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Introduction

In March 1999, the National Center for Geographic Information and Analysis
based at the University of California at Santa Barbara held a workshop on
Discovering Geographic Knowledge in Data-Rich Environments. This workshop
resulted in a seminal, landmark, edited volume (Miller and Han 2001a) that brought
together research papers contributed by many of the participants at that workshop.
In their introductory essay, Miller and Han (2001b) observe that geographic
knowledge discovery (GKD) is a nontrivial, special case of knowledge discovery
from databases (KDD). They note that this is in part due to the distinctiveness
of geographic measurement frameworks, problems incurred and resulting from
spatial dependency and heterogeneity, the complexity of spatiotemporal objects
and rules, and the diversity of geographic data types. Miller and Han’s book was
enormously influential and, since publication, has garnered almost 350 citations.
Not only has it been well cited but in 2009 a second edition was published. Our
current volume revisits many of the themes introduced in Miller and Han’s book.
In the collection of six papers presented here, we address current concerns and
developments related to spatiotemporal data mining issues in remotely sensed data,
problems in meteorological data such as tornado formation, simulations of traffic
data using OpenStreetMap, real-time traffic applications of data stream mining,
visual analytics of traffic and weather data, and the exploratory visualization of
collective, mobile objects such as the flocking behavior of wild chickens.

Our volume begins with a discussion of computation in hyperspectral imagery
data analysis by Mark Salvador and Ron Resmini. Hyperspectral remote sensing is
the simultaneous acquisition of hundreds of narrowband images across large regions
of the electromagnetic spectrum. Hyperspectral imagery (HSI) contains information
describing the electromagnetic spectrum of each pixel in the scene, which is
also known as the spectral signature. Although individual spectral signatures
are recognizable, knowable, and interpretable, algorithms with a broad range of
sophistication and complexity are required to sift through the immense quantity of
spectral signatures and to extract information leading to the formation of useful
products. Large hyperspectral data cubes were once thought to be a significant
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vi Introduction

data mining and data processing challenge, prompting research in algorithms,
phenomenology, and computational methods to speed up analysis.

Although modern computer architectures make quick work of individual hy-
perspectral data cubes, the preponderance of data increases significantly year
after year. HSI analysis still relies on accurate interpretation of both the analysis
methods and the results. The discussion in this chapter provides an overview of
the methods, algorithms, and computational techniques for analyzing hyperspectral
data. It includes a general approach to analyzing data, expands into computational
scope, and suggests future directions.

The second chapter, authored by Amy McGovern, Derek H. Rosendahl, and
Rodger Brown, uses time series data mining techniques to explain tornado genesis
and development. The mining of time series data has gained a lot of attention from
researchers in the past two decades. Apart from the obvious problem of handling
the typically large size of time series databases—gigabytes or terabytes are not
uncommon—most classic data mining algorithms do not perform or scale well on
time series data. This is mainly due to the inherent structure of the data, that is, high
dimensionality and feature correlation, which pose challenges that render classic
data mining algorithms ineffective and inefficient. Besides individual time series, it
is also common to encounter time series with one or more spatial dimensions. These
spatiotemporal data can appear in the form of spatial time series or moving object
trajectories. Existing data mining techniques offer limited applicability to most
commercially important and/or scientifically challenging spatiotemporal mining
problems, as the spatial dimensions add an increased complexity to the analysis of
the data. To manipulate the data efficiently and discover nontrivial spatial, temporal,
and spatiotemporal patterns, there is a need for novel algorithms that are capable of
dealing with the challenges and difficulties posed by the temporal aspect of the data
(time series) as well as handling the added complexity due to the spatial dimensions.

The mining of spatiotemporal data is particularly crucial for fields such as the
earth sciences, as its success could lead to significant scientific discovery. One
important application area for spatiotemporal data mining is the study of natural
phenomena or hazards such as tornadoes. The forecasting of tornadoes remains
highly unreliable – its high false alarm rate causes the public to disregard valid
warnings. There is clearly a need for scientists to explore ways to understand
environmental factors that lead to tornado formations. Toward that end, the authors
of this chapter propose novel spatiotemporal algorithms that identify rules, salient
variables, or patterns predictive of tornado formation. Their approach extends
existing algorithms that discover repetitive patterns called time series motifs. The
multidimensional motifs identified by their algorithm can then be used to learn
predictive rules. In their study, they identify ten statistically significant attributes
associated with tornado formation.

In the third chapter, Guido Cervone and Pasquale Franzese discuss the estimation
of the release rate for the nuclear accident that occurred at the Fukushima Daiichi
nuclear power plant. Unlike a traditional source detection problem where the
location of the source is one of the unknowns, for this accident the main task is
to determine the amount of radiation leaked as a function of time. Determining the
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amount of radiation leaked as a result of the accident is of paramount importance to
understand the extent of the disaster and to improve the safety of existing and future
nuclear power plants.

A new methodology is presented that uses spatiotemporal data mining to
reconstruct the unsteady release rate using numerical transport and dispersion
simulations together with ground measurements distributed across Japan. As in the
previous chapter, the time series analysis of geographically distributed data is the
main scientific challenge. The results show how geoinformatics algorithms can be
used effectively to solve this class of problems.

Jorg Dallmeyer, Andreas Lattner, and Ingo Timm, the authors of the fourth
chapter, explain how to build a traffic simulation using OpenStreetMap (OSM),
perhaps the best known example of a volunteered geographic database that relies
on the principles of crowd sourcing. Their chapter begins with an overview of
their methodology and then continues with a discussion of the characteristics of the
OSM project. While acknowledging the variable quality of the OSM network, the
authors demonstrate that it is normally sufficient for the traffic simulation purposes.
OSM uses an XML format, and they suggest that it is preferable to parse this for
input to a Geographic Information System (GIS). Their process involves the use
of an SAX (Simple API for XML) parser and subsequently the open source GIS
toolkit GeoTools. This toolkit is also used to generate the initial graph of the road
network. Additional processing steps are then necessary to generate important real-
world components of the road network, including traffic circles, road type and road
user information, and bus routes among other critical details that are important for
creating realistic and useful traffic simulations.

A variety of simulation models that focus on multimodal traffic in urban
scenarios are produced. The various modes include passenger cars, trucks, buses,
bicycles, and pedestrians. The first of these is a space-continuous simulation based
on the Nagel-Schreckenberg model (NSM). The bicycle model is a particularly
interesting contribution of this chapter since, as the authors correctly observe,
it has been little studied in transportation science so far. Similarly pedestrians
too have been largely neglected, and integrating both bicycles and pedestrians
into the traffic simulation is a noteworthy contribution. An especially intriguing
aspect of the research by Dallmeyer and his colleagues is the section of their
chapter that describes learning behavior in the various traffic scenarios. Supervised,
unsupervised, and reinforcement learning are all examined. In the former, the
desired output of the learning process is known in advance. This is not the case
in the latter two instances. In addition, in reinforcement learning, the driver, cyclist,
or pedestrian receives no direct feedback.

The final section of this chapter considers a series of case studies based on
Frankfurt am Main, Germany. The simulations based on this city are shown to be
able to predict traffic jams with a greater than 80% success rate. Subsequent research
will focus on models to predict gas consumption and CO2 emissions.

The work by Sandra Geisler and Christoph Quix, the authors of our fifth chapter,
relies, in part, on traffic simulations similar to those discussed by Dallmeyer and
his colleagues. This chapter describes a complete system for analyzing the large
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data sets that are generated in intelligent transportation systems (ITS) from sensors
that are now being integrated into car monitoring systems. Such sensor systems
are designed to increase both comfort and, more importantly, safety. The safety
component that involves warning surrounding vehicles of, for example, a sudden
braking action has been termed Geocasting or GeoMessaging. The goal of ITS
is to monitor the state of the traffic over large areas at the lowest possible costs.
In order to produce an effective transportation management system using these
data, Geisler and Quix observe that they must handle extremely large amounts
of data, in real time with high levels of accuracy. The aim of their research is
to provide a framework for evaluating data stream ITS using various data mining
procedures. This framework incorporates traffic simulation software, a Data Stream
Management System (DSMS), and data stream mining algorithms for mining the
data stream. In addition, the Massive Online Analysis (MOA) framework that
they exploit permits flexibility in monitoring data quality using an ontology-based
approach. A mobile Car-to-X (C2X) communication system is integrated into the
structure as part of the communication system. The architecture of the system was
initially designed as part of the CoCar Project. The system ingests data from several
primary sources: cooperative cars, floating phone data, and stationary sources.
The DSMS includes aggregation and integration steps that are followed by data
accuracy assessments and utilizes the Global Sensor Network system. Following
this, data mining algorithms are used for queue end detection and traffic state
analysis. Historical and spatial data are imported prior to the export of the traffic
messaging. The spatial database resolves the transportation network into 100 m arcs.
To determine the viability of the system, data are generated using the VISSIM traffic
simulation software. A particularly significant feature of the authors’ approach is to
use a flexible set of data quality metrics in the DSMS. These metrics are application,
content, and query specific.

The effectiveness of the framework is examined in a series of case studies. The
first set of case studies concerned traffic queue end detection based on the detection
of hazards resulting from traffic congestion. A second group of studies used a road
network near Dusseldorf, Germany, and involved traffic state estimation based on
four states: free, dense, slow moving, and congested. The chapter concludes with
a discussion of other ways in which data streaming management systems could be
applied to ITS problems, including the simulation of entire days of traffic with high
variance conditions that would include both bursts of congestion and relatively calm
interludes.

Snow removal and the maintenance of safe driving conditions are perennial
concerns for many high-latitude cities in the northern hemisphere during the winter
months. Our sixth chapter by Yuzuru Tanaka and his colleagues, Jonas Sjöbergh,
Pavel Moiseets, Micke Kuwahara, Hajime Imura, and Tetsuya Yoshida, at the
University of Hokkaido, in Sapporo, Japan, develops a variety of software and data
mining tools within a federated environment for addressing and resolving these
predicaments. Although snow removal presents operational difficulties for many
cities, few face the challenges encountered in Sapporo where the combination of
a population of almost two million and an exceptionally heavy snowfall makes
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timely and efficient removal an ongoing necessity to avoid unacceptable levels of
traffic congestion. Data mining techniques use data from taxis and so-called probe
cars, another form of volunteered geographic information, to track vehicle location
and speed. In addition, these data are supplemented with meteorological sensor and
snow removal data along with claims to call centers and social media data from
Twitter.

The chapter proposes and develops an integrated geospatial visualization and
analytics environment. The enabling, integration technology is the Webble World
environment developed at Tanaka’s Meme Media Laboratory at the University of
Hokkaido. The visual components of this environment, known as Webbles, are then
integrated into federated applications. To integrate the various components of this
system, including the GIS, statistical and knowledge discovery tools, and social
networking systems (SNS) such as Twitter, specific wrappers are written for Esri’s
ArcView software and generic wrappers are developed in R and Octave for the
remaining components. The chapter provides a detailed description of the Webble
World framework as well as information on how readers may access the system and
experiment for themselves.

Case studies for snowfall during 2010 and 2011 are described when data for
about 2,000 taxis were accessed. The data are processed into street segments for
the Sapporo road network. The street segments are then grouped together using
a spherical k-means clustering algorithm. Differences in traffic characteristics,
for example, speed, congestion, and other attributes, between snowfall and non-
snowfall and before and after snow removal are then visualized. The beauty of the
system is the ease with which the Webble World environment integrates the various
newly federated data streams. In addition, mash-ups of the probe car and the weather
station, call center complaints, and Twitter tweets are also discussed.

Chapter 7, our final chapter, written by Tetsuo Kobayashi and Harvey Miller,
concerns exploratory spatial data analysis for the visualization of collective mobile
objects data. Recent advances in mobile technology have produced a vast amount
of spatiotemporal trajectory data from moving objects. Early research work on
moving objects has focused on techniques that allow efficient storage and querying
of data. In recent years, there has been an increasing interest in finding patterns,
trends, and relationships from moving object trajectories. In this chapter, the authors
introduce a visualization system that summarizes (aggregates) moving objects based
on their spatial similarity, using different levels of temporal granularity. Its ability
to process a large amount of data and produce a compact representation of these
data allows the detection of interesting patterns in an efficient manner. In addition,
the user-interactive capability facilitates dynamic visual exploration and a deep
understanding of data. A case study on wild chicken movement trajectories shows
that the combination of spatial aggregation and varying temporal granularity is
indeed effective in detecting complex flocking behavior.

Washington D.C., Guido Cervone, Jessica Lin
Nigel Waters
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Computation in Hyperspectral Imagery (HSI)
Data Analysis: Role and Opportunities

Mark Salvador and Ron Resmini

Abstract Successful quantitative information extraction and the generation of
useful products from hyperspectral imagery (HSI) require the use of computers.
Though HSI data sets are stacks of images and may be viewed as images by analysts,
harnessing the full power of HSI requires working primarily in the spectral domain.
Algorithms with a broad range of sophistication and complexity are required to
sift through the immense quantity of spectral signatures comprising even a single
modestly sized HSI data set. The discussion in this chapter will focus on the analysis
process that generally applies to all HSI data and discuss the methods, approaches,
and computational issues associated with analyzing hyperspectral imagery data.

Keywords Remote sensing • Hyperspectral • Hyperspectral imagery • Multi-
spectral • VNIR/SWIR • LWIR • Computational science

1 Introduction

Successful quantitative information extraction and the generation of useful products
from hyperspectral imagery (HSI) require the use of computers. Though HSI data
sets are stacks of images and may be viewed as images by analysts (‘literal’
analysis), harnessing the full power of HSI requires working primarily in the spectral
domain. And though individual spectral signatures are recognizable, knowable, and

M. Salvador (�)
Integrated Sensing and Information Systems, Exelis Inc., 12930 Worldgate Drive,
Herndon, VA 20170, USA
e-mail: mzsalvador@icloud.com

R. Resmini
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G. Cervone et al. (eds.), Data Mining for Geoinformatics: Methods and Applications,
DOI 10.1007/978-1-4614-7669-6 1, © Springer ScienceCBusiness Media New York 2014
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2 M. Salvador and R. Resmini

interpretable,1 algorithms with a broad range of sophistication and complexity are
required to sift through the immense quantity of spectral signatures comprising
even a single modestly sized HSI data set and to extract information leading to
the formation of useful products (‘nonliteral’ analysis).

But first, what is HSI and why acquire and use it? Hyperspectral remote
sensing is the collection of hundreds of images of a scene over a wide range
of wavelengths in the visible (�0.40 micrometers or �m) to longwave infrared
(LWIR, �14.0 �m) region of the electromagnetic spectrum. Each image or band
samples a small wavelength interval. The images are acquired simultaneously and
are thus coregistered with one another forming a stack or image cube. The majority
of hyperspectral images (HSI) are from regions of the spectrum that are outside
the range of human vision which is �0.40 to �0.70 �m. Each HSI image results
from the interaction of photons of light with matter: materials reflect (or scatter),
absorb, and/or transmit electromagnetic radiation (see, e.g., Hecht 1987; Hapke
1993; Solé et al. 2005; Schaepman-Strub et al. 2006; and Eismann 2012, for detailed
discussions of these topics fundamental to HSI). Absorbed energy is later emitted
(and at longer wavelengths—as, e.g., thermal emission). The light energy which is
received by the sensor forms the imagery. Highly reflecting materials form bright
objects in a band or image; absorbing materials (from which less light is reflected)
form darker image patches. Ultimately, HSI sensors detect the radiation reflected
(or scattered) from objects and materials; those materials that mostly absorb light
(and appear dark) are also reflecting (or scattering) some photons back to the sensor.
Most HSI sensors are passive; they only record reflected (or scattered) photons of
sunlight or photons self-emitted by the materials in a scene; they do not provide their
own illumination as is done by, e.g., lidar or radar systems. HSI is an extension of
multispectral imagery remote sensing (MSI; see, e.g., Jensen 2007; Campbell 2007;
Landgrebe 2003; Richards and Jia 1999). MSI is the collection of tens of bands of
the electromagnetic spectrum. Individual MSI bands or images sample the spectrum
over larger wavelength intervals than do individual HSI images.

The discussion in this chapter will focus on the analysis process beginning with
the best possible calibrated at-aperture radiance data. Collection managers/data con-
sumers/end users are advised to be cognizant of the various figures of merit (FOM)
that attempt to provide some measure of data quality; e.g., noise equivalent spectral
radiance (NESR), noise equivalent change of reflectance (NE�¡), noise equivalent
change of temperature (NE�T), and noise equivalent change of emissivity (NE�").

What we will discuss generally applies, at some level, to all HSI data: visible/
near-infrared (VNIR) through LWIR. There are procedures that are applied to the
midwave infrared (MWIR) and LWIR2 that are not applied to VNIR/shortwave

1The analyst is encouraged to study and become familiar with several spectral signatures likely
to be found in just about every earth remote sensing data set: vegetation, soils, water, concrete,
asphalt, iron oxide (rust), limestone, gypsum, snow, paints, fabrics, etc.
2The MWIR and LWIR (together or individually) may be referred to as the thermal infrared or
TIR.
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infrared (SWIR); e.g., temperature/emissivity separation (TES). Atmospheric com-
pensation (AC) for thermal infrared (TIR) spectral image data is different (and,
for the MWIR,3 arguably more complicated) than for the VNIR/SWIR. But such
differences notwithstanding, the bulk of the information extraction algorithms
and methods (e.g., material detection and identification; material mapping)—
particularly after AC—apply across the full spectral range from 0.4 �m (signifying
the lower end of the visible) to 14 �m (signifying the upper end of the LWIR).

What we won’t discuss (and which require computational resources): all the
processes that get the data to the best possible calibrated at-aperture radiance;
optical distortion correction (e.g., spectral smile); bad/intermittent pixel correction;
saturated pixel(s) masking; “NaN” pixel value masking; etc.

Also, we will not rehash the derivation of algorithm equations; we’ll provide the
equations, a description of the terms, brief descriptions that will give the needed
context for the scope of this chapter, and one or more references in which the reader
will find significantly more detail.

2 Computation for HSI Data Analysis

2.1 The Only Way to Achieve Success in HSI Data Analysis

No amount of computational resources can substitute for practical knowledge of the
remote sensing scenario (or problem) for which spectral image (i.e., HSI) data have
been acquired. Successful HSI analysis and exploitation are based on the application
of several specialized algorithms deeply informed by a detailed understanding of
the physical, chemical, and radiative transfer (RT) processes of the scenario for
which the imaging spectroscopy data are acquired. Thus, the astute remote sensing
data analyst will seek the input of a subject matter expert (SME) knowledgeable of
the materials, objects, and events captured in the HSI data. The analyst, culling as
many remote sensing and geospatial data sources as possible (e.g., other forms of
remote sensing imagery; digital elevation data) should work collaboratively with the
SME (who is also culling as many subject matter information sources as possible)
through much of the remote sensing exploitation flow—each informing the other
about analysis strategies, topics for additional research, and materials/objects/events
to be searched for in the data. It behooves the analyst to be a SME; remote sensing
is, after all, a tool; one of many today’s multi-disciplinary professional should bring
to bear on a problem or a question of scientific, technical, or engineering interest.

It s important to state again, no amount of computational resources can substitute
for practical knowledge of the problem and its setting for which HSI data have been

3We will no longer mention the MWIR; though the SEBASS sensor (Hackwell et al. 1996) provides
MWIR data, very little have been made available. MWIR HSI is an area for research, however.
MWIR data acquired during the day time have a reflective and an emissive component which
introduces some interesting complexity for AC.
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Fig. 1 The general HSI data
analysis flow. Our discussion
will begin at the box indicated
by small arrow in top box:
‘Look At/Inspect the Data’

acquired. Even with today’s desktop computational resources such as multi-core
central processing units (CPUs) and graphics processing units (GPUs), brute force
attempts to process HSI data without specific subject matter expertise simply lead
to poor results faster. Stated alternatively, computational resources should never be
considered a substitute (or proxy) for subject matter expertise. With these caveats in
mind, let’s now proceed to discussing the role of computation in HSI data analysis
and exploitation.

2.2 When Computation Is Needed

The General HSI Data Analysis Flow

The general HSI data analysis flow is shown in Fig. 1. We will begin our discussion
with ‘Look At/Inspect the Data’ (indicated by small arrow in top box). The flow
chart from this box downwards is essentially the outline for the bulk of this chapter.
The flow reflects the data analyst’s perspective though he/she, as a data end-user,
will begin at ‘Data Ingest’ (again assuming one starts with the best possible, highest-
quality, calibrated at-aperture radiance data).
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Though we’ll follow the flow of Fig. 1, there is, implicitly, a higher-level
clustering of the steps in the figure. This shown by the gray boxes subsuming
one or more of the steps and which also form a top-down flow; they more
succinctly indicate when computational resources are brought to bear in HSI data
analysis. For example, ‘Data Ingest’, ‘Look At/Inspect the Data’ and ‘Atmospheric
Compensation’ may perhaps logically fall into something labeled ‘Computation
Before Full-Scene Data Analysis’. An example of this is the use of stepwise least-
squares regression analysis4 to select the best bands and/or combination of bands
that best map one or more ground-truth parameters such as foliar chemistry derived
by field sampling (and laboratory analysis) at the same time an HSI sensor was
collecting (Kokaly and Clark 1999). We refer to this as ‘regression remote sensing’;
there is a computational burden for the statistical analyses that generate coefficients
for one (or more) equations which will then be applied to the remotely sensed HSI
data set. The need for computational resources can vary widely in this phase of
analysis. The entire pantheon of existing (and steady stream of new) multivariate
analysis, optimization, etc., techniques for fitting and for band/band combinations
selection may be utilized.

Atmospheric compensation (AC) is another example. There are numerous AC
techniques that ultimately require the generation of look-up-tables (LUTs) with RT
(radiative transfer) modeling. The RT models are generally tuned to the specifics
of the data for which the LUTs will be applied (e.g., sensor altitude, time of day,
latitude, longitude, expected ground cover materials); the LUTs may be generated
prior to (or at the very beginning of) HSI data analysis.

The second gray box subsumes ‘Algorithms for Information Extraction’ and all
subsequent boxes down to (and including) ‘Iteration’ (which isn’t really a process
but a reminder that information extraction techniques should be applied numerous
times with different settings, with different spatial and spectral subsets, with in-
scene and with library signatures, different endmember/basis vector sets, etc.). This
box is labeled ‘Computation During Full-Scene Data Analysis’.

The third box covers the remaining steps in the flow and is labeled ‘Computation
After Full-Scene Data Analysis’. We won’t have much to say about this phase of HSI
analysis beyond a few statements about the need for computational resources for
geometric/orthorectification post-processing of HSI-derived results and products.

Experienced HSI practitioners may find fault with the admittedly coarse two-tier
flow categorization described above. And indeed, they’d have grounds for argument.
For example, a PCA may rightly fall into the first gray box ‘Computation Before
Full-Scene Data Analysis’. Calculation of second order statistics for a data cube
(see below) and the subsequent generation of a PC-transformed cube for use in data
inspection may be accomplished early on (and automatically) in the data analysis
process—and not in the middle gray box in Fig. 1. Another example is AC. AC is
significantly more than the early-on generation of LUTs. There is the actual process

4Or principal components regression (PCR) or partial least squares regression (PLSR; see, e.g.,
Feilhauer et al. 2010).
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of applying the LUT with an RT expression to the spectra comprising the HSI cube.
This processing (requiring band depth mapping, LUT searching, optimization, etc.)
is part of the core HSI analysis process and is not merely a ‘simple’ LUT-generation
process executed early on. Other AC tools bring to bear different procedures that
may also look more like ‘Computation During Full-Scene Data Analysis’ such as
finding the scene endmembers (e.g., the QUAC tool; see below).

Nonetheless, a structure is needed to organize our presentation and what’s been
outlined above will suffice. We will thus continue our discussion guided by the
diagram in Fig. 1. Exemplar algorithms and techniques for each process will
be discussed. Ground rules. (1) Acronyms will be used in the interest of space;
an acronym table is provided in an appendix. (2) We will only discuss widely
recognized, ‘mainstream’ algorithms and tools that have been discussed in the
literature and are widely used. References are provided for the reader to find out
more about any given algorithm or tool mentioned. (3) Discussions are necessarily
brief. Here, too, we assume that the literature citations will serve as starting points
for the reader to gather much more information on each topic. A later section lists a
few key sources of information commonly used by the growing HSI community of
practice.

Computation Before Full-Scene Data Analysis

Atmospheric Compensation (AC)

AC is the process of converting calibrated at-aperture radiance data to reflectance,
¡(œ), for the VNIR/SWIR and to ground-leaving radiance data (GLR) for the LWIR.
LWIR GLR data are then converted to emissivity, "(œ), by temperature/emissivity
separation (TES).5 Though AC is considered primarily the process for getting ¡(œ)
and "(œ), it may also be considered an inversion to obtain the atmospheric state
captured in the HSI data. Much has been written about AC for HSI (and MSI).
Additionally, AC borrows heavily from atmospheric science—another field with an
extensive literature.

AC is accomplished via one of two general approaches. (1) In scene methods
such as QUAC (Bernstein et al. 2005) or ELM, both for the VNIR/SWIR; or ISAC
(Young et al. 2002) for the LWIR. (2) RT models such as MODTRAN.6 In practice,
the RT models are used in conjunction with in-scene data such as atmospheric water
vapor absorption band-depth to guide LUT search for estimating transmissivity.
Tools such as FLAASH (Adler-Golden et al. 2008) are GUI-driven and combine
the use of MODTRAN and the interaction with the data to generate reflectance.
The process is similar for the LWIR; AAC is an example of this (Gu et al. 2000).

5Reflectivity and emissivity are related by Kirchhoff’s law: "(œ) D 1� ¡(œ).
6MODTRAN (v5) is extremely versatile and may be used for HSI data from the VNIR through the
LWIR.
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It is also possible to build a single RT model based tool to ingest LWIR at-aperture
radiance data and generate emissivity that essentially eliminates (actually subsumes)
the separate TES process.

In-scene AC methods span the range of computational burden/overhead from
low (ELM) to moderate/high (QUAC). RT methods, however, can span the gamut
from ‘simple’ LUT generation to increasing the complexity of the RT expressions
and numerical analytical techniques used in the model. This is then followed by
increasing the complexity of the various interpolation and optimization schemes
utilized with the actual remotely sensed data to retrieve reflectance or emissivity.
Here, too, when trying to match a physical measurement to modeled data, the
entire pantheon of existing and emerging multivariate analysis, optimization, etc.,
techniques may be utilized.

In a nutshell, quite a bit of AC for HSI is RT-model driven combined with in-
scene information. It should also be noted that typical HSI analysis generates one
AC solution for each scene. Depending on the spatial dimensions of the scene, its
expected statistical variance, or scene-content complexity, one or several solutions
may be appropriate. As such, opportunities to expend computational resources
utilizing a broad range of algorithmic complexity are many.

Regression Remote Sensing

Regression remote sensing was described above and is only briefly recapped here. It
is exemplified by the use of stepwise least-squares regression analysis to select the
best bands or combination of bands that correlate one (or more) desired parameters
from the data. An example would be foliar chemistry derived by field sampling
(followed by laboratory analysis) at the same time an HSI sensor was collecting.
Coefficients are generally derived using the actual remotely sensed HSI data (and
laboratory analyses) but may be derived using ground-truth point spectrometer data
(with sampling characteristics comparable to the airborne HSI sensor; see ASD, Inc.
2012). Computation is required for the statistical analyses that generate coefficients
for the model (regression) equation (e.g., an nth-degree polynomial) which will
then be applied to the remotely sensed HSI data set. The need for computational
resources can vary widely. Developers may draw on a large and growing inventory
of techniques for multivariate analysis, optimization, etc., techniques for fitting and
for feature selection. The ultimate application of the model to the actual HSI data is
generally not algorithmically demanding or computationally complex.

Computation During Full-Scene Data Analysis

Data Exploration: PCA, MNF, and ICA

Principal components analysis (PCA), minimum noise fraction (MNF; Green et al.
1988), and independent components analysis (ICA; e.g., Comon 1994) are statistical
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transformations applied to multivariate data sets such as HSI. They are used to:
(1) assess data quality and the presence of measurement artifacts; (2) estimate data
dimensionality; (3) reduce data dimensionality (see, e.g., the ENVI® Hourglass; ITT
Exelis-VIS 2012); (4) separate/highlight unique signatures within the data; and (5)
inspect the data in a space different than its native wavelength-basis representation.
Interesting color composite images may be built with PCA and MNF results that
draw an analyst’s attention to features that would otherwise have been overlooked in
the original, untransformed space. Second and higher-order statistics are estimated
from the data; an eigendecomposition is applied to the covariance (or correlation)
matrix. There is perhaps little frontier left in applying PCA and MNF to HSI.
The algorithmic complexity and computational burden of these frequently applied
processes is quite low when the appropriate computational method is chosen, such
as SVD. A PCA or MNF for a moderately sized HSI data cube completes in
under a minute on a typical desktop CPU. ICA is different; it is still an active
area of research. Computational burden is very high; on an average workstation, an
ICA for a moderately sized HSI data cube could take several hours to complete—
depending on the details of the specific implementation of ICA being applied—and
data volume.

The second-order statistics (e.g., the covariance matrix and its eigenvectors and
eigenvalues) generated by a PCA or an MNF may be used by directed material
search algorithms (see below). Thus, these transformations may be applied early on
for data inspection/assessment and to generate information that will be used later in
the analysis flow.

HSI Scene Segmentation/Classification

HSI Is to MSI as Spectral Mixture Analysis (SMA) Is to ‘Traditional’
MSI Classification

Based on traditional analysis of MSI, it has become customary to classify spectral
image data—all types. Traditional scene classification as described in, e.g., Richards
and Jia (1999) and Lillesand et al. (2008), is indeed possible with HSI but with
caveat. (1) Some of the traditional supervised and unsupervised MSI classification
algorithms are unable to take full advantage of the increased information content
inherent in the very high dimensional, signature-rich HSI data. They report dimin-
ishing returns in terms of classification accuracy after some number of features
(bands) is exceeded—absorbing computation time but providing no additional
benefit.7 (2) For HSI, it is better to use tools based on spectral mixture analysis

7This phenomenon has indeed been demonstrated. It is most unfortunate, however, that it has been
used to impugn HSI technology when it is really an issue with poor algorithm selection and a lack
of understanding of algorithm performance and of the information content inherent in a spectrum.
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(SMA; see, e.g., Adams et al. 1993).8 SMA attempts to unravel and identify spectral
signature information from two or more materials captured in the ground resolution
cell that yields a pixel in an HSI data cube. The key to successful application of
SMA and/or an SMA-variant is the selection of endmembers. And indeed, this
aspect of the problem is the one that has received, in our opinion, the deepest,
most creative, and most interesting thinking over the last two decades. Techniques
include (but certainly not limited to) PPI (Boardman et al. 1995), N-FINDR (Winter
1999), SMACC (Gruninger et al. 2004; ITT Exelis-VIS 2011), MESMA/Viper
Tools (Roberts et al. 1998), and AutoMCU (Asner and Lobell 2000). The need
for computational resources varies widely based on the endmember selection
method. (3) If you insist on utilizing heritage MSI methods (for which the need for
computation also varies according to method utilized), we suggest that you do so
to the full range HSI data set, and then repeat with successively smaller spectral
subsets and compare results. Indeed, consider simulating numerous MSI sensor
data sets with HSI by resampling the HSI down to MSI using the MSI systems’
bandpass/spectral response functions. More directly, simulate an MSI data set using
best band selection (e.g., Keshava 2004) based on the signature(s) of the class(es) to
be mapped. Some best band selection approaches have tended to be computationally
intensive, though not all. Best band selection is a continuing opportunity for the role
of computation in spectral image analysis.

