
Chapter 8
Fast Computation of Bernoulli, Tangent
and Secant Numbers

Richard P. Brent and David Harvey

Abstract We consider the computation of Bernoulli, Tangent (zag), and Secant
(zig or Euler) numbers. In particular, we give asymptotically fast algorithms for
computing the first n such numbers O(n2(logn)2+o(1)). We also give very short
in-place algorithms for computing the first n Tangent or Secant numbers in O(n2)
integer operations. These algorithms are extremely simple and fast for moderate
values of n. They are faster and use less space than the algorithms of Atkinson (for
Tangent and Secant numbers) and Akiyama and Tanigawa (for Bernoulli numbers).
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8.1 Introduction

The Bernoulli numbers are rational numbers Bn defined by the generating function

∑
n≥0

Bn
zn

n!
=

z
exp(z)− 1

. (8.1)

Bernoulli numbers are of interest in number theory and are related to special values
of the Riemann zeta function (see Sect. 8.2). They also occur as coefficients in the
Euler–Maclaurin formula, so are relevant to high-precision computation of special
functions [7, Sect. 4.5].

It is sometimes convenient to consider scaled Bernoulli numbers

Cn =
B2n

(2n)!
, (8.2)

with generating function

∑
n≥0

Cn z2n =
z/2

tanh(z/2)
. (8.3)

The generating functions (8.1) and (8.3) only differ by the single term B1z, since the
other odd terms vanish.

The Tangent numbers Tn and Secant numbers Sn are defined by

∑
n>0

Tn
z2n−1

(2n− 1)!
= tanz, ∑

n≥0

Sn
z2n

(2n)!
= secz . (8.4)

In this paper, which is based on an a talk given by the first author at a workshop
held to mark Jonathan Borwein’s sixtieth birthday, we consider some algorithms for
computing Bernoulli, Tangent, and Secant numbers. For background, combinatorial
interpretations, and references, see Abramowitz and Stegun [1, Chap. 23] (where
the notation differs from ours, e.g. (−1)nE2n is used for our Sn), and Sloane’s [27]
sequences A000367, A000182, and A000364.

Let M(n) be the number of bit-operations required for n-bit integer multipli-
cation. The Schönhage–Strassen algorithm [25] gives M(n) = O(n logn loglogn),
and Fürer [17] has recently given an improved bound M(n) = O(n(logn)2log∗ n).
For simplicity we merely assume that M(n) = O(n(logn)1+o(1)), where the o(1)
term depends on the precise algorithm used for multiplication. For example, if
the Schönhage–Strassen algorithm is used, then the o(1) term can be replaced by
logloglogn/ loglogn.

In Sects. 8.2 and 8.3 we mention some relevant and generally well-known facts
concerning Bernoulli, Tangent, and Secant numbers.

Recently, Harvey [20] showed that the single number Bn can be computed in
O(n2(logn)2+o(1)) bit-operations using a modular algorithm. In this paper we show
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that all the Bernoulli numbers B0, . . . ,Bn can be computed with the same complexity
bound (and similarly for Secant and Tangent numbers).

In Sect. 8.4 we give a relatively simple algorithm that achieves the slightly
weaker bound O(n2(logn)3+o(1)). In Sect. 8.5 we describe the improvement to
O(n2(logn)2+o(1)). The idea is similar to that espoused by Steel [29], although we
reduce the problem to division rather than multiplication. It is an open question
whether the single number B2n can be computed in o(n2) bit-operations.

In Sect. 8.6 we give very short in-place algorithms for computing the first n
Secant or Tangent numbers using O(n2) integer operations. These algorithms are
extremely simple and fast for moderate values of n (say n ≤ 1000), although
asymptotically not as fast as the algorithms given in Sects. 8.4 and 8.5. Bernoulli
numbers can easily be deduced from the corresponding Tangent numbers using the
relation (8.14) below.

8.2 Bernoulli Numbers

From the generating function (8.1) it is easy to see that the Bn are rational numbers,
with B2n+1 = 0 if n > 0. The first few nonzero Bn are B0 = 1, B1 = −1/2, B2 =
1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, B12 = −691/2730, and
B14 = 7/6.

