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           Introduction 

 Image segmentation and registration are key tasks in image- 
guided therapy. End-to-end systems for image-guided ther-
apy in use today perform segmentation, registration, as well 
as navigation and visualization. Segmentation involves 
identifying meaningful regions and structures within an 
image, such as normal anatomical tissue, pathology, or 
resection, for the purpose of planning, guiding, and measur-
ing the outcome of a therapeutic procedure. Registration 
focuses on identifying a spatial mapping between two 
images of the same underlying tissue or patient, acquired 
from different imaging modalities or at different time points, 
fusing  complementary information sources for planning and 
intra- procedural guidance. Intra-procedural navigation 
allows the movement of the patient and instruments during 
the procedure to be shown on the images, and the visualiza-
tion updates the enhanced reality display to be consistent 
with the view of the patient that is visible to the physician. 
State-of-the-art image-guided therapy systems provide 
functionality to perform semiautomatic segmentation, 
a rigid registration with six degrees of freedom (and are in 
the early stages of providing limited nonrigid registration 
methods) to align the pre- procedural and intra-procedural 
imagery, and use of-the-shelf tracking hardware that uses 
either optical or electromagnetic sensors to track the motion 
of the patient during the intervention. XPlan [ 1 ] was one of 
the earliest image-guided surgery systems developed for 
research at Brigham and Women’s Hospital and MIT. It used 

semiautomatic segmentation of pathology and normal tis-
sue, a rigid registration technique, and tracked patient 
motion using an optical tracker. The enhanced reality visu-
alizations shown in Fig.  5.1  were generated using XPlan. In 
the 15 years since the development of XPlan, research in 
segmentation, registration, navigation, and visualization 
methods for image-guided surgery has continued in aca-
demic as well as industry laboratories. Several commercial 
image-guided surgery systems (including Brainlab, 
Medtronic StealthStation, Philips Traxtal, Veran) provide 
semiautomated segmentation solutions along with registra-
tion and navigation functionality.

   The focus of this chapter is on segmentation and registra-
tion in image-guided therapy. In practice, the tasks of regis-
tration and segmentation are complementary and are 
inextricably linked. Registration is facilitated by segmented 
images and is not possible without basic segmentation in the 
form of pixel labeling or image intensities. Likewise, seg-
mentation is facilitated by registration to other images, e.g., 
an atlas with expert segmentation labels [ 2 ], in which com-
plementary information can be used to drive segmentation. 
This chapter aims to provide an overview of segmentation 
and registration individually, in the context of image-guided 
therapy, including fundamental methods and validation tech-
niques. Joint investigations of segmentation and registration 
are not explicitly discussed; however, the interested reader is 
referred to the literature [ 3 ].  

    Registration 

 Image-guided therapy involves acquiring images of a patient 
using different modalities at different points in time, from 
pre-procedural diagnosis and planning, to intra-procedural 
guidance and visualization, and fi nally to post-procedural 
assessment. The goal of registration is to align different 
images of the same underlying tissue or patient into a com-
mon reference frame, for the purpose of visualization and 
navigational guidance over the course of therapy. 
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 Registration can be accomplished by a variety of means. 
Manual registration can be performed, where a human 
manipulates images via a software interface. Registration 
can be performed visually; for instance, in the context of 
neurosurgery, the surgeon can mentally fuse intraoperatively 
acquired ultrasound (US) with a magnetic resonance (MR) 
volume acquired preoperatively and used in surgical plan-
ning, in order to carry out the procedure. Tracking devices 
external to the image can be used, again in the context of 
neurosurgery; the 3D position and orientation of the US 
probe can be determined by a stereo camera system in the 
context of a neuronavigation system and related to the preop-
erative MR via a 3D rigid transform for display. 

 Automatic image registration involves the use of compu-
tational algorithms to establish image alignment based on 
image intensity data. A large body of research literature has 
been dedicated to the study of automatic image registration. 
This section aims to highlight general considerations and 
techniques that apply to the context of image-guided therapy 
and to describe several concrete examples. 

    General Approach 

 Automatic registration aims to align images into a common 
coordinate system or reference frame. Here we assume that 
there are two images to be registered, where one image is 
chosen as a fi xed image or model  I  and the other is consid-
ered a moving image  J , and the goal of registration is to iden-
tify a spatial transform  T  mapping locations in  J  to  I . 
Registration is driven by a measure of image similarity that 
quantifi es the degree to which image intensities in  I  and  J  

agree, given a mapping  T . In general,  T  is non-unique in the 
sense that there may be many mappings that are equivalent in 
terms of image similarity. Furthermore, registration must 
typically process large amounts of image data, and it is gen-
erally intractable to consider all possible mappings between 
images. Additional constraints are thus placed on permissi-
ble mappings  T , in order to bias registration towards solu-
tions that agree with prior expectations and to reduce 
computational complexity.  

