
Chapter 26
Bundle Method for Non-Convex Minimization
with Inexact Subgradients and Function Values

Dominikus Noll

Abstract We discuss a bundle method to minimize locally Lipschitz functions
which are both nonconvex and nonsmooth. We analyze situations where only inexact
subgradients or function values are available. For suitable classes of such non-
smooth functions we prove convergence of our algorithm to approximate critical
points.
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26.1 Introduction

We consider optimization programs of the form

min
x∈Rn

f (x), (26.1)

where f : Rn → R is locally Lipschitz but neither differentiable nor convex.
We present a bundle algorithm which converges to a critical point of (26.1) if exact
function and subgradient evaluation of f are provided and to an approximate critical
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point if subgradients or function values are inexact. Here x̄ ∈ R
n is approximate

critical if

dist (0,∂ f (x̄))≤ ε, (26.2)

where ∂ f (x) is the Clarke subdifferential of f at x.
The method discussed here extends the classical bundle concept to the nonconvex

setting by using downshifted tangents as a substitute for cutting planes. This idea
was already used in the 1980s in Lemaréchal’s M2FC1 code [32] or in Zowe’s
BT codes [48, 54]. Its convergence properties can be assessed by the model-based
bundle techniques [6, 7, 40, 42]. Recent numerical experiments using the downshift
mechanism are reported in [8, 19, 50]. In the original paper of Schramm and Zowe
[48] downshift is discussed for a hybrid method combining bundling, trust region,
and line-search elements.

For convex programs (26.1) bundle methods which can deal with inexact function
values or subgradients have been discussed at least since 1985; see Kiwiel [26, 28].
More recently, the topic has been revived by Hintermüller [22], who presented
a method with exact function values but inexact subgradients g ∈ ∂ε f (x), where
ε remains unknown to the user. Kiwiel [30] expands on this idea and presents
an algorithm which deals with inexact function values and subgradients, both
with unknown errors bounds. Kiwiel and Lemaréchal [31] extend the idea further
to address column generation. Incremental methods to address large problems
in stochastic programming or Lagrangian relaxation can be interpreted in the
framework of inexact values and subgradients; see, e.g., Emiel and Sagastizábal
[15, 16] and Kiwiel [29]. In [39] Nedic and Bertsekas consider approximate
functions and subgradients which are in addition affected by deterministic noise.

Nonsmooth methods without convexity have been considered by Wolfe [52],
Shor [49], Mifflin [38], Schramm and Zowe [48], and more recently by Lukšan
and Vlček [35], Noll and Apkarian [41], Fuduli et al. [17, 18], Apkarian et al. [6],
Noll et al. [42], Hare and Sagastizábal [21], Sagastizábal [47], Lewis and Wright
[33], and Noll [40]. In the context of control applications, early contributions are
Polak and Wardi [44], Mayne and Polak [36,37], Kiwiel [27], Polak [43], Apkarian
et al. [1–7], and Bompart et al. [9]. All these approaches use exact knowledge of
function values and subgradients.

The structure of the paper is as follows. In Sect. 26.2 we explain the concept
of an approximate subgradient. Section 26.3 discusses the elements of the algo-
rithm, acceptance, tangent program, aggregation, cutting planes, recycling, and the
management of proximity control. Section 26.4 presents the algorithm. Section 26.5
analyzes the inner loop in the case of exact function values and inexact subgradients.
Section 26.6 gives convergence of the outer loop. Section 26.7 extends to the case
where function values are also inexact. Section 26.8 uses the convergence theory of
Sects. 26.5–26.7 to derive a practical stopping test. Section 26.9 concludes with a
motivating example from control.
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26.2 Preparation

Approximate subgradients in convex bundle methods refer to the ε-subdifferential
[24]:

∂ε f (x) = {g ∈ R
n : g�(y− x)≤ f (y)− f (x)+ ε for all y ∈R

n}, (26.3)

whose central property is that 0 ∈ ∂ fε (x̄) implies ε-minimality of x̄, i.e., f (x̄) ≤
min f +ε . Without convexity we cannot expect a tool with similar global properties.
We shall work with the following very natural approximate subdifferential

∂[ε] f (x) = ∂ f (x)+ εB, (26.4)

where B is the unit ball in some fixed Euclidian norm and ∂ f (x) is the Clarke
subdifferential of f . The present section motivates this choice.

The first observation concerns the optimality condition (26.2) arising from the
choice (26.4). Namely 0 ∈ ∂[ε] f (x̄) can also be written as 0 ∈ ∂ ( f + ε‖ ·−x‖)(x),
meaning that a small perturbation of f is critical at x.

We can also derive a weak form of ε-optimality from 0 ∈ ∂[ε] f (x) for composite
functions f = g ◦F with g convex and F smooth or, more generally, for lower C2

functions (see [45]) which have such a representation locally.

Lemma 26.1. Let f = g ◦F where g is convex and F is of class C2, and suppose
0 ∈ ∂[ε] f (x). Fix r > 0, and define

cr := max
‖d‖=1

max
‖x′−x‖≤r

max
φ∈∂g(F(x))

φ�D2F(x′)[d,d].

Then x is (rε + r2cr/2)-optimal on the ball B(x,r).

Proof. We have to prove f (x) ≤ f (x+)+ rε + r2cr/2 for every x+ ∈ B(x,r). Write
x+ = x+ td for some ‖d‖ = 1 and t ≤ r. Since 0 ∈ ∂[ε] f (x), and since ∂ f (x) =
DF(x)∗∂g(F(x)), there exists φ ∈ ∂g(F(x)) such that ‖DF(x)∗φ‖ ≤ ε . In other
words, ‖φ�DF(x)d‖ ≤ ε because ‖d‖= 1. By the subgradient inequality we have

φ� (F(x+ td)−F(x)) ≤ g(F(x+ td))− g(F(x)) = f (x+)− f (x). (26.5)

Second-order Taylor expansion of t 
→ φ�F(x+ td) at t = 0 gives

φ�F(x+ td) = φ�F(x)+ tφ�DF(x)d + t2

2 φ�D2F(xt)[d,d]

for some xt on the segment [x,x+ td]. Substituting this into (26.5) and using the
definition of cr give

f (x)≤ f (x+)+ t‖φ�DF(x)d‖+ t2

2 ‖φ�D2F(xt)[d,d]‖ ≤ f (x+)+ rε + r2

2 cr,

hence the claim. �
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Remark 26.2. For convex f we can try to relate the two approximate subdifferen-
tials in the sense that

∂ε f (x) ⊂ ∂[ε ′] f (x)

for a suitable ε ′ = ε ′(x,ε). For a convex quadratic function f (x) = 1
2 x�Qx+q�x it is

known that ∂ε f (x) = {∇ f (x)+Q1/2z : 1
2‖z‖2 ≤ ε}, [24], so that ∂ε f (x) ⊂ ∂ f (x)+

ε ′B = ∂[ε ′] f (x) for ε ′ = sup{‖Q1/2z‖ : 1
2‖z‖2 ≤ ε}, which means that ε ′(x,ε) is

independent of x and behaves as ε ′ =O(ε1/2). We expect this type of relation to hold
as soon as f has curvature information around x. On the other hand, if f (x) = |x|,
then ∂ fε (x) = ∂ f (x)+ ε

|x|B for x �= 0 (and ∂ε f (0) = ∂ f (0)), which means that the

relationship ε ′ = ε/|x| is now linear in ε for fixed x �= 0. In general it is difficult
to relate ε to ε ′. See Hiriart-Urruty and Seeger [23] for more information on this
question.

Remark 26.3. For composite functions f = g ◦F with g convex and F of class C1

we can introduce

∂ε f (x) = DF(x)∗∂ε g(F(x)),

where ∂ε g(y) is the usual convex ε-subdifferential (26.3) of g and DF(x)∗ is the
adjoint of the differential of F at x. Since the corresponding chain rule is valid in
the case of an affine F , ∂ε f (x) is consistent with (26.3). Without convexity ∂ fε (x)
no longer preserves the global properties of (26.3). Yet, for composite functions
f = g◦F , a slightly more general version of Lemma 26.1 combining ∂[σ ] f and ∂ε f
can be proved along the lines of [41, Lemma 2]. In that reference the result is shown
for the particular case g = λ1, but an extension can be obtained by reasoning as in
Lemma 26.1.

Remark 26.4. For convex f the set ∂[ε] f (x) coincides with the Fréchet ε-sub
differential ∂ F

ε f (x). According to [34, Corollary 3.2] the same remains true for
approximate convex functions. For the latter see Sect. 26.5.

26.3 Elements of the Algorithm

26.3.1 Local Model

Let x be the current iterate of the outer loop. The inner loop with counter k generates
a sequence yk of trial steps, one of which is eventually accepted to become the new
serious step x+. At each instant k we dispose of a convex working model φk(·,x),
which approximates f in a neighborhood of x. We suppose that we know at least
one approximate subgradient g(x) ∈ ∂[ε] f (x). The affine function

m0(·,x) = f (x)+ g(x)�(·− x)
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will be referred to as the exactness plane at x. For the moment we assume that it
gives an exact value of f at x, but not an exact subgradient. The algorithm assures
φk(·,x)≥m0(·,x) at all times k, so that g(x)∈ ∂φk(x,x) for all k. In fact we construct
φk(·,x) in such a way that ∂φk(x,x)⊂ ∂[ε] f (x) at all times k.

Along with the first-order working model φk(·,x) we also consider an associated
second-order model of the form

Φk(y,x) = φk(y,x)+
1
2(y− x)�Q(x)(y− x),

where Q(x) depends on the serious iterate x, but is fixed during the inner loop k. We
allow Q(x) to be indefinite.

26.3.2 Cutting Planes

Suppose yk is a null step. Then model Φk(·,x) which gave rise to yk was not rich
enough and we have to improve it at the next inner loop step k + 1 in order to
perform better. We do this by modifying the first-order part. In convex bundling
one includes a cutting plane at yk into the new model φk+1(·,x). This remains the
same with approximate subgradients and values (cf. [22,30]) as soon as the concept
of cutting plane is suitably modified. Notice that we have access to gk ∈ ∂[ε] f (yk),
which gives us an approximate tangent

tk(·) = f (yk)+ g�k (·− yk)

at yk. Since f is not convex, we cannot use tk(·) directly as cutting plane.
Instead we use a technique originally developed in Schramm and Zowe [48] and
Lemaréchal [32], which consists in shifting tk(·) downwards until it becomes useful
for φk+1(·,x). Fixing c > 0 once and for all, we call

sk := [tk(x)− f (x)]+ + c‖yk − x‖2 (26.6)

the downshift and introduce

mk(·,x) = tk(·)− sk,

called the downshifted tangent.
We sometimes use the following more stringent notation, where no reference

to the counter k is made. The approximate tangent is ty,g(·) = f (y) + g�(· − y),
bearing a reference to the point y where it is taken and to the specific approximate
subgradient g ∈ ∂[ε] f (y). The downshifted tangent is then my,g(·,x) = ty,g(·)− s,
where s = s(y,g,x) = [ty,g(x)− f (x)]+ + c‖y − x‖2 is the downshift. Since this
notation is fairly heavy, we will try to avoid it whenever possible and switch to
the former, bearing in mind that tk(·) depends both on yk and the subgradient
gk ∈ ∂[ε] f (yk). Similarly, the downshifted tangent plane mk(·,x) depends on yk, gk,



560 D. Noll

and on x, as does the downshift sk. We use mk(·,x) as a substitute for the classical
cutting plane. For convenience we continue to call mk(·,x) a cutting plane.

The cutting plane satisfies mk(x,x)≤ f (x)−c‖yk−x‖2, which assures that it does
not interfere with the subdifferential of φk+1(·,x) at x. We build φk+1(·,x) in such a
way that it has mk(·,x) as an affine minorant.

