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Monotone Operator Methods for Nash
Equilibria in Non-potential Games
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Abstract We observe that a significant class of Nash equilibrium problems in non-
potential games can be associated with monotone inclusion problems. We propose
splitting techniques to solve such problems and establish their convergence. App-
lications to generalized Nash equilibria, zero-sum games, and cyclic proximation
problems are demonstrated.
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9.1 Problem Statement

Consider a game with m≥ 2 players indexed by i∈ {1, . . . ,m}. The strategy xi of the
ith player lies in a real Hilbert space Hi and the problem is to find x1 ∈H1, . . . ,xm ∈
Hm such that
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(∀i ∈ {1, . . . ,m}) xi ∈ Argmin
x∈Hi

f(x1, . . . ,xi−1,x,xi+1, . . . ,xm)

+gi(x1, . . . ,xi−1,x,xi+1, . . . ,xm), (9.1)

where (gi)1≤i≤m represents the individual penalty of player i depending on the
strategies of all players and f is a convex penalty which is common to all players
and models the collective discomfort of the group. At this level of generality, no
reliable method exists for solving (9.1) and some hypotheses are required. In this
paper we focus on the following setting.

Problem 9.1. Let m ≥ 2 be an integer and let f : H1 ⊕·· ·⊕Hm → ]−∞,+∞] be a
proper lower semicontinuous convex function. For every i∈ {1, . . . ,m}, let gi : H1⊕
·· ·⊕Hm → ]−∞,+∞] be such that, for every x1 ∈ H1, . . . ,xm ∈ Hm, the function
x �→ gi(x1, . . . ,xi−1,x,xi+1, . . . ,xm) is convex and differentiable on Hi, and denote
by ∇i gi(x1, . . . ,xm) its derivative at xi. Moreover,

(∀(x1, . . . ,xm) ∈ H1 ⊕·· ·⊕Hm
)(∀(y1, . . . ,ym) ∈ H1 ⊕·· ·⊕Hm

)

m

∑
i=1

〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi − yi〉 ≥ 0. (9.2)

The problem is to find x1 ∈ H1, . . . , xm ∈ Hm such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈H1

f(x,x2, . . . ,xm)+ g1(x,x2, . . . ,xm)

...

xm ∈ Argmin
x∈Hm

f(x1, . . . ,xm−1,x)+ gm(x1, . . . ,xm−1,x).

(9.3)

In the special case when, for every i ∈ {1, . . . ,m}, gi = g is convex, Problem 9.1
amounts to finding a Nash equilibrium of a potential game, i.e., a game in which the
penalty of every player can be represented by a common potential f +g [14]. Hence,
Nash equilibria can be found by solving

minimize
x1∈H1,...,xm∈Hm

f(x1, . . . ,xm)+ g(x1, . . . ,xm). (9.4)

Thus, the problem reduces to the minimization of the sum of two convex functions
on the Hilbert space H1 ⊕ ·· · ⊕Hm and various methods are available to tackle
it under suitable assumptions (see for instance [5, Chap. 27]). On the other hand,
in the particular case when f is separable, a review of methods for solving (9.3) is
provided in [8]. In this paper we address the more challenging non-potential setting,
in which the functions (gi)1≤i≤m need not be identical nor convex, but they must
satisfy (9.2), and f need not be separable. Let us note that (9.2) actually implies, for
every i ∈ {1, . . . ,m}, the convexity of gi with respect to its ith variable.
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Our methodology consists of using monotone operator splitting techniques for
solving an auxiliary monotone inclusion, the solutions of which are Nash equilibria
of Problem 9.1. In Sect. 9.2 we review the notation and background material
needed subsequently. In Sect. 9.3 we introduce the auxiliary monotone inclusion
problem and provide conditions ensuring the existence of solutions to the auxiliary
problem. We also propose two methods for solving Problem 9.1 and establish
their convergence. Finally, in Sect. 9.4, the proposed methods are applied to the
construction of generalized Nash equilibria, to zero-sum games, and to cyclic
proximation problems.

