
Chapter 14
On the Fractal Distribution of Brain Synapses

Richard Crandall†

Abstract Herein we present mathematical ideas for assessing the fractal character
of distributions of brain synapses. Remarkably, laboratory data are now available
in the form of actual three-dimensional coordinates for millions of mouse-brain
synapses (courtesy of Smithlab at Stanford Medical School). We analyze synapse
datasets in regard to statistical moments and fractal measures. It is found that
moments do not behave as if the distributions are uniformly random, and this
observation can be quantified. Accordingly, we also find that the measured fractal
dimension of each of two synapse datasets is 2.8± 0.05. Moreover, we are able to
detect actual neural layers by generating what we call probagrams, paramegrams,
and fractagrams—these are surfaces one of whose support axes is the y-depth (into
the brain sample). Even the measured fractal dimension is evidently neural-layer
dependent.
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14.1 Motivation

Those who study or delight in fractals know full well that often the fractal nature
is underscored by structural rules. When the author was informed by colleagues1

that 3D synapse data is now available in numerical form, it loomed natural that
mathematical methods should be brought to bear.

Thus we open the discussion with the following disclaimer: The present paper is
not a neurobiological treatise of any kind. It is a mathematical treatise. Moreover,
there is no medical implication here, other than the possibility of using such
measures as we investigate for creation of diagnostic tools.2

There is some precedent for this kind of mathematical approach. Several of many
fractal studies on neurological structures and signals include [8–10]. on random
point-clouds per se have even been suggested for the stringent testing of random-
number generators [7]. Some researchers have attempted to attribute notions of
context-dependent processing, or even competition to the activity within neural
layers [1]. Indeed, it is known that dendrites—upon which synapses subsist—travel
through layers. Some good rendition graphics are found in [16]. Again, our input
datasets do not convey any information about dendritic structure; although, it could
be that deeper analysis will ultimately be able to suggest dendritic presence [17].

14.2 Synapse Data for Mathematical Analysis

Our source data is in the section Appendix: Synapse datasets. It is important to note
that said data consists exclusively of triples (x,y,z) of integers, each triple locating
a single brain synapse, and we rescale to nanometers to yield physically realistic
point-clouds. There is no neurological structure per se embedded in the data. This
lack of structural information actually allows straightforward comparison to random
point-clouds (Fig. 14.1).

To be clear, each synapse dataset has the form

x0 y0 z0

x1 y1 z1

1From Smithlab, of Stanford Medical School [15].
2Indeed, one motivation for high-level brain science in neurobiology laboratories is the under-
standing of such conditions as Alzheimer’s syndrome. One should not rule out the possibility of
“statistical” detection of some brain states and conditions—at least, that is our primary motive for
bringing mathematics into play.
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Fig. 14.1 Frame from video: The beginning (top layer, y ∼ 0) of a mouse-brain section. Synapses
(our present data of interest) are red points. The vertical strip at upper left represents the complete
section—the small light-pink rectangle indicates the region we are currently seeing in the video
(courtesy of Smithlab, Stanford medical school [15])
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· · ·

x j y j z j (= r)

· · ·

xk yk zk (= q)

· · ·

xN−1 yN−1 zN−1,

where each x,y,z is an integer (Appendix 1 gives the nanometer quantization). There
are N points, and we have indicated symbolically here that we envision some row
as point r and some other row as point q, for the purposes of statistical analysis
(Fig. 14.2). (A point r may or may not precede a q on the list, although in our
calculations we generally enforce r �= q to avoid singularities in some moments.)

14.3 The Modern Theory of Box Integrals

Box integrals—essentially statistical expectations, also called moments, over a unit
box rather than over all of space—have a rich, decades-long history (see [2,3,5] and
historical references therein). The most modern results involve such functions as

Δn(s) := 〈|r−q|〉|r,q∈[0,1]n

=

∫ 1

0
· · ·

∫ 1

0

(
n

∑
k=1

(rk − qk)
2

)s/2

dr1dq1dr2dq2 · · ·drndqn.

This can be interpreted physically as the expected value of vs, where separation
v = |v|, v := r−q is the distance between two uniformly random points each lying
in the unit n-cube (Fig. 14.3).

