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Abstract The relationships among five classes of monotonicity, namely 3∗-, 3-
cyclic, strictly, para-, and maximal monotonicity, are explored for linear operators
and linear relations in Hilbert space. Where classes overlap, examples are given;
otherwise their relationships are noted for linear operators in R

2, R3, and general
Hilbert spaces. Along the way, some results for linear relations are obtained.
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17.1 Introduction

Monotone operators are multi-valued operators T : X → 2X such that for all x∗ ∈ Tx
and all y∗ ∈ Ty,

〈x− y,x∗ − y∗〉 ≥ 0. (17.1)
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They arise as a generalization of subdifferentials of convex functions and are used
extensively in variational inequality (and by reformulation, equilibrium) theory.

Variational inequalities were first outlined in 1966 [23] and have since been used
to model a large number of problems.

Definition 17.1 (Variational Inequality Problem). Given a nonempty closed
convex set C and a monotone operator T acting on C, the variational inequality
problem, VIP(T,C), is to find an x̄ ∈C such that for some x̄∗ ∈ T (x̄)

〈c− x̄, x̄∗〉 ≥ 0 for all c ∈C. (17.2)

They provide a unified framework for, among others, constrained optimization,
saddle point, Nash equilibrium, traffic equilibrium, frictional contact, and comple-
mentarity problems. For a good overview of sample problems and current methods
used to solve them, see [19] and [20].

Monotone operators are also important for the theory of partial differential
equations, where monotonicity both characterizes the vector fields of self-dual
Lagrangians [21] and is crucial for the determination of equilibrium solutions
(using a variational inequality) for elliptical and evolution differential equations and
inclusions (see for instance [1]).

Over the years, various classes of monotone operators have been introduced
in the exploration of their theory; however there have been few attempts to
comprehensively compare those in use across disciplines.

Five special classes of monotone operators are studied here: strictly monotone,
3-cyclic monotone, 3∗-monotone, paramonotone, and maximal monotone. All pos-
sible relationships among these five properties are explored for linear operators in
R

2, Rn, and in general Hilbert space, and the results are summarized in Tables 17.1
and 17.2 and in Figs. 17.1, 17.2, and 17.3.

Definition 17.2 (paramonotone). An operator T : X → 2X is said to be paramono-
tone if T is monotone and for x∗ ∈ T x,y∗ ∈ Ty, 〈x− y,x∗ − y∗〉 = 0 implies that
x∗ ∈ Ty and y∗ ∈ Tx.

A number of iterative methods for solving (17.2) have required paramonotonicity
to converge. Examples include an interior point method using Bregman functions
[15], an outer approximation method [14], and proximal point algorithms [2, 13].
Often, as in [8], with more work it is possible to show convergence with para-
monotonicity where previously stronger conditions, such as strong monotonicity,
were required. Indeed, the condition first emerged in this context [12] as a sufficient
condition for the convergence of a projected-gradient-like method. For more on the
theory of paramonotone operators and why this condition is important for variational
inequality problems, see [24] and [31].

Definition 17.3 (strictly monotone). An operator T : X → 2X is said to be strictly
monotone if T is monotone and for all (x,x∗),(y,y∗) ∈ graT , 〈x− y,x∗ − y∗〉 = 0
implies that x = y.
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Table 17.1 Monotone linear operators on R
2: monotone class relationships

PM SM 3CM 3*

0 0 0 0 ∃ Example 17.41 (Rπ/2)
0 * * 1 /0 Proposition 17.33
* * 1 0 /0 Fact 17.9
0 * 1 * /0 Proposition 17.10
0 1 * * /0 Fact 17.8
1 * * 0 /0 Proposition 17.47
1 0 0 * /0 Remark 17.45
1 0 1 1 ∃ Example 17.43 (A(x1 ,x2) := (x1,0))
1 1 0 1 ∃ Example 17.41 (Rθ , π/2 > |θ |> π/3)
1 1 1 1 ∃ Id

Where:
“PM” represents paramonotone
“SM” represents strictly monotone
“3CM” represents 3-cyclic monotone
“3*” represents 3∗-monotone
1 represents that the property is present
0 represents an absence of that property
* represents that both 0/1 are covered by the result
∃ represents that an example with these properties exists
/0 represents that this combination of properties is impossible

Table 17.2 Monotone linear operators: monotone class relationships

PM SM 3CM 3* X

0 0 0 0 R
2 ∃ Rπ/2

0 * * 1 – /0 Proposition 17.33
* * 1 0 – /0 Fact 17.9
0 * 1 * – /0 Proposition 17.10
0 1 * * – /0 Fact 17.8
1 0 0 0 �2 ∃ Remark 17.51
1 0 0 1 R

2 ∃ Example 17.49
1 0 1 1 R ∃ 0
1 1 0 0 �2 ∃ Example 17.50
1 1 0 1 R

2 ∃ Example 17.41 (Rθ , π/2 > |θ |> π/3)
1 1 1 1 R ∃ Id

Where:
“PM” represents paramonotone
“SM” represents strictly monotone
“3CM” represents 3-cyclic monotone
“3*” represents 3∗ monotone
“X” represents the space the operator acts upon
1 represents that the property is present
0 represents an absence of that property
* represents that both 0/1 are covered by the result
∃ represents that an example with these properties exists
/0 represents that this combination of properties is impossible
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Fig. 17.1 Monotone linear
operators: monotone class
relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

Fig. 17.2 Monotone linear
operators on R

2: monotone
class relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

Strict monotonicity is a stronger condition than paramonotonicity (Fact 17.8),
and the strict monotonicity of an operator T guarantees the uniqueness of a solution
to the variational inequality problem (see for instance [19]). These operators are
somewhat analogous to the subdifferentials of strictly convex functions.

We adopt the notation of [32] and use the term 3∗-monotone, although this
property was first introduced with no name. The property was first referenced
simply by “∗” [11] by Brézis and Haraux, and such operators were sometimes called
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Fig. 17.3 Monotone linear
operators on R

n: monotone
class relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

(BH)-operators [16] in honour of these original authors. More recently the property
has also taken on the name “rectangular” since the domain of the Fitzpatrick
function of a monotone operator is rectangular precisely when the operator is 3∗-
monotone [29].

Definition 17.4 (3∗-monotone). An operator T : X → 2X is said to be 3∗-monotone
if T is monotone and for all z in the domain of T and for all x∗ in the range of T

sup
(y,y∗)∈graT

〈z− y,y∗ − x∗〉<+∞. (17.3)

3∗-monotonicity has the important property in that if T1 and T2 are 3∗-monotone,
then as long as their sum is maximal monotone, the closure of the sum of their ranges
is identical to the closure of the range of their sum. For instance, if two operators
are 3∗-monotone, and one is surjective, then if the sum is maximal monotone, it
is also surjective. Furthermore, if both are continuous monotone linear operators,
and at least one is 3∗-monotone, then the kernel of the sum is the intersection of the
kernels [3]. This property can be used, as shown in [11], to determine when solutions
to T−1(0) exist by demonstrating that 0 is in the interior (or is not in the closure)
of the sum of the ranges of an intelligent decomposition of a difficult to evaluate
maximal monotone operator. It has also been shown for linear relations on Banach
spaces that 3∗-monotonicity guarantees the existence of solutions to the primal-dual
problem pairs in [27]. It should also be noted that operators with bounded range [32]
and strongly coercive operators [11] are 3∗-monotone.



