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Abstract This is a survey about one of the most important achievements in
optimization in Banach space theory, namely, James’ weak compactness theorem,
its relatives, and its applications. We present here a good number of topics related
to James’ weak compactness theorem and try to keep the technicalities needed as
simple as possible: Simons’ inequality is our preferred tool. Besides the expected
applications to measures of weak noncompactness, compactness with respect to
boundaries, size of sets of norm-attaining functionals, etc., we also exhibit other
very recent developments in the area. In particular we deal with functions and their
level sets to study a new Simons’ inequality on unbounded sets that appear as the
epigraph of some fixed function f . Applications to variational problems for f and
to risk measures associated with its Fenchel conjugate f ∗ are studied.
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10.1 Introduction

In 1957 James proved that a separable Banach space is reflexive whenever each
continuous and linear functional on it attains its supremum on the unit ball; see [82,
Theorem 3]. This result was generalized in 1964 to the nonseparable case in [83,
Theorem 5]: in what follows we will refer to it as James’ reflexivity theorem. More
generally (and we shall refer to it as to James’ weak compactness theorem), the
following characterization of weak compactness was obtained in [84, Theorem 5]:

Theorem 10.1 (James). A weakly closed and bounded subset A of a real Banach
space is weakly compact if, and only if, every continuous and linear functional
attains its supremum on A.

This central result in Functional Analysis can be extended to complete locally
convex spaces, as shown in [84, Theorem 6]. Note that it is not valid in the
absence of completeness, as seen in [86]. Since a complex Banach space can be
considered naturally as a real Banach space with the same weak topology, James’
weak compactness theorem is easily transferred to the complex case. Nonetheless,
and because of the strongly real nature of the optimization assumption, the setting
for this survey will be that of real Banach spaces.

We refer to [53, 81, 85] for different characterizations of weak compactness.
James’ weak compactness theorem has two important peculiarities. The first one

is that it has plenty of direct applications as well as it implies a number of important
theorems in the setting of Banach spaces. Regarding the latter, we can say that this
result is a sort of metatheorem within Functional Analysis. Thus, for instance, the
Krein–Šmulian theorem (i.e., the closed convex hull of a weakly compact subset
of a Banach space is weakly compact) or the Milman–Pettis theorem (i.e., every
uniformly convex Banach space is reflexive) straightforwardly follows from it. Also,
the Eberlein–Šmulian theorem, that states that a nonempty subset A of a Banach
space E is relatively weakly compact in E if, and only if, it is relatively weakly
countably compact in E , can be easily derived from James’ weak compactness
theorem. Indeed, assume that A is relatively weakly countably compact in E and
for a given continuous and linear functional x∗ on E , let {xn}n≥1 be a sequence in A
satisfying

lim
n

x∗(xn) = sup
A

x∗ ∈ (−∞,∞].

If x0 ∈ E is a w-cluster point of the sequence {xn}n≥1, then

sup
A

x∗ = x∗(x0)< ∞.
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The boundedness of A follows from the Banach–Steinhaus theorem, and that A
is relatively weakly compact is then a consequence of James’ weak compactness
theorem.

The second singularity regarding James’ weak compactness theorem is that this
result not only has attracted the attention of many researchers due to the huge
number of its different applications, but also that several authors in the last decades
tried to find a reasonable simple proof for it. This search has produced plenty of new
important techniques in the area.

Pryce, in [125], simplified the proof of James’ weak compactness theorem by
using two basic ideas. The first one was to use the Eberlein–Grothendieck double-
limit condition (see, for instance, [53, pp. 11–18] or [135, Theorem 28.36]) that
states that a bounded subset A of a Banach space E is relatively weakly compact if,
and only if,

lim
m

lim
n

x∗m(xn) = lim
n

lim
m

x∗m(xn) (10.1)

for all sequences {xn}n≥1 in A and all bounded sequences {x∗m}m≥1 in E∗ for which
the above iterated limits do exist. Pryce’s second idea was to use the following
diagonal argument.

Lemma 10.2 (Pryce). Let X be a nonempty set, { fn}n≥1 a uniformly bounded
sequence in �∞(X), and D a separable subset of �∞(X). Then there exists a
subsequence { fnk}k≥1 of { fn}n≥1 such that

sup
X

(
f − limsup

k
fnk

)
= sup

X

(
f − liminf

k
fnk

)
,

for every f ∈ D.

We should stress here that from the lemma above it follows that for any further
subsequence { fnk j

} j≥1 of { fnk}k≥1 we also have

sup
X

(
f − limsup

j
fnk j

)
= sup

X

(
f − liminf

j
fnk j

)
,

for every f ∈ D. With the above tools, Pryce’s proof of James’ weak compactness
theorem is done by contradiction: if a weakly closed and bounded subset A of a
Banach space E is not weakly compact, then there exist sequences {xn}n≥1 and
{x∗m}m≥1 for which (10.1) does not hold. Lemma 10.2 applied to {x∗m}m≥1 helped
Pryce to derive the existence of a continuous linear functional that does not attain
its supremum on A. In the text by Holmes [81, Theorem 19.A], one can find Pryce’s
proof for Banach spaces whose dual unit ball is w∗-sequentially compact: Pryce’s
original arguments are simplified in this case.
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In 1972 Simons gave another simpler proof of James’ weak compactness theorem
in [137]. The proof by Simons uses an ad hoc minimax theorem (with optimization
and convexity hypotheses) that follows from a diagonal argument different from that
of Pryce above, together with a deep result known henceforth as Simons’ inequality
(see [136, Lemma 2]) that we recall immediately below.

Lemma 10.3 (Simons). Let { fn}n≥1 be a uniformly bounded sequence in �∞(X)
and let W be its convex hull. If Y is a subset of X with the property that for every
sequence of nonnegative numbers {λn}n≥1 with ∑∞

n=1 λn = 1 there exists y ∈Y such
that

∞

∑
n=1

λn fn(y) = sup

{
∞

∑
n=1

λn fn(x) : x ∈ X

}
,

then

inf

{
sup

X
g : g ∈W

}
≤ sup

y∈Y

{
limsup

n
fn(y)

}
.

A converse minimax theorem (see [137, Theorem 15]) (see also [139, Theorem
5.6] and [133, Lemma 18]) provides an easier proof of James’ weak compactness
theorem and a minimax characterization of weak compactness.

A different proof of James’ weak compactness theorem, and even simpler than
that in [84], was stated by James himself in [87]. He took into account ideas coming
from Simons’ inequality in his new proof. The result proved is: A separable Banach
space E is reflexive if, and only if, there exists θ ∈ (0,1) such that for every sequence
{x∗n}n≥1 in the unit ball of its dual space, either {x∗n}n≥1 is not weak∗-null or

inf
x∗∈C

‖x∗‖< θ ,

where C is the convex hull of {x∗n : n ≥ 1}—the characterization of weak compact
subsets of a separable Banach spaces is easily guessed by analogy. If the assumption
of separability on E is dropped, a similar characterization is obtained, but perturbing
the functionals in the convex hull of {x∗n : n≥ 1} by functionals in the annihilator of
a nonreflexive separable subspace X of E: E is reflexive if, and only if, there exists
θ ∈ (0,1) such that for each subspace X of E and for every sequence {x∗n}n≥1 in the
unit ball of the dual space of E, either {x∗n}n≥1 is not null for the topology in E∗ of
pointwise convergence on X or

inf
x∗∈C, w∈X⊥

‖x∗ −w‖< θ ,

with C being the convex hull of {x∗n : n ≥ 1}.
It should be noted that the new conditions that characterize reflexivity above

imply in fact that every continuous and linear functional attains the norm.
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In 1974 De Wilde [152] stated yet another proof of James’ weak compactness
theorem, that basically uses as main tools the diagonal argument of Pryce and
the ideas of Simons in [136] together with the Eberlein–Grothendieck double-limit
condition.

More recently, Morillon [111] has given a different proof of James’ reflexivity
theorem, based on a previous result by her [112, Theorem 3.9] establishing, on the
one hand, James’ reflexivity theorem for spaces with a w∗-block compact dual unit
ball by means of Simons’ inequality and Rosenthal’s �1-theorem, and extending,
on the other hand, the proof to the general case with an adaptation of a result of
Hagler and Jonhson [72]. Along with these ideas another proof of James’ reflexivity
theorem has been given by Kalenda in [92]. Very recently, Pfitzner has gone a
step further using the ideas above to solve the so-called boundary problem of
Godefroy, [59, Question 2]—see Sect. 10.4, giving yet another approach to James’
weak compactness theorem [122].

Another approach to James’ reflexivity theorem in the separable case is due to
Rodé [129], by using his form of the minimax theorem in the setting of the so-called
“superconvex analysis.” Let us also point out that for separable Banach spaces, the
proof in [45, Theorem I.3.2], directly deduced from the Simons inequality, can be
considered an easy one. A completely different proof using Bishop–Phelps and
Krein–Milman theorems is due to Fonf, Lindenstrauss, and Phelps [56, Theorem
5.9], and an alternative approach is due to Moors [108, Theorem 4]. Nevertheless,
the combinatorial principles involved (known in the literature as the (I)-formula)
are equivalent to Simons’ inequality; see [93, Lemma 2.1 and Remark 2.2] and [35,
Theorem 2.2]. We refer the interested reader to the papers by Kalenda [92, 93],
where other proofs for James’ reflexivity theorem using (I)-envelopes in some
special cases can be found.

The leitmotif in this survey is Simons’ inequality, which is used, to a large
extent, as the main tool for proving the results, most of them self-contained and
different from the original ones. Section 10.2 is devoted to the discussion of a
generalization of the Simons inequality, where the uniform boundedness condition
is relaxed, together with its natural consequences as unbounded sup-limsup’s and
Rainwater–Simons’ theorems. The first part of Sect. 10.3 is devoted to providing a
proof of James’ weak compactness theorem that, going back to the work of James,
explicitly supplies nonattaining functionals in the absence of weak compactness; in
the second part of Sect. 10.3 we study several measures of weak noncompactness
and we introduce a new one that is very close to Simons’ inequality. Section 10.4
deals with the study of boundaries in Banach spaces and some deep related results,
that can be viewed as extensions of James’ weak compactness theorem. Other
extensions of James’ weak compactness theorem are presented in Sect. 10.5, where
we mainly focus our attention on those of perturbed nature, which have found some
applications in mathematical finance and variational analysis, as seen in Sect. 10.6.

Let us note that each section of this paper concludes with a selected open
problem.
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10.1.1 Notation and Terminology

Most of our notation and terminology are standard, otherwise it is either explained
here or when needed: unexplained concepts and terminology can be found in our
standard references for Banach spaces [45, 49, 90] and topology [48, 95]. By letters
E,K,T,X , etc. we denote sets and sometimes topological spaces. Our topological
spaces are assumed to be completely regular.

All vector spaces E that we consider in this paper are assumed to be real.
Frequently, E denotes a normed space endowed with a norm ‖·‖, and E∗ stands
for its dual space. Given a subset S of a vector space, we write conv(S) and span(S)
to denote, respectively, the convex and the linear hull of S. If S is a subset of E∗,
then σ(E,S) denotes the weakest topology for E that makes each member of S
continuous, or equivalently, the topology of pointwise convergence on S. Dually, if
S is a subset of E , then σ(E∗,S) is the topology for E∗ of pointwise convergence on
S. In particular, σ(E,E∗) and σ(E∗,E) are the weak (denoted by w) and weak∗
(denoted by w∗) topologies, respectively. Of course, σ(E,S) is always a locally

convex topology, that is, Hausdorff if, and only if, E∗ = spanS
w∗

(and similarly
for σ(E∗,S)). Given x∗ ∈ E∗ and x ∈ E , we write 〈x∗,x〉 and x∗(x) for the evaluation
of x∗ at x. If x ∈ E and δ > 0, we denote by B(x,δ ) (resp. B[x,δ ]) the open (resp.
closed) ball centered at x of radius δ : we will simplify our notation and just write
BE := B[0,1]; the unit sphere {x ∈ E : ‖x‖ = 1} will be denoted by SE . Given a
nonempty set X and f ∈R

X , we write

SX( f ) := sup
x∈X

f (x) ∈ (−∞,∞].

�∞(X) stands for the Banach space of real-valued bounded functions defined on X ,
endowed with the supremum norm SX(| · |).

10.2 Simons’ Inequality for Pointwise Bounded
Subsets of RX

The main goal of this section is to derive a generalized version of Simons’ inequality,
Theorem 10.5, in a pointwise bounded setting, as opposed to the usual uniform
bounded context. As a consequence, we derive an unbounded version of the so-
called Rainwater–Simons theorem, Corollary 10.7, that will provide us with some
generalizations of James’ weak compactness theorem, as well as new developments
and applications in Sects. 10.5 and 10.6. In addition, the aforementioned result will
allow us to present the state of the art of a number of issues related to boundaries in
Banach spaces in Sect. 10.4.

The inequality presented in Lemma 10.3, as Simons himself says in [136], is
inspired by some of James’ and Pryce’s arguments in [84, 125] and contains the
essence of the proof of James’ weak compactness theorem in the separable case.
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As mentioned in the Introduction, James included later the novel contribution of
Simons in his proof in [87]. We refer to [45, 61] for some applications of Simons’
inequality, to [35, 44, 99, 114] for proper extensions, and to [115] for a slightly
different proof.

Given a pointwise bounded sequence { fn}n≥1 in R
X , we define

coσp{ fn : n ≥ 1} :=

{
∞

∑
n=1

λn fn : λn ≥ 0 for every n ≥ 1 and
∞

∑
n=1

λn = 1

}
,

where a function of the form ∑∞
n=1 λn fn ∈ R

X is obviously defined by

( ∞

∑
n=1

λn fn

)
(x) :=

∞

∑
n=1

λn fn(x)

for every x ∈ X .
Instead of presenting the results of Simons in [136, 138], we adapt them to a

pointwise but not necessarily uniformly bounded framework. This adaptation allows
us to extend the original results of Simons and provides new applications, as we
show below.

The next result follows by arguing as in the “Additive Diagonal Lemma” in [138].
Hereafter, any sum ∑0

n=1 . . . is understood to be 0.

Lemma 10.4. If { fn}n≥1 is a pointwise bounded sequence in R
X and ε > 0, then

for every m ≥ 1 there exists gm ∈ coσp{ fn : n ≥ m} such that

SX

(
m−1

∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 .