It is of theoretical interest that Δn(s) can be given a closed form for every integer
s, in the cases n = 1,2,3,4,5 [5]. For example, the expected distance between two
points in the unit 3-cube is given exactly by
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Fig. 14.2 A subsection in neural layer 5b. The chemical color-coding is as follows. Green: Thy1-
H-YFP (layer 5B neuron subset); Red: Synapsin I (synapses); Blue: DAPI (DNA in all nuclei). All
of our present analyses involve only the synapsin-detected synapses
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Fig. 14.3 Views of 5,000 random points (left) and 5,000 actual synapses (right) in a cuboid of
given sides as follows (all in nanometers): a = Δx ∼ 103,300;b = Δy ∼ 78,200;c = Δz ∼ 11,400,
for horizontal, vertical, and transverse (angled into page), respectively. To convey an idea of
scale, a millimeter is about 10x the horizontal span of either point-cloud. It is hard to see visual
differences between the random points at left and the actual brain points at right. Nevertheless,
sufficiently delicate statistical measures such as moments 〈|v|s〉 as well as fractal measurement do
reveal systematic, quantifiable differences
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The exact formula allows a comparison between a given point-cloud and a random
cloud: One may calculate the empirical expectation 〈|r−q|〉, where r,q each runs
over the point-cloud and compares with the exact expression Δ3(1)≈ . . .. Similarly
it is known that the expected inverse separation in the 3-cube is
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Fig. 14.4 Pictorial of the role of cuboid calculus in our analysis scenario. The right-hand entity
pictorializes an array-tomography section of mouse brain (see Appendix: Synapse datasets for
details). At the left is an idealized, long cuboid representing the full brain sample, inside of which
is a chosen subsection as an (a,b,c)-cuboid. The idea is to statistically compare the synapse
distribution within an (a,b,c)-cuboid against a random distribution having the same cuboid
population. By moving the (a,b,c) cuboid downward, along the y-axis, one can actually detect
neural layers

Such exact forms do not directly apply in our analysis of the brain data, because
we need volume sections that are not necessarily cubical. For this reason, we next
investigate a generalization of box integrals to cuboid volumes (Fig. 14.4).

14.4 Toward a Theory of Cuboid Integrals

In the present study we shall require a more general three-dimensional box integral
involving a cuboid of sides (a,b,c).3 Consider therefore an expectation for two
points r,q lying in the same cuboid (Fig. 14.5):

Δ3(s;a,b,c) := 〈|r−q|〉|r,q∈ [0,a]×[0,b]×[0,c]

=
1

a2b2c2

∫ a

0

∫ a

0

∫ b

0

∫ b

0

∫ c

0

∫ c

0
|r−q|s dr1 dq1 dr2 dq2 dr3 dq3.

This agrees with the standard box integral Δ3(s) when (a,b,c) = (1,1,1).

3A cuboid being a parallelepiped with all faces rectangular—essentially a “right parallelepiped.”
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Fig. 14.5 Probability density curves for the separation v = |r − q| (horizontal axis), taken
over a cuboid of data, in the spirit of Fig. 14.4. The green curve (with highest peak) is
extracted from subsegment 2 of dataset I, under the segmentation paradigm {12,1,128,{1,128}}.
The red curve (with rightmost peak) is theoretical—calculated from the Philip formula for
F3(v; 146700,107900,2730). The blue “excess curve” is the point-wise curve difference (amplified
3×) and can be used in our “probagram” plots to show excess as a function of section depth y.
The expected separations within this cuboid turn out to be 〈v〉 = 62018,66789 for brain, random,
respectively

Figure 14.6 shows the result of empirical assessment of cuboid expectations for
dataset I.

