.
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Table 9.1 Error of transition time distribution

Error Camera C2 Camera C1 Camera C1 Camera C3 i-LIDS
comparison and C3 and C2 and C3 and C4 dataset

Correlation [15] 0.1074 0.0787 0.12 0.1084 0.1170
MCMC [16] 0.0824 0.0773 0.0903 0.052 0.1208
Window + similarity [17] 0.0952 0.0688 0.1076 0.1057 0.1229
GMM+Gibbs [18] 0.0738 0.0368 0.0734 0.029 0.0861
Proposed 0.0158 0.0339 0.0474 0.0173 0.0586

Fig. 9.8 Brightness transfer function. Note only one channel is shown here for demonstration
purpose

We further implement an automatic multiple-camera tracking system that tracks
humans across cameras based on the learned camera link models. The method in
[13] is utilized to accomplish the tracking within a single camera. One can see in
Fig. 9.4, the uncertainty of the exit and entry events increases the difficulty of the
tracking. For example, a person exiting from camera C1 can enter into camera C2
or camera C3. In our 20-min testing video, there are 336 people appearing in the
deployed camera network. The accuracy reported in Table 9.2 shows the results of
using different feature combinations. The re-identification accuracy is defined as
the fraction of the people being correctly labeled. By incorporating the estimated
traveling time from Google Maps Eq. (9.30), the number of the required iteration in
the camera link model estimation process drops about 11 % compared to [8].

Since our system is based on the pairwise learning and tracking scheme, the
system can be scaled up easily. Here we present a simple scenario to illustrate the
scalability of the system. Assume there are NC cameras Ci , i = 1 ≤ NC , already in
the network, and we would like to add one camera CNC +1 in the network. Providing
the new camera’s location, the system automatically identifies the links and the
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Fig. 9.9 Histogram comparison. Blue the histogram from region 3 in Fig. 9.2b. Red the histogram
after applying BTF and region mapping matrix to Fig. 9.2c. Green the histogram from region 3 in
Fig. 9.2c. Note only one channel is shown here for demonstration purpose

Table 9.2 Re-identification accuracy under different feature sets combination

Feature set 1 2 3 4
Accuracy (%) 62.8 61.6 58.9 47.6
Feature set 1,2 2, 3 1, 3, 4
Accuracy (%) 69.0 66.7 73.8
Feature set 1, 2, 3, 4 with uniform fusion weight 1, 2, 3, 4 (proposed)
Accuracy (%) 72.9 79.5

feature 1 temporal, 2 holistic color, 3 region color, 4 region texture
Features are combined with normalized adaptive weights except the one with explicitly noted

connected zones between CNC +1 and the other cameras. After that, the camera link
model estimation is performed pairwisely for those newly created links. By applying
the models, tracking across multiple cameras is carried out within this new camera
network. Following the similar manner, the camera network can be scaled up without
human intervention.

9.6 Conclusion

We propose a tracking system that tracks humans across multiple cameras with
disjointed FOVs based on the application of camera link models. The camera link
model, including transition time distribution, brightness transfer function, region
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mapping matrix, region matching weights, and feature fusion weights, is correctly
estimated by an unsupervised scheme even under the presence of outliers in the
training data. Our estimation procedure can be generalized easily by adding more
features and the corresponding transformation in the camera link model. The unsu-
pervised learning scheme will take care of the estimation of the unknown parameters
adaptively and systematically. The proposed method is applied in a self-deployed
camera network in the real world. By providing the GPS locations of uncalibrated
cameras and incorporating with Google Maps and Google Street View, our system
automatically identifies the camera links within the camera network, estimates the
camera link models for pairwise zones, and performs multiple-camera tracking. The
pairwise learning and tracking scheme enables the system to be self-organized and
be scaled up efficiently.
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Chapter 10
Soft-Biometrics and Reference Set Integrated
Model for Tracking Across Cameras

Xiaojing Chen, Le An and Bir Bhanu

Abstract Multi-target tracking in non-overlapping cameras is challenging due to
the vast appearance change of the targets across camera views caused by variations
in illumination conditions, poses, and camera imaging characteristics. Therefore,
direct track association based on color information only is difficult and prone to
error. In most previous methods the appearance similarity is computed either using
color histograms directly or based on pre-trained Brightness Transfer Function (BTF)
that maps color between cameras. In this chapter, besides color histograms, other
soft-biometric features that are invariant to illumination and view changes are also
integrated into the feature representation of a target. A novel reference set based
appearance model is proposed to improve multi-target tracking in a network of non-
overlapping video cameras. Unlike previous work, a reference set is constructed for
a pair of cameras, containing targets appearing in both camera views. For track asso-
ciation, instead of comparing the appearance of two targets in different camera views
directly, they are compared to the reference set. The reference set acts as a basis to
represent a target by measuring the similarity between the target and each of the
individuals in the reference set. The effectiveness of the proposed method over the
baseline models on challenging real-world multi-camera video data is validated by
the experiments.
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10.1 Introduction

Recently, a major effort has been underway in the vision community to develop
effective and automated video surveillance and monitoring systems [12, 20, 22, 23].
The requirement for surveillance cameras at public areas (e.g., airport, parking lots,
and shopping malls) is increasingly growing. In most cases, it is not feasible to
use a single camera to observe the complete area of interest, and using multiple
cameras with overlapping field-of-views (FOVs) has high costs in both economical
and computational aspects. Therefore, camera networks with non-overlapping field
of views are widely adopted in the real world.

Multi-target tracking is an extensively explored topic in the surveillance and mon-
itoring domain, as it is the foundation for many higher level applications, such as
anomaly detection, activity detection and recognition [25], and human behavior
understanding [4]. The goal of multi-target tracking is to estimate the trajectories
of all moving targets and keep their identities consistent from frame to frame. In
single camera tracking, successive observations of the same target often have large
proximity in appearance, space and time [17]. However, it is not the case for track-
ing people across cameras with non-overlapping FOVs. The appearance of the same
target may have large difference even in two adjacent cameras due to a sudden change
in illumination conditions (e.g., from outdoor to indoor). Other aspects, such as vari-
ations in pose (e.g., frontal view to rear view) and camera imaging conditions further
complicate the tracking task in multiple cameras. In Fig. 10.1 some sample frames
are shown in which the appearance of the same target in different camera views
differs significantly.

A possible way to tackle the appearance difference in multiple cameras is to
learn Brightness Transfer Function (BTF) [5, 6, 9, 10, 14, 16] that is a mapping of
color models between a pair of cameras. However, BTF is not suitable for a camera
network that has a large within camera illumination change. For example, camera i
and camera j both have dark and bright regions in their camera views. A BTF that
is able to map colors in dark region of camera i (low brightness) to colors in bright
region of camera j (high brightness) will not work well for mapping colors in bright
region of camera i (high brightness) to dark region of camera j (low brightness).

In this chapter, to enhance the appearance model for tracking, in addition to
color histogram, we use soft biometrics which are invariant to view and illumina-
tion changes to build a discriminative and robust appearance representation. Soft
biometrics are characteristics that can be used to describe a person [8], for instance,
height, weight, gender, hair color and clothes color. Although each one of them is not
discriminative enough to uniquely identify an individual, when bundled as a whole
they can provide a coarse representation of a target. Because soft biometrics can be
directly acquired from surveillance videos without any subject’s cooperation, they are
suitable for constructing appearance models of tracked targets. Soft biometrics have
been widely used for retrieval and recognition tasks on image datasets [8, 11, 13],
target identification in surveillance video data [19], and person re-identification
across cameras [2]. However, to the best of the authors’ knowledge, soft biometrics
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Fig. 10.1 Sample frames from each camera view. Bounding boxes with the same color indicate the
same target. Notice that illumination may change drastically within camera and across cameras. As
a result, the appearances of the same target may have significant variations

have not been used to improve tracking performance in a network of non-overlapping
video cameras.

In addition, to further mitigate the ambiguities caused by illumination and pose
changes, we propose a novel reference set based appearance model to estimate the
similarity of multiple targets in different cameras. Based on the tracking results
from a single camera, the goal is to associate tracks in different cameras that con-
tain the same person. Our method is inspired by the recent advances in face veri-
fication/recognition [21, 24] and person re-identification [3] in which an external
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reference set or library is used to facilitate the matching process of the same objects
in different imaging conditions. The reference set contains the appearance of indi-
viduals in different camera views under different imaging conditions. For tracking,
instead of comparing two targets directly, targets from different cameras are com-
pared to the individuals in the reference set. The individuals in the reference set act
like basis functions and for a given target, its similarity to each of the individuals in
the reference set is used as its new representation rather than the original low level
color or texture features based representation.

10.2 Related Work

To cope with the illumination change in different camera views, BTF has been
studied extensively [5, 6, 9, 10, 14, 16]. An incremental unsupervised learning
method is proposed in [10] to model color variations and posterior probability distri-
butions of spatial-temporal links between cameras in parallel. The model becomes
more accurate over time with accumulated evidence. Prosser et al. [16] proposed a
cumulative BTF to map color between different cameras and significant improvement
over BTF-based methods is reported. Javed et al. [14] learn the inter-camera rela-
tionships using multivariate probability density of space-time variables. It is shown
that BTFs from one camera to another camera lie in a low dimensional subspace and
this subspace is learned for appearance matching. Chun et al. [5] built BTFs from
the overlapping area during tracking to compensate for the color difference between
camera views. In addition, the perspective difference is compensated for with tangent
transfer functions (TTFs) by computing the homography between two cameras. Dif-
ferent methods are compared to evaluate the color BTFs between non-overlapping
cameras and experimental results show BTFs limitations in people association when
a new person enters in one camera’s FOV [9]. To track people across non-overlapping
cameras, Chun et al. [6] estimated a camera link model including BTF, transition
time distribution, region mapping matrix/weight, and feature fusion weight in an
unsupervised manner.

Compared to low-level features such as color histogram which may drift
significantly over time, soft biometrics, such as gender, height, are rather stable
with respect to changes in appearance, time, and motion. Soft biometrics contain
high level semantic information, which has been used for recognition or retrieval
tasks [2, 13, 19]. Jain et al. [13] used facial marks such as freckles and scars for
improving face recognition. Reid and Nixon [19] use soft biometrics to retrieve
specified subjects in surveillance video data. Most recently, soft biometrics have
been used to improve the person re-identification accuracy across non-overlapping
surveillance cameras [2].

Recently, the reference-based idea has been used in the field of computer vision,
for example, face verification [21], face recognition [24], and person re-identification
[3]. The reference-based framework is data-driven and different entities to be
matched or compared are first described using the elements in the reference set and
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Fig. 10.2 An overview of the multi-camera tracking system

reference-based descriptors are generated. Therefore, direct comparison of objects
with different modalities (e.g., faces at different poses) is avoided. Schroff et al. [21]
achieved pose, illumination, and expression invariant face verification using a library
of faces in various appearances to describe a given face based on the insight that it is
most meaningful to compare faces with the same imaging conditions. Yin et al. [24]
proposed an “Associate-Predict” model which is built on a generic identity data set
that contains multiple images with large intra-person variation. Given a face, it is
first associated to like identities in the data set and then its appearance under set-
tings of another input face is predicted. In this way the intra-personal variation is
handled. Recently, to improve person re-identification in different camera views,
An et al. [3] used a reference set to generate reference-based descriptors for probe
and gallery subjects, bypassing the need to direct compare the features from subjects
with significant appearance change.