    Transformation Model 

 The transform model determines the space of permissible 
spatial mappings  T  between  I  and  J  and should be chosen to 
refl ect the true underlying mapping as closely as possible. 
The general context of image-guided therapy typically 
involves intra-subject registration, e.g., where the images to 
be aligned are acquired from the same physical tissue, and  T  
can thus be designed to follow a physically justifi ed model 
mapping tissues from one image to the next. Furthermore, in 
a number of contexts, tissue may be present in one image but 
absent in another,    for instance, due to surgical resection and 
the introduction of instruments. In such contexts it is impor-
tant to model the event that a valid mapping may not exist in 
certain regions of the image. 

 In the case where little shape change has occurred between 
image acquisitions, a low-parameter linear transform model, 
e.g., a rigid transform, is suffi cient, for example, images of the 
head prior to major resection in an image-guided neurosurgi-
cal context. In general, however, soft tissues tend to deform 
over the course of a therapeutic procedure, and nonlinear 

  Fig. 5.1    Three-dimensional visualization used by neurosurgeons to examine the relationship of pathology to familiar landmarks. These visualiza-
tions are used for preoperative surgical planning as well as intraoperative guidance and verifi cation [ 1 ]       
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transform models may be required. A biomechanical tissue 
model can be used, that takes into account the physical proper-
ties of the underlying tissue. For example, the image can be 
represented by a fi nite element model (FEM) consisting of a 
mesh where interactions of mesh nodes are governed by phys-
ical properties such as elasticity [ 4 ,  5 ]. The FEM can be modi-
fi ed to account for physical phenomena such as gravity and 
resection [ 6 ]. Tissue properties may be diffi cult to specify in a 
biomechanical model, and various classes of alternative non-
linear transforms can be used, for example, deformation fi elds 
governed by splines [ 7 ] or local translations [ 8 ] (Fig   .  5.2 ).

    Patient Motion : Tissue deformation caused by patient 
motion is a confounding factor. Motion due to respiration is 
important in abdomen and thoracic procedures; this can be 
reduced via breath holding or accounted for by maintaining 
a temporal model accounting for tissue movement over the 
breathing cycle [ 9 ]. Cardiac motion during can be accounted 
for by acquiring and registering pre- and intra-procedural 
images at the same point in the cardiac cycle [ 10 ]. 

  2D - 3D : Registration may be important in cases where 
image intensities are sampled in different image dimensions. 
Modalities such as computed tomography (CT) and MR 
sample volumetric data in three spatial dimensions; however, 
other technologies such as X-ray, fl uoroscopy, or B-mode 
US sample in two spatial dimensions. To register images of 

different spatial dimensionality, the transform must account 
for the image formation model, for instance, projection and 
attenuation in X-ray or fl uoroscopy [ 1 ].    In the case of a 2D 
projection based imaging modality such as X-ray,  registration 
typically attempts to determine a rigid transform, for  example 
in case of registration between 2D intra-procedural fl uoro-
scopic and pre-procedural 3D CT cardiac images [ 10 ], 2D 
pre- procedural portal and pre-procedural 3D CT cardiac for 
patient positioning in the context of radiation therapy [ 11 ]. In 
the case of 2D US data, the image represents a slice through 
a 3D volume, and a navigation system is typically used to 
track the position of the US probe and slice plane relative to 
the 3D volume. Registration can then be accomplished by 
either aligning 2D slice data directly with the 3D volume 
[ 12 ], or by creating a 3D US volumetric image from US 
slices and performing 3D-3D registration [ 13 ]. 

  Occlusion : Registration in the context of image-guided 
therapy must often consider the scenario where tissue or 
objects may be occluded, or not present in all images being 
registered. For example, tissue may not be present in all 
images due to resection, may not be recognizable or visible 
due to properties of different image modalities, or the images 
may contain instruments. 

