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Abstract Most of the early research in inventory theory concentrates purely on
demand uncertainty. However, models which aim to capture the dynamics of real-
world systems must also take uncertainties in the supply side into consideration.
One type of supply uncertainty that has attracted considerable attention during the
past decade is supply disruptions, such as those that arise as a result of customs
delays, labor strikes, and natural disasters. Over the past several years, companies
have developed many strategies to mitigate the effects of such disruptions. One
strategy is to hold more inventory with the additional amount serving as a buffer
against disruptions. Since it is among the most basic inventory models, the EOQ
model features prominently in the earliest work on disruptions, as well as many
subsequent models. This chapter summarizes the studies on EOQ models with
supply disruptions.

1 Introduction

An Icelandic volcano eruption in 2010 resulted in the shutdown of Europe’s
airspace for a number of days, causing delays in air freight shipments for many
multi-national companies. A number of factories flooded due to the Japanese
earthquake and tsunami in 2011, causing production to be halted. Floods in
Thailand, in 2011, severely affected high-tech supply chains, resulting in shortages
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of some key components and shutdowns of significant processes. These are some
recent examples of supply disruptions that have caused supply chains to stop
functioning properly for considerable period of time.

Snyder et al. (2012) define supply disruptions as random events that cause a
supplier or other elements of the supply chain to stop functioning either com-
pletely or partially, for a random duration of time. As the examples above suggest,
these random events can have significant operational effects resulting in severe
financial loses (Hendricks and Singhal 2003, 2005a, b). In order to avoid or reduce
the overall impact, supply chain practitioners need to improve the way in which
they run their supply chains.

There are multiple disruption mitigation strategies that companies can choose
from (Tomlin 2010). One of them is to hold more safety stock with the additional
inventory serving as a buffer against disruptions. Most research on evaluating this
strategy considers single-location systems (although some more recent papers
consider multi-echelon systems). Since it is among the most basic inventory
models, the economic order quantity (EOQ) model serves as ideal starting point.
The assumption of deterministic demand enables us to isolate the pure effects of
supply disruptions and to obtain results and insights that can assist in solving more
complex problems.

In this chapter, we discuss the EOQ model with disruptions. The exact for-
mulation and an approximation for the simplest model, with external disruptions
only, are explained in Sect. 2. In Sect. 3, we present the EOQ model with both
external and internal disruptions. We briefly discuss other extensions of the EOQ
model with disruptions in Sect. 4.

2 The EOQ Model with External Supply Disruptions

2.1 The Exact Model

We first consider the classical EOQ model with a single retailer and a single item.
Demand is deterministic and continuous (with a rate of d items per unit time) and
production or delivery is instantaneous. There is a fixed cost, K, per order and a
holding cost, h, per item per unit time. In the absence of disruptions, the average
cost per unit time, the optimal order quantity and the corresponding Optimal
average cost per unit time are as in the following proposition.

Proposition 1 The average cost per unit time, the optimal order quantity and
the optimal average cost for the classical EOQ model are

C Qð Þ ¼ Kd

Q
þ hQ

2
; Q� ¼

ffiffiffiffiffiffiffiffiffi

2Kd

h

r

; C Q�ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

2Kdh
p

One implicit assumption of the classical EOQ model is the perfect reliability of
the supplier. Parlar and Berkin (1991) are the first to relax this assumption by
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considering the possibility of supply disruptions. They assume that the supplier
functions normally for a certain amount of time and then is disrupted for a certain
amount of time. We refer to the disrupted times as dry intervals and times during
which the supplier functions normally as wet intervals (Other authors sometimes
refer to these as off and on intervals, down and up intervals, etc.). The retailer
cannot receive any items from the supplier during dry intervals. Unlike the clas-
sical EOQ, the retailer will stock out on customer demands that occur when the
retailer does not have any inventory and its supplier is in a dry interval. We assume
that unmet demands are lost, and that lost sales incur a cost of p per item.

