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Abstract Champernowne’s number is the best-known example of a normal number,
but its digits are far from random. The sequence of nucleotides in the human X
chromosome appears nonrandom in a similar way. We give a new asymptotic test
of pseudorandomness, based on the law of the iterated logarithm; we call this new
criterion “strong normality.” We show that almost all numbers are strongly normal
and that strong normality implies normality. However, Champernowne’s number is
not strongly normal. We adapt a method of Sierpiński to construct an example of a
strongly normal number.
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3.1 Normality

We can write a real number α in any integer base r ≥ 2 as a sum of powers of
the base:

α =
∞

∑
j=−d

a jr
− j.

The standard “decimal” notation is

α = a−d a−(d−1) · · ·a0 . a1 a2 · · · .

The sequence of digits {a j} gives the representation of α in the base r, and
this representation is unique unless α is rational, in which case α may have two
representations. (For example, in the base 10, 0.1 = 0.0999 · · · .)

We call a subsequence of consecutive digits a string. The string may be finite or
infinite; we call a finite string of t digits a t-string. An infinite string beginning in a
specified position we call a tail, and we call a finite string beginning in a specified
position a block.

A number α is simply normal in the base r if every 1-string in its base-r expansion
occurs with an asymptotic frequency approaching 1/r. That is, given the expansion
{a j} of α in the base r, and letting mk(n) be the number of times that a j = k for
j ≤ n, we have

lim
n→∞

mk(n)
n

=
1
r

for each k ∈ {0,1, . . . ,r− 1}. This is Borel’s original definition [6].
A number is normal in the base r if every t-string in its base-r expansion occurs

with a frequency approaching r−t . Equivalently, a number is normal in the base r if
it is simply normal in the base rt for every positive integer t (see [6, 14, 17]).

A number is absolutely normal if it is normal in every base. Borel [6] showed
that almost every real number is absolutely normal.

In 1933, Champernowne [8] produced the first concrete construction of a normal
number. Champernowne’s number is

γ10 = .1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · · .

The number is written in the base 10, and its digits are obtained by concatenating
the natural numbers written in the base 10. This number is likely the best-known
example of a normal number.

Generally, the base-r Champernowne number is formed by concatenating the
integers 1, 2, 3, . . . in the base r. For example, the base-2 Champernowne number is
written in the base 2 as

γ2 = .1 10 11 100 101 · · · .
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For any r, the base-r Champernowne number is normal in the base r. However, the
question of its normality in any other base (not a power of r) is open. For example,
it is not known whether the base-10 Champernowne number is normal in the base 2.

In 1917, Sierpiński [15] gave a construction of an absolutely normal number (in
fact, one such number for each ε with 0 < ε ≤ 1). A computable version of this
construction was given by Becher and Figueira [2].

Most fundamental irrational constants, such as
√

2, log2, π , and e, appear to
be normal, and statistical tests done to date are consistent with the hypothesis that
they are normal. (See, for example, Kanada on π [10] and Beyer, Metropolis and
Neergard on irrational square roots [5].) However, there is no proof of the normality
of any of these constants.

There is an extensive literature on normality in the sense of Borel. Introductions
to the literature may be found in [4, 7].

3.2 Walks on the Digits of Numbers and on Chromosomes

In this section we graphically compare two walks on the digits of numbers with a
walk on the values of the Liouville λ function and a walk on the nucleotides of the
human X chromosome.

The walks are generated on a binary sequence of digits (Figs. 3.1 and 3.2) by
converting each 0 in the sequence to −1 and then using digit pairs (±1,±1) to walk
(±1,±1) in the plane. The colour or shading in the figures gives a rough indication
of the number of steps taken in the walk. The values of the Liouville λ function
(Fig. 3.3) are already ±1.

There are four nucleotides in the X chromosome sequence, and each of the four
is assigned one of the values (±1,±1) to create a walk on the nucleotide sequence
(Fig. 3.4). The nucleotide sequence is available on the UCSC Genome Browser [16].