9.2 Notation and Background

Throughout this paper, H , G , and (Hi)1≤i≤m are real Hilbert spaces. For conve-
nience, their scalar products are all denoted by 〈· | ·〉 and the associated norms by
‖ · ‖. Let A : H → 2H be a set-valued operator. The domain of A is

domA =
{

x ∈ H
∣
∣ Ax �=∅

}
, (9.5)

the set of zeros of A is

zer A =
{

x ∈ H
∣
∣ 0 ∈ Ax

}
, (9.6)

the graph of A is

graA =
{
(x,u) ∈ H ×H

∣
∣ u ∈ Ax

}
, (9.7)

the range of A is

ranA =
{

u ∈ H
∣∣ (∃x ∈ H ) u ∈ Ax

}
, (9.8)

the inverse of A is the set-valued operator

A−1 : H → 2H : u �→ {
x ∈ H

∣
∣ u ∈ Ax

}
, (9.9)

and the resolvent of A is

JA = (Id +A)−1. (9.10)

In addition, A is monotone if

(∀(x,y) ∈ H ×H )(∀(u,v) ∈ Ax×Ay) 〈x− y | u− v〉 ≥ 0 (9.11)

and it is maximally monotone if, furthermore, every monotone operator B : H →
2H such that graA ⊂ graB coincides with A.
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We denote by Γ0(H ) the class of lower semicontinuous convex functions
ϕ : H → ]−∞,+∞] which are proper in the sense that domϕ =

{
x ∈ H

∣∣ ϕ(x) <
+∞

} �=∅. Let ϕ ∈ Γ0(H ). The proximity operator of ϕ is

proxϕ : H → H : x �→ argmin
y∈H

ϕ(y)+
1
2
‖x− y‖2, (9.12)

and the subdifferential of ϕ is the maximally monotone operator

∂ϕ : H → 2H : x �→ {
u ∈ H

∣
∣ (∀y ∈ H ) 〈y− x | u〉+ϕ(x)≤ ϕ(y)

}
. (9.13)

We have

Argmin
x∈H

ϕ(x) = zer ∂ϕ and proxϕ = J∂ϕ . (9.14)

Let β ∈ ]0,+∞[. An operator T : H → H is β -cocoercive (or β T is firmly
nonexpansive) if

(∀x ∈ H )(∀y ∈ H ) 〈x− y | Tx−Ty〉 ≥ β‖Tx−Ty‖2, (9.15)

which implies that it is monotone and β−1–Lipschitzian. Let C be a nonempty
convex subset of H . The indicator function of C is

ιC : H → ]−∞,+∞] : x �→
{

0, if x ∈C;

+∞, if x /∈C
(9.16)

and ∂ιC = NC is the normal cone operator of C, i.e.,

NC : H → 2H : x �→
{{

u ∈ H
∣
∣ (∀y ∈C) 〈y− x | u〉 ≤ 0

}
, if x ∈C;

∅, otherwise.
(9.17)

If C is closed, for every x ∈ H , there exists a unique point PCx ∈ C such that ‖x−
PCx‖ = infy∈C ‖x− y‖; PCx is called the projection of x onto C and we have PC =
proxιC . In addition, the symbols ⇀ and → denote respectively weak and strong
convergence. For a detailed account of the tools described above, see [5].

9.3 Model, Algorithms, and Convergence

We investigate an auxiliary monotone inclusion problem, the solutions of which are
Nash equilibria of Problem 9.1 and propose two splitting methods to solve it. Both
involve the proximity operator proxf , which can be computed explicitly in several
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instances [5, 7]. We henceforth denote by HHH the direct sum of the Hilbert spaces
(Hi)1≤i≤m, i.e., the product space H1 ×·· ·×Hm equipped with the scalar product

〈〈· | ·〉〉 :
(
(xi)1≤i≤m,(yi)1≤i≤m

) �→
m

∑
i=1

〈xi | yi〉. (9.18)

We denote the associated norm by ||| · |||, a generic element of HHH by x = (xi)1≤i≤m,
and the identity operator on HHH by IdIdId.

9.3.1 A Monotone Inclusion Model

With the notation and hypotheses of Problem 9.1, let us set

A = ∂ f and B : HHH →HHH : x �→ (
∇1 g1(x), . . . ,∇m gm(x)

)
. (9.19)

We consider the inclusion problem

find x ∈ zer (A+B). (9.20)

Since f ∈ Γ0(HHH ), AAA is maximally monotone. On the other hand, it follows from
(9.2) that BBB is monotone. The following result establishes a connection between the
monotone inclusion problem (9.20) and Problem 9.1.

Proposition 9.2. Using the notation and hypotheses of Problem 9.1, let A and B be
as in (9.19). Then every point in zer (A+B) is a solution to Problem 9.1.