It is possible to make different assumptions about the transitions from one state
to the other, but for the sake of simplicity, we assume that the transitions between
dry and wet intervals are governed by a continuous-time Markov chain (CTMC).
The duration of dry and wet intervals is exponentially distributed with rates l
(known as the recovery rate) and k (known as the disruption rate), respectively.

The EOQ problem with disruptions is known as the EOQD. The inventory
curve for it is as pictured in Fig. 1.

Parlar and Berkin (1991) derive an expression for the expected cost per unit
time and prove its convexity. However, their analysis contains some errors. First,
they assume that stockouts occur every time the supplier is disrupted, but in fact, it
is possible for a disruption to begin and end entirely during an interval in which the
retailer has positive inventory. The other error is that, they account for the lost
sales cost as though it is incurred per item per unit time, rather than simply per
item. Berk and Arreola-Risa (1994) correct these mistakes and present the results
that we discuss below.

Define the time between successive orders as a cycle with a random length, T. If
the supplier is in a wet interval when the retailer places an order, we have T ¼ Q

d .
Otherwise, the retailer needs to wait for a positive duration of time until the
disruption is over. Define b to be the probability that the supplier is in a dry

Fig. 1 Inventory curve for EOQD model (Parlar and Berkin 1991)
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interval when the retailer places a replenishment order. Using the properties of the
underlying CTMC it can be shown that

b ¼ k
kþ l

1� e� kþlð ÞQd
� �

The probability density function of T, f(t), is the following:

f tð Þ ¼
0; if t\Q=d
1� b; if t ¼ Q=d

ble�l t�Q
dð Þ; if t [ Q=d

8

<

:

Based on this function, we can say that each cycle lasts for at least Q
d time units

and after that, with probability b, it lasts, on average, an additional 1
b time units.

This implies that the expected cycle length is E T½ � ¼ Q
d þ

b
l :

As in the classical EOQ model, we want to find an expression for the expected
cost per unit time and then determine the order quantity Q that minimizes this cost.
Given that we know E T½ � we can determine an expression for the expected cost per
cycle and then make use of the Renewal Reward Theorem to find the expected cost
per unit time.

The total order cost and the Holding cost per cycle are the same as in the

classical EOQ model: K þ cQ and h Q2

2d, respectively. In addition, we have a
penalty cost for lost sales arising when the inventory level is zero and the supplier
is in a dry interval. Due to the memoryless property of the exponential distribution,
the remaining duration of a dry interval after a replenishment order is given by 1

l :

Hence, the expected penalty cost per cycle is p db
l : As a result, the overall expected

cycle cost and the expected cost per unit time are given via the following
proposition.

Proposition 2 The expected cycle cost for the EOQ model with exponential
disruption and recovery rates (k and l, respectively) is:

K þ cQþ h
Q2

2d
þ p

db
l

The corresponding expected cost per unit time is given by

C Qð Þ ¼
K þ cQþ h Q2

2d þ p db
l

Q
d þ

b
l

Next, we want to determine Q�, which is the order quantity that minimizes
C Qð Þ. It is not known whether C Qð Þ is convex. It is, however, quasiconvex, which
implies that it has a single local minimum. Nevertheless, there is, unfortunately, no
closed-form expression for Q�, primarily due to the exponential terms within b
(Recall that b is itself a function of Q). Numerical techniques must be used to
determine Q�.
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Consistent with the classical EOQ model, Berk and Arreola-Risa (1994)
demonstrate numerically that Q� is nondecreasing in K, p, and d. In addition, it is
nondecreasing in the availability ratio k

l ; which implies that the retailer orders

more when its supplier is disrupted more frequently and/or for longer intervals.

