
Chapter 12
Preprocessing and Regularization
for Degenerate Semidefinite Programs
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Abstract This paper presents a backward stable preprocessing technique for
(nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for
which the Slater constraint qualification (SCQ), the existence of strictly feasible
points, (nearly) fails. Current popular algorithms for semidefinite programming rely
on primal-dual interior-point, p-d i-p, methods. These algorithms require the SCQ
for both the primal and dual problems. This assumption guarantees the existence
of Lagrange multipliers, well-posedness of the problem, and stability of algorithms.
However, there are many instances of SDPs where the SCQ fails or nearly fails.
Our backward stable preprocessing technique is based on applying the Borwein–
Wolkowicz facial reduction process to find a finite number, k, of rank-revealing
orthogonal rotations of the problem. After an appropriate truncation, this results
in a smaller, well-posed, nearby problem that satisfies the Robinson constraint
qualification, and one that can be solved by standard SDP solvers. The case k = 1 is
of particular interest and is characterized by strict complementarity of an auxiliary
problem.
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12.1 Introduction

The aim of this paper is to develop a backward stable preprocessing technique to
handle (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs
for which the Slater constraint qualification (Slater CQ or SCQ), the existence
of strictly feasible points, (nearly) fails. The technique is based on applying the
Borwein–Wolkowicz facial reduction process [11, 12] to find a finite number k of
rank-revealing orthogonal rotation steps. Each step is based on solving an auxiliary
problem (AP) where it and its dual satisfy the Slater CQ. After an appropriate
truncation, this results in a smaller, well-posed, nearby problem for which the
Robinson constraint qualification (RCQ) [52] holds; and one that can be solved
by standard SDP solvers. In addition, the case k = 1 is of particular interest and is
characterized by strict complementarity of the (AP).

In particular, we study SDPs of the following form:

(P) vP := sup
y
{bT y : A ∗y�C}, (12.1)

where the optimal value vP is finite, b ∈ R
m, C ∈ S

n, and A : Sn→ R
m is an onto

linear transformation from the space Sn of n×n real symmetric matrices to R
m. The

adjoint of A is A ∗y = ∑m
i=1 yiAi, where Ai ∈ Sn, i = 1, . . . ,m. The symbol� denotes

the Löwner partial order induced by the cone S
n
+ of positive semidefinite matrices,

i.e., A ∗y�C if and only if C−A ∗y∈ Sn
+. (Note that the cone optimization problem

(12.1) is commonly used as the dual problem in the SDP literature, though it is
often the primal in the linear matrix inequality (LMI) literature, e.g., [13].) If (P) is
strictly feasible, then one can use standard solution techniques; if (P) is strongly
infeasible, then one can set vP =−∞, e.g., [38,43,47,62,65]. If neither of these two
feasibility conditions can be verified, then we apply our preprocessing technique that
finds a rotation of the problem that is akin to rank-revealing matrix rotations. (See
e.g., [58,59] for equivalent matrix results.) This rotation finds an equivalent (nearly)
block diagonal problem which allows for simple strong dualization by solving only
the most significant block of (P) for which the Slater CQ holds. This is equivalent
to restricting the original problem to a face of Sn

+, i.e., the preprocessing can be
considered as a facial reduction of (P). Moreover, it provides a backward stable
approach for solving (P) when it is feasible and the SCQ fails; and it solves a
nearby problem when (P) is weakly infeasible.

The Lagrangian dual to (12.1) is

(D) vD := inf
X
{〈C,X〉 : A (X) = b,X � 0} , (12.2)

where 〈C,X〉 := traceCX = ∑i j Ci jXi j denotes the trace inner product of the
symmetric matrices C and X and A (X) = (〈Ai,X〉) ∈ R

m. Weak duality vD ≥ vP

follows easily. The usual constraint qualification (CQ) used for (P) is SCQ,
i.e., strict feasibility A ∗y ≺ C (or C−A ∗y ∈ S

n
++, the cone of positive definite
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matrices). If we assume the Slater CQ holds and the primal optimal value is finite,
then strong duality holds, i.e., we have a zero duality gap and attainment of the dual
optimal value. Strong duality results for (12.1) without any constraint qualification
are given in [10–12, 48, 49, 72], and more recently in [50, 66]. Related closure
conditions appear in [44]; and, properties of problems where strong duality fails
appear in [45].

General surveys on SDP are in, e.g., [4, 63, 68, 75]. Further general results on
SDP appear in the recent survey [31].

Many popular algorithms for (P) are based on Newton’s method and a primal-
dual interior-point, p-d i-p, approach, e.g., the codes (latest at the URLs in the
citations) CSDP, SeDuMi, SDPT3, SDPA [9, 60, 67, 76]; see also the

SDP URL: www-user.tu-chemnitz.de/∼helmberg/sdp software.html.

To find the search direction, these algorithms apply symmetrization in combination
with block elimination to find the Newton search direction. The symmetrization
and elimination steps both result in ill-conditioned linear systems, even for well
conditioned SDP problems, e.g., [19, 73]. And, these methods are very susceptible
to numerical difficulties and high iteration counts in the case when SCQ nearly
fails; see, e.g., [21–24]. Our aim in this paper is to provide a stable regularization
process based on orthogonal rotations for problems where strict feasibility (nearly)
fails. Related papers on regularization are, e.g., [30, 39]; and papers on high
accuracy solutions for algorithms SDPA-GMP,-QD,-DD are, e.g., [77]. In addition,
a popular approach uses a self-dual embedding, e.g., [16,17]. This approach results
in SCQ holding by using homogenization and increasing the number of variables.
In contrast, our approach reduces the size of the problem in a preprocessing step in
order to guarantee SCQ.

12.1.1 Outline

We continue in Sect. 12.1.2 with preliminary notation and results for cone program-
ming. In Sect. 12.2 we recall the history and outline the similarities and differences
of what facial reduction means first for linear programming (LP), and then for
ordinary convex programming (CP), and finally for SDP, which has elements from
both LP and CP. Instances and applications where the SCQ fails are given in
Sect. 12.2.3.1. Then, Sect. 12.3 presents the theoretical background and tools needed
for the facial reduction algorithm for SDP. This includes results on strong duality
in Sect. 12.3.1; and, various theorems of the alternative, with cones having both
nonempty and empty interior, are given in Sect. 12.3.2. A stable auxiliary problem
(12.18) for identifying the minimal face containing the feasible set is presented and
studied in Sect. 12.3.3; see, e.g., Theorem 12.13. In particular, we relate the question
of transforming the unstable problem of finding the minimal face to the existence
of a primal-dual optimal pair satisfying strict complementarity and to the number
of steps in the facial reduction. See Remark 12.12 and Sect. 12.3.5. The resulting

www-user.tu-chemnitz.de/~{}helmberg/sdp_software.html
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information from the auxiliary problem for problems where SCQ (nearly) fails is
given in Theorem 12.17 and Propositions 12.18, 12.19. This information can be
used to construct equivalent problems. In particular, a rank-revealing rotation is
used in Sect. 12.3.4 to yield two equivalent problems that are useful in sensitivity
analysis, see Theorem 12.22. In particular, this shows the backward stability with
respect to perturbations in the parameter β in the definition of the cone Tβ for the
problem. Truncating the (near) singular blocks to zero yields two smaller equivalent,
regularized problems in Sect. 12.3.4.1.

The facial reduction is studied in Sect. 12.4. An outline of the facial reduction
using a rank-revealing rotation process is given in Sect. 12.4.1. Backward stability
results are presented in Sect. 12.4.2.

Preliminary numerical tests, as well as a technique for generating instances with
a finite duality gap useful for numerical tests, are given in Sect. 12.5. Concluding
remarks appear in Sect. 12.6.

12.1.2 Preliminary Definitions

Let (V ,〈·, ·〉V ) be a finite-dimensional inner product space and K be a (closed)
convex cone in V , i.e., λ K ⊆K,∀λ ≥ 0, and K+K ⊆K. K is pointed if K∩(−K) =
{0}; K is proper if K is pointed and intK �= /0; the polar or dual cone of K is
K∗ := {φ : 〈φ ,k〉 ≥ 0,∀k ∈ K}. We denote by �K the partial order with respect to
K. That is, x1 �K x2 means that x2− x1 ∈ K. We also write x1 ≺K x2 to mean that
x2− x1 ∈ intK. In particular with V = S

n, K = S
n
+ yields the partial order induced

by the cone of positive semidefinite matrices in S
n, i.e., the so-called Löwner partial

order. We denote this simply with X � Y for Y − X ∈ S
n
+. cone(S) denotes the

convex cone generated by the set S. In particular, for any nonzero vector x, the
ray generated by x is defined by cone(x). The ray generated by s ∈ K is called an
extreme ray if 0 �K u �K s implies that u ∈ cone(s). The subset F ⊆ K is a face of
the cone K, denoted F �K, if

(s ∈ F,0�K u�K s) =⇒ (cone(u)⊆ F) . (12.3)

Equivalently, F �K if F is a cone and
(
x,y ∈ K, 1

2 (x+ y) ∈ F
)
=⇒ ({x,y} ⊆ F).

If F �K but is not equal to K, we write F �K. If {0} �= F �K, then F is a proper
face of K. For S ⊆ K, we let face(S) denote the smallest face of K that contains S.
A face F �K is an exposed face if it is the intersection of K with a hyperplane.
The cone K is facially exposed if every face F �K is exposed. If F �K, then the
conjugate face is Fc := K∗∩{F}⊥. Note that the conjugate face Fc is exposed using
any s ∈ relintF (where relintS denotes the relative interior of the set S), i.e., Fc =
K∗ ∩{s}⊥,∀s ∈ relintF . In addition, note that Sn

+ is self-dual (i.e., (Sn
+)
∗ = S

n
+) and

is facially exposed.
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For the general conic programming problem, the constraint linear transformation
A : V → W maps between two Euclidean spaces. The adjoint of A is denoted
by A ∗ : W → V , and the Moore–Penrose generalized inverse of A is denoted by
A † : W → V .

A linear conic program may take the form

(Pconic) vconic
P = sup

y
{〈b,y〉 : C−A ∗y�K 0}, (12.4)

with b ∈W and C ∈ V . Its dual is given by

(Dconic) vconic
D = inf

X
{〈C,X〉 : A (X) = b,X �K∗ 0}. (12.5)

Note that the RCQ is said to hold for the linear conic program (Pconic) if 0∈ int(C−
A ∗(Rm)− S

n
+); see [53]. As pointed out in [61], the Robinson CQ is equivalent

to the Mangasarian–Fromovitz constraint qualification in the case of conventional
nonlinear programming. Also, it is easy to see that the Slater CQ, strict feasibility,
implies RCQ.

Denote the feasible solution and slack sets of (12.4) and (12.5) by FP = F y
P =

{y : A ∗y �K C}, F Z
P = {Z : Z = C−A ∗y �K 0}, and FD = {X : A (X) =

b, X �K∗ 0}, respectively. The minimal face of (12.4) is the intersection of all faces
of K containing the feasible slack vectors:

fP = f Z
P := face(C−A ∗(FP)) = ∩{H �K : C−A ∗(FP)⊆ H} .

Here, A ∗(FP) is the linear image of the set FP under A ∗.
We continue with the notation specifically for V = S

n, K = S
n
+, and W = R

m.
Then (12.4) [respectively, (12.5)] is the same as (12.1) [respectively, (12.2)]. We
let ei denote the ith unit vector, and Ei j := 1√

2
(eieT

j + e jeT
i ) are the unit matrices

in S
n. For specific Ai ∈ S

n, i = 1, . . . ,m, we let ‖A ‖2 denote the spectral norm of
A and define the Frobenius norm (Hilbert–Schmidt norm) of A as ‖A ‖F :=√

∑m
i=1 ‖Ai‖2

F .
Unless stated otherwise, all vector norms are assumed to be 2-norm, and all

matrix norms in this paper are Frobenius norms. Then, e.g., [32, Chap. 5], for any
X ∈ S

n,

‖A (X)‖2 ≤ ‖A ‖2‖X‖F ≤ ‖A ‖F‖X‖F . (12.6)

We summarize our assumptions in the following.

Assumption 12.1. FP �= /0; A is onto.
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12.2 Framework for Regularization/Preprocessing

The case of preprocessing for linear programming is well known. The situation for
general convex programming is not. We now outline the preprocessing and facial
reduction for the cases of linear programming (LP); ordinary convex programming
(CP); and SDP. We include details on motivation involving numerical stability and
convergence for algorithms. In all three cases, the facial reduction can be regarded
as a Robinson-type regularization procedure.

12.2.1 The Case of Linear Programming, LP

Preprocessing is essential for LP, in particular for the application of interior-point
methods. Suppose that the constraint in (12.4) is A ∗y �K c with K = R

n
+, the

nonnegative orthant, i.e., it is equivalent to the elementwise inequality AT y≤ c,c ∈
R

n, with the (full row rank) matrix A being m× n. Then (Pconic) and (Dconic) form
the standard primal-dual LP pair. Preprocessing is an essential step in algorithms
for solving LP, e.g., [20,27,35]. In particular, interior-point methods require strictly
feasible points for both the primal and dual LPs. Under the assumption that FP �= /0,
lack of strict feasibility for the primal is equivalent to the existence of an unbounded
set of dual optimal solutions. This results in convergence problems, since current
primal-dual interior-point methods follow the central path and converge to the
analytic center of the optimal set. From a standard Farkas’ lemma argument, we
know that the Slater CQ, the existence of a strictly feasible point AT ŷ < c, holds if
and only if

the system 0 �= d ≥ 0,Ad = 0,cT d = 0 is inconsistent. (12.7)

In fact, after a permutation of columns if needed, we can partition both A,c as

A =
[
A< A=

]
, with A= size m× t, c =

(
c<

c=

)
,

so that we have

A<T ŷ < c<, A=T ŷ = c=, for some ŷ ∈ R
m, and AT y≤ c =⇒ A=T y = c=,

i.e., the constraints A=T y ≤ c= are the implicit equality constraints, with indices
given in

P := {1, . . . ,n}, P< := {1, . . . ,n− t}, P= := {n− t+ 1, . . . ,n}.
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Moreover, the indices for c= (and columns of A=) correspond to the indices in a
maximal positive solution d in (12.7); and, the nonnegative linear dependence in
(12.7) implies that there are redundant implicit equality constraints that we can
discard, yielding the smaller (A=

R )
T y = c=R with A=

R full column rank. Therefore,
an equivalent problem to (Pconic) is

(Preg) vP := max{bT y : A<T y≤ c<, A=
R

T y = c=R }. (12.8)

And this LP satisfies the RCQ; see Corollary 12.17, Item 2, below. In this case
RCQ is equivalent to the Mangasarian–Fromovitz constraint qualification (MFCQ),
i.e., there exists a feasible ŷ which satisfies the inequality constraints strictly,
A<T ŷ < c<, and the matrix A= for the equality constraints is full row rank;
see, e.g., [8, 40]. The MFCQ characterizes stability with respect to right-hand

side perturbations and is equivalent to having a compact set of dual optimal
solutions. Thus, recognizing and changing the implicit equality constraints to
equality constraints and removing redundant equality constraints provides a simple
regularization of LP.

