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Generic Existence of Solutions and Generic
Well-Posedness of Optimization Problems
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Abstract We exhibit a large class of topological spaces in which the generic
attainability of the infimum by the bounded continuous perturbations of a lower
semicontinuous function implies generic well-posedness of the perturbed optimiza-
tion problems. The class consists of spaces which admit a winning strategy for one
of the players in a certain topological game and contains, in particular, all metrizable
spaces and all spaces that are homeomorphic to a Borel subset of a compact space.
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20.1 Introduction

Let X be a completely regular topological space and f : X → R∪{+∞} be a fixed
bounded from below lower semicontinuous function which is proper (the latter
means that f has at least one finite value). We say that f attains its infimum in
X , if there exists some x ∈ X for which f (x) = infX f . Denote by C(X) the space
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of all bounded real-valued and continuous functions in X which we equip with the
usual sup-norm ‖g‖∞ = sup{|g(x)| : x ∈ X}, g ∈ C(X). It has been shown in [17]
that the set E( f ) = {g ∈ C(X) : f + g attains its infimum in X} is dense in C(X).
We call the statement “E( f ) is dense in C(X)” a variational principle for f with
C(X) as a set of perturbations. The variational principle is called generic if the set
E( f ) is residual in C(X). Recall that E( f ) is residual in C(X) if its complement is
of the first Baire category in C(X). Such a (or similar) setting, with different sets
of perturbations, is present in several well-known variational principles–see, e.g.,
Ekeland [9], Stegall [22], Borwein and Preiss [3] and Deville, Godefroy, and Zizler
[7,8] for the case of metric spaces X and [4,5] outside the case of metrizable spaces.

Our aim in this paper is to show that, for a very large class of spaces X , the
residuality of E( f ) in C(X) implies the residuality in the same space of the set
W ( f ) := {g ∈C(X) : f + g is well posed}. Let us recall that a bounded from below
function h : X → R∪{+∞} (or more precisely, the problem to minimize h on X) is
called well posed if every minimizing net (xλ )λ ⊂ X for h has a cluster point. If h is
lower semicontinuous and is well posed, then the set M(h) of minimizers of h in X
is a nonempty compact set in X and for every open U ⊃ M(h) there exists ε > 0 for
which {x ∈ X : h(x)< infX h+ ε} ⊂U .

The spaces X for which we prove here that residuality of E( f ) (in C(X)) implies
residuality of W ( f ) are described by a topological game called a determination
game and denoted by DG(X). The reasons for this terminology will become clear
later. Two players, Σ (who starts the game) and Ω , play by choosing at each step
n ≥ 1 nonempty sets An (the choices of Σ ) and Bn (the choices of Ω ) so that
Bn is relatively open in An and An+1 ⊂ Bn ⊂ An for any n. Playing this way the
players generate a sequence p = {An,Bn}n≥1 which is called a play. The player
Ω wins the play p if the intersection ∩nAn = ∩nBn is either empty or a nonempty
compact set such that, for each open set U containing ∩nBn, there is some n with
Bn ⊂ U . Otherwise, by definition, player Σ is declared to have won the play p.
A partial play in the game DG(X) is any finite sequence of the type (A1,B1, . . . ,An)
or (A1,B1, . . . ,An,Bn), n ≥ 1, where for i = 1, . . . ,n, the sets Ai and Bi are moves
in DG(X) of Σ and Ω correspondingly. A strategy ω for the player Ω is defined
recursively and is a rule which to any possible partial play of the type (A1, . . . ,An),
n ≥ 1, puts into correspondence a nonempty set Bn := ω(A1, . . . ,An) ⊂ An which
is relatively open in An. If in a given play {An,Bn}n≥1 of the game DG(X) each
choice Bn of Ω is obtained via the strategy ω , that is, Bn = ω(A1, . . . ,An) for every
n ≥ 1, then this play p is called an ω-play. The strategy ω for the player Ω is called
winning if the player Ω wins every ω-play in this game. The notions of strategy
and winning strategy for the player Σ are introduced in a similar way. The term the
game is favorable (resp. unfavorable) for some player means that the corresponding
player has (resp. does not have) a winning strategy in the game.