2.2 An Approximation

Although the EOQD can be solved numerically, an approximate closed-form
solution is still attractive since it can be used in solving other problems that require
the optimal order quantity or cost as an input. In addition, a closed-form solution
can provide insights that might be difficult to obtain from numerical methods. To
this end, Snyder (2011) introduces a simple method that approximates the cost
function by a convex function. In particular, the author approximates b with a new
term b0 which ignores the exponential term:

b0 ¼ k
kþ l

In fact, b0 is the probability that the supplier is in a dry interval at an arbitrary
point in time, while b is the probability that the supplier is in a dry interval when a
replenishment order is placed. By replacing b with b0, the transient behavior of the
system is ignored and it is assumed that the system approaches steady state very
quickly. This approximation performs quite well when the Cycle length is rela-
tively long, i.e., Q

d is relatively large.
As pointed out above, the approximation leads to an expected cost function that

is convex, and whose minimizer can be expressed in closed-form by setting the
derivative of the cost function to 0 and solving for Q: The following proposition
summarizes the approximate result.

Proposition 3 Approximating b with k
kþl ; the order quantity to minimize C Qð Þ

becomes

Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Kd

h
þ A2 þ B

r

� A

where

A ¼ b0d
l

and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d2pb0

hl

s

Recall that the optimal order quantity for the classical EOQ model is
ffiffiffiffiffiffi

2Kd
h

q

,

implying that—Q0 is larger. The same relation holds for the optimal cost. Snyder
(2011) also demonstrates that ignoring the possibility of supply disruptions and
using the order quantity from the classical EOQ model can be very costly if the
disruption risk is nontrivial.
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3 The EOQ Model with External and Internal Supply
Disruptions

The simplest EOQD model takes into consideration only disruptions at the
supplier, i.e., external disruptions. Next, we consider a retailer that faces random
disruptions both internally and externally. In case of an internal disruption all
inventory at the retailer is destroyed, and the retailer cannot place a new order until
the disruption is over. Examples of these types of disruptions include fires,
machine breakdowns resulting in damaged items, and so on. The transitions
between dry and wet intervals for the internal disruptions are similarly governed
by a CTMC. The duration of these dry and wet intervals is exponentially
distributed with recovery rate c and disruption rate a, respectively.

We retain all the assumption in the previous section regarding the external
disruptions and system parameters. Our objective, as in Sect. 2, is to find the
optimal order quantity. This problem is studied by Qi et al. (2009) and the
following results are based on their analysis.

We again define the time between two successive orders as a cycle and develop
an expression for the expected cost function using the Renewal Reward Theorem.
The expected cost function C Qð Þ is the sum of the expected ordering, holding, and
lost-sales costs, divided by the expected cycle length.

Proposition 4 The expected cost function for the EOQ model with external and
internal Disruptions is

C Qð Þ ¼ pd þ
K þ cþ h

a

� �

Q� 1� e�aQ
d

� �

hd
a2 þ pd

a

� �

E T½ �

Here, E T½ � is the expected cycle length which is itself a messy function
depending on the disruption parameters, as well as on Q and d. It can be shown
that C Qð Þ is quasiconvex in Q. As a result, like the EOQD, the optimal order
quantity can be found using any method for solving single-dimensional uncon-
strained quasiconvex optimization problems, such as bisection or golden section
search. However, one cannot derive a closed-form expression for Q�.

Using a similar idea as that of Snyder (2011), Qi et al. (2009) propose an
effective approximation for the average cost function. They derive an approximate
but closed form expression for the optimal order quantity by replacing one
exponential term in the objective function with zero and another with its second-
order Taylor-series expansion. The corresponding approximate Optimal order
quantity, Q0, is given by

Q0 ¼ d
��Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�A2 þ 2a �Aþ�Bð Þ aK�B
d þ�A p�cð Þð Þ

caþh

r

a �Aþ �Bð Þ
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where

�A ¼ k aþ cð Þ
cl aþ kþ lð Þ and �B ¼ 1

a
þ 1

c

Qi et al. (2009) show that, when the retailer is never disrupted, i.e., when a ¼ 0,
Q0 reduces to the approximate solution derived by Snyder (2011) (see Sect. 2.2),
and when neither the retailer nor the supplier is disrupted, Q0 reduces to the
classical EOQ solution.

