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Preface

In the week of May 16-20, 2011, the workshop Computational and Analytical
Mathematics (also known as JonFest) was held at the IRMACS Centre at Simon
Fraser University in honour of Jonathan Michael Borwein’s 60th birthday. It brought
together nearly 100 experts from 14 countries.

Jon Borwein is one of the most productive Canadian researchers ever. His
research interests are broad, ranging from analysis, computational mathematics, and
optimization to experimental mathematics and number theory. He has authored or
co-authored more than a dozen books and more than 300 papers.

Those who have had the fortune of collaborating with him as students or
colleagues will testify to his immense knowledge, technical mastery, and deep
intuition. He has been altering the life trajectories of many of his collaborators
significantly and sometimes dramatically. His passion and relentless pursuit for
useful and beautiful mathematics are extraordinary; the way he inspires and brings
out the best in his students and collaborators is Steve Jobs-like!

This book brings together 31 carefully refereed research and review papers in
the broad areas of Jon Borwein’s interests. Most papers in this volume grew out of
talks delivered at JonFest; however, some contributions are from experts who were
unable to attend. Very sadly, one of the contributors, Richard Crandall, passed away
in December 2012, before this book went into production.

We believe that the reader will find this book to be a delightful and valuable
state-of-the-art account on some fascinating areas of Computational and Analytical
Mathematics, ranging from Cantor fractals and strongly normal numbers to various
algorithms in optimization and fixed point theory.

The editors thank the sponsors of JonFest—Interdisciplinary Research in the
Mathematical and Computational Sciences (IRMACS) Centre at Simon Fraser Uni-
versity (SFU), Australian Mathematical Sciences Institute (AMSI), Mathematics of
Information Technology and Complex Systems (MITACS), Pacific Institute for the
Mathematical Sciences (PIMS), Fields Institute, and the Priority Research Centre
for Computer-Assisted Research Mathematics and its Applications (CARMA )—for
their financial and logistical support in hosting the workshop, and Pam Borghard



vi Preface

and Veselin Jungic for their “on-site” help in the preparation and realization of the
workshop at the IRMACS Centre.

We are very grateful to Dr. Hung Phan for his hard work and great help in the
preparation of this volume which as a result not only is beautifully typeset but also
exhibits a consistent structure. We also thank Ms. Elizabeth Loew from Springer for
her help guiding this volume through production.

Finally, we thank the hardworking and dedicated referees who contributed
crucially to the quality of this volume through their constructive and insightful

reviews.
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Chapter 1
Normal Numbers and Pseudorandom
Generators

David H. Bailey and Jonathan M. Borwein

Abstract For an integer b > 2 a real number o is b-normal if, for all m > 0, every
m-long string of digits in the base-b expansion of o appears, in the limit, with
frequency 5~™. Although almost all reals in [0, 1] are b-normal for every b, it has
been rather difficult to exhibit explicit examples. No results whatsoever are known,
one way or the other, for the class of “natural” mathematical constants, such as
7, e, V2 and log2. In this paper, we summarize some previous normality results for
a certain class of explicit reals and then show that a specific member of this class,
while provably 2-normal, is provably not 6-normal. We then show that a practical
and reasonably effective pseudorandom number generator can be defined based on
the binary digits of this constant and conclude by sketching out some directions for
further research.

Key words: Normal numbers ¢ Stoneham numbers ¢ Pseudorandom number
generators
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2 D.H. Bailey and J.M. Borwein
1.1 Introduction

For an integer b > 2 we say that a real number « is b-normal (or normal base b)
if, for all m > 0, every m-long string of digits in the base-b expansion of ¢ appears,
in the limit, with frequency b~ or, in other words, with exactly the frequency one
would expect if the digits appeared completely “at random.” It follows from basic
probability theory that, for any integer b > 2, almost all reals in the interval (0, 1)
are b-normal. What’s more, almost all reals in the unit interval are simultaneously
b-normal for all integers b > 2.

Yet identifying even a single explicitly given real number that is b-normal for
some b has proven frustratingly difficult. The first constant proven 10-normal was
the Champernowne constant [7], namely 0.12345678910111213..., produced by
concatenating the natural numbers in decimal format. This was extended to base-b
normality (for base-b versions of the Champernowne constant). In 1946, Copeland
and Erdos established that the concatenation of primes 0.23571113171923... and
also the concatenation of composites 0.46891012141516. . ., among others, are also
10-normal [8]. In general they proved:

Theorem 1.1 ([8]). Ifai,as,--- is an increasing sequence of integers such that for
every 0 < 1 the number of a’s up to N exceeds N° provided N is sufficiently large,
then the infinite decimal

O.a1a2a3 ce

is normal with respect to the base B in which these integers are expressed.

This clearly applies to the primes of the form ak + ¢ with a and c relatively prime
in any given base and to the integers which are the sum of two squares (since every
prime of the form 4k + 1 is included).

Some related results were established by Schmidt, including the following [15].
Write p ~ g if there are positive integers r and s such that p” = ¢°. Then

Theorem 1.2. If p ~ g, then any real number that is p-normal is also g-normal.
However, if p o q, then there are uncountably many p-normal reals that are not
g-normal.

In a recent survey, Queffelec [14] described the above result and also presented the
following, which he ascribed to Korobov:

k
Theorem 1.3. Numbers of the form ka’qu’pz , Where p and q are relatively
prime, are q-normal.

Nonetheless, we are still completely in the dark as to the b-normality of “natural”
constants of mathematics. Borel was the first to conjecture that all irrational
algebraic numbers are b-normal for every integer b > 2. Yet not a single instance of
this conjecture has ever been proven. We do not even know for certain whether or not
the limiting frequency of zeroes in the binary expansion of v/2 is one-half, although
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numerous large statistical analyses have failed to show any significant deviation
from statistical normals. The same can be said for 7 and other basic constants, such
as e,log2, and {(3). Clearly any result (one way or the other) for one of these
constants would be a mathematical development of the first magnitude.

In the case of an algebraic number of degree d, it is now known that the number
of ones in the binary expansion through bit position n must exceed Cn'/¢ for a
positive number C (depending on the constant) and all sufficiently large n [4].
In particular, there must be at least /7 ones in the first n bits of v/2. But this is clearly
a relatively weak result, because, barring an enormous mathematical surprise, the
correct limiting frequency of ones in the binary expansion of v/2 is one-half.

In this paper, we briefly summarize some previously published normality results
for a certain class of real constants, prove an interesting non-normality result, and
then demonstrate how these normality results can be parlayed into producing a
practical pseudorandom number generator. This generator can be implemented quite
easily, is reasonably fast-running, and, in initial tests, seems to produce results of
satisfactory “randomness.” In addition, we show how all of this suggests a future
direction to the long sought proof of normality for “natural” mathematical constants.

1.2 Normality of a Class of Generalized BBP-Type Constants

In [1], Richard Crandall and one of the present authors (Bailey) analyzed the class
of constants

— 1
@elr) = 2

(1.1)

where the integers b > 1 and ¢ > 1 are co-prime, where r is any real in [0, 1], and
where ry is the kth binary digit of r. These constants qualify as “generalized BBP-
type constants,” because the nth base-b digit can be calculated directly, without
needing to compute any of the first n — 1 digits, by a simple and efficient algorithm
similar to that first applied to 7 and log?2 in the paper by Bailey et al. [3].

Bailey and Crandall were able to establish:

Theorem 1.4. Every real constant of the class (1.1) is b-normal.

Subsequently, Bailey and Misieurwicz were able to establish this same result
(at least in a simple demonstrative case) via a much simpler argument, utilizing
a “hot spot” lemma proven by ergodic theory techniques [2] (see also [5, p. 155]).

Fix integers b and c satisfying the above criteria, and let r and s be any reals
in [0,1]. If r # s, then ot o(r) # 4 c(s), so that the class Ay, = {0 (r), 0 <
r < 1} has uncountably many distinct elements (this was shown by Bailey and
Crandall). However, it is not known whether the class A, . contains any constants of
mathematical significance, such as 7 or e.
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In this paper we will focus on the constant o 3(0), which we will denote as o
for short:
|
o= 0p3(0) = —_—
2-,3( ) kgl 3k23k

= 0.0418836808315029850712528986245716824260967584654857 ... .10
= 0.0ABSE38F684BDA12F684BF35BA781948BOFCDEEOE06522C3F35B. .. 6.
(1.2)

Although its 2-normality follows from the results in either of the two papers
mentioned above [1, 2], this particular constant was first proved 2-normal by
Stoneham back in 1973 [16].

1.3 A Non-normality Result

It should be emphasized that just because a real constant is b-normal for some
integer b > 1, it does not follow that it is c-normal for any other integer c, except
in the case where b” = ¢’ for positive integers r and s (see Theorem 1.2). In other
words, if a constant is 8-normal, it is clearly 16-normal (since base-16 digits can be
written as four binary digits and base-8 digits can be written as three binary digits),
but nothing can be said a priori about that constant’s normality in any base that is
not a power of two.

As mentioned above, there are very few normality results, and none is known
for well-known constants of mathematics. But the same can be said about specific
non-normality results, provided we exclude rationals (which repeat and thus are
not normal) and examples, such as 1.0101000100000001... (i.e., ones appear in
position 2™), that are constructed specifically not to be normal but otherwise have
relatively little mathematical interest (although Liouville’s class of transcendental
numbers is an exception). In particular, none of the well-known “natural” constants
of mathematics have ever been proven not to be b-normal for some b. Indeed, such
a result, say for 7, log2, or v/2, would be even more interesting than a proof of
normality for that constant.

In that vein, here is an intriguing result regarding the o constant mentioned
above:

Theorem 1.5. « is not 6-normal.

1.3.1 Discussion

Let the notation {-} denote fractional part. Note that the base-6 digits immediately
following position #n in the base-6 expansion of & can be obtained by computing



1 Normal Numbers and Pseudorandom Generators 5

Table 1.1 Base-6 expansion of o

0

0130140430003334251130502130000001243555045432233011500243525320551352
3435410104300000000000000005141130054040555455303144250433435101241345
2351125142125134505503545015053522052044340452151505102411552500425130
0511244540010441311500324203032130000000000000000000000000000000000000
0000014212034311121452013525445342113412240220525301054204423552411055
4150155204350414555400310145303033532002534340401301240104453254343502
1420204324150255551010040433000455441145010313314511510144514123443342
3412400551313335045423530553151153501533452435450250055521453054234342
1530350125024205404135451231323245353031534552304115020154242121145201
5422225343403404505301233255344404431033324453321414150142334545424124
3203125340050134150245514404300000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000313350542444431111055534141052014540213412313001424333133115

{6" o}, which can be written as follows:

|logs n] o0
{6"0} = { > 3"’"2"3'”} +{ S 3"’"2"3'”}. (1.3)

m=1 m=|logzn|+1

Now note that the first portion of this expression is zero, since all terms of the
summation are integers. That leaves the second expression.

Consider the case when n = 3™, where m > 1 is an integer, and examine just the
first term of the second summation. We see that this expression is

33" k33 g1 23 (343" 3l (1.4)
We can generously bound the sum of all terms of the second summation by 1.00001

times this amount, for all m > 1, and by many times closer to unity for all m > 2.
Thus we have

3Wl
(6"} ~ (3) (1.5)
3m+1 :

and this approximation is as accurate as one wishes (in ratio) for all sufficiently
large m.

Given the very small size of the expression (3/4)%" /3"*! for even moderate-
sized m, it is clear the base-6 expansion will have very long stretches of zeroes
beginning at positions 3 4+ 1. For example, by explicitly computing ¢ to high
precision, one can produce the counts of consecutive zeroes Z,, that immediately
follow position 3™ in the base-6 expansion of a—see Tables 1.1 and 1.2.
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Table 1.2 Counts Z,, of

: m 3m Zm

consecutive zeroes

immediately following 1 3 1

position 3" in base-6 2 9 3

expansion of o 3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166
10 59049 9487

In total, there are 14,256 zeroes in these ten segments, which, including the
last segment, span the first 59,049 49,487 = 68,536 base-6 digits of ¢. In this
tabulation we have of course ignored the many zeroes in the large “random”
segments of the expansion. Thus the fraction of the first 68,536 digits that are zero
is at least 14,256,/68,536 = 0.20800747 ..., which is significantly more than the
expected value 1/6 = 0.166666.. ..

A more careful analysis shows that this limiting ratio

Zmzlzm 3 .
2 1+logys(4/3)
1

m
m—yeo 3M 7

= 5 logy(4/3) = 0.207518749.... (1.7)

Complete details are given in the appendix. Also included in the appendix is a proof
of this generalization of Theorem 1.5:

Theorem 1.6. Given co-prime integers b > 2 and ¢ > 2, the constant

e = 3 1/(p)

k>1

is not bc-normal.

These results thus constitute simple and concrete counter-examples to the question
of whether normality in one base b implies normality in another base ¢ (except in
simple cases covered by the first part of Theorem 1.2). In particular, these results
are explicit examples of part two of Theorem 1.2.

It is worth pointing out that Cassels proved that for almost all real x in the unit
interval, x is 2-normal but not 3-normal, although he did not present any explicit
example of such x [6]. Above we have presented an explicit real that is 2-normal
but not 6-normal, which is almost but not quite such an example. Some related
discussion is given in [13,15,17].
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1.4 Alpha as a Pseudorandom Generator

The normality result for o¢ (Theorem 1.4) suggests that the binary digits of «
(certainly not its base-6 digits) could be used to fashion a practical pseudorandom
number generator. Indeed, this was suggested in [1] and [5, p. 169-170]. We will
show here how this can be done. The result is a generator that is both efficient on
single-processor systems and also well suited for parallel processing: each processor
can quickly and independently calculate the starting seed for its section of the
resulting global sequence, which global sequence is the same as the sequence
produced on a single-processor system (subject to some reasonable conditions).
However, it is acknowledged that before such a generator is used in a “practical”
application, it must be subjected to significant checking and testing. It should also
be noted that just because a number is normal does not guarantee its suitability for
pseudorandom generation (e.g., the convergence of the limiting frequencies might
be very slow), although this particular scheme does appear to be reasonably well
behaved.

1.4.1 Background

Define x, to be the binary expansion of ¢ starting with position n + 1. Note that
xn = {2"0}, where {-} means the fractional part of the argument. First consider the
case n = 3" for some integer m. In this case one can write

- m H3m-3k = o33k
wm={2"a = (Xt X (1.8)

k=1 k=m+1

Observe that the “tail” term (i.e., the second term) in this expression is exceedingly
small once m is even moderately large—for example, when m = 10, this term is only
about 10733331 This term will hereafter be abbreviated as &,,. By expanding the first
term, one obtains

(3m,123m73 + 3##223'"*32 443 23m73m71 + l) mod 3™

3m
+&n. (1.9

X3m =

The numerator is taken modulo 3™, since only the remainder when divided by
3™ is of interest when finding the fractional part. By Euler’s totient theorem, the
next-to-last term in the numerator, when reduced modulo 3™, is three. Similarly, it
can be seen that every other term in the numerator, when reduced modulo 3", is
equivalent to itself without the power-of-two part. In other words, the expression
above reduces to
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(3m71+3m72+...+3+1)m0d3’”+

Xzm = 3m 0 (1.10)
3m—1 3m/2
= > 3m & = %—i—sm. (1.11)

(The authors are indebted to Helaman Ferguson for a key idea in this proof.) More
generally, for n that is not a power of three, one can write

on=3"3m /> d 3™
( | émJ)mo e,

(1.12)

Xn =
where m is chosen so that 3" is the largest power of three less than or equal to n.

In this case, one can be assured that € < 1073? provided n is not within 100 of any
power of three.

1.4.2 Algorithm

With this explicit expression in mind, an algorithm can be given for generating
pseudorandom deviates, in the form of a sequence of IEEE 64-bit floating-point
numbers in (0,1). These deviates contain, in their mantissas, successive 53-bit
segments of the binary expansion of o, beginning at some given starting position.
1.4.2.1 Initialization

First select a starting index a in the range

33 £ 100 = 5559060566555623 < a < 2% = 9007199254740992. (1.13)

The value of a can be thought of as the “seed” of the generator. Then calculate

20 =237 .13% /2] mod 3%. (1.14)

1.4.2.2 Generate Iterates
Successive iterates of the generator can then be recursively computed by iterating
2z = 2%z mod 3% (1.15)

and then returning the values z;33, which are 64-bit IEEE floating-point results in
the unit interval.
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1.4.2.3 Arithmetic

Several of the operations used in this scheme must be done with an accuracy of
at least 106 mantissa bits. This can be done using “double-double” arithmetic.
A double-double datum is represented by a pair of IEEE double-precision floating-
point numbers: the first word is the closest 64-bit IEEE value to the double-double
value, and the second word is the difference. Algorithms for performing basic
double-double arithmetic algorithms, using only rounded 64-bit IEEE floating-point
operations, are given in [9] or [5, p. 218-220]. These have been implemented in C++
and Fortran-90 double-double computation software packages, which include both
basic-level arithmetic functions as well as common algebraic and transcendental
functions, available from the first author’s web site: http://crd.lbl.gov/~dhbailey/
mpdist.

On the other hand, one could also use 128-bit integer or 128-bit IEEE floating-
point arithmetic to do these operations, if these operations are available in hardware
(software implementations tend to be relatively slow).

1.4.2.4 Implementation Details

The operation 23 . z_; mod 333 can be performed efficiently as follows: (1)
multiply 23 by z;_; (double times double yielding a double-double or 128-bit
result); (2) multiply the result of step 1 (just the high-order portion will do) by
3733 and take the greatest integer; (3) multiply the result of step 2 by 3** (double
times double yielding a double-double or 128-bit result); and (4) subtract the result
of step 3 from the result of step 1 (using double-double or 128-bit arithmetic). It is
possible that the result of step 2 might be one unit too high, or one too low, so that
the result of step 4 may need to be adjusted accordingly: if it is negative, add 33*; if
it exceeds 333, subtract 333.

1.4.2.5 Exponentiation

The exponentiation required in the initialization may be done efficiently using
the binary algorithm for exponentiation. This is merely the formal name for the
observation that exponentiation can be economically performed by means of a
factorization based on the binary expansion of the exponent. For example, one can
write 37 = ((((3%)?)?)?) - 3, thus producing the result in only five multiplications,
instead of the usual 16. According to Knuth, this technique dates back at least
to 200 BCE [10, p. 461]. In this application, the exponentiation result is required
modulo a positive integer k. This can be done very efficiently by reducing modulo &
the intermediate multiplication result at each step of the exponentiation algorithm.
A formal statement of this scheme is as follows:


http://crd.lbl.gov/~{}dhbailey/mpdist
http://crd.lbl.gov/~{}dhbailey/mpdist
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To compute r = b"* mod k, where r,b,n, and k are positive integers, first set ¢ to be
the largest power of two such that # < n, and set r = 1. Then
A:ifn>tthenr<+brmodk; n<+n—t;, endif
t+1/2
ift>1thenr< > modk; gotoA; endif

Note that the above algorithm is performed entirely with positive integers that do
not exceed k? in size.

A full implementation of the entire pseudorandom scheme, which runs on any
computer system with IEEE 64-bit arithmetic and a Fortran-90 compiler, can be
obtained from the first author’s web site: http://crd.Ibl.gov/~dhbailey/mpdist. The
code is straightforward and can easily be converted to other languages, such as C or
Java.

1.4.3 Analysis

It can be seen from the above that the recursive sequence generating iterates, which
contain successive 53-long segments of binary digits from the expansion of ¢,
is nothing more than a special type of linear congruential pseudorandom number
generator, a class that has been studied extensively by computer scientists and others
[10, p. 10-26]. In other words, the binary digits of o are “locally” (within a range
of indices spanned by successive powers of three) given by a linear congruential
generator, with a modulus that is a large power of three.

This observation makes it an easy matter to determine the period P of the
resulting generator [10, p. 17]: as specified above, P = 2-33% ~3.706 - 10'3. Note,
however, that the binary digits of the resulting sequence will match that of o only
if [a,a + 53n], where a is the starting index and 7 is the number of floating-point
results generated, does not include a power of three or come within 100 of a power
of three. If one can utilize 128-bit integer arithmetic, one could use a larger modulus,
say 3%, which would yield a period that is 2,187 times larger.

This scheme has one significant advantage over conventional linear congruential
generators that use a power-of-two modulus: it cleanly avoids anomalies that
sometimes arise in large scientific codes, when arrays with dimensions that are large
powers of two are filled with pseudorandom data and then accessed both by row and
by column (or plane), or which otherwise are accessed by large power-of-two data
strides (as in a power-of-two FFT). This is because the pseudorandom data sequence
accessed in this manner has a reduced period and thus may be not as “random” as
desired. The usage of a modulus that is a large power of three is immune to these
problems. The authors are not aware of any major scientific calculation that involves
data access strides that are large powers of three.


http://crd.lbl.gov/~{}dhbailey/mpdist
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1.4.4 Performance

As mentioned above, a Fortran-90 implementation of the scheme described above is
available on the first author’s web site. For comparison purposes, the conventional
linear congruential generator

2 = 5.z, | mod 2% (1.16)

was implemented using the same software and programming style. These two
codes were then tested on a 2.8 GHz Apple MacPro workstation, using the gfortran
compiler (and running only on one of the eight cores). The program implementing
the normal-number-based scheme required 3.553s to generate an array of 100
million double-precision deviates. The conventional linear congruential system
required essentially the same time.

By the way, the above program also is self-checking, in that it computes 100
million iterates using (1.15), then checks that the same value is produced by jumping
ahead 100 million steps, by using formula (1.14). The present authors have used this
program to check computational and data integrity on various computer systems.
In at least one instance, the program disclosed intermittent memory errors.

1.4.5 Parallel Implementation

The scheme described above is very well suited for parallel processing, a trait not
shared by a number of other commonly used pseudorandom schemes. Consider, for
example, an implementation of the above pseudorandom scheme on a distributed
memory system. Suppose that  is the processor number and p is the total number of
processors used. Assume that a total of n pseudorandom deviates are to be generated,
and assume that n is evenly divisible by p. Then each processor generates n/p
results, with processor p using as a starting value a + nk/ p. Note that each processor
can quickly and independently generate its own value of zy by using formula (1.14).

In this way, the collective sequence generated by all processors coincides
precisely with the sequence that is generated on a single-processor system. This
feature is crucially important in parallel processing; permitting one can verify that a
parallel program produces the same answers (to within reasonable numerical round-
off error) as the single-processor version. It is also important, for the same reason,
to permit one to compare results, say, between a run on 64 CPUs of a given system
with one on 128 CPUs.

This scheme has been used to generate data for the fast Fourier transform (FFT)
benchmark that is part of the benchmark suite for the high productivity computing
systems (HPCS) program, funded by the US Defense Advanced Research Projects
Agency (DARPA) and the US Department of Energy.
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1.4.6 Variations

Some initial tests, conducted by Nelson Beebe of the University of Utah, found that
if by chance one iterate is rather small, it will include as its trailing bits a few of
the leading bits of the next result (this is a natural consequence of the construction).
While the authors are not aware of any application for which this feature would have
significant impact, it can be virtually eliminated by advancing the sequence by more
than 53 bits—say by 64 bits—from iterate to iterate.

This can be done by simply altering formula (1.15) above to read

% = 2%z mod 3% (1.17)

This can be implemented as is, if one is using 128-bit integer or 128-bit IEEE
floating-point arithmetic, but does not work correctly if one is using double-double
arithmetic, because the product 204 -Zxk—1 could exceed 2106 \which is the maximum
size of an integer that can be represented exactly as a double-double operand. When
using double-double arithmetic, one can compute each iterate using the following:

% =21 (2% 7 mod 3%) mod 33 (1.18)

Tests by the present authors, advancing 64 bits per result, showed no significant
correlation to the leading bits of the next iterate. And, of course, the additional
“skip” here could be more than 11; it could be any value up to 53.

Finally, there is no reason that other constants from this class could not
also be used in a similar way. For example, a very similar generator could be
constructed based on o 5. One could also construct pseudorandom generators based
on constants that are 3-normal or 5-normal, although one would lose the property
that successive digits are precisely retained in consecutive computer words (which
are based on binary arithmetic). The specific choice of multiplier and modulus can
be made based on application requirements and the type of high-precision arithmetic
that is available (e.g., double-double or 128-bit integer).

However, as we noted above, it is important to recognize that any proposed
pseudorandom number generator, including this one, must be subjected to lengthy
and rigorous testing [10—12]. Along this line, as noted above, generators of the
general linear congruential family have problems, and it is not yet certain whether
some variation or combination of generators in this class can be fashioned into a
robust, reliable scheme that is both efficient and practical. But we do believe that
these schemes are worthy of further study.

1.5 Conclusion and Directions for Further Work

In this paper, we have shown how the constant @ = ¥, 1/(3"2%), which is
provably 2-normal, is not 6-normal, as well as some generalizations. These results
thus constitute simple and concrete counter-examples to the question of whether
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normality in one base b implies normality in another base ¢ (except in simple cases
covered by the first part of Theorem 1.2). In particular, these results are explicit
examples of the second part of Theorem 1.2. We have also shown how a practical
pseudorandom number generator can be constructed based on the binary digits of ¢,
where each generated word consists of successive sections of its binary expansion.

Perhaps the most significant implication of the algorithm we have presented is
not for its practical utility but instead for the insight it provides to the fundamental
question of normality. In particular, the pseudorandom number construction implies
that the digit expansions of one particular class of provably normal numbers consist
of successive segments of exponentially growing length, and within each segment
the digits are given by a specific type of linear congruential generator, with a period
that also grows exponentially. From this perspective, the 2-normality of ¢ is entirely
plausible.

Now consider what this implies, say, for the normality of a constant such as log?2.
First recall the classical formula

=

log2 = z

n=1

. 1.1
peT (1.19)

Thus, following the well-known BBP approach (see [3] or [5, Chap. 4]), we can

write
d 2d=n mod > pd-n
d _
{2%log2} = { > }—f—{ > - } (1.20)

n=1 n n=d+1

This leads immediately to the BBP algorithm for computing the binary digits of log2
beginning after position d, since each term of the first summation can be computed
very rapidly by means of the binary algorithm for exponentiation, and the second
summation quickly converges.

But we can also view (1.20) for its insight on normality. Note that the binary
expansion of log?2 following position d can be seen as a sum of normalized linear
congruential pseudorandom number generators, with periods (at least in some
terms) that grow steadily with # (since the period of a linear congruential generator
depends on the factorization of the modulus). But with increasing n, at least some
terms will have prime moduli, resulting in relatively long periods. In fact, some
will be primitive primes modulo two, which give the maximal period (n — 1)/2.
Note that the sum of normalized linear congruential generators can be rewritten as
a single linear congruential generator. Thus it is plausible that the period of the sum
of generators in the first portion of (1.20) increases without bound, resulting in a
highly “random” expansion (although all of this needs to be worked out in detail).

We have attempted to develop these notions further, but so far we have not made a
great deal of progress. But, at the least, this approach may be effective for constants
such as



14 D.H. Bailey and J.M. Borwein

= 1
B=> — (1.21)

new

where W is the set of primitive primes modulo two, which as mentioned above give
rise to maximal periods when used as a linear congruential modulus. Only time
will tell.
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Appendix

Proof. o 3 is not 6-normal.

Let O, be the base-6 expansion of a3 immediately following position 3" (i.e.,
after the “decimal” point has been shifted to the right 3" digits). We can write

On = 63m052,3 mod 1

m oo
— <2 33’"k23’"3k> mod 1+ Y 3% #¥"3 (1.22)

k=1 k=m+1

The first portion of this expression is zero, since all terms in the summation are
integers. The small second portion is very accurately approximated by the first term
of the series, namely (3/4)%" /3”1 In fact, for all m > 1,

3/4"

3m+1

M<Qm<

s (142-1079). (1.23)

Let Z,, = [logg 1/0pn] be the number of zeroes in the base-6 expansion of o that
immediately follow position 3. Then for all m > 1, (1.23) can be rewritten

4
3"loge (3) + (m+1)logg3 —2
4
<Zn < 3"logg (5) + (m+1)logg 3. (1.24)

Now let F,, be the fraction of zeroes in the base-6 expansion of o up to position 3" +
Z,, (i.e., up to the end of the block of zeroes that immediately follows position 3™).
Clearly

F, > k=12

n> e (1.25)
m
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since the numerator only counts zeroes in the long stretches. The summation in the
numerator satisfies, for all sufficiently large m,

& 3 1 4 m(m—+3)
Zr>=(3"—= )1 - ——logc3—2
kg,l k 2( 3> 0g6(3)+ ) 0g¢ m

3 4\ 1 4

Now given any € > 0, we can write, for all sufficiently large m,

5 o 27 3"logg () — 5loge (3) —2m
"7 3m g 3mlog (%) + (m+ 1) logg 3

3Wl
1 logg (§) + 2Rt

3 4 -
Z 2 10g6 (32 € Z llogz (ﬂ) —28, (127)
1+logg (3)+¢ 3

But B = 4log,(4/3) (which has numerical value 0.2075187496...) is clearly
greater than 1/6, since (4/3)® = 64/27 > 2. This means that infinitely often
(namely, whenever n = 3" 4 Z,,) the fraction of zeroes in the base-6 expansion of o
up to position n exceeds 3(1/6+ ) > 1/6. Thus « is not 6-normal. |

. . . k
Proof. Given co-prime integers b > 2 and ¢ > 2, the constant 0, = Y1 1 / (ckb‘ )
is not bc-normal.

Let 0, (b, c) be the base-bc expansion of @, . immediately following position ¢™.
Then

On(b,c) = (be)" oy, mod 1

mn m k hind m m
— (SR mod 14+ Y R (1.28)
k=1 k=m+1
As above, the first portion of this expression is zero, since all terms in the summation
are integers, and the second portion is very accurately approximated by the first term
of the series, namely [ﬁ]“m /™1, In fact, for any choice of b and ¢ as above,

and forallm>1,

1 c " 1 ¢ "
s [m} < Om(b,c) < W{ ; } A(1+41/10). (1.29)
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Let Zy,(b,c) = |logp. 1/Qm(b,c)] be the number of zeroes that immediately follow
position ¢”*. Then for all m > 1, (1.29) can be rewritten as

b(c—1)

] + (m+1)logy.c—2

b(c—1)

" 10gbc |:

<Zpu(b,c) < "log, [ } + (m+1)log,.c. (1.30)

Now let F;,(b,c) be the fraction of zeroes up to position ¢ + Z,,(b,c). Clearly

z;cnzl Zx (b7 C)

E, (b ===
m( 7C) > Cm+Zm(b,C)7

(1.31)

since the numerator only counts zeroes in the long stretches. The summation in the
numerator of F,, (b, c) satisfies

& c 1 b(c—1)] m(m+3)
Zi(b " — )1 I -2
]Z‘l k( ,C)> c_1 <C C> Ogbc[ c :|+ ) O08pc € m

¢l b(c—1) 1 b(c—1)
>C_1logbc[ " ]—C_llogbc[ " }—Zm. (1.32)

Thus given any € > 0, we can write, for all sufficiently large m,

m+-1 b(c—1 b(c—1
C_logbc[ (CC ):| _ﬁlogbc[ (CC ):| —2m

Fu(be) > o (1.33)
c’"—i—c’"logbc( (C; )) + (m+1)log,c
< log,,. _b(cgl)_ — clm (ﬁ log,,, _b(cgl)_ —|—2m)
- b(e—1 1)log,,
1+10gbc[ (cc )} + (m+ C)mogbcc
[b(c—1
< log,,. (Cc )| _¢
= Thle—1) |
1 +logy, (LZ) +e
b(e—1
c logbc |:¥1|
> . —2¢
c—1 1+10gbc [b(cjl)]
— T(b,c) - 2e, (1.34)
where
c logbc [M}
T(b,c) = (1.35)

Tl 1+logy, {%—1)}

c
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To establish the desired result that T'(b,c) > 1/(bc), first note that

1 b(c—1 1 b
T(b,C) > Elogbc |:¥:| > Elogbc <§) . (136)

Raise bc to the power of the right-hand side and also to the power 1/(bc). Then it
suffices to demonstrate that

> {(bc)l/“”)} g (1.37)

NS

The right-hand side is bounded above by (el/ ¢)? = 2.0870652286. ... Thus this
inequality is clearly satisfied whenever b > 5.

If we also presume that ¢ > 5, then by examining the middle of (1.36), it suffices
to demonstrate that

1. 4 1
Elogbcg > % (1.38)
or
4b 1/e\?
s > (e ) . (1.39)

But this is clearly satisfied whenever b > 3. For the case b = 2 and ¢ > 5, we can
write

2c—1 2c—1
T(b,¢) c 10g20[ (Cc )] IOgZC[ (Cc ):| (1.40)
c) = . .
) _ 2e—1 - )
c=1 1 4log,, {%} 1+logo2
so by similar reasoning it suffices to demonstrate that
2c—1 1+log 2
(Cc ) S (el/e) 7 1.61384928833.... (1.41)

But this is clearly satisfied whenever ¢ > 6.

The five remaining cases, namely (2,3),(2,5),(3,2),(3,4),(4,3), are easily
verified by explicitly computing numerical values of T (b, c) using (1.35). As it turns
out, the simple case that we worked out in detail above, namely b =2 and ¢ = 3, is
the worst case, in the sense that for all other (b, ¢), the fraction T'(b,c) exceeds the
natural frequency 1/(bc) by greater margins. [ |
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Chapter 2
New Demiclosedness Principles for (Firmly)
Nonexpansive Operators

Heinz H. Bauschke

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The demiclosedness principle is one of the key tools in nonlinear analysis
and fixed point theory. In this note, this principle is extended and made more flexible
by two mutually orthogonal affine subspaces. Versions for finitely many (firmly)
nonexpansive operators are presented. As an application, a simple proof of the weak
convergence of the Douglas-Rachford splitting algorithm is provided.

Key words: Demiclosedness principle * Douglas-Rachford algorithm ¢ Firmly

nonexpansive mapping ¢ Maximal monotone operator * Nonexpansive mapping
* Proximal algorithm ¢ Resolvent ¢ Splitting algorithm
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2.1 Introduction

Throughout this paper, we assume that

X is a real Hilbert space with inner product (-,-) and induced norm || - |.  (2.1)
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We shall assume basic notation and results from fixed point theory and from
monotone operator theory; see, e.g., [2, 4, 8, 15, 16, 20-22, 24]. The graph of
a maximally monotone operator A: X = X is denoted by graA, its resolvent
(A+1d)~! by Ju, its set of zeros by zerA = A~!(0), and we set Ry = 2J4 —Id,
where Id is the identity operator. Weak convergence is indicated by —.

Let T: X — X. Recall that T is firmly nonexpansive if

(WreX)(Wy €X) | Tx—=Ty|*+[|(1d=T)x— (1d=T)y|* < [lx—y|*.  (2:2)

It is well know that T is firmly nonexpansive if and only if R = 2T —1Id is
nonexpansive, i.e.,

(VxeX)(vyeX) |[[Rx—Ry| <|x—yl. (2.3)

Clearly, every firmly nonexpansive operator is nonexpansive. Building on work
by Minty [19], Eckstein and Bertsekas [13] clearly linked firmly nonexpansive
mappings to maximally monotone operators—the key result is the following: T is
firmly nonexpansive if and only if T = J4 for some maximally monotone operator
A (namely, T—! — Id). This implies also a correspondence between maximally
monotone operators and nonexpansive mappings (see [14, 17]). Thus, finding a
zero of A is equivalent to finding a fixed point of J4. Furthermore, the graph of
any maximally monotone operator is beautifully described by the associated Minty
parametrization:

graA = {(Jax,x — Jyx) [ x € X }. (2.4)

The most prominent example of firmly nonexpansive mappings are projectors,
i.e., resolvents of normal cone operators associated with nonempty closed convex
subsets of X. Despite being (firmly) nonexpansive and hence Lipschitz continuous,
even projectors do not interact well with the weak topology as was first observed by
Zarantonello [25]:

Example 2.1. Suppose that X = (;(N), set C = {x € X | ||x|| < 1}, and denote the
sequence of standard unit vectors in X by (e, ),en. Set (Vi € N) z, = e+ ¢,. Then

i — ey yet Pezp — \/%60 # eo = Pcep. (2.5)
The following classical demiclosedness principle dates back to the 1960s and work

by Browder [6]. It comes somewhat as a surprise in view of the previous example.

Fact 2.2 (Demiclosedness principle). Let S be a nonempty closed convex subset
of X, let T: S — X be nonexpansive, let (z,),en be a sequence in S converging
weakly to z, and suppose that z, — Tz, — x. Thenz —Tz=x.
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Remark 2.3. One might inquire whether or not the following even less restrictive
demiclosedness principle holds:

=z } L - Tz=x (2.6)
zn—Tzy = x

However, this generalization is false: indeed, suppose that X, C, and (z,)nen are
as in Example 2.1, and set T = Id —P¢, which is (even firmly) nonexpansive. Then
zn — egand z, — Tz, = Pezy, — %eo yet eg — Teg = Peeg = eg # \%eo.

The aim of this note is to provide new versions of the demiclosedness principle
and illustrate their usefulness. The remainder of this paper is organized as follows.
Section 2.2 presents new demiclosedness principles for one (firmly) nonexpansive
operator. Multi-operator versions are provided in Sect.2.3. The weak convergence
of the Douglas-Rachford algorithm is rederived with a very transparent proof in
Sect.2.4.

2.2 Demiclosedness Principles

Fact 2.4 (Brezis). (See [5, Proposition 2.5 on P. 27], [23, Lemma 4], or [2,
Corollary 20.49].) Let A: X = X be maximally monotone, let (x,u) € graA, and
let (x,, 4y )nen be a sequence in X x X such that (x,,,u,) — (x,u) and lim (x,,u,) <
(x,u). Then (x,,u,) — (x,u) and (x,u) € graA.

Theorem 2.5 (See also [2, Proposition 20.50]). Let A: X = X be maximally
monotone, let (x,u) € X x X, and let C and D be closed affine subspaces of X such
that D — D = (C — C)*. Furthermore, let (x,,u,)ncn be a sequence in graA such
that

(xp,un) = (x,u) and  (xn,un) — Poxp(xn,un) — (0,0). 2.7

Then (x,u) € (C x D)NgraA and (x,,u,) — (x,u).

Proof. Set V =C — C, which is a closed linear subspace. Since x, — Pcx,, — 0, we
have Pcx, — x and thus x € C. Likewise, u € D and hence

C=x+V and D=u+V". (2.8)
It follows that
Fc:z—=Pyz+Pyix and Pp:zw Pyiz+Pou. (2.9)

Therefore, since Py and P, 1 are weakly continuous,
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(Xnsun) = (PyXn~+ Py X, Pyitn + Py up) (2.10a)
= (Pyxn, Pyutn) + (Py1xn, Pyiuty) (2.10b)
= (PyXn,tn — Pyruy) + (X, — Pyxy, Pyiiy) (2.10¢)
= (Pyxp, un — (Ppun — Pyu)) (2.104d)

+ (xn — (Pcxn — Pyox), Pyouy) (2.10e)

= (PyXu, tn — Ppttn) + (Pyxn, Pyu) (2.10f)

+ (X0 — Pcxn, Pyoutn) + (Pyox, Pyiuy) (2.10g)

— (Pyx,Pyu) + (Pyox,Pyu) (2.10h)

= {(xu). (2.100)

The result now follows from Fact 2.4. ]

Remark 2.6. Theorem 2.5 generalizes [1, Theorem 2], which corresponds to the
case when C is a closed linear subspace and D = C*. A referee pointed out that
Theorem 2.5 may be obtained from [1, Theorem 2] by a translation argument.
However, the above proof of Theorem 2.5 is different and much simpler than the
proof of [1, Theorem 2].

Corollary 2.7 (Firm Nonexpansiveness Principle). Let F: X — X be firmly non-
expansive, let (zy)nen be a sequence in X such that (z,),en converges weakly to z €
X, and suppose that Fz,, — x € X and that C and D are closed affine subspaces of X
such that D —D = (C—C)*, Fz, — PcFz, — 0, and (z, — Fz,) — Pp(zu — Fz,,) — 0.
Thenx € C,z€x+D, andx=Fz.

Proof. Set A= F~! —1d so that J; = F. By (2.4), A is maximally monotone and

(xnvun)neN = (anazn —an)neN (2.1D)

is a sequence in graA that converges weakly to (x,z — x). Thus, by Theorem 2.5,
x€C,z—x€ D, and z— x € Ax. Therefore, z € x+ Ax,ie., x =Jyz=Fz. |

Corollary 2.8 (Nonexpansiveness Principle). Let T: X — X be nonexpansive, let
(zn)nen be a sequence in X such that z, — z, and suppose that Tz, — y and
that C and D are closed affine subspaces of X such that D—D = (C —C)*, z,+
Tzy—Pezyn—PcTzy, — 0, and z, — Tz, — Pozn — Pp(—Tz,) — 0. Then %Z—i— %y eC,
%Z— %yED, andy =Tz

Proof. SetF = % Id+%T, which is firmly nonexpansive. Then Fz,, — Lz+ %y =IX.

2
Since P¢ is affine, we get

Zn+ Tz —FPezn — PcTzy — 0 (2.12a)

& 2n+ Tzn— 2(5Pczn+ 3PcTz,) — 0 (2.12b)
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& 2n+Tzn—2Pc(3zn+3T20) = 0 (2.12¢)
& 2F 2z, — 2PcFz, — 0 (2.12d)
& Fz,— PcFz, — 0. (2.12¢)

Likewise, since z,, — Fz, =z, — %zn — %Tzn = %zn — %Tzn, we have

20— Tzn— Ppzn — Pp(—Tzx) — 0 (2.13a)
& 20— T2y —2(3Ppzn + $Pp(—Tz)) — 0 (2.13b)
& 2(zy— Fzy) —2Pp(3z0 + 3(=Tz4)) = 0 (2.13¢)
< 20— Fz,— Pp(zy — Fzy) — 0. (2.13d)

Thus, by Corollary 2.7, x € C, z € x+ D, and x = Fz, i.e,, %z—i— %y €C, z¢c %z—i—
Iy+D,and 3z+3y=Fz=1z+1Tzie, z+1yeC iz—LyeD,andy=Tz
[

Corollary 2.9 (Classical Demiclosedness Principle). Let S be a nonempty closed
convex subset of X, let T: S — X be nonexpansive, let (z,)nen be a sequence in S
converging weakly to z, and suppose that 7, — Tz, — x. Then z— Tz = x.

Proof. We may and do assume that S = X (otherwise, consider T o Ps instead of
T). Set y = z— x and note that Tz, — y. Now set C = X and D = {x/2}. Then
D-D={0}=X'=(X~-X)*=(D-D)*, 2y + Tz, — Pczn — PcTz, =0, and
zn—Tzy — Ppzn — Po(=Tzy) = 2o — T2y — x/2 — x/2 — 0. Corollary 2.8 implies
y=Tzie,z—x=Tz [ |

2.3 Multi-operator Demiclosedness Principles

Set
I={1,2,...,m}, wheremis an integer greater than or equal to 2. (2.14)
We shall work in the product Hilbert space
X =x! (2.15)
with induced inner product (x,y) = Y;c;(x;,vi) and ||x|| = +/Sics [|xi][2, where
x = (x;)ier and y = (y;)ier denote generic elements in X.

We start with a multi-operator demiclosedness principle for firmly nonexpan-
sive mappings, which we derive from the corresponding two-operator version
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(Corollary 2.7). A referee pointed out that Theorem 2.10 is also equivalent to
[1, Corollary 3] (see also [23, Lemma 5] for a Banach space extension of [I,
Corollary 3]).

Theorem 2.10 (Multi-operator Demiclosedness Principle for Firmly Nonex-
pansive Operators). Let (F;)ic; be a family of firmly nonexpansive operators on
X, and let, for each i € I, (zin)nen be a sequence in X such that for all i and j in I,

Zin — zi and Fizjn — X, (2.16a)

S (@in— Fzip) = —mx+ Y.z, (2.16b)
iel icl

Fizin—Fjzj, — 0. (2.16¢)

Then Fz; = x, for everyi € I.

Proof. Set X = (X)icr, 2 = (zi)ict> (21) = (Zin)nen, and C = {(y)ier | y€X}.
Then z, — z and C is a closed subspace of X with C* = {(y;)ies | Zic;vi = 0}.
Furthermore, we set D =z —x + C* so that (C — C)* = Ct =D —D and also
F: (yi)ie1 — (Fyi)ics- Then F is firmly nonexpansive on X, and Fz, — x. Now
(2.16¢) implies

1
(Viel) Fzin—— Y, Fjzjn—0, (2.17)
m e

which—when viewed in X—means that Fz,, — PcFz, — 0. Similarly, using (2.16b),
2, — ¥z, — Pp(z, —Fz,) =2, —Fz2,— P, . (2,—F2,) (2.18a)

=12,—Fz,— (2—x+ P (2, — Fz,— (z—X))) (2.18b)
= (Id—Pc1)(zy —Fz,) — (Id—Pc1)(z—x)  (2.18¢)

= Pc(zy — Fz,) — Pc(z —X) (2.18d)
= (%Z (zin — Fizin —Zi—i—x)) _ (2.18e)
; Jjel
iel
— 0. (2.18%)
Therefore, by Corollary 2.7, x = Fz. ]

Theorem 2.11 (Multi-operator Demiclosedness Principle for Nonexpansive
Operators). Let (T;);c; be a family of nonexpansive operators on X, and let, for
eachi €1, (xin)nen be a sequence in X such that for all i and j in I,

Zip — zi and Tizip — yi, (2.19a)
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z (Zim - TiZi,n) — 2 (Zi _)71') (2.19b)

iel iel

Zin—2Zjnt Tizi,n — Tijﬁ — 0. (2.19¢)

Then Tizi =y, for eachi € I.

Proof. Set (Viel) F;, = %Id—l—%T,-. Then F; is firmly nonexpansive and Fiz;, —
%Zi + %yi, forevery i € I. By (2.19¢), 0 <= 2Fiziy —2Fjzjn = (Zin + Tizin) — (2jn +
Tjzjn) — (zi+yi) — (zj+y;), for all i and j in 1. It follows that x = Jz; + 1y; is
independent of i € I. Furthermore,

Z (Zi,n - E'Zi,n) = Z % (Zi,n - TiZi,n) (2.20a)

icl icl
= Hz—y) (2.20b)

icl
=Y (3zi— (x—3z)) (2.20c)

icl
= —mx+ Yz (2.20d)

icl

Therefore, the conclusion follows from Theorem 2.10. |

2.4 Application to Douglas-Rachford Splitting

In this section, we assume that A and B are maximally monotone operators on X
such that

zer(A+B) = (A+B) " 1(0) #£ 2. (2.21)

We set
T = 31d+ARgRy = Jp(2J4 —1d) + (Id—Ja), (2.22)
which is the Douglas-Rachford splitting operator and where Ry = 2J4 —Id and Rp =
2Jp —Id are the “reflected resolvents” already considered in Sect.2.1. (The term
“reflected resolvent” is motivated by the fact that when J, is a projection operator,
then Ry is the corresponding reflection.) See [2, 10, 11] for further information on
this algorithm and also [3] for some results for operators that are not maximally

monotone. One has (see [10, Lemma 2.6(iii)] or [2, Proposition 25.1(ii)])

JA(Fix T) = zer(A+ B). (2.23)
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Now let zg € X and define the sequence (z,)qen by
(VnEN) zys1 = Tzp. (2.24)

This sequence is very useful in determining a zero of A + B as the next result
illustrates.

Fact 2.12 (Lions—Mercier [18]). The sequence (z,),cn converges weakly to some
point z € X such that z € FixT and Jsz € zer(A + B). Moreover, the sequence
(JaZn)nen 18 bounded, and every weak cluster point of this sequence belongs to
zer(A + B).

Since Jy is in general not sequentially weakly continuous (see Example 2.1), it is not
obvious whether or not J4z, — J4z. However, recently Svaiter provided a relatively
complicated proof that in fact weak convergence does hold. As an application, we
rederive the most fundamental instance of his result with a considerably simpler and
more conceptual proof.

Fact 2.13 (Svaiter [23]). The sequence (J4z,)nen converges weakly to Juz.
Proof. By Fact2.12,
zpn — z € FixT. (2.25)

Since Jy is (firmly) nonexpansive and (z,),en is bounded, the sequence (Jazy)neN
is bounded as well. Let x be an arbitrary weak cluster point of (J4z, )sen, say

Jazy, — x € zer(A+B) (2.26)
by Fact 2.12. Set (Vn € N) y, = Raz,. Then
Vi, = y=2x—z€X. (2.27)

Since the operator 7 is firmly nonexpansive and Fix T # &, it follows from [7] that
2w — Tz, — 0 (i.e., T is “asymptotically regular”); thus,

Jazn—=JIpyn =2 — T2y — 0 (2.28)
and hence
JBYK, — X. (2.29)
Next,

0+ JAan — JBykn (2.30a)
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= Zk, — Jazk, + Razk, — JByi, (2.30b)
= 2k, — JaZk, + Yk, — IBYK, (2.30c)
—z+y—2x (2.30d)
To summarize,
(2hy>¥k,) = (z,y) and  (Jazx,,JBYK,) — (x,%), (2.31a)
(2k, — Jazk,) + Ok, — IBYK,) = —2x+2+y=0, (2.31b)
Jazy, — Iy, — 0. (2.31c)

By Theorem 2.10, Jaz = Jgy = x. Hence Jozx, — Jaz. Since x was an arbitrary weak
cluster point of the bounded sequence (Jaz,)nen, We conclude that Jyz, — J4z. W

Motivated by a referee’s comment, let us turn towards inexact iterations of 7. The
following result underlines the usefulness of the multi-operator demiclosedness
principle.

Theorem 2.14. Suppose that (z,),cN is a sequence in X such that z, — Tz, — 0
and z, — z, where 7 € FixT. Then Jaz, — Jaz.
Proof. Argue exactly as in the proof of Fact 2.13. ]

We now present a prototypical result on inexact iterations; see [9-11, 13, 23] for
many more results in this direction as well as [2] and also [12].

Corollary 2.15. Suppose that (z,)nen and (e,)nen are sequences in X such that

Y llen]| <4ee  and  (VnEN) zy4 =en+ Tzn. (2.32)
neN

Then there exists z € FixT such that z, — z and Jxz, — Jaz.

