Evaluation of Real-Time Traffic Applications
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Abstract Traffic management today requires the analysis of a huge amount of data
in real-time in order to provide current information about the traffic state or hazards
to road users and traffic control authorities. Modern cars are equipped with several
sensors which can produce useful data for the analysis of traffic situations. Using
mobile communication technologies, such data can be integrated and aggregated
from several cars which enables intelligent transportation systems (ITS) to monitor
the traffic state in a large area at relatively low costs. However, processing and
analyzing data poses numerous challenges for data management solutions in such
systems. Real-time analysis with high accuracy and confidence is one important
requirement in this context. We present a summary of our work on a comprehensive
evaluation framework for data stream-based ITS. The goal of the framework is
to identify appropriate configurations for ITS and to evaluate different mining
methods for data analysis. The framework consists of a traffic simulation software,
a data stream management system, utilizes data stream mining algorithms, and
provides a flexible ontology-based component for data quality monitoring during
data stream processing. The work has been done in the context of a project on Car-
To-X communication using mobile communication networks. The results give some
interesting insights for the setup and configuration of traffic information systems that
use Car-To-X messages as primary source for deriving traffic information and also
point out challenges for data stream management and data stream mining.
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1 Introduction

When you buy a new car today, it is usually equipped with a multitude of
sensors. The sensors have mainly two purposes: increasing safety and increasing
comfort. Driver assistance systems, such as brake, lane, or parking assistants, are
realized with these sensors. The substantial progress in making road transport safer
resulted in a continuously decrease of accidents involving personal injuries and
road fatalities in Germany — the number of road fatalities being lower than ever
since 1950 (Statistisches Bundesamt 2011). A main goal to improve safety further,
should be to not only lower the severity of accidents, but to prevent them to the
greatest possible extent. This can be done by prevention mechanisms which warn
road users before they approach a critical situation. To this end, communication
between vehicles and their surroundings, e.g., other vehicles or traffic infrastructure,
termed Car-to-X Communication (C2X), can help to exchange important safety
information “sensed” by vehicles. In the Cooperative Cars (CoCar) project and
its successor Cooperative Cars eXtended (CoCarX),' which constitutes the context
of our work, a heterogeneous approach has been followed. Depending on the use
case, 802.11p-based technology (pWLAN) or UMTS and its successor LTE are
used for communication (cf. Fig. 1). In the CoCar system, hazard warnings are
sent by vehicles to other road users. For example, when a vehicle brakes very
hard, a warning message is sent to vehicles in vicinity (also called Geocasting or
GeoMessaging (Fiege et al. 2011)).

Our goal in the CoCar project is to utilize the sensor information included in the
messages of vehicles for deriving higher value information, such as the position of a
queue-end or the current traffic state. However, there are several challenges in doing
so. First, the amount of messages per time sent by vehicles from a specific area can
be very high. Second, many traffic applications, especially safety applications, and
their users require real-time processing and response. Data Stream Management
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Fig. 1 The CoCarX architecture (Fiege et al. 2011)
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Systems (DSMS) and data stream mining algorithms proved to be suitable for
several application fields with real-time properties. Also in traffic applications, data
stream processing and mining has been applied successfully (Kargupta et al. 2010;
Biem et al. 2010; Ali et al. 2010; Arasu et al. 2004), but a systematic approach
for evaluating the parameters and results of such applications is still missing.
Especially, the comparison of multiple data stream mining algorithms according
to their suitability for various ITS applications is an interesting parameter to be
analyzed systematically.

Furthermore, the quality of the processed data and the produced information is
crucial. Users want to rate the reliability of information, and low-quality information
should not be distributed to users to avoid desensitization and frustration. This
applies not only to traffic information systems, but also to other geographic
applications which rely on sensor data and apply data mining techniques to derive
new information (e.g., tsunami or earthquake warning systems). The data in such
applications is inherently uncertain as sensor data might be inaccurate. In addition,
the methods for data analysis usually cannot achieve a 100% accuracy. Hence, the
continuous quality monitoring of the processed data should be an inherent property
of a data management solution for such applications.