Proposition 26.5. Let φk+1(·,x) =max{mν(·,x) : ν = 0, . . . ,k}. Then ∂φk+1(x,x)⊂
∂[ε] f (x).

Proof. As all the downshifts sk are positive, φk+1(y,x) = m0(y,x) in a neighborhood
of x; hence ∂φk+1(x,x) = ∂m0(x,x) = {g(x)} ⊂ ∂[ε] f (x). �

26.3.3 Tangent Program

Given the local model Φk(·,x) = φk(·,x)+ 1
2 (·− x)�Q(x)(·− x) at serious iterate x

and inner loop counter k, we solve the tangent program

min
y∈Rn

Φk(y,x)+
τk
2 ‖y− x‖2. (26.7)

We assume that Q(x) + τkI � 0, which means (26.7) is strictly convex and has a
unique solution yk, called a trial step. The optimality condition for (26.7) implies

(Q(x)+ τkI)(x− yk) ∈ ∂φk(y
k,x). (26.8)

If φk(·,x) = max{mν(·,x) : ν = 0, . . . ,k}, with mν(·,x) = aν + g�ν (· − x), then we
can find λ0 ≥ 0, . . . ,λk ≥ 0, summing up to 1, such that

g∗k := (Q(x)+ τkI)(x− yk) =
k

∑
ν=0

λνgν .

Traditionally, g∗k is called the aggregate subgradient at yk. We build the aggregate
plane

m∗
k(·,x) = a∗k + g∗�k (·− x),

where a∗k = ∑k
ν=1 λνaν . Keeping m∗

k(·,x) as an affine minorant of φk+1(·,x) allows
to drop some of the older cutting planes to avoid overflow. As ∂φk(yk,x) is the
subdifferential of a max-function, we know that λν > 0 precisely for those mν(·,x)
which are active at yk. That is, ∑k

ν=1 λνmν (yk,x) = φk(yk,x). Therefore the aggregate
plane satisfies

m∗
k(y

k,x) = φk(y
k,x). (26.9)
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As our algorithm chooses φk+1 such that m∗
k(·,x) ≤ φk+1(·,x), we have φk(yk,x) ≤

φk+1(yk,x). All this follows the classical line originally proposed in Kiwiel [25].
Maintaining a model φk(·,x) which contains aggregate subgradients from previous
sweeps instead of all the older gν , ν = 0, . . . ,k does not alter the statement of
Proposition 26.5 nor of formula (26.9).

26.3.4 Testing Acceptance

Having computed the kth trial step yk via (26.7), we have to decide whether it should
be accepted as the new serious iterate x+. We compute the test quotient

ρk =
f (x)− f (yk)

f (x)−Φk(yk,x)
.

Fixing constants 0 < γ < Γ < 1, we call yk bad if ρk < γ and good if ρk ≥ Γ . If
yk is not bad, meaning ρk ≥ γ , then it is accepted to become x+. We refer to this as
a serious step. Here the inner loop ends. On the other hand, if yk is bad, then it is
rejected and referred to as a null step. In this case the inner loop continues.

26.3.5 Management of τ in the Inner Loop

The most delicate point is the management of the proximity control parameter
during the inner loop. Namely, it may turn out that the trial steps yk proposed by
the tangent program (26.7) are too far from the current x, so that no decrease below
f (x) can be achieved. In the convex case one relies entirely on the mechanism of
cutting planes. Indeed, if yk is a null step, then the convex cutting plane, when added
to model φk+1(·,x), will cut away the unsuccessful yk, paving the way for a better
yk+1 at the next sweep.

The situation is more complicated without convexity, where cutting planes are
no longer tangents to f . In the case of downshifted tangents the information stored
in the ideal set of all theoretically available cutting planes may not be sufficient to
represent f correctly when yk is far away from x. This is when we have to force
smaller steps by increasing τ , i.e., by tightening proximity control. As a means to
decide when this has to happen, we use the parameter

ρ̃k =
f (x)−Mk(yk,x)
f (x)−Φk(yk,x)

, (26.10)
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where mk(·,x) is the new cutting plane drawn for yk as in Sect. 26.3.1 and
Mk(·,x) = mk(·,x) + 1

2 (· − x)�Q(x)(· − x). We fix a parameter γ̃ with γ < γ̃ < 1
and make the following decision.

τk+1 =

{
2τk if ρk < γ and ρ̃k ≥ γ̃,
τk if ρk < γ and ρ̃k < γ̃.

(26.11)

The idea in (26.11) can be explained as follows. The quotient ρ̃k in (26.10) can also
be written as ρ̃k =

(
f (x)−Φk+1(yk,x)

)
/
(

f (x)−Φk(yk,x)
)
, because the cutting

plane at stage k will be integrated into model Φk+1 at stage k + 1. If ρ̃k ≈ 1,
we can therefore conclude that adding the new cutting plane at the null step yk

hardly changes the situation. Put differently, had we known the cutting plane before
computing yk, the result would not have been much better. In this situation we
decide to force smaller trial steps by increasing the τ-parameter. If on the other
hand ρ̃k � 1, then the gain of information provided by the new cutting plane at yk is
substantial with regard to the information already stored in Φk. Here we continue to
add cutting planes and aggregate planes only, hoping that we will still make progress
without having to increase τ . The decision ρ̃k ≈ 1 versus ρ̃k � 1 is formalized by
the rule (26.11).

Remark 26.6. By construction ρ̃k ≥ 0, because aggregation assures that φk+1(yk,x)
≥ φk(yk,x). Notice that in contrast ρk may be negative. Indeed, ρk < 0 means that the
trial step yk proposed by the tangent program (26.7) gives no descent in the function
values, meaning that it is clearly a bad step.

26.3.6 Management of τ in the Outer Loop

The proximity parameter τ will also be managed dynamically between serious steps
x → x+. In our algorithm we use a memory parameter τ�j , which is specified at the

end of the ( j−1)st inner loop and serves to initialize the jth inner loop with τ1 = τ�j .
A first rule which we already mentioned is that we need Q(x j)+ τkI � 0 for all k

during the jth inner loop. Since τ is never decreased during the inner loop, we can
assure this if we initialize τ1 >−λmin(Q(x j)).

A more important aspect is the following. Suppose the ( j−1)st inner loop ended
at inner loop counter k j−1, i.e., x j = ykj−1 with ρk j−1 ≥ γ . If acceptance was good,
i.e., ρk j−1 ≥ Γ , then we can trust our model, and we account for this by storing a

smaller parameter τ�j =
1
2 τk j−1 < τk j−1 for the jth outer loop. On the other hand, if

acceptance of the ( j− 1)st step was neither good nor bad, meaning γ ≤ ρk j−1 ≤ Γ ,
then there is no reason to decrease τ for the next outer loop, so we memorize τk j−1 ,
the value we had at the end of the ( j− 1)st inner loop. Altogether
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τ�j =

{
max{ 1

2 τk j−1 ,−λmin(Q(x j))+ ζ} if ρk j−1 ≥ Γ ,

max{τk j−1 ,−λmin(Q(x j))+ ζ} if γ ≤ ρk j−1 < Γ ,
(26.12)

where ζ > 0 is some small threshold fixed once and for all.

26.3.7 Recycling of Planes

In a convex bundle algorithm one keeps in principle all cutting planes in the model,
using aggregation to avoid overflow. In the nonconvex case this is no longer possible.
Cutting planes are downshifted tangents, which links them to the value f (x) of
the current iterate x. As we pass from x to a new serious iterate x+, the cutting plane
mz,g(·,x)= a+g�(·−x) with g∈ ∂[ε] f (z) for some z cannot be used as such, because
we have no guarantee whether a+ g�(x+ − x) ≤ f (x+). But we can downshift it
again if need be. We recycle the plane as

mz,g(·,x+) = a− s++ g�(·− x), s+ = [mz,g(x
+,x)− f (x+)]+ + c‖x+− z‖2.

In addition one may also apply a test whether z is too far from x+ to be of interest,
in which case the plane should simply be removed from the stock.

26.4 Algorithm

Algorithm (Proximity control algorithm for (26.1)).

Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < ∞, q < T < ∞, ε̃ > 0.
1: Initialize outer loop. Choose initial guess x1 and an initial matrix Q1 = Q�

1

with −qI � Q1 � qI. Fix memory control parameter τ�1 such that Q1 + τ�1I � 0.
Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂[ε̃] f (x j). Otherwise go to
inner loop.

3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ-parameter
using the memory element, i.e., τ1 = τ�j . Choose initial convex working model

φ1(·,x j), possibly recycling some planes from previous sweep j − 1, and let
Φ1(·,x j) = φ1(·,x j)+ 1

2(·− x j)�Q j(·− x j).
4: Trial step generation. At inner loop counter k solve tangent program

min
y∈Rn

Φk(y,x
j)+ τk

2 ‖y− x j‖2.

The solution is the new trial step yk.
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5: Acceptance test. Check whether

ρk =
f (x j)− f (yk)

f (x j)−Φk(yk,x j)
≥ γ.

If this is the case put x j+1 = yk (serious step), quit inner loop, and go to step 8.
If this is not the case (null step) continue inner loop with step 6.

6: Update proximity parameter. Compute a cutting plane mk(·,x j) at x j for
the null step yk. Let Mk(·,x j) = mk(·,x j)+ 1

2(· − x j)�Q j(· − x j) and compute
secondary control parameter

ρ̃k =
f (x j)−Mk(yk,x j)

f (x j)−Φk(yk,x j)
.

Put τk+1 =

{
τk, if ρ̃k < γ̃ (bad)

2τk, if ρ̃k ≥ γ̃ (too bad)

7: Update working model. Build new convex working model φk+1(·,x j) based
on null step yk by adding the new cutting plane mk(·,x j) (and using aggregation
to avoid overflow). Keep exactness plane in the working model. Then increase
inner loop counter k and continue inner loop with step 4.

8: Update Q j and memory element. Update matrix Q j → Q j+1, respecting
Q j+1 = Q�

j+1 and −qI � Q j+1 � qI. Then store new memory element

τ�j+1 =

⎧⎨
⎩

τk, if γ ≤ ρk < Γ (not bad)

1
2 τk, if ρk ≥ Γ (good)

Increase τ�j+1 if necessary to ensure Q j+1 + τ�j+1I � 0. If τ�j+1 > T then reset

τ�j+1 = T . Increase outer loop counter j by 1 and loop back to step 2.

26.5 Analysis of the Inner Loop

In this section we analyze the inner loop and show that there are two possibilities.
Either the inner loop terminates finitely with a step x+ = yk satisfying ρk ≥ γ or we
get an infinite sequence of null steps yk which converges to x. In the latter case, we
conclude that 0 ∈ ∂[ε̃] f (x), i.e., that x is approximate optimal.

Suppose the inner loop turns forever. Then there are two possibilities. Either τk

is increased infinitely often, so that τk → ∞, or τk is frozen, τk = τk0 for some k0 and
all k ≥ k0. These scenarios will be analyzed in Lemmas 26.9 and 26.11. Since the
matrix Q(x) is fixed during the inner loop, we write it simply as Q.

To begin with, we need an auxiliary construction. We define the following convex
function:
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φ(y,x) = sup{mz,g(y,x) : z ∈ B(0,M),g ∈ ∂[ε] f (y)}, (26.13)

where B(0,M) is a fixed ball large enough to contain x and all trial steps encountered
during the inner loop. Recall that mz,g(·,x) is the cutting plane at z with approximate
subgradient g ∈ ∂[ε] f (z) with respect to the serious iterate x. Due to boundedness of
B(0,M), φ(·,x) is defined everywhere.

Lemma 26.7. We have φ(x,x) = f (x), ∂φ(x,x) = ∂[ε] f (x), and φ is jointly upper
semicontinuous. Moreover, if yk ∈ B(0,M) for all k, then φk(·,x)≤ φ(·,x) for every
first-order working model φk.