Proof. Combettes’ [9, Proposition 4.2(ii)] yields z, — Tz, — O while the existence
of z € FixT such that 7z, — zis guaranteed by his [9, Theorem 5.2(i)]. Now apply
Theorem 2.14. |

Unfortunately, the author is unaware of any existing actual numerical implemen-
tation guaranteeing summable errors; however, these theoretical results certainly
increase confidence in the numerical stability of the Douglas-Rachford algorithm.

Acknowledgements HHB thanks Patrick Combettes and Jonathan Eckstein for their pertinent
comments. HHB was partially supported by the Natural Sciences and Engineering Research
Council of Canada and by the Canada Research Chair Program.
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3.1 Normality

We can write a real number o in any integer base r > 2 as a sum of powers of
the base:

o= i ajrfj.

j=—d

The standard “decimal” notation is
(x:a,da,(d,l) ceedp . apay v

The sequence of digits {a;} gives the representation of « in the base r, and
this representation is unique unless ¢ is rational, in which case o may have two
representations. (For example, in the base 10, 0.1 =0.0999---.)

We call a subsequence of consecutive digits a string. The string may be finite or
infinite; we call a finite string of ¢ digits a #-string. An infinite string beginning in a
specified position we call a tail, and we call a finite string beginning in a specified
position a block.

A number ¢ is simply normal in the base r if every 1-string in its base-r expansion
occurs with an asymptotic frequency approaching 1/r. That is, given the expansion
{a;} of a in the base r, and letting ny(n) be the number of times that a; = k for
j < n, we have

fim ") 1
n—e 1 r
foreach k € {0,1,...,r— 1}. This is Borel’s original definition [6].

A number is normal in the base r if every #-string in its base-r expansion occurs
with a frequency approaching r~. Equivalently, a number is normal in the base r if
it is simply normal in the base ¥ for every positive integer ¢ (see [6, 14, 17]).

A number is absolutely normal if it is normal in every base. Borel [6] showed
that almost every real number is absolutely normal.

In 1933, Champernowne [8] produced the first concrete construction of a normal
number. Champernowne’s number is

No=.123456789101112131415 ---.

The number is written in the base 10, and its digits are obtained by concatenating
the natural numbers written in the base 10. This number is likely the best-known
example of a normal number.

Generally, the base-r Champernowne number is formed by concatenating the
integers 1, 2, 3, ... in the base r. For example, the base-2 Champernowne number is
written in the base 2 as

% =.11011100101 --- .
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For any r, the base-r Champernowne number is normal in the base . However, the
question of its normality in any other base (not a power of r) is open. For example,
it is not known whether the base-10 Champernowne number is normal in the base 2.

In 1917, Sierpinski [15] gave a construction of an absolutely normal number (in
fact, one such number for each € with 0 < € < 1). A computable version of this
construction was given by Becher and Figueira [2].

Most fundamental irrational constants, such as \/5, log2, &, and e, appear to
be normal, and statistical tests done to date are consistent with the hypothesis that
they are normal. (See, for example, Kanada on & [10] and Beyer, Metropolis and
Neergard on irrational square roots [5].) However, there is no proof of the normality
of any of these constants.

There is an extensive literature on normality in the sense of Borel. Introductions
to the literature may be found in [4,7].

3.2 Walks on the Digits of Numbers and on Chromosomes

In this section we graphically compare two walks on the digits of numbers with a
walk on the values of the Liouville A function and a walk on the nucleotides of the
human X chromosome.

The walks are generated on a binary sequence of digits (Figs. 3.1 and 3.2) by
converting each 0 in the sequence to —1 and then using digit pairs (+-1,4-1) to walk
(£1,41) in the plane. The colour or shading in the figures gives a rough indication
of the number of steps taken in the walk. The values of the Liouville A function
(Fig.3.3) are already +1.

There are four nucleotides in the X chromosome sequence, and each of the four
is assigned one of the values (£1,=£1) to create a walk on the nucleotide sequence
(Fig. 3.4). The nucleotide sequence is available on the UCSC Genome Browser [16].

A random walk on a million digits is expected to stay within roughly a thousand
units of the origin, and this will be seen to hold for the walks on the digits of 7
and on the Liouville A function values. On the other hand, the walks on the digits of
Champernowne’s number and on the X chromosome travel much farther than would
be expected of a random walk.

The walk on the Liouville A4 function moves away from the origin like /i, but
it does not seem to move randomly near the origin. In fact, the positive values of
A first outweigh the negative values when n = 906 180359 [12], which is not at all
typical of a random walk.

3.3 Strong Normality

Mauduit and Sarkozy [13] have shown that the digits of the base-2 Champernowne
number 7, fail two tests of randomness. Dodge and Melfi [9] compared values of an
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100

-100+

-200

0 100 200 300 400

Fig. 3.1 A walk on 10° binary digits of 7

autocorrelation function for Champernowne’s number and 7 and found that 7 had
the expected pseudorandom properties but that Champernowne’s number did not.

Here we provide another test of pseudorandomness and show that it must be
passed by almost all numbers. Our test is a simple one, in the spirit of Borel’s test
of normality, and Champernowne’s number will be seen to fail the test.

If the digits of a real number o are chosen at random in the base 7, the asymptotic
frequency my(n)/n of each 1-string approaches 1/r with probability 1. However,
the discrepancy my(n) — n/r does not approach any limit, but fluctuates with an
expected value equal to the standard deviation /(r— 1)n/r.

Kolmogorov’s law of the iterated logarithm allows us to make a precise statement
about the discrepancy of a random number. We use this to define our criterion.

Definition 3.1. For real o, and my(n) as above, « is simply strongly normal in the
base r if for each k € {0,...,r— 1}
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Fig. 3.2 A walk on 10° binary digits of the base-2 Champernowne number

n
li )~ r 1
imsup =
o Vr—1
" r v/2nloglogn
P
and
n
my(n) — —
lim inf - L =—1.
N300 —
r \/2nloglogn

r

We make two further definitions analogous to the definitions of normality and
absolute normality.

Definition 3.2. A number is strongly normal in the base r if it is simply strongly
normal in each of the bases 7/, j =1,2,3,....
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Fig. 3.3 A walk on 10° values of the Liouville A function

Definition 3.3. A number is absolutely strongly normal if it is strongly normal in
every base.

These definitions of strong normality are sharper than those given by one of the
authors in [3].

3.4 Almost All Numbers Are Strongly Normal

Theorem 3.4. Almost all numbers are simply strongly normal in any base r.

Proof. Without loss of generality, we consider numbers in the interval [0, 1] and fix
the integer base r > 2. We take Lebesgue measure to be our probability measure. For
any k, 0 < k < r—1, the ith digit of a randomly chosen number is k with probability
r~'. For i # j, the ith and jth digits are both k with probability 2, so the digits are
pairwise independent.



3 Champernowne’s Number, Strong Normality, and the X Chromosome 35

1e+06-
800000
600000+
400000+

200000+

i —————

—25000 —20000  —15000 ~10000 ~5000 0

Fig. 3.4 A walk on the nucleotides of the human X chromosome

We define the sequence of random variables X; by

Xj =Vr— 1
if the jth digit is &, with probability —, and
r
1
Xj=—
! r—1

-1
otherwise, with probability =
Then the X; form a sequence of independent identically distributed random
variables with mean 0 and variance 1. Put
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By the law of the iterated logarithm (see, for example, [11]), with probability 1,

. Sy
limsup

P ——
n—e +/2nloglogn

and

S
liminf i

n—e /2nloglogn -

Now we note that if my(n) is the number of occurrences of the digit & in the first n
digits of our random number, then

Substituting this expression for S, in the limits immediately above shows that the
random number satisfies Definition 3.1 with probability 1. ]

This is easily extended.
Corollary 3.5. Almost all numbers are strongly normal in any base r.

Proof. By the theorem, the set of numbers in [0, 1] which fails to be simply strongly
normal in the base r/ is of measure zero, for each Jj. The countable union of these
sets of measure zero is also of measure zero. Therefore the set of numbers simply
strongly normal in every base / is of measure 1. ]

The following corollary is proved in the same way as the last.
Corollary 3.6. Almost all numbers are absolutely strongly normal.

The results for [0, 1] are extended to R in the same way.

3.5 Champernowne’s Number Is Not Strongly Normal

We begin by examining the digits of Champernowne’s number in the base 2,
»=0.11011100101 --- .

Each integer ¢, 2"~ ! < ¢ < 2" — 1, has an n-digit base-2 representation and so
contributes an n-block to the expansion of 9. In each of these n-blocks, the first digit
is 1. If we consider the remaining n — 1 digits in each of these n-blocks, we see that
every possible (n— 1)-string occurs exactly once. The n-digit integers, concatenated,
together contribute a block of length n2"~!, and in this block, if we set aside the
ones corresponding to the initial digit of each integer, the zeros and ones are equal
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in number. In the whole block there are (n — 1)2"~2 zeros and (n — 1)2" 24 2""!
ones. The excess of ones over zeros in the entire (n2”’1)-block is just equal to the
number of integers, on—1 contributing to the block.

As we concatenate the integers from 1 to 2k _ 1, we write the first

k
N—1=Yn2""'=(k—1)2"+1

n=1

digits of 5. The excess of ones in the digits is

k1.
The locally greatest excess of ones occurs at the first digit contributed by the integer
2K, since each power of 2 is written as 1 followed by zeros. At this point the number
of digits is N = (k— 1)2%+2 and the excess of ones is 2. That is, the actual number
of ones in the first N digits is

mi(N) = (k—2)251 142k,

This gives

Thus, we have

For any sufficiently small positive &, the right-hand expression is unbounded as
k — oo. We have

, mi(N) -5 : mi(N) -5
hmsupl—2 > 1/—2+82 =
N—es 5+v/2NloglogN Noe N

We thus have:

Theorem 3.7. The base-2 Champernowne number is not strongly normal in the

base 2.

One can show that Champernowne’s number also fails the lower limit criterion. In
N

fact, m; (N) — 7> 0 for every N.

The theorem can be generalized to every Champernowne number, since there is a
shortage of zeros in the base-r representation of the base-r Champernowne number.
Each base-r Champernowne number fails to be strongly normal in the base r.
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3.6 Strongly Normal Numbers Are Normal

Our definition of strong normality is strictly more stringent than Borel’s definition
of normality:

Theorem 3.8. If a number o is simply strongly normal in the base r, then o is
simply normal in the base r.

Proof. Tt will suffice to show that if a number is not simply normal, then it cannot
be simply strongly normal.

Let my(n) be the number of occurrences of the 1-string & in the first n digits of
the expansion of o in the base r, and suppose that ¢ is not simply normal in the
base r. This implies that for some k

Jim %)

n—roo n

£1.

Then there is some Q > 1 and infinitely many n; such that either
rmi(n;) > On;

or

If infinitely many n; satisfy the former condition, then for these #;,

m(n) —— >Q0— — — =nP
r r r
where P is a positive constant.
Then for any R > 0,
my(n) — =% nP

limsupR > limsupR

n—e  y/2nloglogn H—soo \/2nlog10gn:°o

so o is not simply strongly normal.
On the other hand, if infinitely many »; satisfy the latter condition, then for
these n;,

and once again the constant P is positive. Now
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fimiaf my(n) — % i = —m(n)

iminf ————"— = —limsup —+——

n—e /2nloglogn ,Hmp 2nloglogn

and so, in this case also, « fails to be simply strongly normal. |

The general result is an immediate corollary.

Corollary 3.9. If o is strongly normal in the base r, then o is normal in the base r.

3.7 No Rational Number Is Simply Strongly Normal

In light of Theorem 3.8, it will suffice to show that no simply normal rational number
can be simply strongly normal.

If o is rational and simply normal in the base r, then if we restrict ourselves to
the first n digits in the repeating tail of the expansion, the frequency of any 1-string
k is exactly n/r whenever n is a multiple of the length of the repeating string. The
excess of occurrences of k can never exceed the constant number of times k occurs
in the repeating string. Therefore, with my(n) defined as in Sect. 3.3,

limsup (mk(n) — ’;) =0,

n—yoo

with Q a constant due in part to the initial non-repeating block and in part to the
maximum excess in the tail.
But

. 0
1 — =0
IELSEP v/2nloglogn

so o does not satisfy Definition 3.1.

3.8 Construction of an Absolutely Strongly Normal Number

To determine an absolutely strongly normal number, we modify Sierpifiski’s method
of constructing an absolutely normal number [15]. We begin with an easy lemma.

Lemma 3.10. Let f(n) be a real-valued function of the first n base r digits of a
number o, € [0,1], and suppose

n—oo

P {limsupf(n) = 1] =1
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and
P [hmgff(n) - —1} —1.

Given positive 61 > 8 > 83 > ---, and €, > & > & > ---, we can find My < M, <
M3 < --- so that

|

Notes. The function f(n) depends on both n and ¢. The probability is the Lebesgue
measure of the set of o € [0, 1] for which f satisfies the condition(s).
The lemma can easily be proved under more general assumptions.

sup  f(n)—1|>6 or

M;<n<Mi;,

M;<n<Mi;

inf f(n)+1'>5i1 <Eg.

Proof. For sufficiently large M,

P {supf(n) > 1—|—51] <& and
n>M 4

. &
P [’gl{/lf(n) < -1 —51} <7

Set M, to be the least such M.
Now, as M — oo,

Pl sup f(n) < 1—51] —0,
M <n<M
and also

P[ info(n)>—1+51] —0.

M <n<
Thus, for sufficiently large M, these four conditions are satisfied:

Pl sup f(n)<1—611 !
M

)
1§n<M 4

. &
P{M 1nfo(n)>—1+51} <7

1<n<

P[supf(n) > 1+52} <2,
n>M 4
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and

P[n%f(n) < —1—62} < %.

We set M, to be the least M > M, satisfying all four conditions. Since

P[ sup f(n)>1+6

SPlsupf(n)>l+51

M <n<M, n>M
and
. L < . L
P [Mlglrnlgsz(n) < -1 61} <P |:nIZnI\£1 fln) < -1 51} ,
we have

sup  f(n)—1

M, <n<M, M <n<M,

|

We can continue in this way, recursively choosing M3, My, Ms, . .. so that each M;
is the least satisfying the required conditions. |

>0 or ' inf f(n)+1'>51]<£1.

Now we fix an integer base r > 2 and a 1-string k € {0,1,...,r— 1}. For each ot €
[0,1], put

mi(n) — =

-l v/ 2nloglogn

r

f(n) :f(aakan) =

Here, as in Definition 3.1 of Sect. 3.3, my(n) is the number of occurrences of k in
the first n base r digits of ¢, and o is simply strongly normal in the base r if

limsup f(n) =1

n—yoo

and

liminff(n) = —1.

n—yoo
By Theorem 3.4, Sect. 3.4, these conditions hold with probability 1, so f satisfies
the conditions of Lemma 3.10.

NowfixO<e<I;set§=-and g =¢,; = These &; and &; also satisfy

)
3.2i3°
the conditions of Lemma 3.10.
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We will construct a set Az C [0, 1], of measure less than 1, in such a way that
every element of A€ is absolutely strongly normal.

Let M} < My < M3 < --- be determined as in the proof of Lemma 3.10, so that
the conclusion of the lemma holds. We build a set A,; containing those ¢ for which
the first M;; | digits are, in a loose sense, far from simply strongly normal in the
base r.

Around each ot = .ajay---ap,,, - -+ such that

sup  f(n)—1]>6; (3.1)
M;<n<M;
or
inf, f(n)+1|> 8 (3.2)

we construct an open interval containing o:

aj aj am;. 1 aj aj am; 2
<__|__2_|_...+M_f+_ o ,_+_2+..._|_M_f+_|_ o .
r T rMi+1 ri+1 " T ri+1 ri+1

Let A, ; be the union of all the intervals constructed in this way. By our construc-
tion, the union of the closed intervals consisting of the numbers with initial digits
.a1az ...ay,,, satisfying one of our two conditions (3.1) or (3.2) has measure less
than g&;, so, denoting Lebesgue measure by u,

£
u (Ank’,‘) <3g = W
In this way we construct A, ; for every base r and 1-string k € {0,1,...,r —1}.
We let
o r—] oo
Ae=J U UAmi
r=2k=0i=1
SO
o r—] oo
H(Ae) < DD > u(A)
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Let E¢ be the complement of A¢ in [0, 1]. Since ((A¢) < 1, E is of positive measure.
We claim that every element of E; is absolutely strongly normal.

For each base r and 1-string k € {0,1,...,r — 1}, we have specified a set of
integers M| < M» < M3 < ---, depending on r and k. By our construction, if ¢« € Eg,
then, recalling that f depends on o, we have

sup  f(n)—1|< &

M;<n<Miy

and

inf 1 ;
i, T | <0

for every i. Clearly for this ¢, since §; — 0,

limsup f(n) =1

n—yoo
and

liminf f(n) = —1.
n—yoo
This is true for every k, so o is simply strongly normal to the base r, by
Definition 3.1 (Sect.3.3). Thus « is simply strongly normal to every base, and is
therefore absolutely strongly normal by Definitions 3.2 and 3.3.

To specify an absolutely strongly normal number, we note that E, contains no
interval, since, by Sect.3.7, no rational number is simply strongly normal in any
base. Since E; is bounded, infE, is well defined; and infE; € E, since otherwise
inf E; would be interior to some open interval of Ag.

For example, infE; is a well-defined absolutely strongly normal number.

3.9 Further Questions

It should be possible to construct a computable absolutely strongly normal number
by the method of Becher and Figueira [2].

We conjecture that such naturally occurring constants as the irrational numbers
7, e, /2, and log?2 are absolutely strongly normal.

On the other hand, we speculate that the binary Liouville A number, created in
the obvious way from the A function values, may be normal but not strongly normal.

Bailey and Crandall [1] proved normality base 2 for an uncountable class of
“generalized Stoneham constants,” namely constants of the form

- 1
@0 = 2
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where 7y, is the kth binary digit of a real number 7 in the unit interval. This class of
numbers may be a good place to look for examples of strong normality. However,
new techniques may be required for this.

Acknowledgements Many thanks are due to Stephen Choi for his comments on the earlier ideas
in [3] . We also give many thanks to Richard Lockhart for his help with ideas in probability. We are
indebted to an anonymous referee for some extremely useful comments and criticisms.
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Chapter 4
Optimality Conditions for Semivectorial Bilevel
Convex Optimal Control Problems

Henri Bonnel and Jacqueline Morgan

Abstract We present optimality conditions for bilevel optimal control problems
where the upper level is a scalar optimal control problem to be solved by a leader
and the lower level is a multiobjective convex optimal control problem to be solved
by several followers acting in a cooperative way inside the greatest coalition and
choosing amongst efficient optimal controls. We deal with the so-called optimistic
case, when the followers are assumed to choose the best choice for the leader
amongst their best responses, as well with the so-called pessimistic case, when
the best response chosen by the followers can be the worst choice for the leader.
This paper continues the research initiated in Bonnel (SIAM J. Control Optim.
50(6), 3224-3241, 2012) where existence results for these problems have been
obtained.
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4.1 Introduction

The aim of this paper is to obtain optimality conditions for the semivectorial bilevel
optimal control problems introduced in [17] where existence results have been
established.

Semivectorial bilevel optimal control problems are bilevel problems where the
upper level corresponds to a scalar optimization problem and the lower level to a
multiobjective optimal control problem. Multiobjective optimal control problems
arise in many application areas where several conflicting objectives need to be con-
sidered. Minimizing several objective functionals leads to solutions such that none
of the objective functional values can be improved further without deteriorating
another. The set of all such solutions is referred to as efficient (also called Pareto
optimal, noninferior, or nondominated) set of solutions (see, e.g. [38]). The lower
level of the semivectorial bilevel optimal control problems can be associated to
one player with p objective or to a “grand coalition” of a p-player “cooperative
differential game”, every player having its own objective and control function.
We consider situations in which these p players react as “followers” to every
decision imposed by a “leader” (who acts at the so-called upper level). The best
reply correspondence of the followers being in general non-uniquely determined,
the leader cannot predict the followers choice simply on the basis of his rational
behaviour. So, the choice of the best strategy from the leader point of view depends
of how the followers choose a strategy amongst his best responses. In this paper, we
will consider two (extreme) possibilities:

1. The optimistic situation, when for every decision of the leader, the followers will
choose a strategy amongst the efficient controls which minimizes the (scalar)
objective of the leader; in this case the leader will choose a strategy which
minimizes the best he can obtain amongst all the best responses of the followers:

2. The pessimistic situation, when the followers can choose amongst the efficient
controls one which maximizes the (scalar) objective of the leader; in this case the
leader will choose a strategy which minimizes the worst he could obtain amongst
all the best responses of the followers.

The semivectorial bilevel control problems which model these two situations, and
which will be described in the next section, include the following problems which
have been intensively studied in the last decades, so we will give essentially a few
earlier references:

* Optimizing a scalar-valued function over the efficient set associated to a multi-
objective optimization (mathematical programming) problem (introduced in [47]
and investigated in [8—13,25-27,33,36,37,50] for a survey).
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* Optimizing a scalar-valued function over an efficient control set associated to
a multiobjective optimal control problem (introduced and investigated in [15],
followed by [18])

* Semivectorial bilevel static problems (introduced and investigated in [16],
followed by [3, 14,22,30,31,51], for the optimistic case)

» Stackelberg problems (introduced in [49] and investigated, e.g. in [6,40,43])

* Bilevel optimization problems (e.g. [24, 28, 29, 41, 44, 45] for an extensive
bibliography)

* Stackelberg dynamic problems (introduced in [23,48] and investigated, e.g. in
[5,6,42,45,46], a book with an extensive bibliography)

In this paper, we rewrite the optimistic and pessimistic semivectorial bilevel control
problems as bilevel problems where the lower level is a scalar optimization
problem which admits a unique solution, using scalarization techniques as in [17].
So we are able to give optimality conditions for the lower level problem in the
general case (supposing that the leader’s controls are bounded) using Pontryagin
maximum principle. This theoretically allows to obtain under suitable conditions the
dependence of the optimal control on the leader’s variables. However, this approach
is very difficult to apply because one needs to solve a bilocal problem. That is why
we consider the particular but important case when the followers’ problem is linear-
quadratic. In this case we show that using a resolvent matrix obtained from data,
we can explicitly solve the bilocal problem and express the optimal control and
the state as functions of leader’s variables, and we show that these dependencies
are continuously differentiable. Finally we present optimality conditions for the
upper levels of the optimistic and pessimistic problems.

4.2 Preliminaries and Problem Statement

All the assumptions and notations considered in this section and introduced in [17]
will be kept throughout this paper.

For the leader we denote by J; the scalar objective, by u; the control function and
by % the set of admissible controls. For the followers we denote by J¢ = (J1,...,J,)
the vector objective (p-scalar objectives) and by wf = (uy,...,u,) the control
function whose values belong to the set Uy = U X --- x U, CR™ =R™ x - x
R™r. Uy is assumed to be nonempty, closed and convex, and O € Us. Real numbers
fo, T are fixed (fo < T) and represent respectively the initial time and an upper bound
of the final time. The set of final time values .7 = [t,7] Clto, T'[, where ¢ < 7. The
final time, denoted by #; € .7, may be variable and it is decided by the leader; hence
t1 is fixed in the followers’ problem. We assume that

% c Ly ([to,T]) is closed, nonempty and convex. 4.1)
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For each fixed (t;,u;) € 7 x %, the followers have to solve the following
parametric multiobjective control problem, called lower level problem:

MIN Jf(tlauhufu-x)
(LL)(II ,ul) . (ug-) .
subject to (ug,x) verifies (4.2)—(4.5)
ug(t) € Upae. on[to,T], ug(t) =0a.e.on [t;,T], 4.2)
X(t) = A@t)x(t) + By (t) u;(t) + Be(t)ug(z) a.e.on [to,1], (4.3)
x(to) = xo, (4.4)
x(n) € Z, 4.5)

where A : [f, T] = R™", B; : [ty,T] = R"*™and Bt : [tp, T] — R"*™f are continuous
matrix-valued functions and the control function ug = (uy,...,u,) € ernf ([to,T]) =
LY ([to, T]) x - x Ly ([to, T1).

L3 ([to,T]) stands for the usual Hilbert space of equivalence classes (two
functions are equivalent iff they coincide a.e.) of (Lebesgue) measurable functions
u from [tp, T] to R™, such that the function 7 + u” (t)u(t) is (Lebesgue) integrable

T
over [fy,T] endowed with the norm |[ju|, := (/ uT(t)u(t)dt) . The target set
1o
Z C R" is assumed to be closed, convex and nonempty.

The initial state xo € R" is specified.

For each u = (ty,u;,ur) € T x Ly ([to,T]) x Ly ([to,T]), under the above
assumptions, there exists a unique solution (in the sense of Carathéodory) x, of
the Cauchy problem (4.3) and (4.4), and x,, € H{'([to,t1]). H{' ([to,#1]) stands for the
Hilbert space of absolutely continuous functions from [y, #;] to R” with derivative
in L3([t0,71]) endowed with the norm x — ||x|| := (||x[|3 + ||x[3)"/2.

The feasible set . (t1,u;) for the problem (LL)(, ,,) is defined in the following
way:

L (t1,u1) = {(ug,x) € L’znf([to,T}) x H{ ([to,11])| (ug,x) verifies relations (4.2)—(4.5)}.
(4.6)

Thus, problem (LL), ,,) can be written as

(LL) ¢y ) MIN Je(t1,u,0g,x).

(ug,x)€7 (17 up)

Next we give the following standard definitions.

Definition 4.1. For problem (LL)q, ,,) the element (lif,X) € 7 (t;,u;) is said
to be

* An efficient (or Pareto) control process if there is no element (ug,x) € % (f1,u;)
satisfying
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VlE{l,,p} J[([],M[,“f,x)SJ[(I],M[,l_lf,)E)
and
dip € {1, .. ,p} Jio(tl,ul,uf,x) < Jio(tl,ul,l_lf,)f).

* A weakly efficient (or weakly Pareto) control process if there is no element
(ug,x) € S (t1,u;) satisfying

ViE{l,...,p} Ji(tl,ul,uf,x)<J,'(t1,ul,l'lf,f).

* A properly efficient (or properly Pareto) control process (see [34] or [19, 38]
for generalizations) if it is an efficient control process and there exists a real
number M > 0 so that for every i € {1,...,p} and every (ug,x) € . (t1,u;)
with Ji(¢y,u;,ug,x) < Ji(t;,u,0¢,%) at least one k € {1,...,p} exists with
Ji(t1,ur,ug,x) > Ji(t1,u;,0¢,%) and

Ji(tlvulvﬁfax) —Ji(tl,ul,Uf,X)
Jk(ll,btl,llf,.x) _Jk(tluuluﬁfri)

<M.

In the sequel the symbol o € {e,we, pe} stands for “efficient” when ¢ = e, “weakly
efficient” when o = we and “properly efficient” when o = pe.

The set of all o-control processes associated to problem (LL)(, ,,) Will be
denoted by P (t1,1;).

Finally we consider the following semivectorial bilevel optimal control problems:

OSVBC min min ‘I t ,uj,ag,x
( )0' (11,u) €T x 2 (ugx) € P (11 ,147) l(l 1, uf )

called optimistic semivectorial bilevel control problem and

(PSVBC), min sup Ji(t1,uy, g, x)
(11:0)€ T XU (ug x)€ P (11,u7)

called pessimistic semivectorial bilevel control problem.

Remark 4.2. Note that the terminal time #; is fixed for the lower level problem, but
it is a decision variable for the leader. Of course, a particular case can be obtained
when the terminal time # is fixed for the leader too, i.e. when 7 = {#,}.

Remark 4.3. (LL), ,,) may be also considered as the problem to be solved by
the grand coalition of a p-player cooperative differential game (see [35] and its
extensive references list) where the functional J; and the control u; represent the
payoff and the control of the player number i, i € {1,...,p}. Then, our optimistic
semivectorial bilevel problem corresponds to a strong Stackelberg problem in
which, for any choice of (71,u;), the leader can force the followers to choose
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amongst the o-control processes one which minimizes the leader payoff. On the
other hand, the pessimistic semivectorial bilevel problem corresponds to a weak
Stackelberg problem in which, for any choice of the leader variables (f1,u;), the
followers could choose amongst the o-control processes one which is the worst for
the leader.

We assume that for all t; € [to,7] and all (u;,ug,x) € L3 ([19,T]) x ernf([to, T]) x
H}([t0,11]), we have

J[(l],M[,Uf,X) = ./Itl f[(l,l,t[([),llf([),x([))dt,

and also, foralli € {1,...,p},

ot ssue.0) = wilal) + [ it 00),0r0) <0

where, for all i € {1,...,p}, the functions y;, y; : R* = R, f;, f : [to,T] X R™ x
R™ x R" — R verify the following preliminary assumptions :

e v, fi, fi are continuously differentiable;
e there exist integrable functions a;, 4; : [t, T] — R and real numbers
bi, by, ci,cy,di,dp, such that, for all (l‘, I/l[,llf,x) S [to, T] x R™ x R™ x R",
f,'(t, uj, llf,x) = a,-(t) + bixTx + CiulTI/ll + dillfTUf,
fi (t, ul,uf,x) > aq (l) + blex + C[LtlTI/t[ + dlllfTUf;
e ; is a convex function;
e for each fixed 7 € [t, T], the function f;(¢,-,-,-) is convex
on R™ x R™ x R".

4.3 The Lower Level Problem

Lett) €  be fixed, and let @ : [19,11] X [fo,71] — R™*" be the matrix-valued function
satisfying for each s € [tg, 1]
vt € [to,11] —(1,5) = A(t)D(t,5) 4.7
D(s,s) =1, (4.8)
where I, is the identity matrix.

Since, for each (u;,ug) € Ly ([to, T]) X L;"f ([t0,T]), the unique solution x;, ,;, ) €
H{([to,11]) of the Cauchy problem (4.3) and (4.4) is given by
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Vi€ [to,tt] Xy () = q’(f,fo)xo+/[:‘D(fvs)(Bl(S)Mz(S)+Bf(s)llf(s))d5,

it is clear that the map (17, ) — X(;, ,,, up) i affine from L} ([to,T]) x L;"f([to, T))
to H{'([to,t1]). Moreover, using Cauchy—Schwartz inequality, we obtain easily that
the map (u;,uf) — X, 4, u) is also continuous from Ly ([r,T]) x L;nf([to,T]) to
Hi([to.11]).

For eachi=1,..., p, consider the functional
(ur,ug) = Ji(tr,ug,ug) == Jity, up, 0, X, ) (4.9)
Define also
(g, ) = Jy (11, g, 0g) 2= Ty (11,47, 08, X1, 1 0p))- (4.10)

From [17, Lemmas 1 and 2] and the fact that X(1),-) is continuous and affine from
Ly ([to,T)) x Ly ([t0, T)) to H}([t0,11]), we obtain the following.

Lemma 4.4. Foreachi=1,...,p, the functional Ji(t,,-,-) : L' (to,T]) X L;nf([to,
T]) = RU{+-oo} is well defined, lower semicontinuous and convex.

Also Jy(t1,-,-) : Ly ([to, T]) x L;nf ([to, T]) = RU{+-oo} is well defined and lower
semicontinuous.

For each (11,u;) € F x % [see (4.1)], denote

aZ/f(tl,M[) = {llf S ern/ ([t(), T])| llf(l‘) € Uga.e. on [l(),T], 4.11)
llf(l) =0a.e.on [tl,T], x(tl,u,,uf)(tl) S ﬁ}
For each (11,u;) € R x LY ([to,T)) \ 7 x % we put Z(t1,u;) = 0. Thus % is a
set-valued function % : R x Ly ([to, T]) = L,” ([t0, T]).
Recall that
dom (%) == {(t,u) € Rx Ly ([to, T))| % (t1,ur) # 0}
and

Gr (%) = {(n,w,ur) € R x Ly ([t0, T]) x Ly ([t0, T])| wg € Zy(tr, )}

We will assume in the sequel that

() dom () = 7 x .
Proposition 4.5. Each of the following is a sufficient condition for (F€):
(a) F =R"

(b) Foreacht| € 7, the linear system
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x(t) =A(t)x(t) +Be(t)ug(r),x(to) = 0, wg(z) € Ug a.e. on [fg, 1]
is controllable, i.e. for any x; € R", there exists ug € L’an ([to,t1]) such that

us(t) € Ug a.e. on [to,11], and the corresponding solution verifies x(t1) = x1.

Proof. Tt is easy to adapt the proof given in [17, Proposition 1], where the initial
condition is x(fy) = xo (instead of x(#y) = 0 as above). |

It can be easily proved that % (t;,u;) is a convex subset of L;"f([to, T]). Thus the

problem (LL), ,,) can be rewritten as a p-objective convex optimization problem:
(M) MIN“f (fl(tl,ul,uf),...,f,,(tl,ul,uf))
(t1,) subject to ug € %y (t1,u;).

Definition 4.6. Let 6 € {e, we, pe}. An element us € L, ([1,T]) will be called
o-control of problem (M) ;, ,,,) iff (uf,x(,l,u,,uf)) is a o-control process of problem
(LL), ). We will denote &5(t1,u;) the set of all o-controls of the p-objective
optimization problem (M), ,,)-

Thus, using Lemma 4.4 and the well-known scalarization results from vector
optimization [38, p. 302] we obtain the following.

Theorem 4.7 (see [17]). Let (t\,u;) € T x % and G € U (t,u;), where 7% and
U are given in (4.1) and (4.11), respectively. The control process (ﬁf7X(t1’Lll’ﬁf))
is weakly (resp. properly) efficient for problem (LL), ,,) if and only if there exist
nonnegative real numbers (resp. positive real numbers) 0y, ..., 0, with 2{;1 6, =1
such that G¢ is an optimal control for the classical scalar optimal control problem:

P
min Y 6:J;(t1,u;,ug)

ug i—1
subject to ug € % (t1,u;).

In the sequel we need the following sets:

{(61,...,6,) €]0, 17|36, =1} if o= pe
O = (4.12)
{(61,...,6,) €[0,1]P| X, 6, = 1} if o= we

and the following hypotheses:

(Fie{1,...,p}) (V(t,v,x) € [to,1] x R™ x R")

ug — fi(t,v,ug,x) is strictly convex on R” if 0 = pe
Hg(tl) .

(Vie{1,...,p}) (V(t,v,x) € [to,1] x R™ x R")

ug — f;(z,v,ug,x) is strictly convex on R™ if o =we
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and

i=¢i=0,d; 20, Zledj>0 if 0 = pe
i=¢i=0,d; >0 if 0 = we,

(He) {\ﬂe{l IR
Vie{l,....p}: ¥

where b;, ¢;,d; have been introduced in the preliminary assumptions (22.¢).

Theorem 4.8 (see [17]). Let o € {we,pe} and (t1,u;) € T X 4. Assume that
Hs(t1) holds. Moreover, suppose that at least one of the following hypotheses
holds:

(i) Uy is bounded.
(ii) (Hc)o.

Then, for each 6 = (6y,...,0,) € Og, there exists a unique optimal control
ug(0,11,u;,-) € Uy (t1,u) of the scalar problem (S)(g 4, u))-

It is obvious that according to Theorem 4.7, ug(0,t1,u;,-) is a o-control for

multiobjective problem (M), ,,). Moreover, Theorem 4.7 implies also that for

each o-control ug € % (t1,u;) of the multiobjective problem (M) (s, 44y there exists

0 € O; such that ug is the unique optimal control of the scalar problem (S )(97,1 )
Thus we can state the following.

Corollary 4.9. Let (ty,u;) € T X . Under the hypotheses of Theorem 4.8 we
have that the correspondence 0 — ug(0,11,u;,-) is a surjection from O to the set

gﬁ(tlvul)'

In the sequel we will keep all the hypotheses of Theorem 4.8 in addition to the
preliminary assumptions (247 ).

4.4 Equivalent Formulations of Problems (OSVBC)s
and (PSVBC),

Consider, for each (0,11,u;) € O X T x % C RP x R x L ([ty, T}), the function
F(0,t1,u;,-) : %s(t1,u;) — R defined by

P
Yug € Uy (t1,up) F(0,t1,u;,uf) : 2 Ji(t1,u,uy),

where % (t1,u;) and J; are given respectively in (4.11) and (4.9).
Note that problem (OSVBC)s can be written equivalently as an optimistic
semivectorial bilevel optimization problem:

OSVB min min  Ji(t;,uy,ug).
( Jo (t1,u1) €T x % ug€ sty ,uy) 1(t1,0,0)
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According to Theorem 4.8, for each (0,11,u;) € Og X T X %, there exists a unique
minimizer ug(0,11,u;,-) € Uy(t1,u;) of F(6,t1,u;,-) over %s(t1,u;). According to
Corollary 4.9, for each (t,u;) € T x %, we have

Eo(tu) = | {us(0,01,u,-)}. (4.13)
0cOs

Then we obviously have the following.

Proposition 4.10 (see [17]). Problem (OSVB)g is equivalent to the problem

min minfltl up,ue(0,t1,u,+)).
(11401 € T xU 0Oy ( s Yy ( IASB) 7))

Thus, the optimistic semivectorial problem (OSVB)s can be rewritten as an
optimistic bilevel optimization problem (also called strong Stackelberg problem):

min  min Ji(ry,u, (0,11, 4y, -
(tyu1) €T xU 0O (11,0, 00(6, 11,14, ))

(OB)& where ug(0,7;,u;,-) is the unique minimizer to the problem

S : i F(0,t .
( )(9,[1,1,41) llfG”l}/I}I(Itll,ul) ( ,1,M[,llf)

Here the upper and lower levels are given by scalar optimization problems and the
lower level admits a unique solution.

In the same way the pessimistic semivectorial problem can be rewritten as a
pessimistic bilevel optimization problem (leading to a so-called weak Stackelberg
problem; see [20] where this terminology was introduced).

Proposition 4.11 (see [17]). Problem (PSVBC) is equivalent to the problem

min sup J(t,uz,ug(0,11,u,-)).
(t1u)€T <% pcOs

Finally, we can rewrite that problem as

min  sup Ji(¢;,u;,ue(0,11,u;,-

(1) 7 <% gty (1,008, 01,8))

(PB) where ug(0, 1,1, ) is the unique minimizer of the problem
o

N : in  F(0,t,u;,uz).
(o), min F(O.0,u,u)
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4.5 Necessary and Sufficient Conditions for the Scalarized
Lower Level Problem

Let (tj,u;) € T x % and 6 = (6y,...,0,) € Og be given. The scalarized problem
(S)(0,4,.4y) can be written as

min [29 vi(x <2 6 f:(t,uy(t),ug(t), (t))) dt]

(upx)€Ly” ([t0, 7)) % H} ([t0.1))

s.t. ug(t) € Urae. on [to, 7], ug(t) =0a.e.on[r,T],
x(t) = A(t) x(¢) + By (t) u;(t) + Be(t )ug(r) a.e. on [tg,1]
x(t0) = xo
x(t) € 7.

Let H : [tg, 1] X R™ x R x R" x R x R” — R be the Hamilton-Pontryagin function
associated to this control problem (see, e.g. [2] or [39]) defined by

H(t,1,0,%,R0,2) = AT (A(e)x+ By(0)u + By(1)u ) — aozeflrul,uf,)

Let A(-) = (A1 (), -+, Au(+)) € W' ([t0,11]) be the adjoint function, where W}'__([to,
#1]) is the Banach space of absolutely continuous functions from [fy,#;] to R”
having derivative in the Banach space L7, ([f,#,]) of essentially bounded measurable
functions (see, e.g. [21] for details).

Since we use L, controls, and the Pontryagin maximum principle usually uses
controls in L.., we will consider two particular situations in order to be able to get
necessary and sufficient conditions for problem (S)(g, ), as stated below.

4.5.1 The Case When Us Is Bounded
and %, C L ([to, T)) N Ly ([to, T))

In this subsection we assume the set Uy is bounded (and closed, convex with
nonempty interior) and the leader’s controls are essentially bounded, i.e. % C
L ([to, T)) N LY ([to, T]). Also, suppose the target set .# = {x € R"|Gx = a},
where the matrix G € R, and a € R¥ are given. Moreover we assume that
rank(G) = k > 0. However the results presented in this subsection are also valid
when . = R" by taking G =0, a = 0.

We obtain the following.
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Theorem 4.12 (Necessary conditions). Ler (ug,,x,) € Lm ([to,T]) x H} ([to,11]) be
an optimal control process for problem (S)(g 4, u,)- Then there exist A(- ) € wWy'.([to,

t1]), a nonnegative real number Ay and a vector v € RF with (A(-), Ao, v) # O such
that

ATy =-AT()A +M29 af' (t,uy(t),ug,(2),x:(2)), a.e. on [tg,11] (4.14)
T & OV T
ATm)=-%Y, BiE(x*(tl))—l—v G, (4.15)

i=1
and, for almost all t € [ty,11],

Htuy (1), g, (), (), o, A(t)) = max H(t,ur(1), Ve, (1), Ao, A1), (4.16)

vec Uy
Moreover, if the linearized system
x(t) = A(t) x(¢) + Be(t)ug(t) a.e. on [to,1] 4.17)
x(th) =0 (4.18)

is controllable,' then we can take above Ao =1.

Sufficient conditions. Ler (x.,ug,) € Hj([to,11]) % L;nf ([t0,T]) verifying
(4.2)—(4.5). If there exist A(-) € W[ _([to,t1]) and v € R* such that (4.14)—(4.16)
are verified with Ay = 1, then (x.,uy,) is an optimal control process for problem

(S)(e,tl,ul)'

Proof. Since Uy is bounded, {ug(-) € Ly’ ([to,T])|ug(t) € Ug} C L/ ([to, T]). For
the same reason u;(-) € L ([to,#,]). Thus we have us, € L=’ ([to, T]); hence x. €
Wi ([to,11]) and A(-) € W' ([to,#1]). Therefore we can apply [39, Theorem 5.19]
to obtain the first part (necessary conditions). Note that [39, Theorem 5.19] is stated
for autonomous systems, but the same proof apply for non-autonomous systems.
For the second part (sufficiency conditions) we can use [39, Theorem 5.22] which
also holds for non-autonomous systems with the same proof. ]

Remark 4.13. Since Ug is convex and closed and H is concave w.r.t. ug, relation
(4.16) can equivalently be written as a variational inequality:

T L Odfi
Vvt € Ug (A (I)Bf(f)—MzGia—uf(l,Mz(t)ﬂlf*(l),x*(t))(Vf—llf*(t))SO
i=1

a.e. on [fy, 1]

'If A and B¢ do not depend on ¢, it is well known that this system is controllable if, and only if,
rank (Bg, ABy, A’By, ..., A" 'By) =
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Finally, we can conclude the following.

Corollary 4.14. Let (t;,u;) € %, and let 0 € Og. Assume that the linearized system
(4.17) and (4.18) is controllable. Let ug € L;nf([to,T]). Then ug(-) = ug(0,t1,uy,-)
(i.e. ug is the unique optimal control for problem Sg ;, ) presented in Theorem 4.8)
if, and only if, there exists (x(-),A(-),v) € H([to,11]) x Wi ([to,11]) x R¥ such that

ug(t) € Ura.e.on [1),T], ug(t)=0a.e.on [r,T], (4.19)
x(t) e A(t)x(t) +B[(t) M[(l‘) +Bf(t)Uf(t) a.e. on [l‘o,l‘l], (4.20)
x(to) = X, (421)
Gx(t)) = a, (4.22)

A T T 2 ofi
AT () = =AT () A@)+ Y, 6 == (r,u(1),ug(t),x(r)) ae.on [to,11], (4.23)

= ox

T A T
AOQZ_ZQE;MMHWG, (4.24)

i=1

and, for almost all t € [ty,11],

T L. dfi
Vv € Uy (l (1)Be(1) — Y, Qia—uf(huz (£),ug(t), x (l)) (ve—ug(t)) <0. (4.25)
=1

4.5.2 The Case Uy = R"/: The Followers Problem
Is Linear-Quadratic; Explicit Expressions of

ug(6,11,u;,-) and Xty uyug(0,t1,17,7))

In this subsection we consider the case when Uy = R™/, % is an arbitrary closed,
convex set with nonempty interior in L5’ ([fo, T]) and the endpoint is free, i.e. the
target set % = R". The objectives of the followers are quadratic, i.e. fori =1,..., p,
and (¢,u;,ug,x) € [1p,T] x R™ x R™f x R"

Sit,u,up,x) = x" Q;(t)x+ue Ri(1)uy,
where Qi(-) : [fo,T] — R™" and R;(+) : [tp,T] — R™/ ™™/ are continuous positive

semidefinite matrix-valued functions.
Also

yi(x) =" 0lx,

where Q{ is a symmetric positive semidefinite matrix.
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Moreover we make the following assumption:

V(i,t) €{1,...,p} x [to,T] Ri(t)>0 if 0 = we,

(HLQP), : { .
(Fie{l,...,p})(Vt € [10,T]) Ri(t)>0 if o =pe.

Note that this particular choice of f; and y; agrees with all the assumptions (P.«7).
Let us denote

)4 )4 )4
0(6,) =Y 6:0:(); R(6,)=Y 6R(); 0'(6)=Y 6:0/.
i=1 i=1

i=1

Thus, the scalarized problem (S) g, ,,) becomes the linear-quadratic problem

min (x(tl)TQf (0)x(11) + /t " ()7 0(6,0)x(r) -l-Uf(t)TR(O,t)uf(t))dt)
(LQP) 4 st (1) = A(0)x(r) + Be(t)ug(t) + Bu(t)uy(1)  ae. on [to,11],
x(to):xo.

We have the following result which is probably known also for L, controls, but we
will present a proof for the sake of completeness.

Theorem 4.15. Let (x.(-),ug,(-)) € H ([t0,11]) x ernf([to,tl]) verify the differential
system and the initial condition for problem (LQP). Then the control process
(x+(-),ug,(+)) is optimal for problem (LQP) if, and only if, there exists a function
A(-) € H([to,11]) such that

A2T(t) = =AT(0)A(r) —xL (1)Q(6,1) a.e. on [tg,11], (4.26)
AT (1) = xL(n)Q/(6), (4.27)
up, (1) = =R Y(6,0)B¢T (1)A(r) a.e.on [to,1]. (4.28)

Proof. Assume that A(-) € Hi([to,t;]) verifies (4.26)—(4.28). Let (x,uf) €
H ([t0,11]) % ernf ([to,t1]) verify the differential system and the initial condition for
problem (LQP). We have for almost all ¢ € [ty, 1]

d

= (AT OG0 = x.0)) = AT (1) (3(0) = .(6) + AT (1) (1) = (1))

= — AT (A ++ ()0(8,0) (x(r) . (1)
27 (1) (A0 (x(1) — . 1)) + B (0g(e) — . 1))
= 27 (1Q(8,1)(x(0) — x.(1)) ~ el (1)R(,0) (u(1) — ug. (1),
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With the initial condition for x(-),x.(-) and final condition for A(-) we get by
integration

xL(11)Q7 (0)(x(t1) — xu(11)) =— /tl (xf(t)Q(G,t)(x(t) —x:(1))
o (4.29)

! ()R(6,1) (ue(r) — ug, (1)) ) .

Denote

1

T ue()) = (x()7Q (O)x(er)+ [ (1) Q(8,1)x(1) +u(r) " R(6,1)ue(r))dr ).

fo

For any symmetric positive semidefinite matrix P and for all vectors v,v,, we
obviously have

viPy —vIPy, > 20T P(v—v,).
Therefore
J(x(-),ue(+)) = T (e () uee () 22 [X*T(tl)Qf(f))(X(tl) —x(t1))

+ " (xf(t)Q(e,t)(x(t) —x4(1))

fo

el (0)R(0,1)(ur(r) —ug, (1) ) o]

From (4.29) the last expression is zero; hence J(x(-),u(-)) —J(x:(-),us.(-)) > 0.
Thus (x.(-),ug,(-)) is an optimal control process for problem (SQP).

Conversely, let (x.(-),ug,(-)) € H{([to,11]) % ernf([to,tl]) be a solution of (LQP)
(which exists and is unique according to Theorem 4.8). Let A(-) € H{([to,#1]) be
the solution of the linear system (4.26) verifying the final condition (4.27). For any
u(-) € L;nf ([to,11]), denoting by x(-) the corresponding solution of the differential
system and the initial condition for problem (LQP), we have (using a similar
calculus as before)

AT xl) —e) == [ (< (0006, x(0) —x.(0)

JIy

+ 27 () Be(e) (wr(1) — ur. 1)) ) dr

On the other, using the fact that the directional derivative of J at the optimal point
(x+(+),ug,(+)) in the direction (x(-),uf(+)) — (x«(+),us,(+)) is positive we have
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2 (0)Q7(8) (x(t1) = xu(11)) + tl(Xf(t)Q(GJ)(X(t)—x*(t))

fo

+ugl (1)R(6,1) (ug(r) —ug, (r)))dr > 0.

Finally we obtain

/ttl (AT (1)By(r) — ugl (NR(0,1)) (we(r) — ug, (1)))dr < 0.

0

Since ug(-) can be arbitrarily chosen in ernf ([f0,11]), we obtain that (4.28) is satisfied.
]

Next we will show that, in the linear-quadratic case, it is possible to compute
explicitly the optimal control and state as a function of the parameters 0, ¢, u; by
means of a 2n X 2n resolvent matrix of a linear differential system based on data.
This fact will allow us to find explicit optimality conditions for our bilevel problems.

Recall that ug(6,7,1;,-) denotes the unique optimal control of the scalarized
problem (S)(g, 4. The corresponding unique state and adjoint state (verifying
Theorem 4.15) will be denoted by x(0,#,,u;,-) and A(0,71,u;,-).