We introduce a generalized box integral, as depending on fixed parameters
k,a1,a2,a3 (we use ai here rather than a,b,c just for economy of notation):

G3(k;a1,a2,a3) := 〈e−k|p−q|2〉

=
1

∏a2
i

∫ a1

0

∫ a1

0
· · ·

∫ a3

0

∫ a3

0
e−k|r−q|2 dr1 dr2 dr3 dq1 dq2 dq3,

which, happily, can be given a closed form

G3(k;a1,a2,a3) =
1
k3 ∏

i

e−a2
i k + ai

√
πkerf

(
ai
√

k
)
− 1

a2
i

,

where erf(z) := 2/
√

π
∫ z

0 e−t2
dt denotes the error function. The closed form here is

quite useful, and by expanding the erf() in a standard series, we obtain for example
a three-dimensional summation for G3. The question is, can one write a summation
that is of lower dimension? One possible approach is to expand the Gaussian in even
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Fig. 14.6 Results for cuboid expectations of separation v and 1/v for cuboids of the type in
Fig. 14.4, running over all y-depth. (The dark green horizontal strip represents the full sample,
oriented left-right for these plots.) In both left- and right-hand plots, the horizontal red line
is calculated from the exact formula for Δ3(1;a,b,c). The segmentation paradigm here is
{12,2,80,{1,32}}, dataset I

powers of |p−q| and leverage known results in regard to box integrals Δn of Bailey
et al. [2, 3]. Such dimensionality reduction remains an open problem.

Yet another expectation that holds promise for point-cloud analysis is what one
might call a Yukawa expectation:

Y3(k;a1,a2,a3) :=

〈
e−k|r−q|

|r−q|

〉
.

This is the expected Yukawa potential—of nuclear physics lore—between two
points within the cuboid. The reason such potentials are of interest is that being
“short-range” (just like nuclear forces) means that effects of closely clustered points
will be amplified. Put another way: The boundary effects due to finitude of a cuboid
can be rejected to some degree in this way.

14.4.1 Cuboid Statistics

Not just the exact expectation Δ3(1;a,b,c) but the very probability density F3(v;a,
b,c) has been worked out by Philip [14]. Both exact expressions in terms of a,b,c
are quite formidable—see Appendix: Exact-density code for a programmatic way
to envision the complexity. By probability density, we mean

Prob{|r−q| ∈ (v,v+ dv)} = F3(v;a,b,c)dv;
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hence we have a normalization integral with upper limit being the long cuboid
diagonal:

∫ √
a2+b2+c2

0
F3(v;a,b,c)dv = 1.

More generally we can represent the moment Δ3 in the form

Δ3(s;a,b,c) =

∫ √
a2+b2+c2

0
vs F3(v;a,b,c)dv.

The Philip density for separation v can also be used directly to obtain the density
for a power of v, so

f3(X := vs;a,b,c) =
1
|s|X

1
s −1F3(X

1
s ;a,b,c).

For example, if we wish to plot the density of inverse separation X := 1/v for
a random point-cloud, we simply plot X−2F3(1/X ;a,b,c) for X running from
1/

√
a2 + b2 + c2 up to infinity; the area under this density will be 1.

14.5 Fractal Dimension

For the present research we used two fractal-measurement methods: The classical
box-counting method, and a new, space-fill method. For a survey of various fractal-
dimension definitions, including estimates for point-cloud data, see [6].

As for box-counting, we define a box dimension

δ := limε→0
log#(ε)
− logε

,

where for a given side ε of a microbox, #(ε) is the number of microboxes that
minimally, collectively contain all the points of the point-cloud. Of course, our
clouds are always finite, so the limit does not exist. But it has become customary
to develop a #-vs.ε curve, such as the two curves atop Fig. 14.7, and report in some
sense “best slope” as the measured box dimension.

There are two highly important caveats at this juncture: We choose to redefine
the box-count number, as

# → # · 1

1− e−Nε3 ,

when the cloud has N total points. This statistical warp factor attempts to handle
the scenario in which microboxes are so small that the finitude of points causes
many empty microboxes. Put another way: The top curve of the top part of
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Fig. 14.7 Fractal-dimension measurement. Within a given cuboid we use the standard box-
counting method, namely, in the upper figure is plotted log# vs. log(1/ε) for random points
(upper, blue curve), then for the actual synapse points (lower, red curve), and with the excess as the
green (lowest) plot. In the bottom figure, we use the excess to estimate fractal dimension for each
cuboid in a segmentation paradigm {12,2,80,{2,80}}. Evidently, the fractal dimension fluctuates
depending on layer characteristics at depths y, with an average fractal dimension of ∼ 2.8 for the
whole of dataset I

Fig. 14.7—which curve should have slope 3 for N random points—stays straight
and near slope 3 for a longer dynamic range because of the warp factor.