In this paper we will present a summary of our work on a data stream-
based evaluation framework for traffic applications. We first introduce the overall
architecture of the evaluation framework in Sect.2, followed by the description
of the data processing and the corresponding data quality processing in Sect. 3.
Subsequently, two case studies in queue-end detection and traffic state estimation
are detailed in Sect. 4. The section contains also the evaluation results for various
configurations of the ITS and multiple data stream mining algorithms. In Sect. 5, we
will compare our approach with other works from related research areas. Finally,
the lessons we learned throughout the project and some ideas for future work are
discussed in Sect. 6.

2 Architecture

The evaluation framework is based on a data management and fusion architecture
which was designed and implemented in the first phase of the CoCar project (Geisler
et al. 2009). The main constituents of the architecture are mobile data sources
which deliver the raw sensor data. Second, the data is received by a Data Stream
Management System (DSMS) which processes and integrates the data. Third, to
analyze the data and derive new traffic information, we integrated a data stream
mining framework into the DSMS. In addition, we use a spatial database to speed up
working with geospatial data. We detail these components in the following. Finally,
we added a data quality monitoring component to the architecture. An overview of
the architecture with its main constituents is depicted in Fig. 2.



86 S. Geisler and C. Quix

Data Sources
Cooperative

Cars ]
/ DSMS \

Floating Phone » Aggregation & Integration
Data > Aggreg g

—>

Data Quality

Stationary Assessment

Detection

Other Data Mining

Queue-end Traffic State
Detection Estimation

é Traffic » Export
Message
-_.\_. g o

—*|, Othen consumers Historical Spatial

Data Data

Fig. 2 The overall architecture

2.1 Mobile Data Sources

For reasons of reproducibility, controllability, and creation of a sufficient amount
of data, we use the traffic simulation software VISSIM by PTV AG? to simulate
the creation of data from mobile and stationary sensors. In the CoCarX project, one
important data source is, of course, the CoCars sending event-based messages in
case of hazards to warn other vehicles. We create CoCar messages by using the
VISSIM simulation for the following events: a vehicle braking very hard and a
vehicle turning on its warning flashers. For traffic state estimation we introduced
another type of message, which is sent periodically by the vehicles and only contains
basic information, such as position and speed. The second important data source
is Floating Phone Data (FPD). FPD are anonymously collected positions of mobile
phones, but the location data might be very inaccurate. Other traffic data, such as the
vehicle speed, can be derived from FPD (Geisler et al. 2010). In our case studies, we
focus on the CoCar messages only as we want to analyze the usefulness of CoCar
messages and the influence of parameters, such as required equipment rates, for
certain traffic applications.

Zhitp://www.ptv.de
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2.2 Data Stream Management System

We use the Global Sensor Network (GSN) system (Aberer et al. 2006) for data
stream management. GSN provides a flexible, adaptable, distributable, and easy to
use infrastructure. It wraps the functionality required for data stream processing and
querying around existing relational database management systems, such as MySQL.
The main concepts in GSN are wrappers and virtual sensors. In GSN, we provide
a wrapper for each data source to receive the data. Each further processing step is
encapsulated into a virtual sensor which creates the output data by a query over the
input data. For data stream mining, we integrated the data stream mining framework
Massive Online Analysis (MOA) (Bifet et al. 2010) as a virtual sensor into the
DSMS. The DSMS distributes the derived information to consumers, e.g., as queue-
end warning messages to CoCar vehicles.

2.3 Data Stream Mining

As mentioned in the previous paragraph, a virtual sensor has been built which
classifies the aggregated data, i.e., each data stream element. We started off with
integrating the MOA framework and all of the results presented in Sect. 4 have been
made using this framework. We also made this virtual sensor more flexible, such that
different kinds of data (stream) mining algorithms can be used in a convenient way.
The MOA framework offers several algorithms, mainly based on Very Fast Decision
Trees, a variant of the Hoeffding Tree, first proposed by Domingos and Hulten
(2000). Hoeffding trees use a statistical measure called Hoeffding bound. The bound
determines, how many examples are required at each node to choose a split attribute.
It guarantees, that with a given probability the same split attribute is selected as the
attribute which would have been chosen if all training elements were known already.
The algorithm first determines the two best attributes by using a relevance measure
such as information gain or the Gini index. Afterwards, if the difference between
the two attributes’ relevance values excels the calculated Hoeffding bound for the
examples seen so far, the best attribute is chosen for the split. For classification, the
MOA framework provides single learners with various voting strategies as well as
ensemble algorithms and concept-adapting algorithms. For detailed descriptions of
the algorithms please see Bifet and Kirkby (2009). In the mining virtual sensor, the
classified stream elements are extended with an attribute for the classification result,
e.g., the estimated traffic state.