10.3 Technical Approach

An overview of the tracking system is presented in Fig. 10.2. Tracks obtained by
single camera tracking are used as input for the multi-camera tracking system. Each
track is further divided into several subtracks that are visually very similar. A fusion
method is designed to combine soft-biometric features extracted from multiple detec-
tions in a subtrack and similarity between subtracks is computed based on the fused
soft-biometrics. The appearance similarity between two tracks that are from different
cameras is computed by the proposed reference set based appearance model. Finally,
track associate is carried out based on appearance, time, and topology information.

10.3.1 Formulation of the Multi-camera Tracking Problem

Suppose we have m cameras C1, C2, . . . , Cm with non-overlapping FOVs, and we
assume tracking multiple targets in the same camera has already been done. Given
the tracking results in each single camera, we can generate a set T = {T1, . . . , TN }
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that contains all the within-camera tracks. A track Ti is a consecutive sequence of
detections that contain the same target, its time interval is denoted as [t i

begin, t i
end ],

and its corresponding camera is denoted as Ci . The problem of tracking across
cameras is essentially to find out tracks that contain the same target, given certain
spatial-temporal constraints. Let association ai j define the hypothesis that track Ti

and Tj contain the same target, with Ti occurring before Tj and Ci √= C j . A valid
association matrix A is defined as follows:

A = {ai j }, ai j =
{

1 if Ti is associated to Tj

0 otherwise
(10.1)

such that
∑

i

ai j = 1 and
∑

j

ai j = 1

The constraints for matrix A indicate that each track cannot be associated to more
than one other track.

The cost Si j for linking track Ti and Tj is based on time, appearance, and camera
topology constraints, as defined in Eq. (10.2).

Si j = T ime(Ti , Tj ) + T opo(Ti , Tj ) + Appr(Ti , Tj ) (10.2)

where T ime(·), T opo(·), and Appr(·) are the time, topology, and appearance mod-
els, respectively. The time model is defined as:

T ime(Ti , Tj ) =
{

0 if 0 < Gapi j < G AP
≤ otherwise

(10.3)

where Gapi j is the time difference between Ti and Tj , and only when Gapi j is
within the pre-defined maximum allowed gap G AP the two tracks can be linked.
The topology model is similar to the time model, which gives the restriction that Ti

can be associated with Tj only when there is a path allowing people to walk between
camera Ci and C j without entering the view of any other cameras.

Let π be the set of all possible association matrices, the task of multi-target track-
ing across disjoint camera views is formulated as the following optimization problem:

A≥ = arg minA∀π

∑

i j

ai j Si j (10.4)

This assignment problem can be solved by Hungarian algorithm [15] in polynomial
time. In order to reduce the computational cost, a pre-defined time sliding window is
used, and the association is carried out independently in each time sliding window.
Normally, there is a 50 % overlap for the neighboring two time sliding windows.
Instead of using the cost matrix S(N × N ) directly, we use the augmented matrix
S⊂(2N ×2N ) in [17] as the input for the Hungarian algorithm. The augmented matrix
S⊂ can be constructed by four matrixes of size N × N , as shown in Eq. (10.5).
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Table 10.1 Soft-biometrics
extracted from detection
response

Name Value Type

HairColor Light, dark Symbolic
SkinColor Caucasian, non_caucasian Symbolic
Height Centimeters Scalar
Weight Kilograms Scalar
BodyColor 1-D probability distribution Vector
TorsoColor 1-D probability distribution Vector
LegsColor 1-D probability distribution Vector

S⊂ =
[

S C
B B

]

(10.5)

where S is the original cost matrix, C is a diagonal matrix (infinity off diagonal)
with values c on the diagonal, and B is a matrix of infinity. The value c in matrix C
indicates the threshold for association, a pair of tracks can only be associated when
their cost is lower than the threshold. In the following sections, we explain in detail
the proposed soft-biometrics integrated appearance representation and the reference
set based appearance model.

10.3.2 Soft-Biometrics Fusion and Subtrack Similarity

For each of the detection responses in a track, a set of soft-biometric features are
extracted, as shown in Table 10.1, where the potential values for each feature are also
listed. These soft-biometric features are extracted using state-of-the-art techniques
[8, 18], and can be categorized into three types: symbolic, scalar-valued, and vector-
valued. A confidence level which scales from 0 to 1 is associated with each feature to
indicate the prediction confidence. In Figs. 10.3 and 10.4, examples of soft-biometrics
extracted from multiple detection responses are shown.

In order to handle within camera illumination variation, each track is further
segmented into small subtracks according to a pre-defined subtrack length (e.g., 5
frames) so that detections in each subtrack are visually very similar. After track seg-
mentation, each subtrack is an appearance instance for a target under certain illumi-
nation condition. To generate concise representation for a given subtrack, we design
a fusion method that can combine common soft-biometric features extracted from
several detections into a single one. In the remainder of this chapter, f n represents
the feature name, f val is the feature value, and f c is the confidence level.

For binary symbolic features, the sum of confidence levels of all potential values
is equal to 1. Thus, given the confidence level of one potential value, the confidence
level for the other potential value can be inferred. When fusing symbolic features, the
averaged confidence level for each potential value is computed and the one with the
highest score is selected as the fused confidence level, and the corresponding value is
the fused feature value. For scalar-valued and vector-valued features, the fused value
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Fig. 10.3 Examples of soft-biometric features extracted from detection responses that have high
consistency with the ground-truth. For each detection response, an xml file is generated to store all
the feature values
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Fig. 10.4 Examples of soft-biometric features extracted from detection responses that have low
consistency with the ground-truth. For each detection response, an xml file is generated to store all
the feature values
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is the weighted sum of all f vals, where the weights are the corresponding f c, and
normalization is carried out to make the result lie in the range of [0, 1], as shown in
Eq. (10.6). The fused confidence level is the average of all f cs, as shown in Eq. (10.7).

f val_ f used = 1
∑

f ci

n∑

i=1

f vali × f ci (10.6)

f c_ f used = 1

n

n∑

i=1

f ci (10.7)

where n is the number of features used for fusion.
After soft-biometrics fusion, each subtrack is represented by a single set of soft-

biometric features. The similarity of two subtrack is computed based on the similarity
between common features for each feature type (symbolic, scalar, vector). For the
symbolic features ( HairColor, SkinColor), if the symbolic value of the two features
is the same then the similarity is the average of the two confidence levels. If the
symbolic values are dissimilar, then the similarity is the maximum confidence level,
as defined in Eq. (10.8).

sim1( f val1, f val2) = max( f c1 × (1 − f c2), (1 − f c1) × f c2) (10.8)

For the scalar-valued features (Height and Weight), we assume that the feature
values are from a normal distribution with parameters μ and α 2. As the height
accuracy is ±12.7 cm and the weight accuracy is ±9 kg (learned by analyzing
soft-biometrics extracted from previous data), we define the standard deviation so
that for the height P([ f val − 12.7, f val + 12.7]) = 80 % and for the weight
P([ f val − 9, f val + 9]) = 80 %. For the accumulated probability to be equal to
80 % the range should be (μ− 1.28α,μ+ 1.28α). Thus, the standard deviations are
equal to 1.28α = 12.7 for height and 1.28α = 9 for weight, i.e. αheight = 9.92 and
αweight = 7.03. The similarity score sim2 is defined as:

sim2( f val1, f val2) = 1 −
√

1 − e
−( f val1− f val2)2

8α2 (10.9)

For the vector-valued features (BodyColor, TorsoColor, LegsColor), the Bhat-
tacharyya Coefficient [7] is used to measure the similarity sim3, which approximates
the amount of overlap between two probability distributions, as given in Eq. (10.10):

sim3( f val1, f val2) =
n∑

i=1

√
f val1i × f val2i (10.10)
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10.3.3 Reference Set Based Appearance Model

The basic idea of reference set based appearance model is illustrated in Fig. 10.5.
In Fig. 10.5, when comparing track T1 in Ci with tracks T2 and T3 in C j , by using
their color histograms directly, T3 are more likely to be matched with T1. Even though
they contain totally different targets, the significant illumination change in Ci makes
T1 looks much more darker than its actual appearance. To handle such problem, a
reference set Ref Seti j is constructed for a pair of cameras Ci and C j . It contains a
set of reference targets R = {R1, R2, . . . , Rm} that appear in both Ci and C j . The
tracks for all the reference targets appear in Ci form Ref Seti

i j , and the tracks for

all the reference targets appear in C j form Ref Set j
i j , as shown in Fig. 10.5. Given

two tracks Tp and Tq with Tp captured in the view of camera Ci and Tq captured
in the view of camera C j , the appearance similarity between these two tracks are
not computed by comparing Tp and Tq directly. Instead, Tp is compared with all

the tracks in Ref Seti
i j and Tq is compared with all the tracks in Ref Set j

i j , and their
similarity with the reference set are used to calculate the similarity of Tp and Tq .
In other words, track Tp and Tq are compared with other tracks that undergo the same
illumination conditions as Tp and Tq , and if they are the tracks of the same target,
they should have high similarities with the same set of reference targets. Otherwise,
they are more likely to be tracks that contain different targets.

A track is segmented into multiple subtracks, and each subtrack is regarded as
an appearance instance for the target contained in current track. By this means,
we generate multiple representations for each target that covers all the appearance
changes of that target in a certain camera.

When comparing the similarity of two tracks Ta and Tb in the same camera,
every subtrack in Ta is compared with every subtrack in Tb. Let tk

a denotes the k-th
subtrack in track Ta , simi(tx , ty) be the similarity of two subtracks (described in the
following part), and Na and Nb be the number of subtracks in Ta and Tb respectively.
The similarity score for Ta and Tb is defined as follows:

Simi(Ta, Tb) = 1

Na

Na∑

i=1

max({simi(t i
a, t j

b ), j ∀ [1, Nb]}) (10.11)

Namely, each t i
a is compared with all subtracks in Tb, and the maximum score is used

as the similarity between t i
a and Tb. Similarity between Ta and Tb is the average of

all these maximum scores.
In the reference set, each reference target may have several tracks in the same

camera (e.g., walking towards and away from the camera). The similarity between
a track Tl and a reference target Rn is the maximum of the similarities of Tl and
all the tracks for Rn . This lays the strength of our reference set based appearance
model—the tracks from different cameras that contain the same target under various
pose and illumination conditions have a chance to get high similarity scores with
similar reference targets. In other words, each reference target is an indirect feature
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Fig. 10.5
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� Fig. 10.5 Illustration of the reference set based appearance model. For a pair of cameras Ci and

C j , a reference set Ref Seti j (the middle part) is constructed that contains three reference targets

(R1, R2, and R3) appearing in both cameras. Tracks for all the reference targets appear in Ci form

Ref Seti
i j , and tracks for all the reference targets appear in C j form Ref Set j

i j . To find matched

tracks between track in Ci (T1) and tracks in C j (T2 and T3), each input track is described by all

the reference targets. The description is a vector of ordered similarities (the bottom part), and each

description is generated by comparing the input track with the corresponding reference set, i.e., T1

with Ref Seti
i j , T2 with Ref Set j

i j , and T3 with Ref Set j
i j . After representing T1, T2 and T3 by the

reference set, it is clear that T1 and T2 have high similarities with the same set of reference targets.