Additional opportunities for computation include combining spectral- and object-
based scene segmentation/classification by exploiting the high spatial resolution
content of ground-based HSI sensors.

Directed Material Search

The distinction between HSI and MSI is starkest when considering directed material
searching. The higher spectral resolution of HSI, the generation of a spectral
signature, the resolution of spectral features, facilitates directed searching for
specific materials that may only occur in a few or even one pixel (or even be
subpixel in abundance within those pixels). HSI is best suited for searching for—and
mapping of—specific materials and this activity is perhaps the most common use of
HSI. There is a relationship with traditional MSI scene classification, but there are
very important distinctions and a point of departure from MSI to HSI. Traditional
classification is indeed material mapping but a family of more capable algorithms
can take more advantage of the much higher information content inherent in an HSI
spectrum.9 The following sections describe the various algorithms.

8Also known as spectral unmixing/linear spectral unmixing (LSU), subpixel analysis, subpixel
abundance estimation, etc. The mixed pixel, and the challenges it presents, is a fundamental
concept underlying much of the design of HSI algorithms and tools.
9These algorithms may also be (and have been) applied to MSI. At some level of abstraction, the
multivariate statistical signal processing-based algorithms that form the core HSI processing may
be applied to any multivariate data set (e.g., MSI, HSI, U.S. Dept. of Labor statistics/demographic
data) of any dimension greater than 1.
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Whole Pixel Matching: Spectral Angle and Euclidean Distance

Whole or single pixel matching is the comparison of two spectra. It is a fundamental
HSI function; it is fundamental to material identification: the process of matching
a remotely sensed spectrum with a spectrum of a known material (generally
computer-assisted but also by visual recognition). The two most common methods
to accomplish this are spectral angle (™) mapping (SAM) and minimum Euclidean
distance (MED).10 Note from the numerator of Eq. 1 that the core of SAM is a
dot (or inner) product between two spectra, s1 and s2 (the denominator is a product
of vector magnitudes); MED is the Pythagorean theorem in n-dimensional space.
There are many other metrics; many other ways to quantify distance or proximity
between two points in n-dimensional space, but SAM and MED are the most
common and their mathematical structure underpins the more sophisticated and
capable statistical signal processing based algorithms.

™ D cos�1

�
s1

Ts2

ks1k ks2k
�

(1)

Whole pixel, in the present context, refers to the process of matching two
spectral signatures; a relatively unsophisticated, simple (but powerful) operation.
Ancillary information, such as global second-order statistics or some other estimate
of background clutter is not utilized (but is in other techniques; see below). Thus,
subpixel occurrences of the material being sought may be missed.

There is little algorithmic or computational complexity required for these
fundamental operations—even if combined with statistical testing (e.g., the t-test
in CCSM of van der Meer and Bakker 1997).

Often, a collection of pixels (spectra) from an HSI data set is assumed to
represent the same material (e.g., the soil of an exposed extent of ground). These
spectra will not be identical to each other; there will be a range of reflectance
values within each band; this variation is physically/chemically real and not due
to measurement error. Similarly, rarely is there a single ‘library’ or ‘truth’ spectral
signature for a given material (gases within normal earth surface temperature and
pressure ranges being the notable exception). Compositional and textural variability
and complexity dictate that a suite of spectra best characterizes any given substance.
This is also the underlying concept to selecting training areas in MSI for scene
segmentation with, e.g., maximum likelihood classification (MLC). Thus, when
calculating distance, it is sometimes best to use metrics that incorporate statistics
(as MLC does). The statistics attempt to capture the shape of the cloud of points in
hyperspace and use this in estimating distance—usually between two such clouds.
Two examples are the Jeffries-Matusita (JM) distance and transformed divergence

10Sometimes also referred to as simply ‘minimum distance’ (MD).
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(TD). The reader is referred to Richards and Jia (1999) and Landgrebe (2003) for
more on the JM and TD metrics and other distance metrics incorporating statistics.
Generally speaking, such metrics require the generation and inversion of covariance
matrices. The use of such distance metrics is relatively rare in HSI analysis; they are
more commonly applied in MSI analysis.

Statistical Signal Processing: MF and ACE

Two pillars of HSI analysis are the spectral matched filter (MF; Eq. 2)11 and the
adaptive coherence/cosine estimator (ACE; Eq. 3) algorithms (see, e.g., Stocker
et al. 1990; Manolakis et al. 2003; Manolakis 2005). In Eqs. 2 and 3, � is the
global mean spectrum, t is the desired/sought target spectrum, x is a pixel from
the HSI data, and � is the covariance matrix (and thus ��1 is the matrix inverse).
MF and ACE are statistical signal processing based methods that use the data’s
second order statistics (i.e., covariance or correlation matrices) calculated either
globally or adaptively. In some sense, they are a culmination of the basic spectral
image analysis concepts and methods discussed up to this point. They incorporate
the Mahalanobis distance (which is related to the Euclidean distance) and spectral
angle, and they effectively deal with mixed pixels. They are easily described (and
derived) mathematically and are analytically and computationally tractable. They
operate quickly and require minimal analyst interaction. They execute best what HSI
does best: directed material search. Perhaps their only downside is that they work
best when the target material of interest does not constitute a significant fraction of
the scene thus skewing the data statistics upon which they are based (a phenomenon
sometimes called ‘target leakage’). But even here, at least for the MF, some work-
arounds such as reduced rank inversion of the covariance matrix can alleviate this
effect (e.g., Resmini et al. 1997). Excellent discussions are provided in Manolakis
et al. (2003), Chang (2003), and Schott (2007).12

DAMF .x/ D DMF .x/ D .t� �/T��1 .x � �/

.t � �/T��1 .t � �/
(2)

DACE .x/ D .t � �/T��1 .x � �/q
.t� �/T��1 .t � �/

q
.x� �/T��1 .x � �/

(3)

11There are various names for this algorithm. Some are reinventions of the same technique; others
represent methods that are variations on the basic mathematical structure as described in, e.g.,
Manolakis et al. (2003).
12As well as an historical perspective provided by the references cited in these works.
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Spectral Signature Parameterization (Wavelets, Derivative Spectroscopy,
SSA, ln(�))

HSI algorithms (e.g., SAM, MED, MF, ACE, SMA) may be applied, as appropriate,
to radiance, reflectance, GLR, emissivity, etc., data. They may also be applied to
data that have been pre-processed to, ideally, enhance desirable information while
simultaneously suppressing components that do not contribute to spectral signature
separation. The more common pre-processing techniques are wavelets analysis and
derivative spectroscopy. Other techniques include single scattering albedo (SSA)
transformation (Mustard and Pieters 1987; Resmini 1997), continuum removal, and
a natural logarithm transformation of reflectance (Clark and Roush 1984).

Other pre-processing includes quantifying spectral shape such as band depth,
width, and asymmetry to incorporate in subsequent matching algorithms and/or in
an expert system; see, e.g., Kruse (2008).

Implementing the Regression Remote Sensing Equations

As mentioned above, applying the model equation, usually an nth-degree polyno-
mial, to the HSI data is not computationally complex or algorithmically demanding.
The computational resources and opportunities are invested in the generation of the
regression coefficients.

Single Pixel/Superpixel Analysis

Often, pixels which break threshold following an application of ACE or MF are
subjected to an additional processing step. This is often (and rightly) considered the
actual material identification process but is largely driven by the desire to identify
and eliminate false alarms generated by ACE and MF (and every other algorithm).
Individual pixels or the average of several pixels (i.e., superpixels) which pass
threshold are subjected to matching against a spectral library and, generally, quite
a large library. This is most rigorously performed with generalized least squares
(GLS) thus incorporating the scene second-order statistics. This processing step
becomes very computationally intensive based on spectral library size and the
selection of the number of spectral library signatures that may be incorporated into
the solution. It is, nonetheless, a key process in the HSI analysis and exploitation
flow.

Anomaly Detection (AD)

We have not said anything to this point about anomaly detection (AD). The
definition of anomaly is context-dependent. E.g., a car in a forest clearing is an
anomaly; the same car in an urban scene is most likely not anomalous. Nonetheless,
the algorithms for AD are similar to those for directed material search; many
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are based on the second-order statistics (i.e., covariance matrix) calculated from
the data. For example, the Mahalanobis distance, an expression with the same
mathematical form as the numerator of the matched filter, is an AD algorithm.
Indeed, an application of the MF (or ACE) may be viewed as AD particularly if
another algorithm will be applied to the pixels that pass a user-defined threshold.
The MF, in particular, is known to be sensitive to signatures that are ‘anomalous’ in
addition to the signature of the material actually sought. Stated another way, the MF
has a reasonably good probability of detection but a relatively high false alarm rate
(depending, of course, on threshold applied to the result). This behavior motivated
the development of MTMF (Boardman 1998) as well as efforts to combine the
output of several algorithms such as MF and ACE. An image of residuals derived
from a spectral mixture analysis will also yield anomalies.

Given the similarity of AD methods to techniques already discussed, we will say
no more on this subject. The interested reader is referred to Manolakis et al. (2009),
and references cited therein, for more information.

Error Analysis

Error propagation through the entire HSI image chain or even through an application
of ACE or MF is still an area requiring additional investigation. Though target
detection theory (e.g., Neyman-Pearson [NP] theory; see Tu et al. 1997) may be
applied to algorithms that utilize statistics, there is a subtle distinction13 between
algorithm performance based on target-signal to background-clutter ratio (SCR;
and modifying this by using different spatial and spectral subsets with which data
statistics are calculated or using other means to manipulate the data covariance
matrix) and the impact of sensor noise on the fundamental ability to make a
radiometric measurement; i.e., the NESR, and any additional error terms introduced
by, e.g., AC (yielding the NE�¡). NESR impacts minimum detectable quantity
(MDQ) of a material, an HSI system (hardwareC algorithms) FOM. An interesting
assessment of the impact of signature variability on subpixel abundance estimation
is given in Sabol et al. (1992) and Adams and Gillespie (2006). See also Kerekes
(2008), Brown and Davis (2006), and Fawcett (2006) for detailed discussions
on receiver operating characteristic (ROC) curves14—another mechanism used to
assess HSI system performance and which also have dependencies on signature
variability/target SCR and FOMs such as NESR and NE�¡.

13And a relationship; i.e., signature variability will have two components contributing to the
two probability distribution functions in NP theory: an inherent, real variability of the spectral
signatures of materials and the noise in the measurement of those signatures imparted by the sensor.
14And area under the ROC curve or AUC.
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Computational Scope

Much has been said thus far about the algorithms used in HSI analysis. It is worth
pausing to discuss the computational implications of hyperspectral data exploitation
and the implementation of the algorithms. A typical hyperspectral imagery cube
may be 1,000 lines by 500 samples by 250 bands. That is 500,000 pixels or spectra.
And though most HSI sensors are 12 or 14 bit systems, the data are handled as 16-bit
information. Thus this example data cube is 2� 109 bits or 250 megabytes. Today,
this data cube is small in comparison to the random access memory (RAM) available
in modern computers. If read sequentially from RAM to the CPU this operation may
take less than 0.04 s. But this is a naı̈ve assessment as the number of operations that
must take place, the order in which the data must be read, programming language
applied, and the latencies between storage, memory, cache, and CPU must be
considered. Let’s take a quick look at the order of operations required for a simple
hyperspectral algorithm.

Using the above data cube size as an example, a simple calculation of Euclidean
distance requires a subtraction of one pixel vector from a reference vector (250
operations), a square of the elements of the result (250 operations), a sum of the
vector (249 operations), and a square root of the total (1 operation). This gives 750
operations for each pixel leading to 375 million operations to calculate Euclidean
distance for one reference spectrum. This is on the order of n operations where
nD # of pixels x # of bands. This can quickly escalate as the order of operations for
more complex algorithms can approach n2 operations (endmember decomposition)
or even n3 operations (non-linear methods).

In an ideal world with CPUs reporting performance in the 100 GFLOP range,
calculation time would appear to be trivial. But simply adding a 1 microsecond
delay to any of these operations results in seconds of latency. In assessing expected
performance of these algorithms it is insufficient to compare simple CPU or even
GPU reported processing performance. Other latencies of the system, memory
access and bandwidth, cache misses, memory and storage read and write speeds,
all contribute to the problem and must be assessed.

Interim Summary

Successful HSI analysis is based on the application of specialized algorithms deeply
informed by a detailed understanding of the physical, chemical, and radiative
transfer processes of the scenario for which the imaging spectroscopy data are
acquired. HSI data are significantly more than a seemingly indecipherable collection
of points in a high dimensional hyperspace to which an endless mish mash
of methods from electrical engineering, signal processing, multivariate analysis,
and optimization theory may be blindly applied as a substitute for any and all
understanding of the underlying nature and structure of the data and of the objects
for which the data were acquired. Apply a technique if its underlying assumptions



Computation in Hyperspectral Imagery (HSI) Data Analysis: Role and Opportunities 15

are met by the HSI data and/or the nature and structure of the HSI data and the
underpinning physical, chemical, and radiative transfer processes are amenable to
the information extraction capabilities of the method.

Miscellaneous Topics

There are many other topics that could be discussed; some commonly applied,
others still under development or not yet widely utilized. Topics in the former
category include: dimensionality reduction and/or data volume reduction (beyond
PCA and MNF); product generation via fusion with lidar and SAR, pan-sharpening,
georeferencing, and orthorectification; scene/data modeling and simulation with,
e.g., DIRSIG (Schott 2007) and FASSP (Kerekes 2012), and spectral signature
modeling. Topics in the later category include: topological methods (Basener
et al. 2007); expert systems (Clark et al. 2003; Kruse et al. 1993; Kruse and
Lefkoff 1993), genetic algorithms (Harvey et al. 2002), support vector machines
(SVMs), Bayesian model averaging (BMA; e.g., Burr and Hengartner 2006);
spatial and spectral data analysis (Resmini 2012); parallel processing/multicore
processing/high performance computing; computer-assisted/analyst interactive data
analysis and exploration, and visual analytics; and scientific databases (“big data”)
and data mining. The interested reader may readily find information on these and
many other topics in the scientific literature.

3 A Note to Developers and What’s Next

A new technique should be unique, stable, and robust. Its performance should not
be easily bested by a skilled, experienced analyst applying the well known, well
established toolbox of existing techniques to, say, different spatial and spectral
subsets of the HSI data set or after utilizing some simple pre-processing methods
(see, e.g., Funk et al. 2001) and/or by simply using the existing workhorse
algorithms and tools in sequence and combining the results. Developers are thus
urged to: (1) rigorously and honestly compare the performance of their new method
with the existing suite of standard tools in the field; (2) apply their new method
to a wide diversity of real remotely sensed data and not simply tune algorithm
performance for the data set used for development and testing; i.e., honestly probe
the technique’s performance bounds; and (3) perhaps most importantly, carefully
review (and cite) the literature to avoid reinventing the wheel. And it cannot be
stressed too strongly: computation is not a substitute for a deeper understanding
of the nature of HSI data and practical knowledge of the problem and its setting for
which the data have been acquired. That being said and emphasized, the next several
sections discuss how computational resources can be applied.
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3.1 Desktop Prototyping and Processing Peril

Many HSI practitioners develop new methods and algorithms out of necessity.
Solving unique problems requires development or modification of algorithms
for specific needs. The availability of desktop programming and mathematical
tools such as Matlab or IDL has increased our productivity tremendously. These
commercially available tools abstract complex algorithms into simple function calls
for easy implementation. This is not without peril. Although the majority of new
algorithm development applies sound fundamentals in regards to phenomenology,
there is a need to understand the computational complexities of these approaches. A
quick perusal of the help files of desktop prototyping tools such as Matlab or IDL
for a simple function such as matrix inverse, will lead to discussion and examples
of non-exact solutions and warnings of singular matrices. Since our fundamental
problem is that of remote sensing inversion (Twomey 1977), we must expect that
our computational results can yield non-exact or non-physical solutions. In addition,
a naı̈ve application of these functions may lead to significant computational issues
such as rounding and truncation due to machine precision. A simple computational
example (bDAx) for solving a set of linear equations in Matlab is illustrated below.
>> AD magic(3)
A D
8 1 6
3 5 7
4 9 2
>> A(:,1)D zeros(1,3)
A D
0 1 6
0 5 7
0 9 2
>> bD [1;2;5];
>> xD Anb
Warning: Matrix is singular to working precision.
xD
Inf
0.584905660377358
-0.132075471698113
>> xD pinv(A)*b
xD
0
0.531943065210195
-0.015557762330354
>> A*x-b
ansD
-0.561403508771931
0.550810989738495
-0.243627937768954
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In this example, we attempt to solve a set of linear equations using both Matlab’s
‘n’ operator (matrix inverse) and ‘pinv’ (pseudoinverse). Both solutions attempt a
least squares solution. In the case of matrix inverse the solution goes to infinity and
gives a warning of a singular matrix. Attempting a pseudoinverse leads to a solution,
but comparison to the original vector b leads to a surprising result. The function did
not fail, but the calculation did—and without warning.

The matrix inverse operation is key to many steps of the HSI analysis process
and necessitates a check of both data quality and validity of results. This example
illustrates sensitivity of a solution to the methods and values applied. As a practical
exercise, one may choose to attempt a spectral unmixing method with artifact-laden
or poorly calibrated data, e.g., bad/noisy bands, bands of all zeros, etc., and study
the stability and physical implications of the unmixing model and its residuals when
applying a pseudoinverse method.

Another critical operation to many algorithms is calculation of the covariance
matrix. This calculation is a relatively straight forward combination of subtraction
operations and array multiplication. While these operations present no inherent
computational issues, the choice and quantity of pixels used for covariance esti-
mation are critical. In regards to selection of which pixels to use, an assumption
in calculating covariance for the matched filter is that it represents a homogenous
background population. Target materials or anomalies present in the covariance
estimation significantly degrade performance of the matched filter. In regards to
quantity, the size of the background population for covariance estimation can
suffer from two pitfalls: (1) the pixels chosen should represent the variance of the
background data. Using pixels which are too similar or too varied (i.e., contain
target materials or anomalies) will again degrade performance of the algorithm. (2)
the quantity of pixels chosen should be sufficient to avoid computational issues of
inverting a singular matrix. A good rule of thumb is to estimate the covariance with
at least 10-times the number of data dimensions.

Significant effort has been made to ensure the computational accuracy of these
methods and their implementation in software packages. Many of the desktop
packages utilize the well known BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra Package) algorithm libraries first developed in the 1980s
and 1990s and continually updated (Anderson 1999). These libraries are highly
efficient implementations of numerical linear algebra methods for single and double
precision and real and complex calculations. Functions also return flags indicating
some measure of validity of the returned result. A basic understanding of these
methods and their implementation in desktop computing applications should not be
overlooked. This understanding parallels the deeper understanding of HSI data and
practical knowledge of the problem as stated previously.

3.2 Automated Processing and Time Critical Applications

Discussions so far have focused on analysis methods suited for manual or analyst-
interactive processing of individual HSI data sets. As the number of hyperspectral
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sensors and thus data increase in both military and civilian applications, the need for
automated processing increases. Although much can be said about the complexities
of this particular remote sensing problem, the need to automatically process data
for anomaly detection or directed material search remains. In general, automated
hyperspectral processing is driven by two circumstances: (1) the availability of
suitable data analysts; and (2) the need for time critical analysis. In regards to 1,
we believe it is safe to propose that the growth of HSI data will always exceed the
availability of suitable analysts. Given that, automated processing for a portion, if
not for all of HSI analysis, is necessary to support the limited availability of HSI
analysts.

In regards to 2, hyperspectral sensors as a reconnaissance and surveillance tool
seek to provide information and not just data to the appropriate first responders and
decision makers. It would be naı̈ve of us to consider only scientists and engineers as
the sole consumers of such information. Because of this, automated processing to
discover specific types of information is a necessity. As experts in the methodologies
of HSI analysis, it is up to us to develop suitable methods of automated processing
for the non-expert user and to thoroughly understand and explain the constraints in
which that automated processing is valid. Automated processing is there to support
the time critical nature of a specific mission or objective e.g. military operations
or disaster support. Choosing appropriate algorithms, specific target libraries, and
providing some method of data/processing quality assurance and confidence is
absolutely necessary.

Time critical analysis is driven by a need for information as soon as possible after
the data are collected. This can be either in-flight or post-flight. An in-flight scenario
requires on-board processing in which there may or may not be analyst on-board;
e.g. UAV. In a post-flight scenario, multiple analysts and a mission specific set of
computing hardware and software may be available. In both cases algorithm and
target library selection remain critical. Typically, automated processes are studied in
detail for specific target libraries before implementation in an actual data collection
operation. An example process includes the following steps:

1. Data pre-processing: This step generally brings the data from DN to a calibrated
radiance. A check of the data for data quality prior to processing is performed.
Bad bands and pixels may be removed. Geo-registration may be performed.

2. Atmospheric correction: This step converts at-sensor radiance to reflectance. This
may be an in-scene or RT/modeled method.

3. Target Detection: In this step a statistical detector such as MF or ACE is applied
using the target spectral library. Individual target detection planes are created.

4. Thresholding: Using the detection planes and a predetermined threshold, pixels
above the threshold are selected as possible target materials. Spatial operations
are performed to generate discrete regions of interest (ROI).

5. Identification: To confirm results of detection, individual spectra from the ROIs
are compared to a larger set of target materials. Comparisons are made using
various methods such as SAM, MED, or step-wise linear regression. This is the
spectroscopy step of HSI analysis. Score values are then generated for each ROI.
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An individual on a desktop computer may take several minutes to analyze a single
data set following these steps. Implemented as a fully automated process on a GPU
and using a target library of a hundred materials, this can be completed is several
seconds (Brown et al. 2012).

This brings us to another scenario which drives time critical analysis and that is
real time or near real time processing. There appears to be some misconception that
on-board analysis necessitates real time processing of HSI data. The mention of real
time processing usually leads to discussion of what real time processing is. In the
present context, we use real time and near real time processing interchangeably.
We define near real time processing to be automated processing with very low
processing latency; e.g., a few seconds. In other words, once an HSI data cube is
collected, it is then processed in an amount of time less than or equal to the collection
time. Practical experience shows us that the difference between a few seconds or
even a few minutes of processing latency is insignificant in most applications where
the HSI sensor is the primary or only data collector. The fact that the sensor platform
observed a location one or more seconds ago has little bearing on the ability of the
sensor or processing algorithm’s ability to confidently perform a directed material
search. The critical requirement is that on-board processing keeps pace with the data
collection rate of the HSI sensor such that the initial processing latency allows the
sensor system (i.e., hardware plus processing) to provide relevant information while
it remains in its desired operating area.

A more stringent real time processing requirement occurs when HSI data are
combined for data or information fusion with sensors that collect and process data
that have temporal relevance such as motion imagery. In this case, the materials of
interest may have a persistent signature, but the activities identified in the motion
imagery are fleeting. It is now critical to overlay track or cue information onto
broadband imagery such that an analyst/operator can associate spectral information
with motion based activity. Processing latencies of more than just a few seconds
would be unacceptable for real time vehicle tracking that combines spectral and
motion imagery.

Real time HSI processing systems and algorithms have been pursued over the
past several years with varying success (Stevenson et al. 2005; Chang 2013; Brown
et al. 2012). The availability of inexpensive high performance computing hardware
(GPU, DSP, FPGA) and their associated development environments facilitate the
migration of HSI algorithms to embedded computing applications. In recent years
the migration of HSI algorithms to GPUs has been researched and widely published
on (e.g., Morgenstern and Zell 2011; Trigueros-Espinosa et al. 2011; Winter and
Winter 2011). More complex algorithms to include non-linear methods and HSI
georeferencing have also found significant performance improvement on GPUs
(Campana-Olivo and Manian 2011; Opsahl et al. 2011). It is simply a matter of
time before our most reliable and robust HSI algorithms are operating as ubiquitous
automated processors.
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3.3 A New Paradigm: Big Data

Up to this point we have largely considered analyst-interactive analysis of individual
HSI data sets. This is either a desktop process conducted by an analyst, or possibly
a near real time system processing data cubes as they are collected. A new paradigm
in data analysis exists that must now be considered for spectral processing and
exploitation. To motivate the reader we pose the following questions:

1. Consider the scope of your spectral data holdings. If you had the ability to
process and analyze groupings of data or the entire collection/campaign of data
in minutes, would you want to?

2. Have you ever considered the temporal or spatial evolution of material signatures,
atmospheric effects, data covariance, or any other aspects of your hyperspectral
information across years of collected data?

3. Can you now analyze more than one data cube simultaneously and jointly?
4. If Google had access to your data, how would they store, process, analyze,

distribute, and study it?

Most of us are familiar with Google and maybe somewhat familiar with cloud
computing. What most of us are not familiar with are the concepts of Big Data
and the volume of information it represents. Years ago, when we considered the
difficulty in processing large hyperspectral data sets, our concepts of big data were
limited by our processing ability on a single CPU or possibly across multiple CPUs
in a homogenous compute cluster. Today, Big Data represents the vast amount of
structured and unstructured digital data that simply exist on computers and servers
the world over. Big Data is of such concern to the commercial, business, and
defense communities, in March 2012 the Office of the President of the United States
announced the “Big Data Research and Development Initiative15”. This initiative
funds efforts across the U.S. Government to research and develop techniques and
methodologies to process and exploit extremely large data holdings. This includes
intelligence, reconnaissance, and surveillance data from DoD, the vast holdings of
earth observation and remote sensing data from NASA, and large data holdings
across NIH, DOE and many other government agencies.

The first step in approaching the Big Data problem is an understanding of
existing tools and methodologies for a distributed computing environment. This
begins with Mapreduce developed by Google. Mapreduce is a programming model
and implementation for processing large data sets (Dean and Ghemawat 2008).
Programs written in the Mapreduce construct are automatically parallelized and
can be reliably executed on large distributed heterogeneous systems. Using the
Mapreduce model allows simplified development of parallel processing methods
across thousands of distributed computers. Mapreduce is the basis of the production

15http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal

http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal
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indexing system supporting the Google web search (Dean and Ghemawat 2008)
and has been found effective in various applications such as machine learning,
bioinformatics, astrophysics, and cyber-security (Lin et al. 2010).

Mapreduce has been implemented in the open-source application Hadoop,
developed by the Apache Software Foundation.16 Hadoop has become the preferred
solution for Big Data analytics and is in use by Google, Yahoo, IBM, Facebook,
and others (Burlingame 2012). Hadoop implements distributed computing and
distributed file system elements with a Java programming interface to allow for
the development of distributed computing environments. A Hadoop implementation
is available to users of Amazon Web Services as Amazon Elastic MapReduce
(EMR).17 EMR provides access to a user configurable number of compute nodes
and charges a fee based on compute capacity needed. Amazon has effectively
and inexpensively provided supercomputer access to any individual, company, or
government.

Mapreduce has created a new kind of supercomputer for Big Data analysis
(McMillan 2012). In this context, HSI analysis must be viewed no longer in terms
of full-scene analysis, but full-campaign analysis, or full-regional analysis, or fully
integrated temporal-spatial analysis. It is now up to us to integrate our practical
knowledge of HSI analysis with the computational resources available to anyone
with access to a computer and the internet.

3.4 Where to Find More Information: The HSI Community
of Practice

HSI remote sensing is an established, active field of research and practical ap-
plication with a large and growing body of literature. Practitioners and would-be
contributors have many resources at their disposal for research on previous work
and for communication of results. Scientific journals include Remote Sensing of
Environment, the International Journal of Remote Sensing, the IEEE18 Transactions
on Geoscience and Remote Sensing, and the IEEE Geoscience and Remote Sensing
Letters. Scientific associations include the Society of Photo-optical Instrumentation
Engineers (SPIE), IEEE, the American Society of Photogrammetry and Remote
Sensing (ASPRS), and the American Geophysical Union (AGU). Each society has a
host of journals, both peer reviewed and non-reviewed, and major symposia at which
results are communicated. HSI remote sensing is a vigorous community of practice
and one in which government, private sector, and academic institutions participate.
A wealth of information about HSI is also available on the World Wide Web.

16http://hadoop.apache.org/, last accessed May 8, 2012.
17http://aws.amazon.com/elasticmapreduce/
18Institute of Electrical and Electronics Engineers.

http://hadoop.apache.org/
http://aws.amazon.com/elasticmapreduce/
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A.1 Appendix: Acronyms, Symbols, and Abbreviations Table

™ Spectral angle
(superscript) T Transpose
AAC Autonomous atmospheric compensation
AC Atmospheric compensation
ACE Adaptive coherence/cosine estimator
AD Anomaly detection
AGU American Geophysical Union
ASD Analytical Spectral Devices (formerly)
ASPRS American Society of Photogrammetry and Remote Sensing
AUC Area under the (ROC) curve
AutoMCU Automated Monte Carlo unmixing
BLAS Basic Linear Algebra Subprograms
BMA Bayesian modeling averaging
CCSM Cross correlogram spectral matching
cos, cos�1 Cosine, inverse cosine (arccosine)
CPU Central processing unit
DoD U.S. Department of Defense
DOE U.S. Department of Energy
DIRSIG Digital imaging and remote sensing image generation model
DN Digital number
DSP Digital signal processor
ELM Empirical line method
EMR Elastic MapReduce
ENVI Environment for Visualizing Images
FASSP Forecasting and analysis of spectroradiometric system performance model
FLAASH Fast line-of-sight atmospheric adjustment of spectral hypercubes
FOM Figure of merit
FPGA Field-programmable gate array
GFLOP Giga-floating point operations
GLR Ground-leaving radiance
GPU Graphics processing unit
GUI Graphical user interface
HSI Hyperspectral imagery
ICA Independent components analysis
IDL Interactive Data Language
IEEE Institute of Electrical and Electronics Engineers
ISAC In-scene atmospheric compensation
JM Jeffries-Matusita
LAPACK Linear Algebra Package
ln() Natural logarithm
LSU Linear spectral unmixing
LUT Lookup table
LWIR Longwave infrared
MD Minimum distance

(continued)
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(continued)

MDQ Minimum detectable quantity
MED Minimum Euclidean distance
MESMA Multiple endmember spectral mixture analysis
MF Matched filter
MLC Maximum likelihood classification
MNF Minimum noise fraction transform
MODTRAN Moderate resolution transmission tool
MSI Multispectral imagery
MTMF Mixture tuned matched filtering
MWIR Midwave infrared
NaN Not a number
NASA U.S. National Aeronautics and Space Administration
NESR Noise equivalent spectral radiance
NE�T Noise equivalent change in temperature
NE�" Noise equivalent change in emissivity
NE�¡ Noise equivalent change in reflectance
N-FINDR N-finder; spectral endmember finder tool
NIH U.S. National Institutes of Health
NP Neyman-Pearson
PC Principal components (shortened notation for PCA)
PCA Principal components analysis
PCR Principal components regression
PLSR Partial least squares regression
QUAC Quick atmospheric correction
RAM Random access memory
ROC Receiver operating characteristic curve
ROI Region of interest
RT Radiative transfer
SAM Spectral angle mapper
SAR Synthetic aperture radar
SCR Signal to clutter ratio
SEBASS Spatially enhanced broadband array spectrograph system
SMA Spectral mixture analysis
SMACC Sequential maximum angle convex cone
SME Subject matter expert
SPIE Society of Photo-optical Instrumentation Engineers
SSA Single scattering albedo
SVM Support vector machines
SWIR Shortwave infrared
T Temperature
t Target spectrum (see Eqs. 2 and 3)
TD Transformed divergence

(continued)
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(continued)

TES Temperature/emissivity separation
TIR Thermal infrared
UAV Unmanned aerial vehicle
VNIR Visible/near-infrared
x Scene spectrum (see Eqs. 2 and 3)
� , ��1 Covariance matrix, inverse of the covariance matrix
"(œ) Emissivity
œ Wavelength
� Mean spectrum (see Eqs. 2 and 3)
�m Micrometer
¡(œ) Reflectance
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Toward Understanding Tornado Formation
Through Spatiotemporal Data Mining
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Abstract Tornadoes, which are one of the most feared natural phenomena, present
a significant challenge to forecasters who strive to provide adequate warnings of
the imminent danger. Forecasters recognize the general environmental conditions
within which a tornadic thunderstorm, called a supercell thunderstorm, will form.
They also recognize a supercell thunderstorm with its rotating updraft, or meso-
cyclone, when it appears on radar. However, only a minority of supercell storms
produce tornadoes. Although most tornadoes are warned in advance, the majority of
the tornado warnings are false alarms. In this chapter, we discuss the development of
novel spatiotemporal data mining techniques for discriminating between supercell
storms that produce tornadoes and those that do not. To test the novel techniques, we
initially applied them to numerical models having coarse 500 meter horizontal grid
spacing that did not resolve tornadoes but that did resolve the parent mesocyclones.
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1 Motivation

Tornadoes, which are one of the most feared natural phenomena, present a significant
challenge to forecasters who strive to provide adequate warnings of the imminent
danger. Forecasters recognize the general environmental conditions within which
a tornadic thunderstorm, called a supercell thunderstorm, will form. They also
recognize a supercell thunderstorm with its rotating updraft, or mesocyclone, when
it appears on radar. However, only a minority of supercell storms produce tornadoes.
There are no obvious clues within any of the routinely observed data to indicate
which supercell storms are going to produce tornadoes and which ones are not. So
to be on the safe side, forecasters issue a tornado warning whenever they detect
on radar a supercell thunderstorm with a strengthening mesocyclone, which is the
parent circulation within which tornadoes form. This approach results in the warning
being issued an average 10–15 min before the appearance of a tornado, but a tornado
appears only 20–30% of the time that a warning is issued, which results in a large
percentage of false alarms (e.g., Simmons and Sutter 2011).