Proof. (1) The first statement follows because every cutting plane drawn at some
z �= x and g ∈ ∂[ε] f (z) satisfies mz,g(x,x) ≤ f (x)− c‖x − z‖2 < f (x), while
cutting planes at x obviously have mx,g(x,x) = f (x).

(2) Concerning the second statement, let us first prove ∂[ε] f (x)⊂ ∂φ(x,x). We con-
sider the set of limiting subgradients

∂ l f (x) = { lim
k→∞

∇ f (yk) : yk → x, f is differentiable at yk}.

Then co∂ l f (x) = ∂ f (x) by [13]. It therefore suffices to show ∂ l f (x) + εB ⊂
∂φ(x,x), because ∂φ(x,x) is convex and we then have ∂φ(x,x) ⊃ co(∂ l f (x)+
εB) = co∂ l f (x)+ εB = ∂ f (x)+ εB.

Let ga ∈ ∂ l f (x) + εB. We have to show ga ∈ ∂φ(x,x). Choose g ∈ ∂ l f (x)
such that ‖g−ga‖ ≤ ε . Pick a sequence yk → x and gk = ∇ f (yk) ∈ ∂ f (yk) such
that gk → g. Let ga,k = gk + ga − g and then ga,k ∈ ∂[ε] f (yk) and ga,k → ga. Let
mk(·,x) be the cutting plane drawn at yk with approximate subgradient ga,k, then
mk(yk,x)≤ φ(yk,x). By the definition of the downshift process

mk(y,x) = f (yk)+ g�a,k(y− yk)− sk,

where sk is the downshift (26.6). There are two cases, sk = c‖yk − x‖2, and
sk = tk(x)− f (x) + c‖yk − x‖2 according to whether the term [. . . ]+ in (26.6)
equals zero or not.

Let us start with the second case, where tk(x) > f (x). Then sk = f (yk) +
g�a,k(x− yk)− f (x)+ c‖yk − x‖2 and

mk(y,x) = f (yk)+ g�a,k(y− yk)− f (yk)− g�a,k(x− yk)+ f (x)− c‖yk − x‖2

= f (x)+ g�a,k(y− x)− c‖yk− x‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y,x)− f (x) = g�a,k(y− x)− c‖yk− x‖2.

Passing to the limit using yk → x and ga,k → ga proves ga ∈ ∂φ(x,x).
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It remains to discuss the first case, where tk(x)≤ f (x), so that sk = c‖yk−x‖2.
Then

mk(·,x) = f (yk)+ g�a,k(·− yk)− c‖yk − x‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y,x)− f (x)

= f (yk)− f (x)+ g�a,k(y− yk)− c‖yk − x‖2

= f (yk)− f (x)+ g�a,k(x− yk)+ g�a,k(y− x)− c‖yk− x‖2.

As y is arbitrary, we have ga,k ∈ ∂|ζk |φ(x,x), where ζk = f (yk)− f (x)+g�a,k(x−
yk)− c‖yk − x‖2. Since ζk → 0, yk → x and ga,k → ga, we deduce again ga ∈
∂φ(x,x). Altogether for the two cases [. . . ]+ = 0 and [. . . ]+ > 0 we have shown
∂ l f (x)+ εB ⊂ ∂φ(x,x).

(3) Let us now prove ∂φ(x,x)⊂ ∂ f (x)+ εB. Let g ∈ ∂φ(x,x) and m(·,x) = f (x)+
g�(· − x) the tangent plane to the graph of φ(·,x) at x associated with g. By
convexity m(·,x) ≤ φ(·,x). We fix h ∈ R

n and consider the values φ(x+ th,x)
for t > 0. According to the definition of φ(·,x) we have φ(x+ th,x) =mzt ,gt (x+
th,x), where mzt ,gt (·,x) is a cutting plane drawn at some zt ∈ B(0,M) with gt ∈
∂[ε] f (zt ). The slope of the cutting plane along the ray x+R+h is g�t h. Now the
cutting plane passes through φ(x+ th,x) ≥ m(x+ th,x), which means that its
value at x+ th is above the value of the tangent. On the other hand, according to
the downshift process, the cutting plane satisfies mzt ,gt (x,x)≤ f (x)−c‖x−zt‖2.
Its value at x is therefore below the value of m(x,x) = f (x). These two facts
together tell us that mzt ,gt (·,x) is steeper than m(·,x) along the ray x+R+h. In
other words, g�h ≤ g�t h. Next observe that φ(x+ th,x)→ φ(x,x) = f (x) as t →
0+. That implies mzt ,gt (x+ th,x)→ f (x). Since by the definition of downshift
mzt ,gt (x+ th,x)≤ f (x)−c‖x− zt‖2, it follows that we must have ‖x− zt‖2 → 0,
i.e., zt → x as t → 0+. Passing to a subsequence, we may assume gt → ĝ for some
ĝ. With zt → x it follows from upper semicontinuity of the Clarke subdifferential
that ĝ ∈ ∂[ε] f (x). On the other hand, g�h ≤ g�t h for all t implies g�h ≤ ĝ�h.
Therefore g�h ≤ σK(h) = max{g̃�h : g̃ ∈ K}, where σK is the support function
of K = ∂[ε] f (x). Given that h was arbitrary, and as K is closed convex, this
implies g ∈ K by Hahn–Banach.

(4) Upper semicontinuity of φ follows from upper semicontinuity of the Clarke
subdifferential. Indeed, let x j → x, y j → y. Using the definition (26.13) of φ ,
find cutting planes mz j ,g j(·,x j) = tz j (·)− s j at serious iterate x j, drawn at z j

with g j ∈ ∂[ε] f (z j), such that φ(y j ,x j)≤mz j ,g j(y j,x j)+ε j and ε j → 0. We have
tz j (y) = f (z j)+ g�j (y− z j). Passing to a subsequence, we may assume z j → z
and g j → g ∈ ∂[ε] f (z). That means tz j (·)→ tz(·), and since y j → y also tz j (y j)→
tz(y). In order to conclude for the mz j ,g j(·,x j) we have to see how the downshift
behaves. We have indeed s j → s, where s is the downshift at z with respect to the
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approximate subgradient g and serious iterate x. Therefore mz,g(·,x) = tz(·)− s.
This shows mz j ,g j (·,x j) = tz j(·)− s j → tz(·)− s = mz,g(·,x) as j → ∞, and then
also mz j ,g j (y j,x j)= tz j(y j)−s j → tz(y)−s=mz,g(y,x), where uniformity comes
from boundedness of the g j. This implies limmz j ,g j(y j,x j) =mz,g(y,x)≤ φ(y,x)
as required.

(5) The inequality φk ≤ φ is clear, because φk(·,x) is built from cutting planes
mk(·,x), and all these cutting planes are below the envelope φ(·,x). �

Remark 26.8. In [40, 42] the case ε = 0 is discussed and a function φ(·,x) with
the properties in Lemma 26.7 is called a first-order model of f at x. It can be
understood as a generalized first-order Taylor expansion of f at x. Every locally
Lipschitz function f has the standard or Clarke model φ �(y,x) = f (x)+ f 0(x,y−x),
where f 0(x,d) is the Clarke directional derivative at x. In the present situation it is
reasonable to call φ(·,x) an ε-model of f at x.

Following [34] a function f is called ε-convex on an open convex set U if f (tx+
(1− t)y) ≤ t f (x) + (1− t) f (y) + εt(1− t)‖x− y‖ for all x,y ∈ U and 0 ≤ t ≤ 1.
Every ε-convex function satisfies f ′(y,x− y) ≤ f (x)− f (y)+ ε‖x− y‖; hence for
g ∈ ∂ f (y),

g�(x− y)≤ f (x)− f (y)+ ε‖x− y‖. (26.14)

A function f is called approximate convex if for every x and ε > 0 there exists
δ > 0 such that f is ε-convex on B(x,δ ). Using results from [14,34] one may show
that approximate convex functions coincide with lower C1 function in the sense of
Spingarn [51].

Lemma 26.9. Suppose the inner loop turns forever and τk → ∞.

1. If f is ε ′-convex on a set containing all yk, k ≥ k0, then 0 ∈ ∂[ε̃] f (x), where
ε̃ = ε +(ε ′+ ε)/(γ̃ − γ).

2. If f is lower C1, then 0 ∈ ∂[αε] f (x), where α = 1+(γ̃ − γ)−1.

Proof.

(i) The second statement follows from the first, because every lower C1 function
is approximate convex, hence ε ′-convex on a suitable neighborhood of x.
We therefore concentrate on the first statement.

(ii) By assumption none of the trial steps is accepted, so that ρk < γ for all k ∈
N. Since τk is increased infinitely often, there are infinitely many inner loop
instances k where ρ̃k ≥ γ̃ . Let us prove that under these circumstances yk → x.
Recall that g∗k = (Q+ τkI)(x− yk) ∈ ∂φk(yk,x). By the subgradient inequality
this gives

g∗�k (x− yk)≤ φk(x,x)−φk(y
k,x). (26.15)
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Now use φk(x,x) = f (x) and observe that m0(yk,x)≤ φk(yk,x), where m0(·,x)
is the exactness plane. Since m0(y,x) = f (x)+ g(x)�(y− x) for some g(x) ∈
∂[ε] f (x), expanding the term on the left of (26.15) gives

(x− yk)�(Q+ τkI)(x− yk)≤ g(x)�(x− yk)≤ ‖g(x)‖‖x− yk‖. (26.16)

Since τk →∞, the term on the left-hand side of (26.16) behaves asymptotically
like τk‖x− yk‖2. Dividing (26.16) by ‖x− yk‖ therefore shows that τk‖x− yk‖
is bounded by ‖g(x)‖. As τk → ∞, this could only mean yk → x.

(iii) Let us use yk → x and go back to formula (26.15). Since the left hand side
of (26.15) tends to 0 and φk(x,x) = f (x), we see that the limit superior of
φk(yk,x) is f (x). On the other hand, φk(yk,x)≥ m0(yk,x), where m0(·,x) is the
exactness plane. Since clearly m0(yk,x) → m0(x,x) = f (x), the limit inferior
is also f (x), and we conclude that φk(yk,x)→ f (x).

Keeping this in mind, let us use the subgradient inequality (26.15) again and
subtract a term 1

2(x− yk)�Q(x− yk) from both sides. That gives the estimate

1
2 (x− yk)�Q(x− yk)+ τk‖x− yk‖2 ≤ f (x)−Φk(yk,x).

Fix 0 < ζ < 1. Using τk → ∞ we have

(1− ζ )τk‖x− yk‖ ≤ ‖g∗k‖ ≤ (1+ ζ )τk‖x− yk‖
and also

1
2(x− yk)�Q(x− yk)+ τk‖x− yk‖2 ≥ (1− ζ )τk‖x− yk‖2

for sufficiently large k. Therefore,

f (x)−Φk(y
k,x)≥ 1−ζ

1+ζ ‖g∗k‖‖x− yk‖ (26.17)

for k large enough.
(iv) Now let ηk := dist

(
g∗k,∂φ(x,x)

)
. We argue that ηk → 0. Indeed, using the

subgradient inequality at yk in tandem with φ(·,x) ≥ φk(·,x), we have for all
y ∈R

n

φ(y,x) ≥ φk(y
k,x)+ g∗k

�(y− yk).

Here our upper envelope function (26.13) is defined such that the ball B(0,M)
contains x and all trial points yk at which cutting planes are drawn.