Proof. It suffices to choose inductively, for each m ≥ 1, gm ∈ coσp{ fn : n ≥ m}
satisfying

SX

(
m−1

∑
n=1

gn

2n +
gm

2m−1

)
≤ inf

g∈coσp{ fn : n≥m}
SX

(
m−1

∑
n=1

gn

2n +
g

2m−1

)
+

2ε
4m . (10.2)

The existence of such gm follows from the easy fact that

inf
g∈coσp{ fn : n≥m}

SX(g)>−∞,

according with the pointwise boundedness of our sequence { fn}n≥1. Since

2m−1
∞

∑
n=m

gn

2n ∈ coσp{ fn : n ≥ m},



168 B. Cascales et al.

then inequality (10.2) implies

SX

((
m−1

∑
n=1

gn

2n

)
+

gm

2m−1

)
≤ SX

(
∞

∑
n=1

gn

2n

)
+

2ε
4m . (10.3)

From the equality

m−1

∑
n=1

gn

2n =
m−1

∑
k=1

1
2m−k

((
k−1

∑
n=1

gn

2n

)
+

gk

2k−1

)
,

and the help of (10.3) we finally derive that

SX

(
m−1

∑
n=1

gn

2n

)
≤

m−1

∑
k=1

1
2m−k SX

((
k−1

∑
n=1

gn

2n

)
+

gk

2k−1

)

≤
m−1

∑
k=1

1
2m−k

(
SX

(
∞

∑
n=1

gn

2n

)
+

2ε
4k

)

=

(
1− 1

2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

(
1− 1

2m−1

)
2ε
2m

≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 ,

and the proof is over. �
We now arrive at the announced extension of Simons’ inequality. Unlike the original
work [136], we only assume pointwise boundedness of the sequence { fn}n≥1. Let us
also emphasize that the extension of Simons’ inequality stated in [114] is a particular
case of the following non uniform version:

Theorem 10.5 (Simons’ inequality in R
X ). Let X be a nonempty set, let { fn}n≥1

be a pointwise bounded sequence in R
X , and let Y be a subset of X such that

for every g ∈ coσp{ fn : n ≥ 1} there exists y ∈Y with g(y) = SX(g).

Then

inf
g∈coσp{ fn : n≥1}

SX(g)≤ SY

(
limsup

n
fn

)
.

Proof. It suffices to prove that for every ε > 0 there exist y∈Y and g∈ coσp{ fn : n≥
1} such that

SX(g)− ε ≤ limsup
n

fn(y).
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Fix ε > 0. Then Lemma 10.4 provides us with a sequence {gm}m≥1 in R
X such that

for every m ≥ 1, gm ∈ coσp{ fn : n ≥ m} and

SX

(
m−1

∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 . (10.4)

Let us write g := ∑∞
n=1

gn
2n ∈ coσp{ fn : n ≥ 1}. Then by hypothesis there exists y ∈Y

with

g(y) = SX(g), (10.5)

and so it follows from (10.4) and (10.5) that given m ≥ 1,

(
1− 1

2m−1

)
g(y)+

ε
2m−1 ≥ SX

(
m−1

∑
n=1

gn

2n

)

≥
m−1

∑
n=1

gn(y)
2n

= g(y)−
∞

∑
n=m

gn(y)
2n .

Therefore,

inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n ≥ g(y)− ε. (10.6)

Since for every m ≥ 1 we have 2m−1 ∑∞
n=m 2n = 1, we conclude that

sup
n≥m

fn(y)≥ 2m−1
∞

∑
n=m

gn(y)
2n .

Now, with this last inequality in mind together with (10.5) and (10.6), we arrive at

limsup
n

fn(y) = inf
m≥1

sup
n≥m

fn(y)

≥ inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n

≥ g(y)− ε
= SX(g)− ε,

as was to be shown. �
Both in the original version of Simons’ inequality and in the previous one, a uniform
behavior follows from a pointwise one, resembling Mazur’s theorem for continuous
functions when X is a compact topological space; see [146, Sect. 3, p. 14]. Indeed,
it turns out that Simons’ inequality tell us that
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inf{‖g‖∞ : g ∈ co{ fn : n ≥ 1}}= 0,

whenever a uniformly bounded sequence of continuous functions { fn}n≥1 pointwise
converges to zero on a compact space X.

As a consequence of the above version of Simons’ inequality we deduce the
following generalization of the sup-limsup theorem of Simons [136, Theorem 3]
(see also [133, Theorem 7]). This result has recently been stated in [119, Corollary
1], but using the tools in [133].

Corollary 10.6 (Simons’ sup-limsup theorem in R
X ). Let X be a nonempty set,

let { fn}n≥1 be a pointwise bounded sequence in R
X , and let Y be a subset of X such

that

for every g ∈ coσp{ fn : n ≥ 1} there exists y ∈Y with g(y) = SX(g).

Then

SX

(
limsup

n
fn

)
= SY

(
limsup

n
fn

)
.

Proof. Let us assume, arguing by reductio ad absurdum, that there exists x0 ∈ X
such that

limsup
n

fn(x0)> SY

(
limsup

n
fn

)
.

We assume then, passing to a subsequence if necessary, that

inf
n≥1

fn(x0)> SY

(
limsup

n
fn

)
.

In particular,

inf
g∈coσp{ fn : n≥1}

g(x0)> SY

(
limsup

n
fn

)
,

and then, by applying Theorem 10.5, we arrive at

SY

(
limsup

n
fn

)
≥ inf

g∈coσp{ fn : n≥1}
SX(g)

≥ inf
g∈coσp{ fn : n≥1}

g(x0)

> SY

(
limsup

n
fn

)
,

a contradiction. �
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In the Banach space framework we obtain the sup-limsup’s type result below, which
also generalizes the so-called Rainwater–Simons theorem; see [136, Corollary 11]
(see also [138, Sup-limsup Theorem], [101, Theorem 5.1] and [116, Theorem 2.2],
the recent extension [108, Corollary 3], and for some related results [75]). It is a
direct consequence of the Simons sup-limsup theorem in R

X , Corollary 10.6, as
in the uniform setting; see [51, Theorem 3.134]. In particular it generalizes the
Rainwater theorem [127], which asserts that a sequence {xn}n≥1 in a Banach space
E is weakly null if it is bounded and for each extreme point e∗ of BE∗ ,

lim
n

e∗(xn) = 0.

Given a bounded sequence {xn}n≥1 in a Banach space E , we define

coσ{xn : n ≥ 1} :=

{
∞

∑
n=1

λnxn : for all n ≥ 1, λn ≥ 0 and
∞

∑
n=1

λn = 1

}

Note that the above series are clearly norm-convergent and that

coσ{xn : n ≥ 1}= coσp{xn : n ≥ 1}

when for the second set we look at the xn’s as functions defined on BE∗ .

Corollary 10.7 (Unbounded Rainwater–Simons’ theorem). If E is a Banach
space, C is a subset of E∗, B is a nonempty subset of C, and {xn}n≥1 is a bounded
sequence in E such that

for every x ∈ coσ{xn : n ≥ 1} there exists b∗ ∈ B with b∗(x) = SC(x),

then

SB

(
limsup

n
xn

)
= SC

(
limsup

n
xn

)
.

As a consequence

σ(E,B)- lim
n

xn = 0 ⇒ σ(E,C)- lim
n

xn = 0.

The unbounded Rainwater–Simons theorem (or the Simons inequality in R
X )

not only gives as special cases those classical results that follow from Simons’s
inequality (some of them are discussed here, besides the already mentioned [45,61]),
but it also provides new applications whose discussion we delay until the next
sections. We only remark here that Moors has recently obtained a particular case
of the unbounded Rainwater–Simons theorem (see [108, Corollary 1]), which leads
him to a proof of James’ weak compactness theorem for Banach spaces whose dual
unit ball is w∗-sequentially compact.
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A very interesting consequence of Simons’ inequality in the bounded case is the
(I)-formula (10.7) of Fonf and Lindenstrauss; see [35, 55]:

Corollary 10.8 (Fonf–Lindenstrauss’ theorem). Let E be a Banach space, B a
bounded subset of E∗ such that for every x ∈ E there exists some b∗0 ∈ B satisfying
b∗0(x) = supb∗∈B b∗(x). Then we have that, for every covering B ⊂ ⋃∞

n=1 Dn by

an increasing sequence of w∗-closed convex subsets Dn ⊂ co(B)
w∗

, the following
equality holds true:

∪∞
n=1Dn

‖·‖
= co(B)

w∗
. (10.7)

Proof. Here is the proof given in [35, Theorem 2.2]. We proceed by contradiction

assuming that there exists z∗0 ∈ co(B)
w∗

such that z∗0 
∈ ∪∞
n=1Dn

‖·‖
. Fix δ > 0 such

that

B[z∗0,δ ]∩Dn = /0, for every n ≥ 1.

The separation theorem in (E∗,w∗), when applied to the w∗-compact set B[0,δ ] and
the w∗-closed set Dn − z∗0, provides us with a norm-one xn ∈ E and αn ∈R such that

inf
v∗∈B[0,δ ]

xn(v
∗)> αn > sup

y∗∈Dn

xn(y
∗)− xn(z

∗
0).

But

−δ = inf
v∗∈B[0,δ ]

xn(v
∗),

and consequently the sequence {xn}n≥1 in BE satisfies

xn(z
∗
0)− δ > xn(y

∗) (10.8)

for each n≥ 1 and y∗ ∈Dn. Fix a w∗-cluster point x∗∗ ∈BE∗∗ of the sequence {xn}n≥1

and let {xnk}k≥1 be a subsequence of {xn}n≥1 such that x∗∗(z∗0) = limk xnk(z
∗
0).

We can and do assume that for every k ≥ 1,

xnk(z
∗
0)> x∗∗(z∗0)−

δ
2
. (10.9)

Since B⊂∪∞
n=1Dn and {Dn}n≥1 is an increasing sequence of sets, given b∗ ∈ B there

exists k0 ≥ 1 such that b∗ ∈ Dnk for each k ≥ k0. Now inequality (10.8) yields

x∗∗(z∗0)− δ ≥ limsup
k

xnk(b
∗), for every b∗ ∈ B, (10.10)
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and, on the other hand, inequality (10.9) implies that

w(z∗0)≥ x∗∗(z∗0)−
δ
2
, for every w ∈ coσ{xnk : k ≥ 1}. (10.11)

Now Theorem 10.5 can be applied to the sequence {xnk}k≥1, to deduce

x∗∗(z∗0)− δ
(10.10)
≥ sup

b∗∈B
limsup

k
xnk(b

∗)≥

≥ inf
{

sup{w(z∗) : z∗ ∈ co(B)
w∗
,w ∈ coσ{xnk : k ∈ N}}}

≥ inf
{

w(z∗0) : w ∈ coσ{xnk : k ∈ N}} (10.11)
≥ x∗∗(z∗0)−

δ
2
.

From the inequalities above we obtain 0≥ δ , which is a contradiction that completes
the proof. �
To conclude this section, let us emphasize that in [35, Theorem 2.2] the equivalence
between Simons’ inequality, the sup-limsup theorem of Simons, and the (I)-formula
of Fonf and Lindenstrauss was established in the bounded case. However, in the
unbounded case we propose the following question:

Question 10.9. Are the unbounded versions of Simons’ inequality and sup-limsup
theorem of Simons equivalent to some kind of I-formula for the unbounded case?

10.3 Nonattaining Functionals

This section is devoted to describe how to obtain nonattaining functionals in the
absence of weak compactness. Simons’ inequality provides us a first way of doing
it in a wide class of Banach spaces, which includes those whose dual unit balls are
w∗-sequentially compact. We introduce a new measure of weak noncompactness,
tightly connected with Simons’ inequality, and we relate it with recent quantification
results of classical theorems about weakly compact sets.

When Simons’ inequality in l∞(N) holds for a w∗-null sequence {x∗n}n≥1 in a dual
Banach space E∗, it follows that the origin belongs to the norm-closed convex hull

of the sequence, co{x∗n : n ≥ 1}‖·‖. Therefore every time we have a w∗-null sequence

{x∗n}n≥1 with 0 /∈ co{x∗n : n ≥ 1}‖·‖ we will have some x∗0 ∈ coσ{x∗n : n≥ 1} such that
x∗0 does not attain its supremum on BE .

We note that just Simons’ inequality, or its equivalent sup-limsup theorem,
provides us with the tools to give a simple proof of James’ weak compactness
theorem for a wide class of Banach spaces. We first recall the following concept:
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Definition 10.10. Let E be a vector space, and let {xn}n≥1 and {yn}n≥1 be
sequences in E . We say that {yn}n≥1 is a convex block sequence of {xn}n≥1 if for a
certain sequence of nonempty finite subsets of integers {Fn}n≥1 with

maxF1 < minF2 ≤ maxF2 < minF3 ≤ ·· · ≤ maxFn < minFn+1 ≤ ·· ·

and adequate sets of positive numbers {λ n
i : i ∈ Fn} ⊂ (0,1] we have that

∑
i∈Fn

λ n
i = 1 and yn = ∑

i∈Fn

λ n
i xi.

For a Banach space E , its dual unit ball BE∗ is said to be w∗-convex block compact
provided that each sequence {x∗n}n≥1 in BE∗ has a convex block w∗-convergent
sequence.

It is clear that if the dual unit ball BE∗ of a Banach space E is w∗-sequentially
compact, then it is w∗-convex block compact. This happens, for example, when E
is a weakly Lindelöf determined (in short, WLD) Banach space; see [74]. Let us
emphasize that both kinds of compactness do not coincide. Indeed, on the one hand,
an example of a Banach space with a non w∗-sequentially compact dual unit ball
and not containing �1(N) is presented in [73]. On the other hand, it is proved in [24]
that if a Banach space E does not contain an isomorphic copy of �1(N), then BE∗ is
w∗-convex block compact. This last result was extended for spaces not containing an
isomorphic copy of �1(R) under Martin Axiom and the negation of the Continuum
hypothesis in [80].

For a bounded sequence {x∗n}n≥1 in a dual Banach space E∗, we denote by
LE∗{x∗n} the set of all cluster points of the given sequence in the w∗-topology, and
when no confusion arises, we just write L{x∗n}.

Lemma 10.11. Suppose that E is a Banach space, {xn}n≥1 is a bounded sequence
in E and x∗∗0 in E∗∗ is a w∗-cluster point of {xn}n≥1 with d(x∗∗0 ,E) > 0. Then for
every α with d(x∗∗0 ,E)> α > 0 there exists a sequence {x∗n}n≥1 in BE∗ such that

〈x∗n,x∗∗0 〉> α (10.12)

whenever n ≥ 1, and

〈x∗0,x∗∗0 〉= 0 (10.13)

for any x∗0 ∈ L{x∗n}.

Proof. The Hahn–Banach theorem applies to provide us with x∗∗∗ ∈ BE∗∗∗ satisfying
x∗∗∗|E = 0 and x∗∗∗(x∗∗0 ) = d(x∗∗0 ,E). For every n ≥ 1 the set

Vn :=
{

y∗∗∗ ∈ E∗∗∗ : y∗∗∗(x∗∗0 )> α, |y∗∗∗(xi)| ≤ 1
n
, i = 1,2, . . . ,n

}
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is a w∗-open neighborhood of x∗∗∗, and therefore, by Goldstein’s theorem, we can
pick up x∗n ∈ BE∗ ∩Vn. The sequence {x∗n}n≥1 clearly satisfies

lim
n
〈x∗n,xp〉= 0, for all p ∈ N,

and for each n ≥ 1

〈x∗n,x∗∗0 〉> α.

