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Optimality Conditions for Semivectorial Bilevel
Convex Optimal Control Problems

Henri Bonnel and Jacqueline Morgan

Abstract We present optimality conditions for bilevel optimal control problems
where the upper level is a scalar optimal control problem to be solved by a leader
and the lower level is a multiobjective convex optimal control problem to be solved
by several followers acting in a cooperative way inside the greatest coalition and
choosing amongst efficient optimal controls. We deal with the so-called optimistic
case, when the followers are assumed to choose the best choice for the leader
amongst their best responses, as well with the so-called pessimistic case, when
the best response chosen by the followers can be the worst choice for the leader.
This paper continues the research initiated in Bonnel (SIAM J. Control Optim.
50(6), 3224–3241, 2012) where existence results for these problems have been
obtained.
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4.1 Introduction

The aim of this paper is to obtain optimality conditions for the semivectorial bilevel
optimal control problems introduced in [17] where existence results have been
established.

Semivectorial bilevel optimal control problems are bilevel problems where the
upper level corresponds to a scalar optimization problem and the lower level to a
multiobjective optimal control problem. Multiobjective optimal control problems
arise in many application areas where several conflicting objectives need to be con-
sidered. Minimizing several objective functionals leads to solutions such that none
of the objective functional values can be improved further without deteriorating
another. The set of all such solutions is referred to as efficient (also called Pareto
optimal, noninferior, or nondominated) set of solutions (see, e.g. [38]). The lower
level of the semivectorial bilevel optimal control problems can be associated to
one player with p objective or to a “grand coalition” of a p-player “cooperative
differential game”, every player having its own objective and control function.
We consider situations in which these p players react as “followers” to every
decision imposed by a “leader” (who acts at the so-called upper level). The best
reply correspondence of the followers being in general non-uniquely determined,
the leader cannot predict the followers choice simply on the basis of his rational
behaviour. So, the choice of the best strategy from the leader point of view depends
of how the followers choose a strategy amongst his best responses. In this paper, we
will consider two (extreme) possibilities:

1. The optimistic situation, when for every decision of the leader, the followers will
choose a strategy amongst the efficient controls which minimizes the (scalar)
objective of the leader; in this case the leader will choose a strategy which
minimizes the best he can obtain amongst all the best responses of the followers:

2. The pessimistic situation, when the followers can choose amongst the efficient
controls one which maximizes the (scalar) objective of the leader; in this case the
leader will choose a strategy which minimizes the worst he could obtain amongst
all the best responses of the followers.

The semivectorial bilevel control problems which model these two situations, and
which will be described in the next section, include the following problems which
have been intensively studied in the last decades, so we will give essentially a few
earlier references:

• Optimizing a scalar-valued function over the efficient set associated to a multi-
objective optimization (mathematical programming) problem (introduced in [47]
and investigated in [8–13, 25–27, 33, 36, 37, 50] for a survey).
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• Optimizing a scalar-valued function over an efficient control set associated to
a multiobjective optimal control problem (introduced and investigated in [15],
followed by [18])

• Semivectorial bilevel static problems (introduced and investigated in [16],
followed by [3, 14, 22, 30, 31, 51], for the optimistic case)

• Stackelberg problems (introduced in [49] and investigated, e.g. in [6, 40, 43])
• Bilevel optimization problems (e.g. [24, 28, 29, 41, 44, 45] for an extensive

bibliography)
• Stackelberg dynamic problems (introduced in [23, 48] and investigated, e.g. in

[5, 6, 42, 45, 46], a book with an extensive bibliography)

In this paper, we rewrite the optimistic and pessimistic semivectorial bilevel control
problems as bilevel problems where the lower level is a scalar optimization
problem which admits a unique solution, using scalarization techniques as in [17].
So we are able to give optimality conditions for the lower level problem in the
general case (supposing that the leader’s controls are bounded) using Pontryagin
maximum principle. This theoretically allows to obtain under suitable conditions the
dependence of the optimal control on the leader’s variables. However, this approach
is very difficult to apply because one needs to solve a bilocal problem. That is why
we consider the particular but important case when the followers’ problem is linear-
quadratic. In this case we show that using a resolvent matrix obtained from data,
we can explicitly solve the bilocal problem and express the optimal control and
the state as functions of leader’s variables, and we show that these dependencies
are continuously differentiable. Finally we present optimality conditions for the
upper levels of the optimistic and pessimistic problems.

4.2 Preliminaries and Problem Statement

All the assumptions and notations considered in this section and introduced in [17]
will be kept throughout this paper.

For the leader we denote by Jl the scalar objective, by ul the control function and
by Ul the set of admissible controls. For the followers we denote by Jf = (J1, . . . ,Jp)
the vector objective (p-scalar objectives) and by uf = (u1, . . . ,up) the control
function whose values belong to the set Uf = U1 × ·· ·×Up ⊆ R

mf = R
m1 × ·· ·×

R
mp . Uf is assumed to be nonempty, closed and convex, and 0 ∈ Uf. Real numbers

t0,T are fixed (t0 < T ) and represent respectively the initial time and an upper bound
of the final time. The set of final time values T = [t, t̄ ] ⊂]t0,T [, where t ≤ t̄. The
final time, denoted by t1 ∈T , may be variable and it is decided by the leader; hence
t1 is fixed in the followers’ problem. We assume that

Ul ⊂ Lml
2 ([t0,T ]) is closed, nonempty and convex. (4.1)
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For each fixed (t1,ul) ∈ T × Ul , the followers have to solve the following
parametric multiobjective control problem, called lower level problem:

(LL)(t1,ul )

{
MIN

(uf,x)
Jf(t1,ul ,uf,x)

subject to (uf,x) verifies (4.2)–(4.5)

uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ], (4.2)

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1], (4.3)

x(t0) = x0, (4.4)

x(t1) ∈ F , (4.5)

where A : [t0,T ]→R
n×n, Bl : [t0,T ]→R

n×ml and Bf : [t0,T ]→R
n×mf are continuous

matrix-valued functions and the control function uf = (u1, . . . ,up) ∈ L
mf
2 ([t0,T ]) =

Lm1
2 ([t0,T ])×·· ·×L

mp
2 ([t0,T ]).

Lm
2 ([t0,T ]) stands for the usual Hilbert space of equivalence classes (two

functions are equivalent iff they coincide a.e.) of (Lebesgue) measurable functions
u from [t0,T ] to R

m, such that the function t �→ uT (t)u(t) is (Lebesgue) integrable

over [t0,T ] endowed with the norm ‖u‖2 :=

(∫ T

t0
uT (t)u(t)dt

)1/2

. The target set

F ⊂ R
n is assumed to be closed, convex and nonempty.

The initial state x0 ∈ R
n is specified.

For each u = (t1,ul ,uf) ∈ T × Lml
2 ([t0,T ]) × L

mf
2 ([t0,T ]), under the above

assumptions, there exists a unique solution (in the sense of Carathéodory) xu of
the Cauchy problem (4.3) and (4.4), and xu ∈ Hn

1 ([t0, t1]). Hn
1 ([t0, t1]) stands for the

Hilbert space of absolutely continuous functions from [t0, t1] to R
n with derivative

in Ln
2([t0, t1]) endowed with the norm x �→ ‖x‖ := (‖ẋ‖2

2 + ‖x‖2
2)

1/2.
The feasible set S (t1,ul) for the problem (LL)(t1,ul )

is defined in the following
way:

S (t1,ul) = {(uf,x) ∈ L
m f
2 ([t0,T ])×Hn

1 ([t0, t1])| (uf,x) verifies relations (4.2)–(4.5)}.
(4.6)

Thus, problem (LL)(t1,ul) can be written as

(LL)(t1,ul )
MIN

(uf ,x)∈S (t1,ul )
Jf(t1,ul ,uf,x).

Next we give the following standard definitions.

Definition 4.1. For problem (LL)(t1,ul ) the element (ūf, x̄) ∈ S (t1,ul) is said
to be

• An efficient (or Pareto) control process if there is no element (uf,x) ∈ S (t1,ul)
satisfying
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∀i ∈ {1, . . . , p} Ji(t1,ul ,uf,x)≤ Ji(t1,ul , ūf, x̄)

and

∃i0 ∈ {1, . . . , p} Ji0(t1,ul ,uf,x)< Ji0(t1,ul , ūf, x̄).

• A weakly efficient (or weakly Pareto) control process if there is no element
(uf,x) ∈ S (t1,ul) satisfying

∀i ∈ {1, . . . , p} Ji(t1,ul ,uf,x)< Ji(t1,ul , ūf, x̄).

• A properly efficient (or properly Pareto) control process (see [34] or [19, 38]
for generalizations) if it is an efficient control process and there exists a real
number M > 0 so that for every i ∈ {1, . . . , p} and every (uf,x) ∈ S (t1,ul)
with Ji(t1,ul ,uf,x) < Ji(t1,ul , ūf, x̄) at least one k ∈ {1, . . . , p} exists with
Jk(t1,ul ,uf,x)> Jk(t1,ul , ūf, x̄) and

Ji(t1,ul , ūf, x̄)− Ji(t1,ul ,uf,x)
Jk(t1,ul ,uf,x)− Jk(t1,ul , ūf, x̄)

≤ M.

In the sequel the symbol σ ∈ {e,we, pe} stands for “efficient” when σ = e, “weakly
efficient” when σ = we and “properly efficient” when σ = pe.

The set of all σ -control processes associated to problem (LL)(t1,ul) will be
denoted by Pσ (t1,ul).

Finally we consider the following semivectorial bilevel optimal control problems:

(OSVBC)σ min
(t1,ul )∈T ×Ul

min
(uf,x)∈Pσ (t1,ul)

Jl(t1,ul ,uf,x)

called optimistic semivectorial bilevel control problem and

(PSVBC)σ min
(t1,ul )∈T ×Ul

sup
(uf,x)∈Pσ (t1,ul)

Jl(t1,ul ,uf,x)

called pessimistic semivectorial bilevel control problem.