The second caveat is that we actually use not ε-microboxes but microcuboids.
When the segment being measured is originally of sides (a,b,c), we simply rescale
the cuboid to be in a unit box, which is equivalent to using a “microbrick” whose
aspect ratios are that of the cuboid, and transform that microbrick to a cube of side
ε := (abc)1/3.

14.5.1 Space-Fill Method for Fractal Measurement

During this research, we observed that a conveniently stable fractal-measurement
scheme exists for point-cloud datasets. We call this method the “space-fill” algo-
rithm, which runs like so4:

4The present author devised this method in 1997, in an attempt to create “1/ f ” noise by digital
means, which attempt begat the realization that fractal dimension could be measured with a Hilbert
space-fill.
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Fig. 14.8 The “space-fill” method for measuring point-cloud dimension. This algorithm as
described in the text yields similar results to the more standard box-counting method, yet
preliminary research reveals the space-fill method to be rather more stable with respect to graph
noise. The basic idea is to create a set of pullbacks on the line [0,1) and then use a quick sort and
a simple one-dimensional fractal assessment

1. Assume a three-dimensional unit cube containing a point-cloud and construct a
Hilbert space-filling curve, consisting of discrete visitation points H(t), where t
runs over the integers in [0,23b−1]. (The resolution of this curve will be b binary
bits per coordinate, therefore.)

2. Create a list of “pullback” rationals tk/23b, corresponding to the points rk of the
point-cloud data.

3. Perform a one-dimensional sort on the set of pullbacks and measure the fractal
dimension δ1 using a simple interval counter.

4. Report fractal dimension of the point-cloud data as δ = 3 ·δ .

We do not report space-fill measurements herein—all of the results and figures
employ the box-counting method—except to say (a) the space-fill method appears to
be quite stable, with the fractagram surfaces being less noisy, and (b) the dimensions
obtained in preliminary research with the space-fill approach are in good agreement
with the box-counting method. Figure 14.8 pictorializes the space-fill algorithm.

14.6 Probagrams, Paramegrams, and Fractagrams

Our “grams” we have so coined to indicate their three-dimensional-embedding
character.5 Each ‘gram is a surface, one of whose support dimensions is the section

5As in “sonogram”—which these days can be a medical ultrasound image, but originally was a
moving spectrum, like a fingerprint of sound that would fill an entire sheet of strip-chart.
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Fig. 14.9 The “fractagram” concept—which is similar for probagrams and paramegrams. For
each cuboid in a given segmentation paradigm (here, paradigm {12,2,80,{2,80}}) we generate
the fractal-slope excess as in Fig. 14.7. The resulting “strands” of fractal data vs. y-depth in the
dataset (here, dataset I) are much easier to interpret if plotted as a surface, which surface we then
call a fractagram as pictured in Fig. 14.11

depth y. In our “grams”, as in the original synapse datasets, y= 0 is the outside (pial)
surface, while y increases into the brain sample. We typically have, in our “grams”,
downward increasing y, so that the top of a ‘gram pictorial is the outside surface.

Precise definitions are:

• Probagram: Surface whose height is probability density of a given variable within
a cuboid, horizontal axis is the variable, and the vertical axis is the y-depth into
the sample.

• Paramegram: Surface whose height is a parameterized expectation (such as our
function G3(k;a,b,c)), horizontal axis is the parameter (such as k), and the
vertical axis is y-depth.

• Fractagram: Surface whose height is the excess between the fractal-slope curve
for a random cloud in a cuboid and the actual data cloud’s fractal-slope curve,
horizontal axis is − logε , and vertical axis is as before the y-depth (Fig. 14.9).
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Fig. 14.10 A baseline experiment. At left is the probagram for dataset I and density f3(X :=
1/v2;a,b,c) under segmentation paradigm {12,2,16,{2,10}}. At the right is the result of using
the same number of points (N = 1,119,299) randomly placed within the full sample cuboid. This
kind of experiment shows that the brain synapses are certainly not randomly distributed

In general, we display these “grams” looking down onto the surface or possible at a
small tilt to be able to understand the surface visually.