380 M.R. Edwards

Definition 17.5 (n-cyclic monotone). Let n ≥ 2. An operator T : X → 2X is said to
be n-cyclic monotone if

(x1,x∗1) ∈ graT
(x2,x∗2) ∈ graT

· · · ∈ graT
(xn,x∗n) ∈ graT

xn+1 = x1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒
n

∑
i=1

〈xi − xi+1,x
∗
i 〉 ≥ 0. (17.4)

A cyclical monotone operator is one that is n-cyclic monotone for all n ∈ N.

Note that 2-cyclic monotonicity is equivalent to monotonicity. By substituting
(an,a∗n) := (a1,a∗1), it easily follows from the definition that any n-cyclic monotone
operator is (n − 1)-cyclic monotone. 1-cyclic monotonicity is not defined, since
the n = 1 case for (17.4) is trivial. 3-cyclic monotone operators serve to represent
a special case of n-cyclic monotone operators that is also a stronger condition
than 3∗-monotonicity. Of note, all subdifferentials of convex functions are cyclical
monotone [28].

Definition 17.6 (maximality). An operator is maximal n-cyclic monotone if its
graph cannot be extended while preserving n-cyclic monotonicity. A maximal
monotone operator is a maximal 2-cyclic monotone operator. A maximal cyclical
monotone operator is a cyclical monotone operator such that all proper graph
extensions are not cyclical monotone.

There is a rich literature on the theory (see [9] for a good overview) and
application (for instance [18]) of maximal monotone operators. Furthermore, it is
well known that a maximal monotone operator T has the property that T−1(0)
is convex, a property shared by paramonotone operators with convex domain
(Proposition 17.11), and analogous to the fact that the minimizers of a convex
function form a convex set. Maximal monotonicity is also an important property
for general differential inclusions [10, 26].

Definition 17.7 (Five classes of monotone operator). An operator T : X → 2X is
said to be [Class] (with abbreviation [Code]) if and only if T is monotone and for
every (x,x∗),(y,y∗),(z,z∗) in gra T one has [Condition].

Code Class Condition (A)

Monotone 〈x− y,x∗ − y∗〉 ≥ 0
PM Paramonotone 〈x− y,x∗ − y∗〉= 0 ⇒ (x,y∗),(y,x∗) ∈ graT
SM Strictly monotone 〈x− y,x∗ − y∗〉= 0 ⇒ x = y
3CM 3-cyclic monotone 〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉 ≥ 0
MM Maximal monotone (∀a ∈ X)(∀a∗ ∈ X)

〈x− a,x∗ − a∗〉 ≥ 0 ⇒ (x,x∗) ∈ graT
3* 3∗-monotone sup(a,a∗)∈graT 〈z− a,a∗− x∗〉<+∞
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The order above, PM-SM-3CM-MM-3*, is fixed to allow a binary label of the
classes to which an operator belongs. For instance, an operator with the label 10111
is paramonotone, not strictly monotone, 3-cyclic monotone, maximal monotone,
and 3∗-monotone.

After noting some general relationships among these classes in Sect. 17.2, we
note in Sect. 17.3 that monotone operators belonging to particular combinations of
these classes can be constructed in a product space.

Linear relations are a multi-valued extension of linear operators and are defined
by those operators whose graph forms a vector space. This is a natural extension to
consider as monotone operators are often multi-valued. We consider linear relations
in Sect. 17.4 and explore their characteristics and structure. Of particular note, we
fully explore the manner in which linear relations can be multi-valued and remark
on a curious property of linear relations whose domains are not closed. Finally,
we obtain a generalization to the fact that bounded linear operators that are 3∗-
monotone are also paramonotone (a corollary to a result in [11]), with conditions
different from those in [7], and demonstrate by example that there is 3∗-monotone
linear relation that is not paramonotone.

In Sect. 17.5, we list various examples of linear operators satisfying or failing
to satisfy the 5 properties defined above. The examples are chosen to have full
domain, low dimension, and be continuous where possible. This is shown to yield a
complete characterization of the dependence or independence of these five classes
of monotone operator in R

2, Rn, and in a general Hilbert space X . One result of this
section is that paramonotone and linear operators in R

2 are exactly the symmetric
or strictly monotone operators in R

2.
We assume throughout that X is a real Hilbert space, with inner product 〈·, ·〉.

When an operator T : X → 2X is such that for all x ∈ X , Tx contains at most
one element, such operators are called single-valued. When T is single-valued,
for brevity T x is at times considered as a point rather than as a set (i.e., x∗ ∈ T x).
The orthogonal complement of a set C ⊂ X is denoted by C⊥ and defined by

C⊥ := {x ∈ X : 〈x,c〉= 0 ∀c ∈C}. (17.5)

Note that for any set C ⊂ X , the set C⊥ is closed in X . The operator PV is the metric
projection where V is a closed subspace of X . We use the convention that for set
addition A+ /0 = /0, where /0 is the empty set. A monotone extension T̃ : X → 2X of
a monotone operator T : X → 2X is a monotone operator such that graT � gra T̃ ,
where graT := {(x,x∗) : x ∈ domT,x∗ ∈ Tx}. An operator T : X → 2X is said to
be locally bounded if for every x ∈ domT , there is a neighbourhood V of x and an
M > 0 such that for every v ∈ V , supv∗∈T v ‖v∗‖ < M. A selection of an operator
T : X → 2X is an operator T̃ such that gra T̃ ⊂ graT , and a single-valued selection
of T is such an operator T̃ where T̃ : X → X .
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17.2 Preliminaries

The following arises from the definitions of strict monotonicity and
paramonotonicity.

Fact 17.8. Any strictly monotone operator T : X → 2X is also paramonotone.

Two synonymous definitions of 3-cyclic monotonicity are worth explicitly stat-
ing. For an operator T : X → 2X to be 3-cyclic monotone, every (x,x∗),(y,y∗),(z,z∗)
∈ graT must satisfy

〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉 ≥ 0, (17.6)

or equivalently

〈z− y,y∗ − x∗〉 ≤ 〈x− z,x∗ − z∗〉. (17.7)

From (17.7), the following fact is obvious.

Fact 17.9. Any 3-cyclic monotone operator T : X → 2X is also 3∗-monotone.

Another relationship among these classes of monotone operator was discovered
in 2006 (Proposition 3.1 in [22]).

Proposition 17.10 ([22]). If T is 3-cyclic monotone and maximal (2-cyclic) mono-
tone, then T is paramonotone.

Proof. Suppose that for some choice of (x,x∗),(y,y∗) ∈ gra(T ), 〈x−y,x∗ −y∗〉= 0,
so 〈y − x,x∗〉 = 〈y− x,y∗〉. Since T is 3-cyclic monotone, every (z,z∗) ∈ gra(T )
satisfies

0 ≥ 〈y− x,x∗〉+ 〈z− y,y∗〉+ 〈x− z,z∗〉
= 〈−x,y∗〉+ 〈z,y∗〉+ 〈x− z,z∗〉
= 〈z− x,y∗〉+ 〈x− z,z∗〉
= 〈x− z,z∗ − y∗〉

and so

〈x− z,y∗ − z∗〉 ≥ 0 ∀(z,z∗) ∈ gra(T ).