In Theorem 20.3 we prove that if the player Ω has a winning strategy in the
game DG(X) and if for some proper bounded from below lower semicontinuous
function f the set E( f ) is residual in C(X), then the set W ( f ) is also residual
in C(X). In other words, generic attainability of the infimum by the perturbations
implies generic well-posedness of the perturbations. Let us mention that the class
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of spaces X for which Ω has a winning strategy for the game DG(X) is quite large:
it contains all metrizable spaces, all Borel subsets of compact spaces, a large class
of fragmentable spaces, etc. (see the Concluding Remarks for more information
about this class). There are spaces X however for which the phenomenon does not
hold. In Example 20.4 we give a space X and a function f such that E( f ) = C(X)
and W ( f ) = /0.

The game DG(X) has been used in [11] in order to give sufficient conditions
when a semitopological group is, in fact, a topological group and in [12] to study
the points of continuity of the so-called quasi-continuous mappings. Variants of
DG(X) have been used by Michael [19] (for the study of completeness properties
of metric spaces), by Kenderov and Moors [13–15] (for characterization of the
fragmentability of topological spaces), and by the authors in [6,16,17] (for proving
the validity of generic variational principles).

20.2 Preliminary Results and Notions

Let X be a completely regular topological space and consider, as above, the Banach
space C(X) of all continuous and bounded functions in X equipped with its sup-
norm. For a given function f : X → R∪ {+∞}, the symbol dom( f ) denotes the
effective domain of f , which is the set of points x ∈ X for which f (x) ∈ R. For our
further considerations we need the following statement:

Proposition 20.1 ([17], Lemma 2.1). Let f : X → R∪{+∞} be a lower semicon-
tinuous function which is bounded from below and proper. Let x0 ∈ dom( f ) and
ε > 0 be such that f (x0) < infX f + ε . Then, there exists a continuous function
g : X → R

+ for which ‖g‖∞ ≤ ε and the function f + g attains its infimum at x0.

In particular, this proposition shows that the set E( f ) = {g ∈C(X) : f +g attains
its infimum in X} is dense in C(X).

Further, any proper function f : X → R∪{+∞} which is bounded from below
defines a set-valued mapping Mf : C(X)⇒ X as follows:

Mf (g) := {x ∈ X : ( f + g)(x) = inf
X
( f + g)}, g ∈C(X),

which to each g ∈ C(X) puts into correspondence the (possibly empty) set of
minimizers in X of the perturbation f + g. It is known as the solution mapping
determined by f .

We denote by Gr(Mf ) the graph of Mf and by Dom(Mf ) the set {g ∈ C(X) :
Mf (g) �= /0} which is called effective domain of Mf . The following properties are
well known in the case when f ≡ 0. For an arbitrary proper bounded from below
and lower semicontinuous f the proof of these properties is given in [6]. Recall that,
for a set A ⊂ X , the symbol A denotes the closure of A in X .
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Proposition 20.2 ([6], Proposition 2.4). Let X be a completely regular topological
space and let f : X → R∪{+∞} be a proper bounded from below lower semicon-
tinuous function. Then the solution mapping Mf : C(X)⇒ X satisfies the following
properties:

(a) Gr(Mf ) is closed in the product topology in C(X)×X.
(b) Dom(Mf ) is dense in C(X).
(c) Mf maps C(X) onto dom( f ).
(d) For any two open sets U of C(X) and W of X such that Mf (U)∩W �= /0 there is

a nonempty open set V ⊂U such that Mf (V )⊂W .
(e) If (Vn)n≥1 is a base of neighborhoods of g0 ∈C(X) then Mf (g0) = ∩nM(Vn).

The tool we use to show that a certain set is residual in a topological space is the
well-known Banach-Mazur game. Given a topological space X and a set S ⊂ X , two
players, denoted by α and β , play a game by choosing alternatively nonempty open
sets Un (the choices of β who starts the game) and Vn (the choices of α), n ≥ 1,
with the rule Un+1 ⊂ Vn ⊂ Un. The player α wins the play {Un,Vn}n≥1 if ∩nUn =
∩nVn ⊂ S. Otherwise, β wins. The game is known as the Banach-Mazur game and is
denoted by BM(X ,S). The notions of (winning) strategies for the players are defined
as in the game DG(X). It was proved by Oxtoby [20] that the player α has a winning
strategy in BM(X ,S) if and only if the set S is residual in X .