Surveys conducted by the National Weather Service following devastating U.S.
tornadoes reveal that these false alarms are one of the factors contributing to
desensitization on the part of the public concerning the need to adhere to warnings
(e.g., NWS 2009, 2011). Having heard many warnings when a tornado did not form,
members of the public tend to ignore the warning and only take shelter if they see
a tornado approaching, with the result that some of them do not make it to a safe
place in time. Therefore, there is a need to explore ways in which to identify unique
factors within storms that lead to tornado formation.

One way to help understand the evolutionary characteristics of supercell thun-
derstorms, and especially those that produce tornadoes, is to conduct numerical
modeling studies of the storms (e.g., Wicker and Wilhelmson 1995; Noda and
Niino 2005; Xue et al. 2007). These types of studies typically investigate a single
storm that develops within a given environment. A more informative approach is to
conduct a number of fine-resolution (i.e., horizontal grid spacing less than 100 m)
numerical modeling studies of supercell storms under a variety of environmental
conditions. Data mining techniques then can be applied to the modeling results in
order to discover the differences between supercell storms that produce tornadoes
and those that do not.

In this chapter, we discuss the development of novel spatiotemporal data mining
techniques that were initially applied to numerical models having coarse 500 m
horizontal grid spacing that did not resolve tornadoes but did resolve the parent
mesocyclones. Note that much of this chapter is derived from the following papers
(Rosendahl 2008; Supinie et al. 2009; McGovern et al. 2010, 2011a,b, 2013).
Although we are in the process of generating 75–100 numerically-modeled supercell
thunderstorms using tornado-resolving 75 m horizontal grid spacing, we focus our
discussion in this chapter on the 500 m resolution storms. We anticipate that the
mining of our new higher-resolution data set will reveal more clues about the
processes that lead to tornado formation within some supercell thunderstorms but
not within others. This approach is discussed at the end of the chapter.
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2 Natural Hazard Domain: Severe Storm Simulations

Rosendahl (2008) created a set of 261 simulations of supercell thunderstorms,
which are the most severe type of thunderstorm and which generate the most
violent tornadoes. Each simulation was generated using the Advanced Regional
Prediction System (ARPS, Xue et al. 2000, 2001, 2003). The full details on the
parameters chosen to create the storms are described in Rosendahl (2008). Each
simulation is run for 3 h of storm time. The simulation saves the state of all relevant
meteorological variables every 30 s of storm time for every grid point in the domain.
With a resolution of 500 m horizontally and a domain size of 100 km by 100 km,
a stretched vertical resolution focusing on the lower altitudes (with 50 voxels
vertically) , the simulations must save over 100 different variables every 30 s for
each of 2 million grid squares. In total, each simulation produces over 21 GB of
data, which requires us to intelligently process and mine this data.

Although each simulation generates a full gridded field of meteorological
variables, the variables near a storm cell will provide the most information. We
identify and track storm cells using a modified form of the Storm Cell Identification
and Tracking algorithm (Johnson et al. 1998; McGovern et al. 2007) where we
track the cells based on their dominant updraft region (localized area with rising
air) because it is the defining feature of a thunderstorm. Figure 1 shows an example
of simulated radar reflectivity 90 min into a simulation. Reflectivity measures the

Fig. 1 Reflectivity of an example numerical storm simulation 90 min into the storm’s lifetime. The
scale on the right shows the intensity of the reflectivity in dBZ. Higher reflectivity regions indicate
areas where the storm is producing intense precipitation. The black outlines highlight individual
storm cells which are used to extract the storm metadata
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intensity of the precipitation within the storm which means that regions with more
intense rain, snow, ice, or hail have higher reflectivity values. The black outlines in
Fig. 1 show the two storm regions that are being tracked during that period. Because
weak short-lived storms are not of interest in this study, we only track cells that last
for at least 30 min. Each simulation typically produces 3–4 such cells. The 261 storm
simulations generated 1,168 separate storm cells that each lasted at least 30 min.

3 Spatiotemporal Data Mining

Weather phenomena vary as a function of both time and space. It is difficult to ignore
one aspect in favor of the other so our goal has been to develop spatiotemporal data
mining algorithms. This chapter first reviews our time series approach and then
presents several spatiotemporal algorithms that we have developed. Each storm
defines a four dimensional region of interest for data mining. The first three
dimensions are the spatial dimensions and the fourth dimension is time. Given the
sheer size of the data, all of our approaches reduce the data by extracting high-level
metadata and then mining the metadata.

3.1 Multi-variate Time Series Approach

In the first approach to improving our understanding about tornado formation, we
seek to identify a series of rules that highlight how environmental characteristics
must change to favor the development of tornadoes. We do not know in advance
what characteristics are most important so the learning and mining algorithms must
identify the most salient variables and discover the temporal motifs most predictive
of tornadic rotation. Informally, the goal of our approach is to identify the most
relevant dimensions of a multi-dimensional time series, grow a set of predictive rules
from motifs discovered in each of those dimensions, and use these to improve our
understanding of the data and for prediction. We briefly review definitions necessary
for our time series mining algorithm.

Definitions

Definition 1. A time series T D ht1; t2; : : : ; tn�1; tni is an ordered sequence of real-
valued observations taken at discrete times: 1; 2; : : : ; n�1; n. A d-dimensional time
series T d D hT1; T2; : : : ; Td i is a set of time series all associated with a single event
and correlated in time.

This is the standard definition of time series (e.g., Mueen et al. 2009). Our
examples are all temporally ordered sequences but other orderings are possible.
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Rather than examining only a single attribute as it varies in time, we assume that
the event can be measured with a variety of attributes (d in this definition), each
of which is measured on the same discrete time interval. These measurements are
not required to be independent of one another. Our severe weather simulations have
d D 100 but the independent dimensionality of the data is much less (approximately
d D 40).

Definition 2. A labeled multi-dimensional time series is a tuple E D fT d ; lgwhere
T d is a d-dimensional time series and l 2 L where L is a discrete set of labels
(and it is not required to be binary).

Because each of our d-dimensional time series is associated with an event, each
example Ei is labeled. In the case of our severe weather data, L is either binary
(positive/negative) or takes on one of three possible values: positive, negative, or
intermediate. The approach does not restrict the possible numbers of labels but it
does require that the cardinality of L be finite.

Our data set, D D hE1; E2; : : : ; Eni, consists of a set of labeled multi-
dimensional time series, each of which can last for a variable amount of time but
each of which is assumed to have the same dimensionality. That is, all attributes that
measure an event are assumed to be present in each labeled example.

Definition 3. A single dimensional time series motif Mj D hti ; tiC1; : : : ; tiCmi
consists of a temporally ordered subsequence of a time series where 1 � i � n and
0 < m � n. This motif is of length m and is on dimension j where 1 � j � d .

As stated above, our goal is to identify multi-dimensional times series motifs that
can be used for prediction. As such, we build on the previous definition.

Definition 4. A multi-dimensional time series motif P D hMi1; Mi2; : : : Mimi is a
temporally ordered set of single-dimensional time series motifs (see Definition 3).
The temporal ordering specifies that the initiation of each single-dimensional time
series Mij must begin after or simultaneously with the previous single-dimensional
time series in the set Mij �1 .

A multi-dimensional time series motif does not specify how many dimensions of
the overall available dimensions must be used and it can even repeat dimensions,
given that each is temporally ordered. For example, the first motif may be on
dimension 1, the second on dimension 3, and the third on dimension 1 again.
The temporal ordering is not strict as it requires that Mj begins after Mj �1 but
simultaneous initiations are also acceptable. Mj cannot begin before Mj �1. This
definition differs slightly from the definition in Mueen et al. (2009), where there is
a requirement for a temporal gap in between the different subsequences. We were
interested in rules that could identify two features both firing at once and did not
impose the temporal gap.
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Algorithm 1: Grow multi-dimensional time series motifs/rules
Input: D: training data, SAX parameters (alphabet size, word size, averaging interval),

minimum POD, maximum FAR
Output: A list of rules sorted by CSI
foreach dimension d do

Discretize Ed
i for all examples i using SAX

Build trie with pointers to the start and to the end of each word in the sliding window
end
foreach dimension d do

Identify all single dimensional words with minimum POD and maximum FAR
Recursively grow longer rules within dimension d

end
for all rules that meet minimum POD and maximum FAR criteria do

Grow rules across dimensions
end
return list of rules sorted by CSI score

Algorithm

A general outline of our approach for identifying multi-dimensional time series
motifs is given in Algorithm 1 and we describe each step in detail below. The
general idea is to search for the critical dimensions of the data by identifying single
dimensional motifs first, narrow down the set of possible single dimensional motifs
using user specified minimum performance metrics and then grow the motifs across
dimensions using the single dimensional motifs as building blocks for larger motifs.

The rules are built and scored using three standard performance measures. The
probability of detection (POD) is the number of times that an event was correctly
predicted divided by the total number of observed events. POD ranges from 0 to 1
with 1 representing a perfect score. The false alarm ratio (FAR) is the number of
times that an event was incorrectly predicted to occur divided by the total number of
events predicted to occur. FAR ranges from 0 to 1 with 0 representing a perfect score.
The critical success index (CSI, Donaldson Jr et al. 1975; Schaefer 1990) evaluates
success as a function of only the events that are predicted to be positive and the
ones that were actually positive. Thus, CSI ignores the true negatives and provides
an index that incorporates both POD and FAR into one measure. It ranges from 0
to 1 with 1 being a perfect score (perfect POD and perfect FAR). This measure is
particularly important for assessing rare events such as tornadoes where POD and
FAR alone are inadequate measures of predictability. For instance, a perfect score
can be attained for POD by simply predicting an event (e.g., tornado) to occur every
time or for FAR by never predicting an event to occur. CSI, however, combines both
of these and therefore gives a more robust performance measure.

Because a brute force approach to searching multi-dimensional data grows
exponentially in the number of dimensions and the size of the data, it quickly
becomes intractable. Some researchers approach this issue using a random type
of search (Minnen et al. 2007; Vahdatpour et al. 2009) but our pruning and
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discretization enables us to search the full space efficiently. Additionally, searching
for motifs in real-valued data is difficult, as has been noted by many researchers (for
example, Das et al. 1998; Chiu et al. 2003; Mueen et al. 2009). We chose to address
this latter problem using the SAX discretization technique (Lin et al. 2003) and we
address the computational aspects using a combination of approximate search and
intelligent data structures such as the trie described in Keogh et al. (2005).

The first step of our approach is to discretize each of the dimensions of data
using SAX, which is a standard time series discretization technique (e.g., Lin et al.
2003; Shieh and Keogh 2009; Keogh et al. 2005; Lin et al. 2007; Minnen et al.
2007; Vahdatpour et al. 2009). To do this, we discretize all examples at once for
each dimension. This ensures that the discretizations can be easily compared and
that a in one time series has a similar meaning to a in another example. Given the
number of dimensions and examples, multiple passes through the data would be
computationally expensive. To address this, we make use of the trie data structure
as discussed in Keogh et al. (2005). Since each leaf in the trie has information about
exactly which time series that word occurs in, the trie also stores the POD and
FAR measures for use in the mining. We have demonstrated in previous work that
the results are not sensitive to the choices of parameters to SAX (McGovern et al.
2011b).

Once the tries are built, the data mining algorithm makes use of them to
efficiently narrow down the search for more complicated motifs. To do this, we
look through each dimension of the data and narrow down the set of basic SAX
words using user specified thresholds of the POD and FAR performance measures.
By specifying a minimum POD and a maximum FAR, we limit the number of
elementary motifs identified. These numbers can come from a user’s experience
in the domain. This significantly improves the running time of the search since all
possible combinations of small motifs are used to grow the larger motfis. Since
the search proceeds from general motifs (e.g. short ones) to specific motifs (longer
multi-dimensional motifs), the performance of the motifs will only improve POD
and FAR. This is similar to the pruning search discussed in Webb (1995), Oates
and Cohen (1996), and McGovern and Jensen (2008) where the type of search and
evaluation measures can be combined to enable admissible pruning. Thus, we
specify minimum levels of performance that would be acceptable and expect that
the final numbers will be significantly better with the more specific rules.

Once the basic words are identified, we grow the motifs recursively using the
basic words that pass the POD/FAR thresholds. The recursive growth of the motifs
within a dimension works by doubling each motif, similar to the method employed
by SPADE (Zaki 2001). Each motif is doubled while maintaining the minimum POD
and maximum FAR requirements. For example, Œa; b� can be doubled to Œa; b; a; b�

and it can also be combined with other valid words such as Œa; b; b; a�. When a
doubling fails, the motif is grown linearly by adding words until it is at its maximum
length. Since motifs are grown in chunks of word size, not all possible motifs can be
detected. For example, the motif Œa; b; a� is not discoverable in the example because
the minimum word size is 2. However, in all of our experiments, we keep the word
size small to minimize this issue.
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The motif growing within a single dimension is repeated for all dimensions
before searching across the dimensions. Although this growing sounds computa-
tionally expensive, only one pass through the original data is required. Using the trie
data structure, all further motifs can be grown by examining the starting and ending
times of each individual motif and ensuring that they follow one another temporally
(e.g. they satisfy Definition 4 above). The POD and FAR measures continue to be
directly computed from the trie by intersecting the positive and negative graphs
computed for each individual piece of the motif.

The last step of the algorithm is to repeat the search by combining the different
words across the dimensions of the data. Once all of the motifs have been identified
for each dimension, an exhaustive search of temporal orderings across dimensions
is performed. Although doing an exhaustive search sounds infeasible, it is possible
because of the admissible pruning afforded by the user’s minimum POD and
maximum FAR measures. In addition, the O(1) access time of the trie facilitates
the overall approach. Without the pruning, this approach would be untenable but
the pruning significantly improves the running time by enabling the search to
ignore large portions of the search space while guaranteeing that the rules that
could be identified in that space will never meet the user’s specified performance
measures. In addition, the trie again can be used to quickly compute the POD/FAR
measures across dimensions by continuing to intersect the positive and negative
series observed by each piece of the motif.

Empirical Results

To create the metadata for the time series data mining, we extract maximum and
minimum values of relevant meteorological quantities within each of the simulated
storm cells. We measure the maximum and minimum value for each variable from
the surface to 2 km in height and then from 2 to 8 km. For some variables, we also
store the maximum and minimum values at the surface. This allows us to identify
whether a maximum or minimum value is associated with a surface, low, or mid to
upper altitude feature. This yields a 100 dimensional time series for each storm. The
full set of quantities is defined in Rosendahl (2008).

We extract the maximum and minimum values every 30 s for the entire 3 h of
simulation. Figure 2 shows an example of several time series extracted for two of
the meteorological quantities. The left panel shows the evolution of the vertical
vorticity (an instantaneous measure of spin about a vertical axis) at the surface,
low altitudes, and mid- to upper-altitudes for the center storm shown in Fig. 1.
Positive (maximum) and negative (minimum) values in the left panel correspond
to counterclockwise and clockwise rotation respectively. The right panel shows the
maximum horizontal wind speed values.

Given the sheer number of storm cells, we developed an automated labeling
approach based on the key characteristics of tornadic storms. Because the horizontal
grid spacing of the simulations is too coarse to detect rotation on the scale of
a tornado and creating higher resolution simulations requires exponentially more
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Fig. 2 Meteorological quantities extracted from an example storm. Shown are the maximum and
minimum quantities for vertical vorticity (left) and the maximum values for horizontal wind speed
(right). (a) Example vertical vorticity data. (b) Example horizontal wind speed data

computational time and space, we labeled each storm as to whether it produced
strong low-altitude rotation (“positive”), produced either no or very weak rotation
(“negative”) or was in between these two categories (“intermediate” or “maybe”).
Strong low-altitude rotation was defined as a storm where there was a decrease in
the surface pressure perturbation of at least �900 Pa in 1,000 s and either an increase
in the horizontal wind speed at the surface of at least 5 m s�1 within 750 s or an
increase in the absolute value of the vertical vorticity of at least 0.03 s�1 within
500 s. These features had to overlap within a 600 s window to ensure that they were
correlated. Storms where the pressure drop fell within the range of�900 to�300 Pa
and met the vertical vorticity and wind speed criteria or that had a pressure drop
but no corresponding increase in vertical vorticity or wind speed were labeled as
intermediate storms. The remainder of the storms were labeled as negative storms.
This yielded 58 positive storms, 373 intermediate storms, and 737 negatives.

Given the labeled data, we further processed it in two ways. First, if we were
to feed all of the time series information to the data mining algorithm, it would
identify the approach that we took to label the data. To avoid rules that simply
state that pressure perturbations or vertical vorticity are critical, we remove from
consideration each of the features used to label the data from consideration. Further,
to ensure that identified precursors were associated with the developing strong low-
altitude rotation in positive storms, we saved data for 30 min immediately prior
to the beginning of the corresponding pressure drop, which was defined using a
Gaussian derivative filter on the pressure perturbation time series. For non-positive
cases, we randomly sampled 30 min to avoid obvious labeling based on the length
of the time series given to the data mining algorithm.

Figure 3 shows an example rule identified by the time series data mining
algorithm. We explored a wide variety of parameter variations and show only a
single example rule, due to space considerations. This rule identifies four salient
environmental characteristics associated with rotation in our simulations and also
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Fig. 3 Example rule identified by time series mining algorithm. The left column identifies 3-letter
words comprising the rule in sequential order (baroclinic generation term (vertical) min below
2 km, vertical stretching term max below 2 km, pressure perturbation vertical gradient force max
above 2 km and vertical stretching term min below 2 km). Time step within each word plot in
left column is arbitrary but colored line letter segments correspond to a 30 s time period (one
output interval). The five equiprobable Gaussian regions associated with each word are demarcated
by light gray horizontal lines. Right column provides meteorological quantity metadata from an
example storm that contains the rule. Each word from the left column is identified by a black line
segment in the metadata. The 30 min window prior to the development of strong low-level rotation
is contained within the two vertical gray lines. Corresponding performance measures are listed at
the top of the figure

shows the behaviors of each measurement. In general, the rule indicates that strong
low-altitude rotation has a greater probability of developing when the four identified
meteorological quantities reach relatively extreme values in a short time span.
Hundreds of such rules were identified by the data mining algorithm and were
ranked according to their performance measure scores.
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This information can be highly useful to those in the meteorological community
because each rule is simply a sequence of events taking place within a storm
and therefore identifying the most important of these sequences may offer insight
into how tornadoes form and how one can better predict their occurrence. Also,
the automated method we used provides an innovative alternative for assessing
storm feature evolution which otherwise would require a brute force approach
of evaluating individual sequences of model output across hundreds of simulated
storms.

3.2 Spatiotemporal Relational Probability Trees

The multi-variate time series analysis was promising and demonstrated that mining
of the storm data would likely yield useful information. However, our long-term
goal was to develop an approach that would reason with both the spatial and the
temporal nature of the data. As such, we developed the Spatiotemporal Relational
Probability Tree (SRPT). The SRPT is a probability estimation tree that learns with
spatiotemporally varying relational data. For example, a SRPT can predict new class
labels based on questions such as “Has a downdraft lasted for at least 5 min?” or
“Did a region of strong tilting of horizontal vorticity appear before the downdraft
doubled in intensity?” While the SRPT was inspired by the relational probability
tree (RPT) (Neville et al. 2003), the SRPT represents both the data and the decision
tree distinctions in a very different manner.

Data Representation

By moving to a relational representation of our weather data, we gain the ability
to reason about the high-level objects already identified by meteorologists. Such
objects can represent concepts that they believe are associated with rotations and
tornadoes or even different regions of a storm cell. The relational representation
enables us to reason about the spatial or spatiotemporal relationships between the
objects. Our data are represented as spatiotemporal attributed relational graphs, as
we first presented in McGovern et al. (2008). This representation is an extension
of the attributed graph approach to handle spatiotemporally varying data (Neville
et al. 2003; Neville and Jensen 2004; Jensen 2005). All objects, such as updrafts
or hail cores, are represented by vertices in the graph. Relationships between the
objects are represented using edges. With the severe weather data, the majority
of the relationships are spatial. Both objects and relationships can have attributes
associated with them and these attributes can vary both spatially and temporally. In
the case of a spatially or spatiotemporally varying attribute, the data are represented
as either a scalar or a vector field, depending on the nature of the data. The ability
to represent spatial fields of objects is a key addition to the SRRF results presented
here. This field can be two or three dimensional in space and can also vary as a
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Fig. 4 Schema for the simulated supercell storms domain. The rounded rectangles represent
objects and the hexagons show the relations. The type of each object or relation is bolded
and the arrows show the directionality of the relationships. Attributes are listed inside both
objects and relations. T denotes a temporally varying attribute; T3F denotes a three-dimensional
spatiotemporal field

function of time. In addition to attributes varying over space and time, the existence
of objects and relationships can also vary as a function of time. If an object or a
relationship is dynamic, it has a starting and an ending time associated with it.

Figure 4 shows a schema of our spatiotemporal relational data for the severe
storms domain. Note that this shows the possible objects and relationships within
a single example graph but it does not show the specific instantiation of a graph as
that will differ for each storm. Both objects and relations are required to be assigned
a type and graphs are required to be labeled (the label does not have to be binary).
Objects and relations can be either static (existing for the duration of the graph)
or dynamic. Temporal consistency is enforced for all dynamic objects or relations.
Attributes can be associated with both objects and relations. Attributes can also be
static or dynamic. If an attribute is static, its value stays the same throughout the
lifetime of the object or relation. If it is dynamic, it can vary as a function of time or
with space and time.

Algorithm

The SRPT is a decision-type tree with the ability to differentiate the data based on
spatial, temporal, and spatiotemporal questions at each node. The tree is learned in
the standard greedy manner and the differences lie in the questions the SRPT can
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ask at each node. In a standard decision tree such as C4.5 (Quinlan 1993), there
are a finite number of possible questions about the data. Because there are a very
large number of possible splits or questions for spatiotemporal data, we sample the
specific splits using a user specified sampling rate. For each sample, a split template
is selected randomly and the pieces of the template are filled in using randomly
chosen examples in the training data. These templates are described below.

The non-temporal splits are:

• Exists: Does an object or relation of a particular type exist?
• Attribute: Does an object or a relation with attribute a have a [MAX, MIN, AVG,

ANY] value � than a particular value v?
• Count Conjugate: Are there at least n yes answers to distinction d? Distinction

d can be any distinction other than Count Conjugate.
• Structural Conjugate: Is the answer to distinction d related to an object of type

t through a relation of type r? Distinction d can be any distinction other than
Structural Conjugate.

The temporal splits are:

• Temporal Exists: Does an object or a relation of a particular type exist for time
period t?

• Temporal Ordering: Do the matching items from basic distinction a occur in
a temporal relationship with the matching items from basic distinction b? The
seven types of temporal ordering are: before, meets, overlaps, equals, starts,
finishes, and during (Allen 1991).

• Temporal Partial Derivative: Is the partial derivative with respect to time on
attribute a on an object or relation of type t � v?

The spatial and spatiotemporal splits are:

• Spatial Partial Derivative: Is the partial derivative with respect to space of
attribute a on an object or relation of type t � v?

• Spatial Curl: Is the curl of fielded attribute a � v?
• Spatial Gradient: Is the magnitude of the gradient of fielded attribute a � v?
• Shape: Is the primary 3D shape of a fielded object a cube, sphere, cylinder, or

cone? This question also works for 2D objects and uses the corresponding 2D
shapes.

• Shape Change: Has the shape of an object changed from one of the primary
shapes over to a new shape over the course of t steps?

Empirical Results

Figure 5 shows an example SRPT learned from the severe storm simulation data.
Note that the high probabilities of the formation of strong low-altitude rotation occur
only along the left portion of the tree. The low probabilities of low-altitude rotation
occur along the right portion of the tree. The category “maybe” is found throughout
the tree.
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Fig. 5 Highest scoring single tree in the simulated storms domain using the SRPT

3.3 Spatiotemporal Relational Random Forests

Although one reason for developing a tree-based model was for its human read-
ability by domain scientists, a single decision-tree type model is known to be
brittle (Pérez et al. 2005; Dwyer and Holte 2007). This brittleness makes it
harder for a domain scientist to trust the results from a single tree. As such, we
developed an ensemble approach of SRPTs, following the Random Forest paradigm
(Breiman 2001). The Spatiotemporal Relational Random Forest (SRRF) enables
a domain scientist to grow a robust predictive model of spatiotemporally varying
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relational data. Similar to Random Forests, the SRRF provides a method for variable
importance, which measures the importance of attributes on objects or relationships
to the predictive power of the forest.

Method

Growing a SRRF is very similar to the approach used to grow a Random Forest with
the only differences occurring in the individual tree growing algorithm (described
above) and from the nature of the spatiotemporal relational data. The training data
for each tree in the forest is created using a bootstrap resampling of the original
training data. The difference in the learning methods arises from the nature of the
spatiotemporal relational data and the SRPTs versus C4.5 trees. In the RF algorithm,
each node of each tree in the forest was trained on a different subset of the available
attributes. Since the individual trees were standard C4.5 decision trees, this limited
the number of possible splits each tree could make. Because each tree was also
trained on a different bootstrap resampled set of the original data, the trees were
sufficiently different from one another to make a powerful ensemble. Because there
are a very large number of possible splits that the SRPTs can choose from, an SRPT
finds the best split through sampling, as described above. Like the original RF trees,
SRPTs are still built using the best split identified at each level. With fewer samples,
these splits may not be the overall best for a single tree, but they will be sufficiently
different across the sets of trees to ensure diversity in the forest. However, if the
number of samples is too small, the number of trees needed in the ensemble to
obtain good results may be prohibitively large.

For a particular attribute a, RFs measure variable importance by querying each
tree in the forest for its vote on the out-of-bag data. Then, the attribute values for
attribute a are permuted within the out-of-bag instances and each tree is re-queried
for its vote on the permuted out-of-bag data. The average difference between the
votes on the unpermuted data for the correct class and the votes for the correct
class on the permuted data is the raw variable importance score. We have directly
converted this approach to the SRRFs and can measure variable importance on any
attribute of an object or relation. Spatially and temporally varying attributes are
treated as a single entity and permuted across the objects/relations but their spatial
and/or temporal ordering is preserved. We examine the variable importance in each
of our data sets.

Empirical Results

Table 1 shows the top 10 most statistically significant attributes associated with
storms that develop strong low-altitude rotation, measured using variable importance
on the SRRFs. Because rotation is associated with pressure drops, the inclusion
of multiple attributes of the pressure perturbation object seems quite reasonable.
Updrafts are the thermodynamic engines that power supercell thunderstorms and
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Table 1 Top 10 statistically significant attributes according to variable
importance on the simulated storms data

Fields
Mean variable
importance

PressurePerturbation.PressurePerturbationField 0.251
PressurePerturbation! Overlap.PercentOverlap! Rain 0.188
Hail.HorizontalCompositeArea 0.114
PressurePerturbation.Volume 0.107
PressurePerturbation.Thickness 0.101
PressurePerturbation.BaseHeight 0.099
Hail.Volume 0.089
Updraft.Volume 0.086
Updraft.Thickness 0.061
Updraft.Buoyancy 0.060

they play a major role in the concentration of rotation into tornado-scale vortices.
Owing to the presence of strong updrafts within such storms, conditions also are
favorable for the formation of hail. Therefore, it is logical that the SRRF approach
should find that pressure, updrafts, and hail attributes are important features of
supercell storms that develop significant low-altitude rotation.

4 Ongoing Research

The methods described in this chapter have proven both promising and fruitful
in mining the 500 m resolution storm simulations. However, these simulations are
limited in that they cannot resolve the circulation within a tornado. In our current
research, we are developing a set of high resolution simulations, capable of resolving
tornadoes. These simulations have horizontal grid spacings of 75 m. Figure 6 shows
the simulated reflectivity from one of these storms. This storm generated a tornado
approximately 2 h into the simulation and the effects of the tornado can be seen on
the reflectivity.

We are also developing several new spatiotemporal relational data mining
methods. The first focuses on enhancements to the SRPT/SRRF approach that will
enable the true discovery of spatial and temporal relationships, not pre-specified
by the user. The second focuses on using Bayesian Network structure learning
techniques to identify salient relationships in the data.
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Source Term Estimation for the 2011 Fukushima
Nuclear Accident

Guido Cervone and Pasquale Franzese

Abstract A new methodology is presented for the reconstruction of an unsteady
release rate of an atmospheric contaminant, based on atmospheric transport and
dispersion models, concentration measurements, and stochastic search techniques.
The methodology is applied to reconstruct the radiation release rate for the March
2011 Fukushima nuclear accident.

The observed radiation data were retrieved from 218 stations located in 17
Japanese prefectures. The dispersion simulations are performed using the SCIPUFF
model, using model vertical profiles and ground meteorological data. The non-
stationary time-series of the Fukushima release rate is determined for a period of
5 days with a 2-h resolution.

Keywords Fukushima nuclear accident • Release rate estimation • Spatio-tem-
poral optimization • Evolutionary algorithms • Dispersion modeling

1 Introduction

On 11 March 2011 at 05:46 UTC (14:46 local time, UTC C9) a massive Mw 9.0
underwater earthquake occurred 70 km offshore of the eastern coast of Japan, with
epicenter at 38.322N and 142.369E. The earthquake generated a tsunami that rapidly
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hit the eastern coast of Japan, and propagated across the Pacific ocean to the western
coast of the Americas.1 The tsunami wave hit the Fukushima power plant about
40 min after the earthquake, leading to the catastrophic failure of the cooling system.