2.4 Spatial Database System

Spatial database systems have been introduced to ease and speed up the work with
spatial data using special data types and functions. In our architecture, we store and
query the road network by using the spatial functionality of Microsoft SQL Server
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2008.> We export the roads (or links) from the traffic simulation and store them as
curve objects in the database. In the database, we divide the links into sections of
equal length, e.g., sections of 100 m length each. Sections are the units of interest
for our evaluations, e.g., the traffic state will be determined for each section. Each
time we have to locate a vehicle on the network, the spatial database is queried to
find the section the vehicle is driving on.

3 Data Stream Processing

To show the effectiveness of our framework for the purpose of a systematic
evaluation of ITS applications, we set up two case studies, namely queue-end
detection and traffic state estimation, detailed in Sect.4. We will first explain the
processing of the data streams throughout the DSMS as it is similar for both case
studies. Subsequently, the data quality framework we implemented to measure and
rate the effectiveness and efficiency of the traffic applications is elucidated.

3.1 Processing Flow

GSN provides two structures to work with data streams: wrappers and virtual
sensors. The wrappers manage the connections to the data sources, receive the
data and convert it to relational stream elements. In our case studies, the CoCar
messages and ground truth messages (stating the real queue-end and the real traffic
state) are produced by the traffic simulation and sent via TCP to the DSMS. Virtual
sensors filter and process the data, e.g., aggregate and integrate data. One common
issue in mobile data detection is that the measured positions contain some error
whose amount depends on the used positioning technique. This error influences
the accuracy of traffic information (Geisler et al. 2010). In case of the CoCar
messages, we can assume GPS positioning accuracy. To approximate reality as
close as possible, the exact positions in the messages created by VISSIM have to
be degraded. To this end, the stream elements created from the CoCar messages
are forwarded to a degradation virtual sensor. The next virtual sensor matches the
positions of the CoCar messages to the road network, a process also termed Map
Matching. It tries to find the section where the vehicle actually is located.

The next step is the preparation of the data for data stream mining. In our
approach, we aggregate data, such as speed or acceleration, of CoCar messages
coming from the same section for a certain time window. We utilize classification
algorithms for data stream mining in our framework, i.e., each incoming tuple is

30ther products can also be used in the architecture. We implemented the same functionality also
for PostgreSQL and PostGIS.
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Fig. 3 Data stream processing flow

assigned to a specific class. For example, in queue-end detection either the class
“Queue End” or the class “No Queue End” will be assigned to each stream element.
For each run a classifier was learned from scratch. Afterwards, the classified element
is distributed to consumers, e.g., sent to the traffic simulation, where it can be used to
visualize the corresponding event. The message contains a confidence value, which
indicates the reliability of the message based on data quality parameters calculated
throughout the data processing in the DSMS. The complete data stream processing
flow is depicted in Fig. 3.

3.2 Data Quality Processing

Data quality (DQ) plays an important role in DSMS as there is usually a trade-off
between accuracy and consistency on the one hand, and timeliness and completeness
on the other hand. We follow a holistic approach for DQ management in data
streams which is based on a comprehensive ontology-based data quality framework.
We will briefly explain the framework here, as we use it to measure the effectiveness
and efficiency of the traffic applications in our experiments with it. The framework
is presented in detail in Geisler et al. (2011).