A random walk on a million digits is expected to stay within roughly a thousand
units of the origin, and this will be seen to hold for the walks on the digits of π
and on the Liouville λ function values. On the other hand, the walks on the digits of
Champernowne’s number and on the X chromosome travel much farther than would
be expected of a random walk.

The walk on the Liouville λ function moves away from the origin like
√

n, but
it does not seem to move randomly near the origin. In fact, the positive values of
λ first outweigh the negative values when n = 906180359 [12], which is not at all
typical of a random walk.

3.3 Strong Normality

Mauduit and Sárközy [13] have shown that the digits of the base-2 Champernowne
number γ2 fail two tests of randomness. Dodge and Melfi [9] compared values of an
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Fig. 3.1 A walk on 106 binary digits of π

autocorrelation function for Champernowne’s number and π and found that π had
the expected pseudorandom properties but that Champernowne’s number did not.

Here we provide another test of pseudorandomness and show that it must be
passed by almost all numbers. Our test is a simple one, in the spirit of Borel’s test
of normality, and Champernowne’s number will be seen to fail the test.

If the digits of a real number α are chosen at random in the base r, the asymptotic
frequency mk(n)/n of each 1-string approaches 1/r with probability 1. However,
the discrepancy mk(n)− n/r does not approach any limit, but fluctuates with an
expected value equal to the standard deviation

√
(r− 1)n/r.

Kolmogorov’s law of the iterated logarithm allows us to make a precise statement
about the discrepancy of a random number. We use this to define our criterion.

Definition 3.1. For real α , and mk(n) as above, α is simply strongly normal in the
base r if for each k ∈ {0, . . . ,r− 1}
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Fig. 3.2 A walk on 106 binary digits of the base-2 Champernowne number

limsup
n→∞

mk(n)− n
r√

r− 1
r

√
2n loglogn

= 1

and

liminf
n→∞

mk(n)− n
r√

r− 1
r

√
2n loglogn

=−1 .

We make two further definitions analogous to the definitions of normality and
absolute normality.

Definition 3.2. A number is strongly normal in the base r if it is simply strongly
normal in each of the bases r j, j = 1,2,3, . . ..
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Fig. 3.3 A walk on 106 values of the Liouville λ function

Definition 3.3. A number is absolutely strongly normal if it is strongly normal in
every base.

These definitions of strong normality are sharper than those given by one of the
authors in [3].

3.4 Almost All Numbers Are Strongly Normal

Theorem 3.4. Almost all numbers are simply strongly normal in any base r.

Proof. Without loss of generality, we consider numbers in the interval [0,1] and fix
the integer base r ≥ 2. We take Lebesgue measure to be our probability measure. For
any k, 0 ≤ k ≤ r−1, the ith digit of a randomly chosen number is k with probability
r−1. For i �= j, the ith and jth digits are both k with probability r−2, so the digits are
pairwise independent.
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Fig. 3.4 A walk on the nucleotides of the human X chromosome

We define the sequence of random variables Xj by

Xj =
√

r− 1

if the jth digit is k, with probability
1
r

, and

Xj =− 1√
r− 1

otherwise, with probability
r− 1

r
.

Then the Xj form a sequence of independent identically distributed random
variables with mean 0 and variance 1. Put

Sn =
n

∑
j=1

Xj .
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By the law of the iterated logarithm (see, for example, [11]), with probability 1,

limsup
n→∞

Sn√
2n loglogn

= 1 ,

and

liminf
n→∞

Sn√
2n loglogn

=−1 .

Now we note that if mk(n) is the number of occurrences of the digit k in the first n
digits of our random number, then

Sn = mk(n)
√

r− 1− n−mk(n)√
r− 1

.

Substituting this expression for Sn in the limits immediately above shows that the
random number satisfies Definition 3.1 with probability 1. �
This is easily extended.

Corollary 3.5. Almost all numbers are strongly normal in any base r.

Proof. By the theorem, the set of numbers in [0,1] which fails to be simply strongly
normal in the base r j is of measure zero, for each j. The countable union of these
sets of measure zero is also of measure zero. Therefore the set of numbers simply
strongly normal in every base r j is of measure 1. �
The following corollary is proved in the same way as the last.

Corollary 3.6. Almost all numbers are absolutely strongly normal.