Proof. Suppose that zer (A+B) �= ∅ and let (x1, . . . ,xm) ∈ HHH . Then [5, Proposi-
tion 16.6] asserts that

A(x1, . . . ,xm)⊂ ∂
(
f(·,x2, . . . ,xm)

)
(x1)×·· ·× ∂

(
f(x1, . . . ,xm−1, ·)

)
(xm). (9.21)

Hence, since domg1(·,x2, . . . ,xm) = H1, . . . , domgm(x1, . . . ,xm−1, ·) = Hm, we
derive from (9.19), (9.14), and [5, Corollary 16.38(iii)] that

(x1, . . . ,xm) ∈ zer(A+B)

⇔ −B(x1, . . . ,xm) ∈ A(x1, . . . ,xm)

⇒

⎧
⎪⎪⎨

⎪⎪⎩

−∇1 g1(x1, . . . ,xm)∈ ∂
(
f(·,x2, . . . ,xm)

)
(x1)

...

−∇m gm(x1, . . . ,xm)∈ ∂
(
f(x1, . . . ,xm−1, ·)

)
(xm)

⇔ (x1, . . . ,xm) solves Problem 9.1, (9.22)

which yields the result. �
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Proposition 9.2 asserts that we can solve Problem 9.1 by solving (9.20), provided
that the latter has solutions. The following result provides instances in which this
property is satisfied. First, we need the following definitions (see [5, Chaps. 21–
24]):

Let A : H → 2H be monotone. Then A is 3∗ monotone if domA × ranA ⊂
domFA, where

FA : H ×H → ]−∞,+∞] : (x,u) �→ 〈x | u〉− inf
(y,v)∈graA

〈x− y | u− v〉. (9.23)

On the other hand, A is uniformly monotone if there exists an increasing function
φ : [0,+∞[→ [0,+∞] vanishing only at 0 such that

(∀(x,y) ∈ H ×H
)(∀(u,v) ∈ Ax×Ay

) 〈x− y | u− v〉 ≥ φ(‖x− y‖). (9.24)

A function ϕ ∈ Γ0(H ) is uniformly convex if there exists an increasing function
φ : [0,+∞[→ [0,+∞] vanishing only at 0 such that

(∀(x,y) ∈ domϕ × domϕ)(∀α ∈ ]0,1[)

ϕ(αx+(1−α)y)+α(1−α)φ(‖x− y‖)≤ αϕ(x)+ (1−α)ϕ(y). (9.25)

The function φ in (9.24) and (9.25) is called the modulus of uniform monotonicity
and of uniform convexity, respectively, and it is said to be supercoercive if
limt→+∞ φ(t)/t =+∞.

Proposition 9.3. With the notation and hypotheses of Problem 9.1, let B be as in
(9.19). Suppose that B is maximally monotone and that one of the following holds:

(i) lim|||x|||→+∞ inf |||∂ f(x)+Bx|||=+∞.
(ii) ∂ f+B is uniformly monotone with a supercoercive modulus.

(iii) (dom∂ f)∩domB is bounded.
(iv) f = ιC, where C is a nonempty closed convex bounded subset of HHH .
(v) f is uniformly convex with a supercoercive modulus.

(vi) B is 3∗ monotone, and ∂ f or B is surjective.
(vii) B is uniformly monotone with a supercoercive modulus.

(viii) B is linear and bounded, there exists β ∈ ]0,+∞[ such that B is β –cocoercive,
and ∂ f or B is surjective.

Then zer (∂ f + B) �= ∅. In addition, if (ii), (v), or (vii) holds, zer (∂ f + B) is a
singleton.
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Proof. First note that, for every (xi)1≤i≤m ∈HHH , dom∇1 g1(·,x2, . . . ,xm) = H1, . . . ,
dom∇m gm(x1, . . . ,xm−1, ·) = Hm. Hence, it follows from (9.19) that domB = HHH
and, therefore, from [5, Corollary 24.4(i)] that ∂ f +B is maximally monotone. In
addition, it follows from [5, Example 24.9] that ∂ f is 3∗ monotone.

(i) This follows from [5, Corollary 21.20].
(ii) This follows from [5, Corollary 23.37(i)].

(iii) Since dom(∂ f +B) = (dom∂ f )∩ domB, the result follows from [5,
Proposition 23.36(iii)].

(iv)⇒(iii) f = ιC ∈ Γ0(HHH ) and dom∂ f = C is bounded.
(v)⇒(ii) It follows from (9.19) and [5, Example 22.3(iii)] that ∂ f is uniformly

monotone. Hence, ∂ f +B is uniformly monotone.
(vi) This follows from [5, Corollary 24.22(ii)].