 The issue of occlusion scenario raises a challenge for reg-
istration, in that there may be regions in which a valid 

  Fig. 5.2    Preoperative ( left ) and intraoperative ( right ) MR images of a brain with a tumor. The transform model might include global rotation, 
nonlinear deformation in the neighborhood of the tumor, and occlusion in the area of resection       
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 image-to- image mapping may not exist.    Registration tech-
niques may be unaffected by minor occlusions and produce 
reasonable results [ 14 ]; however, in signifi cant occlusion, it 
is important to address the issue directly. An occlusion model 
can be explicitly incorporated, delineating image regions of 
anomalous image intensity where T may be undefi ned over 
the course of registration [ 15 ]. Registration can focus on 
identifying local image regions where correspondence is 
most probable, local block matching strategies register local 
regions independently throughout the image, and then iden-
tifying a transform supported by the majority of regions [ 8 ]. 
Informative image regions can be identifi ed by saliency 
operators and used to improve registration [ 12 ]. 

 In the case of therapeutic planning, prior information may 
be available as to how the images may be affected during the 
course of the procedure, for instance, regions in which resec-
tion may occur and the location and appearance instruments. 
Such information can be incorporated into the registration 
process in order to more effectively model occlusion, for 
instance, resection and retraction of brain tissue in the case 
of neurosurgery [ 6 ,  16 ].  

    Image Similarity 

 Registration is driven by a measure of image similarity, given 
a transform  T . For effective image similarity measurement, 
the images being registered must exhibit contrast from 
homologous structures. Similarity may be computed between 
image intensity data or between measurements or features 
derived from intensity data such as hierarchical features [ 17 ], 
probabilistic intensity class labels [ 12 ], combined intensity, 
and gradient information [ 18 ]. In data defi ned purely by geo-
metrical features, e.g., points or surfaces derived from 

 anatomical structure in images, individual features bear no 
distinguishing information. Similarity is thus evaluated based 
on the geometry of feature sets, e.g., the sum of nearest- 
neighbor distances (i.e., the Procrustes measure) [ 19 ]. 

 In the general case where data consists of intensity mea-
surements, similarity measures can be generally understood 
by the assumptions made regarding the joint relationship 
between data [ 20 ]. Measures such as the sum of squared dif-
ferences (SSD) or correlation assume a linear relationship 
between data and are useful and computationally effi cient in 
the case of intra-modality registration. The correlation ratio 
[ 21 ] assumes a functional relationship between data and can 
be used where data exhibit nonlinear contrast differences. 
The mutual information (MI) [ 22 ] and normalized mutual 
information (NMI) [ 23 ] assume only a statistical relationship 
between data and can be used in the general case of multi-
modal image alignment. MI is powerful but computationally 
intensive, and in general the joint relationship between image 
data can be learned from training images [ 24 ], after which 
point similarity can be computed via maximum likelihood 
methods. Figure  5.3  illustrates the joint relationship between 
corresponding intensity measurements in proton density 
(PD) and MR images; note the nonlinear nature of the rela-
tionship between intensities.

       Optimization 

 Image registration typically involves identifying a value of  T  
that maximizes or optimizes a fi tness function  f ( I , J , T ) includ-
ing terms for image similarity and the transform model. 
A variety of optimization methods can be brought to bear in 
this respect, depending on the formulation of  f ( I , J , T ), and 
generally described as global or local in nature. Global 

P
D

MR

  Fig. 5.3    The left and center images are proton density ( PD ) and T1 MR images of a brain; squares indicate regions of interest (ROIs). The right-
most image shows the joint intensity histogram ( right ) generated from corresponding intensity samples within the ROIs       
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 optimization identifi es the transform  T  that results in the 
extremum of  f ( I , J , T ). Such optimization is typically only fea-
sible for transform models consisting of a small number of 
parameters, for instance, image translations, for which an 
exhaustive search can be performed over the range of possi-
ble  T . Such a global search is generally computationally pro-
hibitive, and instead local optimization methods are typically 
used. Local optimization operates on the principle that 
 f ( I , J , T ) is a smooth function of  T , and that a path can be fol-
lowed starting from an initial transform to a local maximum 
in an iterative fashion. A number of local optimization tech-
niques exist [ 25 ]. Gradient ascent strategies such as Newton’s 
method or the conjugate gradient method iteratively update T 
according to the gradient of  f ( I , J , T ) until a maximum is 
reached. The simplex method and Powell’s method modify  T  
without requiring gradient computation and may be useful in 
cases where the gradient of  f ( I , J , T ) may be diffi cult to calcu-
late. The expectation maximization (EM) algorithm [ 26 ] is 
used in a maximum likelihood framework, iteratively com-
puting expected values of registration parameters, then 
updating their likelihoods. 