Note that, both the input tracks and the reference targets have multiple appearance instances (only

three instances are presented for demonstration) that cover all the appearance changes

that describes some characteristics of the target’s appearance, and having the tracks
in two different cameras compared to the same set of reference targets enables us
to compare the similarity of these two tracks. In addition, the reference set based
appearance model does not require any extra training process. Besides variation in
illumination conditions, difference in poses are also taken care of by the various
appearance instances in each reference target.

After comparing tracks Tp and Tq with each reference target in its corresponding
reference set, we get two vectors of ordered similarities, as shown in Fig. 10.5.
Let Ref i

i j (Tp) and Ref j
i j (Tq) be the representations of Tp and Tq by the reference

set Refi j , the similarity of Tp and Tq is computed by the Kendall tau Correlation
Coefficient [1], and is further normalized to the range of [0, 1]. In order to get the
appearance model, we use the negative logarithm function to calculate the cost, as
defined in Eq. (10.12):

Appr(Tp, Tq) = −log(σ ⊂(Ref i
i j (Tp), Ref j

i j (Tq))) (10.12)

where σ ⊂(·) is the normalized Kendall tau Correlation Coefficient.

10.4 Experimental Results

In order to evaluate the proposed model, five cameras (four indoor and one outdoor)
are used to establish the desired non-overlapping setting, the topology is presented in
Fig. 10.6 and sample frames from each camera is shown in Fig. 10.1. All the videos
are taken during the same time period and each video is about 20 min in duration.
The resolution is 704 × 480, the frame rate is 20 fps. The number of participants
involved in each video ranges from 7 to 10.

This setting is very challenging for multi-target tracking in non-overlapping cam-
era views due to following reasons:
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Fig. 10.6 Topology for cameras used in the experiments

1. The outdoor camera view contains intense illumination changes, and there exists
lighting variations for indoor camera views as well. This makes it unreliable to
use a single transformation to map colors in a pair of cameras, such as BTFs.

2. The number of camera involved is greater than most of the previous work that
normally use 2–3 cameras [14, 16].

In order to construct the reference set another set of data is used. It is collected
under the same setting but with participants either not included in the testing data or
they are included in the testing data but with very different clothes. The number of
participants involved in each reference set ranges from 9 to 11.

10.4.1 Soft-Biometrics Verification

As we use soft-biometrics to represent each target, the quality of soft-biometrics
and the soft-biometrics similarity measurement are crucial for tracking. In the ver-
ification, for each video (captured in a single camera) we compute the similarity
between any pair of tracks based on the proposed method, and these similarities are
categorized into intra-class (tracks from the same target) and inter-class (tracks from
different targets). The histograms for each category are plotted. Four sample plots
are shown in Fig. 10.7. The plots suggest that most intra-class similarities are larger
than most inter-class similarities and with a single threshold these two classes can
be coarsely separated. Therefore, the soft-biometrics extracted from the same target
have high degree of consistency.
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Fig. 10.7 Histograms of inter-class and intra-class similarities from two testing videos. Best viewed
in color. “Intra” stands for tracks that contain the same target and “Inter” stands for tracks that contain
different targets

10.4.2 Tracking Results

In this evaluation, our main focus is to associate tracks that contain the same
target in different camera views given certain spatial-temporal constraints. We applied
our reference set based appearance model with soft-biometric features (RefSet2) on
the testing data. Three baseline models are presented for comparison: (1) Use the
Bhattacharyya distance of holistic color histograms directly to measure the appear-
ance similarity (Color). (2) Generate the appearance model based on the BTF model
in [14] (BTF). (3) Our proposed reference set based appearance model with only
holistic color histograms as features (RefSet1).

In all our experiments, the length of subtrack is set to 10 frames. For each model,
various thresholds (ranges from 0.2 to 0.6) are tested for the augmented cost matrix,
and the best result is chosen. We hand labeled the ground-truth which consists of 220
track associations (there are 368 single camera tracks in total). Two metrics are used
for evaluation, as defined in Eq. (10.13). The comparison is presented in Fig. 10.8.
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Error Rate = Error

Nresult
, Match Rate = Match

NGT
(10.13)

where Error and Match are the number of incorrectly and correctly associated
track pairs in the result, Nresult and NGT are the number of track associations in the
result and the ground-truth respectively.

Fig. 10.8 Comparison of the proposed methods and other baseline models

It can be observed that when using the reference set based appearance model
with the soft-biometric features, we achieve the highest match rate and the lowest
error rate compared with all the baseline models. Compared with BTF, the RefSet2
model increases the match rate by almost 30 % and reduces the error rate by about
10 %. Even with color histograms only, the reference set based appearance model
(RefSet1) provides better performance than BTF in terms of both the error rate and
the match rate. The comparison between RefSet1 and RefSet2 demonstrates that
the other soft-biometric features are complementary to color histograms and reduce
ambiguities, as they capture the appearnce information that is overlooked by color
histograms. It is worth noting that although the error rate is high even for RefSet1
and RefSet2 (more than 50 %), these results are obtained by using the appearance
information only.

As another kind of clue, motion information plays an important role in multi-target
tracking and can greatly reduce the number of false positive. For example, in a time
sliding window, a track in CAM4 can be associated with tracks in both CAM3 and
CAM5 based on the camera topology. Given the knowledge that the target is walking
away from the camera, we can easily eliminate tracks in CAM5 from possible asso-
ciations. When a motion model that measures the walking direction of the target is
integrated into the tracking system (RefSet2+Motion), the error rate is greatly reduced
to about 30 %. Also, with motion information our proposed method can correctly
associate 90 % track pairs in the ground-truth, which further demonstrates the effec-
tiveness of our method. Visual results obtained by using BTF and RefSet2 on some
challenging cases are presented in Figs. 10.9 and 10.10. The comparison between
visual results of BTF and RefSet2 further validates the robustness of our method.
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Fig. 10.9 Example tracking results obtained by using BTF in [14]. Best viewed in color. The first
row shows that targets first appear in the FOV of CAM2, and the second row shows the tracking
results after the targets enter the FOV of CAM3. The method in [14] fails to associate tracks that
contain the same target under challenging conditions

10.4.3 Implementation

We implemented our multi-camera tracking system in Matlab without code
optimization or parallelization and tested it on a PC with 3.0 GHz CPU and 8 GB
memory. The computational time is greatly affected by the number of targets in a
video and the length of the video. In our experiments, the average computational
time for track association is 372 s. Note that computational time for track generation
and soft-biometric features extraction are not included.

10.5 Conclusions

In this work, we integrate illumination and pose invariant soft-biometric features into
the appearance representation of a tracked target, and design a fusion method to com-
bine the same type of soft-biometric features extracted from multiple detections into
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Fig. 10.10 Example tracking results obtained by using our proposed method RefSet2. The first row
shows that targets first appear in the FOV of CAM2, and the second row shows the tracking results
after the targets enter the FOV of CAM3. Best viewed in color. With soft-biometric features and
the reference set, our method is able to match most of the targets where there exist drastic within
camera and across camera illumination variations

a single one. A novel reference set based appearance model for multi-target track-
ing in a camera network with non-overlapping FOVs is proposed which addresses
the problems caused by both within camera and across camera illumination varia-
tion. The proposed appearance model is easy to implement with no parameters and
requires no additional training process, yet provides promising results. The experi-
mental results demonstrate the superiority of the combination of reference set based
appearance model and soft-biometric features over other baseline models on a chal-
lenging real-world video dataset.
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Chapter 11
A Parallel Approach for Statistical Texture
Parameter Calculation

Narcisse Talla Tankam, Albert Dipanda, Christophe Bobda,
Janvier Fotsing and Emmanuel Tonyé

Abstract This chapter focusses on the development of a new image processing
technique for the processing of large and complex images, especially SAR images.
We propose here a new and effective approach that outperforms the existing methods
for the calculation of high order textural parameters. With a single processor, this
approach is about 256n−1 times faster than the co-occurrence matrix approach con-
sidered as classical, where n is the order of the textural parameter for a 256-gray
scales image. In a parallel environment made of N processor, this performance can
almost be multiply by the factor N. Our approach is based on a new modeling of
textural parameters of a generic order n > 1 equivalent to the classical formulation,
but which is no longer based on the co-occurrence matrix of order n > 1. By avoid-
ing the calculation of the co-occurrence matrix of order n > 1, the resulted model
enables a gain of about 256n bytes of the required memory space.
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11.1 Introduction

Automated classification is very useful for skills recognition. Unsupervised image
classification methods try to subdivide a set of observations into statistical classes.
A class being defined as a set of observations with density greater than the one of
the surrounding environment [1].

Texture analysis is a robust approach for SAR image processing. It consists of a set
of mathematical techniques enabling the quantification of various grey scales present
in an image in terms of intensity or roughness and their distribution. The usefulness of
textural analysis for SAR images classification is not to be demonstrated nowadays
[2]. In fact, in [3], the authors used the grey level dependent matrix also called
co-occurrence matrix to develop an approach of image segmentation based on frontier
preservation in image texture. In [4], authors combined SAR and optical satellite
images to develop a robust strategy of cultures identification. Huber [5] developed
an approach of image classification based on the merger of information derived from
measures observed on several SAR images acquired on the same site at different dates.
In [6], authors used textural analysis to recognize relief shapes in SAR images. They
transformed SAR image into elementary topographical symbols to extract ridge and
valley lines. The major problem faced by all these works remains the computing time
optimisation.

Many research works have been conducted in this field of research. These works
can be classified into two main methods, notably structural and statistical methods [7].
Structural methods describe textures by defining primitives contained in the image
and relationships between them. Statistical methods study the relationship between
each pixel and its surrounding pixels. These methods combine statistical parameters,
based on co-occurrence matrices defined at various orders. The calculation of these
matrices is very high time consuming, especially for high order parameters. This
is why, most of the time, researchers limit their works only on order 2 statistical
parameters despite the fact that, without being strictly better than the lower order, high
order parameters provide complementary information for texture analysis [8]. In this
field of research, the preoccupation of researchers has always been the optimisation
of parameters time calculation.

For this purpose, [9] replaced the co-occurrence matrix by the sum and the dif-
ference of histograms defining the principal axes of second order probabilities of
stationary processes. Marceau et al. [10] proposed a textural and spectral approaches
for image classification based on the reduction of grey scales, moving from 256 to
32. Obviously, one limit of this method was the loss of information. Kourgly and
Belhadj-Aissa [11] developed a new algorithm for the calculation of textural para-
meters based on histograms. This method required the allocation of an array instead
of the co-occurrence matrix and proposed a new formulation of textural parameters,
based on one variable instead of two initially. Later run, based on this work, Akono
et al. [2] proposed a new approach for the calculation of order 3 textural parame-
ters. They defined specific image masks that helped to reformulate order 3 textural
parameter as a function of a single variable instead of three variables initially.
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In this chapter, we propose a parallel approach for the calculation of textural
parameters that requires a constant time, independently to the order of the parameter.
This approach consists in producing a new formulation of textural parameters that
avoids the calculation of high order co-occurrence matrix [12] and enables a real-time
image processing. In the following, we successively present: the classical approach
based on co-occurrence matrices; the new approach; the time complexities calcula-
tion; the experimentation and the conclusion.

11.2 Methodology

In this section, through a series of developments, we start from the classical expres-
sion of textural parameters and obtain the new formulation.