(vii)⇒(ii) Clear.
(viii)⇒(vi) This follows from [5, Proposition 24.12].

Finally, the uniqueness of a zero of ∂ f +B in cases (ii), (v), and (vii) follows from
the strict monotonicity of ∂ f +B. �

9.3.2 Forward–Backward–Forward Algorithm

Our first method for solving Problem 9.1 is derived from an algorithm proposed in
[6], which itself is a variant of a method proposed in [16].

Theorem 9.4. In Problem 9.1, suppose that there exist (z1, . . . ,zm) ∈HHH such that

− (
∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)

) ∈ ∂ f(z1, . . . ,zm) (9.26)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1

‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2 ≤ χ2
m

∑
i=1

‖xi − yi‖2. (9.27)

Let ε ∈ ]0,1/(χ + 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈ Hi, and let (ai,n)n∈N, (bi,n)n∈N, and (ci,n)n∈N be
absolutely summable sequences in Hi. Now consider the following routine:



150 L.M. Briceño-Arias and P.L. Combettes

(∀n ∈N)

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

for i = 1, . . . ,m
� yi,n = xi,n − γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(p1,n, . . . , pm,n) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n)

for i = 1, . . . ,m⌊
qi,n = pi,n − γn(∇i gi(p1,n, . . . , pm,n)+ ci,n)

xi,n+1 = xi,n − yi,n + qi,n.

(9.28)

Then there exists a solution (x1, . . . ,xm) to Problem 9.1 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and pi,n ⇀ xi.

Proof. Let A and B be defined as (9.19). Then (9.26) yields zer (A+B) �= ∅, and,
for every γ ∈ ]0,+∞[, (9.14) yields JγA = proxγf . In addition, we deduce from (9.2)
and (9.27) that B is monotone and χ-Lipschitzian. Now set

(∀n ∈N)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xn = (x1,n, . . . ,xm,n)

yn = (y1,n, . . . ,ym,n)

pn = (p1,n, . . . , pm,n)

qn = (q1,n, . . . ,qm,n)

(9.29)

and

(∀n ∈ N)

⎧
⎪⎪⎨

⎪⎪⎩

an = (a1,n, . . . ,am,n)

bn = (b1,n, . . . ,bm,n)

cn = (c1,n, . . . ,cm,n).

(9.30)

Then (9.28) is equivalent to

(∀n ∈N)

⎢
⎢
⎢
⎢
⎢
⎣

yn = xn − γn(Bxn + an)

pn = JγnAyn + bn

qn = pn − γn(Bpn + cn)

xn+1 = xn − yn + qn.

(9.31)

Thus, the result follows from [6, Theorem 2.5(ii)] and Proposition 9.2. �
Note that two (forward) gradient steps involving the individual penalties (gi)1≤i≤m

and one (backward) proximal step involving the common penalty f are required at
each iteration of (9.28).
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9.3.3 Forward–Backward Algorithm

Our second method for solving Problem 9.1 is somewhat simpler than (9.28) but
requires stronger hypotheses on (gi)1≤i≤m. This method is an application of the
forward–backward splitting algorithm (see [3, 9] and the references therein for
background).

Theorem 9.5. In Problem 9.1, suppose that there exist (z1, . . . ,zm) ∈HHH such that

− (
∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)

) ∈ ∂ f(z1, . . . ,zm) (9.32)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1

〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi − yi〉

≥ 1
χ

m

∑
i=1

‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2. (9.33)

Let ε ∈ ]0,2/(χ + 1)[ and let (γn)n∈N be a sequence in [ε,(2− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈ Hi, and let (ai,n)n∈N and (bi,n)n∈N be absolutely
summable sequences in Hi. Now consider the following routine:

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎣

for i = 1, . . . ,m
� yi,n = xi,n − γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(x1,n+1, . . . ,xm,n+1) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n).

(9.34)

Then there exists a solution (x1, . . . ,xm) to Problem 9.1 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and ∇i gi(x1,n, . . . ,xm,n)→ ∇i gi(x1, . . . ,xm).