Qi et al. (2009) compare the optimal order quantity of the EOQ model, QEOQ

and Q0. In fact, the difference Q0 � QEOQ can be defined as the safety stock that the
retailer holds to protect against both types of disruptions. This safety stock
increases with the supplier’s disruption probability and it decreases with the
supplier’s recovery probability. On the other hand, the retailer tends to keep small
or even negative safety stock when the retailer is often disrupted. The reason is that
the internal disruptions destroy the retailer’s inventory. In fact, Q0 is small when
the retailer is disrupted very often or the supplier has high availability.

The authors also compare the effects of both types of disruptions on the fill rate
and conclude that internal disruptions have a greater impact than external ones.
This result is in line with the conclusion by Atan and Snyder (2012), who state that
in one-warehouse, multiple-retailer (OWMR) systems with disruptions, uncer-
tainty in the part of the supply chain closer to the customers has a more significant
negative impact than uncertainty farther upstream. As a result, one can conclude
that when both the retailer and its supplier are subject to disruptions, although both
disruption types have significant effects and one needs to consider both to achieve
cost savings, disruptions at the retailer have a much larger impact on the fill rate at
the retailer than disruptions at the supplier do.

The approximation by Qi et al. (2009) is used by Qi et al. (2010) in the context
of a joint location-inventory model with disruptions. The approximation enables
the optimal inventory cost to be a concave function of the demand, and this
property allows Qi et al. (2010) to apply an effective algorithm in solving their
optimization problem. This is analogous to the way in which Daskin et al. (2002)
embed the cost of the classical EOQ model into a joint location-inventory model
without disruptions.

4 Extensions of the EOQD Model

The EOQD is the simplest continuous-review model with Supply disruptions, but
its solution allows practitioners to have a basic understanding of the effects of
supply disruptions on inventory management decisions. This model is extended in
multiple ways. In this section, we discuss a few such extensions with fewer
mathematical details.
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4.1 Disruptions in Manufacturing Environments

In addition to Supply chains, manufacturing environments are also subject to
disruptions, resulting from machine breakdowns or maintenance requirements.
Compared to disruptions caused by natural disasters, labor strikes, etc., disruptions
on the manufacturing floor tend to be more minor. Keeping inventory buffers to
mitigate the effects of these disruptions is the commonly employed strategy.

In this section, we discuss an unreliable manufacturing process studied by
Groenevelt et al. (1992a, b). The demand is deterministic, continuous and constant
with rate d items per unit time. The production process is continuous with rate
P items per unit time. The classical economic manufacturing quantity (EMQ)
model assumes that inventory accumulates during production intervals and is
depleted until the inventory reaches level zero. Then, production begins again.
However, in the unreliable process, we assume that when a machine breakdown
takes place the interrupted lot is aborted and the next production interval begins
when the inventory is depleted. Figure 2 depicts the on-hand inventory for the
classical EMQ problem and the EMQ problem with breakdowns.

We consider two maintenance processes for the EMQ with machine break-
downs. The first one is corrective maintenance. It is performed after every
breakdown and it costs K ? M. The second one is regular maintenance. It is
performed at the end of each production interval and it costs K. Both corrective
and regular maintenances are instantaneous.

When the manufacturing process is functioning properly, i.e., the system is in a
wet interval, the next machine breakdown is assumed to happen at time B, which is
a random variable with density and distribution functions f bð Þ and F bð Þ, respec-
tively. Given that the system also incurs a linear holding cost of h per item per unit
time, the objective is to find the lot size, Q�, that minimizes the average cost per
unit time.