Several radioactive releases ensued as a result of an increase of pressure and
temperature in the nuclear reactor buildings. Some releases were the result of both
controlled and uncontrolled venting, while others were the result of the explosions
that compromised the containment structures. The explosions were most likely
caused by ignited hydrogen, generated by zirconium-water reaction occurring after
the reactor core damage.

The largest radioactive leaks occurred between the 12 and 21 March 2011.
Radioactivity was recorded at different locations throughout Japan on the ground,
in the water and in the air. The individual radionuclide distributions assessed by
Kinoshita et al. (2011) over central-east Japan from the Fukushima nuclear accident
indicate that the prefectures of Fukushima, Ibaraki, Tochigi, Saitama, and Chiba and
the city of Tokyo were contaminated by doses of radiations, and that a large amount
of radioactivity was discharged on March 15th and 21st.

The radioactive cloud was quickly transported around the world, reaching within
a few days North America and Europe (Potiriadis et al. 2012; Masson et al. 2011).
Radioactive concentrations were recorded along the US West Coast (Bowyer et al.
2011). Estimating the fate of the contaminants and predicting their health impact
quickly became an issue of great importance (Calabrese 2011).

Transport and dispersion (T&D) models can be used to compute atmospheric
radioactivity and ground deposition. Various models are available depending on
the scale of the problem. For instance, the exclusion zone and its evacuation are
determined by dispersion simulations in the area immediately surrounding the
nuclear reactor on a scale ranging from meters to a few kilometers. Contamination
at a planetary scale can be assessed by long range transport models.

Dispersion simulations require meteorological data, terrain characteristics, source
location and release rate. A major problem with the simulation of the Fukushima
accident is the large uncertainty associated with the time-dependent release rate of
radioactive contaminant. Yasunari et al. (2011) used the FLEXPART Lagrangian
T&D dispersion model with a constant source term, and compared their results
with the estimated total Caesium-137 deposition obtained by integrating daily ob-
servations in each prefecture in Japan. The results indicate heavy soil contamination
by Caesium-137 in large areas of eastern and northeastern Japan, whereas western
Japan was sheltered by mountain ranges.

In general, in order to estimate the release rate in case of a nuclear accident three
approaches can be followed, based on:

1. Observations;
2. Nuclear reactor modeling;
3. Atmospheric modeling.

1http://ptwc.weather.gov/text.php?id=pacific.2011.03.11.073000

http://ptwc.weather.gov/text.php?id=pacific.2011.03.11.073000
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1.1 Observations

Ground instruments are normally placed in the vicinity of nuclear power plants to
measure radioactivity and detect potential leaks. Additionally, the Comprehensive
Test Ban Treaty Organization (CTBTO) maintains a network of worldwide stations
that can detect radioactive clouds (United Nations General Assembly 1996; Monika
2012). When monitoring stations are located within a few kilometers downwind
of the source, it is possible to estimate the radioactive release rate based on the
measurements.

In the case of Fukushima, the instruments located in the vicinity of the power
plant were ground gamma-ray counters and dust samplers, which are designed
to detect small amount of radiation. However, the data are missing due to earth-
quake/tsunami damage and electrical power outages. In addition, there were site
evacuations on March 15 (cited in Japanese government reports) that also led to
gaps in the plant monitoring data (Ohba 2012).

Personnel and equipment from the US Department of Energy (DOE) National
Nuclear Security Administration (NNSA), joined by additional members from DOE
and Department of Defense (DOD), were quickly dispatched to Japan. The surveys
used both fixed-wing aircraft as well as helicopters to collect measurements in the
area surrounding the nuclear power plant. The first measurements were made on 18
March 2011, and therefore do not include the first large release which occurred on
15 March 2011 (Kreek 2012).

The Japanese power plant operators from the Tokyo Electric Power Company
(TEPCO) pumped seawater directly into the reactor to regulate temperature and
pressure. This delicate and difficult operation prevented a total core meltdown,
but required the contaminated water to be discharged directly into the ocean
(Matsunaga 2012). Radioactivity in water was also measured in the aftermath of
the accident, showing higher levels than normal, but it is not possible to relate the
water radioactivity to the atmospheric discharge.

In practice, it is not possible to estimate the Fukushima release rate using
measurements alone.

1.2 Nuclear Reactor Modeling

Nuclear reactor models have been developed to simulate reactor failures, and
compute the expected radiation dose. The Pacific Northwest National Laboratory
(PNNL) and the US Nuclear Regulatory Committee jointly developed the Radio-
logical Assessment System for Consequence Analysis (RASCAL) dose assessment
system (Athey et al. 1993; McGuire et al. 2007). Given a specific type of reactor,
containment vessel and amount of fuel available, the system simulates different
scenarios that can lead to partial or full core melt. However, the model only
simulates the amount of radiation inside the containment vessel. The radiation can
potentially leak into the environment in several ways, such as by controlled venting
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to reduce pressure in the containment vessel, by small leaks in the structure, or by
direct emission into the atmosphere in the case of a massive failure where the core
is partially or fully exposed.

Ramsdell (2012) provides a general overview of estimated release amounts for
Fukushima available and provides a comparison with a U.S. nuclear power plant
surrogate using the RASCAL model. He concludes that about 2% of the core
material in reactor 1, and about 1% in reactors 2 and 3 were estimated to have
leaked into the environment. These figures are in good agreement with the estimates
provided by TEPCO (Matsunaga 2012).

In general, it is possible to simulate the total amount of radiation leaked using a
nuclear reactor model, but not its temporal release rate.

1.3 Atmospheric Modeling

The estimation of the release rate can be considered a special case of the general
source detection problem. This class of methods use a combination of concentration
measurements and numerical transport and dispersion simulations to reconstruct
the source characteristics. The goal is to determine the source characteristics
that minimize the error between simulated and measured concentrations. The
assumption is that when the error is small, the characteristics of the source have been
correctly identified. There are of course uncertainties associated with the numerical
model used, the concentration measurements, the terrain characteristics, and the
meteorological data.

Kathirgamanathan et al. (2004) reconstructed the continuous release rate over a
period of time from a source at a known location using a least-squares minimization
of the solution of an advection-diffusion equation.

Senocak et al. (2008) proposed a source detection methodology based on
Bayesian inference and Markov chain Monte Carlo to estimate the turbulent
diffusion parameters in a forward Gaussian plume dispersion model. The model
accounts for zero and non-zero concentration measurements, and was validated with
real and synthetic dispersion experiments. Haupt et al. (2007), Delle Monache et al.
(2008), and Cervone and Franzese (2011) use forward numerical simulations from
candidate sources, and employ different search strategies to identify the source that
minimizes the error between simulated and observed concentrations.

Winiarek et al. (2011b) minimized the error between measurements and con-
centrations simulated using Eulerian dispersion models, based on the advection
diffusion transport equation. A general methodology consisting of a sequential data
assimilation algorithm was presented for the semi-automatic sequential reconstruc-
tion of a plume, and validated using ground concentrations measured in France and
Finland. The same methodology was applied by Winiarek et al. (2011a) and Boquet
(2012) to the reconstruction of the Fukushima accident, showing a good correlation
between simulated and observed concentrations of the radioactive leaks of Caesium-
134 and Caesium-137.
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Schöppner et al. (2011) and Stohl et al. (2012) estimated the source of the
Fukushima accident using global Comprehensive Nuclear-Test-Ban Treaty (CTBT)
radionuclide data, assuming that the Fukushima accident was the only source of
these radionuclides. A backward propagation model was used to determine the
source-receptor sensitivity related to the adjoint concentration. The source was
reconstructed daily for both Caesium-137 and Iodine-131 for the period ranging
from March 10 to 30. The source release rate is identified with a daily temporal
resolution, and there is good agreement between observations and simulations.

In the immediate aftermath of the accident, the National Atmospheric Release
Advisory Center (NARAC) at LLNL performed operational dispersion simulations2

and attempted to reconstruct the source term by performing spatio-temporal analysis
between measurements and model values under different assumptions such as time-
varying vs. constant release rates (Sugiyama and Nasstrom 2012). A comprehensive
report of their simulations and results can be found in Sugiyama et al. (2012).

In this paper, a new method is proposed for the reconstruction of non-steady
sources. The approach is based on forward numerical dispersion models and
stochastic search to minimize the error between the observations and the sim-
ulations. This work extends to non-steady sources the authors’ prior work on
steady source estimation, where evolutionary algorithms were employed to drive a
search process that identifies the characteristics of an unknown atmospheric release
(Cervone and Franzese 2010, 2011; Cervone et al. 2010b,a).

The proposed method is applied to the reconstruction of the time-dependent
source release rate of radiation leaked from the Fukushima reactors for a period of 5
days with a 2-h temporal resolution. This work was first presented at the Workshop:
Methods for Estimating Radiation Release from Fukushima Daiichi, which took
place at the National Center for Atmospheric Research (NCAR) in February 2012.
The website for the event, which includes presentations of several of the works cited
in this article can be found at: http://www.ral.ucar.edu/nsap/events/fukushima/.

2 Source Reconstruction Methodology

The proposed methodology identifies the source release rate which minimizes the
error between observed and simulated concentrations.

In order to be able to reconstruct an unsteady release rate, a continuous release
with a virtual constant rate q is discretized into a sequence of N consecutive
finite-duration releases Qn, with n D 1 : : : N . Figure 1a shows a sample steady
plume represented as a sequence of identical releases with the same rate q (the
area of each release is constant). A time-varying release rate Qn (Fig. 1b) can
be obtained by multiplying q by a scalar wn for each release n. The goal of the
reconstructing procedure is to determine the vector W D fw1 : : : wN g. The vector W

2https://str.llnl.gov/JanFeb12/sugiyama.html

http://www.ral.ucar.edu/nsap/events/fukushima/
https://str.llnl.gov/JanFeb12/sugiyama.html
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Fig. 1 Multiple consecutive releases of finite duration: releases of same rate q (top); discretized
time-varying releases of different rate Qn (bottom)

is identified through a stochastic optimization process that minimizes the error
between the radioactivity levels measured at different locations in the domain, and
the radioactivity simulated using a transport and dispersion model as described
below.

2.1 Problem Definition

Time-dependent radioactivity (or concentration of radioactive material) is simulated
at each ground location where radioactivity measurements are available. Specifi-
cally, at each location x D .x; y; z/ and time t the simulated total concentration of
radioactive material C is equal to:

C.x; t/ D
NX

nD1

cn.x; t/ (1)

where cn is the simulated concentration at location x and time t generated by
release n.

The goal is to find the unknown set of release rates Qn which generates the
field c according to (1). First, the space is discretized into M stations, and the
sampling time t into K intervals. Then, a dispersion simulation is performed using a
temporal sequence of N releases with equal mass rate q. Each one of the N releases
generates a concentration �nmk , where n D 1 : : : N , m D 1 : : : M , and k D 1 : : : K.



Source Term Estimation for the 2011 Fukushima Nuclear Accident 55

Namely, �nmk is the concentration generated by release n at location m at time k.
The concentration generated by the real release rate Qn can be written as

cnmk D wn �nmk (2)

where wn are the N elements of an unknown vector W . The concentration
corresponding to the real temporal sequence of releases Qn can be written as:

Cmk D
NX

nD1

cnmk D
NX

nD1

wn�nmk (3)

Assuming a linear relationship between concentration and release rate, we can write

Qn D wnq (4)

The unknown scalars wn are calculated by minimizing the mean square difference
between simulated concentration Cmk and observed concentration C o

mk at location
m and time k, over all the locations M and times K:

� D 1

M CK

MX
mD1

KX
kD1

.Cmk � C o
mk/2 (5)

In other words, the error � is the cost function that has to be minimized by
optimizing the w parameters.

2.2 Minimization of the Error

Evolutionary algorithms (e.g. Bäck 1996) are particularly suited for this type
of global spatio-temporal optimization, where vectors of correlated variables are
optimized concurrently, and have already been applied successfully for atmospheric
source characterization problems (Haupt et al. 2006; Cervone et al. 2010a).
Strengths and weaknesses of the many types of evolutionary (or genetic) algorithms
depend on the application. Our methodology is based on a class of evolutionary
algorithms called Evolutionary Strategies, or ES (Rechenberg 1971; Schwefel
1974), which proved to be a good overall performer for atmospheric source
detection problems (Cervone et al. 2010a).

While evolutionary algorithms in general are heuristics based on biologically in-
spired iterative processes, ES address continuous parameter optimization problems
in particular. Formally, if N is the number of optimized parameters wn, and Dn are
their domains, then the evolutionary algorithm attempts to minimize a goal function
�.w1WN /.
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Central to the terminology of an evolutionary algorithm is the concept of
potential solution, or candidate solution. Each solution contains a value for every
one of the optimized parameters wn. Like all evolutionary algorithms, ES maintain
a population of potential solutions and attempt to improve on it interactively.

The process of randomly generating the initial population consists of assigning
to each of the optimized parameters wn random values uniformly sampled from Dn.

The particular type of ES used in this paper is known as ES(�C 	) in which �

current solutions act as parents and are used to produce 	 offspring that compete
with their parents for survival. At each iterative step, only the best � solutions
(parents and offspring) are maintained, the rest being discarded.

Producing offspring from parents involves cloning, followed by the application
of a perturbing (mutation) operator that induces minor stochastic variation to one
or more variables. Therefore the search process can optimize multiple variables
concurrently. When optimizing on a continuous domain, most of the times a
Gaussian mutation is used. The degree of variation induced by this operator is tuned
by its standard deviation, the meta parameter 
n. One of the most delicate aspects
is quantifying and controlling the magnitude of the stochastic variations. The global
parameters 
n are initialized to 1=6 the size of Dn, and is adjusted throughout the
optimization depending on the convergence rate (Fig. 2).

3 Models and Data

3.1 SCIPUFF T&D Model

The release reconstruction methodology can be used with any T&D model. The
T&D model used in this study is the Second-order Closure Integrated Puff model
(SCIPUFF), a Lagrangian puff dispersion model that uses a collection of Gaussian
puffs to represent an arbitrary, three-dimensional, time-dependent concentration
field (Sykes et al. 1984; Sykes and Gabruk 1997).

3.2 Radiation Data

The radiation data over the Japanese territory was collected via the System for
Prediction of Environment Emergency Dose Information (SPEEDI),3 which is
maintained by the Nuclear Safety Division of the Japanese Ministry of Education,
Culture, Sports, Science and Technology Disaster Prevention Network for Nuclear

3http://www.bousai.ne.jp/eng/index.html

http://www.bousai.ne.jp/eng/index.html
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Fig. 2 Simulated release rate in Fukushima (left) and concentrations in Kanagawa (right). Top
panels – results before optimization; bottom panels – results after optimization. The horizontal
axis represents time from 14 to 19 March 2011. (a) Release rate in Fukushima before optimization.
(b) Concentration in Kanagawa before optimization. Solid line – observations; shaded area –
simulation. (c) Release rate in Fukushima after optimization. (d) Concentration in Kanagawa after
optimization. Solid line – observations; shaded area – simulation

Environments. The network is used for real-time dose assessment in radiological
emergencies, and it was instrumental in determining the risk areas evacuated by the
Japanese Government at the time of the accident. The data consists of measurements
of radiation updated at intervals of 10 min, and are collected at 218 stations grouped
in 17 prefectures located across Japan.

Table 1 and Fig. 3 show the locations of the stations and their grouping into
prefectures. The data for the prefectures of Fukushima (# 4) and Ibaraki (# 5), which
are the ones closest to the release location, are not available. The data for each
station was averaged by prefecture, and used in the experiments. The background
radiation for each prefecture was removed by averaging data for 1 month prior to
the accident, and removing the resulting value from the signal.

The stations are not uniformly distributed throughout Japan, but are concentrated
in specific regions of each prefecture. Representative data for each prefecture are
calculated by averaging the measurements of all the stations in the prefecture.
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Table 1 Location of the radiological stations used in the study

Station ID Lat. Long. Prefecture Prefecture (Jap)

1 43.04 140.52 Hokkaido 北海道

2 40.98 141.27 Aomori 青森県

3 38.40 141.48 Miyagi 宮城県

4 37.42 141.03 Fukushima 福島県

5 36.40 140.53 Ibaraki 茨城県

6 35.35 139.71 Kanagawa 神奈川県

7 37.42 138.61 Niigata 新潟県

8 37.01 136.74 Ishikawa 石川県

9 35.62 135.80 Fukui 福井県

10 34.64 138.14 Kyoto 京都府

11 35.49 135.45 Shizuoka 静岡県

12 34.46 135.41 Osaka 大阪府

13 35.52 133.01 Okayama 岡山県

14 35.31 133.93 Shimane 島根県

15 33.48 132.32 Ehime 愛媛県

16 33.50 129.83 Saga 佐賀県

17 31.83 130.22 Kagoshima 鹿児島県
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Fig. 3 Map of the simulation domain, showing the location of the radiation and meteorological
measurements. The location of the Fukushima power plan is indicated with a circle. The horizontal
axis shows degree longitudes East, and the vertical axis shows degree latitudes North
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Table 2 Location of the ground meteorological stations used in the study

Station ID Lat. Long. Elevation (m) Airport

RJFS 37.20 140.40 375 Yes
IMIYAGIS3 38.39 140.72 541 No
INIIGATA1 37.11 138.92 145 No
RJAH 36.18 140.42 35 Yes
RJTT 35.55 139.78 8 Yes
IKANAGAW1 35.44 139.37 24 No
ITOKYOHI1 35.66 139.40 102 No
ITOKYOSE3 35.66 139.59 50 No
IU6771U42 35.52 139.48 71 No

3.3 Ground Meteorological Data

Ground meteorological measurements were obtained for nine locations, selected
among those available around the Fukushima nuclear power plant, and in the
prefectures for which radioactivity data are available. The data are available with
a temporal resolution of 30 min. Table 2 shows the location information relative
to the ground meteorological stations used in this study. The meteorological data
used include observations for wind direction and speed, temperature, pressure, and
rainfall information. All these measurements, including rainfall estimation, were
converted and used in the SCIPUFF simulations.

3.4 Model Meteorological Data

The meteorological data used for the vertical profiles are from the NCEP Reanalysis
II model. The model has a spatial resolution of 2.5ı and a temporal resolution of four
times daily (00:00Z, 06:00Z, 12:00Z, 18:00Z). Data for wind speed and direction,
temperature and relative humidity at 17 pressure levels (hPa): 1000, 925, 850, 700,
600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10, were used by SCIPUFF.

3.5 Terrain Data

The Digital Elevation Model (DEM) terrain data used for the simulations is from
the Global Land 1-km Base Elevation Project (GLOBE). The data has 1 km spatial
resolution, and is derived from satellite observations and ground measurements. It is
maintained by an international consortium of government agencies and universities,
and distributed free of charge.
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4 Results

The methodology described is applied to identify the source release rate associated
with the Fukushima nuclear power plant accident. The time dependent release rate is
determined for a period of 5 days, from 14 to 18 March 2011, with a 2-h resolution.
As described in Sect. 2, a 5-day long continuous release of constant emission rate
q was discretized into 60 releases, each of the duration of 2 h (Fig. 1, top). The
SCIPUFF model was used to simulate all 60 releases.

Simulated and observed concentrations were compared at the locations identified
in Table 1 and Fig. 3, and the evolutionary optimization algorithm is applied to
identify the 60 unknown parameters wn which minimize the error between the
simulated and observed concentrations at each prefecture and each time step. This
is a parallel optimization, in which the error is simultaneously minimized for all
releases (Equation (5)). The time-dependent release rates Qn is finally obtained
according to Equation (4).

Note that the procedure requires only a single dispersion simulation of the initial
60 releases with constant q. Each release was uniquely associated to a specific
fictitious material, so that at each location and time the total concentration can
be computed as the additive contribution of the individual releases. Therefore the
process is equivalent to simulating the release of 60 different gases.

The temporal resolution of the model output is 10 min, to match the temporal
resolution of the observed concentration data. Although the temporal resolution
is higher than the available resolution for the meteorological data, SCIPUFF
interpolates between the available measurements and can reconstruct the field.

Figure 2a shows the initial constant q for the 60 releases over the 5 days
considered in this study. The color indicates the release and ranges from shades
of blue (releases 10–20) to green (releases 30–40) and red (releases 50–60).

Figure 2b shows the resulting concentration computed at the Kanagawa pre-
fecture using the fixed release rate q. Each release is color coded using the same
scheme of Fig. 2a, and it is thus possible to determine the individual contribution of
each of the 60 releases as a function of time. Because the release rate is constant,
the variation in the concentration is only due to the atmospheric transport and
dispersion. The figure also shows the observed concentration as a continuous line.
As expected, this non optimized case does not show a good agreement between
measurements and simulation.

Figure 2c shows the reconstructed release rates Qn as a function of time at
Fukushima. Two major releases are identified for March 14th and 15th. The TEPCO
time-series for the radiation dose measured at the main gate of the Fukushima
nuclear power plant, and reported by Shozugawa et al. (2012), agrees with our
findings.

Figure 2d shows the resulting simulated concentration at Kanagawa, obtained
using the identified Qn. The time-location of both peaks is accurately simulated. The
simulation underestimates the magnitude of the first episode, and overestimates its
time duration. Both magnitude and width of the second episode are more accurately
captured.
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Fig. 4 Contour levels of the vertically integrated concentration simulated by the SCIPUFF model
using the identified release rate. The panels show results at 12, 24, 48 and 96 h after March 14,
2011, 00:00 JST

Figure 4 shows the SCIPUFF simulation of the Fukushima accident using the
reconstructed time-variable release rates Qn. The figure displays contour lines of the
vertically integrated concentration in kg m�2. The terrain elevation is also indicated.
The locations where meteorological vertical profiles and surface observations are
available are indicated by the letters P and S .
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5 Conclusions

This paper presents a new methodology for the estimation of the source term release
rate characteristics of a continuous release. It uses numerical T&D models, sensor
measurements, and machine learning optimization. The new methodology is applied
to the reconstruction of the release rate for the Fukushima nuclear power plant
accident for a period of 5 days with a temporal resolution of 2 h.

The results show large emissions between the 14th and 15th of March, which
agree with results published using different methodologies. The advantage of the
proposed method consists in the high temporal resolution of the results, and its
ability to work with sensor measurements that are located away from the source.

The uncertainty can be further reduced if more concentration measurements and
higher resolution meteorological data are available. However, note that the accuracy
of the reconstruction depends on the representativeness of the observations.
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GIS-Based Traffic Simulation Using OSM

Jörg Dallmeyer, Andreas D. Lattner, and Ingo J. Timm

Abstract This chapter demonstrates how to build up a traffic simulation on the
base of a Geographic Information System (GIS). Maps from the OpenStreetMap
(OSM) initiative have shown to be appropriate for usage in this field. Essential
steps from OSM over GIS to a graph data structure for use in traffic simulation
are described. The work is done with the focus on urban scenarios. The crucial
decision, which types of road users to integrate into a simulation and how to model
them, is discussed. A case scenario shows the utility of data mining techniques in
the field of traffic simulation. The scenario aims at predicting traffic jams in the city
of Frankfurt am Main with help of a learned classifier. Our results show that taking
into account simple and partial information about the traffic situation can lead to a
huge gain of knowledge when using data mining techniques in the face of predicting
of traffic situations.

Keywords Traffic simulation • Machine learning • Jam forecasting • Urban
traffic

1 Introduction

Simulations are commonly used for understanding and prediction of traffic phe-
nomena, traffic densities and traffic flows. It is much cheaper to test a new scenario
in simulation before implementing it in reality. For a realistic simulation of urban
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scenarios, two elementary problems need to be solved. At first, the road structure
needs to be modeled in a simulation graph. Second, the behavior of road users and
traffic rules need to be modeled. According to the focus of the simulation, additional
information needs to be integrated into the model (e.g., a digital terrain model or a
model for gas consumption and CO2 emissions).

Today, for almost any major city, very detailed road models exist in layers for
Geographic Information Systems (GIS). GIS are very powerful tools in order to deal
with heterogeneous data sources particularly with regard to building road models.
With help of the renderer of a GIS, it is easy to show the effects in simulation
directly. Therefore, a couple of GIS layers, specifying different types of geometry
(e.g., roads and polygons), are rendered on top of each other and a typical map is
produced.

The simulation of multimodal traffic is a challenge for traffic simulation systems.
Interdependencies from, e.g., bicyclists with cars or cars with pedestrians need to be
modeled. Most traffic simulations therefore either simulate traffic in a very sim-
plified way and cannot be adapted realistically for urban scenarios (e.g., Transims
(Nagel et al. 1999), MATSim (Rieser 2010)) or are high fidelity simulations which
are not sufficient for large scenarios (e.g., VISSIM (Fellendorf 1994)). Simulations
differ widely in the needed time effort for setting up a simulation.

After having built a traffic simulation system, traffic engineers need to evaluate
scenarios with help of the system. Different output values can be used in order to
compare different scenarios (e.g., traffic flows, mean velocities, travel times, time
spent in front of red traffic lights, number of accidents, : : :). A manual analysis
of such data is often not feasible because of the high amount of information and
numerous attributes. Methods from machine learning can be used to find interesting
rules like “When the traffic density in the area x is bigger than v, traffic will get
stuck in area y”. Apparently, such rules are not trivially to be generated, but steps
into this direction have been taken (e.g., Lattner et al. 2011).

The OpenStreetMap (OSM) project has grown constantly in the last years and
is today a useful source for road maps for different purposes. It would be a benefit
for traffic research to build traffic simulation models upon OSM. OSM maps are not
directly usable for GIS. Thus, a transformation step has to be established.

This chapter gives an introduction on how to use OSM data for traffic simulation
(Sect. 2) and how to build up a simulation graph from GIS information (Sect. 3).
It also introduces the developed traffic models (Sect. 4) and a short introduction
to machine learning for traffic simulation is provided (Sect. 5). A case scenario
is discussed (Sect. 6) and the chapter ends with a short summary of the content
and perspectives for future investigations (Sect. 7). The discussed architecture and
models are part of the traffic simulation system MAINS2IM (MultimodAl INnercity
SIMulation).1

1http://www.mainsim.eu

http://www.mainsim.eu
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2 OpenStreetMap for Traffic Simulation

This section discusses OpenStreetMap2 (OSM) and how to obtain data from the
project. The design of cartographical material from OSM is described and an idea
about how to extract important information from OSM is given.

OSM is a free of charge project giving access to cartographical material from
all over the world. The maps are created by voluntary cartographers in the manner
of Wikipedia. The data is licensed currently under Creative Commons Attribution-
Share Alike 2.0 (CC-BY-SA),3 but this could change in the future (Bennett 2010).

OSM has grown in the last years and has reached a level of detail and quality
enabling it to be used for different purposes even though the data quality differs
across different areas (Haklay 2010; Zielstra and Zipf 2010). For example, OSM
maps are used in different smartphones for navigation purposes. In the area of
Transportation Simulation, OSM is used as a data source in order to built up
simulation graphs (Dallmeyer et al. 2011; Zilske et al. 2011).

OSM uses an XML-format. At first, an amount of nodes is defined. LineString
and polygon geometries are built with help of way elements. These can be, e.g.,
roads, rivers, forests and local areas. ways store references to the nodes they
consist of. The strengths of the format are its simplicity, memory efficiency, and
extensibility. Additional information can be stored via usage of tag elements,
which use a key and a value. In addition to nodes and ways, relations can
be created, which store, e.g., bus routes or bicycle tracks. relations are always
the last section of an OSM file. Figure 1 shows the basic elements.

OSM files can be exported directly from the OSM website. Only small areas
can be exported. Another possibility is to download a map from a whole federal

Fig. 1 Basic OSM elements

2http://www.openstreetmap.org
3http://www.openstreetmap.org/copyright, last visited December 15th, 2011

http://www.openstreetmap.org
http://www.openstreetmap.org/copyright
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state from an external provider.4 The files can easily have a size of more than 1 GB.
Thus, we developed a way to clip the map by oneself to a polygon P . The strict
order nodes! ways! relations can be used to do the clipping efficiently.
The XML elements are parsed via a SAX parser and each node which is covered by
P is stored in the clipped new output file. The remainder is dropped. Afterwards,
each way, which contains only references to nodes, which are in the output file
are attached to the clipped file, the rest is dropped. The same way, relations can be
filtered.

In order to keep each way which is covered by P or crosses P , the OSM file has
to be processed a second time to amend the nodes that have been dropped during
the first parsing of the file though being used in one of the way elements, that are
not fully covered by P .

For the purpose of traffic simulation, it is much easier to work with a layer based
GIS than with a whole XML tree. This gives the advantages of a powerful rendering
method for visualization of the simulation and to divide information which is used
for simulation from information which is only used for rendering. Layers are a
logical way of grouping associated information. The clipped OSM document is
converted to a number of Shapefile layers.5 This is done with help of the open source
GIS toolkit GeoTools.6

GeoTools is written in Java. It provides classes for the handling of geoinformation
and can be extended arbitrarily. In order to build up a traffic simulation system, it is
necessary to extract a simulation graph data structure from the given geographical
map. The interplay of different layers and specific characteristic for traffic simula-
tion are discussed in the next section.

3 Graph Generation from GIS Layers

For the basic generation of a graph, GeoTools provides a tool to generate graphs
from LineString geometries. The basic graph is not suitable for simulation because
of specific characteristics of road networks, which are not covered by GeoTools,
e.g., missing nodes at road intersections or faulty set nodes at the intersection
between a bridge and a regular road. Thus, this section provides a compilation of
analysis and modification steps to model whole map sections in a data structure
ExtendedGraph.

As a first step, a faultless graph has to be extracted, taking account for bridges,
tunnels, right of way rules, traffic circles, numbers of lanes and velocity restrictions
(Sect. 3.1). Then, additional information has to be extracted from the calculated

4http://www.geofabrik.de/en/data/download.html
5Shapefile is a standard format for geographical information.
6http://www.geotools.org/

http://www.geofabrik.de/en/data/download.html
http://www.geotools.org/
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graph, assigning which road may be used by which type of road user, finding
bus routes, calculating ways in the graph and assigning edge usage probabilities
(Sect. 3.2).

3.1 Generating an ExtendedGraph

At first, all basic edges and nodes of the graph are converted into EdgeInformations
(EI) and NodeInformations (NI), which use as much information from OSM as
possible (e.g., number of lanes, type of road, velocity restrictions). Unavailable
information is amended via lookup tables, with respect to the type of road. Typical
values for a residential road would be #lanes D 1 and vmax D 30 km � h�1. The
connections between EIs are set: each EI is connected to two NIs NIa and NIb and
each NI has at least the connection to one EI.
EIs are grouped in a structure called EdgeInformationCollection (EIC), NIs in

a NodeInformationCollection (NIC). The collections give methods for selecting
specific elements and manipulating EIs and NIs for different purposes.

At the current stage, each road is modeled with one geometry. Roads do not
cross each other when they proceed after the crossing point. Therefore, intersections
between EIs are detected and the corresponding EIs are split up at the intersection
point. A new NI connects the crossing parts.

We are using a graph structure which stores one EI per road segment. The stored
nodes of an OSM way are sorted in the direction of the course of the road. If a
road is oneway, this attribute will be stored in the corresponding EI and the EI can
only be used from NIa to NIb and not in the opposite direction. This means that the
position of a simulated road user ru on the road depends on the NI, ru has visited
last. In OSM, small traffic circles or turning areas are often stored with only one
edge. In this case, EIs exist which have NIa D NIb and it is impossible for ru to
decide in which direction it drives on the corresponding road. Thus, such EIs are
split in the center of their geometries and new NIs are inserted.
NIs being connected to EIs representing bridges or tunnels are checked, whether

they do connect EIs which are bridges or tunnels with EIs which are not. In
this case, a new NI is inserted at the same position of the existing NI and the
EIs which are bridges or tunnels are connected to the new NI and are removed
from the old one. In our representation, crosswalks and traffic lights are stored in
NIs and therefore, EIs are split whenever a traffic control has to be inserted. The
corresponding positions are read from a GIS layer representing points.