Fix an arbitrary x∗0 ∈ L{x∗n}. For every p ≥ 1 we have that

〈x∗0,xp〉= 0,

and thus

〈x∗0,x∗∗0 〉= 0,

because x∗∗0 ∈ {xp : p = 1,2, · · ·}w∗
. �

Theorem 10.12. Let E be a Banach space with a w∗-convex block compact dual
unit ball. If a bounded subset A of E is not weakly relatively compact, then there
exists a sequence of linear functionals {y∗n}n≥1 ⊂ BE∗ with a w∗-limit point y∗0, and
some g∗ ∈ coσ{y∗n : n ≥ 1}, such that g∗ − y∗0 does not attain its supremum on A.

Proof. Assume that A is not weakly relatively compact, which in view of the
Eberlein–Šmulian theorem is equivalent to the existence of a sequence {xn}n≥1 in A
and a w∗-cluster point x∗∗0 ∈ E∗∗ \E of it. Then Lemma 10.11 applies to provide us
with a sequence {x∗n}n≥1 in BE∗ and α > 0 satisfying (10.12) and (10.13).

Let {y∗n}n≥1 be a convex block sequence of {x∗n}n≥1 and let y∗0 ∈ BE∗ such that
w∗- limn y∗n = y∗0. It is clear that (10.12) and (10.13) are valid when replacing {x∗n}n≥1

and x∗0 with {y∗n}n≥1 and y∗0, respectively. Then

S
A

w∗

(
limsup

n
(y∗n − y∗0)

)
≥ limsup

n
(y∗n − y∗0)(x

∗∗
0 )

≥ α
> 0

= SA

(
limsup

n
(y∗n − y∗0)

)
,

so in view of the Rainwater–Simons theorem, Corollary 10.7, there exists g∗ ∈
coσ{y∗n : n ≥ 1} such that g∗ − y∗0 does not attain its supremum on A, as announced.

�
In Sect. 10.5.2 we shall show a nonlinear extension of this result, with the use of
the (necessarily unbounded) Rainwater–Simons theorem, Corollary 10.7. For the
space �1(N), James constructed in [82] a continuous linear functional g : �1(N)→R



176 B. Cascales et al.

such that g can be extended to ĝ ∈ E∗ on any Banach space E containing �1(N),
but ĝ does not attain its supremum on BE . Rosenthal’s �1(N)-theorem, together with
Theorem 10.12, provides another approach for James’ reflexivity theorem. These
ideas, developed by Morillon in [111], are the basis for new approaches to the weak
compactness theorem of James, as the very successful one due to Pfitzner in [122].

We now deal with the general version of Theorem 10.12, that is, James’ weak
compactness theorem with no additional assumptions on the Banach space. If E is a
Banach space and A is a bounded subset of E , we denote by ‖ · ‖A the seminorm
on the dual space E∗ given by the Minkowski functional of its polar set, i.e.,
the seminorm of uniform convergence on the set A. If A = −A, given a bounded
sequence {x∗n}n≥1 in E∗ and h∗ ∈ L{x∗n}, Simons’ inequality for the sequence
{x∗n −h∗}n≥1 in �∞(A) reads as follows: Under the assumption that every element in
coσp{x∗n − h∗ : n ≥ 1} attains its supremum on A,

dist‖·‖A
(h∗,co{x∗n : n ≥ 1})≤ SA

(
limsup

n
x∗n − h∗

)
.

Therefore,

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1})≤ inf

h∗∈L{x∗n}
SA

(
limsup

n
x∗n − h∗

)
.

We state the following characterization:

Proposition 10.13. Let A be a bounded subset of a Banach space E. Then A is
weakly relatively compact if, and only if, for every bounded sequence {x∗n}n≥1 in E∗
we have

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1}) = 0. (10.14)

Proof. We first prove that if A is weakly relatively compact then equality (10.14)
holds for any bounded sequence {x∗n}n≥1 in E∗. To this end, we note that, since

co(A)
‖·‖

is weakly compact by the Krein–Šmulian theorem, the seminorm ‖ · ‖A =
‖ · ‖

co(A)
‖·‖ is continuous for the Mackey topology μ(E∗,E). Hence we have the

inclusions

L{x∗n} ⊂ co{x∗n : n ≥ 1}w∗
= co{x∗n : n ≥ 1}μ(E∗,E) ⊂ co{x∗n : n ≥ 1}‖·‖A

that clearly explain the validity of (10.14).
To prove the converse we will show that if A is not weakly relatively compact in

E , then there exists a sequence {x∗n}n≥1 ⊂ BE∗ such that

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1})> 0.
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Let us assume that A is not relatively weakly compact in E . Then the Eberlein–
Šmulian theorem guarantees the existence of a sequence {xn}n≥1 in A with a w∗-
cluster point x∗∗0 ∈ E∗∗ \E . If d(x∗∗0 ,E)>α > 0, an appeal to Lemma 10.11 provides
us with a sequence {x∗n}n≥1 in BE∗ satisfying

〈x∗n,x∗∗0 〉> α

whenever n ≥ 1 and

〈x∗0,x∗∗0 〉= 0

for any x∗0 ∈ L{x∗n}. Therefore we have that

‖
n

∑
i=1

λix
∗
ni
− x∗0‖A ≥

〈
n

∑
i=1

λix
∗
ni
− x∗0,x

∗∗
0

〉
> α

for any convex combination ∑n
i=1 λix∗ni

, and consequently

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1})≥ α > 0, (10.15)

and the proof is over. �
Pryce’s diagonal procedure is used in the proof of the following result:

Proposition 10.14. Let E be a Banach space, A a bounded subset of E with A =
−A, {x∗n}n≥1 a bounded sequence in the dual space E∗ and D its norm-closed linear
span in E∗. Then there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1 such that

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)
= dist‖·‖A

(x∗,L{x∗nk
}) (10.16)

for all x∗ ∈ D.

Proof. Lemma 10.2 implies the existence of a subsequence {x∗nk
}k≥1 of {x∗n}n≥1

such that

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)

for all x∗ ∈ D. Since for any h∗ ∈ L{x∗nk
} we have

liminf
k

x∗nk
(a)≤ h∗(a)≤ limsup

k
x∗nk

(a)

for all a ∈ A, it follows that

SA

(
x∗ − liminf

k
x∗nk

)
= ‖x∗ − h∗‖A = SA

(
x∗ − limsup

k
x∗nk

)
.
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Therefore

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)
= dist‖·‖A

(x∗,L{x∗nk
})

for all x∗ ∈ D, and the proof is finished. �
Equality (10.16) will be in general the source to look for nonattaining linear
functionals whenever we have

dist‖·‖A
(L{x∗nk

},co{x∗nk
: k ≥ 1})> 0,

which means, in view of Proposition 10.13, whenever A is a nonrelatively weakly
compact subset of E . Until now all such constructions depend on this fact, which is
called the technique of the undetermined function. The next result is so far the most
general perturbed version for the existence of nonattaining functionals; see [133,
Corollary 8]:

Theorem 10.15. Let X be a nonempty set, {h j} j≥1 a bounded sequence in �∞(X),
ϕ ∈ �∞(X) with ϕ ≥ 0 and δ > 0 such that

SX

(
h− limsup

j
h j −ϕ

)
= SX

(
h− liminf

j
h j −ϕ

)
≥ δ ,

whenever h ∈ coσ{h j : j ≥ 1}. Then there exists a sequence {gi}i≥1 in �∞(X) with

gi ∈ coσ{h j : j ≥ i}, for all i ≥ 1,

and there exists g0 ∈ coσ{gi : i ≥ 1} such that for all g ∈ �∞(X) with

liminf
i

gi ≤ g ≤ limsup
i

gi on X ,

the function g0 − g−ϕ does not attain its supremum on X .

The proof given in [133] for the above result involves an adaptation of the additive
diagonal lemma we have used for Simons’ inequality in R

X , Theorem 10.5. Let us
include here a proof for the following consequence, that was stated first in this way
by James in [87, Theorems 2 and 4].

Theorem 10.16 (James). Let A be a nonempty bounded subset of a Banach space
E which is not weakly relatively compact. Then there exist a sequence {g∗n}n≥1 in
BE∗ and some g0 ∈ coσ{g∗n : n ≥ 1} such that, for every h ∈ �∞(A) with

liminf
n

g∗n ≤ h ≤ limsup
n

g∗n on A,

we have that g0 − h does not attain its supremum on A.
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Proof. Without loss of generality we can assume that A is convex and that A =−A.
Proposition 10.13 gives us a sequence {x∗n}n≥1 in BE∗ such that dist‖·‖A

(L{x∗n},co{x∗n :
n ≥ 1})> 0. By Proposition 10.14 there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1

that verifies the hypothesis of Theorem 10.15 with ϕ = 0. So we find a sequence
{g∗n}n≥1 with g∗n ∈ coσ{x∗nk

: k ≥ n}, for every n ∈ N, and g0 ∈ coσ{g∗n : n ≥ 1}
such that g0−h does not attain its supremum on A, where h is any function in �∞(A)
with liminfn g∗n ≤ h ≤ limsupn g∗n on A. �
In particular we have seen how to construct linear functionals g0 − g that do not
attain their supremum on A, whenever g is a w∗-cluster point of the sequence
{g∗n}n≥1 in BE∗ .

We finish this section with a short visit to the so-called measures of weak
noncompactness in Banach spaces: the relationship of these measures with the
techniques already presented in this survey will be plain clear when progressing
in our discussion below.

We refer the interested reader to [14,105], where measures of weak noncompact-
ness are axiomatically defined. A measure of weak noncompactness is a nonnegative
function μ defined on the family ME of bounded subsets of a Banach space E , with
the following properties:

(i) μ(A) = 0 if, and only if, A is weakly relatively compact in E
(ii) If A ⊂ B then μ(A)≤ μ(B)

(iii) μ(conv(A)) = μ(A)
(iv) μ(A∪B) = max{μ(A),μ(B)}
(v) μ(A+B)≤ μ(A)+ μ(B)

(vi) μ(λ A) = |λ |μ(A)
Inspired by Proposition 10.13, we introduce the following:

Definition 10.17. For a bounded subset A of a Banach space E , σ(A) stands for the
quantity

sup
{x∗n}n≥1⊂BE∗

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1}).

Observe that σ satisfies properties (i), (ii), (iii), (iv), and (vi), and therefore σ
can be considered as a measure of weak noncompactness. Beyond the formalities
we will refer in general to measures of weak noncompactness to quantities as
above fulfilling property (i) and sometimes a few of the others. These measures of
noncompactness or weak noncompactness have been successfully applied to the
study of compactness, operator theory, differential equations, and integral equations;
see, for instance, [10–12, 20, 33, 36, 50, 64, 66, 68, 103–105].

The next definition collects several measures of weak noncompactness that
appeared in the aforementioned literature. If A and B are nonempty subsets of E∗∗,
then d(A,B) denotes the usual inf distance (associated to the bidual norm) between
A and B, and the Hausdorff nonsymmetrized distance from A to B is defined by
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d̂(A,B) = sup{d(a,B) : a ∈ A}.

Notice that d̂(A,B) can be different from d̂(B,A), and that max{ d̂(A,B), d̂(B,A)}
is the Hausdorff distance between A and B. Notice further that d̂(A,B) = 0 if, and
only if, A ⊂ B (norm-closure) and that

d̂(A,B) = inf{ε > 0 : A ⊂ B+ εBE∗∗}.

Definition 10.18. Given a bounded subset A of a Banach space E we define

ω(A) := inf{ε > 0 : A ⊂ Kε + εBE and Kε ⊂ E is w-compact},

γ(A) := sup{| lim
n

lim
m

x∗m(xn)− lim
m

lim
n

x∗m(xn)| : {x∗m}m≥1 ⊂ BE∗ ,{xn}n≥1 ⊂ A},

assuming the involved limits exist,

ckE(A) := sup
{xn}n≥1⊂A

d(LE∗∗{xn},E),

k(A) := d̂(A
w∗
,E) = sup

x∗∗∈A
w∗

d(x∗∗,E),

and

JaE(A) := inf{ε > 0 : for every x∗ ∈ E∗, there exists x∗∗ ∈ A
w∗

such that x∗∗(x∗) = SA(x
∗) and d(x∗∗,E)≤ ε}.

The function ω was introduced by de Blasi [20] as a measure of weak noncom-
pactness that is somehow the counterpart for the weak topology of the classical
Kuratowski measure of norm noncompactness. Properties for γ can be found
in [11, 12, 33, 50, 105] and for ckE in [11]—note that ckE is denoted as ck in
that paper. The quantity k has been used in [11, 33, 50, 64]. A thorough study for
JaE has been done in [36] to prove, amongst other things, a quantitative version
of James’ weak compactness theorem, whose statement is presented as part of
Theorem 10.19 bellow. This theorem tells us that all classical approaches used
to study weak compactness in Banach spaces (Tychonoff’s theorem, Eberlein–
Šmulian’s theorem, Eberlein–Grothendieck double-limit criterion, and James’ weak
compactness theorem) are qualitatively and quantitatively equivalent.

Theorem 10.19. For any bounded subset A of a Banach space E the following
inequalities hold true:
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σ(A) ≤ 2ω(A)
r ≤

1
2 γ(A) ≤ JaE(A) ≤ ckE(A) ≤ k(A) ≤ γ(A).

(10.17)

Moreover, for any x∗∗ ∈ A
w∗

there exists a sequence {xn}n≥1 in A such that

‖x∗∗ − y∗∗‖ ≤ γ(A) (10.18)

for any w∗-cluster point y∗∗ of {xn}n≥1 in E∗∗.
Furthermore, A is weakly relatively compact in E if, and only if, one (equiva-

lently, all) of the numbers γ(A),JaE(A),ckE(A),k(A),σ(A), and ω(A) is zero.

Proof. A full proof with references to prior work for the inequalities

1
2

γ(A)≤ ckE(A)≤ k(A)≤ γ(A)≤ 2ω(A)

and (10.18) is provided in [11, Theorem 2.3]. The inequalities

1
2

γ(A)≤ JaE(A)≤ ckE(A)

are established in Theorem 3.1 and Proposition 2.2 of [36].
To prove ckE(A) ≤ σ(A) we proceed as follows. If 0 = ckE(A), the inequality

is clear. Assume that 0 < ckE(A) and take an arbitrary 0 < α < ckE(A). By the
very definition of ckE(A) there exist a sequence {xn}n≥1 in A and a w∗-cluster point
x∗∗0 ∈ E∗∗ with d(x∗∗0 ,E) > α > 0. If we read now the second part of the proof of
Proposition 10.13, we end up producing a sequence {x∗n}n≥1 in BE∗ that according
to inequality (10.15) satisfies

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1})≥ α.