What we shall call a segmentation paradigm is a set P of parameters that
determine the precise manner in which we carve (a,b,c)-cuboids out of a full
synapse dataset (Fig. 14.10). Symbolically,

P := {M,G,H,{b,e}},

where

• M is the “magnification” factor—the y-thickness of a cuboid divided into the full
y-span of the dataset.

• G is the “grain”—which determines the oversampling; 1/G is the number of
successively overlapping cuboids in one cuboid.

• H is the number of histogram bins in a ‘gram plot, and we plot from bin b to
bin e.

We generally use g < 1 to avoid possible alias effects at cuboid boundaries. The
total number of cuboids analyzed in a ‘gram thus turns out to be

S = 1 + G(M− 1).
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Fig. 14.11 Typical set of three “grams”: At far left is a pictorialized a full-section sample, with a
small box indicating a cuboid subsection. As said section is moved downward (increasing y), we
obtain, left-to-right and for separation, v := |r−q|, the probagram for v−1, then the paramegram for
〈exp(−kv2)〉, then the fractalgram. The phenomenon of neural layering is evident and qualitatively
consistent (either correlated or anticorrelated) across all three “grams” for this sample (dataset I,
detailed in Appendix: Synapse datasets)

For example, with grain G = 3 and M = 10, we calculate over a total of 28 cuboids.
This is because there are generally G = 3 cuboids overlapping a given cuboid. In
any case, one may take cuboid dimensions a,b,c as

a = xmax − xmin; b =
ymax − ymin

M
;c = zmax − zmin,

where min, max coordinates are deduced from the data (Fig. 14.11). (In our “grams”,
we continually recompute the min, max for every cuboid to guard against such as
corner holes in the data.)

14.7 How Do We Explain the Observed Fractal Dimension?

Let us give an heuristic argument for the interaction of cuboid expectations and
fractal-dimension estimates. Whereas the radial volume element in 3-space is
4πr2dr, imagine a point-cloud having the property that the number of points a
distance r from a given point scales as rδ−1 where δ < 3, say. Then, if the
characteristic size of a point sample is R (here we are being rough, avoiding
discussion of the nature of the region boundaries), we might estimate an expectation
for point-separation v to the sth power as

〈vs〉 ∼
∫ R

0 usuδ−1 du∫ R
0 uδ−1 du

.
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Note that we can avoid calculation of a normalization constant by dividing this way,
to enforce 〈v0〉= 1. This prescription gives the estimate

〈vs〉 ∼ δ
s+ δ

Rs,

showing a simple dependence on the fractal dimension δ . In fact, taking the left-
hand plot of Fig. 14.6, we can right off estimate the fractal dimension of the whole
dataset as

δ ∼ 2.6,

not too off the mark from our more precise fractal measurements that we report as
2.8± 0.05.

So one way to explain our discovered fractal dimension ∼ 2.8 < 3 for both
datasets is to surmise that the distance metric is weighted in some nonuniform
fashion (Fig. 14.12).

14.7.1 Generalized Cantor Fractals

One aspect undertaken during the present research was to attempt to fit the observed
fractal properties of the datasets to some form of Cantor fractal. There is a way to
define a generalized Cantor fractal in n dimensions so that virtually any desired
fractal dimension in the interval [n log2

log3 ,n] (see [4]).6 Such generalized Cantor
fractals were used to fine-tune our fractal measurement machinery.

Interestingly, the cuboid expectations for dataset II seem qualitatively resonant
with the corresponding expectations for a certain generalized Cantor set called
C3(33111111) having dimension δ = 2.795 . . . . However, dataset I does not have
similar expectations on typical cuboids. For one thing, the highest-peak curve in
Fig. 14.5—which is from a cuboid within dataset I—shows 〈v〉 for the laboratory
data being less than the same expectation for random data; yet, a Cantor fractal
tends to have such expectation larger than random data.