To be more precise, the functions x(0,t;,u;,-) and A(0,#;,u;,-) verify the
following boundary linear problem:

%(G,Ihul,t) =A()x(0,11,u1,1) —Be(1)R™1(0,6)By(t)TA(0,11,u,1)

+B[(l‘)ul(l‘) a.e.on [l‘o,l‘l], (4.30)

%(Q,tl,u,,t) = —A(t)T)L(G,tl,u,,t) — Q(B,t)x(@,tl,ul,t) a.ec. on [l‘o,l‘l],
(4.31)
x(e,ll,ul,[()) =X0, (432)
l(@,tl,ul,tl) :Qf(e)x(e,tl,ul,tl) (4.33)

and

uf(e,tl,ul,t) = —Rfl(G,t)BfT(t)A(B,tl,ul,t) a.e.on [l‘o,l‘l]. (4.34)

Givent; € 7 and 0 € O, consider the matrix-valued function P(0,t,-) : [to,#;] —
R™" which, under our hypotheses about matrices Q/(8), Q(6,t), R(8,t), is the
unique continuously differentiable solution (see, e.g. [1]) of the Riccati matrix
differential equation (RMDE) on [tg,;]:

%(G,tl,t) =—AW)TP(0,11,1) —P(0,11,1)A(r) — Q(6,1)

+P(G,tl,t)Bf(t)R(B,t)’le(t)TP(B,tl,t)
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satisfying the final time condition
P(0,11,11) = Q' (8). (4.35)

Moreover, P(6,1;,t) is a symmetric positive definite matrix for each .

Following [18] we can express P in terms of a resolvent matrix depending
directly on data. Thus consider for all (8,1) € O X [fg,#1] the 2n X 2n matrix which
defines the linear system (4.30) and (4.31)

A1) —Bi()R'(6,1)B¢" (1)
L(6,1) =
_Q(evt) _AT(t)
The proof of the following result can be found in [18].

Proposition 4.16. Let \¥(6,-,-) be the resolvent (or state transition) matrix asso-
ciated to the linear differential system defined by L(0,t), i.e. for each s € [ty,T],
¥(0,-,s) satisfies the Cauchy problem:

2 (0.0 =L(O.¥(0.1.9) 1€ [0.T]. W(B.5.5) = .

Let us divide the matrix \Y'(0,t,s) into four n x n blocks:

P(0,1,5) = <‘f’11<9=t7s) ‘Pu(e,t,s)) |

¥1(0,t,5) ¥ro(6,1,5)

Then, for all t € [to,t1], the matrix [¥1(0,t,t1) + W12(0,t,t1)Q7 (8)] is invertible
and

-1
P(8,11,1) = [‘le(GJ,n) +‘Pzz(9,t,t1)Qf(9)} [‘1’11(9,t,t1)+‘I’12(9,t,t1)Qf(9) :
(4.36)

Next, let us denote by & (0,11,u;,-) € H}([to,1]) the unique solution of the following
linear Cauchy problem:

% (0.t110) = (— AW)" + P(O.1.)B()R " (0.0)Be(1)) (6.1,
— P(6,11,t)B;(t)u(t) a.e.on [t,t], (4.37)
é(eathulatl)zo' (438)

Lemma 4.17. For allt € [ty,t;] we have

A(8,11,up,t) = P(6,11,1)x(0,t1,uy,t) + (0,11, u,1). (4.39)
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0
Proof. Computing the derivative E(A(G,tl,ul,t) — P(0,11,t)x(0,t1,u;,t) — &

(0,11, ul,t)) and then, using (4.30)—(4.33), (RMDE), (4.35), (4.37), and (4.38), the
result follows easily. ]

Denote by Z(0,1,,-,-) the resolvent matrix associated to (4.37),1i.e. forall (0,#,s) €
Oy X % [l‘o, T]

aa_f(e’”’t’s) =(—A(0)" +P(0,11,1)Be(t)R™(0,1)Be(t)) Z(0,11,1,5), t € [to, T]
(4.40)
2(0,1,s,s) =1I,. (4.41)

Based on this we are able to solve the boundary problem (4.30)—(4.33) in terms of
data.

Corollary 4.18. Forall (0,11,u;) € O X T X sznz ([to,T)) and for all t € [ty,t1] we
have

x(0,11,uy,t) X0
=¥(0,1,10)
A(6,t1,u,t) P(8,11,10)x0+ & (0,11,u;,10)
. By (s)u(s)
+/ ¥ (6,1,5) ds,
JIy 0

where

1
5(9J1,M1J0):/ Z(0,11,10,5)P(0,11,5)B(s)u;(s)ds.

fo

Remark 4.19. The right-hand side member in the formulas giving x(0,¢;,u;,¢) and
A(6,t1,u;,t) in Corollary 4.18 is defined for all (¢,,¢) €]ty, T[X [to, T] (and not only
for (t1,t) € T X [to,11]) and for all 6 belonging to an open convex set 2 with O5 C
Q. Indeed, the formulas in Corollary 4.18 have a meaning as long as R(6,7) > 0.

When ¢ = pe, by (HLQP),, it is obvious that we can take Q = Ri 4

When ¢ = we, the continuous function [ty,7] x R™ > (r,uy) — ug’ Ri(t)ug
attains its minimum value, say ¢, on the compact set [to,T]| x S, where S is the
unit sphere in R™/, i =1,..., p. According to (HLQP),,. we have ¢; > 0 for all i.
Then, it is easy to see that we can take

P
Q={6 <R’ 60; >0}.
i=1
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We will extend the functions x(-,-,-,-) and A(+,-,-,-) based on these formulas as
continuous functions from Q xto, T[x L5 ([to, T]) % [to, T] to R". Moreover, based
on (4.34), we will extend also the function wg(-, -, -,-) as a continuous function from

Qx]ty, T[xLy"([t0,T]) x [to,T] to R™/. These extensions are necessary further in
order to obtain optimality conditions for the upper level.

Using the differentiability with respect to parameters of a differential equation and
some straightforward computation we have the following.

Proposition 4.20. The resolvent ¥(-,-,-) is continuously differentiable on Q x
[t0,T] x [to, T]. We have the following formulas for all (0,t,s) € Q x [t9,T] x [to, T]
andi=1,...,p:

39 (0,t,5) = / v 9,t,1’)3 (0,7)¥(0,1,s)dt, where (4.42)
oL 0 Bf(t)R7 (evt)Ri(t)Ril(evt)Bf(t)T
% (0.1) = L (443)
' —Q,‘(l) 0
aa—lf(ﬂ,t,s) = —W(0,t,5)L(0,s). (4.44)

By (4.36) and the previous proposition we obtain immediately the following.
Proposition 4.21. The matrix-valued function P(-,-,-) is continuously differen-
tiable on Q X [ty, T| X [to, T and verifies the following formulas:

JP Xy IV
56, (0110 =[St (0.0.0)+ 22 (0,0,01)07 (6) + ¥aa(0.1,11)0]

-1
X |:‘Pll(67t7tl)+%2(6>t7tl)Qf(e):|

-1
[%1 (8.1,11) +¥52(0,1,11)07 (8)] [ ¥11(8.1,11) + ¥i2(6,1.11)07 (6)]
¥
X |: +w(6>t7tl)Q (9)+1I112(6>t7t1)Qif:|
1
x [‘f’u (8.1.11) +¥i2(0,1,1)07(0)]
(4.45)
and
I g.15) ZE2 1 )
o 36, 36,
ae (6’t7s)
¥ ¥

ael (65t7s) ael (65t7s)
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Using an analogue calculus we obtain

JapP
a_tl(evtlvt)
-1
=[S 0.0+ S2(0,0.0)0 )] [#1 (0.1.0) + ¥1a (6,100 ()]
1

- {‘f’zl(@,t,t1)+'f’zz(@,f,tl)Qf(e)} {‘f’u(e,fﬁl)+‘f’12(97f,f1)Qf(9)}71

Y IV -1
x [ 5 11 (9J,f1)+a—12(9 fl)Qf(G)} [‘1’11(9J,I1)+‘f’12(9,f7f1)Qf(9)}
(4.46)
. ¥ ) .
The computation of 5 (0,t,11) can be obtained using (4.44):
1
%(B,t,tl) Oz —=2(0,1,1)) Y11(0,1,11) ¥12(0,1,11)
atl (9
= — L(@,l‘l).
¥ ¥
7?1(9,%&) atzz(evt,tl) ¥, (0,1,11) ¥oo(O,1,11)
(4.47)

Proposition 4.22. The resolvent Z(-,-,-,-) is continuously differentiable on Q X
[t0,T] X [to, T], and denoting

(0,11,1) := —A(1)" + P(6,11,0)Be(1)R ™ (6,1)Br (1), (4.48)
we have
= — =
a 9 tl,t,s / .:. 9 l‘l,t,T (9 1, ):(e,tl,T,S)dT, (4.49)
a 9 1,2, / E 0 l‘l,t,T (9 1, )E(Q,tl,r,s)d‘c, (4.50)
a—:(@,tl,t,s) = —Z(0,t1,t,5)(0,11,5). 4.51)

The computation of the partial derivatives of <7 (0,t1,t) can be obtained using
(4.36), Proposition 4.21 and the obvious formulas:

8

89 “10,1) =R 1(0,0)Ri(1)R"1(6,1).

Proposition 4.23. For all (0,11) € Qx]ty,T|, the maps u; — x(0,t1,u,-), u; —
A(0,t1,uy,-), respectively, u;— ug(0,11,u;,-) are aﬁ?nfl and continuous from L5" ([to,
T1) to H'([to,11]), respectively, from L' ([to,T)) to Ly ([to, T)). Therefore they are
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continuously Fréchet differentiable on L)' ([ty,T)) and, for any u; € L3 ([to,11]),
their Fréchet differentials (which are linear continuous maps from L3 ([ty,T]) to
H!([to,11]) and, respectively, from L3 ([ty,T]) to L;nf([to,T])) verify for all h €
LY ([to,T)) and for all t € [tg,1):

t
9 6.t1u0) -h:'f’lz(e,t,to)/ ' Z(6,11,10,5)P(0,11,5)By (s)h(s)ds

abt[ fo
!
+ | W11(0,1,5)Bi(s)h(s)ds (4.52)
fo
d 1
Wﬂ,(e,tl,ul,l‘)~h:%2(9,t,to)/ E(e,tl,to,S)P(e,tl,S)B[(S)h(s)ds
1 )
t
+ [ ¥1(0,1,5)B;(s)h(s)ds (4.53)
fo
iu (0,t1,u,t)-h=—R(6,1)B (t)Ti)L(G t,up,t) - h (4.54)
(9ul £\, 4, - ) f (9ul s 015 U, 5. .

Proof. 1t is easy to see from Corollary 4.18 and (4.30) and (4.31) that the maps
w; > x(0,11,uy,-) and u; — A(0,11,u;,-) are affine and continuous from L3 ([t, T)
to Hi ([to,11]); hence (4.52) and (4.53) hold. Then, by (4.34), we obtain that the map
u; — ug(0,11,u,-) from Ly ([1, T]) to L;nf ([0, T)) is affine and continuous and we
get (4.54). |

Theorem 4.24 (Regularity of v(-,-,-,-) and x(-,-,-,-)).

1. The functions ug(-,-,-,-) : Qx]to, T[x Ly ([to, T]) x [t0,T] — R™ and x(-,-,-,") :
Qxty, T[xLy" (1, T]) X [to, T] — R" are continuous.

2. The function (0,t1,u;) — ug(0,11,u;,-) from Qx|to, T[x Ly ([to, T]) to ernf([to,
T)) is continuous as well as the function (0,t1,u;) — x(0,11,u;,-) from Qx|to,
T[xLy" ([to,T]) to Ly([to, T]).

3. For each fixed (0,1,i;) € Qx|to, T[xL5" ([to,T]):

» The function 0 — ug(60,f,1;,-) from Q to L;nf([to,T]) and the function®
0 — x(0,11,1y,-) from L to Ly([ty, T]) are continuously Fréchet differentiable
on €.

e The function u; — ug(0,71,u;,-) from LY ([to,T]) to L;nf([to,T]) and the
function u; — x(0,f1,u;,-) from L) ([to,T]) to H}([to,T]) are continuously
Fréchet differentiable.

s The functions ty—ug(0,ty, 1y, -) fromty, T to L;nf([to,T]) andt;—x(0,t,4d;,")
from |1y, T[ to L([to,T]) are a.e. differentiable on |ty,T|[, and for almost all

(9uf ox

s (6,1,0,-) € L, ([0, T)) and = (8,11, d,-) € Li([to, T)).

t €lty, T,
1 ]0 [ 8t1

Note that the embedding H?'([ty, T]) C L4([to, T]) is continuous.
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Moreover, for each 1y €)ty, T| such that i is continuous® at t,, these
functions are differentiable in t.

4. The functions ug(+,-,-,-), x(+,-,-,-) and their partial derivatives can be explicitly
represented as functions of data (supposing we are able to compute the resolvent
matrices ¥ and Z).

Proof. By Corollary 4.18, Remark 4.19 and Propositions 4.20-4.23, we obtain
points 1 and 4.
To prove point 2 we will use the fact that, by Corollary 4.18, we can write

T
x(evtlvulvt):a(evtlat)+ X(eatlatvs)ul(s)dsv

fo

where
a(0,t1,1) = (W11(0,1,10) + Wi2P(0,11,1) ) xo

and X (0,t,t,s) is described later in relations (4.61) and (4.63). Obviously « :

Qx]ty, T[x[ty,T] — R" is a continuous function, and for each s € [tp, T], X (-, -, -,s)

is continuous on Q xtg, T[x [tg, T] — R"*™  and, foreach (0,¢1,1) € Q x]to, T [x [to,
T}, X(8,1,1,7) € L (1, T]).

We obtain easily that the function (0,#;) — o(6,71,-) is continuous from
Qx]ty, T[ to € ([to, T];R"), where € ([to, T]; R") is the Banach space of continuous
functions on [tp, T'] with values in R" endowed with the uniform convergence norm.

Since the embedding € ([to, T];R") C L ([t9, T]) is continuous, we obtain that the
function (0,1) — o(0,11,-) is continuous from £ x to, T'[ to L3 ([to, T]).

Also, using Lebesgue’s dominated convergence theorem, we obtain easily that
the function (8,#,1) — X (0,1,,t,-) is continuous from Qx o, T[x [to, T] to Ly "™
([to,T]). Denoting y(0,7,u;,t) = j;gX(G,tl ,t,8)uy(s)ds, and writing

y(0', 11, up,t) — y(0,t1,up,1) = (y(0',11,up,1) — y(0',17,uy,1))
+ (v(0",11,u1,1) = y(6,11,u1,1)),
we obtain that
(8,11, up, 1) = y(0,11,0,1)| < [IX (6, 17,8,) |12 - (|t — w2
11X (0", 11,1,) =X (0,11,1,) |12+ a2

which finally prove the continuity of the function (0,t,u;) — x(0,;,u;,-) from
Qx]ty, T[xLy" (|10, T]) to L3([to,T]).

3In the sense that there exists a function 7 continuous at #; and i (t) = #(t) a.e. on [fg, T]. Note
that by Lusin’s theorem, we can find measurable sets of arbitrarily small positive measure and such
functions #; which are continuous on the complement of those sets.
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With similar arguments we can prove the continuity of the function (6,#;,u;) —
ug(6,11,uy,-) from Qx 19, T[xLy" (|19, T]) to ernf([to, T)) and point 3. |

4.6 Optimality Conditions for the Upper Level, i.e.
for Problems (OB); and (PB),

In this section we will restrain to the case considered in Sect.4.5.2. Moreover we
will suppose that % is the closed ball

% = {w € L5 ([to, T)) | lwill» <R}, (4.55)

where R is a strictly positive real.

4.6.1 The Optimistic Bilevel Problem

We begin with some preliminary results in order to obtain an existence result when
Ut is not assumed to be bounded, so we cannot apply the results obtained in [17].
We could adapt the proof given in [17], but we will give direct proofs for the sake
of completeness.

Lemma 4.25. Let X and Y be arbitrary sets and let J : X x Y — RU{+eo} such
that, for each x € X, the set argmin J(x,-) is nonempty. Then the problems

in J 4.56
(i (x,¥) (4.56)

and
I;él)l{llynelll/’lj(x,y) (4.57)

are equivalent, i.e. problem (4.56) is solvable if and only if problem (4.57) is
solvable. In this case the solution sets coincide as well as the minimal values.

Proof. Let (£,9) € X x Y be a solution for problem (4.56), i.e. (£,§) € argmin J (-, -).
Then, for each x € X, we have obviously J(%,§) = mi;l] (#y) < mi}p] (x,y); hence
ye ye

J(%,9) = minminJ(x,y), and (%,9) is a solution for problem (4.57).
xeX yeY

Conversely, let (%,7) be a solution for problem (4.57). This means that, for all
x €X andy’ € argmin J(x, ), we have we have J (%,5) <J(x,)) = mi;l](x,y); hence
ye

for all (x,y) € X xY, we have J(%,7) < J(x,y). Therefore (%,y) is a solution for
problem (4.56). |
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Lemma 4.26. Let X = X' x X" where X' is a compact metric space, X" is a closed
bounded convex set in a reflexive Banach space 2" and let Y be a compact metric
space. Let J : X XY — RU{+oo} be a lower semicontinuous function on the
topological product space X' x (X",s) X Y, where s denotes the topology on X"
induced by the strong topology of 2. Suppose that J(x',-,y) is convex for each
fixed (X',y) € X' x Y.

Then the hypotheses of Lemma 4.25 are fulfilled, and argmin J(-,-,-) # 0.

Proof. 1. From Banach—Alaoglu—Kakutani theorem, X” is compact for the weak
topology of 2™ denoted w. Thus X x ¥ = (X’ x X”) x Y is compact in the
topological product space [X' x (Z™”,w)] x Y. Let us show that J is sequentially
lower semicontinuous on [X’ x (X" wyn)] x Y, where wy» stands for the topology
on X” induced by the weak topology of 2. Indeed, for any real ¢, let us denote

SLy ={(x',x",y) e X' x X" xY[J(x,x",y) < o}

Since J is lower semicontinuous on X’ x (X" s) x ¥ we have that SL, is closed
in X’ x (X”,s) x Y . Consider now a sequence ((x},x},yx))x in SLy convergent to
some (x',x",y) in X' x (2", w) x Y. Since (x}) converges weakly to x”, by Mazur’s
lemma [32, p. 6], there is a sequence (¥}) converging to x” in (X”,s) such that,
for any k, X/ is a convex combination of x}’s. Then, by the convexity of X" and of

‘](x;cv '7yk)’ we havei;{’ S X” and
J (%, s yi) < J (X, %7, vi) < .

Thus (x},%,,yk) € SLy and (x}, %/, yx) converges to (x',x",y) in X’ x (X" ,s) x Y;
hence (x',x”,y) € SLy. Therefore SLy is sequentially closed in X' x (27", w) x
Y; hence J is sequentially lower semicontinuous on X’ x (27", w) x Y. Finally, by
Weierstrass’ theorem, we obtain that argmin J(-,-,-) # 0.

Let now x = (x',x") € X = X’ x X" be fixed. Since Y is compact and J(x,-)
is lower semicontinuous on Y, we obtain from Weierstrass’ theorem that argmin
J(x,-) #0. |

Let J; : Qx|tg, T[x % — RU{+eo} be defined by

j}(eutluul) ::j;(tluuluuf(eutluulu )) :J[(ll,btl,llf(e,ll,ul,'),X(@,[],Ml,')).
(4.58)

Theorem 4.27. In addition to hypotheses (P</) we suppose that, for each t €
[t%0,T], fi(t,-,-,-) is a convex function.
Moreover we suppose the following hypothesis:

there is some a € L..([tg, T]) and some real constant 3 such that,
(Hf) for almost all t € [ty, T], and for all (uj,ug,x) € R™ x R™ x R,

}V(uhubx)fl(ta ”luufvx)’ < Ot(l) + B'(”lvufvx”'
(4.59)
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Then problem (OB),,. has at least one solution and it is equivalent to the problem

P, min J(0.t,u).
B) g D gy 1Ot )

Proof. We will show that all the hypotheses of Lemma 4.26 are fulfilled (denoting
X' =T, X"=%Y =0y, 2" =L ([to,T)), X =t1, X" =u;,y=0,J(x' . x",y) =
Ji(6,11, u;)), and then the conclusion follows from Lemma 4.25.

% is (strongly) closed, bounded and convex in L3 ([ty,T]); .7 and ©,, are
compact. For fixed (f1,60) € .7 x O, the function J;(8,-,1;) is convex since, for
any ¢ € [to,T], the function f(¢,-,-,-) is convex, and u; — ug(0,ty,u;,-), u —
x(0,t,u;,-) are affine functions by Proposition 4.23.

To finish the proof it is sufficient to show that J; is lower semicontinuous on
Oy X T X %, where %; is endowed with the topology induced by the strong
topology of L3 ([to,T]). Let (6*, t’l‘, )k be a sequence in Oy, x T x % which
converges (strongly) to an element (9 f1,4;). Since ©,,, X T X % is closed we have
(é,fl,b_l[) € Ope X T X YU.

We obtain from Lemma 4.4, Theorem 4.24 and (4.58) that, for each fixed t; € .7,
the function J; (-, -) is lower semicontinuous. On the other hand we have

j}(ekvtllcvuh = fl(ekvt_l ) ”Il() + (j}(ekvtllcv ”Il() - jl(ekvt_hu;())v

and the term (J;(6%,2§,uk) — J;(0%,71,ul)) tends to 0 as k — +oo. Indeed,

(05 tf uly — (6% 7, uf) = /f[(t ub (1), up (0%, 1¥ uk 1), x(6% 1§ uk 1)) dr

7 _ _
fl(tvugc(t)auf(ekatla“llcvt)ax(ekatlvufcvt))dt'
0
(4.60)

Since the sequence (u}) is bounded in L3’ ([to, T]), by (Hf) and Theorem 4.24 there
is a constant M > 0, such that, for all k € N and almost all ¢ € [ty, T],

|ﬁ(t7u;€(t)7uf(6k7t{{7 M;{7t)7x(9k7t{€7 M;{7t))| S M
and

|fl(t7uf(t)auf(ekvt_lvufvt)a (6 tlvulv ))|<M

Finally, let us show that both integrals in (4.60) have the same limit as k — oo,
f _ _

which is / Si(e,my(t),ue(0,51,0;,1),x(0,f;,i;,¢))dt. To do this it is sufficient to
Io

prove that these convergences hold for a subsequence. Since (uf‘) converges in
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L5 ([to, T)), there exists a subsequence (¥ ), such that (u () converges to i (r)
a.e. on [fp, T]. Then, we can apply Lebesgue’s dominated convergence theorem to
obtain the last claim.

Therefore, using the fact that for each #; € .7 the function J;(-,#1,-) is lower
semicontinuous, we obtain

lim J;(6%,¢F,uky = Tim Jy(6%,7,uk) > Jy(0,1, ). [ |
k—>+o0 k—>oo

We denote (f7)y, (,+,57) & [0, T] X R™ X R™ X R" — R™ (f1)g,(,+,57) : [t0,T] %
R™ x R™ x R" — R™ | (fi) (- -5) @ [to, T] X R™ x R™ x R" — R" the partial
derivatives of f; with respect to the variables located on the second, third and fourth
position, respectively.

Also, let us denote for all (0,#1,1,5) € Qx]ty, T[X[to, T] X [to,T],

X(0,t,t,5) = [}qmm(s)‘f’lz(e,t,to)E(G,tl,to,s)P(G,tl,s)

+ Ko (s)lfql(e,t,s)} By(s) 4.61)
Y(0,0,t,5) = — R™'(6,0)Bg(t)” [;q,o,,l](s)quz(e,t,to)a(e,tl,to,s)P(e,tl,s)

+ X ()91 (0,1,5) | Bi(s), (4.62)

where x|,  : [to, T] — R is the characteristic function

1 if s € [r,1],
Ko (s) = { 0 otherwise. (4.63)
Thus, formulas (4.52), (4.54) become
po) T
—x(0,t1,u;,")-h = / X(0,11,-,5)h(s)ds, (4.64)
aul J1o
0 T
—up(0,t,u;,-)-h = Y(6,11,-,5)h(s)ds. (4.65)
8141 fo

Next result is necessary to ensure the differentiability of J;.

Lemma 4.28. Suppose that f; satisfies the hypothesis (Hf) given in Theorem 4.27,
in addition to the hypothesis (< ). Then, for each fixed t| €|ty, T|, the functional
Ji(t,7) 1 Q x LY ([to, T]) — R is well defined and continuously Fréchet differen-
tiable. Its partial derivatives with respect to 0;, i = 1,..., p are given by
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oJ; g Jdu
—I(Q,II,M[) :/ (fl){lf([,ul(t),llf(e,[],M[,[),X(e,ll,ul,[))T—f(e,ll,bt[,[)dl
aei fo ael
ox
—(0,¢ t)de.
86i(9’ 1,Up,t)
(4.66)
Its partial Fréchet gradient with respect to u; at (0,t1,u;) is given, for almost all

s € [to,11], by*

1
+ | (1)t (), up(0,t1,uy,2),x(8, 11, uy,1)) "
0

Vul‘i}(eutluul)(s) = (fl)ill (S,ul(s),llf(e,ll,M[,S),.X(@,[],M[,S))

T
+/ LT(0,11,1,8)(f))u, (1,1 (1), (6 11,14y, 1),x(6, 11,y 1)) dt
fo

T
+/ XT(0,11,1,8)(fi).(t,u (), 0p(0, 1y ,uy,1),x(0, 11, 1y,1))dr.
fo
4.67)

Moreover, for each fixed (8,u;) € Q x L5 ([to, T), the function J;(6,-,u;) € H ([to,
T]), and for almost all t| €|ty, T, its derivative is given by

~

aJ,
a_tll(97t17ul) = ﬁ([],M[([]),llf(@,[],M[,[]),.X(@,[],Ltl,ll))
n ’ Tauf
+/t (ﬁ)uf(t7ul(t)7uf(67tluMlut)ax(97tluulut)) a_tl(eutlauht)dt
Jty
11 , T ox
+ ) (f1)(t,uy(2),ue(0, 81, up,1),x(0,11,u;,t)) a—tl(@,tl,ul,t)dt.
JIo

(4.68)

In particular, at each point t| such that u; is continuous at t| (see footnote 3), the
real-valued function t — J;(0,t,u;) is differentiable.

Proof. By [4, Example 2, p. 20] we have that the functional J;(t1,-,-,-) : L’Z"l ([0,
T]) x ern/ ([to,T]) x H{([to,T]) — R is well defined and is continuously Fréchet
differentiable for each fixed #; €lfy, T[. Moreover, its partial derivatives satisfy,
for all (t1,u;,ug,x) €lto, T[xL5" ([to, T]) % L’zn/([to,T]) x H{([to,T]), the following
equations:

g_LJtll(f17M17Uf,x)'V: /,l1 (i) (1,00 (1), (), x(0)) T v(e)dr v € L5 ({10, T]),

*We identify the Hilbert space L)" ([to, T]) with its dual according to Riesz-Fréchet theorem; hence
Vi Ji(0,t1,u) € Ly ([to, T]) (see, e.g. [7, p. 38]).
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g—ff(ll,ul,llf,x)-wz/t:(fl){lf(t,ul(t),llf(t),x(t))TW(t)dt VweL;"f([to,T]),
T r) 2= [ (4 0).w0).50)) 00 Ve € 7 T)

Also, for each fixed (u;,ug,x) € Ly ([to,T]) X L;nf([to,T]) x H{'([to,T]) and for
almost all #; €]ty, T,

aJ
a_tll(tlaul;ufvx) = fi(tr,u(tr),ug(t1),x(11)).

Let us identify, using Riesz-Fréchet theorem, the Hilbert spaces Ly" ([t, T]), L;nf ([0,
T]) and Lj([to,T]) with their duals, and do not identify H}([to,T]) with its dual
H{'([to,T])*. Based on the fact that (see [21, pp. 81-82] for details)

H ([0, T1) € L5([t0, T) = L5 (10, T])" < HY' ([t0, T])"

and both embeddings are continuous and dense, and the duality product between
H{([to,T]) and H} ([to, T])* coincide with the inner product in L5 ([to, T]) on H} ([to,
T]) x L4([to, T]), we have that the Fréchet gradients V,, J; (1, u;, us,x) € LY ([to, T]),
Vi (t1,ur,u¢,x) € L;nf([to,T]) and V.Ji(t1,u;,ut,x) € L5([to,T]) are given for
almost all # € [ty, T] by

(fl)/ul(tvul(t)auf(t)ax(t))a ifre [to,tl],

V., J f,u,ue,x)(1) =
u I( l )() {(), ifl‘E]tlvT]’

(ﬁ){lf(t’ul(t)7uf(t)7x(t))7 if te [to,tl],

VuJi (t1,up,08,x) (2) =
w1t )© {0, if reln,T],

(f;);(t,u;(t),uf(t),x(t)), ifre [thtl]a

V. Ji(t1,up,ue,x)(t) =
et )© {0, if reln,T],

Now, using the chain rule in (4.58), we obtain immediately (4.66) and (4.68) and
also

VM[‘]}(GJI»“Z)([) :(f[);l([,u[([),llf(e,tl,Ml,[),x(e,ll,ul,t))

) *
+ (Tmuf(evtlvula')) (f[){lf(t,M[(t),llf(e,ll,M[,t),x(e,tl,ul,l))

) *
+ (me(evtlvula')) (f[);(t,u[(t),uf(G,tl,u,,t),x(@,tl,u;,t)),
(4.69)
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and, for almost all 7 €]t;,T], V,,J;(8,t1,u;)(t) = 0, where M* stands for the adjoint
operator of a linear continuous operator M between two Hilbert spaces.

Fix (0,t1,u;) € Qxto, T[xL5"([to,T]). Since the embedding H}([to,T]) C
L3 ([to, T)) is continuous, we can consider the partial Fréchet derivative a%lx(e S Uy

as a linear continuous operator from L3 ([ty,T]) to L3([ty,T]). Denote (-,-), the
inner product in L% ([to, T]). For all h € LY ([to, T]), k € L3([to,T]) we have

T T
<8iux(6,t,,ul,-)h,k),, = [ K@) ( X(G,tl,t,s)h(s)ds> dr
1

J1y to

J1o

- ThT(s) (./ITXT(O,tl,t,s)k(t)dt) ds

a *
= <h5 (a_lzt[x(e,thuh')) k>m17
hence

* T
(a%x(e,t,,ul,-)> k= [ XT(0,11,1,)k(t)dt. (4.70)
1

fo

In the same way we get for all k € L;"f ([0, T])

* T
(iUf(e,[[,ul,')> -k:/ YT (0,11,1, )k(r)dr. 4.71)
8u, J1o

Finally (4.67) follows from (4.69). |

Theorem 4.29 (First-order necessary conditions when the final time is fixed, i.e.
T ={t1}). Suppose that 7 = {t,}, and f; satisfies hypotheses (<), (Hf), and
Si(t,-,-,-) is convex for all t € [t, T].

Let (0,i1;) € Oy, X % solve (OB),,. Then there are nonnegative real numbers

Ww,li,...,1, and a real number v such that
Vi di(8,11, ) (1) + pitg(r) = 0 a.e. on [ro, T}, 4.72)
oJ; -
ZL0,t,m)—li+v =0, i=1,....p, (4.73)
00;
u(ll@ll2—R) =0, (4.74)
1;6; = 0, i=1,...,p, (4.75)

and of course
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'Mw
I

Il
—

(4.76)
)2 <R, 6; >0, i=1,...,p. 4.77)

Remark 4.30. According to (4.67), equation (4.72) is a Fredholm integral equation
in the unknown i; (linear if f;(z,-,-,-) is quadratic, case which satisfies hypothesis
(Hf)), depending on 2p + 1 parameters (1 and ;). Assuming that we are able to
solve this integral equation, (4.73)—(4.76) represent a nonlinear system with 2p 42
equations and 2p + 2 unknowns (U, Vv, 60;,/;. A similar remark applies to the next
theorem.

Theorem 4.31 (First-order necessary conditions when the final time 1| € . =
[t,7] Clto, T[). Suppose that f; satisfies hypotheses (<), (Hf) and fi(t,-,-,-) is
convex for all t € [to,T).

Let (1,0,i)) € T x Oy X U solve (OB)y,. Suppose that iiy is continuous at
fi (see footnote 3). Then there are nonnegative real numbers (L, ... 1,1, 1,0,12

and a real number v such that

Vi J1 (0,11, (1) + piig(t) = 0 a.e. on [fp, T, (4.78)
oy -
ZL0,n,a)—li+v=0, i=1,...,p, (4.79)
00,
oy -
a_tll(evtlvul)_lprl—i_lerZ:Oa (4.80)
p(llall2—R) =0, (4.81)
:6;=0, i=1,...,p, (4.82)
lpr1(fi—1) =0, (4.83)
lpia(f—11) =0, (4.84)
and of course
p -
Yo =1, (4.85)
i=1
lla, <R, 6;>0, i=1,...,p. (4.86)

The proof of Theorems 4.29 and 4.31 is a direct application of the generalized
Lagrange multiplier rule under Kurcyusz—Robinson—Zowe regularity condition (see
[39, Theorem 5.3]) and is based on Theorem 4.27 and on Lemma 4.28.
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4.6.2 The Pessimistic Bilevel Problem

In this section we assume that f;(z,-,-,-) is quadratic, i.e. for all (¢,u;,ug,x) €
[t0,T] x R™ x R™ x R",

fit,up,ug,x) = ul S(t)u; +ug” Ry(t)ug+x" Q)(1)x, (4.87)

where S;(+),R;(+),0;(-) are continuous symmetric matrix-valued functions. Note
that this function satisfies hypotheses (Z2) and (Hf).

According to [4, Example 3, p. 14] the functional J(t1,-,-,-) : L ([to, T]) x
L’an ([to,T]) x Hj([to,T])x is well defined and continuous. Therefore, by
Theorem 4.24, the functional fl(,,) has finite values and is continuous on
Ope X T X YU.

Moreover, since O, is compact, the pessimistic problem (PB),, can be writ-
ten as

min max J;(0,t1,u).
(t1,u1)€T XU €Oy,

Theorem 4.32 (First-order necessary conditions when the final time is fixed, i.e.
T ={t1}). Suppose that 7 = {1 }.
Let (0,1;) € Oy X % solve (PB).. Then there are nonnegative real numbers

W,ly,...,1l, and a real number v such that
Vi J1(0,11,0) (1) + piig (1) = 0 a.e. on [f, T}, (4.88)
oy -
2L, @) +Li+v=0, i=1,....p, (4.89)
d06;
u(ll@ll —R) =0, (4.90)
1;6;, =0, i=1,...,p, (4.91)
and of course
p -
Y6 =1, (4.92)
i=1
lalla <R, 6;>0, i=1,....p. (4.93)

Proof. We have that 0 is a maximizer of f,(-,tl,ﬁ,) over O,,. By Karush—Kuhn—
Tucker theorem, since on ©,, the linear independence of gradients of active
constraints holds (hence Mangasarian—Fromowitz regularity condition holds), and
based on Lemma 4.28, we obtain that there are nonnegative reals /1,...,/, and a real
v such that (4.89) and (4.91) hold and of course (4.92) and (4.93).
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Moreover, if; is a minimizer of fl(é,tl,-) over the ball %;. By the generalized
Lagrange multiplier rule under Kurcyusz-Robinson-Zowe regularity condition (see
[39, Theorem 5.3]), and based on Lemma 4.28, we obtain (4.88) and (4.90). |

Theorem 4.33 (First-or_der necessary conditions when the final time 1y € .7 =
[£,7] Cto,T]). Let (71,0,i;) € T X Oye X % solve (PB)ye. Suppose that i is
continuous at f, (see footnote 3). Then there are nonnegative real numbers

w,li, .. 0y i1,y and a real number v such that
Vi J1(0,t1,0)(t) + pigy(t) =0 a.e.on [to,T], (4.94)
ofy -
a—(;(eﬁlﬁz)-#li—i-v:o, i=1,....p, (4.95)
ol
a—“’(@,thﬁz) ~lps1+lp2 =0, (4.96)
u(llall2—R) =0, (4.97)
1;6;, =0, i=1,...,p, (4.98)
Lpy1(f —1) =0, (4.99)
lLya(f—1) =0, (4.100)
and of course
p -
Y 6 =1, (4.101)
i=1
||, <R, 6;>0, i=1,...,p. (4.102)

The proof is identical to the proof of Theorem 4.32.

Remark 4.34. A similar comment as in Remark 4.30 can be done for the last two
theorems. Moreover, in this case the computation of the partial derivatives and
gradients in Lemma 4.28 is simplified since, by (4.87), we have

(fi)u, (2 1y, 0g,) = 2u] (),
(f1)ug (1,11, 0g,x) = 2ug" Ry (1),

(f)e(t,ur,up,x) = x7Qu(2).
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Chapter 5
Monotone Operators Without Enlargements

Jonathan M. Borwein, Regina S. Burachik, and Liangjin Yao

Abstract Enlargements have proven to be useful tools for studying maximally
monotone mappings. It is therefore natural to ask in which cases the enlargement
does not change the original mapping. Svaiter has recently characterized non-
enlargeable operators in reflexive Banach spaces and has also given some partial
results in the nonreflexive case. In the present paper, we provide another char-
acterization of non-enlargeable operators in nonreflexive Banach spaces under a
closedness assumption on the graph. Furthermore, and still for general Banach
spaces, we present a new proof of the maximality of the sum of two maximally
monotone linear relations. We also present a new proof of the maximality of the sum
of a maximally monotone linear relation and a normal cone operator when the
domain of the linear relation intersects the interior of the domain of the normal cone.

Key words: Adjoint * Fenchel conjugate ¢ Fitzpatrick function ¢ Linear
relation * Maximally monotone operator * Monotone operator * Multifunction
* Normal cone operator ¢ Non-enlargeable operator * Operator of type (FPV)
* Partial inf-convolution * Set-valued operator
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5.1 Introduction

Maximally monotone operators have proven to be a significant class of objects in
both modern optimization and functional analysis. They extend both the concept
of subdifferentials of convex functions, as well as that of a positive semi-definite
function. Their study in the context of Banach spaces, and in particular nonreflexive
ones, arises naturally in the theory of partial differential equations, equilibrium
problems, and variational inequalities. For a detailed study of these operators, see,
e.g., [12—14], or the books [3, 15,20,27,32-34,46,47].

A useful tool for studying or proving properties of a maximally monotone
operator A is the concept of the “enlargement of A”. A main example of this
usefulness is Rockafellar’s proof of maximality of the subdifferential of a convex
function (Fact 5.3 below), which uses the concept of e-subdifferential. The latter is
an enlargement of the subdifferential introduced in [18].

Broadly speaking, an enlargement is a multifunction which approximates the
original maximally monotone operator in a convenient way. Another useful way
to study a maximally monotone operator is by associating to it a convex function
called the Fitzpatrick function. The latter was introduced by Fitzpatrick in [22] and
its connection with enlargements, as shown in [21], is contained in (5.4) below.
Enlargements of positive sets in SSDB spaces (see [34, Sect. 21]) have recently
been studied in [16].

Our first aim in the present paper is to provide further characterizations of
maximally monotone operators which are not enlargeable, in the setting of possibly
nonreflexive Banach spaces (see Sect.5.4). In other words, in which cases the
enlargement does not change the graph of a maximally monotone mapping defined
in a Banach space. We address this issue Corollary 5.28, under a closedness
assumption on the graph of the operator.

Our other aim is to use the Fitzpatrick function to derive new results which
establish the maximality of the sum of two maximally monotone operators in
nonreflexive spaces (see Sect.5.5). First, we provide a different proof of the
maximality of the sum of two maximally monotone linear relations. Second, we
provide a proof of the maximality of the sum of a maximally monotone linear
relation and a normal cone operator when the domain of the operator intersects
the interior of the domain of the normal cone.
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5.2 Technical Preliminaries

Throughout this paper, X is a real Banach space with norm || - ||, and X* is the
continuous dual of X. The spaces X and X* are paired by the duality pairing, denoted
as (-,-). The space X is identified with its canonical image in the bidual space X**.
Furthermore, X x X* and (X x X*)* := X* x X** are paired via ((x,x*), (y*,y™)) :=
(x,5*) + (x*,y**), where (x,x*) € X x X* and (y*,y**) € X* x X**.

LetA: X = X* be a set-valued operator (also known as a multifunction) from X
to X*, i.e., forevery x € X, Ax C X*, and let graA := {(x,x*) € X x X* | x* € Ax} be
the graph of A. The domain of A is domA := {x € X | Ax # @'}, and ranA := A(X)
for the range of A. Recall that A is monotone if

(x=yx*—y") >0, V(xx")egraAV¥(y,y") € graA, 5.1

and maximally monotone if A is monotone and A has no proper monotone extension
(in the sense of graph inclusion). Let A : X = X be monotone and (x,x*) € X x X*.
We say (x,x*) is monotonically related to graA if

(x=y,x" =y") >0, V(yy") € graA.

LetA : X = X* be maximally monotone. We say A is of type (FPV) if for every open
convex set U C X such that U NdomA # &, the implication

x € Uand (x,x*)is monotonically related to graANU x X* = (x,x*) € graA

holds. Maximally monotone operators of type (FPV) are relevant primarily in the
context of nonreflexive Banach spaces. Indeed, it follows from [34, Theorem 44.1]
and a well-known result from [30] (or from [34, Theorems 38.4 and 39.1]) that every
maximally monotone operator defined in a reflexive Banach space is of type (FPV).
As mentioned in [34, Sect. 44], an example of a maximally monotone operator
which is not of type (FPV) has not been found yet.

Let A : X = X* be monotone such that graA # &. The Fitzpatrick function
associated with A is defined by

Fi: X x X* = ]—oo,+oo] 1 (x,x") = sup  ((x,a*) + (a,x") — (a,a")).
(a,a*)egraA

When A is maximally monotone, a fundamental property of the Fitzpatrick function
Fj (see Fact 5.5) is that

Fu(x,x") > (x,x*) forall (x,x") € X x X*, (5.2)

Fu(x,x") = (x,x") for all (x,x*) € graA. (5.3)
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Hence, for a fixed € > 0, the set of pairs (x,x*) for which F4(x,x*) < (x,x*) + €
contains the graph of A. This motivates the definition of enlargement of A for a
general monotone mapping A, which is as follows.

Let € > 0. We define A : X = X* by

graAg == {(x,x*) EXXX" | (X" =y x—y)>—€,V(yy) € graA}
- {(x,x*) EX x X* | Fy(x,x") < <x,x*>+g}. (5.4)

Let A : X = X* be monotone. We say A is enlargeable if graA & graAg for some
€ >0, and A is non-enlargeable if graA = graA, for every € > 0. Lemma 23.1
in [34,36] proves that if a proper and convex function verifies (5.2), then the set
of all pairs (x,x*) at which (5.3) holds is a monotone set. Therefore, if A is non-
enlargeable then it must be maximally monotone. As the referee has pointed out
another proof is as follows: if A is non-enlargeable then A = Ay and hence A is
maximally monotone.

We adopt the notation used in the books [15, Chap. 2] and [12, 33, 34]. Given a
subset C of X, intC is the interior of C, C is the norm closure of C. The support
function of C, written as o, is defined by o¢(x*) := sup.cc{c,x*). The indicator
function of C, written as 1¢, is defined at x € X by

0, ifxeC;
lc(x) = { . (55)
oo, otherwise.

For every x € X, the normal cone operator of C at x is defined by N¢(x) := {x* €
X* | sup,ec{c —x,x*) <0}, if x € C; and N¢(x) := @, if x ¢ C. The closed unit ball
isBy :={xeX||x]| <1},and N:={1,2,3,...}.

If Z is a real Banach space with dual Z* and a set S C Z, we denote st by
St:={z"€Z*|(z*,s) =0, Vse&S}. The adjoint of an operator A, written A*, is
defined by

grad® := {(x**,x") € X x X* | (x*, —x™*) € (graA)* }.

We will be interested in monotone operators which are linear relations, i.e., such
that graA is a linear subspace. Note that in this situation, A* is also a linear relation.
Moreover, A is symmetric if graA C graA*. Equivalently, for all (x,x*),(y,y*) €
graA it holds that

(x,y") = (y,x"). (5.6)

We say that a linear relation A is skew if graA C gra(—A*). Equivalently, for all
(x,x*) € graA we have

(x,x*) =0. (5.7
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We define the symmetric part a of A via
Ap =LA+ 1A% (5.8)

It is easy to check that A is symmetric.

Let f: X — |—oo, +oo]. Then dom f := f~!(R) is the domain of f,and f*: X* —
[—oo, 400 1 X* = sup,cx ((x,x*) — f(x)) is the Fenchel conjugate of f. We denote
by f the lower semicontinuous hull of f. We say that f is proper if dom f # @. Let
f be proper. The subdifferential of f is defined by

If : X =X ixm {x7 € X7 | (Wy € X) (y—x,x") + f(x) < f(V)}-
For € > 0, the e-subdifferential of f is defined by
Oef: XX x> {XeX" |(WeX) y—x,x)+ f(x) < f(y) +¢€}.
Note that d f = dyf. Given x € X, we say delc(x) is the e-normal set of C at x (see
[241]2)e;latedly, we say A is of Brgnsted—Rockafellar (BR) type [15, 34] if whenever
(x,x*) € X x X*, ot, § > 0 while

inf  (x—a,x"—da*)>—-0of
(a,a*)egraA

then there exists (b,b*) € graA such that ||x — b|| < o, ||x* — b*|| < B. The name is
motivated by the celebrated theorem of Brgnsted and Rockafellar [15,34] which can
be stated now as saying that all closed convex subgradients are of type (BR).

Let g: X — ]—oo,+o0]. The inf-convolution of f and g, fOg, is defined by

fOg 1x— inf[f(v) +g(x—y)].
ye

Let Y be another real Banach space. We set Py : X XY — X (x,y) — x. We denote
Id : X — X by the identity mapping.

Let Fi,F: X XY — |—oo,4o0|. Then the partial inf-convolution FiO,F, is the
function defined on X x Y by

FiOyF: (x,y) — 12; [Fi(x,y —v) + Fa(x,v)]. (5.9

5.3 Auxiliary Results

We collect in this section some facts we will use later on. These facts involve convex
functions, maximally monotone operators, and Fitzpatrick functions.
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Fact 5.1 (See [27, Propositions 3.3 and 1.11]). Let f : X — ]—oo,+oo] be a lower
semicontinuous convex and intdom f # &. Then f is continuous on intdom f and
df(x) # @ for every x € intdom 1.

Fact 5.2 (Rockafellar). (See [29, Theorem 3(a)], [34, Corollary 10.3], or [46,
Theorem 2.8.7(iii)].) Let f,g : X — ]—eo,+oo] be proper convex functions. Assume
that there exists a point xy € dom f Mdomg such that g is continuous at xy. Then for
every z* € X*, there exists y* € X* such that

(f+8) (@) =r0")+& (=) (5.10)

Fact 5.3 (Rockafellar). (See [31, Theorem A], [46, Theorem 3.2.8], [34, The-
orem 18.7] or [25, Theorem 2.1].) Let f : X — ]|—eo, 4| be a proper lower
semicontinuous convex function. Then d f is maximally monotone.

Fact 5.4 (Attouch-Brezis). (See [1, Theorem 1.1] or [34, Remark 15.2].) Let f, g :
X — ]—oo,+00] be proper lower semicontinuous and convex. Assume that

|J 2 [dom f — domg] is a closed subspace of X.
A>0

Then

(f+8)" (&) = min [/*() +8"(" —y)], Ve X"
y* *
Fact 5.3 above relates a convex function with maximal monotonicity. Fitzpatrick
functions go in the opposite way: from maximally monotone operators to convex
functions.

Fact 5.5 (Fitzpatrick). (See [22, Corollary 3.9] and [12,15].) Let A: X = X* be
maximally monotone. Then for every (x,x*) € X x X*, the inequality (x,x*) <
F4(x,x*) is true, and the equality holds if and only if (x,x*) € graA.

It was pointed out in [34, Problem 31.3] that it is unknown whether domA is
necessarily convex when A is maximally monotone and X is not reflexive. When
A is of type (FPV), the question was answered positively by using Fj.

Fact 5.6 (Simons). (See [34, Theorem 44.2].) Let A : X = X* be maximally
monotone of type (FPV). Then domA = Py [dom F,] and domA is convex.

We observe that when A is of type (FPV) then also domA, has convex closure.

Remark 5.7. Let A be of type (FPV) and fix € > 0. Then by (5.4), Facts 5.5 and 5.6,
we have domA C domAg C Py [domFy] C domA. Thus we obtain

domA = [domA;] = Py [dom Fy],
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and this set is convex because dom Fy is convex. As a result, for every A of type
(FPV) it holds that domA = [domA,] and this set is convex.

We recall below some necessary conditions for a maximally monotone operator to
be of type (FPV).

Fact 5.8 (Simons). (See [34, Theorem 46.1].) Let A : X = X* be a maximally
monotone linear relation. Then A is of type (FPV).

Fact 5.9 (Fitzpatrick-Phelps and Verona—Verona). (See [23, Corollary 3.4], [38,
Corollary 4] or [34, Theorem 48.4(d)].) Let f : X — ]—eo,+oo| be proper, lower
semicontinuous, and convex. Then d f is of type (FPV).

Fact 5.10 (See [45, Corollary 3.3]). Let A : X = X* be a maximally monotone
linear relation, and f : X — ]—eo,+o0] be a proper lower semicontinuous convex
function with domA Nintdomd f # &. Then A + d f is of type (FPV).

Fact 5.11 (Phelps-Simons). (See [28, Corollary 2.6 and Proposition 3.2(h)].) Let
A: X — X* be monotone and linear. Then A is maximally monotone and continuous.

Fact 5.12 (See [7, Theorem 4.2] or [26, Lemma 1.5]). Let A : X = X* be
maximally monotone such that graA is convex. Then graA is affine.

Remark 5.13. In[42, Proposition 5(ii)], it was shown that Fact 5.12 can be extended
to a locally convex space.

Fact 5.14 (Simons). (See [34, Lemma 19.7 and Sect. 22].) Let A: X = X" be a
monotone operator such that graA is convex with graA # &. Then the function

8 X X X" — |—eo, 400 1 (x,x") = (X,x") + lgran (x,x") (5.11)

is proper and convex.
Fact 5.15 (See [40, Theorem 3.4 and Corollary 5.6], or [34, Theorem 24.1(b)]).
LetA,B: X = X* be maximally monotone operators. Assume that

U A [Px(domF}y) — Px(domFp)] is a closed subspace.
A>0

If
Faip> (-, -yon X xX* (5.12)

then A + B is maximally monotone.