Since the subgradients g∗k are bounded by part (ii), there exists an infinite
subsequence N ⊂ N such that g∗k → g∗, k ∈ N , for some g∗. Passing to
the limit k ∈ N and using yk → x and φk(yk,x) → f (x) = φ(x,x), we have
φ(y,x) ≥ φ(x,x) + g∗�(y − x) for all y. Hence g∗ ∈ ∂φ(x,x), which means
ηk = dist(g∗k ,∂φ(x,x)) ≤ ‖g∗k − g∗‖ → 0, k ∈ N , proving the argument.
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(v) Using the definition of ηk, choose g̃k ∈ ∂φ(x,x) such that ‖g∗k − g̃k‖ = ηk.
Now let dist(0,∂φ(x,x)) = η . Then ‖g̃k‖ ≥ η for all k ∈ N . Hence ‖g∗k‖ ≥
η −ηk > (1−ζ )η for k ∈ N large enough, given that ηk → 0 by (iv). Going
back with this to (26.17) we deduce

f (x)−Φk(y
k,x)≥ (1−ζ )2

1+ζ η‖x− yk‖ (26.18)

for k ∈ N large enough.
(vi) We claim that f (yk)≤ Mk(yk,x)+(1+ζ )(ε ′+ε)‖x−yk‖ for all k sufficiently

large. Indeed, we have mk(·,x) = tk(·)− sk, where sk is the downshift of the
approximate tangent tk(·) at yk, gεk ∈ ∂[ε] f (yk), with regard to the serious
iterate x. There are two cases. Assume first that tk(x)> f (x). Then

mk(y,x) = f (yk)+ g�εk(y− yk)− sk

= f (yk)+ g�εk(y− yk)− c‖x− yk‖2 − tk(x)+ f (x)

= f (x)+ g�εk(y− x)− c‖x− yk‖2.

In consequence

f (yk)−mk(y
k,x) = f (yk)− f (x)−g�εk(y

k−x)+c‖x−yk‖2

= f (yk)− f (x)−g�k (y
k−x)+(gk−gεk)

�(x−yk)+c‖x−yk‖2.

Now since f is ε ′-convex, estimate (26.14) is valid under the form

g�k (x− yk)≤ f (x)− f (yk)+ ε ′‖x− yk‖.

We therefore get

f (yk)−mk(y
k,x)≤ (ε ′+ ε)‖x− yk‖+ c‖x− yk‖2.

Subtracting a term 1
2(x− yk)�Q(x− yk) on both sides gives

f (yk)−Mk(y
k,x)≤ (ε ′+ ε +νk)‖x− yk‖,

where νk := c‖x− yk‖2 − 1
2(x− yk)�Q(x− yk)→ 0 and Mk(y,x) = mk(y,x)+

1
2 (y− x)�Q(y− x). Therefore

f (yk)−Mk(y
k,x)≤ (1+ ζ )(ε ′+ ε)‖x− yk‖ (26.19)

for k large enough.
Now consider the second case tk(x) ≤ f (x). Here we get an even better

estimate than (26.19), because sk = c‖x− yk‖2, so that f (yk)−mk(yk,x) =
c‖x− yk‖2 ≤ ε‖x− yk‖ for k large enough.
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(vii) To conclude, using (26.18) and (26.19) we expand the coefficient ρ̃k as

ρ̃k = ρk +
f (yk)−Mk(yk,x)
f (x)−Φk(yk,x)

≤ ρk +
(1+ ζ )2(ε ′+ ε)‖x− yk‖

(1− ζ )2η‖x− yk‖ = ρk +
(1+ ζ )2(ε ′+ ε)

(1− ζ )2η
.

This shows

η <
(1+ ζ )2(ε ′+ ε)
(1− ζ )2(γ̃ − γ)

.

For suppose we had η ≥ (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ) , then ρ̃k ≤ ρk +(γ̃ − γ) ≤ γ̃ for all k,

contradicting ρ̃k > γ̃ for infinitely many k. As 0 < ζ < 1 was arbitrary, we
have the estimate η ≤ ε ′+ε

γ̃−γ . Since ∂φ(x,x) = ∂ f (x)+ εB by Lemma 26.7, we
deduce 0 ∈ ∂φ(x,x)+ηB ⊂ ∂ f (x)+ (ε +η)B, and this is the result claimed
in statement 1. �

Remark 26.10. Suppose we choose γ very small and γ̃ close to 1, then α = 2+ ξ
for some small ξ , so roughly α ≈ 2.

Lemma 26.11. Suppose the inner loop turns forever and τk is frozen. Then yk → x
and 0 ∈ ∂[ε] f (x).

Proof.

(i) The control parameter is frozen from counter k0 onwards, and we put τ := τk,
k ≥ k0. This means that ρk < γ and ρ̃k < γ̃ for all k ≥ k0.

(ii) We prove that the sequence of trial steps yk is bounded. Notice that

g∗�k (x− yk)≤ φk(x,x)−φk(y
k,x)

by the subgradient inequality at yk and the definition of the aggregate subgra-
dient. Now observe that φk(x,x) = f (x) and φk(yk,x) ≥ m0(yk,x). Therefore,
using the definition of g∗k , we have

(x−yk)�(Q+τI)(x−yk)≤ f (x)−m0(y
k,x)= g(x)�(x−yk)≤‖g(x)‖‖x−yk‖.

Since the τ-parameter is frozen and Q+τI � 0, the expression on the left is the
square ‖x− yk‖2

Q+τI of the Euclidean norm derived from Q+ τI. Since both

norms are equivalent, we deduce after dividing by ‖x−yk‖ that ‖x−yk‖Q+τI ≤
C‖g(x)‖ for some constant C > 0 and all k. This proves the claim.

(iii) Let us introduce the objective function of tangent program (26.7) for k ≥ k0:

ψk(·,x) = φk(·,x)+ 1
2 (·− x)�(Q+ τI)(·− x).
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Let m∗
k(·,x) be the aggregate plane, then φk(yk,x) = m∗

k(y
k,x) by (26.9) and

therefore also

ψk(y
k,x) = m∗

k(y
k,x)+ 1

2 (y
k − x)�(Q+ τI)(yk − x).

We introduce the quadratic function ψ∗
k (·,x) = m∗

k(·,x) + 1
2 (· − x)�(Q+ τI)

(·− x). Then

ψk(y
k,x) = ψ∗

k (y
k,x) (26.20)

by what we have just seen. By construction of model φk+1(·,x) we have
m∗

k(y,x) ≤ φk+1(y,x), so that

ψ∗
k (y,x) ≤ ψk+1(y,x). (26.21)

Notice that ∇ψ∗
k (y,x) = ∇m∗

k(y,x)+ (Q+ τI)(y− x) = g∗k +(Q+ τI)(y− x),
so that ∇ψ∗

k (y
k,x) = 0 by (26.8). We therefore have the relation

ψ∗
k (y,x) = ψ∗

k (y
k,x)+ 1

2 (y− yk)�(Q+ τI)(y− yk), (26.22)

which is obtained by Taylor expansion of ψ∗
k (·,x) at yk. Recall that step 8 of

the algorithm assures Q+ τI � 0, so that the quadratic expression defines the
Euclidean norm ‖ · ‖Q+τI.

(iv) From the previous point (iii) we now have

ψk(yk,x) ≤ ψ∗
k (y

k,x)+ 1
2‖yk − yk+1‖2

Q+τI [using (26.20)]
= ψ∗

k (y
k+1,x) [using (26.22)]

≤ ψk+1(yk+1,x) [using (26.21)]
≤ ψk+1(x,x) (yk+1 minimizer of ψk+1)
= φk+1(x,x) = f (x).

(26.23)
We deduce that the sequence ψk(yk,x) is monotonically increasing and
bounded above by f (x). It therefore converges to some value ψ∗ ≤ f (x).

Going back to (26.23) with this information shows that the term 1
2‖yk −

yk+1‖2
Q+τI is squeezed in between two convergent terms with the same limit,

ψ∗, which implies 1
2‖yk − yk+1‖2

Q+τI → 0. Consequently, ‖yk − x‖2
Q+τI −

‖yk+1 − x‖2
Q+τI also tends to 0, because the sequence of trial steps yk is

bounded by part (ii).
Recalling φk(y,x) = ψk(y,x)− 1

2‖y− x‖2
Q+τI, we deduce, using both con-

vergence results, that

φk+1(y
k+1,x)−φk(y

k,x)

= ψk+1(y
k+1,x)−ψk(y

k,x)− 1
2‖yk+1 − x‖2

Q+τI +
1
2‖yk − x‖2

Q+τI → 0.

(26.24)
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(v) We want to show that φk(yk,x)− φk+1(yk,x) → 0 and then of course also
Φk(yk,x)−Φk+1(yk,x)→ 0.

Recall that by construction the cutting plane mk(·,x) is an affine support
function of φk+1(·,x) at yk. By the subgradient inequality this implies

g�k (y− yk)≤ φk+1(y,x)−φk+1(y
k,x) (26.25)

for all y. Therefore

0 ≤ φk+1(y
k,x)−φk(y

k,x) (using aggregation)

= φk+1(y
k,x)+ g�k (y

k+1 − yk)−φk(y
k,x)− g�k (y

k+1 − yk)

≤ φk+1(y
k+1,x)−φk(y

k,x)+ ‖gk‖‖yk+1 − yk‖ [using (26.25)]

and this term converges to 0, because of (26.24), because the gk are bounded,
and because yk−yk+1 → 0 according to part (iv) above. Boundedness of the gk

follows from boundedness of the trial steps yk shown in part (ii). Indeed, gk ∈
∂ f (yk)+εB, and the subdifferential of f is uniformly bounded on the bounded
set {yk : k ∈ N}. We deduce that φk+1(yk,x)− φk(yk,x) → 0. Obviously, that
also gives Φk+1(yk,x)−Φk(yk,x)→ 0.

(vi) We now proceed to prove Φk(yk,x)→ f (x) and then also Φk+1(yk,x)→ f (x).
Assume this is not the case, then limsupk→∞ f (x)−Φk(yk,x) =: η > 0. Choose
δ > 0 such that δ < (1− γ̃)η . It follows from (v) above that there exists k1 ≥ k0

such that

Φk+1(y
k,x)− δ ≤ Φk(y

k,x)

for all k ≥ k1. Using ρ̃k ≤ γ̃ for all k ≥ k0 then gives

γ̃
(

Φk(y
k,x)− f (x)

)
≤ Φk+1(y

k,x)− f (x)≤ Φk(y
k,x)+ δ − f (x).

Passing to the limit implies −γ̃η ≤ −η + δ , contradicting the choice of δ .
This proves η = 0.

(vii) Having shown Φk(yk,x) → f (x) and therefore also Φk+1(yk,x) → f (x), we
now argue that yk → x. This follows from the definition of ψk, because

Φk(y
k,x)≤ ψk(y

k,x) = Φk(y
k,x)+ τ

2‖yk − x‖2 ≤ ψ∗ ≤ f (x).

Since Φk(yk,x) → f (x) by part (vi), we deduce τ
2‖yk − x‖2 → 0 using

a sandwich argument, which also proves en passant that ψ∗ = f (x) and
φk(yk,x)→ f (x).

To finish the proof, let us now show 0 ∈ ∂[ε] f (x). Remember that by
the necessary optimality condition for (26.7) we have (Q + τI)(x − yk) ∈
∂φk(yk,x). By the subgradient inequality,
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(x− yk)�(Q+ τI)(y− yk) ≤ φk(y,x)−φk(y
k,x)

≤ φ(y,x)−φk(y
k,x),

where φ is the upper envelope (26.13) of all cutting planes drawn at z ∈
B(0,M), g ∈ ∂[ε] f (z), which we choose large enough to contain the bounded
set {x} ∪ {yk : k ∈ N}, a fact which assures φk(·,x) ≤ φ(·,x) for all k
(see Lemma 26.7). Passing to the limit, observing ‖x − yk‖2

Q+τI → 0 and

φk(yk,x)→ f (x) = φ(x,x), we obtain

0 ≤ φ(y,x)−φ(x,x)

for all y. This proves 0 ∈ ∂φ(x,x). Since ∂φ(x,x) ⊂ ∂[ε] f (x) by Lemma 26.7,
we have shown 0 ∈ ∂[ε] f (x). �

26.6 Convergence of the Outer Loop

In this section we prove subsequence convergence of our algorithm for the case
where function values are exact and subgradients are in ∂[ε] f (yk). We write Q j =

Q(x j) for the matrix of the second-order model, which depends on the serious
iterates x j.