The denominators of the Bernoulli numbers are given by the Von Staudt–Clausen
Theorem [12, 28], which states that

B′
2n := B2n + ∑

(p−1)|2n

1
p

∈ Z .

Here the sum is over all primes p for which p− 1 divides 2n.
Since the “correction” B′

2n −B2n is easy to compute, it might be convenient in a
program to store the integers B′

2n instead of the rational numbers B2n or Cn.
Euler found that the Riemann zeta-function for even non-negative integer

arguments can be expressed in terms of Bernoulli numbers—the relation is

(−1)n−1 B2n

(2n)!
=

2ζ (2n)
(2π)2n . (8.5)

Since ζ (2n) = 1+O(4−n) as n →+∞, we see that

|B2n| ∼ 2(2n)!
(2π)2n .

From Stirling’s approximation to (2n)!, the number of bits in the integer part of
B2n is 2n lgn+O(n) (we write lg for log2). Thus, it takes Ω(n2 logn) space to store
B1, . . . ,Bn. We cannot expect any algorithm to compute B1, . . . ,Bn in fewer than
Ω(n2 logn) bit-operations.
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Another connection between the Bernoulli numbers and the Riemann zeta-
function is the identity

Bn+1

n+ 1
=−ζ (−n) (8.6)

for n ∈ Z, n ≥ 1. This follows from (8.5) and the functional equation for the zeta-
function or directly from a contour integral representation of the zeta-function [31].

From the generating function (8.1), multiplying both sides by exp(z)− 1 and
equating coefficients of z, we obtain the recurrence

k

∑
j=0

(
k+ 1

j

)
B j = 0 for k > 0. (8.7)

This recurrence has traditionally been used to compute B0, . . . ,B2n with O(n2)
arithmetic operations, for example, in [22]. However, this is unsatisfactory if
floating-point numbers are used, because the recurrence is numerically unstable:
the relative error in the computed B2n is of order 4nε if the floating-point arithmetic
has precision ε , i.e., lg(1/ε) bits.

Let Cn be defined by (8.2). Then, multiplying each side of (8.3) by sinh(z/2)/
(z/2) and equating coefficients gives the recurrence

k

∑
j=0

Cj

(2k+ 1− 2 j)!4k− j =
1

(2k)! 4k . (8.8)

Using this recurrence to evaluate C0,C1, . . . ,Cn, the relative error in the computed
Cn is only O(n2ε), which is satisfactory from a numerical point of view.

Equation (8.5) can be used in several ways to compute Bernoulli numbers. If we
want just one Bernoulli number B2n then ζ (2n) on the right-hand side of (8.5) can be
evaluated to sufficient accuracy using the Euler product: this is the “zeta-function”
algorithm for computing Bernoulli numbers mentioned (with several references to
earlier work) by Harvey [20]. On the other hand, if we want several Bernoulli
numbers, then we can use the generating function

πz
tanh(πz)

=−2
∞

∑
k=0

(−1)kζ (2k)z2k , (8.9)

computing the coefficients of z2k, k ≤ n, to sufficient accuracy, as mentioned in [3,8,
9]. This is similar to the fast algorithm that we describe in Sect. 8.4. The similarity
can be seen more clearly if we replace πz by z in (8.9), giving

z
tanh(z)

=−2
∞

∑
k=0

(−1)k ζ (2k)
π2k z2k , (8.10)
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since it is the rational number ζ (2n)/π2n that we need in order to compute B2n

from (8.5). In fact, it is easy to see that (8.10) is equivalent to (8.3).
There is a vast literature on Bernoulli, Tangent, and Secant numbers. For

example, the bibliography of Dilcher and Slavutskii [15] contains more than 2,000
items. Thus, we do not attempt to give a complete list of references to related work.
However, we briefly mention the problem of computing irregular primes [10, 11],
which are odd primes p such that p divides the class number of the pth cyclotomic
field. The algorithms that we present in Sects. 8.4 and 8.5 below are not suitable
for this task because they take too much memory. It is much more space-efficient
to use a modular algorithm where the computations are performed modulo a single
prime (or maybe the product of a small number of primes), as in [10, 11, 14, 20].
Space can also be saved by the technique of “multisectioning”, which is described
by Crandall [13, Sect. 3.2] and Hare [19].