Definition 5.16 (Fitzpatrick family). Let A: X = X* be maximally monotone.
The associated Fitzpatrick family %, consists of all functions F: X x X* —
]| —e0,+o0] that are lower semicontinuous and convex, and that satisfy F > (-,-), and
F ={-,-) on graA.
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Fact 5.17 (Fitzpatrick). (See [22, Theorem 3.10] or [21].) Let A: X = X* be
maximally monotone. Then for every (x,x*) € X x X*,

Fu(x,x") = min{F (x,x*) | F € F4}.

Corollary 5.18. Let A: X = X* be a maximally monotone operator such that graA
is convex. Then for every (x,x*) € X x X*,

Fp(x,x") =min{F (x,x") | F € %4} and g(x,x*) =max{F(x,x") | F € Z4},

where g := (-,-) + lgraa-
Proof. Apply Facts 5.14 and 5.17. ]

Fact 5.19 (See [34, Lemma 23.9], or [4, Proposition 4.2]). Let A,B: X =% X" be
monotone operators and domA NdomB # &. Then Fy g < FyO,Fp.

Let X,Y be two real Banach spaces and let & : X X ¥ — ]—oo, 40| be a convex
function. We say that & is separable if there exist convex functions h; : X —
]—eo,4o0] and hy : ¥ — ]—oo, +oo] such that i(x,y) = hy(x) + ha(y). This situation
is denoted as h = hy ® hy. We recall below some cases in which the Fitzpatrick
function is separable.

Fact 5.20 (See [2, Corollary 5.9] or [11, Fact 4.1]). Let C be a nonempty closed
convex subset of X. Then Fy. = 1c D 1.

Fact 5.21 (See [2, Theorem 5.3]). Let f : X — ]—oo,+oo| be a proper lower
semicontinuous sublinear function. Then Fy, = f @& f* and ;= { f & f*}.

Remark 5.22. Let f be as in Fact 5.21, then

gra(df)e = { (x,x") €X x X" | f(x) + /" (x") < (x,x7) + €}
=grad.f, Ve>O0. (5.13)
Fact 5.23 (Svaiter). (See [37, p. 312].) Let A: X = X* be maximally monotone.
Then A is non-enlargeable if and only if graA = dom F and then graA is convex.
It is immediate from the definitions that:
Fact 5.24. Every non-enlargeable maximally monotone operator is of type (BR).

Fact 5.21 and the subsequent remark refer to a case in which all enlargements of A
coincide, or, equivalently, the Fitzpatrick family is a singleton. It is natural to deduce
that a non-enlargeable operator will also have a single element in its Fitzpatrick
family.

Corollary 5.25. LetA: X = X* be maximally monotone. Then A is non-enlargeable
if and only if Fy = 1grap + (-,-) and hence 7y = {lgmA +(, >}
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Proof. “=": By Fact 5.23, we have graA is convex. By Facts 5.5 and 5.23, we
have Fy = tgraa + (-, -). Then by Corollary 5.18, %4 = {lgmA +(, >} “<": Apply
directly Fact 5.23. ]

Remark 5.26. The condition that .%, is singleton does not guarantee that graA is
convex. For example, let f : X — ]—oo, 40| be a proper lower semicontinuous
sublinear function. Then by Fact 5.21, .%, is singleton but gradf is not necessarily
convex.

5.4 Non-enlargeable Monotone Linear Relations

We begin with a basic characterization.

Theorem 5.27. Let A: X = X* be a maximally monotone linear relation such
that graA is weakxweak* closed. Then A is non-enlargeable if and only if
gra(—A*)NX x X* C graA. In this situation, we have that (x,x*) = 0,V(x,x*) €
gra(—A*)NX x X*.

Proof. “=": By Corollary 5.25,
FA:lgraA+<'u'>- (514)
Let (x,x*) € gra(—A*) NX x X*. Then we have

FA(x7X*): sup {<a*ax>+<aaX*>_<aaa*>}
(a,a*)egraA

- s {— @)
(a,a*)egraA
—0. (5.15)

Then by (5.15), (x,x*) € graA and (x,x*) = 0. Hence gra(—A*) NX x X* C graA.
“«<": By the assumption that graA is weak x weak* closed, we have

1
[gra(—A") NX x X*JF NX* x X = [(graA’l)L nx xX*} NX*x X =graAd~ L.
(5.16)

By [37, Lemma 2.1(2)], we have
(2,2 =0, V(z,7") € gra(—A")NX x X*. (5.17)

Hence A*|x is skew. Let (x,x*) € X x X*. Then by (5.17), we have
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Fa(x,x )= sup {(x,a")+ (x",a) — (a,a")}
(a,a*)egraA

> sup {(x,a"} + (x*,a) — (a,a*}}

(a,a*)egra(—A*)NX xX*

- s {ma)+ e
(a,a*)egra(—A*)NX xX*

= 1 (X*,X)
(gra(~A")NX xX*) NX*xX

= loraa (x,x*)  [by (5.16)]. (5.18)
Hence by Fact 5.5
Fa(x,x") = (x,X") + tgraa (x,x7). (5.19)

Hence by Corollary 5.25, A is non-enlargeable. ]

The following corollary, which holds in a general Banach space, provides a
characterization of non-enlargeable operators under a closedness assumption on the
graph. A characterization of non-enlargeable linear operators for reflexive spaces
(in which the closure assumption is hidden) was established by Svaiter in [37,
Theorem 2.5].

Corollary 5.28. Let A: X = X* be maximally monotone and suppose that graA is
weakxweak* closed. Select (a,a*) € graA and set graA := graA —{(a,a")}. Then

A is non-enlargeable if and only if graA is convex and gra(—A*) NX x X* C graA.
In particular, (x,x*) = 0,V(x,x*) € graA*NX x X*.

Proof. “=": By the assumption that A is non-enlargeable, so is A. By Fact 5.23,
graA is convex and then graA is affine by Fact 5.12. Thus A is a linear relation.
Now we can apply Theorem 5.27 to A. “<=”: Apply Fact 5.12 and Theorem 5.27
directly. ]

Remark 5.29. We cannot remove the condition that “graA is convex” in Corol-
lary 5.28. For example, let X = R” with the Euclidean norm. Suppose that f := || - ||
Then Jf is maximally monotone by Fact 5.3, and hence gradf is weak x weak™
closed. Now we show that

gra(df)" ={(0,0)}. (5.20)
Note that
If(x) = {BX’ ifxe=0; (5.21)
{ﬁﬁ}’ otherwise.

Let (z,z*) € gra(df)*. By (5.21), we have (0,Bx) C gradf and thus
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(—z,Bx) =0. (5.22)
Thus z = 0. Hence
(z*,a) =0, Vaedomdf. (5.23)
Since domdf = X, z* = 0 by (5.23). Hence (z,z*) = (0,0) and thus (5.20) holds.
By (5.20), gra—(df)* C gradf. However, gradf is not convex. Indeed, let ¢, =
(0,...,0,1,0,---,0) : the kth entry is 1 and the others are 0. Take

€1 — e € —e3
a= and b= .

V2 V2
Then (a,a) € gradf and (b,b) € grad f by (5.21), but

1 1
E(a,a)—f—z(b,b) ¢ gradf.

Hence df is enlargeable by Fact 5.23.
In the case of a skew operator we can be more exacting.

Corollary 5.30. Let A: X = X* be a maximally monotone and skew operator and
£>0. Then

(i) grade = {(x,x*) € gra(—A*)NX x X* | (x,x*) > —¢}.
(ii) A is non-enlargeable if and only if graA = gra(—A*) N X x X*.
(iii) A is non-enlargeable if and only if domA = domA* N X.
(iv) Assume that X is reflexive. Then Fpx = lgran+ + (-,-) and hence A* is non-
enlargeable.

Proof.
(i) By [10, Lemma 3.1], we have

FA - Lgra(fA*)ﬁXxX*' (524)

Hence (x,x*) € graA if and only if F (x,x*) < (x,x*) + €. This yields (x,x*) €
gra(—A*)NX x X* and 0 < (x,x*) + €.

(ii)) From Fact 5.23 we have that domFy = graA. The claim now follows by
combining the latter with (5.24).

(iii) For “=": use (ii). “<": Since A is skew, we have gra(—A*)NX x X* D graA.
Using this and (ii), it suffices to show that gra(—A*) N X x X* C graA. Let
(x,x*) € gra(—A*) N X x X*. By the assumption, x € domA. Let y* € Ax. Note
that (x, —x*) = (x,y*) = 0, where the first equality follows from the definition
of A* and the second one from the fact that A is skew. In this case we claim that
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(x,x*) is monotonically related to graA. Indeed, let (a,a*) € graA. Since A is
skew we have (a,a*) = 0. Thus

(x—a,x" —a*) = (x,x*) — ((x*,x), (a,a")) + {a,a™) =0

since (x*,x) € (grad)* and (x,x*) = (a,a*) = 0. Hence (x,x*) is monotonically
related to graA. By maximality we conclude (x,x*) € graA. Hence gra(—A*) N
X x X* C graA.

(iv) Now assume that X is reflexive. By [17, Theorem 2] (or see [35,43]), A" is
maximally monotone. Since grad C gra(—A*) we deduce that gra(—A**) =
gra(—A) C graA*. The latter inclusion and Theorem 5.27 applied to the
operator A* yield A* non-enlargeable. The conclusion now follows by applying
Corollary 5.25to A*.

5.4.1 Limiting Examples and Remarks

It is possible for a non-enlargeable maximally monotone operator to be non-skew.
This is the case for the operator A* in Example 5.33.

Example 5.31. LetA: X == X* be a non-enlargeable maximally monotone operator.
By Fact 5.23 and Fact 5.12, graA is affine. Let f : X — ]—oo, +-o0| be a proper lower
semicontinuous convex function with domA Nintdomdf # & such that domA N
domdf is not an affine set. By Fact 5.10, A+ df is maximally monotone. Since
gra(A+ df) is not affine, A + d f is enlargeable.

The operator in the following example was studied in detail in [9].
Fact 5.32. Suppose that X = /2, and that A : /> = ¢? is given by
<2i<nxi - 2i>nxi)
nell (ZXH- %xn) . Vx = (Xn)nen € domA,
2 neN

i<n
(5.25)

Ax =

where domA = {x i= (Xp)nen € 02 | Tis1 % =0, (LSnxi) € 82} and
Yi<1%i :=0. Now [9, Propositions 3.6] states that nel

Afx= (%xn + in> , (5.26)
neN

i>n
( 2 x,-) S éz } .
i>n neN

where

X = (Xn)neny € domA™ = {x = (Xp)nen € £2
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Then A is an at most single-valued linear relation such that the following hold
(proofs of all claims are in brackets):

(i) A is maximally monotone and skew ([9, Propositions 3.5 and 3.2]).
(i) A* is maximally monotone but not skew ([9, Theorem 3.9 and Proposi-
tion 3.6]).
(iii) domA is dense in £2 ([28, Theorem 2.5]), and domA ; domA* ([9, Proposi-
tion 3.6]).
(iv) (A*x,x) = %sz, Vx = (Xn)nen € domA* with s := ¥,5x; ([9, Proposi-
tion 3.7]).
Example 5.33. Suppose that X and A are as in Fact 5.32. Then A is enlargeable but
A* is non-enlargeable and is not skew. Moreover,

graA, = {(x,x*) € gra(—A") | ‘ ZXI-‘ <V2e, x= (xn)neN}a

i>1

where € > 0.

Proof. By Corollary 5.30(iii) and Fact 5.32(iii), A must be enlargeable. For the
second claim, note that X = ¢% is reflexive, and hence by Fact 5.32(i) and
Corollary 5.30(iv), for every skew operator we must have A* non-enlargeable. For
the last statement, apply Corollary 5.30(i) and Fact 5.32(iv) directly to obtain graAs.

|

Example 5.34. Let C be a nonempty closed convex subset of X and € > 0. Then
gra(Ng)e = {(x,x*) €CxX"| oc(x*) < {x,x") +8}.

Moreover, (N¢)e = delc. Therefore, (for every x € X) (N¢)e(x) is the €é—normal set
of Catx.

Proof. By Fact 5.20, we have
(x,x*) € gra (N¢)e < Fng (x,x7) = 1c(x) + oc(x*) < (x,x") + € (5.27)
S xeC, oc(x*) < {x,x") +¢.

By (5.27) and [46, Theorem 2.4.2(ii)], (N¢c)e = delc. Hence (for every x € X)
(Nc¢)e(x) is the e—normal set of C at x. |

Example 5.35. Let f(x) := ||x||, Vx € X and & > 0. Then
gra(df)e = { (x,x") € X x By« | ||x]| < (x,x") +€}.

In particular, (df)e(0) = Bx+.

Proof. Note that f is sublinear, and hence by Fact 5.21 and Remark 5.22 we
can write
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(x,x") € gra(df)e & Fy (x,x") = f(x) + f(x") < (x,x") +& [by (5.13)]
< {x,x*)+¢€ (by [46, Corollary 2.4.16])

& x|+ 1y (x7)

< x* € By, ||x]| < (x,x*) + €.

Hence (df)¢(0) = Bx-. [ |
Example 5.36. Let p > 1 and f(x) := 7 [|x[|", ¥x € X. Then

(91)e(0) = p? (qe)4 Bx-,

[
where;—l—a—landszo.

Proof. We have

X € ()e(0) & (=)' =) = —e, W €S0
& (=) + Iz —e, WeX
S -llr<e, wex
& psup [(Ley) = L) ] <e
yeX
“pLbe<e
4q
& [l(|7 < gep” ' = qep?

1 1
< x" € pP(qge)iBx+.

5.4.2 Applications of Fitzpatrick’s Last Function

For a monotone linear operator A: X — X* it will be very useful to define the
following quadratic function (which is actually a special case of Fitzpatrick’s last
function [15] for the linear relation A):

ga: x> 3(x,Ax).
Then g4 = ga, . We shall use the well-known fact (see, e.g., [28]) that
Vga =Ay, (5.28)

where the gradient operator V is understood in the Gateaux sense.
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The next result was first given in [8, Proposition 2.2] for a reflexive space. The
proof is easily adapted to a general Banach space.

Fact 5.37. Let A: X — X* be linear continuous, symmetric, and monotone. Then
(V(x,x*) e X x X*)  qi(x" +Ax) = ga(x) + (x,x*) + 3 (x") (5.29)

and g} 0 A = gu.

The next result was first proven in [4, Proposition 3.7(iv)] and [5, Theorem 2.3(i)]
in Hilbert space. We now extend it to a general Banach space.

Proposition 5.38. Let A: X — X* be linear and monotone. Then

Fa(x,x*) =2q), (55" + 3A°x) = 34 (X" +A%), V(xx')eXxX, (530)
and ranA C dom&qjg+ - doqu CranAy. If ranA, is closed, then doqu =
dom&qjg+ =ranA,.

Proof. By Fact5.11,domA*NX = X, so for every x,y € X we have x,y € domA*N
domA. The latter fact and the definition of A* yield (y,A*x) = (x,Ay). Hence for
every (x,x*) € X x X*,

FA(X7X*) = Su£<x,Ay> + <an*> - <y7Ay>
ye

=2sup(y, 3x* + 3A*x) —qa, ()
yeX

= 2q;§+ (%x* + %A*x)
= 3q4, (X" +A%x), (5.31)

where we also used the fact that g4 = g4, in the second equality. The third equality
follows from the definition of Fenchel conjugate. By [46, Proposition 2.4.4(iv)],

randqgu, C domaqj‘+ (5.32)

By (5.28), ran an+ =ranA.. Then by (5.32),

ranA; C domdgy,, Cdomgy, (5.33)

Then by the Brgndsted—Rockafellar Theorem (see [46, Theorem 3.1.2]),

ranA; C domdgy,, Cdomgy,, CranA,.

Hence, under the assumption that ranA is closed, we have ranA, = dom qug+ =
domgy, . u

We can now apply the last proposition to obtain a formula for the enlargement of a
single-valued operator.
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Proposition 5.39 (Enlargement of a monotone linear operator). LetA:X — X*
be a linear and monotone operator, and € > 0. Then

Ap(x) = {Ax+z*|q;(z*) §2£}, Vx € X. (5.34)

Moreover, A is non-enlargeable if and only if A is skew.
Proof. Fixxe X, 7" € X" and x* = Ax+z". Then by Proposition 5.38 and Fact 5.37,
X" €Ae(x) & FA(x,Ax+7") < (x,Ax+Z") +¢€
S 3qh, (Ax+7 +A'x) < (x,Ax+7") +€
& %qjh (A+(2x) —I—Z*) < (x,Ax+z")+¢
&1 [qh, (2)+2(x,2) +2(x,Ax)] < (x,Ax+2") +¢

< qu(7¥) < 2e,

where we also used in the last equivalence the fact that g4 = g4, . Now we show
the second statement. By Fact 5.11, domA* N X = X. Then by Theorem 5.27 and
Corollary 5.30(iii), we have A is non-enlargeable if and only if A is skew. ]

A result similar to Corollary 5.40 below was proved in [19, Proposition 2.2] in
reflexive space. Their proof still requires the constraint that ran(A + A*) is closed.

Corollary 5.40. Let A : X — X* be a linear and monotone operator such that
ran(A + A*) is closed. Then

Ap(x) = {Ax—l— (A+A%)z| qaz) < %s}, VxeX.

Proof. By Fact5.11, A is continuous and domA* NX = X. Proposition 5.39 yields
X E€Ae(x) & X" =Ax+7", qy(z") <2e. (5.35)
In particular, z* € domg}. Since ran(A ) is closed, Proposition 5.38 yields
ran(A;) =ran(A +A") = domg,, = domgj.

The above expression and the fact that z* € domg}; implies that there exists z € X
such that z* = (A + A*)z. Note also that (by Fact 5.37)

9x(2") = g4, () = qa, (A1 (22)) = qa, (22) = 49a(2),
where we used Fact 5.37 in the last equality. Using this in (5.35) gives

X' E€Ag(x) & x" =Ax+ (A+A%)z, 494(z) < 2¢
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X" =Ax+(A+A%)z, qaz) < %8,

establishing the claim. |
We conclude the section with two examples.

Example 5.41 (Rotation). Assume that X is the Euclidean plane R?, let 6 € [0, %} ,

and set
cosO —sin6
A= . 5.36
(sin 6 cosO ) (5.36)

Then for every (g,x) € Ry x R?,
Ag(x) = {Ax—l—v| v€2\/(cose)£BX}. (5.37)

Proof. We consider two cases.

Casel: 6=17.

Then A is skew operator. By Corollary 5.30, A = A and hence (5.37) holds.
Case2: 0¢ [O, z [

Let x € R2. Note that 444 = (cos 0) Id, g4 = 52| - |*. Then by Corollary 5.40,

Ag(x) = {A;H—Z(cos@)z | ga(z) = %”Z”z < %8}

Thus,
Ag(x) = {Ax—l—v| v]| < ZW} = {Ax—l—v |ve 2@3;{}.

Example 5.42 (Identity). Assume that X is a Hilbert space, and A :=1d. Let € > 0.
Then

grad; = {(x,x*) EXXX|x* €x+2\/§BX}.

Proof. By [4, Example 3.10], we have
(x,x¥) € grad; & %Hx—l—x*Hz < (x,x")+e
e r—x*<e
& |lx—x <2ve

& x* € x+24/€By.
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5.5 Sums of Operators

The conclusion of the lemma below has been established for reflexive Banach spaces
in [7, Lemma 5.8]. Our proof for a general Banach space assumes the operators to
be of type (FPV) and follows closely that of [7, Lemma 5.8].

Lemma 5.43. Let A,B: X = X* be maximally monotone of type (FPV), and
suppose that | J; - A [domA — domB] is a closed subspace of X. Then we have

U A [domA — domB] = U A [PxdomF; — Pydom Fp].
A>0 A>0

Proof. By Facts 5.5 and 5.6, we have

| 2 [domA —domB] C | J A [PxdomF4 — PydomF3] C | J A [domA —domB

A>0 A>0 A>0
C U A |domA —domB| C U A [domA — domB]
A>0 A>0
= U A [domA —domB] (by the assumption).
A>0

]
Corollary 5.44. Let A,B: X = X* be maximally monotone linear relations, and

suppose that domA — domB is a closed subspace. Then

[domA — domB] = | J A [Py dom F4 — Py dom F] .
A>0
Proof. Directly apply Fact 5.8 and Lemma 5.43. ]

Corollary 5.45. Let A: X = X* be a maximally monotone linear relation and let
C C X be a nonempty and closed convex set. Assume that |J; oA [domA —C] is a
closed subspace. Then

U A [PX domF, — Py domFNC] = U A [domA —(].
A>0 A>0

Proof. Let B= N¢. Then apply directly Facts 5.8, 5.9 and Lemma 5.43. ]

Theorem 5.46 below was proved in [7, Theorem 5.10] for a reflexive space.
We extend it to a general Banach space.

Theorem 5.46 (Fitzpatrick function of the sum). LetA,B: X = X* be maximally
monotone linear relations, and suppose that domA — domB is closed. Then
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Fyip = FAD2Fp,

and the partial infimal convolution is exact everywhere.

Proof. Let(z,7*) € X x X*. By Fact 5.19, it suffices to show that there exists v* € X*
such that

Farp(z2,7°) > Fa(z,75 —v) + Fp(z,v"). (5.38)

If (z,2*) ¢ domF4 g, clearly, (5.38) holds.
Now assume that (z,z*) € domF, 5. Then

Fay8(2,2")
= { sup } [(x,z*> + (z,x") — (0, x") + (2= x,¥") — Lgran (x,X") — Lgrag(x,y*)} .
)C,X*y*
(5.39)
LetY = X* and define F,K : X X X* X Y — ]—oo, 400 respectively by
F(x,x",y") € X X X" XY = (X,x") + lgraa (x,x")
K:(x,x",y") € X x X" XY = (x,y") + lgrap(x,¥")
Then by (5.39),
Frip(z,2°) = (F+K)*(z%,2,2) (5.40)

By Fact 5.14 and the assumptions, F and K are proper lower semicontinuous and
convex. The definitions of F' and K yield

domF —domK = [domA —domB] x X* x ¥, which is a closed subspace.
Thus by Fact 5.4 and (5.40), there exists (z,25%,2]*) € X* x X™* x Y* such that
Farp(2,2") = F* (& — 20,2~ 22— 4") + K (25,20 217)
= F*(Z* - ZB,Z,O) +K*(Z87071) (by (Z,Z*) (S dOmFAJrB)
=Fa(2,2" —20) + F(2,%9)-

Thus (5.38) holds by taking v* = zjj and hence Fy g = FyO,Fp. |

The next result was first obtained by Voisei in [39] while Simons gave a different
proof in [34, Theorem 46.3]. We are now in position to provide a third approach.

Theorem 5.47. Let A,B: X =% X* be maximally monotone linear relations, and
suppose that domA — domB is closed. Then A + B is maximally monotone.
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Proof. By Fact 5.5, we have that F4 > (-,-) and Fg > (,-). Using now Theo-
rem 5.46 and (5.9) implies that F;y 5 > (-,-). Combining the last inequality with
Corollary 5.44 and Fact 5.15, we conclude that A + B is maximally monotone. W

Theorem 5.48. Let A,B: X =% X* be maximally monotone linear relations, and
suppose that domA — domB is closed. Assume that A and B are non-enlargeable.
Then

Favp= lora(A+B) + <'7 >
and hence A + B is non-enlargeable.
Proof. By Corollary 5.25, we have
FAZLgmA—i-<-,-> and FB:lgraB+<'7'>- (5.41)

Let (x,x*) € X x X*. Then by (5.41) and Theorem 5.46, we have

Fayp(x,x") = min {tgran (6, X" = y") + (6" =",0) + tgran (6,5") + (", %) }

= lgra(a+B) (X,X") + (X7, x).

By Theorem 5.47 we have that A + B is maximally monotone. Now we can apply
Corollary 5.25 to A + B to conclude that A + B is non-enlargeable. |

The proof of Theorem 5.49 in part follows that of [6, Theorem 3.1].

Theorem 5.49. Let A : X = X* be a maximally monotone linear relation. Suppose
C is a nonempty closed convex subset of X, and that domA NintC # &. Then
Faine = FAO2Fy,, and the partial infimal convolution is exact everywhere.

Proof. Let (z,z") € X x X*. By Fact 5.19, it suffices to show that there exists v* € X*
such that

FainNe(2,2") > Fa(z,v*) + Fn. (2,27 — V7). (5.42)

If (z,2*) ¢ domFyn,., clearly, (5.42) holds.
Now assume that

(z,2") € domFy 4. (5.43)
By Facts 5.10 and 5.6,
Py [dom Fy 4w, | € [dom(A+Nc)] C C.
Thus, by (5.43), we have

zeC. (5.44)
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Set
g X X X" = |—oo,doo] t (x,x") = (x,x") + 1gran (x,X"). (5.45)
By Fact 5.14, g is convex. Hence,
h=g+1cxxr (5.46)
is convex as well. Let
co € domANintC, 5.47)

and let ¢ € Acp. Then (cp,cy) € graAN (intC x X*) = domg Nintdomicyx+. Let
us compute Fy 4 n,.(z,2"). As in (5.39) we can write
Faine(z,27)

= sup [(x,z*) +(2,x") — (0, 2") + (2= x,¢") — tgraa (X, X7) — lgrane (X, c*)}
(x,x*,c*)

> sup [(x,2°) + (2,x") — (2,5 — tgran (x,5") — 1ex+(x,x")]
(%)

= sup [(x,2") + (z,x") — h(x,x")]

(x,x*)
_ h* (Z*,Z),
where we took ¢* = 0 in the inequality. By Fact 5.1, 1cx x+ is continuous at (co,¢jy) €
intdom tcx x+. Since (co, c(*)) € domgNintdomicxx+ we can use Fact 5.2 to conclude
the existence of (y*,y**) € X* x X** such that
R (2%,2) =& (")) +icex: (& =y 2= y7)
=g (V) H 1 =) +yoyz—y"). (5.48)

Then by (5.43) and (5.48) we must have z = y**. Thus by (5.48) and the definition
of g we have

Faine(2,27) 2 8" (v, 2) +1¢(2" =) = Fa(z,y") +1¢(2" =)

=Fa(z,y") +10( =) +1c(z)  [by (5.44)]

= Fy(2,y") + Fn.(z,2" —y*)  [by Fact 5.20].

Hence (5.42) holds by taking v* = y* and thus Fy n. = FpOsFy,.. |

We decode the prior result as follows:
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Corollary 5.50 (Normal cone). Let A: X = X* be a maximally monotone linear
relation. Suppose C is a nonempty closed convex subset of X, and that domA N
intC # @. Then A 4+ N¢ is maximally monotone.

Proof. By Fact 5.5, we have that F4 > (-,-) and Fy. > (-,-). Using now Theo-
rem 5.49 and (5.9) implies that Fy . > (-,-). Combining the last inequality with
Corollary 5.44 and Fact 5.15, we conclude that A + N¢ is maximally monotone. W

Remark 5.51. Corollary 5.50 was first established in [6, Theorem 3.1]. See [41,44,
45] for generalizations.

To conclude we revisit a quite subtle example. All statements in the fact below have
been proved in [10, Example 4.1 and Theorem 3.6(vii)].

Fact 5.52. Consider X := ¢, with norm || - || so that X* = ¢! with norm || -||, and
X** = ¢~ with second dual norm || - ||«. Fix o := () ,en € €7 with limsup oy, # 0,
and define Ay, : ¢! — £~ by

(Agx™)n 1= 0p0x; +2) oeixf,  Vx* = (x))nen € £ (5.49)
i>n
Finally, let T, : co = X* be defined by
graTy := {(—Agx*,x") | x* € X*,(a,x") = 0}
= {((— D o0ix; 4 Y, 0, 04x] ) xX¥) | xF € X, (o, x%) = O}. (5.50)
i>n i<n
Then

(1) (Agx*,x*) = (o,x*)?,  Vx* = (x})nen € £! and s0 (5.50) is well defined.
(ii) A is a maximally monotone operator on ¢!,
(iii) Ty is a maximally monotone and skew operator on cg.
(iv) Fr, = 1c, where C:= {(—Agx*,x*) | x* € X*}.

This set of affairs allows us to show the following:

Example 5.53. LetX =g, Ay, C, and Ty, be defined as in Fact 5.52. Then Ty, : ¢cp =
' is a maximally monotone enlargeable skew linear relation. Indeed

gra(Ty + Npy )e :{(—Aax*,z*) EBx xX*|x* e X, |7 —x"|; < (—Aax*,z*>+e}.

Proof. From (5.50), we have that graTy, ; C therefore Fact 5.52(iv) yields Fr,, #
lgraT, + (-,-). Using now Fact 5.52(iii) and Corollary 5.25, we conclude that T, is
enlargeable.

Now we determine gra(7y + Np, )e. By Fact 5.52(iii), Theorem 5.49, and (5.4),
we have
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(z,2") € gra(To + Npy )e
& Fr,00Fng, (2,27) < (z,2") + €
& Fr, (2,07) + 18, (2) + 15, (& —x7) < (z,2") +&, ™" € X (by Fact 5.20)
<z € By, 1c(z,x") + ||2" = x*||1 < (z,z") + €, Ix* € X (by Fact 5.52(iv))
S z=—Agx" €By, ||7F —x"||1 < (z,7") +¢&, T eX”

(

Sz=—Agx" €By, |7 — x| < (—Axx",Z") +€, I € X",

This is the desired result. |
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Chapter 6
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Abstract In this note we give a Brgndsted—Rockafellar Theorem for diagonal
subdifferential operators in Banach spaces. To this end we apply an Ekeland-type
variational principle for monotone bifunctions.
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6.1 Introduction

Throughout this paper X denotes a real Banach space and X* its topological dual
space endowed with the dual norm. Since there is no danger of confusion, we use
I - || as notation for the norms of both spaces X and X*. We denote by (x*,x) the
value of the linear and continuous functional x* € X* at x € X.

A function f : X — R := RU {#eo} is called proper if the set dom f := {x € X :
S (x) < 4oo}, called effective domain of f, is nonempty and f(x) > —eo forall x € X.
We consider also the epigraph of f, which is the set epif = {(x,r) € X xR :
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f(x) <r}. Foraset C C X, let & : X — R be its indicator function, which is the
function taking the values 0 on C and +-oo otherwise.

The (convex) subdifferential of f at an element x € X such that f(x) € R is
defined as df(x) := {x* € X* : f(y) — f(x) > (x*,y —x) Vy € X}, while in case
f(x) ¢ R one takes by convention d f(x) := 0. For every € > 0, the e-subdifferential
of f, defined as de f(x) = {x* € X*: f(y) — f(x) > (x*,y—x) —eVye X} forx €
X such that f(x) € R, and def(x) := @ otherwise, represents an enlargement of
its subdifferential. Let us notice that in contrast to the classical subdifferential, the
e-subdifferential of a proper, convex, and lower semicontinuous function at each
point of its effective domain is in general a nonempty set, provided that € > 0 (cf.
[12, Proposition 3.15]; see also [15, Theorem 2.4.4(iii)]).

For € > 0, the e-normal set of C at x € X is defined by N&(x) := de0¢c(x), that
is, N&(x) = {x* € X* : (x*,y —x) < e ¥y € C} if x € C, and N&(x) = 0 otherwise.
The normal cone of the set C atx € X is N¢(x) := N2(x), that is, No(x) = {x* € X*:
(x*,y—x) <0VyeC}ifx € C, and N¢(x) = 0 otherwise.

For the following characterizations of the e-subdifferential via the e-normal set,
we refer, for instance, to [13] (the extension from finite to infinite dimensional
spaces is straightforward). If x € X is such that f(x) € R, then for all € > 0 it
holds x* € g f(x) if and only if (x*,—1) € Ng, +(x, f(x)). Moreover, for r € R
with f(x) < r, the relation (x*,—1) € Nepi r(x,r) implies r = f(x). Furthermore,
if (x*,—5) € Nepi r(x,7), then s > 0 and, if, additionally, s # 0, then r = f(x) and
(1/s)x* € df(x).

The celebrated Brgndsted—Rockafellar Theorem [6], which we recall as follows,
emphasizes the fact that the e-subdifferential of a proper, convex, and lower
semicontinuous function can be seen as an approximation of its subdifferential.

Theorem 6.1 (Brgndsted—Rockafellar Theorem [6]). Ler f : X — Rbea proper,
convex, and lower semicontinuous function and xoy € dom f. Take € > 0 and x, €
O f(x0). Then for all A > 0, there exist x € X and x* € X* such that

€

X €0f(), =l < 5

and ||x* —x3|| < A.
Let us mention that a method for proving this result is by applying the Ekeland
variational principle (see [12, Theorem 3.17]). For a more elaborated version of
Theorem 6.1, we refer the interested reader to a result given by Borwein in [4] (see,
also, [15, Theorem 3.1.1].

The aim of this note is to provide a Brgndsted—Rockafellar Theorem for so-called
diagonal subdifferential operators. These are set-valued operators Af : X = X*
defined by (see [1,5,8-10])

AF(x) = {x*€eX*: F(x,y)—F(x,x) > (x",y—x)VyeC}, ifxeC,
o, otherwise,
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where C is a nonempty subset of X and F : C x C — R is a so-called bifunction.
The term diagonal subdifferential operator is justified by the formula A" (x) =
d(F(x,-) + 8¢c)(x) forall x € X.

Bifunctions have been intensively studied in connection with equilibrium prob-
lems since the publication of the seminal work of Blum and Oettli [3] and,
recently, in the context of diagonal subdifferential operators, when characterizing
properties like local boundedness [1], monotonicity, and maximal monotonicity in
both reflexive [8, 9] and nonreflexive Banach spaces [5, 10].

A further operator of the same type, which has been considered in the literature,
is FA : X = X*, defined by

FA(x) = {*eX* : F(x,x)—F(y,x) > (x*,y—x)VyeC}, ifxeC,
0, otherwise.

Notice that when F' is monotone, namely, F(x,y) + F (y,x) < 0 for all x,y € C (see
[3]) and F(x,x) = O for all x € C, then A (x) C A(x) for all x € C. Furthermore,
if C is convex and closed, F(x,x) =0, F(x,-) is convex and F(-,y) is upper
hemicontinuous, i.e., upper semicontinuous along segments, for all x,y € C, then
FA(x) € AT (x) for all x € C (cf. [5, Lemma 5]). Under these hypotheses one can
transfer properties from A to AF and vice versa.

In the following we will concentrate ourselves on A" and consider, in analogy
to the definition of the e-subdifferential, what we call to be the e-diagonal
subdifferential operator of F, AL : X = X*, defined by

AP (x) = {x*eX* : F(x,y)—F(x,x) > (x*,y—x)—eVyeC}, ifxeC,
& 0, otherwise.

If C is a nonempty, convex, and closed set and x € C is such that F(x,-) is convex
and lower semicontinuous, then AL (x) # @ for all € > 0.

The main result of this paper is represented by a Brgndsted—Rockafellar Theorem
for the diagonal subdifferential operator A¥, the proof of which relies on the Ekeland
variational principle for bifunctions given in [2].

For a generalization of the Brgndsted—Rockafellar Theorem for maximal mono-
tone operators, we refer to [14, Theorem 29.9], whereby, as pointed out in [14,
pp. 152-153], this result holds only in reflexive Banach spaces. Later, a special
formulation of this theorem in the nonreflexive case was given in [11].

In contrast to this, our approach does not rely on the maximal monotonicity of the
diagonal subdifferential operator, while the result holds in general Banach spaces.
We present also some consequences of the given Brgndsted—Rockafellar theorem
concerning the density of the domain of diagonal subdifferential operators. We close
the note by showing that a Brgndsted—Rockafellar-type theorem for subdifferential
operators can be obtained as a particular case of our main result.
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6.2 A Brgndsted-Rockafellar Theorem

The following Ekeland variational principle for bifunctions was given in [2].
Although this result was stated there in Euclidian spaces, it is valid in general
Banach spaces, too.

Theorem 6.2. Assume that C is nonempty, convex, and closed set and f : C x C — R
satisfies:

(i) f(x,-) is lower bounded and lower semicontinuous for every x € C.
(ii) f(x,x) =0 for every x € C.
(iii) f(x,y)+f(»z) = f(x,2) for every x,y,z € C.

Then, for every € > 0 and for every xo € C, there exists X € C such that
Sf(x0,%) +€llxo—%|| <0
and
fGEx)+elx—x|| >0VxeC, x #X.
Remark 6.3. By taking z = x, the assumptions (iii) and (ii) in the above theorem

imply that f(x,y) + f(y,x) > 0 for all x,y € C, which means that — f is monotone.

Theorem 6.2 will be an essential ingredient in proving the following Brgndsted—
Rockafellar Theorem for diagonal subdifferential operators.

Theorem 6.4. Assume that C is a nonempty, convex, and closed set and F : C X C —
R satisfies:

(i) F(x,-) is a convex and lower semicontinuous function for every x € C.
(ii) F(x,x) =0 for every x € C.
(iii) F(x,y)+ F(y,z) > F(x,z) for every x,y,z € C.

Take € > 0, xo € C and x§j € Ag (x0). Then for all A > 0, there exist x* € X* and
x € C such that

€

Proof. We fix € > 0, xo € C and xj; € AL (xp). According to the definition of the
operator AL, we have

F(x0,y) > {(x3,y —x0) — € Vy € C. (6.1)
Let us define the bifunction f : C x C — R by

f(x,y) = F(x,y) — (x3,y — x) for all (x,y) € CxC.
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We want to apply Theorem 6.2 to f and show to this aim that the assumptions
(i)—(iii) in Theorem 6.2 are verified. Indeed, the lower semicontinuity of the function
f(x,-) and the relation f(x,x) =0, for all x € C, are inherited from the corresponding
properties of F. One can easily see that (iii) is fulfilled, too: for x,y,z € C it holds

Foy) +f02) = F () + F(y,2) = (x0,2 = x) > F(x,2) — (x0,2— x) = f(x,2).

It remains to prove that f(x,-) is lower bounded for all x € C. Take an arbitrary
x € C. By using (6.1) we get forally e C

f(xy) = f(x0,y) = f(x0,x) = F (x0,y) = (x0,y — x0) — f(x0,x) > —& — f(x0,%)
and the desired property follows.
Take now A > 0. A direct application of Theorem 6.2 guarantees the existence of
X € C such that
f(x0,X) 4+ Allxo—%| <0 (6.2)
and
FEx)+A|x—x|| >0VxeC, x #7. (6.3)
From (6.2) we obtain
F(x0,%) — {x3,X —x0) + Aljxo — x|| <0,
which combined with (6.1) ensures
Allxo — || < (x5,x — x0) — F(x0,%) < €,

hence [|xo — || < §.
Further, notice that (6.3) implies

0€d(f(x,)+8c+Ax—-]|)(x).

Since the functions in the above statement are convex and ||X — -|| is continuous,
we obtain via the subdifferential sum formula (cf. [15, Theorem 2.8.7])

0€d(f(x,)+8¢)(X) + 9 (Alx—-[|) ®). (6.4)

Taking into account the definition of the bifunction f, we get (cf. [15, Theorem
2.420v))) 9(f(x,-) + &¢) (X) = 9(F(X,-) + 6¢) (X) — xj = AF (X) — x;. Moreover,
d(A||x—-||) (x) = ABx+, where Bx-~ denotes the closed unit ball of the dual space
X* (see, for instance, [15, Corollary 2.4.16]). Hence, (6.4) is nothing else than
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0 € AF (%) — x} + ABy-,

from which we conclude that there exists x* € A (¥) with |[x* —x}|| < 4 and the
proof is complete. ]

For a similar result like the one given in Theorem 6.4, but formulated in reflexive
Banach spaces and by assuming (Blum-Oettli) maximal monotonicity for the
bifunction F (see [3] for the definition of this notion), we refer the reader to [7,
Theorem 1.1].

A direct consequence of the above Brgndsted—Rockafellar Theorem is the
following result concerning the density of D(AY) in C, where D(AT) = {x € X :
AF (x) # 0} is the domain of the operator A”.

Corollary 6.5. Assume that the hypotheses of Theorem 6.4 are fulfilled. Then
D(AF) = C, hence D(AF) is a convex set.

Proof. The implication D(AT") C C is obvious. Take now an arbitrary xq € C. For all
n € N, we have that AY In (xo) # 0, hence we can choose x; € AY /n (x0). Theorem 6.4
guarantees the existence of u), € X* and u,, € C such that

ws € AT (u,), |lun —xo|| < \/1/nand ||u — x| < v/1/nforall n € N.

Since u, € D(AF) for all n € N, we get from above that xy € D(AF). [ |

Remark 6.6. Similar statements to the one in Corollary 6.5 were furnished in [8,
Sect. 4] in reflexive Banach spaces and by assuming maximal monotonicity for A7 .

Let us show how Theorem 6.4 can be used in order to derive the classical Brgndsted—
Rockafellar theorem for the subdifferential operator in case the domain of the
function is closed.

Corollary 6.7. Let f : X — R be a proper, convex, and lower semicontinuous
function such that dom f is closed. Take xo € dom f, € > 0 and xj; € de f (xo). Then
forall . > 0, there exist x* € X* and x € X such that

€
X" e df(x), |lx—xo < 7 and ||x* —xp]| < A.

Proof. The result follows by applying Theorem 6.4 for C = domf and the
bifunction F : dom f X dom f — R defined by F(x,y) = f(y) — f(x). |

The restriction “dom f closed” comes from the fact that in Theorems 6.2 and 6.4
the set C is assumed to be a closed set. In the following Brgndsted—Rockafellar-
type Theorem for subdifferential operators, which we obtain as a consequence of
Corollary 6.7, we abandon this assumption.

Corollary 6.8. Let f : X — R be a proper, convex, and lower semicontinuous
function. Take xo € dom f, € > 0 and x; € de f(xo). Then for all & > 0, there exist
x* € X* and x € X such that
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1
x€df(x), |x—xol| <€ (I—i— 1) and ||x* —x3|| < A.
Proof. Take xg € domf, € > 0, x5 € de f(xp) and A > 0. We consider X x R endowed

with the norm defined for all (x,r) € X x R as being || (x,r)|| = (|Jx||> + 2)"/2.
We divide the proof in two steps.

(I) Consider the case x; = 0. We have 0 € de f (x0), hence (0, —1) € N, +(x0, f(x0))
= ¢ Ocpi £ (X0, f(x0)). By applying Corollary 6.7 for the function 5eplif and A :=
A/(A+1), we obtain the existence of (x,r) € epi f and (x*, —s) € dOepi r(x,7) =
Nepi £ (x,7) such that

1+ A N A
| (x,7) = (x0, f(x0))|| < € and [|(x*,—s) — (0,—1)[| £ ——.
1+2
From here, it follows
Ix—xoll <e/A+¢€,5>0,|x"| < A and |s — 1| A
ol = == 142

The last inequality ensures 0 < 14+7L <'s, hence r = f(x) and (1/s)x* € df(x).
Moreover, ||(1/s)x*|| < HLA -(14+1)=A4A.

(IT) Let us consider now the general case, when x;j € d¢ f(xo) is an arbitrary element.
Define the function g : X — R, g(x) = f(x) — (x§,x), for all x € X. Notice
that dyg(x) = dof(x) — x{; for all o0 > 0, hence the condition x§ € de f(x)
guarantees 0 € dgg(x). Applying the statement obtained in the first part of the
proof for g, we obtain that there exist x* € X* and x € X such that

1
x e dg(x), |x—xof <e <x + 1> and [|x*|| < A.
Thus, x* +x§ € df(x), |[x —xol| < € (;IE—I— 1) and || (x* +x5) — x5/l = [[x*]] < A5
hence, the proof is complete.

The bounds in Corollary 6.8 differ from the ones in Theorem 6.1, nevertheless,
by taking A = /€, they become +/€ + € and, respectively, 1/€, and allow one to
derive (by letting € \, 0) the classical density result regarding the domain of the
subdifferential.

However, it remains an open question if Theorem 6.1 can be deduced from
Theorem 6.4.

Acknowledgements Research partially supported by DFG (German Research Foundation),
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Abstract The double zeta function is a function of two arguments defined by a
double Dirichlet series and was first studied by Euler in response to a letter from
Goldbach in 1742. By calculating many examples, Euler inferred a closed-form
evaluation of the double zeta function in terms of values of the Riemann zeta
function, in the case when the two arguments are positive integers with opposite
parity. Here, we establish a g-analog of Euler’s evaluation. That is, we state and
prove a l-parameter generalization that reduces to Euler’s evaluation in the limit as
the parameter g tends to 1.
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7.1 Introduction

The double zeta function is defined by

:inig Ris)>1,  R(s+1)>2. (7.1)

The sums (7.1), and more generally those of the form

m

C(81,82, ey Sm) i= z H , ZEK(sj)>n, n=12,....,m, (1.2)
j=1

k1 >ky > >k >0 :1 j

have attracted increasing attention in recent years; see, e.g., [2-5,7-10, 12, 15, 20].
The survey articles [6, 16,22, 25] provide an extensive list of references. In (7.2)
the sum is over all positive integers ki, ..., k, satisfying the indicated inequalities.
Note that with positive integer arguments, s; > 1 is necessary and sufficient for
convergence. As is now customary, we refer to the parameter m in (7.2) as the depth.
Of course (7.2) reduces to the familiar Riemann zeta function when the depth m = 1.

The problem of evaluating sums of the form (7.1) with integers s > 1 and ¢ > 0
seems to have been first proposed in a letter from Goldbach to Euler [18] in 1742.
(See also [17,19] and [1, p. 253].) Calculating several examples led Euler to infer a
closed-form evaluation of the double zeta function in terms of values of the Riemann
zeta function, in the case when the two arguments have opposite parity. Euler’s
evaluation can be expressed as follows. Let s — 1 and ¢ — 1 be positive integers with
opposite parity (i.e., s +7 is odd) and let 24 = max(s, ). Then

Cst) = (=1)°*! Z K tt—_21k—l) N (s+t—2k—1)}«%)%“_2]‘)

s—1

§(<1+< D)Eee0+ 50T g 0

If we interpret £ (1) = 0, then Euler’s formula (7.3) gives true results also whenz = 1
and s is even, but this case is subsumed by another formula of Euler, namely

28(s,1) =s¢(s+1)— 2@ C(s+1—k), (7.4)

which is valid for all integers s > 1.

The evaluations (7.3) and (7.4) are both examples of reduction formulas, since
they both give a closed-form evaluation of a sum of depth 2 in terms of sums of
depth 1. More generally (see, e.g., [7, 8]) a reduction formula expresses an instance
of (7.2) in terms of lower depth sums.
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With the general goal of gaining a more complete understanding of the myriad
relations satisfied by the multiple zeta functions (7.2) in mind, a g-analog of (7.2)
was introduced in [11] and independently in [21,23] as

S'*

C[s1,82,. 0y 8m] = D ﬁ (7.5)

k1 >ky>-->ky >0 j

where 0 < g < 1 and for any integer k,

l—qk
[k]tl = 1 .
—q
Observe that we now have
CE(s1yeeeySm) = Hm &lsy,... sm],
g—1

so that (7.5) represents a generalization of (7.2). The papers [11-14] consider
values of the multiple g-zeta functions (7.5) and establish several infinite classes
of relations satisfied by them. In particular, the following g-analog of (7.4) was
established.

Theorem 7.1 (Corollary 8 of [11]). Let s — 1 be a positive integer. Then

28[s, 1] =s8[s+ 1]+ (1 —g)(s—2 ZC Cls+1—k].

Here, we continue this general program of study by establishing a g-analog of
Euler’s reduction formula (7.3). Throughout the remainder of this paper, s and ¢
denote positive integers with additional restrictions noted where needed, and q is
real with0 < g < 1.

7.2 g-Analog of Euler’s Reduction Formula

Throughout this section, we assume s > 1. We’ve seen that {[s,7] as given by (7.5)
is a g-analog of {(s,7) in (7.1). Here, we introduce additional g-analogs of {(s,t)
by defining

(s—Du+(—1)(—v) (s—Du+v
q q
Cils,t] = Cils,13q] == = B
u>§1v>0 CI ]q u>§v“>0 [”]q[v]z
and
(s=1)(—u)+(t—1)v u+(t—1)v
s q q
Gls.t] = Gls,ngl = (=1)" Y, ———mr—= Y o

oo [Fulgllg oo gVl
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= ¢ ils,131/q).

Let

and for convenience, put

(
Gl =L+ 8= Y L—=(-1) ¥

04neZ [l 04neZ [l

Note that if s — 1 is a positive integer and n # 0, then

n n no\S—2  s=2 _ (s—1—k)n
AN A SRR R~ e A PR
sy~ 2 (1 a ) ‘kzo( k )“ Vi

q q [n]q [nlg

and so
s—2 §—
c= s ()0 arts-g 7.6

and

2 (s—2
Gl = (4 e+ 0 S () a-aib-n a
=1

are expressible in terms of values of the g-Riemann zeta function, i.e., (7.2) with
m = 1. Finally, as in [13], let

> (n— (s—1)n > n (s—1)n
O R L
n=1 =1 q

e

n

We also employ the notation [24]

2\ [(z2\(z—a\ [(z\(z=b\ [ z \(a+D)!
a,b)” \a b ) \b a ) \a+b) alb!
for the trinomial coefficient, in which a, b are nonnegative integers and which

reduces to z!/alb!(z—a—b)! if z is an integer not less than a +b. We can now
state our main result.

Theorem 7.2 (g-Analog of Euler’s double zeta reduction). Lets— 1 andt—1 be
positive integers, and let 0 < g < 1. Then
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Gt = (<1 Gl
—2—a a _
D G [ A )

3

—C[s+t—b]—(1—q)§[s—|—t—b—1])

t—2 t—2—a
+> ( ab 1) — )" (¢t —a—b]¢[a+s]

a=0 b=0
—Cls+1—b]—(1—q)C[s+1—b—1])

min(s,t) .
- 2 < o Jl>(1—q)’I(ZC[S“—H1]_(1_q)‘p[s+t_j])

jat_

s—1 §—
~taie+ -y () a- ot

k=0

Corollary 7.3 (Euler’s double zeta reduction). Let s — 1 and t — 1 be positive
integers with opposite parity, and let 2h = max(s,t). Then (7.3) holds.