Theorem 26.12. Let x1 be such that Ω = {x ∈ R
n : f (x) ≤ f (x1)} is bounded.

Suppose f is ε ′-convex on Ω and that subgradients are drawn from ∂[ε] f (y),
whereas function values are exact. Then every accumulation point x̄ of the sequence
of serious iterates x j satisfies 0 ∈ ∂[ε̃] f (x̄), where ε̃ = ε +(ε ′+ ε)/(γ − γ̃).

Proof.

(i) From the analysis in Sect. 26.5 we know that if we apply the stopping test in
step 2 with ε̃ = ε +(ε ′ + ε)/(γ − γ̃), then the inner loop ends after a finite
number of steps k with a new x+ satisfying the acceptance test in step 5,
unless we have finite termination due to 0 ∈ ∂[ε̃] f (x). Let us exclude this case,
and let x j denote the infinite sequence of serious iterates. We assume that at
outer loop counter j the inner loop finds a serious step at inner loop counter
k = k j. In other words, ykj = x j+1 passes the acceptance test in step 5 of the
algorithm and becomes a serious iterate, while the yk with k < k j are null
steps. That means

f (x j)− f (x j+1)≥ γ
(

f (x j)−Φk j(x
j+1,x j)

)
. (26.26)
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Now recall that (Q j + τk j I)(x
j − x j+1) ∈ ∂φk j (x

j+1,x j) by optimality of the
tangent program (26.7). The subgradient inequality for φk j (·,x j) at x j+1

therefore gives

(
x j − x j+1)� (Q j + τk j I)(x

j − x j+1) ≤ φk j (x
j,x j)−φk j(x

j+1,x j)

= f (x j)−φk j(x
j+1,x j),

using φk j (x
j,x j) = f (x j). With Φk(y,x j) = φk(y,x j)+ 1

2 (y− x j)�Q j(y− x j)
we have

1
2‖x j+1 − x j‖2

Qj+τk j
I ≤ f (x j)−Φk j(x

j+1,x j)≤ γ−1
(

f (x j)− f (x j+1)
)
,

(26.27)

using (26.26). Summing (26.27) from j = 1 to j = J gives

J

∑
j=1

‖x j+1−x j‖2
Qj+τk j

I ≤ γ−1
J

∑
j=1

(
f (x j)− f (x j+1)

)
= γ−1 ( f (x1)− f (xJ+1)

)
.

Here the right-hand side is bounded above because our method is of descent
type in the serious steps and Ω is bounded. Consequently the series on the
left is summable, and therefore ‖x j+1 − x j‖2

Qj+τk j
I → 0 as j → ∞. Let x̄ be

an accumulation point of the sequence x j. We have to prove 0 ∈ ∂[ε̃] f (x̄).
We select a subsequence j ∈ J such that x j → x̄, j ∈ J. There are now two
cases. The first is discussed in part (ii); the second is more complicated and
will be discussed in (iii)–(ix).

(ii) Suppose there exists an infinite subsequence J′ of J such that g j := (Q j +
τk j I)

(
x j − x j+1

)
converges to 0, j ∈ J′. We will show that in this case 0 ∈

∂[ε̃] f (x̄).
In order to prove this claim, notice first that since Ω = {x ∈ R

n : f (x) ≤
f (x1)} is bounded by hypothesis, and since our algorithm is of descent type
in the serious steps, the sequence x j, j ∈ N is bounded. We can therefore use
the convex upper envelope function φ of (26.13), where B(0,M) contains Ω
and also all the trial points yk visited during all inner loops j.

Indeed, the set of x j being bounded, so are the ‖g(x j)‖, where g(x j) ∈
∂[ε] f (x j) is the exactness subgradient of the jth inner loop. From (26.16)
we know that ‖x j − yk‖Qj+τkI ≤ ‖g(x j)‖ for every j and every trial step yk

arising in the jth inner loop at some instant k. From the management of the
τ-parameter in the outer loop (26.12) we know that Q j + τkI � ζ I for some
ζ > 0, so ‖x j − yk‖ ≤ ζ−1‖g(x j)‖ ≤ C < ∞, meaning the yk are bounded.
During the following the properties of φ obtained in Lemma 26.7 will be
applied at every x = x j.
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Since g j is a subgradient of φk j (·,x j) at x j+1 = ykj+1, we have for every
test vector h

g�j h ≤ φk j (x
j+1 + h,x j)−φk j (x

j+1,x j)

≤ φ(x j+1 + h,x j)−φk j(x
j+1,x j) [using φk j (·,x j)≤ φ(·,x j)].

Now ykj = x j+1 was accepted in step 5 of the algorithm, which means

γ−1 ( f (x j)− f (x j+1)
)≥ f (x j)−Φk j(x

j+1,x j).

Combining these two estimates for a fixed test vector h gives

g�j h ≤ φ(x j+1 + h,x j)− f (x j)+ f (x j)−φk j(x
j+1,x j)

= φ(x j+1 + h,x j)− f (x j)+ f (x j)−Φk j (x
j+1,x j)

+ 1
2(x

j − x j+1)�Q j(x j − x j+1)

≤ φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j − x j+1)�Q j(x j − x j+1)

= φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j − x j+1)�(Q j + τk j I)(x
j − x j+1)− τk j

2 ‖x j − x j+1‖2

≤ φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j − x j+1)�(Q j + τk j I)(x
j − x j+1).

Now fix h′ ∈ R
n. Plugging h = x j − x j+1 + h′ in the above estimate gives

1
2‖x j−x j+1‖2

Qj+τk j
I+g�j h′ ≤ φ(x j + h′,x j)− f (x j)+γ−1

(
f (x j)− f (x j+1)

)
.

(26.28)

Passing to the limit j ∈ J′ and using, in the order named, ‖x j−x j+1‖2
Qj+τk j

I →
0, g j → 0, x j → x̄, f (x j)→ f (x̄) = φ(x̄, x̄) and f (x j)− f (x j+1)→ 0, we obtain

0 ≤ φ(x̄+ h′, x̄)−φ(x̄, x̄). (26.29)

In (26.28) the rightmost term f (x j)− f (x j+1)→ 0 converges by monotonic-
ity, convergence of the leftmost term was shown in part (i), and g j → 0 is
the working hypothesis. Now the test vector h′ in (26.29) is arbitrary, which
shows 0 ∈ ∂φ(x̄, x̄). By Lemma 26.7 we have 0 ∈ ∂[ε] f (x̄)⊂ ∂[ε̃ ] f (x̄).
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(iii) The second more complicated case is when ‖g j‖ = ‖(Q j + τk j I)(x
j −

x j+1)‖ ≥ μ > 0 for some μ > 0 and every j ∈ J. The remainder of this proof
will be entirely dedicated to this case.

We notice first that under this assumption the τk j , j ∈ J, must be
unbounded. Indeed, assume on the contrary that the τk j , j ∈ J, are bounded.
By boundedness of Q j and boundedness of the serious steps, there exists then
an infinite subsequence j ∈ J′ of J such that Q j, τk j , and x j − x j+1 converge
respectively to Q̄, τ̄ , and δ x̄ as j ∈ J′. This implies that the corresponding
subsequence of g j converges to (Q̄+ τ̄I)δ x̄, where ‖(Q̄+ τ̄I)δ x̄‖ ≥ μ > 0.
Similarly, (x j − x j+1)�(Q j + τk j I)(x

j − x j+1)→ δ x̄�(Q̄+ τ̄I)δ x̄. By part (i)

of the proof we have g�j (x j+1 − x j) = ‖x j+1 − x j‖2
Qj+τk j

I → 0, which means

δ x̄�(Q̄+ τ̄I)δ x̄ = 0. Since Q̄+ τ̄I is symmetric and Q̄+ τ̄I � 0, we deduce
(Q̄+ τ̄I)δ x̄ = 0, contradicting ‖(Q̄+ τ̄I)δ x̄‖ ≥ μ > 0. This argument proves
that the τk j , j ∈ J, are unbounded.

(iv) Having shown that the sequence τk j , j ∈ J is unbounded, we can without loss
assume that τk j → ∞, j ∈ J, passing to a subsequence if required. Let us now
distinguish two types of indices j ∈ J. We let J+ be the set of those j ∈ J
for which the τ-parameter was increased at least once during the jth inner
loop. The remaining indices j ∈ J− are those where the τ-parameter remained
unchanged during the jth inner loop. Since the jth inner loop starts at τ�j and
ends at τk j , we have

J+ = { j ∈ J : τk j < τ�j} and J− = { j ∈ J : τk j = τ�j}.

We claim that the set J− must be finite. For suppose J− is infinite, then τk j →
∞, j ∈ J−. Hence also τ�j → ∞, j ∈ J−. But this contradicts the rule in step 8

of the algorithm, which forces τ�j ≤ T < ∞. This contradiction shows that J+

is cofinal in J.
(v) Remember that we are still in the case whose discussion started in point (iii).

We are now dealing with an infinite subsequence j ∈ J+ of j ∈ J such that
τk j → ∞, ‖g j‖ ≥ μ > 0, and such that the τ-parameter was increased at least
once during the jth inner loop. Suppose this happened for the last time at
stage k j −ν j for some ν j ≥ 1. Then

τk j = τk j−1 = · · ·= τk j−ν j+1 = 2τk j−ν j . (26.30)

According to step 6 of the algorithm, the increase at counter k j −ν j is due to
the fact that

ρk j−ν j < γ and ρ̃k j−ν j ≥ γ̃. (26.31)

This case is labelled too bad in step 6 of the algorithm.
(vi) Condition (26.31) means that there are infinitely many j ∈ J+ satisfying
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ρk j−ν j =
f (x j)− f (ykj−ν j)

f (x j)−Φk j−ν j (y
kj−ν j ,x j)

< γ

and

ρ̃k j−ν j =
f (x j)−Mkj−ν j(y

kj−ν j ,x j)

f (x j)−Φk j−ν j(y
kj−ν j+1,x j)

≥ γ̃.

Notice first that as τk j → ∞ and τk j = 2τk j−ν j , boundedness of the subgradi-

ents g̃ j := (Q j +
1
2 τk j I)(x

j − ykj−ν j ) ∈ ∂φk j−ν j (y
kj−ν j ,x j) shows ykj−ν j → x̄.

Indeed, boundedness of the g̃ j follows from the subgradient inequality

(x j−ykj−ν j )�(Q j+τk j−ν j I)(x
j−ykj−ν j) ≤ φk j−ν j (x

j,x j)−φk j−ν j (y
kj−ν j ,x j)

≤ f (x j)−m0(y
kj−ν j ,x j)

= g(x j)�(x j−ykj−ν j )

≤ ‖g(x j)‖‖x j−ykj−ν j‖, (26.32)

where m0(·,x j) = f (x j) + g(x j)�(· − x j) is the exactness plane at x j. As
τk j → ∞, we have τk j−ν j =

1
2 τk j → ∞, too, so the left-hand side of (26.32)

behaves asymptotically like constant times τk j−ν j‖x j −ykj−ν j‖2. On the other
hand the x j ∈ Ω are bounded, hence so are the g(x j). The right-hand side
therefore behaves asymptotically like constant times ‖x j − ykj−ν j‖. This
shows boundedness of τk j−ν j‖x j − ykj−ν j‖, and therefore x j − ykj−ν j → 0,
because τk j−ν j → ∞.

(vii) Recall that x j → x̄, j ∈ J. By (vi) we know that ykj−ν j → x̄, j ∈ J. Passing
to a subsequence J′ of J, we may assume g̃ j → g̃ for some g̃. We show g̃ ∈
∂φ(x̄, x̄).