8.3 Tangent and Secant Numbers

The Tangent numbers Tn (n > 0) (also called zag numbers) are defined by

∑
n>0

Tn
z2n−1

(2n− 1)!
= tanz =

sinz
cosz

.

Similarly, the Secant numbers Sn (n ≥ 0) (also called Euler or zig numbers) are
defined by

∑
n≥0

Sn
z2n

(2n)!
= secz =

1
cosz

.

Unlike the Bernoulli numbers, the Tangent and Secant numbers are positive integers.
Because tanz and sec z have poles at z = π/2, we expect Tn to grow roughly like
(2n− 1)!(2/π)n and Sn like (2n)!(2/π)n. To obtain more precise estimates, let

ζ0(s) = (1− 2−s)ζ (s) = 1+ 3−s+ 5−s+ · · ·

be the odd zeta-function. Then

Tn

(2n− 1)!
=

22n+1ζ0(2n)
π2n ∼ 22n+1

π2n (8.11)

(this can be proved in the same way as Euler’s relation (8.5) for the Bernoulli
numbers). We also have [1, (23.2.22)]

Sn

(2n)!
=

22n+2β (2n+ 1)
π2n+1 ∼ 22n+2

π2n+1 , (8.12)
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where

β (s) =
∞

∑
j=0

(−1) j(2 j+ 1)−s. (8.13)

From (8.5) and (8.11), we see that

Tn = (−1)n−122n(22n − 1)
B2n

2n
. (8.14)

This can also be proved directly, without involving the zeta-function, by using the
identity

tanz =
1

tanz
− 2

tan(2z)
.

Since Tn ∈ Z, it follows from (8.14) that the odd primes in the denominator of B2n

must divide 22n−1. This is compatible with the Von Staudt–Clausen theorem, since
(p− 1)|2n implies p|(22n − 1) by Fermat’s little theorem.

Tn has about 4n more bits than 	B2n
, but both have 2n lgn + O(n) bits, so
asymptotically there is not much difference between the sizes of Tn and 	B2n
. Thus,
if our aim is to compute B2n, we do not lose much by first computing Tn, and this
may be more convenient since Tn ∈ Z, B2n ∈Q.

8.4 A Fast Algorithm for Bernoulli Numbers

Harvey [20] showed how Bn could be computed exactly, using a modular algorithm
and the Chinese remainder theorem, in O(n2(logn)2+o(1)) bit-operations. The same
complexity can be obtained using (8.5) and the Euler product for the zeta-function
(see the discussion in Harvey [20, Sect. 1]).

In this section we show how to compute all of B0, . . . ,Bn with almost the same
complexity bound (only larger by a factor O(logn)). In Sect. 8.5 we give an even
faster algorithm, which avoids the O(logn) factor.

Let A(z) = a0 + a1z+ a2z2 + · · · be a power series with coefficients in R, with
a0 �= 0. Let B(z) = b0 + b1z+ · · · be the reciprocal power series, so A(z)B(z) = 1.
Using the FFT, we can multiply polynomials of degree n− 1 with O(n logn) real
operations. Using Newton’s method [24, 26], we can compute b0, . . . ,bn−1 with the
same complexity O(n logn), up to a constant factor.

Taking A(z) = (exp(z) − 1)/z and working with N-bit floating-point num-
bers, where N = n lg(n) + O(n), we get B0, . . . ,Bn to sufficient accuracy to de-
duce the exact (rational) result. (Alternatively, use (8.3) to avoid computing
the terms with odd subscripts, since these vanish except for B1.) The work
involved is O(n logn) floating-point operations, each of which can be done with
N-bit accuracy in O(n(logn)2+o(1)) bit-operations. Thus, overall we get B0, . . . ,Bn
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with O(n2(logn)3+o(1)) bit-operations. Similarly for Secant and Tangent numbers.
We omit a precise specification of N and a detailed error analysis of the algorithm,
since it is improved in the following section.