 Local optimization techniques are prone to converging to 
suboptimal local maxima, and a variety of methods have 
been proposed to avoid this diffi culty. Simulated annealing 
or genetic algorithms randomly perturb the solution during a 
search and are helpful in avoiding suboptimal local maxima. 
Coarse-to-fi ne or multi-resolution [ 27 ] optimization strate-
gies operate by fi rst computing registration of large-scale 
image structure at low image resolution, then using these 
results to guide fi ner-scale alignment at higher image resolu-
tions. Multi-resolution optimization is useful in both speed-
ing up registration and avoiding suboptimal minima.  

    Validation 

 Validation of registration methods is an important consider-
ation; here we focus validation of automatic registration in 
terms of accuracy, precision, and robustness. Various other 
validation considerations exist; Maintz et al. [ 28 ] list resource 
requirements, algorithm complexity, assumption verifi ca-
tion, and suitability for clinical use. These considerations 
may vary from one clinical context to the next, and we refer 
the reader to [ 28 ] for further reading. 

 In the context of image-guided therapy, it is important to 
know the accuracy and precision with which registration is 
capable of correctly aligning or localizing therapeutic  targets, 
for instance, a tumor in image-guided radiation therapy or 
surgery. Accuracy is typically evaluated retrospectively by 
comparing the mapping  T  obtained by registration against 
ground truth. Ground truth can consist of locations of fi du-
cial points, surfaces, or regions defi ned manually or auto-
matically in the images registered. 

 The accuracy of ground truth regions is typically evaluated 
by measures of overlap, for instance, the Jaccard index [ 29 ] or 
Dice’s coeffi cient [ 30 ], also used in image segmentation. The 
Jaccard and Dice measures are useful in that they measure reg-
istration accuracy in a manner independent of the number of 
image measurements or voxels. The drawback of overlap mea-
sures is that, while they quantify the ability of registration to 
align homogenous regions, they do not effectively quantify the 
accuracy of the spatial mapping. For instance, perfect overlap 
can generally be achieved by multiple, possibly physically 
implausible spatially mappings between ground truth regions. 

 The accuracy of ground truth can be defi ned in terms of 
image boundaries or surfaces in the image, for instance, 
where the goal is to correctly register tumor margins in pre-
operative and intraoperative surgical images [ 31 ]. The 
Hausdorff distance [ 32 ] measures the maximum discrepancy 
between two point sets and can be used to evaluate the agree-
ment between registered boundaries. For the same non- 
uniqueness line of reasoning with overlap measures, 
boundary-based discrepancy measures do not necessarily 
refl ect the correctness of the registration mapping  T . 

 Validation of registration accuracy has been perhaps most 
studied in the context of quantifying the discrepancy between 
ground truth point landmarks or fi ducials. Unlike region or 
boundary labels, fi ducial points make it possible to estimate 
the accuracy of the spatial mapping T directly. The quantities 
of interest in quantifying accuracy are the fi ducial localiza-
tion error (FLE) and fi ducial registration error (FRE) [ 33 ]. 
FLE is the intrinsic error in localizing of fi ducial landmarks 
in a single image, e.g., markers or distinctive anatomical 
structures, and the FRE is the error in landmark alignment 
following registration. In certain cases fi ducial landmarks 
associated directly with the target of interest are not avail-
able, e.g., a low-contrast tumor; in these cases the target reg-
istration error (TRE) can be estimated as a function of the 
FRE. The case of point-to-point rigid registration has been 
intensely studied [ 33 ,  34 ]; nonrigid registration accuracy is 
also quantifi ed in terms of fi ducial landmark error [ 35 ]. 

 While registration accuracy has been addressed in a rela-
tively large body of literature, other important validation con-
siderations include precision and robustness, which have 
been less studied. Precision refers to the repeatability with 
which registration obtains the same results across similar 
conditions. Precision is diffi cult to calculate directly, but esti-
mates can be obtained via sampling techniques, for instance, 
performing registration trials by artifi cially deforming inten-
sities in one image and inspecting the covariance of results 
[ 2 ]. Robustness refers to the ability of registration to converge 
to a reasonable result despite the presence of outliers or incor-
rect initialization. The literature contains few measures of 
robustness; in general the “capture radius” is often cited [ 36 ], 
i.e., the range of deviation about the true mapping within 
which optimization can converge to a correct solution.   
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    Segmentation 

 Segmentation of digital medical imagery is a labeling problem 
in which the goal is to assign to each voxel in an input gray-
level image, a unique label that represents an anatomical struc-
ture. This labeled image is referred to as the “segmentation” of 
the input image or the “segmented” image. An example input 
grayscale image is a magnetic resonance imaging (MRI) scan 
of a human head in Fig.  5.4 . A labeling or segmentation for one 
such cross-sectional image into skin, brain tissue, ventricles, 
and tumor, and three-dimensional visualizations created from 
such segmentations of a complete scan are shown in Fig.  5.5 .