Proof. If we define A and B as in (9.19), (9.32) is equivalent to zer(A+B) �=∅, and
it follows from (9.33) that B is χ−1–cocoercive. Moreover, (9.34) can be recast as

(∀n ∈ N)

⌊
yn = xn − γn(Bxn + an)

xn+1 = JγnAyn + bn.
(9.35)

The result hence follows from Proposition 9.2 and [3, Theorem 2.8(i) and (ii)]. �
As illustrated in the following example, Theorem 9.5 imposes more restrictions
on (gi)1≤i≤m. However, unlike the forward–backward–forward algorithm used in
Sect. 9.3.2, it employs only one forward step at each iteration. In addition, this
method allows for larger gradient steps since the sequence (γn)n∈N lies in ]0,2/χ [,
as opposed to ]0,1/χ [ in Theorem 9.4.
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Example 9.6. In Problem 9.1, set m = 2, let L : H1 → H2 be linear and bounded,
and set

{
g1 : (x1,x2) �→ 〈Lx1 | x2〉
g2 : (x1,x2) �→ −〈Lx1 | x2〉.

(9.36)

It is readily checked that all the assumptions of Problem 9.1 are satisfied, as well as
(9.27) with χ = ‖L‖. However, (9.33) does not hold since

(∀(x1,x2) ∈ H1 ⊕H2)(∀(y1,y2) ∈ H1 ⊕H2)

〈∇1 g1(x1,x2)−∇1 g1(y1,y2) | x1 − y1〉
+〈∇2 g2(x1,x2)−∇2 g2(y1,y2) | x2 − y2〉= 0. (9.37)

9.4 Applications

The previous results can be used to solve a wide variety of instances of Problem 9.1.
We discuss several examples.

9.4.1 Saddle Functions and Zero-Sum Games

We consider an instance of Problem 9.1 with m = 2 players whose individual
penalties g1 and g2 are saddle functions.

Example 9.7. Let χ ∈ ]0,+∞[, let f ∈Γ0(H1 ⊕H2), and let LLL : H1 ⊕H2 →R be
a differentiable function with a χ-Lipschitzian gradient such that, for every x1 ∈H1,
LLL (x1, ·) is concave and, for every x2 ∈ H2, LLL (·,x2) is convex. The problem is to
find x1 ∈ H1 and x2 ∈ H2 such that

⎧
⎪⎨

⎪⎩

x1 ∈ Argmin
x∈H1

f(x,x2)+LLL (x,x2)

x2 ∈ Argmin
x∈H2

f(x1,x)−LLL (x1,x).
(9.38)

Proposition 9.8. In Example 9.7, suppose that there exists (z1,z2) ∈ H1 ⊕ H2

such that

(−∇1LLL (z1,z2),∇2 LLL (z1,z2)
) ∈ ∂ f(z1,z2). (9.39)

Let ε ∈ ]0,1/(χ + 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
let (x1,0,x2,0) ∈ H1 ⊕ H2, let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be absolutely
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summable sequences in H1, and let (a2,n)n∈N, (b2,n)n∈N, and (c2,n)n∈N be absolutely
summable sequences in H2. Now consider the following routine:

(∀n ∈N)

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

y1,n = x1,n − γn(∇1LLL (x1,n,x2,n)+ a1,n)

y2,n = x2,n + γn(∇2LLL (x1,n,x2,n)+ a2,n)

(p1,n, p2,n) = proxγnf(y1,n,y2,n)+ (b1,n,b2,n)

q1,n = p1,n − γn(∇1LLL (p1,n, p2,n)+ c1,n)

q2,n = p2,n + γn(∇2LLL (p1,n, p2,n)+ c2,n)

x1,n+1 = x1,n − y1,n + q1,n

x2,n+1 = x2,n − y2,n + q2,n.

(9.40)

Then there exists a solution (x1,x2) to Example 9.7 such that x1,n ⇀ x1, p1,n ⇀ x1,
x2,n ⇀ x2, and p2,n ⇀ x2.

Proof. Example 9.7 corresponds to the particular instance of Problem 9.1 in which
m = 2, g1 = LLL , and g2 = −LLL . Indeed, it follows from [15, Theorem 1] that the
operator

(x1,x2) �→
(
∇1LLL (x1,x2),−∇2LLL (x1,x2)

)
(9.41)

is monotone in H1 ⊕H2 and, hence, (9.2) holds. In addition, (9.39) implies (9.26)
and, since ∇LLL is χ-Lipschitzian, (9.27) holds. Altogether, since (9.28) reduces to
(9.40), the result follows from Theorem 9.4. �
Next, we examine an application of Proposition 9.8 to 2-player finite zero-sum
games.