20.3 Generic Well-Posedness of Perturbed
Optimization Problems

In this section we formulate and prove our main result. Namely, we have the
following

Theorem 20.3. Let X be a completely regular topological space which admits a
winning strategy for the player Ω in the determination game DG(X). Suppose that
for some proper bounded from below lower semicontinuous function f : X → R∪
{+∞} the set E( f ) = {g ∈ C(X) : f + g attains its minimum in X} is residual in
C(X). Then the set W ( f ) = {g∈C(X) : f +g is well posed} is also residual in C(X).

Proof. Let X and f be as in the theorem. We will prove that the player α has
a winning strategy in the Banach-Mazur game B(C(X),W ( f )) played in C(X)
equipped with the sup-norm. According to the result of Oxtoby cited above this
will imply that W ( f ) is residual in C(X).

First, knowing that E( f ) is residual in C(X), let (On)n be a countable family of
open and dense subsets of C(X) such that ∩nOn ⊂ E( f ). Let us denote by ω the
winning strategy in the game DG(X) for the player Ω . We will construct now a
winning strategy s for the player α in the game BM(C(X),W ( f )).

To this end, let U1 be an arbitrary nonempty open set of C(X) which can be a legal
move of the player β in this game. Take A1 := Mf (U1) which is a nonempty set of
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X , according to Proposition 20.2 (b). Consider this set as a first move of the player
Σ in the determination game DG(X). Then put B1 := ω(A1) to be the answer of the
player Ω in the game DG(X) according to his/her strategy ω . Since B1 is relatively
open subset of A1 there is some open set W1 ⊂ X such that B1 =W1 ∩A1. Now, by
Proposition 20.2 (d), there is a nonempty open set V1 of C(X) for which V1 ⊂U1 and
Mf (V1)⊂W1. Thus Mf (V1)⊂W1∩Mf (U1) =W1∩A1 = B1. We may think, without
loss of generality, that V1 ⊂ O1, V 1 ⊂U1 and that in addition diam(V1) < 1. Define
the value of the strategy s for the player α in the game BM(C(X),W ( f )) at the set
U1 to be s(U1) := V1. Let further the nonempty open set U2 ⊂ V1 be an arbitrary
legitimate choice of the player β in the game BM(C(X),W ( f )) at the second step.
Put A2 := Mf (U2) which is a nonempty set of X according again to Proposition 20.2
(b). Since A2 = Mf (U2)⊂ Mf (V1)⊂ B1 the set A2 can be a legal move of the player
Σ in the game DG(X) at the second step. Put B2 := ω(A1,B1,A2) to be the answer
of the player Ω according to his/her strategy ω . The set B2 is a nonempty relatively
open subset of A2; thus, there is some nonempty open set W2 ⊂ X such that B2 =
W2 ∩A2. Now, using once again Proposition 20.2 (d), there is some nonempty open
subset V2 of U2 for which Mf (V2) ⊂ W2. Therefore, Mf (V2) ⊂ W2 ∩Mf (U2) = B2.
Moreover, without loss of generality, we may think that V2 ⊂ O2, V 2 ⊂U2 and that
diam(V2)< 1/2. Define the value of the strategy s by s(U1,V1,U2) :=V2.

Proceeding by induction we define a strategy s for the player α in the Banach-
Mazur game BM(C(X),W ( f )) such that for any s-play {Un,Vn}n≥1 in this game
(i.e., Vn = s(U1,V1, . . . ,Un) for each n ≥ 1) there exists an associated ω-play
{An,Bn}n≥1 in the game DG(X) such that the following properties are satisfied for
any n ≥ 1:

(i) An = Mf (Un).
(ii) Mf (Vn)⊂ Bn.

(iii) Vn ⊂ On.
(iv) V n+1 ⊂Un+1 ⊂Vn.
(v) diam(Vn)< 1/n.

Conditions (iv) and (v) ensure that the intersection ∩nVn is a one point set,
say g ∈ C(X) and condition (iii) entails that g ∈ ∩nOn ⊂ E( f ). According to
Proposition 20.2 (e) and taking into account (i) and (iv) we have

Mf (g) = ∩nMf (Vn) = ∩nMf (Un) = ∩nAn.