11.2.1 Classical Expression of Textural Parameters

An order-2 textural parameter Para2 applied on a digital image with maximum grey
scale MaxGs is a real function of a couple of integers (i, j) defined as follows:

Para2 =
MaxGs⎧

i=0

MaxGs⎧

j=0

π(i, j, Ci j ) (11.1)

Ci j being the entry (i, j) of the co-occurrence matrix.
For example, the Dissimilarity parameter is expressed as follow:

Diss2 = 1

N

MaxGs⎧

i=0

MaxGs⎧

j=0

|i − j | Ci j (11.2)

where N is the total number of possible couples in the image. This number depends
on the selected direction and the inter-pixel distance.

Let denote by Pi j , the probability of occurrence of the couple of grey scales (i, j)
in the image. Then the following equation is obtained:

Pi j = Ci j

N
(11.3)

The generalisation of Eq. 11.1 to a generic order n > 1 gives the following equation:

Paran =
MaxGs⎧

i0=0

MaxGs⎧

i1=0

. . .

MaxGs⎧

in−1=0

π(i0, i1, . . . , in−1, Pi0i1...in−1) (11.4)
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Pi0i1...in−1 expresses the probability of occurrence of the n-uplet (i0, i1, . . . , in−1) of
grey scales in the image, following the (n − 1)-uplet (α0, α1, . . . , αn−2) of directions
and the (n − 1)-uplet (d0, d1, . . . , dn−2) of inter-pixels distances. The (2n − 2)-
uplet (d0, d1, . . . , dn−2, α0, α1, . . . , αn−2) constitutes what we call the connexion
rule, denoted by Rn . In this connexion rule, dk and αk(0 √ k √ n − 2) express
respectively the inter-pixels distance and direction between pixels ik and ik+1.

We restrict our methodology to structural parameters expressed as follows:

Paran =
MaxGs⎧

i0=0

MaxGs⎧

i1=0

. . .

MaxGs⎧

in−1=0

⎪
σ(i0, i1, . . . , in−1) × Pi0i1...in−1

⎨
(11.5)

Equation 11.5 is a subset of Eq. 11.4 that doesn’t consider textural parameters
expressed as quadratic, logarithmic or exponential function of the co-occurrence
matrix. The Table 11.1 presents some of the concerned structural parameters, where:

• N is the number of elements of the connexion domain D;
• n is the order of the texture parameter;
• μx is the marginal mean with respect to the first column x ;
• τik is the standard deviation with respect to the kth column;

11.2.2 From the Classical to the New Formulation

The term σ(i0i1 . . . in−1) × Pi0i1...in−1 can be written in the following form:

σ(i0i1 . . . in−1) × Pi0i1...in−1 = σ(i0i1 . . . in−1) + σ(i0i1 . . . in−1) + · · · + σ(i0i1 . . . in−1)⎩ ⎛⎝ ⎞
Pi0 i1 ...in−1 times

(11.6)

Let denote by ωMaxGs the set of all possible n-uplets (i0, i1, . . . , in−1) of grey
scales in the image. The following equation can be written.

MaxGs⎧

i0=0

MaxGs⎧

i1=0

. . .

MaxGs⎧

in−1=0

π(i0, i1, . . . , in−1) =
⎧

(i0,i1,...,in−1)≤ωMaxGs

π(i0, i1, . . . , in−1)

(11.7)
Since ωMaxGs contains (MaxGs + 1)n terms, it can be written in extension as

follows:

ωMaxGs = {(i1
0 , i1

1 , . . . , i1
n−1), (i

2
0 , i2

1 , . . . , i2
n−1), . . . , (i

m
0 , im

1 , . . . , im
n−1)} (11.8)

with m = (MaxGs + 1)n .
Combining Eqs. 11.7 and 11.8, we obtain the following:
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MaxGs⎧

i0=0

MaxGs⎧

i1=0

. . .

MaxGs⎧

in−1=0

π(i0, i1, . . . , in−1)

= π(i1
0 , i1

1 , . . . , i1
n−1) + π(i2

0 , i2
1 , . . . , i2

n−1) + · · · + π(im
0 , im

1 , . . . , im
n−1)

(11.9)

Equation 11.5 becomes:

Paran =
Ng⎧

i0=0

Ng⎧

i1=0

. . .

Ng⎧

in−1=0

σ(i0, i1, . . . , in−1)Pi0,i1,...,in−1

= σ(i1
0 , i1

1 , . . . , i1
n−1)Pi0,i1,...,in−1 + · · · + σ(i2

0 , i2
1 , . . . , i2

n−1)Pi0,i1,...,in−1

(11.10)

Combining Eqs. 11.6 and 11.10, we obtain the following equation:

Paran =






(
σ(i1

0 , i1
1 , . . . , i1

n−1) + σ(i1
0 , i1

1 , . . . , i1
n−1) + · · · + σ(i1

0 , i1
1 , . . . , i1

n−1)⎩ ⎛⎝ ⎞
P

i1
0 i1

1 ...i1
n−1

times

)

+
(

σ(i2
0 , i2

1 , . . . , i2
n−1) + σ(i2

0 , i2
1 , . . . , i2

n−1) + · · · + σ(i2
0 , i2

1 , . . . , i2
n−1)⎩ ⎛⎝ ⎞

P
i2
0 i2

1 ...i2
n−1

times

)

m = (MaxGs + 1)n

+ · · ·
+
(

σ(im
0 , im

1 , . . . , im
n−1) + σ(im

0 , im
1 , . . . , im

n−1) + · · · + σ(im
0 , im

1 , . . . , im
n−1)⎩ ⎛⎝ ⎞

Pim
0 im

1 ...im
n−1times

)

(11.11)

This equation is equivalent to the following:

Paran =
⎧

(i0,i1,...,in−1)≤⊔Ng

{
σ(i0, i1, . . . , in−1) × [χ ≥(i0, i1, . . . , in−1), Rn, W ∀]10

}

(11.12)

where
[
χ ≥(i0, i1, . . . , in−1), Rn, W ∀]10 is a binary function that takes the value 1 if

the n-uplet (i0, i1, . . . , in−1) following the connexion rule Rn is entirely included
in the image window W . This operation aims at eliminating the entries of the
co-occurrence matrix with value 0, i.e. the n-uplets of ωMaxGs that don’t occur
in the image window W , considering the connexion rule.

Equation 11.12 can be written as follows:
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Paran =
⎧

D=
{

(i0,i1,...,in−1)Rn ,W

}
⊂ωMaxGs

σ(i0, i1, . . . , in−1) (11.13)

where D =
{
(i0, i1, . . . , in−1)Rn ,W

}
called connexion domain is the subset of

ωMaxGs containing all the n-uplets (i0, i1, . . . , in−1) of grey scales that verify the
connexion rule Rn in the image window W .

Let define a function πRn by:

πRn : W �−◦ {0, 1, 2, . . . , MaxGs}n

(p, q) �−◦ (i0, i1, . . . , in−1) (11.14)

With (i0, i1, . . . , in−1) following the connexion rule Rn and W [p, q] = i0. Combin-
ing Eqs. 11.13 and 11.14, one obtain the following:

Paran =
NC−1⎧

p=0

N L−1⎧

q=0

⎡
σ

(
πRn (p, q)

)
×
[
χRn (p, q, W )

]1

0

⎢
(11.15)

where NC and N L are respectively the number of columns and lines of the image

window W ;

[
χRn (p, q, W )

]1

0
being a binary function that returns the value 1 if

from the pixel at location (p, q) in the image window, one can construct an n-uplet
(W [p, q], i1, . . . , in−1) following the connexion rule Rn . On the connexion domain,
the value of this function is 1 and out of the connexion domain, its value is 0. Equation
11.15 is then equivalent to the following:

Paran =
⎧

(p,q)≤(D⊂W )

σ

(
πRn (p, q)

)
(11.16)

Equation 11.16 is the proposed formulation of the parameter. It gives exactly
the same value as the classical expression in Eq. 11.5, but the calculation of the
co-occurrence matrix is avoided. The last thing to do now is the construction of the
connexion domain D.

11.2.3 Construction of the Connexion Domain

Let materialise the connexion rule by a connexion arm with the following principles:

1. the doted square materialises the first pixel of the n-uplet, i.e. the pixel at location
(p, q) in Eq. 11.16;
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Table 11.2 Some connexion arms associated to their connexion rules

Order Connexion rules with their connexion arms

2

R2(2,0°) R2(2,180°) R2(2,45°) R2(2,225°)

R2(2,90°) R2(2,270°) R2(2,135°) R2(2,315°)

3

R3(1,1,0°,0°) R3(1,1,180°,180°) R3(1,1,0°,45°) R3(1,1,45°,0°)

R3(1,1,0°,90°) R3(1,1,90°,0°) R3(1,1,0°,135°) R3(1,1,135°,0°)

R3(1,1,45°,90°) R3(1,1,90°,45°) R3(1,1,45°,135°) R3(1,1,135°,45°)

R3(1,1,90°,135°) R3(1,1,135°,90°) R3(1,1,45°,45°) R3(1,1,225°,225°)

R3(1,1,90°,90°) R3(1,1,270°,270°) R3(1,1,135°,135°) R3(1,1,315°,315°)

2. each cross bar materialises the jump of one pixel (case inter-pixel distance greater
than one);

3. each circle materialises a pixel to consider and
4. the connexion arm, to produce a valid n-uplet, must be entirely included in the

image window. The Table 11.2 presents some connexion arms.

The various locations that can occupy the doted square such that the connexion arm
is totally included in the image window constitute the connexion domain. Therefore,
once the connexion rule known, the connexion domain can be delimited. This domain
is always a rectangle. Then Eq. 11.16 can be written in the following form:
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Table 11.3 Definition of χi and χ′
i

αi 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

χi 1 1 0 −1 −1 −1 0 1
χ′

i 0 1 1 1 0 −1 −1 −1

Paran =
Dx1⎧

i=Dx0

Dy1⎧

j=Dy0

σ

(
πRn (i, j)

)
(11.17)

with 0 √ Dx0 √ Dx1 < NC and 0 √ Dy0 √ Dy1 < N L . N L and NC being
respectively the number of lines and columns of the image window.

11.2.4 Construction of ϕRn( p, q)

Considering D as the connexion domain, πRn (p, q) can be defined by the following
equation:

πRn : D ⊂ W �−◦ {0, 1, 2, . . . , MaxGs}n

(p, q) �−◦
(

π0
Rn

(p, q), π1
Rn

(p, q), . . . , πn−1
Rn

(p, q)

)
(11.18)

with
⎣

π0
Rn

(p, q) = (p, q)

πi+1
Rn

(p, q) = πi
Rn

(p, q) + (χi × di , χ
′
i × di ), 0 √ i < n − 1

(11.19)

χi and χ′
i being defined at the Table 11.3, with Rn =

(
(di )0√i<n, (αi )0√i<n

)
.

11.2.5 Parallelisation

Let suppose that we have a parallel machine with N (N less than the size of the
connexion domain) processors. Since the connexion domain D is a rectangle, we
can divide it into N sub-rectangles Di , 1 √ i < N verifying the following equation:

D = ∪i Di and Dk ∩ D j = Φ ∀k �= j

Equation 11.16 becomes the following:
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Paran =
⎧

Di

[ ⎧

(p,q)≤Di

σ

(
πRn (p, q)

)]
(11.20)

For example, considering Eq. 11.17, we have:

Paran =
Dx1⎧

i=Dx0

Dy1⎧

j=Dy0

σ

(
πRn (i, j)

)
=

Dx1⎧

i=Dx0

( Dy1⎧

j=Dy0

σ

(
πRn (i, j)

))
=

Dx1⎧

i=Dx0

⎤
Pi (i)

⎥

(11.21)

So, with a CPU made of Dx1−Dx0+1 processors
{

Pi

}

0√i√Dx1−Dx0
, each proces-

sor can compute one line of the connexion domain and the final result is obtained by
adding the various sub-results given by each processor. Since the connexion domain
is a rectangle, it is possible to decompose it into N sub-domains Di verifying the
Eq. 11.16.