Since α with 0<α < ckE(A) is arbitrary, the above inequality yields ckE(A)≤σ(A).
To complete the chain of inequalities we establish σ(A)≤ 2ω(A). Let ω(A)< ε

and take a weakly compact subset Kε of E such that A ⊂ Kε + εBE . This inclusion
leads to the inequality

‖·‖A ≤ ‖·‖Kε + ε‖·‖. (10.19)

Fix an arbitrary sequence {x∗n}n≥1 in BE∗ and now take a w∗-cluster point x∗0 ∈
L{x∗n}. Since Kε is weakly compact we know that x∗0 ∈ co{x∗n : n ≥ 1}‖·‖Kε . Hence,
for an arbitrary η > 0, we can find a convex combination ∑n

i=1 λix∗ni
with ‖x∗0 −

∑n
i=1 λix∗ni

‖Kε < η . Thus, inequality (10.19) allows us to conclude that
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dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1})≤

∥∥∥x∗0 −
n

∑
i=1

λix
∗
ni

∥∥∥
A

≤
∥∥∥x∗0 −

n

∑
i=1

λix
∗
ni

∥∥∥
Kε

+ ε
∥∥∥x∗0 −

n

∑
i=1

λix
∗
ni

∥∥∥≤ η + 2ε.

Since ε,η and {x∗n}n≥1 are arbitrary, we conclude σ(A)≤ 2ω(A).
Finally, recall a well-known result of Grothendieck [46, Lemma 2, p. 227] stating

that ω(A) = 0 if, and only if, A is weakly relatively compact in E . Observe that, as
a consequence of (10.17), one of the numbers γ(A),JaE(A),ckE(A),k(A) is zero

if, and only if, all of them are zero. Clearly, k(A) = 0 if, and only if, A
w∗ ⊂ E ,

that is equivalent to the fact that A is weakly relatively compact by Tychonoff’s
theorem. To establish σ(A) = 0 if, and only if, A is weakly relatively compact either
use Proposition 10.13 or the comments above for ω and ckE , together with the
inequalities ckE(A)≤ σ(A)≤ ω(A). The proof is over. �
It is worth noticing that the inequalities

ckE(A)≤ k(A)≤ 2ckE(A),

that follow from (10.17), offer a quantitative version (and imply) of the Eberlein–
Šmulian theorem saying that weakly relatively countably compact sets in Banach
spaces are weakly relatively compact. Note also that (10.18) implies that points in
the weak closure of a weakly relatively compact set of a Banach space are reachable
by weakly convergent sequences from within the set (summing up, the inequalities
are a quantitative version of the angelicity of weakly compact sets in Banach spaces;
see Definition 10.20). In a different order of ideas the inequality

1
2

γ(A)≤ JaE(A) (10.20)

implies James’ weak compactness theorem, Theorem 10.1, and since JaE(A) ≤
ckE(A) as well, we therefore know that James’ weak compactness theorem can be
derived and implies the other classical results about weak compactness in Banach
spaces. We should mention that the proof of inequality (10.20) in [36, Theorem
3.1] follows the arguments by Pryce in [125] suitably adapted and strengthened
for the occasion: assuming that 0 < r < γ(A), two sequences {xn}n≥1 ⊂ A and
{x∗m}m≥1 ⊂ BE∗ are produced satisfying

lim
m

lim
n

x∗m(xn)− lim
n

lim
m

x∗m(xn)> r.

Then Lemma 10.2 is applied to the sequence {x∗m}m≥1, and after some twisting and
fine adjustments in Pryce’s original arguments, for arbitrary 0 < r′ < r a sequence
{g∗n}n≥1 in BE∗ and g0 ∈ coσ{g∗n : n ≥ 1} are produced with the property that for

any w∗-cluster point h ∈ BE∗ of {g∗n}n≥1, if x∗∗ ∈ A
w∗

is such that

x∗∗(g0 − h) = SA(g0 − h)
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then d(x∗∗,E) ≥ 1
2 r′. Since 0 < r < γ(A) and r′ ∈ (0,r) are arbitrary the inequal-

ity (10.20) follows. Of course, g0 − h ∈ E∗ does not attain its supremum on A but

we moreover know how far from E in A
w∗

we need to go in order that g0 − h might
attain it: compare with Theorem 10.16.

The aforementioned references contain examples showing when the inequalities
in (10.17) are sharp, as well as sufficient conditions of when the inequalities become
equalities. An example of the latter is given in the theorem below, where we use the
notion of angelic space that follows.

Definition 10.20 (Fremlin). A regular topological space T is angelic if every
relatively countably compact subset A of T is relatively compact and its closure
A is made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative compactness
coincide: the (relatively) countably compact, (relatively) compact, and (relatively)
sequentially compact subsets are the same, as seen in [53]. Examples of angelic
spaces include C(K) endowed with the topology tp(K) of pointwise convergence
on a countably compact space K ([71, 96]) and all Banach spaces in their weak
topologies. Another class of angelic spaces are dual spaces of weakly countably
K-determined Banach spaces, endowed with their w∗-topology [117].

Theorem 10.21 ([36, Theorem 6.1]). Let E be a Banach space such that (BE∗ ,w∗)
is angelic. Then for any bounded subset A of E we have

1
2

γ(A)≤ γ0(A) = JaE(A) = ckE(A) = k(A)≤ γ(A),

where

γ0(A) := sup{| lim
i

lim
j

x∗i (x j)| : {x j} j≥1 ⊂ A,{x∗i }i≥1 ⊂ BE∗ ,x∗i
w∗→ 0}.

A moment of thought and the help of Riesz’s lemma suffice to conclude that for the
unit ball BE we have that

k(BE) = sup
x∗∗∈BE∗∗

d(x∗∗,E) ∈ {0,1}.

Reflexivity of E is equivalent to k(BE) = 0 and non reflexivity to k(BE) = 1. Note
then that, when (BE∗ ,w∗) is angelic, reflexivity of E is equivalent to JaE(BE) = 0,
and non reflexivity to JaE(BE) = 1. In other words, James’ reflexivity theorem can
be strengthened to: If there exists 0 < ε < 1 such that for every x∗ ∈ E∗ there exists
x∗∗ ∈ BE∗∗ with d(x∗∗,E) ≤ ε and SBE (x

∗) = x∗∗(x∗), then E is reflexive. Indeed,
the above comments provide a proof of this result when (BE∗ ,w∗) is angelic; for the
general case we refer to [69].

With regard to convex hulls, the quantities in Theorem 10.19 behave quite
differently. Indeed, if A is a bounded set of a Banach space E , then the following
statements hold:
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γ(co(A)) = γ(A), JaE(co(A))≤ JaE(A);
ckE(co(A))≤ 2ckE(A), k(co(A))≤ 2k(A);
σ(co(A)) = σ(A), ω(co(A)) = ω(A).

Constant 2 for ckE and k is sharp, [36, 64, 68], and it is unknown if JaE might
really decrease when passing to convex hulls. The equality γ(A) = γ(co(A)) is a
bit delicate and has been established in [33, 50].

Last, but not least, we present yet another measure of weak noncompactness
inspired by James’ ideas in [85]. Following [105], for a given bounded sequence
{xn}n≥1 in a Banach space, we define

csep({xn}n≥1) := inf{‖u1 − u2‖ : (u1,u2) ∈ scc({xn}n≥1)},

where

scc({xn}n≥1) := {(u1,u2) : u1 ∈ conv{xi}1≤i≤m,u2 ∈ conv{xi}i≥m+1,m ∈ N}.

Definition 10.22 ([105, Definition 2.2]). If A is a bounded subset of a Banach
space, we define

α(A) := sup{csep({xn}n≥1) : {xn}n≥1 ⊂ A}.

It is proved in [105] that the relationship of α with the measures of weak
noncompactness already presented are given by the formulas:

α(A) = sup
{

d(x∗∗,conv{xn : n ≥ 1} : {xn}n≥1 ⊂ A, x∗∗ ∈ LE∗∗{xn}
}

and

γ(A) = α(conv(A)).

For the measure of weak noncompactness σ introduced in Definition 10.17, and in
view of Theorem 10.19, the following question naturally arises:

Question 10.23. With regard to the measure of weak noncompactness σ , are the
derived estimates sharp? Is it equivalent to the others (except ω)?

10.4 Boundaries

Given a w∗-compact subset C of E∗, a boundary for C is a subset B of C with the
property that

for every x ∈ E there exists some b∗ ∈ B such that b∗(x) = sup{c∗(x) : c∗ ∈C} .
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Note that if C is moreover convex, then the Hahn–Banach theorem shows that

co(B)
w∗

= C. In addition, the set ext(C) of the extreme points of C is a boundary
for C, thanks to Bauer’s maximum principle (see [53, p. 6]), and therefore also

satisfies C = co(ext(C))
w∗

. Note that Milman’s theorem [46, Corollary IX.4] tells

us that ext(C) ⊂ B
w∗

. Nonetheless, in general, boundaries can be disjoint of the set
of extreme points as the following example shows: let Γ be a uncountable set and
consider

(
�1(Γ ),‖·‖1

)
and

B :=
{
(xγ )γ∈Γ : xγ ∈ {−1,0,1} and {γ ∈ Γ : xγ 
= 0} is countable

}
.

A moment of thought suffices to conclude that B is a boundary for the dual unit ball
B�∞(Γ ) that is clearly disjoint from ext

(
B�∞(Γ )

)
; see [136, Example 7].

If B is a boundary for BE∗ , we will say that B is a boundary for E .
Two problems regarding boundaries in Banach spaces have attracted the attention

of a good number of authors during the years, namely:

The study of strong boundaries. The goal here is to find conditions under which

a boundary B for the w∗-compact convex C is strong, i.e., co(B)
‖·‖

=C.
The boundary problem. Let E be a Banach space, let B be a boundary for E ,

and let A be a bounded and σ(E,B)-compact subset of E . Is A weakly compact?
(Godefroy, [59, Question V.2]).

At first glance, the two questions above may look unrelated. They are not. Indeed,
on the one hand, the boundary problem has an easy and positive answer for all strong
boundaries B in BE∗ . On the other hand, many studies about strong boundaries
and several partial answers to the boundary problem use Simons’ inequality as a
tool. Regarding strong boundaries, the following references are a good source for
information [34, 35, 39, 45, 51, 55, 56, 59, 61, 77, 78, 88, 123, 130, 148]. At the end of
this section we will provide some recent results on strong boundaries.

Let us start by considering the boundary problem. It has been recently solved in
full generality in the paper [122]. It is interesting to recall the old roots and the long
history of the problem.

The first result that provided a partial positive result to the boundary problem
(before its formulation as such a question) was the following characterization of
weak compactness in continuous function spaces, due to Grothendieck; see [71,
Théorème 5]:

Theorem 10.24. If K is a Hausdorff and compact topological space and A is a
subset of C(K), then A is weakly compact if, and only if, it is bounded and compact
for the topology of the pointwise convergence on K.

More generally, Theorem 10.24 was generalized by Bourgain and Talagrand [25,
Théorème 1] in the following terms:

Theorem 10.25. Let E be a Banach space, B = ext(BE∗) and let A be a bounded
and σ(E,B)-compact subset of E. Then A is weakly compact.
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Note that the result of Bourgain and Talagrand is far from being a full solution to the
boundary problem, because as presented above there are examples of boundaries of
Banach spaces that do not contain any extreme point.

Bearing in mind the Rainwater–Simons theorem, Corollary 10.7, it is easy to give
another partial solution to the boundary problem.

Corollary 10.26. For any separable Banach space E and any boundary for E, the
boundary problem has positive answer.

Proof. Let B be a boundary for E and let A be a bounded and σ(E,B)-compact
subset of E . Since E is separable, the unit ball (BE∗ ,w∗) is metrizable and separable.
It follows that B is w∗-separable. Take D a countable and w∗-dense subset of B.
The topology σ(E,D) is then Hausdorff, metrizable, and coarser than σ(E,B).
Consequently we obtain that σ(E,D) and σ(E,B) coincide when restricted to
A and we conclude that (A,σ(E,B)) is sequentially compact. An application of
Corollary 10.7 taking into account the Eberlein–Šmulian theorem gives us that A is
weakly compact, which concludes the proof. �
A first approach to the next result appears implicitly in [136, Theorem 5]. Using the
ideas of Pryce in [125] and those of Rodé on the so-called “superconvex analysis”
in [129], Konig formulated it in [101, Theorem 5.2, p. 104]. We present here our
approach based on the criteria given by Theorem 10.15.

Theorem 10.27. Let E be a Banach space and B( ⊂ BE∗) a boundary for E. If A is
a bounded convex subset of E such that for every sequence {an}n≥1 in A there exists
z ∈ E such that

liminf
n

〈an,b
∗〉 ≤ 〈z,b∗〉 ≤ limsup

n
〈an,b

∗〉 (10.21)

for every b∗ ∈ B, then A is weakly relatively compact.

Proof. Let us proceed by contradiction and assume that A is not weakly relatively
compact in E . Then the Eberlein–Šmulian theorem says that there exists a sequence
{an}n≥1 ⊂ A without weak cluster points in E . According to Pryce’s diagonal
argument, Lemma 10.2, we can and do assume that

SB

(
a− liminf

n
an

)
= SB

(
a− liminf

k
ank

)

= SB

(
a− limsup

k
ank

)

= SB

(
a− limsup

n
an

)

for every a ∈ coσ{an : n ≥ 1} and every subsequence of integers n1 < n2 < · · · .
Let us fix x0 ∈ E such that for every b∗ ∈ B
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liminf〈an,b
∗〉 ≤ 〈x0,b

∗〉 ≤ limsup〈an,b
∗〉.

Keeping in mind that A is w∗-relatively compact in E∗∗, we know that {an}n≥1 has
a w∗-cluster point x∗∗0 ∈ E∗∗ \E . Let us fix h∗ ∈ BE∗ and ξ ∈ R such that

h∗(x0)< ξ < h∗(x∗∗0 ).

Since h∗(x∗∗0 ) is a cluster point of the sequence {h∗(an)}n≥1, then there exists a
subsequence {ank}k≥1 of {an}n≥1 such that h∗(ank) > ξ for every k ≥ 1. Thus we
also have h∗(a)≥ ξ for every a ∈ coσ{ank : k ≥ 1}. Consequently we have that

SB

(
a− liminf

n
an

)
= SB

(
a− liminf

k
ank

)
= SB

(
a− limsup

k
ank

)

= SB

(
a− limsup

n
an

)
= SB (a− x0) = SBE∗ (a− x0)

≥ h∗(a)− h∗(x0)≥ ξ − h∗(x0)> 0

for every a ∈ coσ{ank : k ≥ 1}. We can apply now Theorem 10.15 with X := B,
ϕ = 0 and {h j} j≥1 being {ank}k≥1 to get a sequence {yi}i≥1 such that for all i ≥ 1,
yi ∈ coσ{an j : j ≥ i}, together with some y0 ∈ coσ{yi : i ≥ 1}, in such a way that
y0 − y does not attain its supremum on B for any y with

liminf
i

yi(b
∗)≤ y(b∗)≤ limsup

i
yi(b

∗), for all b∗ ∈ B.