Since g ∈ E( f ), the set Mf (g) = ∩nAn is nonempty and therefore, because ω is a
winning strategy for Ω in the determination game DG(X), this set is compact and
the family (Bn)n behaves like a base for ∩nAn = Mf (g), that is, for any open set U
containing Mf (g) there is some n such that Bn ⊂ U . We will show that g ∈ W ( f )
and this will complete the proof. To show that the function f + g is well posed let
(xλ )λ be a minimizing net for f +g, that is, f (xλ )+g(xλ )→ infX( f +g). We have to
show that this net has a cluster point (necessarily lying in Mf (g)). For this, having in
mind that the set of minima Mf (g) for f +g is nonempty and compact, it is enough
to show that if U is an open subset of X so that Mf (g)⊂U , then xλ ∈U eventually.
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Fix n ≥ 1 so large that Bn ⊂ U . Put ελ := f (xλ ) + g(xλ )− infX ( f + g) ≥ 0.
We may think, without loss of generality, that ελ > 0 for every λ . By Propo-
sition 20.1, for each λ , there is gλ ∈ C(X) with ‖gλ‖∞ < ελ and such that
xλ ∈ Mf (g+ gλ ). Since (gλ )λ converges uniformly to zero, we have g+ gλ ∈ Vn

eventually. Thus, we have (using also (ii) above) xλ ∈ Mf (Vn) ⊂ Bn eventually (for
λ ). Therefore, xλ ∈U eventually, and this completes the proof. �

The next example shows that there are spaces in which we have generic
attainment of the infimum by the perturbations, without having generic well-
posedness of the perturbed optimization problems.

Example 20.4. Take Y to be the product of uncountably many copies of the
unit interval [0,1] with the usual product topology under which it is a compact
topological space. Let X be the so-called sigma-product in Y , i.e., the subset of
those x ∈ Y for which only countable number of coordinates are different from
zero. With the inherited topology X is a sequentially compact space which is not
compact. Thus, for any proper bounded from below lower semicontinuous function
f : X → R∪ {+∞} we will have E( f ) = C(X). In particular, this is so for any
function f ∈ C(X). Fix such a function f . In this case all the perturbations f + g,
g∈C(X) are continuous in X . On the other hand, it is easy to see that, for each value
r of a continuous function h in X , the level set h−1(r) = {x ∈ X : h(x) = r} contains
as a closed subset a copy of the sigma-product of uncountably many copies of the
interval [0,1]. Hence, the set h−1(r) is not compact for r = infX h and thus W ( f ) = /0.

20.4 Concluding Remarks

Some versions of the determination game DG(X) have already been used for
different purposes. We have in mind games in which the rules for selection of sets
are as in DG(X), but the rules for winning a play are different. We consider three
of these versions here. In the first one, which is denoted by G(X), Ω wins a play
{An,Bn}n≥1 if ∩nAn = ∩nBn �= /0. Otherwise Σ wins this play. The game G(X) was
used by Michael [19] for the study of completeness properties of metric spaces.
It was also used by the authors in [6, 17] to show that the existence of a winning
strategy for the player Ω in G(X) ensures the validity of the following generic
variational principle.

Theorem 20.5 ([17], Theorem 3.1). If the player Ω has a winning strategy in
the game G(X), then, for any proper bounded from below lower semicontinuous
function f : X → R∪{+∞}, the set E( f ) = {g ∈ C(X) : f + g attains its minimum
in X} is residual in C(X).

Note however that, for some particular functions f , the set E( f ) may be residual
in C(X) even if the space X does not admit a winning strategy for G(X) (see, e.g.,
Example 5.2 from [6]).
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In the second variant, denoted by FG(X) and called fragmenting game, the player
Ω wins a play {An,Bn}n≥1 if ∩nAn = ∩nBn is either empty or a one point set.
Otherwise Σ wins this play. The game FG(X) was used in [13–15] for the study
of fragmentable spaces. Recall that a topological space X is called fragmentable
(see Jayne and Rogers [10]) if there is a metric d in X such that for any nonempty
set A of X and any ε > 0 there is a relatively open set B of A with the property
d-diam(B) < ε , with d-diam(B) having the usual meaning of the diameter of the
set B with respect to the metric d. Every metric space is fragmentable by its own
metric. There are however interesting examples of nonmetrizable spaces which
are fragmentable. For example every weakly compact subset of a Banach space
is fragmented by the metric generated by the norm. Every bounded subset of the
dual of an Asplund space is fragmented by the metric of the dual norm. The class of
fragmentable spaces has proved its usefulness in the study of different problems
in topology (e.g., single-valuedness of set-valued maps) and in the geometry of
Banach spaces (e.g., differentiability of convex functions)–see [10, 13–15, 21] and
the reference therein. It was proved in [13, 14] that

Theorem 20.6. The space X is fragmentable if and only if the player Ω has a
winning strategy in the fragmenting game FG(X).