Our aims in designing a DQ framework for DSMS were flexibility and adaptivity
as the framework should not be restricted to traffic management applications. Even
within the traffic domain, there are different ways to measure DQ depending on the
data sources which are available, and the data processing steps which are applied
in the DSMS. For example, to measure the correctness of a CoCar message which
signals a specific event (e.g., an icy road has been detected by the car sensors), we
may check whether this information is confirmed also by other cars in the same
area. This can be done by computing a correctness measure while several CoCar
messages are aggregated in a query in the DSMS. If an external source with weather
information is available, we may also want to apply a rule to check the consistency
of the information (e.g., if the temperature is above 10° C, the road cannot be icy).
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Fig. 4 Architecture of the ontology-based DQ component

Therefore, it is not reasonable to just select a set of DQ dimensions and DQ
metrics, and hardcode them in the DSMS. A flexible and extensible DQ framework
is required which allows also the definition of application-specific DQ metrics. In
our approach, we distinguish three types of DQ metrics: (i) content-based metrics,
(ii) query-based metrics, and (iii) application-based metrics. Content-based metrics
use semantic rules and functions to measure data quality, e.g., as stated in the
consistency check mentioned above. Query-based metrics are methods to compute
the DQ for certain query operators, e.g., the accuracy of an aggregation operator is
the average accuracy of the input tuples. We use a query rewriting approach to offer
more flexibility than in other approaches (e.g., Abadi et al. 2005; Klein and Lehner
2009). Finally, application-based metrics measure DQ by any kind of application-
specific functions, e.g., confidence values of a data mining classifier are provided
by the data mining system.

Architecture of the DQ Framework

The data quality framework consists of several components, which are depicted in
Fig.4. To enable a flexible approach, all data quality related metadata is organized
in a semantic data quality model, namely a data quality ontology. An ontology is
a well suited tool to formalize the DQ model as it can be easily extended and
adapted by users due to its human-readability and availability. The ontology includes
a data stream part, which describes the concepts of data streaming, such as streams,
windows, tuples, or attributes. Furthermore, concepts describing data quality, such
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as data quality metrics or dimensions, are incorporated in a data quality part. The
data quality factor concept establishes a relationship between these parts defining
which quality dimensions are measured with which metric and for which stream
element in the data stream management system.

When incorporating DQ into the DSMS, the set of data stream attributes is
extended by a set of DQ attributes, where each attribute represents a DQ dimension.
We define these streams as quality-affine data streams. Syntactically, quality
attributes are not distinguishable from data attributes, but semantically, they are
handled differently and must be recognizable during data processing.

The three different types of DQ metrics are supported in the framework by cor-
responding quality services. The Semantic Data Quality Model is the DQ ontology
presented before. The Semantic Quality Provider acts as an interface to this ontol-
ogy. The DQ Processor invokes the Content-based and Application-based Quality
Services as required by the definitions in the ontology. The Query-Based Quality
Service interacts directly with the Semantic Data Quality Provider and the data pro-
cessor, as queries have to be modified in the data processing steps. In Fig. 4 all grey
boxes are DQ components and are added as additional components to the DSMS.

To take into account DQ processing, the semantic descriptions for the DQ assess-
ment are loaded from the ontology at system startup. Based on this information, the
virtual sensor configurations are rewritten recursively, including the queries and the
output structure of each virtual sensor in the dependency graph.

We have used the DQ component in our case studies to measure important means
to rate the effectiveness and efficiency of a traffic application. For example, we
measured the data mining accuracy for varying parameters and the processing time
of the stream elements in the system. For the case studies described in Sect. 4,
additional quality factors have been defined which are combined into a final DQ
value that represents the confidence in the derived information (how reliable is the
information, that a queue end has been detected on a specific section?). We showed
in Geisler et al. (2011), that the quality values and confidence values produced by
the data quality component indeed indicate a drop or increase in data quality (e.g.,
the accuracy of the Map Matching using mobile phone positions is lower than using
GPS positions). We could also prove that the data quality component produces only
a slight overhead in performance, memory, and CPU consumption (Geisler et al.
2011).

4 Case Studies

To show the effectiveness of our framework for the purpose of systematic evaluation
of ITS applications, we set up two case studies. In this section, we summarize the
experiments and results of the queue-end detection and the traffic state estimation
use cases. Further details about the two case studies and results can be found in
Geisler et al. (2012).