Given i ≥ 1, since yi ∈ co‖·‖{an j : j ≥ i} we can pick up zi ∈ co{an j : j ≥ i} with
‖yi− zi‖∞ < 2−i. Note that the convexity of A implies zi ∈ A for every i ≥ 1. But our
hypothesis provide us with some z ∈ E such that

liminf
i

yi(b
∗) = liminf

i
zi(b

∗)≤ z(b∗)≤ limsup
i

zi(b
∗) = limsup

i
yi(b

∗)

for every b∗ ∈ B. Thus we have that y0 − z ∈ E does not attain its norm on B, which
contradicts that B is a boundary for E and the proof is over. �
The following result straightforwardly follows from Theorem 10.27.

Theorem 10.28. Let E be a Banach space and B( ⊂ BE∗) a boundary for E. If A is
a convex bounded and σ(E,B)-relatively countably compact subset of E, then it is
weakly relatively compact.

Proof. It suffices to note that if A is σ(E,B)-relatively countably compact in E , then
for any given sequence {an}n≥1 in A and each σ(E,B)-cluster point z ∈ E of it, z
satisfies the inequalities in (10.21). Then Theorem 10.27 applies and the proof is
over. �
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A different proof for Theorem 10.28, even in a more general setting, can be found
in [53, Corollary 3, p. 78]: the arguments for this proof go back to the construction
of norm-nonattaining functionals in Pryce’s proof of James’ weak compactness
theorem. A different proof by Godefroy appeared in [60, Proposition II.21] (this
proof has been rewritten in [51, Theorem 3.140]).

Theorem 10.28 opens another door for positive answers to the boundary problem
as long as for the given boundary B( ⊂ BE∗) for E and the norm-bounded σ(E,B)-

compact set A( ⊂ E) we have that co(A)
σ(E,B) ⊂ E is σ(E,B)-compact. In other

words, the boundary problem would have a positive answer subject to the locally
convex space (E,σ(E,B)) satisfies Krein–Šmulian’s property just mentioned. Note
though, that the classical Krein–Šmulian theorem only works for locally convex
topologies in between the weak and the norm-topology of E and that σ(E,B) can
be strictly coarser than the weak topology, [102, Sect. 24]. Positive results along this
direction were established in [30–32].

Recall that a subset B of BE∗ is said to be norming (resp. 1-norming) if

|‖x|‖= sup{|b∗(x)| : b∗ ∈ B}

is a norm in E equivalent (resp. equal) to the original norm of E . Particularly, if
B( ⊂ BE∗) is a boundary for E then B is 1-norming.

The three results that follow are set up to address the boundary problem from the
point of view of the existence of isomorphic copies of the basis of �1(R). A proof
for these results can be found in [32] (see also [30]).

Theorem 10.29 (Krein–Šmulian type result). Let E be a Banach space and let B
be a norming subset of BE∗ . If E does not contain an isomorphic copy of �1(R), then
the σ(E,B)-closed convex hull of every bounded σ(E,B)-relatively compact subset
of X is σ(E,B)-compact.

Corollary 10.30. Let E be a Banach space which does not contain an isomorphic
copy of �1(R) and let B( ⊂ BE∗) be a boundary for E. Then, every bounded σ(E,B)-
compact subset of E is weakly compact.

Theorem 10.31. Let E be a Banach, B( ⊂ BE∗) a boundary for E and let A be a
bounded subset of E. Then, the following statements are equivalent:

(i) A is weakly compact.
(ii) A is σ(E,B)-compact and does not contain a family (xα)α∈R equivalent to the

usual basis of �1(R).

Note that Theorems 10.29 and 10.28 straightforwardly imply Corollary 10.30.
Theorem 10.29 is of interest by itself. The original proof for this result in [32]
uses techniques of Pettis integration together with fine subtleties about independent
families of sets in the sense of Rosenthal. Other proofs are available as for instance
in [30,67], where it is established that if for the Banach space E the Krein–Šmulian
property in Theorem 10.29 holds true for any norming set B( ⊂ BE∗) then E cannot
contain isomorphically �1(R) (see also [21] for related results).
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It is worth mentioning a few things about the class of Banach spaces not
containing isomorphic copies of �1(R). Good references for this class of Banach
spaces are [79, 106, 144]. On the one hand, a Banach space E does not contain
isomorphically �1(R) if, and only if, �∞(N) is not a quotient of E , [120, Lemma
4.2]. On the other hand, E does not admit �∞(N) as a quotient if, and only if, the
dual unit ball (BE∗ ,w∗) does not contain a homeomorphic copy of the Stone-Čech
compactification of the natural numbers, βN, [144]. In particular each one of the
following classes of Banach spaces are made up of spaces which do not contain
isomorphically �1(R):

(a) Banach spaces with a weak∗-sequentially compact dual unit ball
(b) Banach spaces which are Lindelöf for their weak topologies, or more in general,

Banach spaces with the property (C ) of Corson

Recall that E has property (C ) (see [124]), if every family of convex closed subsets
of it with empty intersection has a countable subfamily with empty intersection.

Finally, the positive answer to the boundary problem due to Pfitzner (see [122,
Theorem 9]) is formulated as follows:

Theorem 10.32 (Pfitzner). Let A be a bounded set in a Banach space E and let
B( ⊂ E∗) be a boundary of a w∗-compact subset C of E∗. If A is σ(E,B)-countably
compact then A is σ(E,C)-sequentially compact. In particular, if B is a boundary
for E, then a bounded subset of E is weakly compact if, and only if, it is σ(E,B)-
compact.

In the proof of this fine result, Pfitzner does a localized analysis on A that goes
beyond Theorem 10.31 and involves the quantitative version of Rosenthal’s �1-
theorem in [17], Simons’ inequality, and a modification of a result of Hagler and
Johnson in [72].

Although Theorem 10.32 answers in full generality the boundary problem a few
open problems still remain. For instance, it is unknown if given a boundary B
(⊂ BE∗) for E , the topology σ(E,B) is angelic on bounded subsets of E . A few
comments are needed here. We first note that since in angelic spaces compact
subsets are sequentially compact, [53], when σ(E,B) is angelic on bounded subsets
of E , a positive answer to the boundary problem is easily given as a consequence of
Rainwater–Simons’ theorem, Corollary 10.7—see Corollary 10.26 as illustration.
In general it is not true that (E,σ(E,B)) is angelic; see [141, Theorem 1.1(b)]:
an L1-predual E is constructed together with a σ(E,ext(BE∗)-countably compact

set A ⊂ E for which not every point x ∈ A
σ(E,ext(BE∗ ) is the σ(E,ext(BE∗)-limit of

a sequence in A (see also [110]). Nonetheless there are cases where angelicity of
σ(E,B) (or σ(E,B) on bounded sets) is known, and therefore for these cases a
stronger positive answer to the boundary problem is provided. One of this cases
is presented in [25] where it is proved that for any Banach space E the topology
σ(E,ext(BE∗)) is angelic on bounded sets—compared with [141, Theorem 1.1(b)].
Two more of these positive cases are presented below in Theorems 10.35 and 10.36.
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The proof of Theorem 10.35 needs the two lemmas that follow. The first one
(see [30, Lemma 4.5]) that implicitly appears in a particular case in [29] can be
considered as a kind of strong version of an “Angelic Lemma” in the spirit of [53,
Lemma in p. 28].

Lemma 10.33. Let X be a nonempty set and τ , T two Hausdorff topologies on X
such that (X ,τ) is regular and (X ,T) is angelic. Assume that for every sequence
{xn}n≥1 in X with a τ-cluster point x ∈ X, x is T-cluster point of {xn}n≥1. The
following assertions hold true:

(i) If L is a τ-relatively countably compact subset of X, then L is T-relatively
compact.

(ii) If L is a τ-compact subset of X, then L is T- compact.
(iii) (X ,τ) is an angelic space.

The lemma below (see [29, Lemma 1] and [30, Lemma 4.7]) evokes properties of
the real-compactification (also called the repletion) of a topological space, cf. [53,
Sect. 4.6].

Lemma 10.34. Let K be a compact space and B( ⊂ BC(K)∗) a boundary for the
Banach space (C(K),‖·‖∞). If { fn}n≥1 is an arbitrary sequence in C(K) and x ∈ K,
then there exists μ ∈ B such that

fn(x) =
∫

K
fndμ

for every n ≥ 1.

Proof. If we define the continuous function g : K → [0,1] by the expression

g(t) := 1−
∞

∑
n=1

1
2n

| fn(t)− fn(x)|
1+ | fn(t)− fn(x)| (t ∈ K),

then

F :=
∞⋂

n=1

{y ∈ K : fn(y) = fn(x)}= {y ∈ K : g(y) = 1 = ‖g‖∞}. (10.22)

Since B is a boundary, there exists μ ∈ B such that
∫

K gdμ = 1. So we arrive at

1 = ‖μ‖= |μ |(K)≥
∫

K
gd|μ | ≥

∫
K

gdμ = 1, (10.23)

in other words,

0 = |μ |(K)−
∫

K
gd|μ |=

∫
K
(1− g)d|μ |.

Since 1− g ≥ 0 we obtain |μ |({y ∈ K : 1− g(y)> 0}) = 0, that is |μ |(K \F) = 0.
Therefore, for every n ∈ N, we have
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∫
K

fndμ =

∫
F

fndμ =

∫
F

fn(x)dμ = fn(x)

because μ(F) =
∫

F gdμ =
∫

K gdμ = 1 by the equalities (10.22) and (10.23) (note
that μ is actually a probability!). �
We are ready to proof the next result that appeared in [29, 30]:

Theorem 10.35. Let K be a compact space and B( ⊂ BC(K)∗) a boundary for the
Banach space (C(K),‖ · ‖∞). Then the following statements hold true:

(i) (C(K),σ(C(K),B)) is angelic.
(ii) If a subset A of C(K) is σ(C(K),B)-relatively countably compact in C(K), then

A is σ(C(K),B)-relatively sequentially compact.
(iii) If A is a norm-bounded and σ(C(K),B)-compact subset of C(K), then A is

weakly compact.

Proof. Let us fix the notation X := C(K), τ := σ(C(K),B) and T := tp(K) the
topology of pointwise convergence on C(K). Then Lemma 10.34 implies that
the hypotheses in Lemma 10.33 are fulfilled. On the one hand, let { fn}n≥1 be a
sequence in C(K) that has τ-cluster point f0 ∈ C(K) and take an arbitrary T-open
neighborhood of f0

V ( f0,x1,x2, . . . ,xm,ε) := {g ∈C(K) : sup
1≤i≤m

|g(xi)− f0(xi)|< ε},

with ε > 0, x1,x2, . . . ,xm ∈ K. Use Lemma 10.34 to pick μi ∈ B associated to each
xi and the sequence { fn}n≥1 ∪{ f0}, 1 ≤ i ≤ m. Since { fn}n≥1 visits frequently the
τ-open neighborhood of f0

V ( f0,μ1,μ2, . . . ,μm,ε) :=
{

g ∈C(K) : sup
1≤i≤m

∣∣∣
∫

K
gdμi−

∫
K

f0dμi

∣∣∣< ε
}
,

we conclude that { fn}n≥1 visits frequently V ( f0,x1,x2, . . . ,xm,ε), hence f0 is also
a T-cluster point of { fn}n≥1. On the other hand, the space (C(K), tp(K)) is angelic,
[71, 96] (see also [53]). Therefore (C(K),σ(C(K),B)) is angelic by Lemma 10.33
that explains (i). Since in angelic spaces relatively countably compactness implies
relatively sequentially compactness, statement (ii) follows from (i). Finally (iii)
follows from (ii) and the Rainwater–Simons theorem, Corollary 10.7—we have no
need here for the general solution given in Theorem 10.32 for the boundary problem.

�
Given a topological space X we denote by Cb(X) the Banach space of bounded
continuous real-valued functions on X endowed with the supremum norm ‖·‖∞.
M (X) stands for the dual space (Cb(X),‖·‖∞)

∗, for which we adopt the Alexandroff
representation as the space of finite, finitely additive and zero-set regular Baire
measures on X [150, Theorem 6].

The following result was published in [31]:



192 B. Cascales et al.

Theorem 10.36. Let E be a Banach space whose dual unit ball BE∗ is w∗-angelic
and let B be a subset of BE∗:

(i) If B is norming and A is a bounded and σ(E,B)-relatively countably compact

subset of E, then co(A)
σ(E,B)

is σ(E,B)-compact.
(ii) If B if a boundary for E, then every bounded σ(E,B)-relatively countably

compact subset of E is weakly relatively compact. Therefore the topology
σ(E,B) is angelic on bounded sets of E.

Proof. It is clear that (ii) follows from (i) when taking into account Theorem 10.28.
Here is a proof for (i). We note first that is not restrictive to assume that B is

1-norming and in this case co(B)
w∗

= BE∗ . Consider X := A
σ(E,B)

endowed with
the topology induced by σ(E,B). Now we will state that every Baire probability μ
on X has a barycenter xμ in X . Since A is σ(E,B)-relatively countably compact,
every σ(E,B)-continuous real function on X is bounded, which means that X is a
pseudocompact space. For pseudocompact spaces X , the space M (X) is made up of
countably additive measures defined on the Baire σ -field Ba of X , [58] and [150,
Theorem 21]. Take a Baire probability μ on X and x∗ ∈ BE∗ . On the one hand,
since (BE∗ ,w∗) is angelic, for every x∗ ∈ BE∗ there exists a sequence in co(B) that
w∗-converges to x∗, and therefore x∗|X is Ba-measurable. On the other hand, X is
norm-bounded and thus x∗|X is also bounded, hence μ-integrable. Since x∗ ∈ E∗ is
arbitrary, for the given μ we can consider the linear functional Tμ : E∗ → R given
for each x∗ ∈ E∗ by the formula

Tμ(x
∗) :=

∫
X

x∗|X dμ.

We claim that Tμ |BE∗ is w∗-continuous. To this end it is enough to prove that for any
subset C of BE∗ we have that

Tμ(C
w∗
)⊂ Tμ(C). (10.24)

Take y∗ ∈ C
w∗

and use the angelicity of (BE∗ ,w∗) to pick up a sequence {y∗n}n≥1

in C with y∗ = w∗- limn y∗n; in particular we have that considered as functions, the
sequence {y∗n|X}n≥1 converges pointwise to y∗|X and it is uniformly bounded on
X . The Lebesgue convergence theorem gives us that Tμ(y∗) = limn Tμ(y∗n) and this
proves (10.24). Now Grothendieck’s completeness theorem, [102, Sect. 21.9.4],
applies to conclude the existence of an element xμ in E such that Tμ(x∗) = x∗(xμ)
for every x∗ ∈ E∗. xμ is the barycenter of μ that we are looking for. Now we define
the map φ : μ → xμ from the σ(M (X),Cb(X))-compact convex set P(X) of all
Baire probabilities on X into E . It is easy to prove that φ is σ(M (X),Cb(X))-to-
σ(E,B) continuous and its range φ(P(X)) is a σ(E,B)-compact convex set that
contains X . The proof is concluded. �
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A particular class of angelic compact spaces is that of the Corson compact spaces: a
compact space K is said to be Corson compact if for some set Γ it is (homeomorphic
to) a compact subset of [0,1]Γ such that for every x = (x(γ)) in K the set {γ : x(γ) 
=
0} is countable; see [40]. If we assume that (BE∗ ,w∗) is Corson compact, techniques
of Radon–Nikodým compact spaces introduced in [113] can be used to prove that
(i) in Theorem 10.36 can be completed by proving that A is also σ(E,B)-relatively
sequentially compact. Let us remark that many Banach spaces have w∗-angelic dual
unit ball as for instance the weakly compactly generated or more general the weakly
countably K-determined Banach spaces; see [117, 145].