Fragmentability is closely related to generic Tykhonov well-posedness of mini-
mization problems. Tykhonov well posed are the problems which are well posed
and have unique minimizer.

Theorem 20.7. Let X be a topological space which is fragmented by a metric
whose topology contains the original topology in X. Suppose that for some bounded
from below and lower semicontinuous function f : X → R∪{+∞} which is proper,
the set E( f ) is residual in C(X). Then the set T ( f ) := {g∈C(X) : f +g is Tykhonov
well posed} is residual in C(X) as well.

Proof. Fragmentability by a metric whose topology contains the original topology
in X is characterized by the fact that the player Ω possesses a special winning
strategy ω in the determination game DG(X) such that, for any ω-play {An,Bn}n≥1,
the set ∩nAn is either empty or consists of just one point, say {x}, for which the
family (Bn)n behaves like a base: for every open U  x there is some n ≥ 1 such that
Bn ⊂U . Further we proceed exactly as in the proof of Theorem 20.3 and construct
a strategy s for the player α in the game BM(C(X),T ( f )) such that, for any s-play
{Un,Vn}n≥1, there exists an associate ω-play {An,Bn}n≥1 in the game DG(X) with
the properties (i)-(v). As above ∩nUn = ∩nVn is a one point set, say g ∈ C(X), for
which g∈W ( f ). Since, in addition, we have that the target sets of the corresponding
ω-plays are singletons, then we have, in fact, that g ∈ T ( f ). And this completes
the proof. �

Let us mention that if in the above theorem the metric which fragments X is also
complete, then the set T ( f ) is residual in C(X)–see [18], Theorem 2.3.
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The third version of the game DG(X) explains where the name “determination
game” comes from. This version is played in a compactification bX of the
completely regular topological space X . The moves of the players Σ and Ω are as in
DG(bX). The player Ω wins a play p = {An,Bn}n≥1 in this new game if the target

set T (p) = ∩nA
bX
n (which is always nonempty in this setting) is either entirely in X

or entirely in bX \X . In the next statement the term equivalent games, for games with
the same players, is used in the sense that the games are simultaneously favorable
(unfavorable) for any of the players.

Proposition 20.8 ([12], Proposition 4). Let X be a completely regular topological
space and bX be any compactification of X. Then the game described above in bX
and the game DG(X) are equivalent. In particular, if some of the players Σ or Ω
has a winning strategy in one compactification of X, then he/she has such a winning
strategy in any other compactification of X.

In other words, in the game DG(X) the existence of a winning strategy for
the payer Ω determines that, when using this strategy, the target sets of the
corresponding plays in the compactification bX will be either entirely in X or
entirely in the complement bX \ X . In a certain sense the game “determines” or
“identifies” the space X .

Let us turn back to the game DG(X) and denote by GD the class of game
determined spaces X (for which the player Ω has a winning strategy in the game
DG(X)). It has turned out that the class GD is rather large (for the following facts
we refer to [12]): it includes all fragmentable spaces which are fragmented by a
metric d whose topology contains the original topology in X ; in particular, the class
contains all metrizable spaces; the class GD contains also all p-spaces introduced
by Arhangel’skii [1] and also all Moore spaces.

The class GD includes also the class of topological spaces introduced in [15] and
called spaces with countable separation: the completely regular topological space
X is said to have countable separation if for some compactification bX of X there is
a countable family (Un)n of open (in bX) sets such that for any two points x,y with
x ∈ X and y ∈ bX \X there is an element Un of the family which contains exactly
one of the points x and y. If X has countable separation then the latter property
is satisfied in any compactification of X . Let us mention that each Borel set of a
space with countable separation has again countable separation. Moreover, each
set obtained by applying Souslin operations on subsets with countable separation
has countable separation as well. The class GD also includes all spaces with star
separation introduced in [2].
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