92 S. Geisler and C. Quix
| Real | Estimated
<@

Fig. 5 Real and estimated queue-ends in the traffic simulation. The dark gray vehicles send a
CoCar message in this time step

4.1 Queue-End Detection

The queue-end detection scenario aims at the detection of hazards caused by traffic
congestion. The end of a queue constitutes a threat, as drivers may not be prepared to
suddenly approach a static obstacle. The aim of our experiments was to investigate
the influence of multiple parameters on the detection accuracy. For each section
of the roads in the network it is determined, if it contains a queue-end or not. In
this case study, traffic has been simulated on a simple road network consisting of a
highway of 5-10km length, i.e., a road with two directions with two lanes each.

One direction contains a hazard (a construction site with an excavator) narrowing
the street to one lane. Depending on the traffic volume, the hazard causes a
congestion. The traffic simulation sends the CoCar messages produced during
simulation runs and periodic information about the ground truth (i.e., positions
of queue-ends) to the DSMS. The DSMS processes this information as described
in the previous section. The mining algorithm first decides, based on the received
information for one section, if it contains a queue-end (classification) and learns,
in which cases a queue-end is present in a section (training). If the classification
identified a queue-end, a hazard warning is sent to the traffic simulation and is
visualized by a red (estimated position) traffic sign as depicted in Fig. 5. The blue
traffic sign denotes the queue-end as estimated by the traffic simulation (based on the
maximum queue length in the last 10s). In our simulation the queue-end warnings
were located in the middle of the corresponding section. In a real-world scenario
this should be set to the end of the section for safety reasons.

We tested the influence of several parameters on the output of the classification.
These parameters can be divided into two categories: parameters inherent to the traf-
fic situation and parameters inherent to data processing. Traffic situation parameters
include the percentage of Cooperative Cars in the overall vehicles (penetration rate,
default value: 5%), the traffic volume (vehicles per hour, default value: 3,000 veh/h),
and the section size (default value: 100 m). In each simulation run (excluding only
the runs with the variation of traffic volume), exactly the same traffic situation
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is reproduced; thus, the results of different runs are comparable. Data processing
parameters comprise the size of the sliding time window for data aggregation
(default value: 1205s), the mining algorithm (default algorithm: Hoeffding Tree),
and the ratio of positive (section contains queue-end) and negative (section contains
no queue-end) training examples presented to the mining algorithm (default option:
as ratio appears, no balancing of examples). When investigating one of the before
mentioned six parameters, only this parameter has been varied, all other parameters
kept their default value.

For each experiment consisting of one simulation run, the following measures
have been recorded: the overall accuracy (ratio of correctly classified elements to all
classified elements), the sensitivity (or recall, ratio of correctly determined positive
examples to all positive examples), precision (ratio of all correctly determined
positive examples to the sum of all correct positive and all false positive examples),
and the specificity (ratio of correctly determined negative examples to all negative
examples). We recorded and plotted these measures (y-axis, each in percentage) over
simulation time (x-axis, in seconds) to rate the learning progress of the algorithms
during the simulation runs. If not otherwise stated, the algorithms build models from
scratch in each run.

For this case study, each stream element produced by the aggregation sensor and
processed for training by a mining algorithm, has the following structure:

MiningElement(Timed, AvgSpeed, AvgAccel, HasQueueEnd,
WLANo, EBLNo, LinkID, SectionID)

where Timed is the timestamp assigned by the aggregation sensor as creation
time of the stream element, AvgSpeed is the average of speeds from the CoCar
messages of the last time window (e.g., the last 120s) for the section and link
at hand, AvgAccel is the average acceleration from the CoCar messages for
the same window, section and link, HasQueueEnd is the ground truth for this
section (does it contain a queue-end or not in the traffic simulation?), WLANo is the
number of messages of the type warning light announcement, EBLNo the number
of emergency braking light messages for this section and time window, LinkID is
the id of the link, and finally SectionID is the id of the section which the data
was aggregated for. An example stream element would be:

(1338981779163,19.5,—6.75,1,0, 3,21, 2)