We finish this section with a few brief comments regarding strong boundaries.
If B is a norm-separable boundary for a w∗-compact subset C in E∗, then B is a
strong boundary of C, in the sense that C is the norm-closed convex hull of B. This
result was first stated in [130], and later, with techniques based on (I)-generation in
[55,56]—note that it straightforwardly follows from Corollary 10.8. If the boundary
B is weakly Lindelöf it is an open problem to know if it is strong. When B is weakly
Lindelöf determined, the angelic character of Cp((B,w)) (see [117]) tells us that
every x∗∗ ∈ BE∗∗ is the pointwise limit of a sequence of elements in BE and Simons’
inequality implies that B is a strong boundary (see [59, Theorem I.2]). If C is a w∗-
compact and weakly Lindelöf subset of E∗ we also have that every boundary of C is
strong (see [34, Theorem 5.7]). For separable Banach spaces E without isomorphic
copies of �1(N) we also have that every boundary of any w∗-compact set is a strong
boundary [59]. In the nonseparable case the same is true if the boundary is assumed
to be w∗-K-analytic as established in the result below that can be found in [35,
Theorem 5.6]:

Theorem 10.37. A Banach space E does not contain isomorphic copies of �1(N)
if, and only if, each w∗-K-analytic boundary of any w∗-compact subset C of E∗ is
strong.

In particular, w∗-analytic boundaries are always strong boundaries in the former
situation. We note that recently Theorem 10.37 has been extended to w∗-K-
countably determined boundaries in [65]. In a different order of ideas, let us remark
here that the sup-limsup theorem can be extended to more general functions in this
situation; see [35, Theorem 5.9]:

Theorem 10.38. Let E be a Banach space without isomorphic copies of �1(N), C a
w∗-compact subset in E∗ and B a boundary of C. Let {z∗∗n }n≥1 be a sequence in E∗∗
such that for all n ≥ 1, z∗∗n = w∗- limm zn

m, for some {zn
m}m≥1 ⊂ E. Then we have

sup
b∗∈B

{limsup
n

z∗∗n (b∗)}= sup
x∗∈C

{limsup
n

z∗∗n (x∗)}.

When the boundary is built up by using a measurable map, it is always strong.

Theorem 10.39. Let E be a Banach space, and let C be a w∗-compact subset of E∗.
Assume that f : E →C is a norm-to-norm Borel map such that 〈x, f (x)〉= SC(x) for
every x ∈ E. Then
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co( f (X))
‖·‖

=C.

Proof. Cascales et al. [34, Corollary 2.7] says that we are in conditions to apply [35,
Theorem 4.3] to get the conclusion. �
Borel maps between complete metric spaces send separable sets to separable
ones; see [142, Theorem 4.3.8]. This fact implies that a w∗-compact set C as in
Theorem 10.39 is going to be fragmented by the norm of E∗. Indeed, for every
separable subspace S of E , we have that f (S) is a separable boundary of the w∗-

compact set C|S(⊂ S∗), thus C|S = co f (S)|S
‖·‖S∗ is a separable subset of S∗, and

therefore C is fragmented by the norm of E∗; see [113]. If C = BE∗ the space E
must be an Asplund space. With these results in mind, strong boundaries of an
Asplund space are characterized in terms of the following concept, introduced in
[35]. A subset C of the dual of a Banach space E is said to be finitely self-predictable
if there is a map ξ : FE −→Fco(C) from the family of all finite subsets of E into the
family of all finite subsets of co(C) such that for each increasing sequence {σn}n≥1

in FE with

Σ =
∞⋃

n=1

σn, D =
∞⋃

n=1

ξ (σn),

we have that

C|Σ ⊂ co‖·‖(D|Σ ).

The characterization of strong boundaries in Asplund spaces is stated in the
following terms; see [35, Theorem 3.9]:

Theorem 10.40. For a boundary B of an Asplund space, B is a strong boundary if,
and only if, it is finitely self-predictable.

In particular, Asplund spaces are those Banach spaces for which the above
equivalence holds; see [35, Theorem 3.10]. A procedure for generating finitely
self-predictable subsets is also provided in [35, Corollary 4.4], as the range of σ -
fragmented selectors (see [88] for the definition) of the duality mapping, which leads
to another characterization of Asplund spaces; see [35, Corollary 4.5].

In a different order of ideas, the paper [94] contains a good number of interesting
results of how to transfer topological properties from a boundary B of C to the
whole set C (in particular fragmentability) as well as how to embed a Haar system
in an analytic boundary of a separable non-Asplund space. Other results about w∗-
K-analytic boundaries not containing isomorphic copies of the basis of �1(R) can
be found in [65]—see also Theorem 10.31.

We finish this section with the following open question:

Question 10.41. Let E be a Banach space and B a boundary of it. Is σ(E,B) an
angelic topology on bounded sets of E?
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10.5 Extensions of James’ Weak Compactness Theorem

Since its appearance, James’ weak compactness theorem has become the subject
of much interest for many researchers. As discussed in the Introduction, one of the
concerns about it has been to obtain proofs which are simpler than the original one.
Another, and we deal with it in this section, is to generalize it, which in particular
has led to new applications that we will show in Sect. 10.6. Clearly the commented
developments on boundaries represent a first group of results along these lines. The
other extensions that we present fall into two kind of results. On the one hand, we
can have those that for a Banach space E guarantee reflexivity, whenever the set
NA(E) of the continuous and linear functionals that attain their norms,

NA(E) := {x∗ ∈ E∗ : there exists x0 ∈ BE such that x∗(x0) = ‖x∗‖},

is large enough. On the other hand, we have James’ type results but considering
more general optimization problems.

10.5.1 Size of the Set of Norm Attaining Functionals

Roughly speaking, the basic question we are concerned with here is whether the
reflexivity of a Banach space E follows from the fact that the set of norm-attaining
functionals NA(E) is not small in some sense. Most of these results are based on a
suitable meaning for being topologically big.

With regard to the norm-topology, the concrete question is to know whether
a Banach space E is reflexive provided that the set NA(E) has nonempty norm-
interior. The space �1(N) shows that the answer is negative, and in addition it is
easily proven in [3, Corollary 2] that every Banach space admits an equivalent norm
for which the set of norm-attaining functionals has nonempty norm-interior. For
this very reason we cannot assume an isomorphic hypothesis on the space when
studying the question above. Some geometric properties have been considered.
Before collecting some results in this direction, let us say something more from the
isomorphic point of view. In 1950 Klee proved that a Banach space E is reflexive
provided that for every space isomorphic to E , each functional attains its norm [100].
Latter, in 1999 Namioka asked whether a Banach space E is reflexive whenever the
set NA(X) has nonempty norm-interior for each Banach space X isomorphic with
E . In [1, Theorem 1.3], Acosta and Kadets provided a positive answer (see also [2]).

In order to state the known results for the norm-topology, let us recall that a
Banach space E has the Mazur intersection property when each bounded, closed,
and convex subset of E is an intersection of closed balls ([107]). This is the case of a
space with a Fréchet differentiable norm ([45, Proposition II.4.5]). Another different
geometric condition is this one: a Banach space E is weakly Hahn–Banach smooth
if each x∗ ∈ NA(E) has a unique Hahn–Banach extension to E∗∗. It is clear that if E
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is very smooth (its duality mapping is single valued and norm-to-weak continuous
[140]), then it is weakly Hahn–Banach smooth. Examples of very smooth spaces
are those with a Fréchet differentiable norm and those which are an M-ideal in
its bidual [76, 151]—for instance c0 or the space of compact operators on �2. The
following statement, shown in [89, Proposition 3.3] and [4, Theorem 1], provides
a first generalization of James’ reflexivity theorem for the above classes of Banach
spaces:

Theorem 10.42. Suppose that E is a Banach space that has the Mazur intersection
property or is weakly Hahn–Banach smooth. Then E is reflexive if, and only if,
NA(E) has nonempty norm-interior.

The above result is a consequence of James’ reflexivity theorem applied to an
adequate renorming, in the Mazur intersection property case, and of the Simons
inequality after a sequential reduction, for weakly Hahn–Banach smooth spaces.

Note that Theorem 10.42 fails when the space is smooth (norm Gâteaux
differentiable). Indeed, any separable Banach space is isomorphic to another smooth
Banach space whose set of norm-attaining functional has nonempty norm-interior;
see [3, Proposition 9].

For some concrete Banach spaces we can say something better. For instance, the
sequence space c0 satisfies that the set NA(c0) is of the first Baire category, since it
is nothing more than the subset of sequences in �1(N) with finite support. Bourgain
and Stegall generalized it for any separable Banach space whose unit ball is not
dentable. As a matter of fact, they established the following result in [26, Theorem
3.5.5]:

Theorem 10.43. If E is a Banach space and C is a closed, bounded, and convex
subset of E that is separable and nondentable, then the set of functionals in E∗ that
attain their supremum on C is of the first Baire category in E∗.

When C is the unit ball of the continuous function space on a infinite Hausdorff
and compact topological space K, Kenderov, Moors, and Sciffer proved in [97] that
NA(C(K)) is also of the first Baire category. However we do not know whether or
not Theorem 10.43 is valid if C is nonseparable. However, Moors has provided
us (private communication) with the proof of the following unpublished result
which follows from Lemma 4.3 in [109]: Suppose that a Banach space E admits
an equivalent weakly midpoint LUR norm and that E has the Namioka property,
i.e., every weakly continuous mapping acting from a Baire space into E is densely
norm continuous. Then every closed, bounded, and convex subset C of E for which
the set of functionals in E∗ attaining their supremum on C is of the second Baire
category in E∗ has at least one strongly exposed point. In particular, C is dentable.

Now we present a group of results whose hypotheses involve the weak topol-
ogy of the dual space. Jiménez-Sevilla and Moreno showed a series of results,
from which we emphasize the following consequence of Simons’ inequality [89,
Proposition 3.10]:
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Theorem 10.44. Let E be a separable Banach space such that the set NA(E)∩SE∗
has nonempty relative weak interior in SE∗ . Then E is reflexive.

Regarding the w∗-topology in the dual space, the first result was obtained, also
applying Simons’ inequality, by Deville, Godefroy, and Saint Raymond [41, Lemma
11] and is the version for the w∗-topology of the preceding theorem. Later,
an adequate use of James’ reflexivity theorem for a renorming of the original
space implies the same assertion, but removing the separability assumption [89,
Proposition 3.2]:

Theorem 10.45. A Banach space is reflexive if, and only if, the set of norm-one
norm-attaining functionals contains a nonempty relative w∗-open subset of its unit
sphere.

This result has been improved for a certain class of Banach spaces, for instance, for
Grothendieck spaces, i.e., those Banach spaces for which the sequential convergence
in its dual space for the w-topology is equal to that of the w∗-topology. It is clear that
any reflexive space is a Grothendieck space and the converse is true when the space
does not contain �1(N); see [63, 149]. Moreover, the Eberlein–Šmulian theorem
guarantees that a Banach space with a w∗-sequentially compact dual unit ball is
reflexive whenever is a Grothendieck space.

Theorem 10.46. If E is a Banach space E that is not Grothendieck, then NA(E) is
not a w∗-Gδ subset of E∗.

This result has been stated in [1, Theorem 2.5], although it previously appeared in
[41, Theorem 3] for separable spaces. Finally, a characterization of the reflexivity
in terms of the w∗-topology, and once again by means of the Simons inequality but
with other kind of assumptions, was obtained in [6, Theorem 1]:

Theorem 10.47. Assume that E is a Banach space that does not contain �1(N) and
that for some r > 0

BE∗ = cow∗{x∗ ∈ SE∗ : x∗+ rBE∗ ⊂ NA(E)}.

Then E is reflexive.

A similar result is stated in [6, Proposition 4], but replacing the assumption of non
containing �1(N) with that of the norm of the space is not rough, i.e., there exists
ε > 0 such that for all x ∈ E

limsup
h→0

‖x+ h‖+ ‖x− h‖−2‖x‖
‖h‖ ≥ ε.

Here we have emphasized some extensions of James’ reflexivity theorem in
connection to the size of the set of norm-attaining functionals, but there are other
ways of measuring such size. For example, one can look for linear subspaces into
NA(E).
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The first of these results was obtained by Petunin and Plichko in [121].
To motivate it, let us observe that for a dual space E = F∗ we have that F is a
closed and w∗-dense subspace of E∗ with F ⊂ NA(E). Their result deals with the
converse:

Theorem 10.48. A separable Banach space E is isometric to a dual space provided
that there exists a Banach space F which is w∗-dense in E∗ and satisfies F ⊂NA(E).

There are some recent results that provide conditions implying that the set of norm-
attaining functionals contains an infinite-dimensional linear subspace. See [9,15,57]
and the references therein. For instance, in [57] the following renorming result is
stated:

Theorem 10.49. Every Banach space that admits an infinite-dimensional separa-
ble quotient is isomorphic to another Banach space whose set of norm-attaining
functionals contains an infinite-dimensional linear subspace.

However, some questions still remain to be studied. For instance, whether for every
infinite-dimensional Banach space E , the set NA(E) contains a linear subspace of
dimension 2 is an irritating open problem, posed in [15, Question 2.24].

10.5.2 Optimizing Other Kind of Functions

In the past several years, some extensions of James’ weak compactness theorem
appeared. A common thing for these results is that the optimization condition—
each continuous and linear functional attains its supremum on a weakly closed and
bounded subset of the space—is replaced by another one: the objective function is
more general. We present some of them here, when considering either polynomials
or perturbed functionals.

For a Banach space E and n ≥ 1, let us consider the space P (nE) of all
continuous n-homogeneous polynomials on E, endowed with its usual sup norm.
Recall that a polynomial in P (nE) attains the norm when the supremum defining
its norm is a maximum. It is clear that if for some n each polynomial in P
(nE) attains its norm, then every functional attains the norm and thus James’
reflexivity theorem implies the reflexivity of E . So the polynomial version of James’
reflexivity theorem should be stated in terms of a subset of P (nE). This is done
in the following characterization (see [131, Theorem 2]), when dealing with weak
compactness of a bounded, closed, and convex subset of E:

Theorem 10.50. A bounded, closed, and convex subset A of a Banach space E is
weakly compact if, and only if, there exist n ≥ 1 and x∗1, . . . ,x

∗
n ∈ E∗ such that for all

x∗ ∈ E∗, the absolute value of the continuous (n+ 1)-homogeneous polynomial

x �→ x∗1(x) · · ·x∗n(x)x∗(x), (x ∈ E),
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when restricted to A, attains its supremum and

A 
⊂ ∪n
j=1 kerx∗j .