Corollary 7.4. Let s — 1 and t — 1 be positive integers with like parity, and let
2h = max(s,t). Then

2i Ks+t—2k—1> N (s+tt—_21k—1)}&2]()@(”[_2]()

= s—1

S+t
t

=+ e+ (71 - e,

Proof. Let ¢ — 1 in Theorem 7.2. With the obvious notation

() =lm s = Y — = (14 (= 1) (),

q—1 0#nez
we find that

s—2 a _
L0 =1L = 3 ( el

a

) (G-t~ Ls+0)
2 _
3 (N - atar - L)

a=0

(T ) - L0+ (10

s —
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and

t—2 t—2 t—2 t
(7)) =000 - (7))
t K s—1 t
it follows that

(—1 L) = (<17 E s
22 (a4 5—
Jesb-ata@rn+ 3 (T -ty

a=0

<s+t—2> N <s+f_2) +2(Msri_12> —(—1)‘Y}§(s+t)—éi(8)é(t)

_Z(W—f—l)gm i +i<s“‘ ‘l)ci<j>c<s+r—j>

s—1

<s+t) B HV] E(s+1) = Ce(s)S (1)
2

_1>§(2k)§(s+t—2k)

t/2 . o
+2Y (”ts_zlk 1) C(2K) (s+1—2k)
k=1

S+t
t

-+ )0 - | (T - s 78)

Since the binomial coefficients vanish if k exceeds the indicated range of summation
above, we can replace the two sums by a single sum on k ranging from 1 up to 4.
If s and 7 have opposite parity, multiply both sides by (—1)" = (—1)**! and divide
each term by 2 to complete the proof of Corollary 7.3. For Corollary 7.4, note that
if s and ¢ have like parity, then the left hand side of (7.8) vanishes. ]

7.3 Proof of Theorem 7.2

The key ingredient is the following partial fraction decomposition.
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Lemma 7.5 (cf. Lemma 3.1 of [13] and Lemma 1 of [24]). Ifs andt are positive
integers, and u and v are non-zero real numbers such that u+v # 0, then

a—+1— 1) (1 _ q)bq(lflfb>u+(lv

—1 s—1—
[ = g‘ g‘ ( a7b [u]zfafb[u_’_v]aﬂ

+§ tia<a+s_1) (1_ )b au+(s—1-b)v
2\ ab ) Rl

a=0 b=0

mi%s‘,t) (S—l—t—j— 1) (1 _ )j (t—j)u+(s—j)v
j=1 S—j,t—j [M—FV]TJH J '

Proof. Asin[13], letx and y be non-zero real numbers such that x+y+ (¢ — 1)xy #
0. Apply the partial differential operator

(5 el

to both sides of the identity

1

11
—=———(—+-+g-1
xy x+y+(—1)xy< y 1 )

then let x = [u,, y = [v], and observe that x+y + (¢ — 1)xy = [u+V],. |

We now proceed with the proof of Theorem 7.2. First, multiply both sides of
Lemma 7.5 by ¢~ Du+(=1V g obtain

g5 Duglt=1v sl s da rq 1y (1 — q)bglo-a—b-uglati—1)uv)
_EET_”:E § ( ) [y
t—1 t—1—a a+s—1 (1 _q)bq(tfafbf1)vq(a+sfl)(u+v)
DA O e
min(s) so g 1 (1— q)/ glst=i=Du+v)
a g‘ (s—j,t—j) [w+v]5" 7 .

After replacing u by u — v and v by —v, we find that

q)bq(sfafbf 1)(u+v)q(a+t7 u

vy g

o <a+s— 1> (1—q)bgli—a—b-1(=vg
[l g™

5~ D) gle=1(=)
[+ v]5[=vI; a

Il
©
Il |
S —
“
S8 |
Il -
o |
2
7N
Q
s t+
- ~
S
—_
~~
—
—
|

(a+s—1)u
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min(s,t) i1\ (1 —g)igtstt—i—Du
3 2 <s—|—t . J . ) (1-9) ?+t7j ' (7.9)
j=1 S—=J, =] [“]q

We’d like to sum (7.9) over all ordered pairs of positive integers (u,v), but we
must exercise some care in doing so since some of the terms on the right hand
side may diverge. The difficulty can be circumvented by judiciously combining the
troublesome terms before summing. To this end, observe that

s—1 a+1—1 (1 _ )sflfaq(aﬂfl)u
= (a,s—l—a) [u~+v]g[u)gt

t— a+s—1 (1 _q)tflfaq(aJrsfl)u
2 ()

at—1—a [—V]qlu

min(s,t) <S+t—j—1> (1— ) (s+t—j—1)u

P TN R g
-y (s+t—j—1) (1—q)/~ gttt
aNs—ji-1 [+ V][
i <s+t— j— 1> (1 _q)jflq(ertfjfl)u
S\ t—di =1 ol
min(s.¢) <s+t—j—1> (1 g)iglsti—i—Du
s BN R g
min(s. N (1 )i gl
- <[”‘:V]q " [_1"]4 > ; <ss+_tj=tj_ jl) - q)[u];tj

1 1 min(s.f) S+t — i—1 1— j—1 (S+lfj71)u
(ot T D

utvlg Mg/ S \s—ji—]j [u]q

where we have used the fact that
s+i—j—1\ [(s+t—j—1\ [(s+t—j—1
S—j,j—l B t_jaj_l B S—j,t—j
vanishes if j > min(s, 7). Substituting (7.10) into (7.9) yields

q(sfl)(u+v)q(t71)(fv)
IR
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2

+t§ tfﬁa a+s—1 (1 _q)bq(l*a*b*l)(*v)q(a‘fﬂ?*1)”
a,b [_ tfafb[u]zwrs

a=0 b=0 Vg
1 1 min
([V]q [”"’V]q) j
Now assume that s > 1. Then

oo L_ 1 q(s+t7j71)ui oo q(ertfjfl)n 1 _L
uygl(["]q [“"‘V]q) [u]2+t7'i -2 )5t 2([k—”]q [k]q)'

n=1 q k>n

) (1 _ q)bq(sfafbf1)(u+v)q(a+t71)u
[

WVl g

/—\

5.t) o _ N1 (s+t—j—Du
(s—l—t J 1> (1—g)'q NCATY
1

s—jit—j )yt

Recalling that 0 < g < 1, we evaluate the telescoping sum

S (i) =S ()
2 (7 wim)
bt 3. g

so that

i < 1 1 >q(s+tj1)u
2\ vl [t

But this last double sum evaluates as

oo

q(s+t7j71)n nooq
n=1 [n]f;rli] k=1 [k]tl
q(ertfjfl)n oo q(ertfjfl)n

= Y Tt Y T
n>k>0 [H]Z“ j[k]q n=1 [n];rt JtH

(s+t=jn = (s+t—j—)n _ j(s+t—j)n
. q q q
={[s+r—j,1]+ — + —
ngl [}’l]f;rl Jj+1 ngl [i’l]f;rl Jj+1
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(s+t—j—1)n

:C[s+t—j,1]+C[s+t—j+1]+(1_q)i (1—qn>q

s 1_q [n]éﬂfjﬂ

) ) oo q(ertfjfl)n
=Lls+r—j ]+ 8ls+r—j+1]+(1-q) Y I
n=1 |Nlqg

=Cls+t—j, 1|+ [s+r—j+1]+(1—q)[s+1—j].

It follows that
i < 1 1 >q(s+tjl)u
2\ vl it

=Cls+t—j 1]+ Cls+t—j+ 1]+ (g—1)p[s+1—j].
Consequently, summing (7.11) over all ordered pairs of positive integers (u,v) yields

N

s—2 s—2—a a+1—1
—1)¢[s,t] = 1—q) s—a—b,a
oo =3 3 () a-ar +

t=2 t—2—a a+s—1
1—¢)?¢ [t—a—b|lla+s
£33 (00 e biglat

min(s,t) s+t—j—1 -

-2 (S—j,t—j>(1_qy

x(Cls+t—j, 1]+ 8[s+t—j+1]—(1—q)p[s+1—j]).
(7.12)

Now assume also that 7 > 1. For each pair of integers (a,b) with 0 < a <s—1,
0 < b <s—2—a, we apply the g-stuffle multiplication rule [11, Equation (2.2)] in
the form

Cls—a—>bllla+t]=C[s—a—b,a+t]+la+t,s—a—Db]
+Cs+1—bl+(1—q)C[s+t—b—1],

substituting for {[s —a —b,a+1]in (7.12). Thus, we find that

s—2 s—2—a a _
s = % 3 () - Cls-a-biglatd ~gloi-
a=0 b=0 )

—(1—q)¢[s+t—b—1]—Cla+t,s—a—1b])
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t—2 t—2—a

+3 3 (“, - arti-asdtian
_mig;?[) <S+f‘—j—‘1) (1—q)i~!

A \s—jir—j
X(Cls+t—j, 1]+ 8[s+t—j+1]—(1—q)pls+1—j]).
The sum of {[s+7— j,1] over j can be combined with the double sum of

Cla+t,s—a—b] over a and b by extending the range of the latter to include the
value b = s — 1 — a. Doing this yields

)(1—q>b<as—a—bma+r1

~Lls+t—b]—(1—g)¢[s+t—b—1))

t—2 t—2—a

£33 (0, ) arti-as it

<(Cls+r—j+1] = (1-q)pls+1-j])
_Yz“i“(““ )1—q)bC[t+a,s—a—b].
It follows that for integers s > 1 and ¢ > 1,
DGl s]+ (= 1)Cils,1]
:2 i <““ )1—q>"(ci[s—a—bma+r1

—Cls+1—b—(1—q){[s+1—b—1])

t—2 t—2— (a—l—s—l

A (R ARV IR

—Cls+1—bl—(1—q){[s+1—b—1])

| )(1 N (Gl 1)~ (1~ q)gls+i—J))
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(7.13)

a=0 b=0 a,b
t—1 t—1—a
-1
+y ¥ <“ y )(1_q)bg[s+a,t_a_b]
a=0 bh=0 a,b

We use this latter decomposition formula to eliminate the last two sums of double
g-zeta values in (7.13), obtaining

(1) Gl + (1) Gl + EIEH

s—2 s—2—a

-3y (" - ar (el bigass
—C[s—l—t—b]—(l—q)C[s—l—t—b—l])

t—2 t—2—a

ats=1\ g _ —a—>b|lla+s
£33 () u-ar (el -a-igias
—C[s—l—t—b]—(1—q)€[s+t—b—1])

min(s,t) _i )
- 2 <s+t.1 .)(1—q)’1
§—

Jat_./

< (28[s+1—j+1] = (1=q)els+r— ).

(7.14)
But
§-[s)Cl] = Z 7 Z
u+(t— (t— 1)v+u 00
q
_1)3 Z -
u>v>0 3 v>§‘>0 [V]CI[M](J \Z‘I H
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Since

v v vys—1  s—1 k (s+t—k—1)v
1\ (1
q - q (1-¢ q s (1-9)%q — 7

and therefore

s—1 §—
CEEH = (-1l + (-0l + 0 S () -l -

k=0

We now use this formula to substitute the initial (—1)*C;[t,s] term in (7.14) to
complete the proof.
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8.1 Introduction

The Bernoulli numbers are rational numbers B,, defined by the generating function

n

Y B — 8.1)

S ! Cexp(z)—1°

Bernoulli numbers are of interest in number theory and are related to special values
of the Riemann zeta function (see Sect. 8.2). They also occur as coefficients in the
Euler—Maclaurin formula, so are relevant to high-precision computation of special
functions [7, Sect. 4.5].

It is sometimes convenient to consider scaled Bernoulli numbers

o By,
G = )’ 8.2)
with generating function
2
2= 2 8.3
rgb "¢~ lanh(z/2) (8-3)

The generating functions (8.1) and (8.3) only differ by the single term Bz, since the
other odd terms vanish.
The Tangent numbers T, and Secant numbers S,, are defined by

Zanl ZZn
ZTHW =tangz, ZS”(Z_n)! =secz. (8.4)

n>0 n>0

In this paper, which is based on an a talk given by the first author at a workshop
held to mark Jonathan Borwein’s sixtieth birthday, we consider some algorithms for
computing Bernoulli, Tangent, and Secant numbers. For background, combinatorial
interpretations, and references, see Abramowitz and Stegun [1, Chap. 23] (where
the notation differs from ours, e.g. (—1)"Ej, is used for our S,), and Sloane’s [27]
sequences A000367, A000182, and A000364.

Let M(n) be the number of bit-operations required for n-bit integer multipli-
cation. The Schonhage-Strassen algorithm [25] gives M(n) = O(nlognloglogn),
and Fiirer [17] has recently given an improved bound M(n) = O(n(logn)2'°¢"").
For simplicity we merely assume that M(n) = O(n(logn)'+°(1)), where the o(1)
term depends on the precise algorithm used for multiplication. For example, if
the Schonhage—Strassen algorithm is used, then the o(1) term can be replaced by
logloglogn/loglogn.

In Sects. 8.2 and 8.3 we mention some relevant and generally well-known facts
concerning Bernoulli, Tangent, and Secant numbers.

Recently, Harvey [20] showed that the single number B, can be computed in
O(n*(logn)**°(1) bit-operations using a modular algorithm. In this paper we show
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that all the Bernoulli numbers By, ..., B, can be computed with the same complexity
bound (and similarly for Secant and Tangent numbers).

In Sect.8.4 we give a relatively simple algorithm that achieves the slightly
weaker bound O(n?(logn)*t°()). In Sect.8.5 we describe the improvement to
O(n*(logn)**°(1). The idea is similar to that espoused by Steel [29], although we
reduce the problem to division rather than multiplication. It is an open question
whether the single number By, can be computed in o(n?) bit-operations.

In Sect. 8.6 we give very short in-place algorithms for computing the first n
Secant or Tangent numbers using O(n?) integer operations. These algorithms are
extremely simple and fast for moderate values of n (say n < 1000), although
asymptotically not as fast as the algorithms given in Sects. 8.4 and 8.5. Bernoulli
numbers can easily be deduced from the corresponding Tangent numbers using the
relation (8.14) below.

8.2 Bernoulli Numbers

From the generating function (8.1) it is easy to see that the B,, are rational numbers,
with By, 1 = 0 if n > 0. The first few nonzero B, are By = 1, By = —1/2, B, =
1/6, By = —1/30, B¢ = 1/42, Bs = —1/30, B1gp = 5/66, B1, = —691/2730, and
By =17/6.

The denominators of the Bernoulli numbers are given by the Von Staudt—Clausen
Theorem [12,28], which states that

1
By, =By, + Y — €.
(p-1)2n P

Here the sum is over all primes p for which p — 1 divides 2n.

Since the “correction” B, — By, is easy to compute, it might be convenient in a
program to store the integers B, instead of the rational numbers By, or C,.

Euler found that the Riemann zeta-function for even non-negative integer
arguments can be expressed in terms of Bernoulli numbers—the relation is

s B 26C0)
O G e

(8.5)

Since {(2n) = 14+ O(4™") as n — +oo, we see that

2(2n)!
Boy| ~ ——-.
B2l (2r)2n

From Stirling’s approximation to (2n)!, the number of bits in the integer part of
Ba, is 2nlgn+ O(n) (we write 1g for log,). Thus, it takes £ (n?logn) space to store
Bi,...,B,. We cannot expect any algorithm to compute By,...,B, in fewer than
Q(n?logn) bit-operations.
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Another connection between the Bernoulli numbers and the Riemann zeta-
function is the identity

Bn+1 _r
e — () 36)

for n € Z, n > 1. This follows from (8.5) and the functional equation for the zeta-
function or directly from a contour integral representation of the zeta-function [31].

From the generating function (8.1), multiplying both sides by exp(z) — 1 and
equating coefficients of z, we obtain the recurrence

z(kDLl)B =0fork >0. (8.7

j=0

This recurrence has traditionally been used to compute By,...,B, with O(nz)
arithmetic operations, for example, in [22]. However, this is unsatisfactory if
floating-point numbers are used, because the recurrence is numerically unstable:
the relative error in the computed B,, is of order 4" ¢ if the floating-point arithmetic
has precision &, i.e., Ig(1/€) bits.

Let C, be defined by (8.2). Then, multiplying each side of (8.3) by sinh(z/2)/
(z/2) and equating coefficients gives the recurrence

k C; 1
2 S = - (8.8)
j:0(2k+1—21)!4 -/ (2k)'4
Using this recurrence to evaluate Cy,C1,...,C,, the relative error in the computed

C, is only O(n’¢), which is satisfactory from a numerical point of view.

Equation (8.5) can be used in several ways to compute Bernoulli numbers. If we
want just one Bernoulli number By, then {(2n) on the right-hand side of (8.5) can be
evaluated to sufficient accuracy using the Euler product: this is the “zeta-function”
algorithm for computing Bernoulli numbers mentioned (with several references to
earlier work) by Harvey [20]. On the other hand, if we want several Bernoulli
numbers, then we can use the generating function

=2 2 (8.9)

tanh (72)

computing the coefficients of 2k < n, to sufficient accuracy, as mentioned in [3,8,
9]. This is similar to the fast algorithm that we describe in Sect. 8.4. The similarity
can be seen more clearly if we replace 7z by z in (8.9), giving

kC 2k
tanh( = —22 , (8.10)
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since it is the rational number §(2n)/n?" that we need in order to compute By,
from (8.5). In fact, it is easy to see that (8.10) is equivalent to (8.3).

There is a vast literature on Bernoulli, Tangent, and Secant numbers. For
example, the bibliography of Dilcher and Slavutskii [15] contains more than 2,000
items. Thus, we do not attempt to give a complete list of references to related work.
However, we briefly mention the problem of computing irregular primes [10, 11],
which are odd primes p such that p divides the class number of the pth cyclotomic
field. The algorithms that we present in Sects. 8.4 and 8.5 below are not suitable
for this task because they take too much memory. It is much more space-efficient
to use a modular algorithm where the computations are performed modulo a single
prime (or maybe the product of a small number of primes), as in [10, 11, 14, 20].
Space can also be saved by the technique of “multisectioning”, which is described
by Crandall [13, Sect. 3.2] and Hare [19].

8.3 Tangent and Secant Numbers

The Tangent numbers T, (n > 0) (also called zag numbers) are defined by

Zanl
ZTnm:tanZ: _—.

n>0

Similarly, the Secant numbers S, (n > 0) (also called Euler or zig numbers) are
defined by

Unlike the Bernoulli numbers, the Tangent and Secant numbers are positive integers.
Because tanz and secz have poles at z = /2, we expect T, to grow roughly like
(2n—1)!(2/m)" and S, like (2n)!(2/7)". To obtain more precise estimates, let

Gos) = (1-27)¢(s) = 1437545 4 -
be the odd zeta-function. Then

Tn - 22n+1€0(2n) 22n+1 (8 11)
(2n—1)! g2 m2n '

(this can be proved in the same way as Euler’s relation (8.5) for the Bernoulli
numbers). We also have [1, (23.2.22)]

Sn 7 22n+2B (2]’!—|— 1) 22n+2
2n)! 2ntl gt

(8.12)
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where
Blso) =2 (-1 (2j+1)". (8.13)

From (8.5) and (8.11), we see that

BZn

T, = (—1)""122n (22 — N3 (8.14)

This can also be proved directly, without involving the zeta-function, by using the
identity

¢ 1 2
anzg = — — .
‘T lanz tan (2z)

Since T, € Z, it follows from (8.14) that the odd primes in the denominator of By,
must divide 22" — 1. This is compatible with the Von Staudt—Clausen theorem, since
(p— 1)|2n implies p|(22" — 1) by Fermat’s little theorem.

T,, has about 4n more bits than [By,|, but both have 2nlgn + O(n) bits, so
asymptotically there is not much difference between the sizes of T, and [By,]. Thus,
if our aim is to compute B,,, we do not lose much by first computing 7;,, and this
may be more convenient since 7, € Z, By, € Q.

8.4 A Fast Algorithm for Bernoulli Numbers

Harvey [20] showed how B,, could be computed exactly, using a modular algorithm
and the Chinese remainder theorem, in O(n?(logn)>*°(1)) bit-operations. The same
complexity can be obtained using (8.5) and the Euler product for the zeta-function
(see the discussion in Harvey [20, Sect. 1]).

In this section we show how to compute all of By,...,B, with almost the same
complexity bound (only larger by a factor O(logn)). In Sect. 8.5 we give an even
faster algorithm, which avoids the O(logn) factor.

Let A(z) = ag + a1z + axz> + --- be a power series with coefficients in R, with
ap #0.Let B(z) = bg+b1z+--- be the reciprocal power series, so A(z)B(z) = 1.
Using the FFT, we can multiply polynomials of degree n — 1 with O(nlogn) real
operations. Using Newton’s method [24,26], we can compute by, . ..,b,_1 with the
same complexity O(nlogn), up to a constant factor.

Taking A(z) = (exp(z) — 1)/z and working with N-bit floating-point num-
bers, where N = nlg(n) + O(n), we get By,...,B, to sufficient accuracy to de-
duce the exact (rational) result. (Alternatively, use (8.3) to avoid computing
the terms with odd subscripts, since these vanish except for B;.) The work
involved is O(nlogn) floating-point operations, each of which can be done with
N-bit accuracy in O(n(logn)?+°(1) bit-operations. Thus, overall we get By, ..., B,
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with O(n?(logn)3*+°(1)) bit-operations. Similarly for Secant and Tangent numbers.
We omit a precise specification of N and a detailed error analysis of the algorithm,
since it is improved in the following section.

8.5 A Faster Algorithm for Tangent and Bernoulli Numbers

To improve the algorithm of Sect.8.4 for Bernoulli numbers, we use the
“Kronecker—Schonhage trick” [7, Sect. 1.9]. Instead of working with power series
A(z) (or polynomials, which can be regarded as truncated power series), we work
with binary numbers A(z) where z is a suitable (negative) power of 2.

The idea is to compute a single real number 7 which is defined in such a way
that the numbers that we want to compute are encoded in the binary representation
of o For example, consider the series

Y Kk = dl+2) lz] <1
k>0 (1-2)* .

The right-hand side is an easily computed rational function of z, say A(z). We use
decimal rather than binary for expository purposes. With z = 1073 we easily find

1001000
3y _ _ o
A(1077) = 997002999 0.001004009016025036049064081 100
Thus, if we are interested in the finite sequence of squares (12,22,32,...,10%), it is

sufficient to compute <7 = A(10~3) correctly rounded to 30 decimal places, and we
can then “read off” the squares from the decimal representation of .7

Of course, this example is purely for illustrative purposes, because it is easy
to compute the sequence of squares directly. However, we use the same idea
to compute Tangent numbers. Suppose we want the first » Tangent numbers
(T1,1»,...,T,). The generating function
221

tanz = Z Tkm

k>1

gives us almost what we need, but not quite, because the coefficients are rationals,
not integers. Instead, consider
n
(2n—lanz =Y T, , 7+ R(2), (8.15)

k=1

where
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,_ (2n—1)!

kn = mTk (8.16)
is an integer for 1 < k <n, and
721
k%lTk" ==l k%ﬂnm (8-17)

is a remainder term which is small if z is sufficiently small. Thus, choosing
z7="277 with p sufficiently large, the first 2np binary places of (2n — 1)!tanz define
T\ T3 s+ Ty n- Once we have computed 77,75 ..., T, , it is easy to deduce
Ti,T»,...,T, from '

/
T

o= G =

For this idea to work, two conditions must be satisfied. First, we need
0<T,<1/=2% 1<k<n, (8.18)

so we can read off the 7}/, from the binary representation of (2n — 1)!tanz. Since we
have a good asymptotic estimate for 7Ty, it is not hard to choose p sufficiently large
for this condition to hold.

Second, we need the remainder term R,(z) to be sufficiently small that it does
not influence the estimation of 7, ,. A sufficient condition is

0 <Ru(z) <z . (8.19)

Choosing z sufficiently small (i.e., p sufficiently large) guarantees that condi-
tion (8.19) holds, since R, (z) is O(z***!) as z — 0 with n fixed.

Lemmas 8.3 and 8.4 below give sufficient conditions for (8.18) and (8.19) to
hold.

Lemma 8.1.

T, 7\ 2(k=1)
Tk _<(Z > 1.
(2k—1)!_<n> for k>1

Proof. From (8.11),

o3 (3 s ()
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Lemma 8.2. (2n—1)!<n* ! forn>1.

Proof.

n—1 n—1

@n—1)t=n[](n—j)n+j)=n[]* =) <n*"!
Jj=1

~.
Il
-

with equality iff n = 1. |

Lemma 8.3. Ifk>1,n>2 p=[nlg(n)], z=2"7, and T/, is as in (8.16), then
z<n"and T, < 1/2%.

Proof. We have z =277 = 2~ Inlg] < p-nlg(n) — y=n_which proves the first part
of the Lemma.
Assume k> 1 and n > 2. From Lemma 8.1, we have

2(k—1)

and from Lemma 8.2 it follows that
Tk/,n < n2n71 < n2n.

From the first part of the Lemma, n?n <1 / 72, so the second part follows. |

Lemma 8.4. Ifn>2, p=[nlg(n)]|,z=2"7, and R,(z) is as defined in (8.17), then
0<Ry(z) <0.122" 1.

Proof. Since all the terms in the sum defining R, (z) are positive, it is immediate that
Ry(z) > 0. Since n > 2, we have p > 2 and z < 1/4. Now, using Lemma 8.1,

Ru(z) = %, Ti,2!
k=n+1

o 2\ 2(k=1)
<(@n-1)1 Y (—) 2!

k=nt1 \TC

< (2n—-1)! (%)znzzn+1 (1—1— (%)24— (%)4—%---)
< (@2n—1) <%)2nzzn+1/<l_ <%Z>2> _

Since z < 1/4, we have 1/(1 — (2z/m)?) < 1.026. Also, from Lemma 8.2,
2n-1)1< n?"=! Thus, we have
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Input: integer n > 2

Output: Tangent numbers 71, ..., 7, and (optional) Bernoulli numbers B;,Ba, ..., B,
p < [nlg(n)]
7 27F
8 — Yocken(— 1)1 x (2m)1/ (2K + 1)
C — Xocken(=1)4 x (2n)!/(2K)!
V ¢+ 2172 x (2n— 1)! x §/C] (here |x] means round x to nearest integer)
Extract 7}/, = Ty (2n— 1)!/(2k —1)!, 1 <k < n, from the binary representation of V
T T}, x (2k—1)1/2n— D)l k=nn—1,...,1
Bop — (=1 1k x Tj /2% 1) /(2% — 1), k= 1,2,...,n (optional)
return 71,73, . .., T, and (optional) By, By, ...,Ba,

Fig. 8.1 Algorithm FastTangentNumbers (also optionally computes Bernoulli numbers)

R 2 2n
2"(1) < 1.02602"! <—) 2.
anl T

Now 72 < n~2" from the first part of Lemma 8.3, so

Ru(z) _ 1.026 (3)2”.

Z2n71 n T

(8.20)

The right-hand side is a monotonic decreasing function of n, so is bounded above
by its value when n = 2, giving R,(z)/z?" ! <0.1. [ |

A high-level description of the resulting Algorithm FastTangentNumbers is given
in Fig.8.1. The algorithm computes the Tangent numbers 71,7>,...,7, using the
Kronecker—Schonhage trick as described above, and deduces the Bernoulli numbers
B>,By,...,By, from the relation (8.14).

In order to achieve the best complexity, the algorithm must be implemented
carefully using binary arithmetic. The computations of S (an approximation to
(2n)!sinz) and C (an approximation to (2n)!cosz) involve computing ratios of
factorials such as (2n)!/(2k)!, where 0 < k < n. This can be done in time
O(n*(logn)?) by a straightforward algorithm. The N-bit division to compute S/C
(an approximation to tanz) can be done in time O(Nlog(N)loglog(N)) by the
Schonhage—Strassen algorithm combined with Newton’s method [7, Sect. 4.2.2].
Here it is sufficient to take N = 2np + 2 = 2n*1g(n) + O(n). Note that

V=3 22hryl (8.21)

-
I M=
LR

is just the finite sum in (8.15) scaled by z! =" (a power of two), and the integers
T, can simply be “read off” from the binary representation of V in n blocks of
2p consecutive bits. The T}/, can then be scaled by ratios of factorials in time

O(n*(logn)>+°() to give the Tangent numbers Ty, >, . .., Ty,
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The correctness of the computed Tangent numbers follows from Lemmas 8.3 and
8.4, apart from possible errors introduced by S/C being only an approximation to
tan(z). Lemma 8.5 shows that this error is sufficiently small.

Lemma 8.5. Suppose thatn > 2, z, S and C as in Algorithm FastTangentNumbers.
Then
272" (2n—1)!

g—tanz < 0.02. (8.22)

Proof. We use the inequality

< Al-[B-B|+|B|-|A-A'|
- |B|-|B|

}é _A (8.23)

B B

Take A = sinz, B = cosz, A’ = §/(2n)!, B = C/(2n)! in (8.23). Since n > 2
we have 0 < z < 1/4. Then |A| = [sinz| < z. Also, |B| = |cosz| > 31/32 from
the Taylor series cosz = 1 —z?/2+ ---, which has terms of alternating sign and
decreasing magnitude. By similar arguments, |B'| >31/32,|B—B'| <z*"/(2n)!, and
|A—A’| < 22"*1/(2n+1)!. Combining these inequalities and using (8.23), we obtain

_ 6-32-32 721 _ 1.28 72 +1
5.31-31(2n)! (2n)!

S tan
C Z

Multiplying both sides by z!~2"(2n — 1)! and using 1.28z%/(2n) < 0.02, we obtain
the inequality (8.22). This completes the proof of Lemma 8.5. ]

In view of the constant 0.02 in (8.22) and the constant 0.1 in Lemma 8.4, the effect of
all sources of error in computing z!~2"(2n — 1)!tanz is at most 0.12 < 1/2, which is
too small to change the computed integer V, that is to say, the computed V is indeed
given by (8.21).

The computation of the Bernoulli numbers Bj,By,...,By, from Ti,...,T,, is
straightforward (details depending on exactly how rational numbers are to be
represented). The entire computation takes time

O(N(logN)' M)y = 0(n?(logn)> ).
Thus, we have proved:

Theorem 8.6. The Tangent numbers T,...,T, and Bernoulli numbers B;,By,
...,By, can be computed in O(n*(logn)>t°) bit-operations using O(n*logn)
space.

A small modification of the above can be used to compute the Secant numbers
S0,S1,...,S, in O(n*(logn)?>+°(1)) bit-operations and O(n>logn) space. The bound
on Tangent numbers given by Lemma 8.1 can be replaced by the bound
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2n+1
S (2
(2n)! T

which follows from (8.12) since B(2n+1) < 1.

We remark that an efficient implementation of Algorithm FastTangentNumbers
in a high-level language such as Sage [30] or Magma [5] is nontrivial, because
it requires access to the internal binary representation of high-precision integers.
Everything can be done using (implicitly scaled) integer arithmetic—there is no
need for floating-point—but for the sake of clarity we did not include the scaling in
Fig. 8.1. If floating-point arithmetic is used, a precision of N bits is sufficient, where
N =2np+2.

Comparing our Algorithm FastTangentNumbers with Harvey’s modular algo-
rithm [20], we see that there is a space-time trade-off: Harvey’s algorithm uses less
space (by a factor of order n) to compute a single B,,, but more time (again by a factor
of order n) to compute all of By,...,B,. Harvey’s algorithm has better locality and
is readily parallelizable.

In the following section we give much simpler algorithms which are fast enough
for most practical purposes and are based on three-term recurrence relations.

8.6 Algorithms Based on Three-Term Recurrences

Akiyama and Tanigawa [21] gave an algorithm for computing Bernoulli numbers
based on a three-term recurrence. However, it is only useful for exact computations,
since it is numerically unstable if applied using floating-point arithmetic. It is faster
to use a stable recurrence for computing Tangent numbers and then deduce the
Bernoulli numbers from (8.14).

8.6.1 Bernoulli and Tangent Numbers

We now give a stable three-term recurrence and corresponding in-place algorithm
for computing Tangent numbers. The algorithm is perfectly stable since all op-
erations are on positive integers and there is no cancellation. Also, it involves
less arithmetic than the Akiyama—Tanigawa algorithm. This is partly because the
operations are on integers rather than rationals and partly because there are fewer
operations since we take advantage of zeros.

Bernoulli numbers can be computed using Algorithm TangentNumbers and the
relation (8.14). The time required for the application of (8.14) is negligible.

The recurrence (8.24) that we use was given by Buckholtz and Knuth [23],
but they did not give our in-place Algorithm TangentNumbers explicitly. Related
recurrences with applications to parallel computation were considered by Hare [19].
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Fig. 8.2 Algorithm Input: positive integer n
TangentNumbers Output: Tangent numbers Ty,...,T,
T1 —1
for k from 2 to n
Ti = (k= 1)Ti—

for k from 2 to n
for j from k to n
T) — (j =K1+ (—k+2)T;
return 77, 1>,...,T,.

Fig. 8.3 Dataflow in

N Tlm = Po,1
algorithm TangentNumbers N \
forn=3 Tl(l) — o sz — i
hY v hY
T2<2) =p2i T3(l) =p23
v hY
T2(2> = P30 T3(2) =p32
hY v
Iy )= P4l
e
;7 =psp

Write ¢ = tanx, D = d/dx, so Dt = 1+ and D(¢") = nt" "' (1 +¢?) forn > 1.
It is clear that D"¢ is a polynomial in ¢, say P,(¢). Write Py(t) = X ;> pn,jt’. Then
deg(P,) = n+ 1 and, from the formula for D(¢"),

Pnj=G=1)pn1j—1+ G+ 1)pn_1 jt+1. (8.24)

We are interested in T; = (d/dx)** 'tanx|,—o = Psy_1(0) = pax_1,0, Which can
be computed from the recurrence (8.24) in O(k?) operations using the obvious
boundary conditions. We save work by noticing that p, ; = 0 if n+ j is even. The
resulting algorithm is given in Fig. 8.2.

The first for loop initializes Ty = px—1x = (k— 1)!. The variable 7} is then used
{0 StOT€ Pk k—1» Pk+1,k—25 ---» P2k—2,1> P2k—1,0 At successive iterations of the second
for loop. Thus, when the algorithm terminates, T; = pai—1 0, as expected.

The process in the case n = 3 is illustrated in Fig. 8.3, where Tk(m) denotes the
value of the variable T} at successive iterations m = 1,2,...,n. It is instructive to
compare a similar figure for the Akiyama—Tanigawa algorithm in [21].

Algorithm TangentNumbers takes @ (n®) operations on positive integers. The
integers T, have O(nlogn) bits, other integers have O(logn) bits. Thus, the overall
complexity is O(r’ (logn)'+°(1)) bit-operations, or O(n>logn) word-operations if n
fits in a single word.

The algorithm is not optimal, but it is good in practice for moderate values of n,
and much simpler than asymptotically faster algorithms such as those described in
Sects. 8.4 and 8.5. For example, using a straightforward Magma implementation of
Algorithm TangentNumbers, we computed the first 1,000 Tangent numbers in 1.50 s
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Fig. 8.4 Algorithm Input: positive integer n
SecantNumbers Output: Secant numbers So, S ...,S,
So — 1
for k from 1 to n
S kS

for k from 1 to n
for jfromk+1ton
Sj = (J=k)Sj-1+ (i —k+1)S;
return Sy, S, ...,S,.

on a 2.26 GHz Intel Core 2 Duo. For comparison, it takes 1.92 s for a single N-bit
division computing 7" in Algorithm FastTangentNumbers (where N = 19,931,568
corresponds to n = 1,000). Thus, we expect the crossover point where Algorithm
FastTangentNumbers actually becomes faster to be slightly larger than n = 1,000
(but dependent on implementation details).

8.6.2 Secant Numbers

A similar algorithm may be used to compute Secant numbers. Let s = secx, t = tanx,
and D = d/dx. Then Ds = st, D>s = s(1 +2¢%), and in general D"'s = sQ,,(t), where
0, (t) is a polynomial of degree n in . The Secant numbers are given by Sy = 02(0).
Let Q,(1) = Y0 qn,ktk. From

D(st*) = st 4 kst 1 (14 1%)
we obtain the three-term recurrence
Gni1k =kqni—1+ (k+ 1)gniy1 for 1 <k <n. (8.25)
By avoiding the computation of terms g,  that are known to be zero (n +k
odd), and ordering the computation in a manner analogous to that used for

Algorithm TangentNumbers, we obtain Algorithm SecantNumbers (see Fig. 8.4),
which computes the Secant numbers in place using non-negative integer arithmetic.

8.6.3 Comparison with Atkinson’s Algorithm

Atkinson [2] gave an elegant algorithm for computing both the Tangent numbers
T\, T»,...,T, and the Secant numbers Sy,Sq,...,S, using a “Pascal’s triangle”
style of algorithm that only involves additions of non-negative integers. Since a
triangle with 21 + 1 rows in involved, Atkinson’s algorithm requires 2n” + O(n)
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integer additions. This can be compared with n?/2 4 O(n) additions and n* + O(n)
multiplications (by small integers) for our Algorithm TangentNumbers, and simi-
larly for Algorithm SecantNumbers.

Thus, we might expect Atkinson’s algorithm to be slower than Algorithm Tan-
gentNumbers. Computational experiments confirm this. With n = 1,000, Algorithm
TangentNumbers programmed in Magma takes 1.50s on a 2.26 GHz Intel Core 2
Duo, algorithm SecantNumbers also takes 1.50s, and Atkinson’s algorithm takes
4.51s. Thus, even if both Tangent and Secant numbers are required, Atkinson’s
algorithm is slightly slower. It also requires about twice as much memory.
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Chapter 9
Monotone Operator Methods for Nash
Equilibria in Non-potential Games

Luis M. Briceno-Arias and Patrick L. Combettes

Abstract We observe that a significant class of Nash equilibrium problems in non-
potential games can be associated with monotone inclusion problems. We propose
splitting techniques to solve such problems and establish their convergence. App-
lications to generalized Nash equilibria, zero-sum games, and cyclic proximation
problems are demonstrated.

Key words: Monotone operator * Nash equilibrium ¢ Potential game ¢ Proximal

algorithm e Splitting method ¢ Zero-sum game

Mathematics Subject Classifications (2010): Primary 91A05, 49M27, 47HO05;
Secondary 90C25

9.1 Problem Statement

Consider a game with m > 2 players indexed by i € {1,...,m}. The strategy x; of the
ith player lies in a real Hilbert space .7 and the problemis to find x; € 74, ... ,x, €
4, such that
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(Vie{l,...,m}) x; € Argminf(xy,...,Xi—1,%,Xii1s--,Xm)
xeH;

+gi(x17"'axiflvxaxljrlv"'ax}%)a (91)

where (g;)1<i<m represents the individual penalty of player i depending on the
strategies of all players and f is a convex penalty which is common to all players
and models the collective discomfort of the group. At this level of generality, no
reliable method exists for solving (9.1) and some hypotheses are required. In this
paper we focus on the following setting.

Problem 9.1. Letm > 2 be an integer and let f: J& © - © 5, — | —o0, 40| be a

proper lower semicontinuous convex function. Forevery i € {1,...,m},letg;: S ®
oo @ Iy — |—oo,4o0] be such that, for every x; € J4,...,x, € H,, the function
x> gi(x1,. .o, Xi—1,X,Xi41,---,Xm) is convex and differentiable on 4%, and denote
by Vig;(x1,...,xy) its derivative at x;. Moreover,

(Vx1, o sxm) € KA @ - @ ) (Y1, m) € HA B © i)

M=

<Vigi(-x17' .. ,Xm) - vigi(ylu' .. 7)’m) |.Xi _yl> 2 0. (92)
i=1

The problem is to find x; € 4, ..., x, € J%, such that

x1 € Argmin f(x,x2,...,%m) + &1 (,x2, ..., Xm)

xeN
(9.3)
Xm € Argmin f(x1,..., Xpm—1,%) + (X1, Xm—1,X).
xXEHm,
In the special case when, for every i € {1,...,m}, g; = g is convex, Problem 9.1

amounts to finding a Nash equilibrium of a potential game, i.e., a game in which the
penalty of every player can be represented by a common potential f + g [14]. Hence,
Nash equilibria can be found by solving

minimize  f(xy,...,%n) + &1,y Xm)- (9.4)

X1 EI,... XmE T

Thus, the problem reduces to the minimization of the sum of two convex functions
on the Hilbert space 4 @ --- ® J7;, and various methods are available to tackle
it under suitable assumptions (see for instance [5, Chap. 27]). On the other hand,
in the particular case when f is separable, a review of methods for solving (9.3) is
provided in [8]. In this paper we address the more challenging non-potential setting,
in which the functions (g;)1<i<» need not be identical nor convex, but they must
satisfy (9.2), and f need not be separable. Let us note that (9.2) actually implies, for
every i € {1,...,m}, the convexity of g; with respect to its ith variable.
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Our methodology consists of using monotone operator splitting techniques for
solving an auxiliary monotone inclusion, the solutions of which are Nash equilibria
of Problem 9.1. In Sect.9.2 we review the notation and background material
needed subsequently. In Sect. 9.3 we introduce the auxiliary monotone inclusion
problem and provide conditions ensuring the existence of solutions to the auxiliary
problem. We also propose two methods for solving Problem 9.1 and establish
their convergence. Finally, in Sect.9.4, the proposed methods are applied to the
construction of generalized Nash equilibria, to zero-sum games, and to cyclic
proximation problems.

9.2 Notation and Background

Throughout this paper, 7, ¢, and (%) <;< are real Hilbert spaces. For conve-
nience, their scalar products are all denoted by (- | -) and the associated norms by
|-||. Let A: # — 27 be a set-valued operator. The domain of A is

domA = {xe 7 | Ax# @}, 9.5)
the set of zeros of A is
zerA={x € | 0€Ax}, (9.6)
the graph of A is
graA = {(x,u) € # x # | u € Ax}, 9.7)
the range of A is
ranA = {u € # | (3x € H') u € Ax}, 9.8)

the inverse of A is the set-valued operator
AT 527w {x € A | ue Ax}, 9.9)
and the resolvent of A is
Ja=(Id4A4)"" (9.10)
In addition, A is monotone if
(V(x,y) € H x H)(V(u,v) € AxxAy) {(x—y|u—v)>0 (.11)

and it is maximally monotone if, furthermore, every monotone operator B: ¢ —
27 such that graA C graB coincides with A.
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We denote by Iy(s#) the class of lower semicontinuous convex functions
(¢: S — |—o0, 40| which are proper in the sense that dom¢@ = {x € J# | ¢(x) <
+oo} # @. Let ¢ € I (). The proximity operator of ¢ is

1
prox,: ' — 1 x+— argmin o)+ =[x —y|% 9.12)
yeH 2

and the subdifferential of ¢ is the maximally monotone operator
dp: H =27 xs {ue | (Ve ) (y—x|uy+o(x) <o)} (9.13)
We have

Argmin @(x) =zerde and prox, =Jj,. (9.14)
xeH

Let B € ]0,4oo[. An operator T: 5% — S is B-cocoercive (or BT is firmly
nonexpansive) if

(Vxe ) (Wye H) (x—y|Tx—Ty)>B|Tx—Ty|? (9.15)

which implies that it is monotone and B~'-Lipschitzian. Let C be a nonempty
convex subset of #. The indicator function of C is

0, ifxeC
o) A — | —oo,4oo]  x o (9.16)
+oo, if x¢C

and dic = N is the normal cone operator of C, i.e.,

{ue | (VyeC) (y—x|u)<0}, ifxeC;

, otherwise.

Nc:j‘f—>2%p:x1—>{ (9.17)

If C is closed, for every x € 7, there exists a unique point Pcx € C such that ||x —
Pex|| = infyec||x — y||; Pex is called the projection of x onto C and we have P =
prox,... In addition, the symbols — and — denote respectively weak and strong
convergence. For a detailed account of the tools described above, see [5].

9.3 Model, Algorithms, and Convergence

We investigate an auxiliary monotone inclusion problem, the solutions of which are
Nash equilibria of Problem 9.1 and propose two splitting methods to solve it. Both
involve the proximity operator prox,, which can be computed explicitly in several



9 Monotone Operator Methods for Nash Equilibria in Non-potential Games 147

instances [5,7]. We henceforth denote by # the direct sum of the Hilbert spaces
(H)1<i<ms 1.€., the product space J#4 X --- X 7, equipped with the scalar product

M=

(1 s (Ga)r<icm O r<icm) = Y, (x| i) (9.18)

i=1

We denote the associated norm by ||| - |||, a generic element of & by x = (x;)1<i<m»
and the identity operator on # by Id.

9.3.1 A Monotone Inclusion Model

With the notation and hypotheses of Problem 9.1, let us set
A=0f and B:# —H:x— (Vigi(x),...,Vug,(x)). (9.19)
We consider the inclusion problem

find x €zer(A+B). (9.20)

Since f € Io(H€), A is maximally monotone. On the other hand, it follows from
(9.2) that B is monotone. The following result establishes a connection between the
monotone inclusion problem (9.20) and Problem 9.1.

Proposition 9.2. Using the notation and hypotheses of Problem 9.1, let A and B be
as in (9.19). Then every point in zer (A + B) is a solution to Problem 9.1.

Proof. Suppose that zer (A + B) # & and let (xy,...,x,) € €. Then [5, Proposi-
tion 16.6] asserts that

A(xr, .o Xm) COf(ax2, e yxm)) (1) X oo X O (f (X1, Xme1,7)) (xm) . (9:21)

Hence, since domg,(-,x2,...,X%n) = 1, ..., domg,, (x1,...,Xm—1,") = Hm, We
derive from (9.19), (9.14), and [5, Corollary 16.38(iii)] that

(X1,...,%m) € zer(A+B)

< —B(xp,...,xm) €EA(XL,. .. Xn)

—Vigi(x1,..xm) € A(F(-x2, .- xm)) (1)

Vg, (x1,...,xm) € a(f(xl,...,xm,l,-))(xm)
< (x1,...,%n) solves Problem 9.1, (9.22)

which yields the result. |
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Proposition 9.2 asserts that we can solve Problem 9.1 by solving (9.20), provided
that the latter has solutions. The following result provides instances in which this
property is satisfied. First, we need the following definitions (see [5, Chaps. 21—
24]):

Let A: 27 — 277 be monotone. Then A is 3* monotone if domA x ranA C
dom Fy, where

Fpo: XA — |—oo, 40| 1 (xyu) — (x|uy— inf {(x—ylu—v). (9.23)
(y,v)EgraA

On the other hand, A is uniformly monotone if there exists an increasing function
¢: [0,4o0[ — [0,4-o0] vanishing only at 0 such that

(V(x,y) € A x ) (V(u,v) € AxxAy) (x—y|u—v)>o(lx—yl). (9.24)

A function ¢ € Iy(#7) is uniformly convex if there exists an increasing function
¢: [0,4o0[ — [0,4-o0] vanishing only at 0 such that

(V(x,y) € dome x dome)(Va € 10,1])
p(ox+ (1 —a)y)+a(l—a)o([x—yl) < aplx)+(1-a)e(y). (9.25)

The function ¢ in (9.24) and (9.25) is called the modulus of uniform monotonicity
and of uniform convexity, respectively, and it is said to be supercoercive if

Proposition 9.3. With the notation and hypotheses of Problem 9.1, let B be as in
(9.19). Suppose that B is maximally monotone and that one of the following holds:

(i) Tim i [|0fx) + ]| = o,

(ii) df+ B is uniformly monotone with a supercoercive modulus.

(iii) (domdf)NdomB is bounded.

(iv) f=1¢, where C is a nonempty closed convex bounded subset of € .

(v) fis uniformly convex with a supercoercive modulus.

(vi) B is 3* monotone, and df or B is surjective.

(vii) B is uniformly monotone with a supercoercive modulus.
(viii) B is linear and bounded, there exists 3 € |0, +eo[ such that B is B—cocoercive,

and Jf or B is surjective.

Then zer (df + B) # @. In addition, if (ii), (v), or (vii) holds, zer (df + B) is a

singleton.
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Proof. First note that, for every (x;)1<i<m € H€, domV g, (-,x2,...,xn) = J4,...,
domV,, g, (x1,...,Xu_1,) = H,. Hence, it follows from (9.19) that domB = ¢
and, therefore, from [5, Corollary 24.4(i)] that df + B is maximally monotone. In
addition, it follows from [5, Example 24.9] that df is 3* monotone.

(i) This follows from [5, Corollary 21.20].
(i1) This follows from [5, Corollary 23.37(i)].
(iii) Since dom(df + B) = (domdf) NdomB, the result follows from [5,
Proposition 23.36(iii)].
(iv)=(iil) f =1¢ € I}(5#) and domdf = C is bounded.
(v)=(ii) It follows from (9.19) and [5, Example 22.3(iii)] that df is uniformly
monotone. Hence, df + B is uniformly monotone.
(vi) This follows from [5, Corollary 24.22(ii)].
(vii)=-(i1) Clear.
(viii)=>(vi) This follows from [5, Proposition 24.12].

Finally, the uniqueness of a zero of df + B in cases (ii), (v), and (vii) follows from
the strict monotonicity of df + B. [ |

9.3.2 Forward-Backward-Forward Algorithm

Our first method for solving Problem 9.1 is derived from an algorithm proposed in
[6], which itself is a variant of a method proposed in [16].

Theorem 9.4. In Problem 9.1, suppose that there exist (z1,...,zm) € F€ such that

- (Vigi@ts-zm)s e, Vg2, zm)) € f(z1s. . 2m) (9.26)

and y € |0, e[ such that

(V(x1,. .y xm) €YY O1, .- ym) € )

m

z Hvl'gi(xlv' .. ,Xm) - Vigi(yla s 7ym)||2 < %2 z |‘xi—yi|‘2' 9.27)
i=1

i=1

Let € €0,1/(x+1)[ and let (Yn)nen be a sequence in [e,(1 —€)/x]. Moreover,
foreveryie {1,...,m}, let x;g € I8, and let (@i n)nen, (Din)nen, and (¢in)nen be
absolutely summable sequences in 5. Now consider the following routine:
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fori=1,....m

\_yi,n =Xin — Yn(vigi(-xl,m e 7xm,n) +ai,n)

(Vn c N) (Pl,m- . apm,n) = prox’)/nf(ylmv- . 7ym,n) + (bLm' . abm,n) (928)
fori=1,....m

\‘ql}” =Pin— Vn(Vig,»(an, .- apm,n) + Ci,n)
Xin+1 = Xin — YVin+ qin-

Then there exists a solution (X1,...,Xy) to Problem 9.1 such that, for every i €
{1,...,m}, xi, = X and p;,, — %;.