11.2.6 Characterisation of the Parallelisation

11.2.6.1 Acceleration

The acceleration of the parallelisation measures the performance growth of the par-
allel approach with respect to the number of processors.

Let denote by A(N ) the acceleration of the proposed parallel approach; Tsec the
required time for a sequential functioning and Tpar the required time for the parallel
functioning. Considering Eq. 11.16, since the intermediary results are not reused and
the final result obtained just by adding the subresults obtained by each processor, the
following equation is verified.

A(N ) = Tsec

Tpar

∼= N (11.22)

11.2.6.2 Effectiveness

The effectiveness of a parallelisation expresses the degree of parallel ressources
usage. It is given by the ratio of the acceleration by the number of processors. Accord-
ing to Eq. 11.22, we have the following equation:

E = A(N )

N
∼= 1 (11.23)
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11.2.6.3 Scalability

The scalability measures the capacity of the approach to see its performances increase
with the number of processors. The scalability of this parallelisation is given by the
following equation:

S(N ) = Tpar (K ∗ N )

Tpar (N )
∼= K (11.24)

Equations 11.22, 11.23 and 11.24 demonstrate that this parallelisation is an ideal
case.

11.2.7 Algorithmic Complexity

This section deals with time and space complexities. For this purpose, we consider
an image window W of size N L ∗ NC , N L and NC being respectively the number
of columns and lines of the image window. Let consider MaxGs as the maximum
grey scale in the image and let compute successively the time and space complex-
ities required by both the co-occurrence matrix approach and the new approach,
considering the case of a single processor.

11.2.7.1 Time Complexity

Let denote by TC (Paran) and TN (Paran) respectively the time complexity of the
co-occurrence matrix approach and the time complexity of the proposed (new)
approach for the calculation of the parameter Paran related to the image window W .

Classical method

• The classical method Paran defined in Eq. 11.5 generates exactly (MaxGs + 1)n

terms σ(i0, i1, . . . , in−1) ∗ Pi0i1...in−1 .
• Each term requires the computation of σ(i0, i1, . . . , in−1) which takes O(n) as

time complexity.
• The computation of the order-n co-occurrence matrix requires

ω

[
(MaxGs + 1)n

]
as time complexity.

The time complexity of the classical approach is then given by the following
equation:

TC (Paran) = ω

[
(MaxGs + 1)n

]
+ O(n) ∗ (MaxGs + 1)n (11.25)
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We remember that ω
⎤

T (n)
⎥

is the set of functions that grow at least as fast as

T (n) and O
⎤

T (n)
⎥

is the set of functions that grow at most as fast as T (n).

Proposed method

According to Eq. 11.17, the proposed approach requires the calculation of less than

N L ∗ NC terms σ

(
πRn (i, j)

)
, and each term requires approximately O(n) instruc-

tions. So, the time complexity of the proposed approach is given by the following
equation:

TN (Paran) = O(n) ∗
⎤

O(N L ∗ NC)
⎥

(11.26)

Comparison of the time complexities

The ratio between the two time complexities expressed in Eqs. 11.25 and 11.26 is
given by the following equation:

TC (Paran)

TN (Paran)
= ω

[
(MaxGs + 1)n

]
(11.27)

We realise that this ratio exponentially increases with the order of the parameter.
i.e. for example, at order 5, for an image with 256 grey scales, the new approach is
more than 232 times faster than the classical approach by co-occurrence matrix.

11.2.7.2 Spatial Complexity

Let denote by SC (Paran) and SN (Paran) respectively the spatial complexity of the
classical co-occurrence matrix approach and the spatial complexity of the proposed
(new) approach for the calculation of the parameter Paran related to the image
window W .

Classical approach

The classical approach mainly requires the storage of the high order co-occurrence
matrix and the global image. Considering the integer MaxGs as the Maximum grey
scale in the image, the order-n co-occurrence matrix requires at least (MaxGs + 1)n

bytes. Considering that the image is an 8-bits image, the storage of the image requires
NC ∗ N L bytes. N L and NC being respectively the number of lines and columns
of the image. The total required space for the computation of the order-n parameter
is then given by the following equation:
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SC (Paran) = O

(
(MaxGs + 1)n

)
+ O(N L ∗ NC) (11.28)

Proposed approach

With the new approach, the calculation of the higher order co-occurrence matrix
is avoided. The space required is then the space needed for image storage. So, the
spatial complexity of the proposed approach is given by the following equation.

SN (Paran) = O(N L ∗ NC) (11.29)

Comparison of the two approaches

From Eqs. 11.28 and 11.29, one can deduce the following equation:

SC − SN = (MaxGs + 1)n (11.30)

Most of the time, as the order n increases, the quantity N L ∗ NC becomes too
small, as compared to the quantity (MaxGs + 1)n . In this case, one can write the
following comparative equation:

SC

SN
= O

(
(MaxGs + 1)n−1

)
(11.31)

In conclusion, we deduce that the new approach for textural parameters computa-
tion saves both time and space, compared to the classical method by co-occurrence
matrix.

11.3 Experimentation

In the first sub-section, we use successively the classical and the new approaches to
calculate the parameter Dissimilarity at orders 2 and 3. In a second sub-section, we
experiment the approach on a synthetic texture of Brodatz.

11.3.1 Computation of the Parameter Dissimilarity

Let consider the following image window W1 (Fig. 11.1) and the connection rule
R2 = (2, 45◦). The goal is to verify that both the two approaches give the same
result.
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Fig. 11.1 Experimental
image window

Fig. 11.2 Connexion arm cor-
responding to the connexion
rule R2 = (2, 45◦)

Fig. 11.3 Identification of
the connexion domain in the
image window

11.3.1.1 Order 2 Parameter

The mathematical expression of the parameter Dissimilarity at order 2 is given by
the following equation:

Diss2 =
MaxGs⎧

i=0

MaxGs⎧

j=0

|i − j | Pi j (11.32)

New approach

The maximum grey scale in W1 is 4. The connexion arm corresponding to the con-
nexion rule R2 = (2, 45◦) and the resulting connexion domain are given in the Figs.
11.2 and 11.3.

Once the connexion domain identified, we can enumerate all the couples (i, j)
involved in Eq. 11.17 thanks to the Fig. 11.4. The above figure helps to define in
extension the connexion domain as follows:
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Fig. 11.4 Identification of all
the couples (i, j) involved in
Eq. 11.17 on the experimental
image

Table 11.4 construction of
the function π(2,45◦)

π(2,45◦) 2 3 4

0 (4,2) (4,0) (4,2)
1 (4,4) (3,2) (2,0)
2 (2,3) (2,3) (4,1)

D =
{
(0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (2, 3), (0, 4), (1, 4), (2, 4)

}
(11.33)

From the connexion domain D, we construct the following function π(2,45◦)
that enumerates all the couples (i, j) involved in the computation of the parameter
(Table 11.4).

The function π(2,45◦) defines all the couples of pixels (grey scales) that follow
the connexion rule in the image window W1. Since the connexion domain is made
of 9 pixels, the function π(2,45◦) will generate 9 couples of grey scales in the image
window following the connexion rule R2 = (2, 45◦). These couples are the follow-
ing: (4, 2), (4, 4), (2, 3), (4, 0), (3, 2), (2, 3), (4, 2), (2, 0) and (4, 1).

From Eq. 11.17, one can write the following equation:

Diss2 =
⎧

(p,q)≤D

σ

(
π(2,45◦)(p, q)

)
=

4⎧

p=2

2⎧

q=0

σ

(
π(2,45◦)(p, q)

)
, i.e.

Diss2 = σ

(
π(2,45◦)(2, 0)

)
+ σ

(
π(2,45◦)(2, 1)

)
+ σ

(
π(2,45◦)(2, 2)

)

+ σ

(
π(2,45◦)(3, 0)

)
+ σ

(
π(2,45◦)(3, 1)

)
+ σ

(
π(2,45◦)(3, 2)

)

+ σ

(
π(2,45◦)(4, 0)

)
+ σ

(
π(2,45◦)(4, 1)

)
+ σ

(
π(2,45◦)(4, 2)

)

= σ(4, 2) + σ(4, 4) + σ(2, 3) + σ(4, 0) + σ(3, 2) + σ(2, 3)

+ σ(4, 2) + σ(2, 0) + σ(4, 1)

= |4 − 2| + |4 − 4| + |2 − 3| + |4 − 0| + |3 − 2| + |2 − 3|+
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|4 − 2| + |2 − 0| + |4 − 1|
= 2 + 0 + 1 + 4 + 1 + 1 + 2 + 2 + 3

= 16

Classical approach

Let now calculate the same parameter, using the classical approach. According to
Eq. 11.32, it is necessary to calculate the co-occurrence matrix. The related order-2
co-occurrence matrix is the following:

P =

⎦

⎜⎜⎜⎜

0 0 0 0 0
0 0 0 0 0
1 0 0 2 0
0 0 1 0 0
1 1 2 0 1



⎟⎟⎟⎟
(11.34)

Equation 11.32 is specified as follows:

Diss2 = (|0 − 0|P00) + (|0 − 1|P01) + (|0 − 2|P02) + (|0 − 3|P03) + (|0 − 4|P04)

+ (|1 − 0|P10) + (|1 − 1|P11) + (|1 − 2|P12) + (|1 − 3|P13) + (|1 − 4|P14)

+ (|2 − 0|P20) + (|2 − 1|P21) + (|2 − 2|P22) + (|2 − 3|P23) + (|2 − 4|P24)

+ (|3 − 0|P30) + (|3 − 1|P31) + (|3 − 2|P32) + (|3 − 3|P33) + (|3 − 4|P34)

+ (|4 − 0|P40) + (|4 − 1|P41) + (|4 − 2|P42) + (|4 − 3|P43) + (|4 − 4|P44)

= (0 + 0 + 0 + 0 + 0) + (0 + 0 + 0 + 0 + 0) + (2 + 0 + 0 + 2 + 0)

+ (0 + 0 + 1 + 0 + 0) + (4 + 3 + 4 + 0 + 0)

= 16

We can notice that both the two approaches give the same result.

11.3.1.2 Order 3 Parameter

An order-3 parameter that can be calculated with our approach is expressed in the
following form:

Para3 =
MaxGs⎧

i=0

MaxGs⎧

j=0

MaxGs⎧

k=0

σ(i, j, k) ∗ Pi jk (11.35)
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Fig. 11.5 Connexion arm related to the connexion rule R3

Fig. 11.6 Connexion domain
in the experimental image

The order-3 Dissimilarity parameter is expressed as follows:

Diss3 =
4⎧

i=0

4⎧

j=0

4⎧

k=0

(|i − j | + |i − k| + | j − k|) ∗ Pi jk (11.36)

Proposed approach

The maximum grey scale in W1 is 4. The connexion arm corresponding to the con-
nexion rule R3 = (1, 1, 45◦, 135◦) and the resulting connexion domain are given at
Figs. 11.5 and 11.6.