Similar results for symmetric multilinear forms, including some improved versions
for the case A = BE , can be found in [8, 131].

A related question to that of “norm attaining” (or “sup attaining”) is that
of “numerical radius attaining.” More specifically, the numerical radius of a
continuous and linear operator T : E −→ E is the real number v(T ) given by

v(T ) := sup{|x∗T x| : (x,x∗) ∈ Π(E)},

where Π(E) := {(x,x∗) ∈ SE × SE∗ : x∗(x) = 1} and such an operator T is said to
attain the numerical radius when there exists (x0,x∗0) ∈ Π(E) with |x∗0T x0|= v(T ).

The following sufficient condition for reflexivity was stated in [5, Theorem 1]
(see also [132, Corollary 3.5] for a more general statement about weak compact-
ness), and was obtained by applying the minimax theorem [137, Theorem 5].

Theorem 10.51. A Banach space such that every rank-one operator on it attains
its numerical radius is reflexive.

Surprisingly enough, the easy-to-prove part in the classical James’ reflexivity
theorem does not hold. Indeed, a Banach space is finite dimensional if, and only
if, in any equivalent norm each rank-one operator attains its numerical radius, as
seen in [5, Example] and [7, Theorem 7].

However, the James type result that seems to be more applied nowadays (see
Sect. 10.6) is a perturbed version: there exists a fixed function f : E −→ R∪{∞}
such that

for every x∗ ∈ E∗, x∗ − f attains its supremum on E.

Let us note that this optimization condition generalizes that in the classical James’
weak compactness theorem. Indeed, x∗ ∈ E∗ attains its supremum on the set A(⊂ E)
if, and only if, x∗ − δA attains its supremum on E , where δA denotes the indicator
function of A defined as

δA(x) :=

{
0, if x ∈ A
∞, otherwise

.

The first result along these lines was stated in [27, 52] by Calvert and Fitzpatrick.

Theorem 10.52. A Banach space is reflexive whenever its dual space coincides
with the range of the subdifferential of an extended real-valued coercive, convex,
and lower semicontinuous function whose effective domain has nonempty norm-
interior.
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The erratum [27] makes [52] more difficult to follow, since the main addendum
requires to correct non-written proofs of some statements in [52], which are adapted
from [84]. A complete and more general approach was presented in Theorems 2, 5
and 7 of [118].

Let us point out that, for a Banach space E and a proper function f : E −→
R∪{∞}, coercive means

lim
‖x‖→∞

f (x)
‖x‖ = ∞,

and that the effective domain of f , dom( f ), is the set of those x ∈ E with f (x) finite.
Taking into account that for a function f : E −→ R ∪ {∞} which is proper

(dom( f ) 
= /0), and x ∈ dom( f ), we have that the subdifferential of f at x is given by

∂ f (x) = {x∗ ∈ E∗ : x∗ − f attains its supremum on E at x},

then the surjectivity assumption in Calvert and Fitzpatrick’s theorem is once again
a perturbed optimization result.

Another perturbed version of James’ weak compactness theorem, different from
the preceding one, was established in [133, Theorem 16] as a consequence of
a minimax result [133, Theorem 14]. In order to state that minimax theorem,
generalizing [137, Theorem 14], the authors used the ideas of Pryce in Lemma 10.2
and a refinement of the arguments in [138]. Such a perturbed theorem reads as
follows in the Banach space framework:

Theorem 10.53. Let A be a weakly closed subset of a Banach space E for which
there exists ψ ∈ �∞(A) such that

for each x∗ ∈ E∗, x∗|A −ψ attains its supremum.

Then A is weakly compact.

Here the perturbation f (defined on the whole E) is given by

f (x) :=

{
ψ(x), if x ∈ A

∞, for x ∈ E\A
.

The second named author in this survey obtained another perturbed James type
result in the class of separable Banach spaces. This result was motivated by financial
applications, and once again, it was proved by applying adequately Simons’
inequality. Its proof was included in the Appendix of [91]:

Theorem 10.54. Suppose that E is a separable Banach space and that f : E −→
R∪{∞} is a proper function whose effective domain is bounded and such that

for each x∗ ∈ E∗, x∗ − f attains its supremum on E.
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Then for every c ∈ R the sublevel set f−1((−∞,c]) is weakly compact.

In the preceding versions of the weak compactness theorem of James, the pertur-
bation functions are coercive. Recently, the following characterization has been
developed in [118, Theorem 5]:

Theorem 10.55. Let E be a Banach space and suppose that f : E −→R∪{+∞} is
a proper, coercive, and weakly lower semicontinuous function. Then

for all x∗ ∈ E∗, x∗ − f attains its supremum on E

if, and only if,

for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly compact.

The proof makes use of the perturbed technique of the undetermined function as
explained in Theorem 10.15.

Let us also emphasize that there are previous topological results along the lines
of Theorem 10.55; see [23, Theorems 2.1 and 2.4].

Since for any reflexive Banach space E the proper, noncoercive, and weakly
lower semicontinuous function f = ‖·‖ satisfies that for every c∈R the sublevel set
f−1((−∞,c]) is weakly compact, although ∂ f (E) = BE∗ , then the coercivity cannot
be dropped in one direction of the former theorem. Nevertheless, for the converse
implication, Saint Raymond has just obtained the nice theorem that follows, [134,
Theorem 11]:

Theorem 10.56 (Saint Raymond). If E is a Banach space and f : E −→ R∪{∞}
is a proper weakly lower semicontinuous function such that for every x∗ ∈ E∗, x∗− f
attains its supremum, then for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly
compact.

Remark 10.57. The fact that for a proper function f : E −→R∪{∞} with ∂ f (E) =
E∗ all its sublevel sets are relatively weakly compact can be straightforwardly
derived from Theorem 10.56. To see it, replace f with the proper weakly lower
semicontinuous function f̃ : E −→R∪{∞} defined for every x ∈ E as

f̃ (x) := inf{t ∈R : (x, t) ∈ epi( f )
σ(E×R,E∗×R)},

where epi( f ) is the epigraph of f , that is,

epi( f ) := {(x, t) ∈ E ×R : f (x) ≤ t}.

Furthermore, when dom( f ) has nonempty norm-interior, we have that E is reflexive
as a consequence of the Baire Category theorem.

Note that Theorem 10.56 provides an answer to the problem posed in [27]: given a
Banach space E and a convex and lower semicontinuous function f : E −→R∪{∞}



202 B. Cascales et al.

whose effective domain has nonempty norm-interior, is it true that the surjectivity of
its subdifferential is equivalent to the reflexivity of E and the fact that for all x∗ ∈E∗,
the function x∗ − f is bounded above?

On the other hand, Bauschke proved that each real infinite-dimensional reflexive
Banach space E has a proper, convex, and lower semicontinuous function f : E −→
R∪{+∞} such that

for each x∗ ∈ E∗, x∗ − f is bounded above,

but f is not coercive; see [16, Theorem 3.6]. From here it follows that ∂ f (E) = E∗,
as seen in [118, Theorem 3]. Thus Theorem 10.56 properly extends one direction of
Theorem 10.55.

Now let us show how Saint Raymond’s result, Theorem 10.56, following the
ideas in [118, Corollary 5], has some consequences for multivalued mappings. Let
us recall that given a Banach space E and a multivalued operator Φ : E −→ 2E∗

, the
domain of Φ is the subset of E

D(Φ) := {x ∈ E : Φ(x) is nonempty},

and its range is the subset of E∗

Φ(E) := {x∗ ∈ E∗ : there exists x ∈ E with x∗ ∈ Φ(x)}.

In addition, Φ is said to be monotone if

inf
x,y∈D(Φ)

x∗∈Φ(x), y∗∈Φ(y)

〈x∗ − y∗,x− y〉 ≥ 0,

and cyclically monotone when the inequality

n

∑
j=1

〈x∗j ,x j − x j−1〉 ≥ 0

holds, whenever n ≥ 2, x0,x1, . . . ,xn ∈ D(Φ) with x0 = xn and for j = 1, . . . ,n, x∗j ∈
Φ(x j).

If Φ is a cyclically monotone operator then there exists a proper and convex
function f : E −→R∪{+∞} such that for every x ∈ E ,

Φ(x) ⊂ ∂ f (x),

see [128, Theorem 1], and so Theorem 10.56 leads to the following James’ type
result for cyclically monotone operators:

Corollary 10.58. Let E be a Banach space and let Φ : E −→ 2E∗
be a cyclically

monotone operator such that D(Φ) has nonempty norm-interior and
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Φ(E) = E∗.

Then E is reflexive.

Note that this result does not provide a satisfactory answer to the following open
problem, posed in [52]: Assume that E is a Banach space and Φ : E −→ 2E∗

is
a monotone operator such that D(Φ) has nonempty interior and Φ(E) = E∗. Is E
reflexive?

To conclude this section we provide a proof of Theorem 10.56 for the wide
class of Banach spaces with w∗-convex block compact dual unit balls, which easily
follows from the unbounded Rainwater–Simons theorem, Corollary 10.7; see [119,
Theorem 4]. The following lemma produces the sequence needed to apply it:

Lemma 10.59. Suppose that the dual unit ball of E is w∗-convex block compact
and that A is a nonempty, bounded subset of E. Then A is weakly relatively compact

if, and only if, each w∗-null sequence in E∗ is also σ(E∗,Aw∗
)-null.

Proof. If A is weakly relatively compact, then we have A = A
w∗

and the conclusion
follows. According to Proposition 10.13, to see the reverse implication we have to
check the validity of the identity

dist‖·‖A
(L{x∗n},co{x∗n : n ≥ 1}) = 0 (10.25)

for every bounded sequence {x∗n}n≥1 in E∗. Thus, let us fix {x∗n}n≥1 a bounded
sequence in BE∗ . Since BE∗ is w∗-convex block compact, there exist a block
sequence {y∗n}n≥1 of {x∗n}n≥1 and an x∗0 ∈ BE∗ such that

w∗- lim
n

y∗n = x∗0.

Then, by assumption, {y∗n}n≥1 also converges to x∗0 pointwise on A
w∗ ⊂E∗∗. Mazur’s

theorem applied to the sequence of continuous functions {y∗n}n≥1 restricted to the

w∗-compact space A
w∗

tells us that

0 = dist‖·‖
Aw∗ (x

∗
0,co{y∗n : n ≥ 1}) = dist‖·‖A

(x∗0,co{x∗n : n ≥ 1})≥ 0,

It is not difficult to check that x∗0 ∈ L{x∗n} and (10.25) is proved, and we have
concluded the proof. �
Following [119], we present the next proof of Theorem 10.56 for the class of Banach
spaces with w∗-convex block compact dual unit balls:

Theorem 10.60. Let E be a Banach space whose dual unit ball is w∗-convex block
compact and let f : E −→ R∪{+∞} be a proper map such that

for all x∗ ∈ E∗, x∗ − f attains its supremum on E.



204 B. Cascales et al.

Then

for every c ∈ R, the sublevel set f−1((−∞,c]) is weakly relatively compact.

Proof. We first claim that for every (x∗,λ ) ∈ E∗×R with λ < 0, there exists x0 ∈ E
with f (x0)<+∞ and such that

sup{(x∗,λ )(x, t) : (x, t) ∈ epi( f )} = x∗(x0)−λ f (x0). (10.26)

In fact, the optimization problem

sup
x∈E

{〈x,x∗〉− f (x)} (10.27)

may be rewritten as

sup
(x,t)∈epi( f )

{(x∗,−1),(x, t)} (10.28)

and the supremum in (10.27) is attained if, and only if, the supremum in (10.28) is
attained.

Let us fix c ∈ R and assume that A := f−1((−∞,c]) is nonempty. The uni-
form boundedness principle and the optimization assumption on f imply that
A is bounded. In order to obtain the relative weak compactness of A we apply
Lemma 10.59. Thus, let us consider a w∗-null sequence {x∗n}n≥1 in E∗ and let us

show that it is also σ(E∗,Aw∗
)-null.

It follows from the unbounded Rainwater–Simons theorem, Corollary 10.7,
taking the Banach space E∗ ×R,

B := epi( f )⊂C := epi( f )
σ(E∗∗×R,E∗×R)

and the bounded sequence

{(
x∗n,−

1
n

)}
n≥1

,

that

σ(E∗ ×R,B)- lim
n

(
x∗n,−

1
n

)
= σ(E∗ ×R,C)- lim

n

(
x∗n,−

1
n

)
,

But w∗- limn≥1 x∗n = 0, so we have that

σ(E∗ ×R,C)- lim
n

(
x∗n,−

1
n

)
= 0.
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As a consequence, since A×{c} ⊂ B, then A
w∗ ×{c} ⊂C, and so

σ(E∗,Aw∗
)- lim

n
x∗n = 0,

as announced. �
Theorem 10.60 was first presented at the meeting Analysis, Stochastics, and
Applications, held at Viena in July 2010, to celebrate Walter Schachermayer’s 60th
Birthday; see

http://www.mat.univie.ac.at/$\sim$anstap10/slides/Orihuela.pdf,

where the conjecture of its validity for any Banach space was considered. Later
on, in the Workshop on Computational and Analytical Mathematics in honor of
Jonathan Borwein’s 60th Birthday, held at Vancouver in May 2011; see

http://conferences.irmacs.sfu.ca/jonfest2011/,

Theorem 10.60 and its application Theorem 10.65 were discussed too. Both results
can be found published by the second and third named authors of this survey in the
paper [119]. In September 2011 we were informed by J. Saint Raymond that he had
independently obtained Theorem 10.60 without any restriction on the Banach space
E in [134]: Saint Raymond’s proof is based upon a clever and nontrivial reduction to
the classical James’ weak compactness theorem instead of dealing with unbounded
sup-limsup results as presented here, as well as in [119]. Nevertheless, our approach
contains classical James’ result without using it inside the proof, together with the
generalizations of Simons’ inequalities for unbounded sets in Sect. 10.2.

The proof of Theorem 10.60 has been obtained by means of elementary
techniques for Banach spaces with a w∗-convex block compact dual unit ball, in
particular for the separable ones. For this very reason, an easy reduction to the
separable case would provide us with a basic proof of the theorem. In that direction,
we suggest the following question:

Question 10.61. Let E be a Banach space, ρ : E∗ ×E∗ −→ [0,∞) a pseudometric
on E∗ for pointwise convergence on a countable set A( ⊂ BE∗∗), where

A = A0 ∪{x∗∗0 },A0 ⊂ E,x∗∗0 ∈ A0
w∗
.

Given {x∗n}n≥1 a sequence in BE∗ such that

σ(E∗,A0)- lim
n

x∗n = 0,

is it possible to find a sequence {y∗n}n≥1 in E∗ with

w∗- lim
n

y∗n = 0

and

lim
n

ρ(x∗n,y
∗
n) = 0?

http://www.mat.univie.ac.at/$sim $anstap10/slides/Orihuela.pdf
http://conferences.irmacs.sfu.ca/jonfest2011/
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10.6 Applications to Convex Analysis and Finance

Since its publication, the applicability of James’ weak compactness theorem has
been steady. As mentioned in the Introduction, James’ weak compactness theorem
implies almost straightforwardly a number of important results in Functional
Analysis. In this section we focus on some consequences of Theorem 10.56, which
have been recently obtained from Theorems 10.55 and 10.60 in the areas of finance
and variational analysis. But before describing them, a bit of history on known
applications of the theorem of weak compactness of James.