The output stream elements of the mining sensor have almost the same structure,
containing additional fields for data quality, such as the mining accuracy or the
timeliness, and of course the class estimated by the algorithm:

MiningElement(Timed, AvgSpeed, AvgAccel, HasQueueEnd,
WLANo, EBLNo, LinkID, SectionID,
ClassQueueEnd, DQ_Timeliness, DQ_MiningAccuracy)
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Fig. 6 Sensitivity results for varying window sizes over simulation time

We identified a set of default values for all parameters, and while one parameter
was varied in experiments, all other parameters kept their default value. In most
experiments, the mining accuracy was dominated by the specificity, as we had far
more negative than positive examples.

In the experiments with varying window sizes between 10 and 300s, we identi-
fied a default window size of 120s as a good compromise for getting acceptable
results for sensitivity (about 51%) as well as for specificity (about 92%), and
precision (about 61%). The results for sensitivity are depicted in Fig. 6. Simulation
runs with varying traffic volumes ranging from 2,000 to 4,000 showed, that, though
the number of messages increases and the sensitivity is better for higher traffic
volumes, it always deteriorates in the end. This is due to the fact that the ratio of
positives to negatives gets highly imbalanced (ranging from 14% in 2,000 veh/h run
to 9% in 4,000 veh/h run), because there are many sections that do not include a
queue-end but deliver many messages. Precision on the other hand, seems to be best
for 3,000 veh/h, but it does not show a clear trend for increasing or decreasing traffic
volumes.

For the test with multiple penetration rates (from 1 to 10%, cf. Fig. 7) we found
out, that the accuracy is not substantially influenced by the penetration rate, although
higher penetration rates (from 5% on) deliver a slightly better sensitivity than the
lower values. In contrast, precision increases with increasing penetration rates. For

10% penetration rate, precision gets up to 88% precision as shown in Fig. 8.

The results for simulation runs with section lengths between 30 and 300 m
showed that the sensitivity increases with increasing section length. However, more
tests have to be done to see if it reaches a maximum, where it decreases again. For
Precision on the other hand, the best values are reached for 150 m with no clear
trend with increasing or decreasing section lengths (30 m being the worst).
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Fig. 8 Precision for varying penetration rates over simulation time

To tackle the problem of the unbalanced ratio between positive and negative
examples, we also made tests using an undersampling technique in the data mining
process. It drops negative examples randomly; we experimented with percentages
between 0 and 90%. The sensitivity increases with increasing dropping rate as can
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Fig. 9 Sensitivity for multiple undersampling rates over simulation time

be seen in Fig. 9, but in turn specificity and precision decrease. A good compromise
could be found with a dropping rate of 85%, where sensitivity lies around 65%,
specificity at about 82%, and precision at about 38%.

4.2 Traffic State Estimation

After first experiments with the queue-end detection scenario, we wanted to show
the adaptability of the evaluation framework to other applications and to more
complex road networks. A simple but popular traffic application is traffic state
estimation. For this use case, we also used only CoCar messages. We created an
artificial road network consisting of four links with two lanes each, which covers an
area of approximately 4 km by 8 km. We also applied the scenario to realistic maps
as shown in Fig. 10 (a part of the road network close to Diisseldorf, Germany).
Another important purpose of this scenario is to compare the suitability of different
stream mining algorithms. We also used data stream classification algorithms in
the experiments: data stream elements are classified into one of four traffic states
(free, dense, slow-moving, and congested as proposed in BASt (1999)).
The ground truth for each section is calculated in the traffic simulation using the
corresponding rules defined in BASt (1999). To evaluate the results, we compiled
a confusion matrix which indicates the combinations of real classes and estimated
classes (e.g., number of elements whose real class is dense, but have been classified
as free). Based on the confusion matrix the mining accuracy has been calculated. To
show the representativeness of our results, we made three runs varying only the seed
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Fig. 10 Visualization of the traffic state estimation scenario with OpenStreetMap

for random functions in the traffic simulation (e.g., used for vehicle speeds, entrance
of vehicles in the simulation and so on). The comparison of these runs showed, that
the overall accuracy of the mining algorithm only varied about 3—5% max.