Since T is maximal monotone, y∗ ∈ T x. By exchanging the roles of x and y above,
it also holds that x∗ ∈ T (y), and so T is paramonotone. �

When finding the zeros of a monotone operator, it can be useful to know if the
solution set is convex or not. It is well known that for a maximal monotone operator
T , T−1(0) is a closed convex set (see for instance [4]). A similar result also holds
for paramonotone operators.
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Proposition 17.11. Let T : X → 2X be a paramonotone operator with convex
domain. Then T−1(0) is a convex set.

Proof. Suppose T−1(0) is nonempty. Let x,y,z ∈X such that 0∈ Tx, 0∈T z, and y=
αx+(1−α)z for some α ∈]0,1[. Then, x−y = (1−α)(x− z) and y− z = α(x− z),
so x− y = 1−α

α (y− z). Since T has convex domain, Ty �= /0. By the monotonicity of
T , for all y∗ ∈ Ty

0 ≤ 〈x− y,−y∗〉= 1−α
α

〈y− z,−y∗〉 and 0 ≤ 〈y− z,y∗〉,

and so 〈y−z,y∗〉= 0. Therefore, by the paramonotonicity of T , 0 ∈ T (y), and so the
set T−1(0) is convex. �

However, if an operator is not maximal monotone, there is no guarantee
that T−1(0) is closed, even if paramonotone, as the operator T : R → R below
demonstrates:

T x :=

⎧
⎨

⎩

−1, x ≤−1,
0, x ∈]− 1,1[,
1, x ≥ 1.

(17.8)

17.3 Monotone Operators on Product Spaces

Let X1 and X2 be Hilbert spaces, and consider set valued operators T1 : X1 → 2X1

and T2 : X2 → 2X2 . The product operator T1 × T2 : X1 ×X2 → 2X1×X2 is defined as
(T1 ×T2)(x1,x2) := {(x∗1,x∗2) : x∗1 ∈ T1x1 and x∗2 ∈ T2x2 }.

Proposition 17.12. If both T1 and T2 are monotone, then the product operator T1 ×
T2 is also monotone.

Proof. For any points ((x1,x2),(x∗1,x
∗
2)) ,((y1,y2),(y∗1,y

∗
2)) ∈ gra(T1 ×T2),

〈(x1,x2)− (y1,y2),(x∗1,x
∗
2)− (y∗1,y

∗
2)〉

= 〈x1 − y1,x∗1 − y∗1〉+ 〈x2 − y2,x∗2 − y∗2〉 ≥ 0.

Hence, T1 ×T2 is monotone. �
Proposition 17.13. If both T1 and T2 are paramonotone, then the product operator
T1 ×T2 is also paramonotone.

Proof. If x∗i ∈ Tixi, y∗i ∈ Tiyi for i ∈ {1,2} and

〈(x1,x2)− (y1,y2),(x
∗
1,x

∗
2)− (y∗1,y

∗
2)〉= 0,
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then 〈xi − yi,x∗i − y∗i 〉 = 0 for i ∈ {1,2} since both T1 and T2 are monotone. By
the paramonotonicity of T1 and T2, y∗i ∈ Tixi and x∗i ∈ Tiyi for i ∈ {1,2}, and so
(x∗1,x

∗
2) ∈ (T1 ×T2)(y1,y2) and (y∗1,y

∗
2) ∈ (T1 ×T2)(x1,x2). �

By following the same proof structure as Proposition 17.13, a similar result
immediately follows for some other monotone classes.

Proposition 17.14. If both T1 and T2 belong to the same monotone class, where
that class is one of strict, n-cyclic, or 3∗-monotonicity, then so does their product
operator T1 ×T2.

Proposition 17.15. If both T1 and T2 are maximal monotone, then the product
operator T1 ×T2 is also maximal monotone.

Proof. Suppose T1×T2 is not maximal monotone. Then there exists a point ((x1,x2),
(x∗1,x

∗
2)) /∈ gra(T1 ×T2) such that for all ((y1,y2),(y∗1,y

∗
2)) ∈ gra(T1 ×T2)

〈x1 − y1,x
∗
1 − y∗1〉+ 〈x2 − y2,x

∗
2 − y∗2〉 ≥ 0, (17.9)

and at least one of (x1,x∗1) /∈ graT1 or (x2,x∗2) /∈ graT2. Suppose without loss of
generality that (x1,x∗1) /∈ graT1.

By the maximality of T1, 〈x1 − z1,x∗1 − z∗1〉 < 0 for some (z1,z∗1) ∈ graT1, and
so by setting (y1,y∗1) := (z1,z∗1) in (17.9), 〈x2 − y2,x∗2 − y∗2〉 ≥ 0 for all (y2,y∗2) ∈
graT2. Since T2 is maximal monotone, it must be that (x2,x∗2) ∈ graT2. Clearly,
((z1,x2),(z∗1,x

∗
2)) ∈ gra(T1 ×T2), yet

〈(x1,x2)− (z1,x2),(x
∗
1,x

∗
2)− (z∗1,x

∗
2)〉< 0.

This is a contradiction of (17.9), and so T1 ×T2 is maximal monotone. �
Of course, if an operator T1 : X → 2X fails to satisfy the conditions for any of the

classes of monotone operator here considered, then the product of that operator with
any other operator T2 : Y → 2Y , namely T1 ×T2 : X ×Y → 2X×Y , will also fail the
same condition. Simply consider the set of points P in the graph of T1 which violate
a particular condition in X , and instead consider the set of points P̃ := {(p,a)×
(p∗,a∗) : p ∈ P} for a fixed arbitrary point (a,a∗) ∈ graT2. Clearly P̃ ⊂ graT1 ×T2,
and this set will violate the same conditions in X ×Y that P violates for T1 in X .
For instance,

〈(w,a)− (x,a),(y∗,a∗)− (z∗,a∗)〉= 〈w− x,y∗ − z∗〉.
In this manner, the lack of a monotone class property (be it n-cyclic, para-, maximal,
3∗-, nor strict monotonicity) is dominant in the product space.

Taken together, the results of this section are that the product operator T1 × T2

of monotone operators T1 and T2 operates with respect to monotone class inclusion
as a logical AND operator applied to the monotone classes of T1 and T2. For in-
stance, suppose that T1 is paramonotone, not strictly monotone, 3-cyclic monotone,
maximal monotone, and 3∗-monotone (with binary label 10111), and suppose that
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T2 is paramonotone, strictly monotone, not 3-cyclic monotone, maximal monotone,
and not 3∗-monotone (with binary label 11010). Then, T1 ×T2 is paramonotone, not
strictly monotone, not 3-cyclic monotone, maximal monotone, and not 3∗-monotone
(with binary label 10010).

17.4 Linear Relations

Linear relations are the set-valued generalizations of linear operators, which we
define using the nomenclature of R. Cross [17].

Definition 17.16 (linear relation). An operator A : X → 2X is a linear relation if
domA is a linear subspace of X and for all x,y ∈ domA, λ ∈ R

1. λ Ax ⊂ A(λ x),
2. Ax+Ay ⊂ A(x+ y).