Because vmax of each EI is set in relation to the type of road when no
information is given, highways crossing towns result in higher values of vmax
than in reality. From the layer of polygons, each inner-city area ica is checked
for EIs being located in ica. The value of the maximum velocity is adjusted to
the minimum of vmax and 50 km � h�1, which is a typical value for the standard
inner-city velocity. EIs being located in parking lots are detected identically.
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In urban scenarios, traffic circles have gained an important role. The problem at
this point is, that in OSM not all traffic circles are marked as such and therefore an
analysis step is necessary to detect traffic circles. All parts of the traffic circle have
identical values in respect to name, road type, maximum velocity, number of lanes
and traffic circles are always oneway streets. The geometries of the parts of a traffic
circle form a circle in anticlockwise direction. With the determined characteristics,
traffic circles can be found in the graph.

OSM does not store information about which type of road user may use a road.
A further lookup table is used to define this information in relation to different road
types. In urban scenarios, the right of way is regulated by the priority of the road and
the rule “right before left”.7 Each NI stores information about all connections over
this NI. A connection has a direction (left, right, ahead) and an angle. The priority
of a road is stored in the corresponding EI with help of an additional lookup table
for the type of the EI. The higher the priority value, the higher the right of way of
EI. The highest priority is given to traffic circles without respect to their road type.

Up to this point, a consistent ExtendedGraph is built. The following subsec-
tion discusses additional information, which needs to be calculated, according to the
subject of simulation.

3.2 Determining Additional Information

Bus routes can be stored in OSM via usage of relations. The problem at this point is,
that routes are usually not stored from a starting point to an end point under usage
of way objects in the sequential arrangement of their appearance on the route. But
at least, the used ways can be read out and a heuristic algorithm which rearranges
the parts of the route to a plausible aggregate route can be applied. Buses can be
used in the simulation to let groups of pedestrians appear at bus stops and also for
simulating public transportation where buses stop at bus stops. This leads to abruptly
changing traffic situations in areas surrounding bus stops, because of pedestrians
using a crosswalk, pushing the button of a traffic light or crossing the road at an
insufficient gap.

Assuming that the simulation graph will not alter significantly during the
simulation, all possible routes in the simulation graph are calculated. From each
NIstart 2 NIC, Dijkstra’s algorithm (e.g., Cormen et al. 2001) is performed. The
ID of the first NI1 on the way from NIstart to each NIdest 2 NIC n NIstart
is stored. After performing this algorithm, each NIstart holds an array, where
the n-th entry is the ID of the first NI on the way to the NIdest with ID n.

7The described method implements rules for right hand traffic. For left hand traffic, the right of
way priorities need to be switched.
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The method is performed for the three basic routing characteristics “car”, “bicycle”
and “pedestrian”. Space reduction is achieved due to creating lookup tables for each
NI, giving the stored IDs shorter values. This is possible due to the fact, that each
NI has only as much different IDs to store, as it has connected EIs.

In order to have random behavior in routing, the calculated routes are passed to
an analysis step. All routes are run from NIstart to NIdest and each NI counts,
how often its connected EIs is used on the runs. Edge usage probabilities are set
up with respect to these counts. Three different routing mechanisms can now be
used during simulation: Precalculated routes, online calculated routes (which need
more computational time, but can deal with changes in the ExtendedGraph) and
random walks with respect to precalculated edge usage probabilities (Dallmeyer
et al. 2011).

The computed ExtendedGraph can be stored into a file and directly used as
input for simulation runs.

After having calculated the ExtendedGraph, it is necessary to decide, which
kind of road users to simulate and how to model, e.g., cars and pedestrians. The next
section addresses this crucial factor.

4 Simulation Models

The focus of this work is the simulation of multimodal traffic in urban scenarios.
Each group of road users needs different behavioral models. This section gives a
brief introduction of how our models work. It is important to model cars (e.g.,
passenger cars, trucks and buses; Sect. 4.1), bicycles (Sect. 4.2) and pedestrians
(Sect. 4.3).

4.1 Space Continuous Car Model

The simulation of car traffic is often done with help of the Nagel-Schreckenberg
model (NSM) (Nagel and Schreckenberg 1992), which is a cellular automaton
model for freeway traffic. It is the de facto standard, because of its simplicity and,
nevertheless, capability to model freeway traffic in a realistic way with respect to
macroscopic properties. NSM divides a road into cells with length 7.5 m. Cars may
have discrete velocities in the range v 2 f0 � � � 5g �cell � s�1

�
. The model is discrete

in time. One simulation iteration corresponds to 1 s real time.
Each simulated car performs the following steps in parallel. At first, try to

accelerate (v  v C 1), if v < 5. Determine the gap � to the preceding car. Set
v min .v; �/. Dally with probability p. When dallying, set v max .0; v � 1/.
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It was shown that emerging phenomena through interdependencies of many cars
like phantom jams8 can be simulated with NSM. Furthermore, the model could be
calibrated to measurement data from real freeways. Many work has been done in
the community of traffic simulators, e.g., extending the model with brake lights
(Hafstein et al. 2003), a slow start rule (Helbing 1997), smaller cell sizes (Krauss
et al. 1996) and multi lane traffic (Knospe et al. 2002).

Although NSM provides many extensions, it has been reasonable to remove the
cells from the roads and to build a space continuous car model which uses the
basic functionalities of NSM, but being able to build arbitrary acceleration and
deceleration functions. One main reason for space continuity are different velocity
spreadings for different types of road users. For example, a bicycle usually moves
much slower than a car. Any length of car can be modeled. Interaction on the roads
can be simulated in more detail. This could only be done in NSM when using
very small cells, but this would decrease the computational advantages of NSM
significantly.

The model uses the same update steps as NSM but with variable velocity
functions. Different modifications and enhancements, described in literature are
built in our model, too. We could show, that the basic model reproduces macroscopic
data on freeways (Dallmeyer et al. 2011). Cars are able to change lanes and to
choose lanes for turning maneuvers.

4.2 Bicycle Model

Bicycles are currently not under detailed investigation in science. But there are
publications about how bicycles behave in urban traffic (e.g., Johnson et al. 2011;
Larsen and El-Geneidy 2011). The investigated bicycle model is built on determined
velocity distributions. Bicycles have mainly the same behavioral model as cars,
but with different dallying properties and, of course, different routes. Bicycles are
interesting for traffic simulation because of the interaction with cars.

Cars may overtake bicycles when it is safe. Each car determines, what is seen
to be safe. Overtaking is done with respect to the desire to overtake, the gap to
oncoming traffic, the possibility to get back to the right lane after overtaking (there
needs to be a gap, too), the distance to the next road junction and the width of the
road (with respect to the width of the car, the oncoming car and the bicycle).

Another occurrence in urban traffic is the pushing to the front of cyclists to red
traffic lights, overtaking on the left, on the right or both. This seems to be intended
by traffic planners in some cases (e.g., if there is a specific region for cyclists in front
of the stop line for cars). When the light switches to green, cars need to overtake the
bicycles again. Not all bicycles overtake at red lights. This can be modeled with help
of a probability function.

8A phantom jam is a jam which occurs without an obvious reason. It is build up from dallying and
overdosed braking in NSM and has likewise reasons, in reality (Helbing 2001).
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4.3 Pedestrian Model

The simulation of pedestrians has been given little attention in the past (Ishaque
and Noland 2008), even though every human is a pedestrian. Pedestrians walk on
sidewalks and cross roads, when it is necessary. Traffic lights and crosswalks are
preferred for crossing the road (crossing at NIs) compared to crossing without right
of way (crossing at EIs). It is assumed that pedestrian velocity will average over
time and thus, that the mutual influence of pedestrians while walking on sidewalks
(EIs) can be neglected. It is more interesting to determine, how long the crossing of
a road will take. A model accounting for interaction between pedestrians is used for
crossing roads at NIs.

The cellular automaton model for pedestrian movement, presented in Blue and
Adler (2001) is used as basis for a space continuous model enabling pedestrians
to avoid other pedestrians at NIs, walk with velocities in relation to the free space
on NIs and to choose lanes. For example, a crosswalk has a width wc and each

pedestrian has a width wp . The crossing then has
j

wc � w�1
p

k
lanes. The underlying

principles are used for individual velocities with respect to different types of
pedestrians (e.g., children, grown-ups and seniors). The velocities of pedestrians
vary over different situations (e.g., walking on the sidewalk, crossing a road without
right of way or crossing the road on a crosswalk).

Each simulated pedestrian accepts individual gaps in road traffic for crossing a
road. This is done after the concept of Estimated Crossing Time (ECT) (Ottomanelli
et al. 2009), which takes into account of individual aggressiveness of pedestrians.
It may happen that a pedestrian misjudges a gap and is not able to finish crossing a
road before a car or bicycle arrives at its position. Pedestrians are visible for road
traffic only when crossing a road and then are treated like normal standing cars.
An approaching car will slow down and in extreme cases come to standstill until a
crossing pedestrian has left the road.

On the other hand, pedestrians cross NIs. They can do so without having the
right of way. They decide whether crossing is appropriate with respect to traffic.
Whenever a pedestrian is crossing an NI at one side, all road users planning to
cross this side, will wait until the crossing is done. Pedestrians pass crosswalks
without respect to traffic. Pedestrians are able to virtually push the buttons of traffic
lights, forcing them to turn red for road traffic during the next simulated minute.
The mentioned interactions influence urban traffic. A detailed description of the
pedestrian model will be available in a separate publication (Dallmeyer et al. 2012a).

Different parameters can be measured during simulation runs, e.g., average
velocities, traffic densities or traffic flows. In order to spot relationships between
different parameters, appropriate techniques have to be applied to the system. The
next section gives a brief introduction on machine learning and how to use it for
traffic simulation.
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5 Learning in Traffic Scenarios

Different learning paradigms can be applied to simulated traffic scenarios in order to
identify regularities or useful behaviors. In this section, we discuss different options
following the classification of learning approaches regarding learning feedback,
namely supervised learning, unsupervised learning, and reinforcement learning (see,
e.g., Russell and Norvig 2003).

The evaluation scenario in the subsequent section addresses the question how to
predict if a congestion occurs at a certain road segment using information about the
number of road users at different regions in the city. We also refer to this example
in order to illustrate the different learning approaches.

In supervised learning, the desired output of the concept to be learned is known
in advance. In the case of supervised learning from examples, for instance, each
example in the training data consists of a set of features as well as a corresponding
class. Referring the aforementioned scenario, features can be, e.g., the number of
cars in different residential areas and the target class, if this situation has lead to a
congestion at a specific road segment. The learning task is to generate a hypothesis
which – hopefully – represents well the true underlying concept of the data.
Learning results in a classifier which can be used to classify (previously unseen)
examples. Having captured the number of cars in the different residential areas, the
classifier can predict if a congestion is expected at the point of interest. It is aimed at
generating a general classifier which does not only cover the training data well but
additionally performs well on unseen examples. Approaches to supervised learning
are, among others, decision tree learning, decision rule learning, learning in neural
networks, and Bayesian learning. We focus here on symbolic learning approaches
(decision tree learning and decision rule learning) as the generated classifiers lead
to a comprehensible representation. Figure 2 illustrates the process of supervised
learning from traffic simulation experiments.

In contrast, in unsupervised learning no information about the desired output is
provided. The learning task is to identify regularities in the data (without target
concept) or to group examples with respect to their similarity. In the first case,
(sequential) association rules can be identified (e.g., Agrawal and Srikant 1994; Pei
et al. 2001): If there is a high traffic density in area 1 and area 2, there will also be
a high traffic density in area 3. In the latter case, the data would be grouped in a
way that a classification scheme is generated, for instance, grouping similar traffic
situations using a specified similarity measurement. This process is called clustering
(see, e.g., Jain et al. 1999). Getting an overview of different groups in the data can
help to analyze and to come up with certain strategies for the identified groups.

No direct feedback is provided to the learner in reinforcement learning. The
general setting in reinforcement learning is, that an agent can perceive the current
situation and can decide what action to take. In dependence of the actions, a reward
will be provided to the agent. However, this reward is not necessarily instantaneous
and might also depend on further activities or events beyond control of the agent.
Referring to the traffic scenario once again, a reinforcement learning setting could
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Fig. 2 Supervised learning in traffic simulation
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be to reach a target position as fast as possible. Perceiving the current traffic situation
(maybe even about remote positions via radio traffic service) then provides the basis
for the decision how to behave, e.g., to keep the route or to re-plan. A discussion of
reinforcement learning approaches in the context of traffic scenarios can be found,
e.g., in Bazzan (2009).

In this work, we focus on the first learning paradigm, namely supervised learning.
In the following section, we describe the supervised learning task as well as
experimental results.

6 Case Scenario

The focus of this work is to generate understandable rules to predict situations,
when traffic will get stuck. Figure 3 shows an excerpt of Frankfurt am Main. In
the morning, most traffic pours into the city from the motorway A66 in the east of
Frankfurt am Main. The area where cars enter the city is magnified. Most cars drive
to the direction of the city center which results in a huge amount of cars turning left
at this point. A part of the cars parks in a park-and-ride (P+R) parking garage, also
magnified. Most of the cars drive on to the third magnified area, presented dashed.
This area often has slow-moving traffic.

Fig. 3 Case Scenario: OSM excerpt of Frankfurt am Main. The area of velocity measurement is
shown dashed
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This results from a huge amount of unsynchronized traffic lights and the ex-
ceeded road capacity limit in this area. The traffic flow is influenced by pedestrians
pushing the buttons of traffic lights. It is assumed to be possible to count the number
of cars in a given area. This could be done with help of induction loops at central
crossing points and extrapolation of these counts for a whole area. It is more difficult
to count the number of bicycles, because of the possibility to additionally use cycle
ways and paths. Pedestrians cannot be counted easily. It would be possible to count
how often pedestrians push the buttons of traffic lights during a given time interval
in a defined area.

In the case scenario, only cars are counted. The urban districts “Bergen-
Enkheim”, “Seckbach” and “Riederwald” are observed independently. In addition,
the motorway A66 in the direction of the city of Frankfurt am Main gets observed.
After a warm-up phase of the simulation (2,000 iterations), the number of cars in
the measurement areas are counted (#Riederwald , #Bergen�Enkheim, #A66,
#Seckbach) and the sum of them is calculated. These values are used as snapshots.
In traffic scenarios, time is always an important parameter. The situation at a time
t might influence the situation at time t C � in another region. The value of � is
chosen � D 300 s, which is 5 min real-time. The value is chosen arbitrarily and is
used as a first try, estimating the travel time from the areas of measurement to the
point of interest. After �, the mean velocity v of all cars in the dashed jamming area
is measured over a time of 60 s (1 min). Note that the traffic conditions of the dashed
road are not part of the above traffic counts.

Pedestrians and bicycles influence the outcome of the simulation. Nevertheless,
they are not observed for the calculation of the situation description for learning the
classifier. The main function of these groups of road users is to increase the diversity
of results in the training data and to model the most important types of road users
occurring in reality.

Two classes are used to train a classifier.

class D
�

congested if v < 3:6 m � s�1

free else

We performed 20,000 simulation runs to train a classifier and 5,000 to measure
its performance on unseen data. To define the settings of each simulation run, let
N b

a .�; 
/ D min .max .N .�; 
/ ; a/ ; b/ be Gaussian distributed random number
with � and 
 bounded to the interval Œa � � �b�. Table 1 shows the simulation
parameters, calculated prior to each simulation run.

Figure 4 shows the distribution of training data. The data is separable and thus a
classifier should be able to determine the classes.

The case scenario is a supervised learning scenario. The free machine learning
software WEKA,9 is used to analyze the training data and to build classifiers.

9http://www.cs.waikato.ac.nz/ml/weka/, see also Bouckaert et al. (2010).

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1 Different probabilities for each simulation run resulting in different volumes of traffic

pcreate D N 0:7
0:3 .0:5; 0:1/ Probability to create a road user for each simulation

iteration
pcar D N 0:8

0:5 .0:75; 0:1/ Probability that a created road user is a car
pbicycle D N 0:9

0:5 .0:75; 0:1/ Probability, that it is a bicycle, when it is no car.
Otherwise, it will be a pedestrian

pA66 D N 0:9
0:67 .0:75; 0:1/ Probability, that car will be put on the motorway A66

pfixDest D N 0:88
0:67 .0:75; 0:1/ Probability to have one of the predefined

destinations, otherwise the destination is a
random point in the city

pdestInnerCity D N 0:9
0:7 .0:8; 0:05/ When having one of the predefined destinations:

Probability to have the destination in the inner
city of Frankfurt am Main, leading to use the
dashed road. Otherwise the destination will be
the PCR parking garage

Fig. 4 Distribution of training data

For learning, we use WEKA’s J4.8 implementation of the C4.5 algorithm (Quinlan
1993) and WEKA’s JRip implementation of RIPPER (Cohen 1995), as they produce
comprehensible classifiers.

The trained classifiers are shown in Figs. 5 and 6. RIPPER and C4.5 present
the results in different ways. RIPPER gives one logical formula, presented in a
summarized version and C4.5 generates a decision tree.
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congested = (R≥ 22)

∨ (R ≥ 19) ∧ (B ≥ 10)

∨ (R ≥ 17) ∧ (B ≥ 15)

∨ (R ≥ 21) ∧ (B ≥ 6) ∧ (43 ≤ A ≤ 51)

∨ (R ≥ 20) ∧ (B ≥ 7) ∧ (58 ≤ A ≤ 64) ∧ (Â ≥ 72)

∨ (R ≥ 16) ∧ (B ≥ 8) ∧ (42 ≤ A ≤ 50) ∧ (S ≤ 0) ∧ (72 ≤ Â ≤ 75)

∨ (R ≥ 14) ∧ (B ≥ 12) ∧ (A ≤ 62) ∧ (S ≥ 1) ∧ (Â ≥ 91)

∨ (14 ≤ R ≤ 16) ∧ (11 ≤ B ≤ 17) ∧ (A ≤ 50) ∧ (S ≤ 1) ∧ (Â ≥ 78)

with R = #Riederwald

B = # Bergen−Enkheim
A = #A66

S = #Seckbach

= B+R+ S+AÂ

Fig. 5 Learned decision rule using RIPPER

Fig. 6 Excerpt of the learned tree using C4.5

Both classifiers perform well on unseen data. Table 2 displays the confusion
matrices of the learned classifier on the test set of 5,000 further simulation runs.
The results are on par with each other: RIPPER achieves a predictive accuracy of
83.66% and C4.5 of 83.48%, respectively. The classifiers perform better than the
simple solution to always choose “free” as a result, because it is the class with the
highest frequency of occurrence, leading to a performance of 58.38%.

The small example shows the feasibility to use data mining techniques for traffic
scenarios. In a next step, the cars coming from the motorway A66 and from Bergen-
Enkheim could be advised to change destination to the P+R parking garage, when
it is likely that a traffic jam will occur.
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Table 2 Confusion matrices of the trained classifiers gained on the test set

RIPPER C4.5

Classified as ! Classified as !
Correct result # Congested Free Correct result # Congested Free
Congested 1,768 313 Congested 1,731 350
Free 504 2,415 Free 476 2,443
Correctly classified: 4,183 (83.66%) Correctly classified: 4,174 (83.48%)

7 Summary and Perspectives

An introduction on how to build up an executable traffic simulation from OSM
cartographical material has been presented. The use of GIS technologies offers the
opportunity to enhance the simulation model with data from various sources. For
example, a digital terrain model could influence the routing of bicycles or a layer
giving information about rain on the map could decrease the amount of bicycles and
pedestrians in the simulation and make the cars drive more slowly.

The requirements for simulation of urban traffic have been discussed and three
basic types of road users – car, bicycle and pedestrian – have been identified.
Microscopic simulation models taking account for the interactions between these
groups have been presented.

A case scenario has shown a method how to predict traffic jams in urban scenarios
on the example of Frankfurt am Main. Machine learning techniques have been
applied to train a classifier on the results of simulation runs. The classifier performs
well on unseen data (approximately 83.5% correctly classified samples).

As one next step, a model for gas consumption and CO2 emission can be applied
to the car model as proposed in Dallmeyer et al. (2012b). Then, the influence of
bicycles and pedestrians on this dimension could be analyzed. The influences of
actions like advising to park the car in a P+R parking garage on traffic jams and on
gas consumption then could be investigated.

Different types of classification algorithms could be compared in future work. It
might also be advantageous to use different intervals than � D 300 s.
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Evaluation of Real-Time Traffic Applications
Based on Data Stream Mining
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Abstract Traffic management today requires the analysis of a huge amount of data
in real-time in order to provide current information about the traffic state or hazards
to road users and traffic control authorities. Modern cars are equipped with several
sensors which can produce useful data for the analysis of traffic situations. Using
mobile communication technologies, such data can be integrated and aggregated
from several cars which enables intelligent transportation systems (ITS) to monitor
the traffic state in a large area at relatively low costs. However, processing and
analyzing data poses numerous challenges for data management solutions in such
systems. Real-time analysis with high accuracy and confidence is one important
requirement in this context. We present a summary of our work on a comprehensive
evaluation framework for data stream-based ITS. The goal of the framework is
to identify appropriate configurations for ITS and to evaluate different mining
methods for data analysis. The framework consists of a traffic simulation software,
a data stream management system, utilizes data stream mining algorithms, and
provides a flexible ontology-based component for data quality monitoring during
data stream processing. The work has been done in the context of a project on Car-
To-X communication using mobile communication networks. The results give some
interesting insights for the setup and configuration of traffic information systems that
use Car-To-X messages as primary source for deriving traffic information and also
point out challenges for data stream management and data stream mining.
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1 Introduction

When you buy a new car today, it is usually equipped with a multitude of
sensors. The sensors have mainly two purposes: increasing safety and increasing
comfort. Driver assistance systems, such as brake, lane, or parking assistants, are
realized with these sensors. The substantial progress in making road transport safer
resulted in a continuously decrease of accidents involving personal injuries and
road fatalities in Germany – the number of road fatalities being lower than ever
since 1950 (Statistisches Bundesamt 2011). A main goal to improve safety further,
should be to not only lower the severity of accidents, but to prevent them to the
greatest possible extent. This can be done by prevention mechanisms which warn
road users before they approach a critical situation. To this end, communication
between vehicles and their surroundings, e.g., other vehicles or traffic infrastructure,
termed Car-to-X Communication (C2X), can help to exchange important safety
information “sensed” by vehicles. In the Cooperative Cars (CoCar) project and
its successor Cooperative Cars eXtended (CoCarX),1 which constitutes the context
of our work, a heterogeneous approach has been followed. Depending on the use
case, 802.11p-based technology (pWLAN) or UMTS and its successor LTE are
used for communication (cf. Fig. 1). In the CoCar system, hazard warnings are
sent by vehicles to other road users. For example, when a vehicle brakes very
hard, a warning message is sent to vehicles in vicinity (also called Geocasting or
GeoMessaging (Fiege et al. 2011)).

Our goal in the CoCar project is to utilize the sensor information included in the
messages of vehicles for deriving higher value information, such as the position of a
queue-end or the current traffic state. However, there are several challenges in doing
so. First, the amount of messages per time sent by vehicles from a specific area can
be very high. Second, many traffic applications, especially safety applications, and
their users require real-time processing and response. Data Stream Management

Fig. 1 The CoCarX architecture (Fiege et al. 2011)

1http://www.aktiv-online.org/english/aktiv-cocar.html

http://www.aktiv-online.org/english/aktiv-cocar.html
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Systems (DSMS) and data stream mining algorithms proved to be suitable for
several application fields with real-time properties. Also in traffic applications, data
stream processing and mining has been applied successfully (Kargupta et al. 2010;
Biem et al. 2010; Ali et al. 2010; Arasu et al. 2004), but a systematic approach
for evaluating the parameters and results of such applications is still missing.
Especially, the comparison of multiple data stream mining algorithms according
to their suitability for various ITS applications is an interesting parameter to be
analyzed systematically.

Furthermore, the quality of the processed data and the produced information is
crucial. Users want to rate the reliability of information, and low-quality information
should not be distributed to users to avoid desensitization and frustration. This
applies not only to traffic information systems, but also to other geographic
applications which rely on sensor data and apply data mining techniques to derive
new information (e.g., tsunami or earthquake warning systems). The data in such
applications is inherently uncertain as sensor data might be inaccurate. In addition,
the methods for data analysis usually cannot achieve a 100% accuracy. Hence, the
continuous quality monitoring of the processed data should be an inherent property
of a data management solution for such applications.

In this paper we will present a summary of our work on a data stream-
based evaluation framework for traffic applications. We first introduce the overall
architecture of the evaluation framework in Sect. 2, followed by the description
of the data processing and the corresponding data quality processing in Sect. 3.
Subsequently, two case studies in queue-end detection and traffic state estimation
are detailed in Sect. 4. The section contains also the evaluation results for various
configurations of the ITS and multiple data stream mining algorithms. In Sect. 5, we
will compare our approach with other works from related research areas. Finally,
the lessons we learned throughout the project and some ideas for future work are
discussed in Sect. 6.

2 Architecture

The evaluation framework is based on a data management and fusion architecture
which was designed and implemented in the first phase of the CoCar project (Geisler
et al. 2009). The main constituents of the architecture are mobile data sources
which deliver the raw sensor data. Second, the data is received by a Data Stream
Management System (DSMS) which processes and integrates the data. Third, to
analyze the data and derive new traffic information, we integrated a data stream
mining framework into the DSMS. In addition, we use a spatial database to speed up
working with geospatial data. We detail these components in the following. Finally,
we added a data quality monitoring component to the architecture. An overview of
the architecture with its main constituents is depicted in Fig. 2.
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2.1 Mobile Data Sources

For reasons of reproducibility, controllability, and creation of a sufficient amount
of data, we use the traffic simulation software VISSIM by PTV AG2 to simulate
the creation of data from mobile and stationary sensors. In the CoCarX project, one
important data source is, of course, the CoCars sending event-based messages in
case of hazards to warn other vehicles. We create CoCar messages by using the
VISSIM simulation for the following events: a vehicle braking very hard and a
vehicle turning on its warning flashers. For traffic state estimation we introduced
another type of message, which is sent periodically by the vehicles and only contains
basic information, such as position and speed. The second important data source
is Floating Phone Data (FPD). FPD are anonymously collected positions of mobile
phones, but the location data might be very inaccurate. Other traffic data, such as the
vehicle speed, can be derived from FPD (Geisler et al. 2010). In our case studies, we
focus on the CoCar messages only as we want to analyze the usefulness of CoCar
messages and the influence of parameters, such as required equipment rates, for
certain traffic applications.

2http://www.ptv.de

http://www.ptv.de


Evaluation of Real-Time Traffic Applications Based on Data Stream Mining 87

2.2 Data Stream Management System

We use the Global Sensor Network (GSN) system (Aberer et al. 2006) for data
stream management. GSN provides a flexible, adaptable, distributable, and easy to
use infrastructure. It wraps the functionality required for data stream processing and
querying around existing relational database management systems, such as MySQL.
The main concepts in GSN are wrappers and virtual sensors. In GSN, we provide
a wrapper for each data source to receive the data. Each further processing step is
encapsulated into a virtual sensor which creates the output data by a query over the
input data. For data stream mining, we integrated the data stream mining framework
Massive Online Analysis (MOA) (Bifet et al. 2010) as a virtual sensor into the
DSMS. The DSMS distributes the derived information to consumers, e.g., as queue-
end warning messages to CoCar vehicles.

2.3 Data Stream Mining

As mentioned in the previous paragraph, a virtual sensor has been built which
classifies the aggregated data, i.e., each data stream element. We started off with
integrating the MOA framework and all of the results presented in Sect. 4 have been
made using this framework. We also made this virtual sensor more flexible, such that
different kinds of data (stream) mining algorithms can be used in a convenient way.
The MOA framework offers several algorithms, mainly based on Very Fast Decision
Trees, a variant of the Hoeffding Tree, first proposed by Domingos and Hulten
(2000). Hoeffding trees use a statistical measure called Hoeffding bound. The bound
determines, how many examples are required at each node to choose a split attribute.
It guarantees, that with a given probability the same split attribute is selected as the
attribute which would have been chosen if all training elements were known already.
The algorithm first determines the two best attributes by using a relevance measure
such as information gain or the Gini index. Afterwards, if the difference between
the two attributes’ relevance values excels the calculated Hoeffding bound for the
examples seen so far, the best attribute is chosen for the split. For classification, the
MOA framework provides single learners with various voting strategies as well as
ensemble algorithms and concept-adapting algorithms. For detailed descriptions of
the algorithms please see Bifet and Kirkby (2009). In the mining virtual sensor, the
classified stream elements are extended with an attribute for the classification result,
e.g., the estimated traffic state.

2.4 Spatial Database System

Spatial database systems have been introduced to ease and speed up the work with
spatial data using special data types and functions. In our architecture, we store and
query the road network by using the spatial functionality of Microsoft SQL Server
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2008.3 We export the roads (or links) from the traffic simulation and store them as
curve objects in the database. In the database, we divide the links into sections of
equal length, e.g., sections of 100 m length each. Sections are the units of interest
for our evaluations, e.g., the traffic state will be determined for each section. Each
time we have to locate a vehicle on the network, the spatial database is queried to
find the section the vehicle is driving on.

3 Data Stream Processing

To show the effectiveness of our framework for the purpose of a systematic
evaluation of ITS applications, we set up two case studies, namely queue-end
detection and traffic state estimation, detailed in Sect. 4. We will first explain the
processing of the data streams throughout the DSMS as it is similar for both case
studies. Subsequently, the data quality framework we implemented to measure and
rate the effectiveness and efficiency of the traffic applications is elucidated.

3.1 Processing Flow

GSN provides two structures to work with data streams: wrappers and virtual
sensors. The wrappers manage the connections to the data sources, receive the
data and convert it to relational stream elements. In our case studies, the CoCar
messages and ground truth messages (stating the real queue-end and the real traffic
state) are produced by the traffic simulation and sent via TCP to the DSMS. Virtual
sensors filter and process the data, e.g., aggregate and integrate data. One common
issue in mobile data detection is that the measured positions contain some error
whose amount depends on the used positioning technique. This error influences
the accuracy of traffic information (Geisler et al. 2010). In case of the CoCar
messages, we can assume GPS positioning accuracy. To approximate reality as
close as possible, the exact positions in the messages created by VISSIM have to
be degraded. To this end, the stream elements created from the CoCar messages
are forwarded to a degradation virtual sensor. The next virtual sensor matches the
positions of the CoCar messages to the road network, a process also termed Map
Matching. It tries to find the section where the vehicle actually is located.

The next step is the preparation of the data for data stream mining. In our
approach, we aggregate data, such as speed or acceleration, of CoCar messages
coming from the same section for a certain time window. We utilize classification
algorithms for data stream mining in our framework, i.e., each incoming tuple is

3Other products can also be used in the architecture. We implemented the same functionality also
for PostgreSQL and PostGIS.
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assigned to a specific class. For example, in queue-end detection either the class
“Queue End” or the class “No Queue End” will be assigned to each stream element.
For each run a classifier was learned from scratch. Afterwards, the classified element
is distributed to consumers, e.g., sent to the traffic simulation, where it can be used to
visualize the corresponding event. The message contains a confidence value, which
indicates the reliability of the message based on data quality parameters calculated
throughout the data processing in the DSMS. The complete data stream processing
flow is depicted in Fig. 3.