Proof. Let A and B be defined as (9.19). Then (9.26) yields zer (A + B) # &, and,
for every y € |0, 40, (9.14) yields J,4 = prox,s. In addition, we deduce from (9.2)
and (9.27) that B is monotone and y-Lipschitzian. Now set

Xp = (xl,nu cee 7xm,n)

(Vn EN) Yn= (yl,na"'uymm) (929)
p,= (pl,na--- upm,n)
q, = (QI,na cee 7Qm7n)

and

a, = (al,nu cee 7am7n)

(Vl’l € N) b, = (bl,nun'abmm) (9:30)
cn=(Cln, - Cmpn)-

Then (9.28) is equivalent to

Yu =Xn— Ya(Bx, +ay)

Py = ‘I]/nAyn +b,
VneN 9.31)
( ) q, :pn_yﬂ(Bpn+c")

Xpt1 =Xp—Y,+4q,-

Thus, the result follows from [6, Theorem 2.5(ii)] and Proposition 9.2. |

Note that two (forward) gradient steps involving the individual penalties (g;)1<i<m
and one (backward) proximal step involving the common penalty f are required at
each iteration of (9.28).



9 Monotone Operator Methods for Nash Equilibria in Non-potential Games 151
9.3.3 Forward-Backward Algorithm

Our second method for solving Problem 9.1 is somewhat simpler than (9.28) but
requires stronger hypotheses on (g;)1<;j<,. This method is an application of the
forward-backward splitting algorithm (see [3, 9] and the references therein for
background).

Theorem 9.5. In Problem 9.1, suppose that there exist (z1,...,zm) € F€ such that

- (Vigi@ts-zm)s e, Vg2t zm)) € f(z1s. . 2m) (9.32)
and y € |0, e[ such that
(V(x1,..yxm) € F)NV1,- .-y ym) € I)
> (Vigi(xts. o xm) = Vigii, - ym) | xi— yi)

i=1

Hvigi(xlv' .. axm) _Vigi(ylv' i aym)”z' (933)

M=

1
2_
X iz

Let € €]0,2/(x + 1)[ and let (Yn)nen be a sequence in [€,(2 — €)/x]. Moreover,
foreveryie {l,...,m}, let x;o € 7, and let (aj,)nen and (bjn)nen be absolutely
summable sequences in ;. Now consider the following routine:

fori=1,....m
(Vn eN) Lyin = Xin = Ya(Vigi(X1n, - Xmn) + i) (9.34)
(xl,n+1a e 7xm,n+1) = Proxynf()’lmv o a)’m,n) + (bLm e abm,n)-

Then there exists a solution (X1,...,%,) to Problem 9.1 such that, for every i €
{1, .. ,m}, Xip — X; and V,‘g,‘(xlvn, . ,xm,,,) — V,‘gi(fl, . ,)_Cm).

Proof. 1f we define A and B as in (9.19), (9.32) is equivalent to zer (A + B) # &, and
it follows from (9.33) that B is y ~'—cocoercive. Moreover, (9.34) can be recast as

(VneN) {y n =% =B +a,) 9.35)
Xn+1 :JVnAyn +b,.

The result hence follows from Proposition 9.2 and [3, Theorem 2.8(i) and (ii)]. W

As illustrated in the following example, Theorem 9.5 imposes more restrictions
on (g;)1<i<m.- However, unlike the forward—backward—forward algorithm used in
Sect.9.3.2, it employs only one forward step at each iteration. In addition, this
method allows for larger gradient steps since the sequence (¥, )nen lies in 10,2/ x|,
as opposed to ]0,1/x[ in Theorem 9.4.
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Example 9.6. In Problem 9.1, set m = 2, let L: 5¢{ — % be linear and bounded,
and set

{glz (x1,%2) — (Lxy | x2) (9.36)

8> (x1,x2) = —(Lxy | x2).

It is readily checked that all the assumptions of Problem 9.1 are satisfied, as well as
(9.27) with y = ||L||. However, (9.33) does not hold since

(V(x1,x2) € A4 D 55)(Y(y1,y2) € 4 ® H5)
(Vigi(x1,x02) = Vigi(yvi,y2) [ x1 —y1)
+(Vagy(x1,x2) — Vaga(v1,y2) | X2 —y2) =0. (9.37)

9.4 Applications

The previous results can be used to solve a wide variety of instances of Problem 9.1.
We discuss several examples.

9.4.1 Saddle Functions and Zero-Sum Games

We consider an instance of Problem 9.1 with m = 2 players whose individual
penalties g; and g, are saddle functions.

Example 9.7. Let y €]0,+eo[, let f € [)(JA & %), and let L : 54 © 5% — R be
a differentiable function with a y-Lipschitzian gradient such that, for every x; € 4,
&£ (xy1,-) is concave and, for every x, € 54, £(-,x2) is convex. The problem is to
find x; € 74 and x, € % such that

x1 € Argmin f(x,x2) + 2 (x,x2)
xeN

X2 € Argmin f(x,x) — 2 (x1,x).
xe st

(9.38)

Proposition 9.8. In Example 9.7, suppose that there exists (21,22) € J4 ® 6
such that

(—ViZ(21,22), V2 & (21,22)) € If(z1,22).- (9.39)

Let € €0,1/(x + 1) and let (V,)nen be a sequence in [g,(1 —€)/x]. Moreover,
let (x10,X20) € JG4 ® 6, let (a1n)nen, (P1a)nen, and (cip)nen be absolutely
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summable sequences in 7, and let (a2 ) nen, (b2.0)nen, and (¢2.)nen be absolutely
summable sequences in 7. Now consider the following routine:

Yin =X1n— '}/n(vlg(xl,mxln) +al,n)

Yon =Xon+ '}/n(vzg(xl,mxln) + aZ,n)

(pl,mpZ,n) = proxynf(yl,myZ,n) + (bl,nubZ,n)

(VneN) Gin=DPin— (V1L (P1n,P20) +C10) (9.40)
q2n = P2n + Yn(v2$(pl,nap2,n) + CZ,n)
X+l =X1n—Yin+q1n

LX2n+1 =X2n—Y2n+q2n-

Then there exists a solution (X1,%,) to Example 9.7 such that Xip — X1, P1a — X1,
Xon — X, and pr , — Xo.

Proof. Example 9.7 corresponds to the particular instance of Problem 9.1 in which
m=2,g =%, and g, = —%. Indeed, it follows from [15, Theorem 1] that the
operator

(Xl,xz) — (Vl f(xl,xz), —sz(xl,xz)) (9.41)

is monotone in 7 @ 5% and, hence, (9.2) holds. In addition, (9.39) implies (9.26)
and, since V.& is x-Lipschitzian, (9.27) holds. Altogether, since (9.28) reduces to
(9.40), the result follows from Theorem 9.4. |

Next, we examine an application of Proposition 9.8 to 2-player finite zero-sum
games.

Example 9.9. We consider a 2-player finite zero-sum game (for complements and
background on finite games, see [17]). Let S; be the finite set of pure strategies of
player 1, with cardinality Ny, and let

C = {(5j)1<j<1v1 e[0,1]™

N
Y &= 1} (9.42)
j=1

be his set of mixed strategies (52, N, and C; are defined likewise). Moreover, let L
be an N; X N, real cost matrix such that

(321 €C1)32€C) —Ln€Ngzi and L'z € Ne,zo. (9.43)
The problem is to

X1 € Argmin xLxy

find x; e RM and x, e R™ such that <€y (9.44)
X € Argmax xlTLx.
xeCy
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Since the penalty function of player 1 is (x1,x;) — xILxg and the penalty function
of player 2 is (x1,xp) — —xIsz, (9.44) is a zero-sum game. It corresponds to the
particular instance of Example 9.7 in which 4 = RV, J% = RM, f: (x;,x0)
e, (x1) + 1, (x2), and 22 (x1,x2) — x?sz. Indeed, since C; and C, are nonempty
closed convex sets, f € Iy(54 @ 54). Moreover, x| — £ (x1,x2) and xp —
—%(x1,x2) are convex, and V.Z: (x1,x2) — (Lx,L"x1) is linear and bounded,
with [[VZ| = [|L]. In addition, for every y € ]0,+ee|, prox,, = (Pc,,Fc,) [5,
Proposition 23.30]. Hence, (9.40) reduces to (we set the error terms to zero for
simplicity)

Vipn=X1ln— YnLXZ,n

Yon =X250+ YnLTan

Pin=Fcyin

(WneN) |P2n= ey (9.45)
qdin=Pln— '}/nLPZ,n

q2n = P2n + YnLTan

X+l =X1n—YVint+qin

X2n+1 =X20 —Yon+ G2,

where (¥,)nen s a sequence in [8, ||LH} for some arbitrary € € }O, W [ Since
df + (x1,x2) = N¢,x1 X Ne,x2, (9.43) yields (9.39). Altogether, Proposition 9.8
asserts that the sequence (x; ,,%2,,)nen generated by (9.45) converges to (X1,%2) €
RV x RM2, such that (¥;,%;) is a solution to (9.44).

9.4.2 Generalized Nash Equilibria

We consider the particular case of Problem 9.1 in which f is the indicator function
of a closed convex subset of € = JA4 & --- D F,.

Example 9.10. Let C C S be a nonempty closed convex set and, for every i €
{1,...,m},letg;: &€ — |—oo,+oo] be a function which is differentiable with respect
to its ith variable. Suppose that

(V(x1,....xm) € ) (V(y1,-..,ym) € H)

m
z Vgl Xlyeony m)_Vigi(ylu"'uym)|-xi_yi>20 (946)
i=1

and set

(V(x1,- .. xm) € F)
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0,(x2,...,xm) = {xe%ﬂl ‘ (X,%2, -y Xm) EC}

: (9.47)
0, (x1,...;xm_1) = {xe Ty ‘ (Xpyeeey Xm—1,X) EC}.
The problem is to find x| € 4, ..., x, € J%, such that
x1 € Argmin g (x,x2,...,%)
xEQl(x27...7xm)
(9.48)

Xm € Argmin g, (x1,. .., Xm_1,X).

The solutions to Example 9.10 are called generalized Nash equilibria [11], social
equilibria [10], or equilibria of abstract economies [1], and their existence has been
studied in [1, 10]. We deduce from Proposition 9.2 that we can find a solution to
Example 9.10 by solving a variational inequality in S, provided the latter has
solutions. This observation is also made in [11], which investigates a Euclidean
setting in which additional smoothness properties are imposed on (g;)j<j<m. An
alternative approach for solving Example 9.10 in Euclidean spaces is also proposed
in [13] with stronger differentiability properties on (g;)1<;<,» and a monotonicity
assumption of the form (9.46). However, the convergence of the method is not
guaranteed. Below we derive from Sect.9.3.2 a weakly convergent method for
solving Example 9.10.

Proposition 9.11. In Example 9.10, suppose that there exist (z1,...,zm) € H
such that

—(Vigi(zi,-szm)se - Vin&m(215--,2m)) € Ne(z1,-- - 2m) (9.49)

and y € |0, e[ such that

(V(x15..yxm) €)YV, - .-, Ym) € FE)

m m
z Hvigi(xh' .. 7-xm) - Vigi(ylu e 7)’m)||2 < Xz Z H-xi_yin' (950)
i=1

i=1

Let € €0,1/(x+1)[ and let (Yn)nen be a sequence in [€,(1 —€)/x]. Moreover,
foreveryie {1,...,m}, let x;g € I, and let (a;jn)nen, (Din)nen, and (¢in)nen be
absolutely summable sequences in 5. Now consider the following routine:
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fori=1,....m

\-yi!”:xi7"_Y”(Vigi(xl,n7"'7-xm7n)+ai7n)

(nen) | Praspmn) =PeGn o ymn) B bun) g 51
fori=1,....m :
Vi,n = pin—Yo(Vig&i(P1ns-- -, Pmpn) +Cin)

L LXip+1 = Xin = Yin + Gin-

Then there exists a solution (X1,...,%y) to Example 9.10 such that, for every i €
{1,...,m}, xi, = X;and p;,, — Xi.

Proof. Example 9.10 corresponds to the particular instance of Problem 9.1 in which
S = 1c. Since P¢ = prox;, the result follows from Theorem 9.4. |

9.4.3 Cyclic Proximation Problem

We consider the following problem in € = 4 @ --- © J%,.

Example 9.12. Let ¢ be a real Hilbert space, let f € Iy(#), and, for every i €
{1,...,m}, let L;: 5% — % be a bounded linear operator. The problem is to find
X1 € JA,. .., xym € H;, such that

. 1
X1 € Argmin f(x,x2,...,Xn) + = || L1x — Lyxa |
xeN 2

. 1
Xy € Argmin f(x1,x,...,%,)+ §|\L2x—L3x3H2

X€H3 (9.52)
: 1 2
Xm € Argmin f(xq,...,%u—1,X) + = || Lmx — Lix1 ||
xeHy, 2
For every i € {1,...,m}, the individual penalty function of player i models

his desire to keep some linear transformation L; of his strategy close to some
linear transformation of that of the next player i + 1. In the particular case when
[ (i) 1<i<m — 20 fi(xi), a similar formulation is studied in [2, Sect. 3.1], where
an algorithm is proposed for solving (9.52). However, each step of the algorithm
involves the proximity operator of a sum of convex functions, which is extremely
difficult to implement numerically. The method described below circumvents this
difficulty.

Proposition 9.13. In Example 9.12, suppose that there exists (zi,...,2m) €
such that

(Li(Lozo — Liz1), -, Ly (L2t — Lzm)) € Of(z1, - 2m)- (9.53)
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Set y = <i< 10,2/(x + 1)[, and let (Yp)nen be a sequence in
[e,(2—¢€)/x]. Foreveryic {1,...,m}, letx;o € &, and let (a; )nen and (bin)nen
be absolutely summable sequences in F. Now set L1 = Ly, for every n € N, set
Xmt1,n = X1,0, and consider the following routine:

fori=1,....m
(¥n € N) | [in =%in = % (L} (Lixin = Lix1Xi110) + din) (9.54)
(-xl,nJrlu cee 7xm,n+1) = proxynf(yl,na .o 7ym7n) + (bl,na oo 7bm,ﬂ)'
Then there exists a solution (X1,...,%py) to Example 9.12 such that, for every i €
{1, . ,m}, Xin — Xi andLZ‘ (Li(x,',n —7,’) —L[+1(xi+1’,, _xi+1)) — 0.
Proof. Note that Example 9.12 corresponds to the particular instance of Problem 9.1
in which, forevery i € {1,...,m}, g;: (x;)1<i<m — ||Lixi — Li11xi11]|* /2, where we
set x,, 1 = x1. Indeed, since
Vlgl(-xlu"'axm) :LT(lel _LZ-XZ)
(V(x1,...,xm) € ) : (9.55)
Vi &m(x1,-- s %m) =L (Lixm — L1x1),

the operator (x;)1<i<m — (Vigi(x1,...,Xm))1<i<m is linear and bounded. Thus, for
every (X1,...,%,) € I,

(Vigi(xr,-..,xm) | xi)

M=

1

(Li (Lix; — Liy1xit1) | xi)

|
M=

I
—

(Lixi — Liy1xi1 | Lix;)

Il
L

3

m

= 2 [Lixi||* = Y, (Lisixip1 | Lixi)

i=1

2 |Lixi | +§2”Li+1xi+1” =Y (Liz1xic1 | Lix)
-1 -1

i=1

l\)l'—‘

|| Lixi — Liz1xi1||*

I
'M§
N —

I
—

1
1 20ILi1?

ILi|| || Lixi — Li1xi1 |

Il
7 IN\gE
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m
> 2 "3 L (Lixi — Livaxii)|)?
=1

i=

m

=x " Y IVigilxr, x|, (9.56)
i=1

and, hence, (9.33) and (9.2) hold. In addition, (9.53) yields (9.32). Altogether, since
(9.34) reduces to (9.54), the result follows from Theorem 9.5. |

We present below an application of Proposition 9.13 to cyclic proximation problems
and, in particular, to cyclic projection problems.

Example 9.14. We apply Example 9.12 to cyclic evaluations of proximity opera-
tors. For every i € {1,...,m}, let 5% = 52, let f; € I§(5), let L; = 1d, and set
[ (xi)i<i<cm = X5 fi(xi). In view of (9.12), Example 9.12 reduces to finding
x| €I, ..., xy € F such that

X1 = pI‘OXfl X2

X3 = proxy, x3 ©9.57)

Xm = ProX; Xi.

It is assumed that (9.57) has at least one solution. Since proxg: (xi)1<i<m
(proxfl_ Xi)1<i<m [5, Proposition 23.30], (9.54) becomes (we set errors to zero for
simplicity)

fori=1,....m

vneN
( ) |_xi,n+1 = Prox,, « ((1 - ')/n)xim + Ynxi+1,n)7

(9.58)

where (x;0)1<i<m € J™ and (¥,)nen is a sequence in [, 1 — €] for some arbitrary
€ €10,1/2]. Proposition 9.13 asserts that the sequences (x1,)neNs ---» (Xmpn)neN
generated by (9.58) converge weakly to points X; € JZ, ..., X, € J, respectively,
such that (¥, ...,Xy) is a solution to (9.57).

In the particular case when for every i € {1,...,m}, fi = i¢;, a solution of (9.57)
represents a cycle of points in Cy, ..., Cy,. It can be interpreted as a Nash equilibrium
of the game in which, for every i € {1,...,m}, the strategies of player i belong to C;
and its penalty function is (x;)1<j<u = ||x; — x;11]|?, that is, player i wants to have
strategies as close as possible to the strategies of player i+ 1. Such schemes go back
at least to [12]. It has recently been proved [4] that, in this case, if m > 2, the cycles
are not minimizers of any potential, from which we infer that this problem cannot
be reduced to a potential game. Note that (9.58) becomes

fori=1,...,m

(9.59)
|_xi,n+1 = PC,- ((1 - '}/n)xim + Ynxi+1,n)u

(VneN) L
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and the sequences (X1 »),eN; - - - » (Xmn)nen thus generated converge weakly to points
X| € ,... Xy € H, respectively, such that (¥i,...,%n,) is a cycle. The existence
of cycles has been proved in [12] when one of the sets Cy,...,C,, is bounded. Thus,
(9.59) is an alternative parallel algorithm to the method of successive projections
[12].
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Abstract This is a survey about one of the most important achievements in
optimization in Banach space theory, namely, James’ weak compactness theorem,
its relatives, and its applications. We present here a good number of topics related
to James’ weak compactness theorem and try to keep the technicalities needed as
simple as possible: Simons’ inequality is our preferred tool. Besides the expected
applications to measures of weak noncompactness, compactness with respect to
boundaries, size of sets of norm-attaining functionals, etc., we also exhibit other
very recent developments in the area. In particular we deal with functions and their
level sets to study a new Simons’ inequality on unbounded sets that appear as the
epigraph of some fixed function f. Applications to variational problems for f and
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10.1 Introduction

In 1957 James proved that a separable Banach space is reflexive whenever each
continuous and linear functional on it attains its supremum on the unit ball; see [82,
Theorem 3]. This result was generalized in 1964 to the nonseparable case in [83,
Theorem 5]: in what follows we will refer to it as James’ reflexivity theorem. More
generally (and we shall refer to it as to James’ weak compactness theorem), the
following characterization of weak compactness was obtained in [84, Theorem 5]:

Theorem 10.1 (James). A weakly closed and bounded subset A of a real Banach
space is weakly compact if, and only if, every continuous and linear functional
attains its supremum on A.

This central result in Functional Analysis can be extended to complete locally
convex spaces, as shown in [84, Theorem 6]. Note that it is not valid in the
absence of completeness, as seen in [86]. Since a complex Banach space can be
considered naturally as a real Banach space with the same weak topology, James’
weak compactness theorem is easily transferred to the complex case. Nonetheless,
and because of the strongly real nature of the optimization assumption, the setting
for this survey will be that of real Banach spaces.

We refer to [53, 81, 85] for different characterizations of weak compactness.

James’ weak compactness theorem has two important peculiarities. The first one
is that it has plenty of direct applications as well as it implies a number of important
theorems in the setting of Banach spaces. Regarding the latter, we can say that this
result is a sort of metatheorem within Functional Analysis. Thus, for instance, the
Krein—-Smulian theorem (i.e., the closed convex hull of a weakly compact subset
of a Banach space is weakly compact) or the Milman—Pettis theorem (i.e., every
uniformly convex Banach space is reflexive) straightforwardly follows from it. Also,
the Eberlein—Smulian theorem, that states that a nonempty subset A of a Banach
space E is relatively weakly compact in E if, and only if, it is relatively weakly
countably compact in E, can be easily derived from James’ weak compactness
theorem. Indeed, assume that A is relatively weakly countably compact in £ and
for a given continuous and linear functional x* on E, let {x,},> be a sequence in A
satisfying

limx*(x,) = supx™ € (—oo,o0].
n A
If xo € E is a w-cluster point of the sequence {x,},>1, then

supx™ = x*(xp) < oo.
A
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The boundedness of A follows from the Banach—Steinhaus theorem, and that A
is relatively weakly compact is then a consequence of James’ weak compactness
theorem.

The second singularity regarding James® weak compactness theorem is that this
result not only has attracted the attention of many researchers due to the huge
number of its different applications, but also that several authors in the last decades
tried to find a reasonable simple proof for it. This search has produced plenty of new
important techniques in the area.

Pryce, in [125], simplified the proof of James’ weak compactness theorem by
using two basic ideas. The first one was to use the Eberlein—Grothendieck double-
limit condition (see, for instance, [53, pp. 11-18] or [135, Theorem 28.36]) that
states that a bounded subset A of a Banach space E is relatively weakly compact if,
and only if,

lir}11111r1l11xfn(x,,) = li’?llir{}len(xn) (10.1)

for all sequences {x,},>; in A and all bounded sequences {x,},,>1 in E* for which
the above iterated limits do exist. Pryce’s second idea was to use the following
diagonal argument.

Lemma 10.2 (Pryce). Let X be a nonempty set, {fn}n>1 a uniformly bounded
sequence in (=(X), and D a separable subset of ¢°(X). Then there exists a
subsequence { fu, }i>1 0f { fu}n>1 such that

sup (f—limsupf,,k> = sup (f— liminff,,k) ,
X k X k

for every f € D.

We should stress here that from the lemma above it follows that for any further
subsequence { f,,kj }iz1 of {fu, }i>1 we also have

sup <f—limsupf,,k_> = sup (f—lim'inff,,k_) ,
X j / X J /

J

for every f € D. With the above tools, Pryce’s proof of James’ weak compactness
theorem is done by contradiction: if a weakly closed and bounded subset A of a
Banach space E is not weakly compact, then there exist sequences {x,},>; and
{x, }m>1 for which (10.1) does not hold. Lemma 10.2 applied to {x,},,>1 helped
Pryce to derive the existence of a continuous linear functional that does not attain
its supremum on A. In the text by Holmes [81, Theorem 19.A], one can find Pryce’s
proof for Banach spaces whose dual unit ball is w*-sequentially compact: Pryce’s
original arguments are simplified in this case.
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In 1972 Simons gave another simpler proof of James’ weak compactness theorem
in [137]. The proof by Simons uses an ad hoc minimax theorem (with optimization
and convexity hypotheses) that follows from a diagonal argument different from that
of Pryce above, together with a deep result known henceforth as Simons’ inequality
(see [136, Lemma 2]) that we recall immediately below.

Lemma 10.3 (Simons). Let {f,},>1 be a uniformly bounded sequence in £=(X)
and let W be its convex hull. If Y is a subset of X with the property that for every
sequence of nonnegative numbers { A, }n>1 with Y| Ay = 1 there exists y € Y such
that

z )Lnfn(y) = sup{ z A'nfn(x) RS X} )
n=1 n=1
then

inf{supg 1g€ W} < sup{limsupf,,(y)}.
X

yeyYy n

A converse minimax theorem (see [137, Theorem 15]) (see also [139, Theorem
5.6] and [133, Lemma 18]) provides an easier proof of James’ weak compactness
theorem and a minimax characterization of weak compactness.

A different proof of James’ weak compactness theorem, and even simpler than
that in [84], was stated by James himself in [87]. He took into account ideas coming
from Simons’ inequality in his new proof. The result proved is: A separable Banach
space E is reflexive if, and only if, there exists 6 € (0, 1) such that for every sequence
{x}}n>1 in the unit ball of its dual space, either {x;},>1 is not weak*-null or

inf |lx*]| < 6,
x*eC

where C is the convex hull of {x}: n > 1}—the characterization of weak compact
subsets of a separable Banach spaces is easily guessed by analogy. If the assumption
of separability on E is dropped, a similar characterization is obtained, but perturbing
the functionals in the convex hull of {x}: n > 1} by functionals in the annihilator of
a nonreflexive separable subspace X of E: E is reflexive if, and only if, there exists
0 € (0,1) such that for each subspace X of E and for every sequence {x},},>1 in the
unit ball of the dual space of E, either {x}},>1 is not null for the topology in E* of
pointwise convergence on X or

inf |x"—w| <86,
x*eC, wext

with C being the convex hull of {x: n > 1}.
It should be noted that the new conditions that characterize reflexivity above
imply in fact that every continuous and linear functional attains the norm.
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In 1974 De Wilde [152] stated yet another proof of James’ weak compactness
theorem, that basically uses as main tools the diagonal argument of Pryce and
the ideas of Simons in [136] together with the Eberlein—Grothendieck double-limit
condition.

More recently, Morillon [111] has given a different proof of James’ reflexivity
theorem, based on a previous result by her [112, Theorem 3.9] establishing, on the
one hand, James’ reflexivity theorem for spaces with a w*-block compact dual unit
ball by means of Simons’ inequality and Rosenthal’s ¢!-theorem, and extending,
on the other hand, the proof to the general case with an adaptation of a result of
Hagler and Jonhson [72]. Along with these ideas another proof of James’ reflexivity
theorem has been given by Kalenda in [92]. Very recently, Pfitzner has gone a
step further using the ideas above to solve the so-called boundary problem of
Godefroy, [59, Question 2]—see Sect. 10.4, giving yet another approach to James’
weak compactness theorem [122].

Another approach to James’ reflexivity theorem in the separable case is due to
Rodé [129], by using his form of the minimax theorem in the setting of the so-called
“superconvex analysis.” Let us also point out that for separable Banach spaces, the
proof in [45, Theorem 1.3.2], directly deduced from the Simons inequality, can be
considered an easy one. A completely different proof using Bishop—Phelps and
Krein—Milman theorems is due to Fonf, Lindenstrauss, and Phelps [56, Theorem
5.9], and an alternative approach is due to Moors [108, Theorem 4]. Nevertheless,
the combinatorial principles involved (known in the literature as the (I)-formula)
are equivalent to Simons’ inequality; see [93, Lemma 2.1 and Remark 2.2] and [35,
Theorem 2.2]. We refer the interested reader to the papers by Kalenda [92, 93],
where other proofs for James’ reflexivity theorem using (I)-envelopes in some
special cases can be found.

The leitmotif in this survey is Simons’ inequality, which is used, to a large
extent, as the main tool for proving the results, most of them self-contained and
different from the original ones. Section 10.2 is devoted to the discussion of a
generalization of the Simons inequality, where the uniform boundedness condition
is relaxed, together with its natural consequences as unbounded sup-limsup’s and
Rainwater—Simons’ theorems. The first part of Sect. 10.3 is devoted to providing a
proof of James’ weak compactness theorem that, going back to the work of James,
explicitly supplies nonattaining functionals in the absence of weak compactness; in
the second part of Sect. 10.3 we study several measures of weak noncompactness
and we introduce a new one that is very close to Simons’ inequality. Section 10.4
deals with the study of boundaries in Banach spaces and some deep related results,
that can be viewed as extensions of James’ weak compactness theorem. Other
extensions of James’ weak compactness theorem are presented in Sect. 10.5, where
we mainly focus our attention on those of perturbed nature, which have found some
applications in mathematical finance and variational analysis, as seen in Sect. 10.6.

Let us note that each section of this paper concludes with a selected open
problem.
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10.1.1 Notation and Terminology

Most of our notation and terminology are standard, otherwise it is either explained
here or when needed: unexplained concepts and terminology can be found in our
standard references for Banach spaces [45, 49, 90] and topology [48, 95]. By letters
E,K,T,X, etc. we denote sets and sometimes topological spaces. Our topological
spaces are assumed to be completely regular.

All vector spaces E that we consider in this paper are assumed to be real.
Frequently, E denotes a normed space endowed with a norm ||-||, and E* stands
for its dual space. Given a subset S of a vector space, we write conv(S) and span(S)
to denote, respectively, the convex and the linear hull of S. If S is a subset of E*,
then o(E,S) denotes the weakest topology for E that makes each member of S
continuous, or equivalently, the topology of pointwise convergence on S. Dually, if
S is a subset of E, then o(E*,S) is the topology for E* of pointwise convergence on
S. In particular, 6(E,E*) and o(E*,E) are the weak (denoted by w) and weak*
(denoted by w*) topologies, respectively. Of course, o(E,S) is always a locally

convex topology, that is, Hausdorff if, and only if, E* = spanSW* (and similarly
for 6(E*,S)). Givenx* € E* and x € E, we write (x*,x) and x*(x) for the evaluation
of x* atx. If x € E and 6 > 0, we denote by B(x,d) (resp. B[x, 6]) the open (resp.
closed) ball centered at x of radius §: we will simplify our notation and just write
Bg := B|0, 1]; the unit sphere {x € E : |x|| = 1} will be denoted by Sg. Given a
nonempty set X and f € R¥, we write

Sx(f) := sup f(x) € (oo,

xeX

£7(X) stands for the Banach space of real-valued bounded functions defined on X,
endowed with the supremum norm Sx (| - |).

10.2 Simons’ Inequality for Pointwise Bounded
Subsets of RX

The main goal of this section is to derive a generalized version of Simons’ inequality,
Theorem 10.5, in a pointwise bounded setting, as opposed to the usual uniform
bounded context. As a consequence, we derive an unbounded version of the so-
called Rainwater—Simons theorem, Corollary 10.7, that will provide us with some
generalizations of James’ weak compactness theorem, as well as new developments
and applications in Sects. 10.5 and 10.6. In addition, the aforementioned result will
allow us to present the state of the art of a number of issues related to boundaries in
Banach spaces in Sect. 10.4.

The inequality presented in Lemma 10.3, as Simons himself says in [136], is
inspired by some of James’ and Pryce’s arguments in [84, 125] and contains the
essence of the proof of James’ weak compactness theorem in the separable case.



10 Compactness, Optimality, and Risk 167

As mentioned in the Introduction, James included later the novel contribution of
Simons in his proof in [87]. We refer to [45,61] for some applications of Simons’
inequality, to [35, 44, 99, 114] for proper extensions, and to [115] for a slightly
different proof.

Given a pointwise bounded sequence {f;,},>1 in RX, we define

cog, {fu:n>1}:= {z}mf,,: An >0 foreveryn>1land » A, = 1},
n=1
where a function of the form Y,>_; A, f, € RY is obviously defined by

(; 2 nf) () 2 Anfolx

for every x € X.

Instead of presenting the results of Simons in [136, 138], we adapt them to a
pointwise but not necessarily uniformly bounded framework. This adaptation allows
us to extend the original results of Simons and provides new applications, as we
show below.

The next result follows by arguing as in the “Additive Diagonal Lemma” in [138].

Hereafter, any sum 22:1 ... is understood to be 0.

Lemma 10.4. If {f,},>1 is a pointwise bounded sequence in RX and € > 0, then
for every m > 1 there exists gm € cOg,{ fu: n > m} such that

m—1 o
8n 1 &n €
o (27) = (1—2m 1)5X <212_> Tt
n= n=

Proof. 1t suffices to choose inductively, for each m > 1, g, € Cog, {fu: n>m}
satisfying

8n . mle, g 2¢e
Sx<zﬁ+2m—>g inf SX< TR >+4—m. (10.2)

g€cogy { fu: n>m}
The existence of such g, follows from the easy fact that

inf S > —oo,
g€cogy {fu: n=m} x(e)

according with the pointwise boundedness of our sequence { f;, },>1. Since

1y 8
2" IZZ—ZECOGP{fn:nzm},
n=m
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then inequality (10.2) implies

m—1 o
n= n=

From the equality

and the help of (10.3) we finally derive that

m—1 m—1 k—1
8n 1 8n
SX(Z ;) = Z—zmkSX<< o
n=1 k=1 n=
1

—

Il
7/ N 7N
—_

|

NS}
i‘._
"
th

>
s
Nl%
S|3
+
7N
—

NS}
§>—
~_
NN
SIS

and the proof is over. ]

We now arrive at the announced extension of Simons’ inequality. Unlike the original
work [136], we only assume pointwise boundedness of the sequence { f;, },,>1. Let us
also emphasize that the extension of Simons’ inequality stated in [114] is a particular
case of the following non uniform version:

Theorem 10.5 (Simons’ inequality in RY). Let X be a nonempty set, let { f, },>1
be a pointwise bounded sequence in RX, and let Y be a subset of X such that

for every g € cog,{fn: n > 1} there exists y € Y with g(y) = Sx(g)-

Then

inf Sx(g) < Sy (hmsupf,,) .
n

gecog, {fu: n>1}

Proof. Tt suffices to prove that for every € > 0 there existy € Y and g € cog, {fu:n>
1} such that

Sx(g) — € < limsup f,(y).
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Fix & > 0. Then Lemma 10.4 provides us with a sequence {g, }»>1 in R¥ such that
foreverym > 1, g, € cocp{f,,: n>m} and

m—1 )
8&n 1 &n €
Sx <2 2-) < (1 = 1)SX <2 2—) T (10.4)
n=1 n=1
Let us write g := ¥,°_| & € cog,{fs: n> 1}. Then by hypothesis there exists y € ¥
with
8(y) = Sx(3); (10.5)

and so it follows from (10.4) and (10.5) that givenm > 1,

n=1
> ml 8n (y)
= o
n=1
< gn(y)
=)= 2 =5
n=m
Therefore,

inf —E&. (10.6)
m>1

Since for every m > 1 we have om=1 Sorem 2" =1, we conclude that

sup fu(y) > 2"~ lzgn” )

n>m

Now, with this last inequality in mind together with (10.5) and (10.6), we arrive at

limsup f,(y) = 1nf Squn( )

n>m

inf 2! 2 g”

m>1
>g(y)—¢€
=Sx(g) —

| \/

as was to be shown. |

Both in the original version of Simons’ inequality and in the previous one, a uniform
behavior follows from a pointwise one, resembling Mazur’s theorem for continuous
functions when X is a compact topological space; see [146, Sect. 3, p. 14]. Indeed,
it turns out that Simons’ inequality tell us that



170 B. Cascales et al.

inf{||g|l:g€co{fu: n>1}}=0,

whenever a uniformly bounded sequence of continuous functions { f, } ,>1 pointwise
converges to zero on a compact space X.

As a consequence of the above version of Simons’ inequality we deduce the
following generalization of the sup-limsup theorem of Simons [136, Theorem 3]
(see also [133, Theorem 7]). This result has recently been stated in [119, Corollary
1], but using the tools in [133].

Corollary 10.6 (Simons’ sup-limsup theorem in RX). Let X be a nonempty set,
let { f }n>1 be a pointwise bounded sequence in RX, and let Y be a subset of X such
that

for every g € cog,{fn: n > 1} there exists y € Y with g(y) = Sx(g)-

Then
Sx <limsupf,,) =Sy <limsupf,,) .
n n

Proof. Let us assume, arguing by reductio ad absurdum, that there exists xo € X
such that

limsup f,(xp) > Sy <limsupfn) .
n n
We assume then, passing to a subsequence if necessary, that
inf f,(xp) > Sy (lim sup f,,) )
n>1 n
In particular,

inf g(xp) > Sy (lim sup f,,) ,
n

g€cog, {fu: n>1}

and then, by applying Theorem 10.5, we arrive at

Sy <lim supfn) > inf Sx(g)
n

gecog, {fu: n>1}
> inf X
"~ gecog, {fa: nzl}g( 0)

> Sy <limsupf,,) ,
n

a contradiction. |
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In the Banach space framework we obtain the sup-limsup’s type result below, which
also generalizes the so-called Rainwater—Simons theorem; see [136, Corollary 11]
(see also [138, Sup-limsup Theorem], [101, Theorem 5.1] and [116, Theorem 2.2],
the recent extension [108, Corollary 3], and for some related results [75]). It is a
direct consequence of the Simons sup-limsup theorem in RX, Corollary 10.6, as
in the uniform setting; see [51, Theorem 3.134]. In particular it generalizes the
Rainwater theorem [127], which asserts that a sequence {x, },>1 in a Banach space
E is weakly null if it is bounded and for each extreme point ¢* of B+,

lime*(x,) = 0.
n

Given a bounded sequence {x, },>1 in a Banach space E, we define

cog{xp:n>1}:= {ZQL,,x,,: foralln>1, A, > 0and z&nzl}
n=1 n=1

Note that the above series are clearly norm-convergent and that
Cog{Xy: n> 1} =cog, {xy: n> 1}

when for the second set we look at the x;,,’s as functions defined on Bg+.

Corollary 10.7 (Unbounded Rainwater-Simons’ theorem). If E is a Banach
space, C is a subset of E*, B is a nonempty subset of C, and {x, },>1 is a bounded
sequence in E such that

Sor every x € cog{x, : n> 1} there exists b* € B with b*(x) = Sc¢(x),

then

Sg <1imsupx,,> =Sc <1imsupx,,> .
n n

Asa consequence

o(E,B)-limx, =0 = o(E,C)-limx, =0.
n n

The unbounded Rainwater-Simons theorem (or the Simons inequality in RX)
not only gives as special cases those classical results that follow from Simons’s
inequality (some of them are discussed here, besides the already mentioned [45,61]),
but it also provides new applications whose discussion we delay until the next
sections. We only remark here that Moors has recently obtained a particular case
of the unbounded Rainwater—Simons theorem (see [108, Corollary 1]), which leads
him to a proof of James’ weak compactness theorem for Banach spaces whose dual
unit ball is w*-sequentially compact.
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A very interesting consequence of Simons’ inequality in the bounded case is the
(I)-formula (10.7) of Fonf and Lindenstrauss; see [35,55]:

Corollary 10.8 (Fonf-Lindenstrauss’ theorem). Let E be a Banach space, B a
bounded subset of E* such that for every x € E there exists some b, € B satisfying
bi(x) = supyicpb*(x). Then we have that, for every covering B C Un=1Dn by

an increasing sequence of w*-closed convex subsets D, C co(B ) the following
equality holds true:

w*

0 D, =co(B)" . (10.7)

Proof. Here is the proof given in [35, Theorem 2.2]. We proceed by contradiction

assuming that there exists zj, € co(B)W such that zj ¢ U>_ D, U= ,D,". Fix 8 > 0 such
that

B[z5,6]ND, =0, forevery n > 1.

The separation theorem in (E*,w*), when applied to the w*-compact set B[0, 8] and
the w*-closed set D, — 2§, provides us with a norm-one x,, € E and ¢, € R such that

inf  x,(v*) > o > sup x,(y*) — xa(2h)-
v*€B[0,6] y*€Dy

But

—-6= inf n - )
ol o)

and consequently the sequence {x,},> in B satisfies
xn(z5) — 6 > x,(v%) (10.8)
foreachn > 1 and y* € D,,. Fix aw*-cluster point x*™* € Bg= of the sequence {x, },>1

and let {x, }¢>1 be a subsequence of {x,},>1 such that x™*(z§) = limgx,, (zj).
We can and do assume that for every k > 1,

5
i (20) > 47 (20) = 5+ (10.9)

Since BC U;_, D, and {Dy}n>1 is an increasing sequence of sets, given b* € B there
exists ko > 1 such that b* € D, for each k > ko. Now inequality (10.8) yields

xX*(z5)— 06 > limksupx,,k (b*), foreveryb® €B, (10.10)
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and, on the other hand, inequality (10.9) implies that
* sk [k 6
w(zg) > x (ZO)_E’ for every w € cog{xy, 1k > 1}. (10.11)

Now Theorem 10.5 can be applied to the sequence {x;, }¢>1, to deduce

(10.10)
x*(zp)—6 > sup limsupx,, (b*)>
b*eB  k

> inf { sup{w(z") : 2" € co(B)" ,we cog{xy 1 k€ N}}}

(10.11) S

> inf{w(z5) : w € cog{xn, 1k €N}} > x(z5) — 5

From the inequalities above we obtain 0 > §, which is a contradiction that completes
the proof. ]

To conclude this section, let us emphasize that in [35, Theorem 2.2] the equivalence
between Simons’ inequality, the sup-limsup theorem of Simons, and the (I)-formula
of Fonf and Lindenstrauss was established in the bounded case. However, in the
unbounded case we propose the following question:

Question 10.9. Are the unbounded versions of Simons’ inequality and sup-limsup
theorem of Simons equivalent to some kind of /-formula for the unbounded case?

10.3 Nonattaining Functionals

This section is devoted to describe how to obtain nonattaining functionals in the
absence of weak compactness. Simons’ inequality provides us a first way of doing
it in a wide class of Banach spaces, which includes those whose dual unit balls are
w*-sequentially compact. We introduce a new measure of weak noncompactness,
tightly connected with Simons’ inequality, and we relate it with recent quantification
results of classical theorems about weakly compact sets.

When Simons’ inequality in /*°(N) holds for a w*-null sequence {x}; } ;> in a dual

Banach space E*, it follows that the origin belongs to the norm-closed convex hull

of the sequence, co{x} : n > 1}”"'. Therefore every time we have a w*-null sequence

{x4}n>1 withO ¢ co{x}:n> 1}”'H we will have some x{; € cog{x}, : n > 1} such that
x;, does not attain its supremum on B.

We note that just Simons’ inequality, or its equivalent sup-limsup theorem,
provides us with the tools to give a simple proof of James’ weak compactness
theorem for a wide class of Banach spaces. We first recall the following concept:
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Definition 10.10. Let £ be a vector space, and let {x,},>1 and {y,}.,>1 be
sequences in E. We say that {y, },>1 is a convex block sequence of {x,},> if for a
certain sequence of nonempty finite subsets of integers {F,, },>1 with

max F; <minF <maxF, <minf3 <--- <maxF, <minkF, <---
and adequate sets of positive numbers {1/ : i € F,,} C (0, 1] we have that

YA'=1 and y,= Y Al'x;.

i€F, i€F,

For a Banach space E, its dual unit ball B+ is said to be w*-convex block compact
provided that each sequence {x)},> in Bg= has a convex block w*-convergent
sequence.

It is clear that if the dual unit ball Bg= of a Banach space E is w*-sequentially
compact, then it is w*-convex block compact. This happens, for example, when E
is a weakly Lindelof determined (in short, WLD) Banach space; see [74]. Let us
emphasize that both kinds of compactness do not coincide. Indeed, on the one hand,
an example of a Banach space with a non w*-sequentially compact dual unit ball
and not containing ¢ ! (N) is presented in [73]. On the other hand, it is proved in [24]
that if a Banach space E does not contain an isomorphic copy of ¢! (N), then Bg is
w*-convex block compact. This last result was extended for spaces not containing an
isomorphic copy of ¢! (R) under Martin Axiom and the negation of the Continuum
hypothesis in [80].

For a bounded sequence {x}},>; in a dual Banach space E*, we denote by
Lg+{x} the set of all cluster points of the given sequence in the w*-topology, and
when no confusion arises, we just write L{x};}.

Lemma 10.11. Suppose that E is a Banach space, {x,},>1 is a bounded sequence
in E and x§* in E** is a w*-cluster point of {x,},>1 with d(x}}*,E) > 0. Then for
every o with d(x§*,E) > o > O there exists a sequence {x};},>1 in Bgx such that

(x5, x0")y > o (10.12)
whenever n > 1, and
(x5,x5") =0 (10.13)

for any x§ € L{x;}.

Proof. The Hahn—Banach theorem applies to provide us with x***

xg"=0and x* (x5¥) =d(x}*,E). For every n > 1 the set

€ Bg+ satisfying

1
V, = {y*** c E¥ y***(xzk)*) > q, |y***(xl)| < ;, = 1’2’,,,’]/1}
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is a w*-open neighborhood of x***, and therefore, by Goldstein’s theorem, we can

pick up x; € Bg+ NV,,. The sequence {x}; },>; clearly satisfies
lir11n<xfl,xp> =0, forallpeN,
and foreachn > 1
(x,x5%) > a.
Fix an arbitrary x§ € L{x};}. For every p > 1 we have that
(x0,xp) =0,
and thus

<x87x8*> =0,

w

because x§* € {x,: p=1,2,---} -

Theorem 10.12. Let E be a Banach space with a w*-convex block compact dual
unit ball. If a bounded subset A of E is not weakly relatively compact, then there
exists a sequence of linear functionals {y;},>1 C Bg+ with a w*-limit point y§, and
some g* € cog{y} :n > 1}, such that g* — y§ does not attain its supremum on A.

Proof. Assume that A is not weakly relatively compact, which in view of the
Eberlein-Smulian theorem is equivalent to the existence of a sequence {x, } n>11NA
and a w*-cluster point x5* € E**\ E of it. Then Lemma 10.11 applies to provide us
with a sequence {x}},>1 in Bg+ and o > 0 satisfying (10.12) and (10.13).

Let {y};},>1 be a convex block sequence of {x}},>1 and let y; € Bg» such that
w*-1lim, y}; = y§. Itis clear that (10.12) and (10.13) are valid when replacing {x}; },>1
and x§ with {y}},>1 and yj, respectively. Then

o (hm sup(y, —yéﬁ)) = limsup(y, —p)(xo")
n n
> o
>0

— s (nm sup(y —yz;>) |
n

so in view of the Rainwater—Simons theorem, Corollary 10.7, there exists g* €
cog{y; : n > 1} such that g* — y does not attain its supremum on A, as announced.
|

In Sect. 10.5.2 we shall show a nonlinear extension of this result, with the use of
the (necessarily unbounded) Rainwater—Simons theorem, Corollary 10.7. For the
space ¢! (N), James constructed in [82] a continuous linear functional g : ¢! (N) — R
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such that g can be extended to § € E* on any Banach space E containing ¢! (N),
but ¢ does not attain its supremum on Bg. Rosenthal’s ¢! (N)-theorem, together with
Theorem 10.12, provides another approach for James’ reflexivity theorem. These
ideas, developed by Morillon in [111], are the basis for new approaches to the weak
compactness theorem of James, as the very successful one due to Pfitzner in [122].

We now deal with the general version of Theorem 10.12, that is, James’ weak
compactness theorem with no additional assumptions on the Banach space. If E is a
Banach space and A is a bounded subset of E, we denote by || - |4 the seminorm
on the dual space E* given by the Minkowski functional of its polar set, i.e.,
the seminorm of uniform convergence on the set A. If A = —A, given a bounded
sequence {x}},>1 in E* and h* € L{x}}, Simons’ inequality for the sequence
{x} —h*},>1 in £7(A) reads as follows: Under the assumption that every element in
COg, {X;, —h™ :n > 1} attains its supremum on A,

dist)|, (h*,co{x, :n>1}) <S4 (limsupr —h*> .
n

Therefore,

dist) |, (L{x,},co{x, :n>1}) < h*ei?{fx;}SA <limnsupx,*1 - h*) .

We state the following characterization:

Proposition 10.13. Let A be a bounded subset of a Banach space E. Then A is
weakly relatively compact if, and only if, for every bounded sequence {x}},>1 in E*
we have

diSt“_”A (L{XZ},CO{)C:; n> 1}) =0. (10.14)

Proof. We first prove that if A is weakly relatively compact then equality (10.14)
holds for any bounded sequence {x}},>1 in E*. To this end, we note that, since

co(A)H'H is weakly compact by the Krein—Smulian theorem, the seminorm || - ||, =

Il HWM is continuous for the Mackey topology u(E*,E). Hence we have the
co

inclusions

E)

L{x;} Cco{xt:n>1} =co{xi:n> 1}”(E " Ceo{xiin> 1}”'”A

that clearly explain the validity of (10.14).
To prove the converse we will show that if A is not weakly relatively compact in

E, then there exists a sequence {x}},>1 C Bg» such that

dist”.”A (L{x}},co{x;:n>1})>0.
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Let us assume that A is not relatively weakly compact in E. Then the Eberlein—
Smulian theorem guarantees the existence of a sequence {x, },>; in A with a w*-
cluster pointxj;* € E**\ E. If d(x{;*,E) > o. > 0, an appeal to Lemma 10.11 provides
us with a sequence {x}},>; in Bg~ satisfying

(x,x07) > @
whenever n > 1 and
(x0,%0") =0

for any x; € L{x; }. Therefore we have that

n n
I 2 )L,‘x;;i —xplla > <2?L[xf,i —xé,x3*> > o
i=1 i1
for any convex combination Y, /'Ll-x;‘li, and consequently
dist).|, (L{x, },co{x, :n>1}) > a >0, (10.15)

and the proof is over. ]
Pryce’s diagonal procedure is used in the proof of the following result:

Proposition 10.14. Let E be a Banach space, A a bounded subset of E with A =
—A, {x}}1>1 a bounded sequence in the dual space E* and D its norm-closed linear
span in E*. Then there exists a subsequence {x, }i>1 of {x, }»>1 such that

Sa (x* —lin}{infx;‘lk) =5 (x* —limsupxj;k> = dist).,(x",L{x, })  (10.16)
k

forall x* € D.

Proof. Lemma 10.2 implies the existence of a subsequence {x, }i>1 of {x;}n>1
such that

Sa (x* - lin}cinfx,’;k) =Sy (x* - limksupx,’;k>
for all x* € D. Since for any 7* € L{x;, } we have
lin}{infx;‘,k (a) < h*(a) <limsupx, (a)
k

forall a € A, it follows that

Sa (x* —lin}{infx:‘,k> =||x* —h*||a = Sa (x* —limsupx;‘,k) .
k
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Therefore
Sa <x* - lin}(infxflk> =S <x* - limksuprlk) = dist)., (", L{x,, })

for all x* € D, and the proof is finished. |

Equality (10.16) will be in general the source to look for nonattaining linear
functionals whenever we have

diStH-HA (L{xj;k},co{xflk tk>1})>0,

which means, in view of Proposition 10.13, whenever A is a nonrelatively weakly
compact subset of E. Until now all such constructions depend on this fact, which is
called the technique of the undetermined function. The next result is so far the most
general perturbed version for the existence of nonattaining functionals; see [133,
Corollary 8]:

Theorem 10.15. Let X be a nonempty set, {h;} j>1 a bounded sequence in {(X),
@ € =(X) with ¢ > 0 and & > 0 such that

Sx <h—1imsuphj - (p) = Sx (h—lim_infhj— (p) >4,
J J

whenever h € cog{hj: j> 1}. Then there exists a sequence {g;}i>1 in £=(X) with
gi€coglhj: j>i}, foralli>1,
and there exists gy € cog{g;i: i > 1} such that for all g € (= (X) with

liminfg; < g <limsupg; onX,
; .