The doted square of the connexion arm in the following figure defines the con-
nexion domain D. In extension, the set of pixels constituting the connexion domain
is the following (Fig. 11.7):

D = {(2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3)}
(11.37)

Each element of the connexion domain D generates through the application
π(1,1,45◦,135◦) a triplet (i, j, k) of grey scales of pixels following the connexion rule
R3 in the image window. All the triplets of grey scales generated by the function
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Fig. 11.7 Identification of
the connexion domain in the
image window

π(1,1,45◦,135◦) from the connexion domain are the following: (4,0,0), (4,0,1), (2,2,2),
(0,3,4), (4,4,4), (3,2,0), (2,0,0), (1,1,2), (4,3,4), (2,2,4), (4,1,2) and (4,2,0).

From Eq. 11.17, one can write the following equation:

Diss3 =
⎧

(p,q)≤D

σ

(
π(1,1,45◦,135◦)(p, q)

)
=

4⎧

p=2

2⎧

q=0

σ

(
π(1,1,45◦,135◦)(p, q)

)

(11.38)
so,

Diss3 = σ

(
πR(2, 0)

)
+ σ

(
πR(2, 1)

)
+ σ

(
πR(2, 2)

)
+ σ

(
πR(2, 3)

)

+ σ

(
πR(3, 0)

)
+ σ

(
πR(3, 1)

)
+ σ

(
πR(3, 2)

)
+ σ

(
πR(3, 3)

)

+ σ

(
πR(4, 0)

)
+ σ

(
πR(4, 1)

)
+ σ

(
πR(4, 2)

)
+ σ

(
πR(4, 3)

)

= σ(4, 0, 0) + σ(4, 0, 1) + σ(2, 2, 2) + σ(0, 3, 4) + σ(4, 4, 4) + σ(3, 2, 0)

+ σ(2, 0, 0) + σ(1, 1, 2) + σ(4, 3, 4) + σ(2, 2, 4) + σ(4, 1, 2) + σ(4, 2, 0)

= 8 + 8 + 0 + 8 + 0 + 6 + 4 + 2 + 2 + 4 + 6 + 8

= 56

Classical approach

Let now calculate the same parameter, using the classical approach. According to
Eq. 11.36, it is necessary to calculate the co-occurrence matrix. The related order-3
co-occurrence matrix is the following: This matrix expresses, for each entry

p =






i j/k 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

⎫
⎬

⎭
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(i, j, k), the number of times this triplets of grey scales occur in the image window
with respect to the connexion rule R3.

From Eq. 11.36, it appears that, each time the entry of the co-occurrence matrix
P is null, the term is also null. Then we can just consider the triplets (i, j, k) of grey
scales for which the entry in the matrix is not null. Equation 11.36 becomes:

Diss3 =
4⎧

i=0

4⎧

j=0

4⎧

k=0

σ(i, j, k)Pi jk

= σ(0, 3, 4)P0,3,4 + σ(1, 1, 2)P1,1,2 + σ(2, 0, 0)P2,0,0 + σ(2, 2, 2)P2,2,2

+ σ(2, 2, 4)P2,2,4 + σ(3, 3, 0)P3,2,0 + σ(4, 0, 0)P4,0,0 + σ(4, 0, 1)P4,0,1

+ σ(4, 1, 2)P4,1,2 + σ(4, 2, 0)P4,2,0 + σ(4, 3, 4)P4,3,4 + σ(4, 4, 4)P4,4,4

= σ(0, 3, 4) + σ(1, 1, 2) + σ(2, 0, 0) + σ(2, 2, 2)

+ σ(2, 2, 4) + σ(3, 3, 0) + σ(4, 0, 0) + σ(4, 0, 1)

+ σ(4, 1, 2) + σ(4, 2, 0) + σ(4, 3, 4) + σ(4, 4, 4)

= (|0 − 3| + |0 − 4| + |3 − 4|) + (|1 − 1| + |1 − 2| + |1 − 2|) + (|2 − 0|
+ |2 − 0| + |0 − 0|)
+ (|2 − 2| + |2 − 2| + |2 − 2|) + (|2 − 2| + |2 − 4| + |2 − 4|) + (|3 − 3|
+ |3 − 0| + |3 − 0|)
+ (|4 − 0| + |4 − 0| + |0 − 0|) + (|4 − 0| + |4 − 1| + |0 − 1|) + (|4 − 1|
+ |4 − 2| + |1 − 2|)
+ (|4 − 2| + |4 − 0| + |2 − 0|) + (|4 − 3| + |4 − 4| + |3 − 4|) + (|4 − 4|
+ |4 − 4| + |4 − 4|)

= 8 + 2 + 4 + 0 + 4 + 6 + 8 + 8 + 6 + 8 + 2 + 0

= 56 (11.39)

We can notice that both the two approaches give exactly the same result.

11.3.2 Experimentation on a Synthetic Image

For experimentation, let construct the following experimental image of size 500 lines
and 500 columns from the Brodatz texture image, notably textures D4, D91, D86
and D32.

For this experimental image, let calculate the image textures generated by the
texture parameters Mean, Dissimilarity and Reverse Difference. Wang [8] demon-
strated that, above order 5 the image texture is blurred. For this reason, we will
limit on order 5 in our experimentation. The expression of these texture parameters
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using successively the classical and the proposed formulation for a generic order n
is presented in the Table 11.5.

Where D is the connexion domain, (p, q) are the coordinates of a pixel in the
connexion domain, x0 is the grey scale of the pixel at location (p, q) and ik is the
kth grey scale of the n-uplet starting at location (p, q) and following the connexion
rule (Fig. 11.8).

For this purpose, we consider the connexion rule R2 = (2, 45◦) for the order-2
parameter, R3 = (1, 1, 45◦, 135◦) for the order-3 parameter, R4 = (1, 1, 1, 0◦, 45◦,
135◦) for the order-4 parameter and R5 = (1, 1, 1, 1, 0◦, 45◦, 0◦, 135◦) for the order
5 parameter.

Obviously, the results are exactly the same. But the time complexity differs. We
implemented the algorithm on a computer having the following characteristics: Hard
disk: 500 GB; RAM: 4 GB; CPU AMD Dual Core processor E − 300, 3.6 GHz. We
introduced a parameter counter in each approach to count the number of instructions
executed by the program and we came out with the following time complexities.

11.3.2.1 Operational Complexity

Parameter Mean

The following table presents the time complexity of the parameter Mean, provided
by the two approaches (Fig. 11.9).

Parameter Dissimilarity

The following table presents the time complexity of the parameter Dissimilarity,
provided by the two approaches (Fig. 11.10).

Parameter Reverse Difference

The following table presents the time complexity of the parameter Reverse Differ-
ence, provided by the two approaches (Fig. 11.11).

Comparative study of the two computational complexities

From the three comparative graphs, one can make the following observations:

• The number of instructions required by the new approach is almost constant with
respect to the order of the parameter;

• The number of instructions required by the classical approach increases exponen-
tially with the order of the parameter;
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Fig. 11.8 Experimental synthetic image

Fig. 11.9 Comparative study of the time complexities of the parameter mean. a Complexity.
b Comparative graph

Fig. 11.10 Comparative study of the time complexities of the parameter dissimilarity. a Complexity.
b Comparative graph

• The maximum number of instructions required by the new approach is less than
the minimum number of instructions (offered by order 2) required by the classical
approach.

11.3.2.2 Time Complexity

As we included a variable Counter to count the number of instructions executed by
each approach in the previous section, we also included a variable Clock in each
algorithm to measure the time (seconds) spent by the program to provide the image
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Fig. 11.11 Comparative study of the time complexities of the parameter reverse difference.
a Complexity. b Comparative graph

Fig. 11.12 Comparative study of the time complexity of the parameter mean. a Complexity.
b Comparative graph

texture of each parameter. For each order, we varied the size of the image window,
considering notably the sizes 5 ∗ 5, 9 ∗ 9 and 11 ∗ 11. We finally obtained the
following results:

The parameter Mean

The following table presents the time complexity in seconds of the parameter Mean,
provided by the two approaches (Fig. 11.12).

The parameter Dissimilarity

The following table presents the time complexity in seconds of the parameter Dis-
similarity, provided by the two approaches for various sizes of image window
(Fig. 11.13).
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Fig. 11.13 Comparative study of the time complexity of the parameter dissimilarity. a Complexity.
b Comparative graph

Fig. 11.14 Comparative study of the time complexity of the parameter reverse difference. a Com-
plexity. b Comparative graph

The parameter Reverse Difference

The following table presents the time complexity in seconds of the parameter Reverse
Difference, provided by the two approaches for various sizes of image window
(Fig. 11.14).

11.3.3 Result Analysis

From the above result, one notice that the time complexity doesn’t automatically
increase with the size of the image window.

Using the classical approach, the time complexity exponentially increases with the
order of the parameter, in contrary to the new approach for which the time complexity
is almost constant, independently to the order of the parameter. It is established that
a suitable combination of various orders improves the quality of image classification
[13]. This approach offers the opportunity to combine all the four orders in less time
than the order-2 classical approach.
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11.4 Conclusion

The goal of this chapter was to propose a new approach of texture parameters com-
putation. We started from the mathematical expression of the texture parameter at a
generic order-n. This expression is based on the grey level dependent matrix, also
called co-occurrence matrix. This co-occurrence matrix is time consuming. Follow-
ing a series of transformations, we found an equivalent expression of the texture
parameter that doesnt depend on the co-occurrence matrix. The proposed approach
is about (MaxGs + 1)n times faster and about (MaxGs + 1)n−1 times less space
consuming than the co-occurrence matrix approach. MaxGs being the maximum
grey scale in the image window W. Moreover, in contrary to the classical method,
the new approach is parallel. So, with a parallel computer, the new approach allows
a real time image analysis.
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Chapter 12
Multi-modal Sensing for Distracted Driving
Mitigation Using Cameras and Crowdsourcing

Amol Deshpande, Mahbubur Rahaman, Nilanjan Banerjee,
Christophe Bobda and Ryan Robucci

12.1 Introduction

Driving-related accidents and human casualties are on the rise in the US and around
the globe [1]. The US government spends more than 10 billion dollars a year to
address the aftermath of accidents caused due to distracted driving and driving in
dangerous conditions. The situation is exacerbated by the pervasive use of smart-
phones while driving, integration of app stores into car dashboards, and the increase
in the use of cars as a primary mode of transport [1–4]. While certain states in the
US have banned texting and the use of handhelds while driving, this point solution
is neither comprehensive nor adequate [5]. There are several causes of road acci-
dents that are independent of texting. For instance, poor driving skills, distractions
caused by car dashboards, advertisements displayed on roadsides, steep road geome-
try, inclement weather and road conditions, traffic congestion, and road construction
can lead to fatal road accidents. Unfortunately, the state of the art solutions such as
intrusive smart phone applications [6–10], initiatives from insurance companies [11]
and automobile dealers [12] address a small niche in the problem space. For exam-
ple, the popular DriveSafely application, which reads out text messages to prevent
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distraction, can in fact increase cognitive distraction [13, 14]. To fill this gap, in
this book chapter we introduce an embedded and sensor systems solution to under-
standing dangerous driving and techniques to proactively reduce susceptibility to
accidents. Our solution combines behavioral understanding of driving with mobile,
sensor, and crowd-sourced systems. Using sophisticated camera sensor analysis, rule
mining, and causal analysis, we propose techniques to alert drivers of potentially dan-
gerous driving conditions, and increase awareness of safe driving practices.