8.5 A Faster Algorithm for Tangent and Bernoulli Numbers

To improve the algorithm of Sect. 8.4 for Bernoulli numbers, we use the
“Kronecker–Schönhage trick” [7, Sect. 1.9]. Instead of working with power series
A(z) (or polynomials, which can be regarded as truncated power series), we work
with binary numbers A(z) where z is a suitable (negative) power of 2.

The idea is to compute a single real number A which is defined in such a way
that the numbers that we want to compute are encoded in the binary representation
of A . For example, consider the series

∑
k>0

k2zk =
z(1+ z)
(1− z)3 , |z|< 1.

The right-hand side is an easily computed rational function of z, say A(z). We use
decimal rather than binary for expository purposes. With z = 10−3 we easily find

A(10−3) =
1001000

997002999
= 0.001004009016025036049064081100 · · ·

Thus, if we are interested in the finite sequence of squares (12,22,32, . . . ,102), it is
sufficient to compute A = A(10−3) correctly rounded to 30 decimal places, and we
can then “read off” the squares from the decimal representation of A .

Of course, this example is purely for illustrative purposes, because it is easy
to compute the sequence of squares directly. However, we use the same idea
to compute Tangent numbers. Suppose we want the first n Tangent numbers
(T1,T2, . . . ,Tn). The generating function

tanz = ∑
k≥1

Tk
z2k−1

(2k− 1)!

gives us almost what we need, but not quite, because the coefficients are rationals,
not integers. Instead, consider

(2n− 1)! tanz =
n

∑
k=1

T ′
k,n z2k−1 +Rn(z), (8.15)

where
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T ′
k,n =

(2n− 1)!
(2k− 1)!

Tk (8.16)

is an integer for 1 ≤ k ≤ n, and

Rn(z) =
∞

∑
k=n+1

T ′
k,n z2k−1 = (2n− 1)!

∞

∑
k=n+1

Tk
z2k−1

(2k− 1)!
(8.17)

is a remainder term which is small if z is sufficiently small. Thus, choosing
z = 2−p with p sufficiently large, the first 2np binary places of (2n−1)! tanz define
T ′

1,n,T
′

2,n, . . . ,T
′

n,n. Once we have computed T ′
1,n,T

′
2,n, . . . ,T

′
n,n it is easy to deduce

T1,T2, . . . ,Tn from

Tk =
T ′

k,n

(2n− 1)!/(2k− 1)!
.

For this idea to work, two conditions must be satisfied. First, we need

0 ≤ T ′
k,n < 1/z2 = 22p, 1 ≤ k ≤ n, (8.18)

so we can read off the T ′
k,n from the binary representation of (2n−1)! tanz. Since we

have a good asymptotic estimate for Tk, it is not hard to choose p sufficiently large
for this condition to hold.

Second, we need the remainder term Rn(z) to be sufficiently small that it does
not influence the estimation of T ′

n,n. A sufficient condition is

0 ≤ Rn(z)< z2n−1. (8.19)

Choosing z sufficiently small (i.e., p sufficiently large) guarantees that condi-
tion (8.19) holds, since Rn(z) is O(z2n+1) as z → 0 with n fixed.

Lemmas 8.3 and 8.4 below give sufficient conditions for (8.18) and (8.19) to
hold.

Lemma 8.1.

Tk

(2k− 1)!
≤
(

2
π

)2(k−1)

for k ≥ 1.

Proof. From (8.11),

Tk

(2k− 1)!
= 2

(
2
π

)2k

ζ0(2k)≤ 2

(
2
π

)2k

ζ0(2)≤
(

2
π

)2k π2

4
=

(
2
π

)2(k−1)

.

�
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Lemma 8.2. (2n− 1)! ≤ n2n−1 for n ≥ 1.

Proof.