Equivalently, linear relations are exactly those operators T : X → 2X whose
graphs are linear subspaces of X ×X . The following results on linear relations are
well known. Of note, Fact 17.17(1) and (2) are considered basic results and will not
be cited in the work below.

Fact 17.17 ([30]). For any linear relation A : X → 2X ,

(1) λ Ax = A(λ x) for all x ∈ domA, 0 �= λ ∈ R,
(2) Ax+Ay = A(x+ y) for all x,y ∈ domA,
(3) A0 is a linear subspace of X ,
(4) Ax = x∗+A0 for all (x,x∗) ∈ graA,
(5) If A is single-valued at any point, it is single-valued at every point in its domain.

Proposition 17.18. Suppose A : X → 2X is a linear relation, and let x ∈ domA.
Then, PA0⊥Ax is a singleton and

Ax ⊂ PA0⊥Ax+A0. (17.10)

If A0 is closed, then there is a unique x∗0 ∈ Ax such that x∗0 ∈ A0⊥, where x∗0 = PA0⊥x∗
for all x∗ ∈ Ax.

Proof. Let x∈ domA. Since A0 and A0⊥ are closed subspaces such that A0+A0⊥ =
X , then for all x∗ ∈ X , x∗ = PA0x∗ +PA0⊥x∗. By Fact 17.17 (4), (17.10) holds and
PA0⊥Ax is a singleton. If A0 is closed, then for all x∗ ∈ Ax,

Ax = x∗+A0 = PA0⊥x∗+A0.

Therefore, PA0⊥y∗ = PA0⊥x∗ for all y∗ ∈ Ax. Furthermore, since 0 ∈ A0 always,
PA0⊥x∗ ∈ Ax. �
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Proposition 17.19. Any monotone linear relation A : X → 2X with full domain is
maximal monotone and single-valued.

Proof. Suppose that A : X → 2X is a linear relation where domA = X . Let (z,z∗)
be a point such that 〈z− y,z∗ − y∗〉 ≥ 0 for all (y,y∗) ∈ graA. Choose an arbitrary
z∗0 ∈ Az. Let y = z− εx for arbitrary (x,x∗) ∈ graA and ε > 0, so that by linearity
−εx∗ ∈ A(−εx). Therefore z∗0 − εx∗ ∈ Ay and so 〈εx,z∗ − z∗0 + εx∗〉 ≥ 0. Divide out
the ε , and send ε → 0+ so that 〈x,z∗ − z∗0〉 ≥ 0 for all x ∈ X . Hence z∗ = z∗0 and T is
single-valued and maximal monotone. �

The following results appear respectively as Proposition 2.2(i) and Proposi-
tion 2.4 in [5].

Proposition 17.20 ([5]). If A : X → 2X is a monotone linear relation, then domA ⊂
(A0)⊥ and A0 ⊂ (domA)⊥.

Corollary 17.21 ([5]). If a linear relation A : X → 2X is maximal monotone, then
(domA)⊥ = A0, and so domA = (A0)⊥ and A0 is a closed subspace.

This leads to a partial converse result to Proposition 17.19.

Corollary 17.22. If a maximal monotone single-valued linear relation A : X → X
is locally bounded, then it has full domain.

Proof. Since A is single-valued, A0 = 0, and so by Corollary 17.21, domA =
(A0)⊥ = X . Choose any point x ∈ X . Since domA is dense in X , there exist
a sequence (yn,y∗n)n∈N ⊂ graA such that yn → x. Since A is locally bounded,
a subsequence (y∗φ(n))n∈N of (y∗n)n∈N weakly converges to some point x∗ ∈ X .
Therefore, for all (z,z∗) ∈ graA,

0 ≤ lim
n→+∞

〈yφ(n)− z,y∗φ(n)− z∗〉= 〈x− z,x∗ − z∗〉.

Since A is maximal monotone, (x,x∗) ∈ graA, and so A has full domain. �
The following fact appears in Proposition 2.2 in [5].

Fact 17.23 ([5]). Let A : X → 2X be a monotone linear relation. For any x,y ∈
domA, the set

{〈y,x∗〉 : x∗ ∈ Ax}
is a singleton, the value of which can be denoted simply by 〈y,Ax〉.
Proof. Let x,y ∈ domA and suppose that x∗1,x

∗
2 ∈ Ax. By Fact 17.17 (4), x∗2 − x∗1 ∈

A0. Now, by Proposition 17.20, A0 ⊂ (domA)⊥, and so x∗2 − x∗1 ∈ (domA)⊥. Since
y ∈ domA, 〈y,x∗1〉= 〈y,x∗2〉. �

Proposition 17.24 below demonstrates that multivalued linear relations are
closely related to a number of single-valued linear relations. Note especially that
V = A0⊥ and V = domA both satisfy the conditions below.
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Proposition 17.24 (dimension reduction). Suppose that A : X → 2X is a monotone
linear relation. Let V ⊂ X satisfy

(1) V is a closed subspace of X,
(2) domA ⊂V, and
(3) A0 ⊂V⊥.

Define the operator Ã : V → 2V , by Ãx := PV Ax on domA, and let Ã = /0 when
x /∈ domA. Then, Ã is a single-valued monotone linear relation and domA = dom Ã.
In the case where V = A0⊥ and A0 is closed, the operator Ã is a single-valued
selection of A. If A is maximal monotone, then V = A0⊥ = domA is the only
subspace satisfying conditions (17.24)–(17.24) above, and Ã is a maximal monotone
single-valued selection of A.

Proof. For any x ∈ X , PV (x) = PV (PA0⊥x + PA0x) = PV (PA0⊥x) as A0 ⊂ V⊥.
By Proposition 17.18, Ã is always single-valued, and if A0 is closed, PA0⊥x∗ ∈ Ax
for each (x,x∗) ∈ graA, and so if V = A0⊥, then Ã is a selection of A. Consider now
arbitrary (y, ỹ∗),(z, z̃∗) ∈ gra Ã, and λ ∈ R. Then, for y∗ ∈ Ay and z∗ ∈ Az, we have
that PV y∗ = ỹ∗ and PV z∗ = z̃∗. Since A is a linear relation, (y+λ z,y∗+λ z∗) ∈ graA.
Therefore, (y+ λ z,PV (y∗ + λ z∗)) ∈ gra Ã, and since PV is itself a linear operator,
PV (y∗+λ z∗) = ỹ∗+λ z̃∗, it follows that ỹ∗+λ z̃∗ ∈ Ã(y+λ z). Since domA= dom Ã,
the operator Ã is a linear relation. Finally, suppose that A is maximal monotone, and
so from Corollary 17.21 we have that A0⊥ = domA and A0 is closed. The only
subspace V satisfying the conditions in this case is V = A0⊥. Suppose there exists
a point (x,x∗) where x ∈ V = A0⊥, that is monotonically related to gra Ã. For all
(z,z∗) ∈ graA, there is a y ∈ A0 such that y+PV z∗ = z∗. Then, by Fact 17.17 (4),

〈x− z,x∗ − z∗〉= 〈x− z,x∗ − y−PVz∗〉= 〈x− z,x∗−PV z∗〉 ≥ 0.