       Segmentation Nomenclature 

 Based on the nature of the inputs required and outputs gener-
ated by a segmentation method, it may be categorized into 
one or more of the following classes. 

  Binary or Multilabel : If the number of output labels in 
segmented images is 2 or greater than 2. 

  Supervised vs .  Unsupervised : If a set of labeled images or 
“training data” is available to the segmentation method to 
“learn” the differences between the underlying classes, the 
method is considered supervised, vs an unsupervised method 
which deduces the characteristics of the classes without 
training data. 

  Hard vs .  Soft Segmentation : A hard segmentation method 
is one in which the output of the segmentation is a unique 
label at each location in the image. A soft segmentation 
method is one in which the output is the probability of each 
class at each location in the image. 

  Intensity - Based vs .  Model - Based Segmentation : Purely 
intensity-based segmentation methods, also referred to as 
classifi cation methods, assign labels based solely on gray- 
level values in the image. Model-based methods combine the 
image gray levels with explicit or implicit models of the 
underlying structures that are to be segmented. 

 In sections “ Graph Based Segmentation ,  Particle Filters , 
and  Interactive Segmentation ” we summarize approaches to 
segmentation that have gained momentum in the last decade 
and that we believe will continue to be applied to  image- guided 

  Fig. 5.4    A set of two-dimensional sagittal cross-sectional slices comprising a 3D brain MRI scan. This is the view of an MRI scan that is printed 
on fi lm and mounted on a light-box and is traditionally available to clinicians to aid them in making diagnosis and in planning therapy       
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therapy (As mentioned earlier in this chapter, joint investiga-
tions of segmentation and registration are a very interesting 
development of the last decade as well, and we refer the inter-
ested reader to our other recent publications on that topic [ 3 ]). 
And in sections “ Braintumor: Glioma Segmentation  and 
 Segmentation for Prostate Interventions ” we then describe 
how image segmentation has been used specifi cally to guide 
neurosurgery and prostate interventions.  

     Graph-Based Segmentation 

 The formulation of image segmentation as a graph- 
partitioning problem was introduced in [ 37 ] and in our view 
has been an infl uential approach that has led to several suc-
cessful developments in the last decade [ 38 – 40 ]. 

 In a graph representation, each pixel in the image is a 
node in the graph, and a subset of neighboring pixels is 

  Fig. 5.5     Top row left : a 3D rendering for visualization of the white 
matter from an MRI scan of a normal subject.  Right : a three-dimen-
sional rendering of the brain surface of a patient, overlaid with pathol-
ogy which is shown in  green  and  red .  Bottom left : a segmented MRI 

slice showing skin in  pink , brain tissue in  white , ventricles in  blue , and 
tumor in  green .  Right : a three-dimensional rendering of segmented skin 
surface, brain tissue, major blood vessels, and tumor from a diagnostic 
MRI scan       
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 connected by edges. Weights on the edges measure how dis-
similar the nodes are. Graph-based segmentation methods 
partition an image by selecting a subset of these edges from 
the graph. While graph-based segmentation methods were 
developed successfully in the last decade, the underlying 
theory traces back to Markov Random Fields which had pre-
viously been used as a basis for image representation and 
segmentation. Solving MRFs is an NP-hard problem and is 
typically accomplished via iterative algorithms. However, 
using a graph representation, globally optimal segmentations 
can be obtained in polynomial time by solving the maxcut/
minfl ow problem using the Ford-Fulkerson algorithm [ 41 ]. 
Notable extensions in the last decade include solving the 
graph cut in N-dimensions [ 42 ], an iterative and interactive 
approach where the edges are re-weighted according user 
input [ 43 ], and a formulation that restricts the graph cut by 
using additional user-defi ned seed points to set up fi xed 
nodes in the graph [ 44 ,  45 ].  