For a test vector h and j ∈ J′,

g̃�j h ≤ φk j−ν j (y
kj−ν j + h,x j)−φk j−ν j(y

kj−ν j ,x j)

≤ φ(ykj−ν j + h,x j)−φk j−ν j (y
kj−ν j ,x j). (26.33)

Using the fact that ρ̃k j−ν j ≥ γ̃ , we have

f (x j)−Φk j−ν j (y
kj−ν j ,x j)≤ γ̃−1

(
f (x j)−Mkj−ν j(y

kj−ν j ,x j)
)
.

Adding 1
2 (y

kj−ν j − x j)�Q j(ykj−ν j − x j) on both sides gives

f (x j)−φk j−ν j (y
kj−ν j ,x j)

≤ γ̃−1
(

f (x j)−Mkj−ν j (y
kj−ν j ,x j)

)
+ 1

2 (y
kj−ν j − x j)�Q j(ykj−ν j − x j).



578 D. Noll

Combining this and estimate (26.33) gives

g̃�j h ≤ φ(ykj−ν j + h,x j)− f (x j)+ γ̃−1
(

f (x j)−Mkj−ν j(y
kj−ν j ,x j)

)

+ 1
2(y

kj−ν j − x j)�Q j(ykj−ν j − x j). (26.34)

As we have seen ykj−ν j − x j → 0, hence the rightmost term in (26.34)
converges to 0 by boundedness of Q j. Moreover, we claim that lim f (x j)−
Mkj−ν j(y

kj−ν j ,x j) = 0, so the term γ̃−1(. . . ) on the right-hand side of
(26.34) converges to 0. Indeed, to see this claim, notice first that it suf-
fices to show f (x j) − mkj−ν j (y

kj−ν j ,x j) → 0, because the second-order
term converges to 0. Since mkj−ν j (·,x j) is a cutting plane at x j, we have

mkj−ν j (y
kj−ν j ,x j)≤ f (ykj−ν j ) by definition of the downshift. So it suffices to

show liminfmkj−ν j (y
kj−ν j ,x j) ≥ f (x̄). Now this follows from the definition

of the downshift s j at ykj−ν j with regard to x j . Recall that for the tangent
tk j−ν j(·) at ykj−ν j , approximate subgradient g̃ j, and serious iterate x j, we have

s j = [tk j−ν j(x
j)− f (x j)]+ + c‖ykj−ν j − x j‖2.

We can clearly concentrate on proving tk j−ν j(x
j)− f (x j)→ 0. Now tk j−ν j (x

j)

− f (x j) = f (ykj−ν j)− f (x j)+ g̃�j (x j − ykj−ν j ), and since ykj−ν j → x̄, x j → x̄,
and the g̃ j are bounded, our claim follows.

Going back to (26.34) with the information g̃�j h→ g̃�h, it remains to prove

limsupφ(ykj−ν j +h,x j)≤ φ(x̄+h, x̄). Indeed, once this is proved, passing to
the limit in (26.34) shows g̃�h ≤ φ(x̄+ h, x̄)− f (x̄) = φ(x̄+ h, x̄)− φ(x̄, x̄).
This proves g̃ ∈ ∂φ(x̄, x̄), and then g̃ ∈ ∂[ε] f (x̄) by Lemma 26.7.

What remains to be shown is obviously joint upper semicontinuity of φ at
(x̄+h, x̄), and this follows from Lemma 26.7; hence our claim g̃ ∈ ∂[ε] f (x̄) is
proved.

(viii) Let η := dist(0,∂φ(x̄, x̄)). Then ‖g̃‖≥ η by (vii) above. Let us fix 0 < ζ < 1;
then, as g̃ j → g̃, we have ‖g̃ j‖ ≥ (1− ζ )η for j ∈ J′ large enough.

Now, assuming first [. . . ]+ > 0 in the downshift, we have

mkj−ν j (·,x j) = f (ykj−ν j)+ g̃�j (·− ykj−ν j )− s j

= f (ykj−ν j)+g̃�j (·−ykj−ν j )−c‖ykj−ν j−x j‖2−tk j−ν j(x
j)+ f (x j)

= f (x j)+ g̃�j (·− x j)− c‖ykj−ν j − x j‖2,

for g̃ j ∈ ∂[ε] f (ykj−ν j ) as above. Pick g j ∈ ∂ f (ykj−ν j) such that ‖g j − g̃ j‖ ≤ ε .
Then

f (ykj−ν j )−mkj−ν j (y
kj−ν j ,x j) = f (ykj−ν j )− f (x j)− g̃�j (y

kj−ν j − x j)

+c‖ykj−ν j − x j‖2
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= f (ykj−ν j )− f (x j)− g�j (y
kj−ν j − x j)

+(g̃ j − g j)(y
kj−ν j − x j)+ c‖ykj−ν j − x j‖2.

Since f is ε ′-convex, we have g�j (y
kj−ν j −x j)≤ f (x j)− f (ykj−ν j )+ε ′‖ykj−ν j

− x j‖. Substituting this we get

f (ykj−ν j )−mkj−ν j (y
kj−ν j ,x j)≤ (ε ′+ ε)‖ykj−ν j − x j‖+ c‖ykj−ν j − x j‖2.

(26.35)

In the case [. . . ]+ = 0 an even better estimate is obtained, so that (26.35)
covers both cases. Subtracting a term 1

2(y
kj−ν j −x j)�Q j(ykj−ν j −x j) on both

sides of (26.35) and using ykj−ν j − x j → 0, we get

f (ykj−ν j )−Mkj−ν j(y
kj−ν j ,x j)≤ (ε ′+ ε +ν j)‖ykj−ν j − x j‖,

where ν j → 0. In consequence

f (ykj−ν j)−Mkj−ν j (y
kj−ν j ,x j)≤ (1+ ζ )(ε ′+ ε)‖ykj−ν j − x j‖ (26.36)

for j large enough. Recall that g̃ j = (Q j +
1
2 τk j I)(x

j − ykj−ν j ) ∈ ∂φk j−ν j

(ykj−ν j ,x j) by (26.8) and (26.30). Hence by the subgradient inequality

g̃�j (x
j − ykj−ν j )≤ φk j−ν j (x

j,x j)−φk j−ν j(y
kj−ν j ,x j).

Subtracting a term 1
2(x

j − ykj−ν j )�Q j(x j − ykj−ν j ) from both sides gives

1
2 (x

j−yk j−ν j )�Qj(x j−yk j−ν j )+ 1
2 τk j‖x j−yk j−ν j‖2 ≤ f (x j)−Φk j−ν j (y

k j−ν j ,x j).

(26.37)

As τk j → ∞, we have

(1− ζ ) 1
2τk j‖x j − ykj−ν j‖ ≤ ‖g̃ j‖ ≤ (1+ ζ ) 1

2 τk j‖x j − ykj−ν j‖ (26.38)

and

1
2 (x

j−yk j−ν j )�Qj(x j−yk j−ν j )+ 1
2 τk j‖x j−yk j−ν j‖2 ≥ (1−ζ ) 1

2 τk j‖x j−yk j−ν j‖2

(26.39)

both for j large enough. Therefore, plugging (26.38) and (26.39) into (26.37)
gives

f (x j)−Φk j−ν j (y
kj−ν j ,x j)≥ 1−ζ

1+ζ ‖g̃ j‖‖x j − ykj−ν j‖
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for j large enough. Since ‖g̃ j‖ ≥ (1− ζ )η for j large enough, we deduce

f (x j)−Φk j−ν j(y
kj−ν j ,x j)≥ (1−ζ )2

1+ζ η‖x j − ykj−ν j‖. (26.40)

(ix) Combining (26.36) and (26.40) gives the estimate

ρ̃k j−ν j = ρk j−ν j +
f (ykj−ν j)−Mkj−ν j (y

kj−ν j ,x j)

f (x j)−Φk j−ν j (y
kj−ν j ,x j)

≤ ρk j−ν j +
(1+ ζ )2(ε ′+ ε)‖ykj−ν j − x j‖

(1− ζ )2η‖ykj−ν j − x j‖ . (26.41)

This proves

η ≤ (1+ ζ )2(ε ′+ ε)
(1− ζ )2(γ̃ − γ)

.

For suppose we had η > (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ) , then (1+ζ )2(ε ′+ε)

(1−ζ )2η < γ̃ − γ , which gave

ρ̃k j−ν j ≤ ρk j−ν j + γ̃ − γ < γ̃ for all j, contradicting ρ̃k j−ν j ≥ γ̃ for infinitely
many j ∈ J.

Since ζ in the above discussion was arbitrary, we have shown η ≤ ε ′+ε
γ̃−γ .

Recall that η = dist
(
0,∂[ε] f (x̄)

)
. We therefore have shown 0 ∈ ∂[ε̃] f (x̄),

where ε̃ = ε +η . This is what is claimed. �
Corollary 26.13. Suppose Ω = {x ∈R

n : f (x)≤ f (x1)} is bounded and f is lower
C1. Let approximate subgradients be drawn from ∂[ε] f (y), whereas function values
are exact. Then every accumulation point x̄ of the sequence of serious iterates x j

satisfies 0 ∈ ∂[αε] f (x̄), where α = 1+(γ̃ − γ)−1.

Remark 26.14. At first glance one might consider the class of lower C1 functions
used in Corollary 26.13 as too restrictive to offer sufficient scope. This misappre-
hension might be aggravated, or even induced, by the fact that lower C1 functions
are approximately convex [14, 34], an unfortunate nomenclature which erroneously
suggests something close to a convex function. We therefore stress that lower C1 is
a large class which includes all examples we have so far encountered in practice.
Indeed, applications are as a rule even lower C2, or amenable in the sense of
Rockafellar [45], a much smaller class, yet widely accepted as of covering all
applications of interest.

Recent approaches to nonconvex nonsmooth optimization like [21, 33, 47] all
work with composite (and therefore lower C2) functions. This is in contrast with
our own approach [19, 20, 40, 42], which works for lower C1 and is currently the
only one I am aware of that has the technical machinery to go beyond lower C2.
On second glance one will therefore argue that it is rather the class of lower C2

functions which does not offer sufficient scope to justify the development of a new
theory, because the chapter on nonsmooth composite convex functions f = g ◦F in
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[46] covers this class nicely and leaves little space for new contributions and because
one can do things for lower C1.

26.7 Extension to Inexact Values

In this section we discuss what happens when we have not only inexact subgradients
but also inexact function values. In the previous sections we assumed that for every
approximate subgradient ga of f at x, there exists an exact subgradient g ∈ ∂ f (x)
such that ‖ga − g‖ ≤ ε . Similarly, we will assume that approximate function values
fa(x) satisfy | fa(x)− f (x)| ≤ ε̄ for a fixed error tolerance ε̄ . We do not assume any
link between ε and ε̄ .

Let us notice the following fundamental difference between the convex and
the nonconvex case, where it is often reasonable to assume fa ≤ f ; see, e.g.,
[30, 31]. Suppose f is convex, x is the current iterate, and an approximate value
f (x)− ε̄ ≤ fa(x) ≤ f (x) is known. Suppose yk is a null step, so that we draw
an approximate tangent plane tk(·) = fa(yk) + g�k (· − yk) at yk with respect to
gk ∈ ∂[ε] f (yk). If we follow [30, 31], then tk(·), while not a support plane, is still an
affine minorant of f . It may then happen that tk(x) = fa(yk)+ g�k (x− yk) > fa(x),
because fa(x), fa(yk) are approximations only. Now the approximate cutting plane
gives us viable information as to the fact that the true value f (x) satisfies f (x) ≥
tk(x)> fa(x). We shall say that we can trust the value tk(x)> fa(x).