Remark 4.2. Note that the terminal time t1 is fixed for the lower level problem, but
it is a decision variable for the leader. Of course, a particular case can be obtained
when the terminal time t1 is fixed for the leader too, i.e. when T = {t1}.

Remark 4.3. (LL)(t1,ul)
may be also considered as the problem to be solved by

the grand coalition of a p-player cooperative differential game (see [35] and its
extensive references list) where the functional Ji and the control ui represent the
payoff and the control of the player number i, i ∈ {1, . . . , p}. Then, our optimistic
semivectorial bilevel problem corresponds to a strong Stackelberg problem in
which, for any choice of (t1,ul), the leader can force the followers to choose
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amongst the σ -control processes one which minimizes the leader payoff. On the
other hand, the pessimistic semivectorial bilevel problem corresponds to a weak
Stackelberg problem in which, for any choice of the leader variables (t1,ul), the
followers could choose amongst the σ -control processes one which is the worst for
the leader.

We assume that for all t1 ∈ [t0,T ] and all (ul ,uf,x) ∈ Lml
2 ([t0,T ])× L

mf
2 ([t0,T ])×

Hn
1 ([t0, t1]), we have

Jl(t1,ul ,uf,x) =
∫ t1

t0
fl(t,ul(t),uf(t),x(t))dt,

and also, for all i ∈ {1, . . . , p},

Ji(t1,ul ,uf,x) = ψi(x(t1))+
∫ t1

t0
fi(t,ul(t),uf(t),x(t))dt,

where, for all i ∈ {1, . . . , p}, the functions ψi,ψl : Rn → R, fi, fl : [t0,T ]×R
ml ×

R
mf ×R

n →R verify the following preliminary assumptions :

(PA )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ψi, fi, fl are continuously differentiable;
• there exist integrable functions ai, al : [t0,T ]→ R and real numbers

bi,bl ,ci,cl ,di,dl , such that, for all (t,ul,uf,x) ∈ [t0,T ]×R
ml×R

mf ×R
n,

fi(t,ul ,uf,x)� ai(t)+ bixT x+ ciuT
l ul + diuf

T uf,

fl(t,ul ,uf,x)� al(t)+ blxT x+ cluT
l ul + dluf

T uf;
• ψi is a convex function;
• for each fixed t ∈ [t0,T ], the function fi(t, ·, ·, ·) is convex

on R
ml ×R

mf ×R
n.

4.3 The Lower Level Problem

Let t1 ∈T be fixed, and let Φ : [t0, t1]× [t0, t1]→R
n×n be the matrix-valued function

satisfying for each s ∈ [t0, t1]

∀t ∈ [t0, t1]
∂Φ
∂ t

(t,s) = A(t)Φ(t,s) (4.7)

Φ(s,s) = In (4.8)

where In is the identity matrix.
Since, for each (ul ,uf)∈Lml

2 ([t0,T ])×L
mf
2 ([t0,T ]), the unique solution x(t1,ul ,uf) ∈

Hn
1 ([t0, t1]) of the Cauchy problem (4.3) and (4.4) is given by
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∀t ∈ [t0, t1] x(t1,ul ,uf)
(t) = Φ(t, t0)x0 +

∫ t

t0
Φ(t,s)(Bl(s)ul(s)+Bf(s)uf(s))ds,

it is clear that the map (ul ,uf) �→ x(t1,ul ,uf)
is affine from Lml

2 ([t0,T ])×L
mf
2 ([t0,T ])

to Hn
1 ([t0, t1]). Moreover, using Cauchy–Schwartz inequality, we obtain easily that

the map (ul ,uf) �→ x(t1,ul ,uf) is also continuous from Lml
2 ([t0,T ])× L

mf
2 ([t0,T ]) to

Hn
1 ([t0, t1]).
For each i = 1, . . . , p, consider the functional

(ul ,uf) �→ J̃i(t1,ul ,uf) := Ji(t1,ul ,uf,x(t1,ul ,uf)
). (4.9)

Define also

(ul ,uf) �→ J̃l(t1,ul ,uf) := Jl(t1,ul ,uf,x(t1,ul ,uf)). (4.10)

From [17, Lemmas 1 and 2] and the fact that x(t1,·,·) is continuous and affine from

Lml
2 ([t0,T ])×L

mf
2 ([t0,T ]) to Hn

1 ([t0, t1]), we obtain the following.

Lemma 4.4. For each i = 1, . . . , p, the functional J̃i(t1, ·, ·) : Lml
2 ([t0,T ])×L

mf
2 ([t0,

T ])→ R∪{+∞} is well defined, lower semicontinuous and convex.
Also J̃l(t1, ·, ·) : Lml

2 ([t0,T ])×L
mf
2 ([t0,T ])→R∪{+∞} is well defined and lower

semicontinuous.

For each (t1,ul) ∈ T ×Ul [see (4.1)], denote

U f (t1,ul) = {uf ∈ L
mf
2 ([t0,T ])| uf(t) ∈ Uf a.e. on [t0,T ], (4.11)

uf(t) = 0 a.e. on [t1,T ], x(t1,ul ,uf)(t1) ∈ F}.

For each (t1,ul) ∈ R× Lml
2 ([t0,T ]) \T ×Ul we put U f (t1,ul) = /0. Thus U f is a

set-valued function U f : R×Lml
2 ([t0,T ])⇒ L

mf
2 ([t0,T ]).

Recall that

dom (U f ) := {(t1,ul) ∈ R×Lml
2 ([t0,T ])| U f (t1,ul) �= /0}

and

Gr(U f ) = {(t1,ul ,uf) ∈ R×Lml
2 ([t0,T ])×L

mf
2 ([t0,T ])| uf ∈ U f (t1,ul)}.

We will assume in the sequel that
(H ) dom (U f ) = T ×Ul .

Proposition 4.5. Each of the following is a sufficient condition for (H ):

(a) F = R
n.

(b) For each t1 ∈ T , the linear system
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ẋ(t) = A(t)x(t)+Bf(t)uf(t),x(t0) = 0, uf(t) ∈ Uf a.e. on [t0, t1]

is controllable, i.e. for any x1 ∈ R
n, there exists uf ∈ L

mf
2 ([t0, t1]) such that

uf(t) ∈ Uf a.e. on [t0, t1], and the corresponding solution verifies x(t1) = x1.

Proof. It is easy to adapt the proof given in [17, Proposition 1], where the initial
condition is x(t0) = x0 (instead of x(t0) = 0 as above). �
It can be easily proved that U f (t1,ul) is a convex subset of L

mf
2 ([t0,T ]). Thus the

problem (LL)(t1,ul)
can be rewritten as a p-objective convex optimization problem:

(M)(t1,ul)

{
MIN

uf
(J̃1(t1,ul ,uf), . . . , J̃p(t1,ul ,uf))

subject to uf ∈ U f (t1,ul).

Definition 4.6. Let σ ∈ {e, we, pe}. An element uf ∈ L
mf
2 ([t0,T ]) will be called

σ -control of problem (M)(t1,ul )
iff (uf,x(t1,ul ,uf)

) is a σ -control process of problem
(LL)(t1,ul )

. We will denote Eσ (t1,ul) the set of all σ -controls of the p-objective
optimization problem (M)(t1,ul)

.

Thus, using Lemma 4.4 and the well-known scalarization results from vector
optimization [38, p. 302] we obtain the following.

Theorem 4.7 (see [17]). Let (t1,ul) ∈ T ×Ul and ûf ∈ U f (t1,ul), where Ul and
U f are given in (4.1) and (4.11), respectively. The control process (ûf,x(t1,ul ,ûf))
is weakly (resp. properly) efficient for problem (LL)(t1,ul ) if and only if there exist
nonnegative real numbers (resp. positive real numbers) θ1, . . . ,θp with ∑p

i=1 θi = 1
such that ûf is an optimal control for the classical scalar optimal control problem:

(S)(θ1,...,θp,t1,ul )

⎧⎨
⎩min

uf

p

∑
i=1

θiJ̃i(t1,ul ,uf)

subject to uf ∈ U f (t1,ul).

In the sequel we need the following sets:

Θσ =

⎧⎨
⎩

{(θ1, . . . ,θp) ∈]0,1[p|∑p
i=1 θi = 1} if σ = pe

{(θ1, . . . ,θp) ∈ [0,1]p|∑p
i=1 θi = 1} if σ = we

(4.12)

and the following hypotheses:

Hσ (t1) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∃i ∈ {1, . . . , p}) (∀(t,v,x) ∈ [t0, t1]×R
ml ×R

n
)

uf �→ fi(t,v,uf,x) is strictly convex on R
m if σ = pe

(∀i ∈ {1, . . . , p}) (∀(t,v,x) ∈ [t0, t1]×R
ml ×R

n
)

uf �→ fi(t,v,uf,x) is strictly convex on R
m if σ = we
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and

(Hc)σ :

{
∀i ∈ {1, . . . , p} : ψi � 0, bi = ci = 0, di � 0, ∑p

j=1 d j > 0 if σ = pe

∀i ∈ {1, . . . , p} : ψi � 0, bi = ci = 0, di > 0 if σ = we,

where bi,ci,di have been introduced in the preliminary assumptions (PA ).

Theorem 4.8 (see [17]). Let σ ∈ {we, pe} and (t1,ul) ∈ T × Ul . Assume that
Hσ (t1) holds. Moreover, suppose that at least one of the following hypotheses
holds:

(i) Uf is bounded.
(ii) (Hc)σ .

Then, for each θ = (θ1, . . . ,θp) ∈ Θσ , there exists a unique optimal control
uf(θ , t1,ul , ·) ∈ U f (t1,ul) of the scalar problem (S)(θ ,t1,ul )

.

It is obvious that according to Theorem 4.7, uf(θ , t1,ul , ·) is a σ -control for
multiobjective problem (M)(t1,ul). Moreover, Theorem 4.7 implies also that for
each σ -control uf ∈ U f (t1,ul) of the multiobjective problem (M)(t1,ul ), there exists
θ ∈Θσ such that uf is the unique optimal control of the scalar problem (S)(θ ,t1,ul).