We shall soon turn to a different fractal model that appears to encompass the
features of both datasets. But first, a word is appropriate here as to the meaning
of “holes” in a dataset. Clearly, holes in the laboratory point-clouds will be caused

6Mathematically, the available fractal dimensions for the generalized Cantor fractals are dense in
said interval.
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Fig. 14.12 The “grams” for the synapse-location datasets I, II. The top row shows G3
paramegrams and baseline test for segmentation paradigm {12,2,32,{1,10}}. The second row
shows probagrams for inverse separation 1/v, in the same segmentation paradigm. The two 3D
plots at bottom are the fractagrams. At far-left and far-right bottom are graphical displays of the
per-cuboid fractal-dimension estimate. Note that the baseline test here is for a randomly filled
cuboid; the horizontal lines at dimension 3.0 really are less noisy than one pixel width. Thus the
datasets I, II can be said both to have overall fractal dimension 2.8± 0.5, although the dimension
is evidently neural-layer dependent

by the simple fact of synapses not subsisting within large bodies.7 So, too, Cantor
fractals can be created by successive removal of holes that scale appropriately. But
here is the rub: The existence of holes does not in itself necessarily alter fractal
dimension.8 For example, take a random cloud and remove large regions, to create
essentially a swiss-cheese structure in between whose holes are equidistributed
points. The key is, fractal-measurement machinery will still give a dimension very
close to δ = 3.

7Synapses live on dendrites, exterior to actual neurons.
8Of course, the situation is different if hole existence is connected with microscopic synapse
distribution, e.g., if synapses were to concentrate near surfaces of large bodies.
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14.7.2 “Bouquet” Fractal as a Possible Synapse-Distribution
Model

We did find a kind of fractal that appears to lend itself well to comparison with
synapse distributions.9 We shall call such artificial constructs “bouquet” fractals.
A generating algorithm to create a bouquet point-cloud having N points runs as
follows:

1. In a unit 3-cube, generate N0 random points (N0 and other parameters can be
used to “tune” the statistics of a bouquet fractal). Thus the point-cloud starts
with population N0.

2. Choose an initial radius r = r0, a multiplicity number m, and a scale factor c < 1.
3. For each point in the point-cloud, generate m new points a mean distance r away

(using, say, a normal distribution with deviation r away from a given point). At
this juncture the point-cloud population will be N0 ·mk for k being the number of
times this step 3 has been executed. If this population is ≥ N, go to step 5.

4. Reduce r by r = c · r and go to step 3.
5. Prune the point-cloud population so that the exact population is achieved.

The bouquet fractal will have fractal dimension on the order of

δ ∼ logm
− logc

,

but this is an asymptotic heuristic; in practice, one should simply tune all parameters
to obtain experimental equivalencies.10 For example, our dataset I corresponds
interestingly to bouquet parameters

{N0,r0,m,c} = {1000,N−1/3
0 ,23,1/3}.

The measured fractal dimension of the resulting bouquet for population N =
1,119,299 is δ ∼ 2.85 and statistical moments also show some similarity.

Once again, something like a bouquet fractal may not convey any neurophys-
iological understanding of synapses locations, but there could be a diagnostic
parameter set, namely that set for which chosen statistical measures come out
quantitatively similar.

9Again, we are not constructing here a neurophysiological model; rather, a phenomenological
model whose statistical measures have qualitative commonality with the given synapse data.
10The heuristic form of dimension δ here may not be met if there are not enough total points. This
is because the fractal-slope paradigm has low-resolution box counts that depend also on parameters
N0, r.
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14.7.3 Nearest-Neighbor Calculus

Another idea that begs for further research is to perform nearest-neighbor calculus
on synapse cuboids. This is yet a different way to detect departure from randomness.

In an n-dimensional unit volume, the asymptotic behavior of the nearest-pair
distance for N uniformly randomly placed points, namely

μ1 := 〈min |r−q|〉r,q ∈V ,

is given—in its first asymptotic term—by

μ1 ∼ Γ
(

1+
1
n

)
21/n
√

π
Γ 1/n

(
1+

n
2

) 1

N2/d
+ . . . .

In our (n = 3)-dimensional scenarios, we thus expect the nearest-pair separation
to be

μ1 ∼ Γ (4/3)

π1/3

1

N2/3
≈ 0.6097

N2/3
.