The results for [0,1] are extended to R in the same way.

3.5 Champernowne’s Number Is Not Strongly Normal

We begin by examining the digits of Champernowne’s number in the base 2,

γ2 = 0.1 10 11 100 101 · · · .

Each integer q, 2n−1 ≤ q ≤ 2n − 1, has an n-digit base-2 representation and so
contributes an n-block to the expansion of γ2. In each of these n-blocks, the first digit
is 1. If we consider the remaining n−1 digits in each of these n-blocks, we see that
every possible (n−1)-string occurs exactly once. The n-digit integers, concatenated,
together contribute a block of length n2n−1, and in this block, if we set aside the
ones corresponding to the initial digit of each integer, the zeros and ones are equal
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in number. In the whole block there are (n− 1)2n−2 zeros and (n− 1)2n−2 + 2n−1

ones. The excess of ones over zeros in the entire
(
n2n−1

)
-block is just equal to the

number of integers, 2n−1, contributing to the block.
As we concatenate the integers from 1 to 2k − 1, we write the first

N − 1 =
k

∑
n=1

n2n−1 = (k− 1)2k + 1

digits of γ2. The excess of ones in the digits is

2k − 1.

The locally greatest excess of ones occurs at the first digit contributed by the integer
2k, since each power of 2 is written as 1 followed by zeros. At this point the number
of digits is N = (k−1)2k+2 and the excess of ones is 2k. That is, the actual number
of ones in the first N digits is

m1(N) = (k− 2)2k−1 + 1+ 2k.

This gives

m1(N)− N
2
= 2k−1 .

Thus, we have

m1(N)− N
2

N1/2+ε ≥ 2k−1

((k− 1)2k)
1/2+ε .

For any sufficiently small positive ε , the right-hand expression is unbounded as
k → ∞. We have

limsup
N→∞

m1(N)− N
2

1
2

√
2N loglogN

≥ limsup
N→∞

m1(N)− N
2

N1/2+ε = ∞ .

We thus have:

Theorem 3.7. The base-2 Champernowne number is not strongly normal in the
base 2.

One can show that Champernowne’s number also fails the lower limit criterion. In

fact, m1(N)− N
2
> 0 for every N.

The theorem can be generalized to every Champernowne number, since there is a
shortage of zeros in the base-r representation of the base-r Champernowne number.
Each base-r Champernowne number fails to be strongly normal in the base r.
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3.6 Strongly Normal Numbers Are Normal

Our definition of strong normality is strictly more stringent than Borel’s definition
of normality:

Theorem 3.8. If a number α is simply strongly normal in the base r, then α is
simply normal in the base r.

Proof. It will suffice to show that if a number is not simply normal, then it cannot
be simply strongly normal.

Let mk(n) be the number of occurrences of the 1-string k in the first n digits of
the expansion of α in the base r, and suppose that α is not simply normal in the
base r. This implies that for some k

lim
n→∞

rmk(n)
n

�= 1.

Then there is some Q > 1 and infinitely many ni such that either

rmk(ni)> Qni

or

rmk(ni)<
ni

Q
.

If infinitely many ni satisfy the former condition, then for these ni,

mk(ni)− ni

r
> Q

ni

r
− ni

r
= niP

where P is a positive constant.
Then for any R > 0,

limsup
n→∞

R
mk(n)− n

r√
2n loglogn

≥ limsup
n→∞

R
nP√

2n loglogn
= ∞,

so α is not simply strongly normal.
On the other hand, if infinitely many ni satisfy the latter condition, then for

these ni,

ni

r
−mk(ni)>

ni

r
− ni

Qr
= niP,

and once again the constant P is positive. Now
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liminf
n→∞

mk(n)− n
r√

2n loglogn
=− limsup

n→∞

n
r −mk(n)√
2n loglogn

and so, in this case also, α fails to be simply strongly normal. �
The general result is an immediate corollary.

Corollary 3.9. If α is strongly normal in the base r, then α is normal in the base r.

3.7 No Rational Number Is Simply Strongly Normal

In light of Theorem 3.8, it will suffice to show that no simply normal rational number
can be simply strongly normal.