3.2 Data Quality Processing

Data quality (DQ) plays an important role in DSMS as there is usually a trade-off
between accuracy and consistency on the one hand, and timeliness and completeness
on the other hand. We follow a holistic approach for DQ management in data
streams which is based on a comprehensive ontology-based data quality framework.
We will briefly explain the framework here, as we use it to measure the effectiveness
and efficiency of the traffic applications in our experiments with it. The framework
is presented in detail in Geisler et al. (2011).

Our aims in designing a DQ framework for DSMS were flexibility and adaptivity
as the framework should not be restricted to traffic management applications. Even
within the traffic domain, there are different ways to measure DQ depending on the
data sources which are available, and the data processing steps which are applied
in the DSMS. For example, to measure the correctness of a CoCar message which
signals a specific event (e.g., an icy road has been detected by the car sensors), we
may check whether this information is confirmed also by other cars in the same
area. This can be done by computing a correctness measure while several CoCar
messages are aggregated in a query in the DSMS. If an external source with weather
information is available, we may also want to apply a rule to check the consistency
of the information (e.g., if the temperature is above 10ı C, the road cannot be icy).
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Therefore, it is not reasonable to just select a set of DQ dimensions and DQ
metrics, and hardcode them in the DSMS. A flexible and extensible DQ framework
is required which allows also the definition of application-specific DQ metrics. In
our approach, we distinguish three types of DQ metrics: (i) content-based metrics,
(ii) query-based metrics, and (iii) application-based metrics. Content-based metrics
use semantic rules and functions to measure data quality, e.g., as stated in the
consistency check mentioned above. Query-based metrics are methods to compute
the DQ for certain query operators, e.g., the accuracy of an aggregation operator is
the average accuracy of the input tuples. We use a query rewriting approach to offer
more flexibility than in other approaches (e.g., Abadi et al. 2005; Klein and Lehner
2009). Finally, application-based metrics measure DQ by any kind of application-
specific functions, e.g., confidence values of a data mining classifier are provided
by the data mining system.

Architecture of the DQ Framework

The data quality framework consists of several components, which are depicted in
Fig. 4. To enable a flexible approach, all data quality related metadata is organized
in a semantic data quality model, namely a data quality ontology. An ontology is
a well suited tool to formalize the DQ model as it can be easily extended and
adapted by users due to its human-readability and availability. The ontology includes
a data stream part, which describes the concepts of data streaming, such as streams,
windows, tuples, or attributes. Furthermore, concepts describing data quality, such
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as data quality metrics or dimensions, are incorporated in a data quality part. The
data quality factor concept establishes a relationship between these parts defining
which quality dimensions are measured with which metric and for which stream
element in the data stream management system.

When incorporating DQ into the DSMS, the set of data stream attributes is
extended by a set of DQ attributes, where each attribute represents a DQ dimension.
We define these streams as quality-affine data streams. Syntactically, quality
attributes are not distinguishable from data attributes, but semantically, they are
handled differently and must be recognizable during data processing.

The three different types of DQ metrics are supported in the framework by cor-
responding quality services. The Semantic Data Quality Model is the DQ ontology
presented before. The Semantic Quality Provider acts as an interface to this ontol-
ogy. The DQ Processor invokes the Content-based and Application-based Quality
Services as required by the definitions in the ontology. The Query-Based Quality
Service interacts directly with the Semantic Data Quality Provider and the data pro-
cessor, as queries have to be modified in the data processing steps. In Fig. 4 all grey
boxes are DQ components and are added as additional components to the DSMS.

To take into account DQ processing, the semantic descriptions for the DQ assess-
ment are loaded from the ontology at system startup. Based on this information, the
virtual sensor configurations are rewritten recursively, including the queries and the
output structure of each virtual sensor in the dependency graph.

We have used the DQ component in our case studies to measure important means
to rate the effectiveness and efficiency of a traffic application. For example, we
measured the data mining accuracy for varying parameters and the processing time
of the stream elements in the system. For the case studies described in Sect. 4,
additional quality factors have been defined which are combined into a final DQ
value that represents the confidence in the derived information (how reliable is the
information, that a queue end has been detected on a specific section?). We showed
in Geisler et al. (2011), that the quality values and confidence values produced by
the data quality component indeed indicate a drop or increase in data quality (e.g.,
the accuracy of the Map Matching using mobile phone positions is lower than using
GPS positions). We could also prove that the data quality component produces only
a slight overhead in performance, memory, and CPU consumption (Geisler et al.
2011).

4 Case Studies

To show the effectiveness of our framework for the purpose of systematic evaluation
of ITS applications, we set up two case studies. In this section, we summarize the
experiments and results of the queue-end detection and the traffic state estimation
use cases. Further details about the two case studies and results can be found in
Geisler et al. (2012).
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Fig. 5 Real and estimated queue-ends in the traffic simulation. The dark gray vehicles send a
CoCar message in this time step

4.1 Queue-End Detection

The queue-end detection scenario aims at the detection of hazards caused by traffic
congestion. The end of a queue constitutes a threat, as drivers may not be prepared to
suddenly approach a static obstacle. The aim of our experiments was to investigate
the influence of multiple parameters on the detection accuracy. For each section
of the roads in the network it is determined, if it contains a queue-end or not. In
this case study, traffic has been simulated on a simple road network consisting of a
highway of 5–10 km length, i.e., a road with two directions with two lanes each.

One direction contains a hazard (a construction site with an excavator) narrowing
the street to one lane. Depending on the traffic volume, the hazard causes a
congestion. The traffic simulation sends the CoCar messages produced during
simulation runs and periodic information about the ground truth (i.e., positions
of queue-ends) to the DSMS. The DSMS processes this information as described
in the previous section. The mining algorithm first decides, based on the received
information for one section, if it contains a queue-end (classification) and learns,
in which cases a queue-end is present in a section (training). If the classification
identified a queue-end, a hazard warning is sent to the traffic simulation and is
visualized by a red (estimated position) traffic sign as depicted in Fig. 5. The blue
traffic sign denotes the queue-end as estimated by the traffic simulation (based on the
maximum queue length in the last 10 s). In our simulation the queue-end warnings
were located in the middle of the corresponding section. In a real-world scenario
this should be set to the end of the section for safety reasons.

We tested the influence of several parameters on the output of the classification.
These parameters can be divided into two categories: parameters inherent to the traf-
fic situation and parameters inherent to data processing. Traffic situation parameters
include the percentage of Cooperative Cars in the overall vehicles (penetration rate,
default value: 5%), the traffic volume (vehicles per hour, default value: 3,000 veh/h),
and the section size (default value: 100 m). In each simulation run (excluding only
the runs with the variation of traffic volume), exactly the same traffic situation
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is reproduced; thus, the results of different runs are comparable. Data processing
parameters comprise the size of the sliding time window for data aggregation
(default value: 120 s), the mining algorithm (default algorithm: Hoeffding Tree),
and the ratio of positive (section contains queue-end) and negative (section contains
no queue-end) training examples presented to the mining algorithm (default option:
as ratio appears, no balancing of examples). When investigating one of the before
mentioned six parameters, only this parameter has been varied, all other parameters
kept their default value.

For each experiment consisting of one simulation run, the following measures
have been recorded: the overall accuracy (ratio of correctly classified elements to all
classified elements), the sensitivity (or recall, ratio of correctly determined positive
examples to all positive examples), precision (ratio of all correctly determined
positive examples to the sum of all correct positive and all false positive examples),
and the specificity (ratio of correctly determined negative examples to all negative
examples). We recorded and plotted these measures (y-axis, each in percentage) over
simulation time (x-axis, in seconds) to rate the learning progress of the algorithms
during the simulation runs. If not otherwise stated, the algorithms build models from
scratch in each run.

For this case study, each stream element produced by the aggregation sensor and
processed for training by a mining algorithm, has the following structure:

MiningElement.Timed; AvgSpeed; AvgAccel; HasQueueEnd;

WLANo; EBLNo; LinkID; SectionID/

where Timed is the timestamp assigned by the aggregation sensor as creation
time of the stream element, AvgSpeed is the average of speeds from the CoCar
messages of the last time window (e.g., the last 120 s) for the section and link
at hand, AvgAccel is the average acceleration from the CoCar messages for
the same window, section and link, HasQueueEnd is the ground truth for this
section (does it contain a queue-end or not in the traffic simulation?), WLANo is the
number of messages of the type warning light announcement, EBLNo the number
of emergency braking light messages for this section and time window, LinkID is
the id of the link, and finally SectionID is the id of the section which the data
was aggregated for. An example stream element would be:

.1338981779163; 19:5;�6:75; 1; 0; 3; 21; 2/

The output stream elements of the mining sensor have almost the same structure,
containing additional fields for data quality, such as the mining accuracy or the
timeliness, and of course the class estimated by the algorithm:

MiningElement.Timed; AvgSpeed; AvgAccel; HasQueueEnd;

WLANo; EBLNo; LinkID; SectionID;

ClassQueueEnd; DQ Timeliness; DQ MiningAccuracy/
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Fig. 6 Sensitivity results for varying window sizes over simulation time

We identified a set of default values for all parameters, and while one parameter
was varied in experiments, all other parameters kept their default value. In most
experiments, the mining accuracy was dominated by the specificity, as we had far
more negative than positive examples.

In the experiments with varying window sizes between 10 and 300 s, we identi-
fied a default window size of 120 s as a good compromise for getting acceptable
results for sensitivity (about 51%) as well as for specificity (about 92%), and
precision (about 61%). The results for sensitivity are depicted in Fig. 6. Simulation
runs with varying traffic volumes ranging from 2,000 to 4,000 showed, that, though
the number of messages increases and the sensitivity is better for higher traffic
volumes, it always deteriorates in the end. This is due to the fact that the ratio of
positives to negatives gets highly imbalanced (ranging from 14% in 2,000 veh/h run
to 9% in 4,000 veh/h run), because there are many sections that do not include a
queue-end but deliver many messages. Precision on the other hand, seems to be best
for 3,000 veh/h, but it does not show a clear trend for increasing or decreasing traffic
volumes.

For the test with multiple penetration rates (from 1 to 10%, cf. Fig. 7) we found
out, that the accuracy is not substantially influenced by the penetration rate, although
higher penetration rates (from 5% on) deliver a slightly better sensitivity than the
lower values. In contrast, precision increases with increasing penetration rates. For
10% penetration rate, precision gets up to 88% precision as shown in Fig. 8.

The results for simulation runs with section lengths between 30 and 300 m
showed that the sensitivity increases with increasing section length. However, more
tests have to be done to see if it reaches a maximum, where it decreases again. For
Precision on the other hand, the best values are reached for 150 m with no clear
trend with increasing or decreasing section lengths (30 m being the worst).
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Fig. 7 Accuracy results for varying penetration rates over simulation time

Fig. 8 Precision for varying penetration rates over simulation time

To tackle the problem of the unbalanced ratio between positive and negative
examples, we also made tests using an undersampling technique in the data mining
process. It drops negative examples randomly; we experimented with percentages
between 0 and 90%. The sensitivity increases with increasing dropping rate as can
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Fig. 9 Sensitivity for multiple undersampling rates over simulation time

be seen in Fig. 9, but in turn specificity and precision decrease. A good compromise
could be found with a dropping rate of 85%, where sensitivity lies around 65%,
specificity at about 82%, and precision at about 38%.

4.2 Traffic State Estimation

After first experiments with the queue-end detection scenario, we wanted to show
the adaptability of the evaluation framework to other applications and to more
complex road networks. A simple but popular traffic application is traffic state
estimation. For this use case, we also used only CoCar messages. We created an
artificial road network consisting of four links with two lanes each, which covers an
area of approximately 4 km by 8 km. We also applied the scenario to realistic maps
as shown in Fig. 10 (a part of the road network close to Düsseldorf, Germany).
Another important purpose of this scenario is to compare the suitability of different
stream mining algorithms. We also used data stream classification algorithms in
the experiments: data stream elements are classified into one of four traffic states
(free, dense, slow-moving, and congested as proposed in BASt (1999)).
The ground truth for each section is calculated in the traffic simulation using the
corresponding rules defined in BASt (1999). To evaluate the results, we compiled
a confusion matrix which indicates the combinations of real classes and estimated
classes (e.g., number of elements whose real class is dense, but have been classified
as free). Based on the confusion matrix the mining accuracy has been calculated. To
show the representativeness of our results, we made three runs varying only the seed
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Fig. 10 Visualization of the traffic state estimation scenario with OpenStreetMap

for random functions in the traffic simulation (e.g., used for vehicle speeds, entrance
of vehicles in the simulation and so on). The comparison of these runs showed, that
the overall accuracy of the mining algorithm only varied about 3–5% max.

The results are visualized on a map, where the estimated traffic state for each
section is color-coded as shown in Fig. 10.

In the simulation runs we also used a set of default values for the variable
parameters and a default classifier. We used 400 m for the section length, a window
size of 60 s, and a 10% CoCar penetration rate as default values. The concept-
adapting Hoeffding Option Tree with Naı̈ve Bayes prediction strategy was used
as the default classifier as it delivered the best results in comparison to other
algorithms. We used no balancing algorithm in all the experiments. The input stream
elements for the mining algorithms look similar to the queue-end detection scenario
– only the ground truth attribute differed, containing the traffic states calculated in
the traffic simulation as described. The output stream elements contain besides the
additional estimated traffic state class, the timeliness, and the number of elements
classified into each of the confusion matrix cells.

We first only used the emergency braking and warning light announcement
messages for queue-end detection. However, we noticed that all traffic states except
for congested were not detected well, since the event messages are only created
in crowded traffic situations. Hence, we introduced periodically sent messages in
the simulation which only contained basic non-event data (mainly position, speed,
and acceleration). This improved the accuracy of the other classes, but still did not
lead to good results, especially for the class dense. One problem seemed to be
again the imbalanced number of examples for each class. Therefore, multiple traffic
volumes on the different roads have been used in the traffic simulation to create
training examples distributed over the classes (between 2,500 and 3,500 veh/h).
Another improvement was the inclusion of the number of periodic messages as
input parameter into the classified stream elements, which we assumed to be an
indicator for the traffic density. This led to a substantial increase for the classes
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Fig. 11 Accuracy for varying section lengths over simulation time

free, dense, and slow-moving. Experiments with varying section lengths
revealed, that sections with sizes of 100 m and over 600 m produce less accurate
results than sizes of 200 and 400 m (around 87% overall accuracy). Smaller sections
may not contain enough messages to indicate the traffic state, while larger sections
can include more than one traffic state as depicted in Fig. 11. Hence, we used 400 m
as a default value for the section length in further tests.

Similar to the queue-end detection scenario tests with varying penetration rates
showed no substantial influence on the overall accuracy.

The comparison of the data stream mining algorithms of the MOA framework
(Bifet et al. 2010) was divided into several experiments. First, we were interested
in the influence of different voting strategies with the same classifier (in this case
the basic Hoeffing Tree). It turned out that on average, the Naı̈ve Bayes and the
Adaptive Hybrid strategy were very similar in their results, but both outperformed
the Majority Voting strategy. In the next group of experiments, the ensemble mining
algorithms of the MOA framework were compared using the Hoeffding Tree as a
base learner. The boosting algorithm (Oza 2005) was slightly better than the other
algorithms with accuracies of up to 92%. However, it delivers also only a slightly
better accuracy than the best single classifier algorithm in average. The results are
summarized in Fig. 12.

Finally, also algorithms which are able to adapt to concept drift have been
compared to see, if they can compete with the other algorithms (though our scenario
does not contain concept drifts). The experiments showed, that none of them
outperforms the ensemble algorithms, in fact the online boosting algorithm (Oza
2005) has proven to be slightly better than the concept drift-adapting variants.
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Fig. 12 Accuracy for various prediction strategies and ensemble algorithms over simulation time

Performance of data processing is a crucial aspect in data stream management
systems as a huge amount of data has to be processed in a short time. Hence, we
measured the processing time of the data stream elements for each sensor using the
timeliness dimension. This means, that for each CoCar message the time between its
creation in the traffic simulation and the processing time in the sensor is calculated.
When data is aggregated over a window, the timeliness of the oldest stream element
in the window is used as the timeliness value. Figure 13 shows the timeliness over
simulation time for the Düsseldorf case study smoothed with a Bézier function.
In this performance experiment in a 40 min simulation run, about 19,000 CoCar
messages have been processed, aggregated to nearly 50,000 data stream elements
which have been subsequently mined by a data stream mining algorithm. It can be
seen from Fig. 13 that the sensors before aggregation only need a few milliseconds
to process the stream elements, where the processing time is slowly increasing with
simulation time. In the aggregation sensor, data of the last 120 s has been aggregated,
hence the timeliness values are higher per se.

5 Related Work

Our work is related to a multitude of areas. DSMS have already been used to
realize real-time traffic applications (Biem et al. 2010; Ali et al. 2010; Arasu
et al. 2004; Kargupta et al. 2010), but none of them provided a thorough analysis
of the applications, their efficiency, and the influencing factors to derive advices
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Fig. 13 Timeliness of stream elements measured over simulation time

for traffic information providers. An evaluation framework for traffic applications
based on VISSIM has been proposed for example by Fontaine and Smith (2007).
They investigated the influence of different parameters in the road network and
mobile network on the accuracy of traffic information, such as link speed. However,
they do not consider the characteristics of the processing information system and
do not incorporate analysis techniques, such as data mining, to derive events
or traffic information from the collected data. In our work, we investigate the
influence of varying road and traffic parameters, and we also take into account
the special features of the DSMS (e.g., window size, sliding step) and of the
stream mining algorithms, such as concept drift. For queue-end detection, Khan
presents a simulation study also based on VISSIM using stationary sensors as
data source (Khan 2007). The data is analyzed using Artificial Neural Network
models, predicting the current queue length based on accumulated numbers of cars
and trucks at fixed locations. Although they postulate real-time processing in their
information system, the used algorithm is not capable of online learning, i.e., it
cannot adapt to concept changes, which can be achieved by using data stream mining
algorithms as proposed in our approach. Neural networks have also been used for
traffic state estimation and short-term prediction (Bogenberger et al. 2003; Chen and
Grant-Muller 2001). As neural networks are easily applicable for data streams, we
will also compare some of them with the performance of the decision tree algorithms
included in MOA in future work.

Approaches for data quality extensions in DSMS mainly consider Quality of
Service aspects, i.e., to monitor the system performance during query processing
and adapt the system configuration if certain quality criteria are not met. Some
of these approaches have a very coarse granularity and are only considering the
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quality of the outputs (e.g., Schmidt et al. 2004; Abadi et al. 2003), while others
measure data quality at each operator and for each stream element or window (Abadi
et al. 2005; Klein and Lehner 2009). Most approaches allow system-based quality
measures, such as throughput or performance, while some also provide user-defined
and content-related quality measurement beyond Quality-of-Service applications,
e.g. in Klein and Lehner (2009). In contrast, we allow a very flexible and fine-
granular definition of data quality and its measurement in our framework. The
framework is based on a modularized ontology which allows for defining system-
based as well as application-based data quality metrics using rules and numerical
expressions (Geisler et al. 2011).

6 Conclusion and Outlook

For intelligent transportation systems, and especially safety applications, high
effectiveness is a crucial success factor. Applications producing low quality results
are quickly rejected by users, because they do not trust them or are desensitized
by false alarms. The presented framework is a step towards evaluating traffic
applications based on mobile and static data sources in a realistic setting. The
framework enables ITS providers to test several system configurations, data sources,
and algorithms and allows to derive advices for productive systems. For example,
we showed, that data from C2X messages can be utilized to derive hazard warnings
even if the penetration rate is low. Of course, simulation studies always have to
be validated against reality and one future aim is to try out the optimal set of
parameter values in a real traffic scenario. For this, a model has to be learned
in several simulation runs with varying traffic situations. The model can then be
used for classification of data produced by real traffic situations. Depending on the
effectiveness, the model has to be adapted in simulation again. To approximate
reality in the simulation as close as possible, the real traffic data (e.g., speed
measures) can be used in the traffic simulation.

Our work also revealed, that ITS are an interesting application area for data
stream concepts and management systems. As current and future traffic applications
and their users require real-time processing and response, data stream manage-
ment and mining concepts proved to be a perfect match in the case studies we
analyzed and look promising for other applications. Additionally, the continuous
quality monitoring in the framework helps to keep up user trust and gives feedback
to ITS developers. So far, we utilized existing processing and analysis algorithms to
realize the described use cases, but the experiments also showed that the potential
for tweaking has not been fully exploited. For example, we will investigate more
complex techniques better suited for data streams to balance training examples.
Example scenarios for concept drift, e.g., to simulate a full day with bursty and
low traffic periods, would be also a challenge.
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Abstract Sapporo is a city with two million citizens that gets 6 m of snow per year.
This means that winter road management is very important for sustaining economic
and social activities during the winter. We believe that an exploratory and iterative
analysis and visualization approach is useful to support the decision making, to
improve the winter road management strategies. We propose using a huge library
of tools and services, and a framework that allows users to freely federate tools
and services improvisationally (“mash-up”) to create custom visualization and
analysis environments and to apply these on appropriately selected data sets. Unlike
conventional macro analysis approaches, we focus on micro analysis of winter road
conditions. We use probe car data, speed readings etc., automatically collected from
taxis and private cars. Geospatial visualization of the average speeds of all the
road segments shows how different roads are affected by heavy snowfall, by snow
plowing, and by snow removal. Combining geospatial visualization with knowledge
discovery algorithms is a potential approach in this area. An example would be
clustering the road segments based on similarity of the impact snowfall has to group
roads into groups that can be maintained using similar strategies.
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1 Introduction

1.1 Winter Road Management in Sapporo

Snow plowing and snow removal are fundamental public services for sustaining
economic and social activities during the winter in Sapporo. Sapporo is the fifth
largest city in Japan and has a population of 1.9 million people, and an annual
cumulative snowfall of about 6 m with the maximum depth of snow cover reaching
about 1 m. The local government’s annual budget for snow plowing and removal
is about 15 billion yen. Sapporo is one of few metropolitan cities with this severe
snowfall. Others cities with heavy snowfall include Saint Petersburg, Harbin, Mon-
treal, Ottawa, Helsinki, Calgary, Toronto, Syracuse, Anchorage, Buffalo, Rochester,
Denver, etc., though none of them come close to Sapporo considering both
population and snowfall.

Car traffic is seriously influenced not only by heavy snowfall but also by huge
piles of snow on both sides of the roads. These piles (or windrows) of snow are
created by the snow plowing. In Sapporo, both daily activities of residents and
business and industrial activities depend heavily on automobile mobility.

Inadequate winter road management significantly slows traffic flow because of
icy roads and roads being narrowed by windrows, which leads to further traffic
congestion. Congested traffic will compress the snow and turn it into ice, making the
roads extremely slippery; common around pedestrian crossings where cars have to
break and accelerate. Repeated melting and freezing of roads by heavily congested
traffic will also make the icy roads bumpy. This makes it difficult to steer, and also
causes damage to the underside of the cars when it scrapes against the ice.

Studded tires were widely used in Japan, but the use was regulated in early 1990s
to solve air pollution problems caused by the dust stirred up by studded tires. As a
result, air quality improved significantly. However, it also resulted in several traffic
issues in winter; e.g. an increase in car accidents on icy roads, slower traffic flow,
increased use of anti-freezing agents and abrasives, and a significant increase of road
management costs. Asano et al. estimated the direct and indirect economic losses
from the ban on studded tires (Asano et al. 2002). The estimated annual losses were
more than 18.5 billion yen in the Sapporo area. The main causes were the increase in
driving times and costs, road accidents, and costs for maintenance and management.

1.2 Quantitative Studies of Winter Traffic

Takahashi et al. pointed out that in order to study traffic issues in winter it is
important to understand the traffic patterns in a quantitative manner (Takahashi
et al. 2004). The traffic patterns during weekdays notably differ from those during
weekends or holidays. The traffic in winter also seems to vary greatly depending on
specific weather conditions, e.g. snow cover, snowfall, and declining temperatures.
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Takahashi et al. used taxi probe car data (taxi GPS data) as an advanced survey
method to analyze traffic. They used multiple linear regression (MLR) analysis to
explain the reduction in average travel speed (ATS) in winter compared to the ATS
in summer in terms of explanatory variables including snow depth, snowfall amount,
snowfall amount on the previous day, average temperature, and sunshine duration.
Their MLR analysis showed that decrease in average temperature has the largest
effect on reduced average travel speed in winter. Their counterintuitive result is
that the amount of snowfall during the day or the previous day has little effect on
the ATS. This conclusion however depends on their macro analysis, using only the
average speed of the whole city.

Munehiro et al. from the same laboratory estimated the time loss along a specific
route due to traffic winter congestion, using taxi probe car data (Munehiro et al.
2012). They also estimated benefits of snow removal on the same route. The analysis
is still macroscopic.

The number of taxis and private cars from which probe car data can be obtained
in real time has increased a lot in Japan. Probe car data are becoming fundamental
in quantitative micro analysis of traffic changes caused by snowfall and icy roads.

Probe car data has been used for various purposes. One example of the use of
probe car data for disaster management occurred after the Tohoku earthquake and
tsunami in Japan in 2011. Car manufacturers in Japan have car navigation systems
in the cars as standard, and these can use the driver’s cell phone or other means of
wireless communication to report back the car location and speed. These data are
commonly used to provide services such as information on where there are traffic
jams. Many roads were destroyed or blocked by the tsunami and earthquake. Three
large car manufacturers (Honda, Toyota, and Nissan) provided the government
with their probe car data. This could then be used to determine which roads were
still being used, thus not destroyed or blocked, and which were not used, thus
needing cleanup or restoration.1 This information was also useful for planning
where supplies could be sent, and other routing.

For other cities with severe snow conditions during winter, there have been
scientific and technological research studies using ICT and GIS approaches to
improve winter road management since the mid 1990s (Perrier et al. 2006a,b,
2007a,b). The objectives have been to provide heuristic-optimization solutions for
many complex planning decisions. The main strategic and operational problems
include defining a service level policy, locating depots, designing sectors, routing
service vehicles, configuring the vehicle fleet, and scheduling the use of the vehicles.
These activities are interrelated, and the effect that each decision has on the other
decisions impacts the ability to provide the desired level of service. Since, unlike in
Sapporo, probe car data from taxi cars or private cars (including both retrospective
and real time data) are not yet available on a large scale, the actual application of
the proposed methods in the real world has not been quantitatively well evaluated
by e.g. calculating the change in traffic for different decisions.

1http://www.its-jp.org/saigai/ (in Japanese), accessed 2012-04-10.

http://www.its-jp.org/saigai/
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Several measures to compare the road maintenance (snow removal etc.) perfor-
mance was presented in Thill and Sun (2009) and used for comparing performance
at two different highway segments in Buffalo, NY, during and after snow storms.
These measure use Automatic Vehicle Identification (AVI) technology to collect
vehicle speeds, and then use e.g. the relative decrease in speed or the time until
the average speed has gone back to normal as performance measures. The paper
also gives a good overview of previous research on the impact of snow on traffic
conditions, and of research on performance measurements for snow and ice control.

1.3 Our Approach to the Problem

In this paper we use retrospective probe car data from taxis and private cars, and
combine them with other data sources such as meteorological sensor data, snow
plowing and removal records, complaints to call centers, and social media data
from Sapporo. We propose a geospatial visual analytics environment for micro
analysis of the relationships between different data sources by integrating geospatial
visualization with data mining and clustering algorithms. Our goal is to achieve
more efficient winter road management, better service or lower costs, with the help
of information technology.

Unlike the conclusion of the macroscopic analysis by Takahashi et al. (2004),
our microscopic analysis and visualization of the average speed reduction in each
road segment indicates that it heavily depends on the amount of snowfall, the snow
plowing, and the following snow removal. Heavy snowfall is immediately followed
by snow plowing, which may result in huge piles of snow on both sides of the roads,
making them narrow, which in turn worsens the traffic flow. Snow removal may take
more than 1 day, but gradually improves and finally restores the traffic flow.

We provide geospatial visualization of the change of the average speed in each
road segment, providing a visual environment for micro analysis of how roads are
influenced by snowfall, snow plowing, etc. We also apply clustering algorithms
to the change of the average speed in each road segment during snowy days (or
weeks) to find groupings of road segments based on similarity of how the traffic is
influenced by heavy snow. Such a clustering results may give insights into which
roads can be managed in similar ways, and other strategic planning decisions.

Black ice areas around intersections are very slippery and dangerous, both
for cars and for crossing pedestrians. Some automobile companies include the
activation record of the ABS (Anti Lock Brake System) in their probe car data,
which can then be used to detect slippery intersection areas. The probe car data we
have do not include the ABS activation records. However, a comparison of the speed
distribution histograms between winter and summer may tell us which intersections
are slippery. Slippery intersections can be expected to have a large peak in speeds
from 0 to 5 km/h, while non-slippery intersections would have histograms similar to
the histograms for summer.
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We believe that the problem of optimized or better snow plowing and removal is
not a simple system that can be modeled by a single monolithic mathematical model.
It is a complex system composed of many mutually interrelated systems. Therefore,
any macroscopic analysis that applies statistical analyses or knowledge discovery
algorithms such as data mining to the whole system may miss significant insights.
Statistical analyses and knowledge discovery algorithms assume application to well-
formed problems that can be mathematically modeled. One reason why we need
micro analysis is that the problem at hand is not well-formed nor easy to model.

We believe that we first need to iteratively refine our analyses depending on
observations and evaluations of previous analysis results. Trial-and-error explo-
ration of the data using visualization and analysis tools can help us get a better
understanding of the problem and what data to analyze, which questions to ask,
etc. Once we have gotten this far, the problem can be considered to consist of
subproblems, each of which is approximately well formed, and normal statistical
analysis tools or knowledge discovery algorithms can then be applied to them.

We propose an integrated geospatial visualization and analysis environment
for such exploratory visual analytics. Such a system requires a large library of
visualization and analysis tools. It should support improvisational composition
(“mash-up”) of whatever visualization or analysis environments may be required
for a specific problem, i.e. it should allow free recombination of tools etc. Our
integrated environment uses the Webble World as its enabling technology. Webble
World is a Web-top system version of the Meme Media architecture which was first
proposed in 1993 and has been extensively studied since then. Webble World uses
visual components called Webbles that can be improvisationally federated together
by users to compose complex applications without the need for coding.

In order to bring GIS, statistical analysis tools, knowledge discovery tools, and
SNS (Social Networking Services) like Twitter into the Webble World and to
make them interoperable, we created a wrapper for ArcView, a generic wrapper
for tools written in R and Octave, and a generic wrapper for Web services. This
wrapping allows us to improvisationally federate for instance the Twitter service
with geospatial visualization of probe car data within no more than a few minutes.
The exploratory visual analytics with improvisational federation of visualization and
analysis tools in a large library will provide a new integrated environment for micro
analysis of how traffic is influenced by snowfall, snow plowing, and snow removal.

2 Enabling Technology

2.1 Webble World

We create our system using a technology called Webbles. Webbles are software
objects intended to make sharing and re-use of functionality and services as easy as
copying and pasting texts and images is today. Webbles are the latest incarnation of
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Fig. 1 A few Webbles loaded into a browser in order to display their variety and versatile
usefulness. Each single piece or object is a standalone Webble entity; a building block that can
be used to interact and collaborate with other Webbles

the IntelligentPad idea. The original idea is based on Richard Dawkins’s concept
of the Meme (Dawkins 1976), the idea that thoughts, knowledge, and ideas
reproduce and mutate in ways similar to what happens to biological genes, and that
recombination of ideas can lead to new and perhaps even more useful ideas.