What should we do if we find a value tk(x) in which we can trust and which
reveals our estimate fa(x) as too low? Should we correct fa(x) and replace it by
the better estimate now available? If we do this we create trouble. Namely, we have
previously rejected trial steps yk during the inner loop at x based on the incorrect
information fa(x). Some of these steps might have been acceptable, had we used
tk(x) instead. But on the other hand, x was accepted as serious step in the inner loop
at x− because fa(x) was sufficiently below fa(x−). If we correct the approximate
value at x, then acceptance of x may become unsound as well. For short, correcting
values as soon as better estimates arrive is not a good idea, because we might be
forced to go repeatedly back all the way through the history of our algorithm.

In order to avoid this backtracking, Kiwiel [30] proposes the following original
idea. If fa(x), being too low, still allows progress in the sense that x+ with fa(x+)<
fa(x) can be found, then why waste time and correct the value fa(x)? After all,
there is still progress! On the other hand, if the underestimation fa(x) is so severe
that the algorithm will stop, then we should be sure that no further decrease within
the error tolerances ε̄,ε is possible. Namely, if this is the case, then we can stop in
all conscience. To check this, Kiwiel progressively relaxes proximity control in the
inner loop, until it becomes clear that the model of all possible approximate cutting
planes itself does not allow to descend below fa(x) and, therefore, does not allow to
descend more than ε̄ below f (x).

The situation outlined is heavily based on convexity and does not appear to
carry over to nonconvex problems. The principal difficulty is that without convexity
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we cannot trust values ty,g(x) > fa(x) even in the case of exact tangent planes,
g ∈ ∂ f (y). We know that tangents have to be downshifted, and without the exact
knowledge of f (x), the only available reference value to organize the downshift is
fa(x). Naturally, as soon as we downshift with reference to fa(x), cutting planes
my,g(·,x) satisfying my,g(x,x) > fa(x) can no longer occur. This removes one of the
difficulties. However, it creates, as we shall see, a new one.

In order to proceed with inexact function values, we will need the following
property of the cutting plane mk(·,x) := tk(·)− sk at null step yk and approximate
subgradient gk ∈ ∂[ε] f (yk). We need to find ε̃ > 0 such that fa(yk) ≤ mk(yk,x) +
ε̃‖x− yk‖. More explicitly, this requires

fa(y
k)≤ fa(x)+ g�k (y

k − x)+ ε̃‖x− yk‖.

If f is ε ′-convex, then

f (yk) ≤ f (x)+ g�(yk − x)+ ε ′‖x− yk‖
≤ f (x)+ g�k (y

k − x)+ (ε ′+ ε)‖x− yk‖

for g ∈ ∂ f (yk) and ‖g− gk‖ ≤ ε . That means

f (yk)− ( f (x)− fa(x))≤ fa(x)+ g�k (y
k − x)+ (ε + ε ′)‖x− yk‖.

So what we need in addition is something like

fa(y
k)≤ f (yk)− ( f (x)− fa(x))+ ε ′′‖x− yk‖,

because then we get the desired relation with ε̃ = ε + ε ′ + ε ′′. The condition can
still be slightly relaxed to make it more useful in practice. The axiom we need is
that there exist δk → 0+ such that

f (x)− fa(x)≤ f (yk)− fa(y
k)+ (ε ′′+ δk)‖x− yk‖ (26.42)

for every k ∈N. Put differently, as yk → x, the error we make at yk by underestimat-
ing f (yk) by fa(yk) is larger than the corresponding underestimation error at x, up
to a term proportional to ‖x− yk‖. The case of exact values f = fa corresponds to
ε ′′ = 0,δk = 0.

Remark 26.15. As f is continuous at x, condition (26.42) implies upper semi-
continuity of fa at serious iterates, i.e., limsup fa(yk)≤ fa(x).

We are now ready to modify our algorithm and then run through the proofs of
Lemmas 26.9 and 26.11 and Theorem 26.12 and see what changes need to be made
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to account for the new situation. As far as the algorithm is concerned, the changes
are easy. We replace f (yk) and f (x) by fa(yk) and fa(x). The rest of the procedure
is the same.

We consider the same convex envelope function φ(·,x) defined in (26.13).
We have the following.

Lemma 26.16. The upper envelope model satisfies φ(x,x) = fa(x), φk ≤ φ . φ is
jointly upper 2ε̄-semicontinuous, and ∂φ(x,x) ⊂ ∂[ε] f (x) ⊂ ∂2ε̄ φ(x,x), where
∂2ε̄ φ(x,x) is the 2ε̄-subdifferential of φ(·,x) at x in the usual convex sense.

Proof.

(1) Any cutting plane mz,g(·,x) satisfies mz,g(x,x) ≤ fa(x)− c‖x− z‖2. This shows
φ(x,x) ≤ fa(x), and if we take z = x, we get equality φ(x,x) = fa(x).

(2) We prove ∂[ε] f (x) ⊂ ∂2ε̄ φ(x,x). Let g ∈ ∂ f (x) be a limiting subgradient, and
choose yk → x, where f is differentiable at yk with gk = ∇ f (yk) ∈ ∂ f (yk) such
that gk → g. Let ga be an approximate subgradient such that ‖g− ga‖ ≤ ε .
We have to prove ga ∈ ∂2ε̄ φ(x,x). Putting ga,k := gk + ga − g ∈ ∂[ε] f (yk) we
have ga,k → ga. Let mk(·,x) be the cutting plane drawn at yk with approximate
subgradient ga,k. That is, mk(·,x) = myk,ga,k

(·,x). Then

mk(y,x) = fa(y
k)+ g�a,k(y− yk)− sk,

where sk = [ fa(x)− tk(x)]+ + c‖x− yk‖2 is the downshift and where tk(·) is
the approximate tangent at yk with respect to ga,k. There are two cases, sk =
c‖x− yk‖2 and sk = fa(x)+ tk(x)+ c‖x− yk‖2, according to whether [. . . ]+ = 0
or [. . . ]+ > 0. Let us start with the case tk(x)> fa(x). Then

sk = fa(y
k)+ g�a,k(x− yk)+ c‖x− yk‖2

and

mk(y,x) = fa(y
k)+ g�a,k(y− yk)− fa(y

k)− g�a,k(x− yk)+ fa(x)− c‖x− yk‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y
k,x)− fa(x) = g�a,k(y− x)− c‖x− yk‖2.

Passing to the limit k → ∞ proves ga ∈ ∂φ(x,x), so in this case a stronger
statement holds.

Let us next discuss the case where tk(x) ≤ fa(x), so that sk = c‖x− yk‖2.
Then

mk(y,x) = fa(y
k)+ g�a,k(y− yk)− c‖x− yk‖2.
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Therefore

φ(y,x)−φ(x,x) ≥ mk(y
k,x)− fa(x)

= fa(y
k)− fa(x)+ g�a,k(y− yk)− c‖x− yk‖2

= fa(y
k)− fa(x)+ g�a,k(x− yk)− c‖x− yk‖2 + g�a,k(y− x).

Put ζk := g�a,k(x− yk)− c‖x− yk‖2 +(ga,k − ga)
�(y− x) then

φ(y,x)−φ(x,x) ≥ fa(y
k)− fa(x)+ ζk + g�a (y− x).

Notice that limζk = 0, because ga,k → ga and yk → x. Let Fa(x) := liminfk→∞
fa(yk), then we obtain

φ(y,x)−φ(x,x) ≥ Fa(x)− fa(x)+ g�a (y− x).

Putting ε(x) := [ fa(x)−Fa(x)]+, we therefore have shown

φ(y,x)−φ(x,x) ≥−ε(x)+ g�a (y− x),

which means ga ∈ ∂ε(x)φ(x,x). Since approximate values fa are within ε̄ of
exact values f , we have | fa(x)− Fa(x)| ≤ 2ε̄ , hence ε(x) ≤ 2ε̄ . That shows
ga ∈ ∂ε(x)φ(x,x) ⊂ ∂2ε̄ φ(x,x).

(3) The proof of ∂φ(x,x) ⊂ ∂[ε] f (x) remains the same, after replacing f (x) by
fa(x).

(4) If a sequence of planes mr(·), r ∈ N, contributes to the envelope function
φ(·,x) and if mr(·) → m(·) in the pointwise sense, then m(·) also contributes
to φ(·,x), because the graph of φ(·,x) is closed. On the other hand, we may
expect discontinuities as x j → x. We obtain limsup j→∞ φ(y j ,x j) ≤ φ(y,x)+ ε̄
for y j → y, x j → x. �

Remark 26.17. If approximate function values are underestimations, fa ≤ f , as is
often the case, then |Fa − fa| ≤ ε̄ and the result holds with ∂φ(x,x) ⊂ ∂[ε] f (x) ⊂
∂ε̄ φ(x,x).

Corollary 26.18. Under the hypotheses of Lemma 26.16, if x is a point of continuity
of fa, then ∂φ(x,x) = ∂[ε] f (x) and φ is jointly upper semicontinuous at (x,x).

Proof. Indeed, as follows from part (2) of the proof above, for a point of continuity
x of fa, we have ε(x) = 0. �
Lemma 26.19. Suppose the inner loop at serious iterate x turns forever and τk →
∞. Suppose f is ε ′-convex on a set containing all yk, k ≥ k0, and let (26.42) be
satisfied. Then 0 ∈ ∂[ε̃] f (x), where ε̃ = ε +(ε ′′+ ε ′+ ε)/(γ̃ − γ).

Proof. We go through the proof of Lemma 26.9 and indicate the changes caused
by using approximate values fa(yk), fa(x). Part (ii) remains the same, except that
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φ(x,x) = fa(x). The exactness subgradient has still g(x)∈ ∂[ε] f (x). Part (iii) leading
to formula (26.17) remains the same with fa(x) instead of f (x). Part (iv) remains
the same, and we obtain the analogue of (26.18) with f (x) replaced by fa(x).

Substantial changes occur in part (v) of the proof leading to formula (26.19).
Indeed, consider without loss the case where tk(x)> fa(x). Then

mk(y,x) = fa(y
k)+ g�εk(y− yk)− sk

= fa(x)+ g�εk(y− x)− c‖x− yk‖2,

as in the proof of Lemma 26.9, and therefore

fa(y
k)−mk(y

k,x) = fa(y
k)− fa(x)−g�k (y

k − x)+(gk−gεk)
�(x−yk)+c‖x− yk‖2.

Since f is ε ′-convex, we have g�k (x− yk)≤ f (x)− f (yk)+ ε ′‖x− yk‖. Hence

fa(y
k)−mk(y

k,x)≤ f (x)− fa(x)−
(

f (yk)− fa(y
k)
)
+(ε ′+ ε +νk)‖x− yk‖,

where νk → 0. Now we use axiom (26.42), which gives

fa(y
k)−mk(y

k,x)≤ (ε ′′+ ε ′+ ε + δk +νk)‖x− yk‖,

for δk,νk → 0. Subtracting the usual quadratic expression on both sides gives
fa(yk)−Mk(yk,x) ≤ (ε ′′ + ε ′ + ε + δk + ν̃k)‖x− yk‖ with δk, ν̃k → 0. Going back
with this estimation to the expansion ρ̃k ≤ ρk +

ε ′′+ε ′+ε
η shows η < ε ′′+ε ′+ε

γ̃−γ as in
the proof of Lemma 26.9, where η = dist(0,∂φ(x,x)). Since ∂φ(x,x)⊂ ∂[ε] f (x) by
Lemma 26.16, we have 0 ∈ ∂[ε+η] f (x). This proves the result. �
Lemma 26.20. Suppose the inner loop turns forever and τk is frozen from some
counter k onwards. Then 0 ∈ ∂[ε] f (x).

Proof. Replacing f (x) by fa(x), the proof proceeds in exactly the same fashion
as the proof of Lemma 26.11. We obtain 0 ∈ ∂φ(x,x) and use Lemma 26.16 to
conclude 0 ∈ ∂[ε] f (x). �
As we have seen, axiom (26.42) was necessary to deal with the case τk → ∞ in
Lemma 26.19, while Lemma 26.20 gets by without this condition. Altogether, that
means we have to adjust the stopping test in step 2 of the algorithm to 0 ∈ ∂[ε̃ ] f (x j),
where ε̃ = ε+(ε ′′+ε ′+ε)/(γ̃ −γ). As in the case of exact function values, we may
delegate the stopping test to the inner loop, so if the latter halts due to insufficient
progress, we interpret this as 0 ∈ ∂[ε̃] f (x j), which is the precision we can hope for.
Section 26.8 below gives more details.