Thus we can state the following.

Corollary 4.9. Let (t1,ul) ∈ T ×Ul . Under the hypotheses of Theorem 4.8 we
have that the correspondence θ �→ uf(θ , t1,ul , ·) is a surjection from Θσ to the set
Eσ (t1,ul).

In the sequel we will keep all the hypotheses of Theorem 4.8 in addition to the
preliminary assumptions (PA ).

4.4 Equivalent Formulations of Problems (OSVBC)σ
and (PSVBC)σ

Consider, for each (θ , t1,ul) ∈ Θσ ×T ×Ul ⊂ R
p ×R×Lml

2 ([t0,T ]), the function
F(θ , t1,ul , ·) : U f (t1,ul)→R defined by

∀uf ∈ U f (t1,ul) F(θ , t1,ul ,uf) :=
p

∑
i=1

θiJ̃i(t1,ul ,uf),

where U f (t1,ul) and J̃i are given respectively in (4.11) and (4.9).
Note that problem (OSVBC)σ can be written equivalently as an optimistic

semivectorial bilevel optimization problem:

(OSVB)σ min
(t1,ul)∈T ×Ul

min
uf∈Eσ (t1,ul)

J̃l(t1,ul,uf).
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According to Theorem 4.8, for each (θ , t1,ul) ∈Θσ ×T ×Ul , there exists a unique
minimizer uf(θ , t1,ul , ·) ∈ U f (t1,ul) of F(θ , t1,ul , ·) over U f (t1,ul). According to
Corollary 4.9, for each (t1,ul) ∈ T ×Ul, we have

Eσ (t1,ul) =
⋃

θ∈Θσ

{uf(θ , t1,ul , ·)}. (4.13)

Then we obviously have the following.

Proposition 4.10 (see [17]). Problem (OSVB)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

min
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·)).

Thus, the optimistic semivectorial problem (OSVB)σ can be rewritten as an
optimistic bilevel optimization problem (also called strong Stackelberg problem):

(OB)σ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(t1,ul )∈T ×Ul

min
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·))

where uf(θ , t1,ul , ·) is the unique minimizer to the problem

(S)(θ ,t1,ul)
: min

uf∈U f (t1,ul )
F(θ , t1,ul ,uf).

Here the upper and lower levels are given by scalar optimization problems and the
lower level admits a unique solution.

In the same way the pessimistic semivectorial problem can be rewritten as a
pessimistic bilevel optimization problem (leading to a so-called weak Stackelberg
problem; see [20] where this terminology was introduced).

Proposition 4.11 (see [17]). Problem (PSVBC)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

sup
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·)).

Finally, we can rewrite that problem as

(PB)σ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
(t1,ul )∈T ×Ul

sup
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·))
where uf(θ , t1,ul , ·) is the unique minimizer of the problem

(S)(θ ,t1,ul)
: min

uf∈U f (t1,ul )
F(θ , t1,ul ,uf).
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4.5 Necessary and Sufficient Conditions for the Scalarized
Lower Level Problem

Let (t1,ul) ∈ T ×Ul and θ = (θ1, . . . ,θp) ∈ Θσ be given. The scalarized problem
(S)(θ ,t1,ul) can be written as

min
(uf,x)∈L

m f
2 ([t0,T ])×Hn

1 ([t0,t1])

[
p

∑
i=1

θiψi(x(t1))+
∫ t1

t0

(
p

∑
i=1

θi fi(t,ul(t),uf(t),x(t))

)
dt

]

s.t. uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ],

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1]

x(t0) = x0

x(t1) ∈ F .

Let H : [t0, t1]×R
ml ×R

mf ×R
n×R×R

n →R be the Hamilton-Pontryagin function
associated to this control problem (see, e.g. [2] or [39]) defined by

H(t,ul,uf,x,λ0,λ ) = λ T
(

A(t)x+Bl(t)ul +Bf(t)uf

)
−λ0

p

∑
i=1

θi fi(t,ul ,uf,x).

Let λ (·) = (λ1(·), . . . ,λn(·)) ∈W n
1,∞([t0, t1]) be the adjoint function, where W n

1,∞([t0,
t1]) is the Banach space of absolutely continuous functions from [t0, t1] to R

n

having derivative in the Banach space Ln
∞([t0, t1]) of essentially bounded measurable

functions (see, e.g. [21] for details).
Since we use L2 controls, and the Pontryagin maximum principle usually uses

controls in L∞, we will consider two particular situations in order to be able to get
necessary and sufficient conditions for problem (S)(θ ,t1,ul ), as stated below.

4.5.1 The Case When Uf Is Bounded
and Ul ⊂ Lml∞ ([t0,T ])∩Lml

2 ([t0,T ])

In this subsection we assume the set Uf is bounded (and closed, convex with
nonempty interior) and the leader’s controls are essentially bounded, i.e. Ul ⊂
Lml∞ ([t0,T ]) ∩ Lml

2 ([t0,T ]). Also, suppose the target set F = {x ∈ R
n|Gx = a},

where the matrix G ∈ R
k×n, and a ∈ R

k are given. Moreover we assume that
rank(G) = k > 0. However the results presented in this subsection are also valid
when F = R

n by taking G = 0, a = 0.
We obtain the following.



56 H. Bonnel and J. Morgan

Theorem 4.12 (Necessary conditions). Let (uf∗,x∗)∈ L
mf
2 ([t0,T ])×Hn

1 ([t0, t1]) be
an optimal control process for problem (S)(θ ,t1,ul ). Then there exist λ (·) ∈ W n

1,∞([t0,

t1]), a nonnegative real number λ0 and a vector v ∈ R
k with (λ (·),λ0,v) �= 0 such

that

λ̇ T (t) =−λ T (t)A(t)+λ0

p

∑
i=1

θi
∂ fi

∂x
(t,ul(t),uf∗(t),x∗(t)) , a.e. on [t0, t1] (4.14)

λ T (t1) =−λ0

p

∑
i=1

θi
∂ψi

∂x
(x∗(t1))+ vT G , (4.15)

and, for almost all t ∈ [t0, t1],

H(t,ul(t),uf∗(t),x∗(t),λ0,λ (t)) = max
vf∈Uf

H(t,ul(t),vf,x∗(t),λ0,λ (t)). (4.16)

Moreover, if the linearized system

ẋ(t) = A(t)x(t)+Bf(t)uf(t) a.e. on [t0, t1] (4.17)

x(t0) = 0 (4.18)

is controllable,1 then we can take above λ0 = 1.

Sufficient conditions. Let (x∗,uf∗) ∈ Hn
1 ([t0, t1]) × L

mf
2 ([t0,T ]) verifying

(4.2)–(4.5). If there exist λ (·) ∈ W n
1,∞([t0, t1]) and v ∈ R

k such that (4.14)–(4.16)
are verified with λ0 = 1, then (x∗,uf∗) is an optimal control process for problem
(S)(θ ,t1,ul)

.

Proof. Since Uf is bounded, {uf(·) ∈ L
mf
2 ([t0,T ])|uf(t) ∈ Uf} ⊂ L

mf
∞ ([t0,T ]). For

the same reason ul(·) ∈ Lml∞ ([t0, t1]). Thus we have uf∗ ∈ L
mf
∞ ([t0,T ]); hence x∗ ∈

W n
1,∞([t0, t1]) and λ (·) ∈W n

1,∞([t0, t1]). Therefore we can apply [39, Theorem 5.19]
to obtain the first part (necessary conditions). Note that [39, Theorem 5.19] is stated
for autonomous systems, but the same proof apply for non-autonomous systems.

For the second part (sufficiency conditions) we can use [39, Theorem 5.22] which
also holds for non-autonomous systems with the same proof. �

Remark 4.13. Since Uf is convex and closed and H is concave w.r.t. uf, relation
(4.16) can equivalently be written as a variational inequality:

∀vf ∈ Uf

(
λ T (t)Bf(t)−λ0

p

∑
i=1

θi
∂ fi

∂uf
(t,ul(t),uf∗(t),x∗(t)

)
(vf −uf∗(t))≤ 0

a.e. on [t0, t1].

1If A and Bf do not depend on t , it is well known that this system is controllable if, and only if,
rank (Bf,ABf,A2Bf, . . .,An−1Bf) = n.
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Finally, we can conclude the following.

Corollary 4.14. Let (t1,ul)∈Ul , and let θ ∈Θσ . Assume that the linearized system
(4.17) and (4.18) is controllable. Let uf ∈ L

mf
2 ([t0,T ]). Then uf(·) = uf(θ , t1,ul , ·)

(i.e. uf is the unique optimal control for problem S(θ ,t1,ul) presented in Theorem 4.8)
if, and only if, there exists

(
x(·),λ (·),v) ∈ Hn

1 ([t0, t1])×W n
1,∞([t0, t1])×R

k such that

uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ], (4.19)

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1], (4.20)

x(t0) = x0, (4.21)

Gx(t1) = a, (4.22)

λ̇ T (t) = −λ T (t)A(t)+
p

∑
i=1

θi
∂ fi

∂x
(t,ul(t),uf(t),x(t)) a.e. on [t0, t1], (4.23)

λ T (t1) = −
p

∑
i=1

θi
∂ψi

∂x
(x(t1))+ vT G , (4.24)

and, for almost all t ∈ [t0, t1],

∀vf ∈ Uf

(
λ T (t)Bf(t)−

p

∑
i=1

θi
∂ fi

∂uf
(t,ul(t),uf(t),x∗(t)

)
(vf−uf(t))≤ 0. (4.25)

4.5.2 The Case Uf = R
m f : The Followers Problem

Is Linear-Quadratic; Explicit Expressions of
uf(θ , t1,ul, ·) and x(t1,ul ,uf(θ ,t1,ul ,·))

In this subsection we consider the case when Uf = R
mf , Ul is an arbitrary closed,

convex set with nonempty interior in Lml
2 ([t0,T ]) and the endpoint is free, i.e. the

target set F =R
n. The objectives of the followers are quadratic, i.e. for i = 1, . . . , p,

and (t,ul ,uf,x) ∈ [t0,T ]×R
ml ×R

mf ×R
n

fi(t,ul ,uf,x) = xT Qi(t)x+uf
T Ri(t)uf,

where Qi(·) : [t0,T ] → R
n×n and Ri(·) : [t0,T ] → R

mf ×mf are continuous positive
semidefinite matrix-valued functions.