(2n− 1)!= n
n−1

∏
j=1

(n− j)(n+ j) = n
n−1

∏
j=1

(n2 − j2)≤ n2n−1

with equality iff n = 1. �
Lemma 8.3. If k ≥ 1, n ≥ 2, p = 	n lg(n)
, z = 2−p, and T ′

k,n is as in (8.16), then

z ≤ n−n and T ′
k,n < 1/z2.

Proof. We have z = 2−p = 2−	n lg(n)
 ≤ 2−n lg(n) = n−n, which proves the first part
of the Lemma.

Assume k ≥ 1 and n ≥ 2. From Lemma 8.1, we have

T ′
k,n ≤ (2n− 1)!

(
2
π

)2(k−1)

≤ (2n− 1)!,

and from Lemma 8.2 it follows that

T ′
k,n ≤ n2n−1 < n2n.

From the first part of the Lemma, n2n ≤ 1/z2, so the second part follows. �
Lemma 8.4. If n ≥ 2, p = 	n lg(n)
, z = 2−p, and Rn(z) is as defined in (8.17), then
0 < Rn(z)< 0.1z2n−1 .

Proof. Since all the terms in the sum defining Rn(z) are positive, it is immediate that
Rn(z) > 0. Since n ≥ 2, we have p ≥ 2 and z ≤ 1/4. Now, using Lemma 8.1,

Rn(z) =
∞

∑
k=n+1

T ′
k,nz2k−1

≤ (2n− 1)!
∞

∑
k=n+1

(
2
π

)2(k−1)

z2k−1

≤ (2n− 1)!

(
2
π

)2n

z2n+1

(
1+

(
2z
π

)2

+

(
2z
π

)4

+ · · ·
)

≤ (2n− 1)!

(
2
π

)2n

z2n+1

/(
1−

(
2z
π

)2
)

.

Since z ≤ 1/4, we have 1/(1 − (2z/π)2) < 1.026. Also, from Lemma 8.2,
(2n− 1)!≤ n2n−1. Thus, we have
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Fig. 8.1 Algorithm FastTangentNumbers (also optionally computes Bernoulli numbers)

Rn(z)
z2n−1 < 1.026n2n−1

(
2
π

)2n

z2.

Now z2 ≤ n−2n from the first part of Lemma 8.3, so

Rn(z)
z2n−1 <

1.026
n

(
2
π

)2n

. (8.20)

The right-hand side is a monotonic decreasing function of n, so is bounded above
by its value when n = 2, giving Rn(z)/z2n−1 < 0.1 . �
A high-level description of the resulting Algorithm FastTangentNumbers is given
in Fig. 8.1. The algorithm computes the Tangent numbers T1,T2, . . . ,Tn using the
Kronecker–Schönhage trick as described above, and deduces the Bernoulli numbers
B2,B4, . . . ,B2n from the relation (8.14).

In order to achieve the best complexity, the algorithm must be implemented
carefully using binary arithmetic. The computations of S (an approximation to
(2n)! sinz) and C (an approximation to (2n)!cosz) involve computing ratios of
factorials such as (2n)!/(2k)!, where 0 ≤ k ≤ n. This can be done in time
O(n2(logn)2) by a straightforward algorithm. The N-bit division to compute S/C
(an approximation to tanz) can be done in time O(N log(N) log log(N)) by the
Schönhage–Strassen algorithm combined with Newton’s method [7, Sect. 4.2.2].
Here it is sufficient to take N = 2np+ 2= 2n2 lg(n)+O(n). Note that

V =
n

∑
k=1

22(n−k)pT ′
k,n (8.21)

is just the finite sum in (8.15) scaled by z1−2n (a power of two), and the integers
T ′

k,n can simply be “read off” from the binary representation of V in n blocks of
2p consecutive bits. The T ′

k,n can then be scaled by ratios of factorials in time

O(n2(logn)2+o(1)) to give the Tangent numbers T1,T2, . . . ,Tn.
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The correctness of the computed Tangent numbers follows from Lemmas 8.3 and
8.4, apart from possible errors introduced by S/C being only an approximation to
tan(z). Lemma 8.5 shows that this error is sufficiently small.