The design and implementation of a comprehensive system that proactively
determines whether a driver is susceptible to accidents must address the following
non-trivial research challenges. First, the problem requires in-depth understanding
of the factors that cause human distraction, and non-intrusive techniques that can
detect these factors. While research exists on human multi-tasking and distraction
in the human-centered computing (HCC) and psychology communities [15–21],
techniques to understand and detect these factors in a real world setting are scarce.
Secondly, numerous complementary data streams must be fused together to mean-
ingfully infer the susceptibility of users to accidents when driving. For example,
variance in ambient sound (a common cause of distraction) can be captured using
smartphone microphones; advertisements on roadsides and road geometry can be
apprehended using on-board cameras; and weather condition and traffic congestion
data can be gathered using location based web services [22, 23]. Moreover, there are
certain dimensions of data that can best be captured using human intervention. For
instance, up-to-date information on road conditions (whether it is icy) or roadside
constructions can be captured using a human crowd. However, a key challenge is to
design techniques that can fuse disparate data collected from machine intelligence
(from sensors) and human intelligence (crowd-sourcing) sources. Third, it is impor-
tant that the analysis and recommendations to drivers are made pro-actively and
in real time. It is futile to alert a driver of a potential accident five minutes after
the accident has occurred. Hence, near real time sensor data analysis, fusion, and
inferencing is a fundamental design pillar. In this chapter we describe the following
research contributions to address the above challenges.

• A First Principles Approach to Understanding Driving Behavior: We present
a data-driven approach to understand factors governing distracted driving and sig-
nificant indicators of dangerous driving. We use non-intrusive sensors on smart-
phones, cameras, an eye tracking system, and crowd-sourced input from drivers
to collect quantitative data on driving behavior and distracted driving. We aug-
ment the real-world data collection with in-vivo smartphone surveys and struc-
tured interviews. The novel contribution lies in fusing subjective and “in the wild”
experimentation to determine statistically significant causal relationships between
independent variables (such as weather conditions and road geometry) and acci-
dent susceptibility.

• Proactive Inference of Dangerous Driving Conditions: The practical
applicability of a system that alerts a user of a possible dangerous driving zone is
predicated on real time, low latency inference of data collected from multiple and
often disparate data sources. Additionally, storing data from cameras and sound
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signatures has implicit privacy concerns. To mitigate this challenge, we use a sys-
tem design that pushes computation closer to the edge devices. For example, an
FPGA-based high resolution camera can process images on the edge device. While
mitigating privacy concerns, the solution minimizes the amount of data transferred
and processed at backend servers. We present a machine learning technique that
gathers summary information from edge sensors and fuses it with crowd-sourced
data and web services to detect susceptibility to accidents.

The rest of the chapter is organized as follows. Section 12.2 presents driving
behavior analytics that combines data from cameras, sensors, and user input.
Section 12.3 presents methods for in vitro detecting dangerous and distracted driving.
Section 12.4 concludes the chapter.

12.2 Driving Behavior Analytics

Several factors cause driving distraction and can indicate dangerous driving con-
ditions. For example, city drivers are susceptible to accidents due to high traffic
congestion, unfriendly road geometries, and distraction caused by ambient noise and
roadside advertisements. Moreover, inclement weather conditions, roadside con-
structions, and incoming phone calls and text messages can exacerbate driving risks.
While attempts to study distracted driving and effects of multi-tasking using simu-
lation environments and from a philosophical perspective [16, 18, 19, 24, 25] exist,
data analysis on real world driving has primarily focussed on route planning [26–28,
28, 29] and transportation [30–32]. The first step, therefore, is the use of multiple
sensor and data collection modalities to understand fundamental indicators of dis-
tracted and reckless driving, and factors that make drivers susceptible to accidents.
The described system builds on research on data mining [33–35], and wheelchair
driving [36–38] and applies it to an unique application domain.

Drawing meaningful inferences from real life data collected in a high risk envi-
ronment like driving presents several research challenges. First, it is key that reliable
groundtruth is collected on whether a car driver is distracted or is driving in a danger-
ous zone. Unlike controlled driving simulation environments [39] where an expert
can continuously scrutinize a subject as he drives in a virtual environment, in the
real world, automated reliable groundtruth collection is challenging. To this end,
we propose to use eye tracking to determine whether the driver is focussing on the
road, driver orientation to infer whether he has his hands on the steering wheel, and
input from a human crowd on dangerous driving conditions, as groundtruth. Sec-
ondly, there are several factors that can exacerbate distraction and dangerous driving
conditions, including ambient sound signatures, inclement weather, incoming phone
calls, roadside advertisements, and traffic congestion. Collecting high dimensional
data that captures all these attributes using a minimal set of sensors is a fundamental
design pillar. We propose to use a collection of custom camera sensors, smartphone
sensors, and location services to address the problem. Thirdly, there are several data
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Fig. 12.1 The figure shows the overall architecture for the sensing and analysis infrastructure

sources that are non-trivial to collect using deployed sensors. These include road
construction and road accidents that block road segments. We propose to use human
crowds through a smartphone application (e.g., Fig. 12.1) to capture these inputs.

The overall architecture of our data collection infrastructure is illustrated in
Fig. 12.1. Our data collection methodology comprises of a two fold approach: (1) data
collected from cars using on-board cameras and other sensors; and (3) in-vivo smart-
phone surveys, crowd-sourced data and structured interviews.

In-vivo smartphone surveys use push notification to gather contextual informa-
tion from drivers. Figure 12.2 illustrates an example from an iPhone application that
we have deployed on 10 subjects in Arkansas and Maryland to collect accelerometer,
location, and image data while driving. At the end of the trip (detected automatically
by the system through speed changes), the user is prompted to provide feedback on
driving and road conditions during the trip. To complement the above two data collec-
tion methods, offline structured interviews would include questionnaires on perceived
driving risks as well as environmental and technological factors that cause human
distraction. Our multi-modal data collection will help derive underlying causes that
influence dangerous driving. Below we describe the data collection sensors and a
rule mining technique to infer causes of distracted and dangerous driving.

12.2.1 Sensor Modalities

In this section, we introduce the novel elements of our sensor hardware that would
be deployed in cars. One of our primary design goals is non-intrusiveness—if cars
or wheelchairs are heavily instrumented with sensors, users would eschew our
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Tagging areas
as Dangerous

Trip specific
    inputs

Fig. 12.2 Screenshots from the iPhone application deployed to 10 car drivers. The application
collects accelerometer, ambient sound, and location data. It also collects crowdsourced data on
dangerous traffic and road conditions

system. Therefore, we plan to leverage sensors resident on smartphones, namely
accelerometers (for driving patterns), microphones (for ambient sound signature),
and GPS units (for location and speed). We will use location based services to extract
rich information on traffic, weather, and road parameters. The smartphone software
would collect information on incoming and outgoing calls, and text messages when
the user is driving. In addition to smartphone sensors, we propose to use two cus-
tom designed sensor systems: (a) a FPGA-based multi-sensor camera with a custom
designed 360◦ fisheye view lens to capture fisheye images of surroundings; and (b) a
webcam for tracking the driver’s eye movement. The camera allows analysis of video
and image data on the FPGA board, minimizing the amount of data transferred to
the backend using a cellular modem (attached to the module). Images or videos are
captured using an image sensor module on an interface board that houses a set of
CCD and CMOS sensors. The camera can capture videos at different resolutions.
Our feature extraction and analysis algorithm is described in §12.3. The eye tracking
software runs on a FitPC [40] module—eye orientation and whether the driver is
focussed on the road is used as groundtruth to infer whether the driver is distracted.
Groundtruth on dangerous driving conditions is collected using a human crowd (using
the smartphone application illustrated in Fig. 12.1). Figure 12.3 illustrates variance
in sound collected using a smartphone microphone.

12.2.2 Rule Inferencing

Inferring rules that associate causes to dangerous and irresponsible driving, and
driving in a dangerous zone, is key to designing systems that can alert end-users
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Fig. 12.3 Variance in sound observed from data collected using a smartphone application. Sound
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or modify driving behavior. Given the amount of data that will be collected from
our measurement analysis, automated mining-based analytic techniques must be
designed to infer these rules. However, deriving underlying rules from unlabeled
sensor data in a driving context faces unique challenges. To understand why, con-
sider the following rule. Rule A associates high traffic congestion and icy roads to
dangerous driving conditions. The question whether this rule is statistically relevant
requires quantifying its significance. The most common measure of significance is
co-occurrence. Although icy roads might not be a frequent occurrence, it is strongly
associated with accidents. Hence, frequency of co-occurrence is an incorrect met-
ric to derive rule significance in a driving scenario. The second associated research
challenge is to account for hidden parameters that can not be captured using sensor
data—for example, cognitive distraction. To address these challenges, we propose an
automated rule mining technique (based on network trace mining [33]) augmented
with structured interviews. Our rule mining algorithm uses time annotated data from
the sensors. This includes features detected by the FPGA-based camera, eye orien-
tation from the eye tracking system, accelerometer data, data on sound ambience
from smartphone microphones, data from the human crowd on dangerous driving
conditions and road constructions, phone calls and text messaging, driving speed,
road metrics (stop signs and traffic lights), and weather conditions (icy roads, wind
storms) collected from web services. The rules are defined by two variable sets X
and Y . Y indicates whether a driver is distracted or is driving in a dangerous con-
dition. For example, assume that Y1 ∈ Y corresponds to distraction. Y1 is true if
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the eye tracker detects that the driver is not focussing on the road or does not have
his hands on the steering wheel. The variables in X correspond to sensor values
that cause driving distraction or increase susceptibility to accidents. For example,
Xi ∈ X could be variance in acceleration, pedestrians detected around a car, traffic
congestion, and weather conditions. The rule mining engine derives rules of the form
X1 ∧ X2 . . .∧ Xn ⇒ Y1. For instance, X1 could be high traffic congestion, X2 could
indicate icy roads, Xn could correspond to steep road curvatures, and Y1 is true,
indicating high susceptibility to accidents. To derive these rules, the analyzed data is
divided into time windows. Each variable in X and Y have binary states—the states
are derived using a pre-processing technique described in §12.3. For example, traffic
congestion can be divided into two states—high traffic and low traffic. The number
of traffic lights in a road segment can be high or low based on a threshold. A rule
is generated if variables in X and Y co-occur in a time window. Similar to deriving
significance of mined rules in network traces [33], we use the forward element of
JMeasure (J Measure(X ⇒ Y ) = I (Y ; X = 1) = P(X ∧ Y ) · log(

P(Y |X)
P(Y )

)) to
quantify rule significance. JMeasure calculates the reduction of entropy of Y when
X occurs. Because the metric is normalized by the occurrence of Y , it accounts for
associations that occur infrequently. Rules that have low JMeasure are discarded as
insignificant.