Also

ψi(x) = xT Q f
i x,

where Q f
i is a symmetric positive semidefinite matrix.
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Moreover we make the following assumption:

(HLQP)σ :

{
∀(i, t) ∈ {1, . . . , p}× [t0,T ] Ri(t)> 0 if σ = we,

(∃i ∈ {1, . . . , p})(∀t ∈ [t0,T ]) Ri(t)> 0 if σ = pe.

Note that this particular choice of fi and ψi agrees with all the assumptions (PA ).
Let us denote

Q(θ , ·) =
p

∑
i=1

θiQi(·); R(θ , ·) =
p

∑
i=1

θiRi(·); Q f (θ ) =
p

∑
i=1

θiQ
f
i .

Thus, the scalarized problem (S)(θ ,t1,ul)
becomes the linear-quadratic problem

(LQP)

⎧⎪⎪⎨
⎪⎪⎩

min
(

x(t1)
T Q f (θ )x(t1)+

∫ t1

t0
(x(t)T Q(θ , t)x(t)+uf(t)

T R(θ , t)uf(t))dt
)

s.t. ẋ(t) = A(t)x(t)+Bf(t)uf(t)+Bl(t)ul(t) a.e. on [t0, t1],
x(t0) = x0.

We have the following result which is probably known also for L2 controls, but we
will present a proof for the sake of completeness.

Theorem 4.15. Let (x∗(·),uf∗(·)) ∈ Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) verify the differential

system and the initial condition for problem (LQP). Then the control process
(x∗(·),uf∗(·)) is optimal for problem (LQP) if, and only if, there exists a function
λ (·) ∈ Hn

1 ([t0, t1]) such that

λ̇ T (t) = −λ T (t)A(t)− xT
∗ (t)Q(θ , t) a.e. on [t0, t1], (4.26)

λ T (t1) = xT
∗ (t1)Q

f (θ ), (4.27)

uf∗(t) = −R−1(θ , t)Bf
T (t)λ (t) a.e. on [t0, t1]. (4.28)

Proof. Assume that λ (·) ∈ Hn
1 ([t0, t1]) verifies (4.26)–(4.28). Let (x,uf) ∈

Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) verify the differential system and the initial condition for

problem (LQP). We have for almost all t ∈ [t0, t1]

d
dt

(
λ T (t)(x(t)− x∗(t))

)
= λ̇ T (t)(x(t)− x∗(t))+λ T (t)(ẋ(t)− ẋ∗(t))

= − (λ T (t)A(t)+ xT
∗ (t)Q(θ , t))(x(t)− x∗(t))

+λ T (t)
(

A(t)(x(t)− x∗(t))+Bf(t)(uf(t)−uf∗(t))
)

= − xT
∗ (t)Q(θ , t)(x(t)− x∗(t))−uf

T
∗ (t)R(θ , t)(uf(t)−uf∗(t)).
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With the initial condition for x(·),x∗(·) and final condition for λ (·) we get by
integration

xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1)) =−
∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t))

)
dt.

(4.29)

Denote

J(x(·),uf(·)) =
(

x(t1)
T Q f (θ )x(t1)+

∫ t1

t0
(x(t)T Q(θ , t)x(t)+uf(t)

T R(θ , t)uf(t))dt
)
.

For any symmetric positive semidefinite matrix P and for all vectors v,v∗, we
obviously have

vT Pv− vT
∗ Pv∗ ≥ 2vT

∗ P(v− v∗).

Therefore

J(x(·),uf(·))− J(x∗(·),uf∗(·))≥2
[
xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1))

+

∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t))

)
dt
]
.

From (4.29) the last expression is zero; hence J(x(·),u(·))− J(x∗(·),uf∗(·)) ≥ 0.
Thus (x∗(·),uf∗(·)) is an optimal control process for problem (SQP).

Conversely, let (x∗(·),uf∗(·)) ∈ Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) be a solution of (LQP)

(which exists and is unique according to Theorem 4.8). Let λ (·) ∈ Hn
1 ([t0, t1]) be

the solution of the linear system (4.26) verifying the final condition (4.27). For any
uf(·) ∈ L

mf
2 ([t0, t1]), denoting by x(·) the corresponding solution of the differential

system and the initial condition for problem (LQP), we have (using a similar
calculus as before)

λ T (t1)(x(t1)− x∗(t1)) =−
∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+λ T (t)Bf(t)(uf(t)−uf∗(t))
)

dt.

On the other, using the fact that the directional derivative of J at the optimal point
(x∗(·),uf∗(·)) in the direction (x(·),uf(·))− (x∗(·),uf∗(·)) is positive we have
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xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1))+
∫ t1

t0
(xT

∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t)))dt ≥ 0.

Finally we obtain

∫ t1

t0
(λ T (t)Bf(t)−uf

T
∗ (t)R(θ , t))(uf(t)−uf∗(t)))dt ≤ 0.

Since uf(·) can be arbitrarily chosen in L
mf
2 ([t0, t1]), we obtain that (4.28) is satisfied.

�
Next we will show that, in the linear-quadratic case, it is possible to compute
explicitly the optimal control and state as a function of the parameters θ , t1, ul by
means of a 2n× 2n resolvent matrix of a linear differential system based on data.
This fact will allow us to find explicit optimality conditions for our bilevel problems.

Recall that uf(θ , t1,ul , ·) denotes the unique optimal control of the scalarized
problem (S)(θ ,t1,ul). The corresponding unique state and adjoint state (verifying
Theorem 4.15) will be denoted by x(θ , t1,ul , ·) and λ (θ , t1,ul , ·).

To be more precise, the functions x(θ , t1,ul , ·) and λ (θ , t1,ul , ·) verify the
following boundary linear problem:

∂x
∂ t

(θ , t1,ul , t) =A(t)x(θ , t1,ul , t)−Bf(t)R
−1(θ , t)Bf(t)

T λ (θ , t1,ul , t)

+Bl(t)ul(t) a.e. on [t0, t1], (4.30)

∂λ
∂ t

(θ , t1,ul , t) =−A(t)T λ (θ , t1,ul , t)−Q(θ , t)x(θ , t1,ul , t) a.e. on [t0, t1],

(4.31)

x(θ , t1,ul , t0) =x0, (4.32)

λ (θ , t1,ul , t1) =Q f (θ )x(θ , t1,ul , t1) (4.33)

and

uf(θ , t1,ul , t) =−R−1(θ , t)Bf
T (t)λ (θ , t1,ul , t) a.e. on [t0, t1]. (4.34)

Given t1 ∈ T and θ ∈Θσ , consider the matrix-valued function P(θ , t1, ·) : [t0, t1]→
R

n×n which, under our hypotheses about matrices Q f (θ ), Q(θ , t), R(θ , t), is the
unique continuously differentiable solution (see, e.g. [1]) of the Riccati matrix
differential equation (RMDE) on [t0, t1]:

∂P
∂ t

(θ , t1, t) = −A(t)T P(θ , t1, t)−P(θ , t1, t)A(t)−Q(θ , t)

+P(θ , t1, t)Bf(t)R(θ , t)−1Bf(t)
T P(θ , t1, t)
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satisfying the final time condition

P(θ , t1, t1) = Q f (θ ). (4.35)

Moreover, P(θ , t1, t) is a symmetric positive definite matrix for each t.
Following [18] we can express P in terms of a resolvent matrix depending

directly on data. Thus consider for all (θ , t) ∈Θσ × [t0, t1] the 2n×2n matrix which
defines the linear system (4.30) and (4.31)

L(θ , t) =

⎛
⎝ A(t) −Bf(t)R−1(θ , t)Bf

T (t)

−Q(θ , t) −AT (t)

⎞
⎠ .

The proof of the following result can be found in [18].

Proposition 4.16. Let Ψ(θ , ·, ·) be the resolvent (or state transition) matrix asso-
ciated to the linear differential system defined by L(θ , t), i.e. for each s ∈ [t0,T ],
Ψ(θ , ·,s) satisfies the Cauchy problem:

∂Ψ
∂ t

(θ , t,s) = L(θ , t)Ψ (θ , t,s), t ∈ [t0,T ], Ψ(θ ,s,s) = I2n.

Let us divide the matrix Ψ(θ , t,s) into four n× n blocks:

Ψ (θ , t,s) =
(

Ψ11(θ , t,s) Ψ12(θ , t,s)
Ψ21(θ , t,s) Ψ22(θ , t,s)

)
.

Then, for all t ∈ [t0, t1], the matrix [Ψ11(θ , t, t1) +Ψ12(θ , t, t1)Q f (θ )] is invertible
and

P(θ ,t1,t) =
[
Ψ21(θ ,t,t1)+Ψ22(θ ,t,t1)Q f (θ)

][
Ψ11(θ ,t,t1)+Ψ12(θ ,t,t1)Q f (θ)

]−1
.