Based on this concept, the Meme Media and IntelligentPad concepts were
born (Tanaka 2003). An IntelligentPad is a digital object that can exist in various
forms and have multiple purposes, but always has a standardized interaction
interface. Several generations of IntelligentPad frameworks have been developed
and experimented with during the last decades, but here we focus on the latest
version, the Webble World (Fig. 1).

A Webble (Kuwahara and Tanaka 2010) is a customizable object, and Webbles
can be loaded from online Webble repositories. Webbles run inside Web browsers
(any browser that supports Microsoft Silverlight). Webbles communicate primarily
through “slots”. A slot is a wrapper that works as the interface for a property of an
object or a method it supports. A simple example could be a text label Webble, that
can have a slot for the text to display, another slot for the font to use, another for the
background color etc.
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Slots are named slots because you can plug Webbles together using slots. When
you connect two slots the properties of these are synchronized, so when the slot
value changes in one object the other object is automatically updated too. A simple
example of this could be connecting the “title” slot of a music playing Webble to the
“text” slot of a text label to display the title of the song that is being played. When the
music playing Webble starts playing another song, the label text will automatically
change. For more advanced objects, more interesting two-way communication can
also be useful.

Webbles are structured in parent-child hierarchies, which controls the commu-
nication structure. This makes it easier to analyze the information flow in complex
applications built using Webbles.

There are many Webbles available for use already. Examples include simple
components like text boxes, drop down lists, labels, etc.; more complex Webbles
include interactive maps, charts, intelligent windows, movie players, etc. Some
Webbles allow increased control of other Webbles or the surrounding browser
environment, and others allow access to online databases, or allow connecting to
Web services.

Freshly created Webbles are called primitive Webbles. Webbles can also be
combined together to form more complex objects. Such objects can be saved as
a package and are then called compound Webbles. Saving a set of primitive and
compound Webbles that are not all connected together is also possible, and this is
called a Webble application. Primitive Webbles, compound Webbles, and Webble
applications can then be loaded and used by anyone, and it is possible to combine
them with Webbles from other sources, or to pick apart complex Webbles and re-use
only some parts for new purposes. The idea is that these pluggable components can
be used like a “Meme Lego”, with simple building blocks that can be recombined
to build many different things (Fig. 2).

Primitive Webbles that need to be developed to introduce some functionality
not already available in the Webble world are built by programming in Microsoft
Silverlight (a subset of Microsoft C#). There are templates available that build the
general Webble interface, so only the parts specific to the new functionality need to
be written by the programmer. Primitive Webbles like this can for instance be used
to build a Webble interface to wrap already existing software. This has been done
for instance for the R language for statistical analysis. So you can run R programs
inside Webble world, and connect them to the other available Webble components.

Compound Webbles and Webble applications are intended to be easy to create
without the need for programming knowledge. The simple interface with slots that
you can connect while running in the browser allows all types of users to plug
together existing components to solve new problems.

The Webble World is available for use by anyone online.2

2http://www.meme.hokudai.ac.jp/WebbleWorld/WebbleWorldIndex.html
Username: webble, Password: webble.

http://www.meme.hokudai.ac.jp/WebbleWorld/WebbleWorldIndex.html
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Fig. 2 Just by altering slots values and setting up connection paths between specific Webbles you
may build full-fledged rich Internet applications directly online and share them with the world

2.2 Mapping Technology

When dealing with information that is location dependent, it is often useful to
display the information on a map, e.g. showing which roads seem to have traffic
problems by drawing those roads in red in an overlay over a map of the city. While
the same information could be given in other ways, e.g. a table with street names of
problem areas, a map is a familiar way to get an overview of the situation quickly.

There are several mapping software toolkits available. One example is the Google
Earth (and Google Maps) API3 from Google. Using a standardized XML format
called KML, it is possible to specify for example points, lines, and polygons to be
displayed in 3D on a satellite image of the earth. You can also freely position the
viewpoint to specify the part of the earth to display, from what angle, the zoom, etc.
It is possible to link images, videos, and other data to points on the map too.

Another mapping toolkit is the ArcGIS suite from the Environmental Systems
Research Institute’s (ESRI). We have wrapped the ArcGIS API for Silverlight4

into our Webble World framework (Sect. 2.1), and it is thus possible to combine

3Google. (2012) Google Earth (Version 6.2.1.6014 (beta))
http://www.google.com/earth/download/ge/agree.html (Accessed 6 April 2012).
4ESRI. (2012) ArcGIS API for Silverlight (Version 2.4)
http://help.arcgis.com/en/webapi/silverlight/

http://www.google.com/earth/download/ge/agree.html
http://help.arcgis.com/en/webapi/silverlight/
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a mapping tool Webble based on ArcGIS with all the other available software
components (Webbles). The Webble wrapper for the ArcGIS has slots for specifying
various mapping layers, size of the map, what sections of layers to display, etc.

3 Clustering Taxi Probe Car Data

3.1 Background

Dataset

The taxi probe car dataset was kindly provided to us by Fujitsu Co. LTD. The
dataset is based on the information provided by about 2,000 taxi cars, running in
the urban area of Sapporo. Roads are split into road segments, with a new road
segment starting at each intersection. Statistics are provided for each road segment
every 5 min. These include: the average speed, the top speed, the number of cars that
passed, the length of the segment, etc. There are around 120,000 road segments in
the provided data. We have data for two periods: the snowfall period, from January
1st, 2011 to February 7, 2011; and the non-snowfall period, from September 19,
2010 to September 25, 2010.

We investigated the influence of snowfall on the traffic in the dataset. Even when
the average speed of a road segment is high in the non-snowfall period, the average
speed during the snowfall period might be much lower when the road is covered
with snow and ice, or narrowed by piles of snow on the sides. Since the dataset
characterizes each road segment in terms of its statistics, road segments can be
divided into several clusters based on similarities of these statistics. These groups
might then give insights on e.g. roads that are suitable for similar snow removal
strategies.

Preprocessing

As detailed above, each road segment is represented by the statistics for the segment
gathered every 5 min. In order to get a representation for the segment for 1 day, we
simply concatenated the average speed statistics (though other statistics could also
be used) of each 5 min period into one high-dimensional vector. This vector does not
contain information on the physical properties of the segment, such as the width of
the road, the number of lanes, or which other segments are adjacent; it only contains
the average speed data. When clustering on the average speed, the a vector would
contain 288 speed readings, on for each 5 min period during the day.

In addition, since the probe car data is transmitted via a radio system from the
moving taxis in the real world, the dataset suffers from lots of missing values. In
order to calculate the similarities among vectors, it is necessary to fill in the missing
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values. How these missing values are assigned affects the results of analysis. As a
preliminary experiment, we filled in the missing values of any road segment with
the average value of that segment.

Clustering Method

Since each road segment is represented by a high-dimensional vector, we utilized
the spherical k-means algorithm (skmeans) (Dhillon and Modha 2001) to cluster-
ing the road segments. This algorithm is an extension of the standard k-means
algorithm (Hartigan and Wong 1979), and was proposed for the clustering of high-
dimensional data such as text. In the standard k-means algorithm, each vector is
assigned to the “nearest” cluster in terms of Euclidian distance. However, when the
number of dimensions get large, the performance of k-means degrades due to the
“curse of dimensionality”. In order to remedy the performance degradation, cosine
similarity, which is invariant to the number of dimensions, is utilized as a similarity
measure in the skmeans algorithm. Thus, each vector is assigned to the “nearest”
cluster in terms of cosine similarity.

The true number of clusters is unknown in the dataset. Thus, we varied the
number of clusters from 4 to 10 in the following experiments. The results are shown
when clustering the data into 6 clusters.

The clustering is only done on speed data. There is no following clustering using
the spatial (geographical) information, and the vectors do not contain any such
information. This means that the clusters are not (necessarily) spatially connected,
and that they can overlap in any way in the physical world.

3.2 Results

The Difference Between Snowfall and Non-snowfall Periods

In order to see if there is any difference between the snowfall and the non-
snowfall periods, we created a vector in 288 dimensions for each road segment by
concatenating the average speeds of the segment during 1 day (60 min� 24 h / 5 min
= 288). A set of such vectors for the road segments is constructed for each day, and
clustering with skmeans was conducted for each set of vectors.

Figure 3 shows the clustering results of a day in the non-snowfall period (the
number of clusters was set to 6). Normally, the clusters are given different colors
and can be overlaid, but here we show the results in grayscale, and show one cluster
per image frame. (Figure 7 shows clusters overlaid on top of each other, with one
cluster shown in bold for contrast.)

As an example cluster, the second cluster in the top row in Fig. 3, which has all
lines shown in bold, correspond to the road segments that were clustered together.
The depicted lines correspond fairly well with some of the main (arterial) roads
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Fig. 3 Clustering result in the non-snowfall period, one cluster per image. Lines in bold show
clusters with road segments mainly from the main (larger) roads of the city

in Sapporo where many cars run at rather high speed. Note that even though
physical connectivity relations among road segments are not utilized in the vector
representation, many of the road segments clustered together connect nicely into
lines with connected road segments, based solely on their average speed statistics.
The last cluster, also shown with bold lines, also contains many road segments from
the arterial roads. These two clusters together cover almost all the segments of the
arterial roads.

Figure 4 shows the clustering results of a day when heavy snowfall occurred
(again, the number of clusters was set to 6). Compared with Fig. 3 we can see that
the lines for the clusters with bold lines, i.e. the clusters covering the major roads,
are more fragmented. Segments from the same road now end up in different clusters
more often. This could be caused by traffic jams occurring in some parts of the road
segments due to the snowfall, especially in segments where the road has become
more narrow than normal because of piles of snow occupying parts of the road after
snow plowing. In the next section, we take a closer look at this.

The Difference Before and After the Snow-Removal

The results in Figs. 3 and 4 indicate that the profiles of a road segment are different
in snowfall and non-snowfall periods. We believe that this difference in large parts
is caused by traffic jams caused by the snowfall. Since piles of snow narrowing parts
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Fig. 4 Clustering result for the snow period, one cluster per image. Lines in bold show clusters
with road segments mainly from the main (larger) roads of the city

of the roads is mostly a problem during rush hour (when few cars are on the road,
the road being narrow is not a serious problem), in the following experiment, we
focused on data from 7:00 to 10:00 a.m.

In order to highlight the difference between snowfall and non-snowfall periods,
we concatenated the average speeds during the rush hour period of 1 day in the
non-snowfall period with the speeds during rush hour for 1 day during the snowfall
period, thus creating another type of vector of 72 dimensions (60 min � (3 h C
3 h)/5 minD 72). We created such vectors for two days during the snow period: the
day directly after a heavy snowfall, and the day two days after the same snowfall.

Figure 5 shows the results for the day just after the heavy snowfall occurred,
and Fig. 6 shows the clustering result of the next day (and no snowfall in between).
A closer look at an example road is shown in Fig. 7. The bold line running vertically
is one of the main roads through the city, and right after the heavy snowfall,
segments from this road end up in four different clusters. The next day, after snow
removal, all the segments in the road are clustered together again.

By comparing these results, we can see that the day after the heavy snowfall
had the main roads fragmented, with segments ending up in many different clusters,
but the fragmentation is reduced after snow removal. This confirms our belief that
snowfall leads to traffic problems and that when the snow is removed, the problems
also go away. The results also indicate the importance of microanalysis of traffic
to discover the best strategies for road management and maintenance specific to
different types of roads.
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Fig. 5 Clustering result for rush hour of a day directly after a heavy snowfall. The segments from
the major roads end up in several different clusters

Fig. 6 Clustering result for rush hour after snow removal (2 days after the snowfall). The segments
from the major roads are generally clustered together
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Fig. 7 A closer view of the clustering results of Figs. 5 and 6

Fig. 8 Two road segments that are clustered together during snow free days but end up in different
clusters after snowfall are highlighted. Time series of average speeds for the two road segments
are shown in two different graphs. The left half are readings from the non-snowfall period, and the
right half are from the snowfall period. Each graph has one curve for the day with heavy snowfall
(light gray) and one for the snow free day after that (dark gray)

3.3 Combining the Cluster Results with Other Visualization
Methods

In Sect. 3.2, we saw that road segments belonging to the same major road were
clustered into the same cluster during the non-snow period and during snow free
days of the snowy period. On days with heavy snowfall, and the snowy period
overall, segments from the same road ended up in several different clusters, though.

Our system makes it possible to improvisationally federate additional data
sources and data visualization tools, to take a closer look at the data or visualize
it in other ways. One example of this is shown in Fig. 8. Two road segments that
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were clustered together during the snow free day in Fig. 7 (and belong to the same
road) are highlighted and drawn thicker than the other road segments. These two
segments were clustered into different clusters on the day after the heavy snowfall
(Fig. 7).

It is possible to bring up graphs showing the average speed of the road segments
as a function of the time of day. The speed during different times of the day is what
the clustering is based on. There is one graph for each road segment, and each graph
shows two curves. The dark gray curve shows the speeds during the snow free day,
and the light gray curve shows the speed during the day with heavy snowfall. We can
see that the curves for the snow free day are at least fairly similar in the right half of
the graph (the left half are the concatenated data from the non-snowfall period, the
right half is from the snowy period), while the light gray curves are very different,
as can be expected based on the clustering results in the previous section.

4 Histograms of Speeds in Slippery Intersections

Intersections are especially prone to bad road conditions during the winter in Sap-
poro. Cars have to break and stop when the light is red, and they have to accelerate
and often slip, causing the tires to spin and polish the compressed snow and ice into
very slippery ice. The intersections also usually become very uneven and bumpy,
making it even more difficult to drive safely and without damaging the car.

Not all intersections are affected the same way, and knowing where there are
problems could help prioritize where to go to put more sand (to reduce slipperiness)
or file down icy bumps. Here we show speed histograms for cars when they are
driving through various intersections around our university. The speed readings are
taken from private cars equipped with car navigation systems (collecting the speed
readings) and cell phones with subscriptions to a service notifying the navigations
system of possible traffic jams etc.

In Fig. 9, speeds are shown as speed histograms, one, in black, pointing up, for
the speed in the summer (good road conditions) and one, in gray, pointing down,
for the speed in the winter (possibly slippery conditions). The leftmost bar in each
histogram is the relative amount of cars driving 0–5 km/h, the second bar from the
left is for 5–10 km/h, and so on. The histograms are scaled so that the volume of
each histogram is the same, so the bars do not show the number of cars driving
slowly but the proportion of cars that traveled slowly.

The rightmost intersection of the two top intersections with histograms is famous
for being slippery. We can see that the gray histogram has a larger proportion of cars
traveling at slow speeds. In contrast, the leftmost intersection in the lower part of
the picture rarely becomes slippery, and the gray histogram there does not have a
high proportion of cars at slow speeds.
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Fig. 9 Histograms showing the speed in intersections around our university. The gray bars are the
speed in winter and the black bars are the speed in summer. The bar farthest to the left is 0–5 km/h,
the next 5–10 km/h, etc

5 Mashups with Probe Car Data and Twitter

For disaster management, combining many different types of data sources can be
useful. We do not necessarily know in advance exactly what data will be of use to
us, and the data we want the most may not be available so we may have to make do
with combining other sources to achieve the same goal. Here we show an example
of combining and visualizing data from many different and diverse data sources.

Figure 10 shows a screenshot when visualizing several types of data. Here the
visualization has been changed to colors showing up better in grayscale, but in actual
use all data sources have clearly distinguishable colors instead. The following types
of data are shown:

Probe car data. The streets are colored in white, gray, and black based on probe car
data. Where the average speed is roughly the same as the speed in the summer,
black is used. On streets where the speed is lower than in the summer gray is
used, and when the speed is much worse than in summer the road is colored
white. The data is from around 2,000 taxi cars reporting speed readings at each
intersection they pass. The day shown in Fig. 10 had fairly bad snow conditions,
so the traffic situation was not good and most roads are white or gray.

Weather station data. Snowfall measured at about 50 weather stations located in
different parts of the city is shown as black bars standing alone, on top of the
location of the weather station. Tall bars indicate large amounts of snow, low
bars indicate little snow fall. The weather sensors also collect many other types
of data not visualized here.
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Fig. 10 A mash-up of many different data sources. The images show the probe car speed data, the
most common words from Twitter tweets in Sapporo, weather data, snow removal data, and snow
removal complaints to call centers. This visualization was done using Google Earth, not using our
Webble World framework

Call center complaints. The amount of complaints from citizens calling the local
snow removal call centers or the city call centers are shown as two dark gray bars
(a tall bar meaning many complaints) in a group of four bars. The complaints are
the two rightmost bars, with the city call centers on the left, and the local snow
removal call centers on the right. The data is shown for each ward (district) in
the city, and the bars are located in a central location of the ward, usually the
location of the ward office.

Snow removal data. Data from the snow removal companies is shown as two gray
bars, also in the set of four bars placed in the central ward location. The leftmost
bar indicates the road distance plowed by snow plowing vehicles. The second bar
from the left indicates the amount of snow removed by trucks taking snow out of
the city to specified dumping locations.

Twitter data. The most frequent words mentioned in Twitter tweets that are location
tagged as coming from Sapporo are shown in a table. Here there is one global
table for the whole city, but displaying local tables for tweets from smaller areas
is also possible.

In actual use, showing all the information at once, as in Fig. 10, is probably
not very useful since there is too much information being displayed at once. Thus,
turning individual data sources on and off has been made easy. This data can then
show for instance how the traffic situation was affected by the weather and the snow
removal efforts.
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Fig. 11 A time series showing the change in the traffic situation after a heavy snowfall. Once the
heavy snow hits, the traffic situation becomes bad and there is a large spike in complaints to call
centers. The situation then gradually improves, and complaints go down. Then, more snow falls
and the traffic situation worsens again. White lines indicate streets where the average speed is much
worse than in the summer, and black lines are streets where the speed roughly the same as in the
summer. There is one image per day, left to right, top to bottom, with the top left being January 31,
2011, and bottom right February 7

Figure 10 shows the data displayed using Google Earth. The same data can also
be shown using the ArcGIS toolkit, which we have wrapped so it can be used in
our Webble World framework. The following example scenario is shown using our
Webble World.

The example scenario is shown in Fig. 11. The figure shows the days from
January 31 to February 7, 2011. On January 31 we can see that some roads are
white or gray, so the traffic situation is not as good as in the summer, which is to be
expected, but there are not so many complaints coming in. On February 1, there was
a very heavy snowfall as can be seen by the many high black bars standing alone all
over the city (snowfall measured at weather stations). The traffic situation turns bad,
and large parts of the streets in the city are white or gray. There are also spikes in
the call center complaints data (the two rightmost bars of the sets of four bars placed
together).
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The following days there is no or very light snowfall, but the traffic situation does
not improve over night. It takes several days before most of the city streets are back
to black. The complaints are also still quite high for several days, even though there
is no new snowfall. This is of course because there is still a lot of snow left from
the snowfall on February 1, as can be seen for instance by the fact that the snow
removal companies keep removing very large amounts of snow the following days
too (the leftmost bars in the sets of four bars).

The complaints gradually go down as more and more snow is removed, and the
traffic situation also goes back more or less to normal. On February 6, the second
to last picture, the situation is good. Most of the streets are black (good traffic
conditions), and there are few complaints. On February 7 (last day shown), it snows
again, and the traffic situation turns bad again.

Since other factors also affect the traffic conditions, adding other data sources
can also be useful. Figure 10 also had data from Twitter. This can be useful when
something unexpected happens. On the February 7, the Sapporo Snow Festival
started. This is a huge event where over a million tourists come to the city, and
several big streets around the festival area in the middle of the city are closed off.
This of course has a large effect on the traffic flow in the city. When noticing that
traffic flow around the area is bad despite snow conditions being good and other
streets not having problems, we could bring up a list of common words when people
write status updates in Sapporo (or a smaller area). February 7 has “snow” and
“festival” among the top five words, and we could guess that this is what is causing
the problems.

While the Snow Festival occurs every year and is thus not an unexpected event,
a similar approach can be used when unexpected conditions occur. Something that
affects a lot of people is likely to be mentioned by many of them. Now that most
people are constantly connected through their cell phones, information such as the
status tweets on Twitter can be helpful. Our system allows combining data from
such diverse sources as cell phone tweets, weather stations, and probe cars.

The strength is that as long as a data source, analysis method, or display method
has been wrapped to work in the Webble World environment, connecting them in
new ways is very quick and easy. If the Twitter information does not tell us enough,
we can plug in a news feed subscription Webble and display words mentioned in
news stories about Sapporo instead, with only a few minutes work. Or some other
completely different information source.

6 Tweets

In Sect. 5, data collected from citizens writing status updates on Twitter was
visualized together with many different types of data. There, we showed the
aggregated statistics of all tweets from a specific area, displaying the most frequently
mentioned words to see what seems to be going on in that area.
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Fig. 12 Location tagged tweets

Instead of showing which words occur in an area, it is also possible to show all
the locations of tweets mentioning a specific word. This can tell us where people are
when they talk about different things. Not all tweets are location tagged, but many
are (actually a small minority of all tweets, but still a fairly large amount in raw
number of tweets). Some are tagged only with the general location, e.g. “Sapporo
Station”, and some have GPS coordinates.

Figure 12 shows two examples of displaying location tagged tweets. There is a
text field to input a search string to indicate what tweets you want to visualize, and
a map showing the locations of tweets containing this string.

On the left is a picture of the locations of tweets mentioning “Miku”. Miku is
the name of a singing synthesizer persona, and there was a big snow sculpture
portraying this pop singer character at the Sapporo Snow Festival. On February
7, this 3 m tall statue fell off its base and injured a tourist. Many tweets mentioning
Miku can be seen around the West 5 area of the Odori park, which is were the statue
was located. There are tweets mentioning the event from other locations too, of
course, but there is a clustering effect around the area of the statue.

Similarly, on the right in Fig. 12 is a display of the tweets mentioning the Snow
Festival. Most tweets are located in a band from west to east in the Odori park,
which is the festival area.

Visualizing where people are mentioning that they are slipping, or that they fell,
can tell us where the road conditions are bad. There are however not very many
location tagged tweets mentioning such things. Of the 40,000–50,000 tweets tagged
as coming from Sapporo each day, only around 800–900 have the specific location
(GPS coordinates). Of these, only about one message per day mentions falling or
slipping in our data. So slippery roads are not noteworthy or exceptional enough
to most people and thus the Twitter feed cannot pick up on it, at least not yet (this
might improve when more people start using their GPS enabled smart phones to
send the messages). For more severe problems, it would likely be possible to notice
them in the messages of ordinary people.

We believe using this type of information source can be very useful. The “end
users” of the snow removal services are the citizens, so this information directly
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provided by the citizens themselves that can also automatically be collected is
hopefully useful, and it has the potential to contain information not covered by the
other information sources.

7 Conclusions

Winter road management and maintenance is fundamental in Sapporo for sustaining
economic and social activities in winter. Since the influence of snow on traffic is a
complex system that is hard to mathematically model as a single system, explorative
and iterative analysis and visualization is necessary to support decision making for
better management and maintenance strategies.

We proposed using a huge library of visualization and analysis tools and services,
and a system framework supporting improvisational federation (“mash-up”) of them
to compose whatever analysis environment may be deemed necessary based on
previous analysis. Unlike conventional macro analysis approaches, we focus on
micro analysis of winter traffic conditions using taxi and private probe car data.
We showed how visualization of changes in average speed of each road segment
shows the influence from heavy snowfall, snow plowing, and snow removal. We
also proposed a method to estimate which intersections may have problems with
black ice from the probe car data.

We also applied a clustering method to probe car data to classify road segments
based on similarity in the effect of heavy snow on the traffic of the segment. This
could give insights into management decisions for different segments.
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Exploratory Visualization of Collective Mobile
Objects Data Using Temporal Granularity
and Spatial Similarity
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Abstract Recent advances in location-aware technologies have produced vast
amount of individual-based movement data, overwhelming the capacity of tradi-
tional spatial analytical methods. There are growing opportunities for discovering
unexpected patterns, trends and relationships that are hidden in massive mobile
objects data. However, a lingering challenge is extracting meaningful information
from data on multiple mobile objects due to the visual complexity of these patterns
even for a modest collection of mobile objects. This chapter describes visualization
environments based on temporal granularity, and spatial and/or attribute similarity
measures for exploring collective mobile objects data. Reconstructing trajectories
at user-defined levels of temporal granularity allows exploration at different levels
of movement generality. At a given level of generality, individual trajectories can
be combined into synthetic summary trajectories or classified into groups based
on locational and/or attribute similarity. A visualization environment based on the
space-time cube concept exploits these functionalities to create a user-interactive
toolkit for exploring mobile objects data. A case study using wild chicken movement
data demonstrates the potential of the system to extract meaningful patterns from the
otherwise difficult to comprehend collections of space-time trajectories.
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1 Introduction

Location-aware technologies (LATs) such those based on the Global Positioning
System (GPS) or radio-frequency identification (RFID) chips have greatly enhanced
capabilities for collecting data about mobile objects. LATs connected to location-
based services (LBS) embedded in cellular telephones and other clients allow
unprecedented access to individual mobility patterns across a wide range of domains
(Brimicombe and Li 2006; Li and Longley 2006). GPS and RFID devices are
increasingly connected to vehicles and objects in fleet management and logistics,
generating fine-grained data on movements of these entities within supply chains
(see Roberti 2003). Researchers in ecology and biology are also using LATs to
track movements of animals, creating new insights into territoriality and ecosystem
dynamics (e.g., Wentz et al. 2003; Turchin 1998)

The prevalence of LATs is generating a vast amount of mobile objects data that
are overwhelming the capabilities of traditional spatial analytical methods. A major
challenge in GIScience is to develop representation and analysis techniques that
can handle spatio-temporal and mobile objects data (Laube et al. 2005). A related
research challenge is developing methods to explore, analyze and understand the
motions of collections of mobile objects over time. Analyzing one or a small number
of mobile objects is tractable, but making sense of the collective mobility patterns
of even a modest number of objects is daunting due to the visual complexity of the
data involved (Shaw et al. 2008).

This paper describes a user-interactive visualization toolkit for summarizing and
exploring mobile objects data based on spatial similarity among object trajectories
at different levels of temporal granularity. Reconstructing trajectories at user-defined
levels of temporal granularity allows exploration of the mobile objects at different
levels of movement generality. At a given level of granularity, the user can apply
similarity measures for aggregating or grouping trajectories based on location or
spatial similarity. To maximize user-interactivity, the measures are computationally
scalable to facilitate rapid calculation even on modest computational platforms.
The similarity measures are also dimensionless and semantically-clear to facilitate
easy interpretation. A visualization toolkit based on the space-time cube concept
exploits these functionalities to create a user-interactive environment for exploring
mobile objects data. A case study using wild chicken movement data demonstrates
the functionality of the toolkit for extracting general patterns from an otherwise
indiscernible collection of trajectories.

The visualization environment described in this paper intends to provide a user-
friendly toolkit for scientists who are primarily concerned with data corresponding
to objects moving through geographic space such as people, vehicles and animals.
Therefore, we designed the methods and toolkit in this paper for objects that
exhibit potentially continuous motion through space densely with respect to time.
The temporal granularity and similarity aggregation methods are not designed for
objects that exhibit discontinuous change at discrete moments in time. Therefore,
other event or change data such as financial transactions or phone calls, while often
referenced in time and/or space, are not appropriate.
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The next section of this paper provides the background behind the concepts and
methods used in this research. Following this, the methodology section explains
the temporal granularity, similarity functions, and other visual and summarization
functionalities of the visualization toolkit. Section 4 provides a case study that
illustrates the methods using a space-time visualization toolkit. The final section
summarizes the contributions of this research and suggests topics for further
investigation.

2 Background

2.1 GIS and Mobile Objects

Since change with respect to time is common in most natural and human phenom-
ena, incorporating time and change in geographic information systems has been a
critical research frontier since the 1980s (see Langran 1992). Possible approaches
include temporal “snapshots” that update the database at regular intervals, event-
based approaches that update only the relevant portion of the data when a change
occurs, and maintaining semantic, spatial and temporal dimensions in separate but
linked domains (see Peuquet and Duan 1995; Yuan 2001; Worboys and Duckham
2004; Hornsby and Cole 2007).

Mobile objects data is an important special case of this general problem since
these change their geometry near-continuous with respect to time. Explicitly
updating of the geometry of a moving object is too expensive with respect to
computational effort and storage requirements. Instead, one must accept some level
of sampling error due to the finite and discrete updating of continuously changing
objects and represent this error within the database (Sistla et al. 1998). Mobile
objects also imply unique semantics and therefore a need for specialized query
languages and analytical techniques (Andrienko et al. 2008). The field of mobile
objects databases has emerged to handle these unique requirements.

Another set of techniques for understanding mobility data derives from the field
of time geography and efforts to build GIS and other analytical tools based on
its basic concepts. Time geography is based on the notion that the events that
comprise an individual’s or object’s existence have spatial and temporal dimensions
that are difficult to untangle in a meaningful way (Hagerstrand 1970). While
only a conceptual framework traditionally, in recent years the applicability of
time geography has been enhanced through the development of analytical and
computational tools linked to GIS software (e.g., Kwan 2000; Miller 1991, 2005;
Yu and Shaw 2008). However, most of these efforts address only a single or small
number of mobile object trajectories due to time geography’s bias towards the
individual rather than collective behavior, as well as a lack of tools for handling
collections of trajectories. For example, although Kwan (2000) develops interactive
tools for visualizing mobile objects data, there are no capabilities for summarizing
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or aggregating these data, meaning that it is difficult to scale these applications to
collections of trajectories without visual confusion. Shaw et al. (2008) addresses
this issue by using clustering techniques to extract representational summary paths
from trajectory collections.

2.2 Mobility Mining

The problem of extracting meaningful information from large databases is not
unique to mobile objects data and GIS-based time geography. Knowledge Discovery
from Databases (KDD) is the attempt to extract novel patterns hidden in massive
digital databases through efficient computational techniques. The objective is to
generate unexpected and interesting hypotheses that can be investigated further
using standard inferential and confirmatory techniques. Geographic Knowledge
Discovery (GKD) is a subset of KDD that attempts to discover novel spatio-
temporal patterns in massive digital geographic datasets using scalable geocomputa-
tional techniques. GKD techniques exploit the unique characteristics of geographic
data such as spatial dependency and heterogeneity. In addition, GKD tools can
handle complex spatial properties such as the size and shape of geographic objects,
and relationships among objects such as distance, direction and connectivity (Han
et al. 2001; Miller and Han 2009). As the size and complexity of geospatial
data increases, leveraging geocomputational techniques with geovisualization is
essential to help manage the GKD process and interpret its results (Andrienko and
Andrienko 2008).

Mobile objects data also creates unique challenges for the knowledge discovery
process. Andrienko and Andrienko (2008) envision a specialized knowledge dis-
covery process for these data called mobility mining. The mobility mining process
involves three major steps:

1. Trajectory reconstruction. This involves processing the raw stream of mobility
data to obtain the individual object trajectories. It also involves methods for
efficient storage and access of these trajectories.

2. Knowledge extraction. This involves the application of spatio-temporal and
mobile objects data mining methods to discover novel and useful information
in these data. Possible patterns include clusters or groups of similar trajectories,
frequent patterns reflecting repeatedly followed paths or subpaths and classifica-
tions based on behavioral rules extracted from the trajectories (also see Dodge
et al. 2008).

3. Knowledge delivery. Extracted patterns are seldom direct knowledge; rather,
these patterns must be evaluated based on their interestingness, interpreted
relative to pertinent background knowledge and communicated in a manner
appropriate for improving policy and decision-making in real-world applications.