The results are visualized on a map, where the estimated traffic state for each
section is color-coded as shown in Fig. 10.

In the simulation runs we also used a set of default values for the variable
parameters and a default classifier. We used 400 m for the section length, a window
size of 60s, and a 10% CoCar penetration rate as default values. The concept-
adapting Hoeffding Option Tree with Naive Bayes prediction strategy was used
as the default classifier as it delivered the best results in comparison to other
algorithms. We used no balancing algorithm in all the experiments. The input stream
elements for the mining algorithms look similar to the queue-end detection scenario
— only the ground truth attribute differed, containing the traffic states calculated in
the traffic simulation as described. The output stream elements contain besides the
additional estimated traffic state class, the timeliness, and the number of elements
classified into each of the confusion matrix cells.

We first only used the emergency braking and warning light announcement
messages for queue-end detection. However, we noticed that all traffic states except
for congested were not detected well, since the event messages are only created
in crowded traffic situations. Hence, we introduced periodically sent messages in
the simulation which only contained basic non-event data (mainly position, speed,
and acceleration). This improved the accuracy of the other classes, but still did not
lead to good results, especially for the class dense. One problem seemed to be
again the imbalanced number of examples for each class. Therefore, multiple traffic
volumes on the different roads have been used in the traffic simulation to create
training examples distributed over the classes (between 2,500 and 3,500 veh/h).
Another improvement was the inclusion of the number of periodic messages as
input parameter into the classified stream elements, which we assumed to be an
indicator for the traffic density. This led to a substantial increase for the classes
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Fig. 11 Accuracy for varying section lengths over simulation time

free, dense, and slow-moving. Experiments with varying section lengths
revealed, that sections with sizes of 100m and over 600 m produce less accurate
results than sizes of 200 and 400 m (around 87% overall accuracy). Smaller sections
may not contain enough messages to indicate the traffic state, while larger sections
can include more than one traffic state as depicted in Fig. 11. Hence, we used 400 m
as a default value for the section length in further tests.

Similar to the queue-end detection scenario tests with varying penetration rates
showed no substantial influence on the overall accuracy.

The comparison of the data stream mining algorithms of the MOA framework
(Bifet et al. 2010) was divided into several experiments. First, we were interested
in the influence of different voting strategies with the same classifier (in this case
the basic Hoeffing Tree). It turned out that on average, the Naive Bayes and the
Adaptive Hybrid strategy were very similar in their results, but both outperformed
the Majority Voting strategy. In the next group of experiments, the ensemble mining
algorithms of the MOA framework were compared using the Hoeffding Tree as a
base learner. The boosting algorithm (Oza 2005) was slightly better than the other
algorithms with accuracies of up to 92%. However, it delivers also only a slightly
better accuracy than the best single classifier algorithm in average. The results are
summarized in Fig. 12.

Finally, also algorithms which are able to adapt to concept drift have been
compared to see, if they can compete with the other algorithms (though our scenario
does not contain concept drifts). The experiments showed, that none of them
outperforms the ensemble algorithms, in fact the online boosting algorithm (Oza
2005) has proven to be slightly better than the concept drift-adapting variants.
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Performance of data processing is a crucial aspect in data stream management
systems as a huge amount of data has to be processed in a short time. Hence, we
measured the processing time of the data stream elements for each sensor using the
timeliness dimension. This means, that for each CoCar message the time between its
creation in the traffic simulation and the processing time in the sensor is calculated.
When data is aggregated over a window, the timeliness of the oldest stream element
in the window is used as the timeliness value. Figure 13 shows the timeliness over
simulation time for the Diisseldorf case study smoothed with a Bézier function.
In this performance experiment in a 40 min simulation run, about 19,000 CoCar
messages have been processed, aggregated to nearly 50,000 data stream elements
which have been subsequently mined by a data stream mining algorithm. It can be
seen from Fig. 13 that the sensors before aggregation only need a few milliseconds
to process the stream elements, where the processing time is slowly increasing with
simulation time. In the aggregation sensor, data of the last 120 s has been aggregated,
hence the timeliness values are higher per se.