It is interesting that this expression can be empirically verified with perhaps less
inherent noise than one might expect.

Presumably a nearest-pair calculation on the synapse distributions will reveal
once again significant departures from randomness. What we expect is a behavior
like so

μ1 ∼ constant

N2/δ

for fractal dimension δ . Probably the best research avenue, though, is to calculate
the so-called k-nearest-pairs, meaning ordered k-tuples of successively more sep-
arate pairs, starting with the minimal pair, thus giving a list of expected ordered
distances μ1,μ2, . . . ,μk.
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Appendix 1: Synapse Datasets

Referring to Table 14.1: Both datasets I, II are from adult-mouse “barrel cortex”
which is a region of the somatosensory neocortex involved in processing sensation
from the facial whiskers (one of the mouse’s primary sensory modalities). The long
y-axis of the volumes crosses all 6 layers of the neocortex (these are layers parallel
to the cortical surface, and the long axis is perpendicular to the surface).

Neurophysiological considerations including array-tomography technology are
discussed in [11–13] and web URL [15]; we give a brief synopsis:

Array tomography (AT) is a new high-throughput proteomic imaging method
offering unprecedented capabilities for high-resolution imaging of tissue molecular
architectures. AT is based on (1) automated physical, ultrathin sectioning of tissue
specimens embedded in a hydrophilic resin, (2) construction of planar arrays of
these serial sections on optical coverslips, (3) staining and imaging of these two-
dimensional arrays, and (4) computational reconstruction into three dimensions,
followed by (5) volumetric image analysis. The proteomic scope of AT is enhanced
enormously by its unique amenability to high-dimensional immunofluorescence
multiplexing via iterative cycles of antibody staining, imaging and antibody elution.

Appendix 2: Exact-Density Code

(* Evaluation of the exact Philip density F3[v,a,b,c]
for an (a,b,c)-cuboid. *)

h11[u_, a_, b_, c_] := 1/(3 aˆ2 bˆ2 cˆ2) *
If[u <= bˆ2, -3 Pi b c u + 4 b uˆ(3/2),

If[u <= cˆ2,
4 bˆ4 + 6 bˆ2 c Sqrt[u - bˆ2] -
6 b c u ArcSin[b/Sqrt[u]],
If[u <= bˆ2 + cˆ2, 4 bˆ4 + 6 bˆ2 c *

Sqrt[u - bˆ2] +
6 b c u (ArcCos[c/Sqrt[u]] -
ArcSin[b/Sqrt[u]]) -

Table 14.1 Synapse dataset characteristics

File, voxel nm×nm×nm N (xmin,xmax) (ymin,ymax) (zmin, zmax)

I
KDM-100824B 100×100×70 1,119,299 (2800,151300) (2300,1298000) (105,2835)

II
mMos3 Syn 100×100×200 1,732,051 (100,103400) (100,1252600) (105,4095)

The point-cloud population N exceeds 106 for each dataset. The min, max parameters have been
converted here to nm
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2 b (2 u + cˆ2) Sqrt[u - cˆ2],
0

]
]

];

h12[u_, a_, b_, c_] := 1/(6 aˆ2 bˆ2 cˆ2) *
If[u <= aˆ2,

12 Pi a b c Sqrt[u] - 6 Pi a (b + c) u +
8 (a + c) uˆ(3/2) - 3 uˆ2,
If[u <= cˆ2,

5 aˆ4 - 6 Pi aˆ3 b +
12 Pi a b c Sqrt[u] +
8 c uˆ(3/2) - 12 Pi a b c *
Sqrt[u - aˆ2] - 8 c *
(u - aˆ2)ˆ(3/2) -
12 a c u ArcSin[a/Sqrt[u]],
If[u <= aˆ2 + cˆ2,

5 aˆ4 - 6 Pi aˆ3 b +
6 Pi a b cˆ2 -
cˆ4 + 6 (Pi a b + cˆ2) u +
3 uˆ2 - 12 Pi a b c *
Sqrt[u - aˆ2] -
8 c (u - aˆ2)ˆ(3/2) -
4 a (2 u + cˆ2)*
Sqrt[u - cˆ2] +
12 a c u *