If α is rational and simply normal in the base r, then if we restrict ourselves to
the first n digits in the repeating tail of the expansion, the frequency of any 1-string
k is exactly n/r whenever n is a multiple of the length of the repeating string. The
excess of occurrences of k can never exceed the constant number of times k occurs
in the repeating string. Therefore, with mk(n) defined as in Sect. 3.3,

limsup
n→∞

(
mk(n)− n

r

)
= Q,

with Q a constant due in part to the initial non-repeating block and in part to the
maximum excess in the tail.

But

limsup
n→∞

Q√
2n loglogn

= 0 ,

so α does not satisfy Definition 3.1.

3.8 Construction of an Absolutely Strongly Normal Number

To determine an absolutely strongly normal number, we modify Sierpiński’s method
of constructing an absolutely normal number [15]. We begin with an easy lemma.

Lemma 3.10. Let f (n) be a real-valued function of the first n base r digits of a
number α ∈ [0,1], and suppose

P
[

limsup
n→∞

f (n) = 1

]
= 1
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and

P
[
liminf

n→∞
f (n) =−1

]
= 1 .

Given positive δ1 > δ2 > δ3 > · · · , and ε1 > ε2 > ε3 > · · · , we can find M1 < M2 <
M3 < · · · so that

P

[∣∣∣
∣
∣

sup
Mi≤n<Mi+1

f (n)− 1

∣
∣∣
∣
∣
> δi or

∣∣
∣
∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣∣
∣
∣> δi

]

< εi .

Notes. The function f (n) depends on both n and α . The probability is the Lebesgue
measure of the set of α ∈ [0,1] for which f satisfies the condition(s).

The lemma can easily be proved under more general assumptions.

Proof. For sufficiently large M,

P
[

sup
n≥M

f (n)> 1+ δ1

]
<

ε1

4
and

P
[

inf
n≥M

f (n)<−1− δ1

]
<

ε1

4
.

Set M1 to be the least such M.
Now, as M → ∞,

P

[

sup
M1≤n<M

f (n)< 1− δ1

]

→ 0 ,

and also

P
[

inf
M1≤n<M

f (n)>−1+ δ1

]
→ 0 .

Thus, for sufficiently large M, these four conditions are satisfied:

P

[

sup
M1≤n<M

f (n)< 1− δ1

]

<
ε1

4
,

P
[

inf
M1≤n<M

f (n)>−1+ δ1

]
<

ε1

4
,

P
[

sup
n≥M

f (n)> 1+ δ2

]
<

ε2

4
,
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and

P
[

inf
n≥M

f (n)<−1− δ2

]
<

ε2

4
.

We set M2 to be the least M > M1 satisfying all four conditions. Since

P

[

sup
M1≤n<M2

f (n) > 1+ δ1

]

≤ P

[

sup
n≥M1

f (n)> 1+ δ1

]

and

P
[

inf
M1≤n<M2

f (n)<−1− δ1

]
≤ P

[
inf

n≥M1
f (n)<−1− δ1

]
,

we have

P

[∣∣
∣
∣
∣

sup
M1≤n<M2

f (n)− 1

∣∣
∣
∣
∣
> δ1 or

∣∣
∣
∣ inf
M1≤n<M2

f (n)+ 1

∣∣
∣
∣> δ1

]

< ε1 .

We can continue in this way, recursively choosing M3,M4,M5, . . . so that each Mi

is the least satisfying the required conditions. �
Now we fix an integer base r ≥ 2 and a 1-string k ∈ {0,1, . . . ,r− 1}. For each α ∈
[0,1], put

f (n) = f (α,k,n) =
mk(n)− n

r√
r− 1
r

√
2n loglogn

.

Here, as in Definition 3.1 of Sect. 3.3, mk(n) is the number of occurrences of k in
the first n base r digits of α , and α is simply strongly normal in the base r if

limsup
n→∞

f (n) = 1

and

liminf
n→∞

f (n) =−1 .

By Theorem 3.4, Sect. 3.4, these conditions hold with probability 1, so f satisfies
the conditions of Lemma 3.10.