1

the function gy — g — @ does not attain its supremum on X .

The proof given in [133] for the above result involves an adaptation of the additive
diagonal lemma we have used for Simons’ inequality in RX, Theorem 10.5. Let us
include here a proof for the following consequence, that was stated first in this way
by James in [87, Theorems 2 and 4].

Theorem 10.16 (James). Let A be a nonempty bounded subset of a Banach space
E which is not weakly relatively compact. Then there exist a sequence {g*},>1 in
Bg+ and some gy € cog{g): n > 1} such that, for every h € £ (A) with

liminfg), < h <limsupg, onA,
n n

we have that gy — h does not attain its supremum on A.
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Proof. Without loss of generality we can assume that A is convex and that A = —A.
Proposition 10.13 gives us a sequence {x; },>1 in Bg+ such thatdist) |, (L{x, },co{x;
n > 1}) > 0. By Proposition 10.14 there exists a subsequence {x;, }r>1 of {x;}n>1
that verifies the hypothesis of Theorem 10.15 with ¢ = 0. So we find a sequence
{8n}n>1 with g, € cog{x;, : k> n}, forevery n € N, and gy € cog{g,: n> 1}
such that go — h does not attain its supremum on A, where A is any function in £<(A)
with liminf, g; <h <limsup, g;; on A. |

In particular we have seen how to construct linear functionals go — g that do not
attain their supremum on A, whenever g is a w*-cluster point of the sequence
{gn}tn=1in Bg-.

We finish this section with a short visit to the so-called measures of weak
noncompactness in Banach spaces: the relationship of these measures with the
techniques already presented in this survey will be plain clear when progressing
in our discussion below.

We refer the interested reader to [ 14, 105], where measures of weak noncompact-
ness are axiomatically defined. A measure of weak noncompactness is a nonnegative
function ¢ defined on the family .#% of bounded subsets of a Banach space E, with
the following properties:

(i) u(A)=0if, and only if, A is weakly relatively compact in E
(ii) IfA C Bthen u(A) < u(B)
(i) pt(conv(A)) = u(A)
(iv) u(AUB)=max{u(A),u(B)}
(v) u(A+B) < u(A)+u(B)
(vi) p(AA) =[A|u(A)

Inspired by Proposition 10.13, we introduce the following:

Definition 10.17. For a bounded subset A of a Banach space E, 6(A) stands for the
quantity

sup  dist)|, (L{x,},co{x, :n > 1}).

{XZ }n21 CBE*

Observe that o satisfies properties (i), (ii), (iii), (iv), and (vi), and therefore o
can be considered as a measure of weak noncompactness. Beyond the formalities
we will refer in general to measures of weak noncompactness to quantities as
above fulfilling property (i) and sometimes a few of the others. These measures of
noncompactness or weak noncompactness have been successfully applied to the
study of compactness, operator theory, differential equations, and integral equations;
see, for instance, [10-12,20,33,36, 50, 64, 66,68, 103—105].

The next definition collects several measures of weak noncompactness that
appeared in the aforementioned literature. If A and B are nonempty subsets of E**,
then d(A, B) denotes the usual inf distance (associated to the bidual norm) between
A and B, and the Hausdorff nonsymmetrized distance from A to B is defined by
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d(A,B) = sup{d(a,B) :a € A}.

Notice that d(A,B) can be different from d(B,A), and that max{d(A,B), d(B,A)}
is the Hausdorff distance between A and B. Notice further that d(A,B) = 0 if, and
only if, A C B (norm-closure) and that

d(A,B) =inf{e > 0:A C B+¢eBg-}.
Definition 10.18. Given a bounded subset A of a Banach space E we define

w(A) :=inf{e >0:A C K¢ + €Bg and K, C E is w-compact},

Y(A) = sup [ limlim.x, () — limIim g, ()| = {65zt © Bee, {n}z1 € A},
assuming the involved limits exist,

CkE(A) = sup d(LE**{xn}vE)u

{xn}nZlCA

and

Jag(A) :=inf{e > 0: for every x* € E*, there exists x™* € A
such that x** (x*) = Sy (x*) and d(x**,E) < e}.

The function @ was introduced by de Blasi [20] as a measure of weak noncom-
pactness that is somehow the counterpart for the weak topology of the classical
Kuratowski measure of norm noncompactness. Properties for y can be found
in [11, 12, 33, 50, 105] and for ckg in [11]—note that ckg is denoted as ck in
that paper. The quantity k has been used in [11, 33,50, 64]. A thorough study for
Jag has been done in [36] to prove, amongst other things, a quantitative version
of James’ weak compactness theorem, whose statement is presented as part of
Theorem 10.19 bellow. This theorem tells us that all classical approaches used
to study weak compactness in Banach spaces (Tychonoff’s theorem, Eberlein—
Smulian’s theorem, Eberlein—-Grothendieck double-limit criterion, and James’ weak
compactness theorem) are qualitatively and quantitatively equivalent.

Theorem 10.19. For any bounded subset A of a Banach space E the following
inequalities hold true:
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o(A) <2mw(A)
r VI (10.17)
3Y(A) < Jag(A) < ckp(A) < k(4) < y(A).

Moreover, for any x** € ZW* there exists a sequence {x,},>1 in A such that
[l =y < ¥(A) (10.18)

Sfor any w*-cluster point y** of {x, },>1 in E**.
Furthermore, A is weakly relatively compact in E if, and only if, one (equiva-
lently, all) of the numbers y(A),Jag(A),ckg(A),k(A),0(A), and o(A) is zero.

Proof. A full proof with references to prior work for the inequalities
1
5 7(A) < ckp(A) <k(4) < ¥(A) <20(4)
and (10.18) is provided in [11, Theorem 2.3]. The inequalities
1
EY(A) <Jag(A) < ckg(A)

are established in Theorem 3.1 and Proposition 2.2 of [36].

To prove ckg(A) < o(A) we proceed as follows. If 0 = ckg(A), the inequality
is clear. Assume that 0 < ckg(A) and take an arbitrary 0 < o < ckg(A). By the
very definition of ckg (A) there exist a sequence {x,},>; in A and a w*-cluster point
x5* € E** with d(x§*,E) > a > 0. If we read now the second part of the proof of
Proposition 10.13, we end up producing a sequence {x}},> in Bg+ that according
to inequality (10.15) satisfies

dist) |, (L{x;},co{x;:n>1}) > a.

Since o with 0 < o < ckg(A) is arbitrary, the above inequality yields ckg (A) <o (A).

To complete the chain of inequalities we establish 0(4) <2w(A). Let (A) < €
and take a weakly compact subset K¢ of E such that A C K¢ + €Bg. This inclusion
leads to the inequality

[-lla < II-llke +€ll-[l (10.19)

Fix an arbitrary sequence {x},>1 in Bg+ and now take a w*-cluster point x; €

L{x;}. Since K, is weakly compact we know that x§ € co{x} :n > I}H“‘KE. Hence,
for an arbitrary 1 > 0, we can find a convex combination Y1 Aix, with ||lxg —
Yi=14ixy, || k. <M. Thus, inequality (10.19) allows us to conclude that
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n
dist). |, (L{x;},cofx; :n > 1}) < ng YA
=

n

* *
= Aixy,

|
i=1

n
xo— > hixy, TE <n+2e.
i-1 e

Since €,7n and {x; },,> are arbitrary, we conclude 6(A) < 2w(A).

Finally, recall a well-known result of Grothendieck [46, Lemma 2, p. 227] stating
that w(A) = 0 if, and only if, A is weakly relatively compact in E. Observe that, as
a consequence of (10.17), one of the numbers y(A),Jag(A),ckg(A),k(A) is zero

if, and only if, all of them are zero. Clearly, k(A) = 0 if, and only if, A" c E,
that is equivalent to the fact that A is weakly relatively compact by Tychonoff’s
theorem. To establish o(A) = 0 if, and only if, A is weakly relatively compact either
use Proposition 10.13 or the comments above for @ and ckg, together with the
inequalities ckg(A) < 0(A) < w(A). The proof is over. |

It is worth noticing that the inequalities
ckg(A) <k(A) <2ckg(A),

that follow from (10.17), offer a quantitative version (and imply) of the Eberlein—
Smulian theorem saying that weakly relatively countably compact sets in Banach
spaces are weakly relatively compact. Note also that (10.18) implies that points in
the weak closure of a weakly relatively compact set of a Banach space are reachable
by weakly convergent sequences from within the set (Summing up, the inequalities
are a quantitative version of the angelicity of weakly compact sets in Banach spaces;
see Definition 10.20). In a different order of ideas the inequality

%Y(A) <Jag(A) (10.20)

implies James’ weak compactness theorem, Theorem 10.1, and since Jag(A) <
ckg(A) as well, we therefore know that James’ weak compactness theorem can be
derived and implies the other classical results about weak compactness in Banach
spaces. We should mention that the proof of inequality (10.20) in [36, Theorem
3.1] follows the arguments by Pryce in [125] suitably adapted and strengthened
for the occasion: assuming that 0 < r < y(A), two sequences {x,},>1 C A and
{x},}m>1 C B+ are produced satisfying

limlimx}, (x,) — limlimx, (x,) > r.
m n n m
Then Lemma 10.2 is applied to the sequence {x}, },,>1, and after some twisting and

fine adjustments in Pryce’s original arguments, for arbitrary 0 < r’ < r a sequence
{g:}n>1in Bg+ and go € cog{g;:: n > 1} are produced with the property that for

any w*-cluster point & € Bg. of {g’},>1, if x* € A" is such that

X" (go—h) = Sa(go—h)
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then d(x**,E) > 1. Since 0 < r < y(A) and r’ € (0,r) are arbitrary the inequal-
ity (10.20) follows. Of course, go —h € E* does not attain its supremum on A but
we moreover know how far from E in A" we need to go in order that gg — & might
attain it: compare with Theorem 10.16.

The aforementioned references contain examples showing when the inequalities
in (10.17) are sharp, as well as sufficient conditions of when the inequalities become
equalities. An example of the latter is given in the theorem below, where we use the
notion of angelic space that follows.

Definition 10.20 (Fremlin). A regular topological space T is angelic if every
relatively countably compact subset A of T is relatively compact and its closure
A is made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative compactness
coincide: the (relatively) countably compact, (relatively) compact, and (relatively)
sequentially compact subsets are the same, as seen in [53]. Examples of angelic
spaces include C(K) endowed with the topology 7,(K) of pointwise convergence
on a countably compact space K ([71,96]) and all Banach spaces in their weak
topologies. Another class of angelic spaces are dual spaces of weakly countably
K-determined Banach spaces, endowed with their w*-topology [117].

Theorem 10.21 ([36, Theorem 6.11). Let E be a Banach space such that (Bg=,w*)
is angelic. Then for any bounded subset A of E we have

SYA) < 10(4) = Jax(4) = cke(A) = K(4) < 7(4),

where

10(A) := sup{[limlim; (x;)[ : {j} 21 C A, {x7}iz1 C B,y 0},

A moment of thought and the help of Riesz’s lemma suffice to conclude that for the
unit ball Bg we have that

k(Bg)= sup d(x™,E)e{0,1}.

X GBE**

Reflexivity of E is equivalent to k(Bg) = 0 and non reflexivity to k(Bg) = 1. Note
then that, when (Bg+,w*) is angelic, reflexivity of E is equivalent to Jag(Bg) = 0,
and non reflexivity to Jag(Bg) = 1. In other words, James’ reflexivity theorem can
be strengthened to: If there exists 0 < € < 1 such that for every x* € E* there exists
x** € Bgw with d(x**,E) < € and Sp, (x*) = x**(x*), then E is reflexive. Indeed,
the above comments provide a proof of this result when (Bg+,w*) is angelic; for the
general case we refer to [69].

With regard to convex hulls, the quantities in Theorem 10.19 behave quite
differently. Indeed, if A is a bounded set of a Banach space E, then the following
statements hold:
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Y(co(A)) = ¥(A), Jag(co(A)) < Jag(A);
ckg(co(A)) <2ckg(A), k(co(A)) <2k(A);
oA )=

o(co(4)) = 0(4), a(co(A)) = o(A).

Constant 2 for ckg and k is sharp, [36, 64, 68], and it is unknown if Jag might
really decrease when passing to convex hulls. The equality y(A) = y(co(A)) is a
bit delicate and has been established in [33, 50].

Last, but not least, we present yet another measure of weak noncompactness
inspired by James’ ideas in [85]. Following [105], for a given bounded sequence
{xn}n>1 in a Banach space, we define

csep({Xu}nz1) 1= inf{[[ur —ua| : (w1, u2) € scc({xn}n>1)},
where
scc({xn}n>1) == {(u1,u2) : w1 € conv{x;}1<i<m,u2 € conv{x;}i>m+1,m € N}.

Definition 10.22 ([105, Definition 2.2]). If A is a bounded subset of a Banach
space, we define

o(A) :=sup{csep({xn}n>1) : {xntn>1 CTA}.

It is proved in [105] that the relationship of o with the measures of weak
noncompactness already presented are given by the formulas:

o(A) = sup {d(x**,conv{xn n> 1} {1 CAXT € LE**{xn}}
and
Y(A) = a(conv(A)).

For the measure of weak noncompactness ¢ introduced in Definition 10.17, and in
view of Theorem 10.19, the following question naturally arises:

Question 10.23. With regard to the measure of weak noncompactness o, are the
derived estimates sharp? Is it equivalent to the others (except m)?

10.4 Boundaries

Given a w*-compact subset C of E*, a boundary for C is a subset B of C with the
property that

for every x € E there exists some b* € B such that b (x) = sup{c*(x) : ¢* € C}.
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Note that if C is moreover convex, then the Hahn—Banach theorem shows that

co(B)W = C. In addition, the set ext(C) of the extreme points of C is a boundary
for C, thanks to Bauer’s maximum principle (see [53, p. 6]), and therefore also

satisfies C = co(ext(C))" . Note that Milman’s theorem [46, Corollary IX.4] tells

us that ext(C) C B". Nonetheless, in general, boundaries can be disjoint of the set
of extreme points as the following example shows: let I" be a uncountable set and
consider (¢!(I"), ||-||1) and

B:= {(xy)yep ixy€{—1,0,1} and {yeTI :x, #0}is countable}.

A moment of thought suffices to conclude that B is a boundary for the dual unit ball
By~ (ry that is clearly disjoint from eXt(ng(r)); see [136, Example 7].

If B is a boundary for Bg+, we will say that B is a boundary for E.

Two problems regarding boundaries in Banach spaces have attracted the attention
of a good number of authors during the years, namely:

The study of strong boundaries. The goal here is to find conditions under which

a boundary B for the w*-compact convex C is strong, i.e., WH'H =C.

The boundary problem. Let £ be a Banach space, let B be a boundary for E,
and let A be a bounded and o (E, B)-compact subset of E. Is A weakly compact?
(Godefroy, [59, Question V.2]).

At first glance, the two questions above may look unrelated. They are not. Indeed,
on the one hand, the boundary problem has an easy and positive answer for all strong
boundaries B in Bg+. On the other hand, many studies about strong boundaries
and several partial answers to the boundary problem use Simons’ inequality as a
tool. Regarding strong boundaries, the following references are a good source for
information [34,35,39,45,51,55,56,59,61,77,78, 88,123,130, 148]. At the end of
this section we will provide some recent results on strong boundaries.

Let us start by considering the boundary problem. It has been recently solved in
full generality in the paper [122]. It is interesting to recall the old roots and the long
history of the problem.

The first result that provided a partial positive result to the boundary problem
(before its formulation as such a question) was the following characterization of
weak compactness in continuous function spaces, due to Grothendieck; see [71,
Théoréme 5]:

Theorem 10.24. If K is a Hausdorff and compact topological space and A is a
subset of C(K), then A is weakly compact if, and only if, it is bounded and compact
for the topology of the pointwise convergence on K.

More generally, Theorem 10.24 was generalized by Bourgain and Talagrand [25,
Théoréme 1] in the following terms:

Theorem 10.25. Let E be a Banach space, B = ext(Bg+) and let A be a bounded
and o (E,B)-compact subset of E. Then A is weakly compact.
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Note that the result of Bourgain and Talagrand is far from being a full solution to the
boundary problem, because as presented above there are examples of boundaries of
Banach spaces that do not contain any extreme point.

Bearing in mind the Rainwater—Simons theorem, Corollary 10.7, it is easy to give
another partial solution to the boundary problem.

Corollary 10.26. For any separable Banach space E and any boundary for E, the
boundary problem has positive answer.

Proof. Let B be a boundary for E and let A be a bounded and o (E,B)-compact
subset of E. Since E is separable, the unit ball (Bg+,w") is metrizable and separable.
It follows that B is w*-separable. Take D a countable and w*-dense subset of B.
The topology o (E,D) is then Hausdorff, metrizable, and coarser than o(E,B).
Consequently we obtain that o(E,D) and o(E,B) coincide when restricted to
A and we conclude that (A,6(E,B)) is sequentially compact. An application of
Corollary 10.7 taking into account the Eberlein—Smulian theorem gives us that A is
weakly compact, which concludes the proof. ]

A first approach to the next result appears implicitly in [136, Theorem 5]. Using the
ideas of Pryce in [125] and those of Rodé on the so-called “superconvex analysis”
in [129], Konig formulated it in [101, Theorem 5.2, p. 104]. We present here our
approach based on the criteria given by Theorem 10.15.

Theorem 10.27. Let E be a Banach space and B( C Bg+) a boundary for E. If A is
a bounded convex subset of E such that for every sequence {a,},>1 in A there exists
z € E such that

liminf(a,,b*) < (z,b*) <limsup{a,,b*) (10.21)
n

n

for every b* € B, then A is weakly relatively compact.

Proof. Let us proceed by contradiction and assume that A is not weakly relatively
compact in E. Then the Eberlein—Smulian theorem says that there exists a sequence
{an}n>1 C A without weak cluster points in E. According to Pryce’s diagonal
argument, Lemma 10.2, we can and do assume that

Sp (a—liminfa, ) = Sp (a ~ lim infa,,k)
n
=S (a —lim supa,,k>
k
=S (a — limsupan)
n

for every a € cog{a, : n > 1} and every subsequence of integers ny <ny < ---.
Let us fix xg € E such that for every b* € B
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liminf(a,,b*) < {(xo,b") < limsup(a,,b*).

Keeping in mind that A is w*-relatively compact in E**, we know that {a,},> has
a w*-cluster point x;* € E**\ E. Let us fix h* € Bg+ and & € R such that

I (x0) < & < " (x&").

Since h*(x;*) is a cluster point of the sequence {h*(ay)},>1, then there exists a
subsequence {ay, }x>1 of {an},>1 such that h*(a,, ) > & for every k > 1. Thus we
also have h*(a) > & for every a € cog{ay, : k > 1}. Consequently we have that

Sg (a—liminfa,) = Sp (a - lin}{infa,,k) = Sp (a —lim supa,,k>
n k

=Sp (a —1lim supa,,) = Sp(a—x0) = Sp,. (a—xo)

n

> h*(a) —h*(x0) > & —h*(xp) > 0

for every a € cog{ay, : k > 1}. We can apply now Theorem 10.15 with X := B,
¢ =0and {A;} ;> being {ay,, }i>1 to get a sequence {y;};> such that forall i > 1,
yi € cog{anj . j > i}, together with some yg € cog{y; : i > 1}, in such a way that
yo — y does not attain its supremum on B for any y with

liminfy;(b*) < y(b*) < limsupy;(b*), forall b* € B.

l

Given i > 1, since y; € %H'H{a,,j :j > i} we can pick up z; € co{a,,j :j > i} with
llyi — zi|l- < 27%. Note that the convexity of A implies z; € A for every i > 1. But our
hypothesis provide us with some z € E such that

liminfy;(b*) = liminfz;(b*) < z(b*) < limsupz;(b*) = limsupy;(b*)
14 l i i

for every b* € B. Thus we have that yy —z € E does not attain its norm on B, which
contradicts that B is a boundary for E and the proof is over. |

The following result straightforwardly follows from Theorem 10.27.

Theorem 10.28. Let E be a Banach space and B( C Bg+) a boundary for E. If A is
a convex bounded and 6 (E,B)-relatively countably compact subset of E, then it is
weakly relatively compact.

Proof. Tt suffices to note that if A is 6 (E, B)-relatively countably compact in E, then
for any given sequence {a,},>1 in A and each 6(E,B)-cluster point z € E of it, z
satisfies the inequalities in (10.21). Then Theorem 10.27 applies and the proof is
over. ]
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A different proof for Theorem 10.28, even in a more general setting, can be found
in [53, Corollary 3, p. 78]: the arguments for this proof go back to the construction
of norm-nonattaining functionals in Pryce’s proof of James’ weak compactness
theorem. A different proof by Godefroy appeared in [60, Proposition II1.21] (this
proof has been rewritten in [51, Theorem 3.140]).

Theorem 10.28 opens another door for positive answers to the boundary problem

as long as for the given boundary B( C Bg) for E and the norm-bounded o (E, B)-
compact set A( C E) we have that co(A)U(E’B) C E is o(E,B)-compact. In other

words, the boundary problem would have a positive answer subject to the locally
convex space (E, o (E,B)) satisfies Krein—Smulian’s property just mentioned. Note
though, that the classical Krein-Smulian theorem only works for locally convex
topologies in between the weak and the norm-topology of E and that o(E,B) can
be strictly coarser than the weak topology, [102, Sect. 24]. Positive results along this
direction were established in [30-32].

Recall that a subset B of B+ is said to be norming (resp. 1-norming) if

llxll = sup{[p*(x)[ : b € B}

is a norm in E equivalent (resp. equal) to the original norm of E. Particularly, if
B( C Bg~) is a boundary for E then B is 1-norming.

The three results that follow are set up to address the boundary problem from the
point of view of the existence of isomorphic copies of the basis of ¢! (R). A proof
for these results can be found in [32] (see also [30]).

Theorem 10.29 (Krein—-Smulian type result). Let E be a Banach space and let B
be a norming subset of Bg+. If E does not contain an isomorphic copy of {*(R), then
the 6(E,B)-closed convex hull of every bounded o (E, B)-relatively compact subset
of X is o(E,B)-compact.

Corollary 10.30. Let E be a Banach space which does not contain an isomorphic
copy of ' (R) and let B( C Bg+) be a boundary for E. Then, every bounded o (E, B)-
compact subset of E is weakly compact.

Theorem 10.31. Let E be a Banach, B( C Bg+) a boundary for E and let A be a
bounded subset of E. Then, the following statements are equivalent:

(i) Ais weakly compact.
(ii) A is o(E,B)-compact and does not contain a family (x¢ )gecr equivalent to the
usual basis of £' (R).

Note that Theorems 10.29 and 10.28 straightforwardly imply Corollary 10.30.
Theorem 10.29 is of interest by itself. The original proof for this result in [32]
uses techniques of Pettis integration together with fine subtleties about independent
families of sets in the sense of Rosenthal. Other proofs are available as for instance
in [30, 67], where it is established that if for the Banach space E the Krein—-Smulian
property in Theorem 10.29 holds true for any norming set B( C Bg+) then E cannot
contain isomorphically ¢ ! (R) (see also [21] for related results).
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It is worth mentioning a few things about the class of Banach spaces not
containing isomorphic copies of ¢! (R). Good references for this class of Banach
spaces are [79, 106, 144]. On the one hand, a Banach space E does not contain
isomorphically él(R) if, and only if, £~°(N) is not a quotient of E, [120, Lemma
4.2]. On the other hand, E does not admit ¢*(N) as a quotient if, and only if, the
dual unit ball (Bg«,w*) does not contain a homeomorphic copy of the Stone-Cech
compactification of the natural numbers, BN, [144]. In particular each one of the
following classes of Banach spaces are made up of spaces which do not contain
isomorphically ¢! (R):

(a) Banach spaces with a weak*-sequentially compact dual unit ball
(b) Banach spaces which are Lindelof for their weak topologies, or more in general,
Banach spaces with the property (¢) of Corson

Recall that E has property (€') (see [124]), if every family of convex closed subsets
of it with empty intersection has a countable subfamily with empty intersection.

Finally, the positive answer to the boundary problem due to Pfitzner (see [122,
Theorem 9]) is formulated as follows:

Theorem 10.32 (Pfitzner). Let A be a bounded set in a Banach space E and let
B( C E*) be a boundary of a w*-compact subset C of E*. If A is o (E, B)-countably
compact then A is 6 (E,C)-sequentially compact. In particular, if B is a boundary
for E, then a bounded subset of E is weakly compact if, and only if, it is 6(E,B)-
compact.

In the proof of this fine result, Pfitzner does a localized analysis on A that goes
beyond Theorem 10.31 and involves the quantitative version of Rosenthal’s ¢!-
theorem in [17], Simons’ inequality, and a modification of a result of Hagler and
Johnson in [72].

Although Theorem 10.32 answers in full generality the boundary problem a few
open problems still remain. For instance, it is unknown if given a boundary B
(C Bg) for E, the topology o (E,B) is angelic on bounded subsets of E. A few
comments are needed here. We first note that since in angelic spaces compact
subsets are sequentially compact, [53], when ¢ (E, B) is angelic on bounded subsets
of E, a positive answer to the boundary problem is easily given as a consequence of
Rainwater—Simons’ theorem, Corollary 10.7—see Corollary 10.26 as illustration.
In general it is not true that (E,c(E,B)) is angelic; see [141, Theorem 1.1(b)]:
an L'-predual E is constructed together with a o(E,ext(Bg+)-countably compact

set A C E for which not every point x € ATESBE) i the o (E,ext(Bg+)-limit of
a sequence in A (see also [110]). Nonetheless there are cases where angelicity of
o(E,B) (or 6(E,B) on bounded sets) is known, and therefore for these cases a
stronger positive answer to the boundary problem is provided. One of this cases
is presented in [25] where it is proved that for any Banach space E the topology
o (E,ext(Bg+)) is angelic on bounded sets—compared with [141, Theorem 1.1(b)].
Two more of these positive cases are presented below in Theorems 10.35 and 10.36.
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The proof of Theorem 10.35 needs the two lemmas that follow. The first one
(see [30, Lemma 4.5]) that implicitly appears in a particular case in [29] can be
considered as a kind of strong version of an “Angelic Lemma” in the spirit of [53,
Lemma in p. 28].

Lemma 10.33. Let X be a nonempty set and T, T two Hausdorff topologies on X
such that (X, 1) is regular and (X, %) is angelic. Assume that for every sequence
{Xn}n>1 in X with a t-cluster point x € X, x is T-cluster point of {x,},>1. The
following assertions hold true:

(i) If L is a t-relatively countably compact subset of X, then L is T-relatively
compact.
(ii) If L is a T-compact subset of X, then L is - compact.
(iii) (X,7) is an angelic space.

The lemma below (see [29, Lemma 1] and [30, Lemma 4.7]) evokes properties of
the real-compactification (also called the repletion) of a topological space, cf. [53,
Sect. 4.6].

Lemma 10.34. Let K be a compact space and B( C Be(k)-) a boundary for the
Banach space (C(K),|| - ||e)- If { fn }n>1 is an arbitrary sequence inC(K) andx € K,
then there exists |l € B such that
()= [ fudn
K

Proof. If we define the continuous function g : K — [0, 1] by the expression

foreveryn > 1.

S 0= hW)
DR oo AL

then

F = ﬁ DeK:fiy)=filx)}={yeK:g(y)=1=|gl} (10.22)

n=1

Since B is a boundary, there exists 1t € B such that [, gdu = 1. So we arrive at

1= |l = |u|(K /gdlul > / gdi =1, (10.23)

in other words,
— ul(&) ~ [ gdlul = [ (1-g)dlul.
K K

Since 1 — g > 0 we obtain |u|({y € K :1—g(y) > 0}) =0, thatis |[u[(K\F) =0
Therefore, for every n € N, we have
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./I;f"d”:/pf”d”:/an(x)dHan(x)

because u(F) = [pgdu = [, gdu =1 by the equalities (10.22) and (10.23) (note
that u is actually a probability!). |

We are ready to proof the next result that appeared in [29, 30]:

Theorem 10.35. Let K be a compact space and B( C Bc(k)<) a boundary for the
Banach space (C(K),|| - ||«). Then the following statements hold true:

(i) (C(K),0(C(K),B)) is angelic.

(ii) Ifa subset A of C(K) is 6(C(K),B)-relatively countably compact in C(K), then
Ais 6(C(K),B)-relatively sequentially compact.

(iii) If A is a norm-bounded and o(C(K),B)-compact subset of C(K), then A is
weakly compact.

Proof. Let us fix the notation X := C(K), 7 := o(C(K),B) and ¥ :=1,(K) the
topology of pointwise convergence on C(K). Then Lemma 10.34 implies that
the hypotheses in Lemma 10.33 are fulfilled. On the one hand, let {f,},> be a
sequence in C(K) that has 7-cluster point fy € C(K) and take an arbitrary T-open
neighborhood of fj

V(fo,x1,%2, -, Xm,€) :={g € C(K) : sup |g(xi) — fo(xi)| <€},

1<i<m

with € > 0, x1,x2,...,x, € K. Use Lemma 10.34 to pick y; € B associated to each
x; and the sequence {f, },>1U{fo}, 1 <i < m. Since {f,},> visits frequently the
T-open neighborhood of fj

<&l

we conclude that {f, },>; visits frequently V(fy,x1,x2,...,%n,€), hence fy is also
a T-cluster point of {f; },>1. On the other hand, the space (C(K),,(K)) is angelic,
[71,96] (see also [53]). Therefore (C(K),5(C(K),B)) is angelic by Lemma 10.33
that explains (i). Since in angelic spaces relatively countably compactness implies
relatively sequentially compactness, statement (ii) follows from (i). Finally (iii)
follows from (ii) and the Rainwater—Simons theorem, Corollary 10.7—we have no
need here for the general solution given in Theorem 10.32 for the boundary problem.

|

V(f()aulnuaa"'humug) = {gEC(K) sup ‘/Kgd.ul_/Kdeul

1<i<m

Given a topological space X we denote by C,(X) the Banach space of bounded
continuous real-valued functions on X endowed with the supremum norm ||||e.
A (X) stands for the dual space (Cy(X), ||-]|)*, for which we adopt the Alexandroff
representation as the space of finite, finitely additive and zero-set regular Baire
measures on X [150, Theorem 6].

The following result was published in [31]:
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Theorem 10.36. Let E be a Banach space whose dual unit ball Bg+ is w*-angelic
and let B be a subset of Bg+:

(i) If B is norming and A is a bounded and o (E,B)-relatively countably compact

subset of E, then CO(A)U(E’B) is o(E,B)-compact.

(ii) If B if a boundary for E, then every bounded o(E,B)-relatively countably
compact subset of E is weakly relatively compact. Therefore the topology
o (E,B) is angelic on bounded sets of E.

Proof. Tt is clear that (ii) follows from (i) when taking into account Theorem 10.28.

Here is a proof for (i). We note first that is not restrictive to assume that B is

I-norming and in this case CO(B)W = Bg+. Consider X := A°EP) endowed with

the topology induced by o (E,B). Now we will state that every Baire probability u
on X has a barycenter x,, in X. Since A is 6(E,B)-relatively countably compact,
every o(E,B)-continuous real function on X is bounded, which means that X is a
pseudocompact space. For pseudocompact spaces X, the space . (X ) is made up of
countably additive measures defined on the Baire o-field %a of X, [58] and [150,
Theorem 21]. Take a Baire probability 4 on X and x* € Bg+. On the one hand,
since (Bg+,w*) is angelic, for every x* € B+ there exists a sequence in co(B) that
w*-converges to x*, and therefore x*|y is Za-measurable. On the other hand, X is
norm-bounded and thus x*|x is also bounded, hence p-integrable. Since x* € E* is
arbitrary, for the given u we can consider the linear functional T, : E* — R given
for each x* € E* by the formula

T (') = /Xx*|xd/.1.

We claim that 7, |,. is w*-continuous. To this end it is enough to prove that for any
subset C of Bg+ we have that

—w* —_—

T,(C") C T,(C). (10.24)

Take y* € C"" and use the angelicity of (Bg+,w*) to pick up a sequence {y}},>1
in C with y* = w*-1lim,, y;; in particular we have that considered as functions, the
sequence {y;|x}n>1 converges pointwise to y*|x and it is uniformly bounded on
X. The Lebesgue convergence theorem gives us that 7, (y*) = lim, Ty, (y};) and this
proves (10.24). Now Grothendieck’s completeness theorem, [102, Sect. 21.9.4],
applies to conclude the existence of an element x,, in E such that T, (x*) = x*(xy)
for every x* € E*. x, is the barycenter of i that we are looking for. Now we define
the map ¢ : u — x, from the o(.#(X),Cy(X))-compact convex set & (X) of all
Baire probabilities on X into E. It is easy to prove that ¢ is o(.#(X),Cy(X))-to-
o (E,B) continuous and its range ¢(Z?(X)) is a 6(E, B)-compact convex set that
contains X. The proof is concluded. |
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A particular class of angelic compact spaces is that of the Corson compact spaces: a
compact space K is said to be Corson compact if for some set I it is (homeomorphic
to) a compact subset of [0, 1]7 such that for every x = (x(y)) in K the set {y: x(y) #
0} is countable; see [40]. If we assume that (Bg«,w™*) is Corson compact, techniques
of Radon—-Nikodym compact spaces introduced in [113] can be used to prove that
(i) in Theorem 10.36 can be completed by proving that A is also o (E, B)-relatively
sequentially compact. Let us remark that many Banach spaces have w*-angelic dual
unit ball as for instance the weakly compactly generated or more general the weakly
countably K-determined Banach spaces; see [117, 145].

We finish this section with a few brief comments regarding strong boundaries.
If B is a norm-separable boundary for a w*-compact subset C in E*, then B is a
strong boundary of C, in the sense that C is the norm-closed convex hull of B. This
result was first stated in [130], and later, with techniques based on (I)-generation in
[55,56]—note that it straightforwardly follows from Corollary 10.8. If the boundary
B is weakly Lindelof it is an open problem to know if it is strong. When B is weakly
Lindel6f determined, the angelic character of C,((B,w)) (see [117]) tells us that
every x** € Br. is the pointwise limit of a sequence of elements in Bg and Simons’
inequality implies that B is a strong boundary (see [59, Theorem 1.2]). If C is a w*-
compact and weakly Lindelof subset of E* we also have that every boundary of C is
strong (see [34, Theorem 5.7]). For separable Banach spaces E without isomorphic
copies of £!(N) we also have that every boundary of any w*-compact set is a strong
boundary [59]. In the nonseparable case the same is true if the boundary is assumed
to be w*-K-analytic as established in the result below that can be found in [35,
Theorem 5.6]:

Theorem 10.37. A Banach space E does not contain isomorphic copies of ' (N)
if, and only if, each w*-K-analytic boundary of any w*-compact subset C of E* is
strong.

In particular, w*-analytic boundaries are always strong boundaries in the former
situation. We note that recently Theorem 10.37 has been extended to w*-K-
countably determined boundaries in [65]. In a different order of ideas, let us remark
here that the sup-limsup theorem can be extended to more general functions in this
situation; see [35, Theorem 5.9]:

Theorem 10.38. Let E be a Banach space without isomorphic copies of t'(N), C a
w*-compact subset in E* and B a boundary of C. Let {z}* },>1 be a sequence in E**
such that for all n > 1, z;* = w*-1im,, 2, for some {Z,}m>1 C E. Then we have

sup {limsupz;*(b*)} = sup {limsupz,*(x*)}.
b*eB n x*eC n

When the boundary is built up by using a measurable map, it is always strong.

Theorem 10.39. Let E be a Banach space, and let C be a w*-compact subset of E*.
Assume that f : E — C is a norm-to-norm Borel map such that (x, f(x)) = Sc(x) for
everyx € E. Then
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— ol

() =c.
Proof. Cascales et al. [34, Corollary 2.7] says that we are in conditions to apply [35,
Theorem 4.3] to get the conclusion. ]

Borel maps between complete metric spaces send separable sets to separable
ones; see [142, Theorem 4.3.8]. This fact implies that a w*-compact set C as in
Theorem 10.39 is going to be fragmented by the norm of E*. Indeed, for every
separable subspace S of E, we have that f(S) is a separable boundary of the w*-

oy s

compact set Cg(C S*), thus Cjg = cof(S)|s is a separable subset of S*, and
therefore C is fragmented by the norm of E*; see [113]. If C = Bg- the space E
must be an Asplund space. With these results in mind, strong boundaries of an
Asplund space are characterized in terms of the following concept, introduced in
[35]. A subset C of the dual of a Banach space E is said to be finitely self-predictable
if thereisamap & : Fp — Zeo(c) from the family of all finite subsets of E into the
family of all finite subsets of co(C) such that for each increasing sequence {0, },>1
in % with

2:[]6,,, D=]J¢&(on),
n=1

we have that

The characterization of strong boundaries in Asplund spaces is stated in the
following terms; see [35, Theorem 3.9]:

Theorem 10.40. For a boundary B of an Asplund space, B is a strong boundary if,
and only if, it is finitely self-predictable.

In particular, Asplund spaces are those Banach spaces for which the above
equivalence holds; see [35, Theorem 3.10]. A procedure for generating finitely
self-predictable subsets is also provided in [35, Corollary 4.4], as the range of o-
fragmented selectors (see [88] for the definition) of the duality mapping, which leads
to another characterization of Asplund spaces; see [35, Corollary 4.5].

In a different order of ideas, the paper [94] contains a good number of interesting
results of how to transfer topological properties from a boundary B of C to the
whole set C (in particular fragmentability) as well as how to embed a Haar system
in an analytic boundary of a separable non-Asplund space. Other results about w*-
K-analytic boundaries not containing isomorphic copies of the basis of £!(R) can
be found in [65]—see also Theorem 10.31.

We finish this section with the following open question:

Question 10.41. Let E be a Banach space and B a boundary of it. Is 6(E,B) an
angelic topology on bounded sets of E?
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10.5 Extensions of James’ Weak Compactness Theorem

Since its appearance, James’ weak compactness theorem has become the subject
of much interest for many researchers. As discussed in the Introduction, one of the
concerns about it has been to obtain proofs which are simpler than the original one.
Another, and we deal with it in this section, is to generalize it, which in particular
has led to new applications that we will show in Sect. 10.6. Clearly the commented
developments on boundaries represent a first group of results along these lines. The
other extensions that we present fall into two kind of results. On the one hand, we
can have those that for a Banach space E guarantee reflexivity, whenever the set
NA(E) of the continuous and linear functionals that attain their norms,

NA(E) := {x" € E* : there exists xo € Bg such that x*(xo) = ||x*||},

is large enough. On the other hand, we have James’ type results but considering
more general optimization problems.

10.5.1 Size of the Set of Norm Attaining Functionals

Roughly speaking, the basic question we are concerned with here is whether the
reflexivity of a Banach space E follows from the fact that the set of norm-attaining
functionals NA(E) is not small in some sense. Most of these results are based on a
suitable meaning for being topologically big.

With regard to the norm-topology, the concrete question is to know whether
a Banach space E is reflexive provided that the set NA(E) has nonempty norm-
interior. The space £!(N) shows that the answer is negative, and in addition it is
easily proven in [3, Corollary 2] that every Banach space admits an equivalent norm
for which the set of norm-attaining functionals has nonempty norm-interior. For
this very reason we cannot assume an isomorphic hypothesis on the space when
studying the question above. Some geometric properties have been considered.
Before collecting some results in this direction, let us say something more from the
isomorphic point of view. In 1950 Klee proved that a Banach space E is reflexive
provided that for every space isomorphic to E, each functional attains its norm [100].
Latter, in 1999 Namioka asked whether a Banach space E is reflexive whenever the
set NA(X) has nonempty norm-interior for each Banach space X isomorphic with
E.In[1, Theorem 1.3], Acosta and Kadets provided a positive answer (see also [2]).

In order to state the known results for the norm-topology, let us recall that a
Banach space E has the Mazur intersection property when each bounded, closed,
and convex subset of E is an intersection of closed balls ([107]). This is the case of a
space with a Fréchet differentiable norm ([45, Proposition I1.4.5]). Another different
geometric condition is this one: a Banach space E is weakly Hahn—Banach smooth
if each x* € NA(E) has a unique Hahn—Banach extension to E**. It is clear that if E
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is very smooth (its duality mapping is single valued and norm-to-weak continuous
[140]), then it is weakly Hahn—Banach smooth. Examples of very smooth spaces
are those with a Fréchet differentiable norm and those which are an M-ideal in
its bidual [76, 151]—for instance cq or the space of compact operators on 2. The
following statement, shown in [89, Proposition 3.3] and [4, Theorem 1], provides
a first generalization of James’ reflexivity theorem for the above classes of Banach
spaces:

Theorem 10.42. Suppose that E is a Banach space that has the Mazur intersection
property or is weakly Hahn—Banach smooth. Then E is reflexive if, and only if,
NA(E) has nonempty norm-interior.

The above result is a consequence of James’ reflexivity theorem applied to an
adequate renorming, in the Mazur intersection property case, and of the Simons
inequality after a sequential reduction, for weakly Hahn—Banach smooth spaces.

Note that Theorem 10.42 fails when the space is smooth (norm Géateaux
differentiable). Indeed, any separable Banach space is isomorphic to another smooth
Banach space whose set of norm-attaining functional has nonempty norm-interior;
see [3, Proposition 9].

For some concrete Banach spaces we can say something better. For instance, the
sequence space ¢y satisfies that the set NA(cp) is of the first Baire category, since it
is nothing more than the subset of sequences in ¢! (N) with finite support. Bourgain
and Stegall generalized it for any separable Banach space whose unit ball is not
dentable. As a matter of fact, they established the following result in [26, Theorem
3.5.5]:

Theorem 10.43. If E is a Banach space and C is a closed, bounded, and convex
subset of E that is separable and nondentable, then the set of functionals in E* that
attain their supremum on C is of the first Baire category in E*.

When C is the unit ball of the continuous function space on a infinite Hausdorff
and compact topological space K, Kenderov, Moors, and Sciffer proved in [97] that
NA(C(K)) is also of the first Baire category. However we do not know whether or
not Theorem 10.43 is valid if C is nonseparable. However, Moors has provided
us (private communication) with the proof of the following unpublished result
which follows from Lemma 4.3 in [109]: Suppose that a Banach space E admits
an equivalent weakly midpoint LUR norm and that E has the Namioka property,
i.e., every weakly continuous mapping acting from a Baire space into E is densely
norm continuous. Then every closed, bounded, and convex subset C of E for which
the set of functionals in E* attaining their supremum on C is of the second Baire
category in E* has at least one strongly exposed point. In particular, C is dentable.

Now we present a group of results whose hypotheses involve the weak topol-
ogy of the dual space. Jiménez-Sevilla and Moreno showed a series of results,
from which we emphasize the following consequence of Simons’ inequality [89,
Proposition 3.10]:
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Theorem 10.44. Let E be a separable Banach space such that the set NA(E) NSk
has nonempty relative weak interior in Sg+. Then E is reflexive.

Regarding the w*-topology in the dual space, the first result was obtained, also
applying Simons’ inequality, by Deville, Godefroy, and Saint Raymond [41, Lemma
11] and is the version for the w*-topology of the preceding theorem. Later,
an adequate use of James’ reflexivity theorem for a renorming of the original
space implies the same assertion, but removing the separability assumption [89,
Proposition 3.2]:

Theorem 10.45. A Banach space is reflexive if, and only if, the set of norm-one
norm-attaining functionals contains a nonempty relative w*-open subset of its unit
sphere.

This result has been improved for a certain class of Banach spaces, for instance, for
Grothendieck spaces, i.e., those Banach spaces for which the sequential convergence
in its dual space for the w-topology is equal to that of the w*-topology. It is clear that
any reflexive space is a Grothendieck space and the converse is true when the space
does not contain ¢! (N); see [63, 149]. Moreover, the Eberlein—Smulian theorem
guarantees that a Banach space with a w*-sequentially compact dual unit ball is
reflexive whenever is a Grothendieck space.

Theorem 10.46. If E is a Banach space E that is not Grothendieck, then NA(E) is
not a w*-Gg subset of E*.

This result has been stated in [1, Theorem 2.5], although it previously appeared in
[41, Theorem 3] for separable spaces. Finally, a characterization of the reflexivity
in terms of the w*-topology, and once again by means of the Simons inequality but
with other kind of assumptions, was obtained in [6, Theorem 1]:

Theorem 10.47. Assume that E is a Banach space that does not contain ' (N) and
that for some r > 0

B+ = 0" {x* € S+ : x* + rBg+ C NA(E)}.

Then E is reflexive.

A similar result is stated in [6, Proposition 4], but replacing the assumption of non
containing ¢ 1 (N) with that of the norm of the space is not rough, i.e., there exists
€ >0suchthatforallx € E

h —h||—-2
timsup EEAIE =Rl =2]l
h—0 ”h”

Here we have emphasized some extensions of James’ reflexivity theorem in
connection to the size of the set of norm-attaining functionals, but there are other
ways of measuring such size. For example, one can look for linear subspaces into
NA(E).
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The first of these results was obtained by Petunin and Plichko in [121].
To motivate it, let us observe that for a dual space E = F* we have that F is a
closed and w*-dense subspace of E* with F C NA(E). Their result deals with the
converse:

Theorem 10.48. A separable Banach space E is isometric to a dual space provided
that there exists a Banach space F which is w*-dense in E* and satisfies F C NA(E).

There are some recent results that provide conditions implying that the set of norm-
attaining functionals contains an infinite-dimensional linear subspace. See [9,15,57]
and the references therein. For instance, in [57] the following renorming result is
stated:

Theorem 10.49. Every Banach space that admits an infinite-dimensional separa-
ble quotient is isomorphic to another Banach space whose set of norm-attaining
functionals contains an infinite-dimensional linear subspace.

However, some questions still remain to be studied. For instance, whether for every
infinite-dimensional Banach space E, the set NA(E) contains a linear subspace of
dimension 2 is an irritating open problem, posed in [15, Question 2.24].

10.5.2 Optimizing Other Kind of Functions

In the past several years, some extensions of James’ weak compactness theorem
appeared. A common thing for these results is that the optimization condition—
each continuous and linear functional attains its supremum on a weakly closed and
bounded subset of the space—is replaced by another one: the objective function is
more general. We present some of them here, when considering either polynomials
or perturbed functionals.

For a Banach space E and n > 1, let us consider the space &2 ("E) of all
continuous n-homogeneous polynomials on E, endowed with its usual sup norm.
Recall that a polynomial in &2 ("E) attains the norm when the supremum defining
its norm is a maximum. It is clear that if for some n each polynomial in &
("E) attains its norm, then every functional attains the norm and thus James’
reflexivity theorem implies the reflexivity of E. So the polynomial version of James’
reflexivity theorem should be stated in terms of a subset of &2 ("E). This is done
in the following characterization (see [131, Theorem 2]), when dealing with weak
compactness of a bounded, closed, and convex subset of E:

Theorem 10.50. A bounded, closed, and convex subset A of a Banach space E is
weakly compact if, and only if, there exist n > 1 and xi, ..., x; € E* such that for all
x* € E*, the absolute value of the continuous (n+ 1)-homogeneous polynomial

X 2 (x)-ox, (0 (x), - (x € E),
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when restricted to A, attains its supremum and
n *
A §Z szlker.xj'.

Similar results for symmetric multilinear forms, including some improved versions
for the case A = B, can be found in [8, 131].

A related question to that of “norm attaining” (or “sup attaining”) is that
of “numerical radius attaining.” More specifically, the numerical radius of a
continuous and linear operator T : E — E is the real number v(T') given by

v(T) := sup{|x*Tx| : (x,x*) € [1(E)},

where TT(E) := {(x,x*) € Sg x Sg+ : x*(x) = 1} and such an operator 7 is said to
attain the numerical radius when there exists (xo,x() € IT(E) with |xjTxo| = v(T).
The following sufficient condition for reflexivity was stated in [5, Theorem 1]
(see also [132, Corollary 3.5] for a more general statement about weak compact-
ness), and was obtained by applying the minimax theorem [137, Theorem 5].

Theorem 10.51. A Banach space such that every rank-one operator on it attains
its numerical radius is reflexive.

Surprisingly enough, the easy-to-prove part in the classical James’ reflexivity
theorem does not hold. Indeed, a Banach space is finite dimensional if, and only
if, in any equivalent norm each rank-one operator attains its numerical radius, as
seen in [5, Example] and [7, Theorem 7].

However, the James type result that seems to be more applied nowadays (see
Sect. 10.6) is a perturbed version: there exists a fixed function f : E — RU {0}
such that

forevery x* € E*, x" — f attains its supremum on E.

Let us note that this optimization condition generalizes that in the classical James’
weak compactness theorem. Indeed, x* € E* attains its supremum on the set A(C E)
if, and only if, x* — §4 attains its supremum on E, where &, denotes the indicaror
function of A defined as

0, ifxeA
o, otherwise

8a(x) := {

The first result along these lines was stated in [27,52] by Calvert and Fitzpatrick.

Theorem 10.52. A Banach space is reflexive whenever its dual space coincides
with the range of the subdifferential of an extended real-valued coercive, convex,
and lower semicontinuous function whose effective domain has nonempty norm-
interior.
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The erratum [27] makes [52] more difficult to follow, since the main addendum
requires to correct non-written proofs of some statements in [52], which are adapted
from [84]. A complete and more general approach was presented in Theorems 2, 5
and 7 of [118].

Let us point out that, for a Banach space E and a proper function f : E —
R U {0}, coercive means

f)

=T

and that the effective domain of f, dom(f), is the set of those x € E with f(x) finite.
Taking into account that for a function f : E — R U {e} which is proper
(dom(f) # 0), and x € dom(f), we have that the subdifferential of f atx is given by

df(x) ={x" € E*: x" — f attains its supremum on E at x},

then the surjectivity assumption in Calvert and Fitzpatrick’s theorem is once again
a perturbed optimization result.