Lemma 8.5. Suppose that n ≥ 2, z, S and C as in Algorithm FastTangentNumbers.
Then

z1−2n(2n− 1)!

∣∣∣∣ S
C
− tanz

∣∣∣∣ < 0.02 . (8.22)

Proof. We use the inequality
∣∣∣∣A
B
− A′

B′

∣∣∣∣≤ |A| · |B−B′|+ |B| · |A−A′|
|B| · |B′| . (8.23)

Take A = sinz, B = cosz, A′ = S/(2n)!, B′ = C/(2n)! in (8.23). Since n ≥ 2
we have 0 < z ≤ 1/4. Then |A| = |sin z| < z. Also, |B| = |cosz| > 31/32 from
the Taylor series cosz = 1− z2/2+ · · · , which has terms of alternating sign and
decreasing magnitude. By similar arguments, |B′| ≥ 31/32, |B−B′|< z2n/(2n)!, and
|A−A′|< z2n+1/(2n+1)!. Combining these inequalities and using (8.23), we obtain

∣∣∣∣ S
C
− tanz

∣∣∣∣< 6 ·32 ·32
5 ·31 ·31

z2n+1

(2n)!
<

1.28z2n+1

(2n)!
.

Multiplying both sides by z1−2n(2n− 1)! and using 1.28z2/(2n)≤ 0.02, we obtain
the inequality (8.22). This completes the proof of Lemma 8.5. �
In view of the constant 0.02 in (8.22) and the constant 0.1 in Lemma 8.4, the effect of
all sources of error in computing z1−2n(2n−1)! tanz is at most 0.12< 1/2, which is
too small to change the computed integer V , that is to say, the computed V is indeed
given by (8.21).

The computation of the Bernoulli numbers B2,B4, . . . ,B2n from T1, . . . ,Tn, is
straightforward (details depending on exactly how rational numbers are to be
represented). The entire computation takes time

O(N(logN)1+o(1)) = O(n2(logn)2+o(1)).

Thus, we have proved:

Theorem 8.6. The Tangent numbers T1, . . . ,Tn and Bernoulli numbers B2,B4,
. . . ,B2n can be computed in O(n2(logn)2+o(1)) bit-operations using O(n2 logn)
space.

A small modification of the above can be used to compute the Secant numbers
S0,S1, . . . ,Sn in O(n2(logn)2+o(1)) bit-operations and O(n2 logn) space. The bound
on Tangent numbers given by Lemma 8.1 can be replaced by the bound
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Sn

(2n)!
≤ 2

(
2
π

)2n+1

which follows from (8.12) since β (2n+ 1)< 1.
We remark that an efficient implementation of Algorithm FastTangentNumbers

in a high-level language such as Sage [30] or Magma [5] is nontrivial, because
it requires access to the internal binary representation of high-precision integers.
Everything can be done using (implicitly scaled) integer arithmetic—there is no
need for floating-point—but for the sake of clarity we did not include the scaling in
Fig. 8.1. If floating-point arithmetic is used, a precision of N bits is sufficient, where
N = 2np+ 2.

Comparing our Algorithm FastTangentNumbers with Harvey’s modular algo-
rithm [20], we see that there is a space-time trade-off: Harvey’s algorithm uses less
space (by a factor of order n) to compute a single Bn, but more time (again by a factor
of order n) to compute all of B1, . . . ,Bn. Harvey’s algorithm has better locality and
is readily parallelizable.

In the following section we give much simpler algorithms which are fast enough
for most practical purposes and are based on three-term recurrence relations.

8.6 Algorithms Based on Three-Term Recurrences

Akiyama and Tanigawa [21] gave an algorithm for computing Bernoulli numbers
based on a three-term recurrence. However, it is only useful for exact computations,
since it is numerically unstable if applied using floating-point arithmetic. It is faster
to use a stable recurrence for computing Tangent numbers and then deduce the
Bernoulli numbers from (8.14).