Now fix 0 < ε ≤ 1; set δi =
1
i

and εi = εr,i =
ε

3 ·2ir3 . These δi and εi also satisfy

the conditions of Lemma 3.10.
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We will construct a set Aε ⊂ [0,1], of measure less than 1, in such a way that
every element of AC

ε is absolutely strongly normal.
Let M1 < M2 < M3 < · · · be determined as in the proof of Lemma 3.10, so that

the conclusion of the lemma holds. We build a set Ar,i containing those α for which
the first Mi+1 digits are, in a loose sense, far from simply strongly normal in the
base r.

Around each α = .a1a2 · · ·aMi+1 · · · such that

∣
∣∣
∣
∣

sup
Mi≤n<Mi+1

f (n)− 1

∣
∣∣
∣
∣
> δi (3.1)

or
∣
∣
∣
∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣
∣
∣
∣> δi (3.2)

we construct an open interval containing α:

(
a1

r
+

a2

r2 + · · ·+ aMi+1

rMi+1
− 1

rMi+1
,

a1

r
+

a2

r2 + · · ·+ aMi+1

rMi+1
+

2
rMi+1

)
.

Let Ar,k,i be the union of all the intervals constructed in this way. By our construc-
tion, the union of the closed intervals consisting of the numbers with initial digits
.a1a2 . . .aMi+1 satisfying one of our two conditions (3.1) or (3.2) has measure less
than εi, so, denoting Lebesgue measure by μ ,

μ
(
Ar,k,i

)
< 3εi =

ε
2ir3 .

In this way we construct Ar,k,i for every base r and 1-string k ∈ {0,1, . . . ,r − 1}.
We let

Aε =
∞⋃

r=2

r−1⋃

k=0

∞⋃

i=1

Ar,k,i ,

so

μ(Aε) ≤
∞

∑
r=2

r−1

∑
k=0

∞

∑
i=1

μ
(
Ar,k,i

)

<
∞

∑
r=2

r−1

∑
k=0

∞

∑
i=1

ε
2ir3

=

(
π2

6
− 1

)
ε .
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Let Eε be the complement of Aε in [0,1]. Since μ(Aε)< 1, Eε is of positive measure.
We claim that every element of Eε is absolutely strongly normal.

For each base r and 1-string k ∈ {0,1, . . . ,r − 1}, we have specified a set of
integers M1 < M2 < M3 < · · · , depending on r and k. By our construction, if α ∈ Eε ,
then, recalling that f depends on α , we have

∣
∣
∣
∣∣

sup
Mi≤n<Mi+1

f (n)− 1

∣
∣
∣
∣∣
< δi

and
∣
∣
∣
∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣
∣
∣
∣< δi

for every i. Clearly for this α , since δi → 0,

limsup
n→∞

f (n) = 1

and

liminf
n→∞

f (n) =−1 .

This is true for every k, so α is simply strongly normal to the base r, by
Definition 3.1 (Sect. 3.3). Thus α is simply strongly normal to every base, and is
therefore absolutely strongly normal by Definitions 3.2 and 3.3.

To specify an absolutely strongly normal number, we note that Eε contains no
interval, since, by Sect. 3.7, no rational number is simply strongly normal in any
base. Since Eε is bounded, infEε is well defined; and infEε ∈ Eε since otherwise
infEε would be interior to some open interval of Aε .

For example, infE1 is a well-defined absolutely strongly normal number.

3.9 Further Questions

It should be possible to construct a computable absolutely strongly normal number
by the method of Becher and Figueira [2].

We conjecture that such naturally occurring constants as the irrational numbers
π , e,

√
2, and log2 are absolutely strongly normal.

On the other hand, we speculate that the binary Liouville λ number, created in
the obvious way from the λ function values, may be normal but not strongly normal.

Bailey and Crandall [1] proved normality base 2 for an uncountable class of
“generalized Stoneham constants,” namely constants of the form

α2,3(r) =
∞

∑
k=0

1

3k23k+rk
,
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where rk is the kth binary digit of a real number r in the unit interval. This class of
numbers may be a good place to look for examples of strong normality. However,
new techniques may be required for this.
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