Therefore, (x,x∗) is also monotonically related to A, and since A is maximal
monotone, (x,x∗)∈ graA. Since x∗ ∈V , PV x∗ = x∗, and so (x,x∗)∈ gra Ã. Therefore,
Ã is maximal monotone. �

From the results in this section so far, we know that monotone linear relations
A : X → 2X can only be multi-valued such that A0 is a subspace of X , Ax = x∗+A0
for any x∗ ∈ Ax, and A0 ⊂ (domA)⊥. For the purposes of calculation by the inner
product, for any x,z ∈ domA,

〈x,Az〉= 〈x, Ãz〉, (17.11)

where Ã is the single-valued operator (a selection of A if A0 is closed) as calculated
in Proposition 17.24 for V = A0⊥. In the other direction, any single-valued
monotone linear relation Ã : X → 2X can be extended to a multivalued monotone
linear relation A : X → 2X by choosing any subspace V ⊂ (domA)⊥ and setting
Ax := Ãx+V .

Now, in the unbounded linear case, maximal monotone operators may not have
a closed domain. The concept of a halo well captures this aspect.
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Definition 17.25 (halo). The halo of a monotone linear relation A : X → 2X is
the set

haloA := {x ∈ X : (∃M)(∀(y,y∗) ∈ graA)〈x− y,y∗〉 ≤ M‖x− y‖} . (17.12)

The following is an amalgamation of Proposition 6.2 and Theorem 6.5 in [5].

Fact 17.26 ([5]). If A : X → 2X is a monotone linear relation, then domA⊂ haloA⊂
(A0)⊥. Furthermore, A is maximal monotone if and only if A0⊥ = domA and
haloA = domA.

Now, if the domain of a linear relation is not closed, we have the following
curious result. Below, Am denotes the iterated operator composition, where for
instance A3x = A(A(Ax)). Note that if domA is dense in X , the operator PV A is
the same as A.

Proposition 17.27. Suppose a maximal monotone linear relation A : X → 2X is
such that domA is not closed, and let V := domA. Then, there is a sequence
(zn)n∈N ⊂ domA such that

(PV A)m(zn) ∈ domA, ∀1 ≤ m < n, (17.13)

(PV A)n(zn) /∈ domA, (17.14)

where for all z ∈ domA, PV Az is a singleton set.

Proof. Since A is maximal monotone, domA = haloA � domA, and by Corol-
lary 17.21, V = A0⊥. Therefore, by Proposition 17.18, PV Az ⊂ Az and is a singleton
for every z ∈ domA. Choose any point z0 ∈ V such that z0 /∈ domA. We shall
generate the sequence (zn)n∈N ⊂ domA iteratively as follows. For some n ≥ 0,
suppose that zn ∈ V . By Minty’s theorem [25], since A is maximal monotone,
ran(Id+A) = X . Therefore, there exists a zn+1 ∈ domA such that zn ∈ zn+1 +Azn+1.
Since zn,zn+1 ∈V , zn ∈ zn+1 +PV Azn+1, and so as PV Azn+1 is a singleton,

PV Azn+1 = {zn − zn+1}.

Now, since both PV and A are linear operators, if n ≥ 2

(PV A)2zn+1 = PV A(zn − zn+1)

= PV Azn −PV Azn+1

= {zn−1 − 2zn + zn+1},
(17.15)

a linear combination of the terms zn−1,zn, and zn+1, with zn−1 appearing with
coefficient 1. Similarly, if n ≥ 3,
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(PV A)3zn+1 = PV A(zn−1 − 2zn + zn+1)

= {zn−2 − zn−1 − 2zn−1+ 2zn + zn − zn+1}
= {zn−2 − 3zn−1 + 3zn − zn+1}.

(17.16)

By iterative composition, (PV A)mzn+1 is linear combination of the terms zp for n−
m+1≤ p≤ n+1, with zn−m+1 appearing with coefficient 1, as long as n−m+1≥ 0.
Since domA is a linear subspace of X , (PV A)mzn+1 ⊂ domA if n ≥ m. However, if
n+ 1 = m, the single point in (PV A)mzn+1 is not in domA since z0 = x /∈ domA. �

For any linear relation A : X → 2X where domA is not closed, sequences like
those in Proposition 17.27 are plentiful. Every point x ∈ domA such that x /∈ domA,
including for instance the points λ x for λ > 0, generates a different sequence
(zn)n∈N using the method from the proof of Proposition 17.27.

To explore these concepts, consider the following example.

Example 17.28. Consider the infinite dimensional Hilbert space �2, the space of
infinite sequences x = (xk)k∈N such that ∑+∞

k=1 x2
k < +∞. Let ek denote the kth

standard unit vector (the kth element in the sequence is 1, and all other elements
in the sequence are 0). Define the single-valued monotone relation A : �2 → �2 for
x ∈ domA by

Ax = A(
+∞

∑
k=1

xkek) :=
+∞

∑
k=1

kxkek,

where

domA := {x ∈ �2 : ∃N ∈ N s.t. xk = 0 ∀k ≥ N} .

Considering the linear relation A in the example above, the point x :=∑+∞
k=1

1
k ek is

not in haloA. This is because the sequence (yn)n∈N ⊂ domA where yn := ∑n
i=1

1
2i ei

eventually violates (17.12) for any choice of M > 0 for a large enough n. (Therefore
we know that A is not maximal monotone.) However, the point z := ∑+∞

i=1
1
i2

ei is in
haloA, and graA could be extended by the point (z,x) and remain monotone. Since
x ∈ domA but x /∈ haloA, yet x = Az and z ∈ haloA, we have the beginning of a
sequence like those in Proposition 17.27 for any monotone extension of A containing
(z,x) that is also a linear relation.

Finally, the following result is used later and appears in Proposition 4.6 in [6].

Proposition 17.29 ([6]). Suppose that A : X → 2X is a linear relation. Then A
is maximal monotone and symmetric if and only if there exists a proper lower
semicontinuous convex function f : X →R

⋃{+∞} such that A = ∂ f .
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17.5 Monotone Classes of Linear Relations

The recent result for paramonotonicity and 3∗-monotonicity is a portion of the main
result in [7].

Proposition 17.30 ([7]). Suppose A : X → 2X is a maximal monotone linear
relation such that domA and ranA+ are closed (A+ is the symmetric part of A).
Then, A is 3∗-monotone if and only if A is paramonotone.

In this section we use a different approach to that used for Proposition 17.30,
where we (while avoiding the use of the Fitzpatrick function) obtain results that
apply to all monotone operators regardless maximal monotonicity. This is done
by examining the density of domA rather than its closure, further extending
these results. First, we characterize paramonotonicity for linear relations with the
following two facts.

Fact 17.31. Suppose A : X → 2X is a monotone linear relation. Then, A is
paramonotone if and only if for all x ∈ X

〈x,Ax〉= 0 ⇒ Ax = A0. (17.17)

Proof. Suppose that A is paramonotone and that for some x ∈ domA, 〈x,Ax〉 = 0.
Then, 〈x−0,Ax−A0〉= 0, since A0 ⊂ (domA)⊥ (Proposition 17.20). Therefore, by
paramonotonicity, every x∗ ∈ Ax is also in A0. By Fact 17.17 (3) and (4), Ax = A0.