Example 9.9. We consider a 2-player finite zero-sum game (for complements and
background on finite games, see [17]). Let S1 be the finite set of pure strategies of
player 1, with cardinality N1, and let

C1 =

{

(ξ j)1≤ j≤N1 ∈ [0,1]N1

∣
∣
∣∣

N1

∑
j=1

ξ j = 1

}

(9.42)

be his set of mixed strategies (S2, N2, and C2 are defined likewise). Moreover, let L
be an N1 ×N2 real cost matrix such that

(∃z1 ∈C1)(∃z2 ∈C2) −Lz2 ∈ NC1 z1 and L�z1 ∈ NC2 z2. (9.43)

The problem is to

find x1 ∈ R
N1 and x2 ∈ R

N2 such that

⎧
⎪⎨

⎪⎩

x1 ∈ Argmin
x∈C1

x�Lx2

x2 ∈ Argmax
x∈C2

x�1 Lx.
(9.44)
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Since the penalty function of player 1 is (x1,x2) �→ x�1 Lx2 and the penalty function
of player 2 is (x1,x2) �→ −x�1 Lx2, (9.44) is a zero-sum game. It corresponds to the
particular instance of Example 9.7 in which H1 = R

N1 , H2 = R
N2 , f : (x1,x2) �→

ιC1(x1)+ ιC2(x2), and LLL : (x1,x2) �→ x�1 Lx2. Indeed, since C1 and C2 are nonempty
closed convex sets, f ∈ Γ0(H1 ⊕H2). Moreover, x1 �→ LLL (x1,x2) and x2 �→
−LLL (x1,x2) are convex, and ∇LLL : (x1,x2) �→ (Lx2,L�x1) is linear and bounded,
with ‖∇LLL ‖ = ‖L‖. In addition, for every γ ∈ ]0,+∞[, proxγf = (PC1 ,PC2) [5,
Proposition 23.30]. Hence, (9.40) reduces to (we set the error terms to zero for
simplicity)

(∀n ∈ N)

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

y1,n = x1,n − γnLx2,n

y2,n = x2,n + γnL�x1,n

p1,n = PC1y1,n

p2,n = PC2y2,n

q1,n = p1,n − γnLp2,n

q2,n = p2,n + γnL�p1,n

x1,n+1 = x1,n − y1,n + q1,n

x2,n+1 = x2,n − y2,n + q2,n,

(9.45)

where (γn)n∈N is a sequence in
[
ε, 1−ε

‖L‖
]

for some arbitrary ε ∈ ]
0, 1

‖L‖+1

[
. Since

∂ f : (x1,x2) �→ NC1 x1 × NC2 x2, (9.43) yields (9.39). Altogether, Proposition 9.8
asserts that the sequence (x1,n,x2,n)n∈N generated by (9.45) converges to (x1,x2) ∈
R

N1 ×R
N2 , such that (x1,x2) is a solution to (9.44).

9.4.2 Generalized Nash Equilibria

We consider the particular case of Problem 9.1 in which f is the indicator function
of a closed convex subset of HHH = H1 ⊕·· ·⊕Hm.

Example 9.10. Let C ⊂ HHH be a nonempty closed convex set and, for every i ∈
{1, . . . ,m}, let gi : HHH → ]−∞,+∞] be a function which is differentiable with respect
to its ith variable. Suppose that

(∀(x1, . . . ,xm) ∈HHH
)(∀(y1, . . . ,ym) ∈HHH

)

m

∑
i=1

〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi − yi〉 ≥ 0 (9.46)

and set

(∀(x1, . . . ,xm) ∈HHH )



9 Monotone Operator Methods for Nash Equilibria in Non-potential Games 155

⎧
⎪⎪⎨

⎪⎪⎩

Q1(x2, . . . ,xm) =
{

x ∈ H1
∣
∣ (x,x2, . . . ,xm) ∈ C

}

...

Qm(x1, . . . ,xm−1) =
{

x ∈ Hm
∣
∣ (x1, . . . ,xm−1,x) ∈ C

}
.

(9.47)

The problem is to find x1 ∈ H1, . . . , xm ∈ Hm such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈Q1(x2,...,xm)

g1(x,x2, . . . ,xm)

...

xm ∈ Argmin
x∈Qm(x1,...,xm−1)

gm(x1, . . . ,xm−1,x).

(9.48)

The solutions to Example 9.10 are called generalized Nash equilibria [11], social
equilibria [10], or equilibria of abstract economies [1], and their existence has been
studied in [1, 10]. We deduce from Proposition 9.2 that we can find a solution to
Example 9.10 by solving a variational inequality in HHH , provided the latter has
solutions. This observation is also made in [11], which investigates a Euclidean
setting in which additional smoothness properties are imposed on (gi)1≤i≤m. An
alternative approach for solving Example 9.10 in Euclidean spaces is also proposed
in [13] with stronger differentiability properties on (gi)1≤i≤m and a monotonicity
assumption of the form (9.46). However, the convergence of the method is not
guaranteed. Below we derive from Sect. 9.3.2 a weakly convergent method for
solving Example 9.10.