Let fP denote the minimal face of the LP. Then note that we can rewrite the
constraint as

AT y� fP c, with fP := {z ∈R
n
+ : zi = 0, i ∈P=}.

Therefore, rewriting the constraint using the minimal face provides a regularization
for LP. This is followed by discarding redundant equality constraints to obtain
the MFCQ. This reduces the number of constraints and thus the dimension of the
dual variables. Finally, the dimension of the problem can be further reduced by
eliminating the equality constraints completely using the nullspace representation.
However, this last step can result in loss of sparsity and is usually not done.

We can similarly use a theorem of the alternative to recognize failure of strict
feasibility in the dual, i.e., the (in)consistency of the system 0 �= AT v≥ 0,bT v = 0.
This corresponds to identifying which variables xi are identically zero on the
feasible set. The regularization then simply discards these variables along with the
corresponding columns of A,c.

12.2.2 The Case of Ordinary Convex Programming, CP

We now move from LP to nonlinear convex programming. We consider the ordinary
convex program (CP)

(CP) vCP := sup{bT y : g(y)≤ 0}, (12.9)



258 Y.-L. Cheung et al.

where g(y) = (gi(y)) ∈Rn and gi : Rm→R are convex functions, for all i. (Without
loss of generality, we let the objective function f (y) = bT y be linear. This can always
be achieved by replacing a concave objective function with a new variable sup t, and
adding a new constraint − f (y) ≤ −t.) The quadratic programming case has been
well studied [28,41]. Some preprocessing results for the general CP case are known,
e.g., [15]. However, preprocessing for general CP is not as well known as for LP. In
fact (see [6]) as for LP there is a set of implicit equality constraints for CP, i.e., we
can partition the constraint index set P = {1, . . . ,n} into two sets:

P= = {i ∈P : y feasible =⇒ gi(y) = 0}, P< = P\P=. (12.10)

Therefore, as above for LP, we can rewrite the constraints in CP using the minimal
face fP to get g(y)� fP 0. However, this is not a true convex program since the new
equality constraints are not affine. However, surprisingly the corresponding feasible
set for the implicit equality constraints is convex, e.g., [6]. We include the result and
a proof for completeness.

Lemma 12.2. Let the convex program (CP) be given, and let P= be defined as in
(12.10). Then the set F= := {y : gi(y) = 0,∀i ∈P=} satisfies

F= = {y : gi(y)≤ 0,∀i ∈P=},

and thus is a convex set.

Proof. Let g=(y) = (gi(y))i∈P= and g<(y) = (gi(y))i∈P< . By definition of P<,
there exists a feasible ŷ ∈F with g<(ŷ) < 0; and, suppose that there exists ȳ with
g=(ȳ)≤ 0, and gi0(ȳ)< 0, for some i0 ∈P=. Then for small α > 0 the point yα :=
α ŷ+(1−α)ȳ ∈F and gi0(yα)< 0. This contradicts the definition of P=. �
This means that we can regularize CP by replacing the implicit equality constraints
as follows:

(CPreg) vCP := sup{bT y : g<(y)≤ 0,y ∈F=}. (12.11)

The generalized Slater CQ holds for the regularized convex program (CPreg). Let

φ(λ ) = sup
y∈F=

bT y−λ T g<(y)

denote the regularized dual functional for CP. Then strong duality holds for CP with
the regularized dual program, i.e.,

vCP = vCPD := inf
λ≥0

φ(λ )

= φ(λ ∗),
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for some (dual optimal) λ ∗ ≥ 0. The Karush–Kuhn–Tucker (KKT) optimality
conditions applied to (12.11) imply that

y∗ is optimal for CPreg

if and only if⎧
⎨

⎩

y∗ ∈F (primal feasibility)
b−∇g<(y∗)λ ∗ ∈ (F=− y∗)∗ , for some λ ∗ ≥ 0 (dual feasibility)
g<(y∗)T λ ∗ = 0 (complementary slackness)

This differs from the standard KKT conditions in that we need the polar set

(F=− y∗)∗ = cone (F=− y∗)
∗
= (D=(y∗))∗ , (12.12)

where D=(y∗) denotes the cone of directions of constancy of the implicit equality
constraints P=, e.g., [6]. Thus we need to be able to find this cone numerically;
see [71]. A backward stable algorithm for the cone of directions of constancy is
presented in [37].

Note that a convex function f is faithfully convex if f is affine on a line
segment only if it is affine on the whole line containing that segment; see [54].
Analytic convex functions are faithfully convex, as are strictly convex functions . For
faithfully convex functions, the set F= is an affine manifold, F= = {y : Vy =Vŷ},
where ŷ ∈F is feasible, and the nullspace of the matrix V gives the intersection of
the cones of directions of constancy D=. Without loss of generality, let V be chosen
full row rank. Then in this case we can rewrite the regularized problem as

(CPreg) vCP := sup{bT y : g<(y)≤ 0,Vy =Vŷ}, (12.13)

which is a convex program for which the MFCQ holds. Thus by identifying the
implicit equalities and replacing them with the linear equalities that represent the
cone of directions of constancy, we obtain the regularized convex program. If we let

gR(y) =

(
g<(y)

Vy−Vŷ

)
, then writing the constraint g(y)≤ 0 using gR and the minimal

cone fP as gR(y)� fP 0 results in the regularized CP for which MFCQ holds.

12.2.3 The Case of Semidefinite Programming, SDP

Finally, we consider our case of interest, the SDP given in (12.1). In this case, the
cone for the constraint partial order is S

n
+, a nonpolyhedral cone. Thus we have

elements of both LP and CP. Significant preprocessing is not done in current public
domain SDP codes. Theoretical results are known (see, e.g., [34]) for results on
redundant constraints using a probabilistic approach. However [10], the notion of
minimal face can be used to regularize SDP. Surprisingly, the above result for LP
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in (12.8) holds. A regularized problem for (P) for which strong duality holds has
constraints of the form A ∗y � fP C without the need for an extra polar set as in
(12.12) that is used in the CP case, i.e., changing the cone for the partial order
regularizes the problem. However, as in the LP case where we had to discard
redundant implicit equality constraints, extra work has to be done to ensure that
the RCQ holds. The details for the facial reduction now follow in Sect. 12.3. An
equivalent regularized problem is presented in Corollary 12.24, i.e., rather than
a permutation of columns needed in the LP case, we perform a rotation of the
problem constraint matrices, and then we get a similar division of the constraints
as in (12.8); and, setting the implicit equality constraints to equality results in a
regularized problem for which the RCQ holds.

12.2.3.1 Instances Where the Slater CQ Fails for SDP

Instances where SCQ fails for CP are given in [6]. It is known that the SCQ holds
generically for SDP, e.g., [3]. However, there are surprisingly many SDPs that arise
from relaxations of hard combinatorial problems where SCQ fails. In addition, there
are many instances where the structure of the problems allows for exact facial
reduction. This was shown for the quadratic assignment problem in [80] and for
the graph partitioning problem in [74]. For these two instances, the barycenter of the
feasible set is found explicitly and then used to project the problem onto the minimal
face; thus we simultaneously regularize and simplify the problems. In general, the
affine hull of the feasible solutions of the SDP are found and used to find Slater
points. This is formalized and generalized in [64,65]. In particular, SDP relaxations
that arise from problems with matrix variables that have 0,1 constraints along with
row and column constraints result in SDP relaxations where the Slater CQ fails.

Important applications occur in the facial reduction algorithm for sensor net-
work localization and molecular conformation problems given in [36]. Cliques in
the graph result in corresponding dimension reduction of the minimal face of the
problem resulting in efficient and accurate solution techniques. Another instance is
the SDP relaxation of the side chain positioning problem studied in [14]. Further
applications that exploit the failure of the Slater CQ for SDP relaxations appear in,
e.g., [1, 2, 5, 69].

12.3 Theory

We now present the theoretical tools that are needed for the facial reduction
algorithm for SDP. This includes the well-known results for strong duality, the
theorems of the alternative to identify strict feasibility, and, in addition, a stable
subproblem to apply the theorems of the alternative. Note that we use K to represent
the cone S

n
+ to emphasize that many of the results hold for more general closed

convex cones.
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12.3.1 Strong Duality for Cone Optimization

We first summarize some results on strong duality for the conic convex program
in the form (12.4). Strong duality for (12.4) means that there is a zero duality gap,
vconic

P = vconic
D , and the dual optimal value vD (12.5) is attained. However, it is easy

to construct examples where strong duality fails; see, e.g., [45,49,75] and Sect. 12.5
below.

It is well known that for a finite-dimensional LP, strong duality fails only if the
primal problem and/or its dual is infeasible. In fact, in LP both problems are feasible
and both of the optimal values are attained (and equal) if, and only if, the optimal
value of one of the problems is finite. In general (conic) convex optimization, the
situation is more complicated, since the underlying cones in the primal and dual
optimization problems need not be polyhedral. Consequently, even if a primal
problem and its dual are feasible, a nonzero duality gap and/or non-attainment
of the optimal values may ensue unless some constraint qualification holds; see,
e.g., [7, 55]. More specific examples for our cone situations appear in, e.g., [38],
[51, Sect. 3.2], and [63, Sect. 4].

Failure of strong duality is problematic, since many classes of p-d i-p algorithms
require not only that a primal-dual pair of problems possess a zero duality gap, but
also that the (generalized) Slater CQ holds for both primal and dual, i.e., that strict
feasibility holds for both problems. In [10–12], an equivalent strongly dualized

primal problem corresponding to (12.4), given by

(SP) vconic
SP := sup{〈b,y〉 : A ∗y� fP C}, (12.14)

where fP �K is the minimal face of K containing the feasible region of (12.4), is
considered. The equivalence is in the sense that the feasible set is unchanged

A ∗y�K C ⇐⇒ A ∗y� fP C.

This means that for any face F we have

fP �F �K =⇒ {A ∗y�K C ⇐⇒ A ∗y�F C} .

The Lagrangian dual of (12.14) is given by

(DSP) vconic
DSP := inf{〈C,X〉 : A (X) = b, X � f ∗P 0}. (12.15)

We note that the linearity of the constraint means that an equality set of the type in
(12.12) is not needed.

Theorem 12.3 ([10]). Suppose that the optimal value vconic
P in (12.4) is finite. Then

strong duality holds for the pair (12.14) and (12.15), or equivalently, for the pair
(12.4) and (12.15); i.e., vconic

P = vconic
SP = vconic

DSP and the dual optimal value vconic
DSP is

attained.
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12.3.2 Theorems of the Alternative

In this section, we state some theorems of the alternative for the Slater CQ of the
conic convex program (12.4), which are essential to our reduction process. We first
recall the notion of recession direction [for the dual (12.5)] and its relationship with
the minimal face of the primal feasible region.

Definition 12.4. The convex cone of recession directions for (12.5) is

RD := {D ∈ V : A (D) = 0, 〈C,D〉= 0, D�K∗ 0}. (12.16)

The cone RD consists of feasible directions for the homogeneous problem along
which the dual objective function is constant.

Lemma 12.5. Suppose that the feasible set FP �= /0 for (12.4), and let 0 �= D ∈RD.
Then the minimal face of (12.4) satisfies

fP �K∩{D}⊥�K.

Proof. We have

0 = 〈C,D〉− 〈FP,A (D)〉= 〈C−A ∗(FP),D〉.

Hence C −A ∗(FP) ⊆ {D}⊥ ∩ K, which is a face of K. It follows that fP ⊆
{D}⊥∩K. The required result now follows from the fact that fP is (by definition) a
face of K, and D is nonzero. �

Lemma 12.5 indicates that if we are able to find an element D ∈RD\{0}, then
D gives us a smaller face of K that contains F Z

P . The following lemma shows that
the existence of such a direction D is equivalent to the failure of the Slater CQ for
a feasible program (12.4). The lemma specializes [12, Theorem 7.1] and forms the
basis of our reduction process.

Lemma 12.6 ([12]). Suppose that intK �= /0 and FP �= /0. Then exactly one of the
following two systems is consistent:

1. A (D) = 0, 〈C,D〉= 0, and 0 �= D�K∗ 0 (RD\{0})
2. A ∗y≺K C (Slater CQ)

Proof. Suppose that D satisfies the system in Item 1. Then for all y ∈FP, we have
〈C−A ∗y,D〉 = 〈C,D〉 − 〈y,(A (D))〉 = 0. Hence F Z

P ⊆ K ∩ {D}⊥. But {D}⊥ ∩
intK = /0 as 0 �= D�K∗ 0. This implies that the Slater CQ (as in Item 2) fails.

Conversely, suppose that the Slater CQ in Item 2 fails. We have intK �= /0 and

0 /∈ (A ∗(Rm)−C)+ intK.



12 Preprocessing and Regularization for Degenerate Semidefinite Programs 263

Therefore, we can find D �= 0 to separate the open set (A ∗(Rm)−C)+ intK from 0.
Hence we have

〈D,Z〉 ≥ 〈D,C−A ∗y〉 ,
for all Z ∈ K and y ∈ W . This implies that D ∈ K∗ and 〈D,C〉 ≤ 〈D,A ∗y〉, for all
y ∈W . This implies that 〈A (D),y〉= 0 for all y ∈W ; hence A (D) = 0. To see that
〈C,D〉= 0, fix any ŷ ∈FP. Then 0≥ 〈D,C〉= 〈D,C−A ∗ŷ〉 ≥ 0, so 〈D,C〉= 0. �

We have an equivalent characterization for the generalized Slater CQ for the dual
problem. This can be used to extend our results to (Dconic) .

Corollary 12.7. Suppose that intK∗ �= /0 and FD �= /0. Then exactly one of the
following two systems is consistent:

1. 0 �= A ∗v�K 0, and 〈b,v〉= 0.
2. A (X) = b,X �K∗ 0 (generalized Slater CQ).

Proof. Let K be a one-one linear transformation with range R(K ) =N (A ), and
let X̂ satisfy A (X̂) = b. Then, Item 2 is consistent if, and only if, there exists û such
that X = X̂ −K û �K∗ 0. This is equivalent to K û ≺K∗ X̂ . Therefore, K , X̂ play
the roles of A ∗,C, respectively, in Lemma 12.6. Therefore, an alternative system
is K ∗(Z) = 0,0 �= Z �K 0, and 〈X̂ ,Z〉 = 0. Since N (K ∗) = R(A ∗), this is
equivalent to 0 �= Z = A ∗v�K 0, and 〈X̂ ,Z〉= 0, or 0 �= A ∗v�K 0, and 〈b,v〉= 0.