It is in 1968 when appeared the first work mentioning application: in [147] it
was proved that a quasi-complete locally convex space-valued measure always has
a relatively weakly compact range. On the other hand, Dieudonné [47] gave an
example of a Banach space for which the Peano theorem about the existence of
solutions to ordinary differential equations fails. Then Cellina [37] stated, with the
aid of James’ reflexivity theorem, that a Banach space is reflexive provided that the
Peano theorem holds true for it. Later, Godunov [62] proved that indeed the space is
finite dimensional. In [13] one can find some related results to the failure of Peano’s
theorem in an infinite dimensional Banach space, as a consequence of James’
reflexivity theorem. Finally, let us emphasize the well-known fact (see, for instance,
[22, Theorem 2.2.5]) that the completeness of a metric space is equivalent to the
validity of the famous Ekeland variational principle. In [143] a characterization
of the reflexivity of a normed space is established, also in terms of the Ekeland
variational principle, and making use once again of James’ reflexivity theorem.

10.6.1 Nonlinear Variational Problems

Our goal is to deal with some consequences of Theorem 10.56 for nonlinear
variational problems, following the ideas in [118, Sect. 4]. For this very reason,
let us first recall that variational equations are the standard setting to studying and
obtaining weak solutions for large portion of differential problems. Such variational
equations, in the presence of symmetry, turn into variational problems for which one
has to deduce the existence of a minimum. We prove that this kind of result, always
stated in the reflexive context, only make sense for this class of Banach spaces.

To be more precise, let us evoke the so-called main theorem on convex minimum
problems (see, for instance, [153, Theorem 25E, p. 516]), which is a straightforward
consequence of the classical theorem of Weierstrass (continuous functions defined
on a compact space attain their minimum): in a reflexive Banach space E the sub-
differential of every proper, coercive, convex, and lower semicontinuous function
f : E −→ R∪{+∞} is onto, that is, for each x∗ ∈ E∗, the optimization problem

find x0 ∈ E such that f (x0)− x∗(x0) = inf
x∈E

( f (x)− x∗(x)) (10.29)
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admits a solution. This result guarantees the solvability of nonlinear variational
equations derived from the weak formulation of a wide range of boundary value
problems. For instance, given 1 < p < ∞, a positive integer N, and a bounded open
subset Ω of RN , let E be the reflexive Sobolev space W 1,p

0 (Ω) and consider the
coercive, convex, and continuous function f : E −→ R defined by

f (x) :=
1
p

∫
Ω
|∇x|pdλ (x ∈ E),

where | · | is the Euclidean norm. By the main theorem on convex minimum problems
we have ∂ f (E) = E∗. But taking into account that the p-laplacian operator �p,
defined for each x ∈ E as

�p(x) := div
(|∇x|p−2∇x

)
,

satisfies that for all x ∈ E

∂ f (x) = {−�px}

(see [98, Proposition 6.1]), then given any h∗ ∈ E∗, the nonlinear boundary value
problem

{−�px = h∗ in Ω
x = 0 on ∂Ω

admits a weak solution x ∈ E .
We conclude this subsection by applying Theorem 10.56 (see also Remark 10.57)

to show that the adequate setting for dealing with some common variational
problems, as p-laplacian above, is that of the reflexive spaces. To properly frame
the result it is convenient to recall some usual notions. For a Banach space E , an
operator Φ : E −→ E∗ is said to be strongly monotone if

inf
x,y∈E
x
=y

〈Φ(x)−Φ(y),x− y〉
‖x− y‖2 > 0,

hemicontinuous if for all x,y,z ∈ E , the function

t ∈ [0,1] �→ (Φ(x+ ty))(z) ∈ R

is continuous, bounded when the image under Φ of a bounded set is also bounded,
and coercive whenever the function

x ∈ E �→ (Φ(x))(x) ∈ R
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is coercive. The result below appears in [28, Corollary 2.101] and it includes as a
special case the celebrated Lax–Milgram theorem:

Proposition 10.62. If E is a reflexive Banach space and Φ : E −→ E∗ is a
monotone, hemicontinuous, bounded, and coercive operator, then Φ is surjective.

This result applies to several problems in nonlinear variational analysis, including
one of its most popular particular cases: in a real reflexive Banach space E , given
x∗0 ∈ E∗, the equation

find x ∈ E such that Φ(x) = x∗0

admits a unique solution, whenever Φ : E −→ E∗ is a Lipschitz continuous and
strongly monotone operator. We refer to [70, Example 3.51] for usual applications.

When Φ is symmetric, that is,

for every x,y ∈ E, 〈Φ(x),y〉 = 〈Φ(y)),x〉,

the equation Φ(x) = x∗0 leads to the nonlinear optimization problem involving the
function

f (x) :=
1
2
(Φ(x))(x), x ∈ E.

As a consequence of Theorem 10.56, or more specifically of Remark 10.57, the
natural context for Proposition 10.62, at least with symmetry, is the reflexive one,
as shown in the next corollary whose proof is completely analogous to that of [118,
Corollary 3]:

Corollary 10.63. A Banach space E is reflexive, provided there exists a monotone,
symmetric, and surjective operator Φ : E −→ E∗.

10.6.2 Mathematical Finance

We now turn our attention to some recent applications of James’ weak compactness
theorem in mathematical finance. Let us fix a probability space (Ω ,F ,P) together
with X , a linear space of functions in R

Ω that contains the constant functions.
We assume here that (Ω ,F ,P) is atomless, although in practice this is not a
restriction, since the property of being atomless is equivalent to the fact that we can
define a random variable on (Ω ,F ,P) that has a continuous distribution function.
The space X will describe all possible financial positions X : Ω −→ R, where
X(ω) is the discounted net worth of the position at the end of the trading period if
the scenario ω ∈ Ω is realized. The problem of quantifying the risk of a financial
position X ∈ X is modeled with functions ρ : X −→ R that satisfy:
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(i) Monotonicity: if X ≤ Y , then ρ(X)≥ ρ(Y ).
(ii) Cash invariance: if m ∈ R then ρ(X +m) = ρ(X)−m.

Such a function ρ is called a monetary measure of risk (see Chapter 4 in [54]).
When ρ is also a convex function, then it is called a convex measure of risk. In
many occasions we have X = L

∞(Ω ,F ,P), and it is important to have results for
representing the risk measure as

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )}. (10.30)

Here ρ∗ is the Fenchel–Legendre conjugate of ρ , that is, for every Y ∈ (L∞(Ω ,F ,
P))∗,

ρ∗(Y ) = sup
X∈L∞(Ω ,F ,P)

{〈Y,X〉−ρ(X)}.

To have this representation is equivalent to have the so-called Fatou property, i.e.,
for any bounded sequence {Xn}n≥1 that converges pointwise almost surely (shortly,
a.s) to some X ,

ρ(X)≤ liminf
n

ρ(Xn)

(see [54, Theorem 4.31]). A natural question is whether the supremum (10.30) is
attained. In general the answer is no, as it is shown by the essential supremum map
on L

∞(Ω ,F ,P); see [54, Example 4.36]. The representation formula (10.30) with a
maximum instead of a supremum has been studied by Delbaen (see [42, Theorems
8 and 9]) (see also [54, Corollary 4.35]) in the case of coherent risk measures, that
is, the convex ones that also are positively homogeneous. The fact that the order
continuity of ρ is equivalent to the supremum becoming a maximum, that is, for
every X ∈ L

∞(Ω ,F ,P):

ρ(X) = max
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )},

for an arbitrary convex risk measure ρ , is the statement of the so-called Jouini–
Schachermayer–Touzi theorem in [42, Theorem 2] (see also [91, Theorem 5.2] for
the original reference). Let us remark that order sequential continuity for a map ρ
in L

∞(Ω ,F ,P) is equivalent to have

lim
n

ρ(Xn) = ρ(X),

whenever {Xn}n≥1 is a bounded sequence in L
∞ pointwise a.s. convergent to X .

Indeed, it is said that a map ρ : L∞(Ω ,F ,P) −→ R∪{+∞} verifies the Lebesgue
property provided that it is sequentially order continuous. The precise statement is
the following one:



210 B. Cascales et al.

Theorem 10.64 (Jouini, Schachermayer, and Touzi). Let ρ :L∞(Ω ,F ,P)−→R

be a convex risk measure with the Fatou property, and let ρ∗ : (L∞(Ω ,F ,P))∗ −→
[0,+∞] be its Fenchel–Legendre conjugate. The following are equivalent:

(i) For every c ∈ R, {Y ∈ L
1(Ω ,F ,P) : ρ∗(Y ) ≤ c} is a weakly compact subset

of L1(Ω ,F ,P).
(ii) For every X ∈ L

∞(Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[XY ]−ρ∗(Y )}

is attained.
(iii) For every bounded sequence {Xn}n≥1 in L

∞(Ω ,F ,P) tending a.s. to X ∈
L

∞(Ω ,F ,P), we have

lim
n

ρ(Xn) = ρ(X).

The proof of this result required compactness arguments of the perturbed James
type and it was based on Theorem 10.54; see [91, Theorem A.1]. In [42] this result
is already presented as a generalization of James’ weak compactness theorem. Let
us observe that we can apply Theorem 10.60 for f = ρ∗ to obtain the proof for
the main implication (ii) ⇒ (i) above. Indeed, L1(Ω ,F ,P) is weakly compactly
generated and so its dual ball is w∗-sequentially compact.

Delbaen gave a different approach for Theorem 10.64. His proof is valid for
nonseparable L

1(Ω ,F ,P) spaces, and it is based in a homogenization trick to
reduce the matter to a direct application of the classical James’ weak compactness
theorem, as well as the Dunford–Pettis theorem characterizing weakly compact sets
in L

1(Ω ,F ,P).
For our next application let us recall that a Young function Ψ is an even, convex

function Ψ : E → [0,+∞] with the properties:

1. Ψ (0) = 0
2. limx→∞Ψ (x) = +∞
3. Ψ <+∞ in a neighborhood of 0

The Orlicz space LΨ is defined as

LΨ (Ω ,F ,P) := {X ∈ L0(Ω ,F ,P) : there exists α > 0 with eP[Ψ(αX)]<+∞},

and we consider the Luxembourg norm on it:

NΨ (X) := inf

{
c > 0 : eP

[
Ψ

(
1
c

X

)]
≤ 1

}
, (X ∈ LΨ (Ω ,F ,P)).

With the usual pointwise lattice operations, LΨ (Ω ,F ,P) is a Banach lattice and we
have the inclusions
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L∞(Ω ,F ,P) ⊂ LΨ (Ω ,F ,P) ⊂ L1(Ω ,F ,P).

Moreover, (LΨ )∗ = LΨ∗ ⊕ G where G is the singular band and LΨ∗
is the order

continuous band identified with the Orlicz space LΨ ∗
, where

Ψ ∗(y) := sup
x∈R

{yx−Ψ(x)}

is the Young function conjugate to Ψ , [126].
Risk measures defined on LΨ (Ω ,F ,P) and their robust representation are of

interest in mathematical finance too. Delbaen has recently proved that a risk measure
defined on L

∞(Ω ,F ,P) finitely extends to an Orlicz space if, and only if, it verifies
the equivalent conditions of Theorem 10.64; see [43, Sect. 4.16]. Theorem 10.64 is
extended to Orlicz spaces in [119, Theorem 1].

Theorem 10.65 (Lebesgue risk measures in Orlicz spaces). Let Ψ be a Young
function with finite conjugate Ψ∗ and let

α : (LΨ (Ω ,F ,P))∗ →R∪{+∞}

be a σ((LΨ )∗,LΨ )-lower semicontinuous penalty function representing a finite
monetary risk measure ρ as

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y)}.

The following are equivalent:

(i) For each c ∈ R, α−1((−∞,c]) is a weakly compact subset of MΨ∗
(Ω ,F ,P).

(ii) For every X ∈ L
Ψ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y )}

is attained.
(iii) ρ is order sequentially continuous.

Let us notice that order sequential continuity for a map ρ in L
Ψ is equivalent to

having

lim
n

ρ(Xn) = ρ(X)

whenever (Xn) is a sequence in LΨ a.s. convergent to X and bounded by some
Z ∈ LΨ , i.e., |Xn| ≤ Z for all n ∈ N. For that reason it is also said that a map
ρ : LΨ → (−∞,+∞] verifies the Lebesgue property whenever it is sequentially
order continuous. Orlicz spaces provide a general framework of Banach lattices
for applications in mathematical finance, for a general picture see [18, 19, 38].



212 B. Cascales et al.

Noncoercive growing conditions for penalty functions in the Orlicz case have been
studied in [38]. More precisely, let us recall that a Young function Φ verifies the Δ2

condition if there exist t0 > 0 and K > 0 such that for every t > t0

Φ(2t)≤ KΦ(t).

In addition, the Orlicz heart MΨ is the Morse subspace of all X ∈ LΨ such that for
every β > 0

eP[Ψ(β X)]<+∞.

In [38, Theorem 4.5] it is proved that a risk measure ρ , defined by a penalty function
α , is finite on the Morse subspace MΨ ⊂ LΨ if, and only if, α satisfies the growing
condition

α(Y )≥ a+ b‖Y‖Ψ∗

for all Y ∈ L
Ψ ∗

, and fixed numbers a,b with b > 0. Theorem 10.60 can be applied
for f = ρ∗ because the spaces involved in the representation formulas have w∗-
sequentially compact dual balls.

When Ψ is a Young function such that either Ψ or its conjugate verify the Δ2

condition we have the following result for the risk measures studied by Cheredito
and Li in [38]:

Corollary 10.66 ([119], Corollaries 6 and 7). Let Ψ be a Young with finite
conjugate Ψ ∗ and such that either Ψ or Ψ∗ verify the Δ2 condition. Let ρ :
L

Ψ (Ω ,F ,P)→ R be a finite convex risk measure with the Fatou property, and

ρ∗ : LΨ∗
(Ω ,F ,P)→ R∪{+∞}

its Fenchel–Legendre conjugate defined on the dual space. The following are
equivalent:

(i) For every c∈R, (ρ∗)−1((−∞,c]) is a weakly compact subset ofMΨ ∗
(Ω ,F ,P).

(ii) For every X ∈ L
Ψ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈(MΨ∗

)+,e(Y )=1

{−E[X ·Y ]−ρ∗(−Y )}

is attained.
(iii) ρ is sequentially order continuous.
(iv) limn ρ(Xn) = ρ(X) whenever Xn ↗ X in L

Ψ .
(v) dom(ρ∗)⊂M

Ψ∗
.

We conclude this section with the following question:

Question 10.67. Does Corollary 10.63 remain valid in absence of symmetry?
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