(4.36)

Next, let us denote by ξ (θ , t1,ul , ·)∈Hn
1 ([t0, t1]) the unique solution of the following

linear Cauchy problem:

∂ξ
∂ t

(θ , t1,ul , t) =
(−A(t)T +P(θ , t1, t)Bf(t)R

−1(θ , t)Bf(t)
)
ξ (θ , t1,ul , t)

−P(θ , t1, t)Bl(t)ul(t) a.e. on [t0, t1], (4.37)

ξ (θ , t1,ul , t1) =0. (4.38)

Lemma 4.17. For all t ∈ [t0, t1] we have

λ (θ , t1,ul , t) = P(θ , t1, t)x(θ , t1,ul , t)+ ξ (θ , t1,ul , t). (4.39)
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Proof. Computing the derivative
∂
∂ t

(
λ (θ , t1,ul , t) − P(θ , t1, t)x(θ , t1,ul , t) − ξ

(θ , t1,ul , t)
)

and then, using (4.30)–(4.33), (RMDE), (4.35), (4.37), and (4.38), the

result follows easily. �
Denote by Ξ(θ , t1, ·, ·) the resolvent matrix associated to (4.37), i.e. for all (θ , t1,s)∈
Θσ ×T × [t0,T ]

∂Ξ
∂ t

(θ , t1, t,s) =
(−A(t)T +P(θ , t1, t)Bf(t)R

−1(θ , t)Bf(t)
)
Ξ(θ , t1, t,s), t ∈ [t0,T ]

(4.40)

Ξ(θ , t1,s,s) = In. (4.41)

Based on this we are able to solve the boundary problem (4.30)–(4.33) in terms of
data.

Corollary 4.18. For all (θ , t1,ul) ∈Θσ ×T ×Lml
2 ([t0,T ]) and for all t ∈ [t0, t1] we

have

⎛
⎝ x(θ , t1,ul , t)

λ (θ , t1,ul , t)

⎞
⎠=Ψ (θ , t, t0)

⎛
⎝ x0

P(θ , t1, t0)x0 + ξ (θ , t1,ul , t0)

⎞
⎠

+

∫ t

t0
Ψ(θ , t,s)

⎛
⎝Bl(s)ul(s)

0

⎞
⎠ds,

where

ξ (θ , t1,ul , t0) =
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)ul(s)ds.

Remark 4.19. The right-hand side member in the formulas giving x(θ , t1,ul , t) and
λ (θ , t1,ul , t) in Corollary 4.18 is defined for all (t1, t) ∈]t0,T [×[t0,T ] (and not only
for (t1, t) ∈ T × [t0, t1]) and for all θ belonging to an open convex set Ω with Θσ ⊆
Ω . Indeed, the formulas in Corollary 4.18 have a meaning as long as R(θ , t)> 0.

When σ = pe, by (HLQP)pe it is obvious that we can take Ω = R
p
++.

When σ = we, the continuous function [t0,T ]× R
mf � (t,u f ) �→ uf

T Ri(t)uf
attains its minimum value, say αi, on the compact set [t0,T ]× S, where S is the
unit sphere in R

mf , i = 1, . . . , p. According to (HLQP)we we have αi > 0 for all i.
Then, it is easy to see that we can take

Ω = {θ ∈R
p|

p

∑
i=1

θiαi > 0}.
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We will extend the functions x(·, ·, ·, ·) and λ (·, ·, ·, ·) based on these formulas as
continuous functions from Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ] to R
n. Moreover, based

on (4.34), we will extend also the function uf(·, ·, ·, ·) as a continuous function from
Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ] to R
mf . These extensions are necessary further in

order to obtain optimality conditions for the upper level.

Using the differentiability with respect to parameters of a differential equation and
some straightforward computation we have the following.

Proposition 4.20. The resolvent Ψ(·, ·, ·) is continuously differentiable on Ω ×
[t0,T ]× [t0,T ]. We have the following formulas for all (θ , t,s) ∈ Ω × [t0,T ]× [t0,T ]
and i = 1, . . . , p:

∂Ψ
∂θi

(θ , t,s) =
∫ t

s
Ψ (θ , t,τ)

∂L
∂θi

(θ ,τ)Ψ (θ ,τ,s)dτ, where (4.42)

∂L
∂θi

(θ , t) =

⎛
⎝ 0 Bf(t)R−1(θ , t)Ri(t)R−1(θ , t)Bf(t)T

−Qi(t) 0

⎞
⎠ , (4.43)

∂Ψ
∂ s

(θ , t,s) = −Ψ(θ , t,s)L(θ ,s). (4.44)

By (4.36) and the previous proposition we obtain immediately the following.

Proposition 4.21. The matrix-valued function P(·, ·, ·) is continuously differen-
tiable on Ω × [t0,T ]× [t0,T ] and verifies the following formulas:

∂P
∂θi

(θ , t1, t) =
[∂Ψ21

∂θi
(θ , t, t1)+

∂Ψ22

∂θi
(θ , t, t1)Q f (θ )+Ψ22(θ , t, t1)Q

f
i

]

×
[
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

−
[
Ψ21(θ , t, t1)+Ψ22(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

×
[∂Ψ11

∂θi
(θ , t, t1)+

∂Ψ12

∂θi
(θ , t, t1)Q f (θ )+Ψ12(θ , t, t1)Q

f
i

]

×
[
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

(4.45)

and

∂Ψ
∂θi

(θ , t,s) =

⎛
⎜⎜⎜⎝

∂Ψ11

∂θi
(θ , t,s)

∂Ψ12

∂θi
(θ , t,s)

∂Ψ21

∂θi
(θ , t,s)

∂Ψ22

∂θi
(θ , t,s)

⎞
⎟⎟⎟⎠ .
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Using an analogue calculus we obtain

∂P
∂ t1

(θ , t1, t)

=
[∂Ψ21

∂ t1
(θ , t, t1)+

∂Ψ22

∂ t1
(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

−
[
Ψ21(θ , t, t1)+Ψ22(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

×
[∂Ψ11

∂ t1
(θ , t, t1)+

∂Ψ12

∂ t1
(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1
.

(4.46)

The computation of
∂Ψi j

∂ t1
(θ , t, t1) can be obtained using (4.44):

⎛
⎜⎜⎜⎝

∂Ψ11

∂ t1
(θ , t, t1)

∂Ψ12

∂ t1
(θ , t, t1)

∂Ψ21

∂ t1
(θ , t, t1)

∂Ψ22

∂ t1
(θ , t, t1)

⎞
⎟⎟⎟⎠=−

⎛
⎜⎜⎝

Ψ11(θ , t, t1) Ψ12(θ , t, t1)

Ψ21(θ , t, t1) Ψ22(θ , t, t1)

⎞
⎟⎟⎠L(θ , t1).

(4.47)

Proposition 4.22. The resolvent Ξ(·, ·, ·, ·) is continuously differentiable on Ω ×
[t0,T ]× [t0,T ], and denoting

A (θ , t1, t) :=−A(t)T +P(θ , t1, t)Bf(t)R
−1(θ , t)Bf(t), (4.48)

we have

∂Ξ
∂θi

(θ , t1, t,s) =
∫ t

s
Ξ(θ , t1, t,τ)

∂A

∂θi
(θ , t1,τ)Ξ(θ , t1,τ,s)dτ, (4.49)

∂Ξ
∂ t1

(θ , t1, t,s) =
∫ t

s
Ξ(θ , t1, t,τ)

∂A

∂ t1
(θ , t1,τ)Ξ(θ , t1,τ,s)dτ, (4.50)

∂Ξ
∂ s

(θ , t1, t,s) = −Ξ(θ , t1, t,s)A (θ , t1,s). (4.51)

The computation of the partial derivatives of A (θ , t1, t) can be obtained using
(4.36), Proposition 4.21 and the obvious formulas:

∂
∂θi

R−1(θ , t) =−R−1(θ , t)Ri(t)R
−1(θ , t).

Proposition 4.23. For all (θ , t1) ∈ Ω×]t0,T [, the maps ul �→ x(θ , t1,ul , ·), ul �→
λ (θ , t1,ul , ·), respectively, ul �→ uf(θ , t1,ul , ·) are affine and continuous from Lml

2 ([t0,
T ]) to Hn

1 ([t0, t1]), respectively, from Lml
2 ([t0,T ]) to L

mf
2 ([t0,T ]). Therefore they are
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continuously Fréchet differentiable on Lml
2 ([t0,T ]) and, for any ul ∈ Lml

2 ([t0, t1]),
their Fréchet differentials (which are linear continuous maps from Lml

2 ([t0,T ]) to
Hn

1 ([t0, t1]) and, respectively, from Lml
2 ([t0,T ]) to L

mf
2 ([t0,T ])) verify for all h ∈

Lml
2 ([t0,T ]) and for all t ∈ [t0, t1]:

∂
∂ul

x(θ , t1,ul , t) ·h =Ψ12(θ , t, t0)
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)h(s)ds

+
∫ t

t0
Ψ11(θ , t,s)Bl(s)h(s)ds (4.52)

∂
∂ul

λ (θ , t1,ul , t) ·h =Ψ22(θ , t, t0)
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)h(s)ds

+

∫ t

t0
Ψ21(θ , t,s)Bl(s)h(s)ds (4.53)

∂
∂ul

uf(θ , t1,ul , t) ·h = −R−1(θ , t)Bf(t)
T ∂

∂ul
λ (θ , t1,ul , t) ·h, . (4.54)

Proof. It is easy to see from Corollary 4.18 and (4.30) and (4.31) that the maps
ul �→ x(θ , t1,ul , ·) and ul �→ λ (θ , t1,ul , ·) are affine and continuous from Lml

2 ([t0,T ])
to Hn

1 ([t0, t1]); hence (4.52) and (4.53) hold. Then, by (4.34), we obtain that the map
ul �→ uf(θ , t1,ul , ·) from Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) is affine and continuous and we

get (4.54). �
Theorem 4.24 (Regularity of uf(·, ·, ·, ·) and x(·, ·, ·, ·)).
1. The functions uf(·, ·, ·, ·) : Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ]→ R
mf and x(·, ·, ·, ·) :

Ω×]t0,T [×Lml
2 ([t0,T ])× [t0,T ]→R

n are continuous.
2. The function (θ , t1,ul) �→ uf(θ , t1,ul , ·) from Ω×]t0,T [×Lml

2 ([t0,T ]) to L
mf
2 ([t0,

T ]) is continuous as well as the function (θ , t1,ul) �→ x(θ , t1,ul , ·) from Ω×]t0,
T [×Lml

2 ([t0,T ]) to Ln
2([t0,T ]).