Proposition 9.11. In Example 9.10, suppose that there exist (z1, . . . ,zm) ∈ HHH
such that

− (
∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)

) ∈ NC(z1, . . . ,zm) (9.49)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1

‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2 ≤ χ2
m

∑
i=1

‖xi − yi‖2. (9.50)

Let ε ∈ ]0,1/(χ + 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈ Hi, and let (ai,n)n∈N, (bi,n)n∈N, and (ci,n)n∈N be
absolutely summable sequences in Hi. Now consider the following routine:



156 L.M. Briceño-Arias and P.L. Combettes

(∀n ∈ N)

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

for i = 1, . . . ,m
� yi,n = xi,n − γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(p1,n, . . . , pm,n) = PC(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n)

for i = 1, . . . ,m⌊
qi,n = pi,n − γn(∇i gi(p1,n, . . . , pm,n)+ ci,n)

xi,n+1 = xi,n − yi,n + qi,n.

(9.51)

Then there exists a solution (x1, . . . ,xm) to Example 9.10 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and pi,n ⇀ xi.

Proof. Example 9.10 corresponds to the particular instance of Problem 9.1 in which
f = ιC. Since PC = proxf , the result follows from Theorem 9.4. �

9.4.3 Cyclic Proximation Problem

We consider the following problem in HHH = H1 ⊕·· ·⊕Hm.

Example 9.12. Let G be a real Hilbert space, let f ∈ Γ0(HHH ), and, for every i ∈
{1, . . . ,m}, let Li : Hi → G be a bounded linear operator. The problem is to find
x1 ∈ H1, . . . ,xm ∈ Hm such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈H1

f(x,x2, . . . ,xm)+
1
2
‖L1x−L2x2‖2

x2 ∈ Argmin
x∈H2

f(x1,x, . . . ,xm)+
1
2
‖L2x−L3x3‖2

...

xm ∈ Argmin
x∈Hm

f(x1, . . . ,xm−1,x)+
1
2
‖Lmx−L1x1‖2.

(9.52)

For every i ∈ {1, . . . ,m}, the individual penalty function of player i models
his desire to keep some linear transformation Li of his strategy close to some
linear transformation of that of the next player i+ 1. In the particular case when
f : (xi)1≤i≤m �→ ∑m

i=1 fi(xi), a similar formulation is studied in [2, Sect. 3.1], where
an algorithm is proposed for solving (9.52). However, each step of the algorithm
involves the proximity operator of a sum of convex functions, which is extremely
difficult to implement numerically. The method described below circumvents this
difficulty.

Proposition 9.13. In Example 9.12, suppose that there exists (z1, . . . ,zm) ∈ HHH
such that

(
L∗

1(L2z2 −L1z1), . . . ,L
∗
m(L1z1 −Lmzm)

) ∈ ∂ f(z1, . . . ,zm). (9.53)
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Set χ = 2max1≤i≤m ‖Li‖2, let ε ∈ ]0,2/(χ + 1)[, and let (γn)n∈N be a sequence in
[ε,(2−ε)/χ ]. For every i ∈ {1, . . . ,m}, let xi,0 ∈ Hi, and let (ai,n)n∈N and (bi,n)n∈N
be absolutely summable sequences in Hi. Now set Lm+1 = L1, for every n ∈ N, set
xm+1,n = x1,n, and consider the following routine:

(∀n ∈ N)

⎢
⎢⎢
⎢
⎣

for i = 1, . . . ,m
� yi,n = xi,n − γn

(
L∗

i (Lixi,n −Li+1xi+1,n)+ ai,n
)

(x1,n+1, . . . ,xm,n+1) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n).

(9.54)

Then there exists a solution (x1, . . . ,xm) to Example 9.12 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and L∗

i

(
Li(xi,n − xi)−Li+1(xi+1,n − xi+1)

)→ 0.

Proof. Note that Example 9.12 corresponds to the particular instance of Problem 9.1
in which, for every i ∈ {1, . . . ,m}, gi : (xi)1≤i≤m �→ ‖Lixi −Li+1xi+1‖2/2, where we
set xm+1 = x1. Indeed, since

(∀(x1, . . . ,xm) ∈HHH )

⎧
⎪⎪⎨

⎪⎪⎩

∇1 g1(x1, . . . ,xm) = L∗
1(L1x1 −L2x2)

...