Let us now scan through the proof of Theorem 26.12 and see what changes occur
through the use of inexact function values fa(yk), fa(x j).

Theorem 26.21. Let x1 be such that Ω ′ = {x ∈R
n : f (x)≤ f (x1)+2ε̄} is bounded.

Suppose f is ε ′-convex on Ω , that subgradients are drawn from ∂[ε] f (y), and that
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inexact function values fa(y) satisfy | f (y)− fa(y)| ≤ ε̄ . Suppose axiom (26.42) is
satisfied. Then every accumulation point x̄ of the sequence x j satisfies 0 ∈ ∂[ε̃] f (x̄),
where ε̃ = ε +(ε ′′+ ε ′+ ε)/(γ̃ − γ).

Proof. Notice that ε̃ used in the stopping test has a different meaning than in
Theorem 26.21. Replacing f (x j) by fa(x j) and f (ykj ) by fa(ykj ), we follow the
proof of Theorem 26.12. Part (i) is still valid with these changes. Notice that
Ω = {x : fa(x)≤ fa(x1)} ⊂ Ω ′ and Ω ′ is bounded by hypothesis, so Ω is bounded.

As in the proof of Theorem 26.12 the set of all trial points y1, . . . ,ykj visited
during all the inner loops j is bounded. However, a major change occurs in part
(ii). Observe that the accumulation point x̄ used in the proof of Theorem 26.12
is neither among the trial points nor the serious iterates. Therefore, fa(x̄) is never
called for in the algorithm. Now observe that the sequence fa(x j) is decreasing and
by boundedness of Ω converges to a limit Fa(x̄). We redefine fa(x̄) = Fa(x̄), which
is consistent with the condition | fa(x̄)− f (x̄)| ≤ ε̄ , because fa(x j) ≥ f (x j)− ε̄ , so
that Fa(x̄)≥ f (x̄)− ε̄.

The consequences of the redefinition of fa(x̄) are that the upper envelope model
φ is now jointly upper semicontinuous at (x̄, x̄), and that the argument leading to
formula (26.29) remains unchanged, because fa(x j)→ φ(x̄, x̄).

Let us now look at the longer argument carried out in parts (iii)–(ix) of the proof
of Theorem 26.12, which deals with the case where ‖g j‖ ≥ μ > 0 for all j. Parts
(iii)–(vii) are adapted without difficulty. Joint upper semicontinuity of φ at (x̄+h, x̄)
is used at the end of (vii), and this is assured as a consequence of the redefinition
fa(x̄) = Fa(x̄) of fa at x̄.

Let us next look at part (viii). In Theorem 26.12 we use ε ′-convexity. Since the
latter is in terms of exact values, we need axiom (26.42) for the sequence ykj−ν j → x̄,
similarly to the way it was used in Lemma 26.16. We have to check that despite the
redefinition of fa at x̄ axiom (26.42) is still satisfied. To see this, observe that ykj−ν j

is a trial step which is rejected in the jth inner loop, so that its approximate function
value is too large. In particular, fa(ykj−ν j) ≥ fa(x j+1), because x j+1 is the first trial
step accepted. This estimate shows that (26.42) is satisfied at x̄.

Using (26.42) we get the analogue of (26.36), which is

fa(y
kj−ν j )−Mkj−ν j(y

kj−ν j ,x j)≤ (ε ′′+ ε ′+ν j + δ j)‖ykj−ν j − x j‖

for certain ν j,δ j → 0. Estimate (26.40) remains unchanged, so we can combine the
two estimates to obtain the analogue of (26.41) in part (ix), which is

ρ̃k j−ν j ≤ ρk j−ν j +
(1+ ζ 2)(ε ′′+ ε ′+ ε)

(1− ζ )2η
.

Using the same argument as in the proof of Theorem 26.12, we deduce

η ≤ (1+ ζ )2(ε ′′+ ε ′+ ε)
(1− ζ )2(γ̃ − γ)
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for η = dist(0,∂φ(x,x)). Since 0 < ζ < 1 was arbitrary, we obtain η ≤ ε ′′+ε ′+ε
γ̃−γ .

Now as x̄ is a point of continuity of fa, Corollary 26.18 tells us that η =
dist(0,∂[ε] f (x̄)). Therefore 0 ∈ ∂[ε+η] f (x̄). Since ε +η = ε̃ , we are done. �

26.8 Stopping

In this section we address the practical problem of stopping the algorithm. The idea
is to use tests which are based on the convergence theory developed in the previous
sections.

In order to save time, the stopping test in step 2 of the algorithm is usually
delegated to the inner loop. This is based on Lemmas 26.9 and 26.11 and the
following.

Lemma 26.22. Suppose tangent program (26.7) has the solution yk = x. Then 0 ∈
∂[ε] f (x).

Proof. From (26.8) we have 0 ∈ ∂φk(x,x)⊂ ∂φ(x,x) ⊂ ∂[ε] f (x) by Lemma 26.16.
�

In [20] we use the following two-stage stopping test. Fixing a tolerance level tol
> 0, if x+ is the serious step accepted by the inner loop at x, and if x+ satisfies

‖x− x+‖
1+ ‖x‖ < tol,

then we stop the outer loop and accept x+ as the solution, the justification being
Lemma 26.22. On the other hand, if the inner loop at x fails to find x+ and
either exceeds a maximum number of allowed inner iterations or provides three
consecutive trial steps yk satisfying

‖x− yk‖
1+ ‖x‖ < tol,

then we stop the inner loop and the algorithm and accept x as the final solution. Here
the justification comes from Lemmas 26.9 and 26.11.

Remark 26.23. An interesting aspect of inexactness theory with unknown
precisions ε,ε ′,ε ′′ are the following two scenarios, which may require different
handling. The first is when functions and subgradients are inexact or noisy, but we
do not take this into account and proceed as if information were exact. The second
scenario is when we deliberately use inexact information in order to gain speed
or deal with problems of very large size. In the first case we typically arrange all
elements of the algorithm like in the exact case, including situations where we are
not even aware that information is inexact. In the second case we might introduce
new elements which make the most of the fact that data are inexact.
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As an example of the latter, in [30] where f is convex, the author does not use
downshift with respect to fa(x), and as a consequence one may have φk(x,x) >
fa(x), so that the tangent program (26.7) may fail to find a predicted descent step
yk at x. The author then uses a sub-loop of the inner loop, where the τ-parameter
is decreased until either a predicted descent step is found or optimality within the
allowed tolerance of function values is established.

26.9 Example from Control

Optimizing the H∞-norm [4,7,19,20] is a typical application of (26.1) where inexact
function and subgradient evaluations may arise. The objective function is of the form

f (x) = max
ω∈R

σ (G(x, jω)) , (26.43)

where G(x,s) =C(x)(sI −A(x))−1 B(x)+D(x) is defined on the open set S = {x ∈
R

n : A(x) stable} and where A(x), B(x), C(x), D(x) are matrix-valued mappings
depending smoothly on x ∈ R

n. In other words, for x ∈ S each G(x,s) is a stable
real-rational transfer matrix.

Notice that f is a composite function of the form f = ‖ · ‖∞ ◦G , where ‖ · ‖∞ is
the H∞-norm, which turns the Hardy space H∞ of functions G which are analytic
and bounded in the open right-half plane [53, p. 100] into a Banach space,

‖G‖∞ = sup
ω∈R

σ (G( jω)) ,

and G : S → H∞, x 
→ G(x, ·) = C(x)(·I −A(x))−1B(x)+D(x) ∈ H∞ is a smooth
mapping, defined on the open subset S = {x ∈ R

n : A(x) stable}. Since composite
functions of this form are lower C2, and therefore also lower C1, we are in business.
For the convenience of the reader we also include a more direct argument proving
the same result:

Lemma 26.24. Let f be defined by (26.43), then f is lower C2, and therefore also
lower C1, on the open set S = {x ∈ R

n : A(x) stable}.

Proof. Recall that σ(G) = max‖u‖=1 max‖v‖=1 Re uGvH , so that

f (x) = max
ω∈S1

max
‖u‖=1

max
‖v‖=1

Re uG(x, jω)vH .

Here, for x ∈ S, the stability of G(x, ·) assures that G(x,s) is analytic in s on a
band B on the Riemann sphere C∪ {∞} containing the zero meridian jS1 with
S

1 = {ω : ω ∈ R∪{∞}}, a compact set homeomorphic to the real 1-sphere. This
shows that f is lower C2 on the open set S. Indeed, (x,ω ,u,v) 
→ F(x,ω ,u,v) :=
Re uG(x, jω)vH is jointly continuous on S× S

1 ×C
m ×C

p and smooth in x, and
f (x) = max(ω,u,v)∈K F(x,ω ,u,v) for the compact set K = S

1 × {u ∈ C
m : ‖u‖ =

1}×{v∈ C
p : ‖v‖= 1‖}. �
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The evaluation of f (x) is based on the iterative bisection method of Boyd et al.
[10]. Efficient implementations use Boyd and Balakrishnan [11] or Bruisma and
Steinbuch [12] and guarantee quadratic convergence. All these approaches are based
on the Hamiltonian test from [10], which states that f (x) > γ if and only if the
Hamiltonian

H(x,γ) =
[

A(x) 0
0 −A(x)�

]
−
[

0 B(x)
C(x)� 0(x)

][
γI D(x)

D(x)� γI

]−1 [
C(x) 0

0 −B(x)�

]

(26.44)

has purely imaginary eigenvalues jω . The bundle method of [7], which uses (26.44)
to compute function values, can now be modified to use approximate values fa(yk)
for unsuccessful trial points yk. Namely, if the trial step yk is to become the new
serious iterate x+, its value f (yk) has to be below f (x). Therefore, as soon as the
Hamiltonian test (26.44) certifies f (yk) > f (x) even before the exact value f (yk)
is known, we may dispense with the exact computation of f (yk). We may stop the
Hamiltonian algorithm at the stage where the first γ with f (yk) > γ ≥ f (x) occurs,
compute the intervals where ω 
→ σ (G(x, jω)) is above γ , take the midpoints
of these intervals, say ω1, . . . ,ωr, and pick the one where the frequency curve is
maximum. If this is ων , then fa(yk) = σ (G(x, jων )). The approximate subgradient
ga is computed via the formulas of [4] with ων replacing an active frequency. This
procedure is trivially consistent with (26.42), because f (x) = fa(x) and fa(y) ≤
f (y).

If we wish to allow inexact values not only at trial points y but also at serious
iterates x, we can use the termination tolerance of the Hamiltonian algorithm [11].
The algorithm works with estimates fl(x) ≤ f (x) ≤ fu(x) and terminates when
fu(x)− fl(x) ≤ 2ηxF(x), returning fa(x) := ( fl(x)+ fu(x))/2, where we have the
choice F(x) ∈ { fl(x), fu(x), fa(x)}. Then | f (x)− fa(x)| ≤ 2ηx|F(x)|. As ηx is under
control, we can arrange that ηx|F(x)| ≤ ηy|F(y)|+ o(‖x− y‖) in order to assure
condition (26.42).

Remark 26.25. The outlined method applies in various other cases in feedback
control where function evaluations use iterative procedures, which one may stop
short to save time. We mention IQC-theory [2], which uses complex Hamiltonians,
[7] for related semi-infinite problems, or the multidisk problem [3], where several
H∞-criteria are combined in a progress function. The idea could be used quite
naturally in the ε-subgradient approaches [36, 37] or in search methods like [1].
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