Fig. 2 Inventory curves for the classical EMQ model and the EMQ model with disruptions
(Groenevelt et al. 1992a)
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Groenevelt et al. (1992a) define a cycle as the time between starts of successive
production runs and obtain the following expression for the expected cost function:

E C½ � ¼
Z

Q=P

0

K þM þ 1
2

h P� dð ÞP
d

b2

� �

f bð Þdb

þ
Z

1

Q=P

K þ 1
2

h P� dð ÞP� d

pd
Q2

� �

f bð Þdb

The first integral is the expected cycle cost if the time to machine breakdown is
shorter than Q

P : This means that a breakdown happens that requires a corrective
maintenance costing K ? M. The third component of the first integral is the
expected holding cost per unit time for the cycle during which a machine break-
down happens. The second integral is the expected cycle cost if the time to
machine breakdown is longer than Q

P : That means a breakdown does not occur and
the regular maintenance is enough. As in the first integral, the expected cost for
this type of cycle is the sum of maintenance and inventory holding costs.

The expected cycle length is given by

E T½ � ¼
Z

Q=P

0

P

d
bf bð Þdbþ

Z

1

Q=P

Q

d
f bð Þdb

As in the expected cycle cost function, the first and the second parts are the
expected cycle lengths if the time to the next disruption is shorter and longer than
Q
P ; respectively.

Using Renewal Theory, the long-run average cost per unit of time can be

calculated as E C½ �
E T½ �. As in the EOQD model, the cost expression is complex and it

cannot be solved in closed-form when B has a general distribution. On the other
hand, if B is exponential with rate k, Q� is the unique nonnegative solution of the
following nonlinear equation:

e�
kQ
Pð Þ þ kQ

P
¼ 1þ dk2K

hP P� dð Þ

This rather simple equation allows Groenevelt et al. (1992a) to obtain some
basic insights. They prove that the long-run average corrective maintenance cost
does not depend on Q. They also show that Q� and the optimal cost values are
increasing functions of k. Via Proposition 1, the authors prove that when the
system approaches perfect reliability Q� approaches the classical EMQ.
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Proposition 5 When the rate k goes to zero, Q� approaches the classical EMQ,
i.e.

lim
k!0

Q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KdP

h P� dð Þ

s

Surprisingly, Groenevelt et al. (1992a) prove that when the system is subject to
disruptions, using the classical EMQ disruptions instead of Q� results in an
average cost increase of at most 2 %. Although, the difference between the EMQ
and Q� can be very large, the reason for the small cost difference is that when a
machine breakdown takes place, the interrupted lot is aborted. Hence, the differ-
ence in the average lot sizes is much smaller than the difference in the optimal lot
sizes.

An important assumption of the EMQ model with disruptions is that the
corrective maintenance times are negligible. In reality, repairs might be time
consuming. Safety stocks are required to satisfy the customer demands arising
during disruptions lasting long enough to deplete the entire inventory. Under these
conditions, one needs to maintain separate cycle and safety stocks, the latter to be
used only when a machine breakdown occurs. In fact, Groenevelt et al. (1992b)
show that the optimal safety stock level increases with the disruption rate, required
service level, demand rate, and setup and repair times.

4.2 Disrupted Demand Process

Disruptions do not only affect supply side of the inventory systems, but they can
also result in intermittent demand. Weiss and Rosenthal (1992) study an EOQ
model with a single disruption that can happen in either the supply or demand
process. In this section, we discuss the latter case only.

Assume that a demand disruption happens at a single known time in the future,
S. The disruption lasts for a random length D� 0 with distribution function FD tð Þ
and incurs a cost at a constant rate, p, per disrupted time. When the demand
process is interrupted, demand does not arrive and the inventory level stays the
same from the beginning until the end of the disruption. Otherwise, the demand is
continuous and constant with rate d. Each order incurs a setup cost of K and there
is a unit holding cost h per unit time. The objective is to determine the structure of
the optimal policy and develop an algorithm for finding the optimal order quantity.