Now, suppose that (17.17) holds for A and that for some (y,y∗),(z,z∗) ∈ graA,

〈y− z,y∗− z∗〉= 0.

Let x = y−z. Since A is a linear relation, y∗−z∗ ∈ Ax, and so 〈x,Ax〉= 0. Therefore,
Ax = A0, and so y∗ − z∗ ∈ A0 and

y∗ ∈ z∗+A0; −z∗ ∈ −y∗+A0.

By Fact 17.17 (1) and (4), −y∗+A0 = −Ay. Hence y∗ ∈ Az and z∗ ∈ Ay, so A is
paramonotone. �
Fact 17.32. Suppose A : X → 2X is a monotone linear relation, and let x ∈ X . Then,
Ax = A0 if and only if 0 ∈ Ax and if 0 ∈ Ax, then PA0⊥Ax = {0}. If A0 is closed and
PA0⊥Ax = {0}, then 0 ∈ Ax.

Proof. Let Ax = A0. Since A0 is a linear subspace of X (Fact 17.17 (3)), 0 ∈ Ax.
Now, let 0 ∈ Ax. Then, by Fact 17.17 (4), Ax = A0.

By Proposition 17.18, PA0⊥Ax is a singleton, and since 0 ∈ A0⊥ by the definition
of the orthogonal complement, PA0⊥Ax = {0}. Now, let PA0⊥Ax = {0} and suppose
that A0 is closed. Then, by Proposition 17.18, 0 ∈ Ax. �
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Proposition 17.33. Suppose A : X → 2X is a monotone linear relation such that
domA is dense in A0⊥ and A0 is closed. If A is 3∗-monotone, then A is also
paramonotone.

Proof. Suppose that A is not paramonotone. Then, there exists an x ∈ domA such
that 〈x,Ax〉= 0 yet Ax �=A0. Choose any x∗ ∈Ax, and let x∗0 =PA0⊥x∗. By Fact 17.32,
x∗0 �= 0 since A0 is closed. If x∗0 ∈ domA, let w = 1

2 x∗0. If x∗0 /∈ domA, there is a
sequence (yn)n∈N ⊂ domA converging to x∗0 since domA is dense in A0⊥. In this
case, let w = yn for some n such that

〈w,Ax〉= 〈yn,x
∗
0〉 ≥

1
2
‖x∗0‖2.

Let v = λ x for some λ > 0 and let u = 0 so that

〈w− v,Av−Au〉= 〈w−λ x,λ Ax〉 ≥ λ
2
‖x∗0‖2

which is unbounded with respect to λ . Hence, A is not 3∗-monotone, yielding the
contrapositive. �

We therefore obtain by a different method Proposition 4.5 from [7].

Corollary 17.34 ([7]). If the linear relation A : X → 2X is maximal monotone and
3∗-monotone, then A is paramonotone.

Proof. Follows directly from Proposition 17.33 and Corollary 17.21. �
Corollary 17.35. If the linear relation A : X → 2X is 3∗-monotone, then the
operator Ã : X → 2X defined by

Ãx := Ax+(domA)⊥ (17.18)

is a linear relation and is a 3∗-monotone extension of A that is paramonotone.

Proof. The operator Ã is a linear relation since A is a linear relation, since dom Ã =
domA, and since (domA)⊥ is a linear subspace. (Recall that we are using the
convention that /0+ S = /0 for any set S.) More specifically, for all x,y ∈ domÃ =
domA and for all λ ∈ R,

λ Ãx = λ Ax+λ (domA)⊥ ⊂ A(λ x)+ (domA)⊥ = Ã(λ x),

and

Ãx+ Ãy = Ax+(domA)⊥+Ay ⊂ A(x+ y)+ (domA)⊥ = Ã(x+ y).

By the definition of (domA)⊥, for all x,y,z ∈ dom Ã

〈z− y, Ãy− Ãz〉= 〈z− y,Ay−Az〉.
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Therefore, Ã is monotone and 3∗-monotone because A is monotone and 3∗-
monotone. Since by Proposition 17.20, A0 ⊂ (domA)⊥, it follows from Fact 17.17
(4) that Ã is a monotone extension of A and that Ã0 = (domA)⊥. Therefore, Ã0⊥ =
domA, and so by Proposition 17.33 and since domA= domÃ, Ã is paramonotone.�

If the linear relation A from Proposition 17.33 is also a single-valued bounded
linear operator, then Proposition 17.33 is a corollary to the stronger result of
Proposition 2 in [11].

Proposition 17.36 ([11]). Let A : X → X be a bounded monotone linear operator.
Then, A is 3∗-monotone if and only if there exists an α > 0 such that

〈x,Ax〉 ≥ α〈Ax,Ax〉= α‖Ax‖2.

Corollary 17.37. If A : X → X is a bounded linear 3∗-monotone operator, then it is
paramonotone.

However, there are 3∗-monotone linear relations that are not paramonotone.

Example 17.38. Let X = �2 and define the operators Ã,A : X → 2X for x =
(x1,x2, . . .) ∈ �2 by

Ãx :=
+∞

∑
k=1

x2ke2k (17.19)

and

Ax := x1u+ Ãx+A0, (17.20)

where

u :=

(
∞

∑
k=1

1
k

e2k+1

)

, (17.21)

A0 := {x ∈ �2 : ∃N ∈ N s.t. xk = 0 ∀k ≥ N and x2k+1 = 0 ∀k ∈ N} , (17.22)

and

domA = domÃ = span{e1,e2,e4,e6, . . .}. (17.23)

Then, A is a 3∗-monotone linear relation, but it is not paramonotone.

Proof. Both A and Ã are by definition linear relations. Note that Ã = 0× J where
J is a subgraph of Id. Therefore, Ã is 3∗-monotone as both Id and 0 are 3∗-
monotone. Also, A0 is a dense subspace of span{e2k+1 : k ∈ N}, and so A0⊥ =
span{e2k : k ∈N}. Therefore, PA0⊥Ax = Ãx as u ∈ (domA)⊥. Since A0 ⊂ (domA)⊥
(Proposition 17.20), for all (x,x∗),(y,y∗),(z,z∗) ∈ graA,
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〈z− y,y∗− x∗〉= 〈z− y,PA0⊥y∗ −PA0⊥x∗〉= 〈z− y,Ay−Ax〉,

and so A is also 3∗-monotone. Now,

Ae1 = u+A0 �⊂ A0,

and so Ae1 �= A0. However, 〈e1,Ae1〉= 〈e1, Ãe1〉= 0. Therefore, A is not paramono-
tone. �

17.6 Monotone Classes of Linear Operators

A linear operator is a single-valued linear relation with full domain, which is
maximal monotone by Proposition 17.19. Although being single-valued and having
full domain are restrictive conditions, when it comes to monotone classes, linear
operators are highly characteristic of linear relations with closed domain.

If a monotone linear relation A : X → 2X has closed domain, which is always the
case if X = R

n, then domA is itself a Hilbert space and the results of Sects. 17.4
and 17.5 hold in their strongest form, as they do for all linear operators.