     Particle Filters 

 Another category of image segmentation in the fi eld of com-
puter vision is tracking moving and deforming objects. 
A typical current example is the automatic tracking of per-
sons in a security camera video stream. In medical image 
processing, the lung is a moving and deforming organ that 
makes automatic delineation over time a challenging task. 
Tracking the lung is especially relevant in image-guided 
radiation therapy, where modeling complex tumor motion is 
important in order to achieve optimal dose delivery and to 
avoid or minimize radiation of the surrounding healthy tis-
sue. In contrast to static images for segmentation and regis-
tration problems, tracking involves estimating the global 
motion of the object and its local deformations as a function 
of time. Particle fi lters – also known as sequential Monte 
Carlo  methods – use swarms of points (so-called particles) to 
approximate posterior densities. This approximation is real-
ized by assigning a weight to each particle and uses a dis-
crete distribution of the particles which results in particle 
probabilities that are proportional to the particle weights 
[ 46 ]. Particle fi lters were introduced by Gordon et al. in 1993 
in order to implement recursive Bayesian fi lters [ 47 ]. Since 
then, several algorithms based on this original approach have 
been developed that differ primarily in the way particle 
swarms evolve and adapt to input data [ 48 ]. For example, 
Rathi et al. [ 49 ] formulate a particle fi ltering algorithm in the 
geometric active contour framework that can be used for 
tracking moving and deforming objects. They propose a 
scheme which combines the advantages of particle fi ltering 
and geometric active contours realized via level set models 
for dynamic tracking. A probabilistic algorithm for simulta-
neously estimating the pose of a mobile robot and the 

 positions of nearby people in a previously mapped environ-
ment called the conditional particle fi lter was introduced by 
Montemerlo [ 50 ]. The method tracks a large distribution of 
people locations conditioned upon a smaller distribution of 
robot poses over time.  

     Interactive Segmentation 

 The active research focus on  automated  segmentation meth-
ods in the last decade has revealed the need for interactive 
methods that can effi ciently bootstrap from information pro-
vided by an expert user, for example, several mouse clicks. 
Vezhnevets and Konouchine [ 51 ] give an overview of meth-
ods for generic image editing and methods for editing medi-
cal images. In particular, they present an algorithm for 
interactive multilabel segmentation of N-dimensional 
images. The segmentation process is iterative and works 
with a small number of user-labeled pixels to automatically 
segment the rest of the image by a  Cellular Automaton . The 
algorithm has been implemented in the  Slicer  software plat-
form (see   http://www.slicer.org/    ) and can be freely down-
loaded [ 52 ]. An interactive segmentation technique called 
 Magic Wand  [ 51 ] is a common selection tool for many cur-
rent image editors. The tool gathers color statistics from the 
user specifi ed image point (or region), then segments (con-
nected) image regions with pixels whose color properties fall 
within some given tolerance of the gathered statistics.  

     Brain Tumor: Glioma Segmentation 

 Manual segmentation of brain tumors is an important but 
time-consuming process that can be overcome by new (semi-)
automatic segmentation algorithms [ 53 ]. Gliomas are the most 
common primary brain tumors, evolving from the cerebral 
supportive cells. The grading system for astrocytomas accord-
ing to the World Health Organization (WHO) subdivides 
grades I–IV, whereas grade I tumors tend to be least aggressive 
[ 54 ]. Seventy percent count to the group of malignant gliomas 
(anaplastic astrocytoma WHO grade III, glioblastoma multi-
forme (GBM) WHO grade IV). According to its histopatho-
logical appearance, the grade IV tumor is given the name 
glioblastoma multiforme. The glioblastoma multiforme is the 
most frequent malignant primary tumor and is one of the most 
malignant human neoplasms. Due to their biological behavior, 
surgery alone cannot cure this disease. Thus, current interdis-
ciplinary therapeutic management combines maximum safe 
resection, percutaneous radiation, and in most cases chemo-
therapy. Despite new radiation strategies and the development 
of oral alkylating substances (e.g., temozolomide), the sur-
vival rate is still only approximately 15 months [ 55 ]. Although 
in former years the surgical role was controversial, current 
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literature shows maximum safe surgical resection as a positive 
predictor for extended patient survival [ 56 ]. Microsurgical 
resection is currently optimized with the technical develop-
ment of neuronavigation containing functional data sets such 
as diffusion tensor imaging (DTI), functional magnetic reso-
nance imaging (fMRI), magnetoencephalography (MEG), 
magnetic resonance spectroscopy (MRS), or positron emis-
sion computed tomography (PET). An early postoperative 
MRI with a contrast agent at the point of origin quantifi es the 
tumor mass removal. From here on, the patient undergoes fre-
quent MRI scans during the time of adjuvant therapy. 
Especially in case of a remnant tumor, the tumor volume has 
to be rigidly registered so that a new tumor growth is not 
missed. 