8.6.1 Bernoulli and Tangent Numbers

We now give a stable three-term recurrence and corresponding in-place algorithm
for computing Tangent numbers. The algorithm is perfectly stable since all op-
erations are on positive integers and there is no cancellation. Also, it involves
less arithmetic than the Akiyama–Tanigawa algorithm. This is partly because the
operations are on integers rather than rationals and partly because there are fewer
operations since we take advantage of zeros.

Bernoulli numbers can be computed using Algorithm TangentNumbers and the
relation (8.14). The time required for the application of (8.14) is negligible.

The recurrence (8.24) that we use was given by Buckholtz and Knuth [23],
but they did not give our in-place Algorithm TangentNumbers explicitly. Related
recurrences with applications to parallel computation were considered by Hare [19].
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Fig. 8.2 Algorithm
TangentNumbers

Fig. 8.3 Dataflow in
algorithm TangentNumbers
for n = 3

Write t = tanx, D = d/dx, so Dt = 1+ t2 and D(tn) = ntn−1(1+ t2) for n ≥ 1.
It is clear that Dnt is a polynomial in t, say Pn(t). Write Pn(t) = ∑ j≥0 pn, jt j. Then
deg(Pn) = n+ 1 and, from the formula for D(tn),

pn, j = ( j− 1)pn−1, j−1+( j+ 1)pn−1, j+1. (8.24)

We are interested in Tk = (d/dx)2k−1 tanx |x=0 = P2k−1(0) = p2k−1,0, which can
be computed from the recurrence (8.24) in O(k2) operations using the obvious
boundary conditions. We save work by noticing that pn, j = 0 if n+ j is even. The
resulting algorithm is given in Fig. 8.2.

The first for loop initializes Tk = pk−1,k = (k− 1)!. The variable Tk is then used
to store pk,k−1, pk+1,k−2, . . ., p2k−2,1, p2k−1,0 at successive iterations of the second
for loop. Thus, when the algorithm terminates, Tk = p2k−1,0, as expected.

The process in the case n = 3 is illustrated in Fig. 8.3, where T (m)
k denotes the

value of the variable Tk at successive iterations m = 1,2, . . . ,n. It is instructive to
compare a similar figure for the Akiyama–Tanigawa algorithm in [21].

Algorithm TangentNumbers takes Θ(n2) operations on positive integers. The
integers Tn have O(n logn) bits, other integers have O(logn) bits. Thus, the overall
complexity is O(n3(logn)1+o(1)) bit-operations, or O(n3 logn) word-operations if n
fits in a single word.

The algorithm is not optimal, but it is good in practice for moderate values of n,
and much simpler than asymptotically faster algorithms such as those described in
Sects. 8.4 and 8.5. For example, using a straightforward Magma implementation of
Algorithm TangentNumbers, we computed the first 1,000 Tangent numbers in 1.50 s
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Fig. 8.4 Algorithm
SecantNumbers

on a 2.26 GHz Intel Core 2 Duo. For comparison, it takes 1.92 s for a single N-bit
division computing T in Algorithm FastTangentNumbers (where N = 19,931,568
corresponds to n = 1,000). Thus, we expect the crossover point where Algorithm
FastTangentNumbers actually becomes faster to be slightly larger than n = 1,000
(but dependent on implementation details).

8.6.2 Secant Numbers

A similar algorithm may be used to compute Secant numbers. Let s= secx, t = tanx,
and D = d/dx. Then Ds = st, D2s = s(1+2t2), and in general Dns = sQn(t), where
Qn(t) is a polynomial of degree n in t. The Secant numbers are given by Sk =Q2k(0).
Let Qn(t) = ∑k≥0 qn,ktk. From

D(stk) = stk+1 + kstk−1(1+ t2)

we obtain the three-term recurrence

qn+1,k = kqn,k−1 +(k+ 1)qn,k+1 for 1 ≤ k ≤ n. (8.25)

By avoiding the computation of terms qn,k that are known to be zero (n + k
odd), and ordering the computation in a manner analogous to that used for
Algorithm TangentNumbers, we obtain Algorithm SecantNumbers (see Fig. 8.4),
which computes the Secant numbers in place using non-negative integer arithmetic.