�
We can extend Lemma 12.6 to problems with additional equality constraints.

Corollary 12.8. Consider the modification of the primal (12.4) obtained by adding
equality constraints:

(PB) vPB := sup{〈b,y〉 : A ∗y�K C,By = f}, (12.17)

where B : W →W ′ is an onto linear transformation. Assume that intK �= /0 and (PB)
is feasible. Let C̄ = C−A ∗B† f . Then exactly one of the following two systems is
consistent:

1. A (D)+B∗v = 0,
〈
C̄,D

〉
= 0, 0 �= D�K∗ 0.

2. A ∗y≺K C, By = f .

Proof. Let ȳ =B† f be the particular solution (of minimum norm) of By = f . Since
B is onto, we conclude that By = f if, and only if, y = ȳ+C ∗v, for some v, where
the range of the linear transformation C ∗ is equal to the nullspace of B. We can now
substitute for y and obtain the equivalent constraint A ∗(ȳ+C ∗v)�K C; equivalently
we get A ∗C ∗v�K C−A ∗ȳ. Therefore, Item 2 holds at y = ŷ = ȳ+C ∗v̂, for some
v̂, if, and only if, A ∗C ∗v̂ ≺K C−A ∗ȳ. The result now follows immediately from
Lemma 12.6 by equating the linear transformation A ∗C ∗ with A ∗ and the right-
hand side C−A ∗ȳ with C. Then the system in Item 1 in Lemma 12.6 becomes
C (A (D)) = 0,〈(C−A ∗ȳ),D〉 = 0. The result follows since the nullspace of C is
equal to the range of B∗. �
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We can also extend Lemma 12.6 to the important case where intK = /0. This
occurs at each iteration of the facial reduction.

Corollary 12.9. Suppose that intK = /0, FP �= /0, and C ∈ span(K). Then the linear
manifold

Sy := {y ∈W : C−A ∗y ∈ span(K)}

is a subspace. Moreover, let P be a one-one linear transformation with

R(P) = (A ∗)† span(K).

Then exactly one of the following two systems is consistent:

1. P∗A (D) = 0, 〈C,D〉= 0, D ∈ span(K), and 0 �= D�K∗ 0.
2. C−A ∗y ∈ relintK.

Proof. Since C ∈ span(K) = K−K, we get that 0 ∈ Sy, i.e., Sy is a subspace.
Let T denote an onto linear transformation acting on V such that the nullspace

N (T ) = span(K)⊥, and T ∗ is a partial isometry, i.e., T ∗ = T †. Therefore, T is
one-to-one and is onto span(K). Then

A ∗y�K C ⇐⇒ A ∗y�K C and A ∗y ∈ span(K), since C ∈ K−K
⇐⇒ (A ∗P)w�K C, y = Pw, for some w, by definition of P

⇐⇒ (T A ∗P)w�T (K) T (C), y = T w, for some w, by definition of T ,

i.e., (12.1) is equivalent to

vP := sup{〈P∗b,w〉 : (T A ∗P)w�T (K) T (C)}.

The corresponding dual is

vD := inf
{〈T (C),D〉 : P∗AT ∗(D) = P∗b, D�(T (K))∗ 0

}
.

By construction, intT (K) �= /0, so we may apply Lemma 12.6. We conclude that
exactly one of the following two systems is consistent:

1. P∗AT ∗(D) = 0, 0 �= D�(T (K))∗ 0, and 〈T (C),D〉= 0.
2. (T A ∗P)w≺T (K) T (D) (Slater CQ).

The required result follows, since we can now identify T ∗(D) with D ∈ span(K),
and T (C) with C. �
Remark 12.10. Ideally, we would like to find D̂ ∈ relint

(
F Z

P

)c
= relint((C+

R(A ∗))∩K)c, since then we have found the minimal face fP = {D̂}⊥ ∩K. This is
difficult to do numerically. Instead, Lemma 12.6 compromises and finds a point in
a larger set D ∈ (N (A )∩{C}⊥∩K∗

)\{0}. This allows for the reduction of K←
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K ∩{D}⊥. Repeating to find another D is difficult without the subspace reduction
using P in Corollary 12.9. This emphasizes the importance of the minimal subspace
form reduction as an aid to the minimal cone reduction, [66].

A similar argument applies to the regularization of the dual as given in Corol-
lary 12.7. Let FD = (X̂ + N (A )) ∩ K∗, where A (X̂) = b. We note that a
compromise to finding Ẑ ∈ relint(F z

P)
c = relint((X̂ +N (A ))∩K∗)c, fD = {Ẑ}⊥∩

K∗ is finding Z ∈ (R(A ∗)∩{X̂}⊥∩K)\{0}, where 0 = 〈Z, X̂〉= 〈A ∗v, X̂〉= 〈v,b〉.

12.3.3 Stable Auxiliary Subproblem

From this section on we restrict the application of facial reduction to the SDP
in (12.1). (Note that the notion of auxiliary problem as well as Theorems 12.13
and 12.17, below, apply to the more general conic convex program (12.4).) Each
iteration of the facial reduction algorithm involves two steps. First, we apply
Lemma 12.6 and find a point D in the relative interior of the recession cone RD.
Then, we project onto the span of the conjugate face {D}⊥ ∩Sn

+ ⊇ fP. This yields
a smaller dimensional equivalent problem. The first step to find D is well suited for
interior-point algorithms if we can formulate a suitable conic optimization problem.
We now formulate and present the properties of a stable auxiliary problem for
finding D. The following is well known, e.g., [42, Theorems 10.4.1, 10.4.7].

Theorem 12.11. If the (generalized) Slater CQ holds for both primal problem
(12.1) and dual problem (12.2), then as the barrier parameter μ → 0+, the primal-
dual central path converges to a point (X̂ , ŷ, Ẑ), where Ẑ =C−A ∗ŷ, such that X̂ is
in the relative interior of the set of optimal solutions of (12.2) and (ŷ, Ẑ) is in the
relative interior of the set of optimal solutions of (12.1).

Remark 12.12. Many polynomial time algorithms for SDP assume that the Newton
search directions can be calculated accurately. However, difficulties can arise
in calculating accurate search directions if the corresponding Jacobians become
increasingly ill-conditioned. This is the case in most of the current implementations
of interior-point methods due to symmetrization and block elimination steps; see,
e.g., [19]. In addition, the ill-conditioning arises if the Jacobian of the optimality
conditions is not full rank at the optimal solution, as is the case if strict comple-
mentarity fails for the SDP. This key question is discussed further in Sect. 12.3.5,
below.

According to Theorem 12.11, if we can formulate a pair of auxiliary primal-
dual cone optimization problems, each with generalized Slater points such that the
relative interior of RD coincides with the relative interior of the optimal solution
set of one of our auxiliary problems, then we can design an interior-point algorithm
for the auxiliary primal-dual pair, making sure that the iterates of our algorithm stay
close to the central path (as they approach the optimal solution set) and generate our
desired X ∈ relintRD.
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This is precisely what we accomplish next. In the special case of K = S
n
+, this

corresponds to finding maximum rank feasible solutions for the underlying auxiliary
SDPs, since the relative interiors of the faces are characterized by their maximal rank
elements.

Define the linear transformation AC : Sn→R
m+1 by

AC(D) =

(
A (D)

〈C,D〉
)
,

This presents a homogenized form of the constraint of (12.1) and combines the two
constraints in Lemma 12.6, Item 1. Now consider the following conic optimization
problem, which we shall henceforth refer to as the auxiliary problem:

(AP)

valaux
P := min

δ ,D
δ

s.t. ‖AC(D)‖ ≤ δ
〈 1√

n I,D〉= 1

D� 0.

(12.18)

This auxiliary problem is related to the study of the distances to infeasibility in,
e.g., [46]. The Lagrangian dual of (12.18) is

sup

W�0,

⎛

⎝β
u

⎞

⎠�Q0

inf
δ ,D

δ + γ
(

1−
〈

D,
1√
n

I

〉)
−〈W,D〉−

〈(
β
u

)
,

(
δ

AC(D)

)〉

= sup

W�0,

⎛

⎝β
u

⎞

⎠�Q0

inf
δ ,D

δ (1−β )−
〈

D, A ∗
C u+ γ

1√
n

I+W

〉
+ γ, (12.19)

where Q :=

{(
β
u

)
∈ R

m+2 : ‖u‖ ≤ β
}

refers to the second-order cone. Since the

inner infimum of (12.19) is unconstrained, we get the following equivalent dual:

(DAP)

valaux
D := sup

γ,u,W
γ

s.t. A ∗
C u+ γ 1√

n I +W = 0

‖u‖ ≤ 1
W � 0.

(12.20)

A strictly feasible primal-dual point for (12.18) and (12.20) is given by
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D =
1√
n

I, δ >

∥
∥
∥∥AC

(
1√
n

I

)∥∥
∥∥ , and γ =−1, u = 0, W =

1√
n

I, (12.21)

showing that the generalized Slater CQ holds for the pair (12.18)–(12.20).
Observe that the complexity of solving (12.18) is essentially that of solving

the original dual (12.2). Recalling that if a path-following interior-point method
is applied to solve (12.18), one arrives at a point in the relative interior of the set of
optimal solutions, a primal optimal solution (δ ∗,D∗) obtained is such that D∗ is of
maximum rank.

12.3.3.1 Auxiliary Problem Information for Minimal Face of F Z
P

This section outlines some useful information that the auxiliary problem pro-
vides. Theoretically, in the case when the Slater CQ (nearly) fails for (12.1), the
auxiliary problem provides a more refined description of the feasible region, as
Theorem 12.13 shows. Computationally, the auxiliary problem gives a measure
of how close the feasible region of (12.1) is to being a subset of a face of the
cone of positive semidefinite matrices, as shown by: (i) the cosine-angle upper
bound (near orthogonality) of the feasible set with the conjugate face given in
Theorem 12.17; (ii) the cosine-angle lower bound (closeness) of the feasible set
with a proper face of S

n
+ in Proposition 12.18; and (iii) the near common block

singularity bound for all the feasible slacks obtained after an appropriate orthogonal
rotation, in Corollary 12.19.

We first illustrate the stability of the auxiliary problem and show how a primal-
dual solution can be used to obtain useful information about the original pair of
conic problems.

Theorem 12.13. The primal-dual pair of problems (12.18) and (12.20) satisfy the
generalized Slater CQ, both have optimal solutions, and their (nonnegative) optimal
values are equal. Moreover, letting (δ ∗,D∗) be an optimal solution of (12.18), the
following holds under the assumption that FP �= /0:

1. If δ ∗ = 0 and D∗ � 0, then the Slater CQ fails for (12.1) but the generalized
Slater CQ holds for (12.2). In fact, the primal minimal face and the only primal
feasible (hence optimal) solution are

fP = {0}, y∗ = (A ∗)†(C).

2. If δ ∗ = 0 and D∗ �� 0, then the Slater CQ fails for (12.1) and the minimal face
satisfies

fP �S
n
+∩{D∗}⊥�S

n
+. (12.22)

3. If δ ∗ > 0, then the Slater CQ holds for (12.1).
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Proof. A strictly feasible pair for (12.18)–(12.20) is given in (12.21). Hence by
strong duality both problems have equal optimal values and both values are attained.

1. Suppose that δ ∗ = 0 and D∗ � 0. It follows that AC(D∗) = 0 and D∗ �= 0. It
follows from Lemma 12.5 that

fP � S
n
+∩{D∗}⊥ = {0}.

Hence all feasible points for (12.1) satisfy C−A ∗y = 0. Since A is onto, we
conclude that the unique solution of this linear system is y = (A ∗)†(C).

Since A is onto, there exists X̄ such that A (X̄) = b. Thus, for every t ≥ 0,
A (X̄ + tD∗) = b, and for t large enough, X̄ + tD∗ � 0. Therefore, the generalized
Slater CQ holds for (12.2).

2. The result follows from Lemma 12.5.
3. If δ ∗ > 0, then RD = {0}, where RD was defined in (12.16). It follows from

Lemma 12.6 that the Slater CQ holds for (12.1). �
Remark 12.14. Theorem 12.13 shows that if the primal problem (12.1) is feasible,
then by definition of (AP) as in (12.18), δ ∗ = 0 if, and only if, AC has a right
singular vector D such that D � 0 and the corresponding singular value is zero,
i.e., we could replace (AP) with min{‖AC(D)‖ : ‖D‖= 1,D� 0}. Therefore, we
could solve (AP) using a basis for the nullspace of AC, e.g., using an onto linear
function NAC on S

n that satisfies R(N ∗
AC

) = N (AC), and an approach based on
maximizing the smallest eigenvalue:

δ ≈ sup
y

{
λmin(N

∗
AC

y) : trace(N ∗
AC

y) = 1,‖y‖ ≤ 1
}
,

so, in the case when δ ∗ = 0, both (AP) and (DAP) can be seen as a max-min
eigenvalue problem (subject to a bound and a linear constraint).

Finding 0 �= D� 0 that solves AC(D) = 0 is also equivalent to the SDP:

inf
D
‖D‖

s.t. AC(D) = 0, 〈I,D〉=√n, D� 0,
(12.23)

a program for which the Slater CQ generally fails. (See Item 2 of Theorem 12.13.)
This suggests that the problem of finding the recession direction 0 �= D � 0 that
certifies a failure for (12.1) to satisfy the Slater CQ may be a difficult problem.

One may detect whether the Slater CQ fails for the dual (12.2) using the auxiliary
problem (12.18) and its dual (12.20).

Proposition 12.15. Assume that (12.2) is feasible, i.e., there exists X̂ ∈ S
n
+ such

that A (X̂) = b. Then we have that X is feasible for (12.2) if and only if

X = X̂ +N ∗
A y� 0,
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where NA : Sn→R
n(n+1)/2−m is an onto linear transformation such that R(N ∗

A ) =
N (A ). Then the corresponding auxiliary problem

inf
δ ,D

δ s.t.

∥
∥
∥
∥

(
NA (D)〈

X̂ ,D
〉
)∥∥
∥
∥≤ δ , 〈I,D〉=√n, D� 0

certifies either that (12.2) satisfies the Slater CQ or that 0 is the only feasible slack
of (12.2) or detects a smaller face of Sn

+ containing FD.

The results in Proposition 12.15 follows directly from the corresponding results for
the primal problem (12.1). An alternative form of the auxiliary problem for (12.2)
can be defined using the theorem of the alternative in Corollary 12.7.