5 Related Work

Our work is related to a multitude of areas. DSMS have already been used to
realize real-time traffic applications (Biem et al. 2010; Ali et al. 2010; Arasu
et al. 2004; Kargupta et al. 2010), but none of them provided a thorough analysis
of the applications, their efficiency, and the influencing factors to derive advices
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for traffic information providers. An evaluation framework for traffic applications
based on VISSIM has been proposed for example by Fontaine and Smith (2007).
They investigated the influence of different parameters in the road network and
mobile network on the accuracy of traffic information, such as link speed. However,
they do not consider the characteristics of the processing information system and
do not incorporate analysis techniques, such as data mining, to derive events
or traffic information from the collected data. In our work, we investigate the
influence of varying road and traffic parameters, and we also take into account
the special features of the DSMS (e.g., window size, sliding step) and of the
stream mining algorithms, such as concept drift. For queue-end detection, Khan
presents a simulation study also based on VISSIM using stationary sensors as
data source (Khan 2007). The data is analyzed using Artificial Neural Network
models, predicting the current queue length based on accumulated numbers of cars
and trucks at fixed locations. Although they postulate real-time processing in their
information system, the used algorithm is not capable of online learning, i.e., it
cannot adapt to concept changes, which can be achieved by using data stream mining
algorithms as proposed in our approach. Neural networks have also been used for
traffic state estimation and short-term prediction (Bogenberger et al. 2003; Chen and
Grant-Muller 2001). As neural networks are easily applicable for data streams, we
will also compare some of them with the performance of the decision tree algorithms
included in MOA in future work.

Approaches for data quality extensions in DSMS mainly consider Quality of
Service aspects, i.e., to monitor the system performance during query processing
and adapt the system configuration if certain quality criteria are not met. Some
of these approaches have a very coarse granularity and are only considering the
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quality of the outputs (e.g., Schmidt et al. 2004; Abadi et al. 2003), while others
measure data quality at each operator and for each stream element or window (Abadi
et al. 2005; Klein and Lehner 2009). Most approaches allow system-based quality
measures, such as throughput or performance, while some also provide user-defined
and content-related quality measurement beyond Quality-of-Service applications,
e.g. in Klein and Lehner (2009). In contrast, we allow a very flexible and fine-
granular definition of data quality and its measurement in our framework. The
framework is based on a modularized ontology which allows for defining system-
based as well as application-based data quality metrics using rules and numerical
expressions (Geisler et al. 2011).

6 Conclusion and Outlook

For intelligent transportation systems, and especially safety applications, high
effectiveness is a crucial success factor. Applications producing low quality results
are quickly rejected by users, because they do not trust them or are desensitized
by false alarms. The presented framework is a step towards evaluating traffic
applications based on mobile and static data sources in a realistic setting. The
framework enables ITS providers to test several system configurations, data sources,
and algorithms and allows to derive advices for productive systems. For example,
we showed, that data from C2X messages can be utilized to derive hazard warnings
even if the penetration rate is low. Of course, simulation studies always have to
be validated against reality and one future aim is to try out the optimal set of
parameter values in a real traffic scenario. For this, a model has to be learned
in several simulation runs with varying traffic situations. The model can then be
used for classification of data produced by real traffic situations. Depending on the
effectiveness, the model has to be adapted in simulation again. To approximate
reality in the simulation as close as possible, the real traffic data (e.g., speed
measures) can be used in the traffic simulation.

Our work also revealed, that ITS are an interesting application area for data
stream concepts and management systems. As current and future traffic applications
and their users require real-time processing and response, data stream manage-
ment and mining concepts proved to be a perfect match in the case studies we
analyzed and look promising for other applications. Additionally, the continuous
quality monitoring in the framework helps to keep up user trust and gives feedback
to ITS developers. So far, we utilized existing processing and analysis algorithms to
realize the described use cases, but the experiments also showed that the potential
for tweaking has not been fully exploited. For example, we will investigate more
complex techniques better suited for data streams to balance training examples.
Example scenarios for concept drift, e.g., to simulate a full day with bursty and
low traffic periods, would be also a challenge.
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