Weiss and Rosenthal (1992) consider two cases, first with the disruption
occurring just as the inventory is depleted and second with the disruption hap-
pening when the inventory level is positive. In both cases, the inventory level
remains the same from the beginning to the end of the disruption.
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Weiss and Rosenthal (1992) show that for the first case, the optimal policy is to
place n� Sð Þ orders of size dS

n� Sð Þ before the disruption happens. Here, n� Sð Þ is then

that satisfies

n n� 1ð Þ� hdS2

2K
� n nþ 1ð Þ

After the disruption is over at time S ? D, the ordinary EOQ policy needs to be
employed.

For the second case, suppose that at time S the inventory level is a. The optimal
order, Q�, before the disruption is given by

Q� ¼ C�

h
� dE D½ �

where C� ¼
ffiffiffiffiffiffiffiffiffiffiffi

2dKh
p

, i.e., the optimal average cost of the classical EOQ model.
Like the first case, after the disruption the optimal order quantity is given by the
EOQ.

4.3 EOQD Model with Demand Uncertainty

Bar-Lev et al. (1993) extends the EOQD model of Parlar and Berkin (1991) by
considering Stochastic demand. The inventory process is assumed to be a
Brownian motion with negative drift implying that customers can return items.
Assuming finite capacity, the objective is to find the order quantity and the
capacity. Cost parameters include fixed and variable ordering costs, linear holding
and stockout costs, as well as a cost that is linear in the capacity. Using Renewal
Theory, the authors derive the expected cost function and minimize it numerically.

4.4 Phase-Type Disruption Parameters

Ross et al. (2008) study the EOQD problem with durations of dry and wet intervals
having phase-type distributions. The authors model this problem as a non-homo-
geneous continuous-time Markov chain (CTMC) and solve it numerically. They
propose several ordering policies and compare the costs of these policies under
different parameter settings. They conclude that nonstationary policies not only
provide some cost benefit but are also robust to errors in estimating the system
parameters.
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5 Conclusions and Future Research Directions

In this chapter, we summarized the studies on EOQ models with supply disrup-
tions. For the EOQ model with disruptions at the external supplier only, we
showed the derivation of the exact expression for the expected cost and claimed
the impossibility of obtaining a closed-form solution for the optimal order quan-
tity. Then, we mentioned an approximation which results in a closed-form
expression and shows how much more inventory is needed in order to be buffer
against the uncertainty introduced by supply disruptions. In addition, we
summarized EOQ models with both external and internal disruptions. As in the
previous case, the exact expression for the expected cost does not yield a closed-
form expression for the optimal order quantity but an approximation exists. An
important finding of this model is that internal disruptions have a greater impact
than external ones. Finally, we studied extensions of EOQ models with disruptions
to manufacturing environments. We also studied extensions with disrupted
demand processes, demand uncertainty and phase-type disruption parameters.

All the studies summarized in this chapter suggest that if inventory is chosen as
a disruption mitigation strategy, keeping extra inventory, the amount of which
depends on disruption parameters, is required. These studies make an assumption
regarding the structure of the inventory replenishment policy and do not try to find
the optimal policy structure. Although there are some studies on optimal policy
structures for single-location systems subject to disruptions, for multi-echelon
systems this is rather difficult. De Croix (2012) proves the optimality of state-
dependent base-stock policies for serial systems with linear holding and backor-
dering costs and extends this result to assembly systems. Future research should be
conducted on identifying optimal policies for distribution and more general
systems.

There are many other directions for future research on the subject of inventory
models subject to supply disruptions. Objective functions other than minimizing
the expected cost should be explored. For example, worst-case analysis is an
attractive alternative to reflect decision makers’ risk-averse attitudes toward dis-
ruptions. In addition, more general models of disruption processes are likely to
reflect the complexities of real-world consequences more realistically. The liter-
ature has a huge gap in this respect. Another important question is how to estimate
the parameters on these processes. supply disruptions are random events and
historical data might not provide accurate enough information. More research is
needed to develop methods for parameter estimation.