Proposition 12.16. Assume that (12.2) is feasible. The dual auxiliary problem

sup
v,λ

λ s.t. (A (I))T v = 1, bT v = 0, A ∗v� λ I (12.24)

determines if (12.2) satisfies the Slater CQ. The dual of (12.24) is given by

inf
μ,Ω

μ2 s.t. 〈I,Ω〉= 1, A (Ω)− μ1A (I)− μ2b = 0, Ω � 0, (12.25)

and the following hold under the assumption that (12.2) is feasible:

1. If (12.24) is infeasible, then (12.2) must satisfy the Slater CQ.
2. If (12.24) is feasible, then both (12.24) and (12.25) satisfy the Slater CQ.

Moreover, the Slater CQ holds for (12.2) if and only if the optimal value of
(12.24) is negative.

3. If (v∗,λ ∗) is an optimal solution of (12.24) with λ ∗ ≥ 0, then FD ⊆ S
n
+ ∩

{A ∗v∗}⊥�S
n
+.

Since X feasible for (12.2) implies that

〈A ∗v∗,X〉= (v∗)T (A (X)) = (v∗)T b = 0,

we conclude that FD ⊆ S
n
+∩{A ∗v∗}⊥�S

n
+. Therefore, if (12.2) fails the Slater

CQ, then, by solving (12.24), we can obtain a proper face of Sn
+ that contains the

feasible region FD of (12.2).

Proof. The Lagrangian of (12.24) is given by

L(v,λ ,μ ,Ω) = λ + μ1(1− (A (I)T v))+ μ2(−bT v)+ 〈Ω ,A ∗v−λ I〉
= λ (1−〈I,Ω〉)+ vT (A (Ω)− μ1A (I)− μ2b)+ μ2.

This yields the dual program (12.25).
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If (12.24) is infeasible, then we must have b �= 0 and A (I) = kb for some k ∈R.
If k > 0, then k−1I is a Slater point for (12.2). If k = 0, then A (X̂ + λ I) = b and
X̂ +λ I � 0 for any X̂ satisfying A (X̂) = b and sufficiently large λ > 0. If k < 0,
then A (2X̂+k−1I) = b for X̂ � 0 satisfying A (X̂) = b; and we have 2X̂ +k−1I � 0.

If (12.24) is feasible, i.e., if there exists v̂ such that (A (I))T v = 1 and bT v̂ = 0,
then

(v̂, λ̂ ) =
(

v̂, λ̂ = λmin(A
∗v̂)− 1

)
, (μ̂ ,Ω̂ ) =

((
1/n

0

)
,

1
n

I

)

is strictly feasible for (12.24) and (12.25), respectively.
Let (v∗,λ ∗) be an optimal solution of (12.25). If λ ∗ ≤ 0, then for any v ∈ R

m

with A ∗y � 0 and bT v = 0, v cannot be feasible for (12.24) so 〈I,A ∗v〉 ≤ 0. This
implies that A ∗v = 0. By Corollary 12.7, the Slater CQ holds for (12.2). If λ ∗ > 0,
then v∗ certifies that the Slater CQ fails for (12.2), again by Corollary 12.7. �

The next result shows that δ ∗ from (AP) is a measure of how close the Slater CQ
is to failing.

Theorem 12.17. Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(12.18). Then δ ∗ bounds how far the feasible primal slacks Z = C−A ∗y � 0 are
from orthogonality to D∗:

0≤ sup
0�Z=C−A ∗y�=0

〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C) :=

⎧
⎪⎪⎨

⎪⎪⎩

δ ∗

σmin(A )
if C ∈R(A ∗),

δ ∗

σmin(AC)
if C /∈R(A ∗).

(12.26)

Proof. Since 〈 1√
n I,D∗〉= 1, we get

‖D∗‖ ≥
〈

1√
n I,D∗

〉

‖ 1√
n I‖ =

1
1√
n‖I‖

= 1.

If C = A ∗yC for some yC ∈ R
m, then for any Z =C−A ∗y� 0,

cosθD∗,Z :=
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈A (D∗),yC− y〉
‖A ∗(yC− y)‖

≤ ‖A (D∗)‖ ‖yC− y‖
σmin(A ∗)‖yC− y‖

≤ δ ∗

σmin(A )
.
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Fig. 12.1 Minimal face;
0 < δ ∗ � 1

If C /∈ R(A ∗), then by Assumption 12.1, AC is onto so 〈D∗,C−A ∗y〉 =〈
AC(D∗),

(−y
1

)〉
implies that 0 � C−A ∗y �= 0,∀y ∈FP. Therefore the cosine

of the angle θD∗,Z between D∗ and Z =C−A ∗y� 0 is bounded by

cosθD∗,Z =
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈
AC(D

∗),
(−y

1

)〉

∥
∥
∥
∥A ∗

C

(−y
1

)∥∥
∥
∥

≤
‖AC(D

∗)‖
∥
∥
∥∥

(−y
1

)∥∥
∥∥

σmin(AC)

∥∥
∥
∥

(−y
1

)∥∥
∥
∥

=
δ ∗

σmin(AC)
.

�
Theorem 12.17 provides a lower bound for the angle and distance between feasible
slack vectors and the vector D∗ on the boundary of S

n
+. For our purposes, the

theorem is only useful when α(A ,C) is small. Given that δ ∗ = ‖AC(D∗)‖, we see
that the lower bound is independent of simple scaling of AC, though not necessarily
independent of the conditioning of AC. Thus, δ ∗ provides qualitative information
about both the conditioning of AC and the distance to infeasibility.

We now strengthen the result in Theorem 12.17 by using more information
from D∗. In applications we expect to choose the partitions of U and D∗ to satisfy
λmin(D+)>> λmax(Dε) (Fig. 12.1).

Proposition 12.18. Let (δ ∗,D∗) denote an optimal solution of the auxiliary prob-
lem (12.18), and let

D∗ =
[
P Q

]
[

D+ 0
0 Dε

]
[
P Q

]T
, (12.27)

with U =
[
P Q

]
orthogonal, and D+ � 0.

Let 0 �= Z := C−A ∗y � 0 and ZQ := QQT ZQQT . Then ZQ is the closest point
in R(Q ·QT )∩Sn

+ to Z; and, the cosine of the angle θZ,ZQ between Z and the face
R(Q ·QT )∩Sn

+ satisfies
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cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

, (12.28)

where α(A ,C) is defined in (12.26). Thus the angle between any feasible slack and
the face R(Q ·QT )∩Sn

+ cannot be too large in the sense that

inf
0 �=Z=C−A ∗y�0

cosθZ,ZQ ≥ 1−α(A ,C)
‖D∗‖

λmin(D+)
.

Moreover, the normalized distance to the face is bounded as in

‖Z−ZQ‖2 ≤ 2‖Z‖2
[

α(A ,C)
‖D∗‖

λmin(D+)

]
. (12.29)

Proof. Since Z � 0, we have QT ZQ ∈ argminW�0‖Z−QWQT‖. This shows that
ZQ := QQT ZQQT is the closest point in R(Q ·QT )∩Sn

+ to Z. The expression for
the angle in (12.28) follows using

〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖2

‖Z‖‖QT ZQ‖ =
‖QT ZQ‖
‖Z‖ . (12.30)

From Theorem 12.17, we see that 0 �= Z =C−A ∗y� 0 implies that
〈

1
‖Z‖Z,D

∗
〉
≤

α(A ,C)‖D∗‖. Therefore, the optimal value of the following optimization problem
provides a lower bound on the quantity in (12.30):

γ0 := min
Z

‖QT ZQ‖
s.t. 〈Z,D∗〉 ≤ α(A ,C)‖D∗‖

‖Z‖2 = 1, Z � 0.

(12.31)

Since 〈Z,D∗〉 = 〈
PT ZP,D+

〉
+
〈
QT ZQ,Dε

〉 ≥ 〈
PT ZP,D+

〉
whenever Z � 0, we

have

γ0 ≥ γ := min
Z

‖QT ZQ‖
s.t.

〈
PT ZP,D+

〉 ≤ α(A ,C)‖D∗‖
‖Z‖2 = 1, Z � 0.

(12.32)

It is possible to find the optimal value γ of (12.32). After the orthogonal rotation

Z =
[
P Q

][ S V
V T W

][
P Q

]T
= PSPT +PVQT +QV T PT +QWQT ,

where S ∈ S
n−n̄
+ , W ∈ S

n̄
+ and V ∈ R

(n−n̄)×n̄, (12.32) can be rewritten as
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γ = min
S,V,W

‖W‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖2+ 2‖V‖2 + ‖W‖2 = 1[
S V

V T W

]
∈ S

n
+.

(12.33)

Since

‖V‖2 ≤ ‖S‖‖W‖ (12.34)

holds whenever

[
S V

V T W

]
� 0, we have that (‖S‖+‖W‖)2 ≥ ‖S‖2+2‖V‖2+‖W‖2.

This yields

γ ≥ γ̄ := minS,V,W ‖W‖ γ̄ ≥ min
S

1−‖S‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖ s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖+ ‖W‖ ≥ 1 S � 0
S � 0, W � 0.

(12.35)

Since λmin(D+)‖S‖ ≤ 〈S,D+〉 ≤ α(A ,C)‖D∗‖, we see that the objective value of
the last optimization problem in (12.35) is bounded below by 1−α(A ,C)‖D∗‖/
λmin(D+). Now let u be a normalized eigenvector of D+ corresponding to its small-

est eigenvalue λmin(D+). Then S∗ = α(A ,C)‖D∗‖
λmin(D+)

uuT solves the last optimization

problem in (12.35), with corresponding optimal value 1− α(A ,C)‖D∗‖
λmin(D+)

.

Let β := min
{

α(A ,C)‖D∗‖
λmin(D+)

,1
}

. Then γ ≥ 1−β . Also,

[
S V

V T W

]
:=

( √
βu√

1−β e1

)( √
βu√

1−βe1

)T

=

[
βuuT

√
β (1−β )ueT

1√
β (1−β )e1uT (1−β )e1eT

1

]
∈ S

n
+.

Therefore (S,V,W) is feasible for (12.33) and attains an objective value 1−β . This
shows that γ = 1−β and proves (12.28).

The last claim (12.29) follows immediately from

‖Z−ZQ‖2 = ‖Z‖2
(

1− ‖Q
T ZQ‖2

‖Z‖2

)

≤ ‖Z‖2

[

1−
(

1−α(A ,C)
‖D∗‖

λmin(D+)

)2
]

≤ 2‖Z‖2α(A ,C)
‖D∗‖

λmin(D+)
. �
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These results are related to the extreme angles between vectors in a cone studied
in [29, 33]. Moreover, it is related to the distances to infeasibility in, e.g., [46], in
which the distance to infeasibility is shown to provide backward and forward error
bounds.

We now see that we can use the rotation U =
[
P Q

]
obtained from the

diagonalization of the optimal D∗ in the auxiliary problem (12.18) to reveal nearness
to infeasibility, as discussed in, e.g., [46]. Or, in our approach, this reveals nearness
to a facial decomposition. We use the following results to bound the size of certain
blocks of a feasible slack Z.

Corollary 12.19. Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(12.18), as in Theorem 12.17, and let

D∗ =
[
P Q

][D+ 0
0 Dε

][
P Q

]T
, (12.36)

with U =
[
P Q

]
orthogonal, and D+ � 0. Then for any feasible slack 0 �= Z =

C−A ∗y� 0, we have

tracePT ZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖, (12.37)

where α(A ,C) is defined in (12.26).

Proof. Since

〈D∗,Z〉 =
〈[

D+ 0
0 Dε

]
,

[
PT ZP PT ZQ
QT ZP QT ZQ

]〉

=
〈
D+ ,PT ZP

〉
+
〈
Dε ,QT ZQ

〉

≥ 〈
D+ ,PT ZP

〉

≥ λmin(D+) tracePT ZP,

(12.38)

the claim follows from Theorem 12.17. �
Remark 12.20. We now summarize the information available from a solution of
the auxiliary problem, with optima δ ∗ ≥ 0,D∗ �� 0. We let 0 �= Z = C−A ∗y � 0
denote a feasible slack. In particular, we emphasize the information obtained from
the rotation UT ZU using the orthogonal U that block diagonalizes D∗ and from
the closest point ZQ = QQT ZQQT . We note that replacing all feasible Z with
the projected ZQ provides a nearby problem for the backward stability argument.
Alternatively, we can view the nearby problem by projecting the data Ai ←
QQT AiQQT ,∀i, C← QQTCQQT .

1. From (12.26) in Theorem 12.17, we get a lower bound on the angle (upper bound
on the cosine of the angle):

cosθD∗,Z =
〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C).
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2. In Proposition 12.18 with orthogonal U =
[
P Q

]
, we get upper bounds on the

angle between a feasible slack and the face defined using Q ·QT and on the
normalized distance to the face:

cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

.

‖Z−ZQ‖2 ≤ 2‖Z‖2
[

α(A ,C)
‖D∗‖

λmin(D+)

]
.

3. After the rotation using the orthogonal U , the (1,1) principal block is bounded as

tracePT ZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖.

12.3.4 Rank-Revealing Rotation and Equivalent Problems

We may use the results from Theorem 12.17 and Corollary 12.19 to get two rotated
optimization problems equivalent to (12.1). The equivalent problems indicate that,
in the case when δ ∗ is sufficiently small, it is possible to reduce the dimension of
the problem and get a nearby problem that helps in the facial reduction. The two
equivalent formulations can be used to illustrate backward stability with respect to
a perturbation of the cone Sn

+.
First we need to find a suitable shift of C to allow a proper facial projection. This

is used in Theorem 12.22, below.

Lemma 12.21. Let δ ∗,D∗,U =
[
P Q

]
,D+,Dε be defined as in the hypothesis of

Corollary 12.19. Let (yQ,WQ) ∈ R
m× S

n̄ be the best least squares solution to the
equation QWQT +A ∗y =C, that is, (yQ,WQ) is the optimal solution of minimum
norm to the linear least squares problem

min
y,W

1
2
‖C− (QWQT +A ∗y)‖2. (12.39)

Let CQ := QWQQT and Cres :=C− (CQ +A ∗yQ). Then

QTCresQ = 0, and A (Cres) = 0. (12.40)

Moreover, if δ ∗ = 0, then for any feasible solution y of (12.1), we get

C−A ∗y ∈R(Q ·QT ), (12.41)

and further (y,QT (C−A ∗y)Q) is an optimal solution of (12.39), whose optimal
value is zero.
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Proof. Let Ω(y,W ) := 1
2‖C− (QWQT +A ∗y)‖2. Since

Ω(y,W ) =
1
2
‖C‖2 +

1
2
‖A ∗y‖2 +

1
2
‖W‖2 +

〈
QWQT ,A ∗y

〉

− 〈
QTC Q,W

〉−〈A (C),y〉 ,

we have (yQ,WQ) solves (12.39) if, and only if,

∇yΩ = A
(
QWQT − (C−A ∗y)

)
= 0, (12.42)

and ∇wΩ = W − [
QT (C−A ∗y)Q

]
= 0. (12.43)

Then (12.40) follows immediately by substitution.
If δ ∗ = 0, then 〈D∗,Ai〉 = 0 for i = 1, . . . ,m and 〈D∗,C〉 = 0. Hence, for any

y ∈ R
m,

〈D+ ,PT (C−A ∗y)P〉+ 〈Dε ,Q
T (C−A ∗y)Q〉= 〈D∗,C−A ∗y〉= 0.