 For (semi-)automatic glioma segmentation in general 
(World Health Organization grade I–IV), several MRI-based 
algorithms have been proposed. Szwarc et al. [ 57 ] present a 
segmentation approach that uses fuzzy clustering techniques. 
In a fi rst step the contrast-enhanced T1-weighted images are 
processed with the Kernelized Weighted C-Means (KWCM) 
method, yielding a mask that is superimposed over the perfu-
sion maps. In a fi nal step, the mean perfusion intensity value 
is computed for both hemispheres, and it is checked whether 
the ratio of these is less than a user-defi ned threshold. In their 
evaluation, the authors used six MR studies of three subjects, 
where the Dice Similarity Coeffi cient (DSC) [ 58 ] ranged 
from 67.21 to 75.63 %. Angelini et al. [ 59 ] presented 
an extensive overview of deterministic and statistical 
approaches. The majority are region-based approaches; more 
recent ones are based on deformable models and include 
edge information. Gibbs et al. [ 60 ]. introduced a combina-
tion of region growing and morphological edge detection for 
segmenting enhancing tumors in T1-weighted MRI data. 
Based on a manually specifi ed initial sample of tumor signal 
and surrounding tissue, an initial segmentation is performed 
using pixel thresholding, morphological opening, and clos-
ing and fi tting to an edge map. The method was evaluated 
with one phantom data set and ten clinical data sets. The 
average tumor segmentation time was ten minutes, and the 
tumors used were not classifi ed exactly. An interactive 
method for segmentation of full-enhancing, ring-enhancing, 
and non-enhancing tumors was proposed by Letteboer et al. 
[ 61 ] and evaluated on 20 clinical cases. Several morphologi-
cal fi lter operations were applied to the MRI volume to sepa-
rate the data in homogenous areas, based on manual tracing 
of an initial slice. Droske et al. [ 62 ] presented a deformable 
model, using a level set formulation, to divide the MRI data 
into regions of similar image properties for tumor segmenta-
tion, using intensity-based pixel probabilities for tumor tis-
sue. This model-based segmentation was performed on 12 
patient images. Clark et al. [ 63 ] introduced knowledge-based 
automated segmentation in order to partition glioblastomas 
from multispectral data. After a training phase with fuzzy 

C-means classifi cation and clustering analysis and a brain 
mask computation, initial tumor segmentation from vectorial 
histogram thresholding is postprocessed to eliminate non- 
tumor pixels. The presented system was trained on three 
volumetric data sets and tested on 13 unseen volumetric data 
sets. Segmentation based on outlier detection in T2-weighted 
MR data was proposed by Prastawa et al. [ 64 ]. The image is 
registered to a normal brain atlas to detect the abnormal 
tumor region, after which the tumor and edema are isolated 
using statistical clustering of differing voxels and a deform-
able model. The method was applied to three sets of real 
data, where automatic segmentation required approximately 
90 min per case. Sieg et al. [ 65 ] introduced an approach to 
segment contrast-enhanced, intracranial tumors and anatom-
ical structures from registered, multispectral MR data. In this 
approach, multilayer feedforward neural networks with 
backpropagation are trained, and pixel-oriented classifi ca-
tion is applied for segmentation. Tests were performed on 22 
data sets, and computation times were not provided. Egger 
et al. presented a graph-based approach evaluated on 50 
manual segmented GBMs [ 66 ] which has also been used for 
pituitary adenoma segmentation [ 67 ]. The approach utilizes 
a user-defi ned seed point to set up a directed 3D graph, where 
the nodes of the 3D graph are obtained by sampling along 
rays that are sent through the surface points of a polyhedron. 
After the graph has been constructed, the minimal cost 
closed set on the graph is computed via a polynomial time s-t 
cut, creating an optimal segmentation of the object (Fig.  5.6 ). 
In the meantime this approach has been adapted for bladder 
[ 68 ] and vertebrae segmentation [ 69 ].

        Segmentation for Prostate Interventions 

 The prostate is a gland in the male reproductive system 
involved in the production and storage of seminal fl uid, 
weighing twenty grams and measuring three centimeters in 
length in the typical adult male [ 70 ]. Prostate cancer is a 
form of cancer that develops in the prostate. There are cases 
of aggressive prostate cancers, but most prostate cancers are 
slow growing [ 71 ]. Brachytherapy is a form of radiotherapy, 
or radiation treatment, that can be offered as a treatment 
option to eligible patients with certain types of prostate can-
cer. Two different brachytherapy techniques exist: high-
dose- rate (HDR) [ 72 ] and low-dose-rate (LDR) brachytherapy 
[ 73 ]. LDR brachytherapy is most commonly used in prostate 
cancer treatment and may also be referred to as “seed implan-
tation” or “pinhole surgery.” 