3. For each fixed (θ̄ , t̄1, ūl) ∈ Ω×]t0,T [×Lml
2 ([t0,T ]):

• The function θ �→ uf(θ , t̄1, ūl , ·) from Ω to L
mf
2 ([t0,T ]) and the function2

θ �→ x(θ , t̄1, ūl , ·) from Ω to Ln
2([t0,T ]) are continuously Fréchet differentiable

on Ω .
• The function ul �→ uf(θ̄ , t̄1,ul , ·) from Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) and the

function ul �→ x(θ̄ , t̄1,ul , ·) from Lml
2 ([t0,T ]) to Hn

1 ([t0,T ]) are continuously
Fréchet differentiable.

• The functions t1 �→uf(θ̄ , t1, ūl , ·) from ]t0,T [ to L
mf
2 ([t0,T ]) and t1 �→x(θ̄ , t1, ūl , ·)

from ]t0,T [ to Ln
2([t0,T ]) are a.e. differentiable on ]t0,T [, and for almost all

t1 ∈]t0,T [, ∂uf

∂ t1
(θ̄ , t̄1, ūl , ·) ∈ L

mf
2 ([t0,T ]) and

∂x
∂ t1

(θ̄ , t̄1, ūl , ·) ∈ Ln
2([t0,T ]).

2Note that the embedding Hn
1 ([t0,T ])⊂ Ln

2([t0,T ]) is continuous.
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Moreover, for each t1 ∈]t0,T [ such that ūl is continuous3 at t1, these
functions are differentiable in t1.

4. The functions uf(·, ·, ·, ·), x(·, ·, ·, ·) and their partial derivatives can be explicitly
represented as functions of data (supposing we are able to compute the resolvent
matrices Ψ and Ξ ).

Proof. By Corollary 4.18, Remark 4.19 and Propositions 4.20–4.23, we obtain
points 1 and 4.

To prove point 2 we will use the fact that, by Corollary 4.18, we can write

x(θ , t1,ul , t) = α(θ , t1, t)+
∫ T

t0
X(θ , t1, t,s)ul(s)ds,

where

α(θ , t1, t) =
(
Ψ11(θ , t, t0)+Ψ12P(θ , t1, t0)

)
x0

and X(θ , t1, t,s) is described later in relations (4.61) and (4.63). Obviously α :
Ω×]t0,T [×[t0,T ]→R

n is a continuous function, and for each s ∈ [t0,T ], X(·, ·, ·,s)
is continuous on Ω×]t0,T [×[t0,T ]→R

n×ml , and, for each (θ , t1, t)∈Ω×]t0,T [×[t0,
T ], X(θ , t1, t, ·) ∈ Ln×ml

2 ([t0,T ]).
We obtain easily that the function (θ , t1) �→ α(θ , t1, ·) is continuous from

Ω×]t0,T [ to C ([t0,T ];Rn), where C ([t0,T ];Rn) is the Banach space of continuous
functions on [t0,T ] with values in R

n endowed with the uniform convergence norm.
Since the embedding C ([t0,T ];Rn)⊂ Ln

2([t0,T ]) is continuous, we obtain that the
function (θ , t1) �→ α(θ , t1, ·) is continuous from Ω×]t0,T [ to Ln

2([t0,T ]).
Also, using Lebesgue’s dominated convergence theorem, we obtain easily that

the function (θ , t1, t) �→ X(θ , t1, t, ·) is continuous from Ω×]t0,T [×[t0,T ] to Ln×ml
2

([t0,T ]). Denoting y(θ , t1,ul , t) =
∫ T

t0
X(θ , t1, t,s)ul(s)ds, and writing

y(θ ′, t ′1,u
′
l , t)− y(θ , t1,ul , t) =

(
y(θ ′, t ′1,u

′
l , t)− y(θ ′, t ′1,ul , t)

)
+
(
y(θ ′, t ′1,ul , t)− y(θ , t1,ul , t)

)
,

we obtain that

|y(θ ′, t ′1,u
′
l , t)− y(θ , t1,ul , t)| ≤‖X(θ ′, t ′1, t, ·)‖2 · ‖u′l − ul‖2

+ ‖X(θ ′, t ′1, t, ·)−X(θ , t1, t, ·)‖2 · ‖ul‖2

which finally prove the continuity of the function (θ , t1,ul) �→ x(θ , t1,ul , ·) from
Ω×]t0,T [×Lml

2 ([t0,T ]) to Ln
2([t0,T ]).

3In the sense that there exists a function ũl continuous at t1 and ūl(t) = ũl(t) a.e. on [t0,T ]. Note
that by Lusin’s theorem, we can find measurable sets of arbitrarily small positive measure and such
functions ũl which are continuous on the complement of those sets.
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With similar arguments we can prove the continuity of the function (θ , t1,ul) �→
uf(θ , t1,ul , ·) from Ω×]t0,T [×Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) and point 3. �

4.6 Optimality Conditions for the Upper Level, i.e.
for Problems (OB)σ and (PB)σ

In this section we will restrain to the case considered in Sect. 4.5.2. Moreover we
will suppose that Ul is the closed ball

Ul =
{

ul ∈ Lml
2 ([t0,T ]) | ‖ul‖2 ≤ R

}
, (4.55)

where R is a strictly positive real.

4.6.1 The Optimistic Bilevel Problem

We begin with some preliminary results in order to obtain an existence result when
Uf is not assumed to be bounded, so we cannot apply the results obtained in [17].
We could adapt the proof given in [17], but we will give direct proofs for the sake
of completeness.

Lemma 4.25. Let X and Y be arbitrary sets and let J : X ×Y → R∪{+∞} such
that, for each x ∈ X, the set argmin J(x, ·) is nonempty. Then the problems

min
(x,y)∈X×Y

J(x,y) (4.56)

and

min
x∈X

min
y∈Y

J(x,y) (4.57)

are equivalent, i.e. problem (4.56) is solvable if and only if problem (4.57) is
solvable. In this case the solution sets coincide as well as the minimal values.

Proof. Let (x̂, ŷ)∈ X ×Y be a solution for problem (4.56), i.e. (x̂, ŷ)∈ argmin J(·, ·).
Then, for each x ∈ X , we have obviously J(x̂, ŷ) = min

y∈Y
J(x̂,y) ≤ min

y∈Y
J(x,y); hence

J(x̂, ŷ) = min
x∈X

min
y∈Y

J(x,y), and (x̂, ŷ) is a solution for problem (4.57).

Conversely, let (x̄, ȳ) be a solution for problem (4.57). This means that, for all
x ∈X and y′ ∈ argmin J(x, ·), we have we have J(x̄, ȳ)≤ J(x,y′) =min

y∈Y
J(x,y); hence

for all (x,y) ∈ X ×Y , we have J(x̄, ȳ) ≤ J(x,y). Therefore (x̄, ȳ) is a solution for
problem (4.56). �
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Lemma 4.26. Let X = X ′ ×X ′′ where X ′ is a compact metric space, X ′′ is a closed
bounded convex set in a reflexive Banach space X ′′ and let Y be a compact metric
space. Let J : X ×Y → R ∪ {+∞} be a lower semicontinuous function on the
topological product space X ′ × (X ′′,s)×Y , where s denotes the topology on X ′′
induced by the strong topology of X ′′. Suppose that J(x′, ·,y) is convex for each
fixed (x′,y) ∈ X ′ ×Y.

Then the hypotheses of Lemma 4.25 are fulfilled, and argmin J(·, ·, ·) �= /0.

Proof. 1. From Banach–Alaoglu–Kakutani theorem, X ′′ is compact for the weak
topology of X ′′ denoted w. Thus X × Y = (X ′ × X ′′)× Y is compact in the
topological product space [X ′ × (X ′′,w)]×Y . Let us show that J is sequentially
lower semicontinuous on [X ′ × (X ′′,wX ′′)]×Y , where wX ′′ stands for the topology
on X ′′ induced by the weak topology of X ′′. Indeed, for any real α , let us denote

SLα = {(x′,x′′,y) ∈ X ′ ×X ′′ ×Y |J(x′,x′′,y)≤ α}.

Since J is lower semicontinuous on X ′ × (X ′′,s)×Y we have that SLα is closed
in X ′ × (X ′′,s)×Y . Consider now a sequence ((x′k,x

′′
k ,yk))k in SLα convergent to

some (x′,x′′,y) in X ′ × (X ′′,w)×Y . Since (x′′k ) converges weakly to x′′, by Mazur’s
lemma [32, p. 6], there is a sequence (x̄′′k ) converging to x′′ in (X ′′,s) such that,
for any k, x̄′′k is a convex combination of x′′k ’s. Then, by the convexity of X ′′ and of
J(x′k, ·,yk), we have x̄′′k ∈ X ′′ and

J(x′k, x̄
′′
k ,yk)≤ J(x′k,x

′′
k ,yk)≤ α.

Thus (x′k, x̄
′′
k ,yk) ∈ SLα and (x′k, x̄

′′
k ,yk) converges to (x′,x′′,y) in X ′ × (X ′′,s)×Y ;

hence (x′,x′′,y) ∈ SLα . Therefore SLα is sequentially closed in X ′ × (X ′′,w)×
Y ; hence J is sequentially lower semicontinuous on X ′ × (X ′′,w)×Y . Finally, by
Weierstrass’ theorem, we obtain that argmin J(·, ·, ·) �= /0.

Let now x = (x′,x′′) ∈ X = X ′ × X ′′ be fixed. Since Y is compact and J(x, ·)
is lower semicontinuous on Y , we obtain from Weierstrass’ theorem that argmin
J(x, ·) �= /0. �
Let Ĵl : Ω×]t0,T [×Ul →R∪{+∞} be defined by

Ĵl(θ , t1,ul) := J̃l(t1,ul ,uf(θ , t1,ul , ·)) = Jl(t1,ul ,uf(θ , t1,ul , ·),x(θ , t1,ul , ·)).
(4.58)

Theorem 4.27. In addition to hypotheses (PA ) we suppose that, for each t ∈
[t0,T ], fl(t, ·, ·, ·) is a convex function.