If C−A ∗y� 0, then we must have PT (C−A ∗y)P = 0 (as D+ � 0), and so PT (C−
A ∗y)Q = 0. Hence

C−A ∗y = UUT (C−A ∗y)UUT

= U
[
P Q

]T
(C−A ∗y)

[
P Q

]
UT

= QQT (C−A ∗y)QQT ,

i.e., we conclude (12.41) holds.
The last statement now follows from substituting W = QT (C − A ∗y)Q in

(12.39). �
We can now use the rotation from Corollary 12.19 with a shift of C (to Cres+CQ =

C−A ∗yQ) to get two equivalent problems to (P). This emphasizes that when δ ∗
is small, then the auxiliary problem reveals a block structure with one principal
block and three small/negligible blocks. If δ is small, then β in the following
Theorem 12.22 is small. Then fixing β = 0 results in a nearby problem to (P) that
illustrates backward stability of the facial reduction.

Theorem 12.22. Let δ ∗,D∗,U =
[
P Q

]
,D+,Dε be defined as in the hypothesis of

Corollary 12.19, and let yQ,WQ,CQ,Cres be defined as in Lemma 12.21. Define the
scalar

β := α(A ,C)
‖D∗‖

λmin(D+)
, (12.44)
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and the convex cone Tβ ⊆ S
n
+ partitioned appropriately as in (12.36),

Tβ :=

{
Z =

[
A B

BT C

]
∈ S

n
+ : traceA≤ β traceZ

}
. (12.45)

Then we get the following two equivalent programs to (P) in (12.1):

1. Using the rotation U and the cone Tβ ,

vP = supy

{
bT y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
�Tβ 0,Z =C−A ∗y

}
; (12.46)

2. Using (yQ,WQ),

vP=bT yQ + supy

{
bT y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
�Tβ 0,Z=Cres +CQ−A ∗y

}
. (12.47)

Proof. From Corollary 12.19,

FP =

{
y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
�Tβ 0,Z =C−A ∗y

}
. (12.48)

Hence the equivalence of (12.1) with (12.46) follows.
For (12.47), first note that for any y ∈ R

m,

Z :=Cres +CQ−A ∗y =C−A ∗(y+ yQ),

so Z � 0 if and only if y+ yQ ∈FP, if and only if Z ∈ Tβ . Hence

FP = yQ +

{
y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
�Tβ 0,Z =Cres +QWQQT −A ∗y

}
, (12.49)

and (12.47) follows. �
Remark 12.23. As mentioned above, Theorem 12.22 illustrates the backward sta-
bility of the facial reduction. It is difficult to state this precisely due to the shifts
done and the changes to the constraints in the algorithm. For simplicity, we just
discuss one iteration. The original problem (P) is equivalent to the problem in
(12.46). Therefore, a facial reduction step can be applied to the original problem
or equivalently to (12.46). We then perturb this problem in (12.46) by setting β = 0.
The algorithm applied to this nearby problem with exact arithmetic will result in the
same step.
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12.3.4.1 Reduction to Two Smaller Problems

Following the results from Theorems 12.13 and 12.22, we focus on the case where
δ ∗= 0 and RD∩Sn

++ = /0. In this case we get a proper face QS
n̄
+QT �S

n
+. We obtain

two different equivalent formulations of the problem by restricting to this smaller
face. In the first case, we stay in the same dimension for the domain variable y but
decrease the constraint space and include equality constraints. In the second case,
we eliminate the equality constraints and move to a smaller dimensional space for y.
We first see that when we have found the minimal face, then we obtain an equivalent
regularized problem as was done for LP in Sect. 12.2.1.

Corollary 12.24. Suppose that the minimal face fP of (P) is found using the
orthogonal U =

[
Pfin Qfin

]
, so that fP = QfinS

r
+QT

fin, 0 < r < n. Then an equivalent
problem to (P) is

(PPQ,reg)
vP = sup bT y

s.t. QT
fin(A

∗y)Qfin � QT
finCQfin

A ∗
finy = A ∗

finyQfin ,

(12.50)

where (yQfin ,WQfin) solves the least squares problem miny,W ‖C− (A ∗y + QfinW
QT

fin)‖, and A ∗
fin : Rm → R

t is a full rank (onto) representation of the linear
transformation

y �→
[

PT
fin(A

∗y)Pfin

QT
fin(A

∗y)Pfin

]
.

Moreover, (PPQ,reg) is regularized, i.e., the RCQ holds.

Proof. The result follows immediately from Theorem 12.22, since the definition of
the minimal face implies that there exists a feasible ŷ which satisfies the constraints
in (12.50). The new equality constraint is constructed to be full rank and not change
the feasible set. �

Alternatively, we now reduce (12.1) to an equivalent problem over a spectrahe-
dron in a lower dimension using the spectral decomposition of D∗.

Proposition 12.25. Let the notation and hypotheses in Theorem 12.22 hold with

δ ∗ = 0 and D∗ =
[
P Q

][D+ 0
0 0

][
PT

QT

]
, where

[
P Q

]
is orthogonal, Q ∈ R

n×n̄ and

D+ � 0. Then

vP = sup
{

bT y : QT (C−A ∗y)Q� 0,
PT (A ∗y)P = PT (A ∗yQ)P,
QT (A ∗y)P = QT (A ∗yQ)P } .

(12.51)
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Moreover:

1. If R(Q ·QT )∩R(A ∗) = {0}, then for any y1,y2 ∈FP, bT y1 = bT y2 = vP.
2. If R(Q ·QT )∩R(A ∗) �= {0}, and if, for some m̄ > 0, P : Rm̄ → R

m is an
injective linear map such that R(A ∗P) = R(A ∗)∩R(Q ·QT ), then we have

vP = bT yQ + sup
v

{
(P∗b)T v : WQ−QT (A ∗Pv)Q� 0

}
. (12.52)

And, if v∗ is an optimal solution of (12.52), then y∗ = yQ +Pv∗ is an optimal
solution of (12.1).

Proof. Since δ ∗ = 0, from Lemma 12.21 we have that C = CQ + A ∗yQ,CQ =
QWQQT , for some yQ ∈ R

m and WQ ∈ S
n̄. Hence by (12.48),

FP =
{

y ∈ R
m : QT (C−A ∗y)Q� 0,PT (C−A ∗y)P = 0,QT (C−A ∗y)P = 0

}

=
{

y ∈ R
m : QT (C−A ∗y)Q� 0,PT (A ∗(y− yQ))P = 0,QT (A ∗(y− yQ))P = 0

}
,

(12.53)

and (12.51) follows:

1. Since C−A ∗y ∈ R(Q ·QT ),∀y ∈ FP, we get A ∗(y2 − y1) = (C−A ∗y1)−
(C−A ∗y2) ∈ R(Q ·QT )∩R(A ∗) = {0}. Given that A is onto, we get b =
A (X̂), for some X̂ ∈ S

n, and

bT (y2− y1) =
〈
X̂ ,A ∗(y2− y1)

〉
= 0.

2. From (12.53),

FP = yQ +
{

y : WQ−QT (A ∗y)Q� 0,PT (A ∗y)P = 0,QT (A ∗y)P = 0
}

= yQ +
{

y : WQ−QT (A ∗y)Q� 0,A ∗y ∈R(Q ·QT )
}

= yQ +
{
Pv : WQ−QT (A ∗Pv)Q� 0

}
,

the last equality follows from the choice of P . Therefore, (12.52) follows, and
if v∗ is an optimal solution of (12.52), then yQ +Pv∗ is an optimal solution of
(12.1).

�
Next we establish the existence of the operator P mentioned in Proposi-

tion 12.25.

Proposition 12.26. For any n×n orthogonal matrix U =
[
P Q

]
and any surjective

linear operator A : Sn→R
m with m̄ := dim(R(A ∗)∩R(Q ·QT ))> 0, there exists

a one-one linear transformation P : Rm̄→R
m that satisfies
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R(A ∗P) = R(Q ·QT )∩R(A ∗), (12.54)

R(P) = N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q)

. (12.55)

Moreover, ¯A : Sn̄→R
m̄ is defined by

¯A ∗(·) := QT (A ∗P(·))Q

is onto.

Proof. Recall that for any matrix X ∈ S
n

X =UUT XUUT = PPT XPPT +PPT XQQT +QQT XPPT +QQT XQQT .

Moreover, PT Q = 0. Therefore, X ∈R(Q ·QT ) implies PT XP = 0 and PT XQ = 0.
Conversely, PT XP = 0 and PT XQ = 0 implies X = QQT XQQT . Therefore X ∈
R(Q ·QT ) if, and only if, PT XP = 0 and PT XQ = 0.

For any y ∈ R
m, A ∗y ∈R(Q ·QT ) if, and only if,

m

∑
i=1

(PT AiP)yi = 0 and
m

∑
i=1

(PT AiQ)yi = 0,

which holds if, and only if, y ∈ span{β}, where β := {y1, . . . ,ym̄} is a basis of the
linear subspace

{

y :
m

∑
i=1

(PT AiP)yi = 0

}

∩
{

y :
m

∑
i=1

(PT AiQ)yi = 0

}

= N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q)

.

Now define P : Rm̄→ R
m by

Pv =
m̄

∑
i=1

viyi for λ ∈ R
m̄.

Then, by definition of P , we have

R(A ∗P) = R(Q ·QT )∩R(A ∗)

and R(P) = N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q)

.

The onto property of ¯A follows from (12.54) and the fact that both P ,A ∗ are
one-one. Note that if ¯A ∗v = 0, noting that A ∗Pv = QWQT for some W ∈ S

n̄ by
(12.54), we have that w = 0 so A ∗Pv = 0. Since both A ∗ and P injective, we
have that v = 0. �
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12.3.5 LP, SDP, and the Role of Strict Complementarity

The (near) loss of the Slater CQ results in both theoretical and numerical difficulties,
e.g., [46]. In addition, both theoretical and numerical difficulties arise from the loss
of strict complementarity, [70]. The connection between strong duality, the Slater
CQ, and strict complementarity is seen through the notion of complementarity
partitions [66]. We now see that this plays a key role in the stability and in
determining the number of steps k for the facial reduction. In particular, we see
that k = 1 is characterized by strict complementary slackness and therefore results
in a stable formulation.

Definition 12.27. The pair of faces F1 � K,F2 � K∗ form a complementarity
partition of K,K∗ if F1 ⊆ (F2)

c. (Equivalently, F2 ⊆ (F1)
c.) The partition is proper

if both F1 and F2 are proper faces. The partition is strict if (F1)
c = F2 or (F2)

c = F1.

We now see the importance of this notion for the facial reduction.

Theorem 12.28. Let δ ∗ = 0,D∗ � 0 be the optimum of (AP) with dual optimum
(γ∗,u∗,W ∗). Then the following are equivalent:

1. If D∗ =
[
P Q

][D+ 0
0 0

][
PT

QT

]
is a maximal rank element of RD, where

[
P Q

]
is

orthogonal, Q ∈ R
n×n̄ and D+ � 0, then the reduced problem in (12.52) using

D∗ satisfies the Slater CQ; only one step of facial reduction is needed.
2. Strict complementarity holds for (AP); that is, the primal-dual optimal solution

pair (0,D∗),(0,u∗,W ∗) for (12.18) and (12.20) satisfy rank(D∗)+ rank(W ∗) = n.
3. The faces of Sn

+ defined by

f 0
aux,P := face({D ∈ S

n : A (D) = 0, 〈C,D〉= 0, D� 0})
f 0
aux,D := face

({
W ∈ S

n : W = A ∗
C z� 0, for some z ∈ R

m̄+1})

form a strict complementarity partition of Sn
+.

Proof. (1)⇐⇒ (2): If (12.52) satisfies the Slater CQ, then there exists ṽ ∈ R
m̄ such

that WQ−Ā ∗ṽ� 0. This implies that Z̃ := Q(WQ−Ā ∗ṽ)QT is of rank n̄. Moreover,

0� Z̃ = QWQQ−A ∗P ṽ =C−A ∗(yQ +P ṽ) = A ∗
C

(−(yQ +P ṽ)
1

)
.

Hence, letting

ũ =

(
yQ +P ṽ
−1

)

∥
∥∥
∥

(
yQ +P ṽ
−1

)∥∥∥
∥

and W̃ =
1

∥
∥∥
∥

(
yQ +P ṽ
−1

)∥∥∥
∥

Z̃,
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we have that (0, ũ,W̃ ) is an optimal solution of (12.20). Since rank(D∗)+rank(W̃ )=
(n− n̄)+ n̄ = n, we get that strict complementarity holds.

Conversely, suppose that strict complementarity holds for (AP), and let D∗ be
a maximum rank optimal solution as described in the hypothesis of Item 1. Then
there exists an optimal solution (0,u∗,W ∗) for (12.20) such that rank(W ∗) = n̄. By
complementary slackness, 0 = 〈D∗,W ∗〉 = 〈

D+,PTW ∗P
〉
, so W ∗ ∈R(Q ·QT ) and

QTW ∗Q� 0. Let u∗ =
(

ỹ
−α̃

)
, so

W ∗ = α̃C−A ∗ỹ = α̃CQ−A ∗(ỹ− α̃yQ).

Since W ∗,CQ ∈R(Q ·QT ) implies that A ∗(ỹ− α̃yQ) = A ∗P ṽ for some ṽ ∈ R
m̄,

we get

0≺ QTW ∗Q = α̃C̄− ¯A ∗ṽ.

Without loss of generality, we may assume that α̃ = ±1 or 0. If α̃ = 1, then C̄−
¯A ∗ṽ� 0 is a Slater point for (12.52). Consider the remaining two cases. Since (12.1)

is assumed to be feasible, the equivalent program (12.52) is also feasible so there
exists v̂ such that C̄− ¯A ∗v̂� 0. If α̃ = 0, then C̄− ¯A ∗(v̂+ ṽ)� 0. If α̃ =−1, then
C̄− ¯A ∗(2v̂+ ṽ)� 0. Hence (12.52) satisfies the Slater CQ.