Let Ã : domA → 2domA be the single-valued selection of A generated in the
manner of Proposition 17.24 with V = domA. By Proposition 17.19, Ã is a
monotone linear operator. As the only difference between A and Ã are elements
perpendicular to the domain, for any (x,x∗),(y,y∗) ∈ graA,

〈x− y,x∗ − y∗〉= 〈x− y, Ãx− Ãy〉,
and so the monotone classes of each, while not necessarily equivalent, are highly
correlated.

Below, we consider linear operators operating on R
2, Rn, and on Hilbert spaces

of infinite dimension. Note that linear operators acting on R
n will be identified with

their matrix representation in the standard basis, and recall from Proposition 17.29
that symmetric linear operators are the subdifferentials of a lower semicontinuous
convex function.

17.6.1 Monotone Linear Operators on R
2

In this section we consider linear operators A : R2 → R
2, which can be represented

by the matrix

A =

[
a c
b d

]

.
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The operator A so defined is monotone if and only if a+ d ≥ 0 and 4ad ≥ (b+ c)2.
We consider some simple examples, examine their properties, and provide some
sufficient and necessary conditions for inclusion within various monotone classes.

Proposition 17.39 (3-cyclic monotone linear operators on R
2). If A is 3-cyclic

monotone, then

max{|b|, |c|}− a− d ≤ 0. (17.24)

Proof. Choose x = (0,0), y = (1,0), and z = (0,1); let x∗ = Ax = (0,0), y∗ =
Ay = (a,b), and z∗ = Az = (c,d). If the mapping associated with A is 3-cyclic
monotone, then

0 ≤ 〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉
= 〈(1,−1),(a,b)〉+ 〈(0,1),(c,d)〉
= a+ d− b.

Similarly, by choosing different y and z, the following conditions are also necessary
for any matrix A as defined above:

0 ≥

⎧
⎪⎪⎨

⎪⎪⎩

b− a− d, y = (1,0),z = (0,1),
−b− a− d, y = (−1,0),z = (0,1),
c− a− d, y = (0,1),z = (1,0),
−c− a− d, y = (0,−1),z = (1,0).

(17.25)

In all cases, x = (0,0). �
There are many monotone linear operators in R

2 that are not 3-cyclic monotone,
and furthermore Examples 17.40 and 17.41 below demonstrate that 3-cyclic mono-
tonicity does not follow from strict and maximal monotonicity.

Example 17.40. Consider the monotone linear operator R̃ : R2 → R
2 defined by

R̃ =

[
1 −2
3 1

]

. (17.26)

The operator R̃ violates the necessary condition (17.24) for 3-cyclic monotonicity
since b−a−d > 0 and R̃ satisfies the monotonicity conditions (a+d)≥ 0 and 4ad ≥
(b+c)2, using the format R̃=

[
a c
b d

]

above. Note that 〈x, R̃x〉= 0 implies that x= 0,

so R̃ is strictly monotone and therefore paramonotone. Hence, by Proposition 17.47,
R̃ is also 3∗-monotone. Finally, R̃ is maximal monotone by Proposition 17.19.

Example 17.41. Consider the rotation operator Rθ : R
2 → R

2 with matrix
representation
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Rθ =

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]

. (17.27)

Note that Rθ is monotone if and only if |θ | ≤ π/2, since this is precisely when
cos(θ )≥ 0. In this range, Rθ is maximal monotone by Proposition 17.19.

Now, Rθ is 3-cyclic monotone if and only if |θ |< π/3 by Fact 17.42 below.
Therefore, for any θ ∈]π/3,π/2[, Rθ is maximal monotone and strictly mono-

tone, but not 3-cyclic monotone.
Now, 〈x,Rθ x〉 = 0 implies that x = 0 unless θ = π/2. Therefore, Rθ is strictly

monotone and hence paramonotone when |θ | < π/2. By Proposition 17.47, Rθ is
3∗-monotone as well when |θ |< π/2. When θ = π/2, Rθ is not paramonotone, and
therefore neither is it strictly monotone nor, by Proposition 17.33, is it 3∗-monotone.

By the following fact (Proposition 7.1 in [3]), R2 is large enough to contain
distinct instances of n-cyclic monotone operators for n ≥ 2.

Fact 17.42 ([3]). Let n ∈ {2,3, . . .}. Then Rθ is n-cyclic monotone if and only if
|θ | ∈ [0,π/n].

Proof. See Example 4.6 in [3] for a detailed proof. �
The zero operator yields trivial solutions to any associated variational inequality

problem, and so the following, which shares the monotone classes of 0, is introduced
in its stead.

Example 17.43. The orthogonal projection A : R2 → R
2 defined by A(x1,x2) :=

(x1,0) is maximal monotone, paramonotone, 3-cyclic monotone, and 3∗-monotone.

Proof. Using the notation of Sect. 17.3, we have that A = Id × 0, where 0 : R →
R is the zero operator, and Id : R → R is the identity. The 0 operator is maximal
monotone, paramonotone, 3-cyclic monotone, and 3∗-monotone, as is Id, which is
also strictly monotone, while 0 is not. The properties of A follow directly from the
results in Sect. 17.3. �

Finally, paramonotone linear operators in R
2 are further restricted to be either

strictly monotone or symmetric.

Proposition 17.44. A linear operator A : R2 → R
2 is paramonotone if and only if

it is strictly monotone or symmetric.

Proof. Strictly monotone operators and symmetric linear operators are paramono-
tone by Facts 17.8 and 17.48, respectively. It remains to show that these are the only
two possibilities. Assuming then that A is paramonotone, consider the general case,

A =

[
a c
b d

]

and A+ =

[
a b+c

2
b+c

2 d

]

. If ker(A+) = {0}, then A is strictly monotone

by Fact 17.48. If ker(A+) �= {0}, then by Fact 17.48 ker(A+) ⊆ ker(A), and so
ker(A) �= {0}, from which det(A) = 0 and ad = bc. Hence, since det(A+) = 0,
4bc = (b+ c)2, so (b− c)2 = 0 and b = c. Therefore A is symmetric. �
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Remark 17.45. The only paramonotone linear operators in R
2 that are not strictly

monotone are the symmetric linear operators A :=

[
a b

b b2

a

]

for a > 0 and b ∈ R

and the zero operator x �→ (0,0). By Proposition 17.29, since both examples of
A are symmetric linear operators, they are also maximal monotone and maximal
cyclical monotone, as they are subdifferentials of proper lower semicontinuous
convex functions.

All relationships among the classes of monotone linear operators in R
2 are now

known completely and are summarized in Table 17.1. Recall that all monotone linear
operators are assumed to have full domain and are therefore maximal monotone by
Proposition 17.19.

17.6.2 Linear Operators on R
n

On R
n the restriction that linear operators are single-valued is redundant as this also

follows from having full domain.

Proposition 17.46. A single-valued monotone linear relation A : Rn → R
n is

maximal monotone if and only if domA = R
n.

Proof. In R
n, all subspaces are closed, and so by Corollary 17.21, any maximal

monotone single-valued linear relations have full domain. The converse follows
from Proposition 17.19. �

Since linear operators are maximal monotone, the following result is a conse-
quence of Proposition 17.30 and appears in Remark 4.11 in [3].

Proposition 17.47 ([3]). Given a monotone linear operator A : Rn → R
n, A is 3∗-

monotone if and only if A is paramonotone.