∇m gm(x1, . . . ,xm) = L∗
m(Lmxm −L1x1),

(9.55)

the operator (xi)1≤i≤m �→ (∇i gi(x1, . . . ,xm))1≤i≤m is linear and bounded. Thus, for
every (x1, . . . ,xm) ∈HHH ,

m

∑
i=1

〈∇i gi(x1, . . . ,xm) | xi〉

=
m

∑
i=1

〈L∗
i (Lixi −Li+1xi+1) | xi〉

=
m

∑
i=1

〈Lixi −Li+1xi+1 | Lixi〉

=
m

∑
i=1

‖Lixi‖2 −
m

∑
i=1

〈Li+1xi+1 | Lixi〉

=
1
2

m

∑
i=1

‖Lixi‖2 +
1
2

m

∑
i=1

‖Li+1xi+1‖2 −
m

∑
i=1

〈Li+1xi+1 | Lixi〉

=
m

∑
i=1

1
2
‖Lixi −Li+1xi+1‖2

=
m

∑
i=1

1
2‖Li‖2 ‖Li‖2‖Lixi −Li+1xi+1‖2
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≥ χ−1
m

∑
i=1

‖L∗
i (Lixi −Li+1xi+1)‖2

= χ−1
m

∑
i=1

‖∇i gi(x1, . . . ,xm)‖2, (9.56)

and, hence, (9.33) and (9.2) hold. In addition, (9.53) yields (9.32). Altogether, since
(9.34) reduces to (9.54), the result follows from Theorem 9.5. �
We present below an application of Proposition 9.13 to cyclic proximation problems
and, in particular, to cyclic projection problems.

Example 9.14. We apply Example 9.12 to cyclic evaluations of proximity opera-
tors. For every i ∈ {1, . . . ,m}, let Hi = H , let fi ∈ Γ0(H ), let Li = Id , and set
f : (xi)1≤i≤m �→ ∑m

i=1 fi(xi). In view of (9.12), Example 9.12 reduces to finding
x1 ∈ H , . . . ,xm ∈ H such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = prox f1 x2

x2 = prox f2 x3
...

xm = prox fm x1.

(9.57)

It is assumed that (9.57) has at least one solution. Since proxf : (xi)1≤i≤m �→
(prox fi xi)1≤i≤m [5, Proposition 23.30], (9.54) becomes (we set errors to zero for
simplicity)

(∀n ∈ N)

⌊
for i = 1, . . . ,m
� xi,n+1 = proxγn fi

(
(1− γn)xi,n + γnxi+1,n

)
,

(9.58)

where (xi,0)1≤i≤m ∈ H m and (γn)n∈N is a sequence in [ε,1− ε] for some arbitrary
ε ∈ ]0,1/2[. Proposition 9.13 asserts that the sequences (x1,n)n∈N, . . . , (xm,n)n∈N
generated by (9.58) converge weakly to points x1 ∈ H , . . . , xm ∈ H , respectively,
such that (x1, . . . ,xm) is a solution to (9.57).

In the particular case when for every i ∈ {1, . . . ,m}, fi = ιCi , a solution of (9.57)
represents a cycle of points in C1, . . . ,Cm. It can be interpreted as a Nash equilibrium
of the game in which, for every i ∈ {1, . . . ,m}, the strategies of player i belong to Ci

and its penalty function is (xi)1≤i≤m �→ ‖xi − xi+1‖2, that is, player i wants to have
strategies as close as possible to the strategies of player i+1. Such schemes go back
at least to [12]. It has recently been proved [4] that, in this case, if m > 2, the cycles
are not minimizers of any potential, from which we infer that this problem cannot
be reduced to a potential game. Note that (9.58) becomes

(∀n ∈N)

⌊
for i = 1, . . . ,m
� xi,n+1 = PCi

(
(1− γn)xi,n + γnxi+1,n

)
,

(9.59)
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and the sequences (x1,n)n∈N, . . . ,(xm,n)n∈N thus generated converge weakly to points
x1 ∈ H , . . . ,xm ∈ H , respectively, such that (x1, . . . ,xm) is a cycle. The existence
of cycles has been proved in [12] when one of the sets C1, . . . ,Cm is bounded. Thus,
(9.59) is an alternative parallel algorithm to the method of successive projections
[12].
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