(2)⇐⇒ (3): Notice that f 0
aux,P and f 0

aux,D are the minimal faces of Sn
+ containing

the optimal slacks of (12.18) and (12.20), respectively, and that f 0
aux,P, f 0

aux,D form a
complementarity partition of Sn

+ = (Sn
+)
∗. The complementarity partition is strict if

and only if there exist primal-dual optimal slacks D∗ and W ∗ such that rank(D∗)+
rank(W ∗) = n. Hence (2) and (3) are equivalent. �

In the special case where the Slater CQ fails and (12.1) is a linear program (and,
more generally, the special case of optimizing over an arbitrary polyhedral cone;
see, e.g., [56, 57, 78, 79]), we see that one single iteration of facial reduction yields
a reduced problem that satisfies the Slater CQ.

Corollary 12.29. Assume that the optimal value of (AP) equals zero, with D∗ being
a maximum rank optimal solution of (AP). If Ai = Diag(ai) for some ai ∈ R

n, for
i = 1, . . . ,m, and C = Diag(c), for some c ∈ R

n, then the reduced problem (12.52)
satisfies the Slater CQ.

Proof. In this diagonal case, the SDP is equivalent to an LP. The Goldman–Tucker
theorem [25] implies that there exists a required optimal primal-dual pair for (12.18)
and (12.20) that satisfies strict complementarity, so Item 2 in Theorem 12.28 holds.
By Theorem 12.28, the reduced problem (12.52) satisfies the Slater CQ. �
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12.4 Facial Reduction

We now study facial reduction for (P) and its sensitivity analysis.

12.4.1 Two Types

We first outline two algorithms for facial reduction that find the minimal face fP

of (P). Both are based on solving the auxiliary problem and applying Lemma 12.6.
The first algorithm repeatedly finds a face F containing the minimal face and then
projects the problem into F −F , thus reducing both the size of the constraints and
the dimension of the variables till finally obtaining the Slater CQ. The second
algorithm also repeatedly finds F ; but then it identifies the implicit equality
constraints till eventually obtaining MFCQ.

12.4.1.1 Dimension Reduction and Regularization for the Slater CQ

Suppose that Slater’s CQ fails for our given input A : Sn → R
m, C ∈ S

n, i.e., the
minimal face fP �F := S

n
+. Our procedure consists of a finite number of repetitions

of the following two steps that begin with k = n.

1. We first identify 0 �= D ∈ ( fP)
c using the auxiliary problem (12.18). This means

that fP �F← (
S

k
+∩{D}⊥

)
and the interior of this new face F is empty.

2. We then project the problem (P) into span(F). Thus we reduce the dimension
of the variables and size of the constraints of our problem; the new cone satisfies
intF �= /0. We set k← dim(F).1

Therefore, in the case that intF = /0, we need to obtain an equivalent problem
to (P) in the subspace span(F) = F −F . One essential step is finding a subspace
intersection. We can apply the algorithm in, e.g., [26, Thm 12.4.2]. In particular, by
abuse of notation, let H1,H2 be matrices with orthonormal columns representing the
orthonormal bases of the subspaces H1,H2, respectively. Then we need only find
a singular value decomposition HT

1 H2 = UΣV T and find which singular vectors
correspond to singular values Σii, i = 1, . . . ,r, (close to) 1. Then both H1U(:,1 : r)
and H2V (:,1 : r) provide matrices whose ranges yield the intersection. The cone Sn

+

possesses a “self-replicating” structure. Therefore we choose an isometry I so that
I (Sn

+∩ (F−F)) is a smaller dimensional PSD cone Sr
+.

Algorithm 12.1 outlines one iteration of facial reduction. The output returns an
equivalent problem ( ¯A , b̄,C̄) on a smaller face of Sn

+ that contains the set of feasible

1Note that for numerical stability and well-posedness, it is essential that there exists Lagrange
multipliers and that intF �= /0. Regularization involves finding both a minimal face and a minimal
subspace; see [66].
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Algorithm 12.1: One iteration of facial reduction
1 Input: A : Sn→ R

m, b ∈ R
m, C ∈ S

n;
2 Obtain an optimal solution (δ ∗,D∗) of (AP)
3 if δ ∗ > 0, then
4 STOP; Slater CQ holds for (A ,b,C).
5 else
6 if D∗ � 0, then
7 STOP; generalized Slater CQ holds for (A ,b,C) (see Theorem 12.13);
8 else

9 Obtain eigenvalue decomposition D∗ =
[
P Q

][D+ 0
0 0

][
PT

QT

]
as described in

Proposition 12.25, with Q ∈ R
n×n̄;

10 if R(Q ·QT )∩R(A ∗) = {0}, then
11 STOP; all feasible solutions of supy{bT y : C−A ∗y� 0} are optimal.
12 else
13 find m̄, P : Rm̄→ R

m satisfying the conditions in Proposition 12.25;
14 solve (12.39) for (yQ,WQ);
15 C̄←WQ ;
16 b̄←P∗b;
17 Ā ∗ ← QT (A ∗P(·))Q;
18 Output: ¯A : Sn̄→ R

m̄, b̄ ∈ R
m̄, C̄ ∈ S

n̄; yQ ∈R
m, P : Rm̄→ R

m;
19 end if
20 end if
21 end if

slacks F Z
P ; and, we also obtain the linear transformation P and point yQ, which

are needed for recovering an optimal solution of the original problem (P). (See
Proposition 12.25.)

Two numerical aspects arising in Algorithm 12.1 need to be considered. The first
issue concerns the determination of rank(D∗). In practice, the spectral decomposi-
tion of D∗ would be of the form

D∗ =
[
P Q

]
[

D+ 0
0 Dε

][
PT

QT

]
with Dε ≈ 0, instead of D∗ =

[
P Q

]
[

D+ 0
0 0

][
PT

QT

]
.

We need to decide which of the eigenvalues of D∗ are small enough so that they
can be safely rounded down to zero. This is important for the determination of Q,
which gives the smaller face R(Q ·QT )∩Sn

+ containing the feasible region F Z
P . The

partitioning of D∗ can be done by using similar techniques as in the determination of
numerical rank. Assuming that λ1(D∗)≥ λ2(D∗)≥ ·· · ≥ λn(D∗)≥ 0, the numerical
rank rank(D∗,ε) of D∗ with respect to a zero tolerance ε > 0 is defined via

λrank(D∗,ε)(D
∗)> ε ≥ λrank(D∗,ε)+1(D

∗).



12 Preprocessing and Regularization for Degenerate Semidefinite Programs 285

In implementing Algorithm 12.1, to determine the partitioning of D∗, we use
the numerical rank with respect to ε‖D∗‖√

n
where ε ∈ (0,1) is fixed: take r =

rank
(

D∗, ε‖D∗‖√
n

)
,

D+ = Diag(λ1(D
∗), . . . ,λr(D

∗)) , Dε = Diag(λr+1(D
∗), . . . ,λn(D

∗)) ,

and partition
[
P Q

]
accordingly. Then

λmin(D+)>
ε‖D∗‖√

n
≥ λmax(Dε) =⇒ ‖Dε‖ ≤ ε‖D∗‖.

Also,

‖Dε‖2

‖D+‖2 =
‖Dε‖2

‖D∗‖2−‖Dε‖2 ≤
ε2‖D∗‖2

(1− ε2)‖D∗‖2 =
1

ε−2− 1
(12.56)

that is, Dε is negligible comparing with D+.
The second issue is the computation of intersection of subspaces, R(Q ·

QT )∩R(A ∗) (and in particular, finding one-one map P such that R(A ∗P) =
R(Q ·QT ) ∩R(A ∗)). This can be done using the following result on subspace
intersection.

Theorem 12.30 ([26], Sect. 12.4.3). Given Q ∈ R
n×n̄ of full rank and onto linear

map A : Sn→R
m, there exist U sp

1 , . . . ,U sp
min{m,n̄2},V

sp
1 , . . . ,V sp

min{m,n̄2} ∈ S
n such that

σ sp
1 :=

〈
U sp

1 ,V sp
1

〉
= max

{〈U,V 〉 : ‖U‖= 1 = ‖V‖, U ∈R(Q ·QT ), V ∈R(A ∗)
}
,

σ sp
k :=

〈
U sp

k ,V sp
k

〉
= max

{〈U,V 〉 : ‖U‖= 1 = ‖V‖, U ∈R(Q ·QT ), V ∈R(A ∗),〈
U,U sp

i

〉
= 0 =

〈
V,V sp

i

〉
, ∀ i = 1, . . . ,k−1

}
,

(12.57)
for k = 2, . . . ,min

{
m, n̄2

}
, and 1≥ σ sp

1 ≥ σ sp
2 ≥ ·· · ≥ σ sp

min{m,n̄2} ≥ 0. Suppose that

σ sp
1 = · · ·= σ sp

m̄ = 1 > σ sp
m̄+1 ≥ ·· · ≥ σ sp

min{n̄,m}, (12.58)

then

R(Q ·QT )∩R(A ∗) = span
(
U sp

1 , . . . ,U sp
m̄

)
= span

(
V sp

1 , . . . ,V sp
m̄

)
, (12.59)

and P : Rm̄→ R
m defined by Pv = ∑m̄

i=1 viy
sp
i for v ∈ R

m̄, where A ∗ysp
i =V sp

i for
i = 1, . . . , m̄, is one-one linear and satisfies R(A ∗P) = R(Q ·QT )∩R(A ∗).

In practice, we do not get σ sp
i = 1 (for i = 1, . . . , m̄) exactly. For a fixed tolerance

εsp ≥ 0, suppose that

1≥ σ sp
1 ≥ ·· · ≥ σ sp

m̄ ≥ 1− εsp > σ sp
m̄+1 ≥ ·· · ≥ σ sp

min{n̄,m} ≥ 0. (12.60)
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Then we would take the approximation

R(Q ·QT )∩R(A ∗)≈ span
(
U sp

1 , . . . ,U sp
m̄

)≈ span
(
V sp

1 , . . . ,V sp
m̄

)
. (12.61)

Observe that with the chosen tolerance εsp, we have that the cosines of the principal
angles between R(Q · QT ) and span

(
V sp

1 , . . . ,V sp
m̄

)
is no less than 1− εsp; in

particular, ‖U sp
k −V sp

k ‖2 ≤ 2εsp and ‖QTV sp
k Q‖ ≥ σ sp

k ≥ 1− εsp for k = 1, . . . , m̄.

Remark 12.31. Using V sp
1 , . . . ,V sp

min{m,n̄2} from Theorem 12.30, we may replace

A1, . . . ,Am by V sp
1 , . . . ,V sp

m (which may require extending V sp
1 , . . . ,V sp

min{m,n̄2} to a

basis of R(A ∗), if m > n̄2).
If the subspace intersection is exact (as in (12.58) and (12.59) in Theorem 12.30),

then R(Q ·QT ) ∩R(A ∗) = span(A1, . . . ,Am̄) would hold. If the intersection is
inexact (as in (12.60) and (12.61)), then we may replace A by ˘A : Sn → R

m,
defined by

Ăi =

{
U sp

i if i = 1, . . . , m̄,

V sp
i if i = m̄+ 1, . . . ,m,

which is a perturbation of A with ‖A ∗− ˘A ∗‖F =
√

∑m̄
i=1 ‖U sp

i −V sp
i ‖2 ≤√2m̄εsp.

Then R(Q ·QT )∩R( ˘A ∗) = span(Ă1, . . . , Ăm̄) because Ăi ∈R(Q ·QT )∩R( ˘A ∗) for
i = 1, . . . , m̄ and

max
U,V

{〈U,V 〉 : U ∈R(Q ·QT ),‖U‖= 1,V ∈R( ˘A ∗),‖V‖= 1,

〈
U,U sp

j

〉
= 0 =

〈
V,U sp

j

〉
∀ j = 1, . . . , m̄,

}

≤max
U,y

{〈

U,
m̄

∑
i=1

y jU
sp
j +

m

∑
i=m̄+1

y jV
sp
j

〉

: U ∈R(Q ·QT ),‖U‖= 1,‖y‖= 1,

〈
U,U sp

j

〉
= 0 ∀ j = 1, . . . , m̄,

}

= max
U,y

{〈

U,
m

∑
i=m̄+1

y jV
sp
j

〉

: U ∈R(Q ·QT ),‖U‖= 1,‖y‖= 1,

〈
U,U sp

j

〉
= 0 ∀ j = 1, . . . , m̄,

}

= σ sp
m̄+1 < 1− εsp < 1.

To increase the robustness of the computation of R(Q ·QT )∩R(A ∗) in deciding
whether σ sp

i is 1 or not, we may follow similar treatment in [18] where one decides
which singular values are zero by checking the ratios between successive small
singular values.
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Algorithm 12.2: Preprocessing for (AP)

1 Input: A1, . . .,Am,Am+1 :=C ∈ S
n;

2 Output: δ ∗, P ∈ R
n×(n−n̄), D+ ∈ S

n−n̄ satisfying D+ � 0; (so D∗ = PD+PT );
3 if one of the Ai (i ∈ {1, . . . ,m+1}) is definite then
4 STOP; (12.62) does not have a solution.
5 else

6 if some of the A =
[
U Ũ

][D̂ 0
0 0

][
UT

ŨT

]
∈ {Ai : i = 1, . . . ,m+1} satisfies D̂� 0, then

7 reduce the size using Ai← ŨT AiŨ ,∀i;
8 else
9 if ∃0 �=V ∈ R

n×r such that AiV = 0 for all i = 1, . . .,m+1, then
10 We get 〈Ai,VV T 〉= 0 ∀ i = 1, . . .,m+1 ;
11 δ ∗ = 0,D∗ =VV T solves (AP); STOP;
12 else
13 Use an SDP solver to solve (AP).
14 end if
15 end if
16 end if

12.4.1.2 Implicit Equality Constraints and Regularization for MFCQ

The second algorithm for facial reduction involves repeated use of two steps
again:

1. We repeat step 1 in Sect. 12.4.1.1 and use (AP) to find the face F .
2. We then find the implicit equality constraints and ensure that they are linearly

independent, see Corollary 12.24 and Proposition 12.25.

12.4.1.3 Preprocessing for the Auxiliary Problem

We can take advantage of the fact that eigenvalue-eigenvector calculations are
efficient and accurate to obtain a more accurate optimal solution (δ ∗,D∗) of (AP),
i.e., to decide whether the linear system

〈Ai,D〉= 0 ∀ i = 1, . . . ,m+ 1 (where Am+1 :=C), 0 �= D� 0 (12.62)

has a solution, we can use Algorithm 12.2 as a preprocessor for Algorithm 12.1.
More precisely, Algorithm 12.2 tries to find a solution D∗ satisfying (12.62)

without using an SDP solver. It attempts to find a vector v in the nullspace of all
the Ai, and then sets D∗ = vvT . In addition, any semidefinite Ai allows a reduction
to a smaller dimensional space.
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12.4.2 Backward Stability of One Iteration of Facial Reduction

We now provide the details for one iteration of the main algorithm, see Theorem
12.38. Algorithm 12.1 involves many nontrivial subroutines, each of which would
introduce some numerical errors. First we need to obtain an optimal solution
(δ ∗,D∗) of (AP); in practice we can only get an approximate optimal solution, as
δ ∗ is never exactly zero, and we decide whether the true value of δ ∗ is zero when
the computed value is only close to zero. Second we need to obtain the eigenvalue
decomposition of D∗. There comes the issue of determining which of the nearly
zero eigenvalues are indeed zero. (Since (AP) is not solved exactly, the approximate
solution D∗ would have eigenvalues that are positive but close to zero.) Finally,
the subspace intersection R(Q ·QT )∩R(A ∗) (for finding m̄ and P) can only be
computed approximately via a singular value decomposition, because in practice we
would take singular vectors corresponding to singular values that are approximately
(but not exactly) 1.