In the following fact (from Proposition 3.2 in [24]), we denote by A+ := 1
2 (A+

A∗) the symmetric part of a linear operator A : Rn → R
n and by kerA := {x ∈ R

n :
Ax = 0} the kernel of A.

Fact 17.48 ([24]). Let A : Rn → R
n be a linear operator. Then A is paramonotone

if and only if A is monotone and ker(A+)⊆ ker(A).

In Remark 17.45 we noted that the converse of Proposition 17.10 holds for
monotone linear operators that are not strictly monotone operators on R

2. We now
demonstrate that this result does not generalize to R

3.

Example 17.49. Let T : R3 →R
3 be the linear operator defined by

Tx :=

⎡

⎣
1 −2 1
3 1 3
1 −2 1

⎤

⎦x. (17.28)
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The operator T is paramonotone and maximal monotone, but not strictly monotone.
Further, T is not 3-cyclic monotone, but is 3∗-monotone.

Proof. The symmetric part of T is

T+ :=

⎡

⎣
1 1/2 1

1/2 1 1/2
1 1/2 1

⎤

⎦ .

Since the eigenvalues of T+, consisting of {0, 1
2 (3+

√
3), 1

2(3−
√

3)}, are nonnega-
tive, T+ is positive semidefinite, hence monotone, and so T is monotone.

An elementary calculation yields that kerT+ = {t(−1,0,1) : t ∈ R}. Clearly,
kerT = kerT+, so by Fact 17.48, T is paramonotone. However, T is not strictly
monotone since the kernel contains more than the zero element.

Furthermore, T is maximal monotone since it is linear and has full domain
(Proposition 17.19). The operator T is not 3-cyclic monotone since the points
(0,0,0),(1,0,0), and (0,1,0) do not satisfy the defining condition (17.6). (For
a shortcut, call to mind Example 17.40 and Proposition 17.39.) Finally, since T
is a linear operator in R

3 that is paramonotone, it is 3∗-monotone by Proposi-
tion 17.47. �

17.6.3 Monotone Linear Operators in Infinite Dimensions

Recall from Proposition 17.47 that linear paramonotone operators on R
n are

3∗ monotone. Example 17.50 below demonstrates that larger spaces are more
permissive. A similar example appears in [7].

Example 17.50. Let θk := π/2− 1/k4 and let A : �2 → �2 be the linear operator
defined by

Ax �→
+∞

∑
k=1

(cos(θk)x2k−1 − sin(θk)x2k)e2k−1 +(sin(θk)x2k−1 + cos(θk)x2k)e2k.

(17.29)
The structure of A is such that every x∗ = Ax obeys

[
x∗2k−1
x∗2k

]

= Rθk

[
x2k−1

x2k

]

(17.30)

for all x ∈ �2 and k ∈ N, where Rθk is the rotation matrix as introduced in Exam-
ple 17.41. A is strictly monotone and maximal monotone, but not 3∗-monotone.
It follows that A is also paramonotone but not 3-cyclic monotone.

Proof. The monotonicity of T is evident from (17.30). Suppose that x ∈ �2 is such
that 〈x,Ax〉= 0. Now,
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〈x,Ax〉=
+∞

∑
k=1

cos(θk)(x
2
2k−1 + x2

2k)

is equal to zero if and only if x = 0, and so A is strictly monotone.
By Proposition 17.19, A is maximal monotone since it is linear and has full

domain.
Let x = 0, so that Ax = 0, and let z = ∑+∞

k=1
1
k (e2k−1 + e2k). Define a sequence

yn ∈ �2 by yn := n2e2n−1, and so Ayn = n2 cos(θn)e2n−1 + n2 sin(θn)e2n. For all n,
0 < cos(θn)≤ 1/n4, and from the Taylor’s series sin(θn)≥ 1−1/(2n8) for all large
n. Considering the inequality (17.3) for 3∗-monotonicity, we have

〈z− yn,Ayn −Ax〉 = n(cos(θn)+ sin(θn))− n4 cos(θn)

≥ n(0+ 1− 1/(2n8))− 1
→ +∞, as n →+∞,

(17.31)

and so A fails to be 3∗-monotone. �
Remark 17.51. The operator A from Example 17.50 can be modified to lose its
strict monotonicity property by using the zero function 0 : R→ R as a prefactor in
the product space, yielding T = 0×A. In this manner,

T x :=
+∞

∑
k=1

[
(cos(θk)x2k − sin(θk)x2k+1)e2k

+(sin(θk)x2k + cos(θk)x2k+1)e2k+1

]

. (17.32)

Proof. The Hilbert space �2 can be written as a product space �2 = R× �2. More
precisely, all of these spaces can be embedded in the larger space �2(Z ) with
standard unit vectors ei for i in Z , the set of integers. In this setting �2 = span{ei : i∈
N}, and let V0 = span{e0} so that �2(N

⋃{0}) =V0 × �2. Let T = 0×A, where A is
the linear operator from Example 17.50. The operator 0 : V0 →V0 is paramonotone,
maximal monotone, 3-cyclic monotone, and 3∗-monotone, but not strictly monotone
on R. The operator A : �2 → �2 from Example 17.50 is strictly monotone and
maximal monotone, but not 3∗-monotone. Therefore, by the results of Sect. 17.3,
T := 0×A is paramonotone and maximal monotone and fails to be strictly monotone
or 3∗-monotone. �

Note that all linear operators are assumed to have full domain and are therefore
maximal monotone by Proposition 17.19. Also, if a linear operator fails to be
paramonotone, it fails to be 3∗-monotone and 3-cyclic monotone as well. The mono-
tone class characterizations for linear operators in a Hilbert space are now known
completely, as summarized in Table 17.2 below.

Since the only linear operators on R are the constant operators, by the results
shown in Table 17.1 and by Proposition 17.47, each example in Table 17.2 operates
on a space with the lowest dimension for which its monotone class combination
is possible. In particular, note how examples with binary label 1000, 1001, and
1100, although absent in Table 17.1, exist for spaces of higher dimension. Finally,
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for every operator T in Table 17.2, an operator with the same monotone class
combination on any higher dimension can be constructed by a product space
composition with Id (T × Id).

17.7 Summary

The relationships among the five classes of monotone linear operator considered,
that is, maximal, para-, 3∗-, 3-cyclic, and strictly monotone operators, are now fully
understood in R

2, Rn, and in general Hilbert spaces. They are depicted in each
case with the Venn diagrams below. Further, a sample linear monotone operator has
been provided for every possible combination of monotone class. In Sect. 17.3, a
method by which these examples can be combined and extended to create linear
operators in higher dimension with a known monotone class configuration has been
described. Various properties and monotone class relationships of linear relations
have been explored above. Furthermore, only two monotone class relationships
do not apply for linear relations: a linear relation may be 3∗-monotone and not
paramonotone (as in Example 17.38), and 3-cyclic monotone linear relations that
are not paramonotone could exist, but they must not be maximal monotone.

Some of the results and examples in this paper were presented at a meeting of the
Canadian Mathematical Society in Vancouver, Canada, on December 4, 2010, and
a similar and complete characterization of these same monotone class relationships
for nonlinear operators will appear shortly.
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