8.6.3 Comparison with Atkinson’s Algorithm

Atkinson [2] gave an elegant algorithm for computing both the Tangent numbers
T1,T2, . . . ,Tn and the Secant numbers S0,S1, . . . ,Sn using a “Pascal’s triangle”
style of algorithm that only involves additions of non-negative integers. Since a
triangle with 2n+ 1 rows in involved, Atkinson’s algorithm requires 2n2 +O(n)
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integer additions. This can be compared with n2/2+O(n) additions and n2 +O(n)
multiplications (by small integers) for our Algorithm TangentNumbers, and simi-
larly for Algorithm SecantNumbers.

Thus, we might expect Atkinson’s algorithm to be slower than Algorithm Tan-
gentNumbers. Computational experiments confirm this. With n = 1,000, Algorithm
TangentNumbers programmed in Magma takes 1.50 s on a 2.26 GHz Intel Core 2
Duo, algorithm SecantNumbers also takes 1.50 s, and Atkinson’s algorithm takes
4.51 s. Thus, even if both Tangent and Secant numbers are required, Atkinson’s
algorithm is slightly slower. It also requires about twice as much memory.
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17. Fürer, M.: Faster integer multiplication. Proceedings of 39th Annual ACM Symposium on

Theory of Computing (STOC), pp. 57–66. ACM, San Diego (2007)
18. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 3rd edn. Addison-Wesley,

Reading (1994)
19. Hare, K.: Multisectioning, rational poly-exponential functions and parallel computation. M.Sc.

thesis, Department of Mathematics and Statistics, Simon Fraser University, Canada (2002)
20. Harvey, D.: A multimodular algorithm for computing Bernoulli numbers. Math. Comput. 79,

2361–2370 (2010)
21. Kaneko, M.: The Akiyama–Tanigawa algorithm for Bernoulli numbers. J. Integer Seq. 3,

Article 00.2.9, 6 (2000). http://www.cs.uwaterloo.ca/journals/JIS/
22. Knuth, D.E.: Euler’s constant to 1271 places. Math. Comput. 16, 275–281 (1962)
23. Knuth, D.E., Buckholtz, T.J.: Computation of Tangent, Euler, and Bernoulli numbers. Math.

Comput. 21, 663–688 (1967)
24. Kung, H.T.: On computing reciprocals of power series. Numer. Math. 22, 341–348 (1974)
25. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292

(1971)
26. Sieveking, M.: An algorithm for division of power series. Computing 10, 153–156 (1972)
27. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org
28. Von Staudt, K.G.C.: Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend. J. Reine

Angew. Math. 21, 372–374 (1840). http://gdz.sub.uni-goettingen.de
29. Steel, A.: Reduce everything to multiplication. Presented at Computing by the Numbers:

Algorithms, Precision and Complexity. Workshop for Richard Brent’s 60th Birthday, Berlin,
2006. http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/

30. Stein, W. et al.: Sage. http://www.sagemath.org/
31. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn (revised by D. R. Heath-

Brown). Clarendon Press, Oxford (1986)

http://www.mscs.dal.ca/%7Edilcher/bernoulli.html
http://www.cs.uwaterloo.ca/journals/JIS/
http://oeis.org
http://gdz.sub.uni-goettingen.de
http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/
http://www.sagemath.org/

	8 Fast Computation of Bernoulli, Tangent and Secant Numbers
	8.1 Introduction
	8.2 Bernoulli Numbers
	8.3 Tangent and Secant Numbers
	8.4 A Fast Algorithm for Bernoulli Numbers
	8.5 A Faster Algorithm for Tangent and Bernoulli Numbers
	8.6 Algorithms Based on Three-Term Recurrences
	8.6.1 Bernoulli and Tangent Numbers
	8.6.2 Secant Numbers
	8.6.3 Comparison with Atkinson's Algorithm

	References