The above rule mining technique accounts for correlation and time dependence but
it does not correct for hidden parameters that might influence driving. Additionally,
our data will be collected from power wheelchairs, cars, and subjective interviews.
Hence, it is important to design techniques that combine inferences drawn from each
source. To address the above challenge, we propose a Quasi-experimental design
(QED) framework. We illustrate our QED through an example rule X1 ⇒ Y1, where
X1 corresponds to a large number of pedestrians detected by our camera, and Y1 is
driver distraction. Hence, the rule implies that a large number of pedestrians around
a vehicle causes driver distraction. Now, the rule may have different JMeasure coeffi-
cients for in car experiments (experimental group) and wheelchair experiments (con-
trol group). If the JMeasure trends match for the experimental and control group,
we conclude that pedestrians causes distraction. If they conflict, we propose to use
structured interviews on all subjects to break ties and validate the effect of hid-
den parameters like cognitive distraction. The structured interview questions would
be formulated to resolve the conflict in mined inferences. For example a plausible
question in the above scenario might be “Do crowded spaces distract drivers?”.

12.3 Automated Detection of Dangerous Driving

The causal analysis technique discussed in the previous section outputs a set of
rules of the form X ⇒ Y , where X are sensor values and Y corresponds to a
state of distracted or dangerous driving. For example, X could be high variance
in accelerometer readings during a time window or a large number of pedestrians
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around a car. Our next goal is to use these input parameters (X) to quantify a driver’s
susceptibility to accidents, and alert the driver in real time Fig. 12.4.

It is critical, that these recommendations or alerts are computed in real time since
alerting a driver of a dangerous driving zone five minutes after an accident is futile.
This is equally important for vehicular drivers. To facilitate low latency and accurate
recommendations, we propose two novel research contributions. First, we present
techniques to push sensor computation close to the edge device (i.e., devices inside
a car). Such techniques can mitigate transferring large amounts of data to a backend
server—a potential latency bottleneck. Secondly, we propose a technique to fuse data
from sensors and human crowds to accurately infer whether the driver is driving in
a dangerous zone or is distracted. Our work builds on previous work on vehicular
crowdsourcing [41–44], our work on image analysis [45–49], and related research
on sensor fusion [50–52].

12.3.1 Image and Sensor Analysis

Data analysis to determine variance in acceleration (using smartphone accelerome-
ters) [53, 54], ambient sound signature using microphones [55], or eye tracking using
webcameras [56, 57] are well studied areas. Hence, we use standard techniques for
eye tracking [58–60], and on-phone computation of acceleration and microphone
data [55]. Our contributions however, lie in pushing computation close to the sensor,
and the use of a minimal set of sensors to collect a variety of data related to driving.
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Fig. 12.5 The Hidden Markov Model for predicting whether users are susceptible to accidents

For instance, we use a novel FPGA-enabled camera with a fisheye lens to capture
360◦ images on vehicular or wheelchair surroundings. The 360◦ fisheye lens ensures
that a single image can capture front, rear, and side views of a car. The camera images
and videos are used to extract features corresponding to humans (in and around the
car), road geometries, and roadside advertisements.

Detecting humans, road geometries, or advertisements from a single video source
in a moving vehicle is non-trivial. It requires accounting for variable lighting and envi-
ronmental conditions, and vehicular speeds. Moreover, since the goal is to implement
a low latency and accurate feature detection algorithm locally at the sensor (FPGA-
fabric), it is key that the algorithm exhibits high data parallelism. To address this
challenge, we use a Gaussian mixture model (GMM) based segmentation scheme
for determining image features. The training phase calculates feature-specific para-
meters for the Gaussian. For example, consider car occupants as an extracted feature.
We propose to express this feature by analyzing the color histogram of the clothes
worn by the car’s occupants. The frames are segmented using our designed contour
detection algorithm [61]. An extracted r -bin Hue histogram from each segmented
video frame is trained under different lighting and environmental conditions. Build-
ing a color histogram allows massive parallelism where hardware co-processors can
calculate the Hue values for disjoint blocks of pixels. An Expectation-Maximization
(EM) algorithm is then used to calculate the Gaussian distribution parameters that
fit the histogram for this feature. The resulting Gaussian can be represented as a
r -dimensional mean vector μp, and a r × r covariance matrix πp. In the online
system, we use the same segmentation approach based on contour detection [61]
to compute the edges in the image, and the corresponding closed spaces. The
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segmentation approach also exhibits high data parallelism. The ratio of the length
to height of the segmented feature, and the distance of its Gaussian from the trained
Gaussian differentiates a human from roads and advertisements. The road geom-
etry (high curvature or low curvature) is determined by applying the concept of
moments on the image segmented by the GMM algorithm. The normalized second
order moments of the segmented image describe the orientation of the object. The
second order moment can be calculated in parallel using hardware co-processors
executing on blocks of pixels. The orientation of the road can be used to determine
its curvature. Similarly, the orientation of the driver can be used to interpret distracted
or drunk driving. The segmentation and orientation computation are implemented as
hardware co-processors built into the FPGA fabric. Migration of the proposed algo-
rithm into the FPGA fabric minimizes the amount of data that must be transferred
over the cellular model, reduces the processing latency, and mitigates privacy issues
with storing image data at the backend.

12.3.2 Multi-sensor Fusion

The susceptibility of a driver to an accident is predicated on two dependent factors—
whether the driver is distracted (e.g., drunk driving, road side advertisements, pedes-
trians) and whether he is driving in an environment that is dangerous or increases
distraction (e.g., poor weather conditions, crowded roads, high ambient sound). In our
system, the occurrence of any one of these two factors triggers an alert to the driver.
To infer whether a driver is distracted, we propose to use eye tracking and image
analysis from the fisheye camera. The eye-tracker determines whether the driving is
focussing on the road and the camera images can determine the orientation of the
driver. However, inferring whether the user is driving in a dangerous zone is more
involved. It requires fusing data from multiple and disparate data sources such as
smartphone sensors, camera, a human crowd, and location services (weather, traffic
lights, stop signs). While a subset of the data is gathered using machines (sensors),
the remaining data sources use human intelligence (crowd sourcing). To combine
orthogonal data modalities and ensure tractability, we propose a data pre-processing
scheme and a Hidden Markov Model based supervised learning approach. The goal
is to accurately determine a driver’s susceptibility to accidents while minimizing
human and sensor bias. The pre-processor resides at a backend server and performs
a two-fold task. First, it processes data from the human crowd collected using our
iPhone application. The data includes road and traffic conditions. The pre-processor
uses a majority rule on the crowd sourced input to determine whether a location is
dangerous to drive or the road conditions are unfriendly. Secondly, the pre-processor
takes the input from the sensors and uses thresholding to convert the sensor values
into binary states. For instance, traffic congestion is considered either high or low
and the weather condition is either dangerous or safe. Similarly, the number
of pedestrian observed by the camera is high or low. This use of binary states
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help maintain a tractable number of observable states for the Hidden Markov Model,
described below.

Our core contribution to sensor fusion is a simple yet robust HMM [62] technique
that uses per-user sensor data and inputs from the human crowd to determine whether
the user in a vehicle or wheelchair is susceptible to accidents. The MDP and obser-
vation states of the Hidden Markov Model is illustrated in Fig. 12.5. For example,
< X1, X2, . . . , Xn > can represent a state observation O , where X1 = high traffic
congestion (source: human crowd), X2 = dangerousweather conditions (source:
location services), and X3 = largenumber of pedestrians. Our HMM has two MDP
states,dangerous andsafe. The transition and initial steady state probabilities for
the states are determined using training data collected by deploying our iPhone appli-
cation (illustrated in Fig. 12.1)—user tags trips as dangerous or safe for driving. Our
system will calculate the stationary probabilities from data over multiple trips. The
observation probabilities P(O|S1), for a state O =< X1, . . . , Xn > is calculated as
the sum of the JMeasure coefficients for the rules of the form X1∧X1∧. . .∧Xn ⇒ Y ,
where Y is driver distraction or dangerous driving state, and Xi is the pre-processed
binary output for sensor i . We solve the HMM decoding problem where the input
is a set of observation vectors during a time window and the HMM determines the
sequence of states that maximize the probability of the observations. If the final
state is dangerous, we use techniques in §12.3.5 to alert drivers to modify driving
behavior.

12.3.3 Optimizations

In-vivo data fusion using the HMM approach can incur latencies due to unpredictable
network conditions and processing delays at the backend. It is important, however,
that alerts are disseminated before a predicted accident. To address this issue, we plan
to use prefetching and proactive techniques. Humans are creatures of habit [63] and
they follow similar routes to similar destinations most of the time. Therefore, we will
augment our system with mobility prediction [63, 64] to prefetch and cache data on
traffic, weather, and road conditions, to pre-calculate the susceptibility to accidents
in a geographic region. We can then combine the prefetched data with data from the
in-car camera, eye tracker, and smartphone sensors to trigger alerts proactively.

12.3.4 Minimizing Sensor Bias

Data from image sensors, accelerometers, microphones, and web cameras can be
noisy. The use of human crowds and smartphone surveys (shows in Fig. 12.1) pro-
vide an orthogonal data modality that can help mask sensor inaccuracies in the
HMM model. Additionally, we plan to supplement our sensor analysis with struc-
tured interviews that use neutral and open ended questions on whether the subjects
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thought they were distracted or were driving in a dangerous zone during a trip. The
subjective interviews will help validate the inferences made by our sensor fusion
framework. They will also provide groundtruth to train the probabilities associated
with the HMM framework.

12.3.5 Driving Behavior Modification

Persuasive technology has been used in several application domains such as
sustainability and healthcare [65–67]. It has been shown that intelligent visualiza-
tion and recommendations can, in many cases, persuade individuals to adopt envi-
ronmentally friendly approaches [68–71]. In the safe driving domain, however, it is
an open research challenge to design minimally intrusive techniques that can incen-
tivize drivers (especially teenagers) to adopt safe driving practices. In this project,
we propose to explore the following technique to inculcate behavioral modifications
in drivers.

First, our sensor fusion framework, on detecting high susceptibility to accidents,
will use Minimal Attention User Interfaces (MAUI) [72, 73] to push notifications
and recommendations to a user’s handheld device. This could include audio alerts,
earcons [74], haptic solutions that leverage tactile feedback such as phone vibra-
tions [75, 76], and visual cues such as danger icons on the smartphone screen. The
phones can be paired with screens or car dashboards and hence the cues will appear on
large screens in the car. We have also designed techniques that can re-route incoming
phone calls when the system determines that the driver is susceptible to accidents. In
our preliminary implementation, the incoming call is blocked, and the phone number
is uploaded to a web service that uses Skype and an automated voicemail to make a
callback to the callee, informing him that the user is driving in a dangerous zone. The
closed loop system ensures that proper feedback is sent to the callee — the callee
could be a business partner or a worried parent. The notification-based system has
a dual advantage. Since it is solely an alert, it is up to the driver to adopt it, and
hence it is minimally intrusive. Additionally, using the sensor data collected, we can
infer whether the driver adopted the recommendation. Therefore, we can evaluate
the efficacy of our data analytics. We can augment the above alerts with information
on why the system thinks that the driver is susceptible to accidents. For example, in
addition to a danger icon, the system will display icons on road construction, traffic
congestion, pedestrians, or stop signs. The user can then verify that the alert is not a
false positive, and can react accordingly.

12.4 Conclusion

The book chapter presents a system that combines on-board camera, web camera,
sensors on smartphones, and crowdsourcing techniques to detect distracted driving,
driving in dangerous zones, and dangerous driving. The system alerts the driver when
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it detects the above problems. The system uses a combination of image analysis
and multi-sensor fusion to accurately infer that the driver is distracted or driving
dangerously.
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