Moreover we suppose the following hypothesis:

(Hf)

⎧⎨
⎩

there is some α ∈ L∞([t0,T]) and some real constant β such that,
for almost all t ∈ [t0,T], and for all (ul,uf,x) ∈ R

ml ×R
mf ×R

n,∣∣∇(ul ,uf,x) fl(t,ul ,uf,x)
∣∣≤ α(t)+β |(ul,uf,x)|.

(4.59)
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Then problem (OB)we has at least one solution and it is equivalent to the problem

(Pl) min
(θ ,t1,ul)∈Θwe×T ×Ul

Ĵl(θ , t1,ul).

Proof. We will show that all the hypotheses of Lemma 4.26 are fulfilled (denoting
X ′ =T , X ′′ =Ul ,Y =Θwe, X ′′ = Lml

2 ([t0,T ]), x′ = t1, x′′ = ul ,y = θ , J(x′,x′′,y) =
Ĵl(θ , t1,ul)), and then the conclusion follows from Lemma 4.25.

Ul is (strongly) closed, bounded and convex in Lml
2 ([t0,T ]); T and Θwe are

compact. For fixed (t1,θ ) ∈ T ×Θwe, the function Ĵl(θ , ·, t1) is convex since, for
any t ∈ [t0,T ], the function fl(t, ·, ·, ·) is convex, and ul �→ uf(θ , t1,ul , ·), ul �→
x(θ , t1,ul , ·) are affine functions by Proposition 4.23.

To finish the proof it is sufficient to show that Ĵl is lower semicontinuous on
Θwe ×T × Ul , where Ul is endowed with the topology induced by the strong
topology of Lml

2 ([t0,T ]). Let (θ k, tk
1 ,u

k
l )k be a sequence in Θwe ×T ×Ul which

converges (strongly) to an element (θ̄ , t̄1, ūl). Since Θwe×T ×Ul is closed we have
(θ̄ , t̄1, ūl) ∈Θwe ×T ×Ul .

We obtain from Lemma 4.4, Theorem 4.24 and (4.58) that, for each fixed t1 ∈T ,
the function Ĵl(·, t1, ·) is lower semicontinuous. On the other hand we have

Ĵl(θ k, tk
1 ,u

k
l ) = Ĵl(θ k, t̄1,u

k
l )+ (Ĵl(θ k, tk

1 ,u
k
l )− Ĵl(θ k, t̄1,u

k
l )),

and the term (Ĵl(θ k, tk
1 ,u

k
l )− Ĵl(θ k, t̄1,uk

l )) tends to 0 as k →+∞. Indeed,

Ĵl(θ k, tk
1 ,u

k
l )− Ĵl(θ k, t̄1,u

k
l ) =

∫ tk
1

t0
fl(t,u

k
l (t),uf(θ k, tk

1 ,u
k
l , t),x(θ

k, tk
1 ,u

k
l , t))dt

−
∫ t̄1

t0
fl(t,u

k
l (t),uf(θ k, t̄1,u

k
l , t),x(θ

k, t̄1,u
k
l , t))dt.

(4.60)

Since the sequence (uk
l ) is bounded in Lml

2 ([t0,T ]), by (Hf) and Theorem 4.24 there
is a constant M > 0, such that, for all k ∈ N and almost all t ∈ [t0,T ],

| fl(t,u
k
l (t),uf(θ k, tk

1 ,u
k
l , t),x(θ

k, tk
1 ,u

k
l , t))| ≤ M

and

| fl(t,u
k
l (t),uf(θ k, t̄1,u

k
l , t),x(θ

k, t̄1,u
k
l , t))| ≤ M.

Finally, let us show that both integrals in (4.60) have the same limit as k → +∞,

which is
∫ t̄1

t0
fl(t, ūl(t),uf(θ̄ , t̄1, ūl , t),x(θ̄ , t̄1, ūl , t))dt. To do this it is sufficient to

prove that these convergences hold for a subsequence. Since (uk
l ) converges in
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Lml
2 ([t0,T ]), there exists a subsequence (uk′

l )k′ , such that (uk′
l (t))k′ converges to ūl(t)

a.e. on [t0,T ]. Then, we can apply Lebesgue’s dominated convergence theorem to
obtain the last claim.

Therefore, using the fact that for each t1 ∈ T the function Ĵl(·, t1, ·) is lower
semicontinuous, we obtain

lim
k→+∞

Ĵl(θ k, tk
1 ,u

k
l ) = lim

k→+∞
Ĵl(θ k, t̄1,u

k
l )≥ Ĵl(θ̄ , t̄1, ūl). �

We denote ( fl)
′
ul
(·, ·, ·, ·) : [t0,T ]×R

ml ×R
mf ×R

n → R
ml , ( fl)

′
uf
(·, ·, ·, ·) : [t0,T ]×

R
ml ×R

mf ×R
n → R

mf , ( fl)
′
x(·, ·, ·, ·) : [t0,T ]×R

ml ×R
mf ×R

n → R
n the partial

derivatives of fl with respect to the variables located on the second, third and fourth
position, respectively.

Also, let us denote for all (θ , t1, t,s) ∈ Ω×]t0,T [×[t0,T ]× [t0,T ],

X(θ , t1, t,s) =
[
χ[t0,t1](s)Ψ12(θ , t, t0)Ξ(θ , t1, t0,s)P(θ , t1,s)

+ χ[t0,t](s)Ψ11(θ , t,s)
]
Bl(s) (4.61)

Y (θ , t1, t,s) = −R−1(θ , t)Bf(t)
T
[
χ[t0,t1](s)Ψ22(θ , t, t0)Ξ(θ , t1, t0,s)P(θ , t1,s)

+ χ[t0,t](s)Ψ21(θ , t,s)
]
Bl(s), (4.62)

where χ[t0,t] : [t0,T ]→R is the characteristic function

χ[t0,t](s) =

{
1 if s ∈ [t0, t],
0 otherwise.

(4.63)

Thus, formulas (4.52), (4.54) become

∂
∂ul

x(θ , t1,ul , ·) ·h =

∫ T

t0
X(θ , t1, ·,s)h(s)ds, (4.64)

∂
∂ul

uf(θ , t1,ul , ·) ·h =
∫ T

t0
Y (θ , t1, ·,s)h(s)ds. (4.65)

Next result is necessary to ensure the differentiability of Ĵl .

Lemma 4.28. Suppose that fl satisfies the hypothesis (Hf) given in Theorem 4.27,
in addition to the hypothesis (PA ). Then, for each fixed t1 ∈]t0,T [, the functional
Ĵl(·, t1, ·) : Ω ×Lml

2 ([t0,T ]) → R is well defined and continuously Fréchet differen-
tiable. Its partial derivatives with respect to θi, i = 1, . . . , p are given by
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∂ Ĵl

∂θi
(θ , t1,ul) =

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂uf

∂θi
(θ , t1,ul , t)dt

+

∫ t1

t0
( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂x
∂θi

(θ , t1,ul , t)dt.

(4.66)
Its partial Fréchet gradient with respect to ul at (θ , t1,ul) is given, for almost all
s ∈ [t0, t1], by4

∇ul Ĵl(θ , t1,ul)(s) = ( fl)
′
ul
(s,ul(s),uf(θ , t1,ul ,s),x(θ , t1,ul ,s))

+

∫ T

t0
LT (θ , t1, t,s)( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))dt

+

∫ T

t0
XT (θ , t1, t,s)( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))dt.

(4.67)

Moreover, for each fixed (θ ,ul) ∈ Ω ×Lml
2 ([t0,T ]), the function Ĵl(θ , ·,ul) ∈ H1([t0,

T ]), and for almost all t1 ∈]t0,T [, its derivative is given by

∂ Ĵl

∂ t1
(θ , t1,ul) = fl(t1,ul(t1),uf(θ , t1,ul , t1),x(θ , t1,ul , t1))

+

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂uf

∂ t1
(θ , t1,ul , t)dt

+

∫ t1

t0
( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂x
∂ t1

(θ , t1,ul , t)dt.

(4.68)

In particular, at each point t1 such that ul is continuous at t1 (see footnote 3), the
real-valued function t �→ Ĵl(θ , t,ul) is differentiable.

Proof. By [4, Example 2, p. 20] we have that the functional Jl(t1, ·, ·, ·) : Lml
2 ([t0,

T ])× L
mf
2 ([t0,T ])× Hn

1 ([t0,T ]) → R is well defined and is continuously Fréchet
differentiable for each fixed t1 ∈]t0,T [. Moreover, its partial derivatives satisfy,
for all (t1,ul ,uf,x) ∈]t0,T [×Lml

2 ([t0,T ])× L
mf
2 ([t0,T ])×Hn

1 ([t0,T ]), the following
equations:

∂Jl

∂ul
(t1,ul ,uf,x) · v =

∫ t1

t0
( fl)

′
ul
(t,ul(t),uf(t),x(t))

T v(t)dt ∀v ∈ Lml
2 ([t0,T ]),

4We identify the Hilbert space Lml
2 ([t0,T ]) with its dual according to Riesz-Fréchet theorem; hence

∇ul Ĵl(θ , t1,ul) ∈ Lml
2 ([t0,T ]) (see, e.g. [7, p. 38]).
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∂Jl

∂uf
(t1,ul ,uf,x) ·w =

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(t),x(t))

T w(t)dt ∀w ∈ L
mf
2 ([t0,T ]),

∂Jl

∂x
(t1,ul ,uf,x) · z =

∫ t1

t0
( fl)

′
x(t,ul(t),uf(t),x(t))

T z(t)dt ∀z ∈ Hn
1 ([t0,T ]).

Also, for each fixed (ul ,uf,x) ∈ Lml
2 ([t0,T ])× L

mf
2 ([t0,T ])× Hn

1 ([t0,T ]) and for
almost all t1 ∈]t0,T ],

∂Jl

∂ t1
(t1,ul ,uf,x) = fl(t1,ul(t1),uf(t1),x(t1)).