It is important that Algorithm 12.1 is robust against such numerical issues arising
from the subroutines. We show that Algorithm 12.1 is backward stable (with respect
to these three categories of numerical errors), i.e., for any given input (A ,b,c), there
exists ( ˜A , b̃,C̃)≈ (A ,b,C) such that the computed result of Algorithm 12.1 applied
on (A ,b,C) is equal to the exact result of the same algorithm applied on ( ˜A , b̃,C̃)
(when (AP) is solved exactly and the subspace intersection is determined exactly).

We first show that ‖Cres‖ is relatively small, given a small α(A ,C).

Lemma 12.32. Let yQ,CQ,Cres be defined as in Lemma 12.21. Then the norm of
Cres is small in the sense that

‖Cres‖ ≤
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y�0
‖Z‖

)
. (12.63)

Proof. By optimality, for any y ∈Fp,

‖Cres‖ ≤min
W
‖C−A ∗y−QWQT‖= ‖Z−QQT ZQQT ‖,

where Z :=C−A ∗y. Therefore (12.63) follows from Proposition 12.18. �
The following technical results shows the relationship between the quantity

min‖y‖=1 ‖A ∗y‖2−‖QT (A ∗y)Q‖2 and the cosine of the smallest principal angle
between R(A ∗) and R(Q ·QT ), defined in (12.57).

Lemma 12.33. Let Q ∈ R
n×n̄ satisfy QT Q = In̄. Then

τ := min
‖y‖=1

{‖A ∗y‖2−‖QT (A ∗y)Q‖2}≥ (
1− (σ sp

1 )2)σmin(A
∗)2 ≥ 0, (12.64)

where σ sp
1 is defined in (12.57). Moreover,

τ = 0 ⇐⇒ σ sp
1 = 1 ⇐⇒ R(Q ·QT )∩R(A ∗) �= {0} . (12.65)
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Proof. By definition of σ sp
1 ,

max
V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V 〉 : ‖V‖= 1,V ∈R(A ∗)

}

≥ max
‖U‖=1,U∈R(Q·QT )

〈
U,V sp

1

〉 ≥ 〈
U sp

1 ,V sp
1

〉
= σ sp

1

≥ max
V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V 〉 : ‖V‖= 1,V ∈R(A ∗)

}
,

so equality holds throughout, implying that

σ sp
1 = max

V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V〉 : ‖V‖= 1,V ∈R(A ∗)

}

= max
y

{
max
‖W‖=1

〈
QWQT ,A ∗y

〉
: ‖A ∗y‖= 1

}

= max
y

{‖QT (A ∗y)Q‖ : ‖A ∗y‖= 1
}
.

Obviously, ‖A ∗y‖= 1 implies that the orthogonal projection QQT (A ∗y)QQT onto
R(Q ·QT ) is of norm no larger than one:

‖QT (A ∗y)Q‖= ‖QQT (A ∗y)QQT‖ ≤ ‖A ∗y‖= 1. (12.66)

Hence σ sp
1 ∈ [0,1]. In addition, equality holds in (12.66) if and only if A ∗y∈R(Q ·

QT ), hence

σ sp
1 = 1 ⇐⇒ R(A ∗)∩R(Q ·QT ) �= {0} . (12.67)

Whenever ‖y‖= 1, ‖A ∗y‖ ≥ σmin(A
∗). Hence

τ = min
y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖y‖= 1
}

= σmin(A
∗)2 min

y

{
‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖y‖= 1

σmin(A ∗)

}

≥ σmin(A
∗)2 min

y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖A ∗y‖ ≥ 1
}

= σmin(A
∗)2 min

y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖A ∗y‖= 1
}

= σmin(A
∗)2

(
1−max

y

{‖QT (A ∗y)Q‖2 : ‖A ∗y‖= 1
}
)

= σmin(A
∗)2

(
1− (

σ sp
1

)2
)
.
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This together with σ sp
1 ∈ [0,1] proves (12.64). If τ = 0, then σ sp

1 = 1 since
σmin(A

∗) > 0. Then (12.67) implies that R(A ∗)∩R(Q ·QT ) �= {0}. Conversely,
if R(A ∗)∩R(Q ·QT ) �= {0}, then there exists ŷ such that ‖ŷ‖ = 1 and A ∗ŷ ∈
R(Q ·QT ). This implies that

0≤ τ ≤ ‖A ∗ŷ‖2−‖QT (A ∗ŷ)Q‖2 = 0,

so τ = 0. This together with (12.67) proves the second claim (12.65). �
Next we prove that two classes of matrices are positive semidefinite and show

their eigenvalue bounds, which will be useful in the backward stability result.

Lemma 12.34. Suppose A1, . . . ,Am,D∗ ∈ S
n. Then the matrix M̂ ∈ S

m defined by

M̂i j = 〈Ai,D
∗〉〈A j,D

∗〉 (i, j = 1, . . . ,m)

is positive semidefinite. Moreover, the largest eigenvalue λmax(M̂)≤∑m
i=1 〈Ai,D∗〉2.

Proof. For any y ∈ R
m,

yT M̂y =
m

∑
i, j=1
〈Ai,D

∗〉〈A j,D
∗〉yiy j =

(
m

∑
i=1
〈Ai,D

∗〉yi

)2

.

Hence M̂ is positive semidefinite. Moreover, by the Cauchy Schwarz inequality
we have

yT M̂y =

(
m

∑
i=1
〈Ai,D

∗〉yi

)2

≤
(

m

∑
i=1
〈Ai,D

∗〉2
)

‖y‖2
2.

Hence λmax(M̂)≤ ∑m
i=1 〈Ai,D∗〉2. �

Lemma 12.35. Suppose A1, . . . ,Am ∈ S
n and Q ∈ R

n×n̄ has orthonormal columns.
Then the matrix M ∈ S

m defined by

Mi j =
〈
Ai,A j

〉− 〈
QT AiQ,QT A jQ

〉
, i, j = 1, . . . ,m,

is positive semidefinite, with the smallest eigenvalue λmin(M) ≥ τ , where τ is
defined in (12.64).

Proof. For any y ∈ R
m, we have

yT My =
m

∑
i, j=1

〈
yiAi,y jA j

〉− 〈
yiQ

T AiQ,y jQ
T A jQ

〉

= ‖A ∗y‖2−∥
∥QT (A ∗y)Q

∥
∥2 ≥ τ‖y‖2.

Hence M ∈ S
m
+ and λmin(M)≥ τ . �
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The following lemma shows that when nonnegative δ ∗ is approximately zero and
D∗ = PD+PT +QDε QT ≈ PD+PT with D+ � 0, under a mild assumption (12.70) it
is possible to find a linear operator ˆA “near” A such that we can take the following
approximation:

δ ∗ ← 0, D∗ ← PD+PT , A ∗ ← ˆA ∗,

and we maintain that ˆA (PD+PT ) = 0 and R(Q ·QT )∩R(A ∗) = R(Q ·QT )∩
R( ˆA ∗).

Lemma 12.36. Let A : Sn→R
m : X �→ (〈Ai,X〉) be onto. Let D∗=

[
P Q

]
[

D+ 0
0 Dε

]

[
PT

QT

]
∈ S

n
+, where

[
P Q

] ∈ R
n×n is an orthogonal matrix, D+ � 0 and Dε � 0.

Suppose that

R(Q ·QT )∩R(A ∗) = span(A1, . . . ,Am̄), (12.68)

for some m̄ ∈ {1, . . . ,m}. Then

min
‖y‖=1,y∈Rm−m̄

⎧
⎨

⎩

∥
∥
∥∥
∥

m−m̄

∑
i=1

yiAm̄+i

∥
∥
∥∥
∥

2

−
∥
∥
∥∥
∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥
∥
∥∥
∥

2
⎫
⎬

⎭
> 0. (12.69)

Assume that

min
‖y‖=1,y∈Rm−m̄

⎧
⎨

⎩

∥
∥
∥
∥∥

m−m̄

∑
i=1

yiAm̄+i

∥
∥
∥
∥∥

2

−
∥
∥
∥
∥∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥
∥
∥
∥∥

2
⎫
⎬

⎭

>
2

‖D+‖2

(

‖A (D∗)‖2 + ‖Dε‖2
m

∑
i=m̄+1

‖Ai‖2

)

.

(12.70)

Define Ãi to be the projection of Ai on
{

PD+PT
}⊥

:

Ãi := Ai−
〈
Ai,PD+PT

〉

〈D+,D+〉 PD+PT , ∀ i = 1, . . . ,m. (12.71)

Then

R(Q ·QT )∩R( ˜A ∗) = R(Q ·QT )∩R(A ∗). (12.72)

Proof. We first prove the strict inequality (12.69). First observe that since

∥
∥
∥∥
∥

m−m̄

∑
i=1

yiAm̄+i

∥
∥
∥∥
∥

2

−
∥
∥
∥∥
∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥
∥
∥∥
∥

2

=

∥
∥
∥∥
∥

m−m̄

∑
i=1

yi(Am̄+i−QQT Am̄+iQQT )

∥
∥
∥∥
∥

2

≥ 0,
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the optimal value is always nonnegative. Let ȳ solve the minimization problem in
(12.69). If

∥∥∑m−m̄
i=1 ȳiAm̄+i

∥∥2−∥∥∑m−m̄
i=1 ȳiQT Am̄+iQ

∥∥2
= 0, then

0 �=
m−m̄

∑
i=1

ȳiAm̄+i ∈R(Q ·QT )∩R(A ∗) = span(A1, . . . ,Am̄),

which is absurd since A1, . . . ,Am are linearly independent.
Now we prove (12.72). Observe that for j = 1, . . . , m̄, A j ∈ R(Q · QT ) so〈

A j,PD+PT
〉
= 0, which implies that Ã j = A j. Moreover,

span(A1, . . . ,Am̄)⊆R(Q ·QT )∩R(Ã∗).

Conversely, suppose that B := ˜A ∗y ∈ R(Q ·QT ). Since Ã j = A j ∈ R(Q ·QT ) for
j = 1, . . . , m̄,

B = QQT BQQT =⇒
m

∑
j=m̄+1

y j(Ã j−QQT Ã jQQT ) = 0

We show that ym̄+1 = · · · = ym = 0. In fact, since QT (PD+PT )Q = 0, ∑m
j=m̄+1 y j

(Ã j−QQT Ã jQQT ) = 0 implies

m

∑
j=m̄+1

y jQQT A jQQT =
m

∑
j=m̄+1

y jA j−
(

m

∑
j=m̄+1

〈
A j,PD+PT

〉

〈D+,D+〉 y j

)

PD+PT .

For i = m̄+ 1, . . . ,m, taking inner product on both sides with Ai ,

m

∑
j=m̄+1

〈
QT AiQ,QT A jQ

〉
y j =

m

∑
j=m̄+1

〈
Ai,A j

〉
y j−

m

∑
j=m̄+1

〈
Ai,PD+PT

〉〈
A j,PD+PT

〉

〈D+,D+〉 y j,

which holds if, and only if,

(M− M̃)

⎛

⎜
⎝

ym̄+1
...

ym

⎞

⎟
⎠= 0, (12.73)

where M,M̃ ∈ S
m−m̄ are defined by

M(i−m̄),( j−m̄) =
〈
Ai,A j

〉− 〈
QT AiQ,QT A jQ

〉
,

M̃(i−m̄),( j−m̄) =

〈
Ai,PD+PT

〉〈
A j,PD+PT

〉

〈D+,D+〉 ,∀ i, j = m̄+ 1, . . . ,m.
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We show that (12.73) implies that ym̄+1 = · · · = ym = 0 by proving that M− M̃ is
indeed positive definite. By Lemmas 12.34 and 12.35,

λmin(M− M̃)≥ λmin(M)−λmax(M̃)

≥ min
‖y‖=1

⎧
⎨

⎩

∥
∥
∥
∥
∥

m−m̄

∑
i=1

yiAm̄+i

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
− ∑m

i=m̄+1

〈
Ai,PD+PT

〉2

〈D+,D+〉 .

To see that λmin(M− M̃)> 0, note that since D∗ = PD+PT +QDε QT , for all i,

∣
∣〈Ai,PD+PT 〉∣∣ ≤ ∣

∣〈Ai,D
∗〉 |+ |〈Ai,QDε QT 〉∣∣

≤ |〈Ai,D
∗〉|+ ‖Ai‖‖QDεQT‖

= |〈Ai,D
∗〉|+ ‖Ai‖‖Dε‖

≤
√

2
(
|〈Ai,D

∗〉|2 + ‖Ai‖2‖Dε‖2
)1/2

.

Hence

m

∑
i=m̄+1

∣
∣〈Ai,PD+PT 〉∣∣2 ≤ 2

m

∑
i=m̄+1

(
|〈Ai,D

∗〉|2 + ‖Ai‖2‖Dε‖2
)

≤ 2‖A (D∗)‖2 + 2‖Dε‖2
m

∑
i=m̄+1

‖Ai‖2,

and that λmin(M− M̃) > 0 follows from the assumption (12.70). This implies that
ym̄+1 = · · ·= ym = 0. Therefore B = ∑m̄

i=1 yiÃi, and by (12.68)

R(Q ·QT )∩R( ˜A ∗) = span(A1, . . . ,Am̄) = R(Q ·QT )∩R(A ∗).

�
Remark 12.37. We make a remark about the assumption (12.70) in Lemma 12.36.
We argue that the right-hand side expression

2
‖D+‖2

(

‖A (D∗)‖2 + ‖Dε‖2
m

∑
i=m̄+1

‖Ai‖2

)

is close to zero (when δ ∗ ≈ 0 and when Dε is chosen appropriately). Assume that
the spectral decomposition of D∗ is partitioned as described in Sect. 12.4.1.1. Then
(since ‖Dε‖ ≤ ε‖D∗‖)

2
‖D+‖2 ‖A (D∗)‖2 ≤ 2(δ ∗)2

‖D∗‖2−‖Dε‖2 ≤
2(δ ∗)2

‖D∗‖2− ε2‖D∗‖2 ≤
2n(δ ∗)2

1− ε2
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and

2‖Dε‖2

‖D+‖2

m

∑
i=m̄+1

‖Ai‖2 ≤ 2ε2

1− ε2

m

∑
i=m̄+1

‖Ai‖2.