(ArcCos[c/Sqrt[u]]-ArcSin[a/Sqrt[u]]),
0

]
]

];

h22[u_, a_, b_, c_] := 1/(3 aˆ2 bˆ2 cˆ2) *
If[u <= aˆ2, 0,

If[u <= aˆ2 + bˆ2,
3 Pi aˆ2 b (a + c) - 3 aˆ4 -
6 Pi a b c Sqrt[u] +
3 (aˆ2 + Pi b c) u +
(6 Pi a b c - 2 (b + 3 c) aˆ2-4 b u)*
Sqrt[u - aˆ2] -
6 a b u ArcSin[a/Sqrt[u]],
If[u <= aˆ2 + cˆ2,

3 aˆ2 b (Pi a - b) - 4 bˆ4-
12 a b c Sqrt[u]*
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ArcSin[b Sqrt[u]/(Sqrt[aˆ2 + bˆ2] * Sqrt[u - aˆ2])]-
6 a c (a - Pi b) Sqrt[u - aˆ2]-
6 c (bˆ2 - aˆ2 +

2 a b ArcSin[a/Sqrt[aˆ2 + bˆ2]])*
Sqrt[u - aˆ2 - bˆ2] -
6 a b (aˆ2 + bˆ2)*
ArcSin[a/Sqrt[aˆ2 + bˆ2]] +
6 b c (aˆ2 + u) *
ArcSin[b/Sqrt[u - aˆ2]],
3 aˆ2 (aˆ2 - bˆ2 - cˆ2)-4 bˆ4-
3 aˆ2 u - 12 a b c Sqrt[u] *

(ArcSin[b Sqrt[u]/(Sqrt[aˆ2 + bˆ2] * Sqrt[u-aˆ2])]-
ArcCos[a c/(Sqrt[u - cˆ2] Sqrt[u - aˆ2])]) +

2 b (aˆ2 + cˆ2 + 2 u) *
Sqrt[u - aˆ2 - cˆ2] -
6 c *

(bˆ2 - aˆ2 + 2 a b ArcSin[a/Sqrt[aˆ2 + bˆ2]]) *
Sqrt[u - aˆ2 - bˆ2] -
6 a b (aˆ2 + bˆ2) *
ArcSin[a/Sqrt[aˆ2 + bˆ2]] +
6 b c (aˆ2 + u) *

(ArcSin[b/Sqrt[u - aˆ2]] - ArcCos[c/Sqrt[u - aˆ2]])+
6 a b (cˆ2 + u) *
ArcSin[a/Sqrt[u - cˆ2]]

]
]

];

h32[u_, a_, b_, c_] := h22[u, b, a, c];

h33[u_, a_, b_, c_] := 1/(6 aˆ2 bˆ2 cˆ2) *
If[u <= bˆ2, 0,

If[u <= aˆ2 + bˆ2,
3 (2 Pi a b + bˆ2 + u) (u - bˆ2) -
4 c (bˆ2 + 3 Pi a b + 2 u) *
Sqrt[u - bˆ2],
If[u <= bˆ2 + cˆ2, 3 (aˆ2 + bˆ2)ˆ2 -

3 bˆ4 + 6 Pi aˆ3 b -
4 c (bˆ2 + 3 Pi a b + 2 u) *
Sqrt[u - bˆ2] +
4 c (aˆ2 + bˆ2 + 3 Pi a b + 2 u)*
Sqrt[u - aˆ2 - bˆ2],

3 (aˆ2 + bˆ2)ˆ2 + cˆ4 +
6 Pi a b (aˆ2 + bˆ2 - cˆ2) -
6 (Pi a b + cˆ2) u - 3 uˆ2 +
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4 c (aˆ2 + bˆ2 + 3 Pi a b + 2 u)*
Sqrt[u - aˆ2 - bˆ2]

]
]

];

(* Next, the Philip density function for separation v.
It must be arranged that a <= b <= c. *)

F3[v_, a_, b_, c_] :=
2 v (h11[vˆ2, a, b, c] + h12[vˆ2, a, b, c] +
h22[vˆ2, a, b, c] + h32[vˆ2, a, b, c] +
h33[vˆ2, a, b, c]);
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