54 Z. Atan and L. V. Snyder



References

Z. Atan and L. Snyder. Disruptions in one-warehouse multiple-retailer systems. Working Paper,
P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem,
PA, 2012.

S. K. Bar-Lev, M. Parlar and D. Perry. Impulse control of a Brownian inventory system with
supplier uncertainty. Journal of Stochastic Analysis and Applications, 11:11–27, 1993.

E. Berk and A. Arreola-Risa. Note on ‘‘Future supply uncertainty in EOQ models’’. Naval
Research Logistics, 41:129–132, 1994.

M. S. Daskin, C. R. Coullard and Z. -J. M. Shen. An inventory-location model: Formulation,
solution algorithm, and computational results. Annals of Operations Research, 110:83–106,
2002.

G. A. De Croix. Inventory Management for an Assembly System Subject to Supply Disruptions.
To appear in Management Science, 2013

H. Groenevelt, L. Pintelon and A. Seidmann. Production lot sizing with machine breakdowns.
Management Science, 38(1):104–123, 1992a.

H. Groenevelt, L. Pintelon and A. Seidmann. Production batching with machine breakdowns and
safety stocks. Operations Research, 40(5):959–927, 1992b.

K. B. Hendricks and V. R. Singhal. The effect of supply chain glitches on shareholder wealth.
Journal of Operations Management, 21(5), 501–522, 2003.

K. B. Hendricks and V. R. Singhal. Association between supply chain glitches and operating
performance. Management Science, 51(5), 695–711, 2005a.

K. B. Hendricks and V. R. Singhal. An empirical analysis of the effect of supply chain disruptions
on long-run stock price performance and equity risk of the firm. Production and Operations
Management, 14(1), 35–52, 2005b.

M. Parlar and D. Berkin. Future supply uncertainty in EOQ models. Naval Research Logistics,
38:107–121, 1991.

L. Qi, Z.-J. M. Shen and L. Snyder. A continuous review inventory model with disruptions at both
supplier and retailer. Production and Operations Management, 18(5):516–532, 2009.

L. Qi, Z.-J. M. Shen and L. Snyder. The effect of supply disruptions on supply chain network
design. Transportation Science, 44(25):274–289, 2010.

A. Ross, Y. Rong and L. Snyder. Supply disruptions with time-dependent parameters. Computers
and Operations Research, 35(11):3504–3529, 2008.

L. Snyder. A tight approximation for a continuous review inventory model with supplier
disruptions. Working Paper, P.C. Rossin College of Engineering and Applied Sciences,
Lehigh University, Bethlehem, PA, 2011.

L. Snyder, Z. Atan, P. Peng, Y. Rong, A. J. Schmitt and B. Sinsoysal. OR/MS Models for Supply
Chain Disruptions: A Review. Working Paper, P.C. Rossin College of Engineering and
Applied Sciences, Lehigh University, Bethlehem, PA, 2012.

H. Weiss and E. Rosenthal. Optimal ordering policies when anticipating a disruption in supply or
demand. European Journal of Operational Research, 59(3):370–382, 1992.

EOQ Models with Supply Disruptions 55


	3 EOQ Models with Supply Disruptions
	Abstract
	1…Introduction
	2…The EOQEOQ Model with External Supply DisruptionsExternal supply disruptions
	2.1 The Exact ModelExact model
	2.2 An ApproximationApproximation

	3…The EOQ Model with External and Internal Supply DisruptionsInternal supply disruptions
	4…Extensions of the EOQD Model
	4.1 Disruptions in Manufacturing EnvironmentEnvironments
	4.2 Disrupted Demand Process
	4.3 EOQD Model with Demand UncertaintyDemand uncertainty
	4.4 Phase-Type DisruptionDisruption Parameters

	5…Conclusions and Future Research Directions
	References