 Precise detection of the prostate boundary in medical 
images is crucial for diagnosis and classifi cation of prostate 
cancer. Precise boundary detection is also necessary in clini-
cal applications, for example, accurate placement of needles 
during biopsy, accurate prostate volume measurement from 

5 Registration and Segmentation for Image-Guided Therapy



88

multiple frames, and construction of anatomical models. In 
comparison with other medical imaging modalities such as 
CT and MRI, prostate transrectal ultrasound (TRUS) images 
are an attractive alternative due to low cost and real-time 
acquisition capability. The prostate can be manually delin-
eated in TRUS images to calculate its size and volume, and 
this information can be used to support the diagnosis in typi-
cal TRUS screening [ 74 ]. In comparison to manual delinea-
tion, automated prostate delineation techniques are faster 
and can achieve higher accuracy and precision with minimal 
manual input from the physician [ 75 ]. Several algorithms for 
(semi-)automatic prostate segmentation for prostate brachy-
therapy have been proposed in the literature [ 76 ]. Mahdavi 
et al. [ 77 ] provide an overview of such algorithms, where 
most can be categorized as either incorporating prior infor-
mation about the expected shape of the prostate or as relying 
solely on image data. They fi nd that the advantage of not 
constraining the solution to certain geometrical classes may 
result in more robust segmentation of irregular prostate 
shapes and some prostate surface abnormal deformations 
that may be caused by cancer. Contrast enhancement, image 
smoothing and Canny’s edge detector [ 75 ], multi-resolution 

discrete wavelet pyramids for coarse-to-fi ne segmentation 
[ 78 ], and the use of phase symmetry for outlining dominant 
edges and linking edge segments to generate a fi nal contour 
[ 79 ] are examples of image-based segmentation methods 
used in the literature. 

 Segmentation methods that rely on image information 
only have the disadvantage that they are more sensitive to 
factors such as image quality and noise and thus generally 
require more effort to achieve reasonable results. In contrast 
to other medical image modalities, ultrasound images of the 
prostate have poorer image quality and contrast. For this 
reason, the majority of general segmentation methods not 
incorporating prior shape information also perform poorly 
on ultrasound images of the prostate. For medical image 
segmentation, deformable models such as active contour 
models (ACM) and snake models have been widely used. 
Briefl y, these models can be viewed as curves in 2D [ 80 ] 
or surfaces in 3D [ 81 ], in which the deformation is infl u-
enced by internal and external forces. Internal forces gener-
ally constrain the curve being smooth, while external forces 
often rely on edges in the image. Such methods are gener-
ally intolerant of the large amount of noise in ultrasound 
images and typically require incorporating additional con-
straints, for example, limiting the deformation by a given 
shape or allowing signifi cant user interaction [ 76 ]. The 
active shape model (ASM) is a segmentation method that 
uses shape models that deform within constraints, where 
the constraints and the initial shape model are derived 
statistically from a training set [ 82 ]. Among others, pros-
tate boundary segmentation from ultrasound images with 
ASM has been used by Hodge et al. [ 83 ] and Shen et al. 
[ 84 ]. Ellipses, ellipsoids, superellipses, and other similar 
shapes are commonly used in prostate segmentation, as the 
prostate conforms well to these shapes and their reduced 
parameter space results in fast segmentation algorithms. 
Kachouie et al. [ 85 ] present an approach, where an ellipse 
is initially placed on the center of the prostate. Then, the 
velocity of an evolving ellipse is guided by the fi rst and 
second moments of the Gaussian probability density func-
tion fi tted to the image histogram. However, for robustness 
to poorer images, further work is said to be needed. Ellipses 
that can be deformed by adjusting their aspect ratio, square-
ness, tapering, and bending are called deformable superel-
lipses and have been used by Gong et al. [ 86 ]. Tutar et al. 
[ 87 ] presented a semiautomatic 3D segmentation technique 
that fi ts the best surface to a set of images under shape 
constraints, where constraints are derived by modeling the 
prostate shape using spherical harmonics. Mahdavi et al. 
[ 77 ] introduced a semiautomatic prostate segmentation 
method for prostate brachytherapy, based on anatomical 
evidence and requirements of the treatment procedure. In 
this work, a warped and tapered ellipsoid was found to be 
a suitable model for the a priori 3D shape of the prostate. 

  Fig. 5.6    Segmentation result of a glioblastoma multiforme (GBM) in a 
magnetic resonance imaging (MRI) scan       
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By  transforming the acquired endorectal transverse images 
of the prostate into ellipses, the shape-fi tting problem was 
cast into a convex problem.   

    Conclusion 

 In this chapter we have provided some background and 
accomplishments of computation research in the interde-
pendent tasks of segmentation and registration for image-
guided therapy. Excellent additional discourse is available 
to the reader in a recent textbook [ 88 ].     
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