Our main concern in this research is the rapid summarization of data as a first step
in the knowledge extraction process. A well-known technique in online analytical
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processing (OLAP) technique is the data cube. The data cube is an operator that
allows users to generate all possible cross-tabulations of the data at different levels
of aggregation to provide synoptic summaries of the database (see Gray et al. 1997;
Han and Kamber 2006). Shekhar et al. (2001) extended the data cube to the map
cube that can handle the geographic components of the data and visualize them in
concert with the cross-tabs and aggregations. The traffic cube is a further extension
for handling spatio-temporal traffic data (see Lu et al. 2009; Shekhar et al. 2001,
2002). However, these methods require a fixed geography and spatial aggregation
scheme and cannot be applied directly to trajectory summarization.

In addition to database aggregation methods, data visualization techniques
enable simple and intuitive interactions of mobile object data and humans. The
objective is to find interesting patterns, trends and relationships especially in
mobile objects datasets, supporting knowledge construction about mobility behavior
(Miller and Han 2009). Dynamic visual exploration is useful in understanding the
structure of the dataset, raising questions about movement patterns, and facilitating
identification of meaningful combinations of variables in further map represen-
tation and analysis (Wood and Dykes 2008). Interactive visualization methods
associated with visualization software environment have been proposed to enhance
the quality of pattern detection. For example, GeoTime is a three-dimensional
visualization environment designed to visualize and analyze trajectories of mobile
objects (Kapler and Wright 2005; Kraak 2003). Another widely used method for
visual data exploration is trajectory aggregation. Data mining methods such as
clustering support visual detection of clusters of mobile objects for data aggregation
(Andrienko et al. 2009; Rinzivillo et al. 2008; Schreck et al. 2008). Although these
studies successfully illustrate the importance of analysing spatio-temporal dynamics
within a visualization environment, they heavily rely on locational and temporal
information only. Few studies have explored the mobile object patterns from the
attribute domain (Skupin 2008; Kraak and Huisman 2009).

An exploratory visualization technique designed specifically for mobile objects
data is the space-time cube (Kraak 2003). The space-time cube visualizes spatio-
temporal data in a three-dimensional environment that the user can manipulate
through rotating, projecting, scaling and other visual browsing techniques (Kraak
2003) (Fig. 1). In addition, Leonardi et al. (2010) developed the T-warehouse for
data warehouses system designed for trajectory data.

2.3 Data Aggregation and Similarity Measures

As noted above, a barrier to meaningful visualization of mobility databases is
difficulty in extracting meaningful patterns from mobile objects data. Data ag-
gregation techniques are methods for reducing the size of data to extract general
patterns (Andrienko and Andrienko 2008). Several researchers have proposed time-
based aggregation to summarize and analyze mobile objects data. For example,
Hornsby and Egenhofer (2002) developed a framework that enables space-time
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Fig. 1 The space-time cube
concept

queries in multiple time granularities for space-time paths and prisms. In addition,
there are some efforts to combine time geographic concepts and data summarization
methods such as aggregation and clustering. These software tools visualize mobile
object trajectories in two spatial dimensions and time, and provide capabilities to
group trajectories based on location during a time period of interest (Pfoser and
Theodoridis 2003; Shaw et al. 2008; Kapler and Wright 2005).

An emerging data aggregation technique for mobility data is similarity measures.
Similarity measures can be used to analyze whether different mobile objects exhibit
correspondence in terms of a metric distance function such as Euclidean distance
(Sinha and Mark 2005; Yanagisawa et al. 2003), the Hausdorff distance measure for
two point sets (Huttenlocher et al. 1993; Shao et al. 2010), the Frèchet distance
for polygonal curve similarity (Eiter and Mannila 1994), and longest common
subsequence (LCSS) for measuring similarity in time-series data (Vlachos et al.
2002). However, similarity measures alone do not allow the analyst to explore
similarity at multiple scales (e.g., Laube et al. 2005). In addition, similarity measures
can be computationally complex, although progress has been made with respect to
scalable heuristics (Andrienko et al. 2009; Shao et al. 2010; Sinha and Mark 2005).

Another trend in similarity measure is trajectory descriptors. Trajectory descrip-
tors are metrics of mobility physical characteristics such as location, direction and
speed. These measures can serve as a basis for aggregating or grouping individual
paths for summarization, improving the clarity of the visualization (Laube et al.
2005; Sinha and Mark 2005). Trajectory descriptors can be calculated at an
individual sample location and can be extended into interval and/or global scales
(Dodge et al. 2008). However, most studies focus on spatial and temporal domain; it
is rare to examine dynamics within the attribute domain, that is, the evolution of non-
locational properties over time such as the trajectory geometry and other physical
movement parameters. This is also rarely linked with the growing area of geographic
data mining and knowledge discovery (Skupin 2008; Skupin and Hagelman 2005).

The toolkit described in this paper combines similarity techniques with user-
defined temporal granularity parameters to facilitate exploratory trajectory ag-
gregation at varying levels of movement generality. Furthermore, the techniques
developed in this visualization toolkit are computationally efficient and can be
scaled to large databases and embedded in other exploratory techniques and pro-
cesses. In addition, this paper describes a user-interactive visualization environment
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to summarize and explore mobile objects data based on the movement attributes of
mobile object trajectories at different levels of temporal granularity. The next section
of this paper discusses these time aggregation and similarity measure techniques,
and the visualization environment that implements these techniques.

3 Methodology

3.1 Overview

This chapter develops time aggregation methods and similarity measures to enhance
the discovery of multi-scale patterns in mobile objects data. There are several
steps to analyze the mobile objects data within the interactive visualization tool
proposed in this research (see Fig. 2). First, all the data are stored in a database
in order to be extracted later as queries. Second, time aggregation methods allow
the user to determine a time range of interest and temporal granularity within
the selected time range to reconstruct individual trajectories at different levels of
movement generality. Third, given these reconstructed trajectories, the user can
apply similarity measures to aggregate individual trajectories based on location
or attribute to aggregate multiple trajectories into synthetic trajectories that reflect
collective movement patterns. This process can be repeated until the user of the
toolkit finds meaningful patterns. We embed these techniques within a space-time
cube environment that allow visual exploration and statistical summaries of the
aggregated and grouped mobile objects data.

Fig. 2 Flowchart of the
analysis
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Fig. 3 Example of time range and time interval parameters

3.2 Time Granularity and Trajectory Reconstruction

Temporal granularity is a critical parameter for visual data exploration as well as
data mining and statistical analysis since it can cause substantial difference in the
results of visualization and analysis (Hornsby 2001). Visualization with coarse time
granularity is more appropriate to explore broad scale movement while visualization
with refined time granularity is more suitable for detailed movement of the mobile
objects (Hornsby and Egenhofer 2002).

Two parameters for determining time granularity when reconstructing mobile
object trajectories are the time range and time interval. Time range is the time
period queried from the database. For example, if the user wants to visualize parts
of trajectories at time between 10:00 and 11:00, ‘1 hour’ is the time range. On the
other hand, time interval is the granularity within the time range; the minimum time
unit that divides time range equally. For example, if the time range is 1 hour and
the time interval is 10 minutes, the number of time stamp is six. The reconstructed
trajectories reflect the choices of range and interval. To illustrate, assume trajectories
from the database such as the ones as illustrated by Fig. 3a. As the time interval
increases, three trajectories become more similar as in Fig. 3b, and exactly the same
as shown in Fig. 3c.

Since LATs often record trajectory data using independent sampling rates, we
normalize the trajectory data to common sampling times using simple temporal
resampling rules. We map recorded locations and times to the interval that includes
that sample. If there is more than one sampled point within the interval, we choose
the first one in sequence. If no sample point falls within an interval, we interpolate
the location and time based on its neighboring intervals. This resampling rule is
efficient and scalable; however, note that choosing longer time interval may cause
distortion of sampled locations of trajectories because the algorithm proposed in this
research chooses the first time-stamped location within the chosen time interval.
This resampling process enables comparison of trajectories recorded at different
temporal intervals and granularities.
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Fig. 4 Similarity aggregation: (a) individual trajectories; (b) detection of a cluster based on
locational similarity; (c) summary trajectory

Fig. 5 Calculating locational
similarity

3.3 Similarity Measures

Locational Similarity

This function measures the similarity between trajectories based on their spatial
footprints, allowing users to aggregate trajectories that are spatially proximal given
the selected time interval and range. This measure is useful in finding where and
when mobile objects are moving together in a sequence of time. Urban commuting
behavior, normal crowd flow and animal flocking are example movement patterns
that can exhibit locational similarity. Figure 4 illustrates the general process.

An efficient method to measure locational similarity is to calculate the Euclidean
distance between two locations of mobile object trajectories at specified time
intervals (Steiner et al. 2000). A Euclidean distance of zero indicates that two
trajectories visit the same locations in space-time. Trajectories that share the same
spatial locations but at different times will have a higher locational similarity
score, as will trajectories that diverge in space, even if they share the same origin,
destination or some intermediate locations (Fig. 5).

If trajectories have a high degree of locational similarity, we can meaningfully
aggregate these into a trajectory that summarizes those locations. A simple and
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Fig. 6 Aggregating
trajectories with locational
similarity by vector averaging

Fig. 7 Attribute similar trajectories: (a) detection; (b) identification

tractable method is to treat each polyline segment as a vector and finding the average
of the corresponding vectors. Figure 6 illustrates the process for the two trajectory
case for clarity.

While the Euclidean distance measure is straightforward, it suffers from sensitiv-
ity to outliers. Other possible distance measures include the Hausdorff and Fréchet
distances. The Hausdorff distance is the maximum of the minimum distances
between two curves; however, it can be misleading since it does not consider any
temporal sequencing in the curves. The Fréchet distance captures the sequences
within each curve (see Alt et al. 2003). We use the Euclidean distance measure
for simplicity and scalability. However, our methods are not limited to Euclidean
distances, and continuing development of the toolkit could include other distance
measures for comparison purposes.

Attribute Similarity

In contrast to locational similarity, attribute similarity concerns intrinsic attribute
properties of the trajectories regardless of their location or orientation in space.
These measures can be used to categorize trajectories into groups based on similar
attribute properties (see Fig. 7).
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Fig. 8 Attribute similarity
between two space-time paths
based on three dimensions

The attribute similarity functions in the visualization toolkit extract five measur-
able attributes of attribute similarity. These are sinuosity, direction, velocity, locality
and spatial range (described in detail below). The indices map the trajectory to a
point in a multidimensional space (see Wentz 2000). The Euclidean distance within
this space represents the similarity or dissimilarity of trajectories based on attribute.
Figure 8 illustrates this in three-dimensional space for clarity. DgD 0 indicates that
two trajectories are exactly the same in terms of attribute, with increasing positive
values indicating greater attribute dissimilarity. The user sets a maximum Dg values
as a threshold to detect groups of similar trajectories for aggregation.

Although reducing complex attribute similarity properties to a single point in
multidimensional space results in information loss, it creates a simple measure for
efficient clustering, as well as input into other data mining techniques. This places
a burden on the user to explore a wide range of similarity thresholds and assess the
resulting summary patterns. It is therefore critical that the implemented system have
a high degree of user interactivity.

The subsections below describe the five attribute similarity indices. The five
indices are not independent, nor do they exhaust all aspects of attribute similarity;
see Andrienko et al. (2008), Dodge et al. (2008), and Huang et al. (2008) for
discussions of other attribute similarity measures. The indices proposed in this
research are semantically clear properties that can be captured in an efficient,
scalable manner and expressible as dimensionless metrics for ease of comparison.
The user can apply all the indices simultaneously, or any subset depending on the
nature of the data and the relevant questions to be explored.

• Sinuosity. Sinuosity measures the deviation of the trajectory from a straight line.
It is the ratio of the total length of the trajectory and the Euclidean distance
between the origin and destination:

Sinuosity D dE

dp

(1)

where dp is the total length of the trajectory and dE is the Euclidean distance
between the origin and the destination. This index varies between zero and one,
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Fig. 9 Locality. Left side illustrates a low locality score; right side illustrates a high locality score

with one corresponding to a straight line and values closer to zero indicating
a more sinuous path. The index is zero in the degenerate case of stationary
behavior.

• Direction. This index captures the relative or egocentric direction of the trajectory:

Direction D
ND

180
(2)

where ND is the average egocentric direction of the line segments comprising
the trajectory. Each line segment’s egocentric direction is relative to the previous
segment. Note the contrast with locational similarity: this considers directionality
but from a cardinal perspective (e.g., two trajectories must travel in the same
cardinal direction to have a low locational similarity value). In this index, two
trajectories must have analogous tendencies with respect to turning directions
to be similar. Since the egocentric direction ranges from �180ı (left hand side
direction, or counter clockwise direction) to 180ı (right hand side direction, or
clockwise direction), the value of Direction ranges between �1 andC1.

• Velocity. Velocity indicates the relative speed of the object during the time period:

Velocity D
NV

Vmax
(3)

where NV is the average velocity of a trajectory, and Vmax is the maximum velocity
in the data based on the used-defined temporal granularity parameters. Zero
indicates stationary behaviour and one indicates matching the maximum velocity
in the sample.

• Locality. Locality is the ratio between the distance between a trajectory’s origin
and its final destination and the distance between the origin and the farthest
location in the trajectory (relative to the origin; see Fig. 9). This is a measure
of the relative focus of the trajectory with respect to its initial and final location
within the chosen temporal range.
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Fig. 10 Convex hull of a path

Locality D LOD

LOF
(4)

where LOD is the Euclidean distance between the origin and the destination, and
LOF is the distance between the origin and the farthest recorded location from
the origin. With respect to human movement behavior, trajectories with higher
locality scores (closer to one) tend to be focused and single purpose, while
trajectories with lower locality scores (closer to zero) tend to be more leisurely
and/or multipurpose. For example, with respect to animal movement, low locality
scores may indicate searching or foraging behavior. Using the origin as a basis
for calculating locality may appear arbitrary: one could choose the destination
instead. However, using the origin as a reference reflects the common practice
in transportation science of characterizing trips based on their origin. It is also
possible to use the origin and destination as joint references for a more complete
depiction, but this would make the behavior of the index less transparent.

• Spatial range. Spatial range measures the relative spatial extent of the movement.
It is the area of convex hull that contains a trajectory divided by the area of the
convex hull that contains all the trajectories in the database:

Spatial Range D Apath

Aall
(5)

where Apath is the area of convex hull that contains individual trajectory (see
Fig. 10) and Aall is the area of convex hull that contains all of the trajectories
(see Fig. 11). A spatial range closer to zero indicates that the trajectory covers
relatively little territory, while a spatial range closer to one indicates a more
expansive territory for the object. A convex hull provides a relatively accurate
measure of spatial range (relative to other measures such as the minimum
bounding rectangle) with reasonable computational cost. The toolkit utilizes the
Graham scan algorithm: this has the worse-case time complexity of O(n log n);
this is better than quadratic and therefore scalable (Sedgewick 1990).
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Fig. 11 Spatial range

Once the system calculates attribute similarity values, a next step is to generate
groupings of trajectories based on these values. We look for natural groupings using
an efficient density-based clustering method called DBSCAN (Ester et al. 1996).
This is a spatial clustering method that looks for regions with sufficiently high den-
sity and forms clusters of arbitrary shapes. Although clustering methods designed
explicitly for trajectory data are available (see Han et al. 2009), we chose DBSCAN
due to its ability to incorporate the user-selected similarity indices discussed above
as well as its scalability. DBSCAN also does not require designating the number of
clusters a priori.

DBSCAN requires two input parameters: (i) an " -neighborhood (expressed as a
radius) for searching around each data point; (ii) min-points or the minimum number
of data points required for in a neighborhood to be included. DBSCAN finds clusters
by searching the " -neighborhood of each data point, starting with an arbitrary point.
If the " -neighborhood of a point contains more than min-points, a new cluster is
generated with that point designated as a core object. The algorithm iteratively adds
data points that meet the search radius and density criteria to the core objects until
no more points can be added. DBSCAN is efficient: it has the worst-case complexity
of O .n log n/ if a spatial index is used (Han and Kamber 2006; Han et al. 2009).

We customized DBSCAN in the following manner. First, the distances for
finding neighboring points are the distances provided by the selected similarity
functions. Second, we set min-points as one by default, indicating a cluster can be
created from only two trajectories. Determining the " -neighborhood for searching
is more complex and can require trial-and-error exploration. To facilitate this,
the visualization toolkit reports a set of statistical values for the data, including
minimum and maximum values of the spatial coordinates in each dimension. A
third modification is the inclusion of a maximum radius (max- ") to limit the search
around each point for scalability purposes. We set max- " equal to twice the "

-neighborhood as a default, although this can be user-modified. This clustering
algorithm is basically a combination of both DBSCAN and OPTICS (Han and
Kamber 2006).
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Fig. 12 Graphical user interface of the visualization tool

3.4 Visualization Toolkit

The visualization toolkit in this paper is based on the concept of the space-time cube
(Kraak 2003). The toolkit encompasses three major functionalities: (i) individual
trajectory reconstruction based on time granularity (time aggregation); (ii) trajectory
aggregation and/or grouping based on trajectory similarity (similarity functions)
and; (iii) data visualization, data summarization, and data export for further analysis.
We developed the visualization toolkit using the C# programming language. In
addition, Microsoft SQL Server 2005 provides the functionality for data storage
and query support.

Figure 12 illustrates the main GUI. The user can visualize and explore these
individual trajectories, aggregate or group trajectories based on their apparent
similarity and extract summary statistical properties for the aggregated or clustered
trajectories. The user can also visualize the trajectories in three dimensions (two-
dimensional space and time), as well as project the trajectories into any two of the
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dimensions (xy, xt and yt). Arbitrary rotation of the visualization interface is also
available. It is also possible to export data files containing the trajectory data and
calculated parameters at any level of aggregation for import into other databases,
data mining or statistical software. This allows the user to store detected patterns
for further investigation, or as reference patterns for comparison.

4 Case Study

The aggregation methods proposed in this study can be applied to any mobile objects
data where a sequence of time-stamped location stamps records the trajectory
of each object. To illustrate the effectiveness of aggregation methods and other
functionalities in the visualization toolkit proposed in this paper, we present results
based on wild chicken tracking data in Thailand. Note that we use this data to
illustrate the capabilities of the aggregation methods and functionalities of the
visualization toolkit for extracting patterns from an otherwise mass of unintelligible
trajectories. We do not intend to focus on the behavioral aspects of wild chickens
and therefore will not offer potential hypotheses for the extracted patterns.

4.1 Mobility Data

The Human-Chicken Multi-relationship Research (HCMR) Project conducted a
tracking analysis of wild chickens in Chiang Rai, Thailand using a Wireless Fidelity
(WiFi) positioning system (Okabe et al. 2006). A small WiFi tag attached to a
chicken’s body records the location and time. The WiFi data tracking system
consists of six devices, namely tags to stick to the chickens’ legs, activator, receiver,
Power over Ethernet (PoE), WiFi access point, and management engine. The weight
of the tag is 35 g. Spatial resolution is 1 m and time resolution is 1 s. The fine time
resolution of 1 s allows flexibility to analyze the data from detailed temporal scales
to coarse temporal scales.

The study area is the 200 square-meter land under cultivation inside the Chiang
Rai Livestock Research and Technology Transfer Center. Figure 13 illustrates the
study setting, including the facilities and the locations of the chickens at one moment
in time. There are eight concrete one-storied houses (H1 through H8) in the field:
two of them are residential houses (H1 and H5) and the rest of them are empty
houses. H2 is the preparation room for experimental appliances and H6 is the room
for the data management engine that includes the software package that processes
signals of location data sent via the WiFi access point and displays the locations
of tags (Okabe et al. 2006). CH1 through CH3 are the locations of chicken houses.
Since all the residents in two residential houses leave for agricultural work outside of
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Fig. 13 Setting for wild chicken movement study (cited from Okabe et al. 2006)

the study field, chickens can move freely all over the study area. There are eighteen
chickens in total (circle shape symbols in Fig. 13): there are three groups and each
group consists of six chickens respectively. There are other symbols representing
feeding sites (gray-colored triangle), trees (black, hollow triangle and star-shaped
symbol), and the location of underfloor in the house H5 (cross-shaped symbol).

This research utilizes the movement data of 18 chickens with 2,979,359 time
stamps from November 5th to November 8th 2005. Although the WiFi system uses
x and y coordinates for locations, the location coordinates used in the system are
independent from the geographic coordinates. The maximum spatial extent of the
whole movement of the chickens can be expressed by maximum and minimum
coordinates for both x and y coordinates. The minimum and maximum x coordinate
are �83.79 and 80.39 respectively (164.18 in total for east–west extent), the
minimum and maximum y coordinate is �53.71 and 49.42 (103.13 in north–south
extent).

4.2 Toolkit Functionality

We now illustrate the toolkit functionality by showing results from querying the
database at different levels of temporal granularity and aggregating the trajectories
based on similarity at the specified granularity.
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Fig. 14 Temporal
aggregation using OLAP in
the toolkit

Time Granularity and Trajectory Reconstruction

The proposed toolkit in this research enables the user to specify the time range and
time interval of interest. Figure 14 shows the temporal aggregation GUI illustrating
an OLAP query. The user first chooses the type of query from three options; date
query, time query, or the advanced query that can specify both date and time. The
user chooses the query type based on one’s interest to extract a portion of trajectory
data. The second parameter is the time range. This example is the case when the
time range is between 6:00:00 and 9:30:00 on November 5th in 2005. The user can
specify each temporal resolution from the drop down menus. The third and the last
parameter is the time interval. This example shows the case of 10 s. The user again
can choose the time resolution from the drop down menu. The options are years,
days, hours, minutes, and seconds.

Figures 15 and 16 show the effects of time granularity on trajectory reconstruc-
tion. Figure 15 illustrates the reconstructed trajectory collection for the wild chicken
data at three different time ranges on November 5th, 2005, with the time interval
provided by the data (1 s). Figure 16 illustrates the reconstructed wild chicken
trajectory collection at three time intervals for a fixed time range from 6:00 to
17:00 on November 5th, 2005. As Fig. 15 suggests, it is difficult to extract distinct
patterns at the highest level of temporal granularity. Even with a relatively low
time range (6:00–9:00), the trajectory collection is an undistinguished mass. This
problem becomes more acute as the time range increases. Note that the map at the
bottom of the visualization window shows that spatial extent of the whole movement
also expands as the time range increases. Figure 16 indicates that changing the time
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Fig. 15 Reconstructed trajectories at different time ranges

Fig. 16 Reconstructed trajectories at different time intervals

interval can mitigate this problem to a substantial degree: the trajectories are more
generalized and patterns are more easily discernable as the time intervals become
coarser. The visualization toolkit allows the user to visualize the trajectory collection
at the time range of interest and interactively change the time interval until an
appropriate granularity level is achieved for the data and questions at hand.

Locational Similarity

After the user has selected the time range and interval, the toolkit allows aggregation
of similar trajectories to detect clearer patterns from the data. Figure 17 illustrates
the effects of locational similarity-based trajectory on the visualized patterns at
different time ranges for the wild chicken data in a three dimensional view. Figure 17
compares the unaggregated trajectories from Fig. 15 (top row in Fig. 15) with
aggregated trajectories based on a strict locational similarity threshold of 5.0
(middle row) and a relaxed locational similarity threshold of 10.0 (bottom row).
The top row once again illustrates the problem with unaggregated trajectories:
it is difficult to discern any generalized patterns. In contrast, aggregation based
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Fig. 17 Aggregated trajectories based on locational similarity

on locational similarity facilitates the detection of movement patterns. Summary
paths (rendered blue, green and red) were extracted at both threshold levels. At
the strict locational similarity threshold of 5.0, three summary paths were extracted
for the time range 6:00–9:00, but only two paths for the longer time ranges of
6:00–12:00 and 6:00–17:00. In addition, these summary paths are occluded by the
outliers (rendered in white) meaning that they represent a relatively small number
of the sample trajectories. Three summary paths that are relatively stable across all
three time ranges were extracted at the more relaxed threshold of 10.0. Also, these
summary paths are easier to discern since the number of outliers is smaller. The
appropriate value for this threshold must be determined by user-interactivity: the
toolkit facilitates this process.

The toolkit also reports statistical data for the aggregated paths: this can help with
user interpretation of the results. Table 1 provides some of the statistical data for the
aggregate trajectories in Fig. 17. Based on the statistics in Table 1, directional values
become close to zero as the time range increases in all three clusters regardless of
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Table 1 Statistical information of summary trajectories in Fig. 17

Locational
similarity
threshold

Cluster
color Time range Length

Mean
velocity

Mean cardinal
direction

Mean egocentric
direction

5.0 Red 6:00–9:00 34.00 2.62 15.25 178.28
6:00–12:00 475.00 3.44 1.19 8.63
6:00–17:00 1273.25 2.91 0.42 2.22

Green 6:00–9:00 520.45 1.45 1.38 17.48
6:00–12:00 894.50 1.24 0.55 �144.40
6:00–17:00 1388.52 1.05 0.54 1.53

Bluea 6:00–9:00 422.89 0.78 1.11 �127.30

10.0 Red 6:00–9:00 34.00 2.62 15.25 178.28
6:00–12:00 475.00 3.44 1.19 8.63
6:00–17:00 1250.28 2.76 0.56 1.04

Green 6:00–9:00 485.73 1.35 1.78 7.72
6:00–12:00 945.98 1.31 0.04 7.96
6:00–17:00 1658.74 1.26 0.31 6.83

Blue 6:00–9:00 532.38 0.99 1.46 �20.03
6:00–12:00 939.12 0.87 0.74 �26.49
6:00–17:00 1706.96 0.86 0.10 �7.99

aNo clusters occurred during the 6:00–12:00 and 6:00–17:00 time ranges

the locational similarity threshold. This implies the movements are not fixed in a
certain direction. In addition, the mean cardinal direction is always close to zero
degree in all cases, indicating that movement tend to direct all directions. Also, the
mean velocity of red cluster increases as the time range increases from 6:00–9:00
to 6:00–12:00 while the mean velocity of other clusters decrease as the time range
increases regardless of the locational similarity threshold.

To help users identify the numbers of detected clusters, it is useful to observe the
change in the number of detected clusters in relation to time interval and time range.
Figure 18 traces relationship between the change in the number of detected clusters
of wild chicken data in three different time intervals and locational similarity
threshold values. As is shown in the Fig. 18, number of clusters changes in a similar
manner in all three time intervals indicating there are similar clusters detected
regardless of the difference in time intervals. Figure 19 shows the relationship
between the change in the number of detected clusters of wild chicken data in
three different time ranges and locational similarity threshold values. The number of
clusters varies with different time ranges although the trend in change of the number
of clusters is similar in all three time ranges. Generally, the higher the locational
similarity threshold, the more trajectories are likely to be included in fewer numbers
of trajectories, resulting in detecting only one cluster when the threshold value is
very large. However in this case, the number of clusters converges to either three
or four indicating there are distinct differences in those three or four groups of
movement.
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Fig. 18 Change in the number of detected clusters of wild chicken data by locational similarity
measure with respect to time interval

Fig. 19 Change in the number of detected clusters of wild chicken data by locational similarity
measure with respect to time range

In addition to the three dimensional view, Fig. 20 clearly shows the spatial dis-
tribution of the movements of chickens. The aggregated trajectories with a relaxed
locational similarity threshold of 10.0 detected the same three clusters from shorter
time range (6:00–9:00) to the longest time range (6:00–17:00). This indicates three
important findings. First, the locational similarity measure successfully detected
three clusters that are reported in Okabe et al. (2006) that used the same data set.
Okabe et al. (2006) reported that there are three main groups of chickens that behave
as flocks for the entire study period. Second, the locational similarity measure
detected the clusters at similar locations throughout the day, which implies the
consistency in the movement of three groups of chickens. Chickens in this case tend
to move as groups although there are some outliers (trajectories in white). Third,
locations of all three detected clusters overlap or are close to the location where the
food is (the triangle point in Fig. 14). The chickens did not move through wide areas
of the study area but stayed close to where houses are located.
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Fig. 20 Two dimensional view of aggregated trajectories based on locational similarity

Attribute Similarity

Figure 21 shows visualizations of the wild chicken trajectory collection at different
attribute similarity thresholds and for different time ranges. The time interval is
fixed at 10 s and all five attribute similarity functions are invoked. Comparable to
locational similarity, a strict attribute similarity threshold (0.1) only detects a small
number of trajectories for clustering, but a more generous threshold (0.5) identifies
a greater number of candidates. Obvious patterns appear when attribute similarity
function is applied compared with the visualization without any similarity functions
(top row). In addition, similar patterns with respect to attributes tend to appear at
similar locations: paths with similar attribute properties tend to occur in proximity,
suggested coordinated movement behavior. It is also interesting that the locations
of clusters detected in two time range, 12:00–13:00 and 16:00–17:00, are similar to
each other. Chickens may move the same areas in different time ranges: this suggests
repetitive movement patterns. Okabe et al. (2006) also reported that there are some
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Fig. 21 Attribute similarity and time ranges

chickens that follow other chickens throughout a day. These are mainly hens that
follow a cock that leads his own chicken group. The attribute similarity function
may have detected this type of flocking behavior.

5 Discussion and Conclusion

This research develops an interactive visualization toolkit based on temporal granu-
larity and spatial similarity to explore and discover multi-scale mobility patterns in
mobile objects databases. The toolkit facilitates highly interactive visual exploration
of mobile trajectories at varying levels of temporal granularity and thresholds for
trajectory aggregation based on locational and attribute similarity among paths at the
specified granularity level. A case study of wild chicken mobility dataset shows that
combination of both time granularity and trajectory aggregation facilitates mobility
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pattern detection. The interactive temporal aggregation method with OLAP in the
proposed toolkit is the first step to explore trajectory data to mitigate the difficulty
of exploring complex movement patterns. In addition, visualization with similarity
thresholds provides distinct views of the movement data, with some discovered
patterns being robust across different granularities and others being dependent on
these parameters. The flexibility of the temporal querying and trajectory aggregation
also allows the discovery of temporally recurrent mobility patterns: both locational
and attribute similarity measures detected mobility patterns that Okabe et al. (2006)
also uncovered with the same dataset.

There are some remaining challenges for continued development of the mobility
visualization toolkit. Although the similarity functions in this research are scalable
and effective at detecting similar mobility patterns, there are many ways to assess
trajectory similarity. Other ways of measuring locational and attribute similarity
should be explored, as well as other definitions of path similarity distinct from
the two dimensions explored in this research. One possible way is to examine the
properties that can be extracted from trajectories. There are other characteristics
that can be calculated from trajectories other than five characteristics described as
attribute similarity such as average travel distance, average x coordinate location
and y coordinate location of a trajectory, and so on. Behavioral characteristics such
as number of activities, number of visiting locations activity duration time are also
candidates.

The trajectory summarization methods in the toolkit consider only the central
tendency (mean values) of trajectory parameters such as velocity and direction.
Searching for patterns based on central tendencies is reasonable for exploratory
analysis since these patterns should be tested using confirmatory techniques before
being accepted as knowledge. Nevertheless, a more complete representation of
trajectory similarity would consider the dispersion (variance) of these parameters. A
research frontier is to incorporate parameter variance in the summarization methods
in a manner that is both scalable and intuitive to the analyst.

A related research challenge is linking the scalable, exploratory tools in this
research to confirmatory techniques. The patterns discovered using the visualization
methods are only hypotheses: these should be tested using more powerful analytical
and statistical methods. These tools could be used in conjunction with the techniques
in this toolkit to confirm and further analyze the tentative patterns discovered
through visual exploration.
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