Let us identify, using Riesz-Fréchet theorem, the Hilbert spaces Lml
2 ([t0,T ]), L

mf
2 ([t0,

T ]) and Ln
2([t0,T ]) with their duals, and do not identify Hn

1 ([t0,T ]) with its dual
Hn

1 ([t0,T ])
∗. Based on the fact that (see [21, pp. 81–82] for details)

Hn
1 ([t0,T ])⊂ Ln

2([t0,T ])≡ Ln
2([t0,T ])

∗ ⊂ Hn
1 ([t0,T ])

∗

and both embeddings are continuous and dense, and the duality product between
Hn

1 ([t0,T ]) and Hn
1 ([t0,T ])

∗ coincide with the inner product in Ln
2([t0,T ]) on Hn

1 ([t0,
T ])×Ln

2([t0,T ]), we have that the Fréchet gradients ∇ul Jl(t1,ul ,uf,x) ∈ Lml
2 ([t0,T ]),

∇uf Jl(t1,ul ,uf,x) ∈ L
mf
2 ([t0,T ]) and ∇xJl(t1,ul ,uf,x) ∈ Ln

2([t0,T ]) are given for
almost all t ∈ [t0,T ] by

∇ul Jl(t1,ul ,uf,x)(t) =

{
( fl)

′
ul
(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

∇uf Jl(t1,ul ,uf,x)(t) =

{
( fl)

′
uf
(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

∇xJl(t1,ul ,uf,x)(t) =

{
( fl)

′
x(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

Now, using the chain rule in (4.58), we obtain immediately (4.66) and (4.68) and
also

∇ul Ĵl(θ , t1,ul)(t) =( fl)
′
ul
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

+

(
∂

∂ ul
uf(θ , t1,ul , ·)

)∗
( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

+

(
∂

∂ ul
x(θ , t1,ul , ·)

)∗
( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t)),

(4.69)
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and, for almost all t ∈]t1,T ], ∇ul Ĵl(θ , t1,ul)(t) = 0, where M∗ stands for the adjoint
operator of a linear continuous operator M between two Hilbert spaces.

Fix (θ , t1,ul) ∈ Ω×]t0,T [×Lml
2 ([t0,T ]). Since the embedding Hn

1 ([t0,T ]) ⊂
Ln

2([t0,T ]) is continuous, we can consider the partial Fréchet derivative ∂
∂ul

x(θ , tt ,ul , ·)
as a linear continuous operator from Lml

2 ([t0,T ]) to Ln
2([t0,T ]). Denote 〈·, ·〉n the

inner product in Ln
2([t0,T ]). For all h ∈ Lml

2 ([t0,T ]), k ∈ Ln
2([t0,T ]) we have

〈 ∂
∂ul

x(θ , tt ,ul , ·)h,k〉n =

∫ T

t0
kT (t)

(∫ T

t0
X(θ , t1, t,s)h(s)ds

)
dt

=

∫ T

t0
hT (s)

(∫ T

t0
XT (θ , t1, t,s)k(t)dt

)
ds

= 〈h,
(

∂
∂ul

x(θ , tt ,ul , ·)
)∗

k〉ml ;

hence (
∂

∂ul
x(θ , tt ,ul , ·)

)∗
· k =

∫ T

t0
XT (θ , t1, t, ·)k(t)dt. (4.70)

In the same way we get for all k ∈ L
mf
2 ([t0,T ])

(
∂

∂ul
uf(θ , tt ,ul , ·)

)∗
· k =

∫ T

t0
Y T (θ , t1, t, ·)k(t)dt. (4.71)

Finally (4.67) follows from (4.69). �
Theorem 4.29 (First-order necessary conditions when the final time is fixed, i.e.
T = {t1}). Suppose that T = {t1}, and fl satisfies hypotheses (PA ), (Hf), and
fl(t, ·, ·, ·) is convex for all t ∈ [t0,T ].

Let (θ̄ , ūl) ∈ Θwe ×Ul solve (OB)we. Then there are nonnegative real numbers
μ , l1, . . . , lp and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.72)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)− li+ν = 0, i = 1, . . . , p, (4.73)

μ(‖ūl‖2 −R) = 0, (4.74)

liθ̄i = 0, i = 1, . . . , p, (4.75)

and of course
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p

∑
i=1

θ̄i = 1, (4.76)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.77)

Remark 4.30. According to (4.67), equation (4.72) is a Fredholm integral equation
in the unknown ūl (linear if fl(t, ·, ·, ·) is quadratic, case which satisfies hypothesis
(Hf)), depending on 2p+ 1 parameters (μ and θ̄i). Assuming that we are able to
solve this integral equation, (4.73)–(4.76) represent a nonlinear system with 2p+ 2
equations and 2p+ 2 unknowns μ ,ν,θi, li. A similar remark applies to the next
theorem.

Theorem 4.31 (First-order necessary conditions when the final time t1 ∈ T =
[t, t ] ⊂]t0,T [). Suppose that fl satisfies hypotheses (PA ), (Hf) and fl(t, ·, ·, ·) is
convex for all t ∈ [t0,T ].

Let (t̄1, θ̄ , ūl) ∈ T ×Θwe ×Ul solve (OB)we. Suppose that ūl is continuous at
t̄1 (see footnote 3). Then there are nonnegative real numbers μ , l1, . . . , lp, lp+1, lp+2

and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.78)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)− li+ν = 0, i = 1, . . . , p, (4.79)

∂ Ĵl

∂ t1
(θ̄ , t1, ūl)− lp+1 + lp+2 = 0, (4.80)

μ(‖ūl‖2 −R) = 0, (4.81)

liθ̄i = 0, i = 1, . . . , p, (4.82)

lp+1(t̄1 − t) = 0, (4.83)

lp+2(t − t̄1) = 0, (4.84)

and of course

p

∑
i=1

θ̄i = 1, (4.85)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.86)

The proof of Theorems 4.29 and 4.31 is a direct application of the generalized
Lagrange multiplier rule under Kurcyusz–Robinson–Zowe regularity condition (see
[39, Theorem 5.3]) and is based on Theorem 4.27 and on Lemma 4.28.



4 Semivectorial Bilevel Optimal Control 75

4.6.2 The Pessimistic Bilevel Problem

In this section we assume that fl(t, ·, ·, ·) is quadratic, i.e. for all (t,ul ,uf,x) ∈
[t0,T ]×R

ml ×R
mf ×R

n,

fl(t,ul ,uf,x) = uT
l Sl(t)ul +uf

T Rl(t)uf + xT Ql(t)x, (4.87)

where Sl(·),Rl(·),Ql(·) are continuous symmetric matrix-valued functions. Note
that this function satisfies hypotheses (PA ) and (Hf).

According to [4, Example 3, p. 14] the functional Jl(t1, ·, ·, ·) : Lml
2 ([t0,T ])×

L
mf
2 ([t0,T ]) × Hn

1 ([t0,T ])× is well defined and continuous. Therefore, by
Theorem 4.24, the functional Ĵl(·, ·, ·) has finite values and is continuous on
Θwe ×T ×Ul.

Moreover, since Θwe is compact, the pessimistic problem (PB)we can be writ-
ten as

min
(t1,ul)∈T ×Ul

max
θ∈Θwe

Ĵl(θ , t1,ul).

Theorem 4.32 (First-order necessary conditions when the final time is fixed, i.e.
T = {t1}). Suppose that T = {t1}.

Let (θ̄ , ūl) ∈ Θwe ×Ul solve (PB)we. Then there are nonnegative real numbers
μ , l1, . . . , lp and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.88)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)+ li +ν = 0, i = 1, . . . , p, (4.89)

μ(‖ūl‖2 −R) = 0, (4.90)

liθ̄i = 0, i = 1, . . . , p, (4.91)

and of course

p

∑
i=1

θ̄i = 1, (4.92)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.93)

Proof. We have that θ̄ is a maximizer of Ĵl(·, t1, ūl) over Θwe. By Karush–Kuhn–
Tucker theorem, since on Θwe the linear independence of gradients of active
constraints holds (hence Mangasarian–Fromowitz regularity condition holds), and
based on Lemma 4.28, we obtain that there are nonnegative reals l1, . . . , lp and a real
ν such that (4.89) and (4.91) hold and of course (4.92) and (4.93).
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Moreover, ūl is a minimizer of Ĵl(θ̄ , t1, ·) over the ball Ul . By the generalized
Lagrange multiplier rule under Kurcyusz-Robinson-Zowe regularity condition (see
[39, Theorem 5.3]), and based on Lemma 4.28, we obtain (4.88) and (4.90). �
Theorem 4.33 (First-order necessary conditions when the final time t1 ∈ T =
[t, t]⊂ ]t0,T [). Let (t̄1, θ̄ , ūl) ∈ T ×Θwe × Ul solve (PB)we. Suppose that ūl is
continuous at t̄1 (see footnote 3). Then there are nonnegative real numbers
μ , l1, . . . , lp, lp+1, lp+2 and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.94)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)+ li+ν = 0, i = 1, . . . , p, (4.95)

∂ Ĵl

∂ t1
(θ̄ , t1, ūl)− lp+1 + lp+2 = 0, (4.96)

μ(‖ūl‖2 −R) = 0, (4.97)

liθ̄i = 0, i = 1, . . . , p, (4.98)

lp+1(t̄1 − t) = 0, (4.99)

lp+2(t − t̄1) = 0, (4.100)

and of course

p

∑
i=1

θ̄i = 1, (4.101)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.102)

The proof is identical to the proof of Theorem 4.32.

Remark 4.34. A similar comment as in Remark 4.30 can be done for the last two
theorems. Moreover, in this case the computation of the partial derivatives and
gradients in Lemma 4.28 is simplified since, by (4.87), we have

( fl)
′
ul
(t,ul ,uf,x) = 2uT

l Sl(t),

( fl)
′
uf
(t,ul ,uf,x) = 2uf

T Rl(t),

( fl)
′
x(t,ul ,uf,x) = xT Ql(t).
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11. Bolintinéanu, S.: Necessary conditions for nonlinear suboptimization over the weakly-efficient

set. J. Optim. Theory Appl. 78, 579–598 (1993)
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