Therefore as long as ε and δ ∗ are small enough (taking into account n and
∑m

i=m̄+1 ‖Ai‖2), then the right-hand side of (12.70) would be close to zero.

Here we provide the backward stability result for one step of the facial reduction
algorithm. That is, we show that the smaller problem obtained from one step of
facial reduction with δ ∗ ≥ 0 is equivalent to applying facial reduction exactly to an
SDP instance “nearby” to the original SDP instance.

Theorem 12.38. Suppose A : Sn → R
m, b ∈ R

m, and C ∈ S
n are given so that

(12.1) is feasible and Algorithm 12.1 returns (δ ∗,D∗), with 0≤ δ ∗ ≈ 0 and spectral

decomposition D∗ =
[
P Q

][D+ 0
0 Dε

][
PT

QT

]
, and ( ¯A , b̄,C̄,yQ,P). In addition,

assume that

P : Rm̄→ R
m : v �→

(
v
0

)
, so R(A ∗P) = span(A1, . . . ,Am̄).

Assume also that (12.70) holds. For i = 1, . . . ,m, define Ãi ∈ S
n as in (12.71), and

˜A ∗y := ∑m
i=1 yiÃi. Let C̃ = ˜A ∗yQ +QC̄QT . Then ( ¯A , b̄,C̄) is the exact output of

Algorithm 12.1 applied on ( ˜A ,b,C̃), that is, the following hold:

1. ˜AC̃(PD+PT ) =

( ˜A (PD+PT )〈
C̃,PD+PT

〉
)
= 0,

2. (yQ,C̄) solves

min
y,Q

1
2

∥
∥ ˜A ∗y+QWQT − C̃

∥
∥2

. (12.74)

3. R( ˜A ∗P) = R(Q ·QT )∩R( ˜A ∗).

Moreover, ( ˜A ,b,C̃) is close to (A ,b,C) in the sense that

m

∑
i=1
‖Ai− Ãi‖2 ≤ 2

‖D+‖2

(

(δ ∗)2 + ‖Dε‖2
m

∑
i=1
‖Ai‖2

)

, (12.75)

‖C− C̃‖ ≤
√

2
‖D+‖

(

(δ ∗)2 + ‖Dε‖2
m

∑
i=1
‖Ai‖2

)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y�0
‖Z‖

)
, (12.76)

where α(A ,c) is defined in (12.26).
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Proof. First we show that ( ¯A , b̄,C̄) is the exact output of Algorithm 12.1 applied
on ( ˜A ,b,C̃):

1. For i = 1, . . . ,m, by definition of Ãi in (12.71), we have
〈
Ãi,PD+PT

〉
= 0. Hence

˜A (PD+PT ) = 0. Also,
〈
C̃,PD+PT

〉
= yT

Q(
˜A (PD+PT )) +

〈
C̄,QT (PD+PT )Q

〉

= 0.
2. By definition, C̃− ˜A ∗yQ−QC̄QT = 0, so (yQ,C̄) solves the least squares problem

(12.74).
3. Given (12.70), we have that

R(Q ·QT )∩R( ˜A ∗) = R(Q ·QT )∩R(A ∗) = R(A1, . . . ,Am̄)

= R(Ã1, . . . , Ãm̄) = R( ˜A ∗P).

The results (12.75) and (12.76) follow easily:

m

∑
i=1

‖Ai− Ãi‖2 =
m

∑
i=1

∣
∣〈Ai,PD+PT

〉∣∣2

‖D+‖2 ≤
m

∑
i=1

2 |〈Ai,D∗〉|2 + 2‖Ai‖2‖Dε‖2

‖D+‖2

≤ 2
‖D+‖2

(

(δ ∗)2 + ‖Dε‖2
m

∑
i=1

‖Ai‖2

)

,

and

‖C− C̃‖ ≤ ‖A ∗yQ− ˜A ∗yQ‖+ ‖Cres‖

≤
m

∑
i=1

|(yQ)i|‖Ai− Ãi‖+ ‖Cres‖

≤ ‖yQ‖
(

m

∑
i=1
‖Ai− Ãi‖2

)1/2

+ ‖Cres‖

≤
√

2
‖D+‖

(

(δ ∗)2 + ‖Dε‖2
m

∑
i=1

‖Ai‖2

)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y�0
‖Z‖

)
,

from (12.75) and (12.63). �
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12.5 Test Problem Descriptions

12.5.1 Worst-Case Instance

From Tunçel [65], we consider the following worst-case problem instance in the
sense that for n ≥ 3, the facial reduction process in Algorithm 12.1 requires n− 1
steps to obtain the minimal face. Let b = e2 ∈ R

n, C = 0, and A : Sn
+ → R

n be
defined by

A1 = e1eT
1 , A2 = e1eT

2 + e2eT
1 , Ai = ei−1eT

i−1 + e1eT
i + eie

T
1 for i = 3, . . . ,n.

It is easy to see that

F Z
P =

{
C−A ∗y ∈ S

n
+ : y ∈R

n}=
{

μe1eT
1 : μ ≥ 0

}
,

(so F Z
P has empty interior) and

sup{bT y : C−A ∗y� 0}= sup{y2 :−A ∗y = μe1eT
1 ,μ ≥ 0}= 0,

which is attained by any feasible solution.
Now consider the auxiliary problem

min‖AC(D)‖=
[

D2
11 + 4D2

12 +
n

∑
i=3

(Di−1,i−1 + 2D1i)

]1/2

s.t. 〈D, I〉=√n, D� 0.

An optimal solution is D∗ =
√

neneT
n , which attains objective value zero. It is easy

to see this is the only solution. More precisely, any solution D attaining objective
value 0 must satisfy D11 = 0, and by the positive semidefiniteness constraint D1,i =
0 for i = 2, . . . ,n and so Dii = 0 for i = 2, . . . ,n− 1. So Dnn is the only nonzero
entry and must equal

√
n by the linear constraint 〈D, I〉 = √n. Therefore, Q from

Proposition 12.18 must have n− 1 columns, implying that the reduced problem is
in S

n−1. Theoretically, each facial reduction step via the auxiliary problem can only
reduce the dimension by one. Moreover, after each reduction step, we get the same
SDP with n reduced by one. Hence it would take n−1 facial reduction steps before
a reduced problem with strictly feasible solutions is found. This realizes the result
in [12] on the upper bound of the number of facial reduction steps needed.

12.5.2 Generating Instances with Finite Nonzero Duality Gaps

In this section we give a procedure for generating SDP instances with finite nonzero
duality gaps. The algorithm is due to the results in [66, 70].
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Algorithm 12.3: Generating SDP instance that has a finite nonzero duality gap

1 Input: problem dimensions m, n; desired duality gap g;
2 Output: linear map A : Sn→ R

m, b ∈ R
m, C ∈ S

n such that the corresponding primal dual
pair (12.1)–(12.2) has a finite nonzero duality gap;
1. Pick any positive integer r1,r3 that satisfy r1 + r3 +1 = n,

and any positive integer p≤ r3.
2. Choose Ai � 0 for i = 1, . . . , p so that dim(face({Ai : i = 1, . . . , p})) = r3.

Specifically, choose A1, . . .,Ap so that

face({Ai : 1, . . . , p}) =
⎡

⎣
0 0 0
0 0 0
0 0 S

r3
+

⎤

⎦ . (12.77)

3. Choose Ap+1, . . . ,Am of the form

Ai =

⎡

⎣
0 0 (Ai)13

0 (Ai)22 ∗
(Ai)

T
13 ∗ ∗

⎤

⎦ ,

where an asterisk denotes a block having arbitrary elements, such that (Ap+1)13, . . ., (Am)13
are linearly independent, and (Ai)22 � 0 for some i ∈ {p+1, . . . ,m}.

4. Pick

X̄ =

⎡

⎣
0 0 0
0
√

g 0
0 0 0

⎤

⎦ . (12.78)

5. Take b = A (X̄), C = X̄ .

Finite nonzero duality gaps and strict complementarity are closely tied together
for cone optimization problems; using the concept of a complementarity partition,
we can generate instances that fail to have strict complementarity; these in turn can
be used to generate instances with finite nonzero duality gaps. See [66, 70].

Theorem 12.39. Given any positive integers n, m ≤ n(n+ 1)/2 and any g > 0 as
input for Algorithm 12.3, the following statements hold for the primal-dual pair
(12.1)–(12.2) corresponding to the output data from Algorithm 12.3:

1. Both (12.1) and (12.2) are feasible.
2. All primal feasible points are optimal and vP = 0.
3. All dual feasible point are optimal and vD = g > 0.

It follows that (12.1) and (12.2) possess a finite positive duality gap.

Proof. Consider the primal problem (12.1). Equation (12.1) is feasible because
C := X̄ given in (12.78) is positive semidefinite. Note that by definition of A in
Algorithm 12.3, for any y ∈R

m,
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C−
p

∑
i=1

yiAi =

⎡

⎣
0 0 0
0
√

g 0
0 0 ∗

⎤

⎦ and −
m

∑
i=p+1

yiAi =

⎡

⎣
0 0 ∗
0 ∗ ∗
∗ ∗ ∗

⎤

⎦ ,

so if y∈Rm satisfies Z :=C−A ∗y� 0, then ∑m
i=p+1 yiAi = 0 must hold. This implies

∑m
i=p+1 yi(Ai)13 = 0. Since (Ap+1)13, . . . ,(Am)13 are linearly independent, we must

have yp+1 = · · ·= ym = 0. Consequently, if y is feasible for (12.1), then

A ∗y =

⎡

⎣
0 0 0
0 0 0
0 0 −Z33

⎤

⎦

for some Z33 � 0. The corresponding objective value in (12.1) is given by

bT y = 〈X̄ ,A ∗y〉= 0.

This shows that the objective value of (12.1) is constant over the feasible region.
Hence vP = 0, and all primal feasible solutions are optimal.

Consider the dual problem (12.2). By the choice of b, X̄ � 0 is a feasible solution,
so (12.2) is feasible too. From (12.77), we have that b1 = · · · = bp = 0. Let X � 0
be feasible for (12.1). Then 〈Ai,X〉= bi = 0 for i = 1, . . . , p, implying that the (3,3)
block of X must be zero by (12.77), so

X =

⎡

⎣
∗ ∗ 0
∗ ∗ 0
0 0 0

⎤

⎦ .

Since α = (A j)22 > 0 for some j ∈ {p+ 1, . . . ,m}, we have that

αX22 =
〈
A j,X

〉
=
〈
A j, X̄

〉
= α
√

g,

so X22 =
√

g and 〈C,X〉= g. Therefore the objective value of (12.2) is constant and
equals g > 0 over the feasible region, and all feasible solutions are optimal. �

12.5.3 Numerical Results

Table 12.1 shows a comparison of solving SDP instances with versus without facial
reduction. Examples 1 through 9 are specially generated problems available online
at the URL for this paper.2 In particular: Example 3 has a positive duality gap,
vP = 0 < vD = 1; for Example 4, the dual is infeasible; in Example 5, the Slater
CQ holds; Examples 9a, 9b are instances of the worst-case problems presented

2orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html.
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Table 12.1 Comparisons with/without facial reduction

Name n m
True primal
optimal value

True dual
optimal value

Primal optimal
value with facial
reduction

Primal optimal
value without
facial reduction

Example 1 3 2 0 0 0 −6.30238e−016
Example 2 3 2 0 1 0 +0.570395
Example 3 3 4 0 0 0 +6.91452e−005
Example 4 3 3 0 Infeasible 0 +Inf
Example 5 10 5 * * +5.02950e+02 +5.02950e+02
Example 6 6 8 1 1 +1 +1
Example 7 5 3 0 0 0 −2.76307e−012
Example 9a 20 20 0 Infeasible 0 Inf
Example 9b 100 100 0 Infeasible 0 Inf
RandGen1 10 5 0 1.4509 +1.5914e−015 +1.16729e−012
RandGen2 100 67 0 5.5288e+003 +1.1056e−010 NaN
RandGen4 200 140 0 2.6168e+004 +1.02803e−009 NaN
RandGen5 120 45 0 0.0381 −5.47393e−015 −1.63758e−015
RandGen6 320 140 0 2.5869e+005 +5.9077e−025 NaN
RandGen7 40 27 0 168.5226 −5.2203e−029 +5.64118e−011
RandGen8 60 40 0 4.1908 −2.03227e−029 NaN
RandGen9 60 40 0 61.0780 +5.61602e−015 −3.52291e−012
RandGen10 180 100 0 5.1461e+004 +2.47204e−010 NaN
RandGen11 255 150 0 4.6639e+004 +7.71685e−010 NaN

in Sect. 12.5.1. The remaining instances RandGen1–RandGen11 are generated
randomly with most of them having a finite positive duality gap, as described
in Sect. 12.5.2. These instances generically require only one iteration of facial
reduction. The software package SeDuMi is used to solve the SDPs that arise.

One general observation is that, if the instance has primal-dual optimal solutions
and has zero duality gap, SeDuMi is able to find the optimal solutions. However,
if the instance has finite nonzero duality gaps, and if the instance is not too small,
SeDuMi is unable to compute any solution, and returns NaN.

SeDuMi, based on self-dual embedding, embeds the input primal-dual pair into a
larger SDP that satisfies the Slater CQ [16]. Theoretically, the lack of the Slater CQ
in a given primal-dual pair is not an issue for SeDuMi. It is not known what exactly
causes problem on SeDuMi when handling instances where a nonzero duality gap
is present.

12.6 Conclusions and Future Work

In this paper we have presented a preprocessing technique for SDP problems where
the Slater CQ (nearly) fails. This is based on solving a stable auxiliary problem that
approximately identifies the minimal face for (P). We have included a backward
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error analysis and some preliminary tests that successfully solve problems where
the CQ fails and also problems that have a duality gap. The optimal value of our
(AP) has significance as a measure of nearness to infeasibility.

Though our stable (AP) satisfied both the primal and dual generalized Slater CQ,
high accuracy solutions were difficult to obtain for unstructured general problems.
(AP) is equivalent to the underdetermined linear least squares problem

min‖AC(D)‖2
2 s.t. 〈I,D〉=√n, D� 0, (12.79)

which is known to be difficult to solve. High accuracy solutions are essential in
performing a proper facial reduction.

Extensions of some of our results can be made to general conic convex
programming, in which case the partial orderings in (12.1) and (12.2) are induced
by a proper closed convex cone K and the dual cone K∗, respectively.
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