Another perturbed version of James” weak compactness theorem, different from
the preceding one, was established in [133, Theorem 16] as a consequence of
a minimax result [133, Theorem 14]. In order to state that minimax theorem,
generalizing [137, Theorem 14], the authors used the ideas of Pryce in Lemma 10.2
and a refinement of the arguments in [138]. Such a perturbed theorem reads as
follows in the Banach space framework:

Theorem 10.53. Let A be a weakly closed subset of a Banach space E for which
there exists y € ((A) such that

foreach x* € E¥, x*|o — y attains its supremum.

Then A is weakly compact.
Here the perturbation f (defined on the whole E) is given by

[ y(x), ifxeA
f(x).—{ o, forxeE\A'

The second named author in this survey obtained another perturbed James type
result in the class of separable Banach spaces. This result was motivated by financial
applications, and once again, it was proved by applying adequately Simons’
inequality. Its proof was included in the Appendix of [91]:

Theorem 10.54. Suppose that E is a separable Banach space and that f : E —»
R U {eo} is a proper function whose effective domain is bounded and such that

foreach x* € E*, x*— f attains its supremum on E.
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Then for every ¢ € R the sublevel set f~'((—oo,c]) is weakly compact.

In the preceding versions of the weak compactness theorem of James, the pertur-
bation functions are coercive. Recently, the following characterization has been
developed in [118, Theorem 5]:

Theorem 10.55. Let E be a Banach space and suppose that f : E — RU {40} is
a proper, coercive, and weakly lower semicontinuous function. Then

forallx* € E*, x*— f attains its supremum on E
if, and only if,
for each ¢ € R, the sublevel set f~'((—eo,c]) is weakly compact.

The proof makes use of the perturbed technique of the undetermined function as
explained in Theorem 10.15.

Let us also emphasize that there are previous topological results along the lines
of Theorem 10.55; see [23, Theorems 2.1 and 2.4].

Since for any reflexive Banach space E the proper, noncoercive, and weakly
lower semicontinuous function f = || - || satisfies that for every ¢ € R the sublevel set
f~1((—eo,c]) is weakly compact, although d f(E) = B+, then the coercivity cannot
be dropped in one direction of the former theorem. Nevertheless, for the converse
implication, Saint Raymond has just obtained the nice theorem that follows, [134,
Theorem 11]:

Theorem 10.56 (Saint Raymond). IfE is a Banach space and f : E — R U {eo}
is a proper weakly lower semicontinuous function such that for every x* € E*, x* — f
attains its supremum, then for each ¢ € R, the sublevel set f~'((—oo,c]) is weakly
compact.

Remark 10.57. The fact that for a proper function f : E — RU {eo} with d f(E) =
E* all its sublevel sets are relatively weakly compact can be straightforwardly
derived from Theorem 10.56. To see it, replace f with the proper weakly lower
semicontinuous function f : E — RU{co} defined for every x € E as

o(ExR,E*xR)

f(x) :=inf{t € R: (x,1) € epi(f) I3

where epi(f) is the epigraph of f, that is,

epi(f) :={(x,1) € ExR: f(x) <t}.
Furthermore, when dom(f) has nonempty norm-interior, we have that E is reflexive
as a consequence of the Baire Category theorem.

Note that Theorem 10.56 provides an answer to the problem posed in [27]: given a
Banach space E and a convex and lower semicontinuous function f : E — RU {0}
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whose effective domain has nonempty norm-interior, is it true that the surjectivity of
its subdifferential is equivalent to the reflexivity of E and the fact that for all x* € E*,
the function x* — f is bounded above?

On the other hand, Bauschke proved that each real infinite-dimensional reflexive
Banach space E has a proper, convex, and lower semicontinuous function f : E —
R U {+-co} such that

for each x* € E*, x* — f is bounded above,

but f is not coercive; see [16, Theorem 3.6]. From here it follows that d f(E) = E*,
as seen in [118, Theorem 3]. Thus Theorem 10.56 properly extends one direction of
Theorem 10.55.

Now let us show how Saint Raymond’s result, Theorem 10.56, following the
ideas in [118, Corollary 5], has some consequences for multivalued mappings. Let
us recall that given a Banach space E and a multivalued operator @ : E — 2F" | the
domain of @ is the subset of E

D(®) := {x € E : ®(x) is nonempty},
and its range is the subset of E*
@ (E) := {x" € E* : there exists x € E with x* € O (x)}.
In addition, @ is said to be monotone if

inf vy x—y) >0,
L. =y x—y) >
X'ED(x), y €D(y)

and cyclically monotone when the inequality

n
<xj,xj —xj_1)>0
i=1

J

holds, whenever n > 2, xg,x1,...,x, € D(®) with xo = x,, and for j =1,...,n, xj €
(I)(x]').

If @ is a cyclically monotone operator then there exists a proper and convex
function f : E — R U {+-oo} such that for every x € E,

@ (x) C If(x),

see [128, Theorem 1], and so Theorem 10.56 leads to the following James’ type
result for cyclically monotone operators:

Corollary 10.58. Let E be a Banach space and let @ : E —s 2E be a cyclically
monotone operator such that D(®) has nonempty norm-interior and
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®(E) =E*.

Then E is reflexive.

Note that this result does not provide a satisfactory answer to the following open
problem, posed in [52]: Assume that E is a Banach space and @ : E — 2F is
a monotone operator such that D(®) has nonempty interior and @(E) = E*. Is E
reflexive?

To conclude this section we provide a proof of Theorem 10.56 for the wide
class of Banach spaces with w*-convex block compact dual unit balls, which easily
follows from the unbounded Rainwater—Simons theorem, Corollary 10.7; see [119,
Theorem 4]. The following lemma produces the sequence needed to apply it:

Lemma 10.59. Suppose that the dual unit ball of E is w*-convex block compact
and that A is a nonempty, bounded subset of E. Then A is weakly relatively compact

if, and only if, each w*-null sequence in E* is also G(E*,KW )-null.

Proof. If A is weakly relatively compact, then we have A = A" and the conclusion
follows. According to Proposition 10.13, to see the reverse implication we have to
check the validity of the identity

dist”.”A (L{x;},co{x;:n>1})=0 (10.25)

for every bounded sequence {x}},>; in E*. Thus, let us fix {x}},>1 a bounded
sequence in Bg+. Since Bg+ is w*-convex block compact, there exist a block
sequence {y; },>1 of {x;},~, and an x{; € Bg+ such that

w*-limy; = x;.
n

Then, by assumption, {y;},~ also converges to x{; pointwise on A" C E**.Mazur’s
theorem applied to the sequence of continuous functions {y;}, ., restricted to the

w*-compact space ZW* tells us that
0= diStH‘H— L (xg,co{yrin>1}) = diSt”.”A (xg,co{xr:n>1}) >0,
Al«V
It is not difficult to check that xj; € L{x;;} and (10.25) is proved, and we have

concluded the proof. ]

Following [119], we present the next proof of Theorem 10.56 for the class of Banach
spaces with w*-convex block compact dual unit balls:

Theorem 10.60. Let E be a Banach space whose dual unit ball is w*-convex block
compact and let f : E — RU {+eo} be a proper map such that

forallx* € E*, X" — f attains its supremum on E.
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Then

for every ¢ € R, the sublevel set f~" ((—eo,c]) is weakly relatively compact.

Proof. We first claim that for every (x*,A1) € E* x R with A < 0, there exists xg € E
with f(xg) < 4o and such that

sup{(x", 1) (x,1) : (x,7) € epi(f)} =" (x0) — A f(x0). (10.26)

In fact, the optimization problem

sup{ (x,x") — f(x)} (10.27)
x€E
may be rewritten as
sup  {(x",—1), (x,1)} (10.28)
(x.t)€epi(f)

and the supremum in (10.27) is attained if, and only if, the supremum in (10.28) is
attained.

Let us fix ¢ € R and assume that A := f~!((—oo,c]) is nonempty. The uni-
form boundedness principle and the optimization assumption on f imply that
A is bounded. In order to obtain the relative weak compactness of A we apply
Lemma 10.59. Thus, let us consider a w*-null sequence {x};},>1 in E* and let us

5

show that it is also 6(E*,A" )-null.

It follows from the unbounded Rainwater—Simons theorem, Corollary 10.7,
taking the Banach space E* X R,

B:=epi(f) CC:= WG(E**XR’E*XR)

and the bounded sequence

that

o(E" xR, B)-lim (xn,—2> =0 (E" xR,C)-lim <xn,—;>,

But w*-1lim,,> x}; = 0, so we have that

1
o (E* x R,C)-lim <x;, —-) =0.
n
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As a consequence, since A x {c} C B, then A x {c} C C, and so
o(E*, A" )-limx: =0,
n

as announced. |

Theorem 10.60 was first presented at the meeting Analysis, Stochastics, and
Applications, held at Viena in July 2010, to celebrate Walter Schachermayer’s 60th
Birthday; see

http://www.mat.univie.ac.at/$\ sim$anstap 10/slides/Orihuela.pdf,

where the conjecture of its validity for any Banach space was considered. Later
on, in the Workshop on Computational and Analytical Mathematics in honor of
Jonathan Borwein’s 60th Birthday, held at Vancouver in May 2011; see

http://conferences.irmacs.sfu.ca/jonfest2011/,

Theorem 10.60 and its application Theorem 10.65 were discussed too. Both results
can be found published by the second and third named authors of this survey in the
paper [119]. In September 2011 we were informed by J. Saint Raymond that he had
independently obtained Theorem 10.60 without any restriction on the Banach space
E in [134]: Saint Raymond’s proof is based upon a clever and nontrivial reduction to
the classical James’ weak compactness theorem instead of dealing with unbounded
sup-limsup results as presented here, as well as in [119]. Nevertheless, our approach
contains classical James’ result without using it inside the proof, together with the
generalizations of Simons’ inequalities for unbounded sets in Sect. 10.2.

The proof of Theorem 10.60 has been obtained by means of elementary
techniques for Banach spaces with a w*-convex block compact dual unit ball, in
particular for the separable ones. For this very reason, an easy reduction to the
separable case would provide us with a basic proof of the theorem. In that direction,
we suggest the following question:

Question 10.61. Let E be a Banach space, p : E* x E* — [0,) a pseudometric
on E* for pointwise convergence on a countable set A( C Bgx), where

A=AgU{xi} Ao CExi € Ag”
Given {x};},>1 a sequence in Bg+ such that
G(E*,Ao)-lirllnxf, =0,
is it possible to find a sequence {y}},>; in E* with
w*-limy; =0
n
and

limp (x;,,y,) = 0?
n
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10.6 Applications to Convex Analysis and Finance

Since its publication, the applicability of James’ weak compactness theorem has
been steady. As mentioned in the Introduction, James’ weak compactness theorem
implies almost straightforwardly a number of important results in Functional
Analysis. In this section we focus on some consequences of Theorem 10.56, which
have been recently obtained from Theorems 10.55 and 10.60 in the areas of finance
and variational analysis. But before describing them, a bit of history on known
applications of the theorem of weak compactness of James.

It is in 1968 when appeared the first work mentioning application: in [147] it
was proved that a quasi-complete locally convex space-valued measure always has
a relatively weakly compact range. On the other hand, Dieudonné [47] gave an
example of a Banach space for which the Peano theorem about the existence of
solutions to ordinary differential equations fails. Then Cellina [37] stated, with the
aid of James’ reflexivity theorem, that a Banach space is reflexive provided that the
Peano theorem holds true for it. Later, Godunov [62] proved that indeed the space is
finite dimensional. In [13] one can find some related results to the failure of Peano’s
theorem in an infinite dimensional Banach space, as a consequence of James’
reflexivity theorem. Finally, let us emphasize the well-known fact (see, for instance,
[22, Theorem 2.2.5]) that the completeness of a metric space is equivalent to the
validity of the famous Ekeland variational principle. In [143] a characterization
of the reflexivity of a normed space is established, also in terms of the Ekeland
variational principle, and making use once again of James’ reflexivity theorem.

10.6.1 Nonlinear Variational Problems

Our goal is to deal with some consequences of Theorem 10.56 for nonlinear
variational problems, following the ideas in [118, Sect. 4]. For this very reason,
let us first recall that variational equations are the standard setting to studying and
obtaining weak solutions for large portion of differential problems. Such variational
equations, in the presence of symmetry, turn into variational problems for which one
has to deduce the existence of a minimum. We prove that this kind of result, always
stated in the reflexive context, only make sense for this class of Banach spaces.

To be more precise, let us evoke the so-called main theorem on convex minimum
problems (see, for instance, [ 153, Theorem 25E, p. 516]), which is a straightforward
consequence of the classical theorem of Weierstrass (continuous functions defined
on a compact space attain their minimum): in a reflexive Banach space E the sub-
differential of every proper, coercive, convex, and lower semicontinuous function
f:E — RU{+-oo} is onto, that is, for each x* € E*, the optimization problem

find xo € E such that f(xg) —x*(x0) = inf (f(x) —x"(x)) (10.29)

x€E



10 Compactness, Optimality, and Risk 207

admits a solution. This result guarantees the solvability of nonlinear variational
equations derived from the weak formulation of a wide range of boundary value
problems. For instance, given 1 < p < oo, a positive integer N, and a bounded open
subset 2 of RV, let E be the reflexive Sobolev space WO1 ?(Q) and consider the
coercive, convex, and continuous function f : E — R defined by

) ::%/QWXVJM (xe E),

where |- | is the Euclidean norm. By the main theorem on convex minimum problems
we have df(E) = E*. But taking into account that the p-laplacian operator A,
defined for each x € E as

Ap(x) :=div (|Vx|”*2Vx) ,
satisfies that forall x € E
df(x) ={-=Lpx}

(see [98, Proposition 6.1]), then given any 4* € E*, the nonlinear boundary value
problem
—Apx =h* inQ
x=0 ondQ

admits a weak solution x € E.

We conclude this subsection by applying Theorem 10.56 (see also Remark 10.57)
to show that the adequate setting for dealing with some common variational
problems, as p-laplacian above, is that of the reflexive spaces. To properly frame

the result it is convenient to recall some usual notions. For a Banach space E, an
operator @ : E — E* is said to be strongly monotone if

p (P0) — PO).x—y)

>0
xyEE [lx =yl ’
Ay

hemicontinuous if for all x,y,z € E, the function

te[0,1] = (P(x+1y))(z) €R

is continuous, bounded when the image under @ of a bounded set is also bounded,
and coercive whenever the function

xEE— (P(x))(x) eR
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is coercive. The result below appears in [28, Corollary 2.101] and it includes as a
special case the celebrated Lax—Milgram theorem:

Proposition 10.62. If E is a reflexive Banach space and @ : E — E* is a
monotone, hemicontinuous, bounded, and coercive operator, then @ is surjective.

This result applies to several problems in nonlinear variational analysis, including
one of its most popular particular cases: in a real reflexive Banach space E, given
x;, € E*, the equation

find x € E such that @(x) = x;

admits a unique solution, whenever @ : E — E* is a Lipschitz continuous and
strongly monotone operator. We refer to [70, Example 3.51] for usual applications.
When @ is symmetric, that is,

forevery x,y € E, (@(x),y) =(D(y)),x),

the equation @(x) = x;; leads to the nonlinear optimization problem involving the
function

f) = 5 (@), xeE.

As a consequence of Theorem 10.56, or more specifically of Remark 10.57, the
natural context for Proposition 10.62, at least with symmetry, is the reflexive one,
as shown in the next corollary whose proof is completely analogous to that of [118,
Corollary 3]:

Corollary 10.63. A Banach space E is reflexive, provided there exists a monotone,
symmetric, and surjective operator @ : E — E*.

10.6.2 Mathematical Finance

We now turn our attention to some recent applications of James’ weak compactness
theorem in mathematical finance. Let us fix a probability space (2, % ,P) together
with .27, a linear space of functions in R’ that contains the constant functions.
We assume here that (2,.#,P) is atomless, although in practice this is not a
restriction, since the property of being atomless is equivalent to the fact that we can
define a random variable on (,.%,P) that has a continuous distribution function.
The space 2" will describe all possible financial positions X : Q — R, where
X () is the discounted net worth of the position at the end of the trading period if
the scenario @ € €2 is realized. The problem of quantifying the risk of a financial
position X € 2 is modeled with functions p : 2~ — R that satisfy:
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(i) Monotonicity: if X <Y, then p(X) > p(Y).
(ii) Cash invariance: if m € R then p(X +m) = p(X) —m.

Such a function p is called a monetary measure of risk (see Chapter 4 in [54]).
When p is also a convex function, then it is called a convex measure of risk. In
many occasions we have 2" = IL=(Q,.#,P), and it is important to have results for
representing the risk measure as

p(X)= sup A{E[Y-X]-p*(Y)}. (10.30)
YeL!(Q,7 P)

Here p* is the Fenchel-Legendre conjugate of p, that is, for every Y € (L™(Q,.%,
P))",

p*(Y)= sup {{¥.X)—pX)}.
XeL=(Q,7 P)

To have this representation is equivalent to have the so-called Fatou property, i.e.,
for any bounded sequence {X, },,>1 that converges pointwise almost surely (shortly,
a.s) to some X,

p(X) <liminfp(X,)

(see [54, Theorem 4.31]). A natural question is whether the supremum (10.30) is
attained. In general the answer is no, as it is shown by the essential supremum map
onL=(Q, .7 ,P); see [54, Example 4.36]. The representation formula (10.30) with a
maximum instead of a supremum has been studied by Delbaen (see [42, Theorems
8 and 9]) (see also [54, Corollary 4.35]) in the case of coherent risk measures, that
is, the convex ones that also are positively homogeneous. The fact that the order
continuity of p is equivalent to the supremum becoming a maximum, that is, for
every X € L”(Q,.#,P):

pX)=_  max {E[Y -X]-p*()},
YeL(Q,Z P)

for an arbitrary convex risk measure p, is the statement of the so-called Jouini—
Schachermayer—Touzi theorem in [42, Theorem 2] (see also [91, Theorem 5.2] for
the original reference). Let us remark that order sequential continuity for a map p
in L=(Q,.%,P) is equivalent to have

limp (X,) = p(X),

whenever {X,},> is a bounded sequence in L™ pointwise a.s. convergent to X.
Indeed, it is said that a map p : L=°(Q2,.%,P) — RU{+-oo} verifies the Lebesgue
property provided that it is sequentially order continuous. The precise statement is
the following one:
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Theorem 10.64 (Jouini, Schachermayer, and Touzi). Lerp :L=(Q,% P) — R
be a convex risk measure with the Fatou property, and let p* : (L=(Q, % ,P))* —
[0,+e2] be its Fenchel-Legendre conjugate. The following are equivalent:

(i) Foreveryc€ R, {Y e LN(Q,Z P): p*(Y) < c} is a weakly compact subset
of LI (Q, 7 ,P).
(ii) For every X € L= (Q,.%#,P), the supremum in the equality

p(X)= sup {E[XY]-p*(¥)}
YeLY(Q,Z P)

is attained.
(iii) For every bounded sequence {X,},>1 in L”(Q,.7,P) tending a.s. to X €
L>(Q,.7,P), we have

limp(X,) = p(X).

The proof of this result required compactness arguments of the perturbed James
type and it was based on Theorem 10.54; see [91, Theorem A.1]. In [42] this result
is already presented as a generalization of James’ weak compactness theorem. Let
us observe that we can apply Theorem 10.60 for f = p* to obtain the proof for
the main implication (ii) = (i) above. Indeed, L' (Q,.7,P) is weakly compactly
generated and so its dual ball is w*-sequentially compact.

Delbaen gave a different approach for Theorem 10.64. His proof is valid for
nonseparable ! (£2,.%,P) spaces, and it is based in a homogenization trick to
reduce the matter to a direct application of the classical James’ weak compactness
theorem, as well as the Dunford—Pettis theorem characterizing weakly compact sets
inL'(Q,Z,P).

For our next application let us recall that a Young function ¥ is an even, convex
function ¥ : E — [0, +oo| with the properties:

1. ¥(0)=0
2. limy e P(x) = Foo
3. ¥ < +o0 in a neighborhood of 0

The Orlicz space LY is defined as
LY(Q, 7 ,P):={X € L°(Q,.%,P) : there exists o > 0 with ep[¥(aX)] < +oo},

and we consider the Luxembourg norm on it:
1
Ny (X) :_inf{c>0:ep {‘P<—X)} §1}, x e LY (Q,7,P)).
c

With the usual pointwise lattice operations, LY (€,.%P) is a Banach lattice and we
have the inclusions
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L°(Q,7,P) c LY (Q,7,P) c L'(Q,7,P).

Moreover, (L¥)* = L¥" @ G where G is the singular band and LY" is the order
continuous band identified with the Orlicz space L‘P*, where

P (y) := sup{yx — ¥ (x)}

x€R

is the Young function conjugate to ¥, [126].

Risk measures defined on LY (Q,.%,P) and their robust representation are of
interest in mathematical finance too. Delbaen has recently proved that a risk measure
defined on L (€Q,.%#,P) finitely extends to an Orlicz space if, and only if, it verifies
the equivalent conditions of Theorem 10.64; see [43, Sect. 4.16]. Theorem 10.64 is
extended to Orlicz spaces in [119, Theorem 1].

Theorem 10.65 (Lebesgue risk measures in Orlicz spaces). Let ¥ be a Young
Sfunction with finite conjugate ¥* and let

o (LY(Q,.7,P)* = RU{+eo}

be a o((LY)*,L¥)-lower semicontinuous penalty function representing a finite
monetary risk measure p as

p(X)= sup {-E[X-Y]-a(Y)}.
YeM¥*

The following are equivalent:

(i) Foreachc € R, o ' ((—oo,c]) is a weakly compact subset of MY (Q, .7, P).
(ii) Forevery X € LY (Q,.% P), the supremum in the equality

p(X)= sup {-E[X-Y]-oa(Y)}
YeM?¥”

is attained.
(iii) p is order sequentially continuous.

Let us notice that order sequential continuity for a map p in LY is equivalent to
having

limp(X,) = p(X)

whenever (X,) is a sequence in LY a.s. convergent to X and bounded by some
Zc LY, ie., |X,| < Z for all n € N. For that reason it is also said that a map
p : LY — (—oo,+oo] verifies the Lebesgue property whenever it is sequentially
order continuous. Orlicz spaces provide a general framework of Banach lattices
for applications in mathematical finance, for a general picture see [18, 19, 38].
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Noncoercive growing conditions for penalty functions in the Orlicz case have been
studied in [38]. More precisely, let us recall that a Young function @ verifies the A,
condition if there exist #p > 0 and K > 0 such that for every t > 1

D(2t) <KOD(t).

In addition, the Orlicz heart M¥ is the Morse subspace of all X € L such that for
every § >0

es[¥(BX)] < +eo

In [38, Theorem 4.5] it is proved that a risk measure p, defined by a penalty function
a, is finite on the Morse subspace M¥ < LY if, and only if, o satisfies the growing
condition

a(Y) > a+b[Y |-

for all ¥ € L¥", and fixed numbers a,b with b > 0. Theorem 10.60 can be applied
for f = p* because the spaces involved in the representation formulas have w*-
sequentially compact dual balls.

When Y is a Young function such that either ¥ or its conjugate verify the A,
condition we have the following result for the risk measures studied by Cheredito
and Li in [38]:

Corollary 10.66 ([119], Corollaries 6 and 7). Let ¥ be a Young with finite
conjugate W* and such that either ¥ or W* verify the Ay condition. Let p :
L'P(Q, F,P) = R be a finite convex risk measure with the Fatou property, and

p* LY (Q,.7,P) = RU{4oo}
its Fenchel-Legendre conjugate defined on the dual space. The following are
equivalent:
(i) Foreveryc€R, (p*)~!((—oe,c]) is a weakly compact subset of M¥ ™ (Q,.7 | P).
(ii) ForeveryX € L¥(Q,.% P), the supremum in the equality

pX)= sup {-E[X-Y]-p*(-Y)}
YeM¥* )t e(r)=1

is attained.
(iii) p is sequentially order continuous.
(iv) lim, p(X,) = p(X) whenever X, /X in L¥.
(v) dom(p*) c M¥".

We conclude this section with the following question:

Question 10.67. Does Corollary 10.63 remain valid in absence of symmetry?
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analogues of (special cases of) the famous Dyson and Morris constant term
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11.1 Jonathan Borwein

Jon Borwein is known for his love of mathematical constants. We hope this paper
will spark his interest in constant terms.

11.2 Constant Term Identities

The study of constant term identities originated in Dyson’s famous 1962 paper
Statistical theory of the energy levels of complex systems [9]. In this paper Dyson

conjectured that for ay,. .., a, nonnegative integers,
-\ aj “ee !
cr T (1-3)" -l tal (1L1)
1<i#j<n Xj arlay!---ay,!

where CT f(X) stands for the constant term of the Laurent polynomial (or possibly
Laurent series) f(X) = f(x1,...,X,). Dyson’s conjecture was almost instantly
proved by Gunson and Wilson [14,36]. In a very elegant proof, published several
years later [13], Good showed that (11.1) is a direct consequence of Lagrange
interpolation applied to f(X) = 1.

In 1982 Macdonald generalised the equal-parameter case of Dyson’s ex-conject-
ure, i.e.,

crt I (1—ﬁ)k:(k”)! (11.2)

1<ij<n Xj

to all irreducible, reduced root systems; here (11.2) corresponds to the root system
A,_1. Adopting standard notation and terminology—see [17] or the next section—
Macdonald conjectured that [25]

CT H(l—e“)kzll[(kzi), (11.3)

acd i=1

where @ is one of the root systems A,,_1,B,,C,,,D,,E¢,E7,Eg,F4,G, of rank r and
di,...,d, are the degrees of its fundamental invariants. For k = 1 the Macdonald
conjectures are an easy consequence of Weyl’s denominator formula

Z sgn(w)ew(p)’p = H (1 —e*“)

weWw a>0

(where W is the Weyl group of @ and p the Weyl vector), and for B,,,C,,D,, but k
general they follow from the Selberg integral. The first uniform proof of (11.3)—
based on hypergeometric shift operators—was given by Opdam in 1989 [24].
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In his Ph.D. thesis [27] Morris used the Selberg integral to prove a generalisation
of (11.2), now commonly referred to as the Morris or Macdonald—Morris constant
term identity:

- a Xi " (a ik)!((i + 1)k)!
CT[I.UI“‘)"') (“%)ngq(l‘g)k] =11 (:i;)lf(zl+;)l'klf :

(11.4)

where a and b are arbitrary nonnegative integers.

In their recent representation-theoretic work on W-algebra extensions of the
M(2,p) minimal models of conformal field theory [1, 2], Adamovi¢ and Milas
discovered a novel type of constant term identities, which they termed logarithmic
constant term identities. Before stating the results of Adamovi¢ and Milas, some
more notation is needed.

Let (a)n, =a(a+1)---(a+m— 1) denote the usual Pochhammer symbol or rising
factorial, and let u be either a formal or complex variable. Then the (generalised)
binomial coefficient () is defined as

(1—x)" = i(—x)m(”) (11.5)

m=0 m
and
> X" d
log(l-x)=—Y —=—(1-x" .
oe(1 -9 =~ 3 1= -9
Finally, for X = (x1,...,x,), we define the Vandermonde product
AX)= JI (i—x)).
1<i<j<n

One of the discoveries of Adamovi¢ and Milas is the following beautiful
logarithmic analogue of the equal-parameter case (11.2) of Dyson’s identity.

Conjecture 11.1 ([1, Conjecture A.12]). For n an odd positive integer and k a
nonnegative integer define m := (n—1)/2 and K := 2k+ 1. Then

CT A(X)f[lxi’”f[llog(l— 2 ) I (1_ﬁ)1 :% (11.6)

217 1<izj<n xj
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We remark that the kernel on the left is a Laurent series in X of (total) degree O.
Moreover, in the absence of the term [T/, log(1 — x2;/x2;_1) the kernel is a skew-
symmetric Laurent polynomial which therefore has a vanishing constant term. Using
identities for harmonic numbers, Adamovi¢ and Milas proved (11.6) for n = 3; see
[1, Corollary 11.11].

Another result of Adamovié and Milas, first conjectured in [1, Conjecture 10.3]
(and proved for n = 3 in (the second) Theorem 1.1 of that paper, see page 3925) and
subsequently proved in [2, Theorem 1.4], is the following Morris-type logarithmic
constant term identity.

Theorem 11.2. With the same notation as above,

et a0 [T V- [oe (1-22) T (1-2)']

i=1 i=1 X2i-17 1 <idj<n Xj
n—1 .
a+Ki/2
—anH< . (11.7)
o \(m+1)K—1
where a is an indeterminate, c,, a nonzero constant, and

O BK)KY)Y 3K—1\ "' 5K /2 -1\ 7!
Bk S Bk+ 1)K (21(-1) (21(—1) ‘ (11.8)

As we shall see later, the above can be generalised to include an additional free
parameter resulting in a logarithmic constant term identity more closely resembling
Morris’ identity; see (11.9) below.

The work of Adamovi¢ and Milas raises the following obvious questions:

1. Can any of the methods of proof of the classical constant term identities, see,
e.g., [7,8,11-15,19-21, 24,30-32,36-40], be utilised to prove the logarithmic
counterparts?

2. Do more of Macdonald’s identities (11.3) admit logarithmic analogues?

3. All of the classical constant term identities have g-analogues [16, 18,25,27]. Do
such g-analogues also exist in the logarithmic setting?

As to the first and third questions, we can be disappointingly short; we have not
been able to successfully apply any of the known methods of proof of constant term
identities to also prove Conjecture 11.1, and attempts to find g-analogues have been
equally unsuccessful. (In fact, we now believe g-analogues do not exist.)

As to the second question, we have found a very appealing explanation—
itself based on further conjectures!—of the logarithmic constant term identities
of Adamovi¢ and Milas. They arise by differentiating a complex version of
Morris’ constant term identity. Although such complex constant term identities are
conjectured to exist for other root systems as well—this is actually proved in the
case Gp—it seems that only for Aj, and G; these complex identities imply elegant
logarithmic identities.
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o
o

Y

Fig. 11.1 The root systems A, (left) and G, (right) with A = {o;, 00}

The remainder of this paper is organised as follows. In the next section we
introduce some standard notation related to root systems. Then, in Sect. 11.4, we
study certain sign functions and prove a related Pfaffian identity needed subse-
quently. In Sect. 11.5, we conjecture a complex analogue of the Morris constant
term identity (11.4) for n odd and prove this for n = 3 using Zeilberger’s method of
creative telescoping [4, 28]. In Sect. 11.6 we show that the complex Morris identity
implies the following logarithmic analogue of (11.4).

Theorem 11.3 (Logarithmic Morris constant term identity). With the same
notation as in Conjecture 11.1 and conditional on the complex Morris constant
term identity (11.24) to hold, we have

m

o0 (-3) Tles(1-52) 1103

i=1 Y217 1<ij<n i

"Hl (2a+2b+iK)!((i+ 1)K)!!
Tl A (2a+iK)1(2b+iK) KL

(11.9)

where a,b are nonnegative integers.

In Sect. 11.7 we prove complex as well as logarithmic analogues of (11.3) for
the root system G, and finally, in Sect. 11.8, we briefly discuss the classical roots
systems B,,, C,, and D,,.

11.3 Preliminaries on Root Systems and Constant Terms

In the final two sections of this paper we consider root systems of types other than
A, and below we briefly recall some standard notation concerning root systems and
constant term identities. For more details we refer the reader to [17,25].

Let @ be an irreducible, reduced root system in a real Euclidean space E with
bilinear symmetric form (-,-). Fix a base A of @ and denote by @™ the set of
positive roots. Write & > 0 if o € @T. The Weyl vector p is defined as half the
sum of the positive roots: p = %2a>0 o. The height ht(f) of the root 8 is given



224 T. Chappell et al.

by ht(B) = (B,p). Let r be the rank of @ (that is, the dimension of E). Then the
degrees 1 < d; < dp < --- < d, of the fundamental invariants of @ are uniquely
determined by

H 1— tdi 1— tht((x)Jrl
l—r oo 1=~

i>1

For example, in the standard representation of the root system A,,_1,
E={(x1,...,xn) €R": xy+---4x, =0}, (11.10)
D={g—¢: 1<i#j<n}
and
A={oy,...;o0p 1} ={g—¢€11: 1<i<n—1},
where &; denotes the ith standard unit vector in R”. Since ht(g; — € j) =j—1,
1 — fht(e)+1 1 — pi—it1 no_ygi

H | _ M) H 1—i—i :gl—t'

o>0 1<i<j<n

The degrees of A, are thus {2,3,...,n}, and the A,_; case of (11.3) is readily
seen to be (11.2).

As a second example we consider the root system G, which is made up of two
copies of A,—one scaled. E is (11.10) for n = 3, and the canonical choice of simple
roots is given by

=€ —& and op =2& —¢€ — &;.
The following additional four roots complete the set of positive root @:
o+ 0 = & — &,
200 + 0 = € — &3,
300+ 0p =2 — & — &3,
301 +20m =€+ & —2&;.

The degrees of G, are now easily found to be {2,6} and, after the identification
(ef1,e®2,e®2) = (x,,7), the constant term identity (11.3) becomes

2 2 2

(- 2) -2 -2 0-2) (-5 (-2
(DD D0 0-0-9T- () ()

(11.11)
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This was first proved, in independent work, by Habsieger and Zeilberger [15, 38],
who both utilised the A, case of Morris’ constant term identity (11.4). They in fact
proved a (g-analogue of a) slightly more general result related to another conjecture
of Macdonald we discuss next.

Macdonald’s (ex-)conjecture (11.3) may be generalised by replacing the ex-
ponent k on the left by k,, where ky, depends only on the length of the root
o, ie., kg = kg if |lee]| = [|B]|, where || - || := (-,)/2. If &¥ = 20/ ex|)? is the
coroot corresponding to ¢ and p; = %2a>0 kg0, then Macdonald’s generalisation
of (11.3)is

CT [T (1 - =] M. (11.12)

acd a>0 P a\/)|y

If ko is independent of o, i.e., ko = k, then p; = kp and the above right-hand side
may be simplified to that of (11.3).

As an example of (11.12) we consider the full Habsieger—Zeilberger theorem for
G, [15,38].

Theorem 11.4. Let @; and @, denote the set of short and long roots of Gy,
respectively. Then

. . (3k+ 3m) ! (3%)1(2K)! (2m)!
CT I (1= T (0 =€) = S o)1k ) TR

acd; acdg

(11.13)

Note that for k = 0 or m = 0 this yields (11.2) for n = 3. As we shall see in
Sect. 11.7, it is the above identity, not its equal-parameter case (11.11), that admits
a logarithmic analogue.

11.4 The Signatures 7;;

In our discussion of complex and logarithmic constant term identities in Sects.
11.5-11.8, an important role is played by certain signatures 7;;. For the convenience
of the reader, in this section we have collected all relevant facts about the ;.

For a fixed odd positive integer n and m := (n —1)/2 define 7;; for 1 <i <
Jj<nby

1 ifj<m+i
T = tysm+s, (11.14)
—1 ifj>m+i,

and extend this to all 1 < i, j < n by setting 7;; = —7;;. Assuming that I <i <n we
have

Tn=x(n<m+i)—xn>m+i,
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where y (true) = 1 and y (false) = 0. Since n — m = m+ 1, this is the same as
Tn=x(i>m)—x(i<m)=—Ty 41 = Tis1,1-
For 1 <i, j < n we clearly also have 7;; = 7;1 ;1 1. Hence the matrix
T:=(Tj)1<i,j<n (11.15)

is a skew-symmetric circulant matrix. For example, forn =35,

01 1-1-1

-1 0 1 1-1
T=|-1-1 0 1 1
1-1-1 0 1

1 1-1-1 0

We note that all of the row sums (and column sums) of the above matrix are zero.
Because T is a circulant matrix, to verify this property holds for all (odd) n, we only
need to verify this for the first row:

n m+1 n
211j:21_ Z l=m—(n—-m—1)=m—m=0.
= = jemt2

By the skew symmetry, the vanishing of the row sums may also be stated as follows.

Lemma 11.5. For1 <i<n,

i—1 n
2 Ti= 2 T
=

j=itl

A property of the signatures 7;;, which will be important in our later discussions,
can be neatly clarified by having recourse to Pfaffians.

By a perfect matching (or 1-factor) on [n+1]: ={1,2,...,n+1} we mean a graph
on the vertex set [n+1] such that each vertex has degree one; see, e.g., [6, 35]. If
in a perfect matching 7 the vertices i<j are connected by an edge we say that
(i,j)em. Two edges (i,j) and (k,I) of & are said to be crossing if i<k<j<I or
k<i<l<j. The crossing number c(i, j) of the edge (i, j) € 7 is the number of edges
crossed by (i,j), and the crossing number c(x) is the total number of pairs of
crossing edges: c(n):% Yi,j)enc(i, j). We can embed perfect matching in the xy-
plane, such that (i) the vertex labelled i occurs at the point (i,0), and (ii) the edges
(i,7) and (k,1) intersect exactly once if they are crossing and do not intersect if they
are non-crossing. For example, the perfect matching {(1,3),(2,7),(4,5),(6,8)}
corresponds to
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and has crossing number 2 (¢(4,5) =0, ¢(1,3) = ¢(6,8) =1 and ¢(2,7) = 2).
The Pfaffian of a (2N) x (2N) skew-symmetric matrix A is defined as [6,22,23,
35]:

Pf(A) := Y (—1)°™ T Ay (11.16)

T (i.j)en

After these preliminaries on perfect matching and Pfaffians we now form a second
skew-symmetric matrix, closely related to T. First we extend the 7;; to 1 <i,j <
n+ 1 by setting 7;,,1 = b;. We then define the (n+ 1) x (n+ 1) skew-symmetric
matrix Q(a,b) = (Qij(a,b))1<i j<nt1, Wherea = (ai,...,ap+1) and b= (by,...,by),
as follows:

Q,'j(a,b):‘v,'ja,'aj for 1 §i<j§n+1. (11.17)

For example, forn =35,

0 ajay ajas —aiag —dajas ala(,bl

—ajai 0 aras ardy —drds 612616[?2

Q(a b) _ —asag —daszayp 0 asdy asdas a3a6b3
’ asag —daaan —daaas 0 asdas 614616[?4
asag asan —dasas —asay 0 a5a6b5

—a(,albl —a6a2b2 —6166131)3 —a6a4b4 —a6a5b5 0

Note that T is the submatrix of Q((1"*!),b) obtained by deleting the last row and
column.

Proposition 11.6. We have

m

Pf(Q(a,b)) = (—1)(2)611612 “ g (bl +by+--- —i—bn).

Proof. The main point of our proof below is to exploit a cyclic symmetry of the
terms contributing to Pf (Q(a,b)). This reduces the computation of the Pfaffian to
that of a sub-Pfaffian of lower order.

Let S(m;a,b) denote the summand of Pf(Q(a, b)), that s,

Pf(Q(a,b)) =Y S(mia,b)  with S(ma,b)= (-1 ] Qij(a,b).
T (i))en

From the definition (11.17) of Q;;(a,b) and the fact that 7 is a perfect matching on
[n+1],
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S(ﬂ:;a,b) = (—1)0(”) H a;ia;tij = (—l)c(ﬂ)al ccdpg H Tij- (11.18)
(i,j)er (i,j)er

We now observe that S(m;a,b) is, up to a cyclic permutation of b, invariant under
the permutation w given by (1,2,3,...,n,n+1) — (n,1,2,...,n—1,n+1). To see
this, denote by 7’ the image of & under w. For example, the image of the perfect
matching given on the previous page is

Under the permutation w, all edges not containing the vertices 1 or n+ 1 are shifted
one unit to the left: (i, j) — (i—1,j—1). For the edge (1, j) containing vertex 1 we
have:

(i) If j <nthen (1,)) — (j— 1,n). This also implies that the edge (j/,n+1) (j >
2) containing vertex n+ 1 maps to (j/ —1,n+1).
(i) If j=n-+1then (1,j) = (L,n+ 1) (mn+1) = (j— Ln+1).

First we consider (i). If we remove the edge (1, ) from 7 and carry out w, then
the number of crossings of its image is exactly that of 7. Hence we only need to
focus on the edge (1,/) and its image under w. In & the edge (1, /) has crossing
number c(1,j) = j (mod 2), while the edge (j — 1,n) in &’ has crossing number
c(j—1,n)=n—j=j+1 (mod 2). Hence (—1)® = —(=1)c"). Since 7; =
Ti—1,j—1 (for2 <i< j<n)and 1) ; = —7Tj_1, it thus follows that & and 7’ have the
same sign. Finally we note that under w, b; = T; -1 — Ti—1 n+1 = bi—1 (since i # 1).
We thus conclude that

S(m;a, (by,...,by)) = S(7'sa, (ba,...,by,b1)), (11.19)

where we note that both sides depend on a single b;(# b;) only. For example, the
perfect matching in the above two figures correspond to

S((173)7 (277)7 (475)7 (678);‘17 (blv- .. ab7))
= (—1)2-611613 . (—612617) -aqds '616618]96 = —a- --agb6
and

S((1,6),(2,7),(3,4),(5,8):a, (b1,...,b7))

= (—1)3 . (—ala(,) . (—a2a7) cazag X a5a8b5 = —aj-: ~agb5.



11 Logarithmic and Complex Constant Term Identities 229

The case (ii) is even simpler; the edge (1,n+ 1) in 7 and its image (n,n+1) in 7/
both have crossing number 0. The crossing numbers of all other edges do not change
by a global shift of one unit to the right, so that ¢(7) = ¢(7'):

Moreover, 7;; = T;—1,j—1 (for 2 <i < j <n) so that 7 and ©r’ again have the same
sign. Finally, from by = T 11 = Ty 41 = by, it follows that once again (11.19)
holds, where this time both sides depend only on b;.

From (11.19) it follows that the Pfaffian Pf(Q(a,b)) is symmetric under cyclic
permutations of the b;. But since the Pfaffian, viewed as a function of b, has degree
1 it thus follows [see also (11.18)] that

PE(Q(a,b)) = Cay+-ans 1 (b1 -+ by)

for some yet-unknown constant C. We shall determine C by computing the coeffi-
cient of b, of Pf(Q((1""!),b), which is equal to the Pfaffian of the (2m) x (2m)
submatrix M of T obtained by deleting its last row and column.

We recall the property Pf(M) = Pf(U'MU) of Pfaffians, where U is a unipotent
triangular matrix [35]. Choosing the nonzero entries of the (2m) x (2m) matrix U to
be Uj=1fori=1,...,2m,and U; ;1 = 1 fori =1,...,m, one transforms M into

(M/ I )

1| o

where M’ is the upper-left m x m submatrix of M and I is the m x m identity
matrix. The Pfaffian of the above matrix, and hence that of M, is exactly (cf. [35])

(— 1)(31) det(l) = (— 1)(31) This, in turn, implies that C = (—1)(31), and the required
formula follows. u

Remark 11.7. By a slight modification of the above proof the following more
general Pfaffian results. Let

Q,']-(X,a,b) = T,'ja,'aj(xl-—l—xj) for 1 §i<j§n
and
Qiny1(X,a,b) =Ty 1aiap11 = aiap by for 1 <i<n,

and use this to form the (n+4 1) X (n+ 1) skew-symmetric matrix Q(X,a,b).
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Then

n
PR(Q(X,a,b)) =2 (=1)Dayar---a,11 N bi(xig1 - Xiem + Xipmr 1 Xign—1),
i=1

where x4, := x; fori > 1. For X = (1/2,...,1/2) this yields Proposition 11.6.

11.5 The Complex Morris Constant Term Identity

Thanks to Lemma 11.5,

(-5 1 (-9"0-()7)

I<ij<n 1<i<j<n
:(—1)(g)ﬁxi;;llrj‘;z;:m’ij H (1_(xz)fij)2
=1 1<i<j<n Xj
Xi\ %i\2
= 11 (1_(_) ) (11.20)
I<i<j<n Xj

For odd values of n Morris’ constant term identity (11.4) can thus be rewritten in
the equivalent form

CT[,f!“—xl->“<l—%>bls££§,,<l—<i‘j>“’>”‘}

_ ka (a+b+ik)!((i + 1)k)!
14 (a+ik)! (b + ik) k!

(11.21)

The crucial point about this rewriting is that in the product
X\ Tij\ 2k
m -G
1<i<j<n Xj

each of the variables x1,x,,...,x, occurs exactly m times in one of the numerators
and m times in one of the denominators. For example,

(- () = (-2 (-2 (-2

Obviously, for n even such a rewriting is not possible.

1<i<j<3
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We are now interested in the question as to what happens when 2k is replaced
by an arbitrary complex variable u. For n = 3 we will later prove the following
proposition.

Proposition 11.8. For a,b nonnegative integers and Re(1 + %u) >0,
1\? 1\? 1\?
CT {(1—)()“(1—)1)“(1—1)“(1——) (1—-) (1—-)

x

y Z
" (1_5)”(1_2)”(1_5)”]
y 4 X
X )r(1+§u) 2 (L + iu)ars .
31+ 4u) =g (1+ Jin) o (1 + Fiu)p

(11.22)

As follows from its proof, a slightly more general result in fact holds. Using
(Dntm = (Dn(z+n)m and (1 —x)4(1 —x~1)? = (—x)72(1 — x)**?, then replacing
a+ a— b, and finally using (z—b), = (—1)?(1 — z);, the identity (11.22) can also
be stated as

0213 (2) (-]
F(143u) & (—a—1iu),

I1

r3(1+4u) g (1+Siw),

1

= cos (5 7u) (11.23)

where [X€|f(X) (with X¢ = x{'---x¢") denotes the coefficient of X in f(X). This
alternative form of (11.22) is true for all a,u € C such that Re(1 + %u) > 0.

In view of Proposition 11.8 it seems reasonable to make the following more
general conjecture.

Conjecture 11.9 (Complex Morris constant term identity). Let n be an odd positive
integer, a,b nonnegative integers and u € C such that Re(1 + %nu) > 0. Then there
exists a polynomial P,(x), independent of a and b, such that P,(0) = 1/(n—2)!!,

P,(1)=1,and
(1 —Xi)a(l _%i)b H (1 _ ())Cf_j)rij)”]

1<i<j<n

n
cr|
i=1

r(1+ inu) (L+ Siu)arp

I1

= X"P,(x*
nl )F”(l +3u) i (1+ 3iu)a(1+ Liu),

, (11.24)

where x = x(u) := cos (§7u) and m := (n—1) /2.

Note that for # an odd positive integer the kernel on the left of (11.24) is a skew-
symmetric function, so that its constant term trivially vanishes. When « is an even
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integer, say 2k then x = cos(k) = (—1)¥ so that "B, (x?) = (= 1)¥"P, (1) = (—1)km
in accordance with (11.21). Similar to the case n = 3, in the form

n

[(x1 -+ xn)?] [CT [H(l —xt 1 (1 B (x,)r,»,-)u}

i=1 1<i<j<n Xj

F(l—i— nu) "= ( a——lu)b

F”l—i—uH

= X"P,(x?)
i=0 l“)b

Conjecture 11.9 should hold for all a € C.

For n = 1 the left-side of (11.24) does not depend on u so that Pj(x) = 1.
Moreover, from Proposition 11.8, it follows that also P;(x) = 1. Extensive numerical
computations leave little doubt that the next two instances of P,(x) are given by

(1+2x)

m|.—

P5(x) =
Py(x) = E(3+26x— 16x% 4 32x°).

Conjecturally, we also have deg(P,(x)) = (%) and

but beyond this we know very little about P, (x).
To conclude our discussion of the polynomials P, (x) we note that if z; = z;(u) :=
cos(imu), then

P5(x2(u)) = %(24—21)
Py (x*(u) = %(204—2011 +42+23),

suggesting that the coefficients of z; admit a combinatorial interpretation.

As will be shown in the next section, the complex Morris constant term identity
(11.24) implies the logarithmic Morris constant term identity (11.9), and the only
properties of P,(x) that are essential in the proof are P,(0) = 1/(n —2)!! and
P,(1)=1.

To conclude this section we give a proof of Proposition 11.8. The reader
unfamiliar with the basic setup of the method of creative telescoping is advised
to consult the text [28].
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Proof of Proposition 11.8. Instead of proving (11.22) we establish the slightly more
general (11.23).

By a sixfold use of the binomial expansion (11.5), the constant term identity
(11.23) can be written as the following combinatorial sum:

2 G )

r(1+3u) —a—1%iu),

(
F%H%u)g (1+ 3iu)

= cos (%nfu)

where mj3 := mg and where a,u € C such that Re(1+ 3u) > 0 and b is a nonnegative
integer. If we denote the summand of this identity by fb( u,—1 —a;m) where m :=
(mg,my,my), then we need to prove that

I(143u) & (1+
Fy(u,v):= Y, fo(u,vim) = cos (mu) 3 1+Z H 1:_1

mezZ3 i=

. (11.25)

for Re(1+3u) > 0.
In our working below we suppress the dependence of the various functions on the
variables u and v. In particular we write Fj, and fj,(m) for F,(u,v) and fj,(u,v;m).
The function fj(m) vanishes unless my = m; = m;. Hence

< u\? —2u,—2u,—2u
F = —1 m = F ’ ’ '1
0 § ( ) (m) 3 2|: 1,1 s

where we adopt standard notation for (generalised) hypergeometric series; see, e.g.,

[3,5]. The 3F; series is summable by the 2a = b = ¢ = —2u case of Dixon’s sum [3,
Eq. (2.2.11)]
2a,b,c
2 ;1
1+2a—-b,1+2a—c }

_ I'(l+a)l'(1+2a—b)I'(1+2a—c)['(1+a—b—c)

S T(1+2a)I(1+a—b)(1+a—c)I'(1+2a—b—c) (11.26)

forRe(l+a—b—c)> 0. As aresult,

'(l—w)I'(14+u) I'(1+3u)
T(1—2u)(142u) T3(1+u)

I'(1+3u)
3(1+u)’

Fy= = cos(mu)

proving the b = 0 instance of (11.25).

In the remainder we assume that b > 1.

Let € be the generator of the cyclic group C; acting on m as é(m) =
(ma,mg,my). With the help of the multivariable Zeilberger algorithm [4], one
discovers the (humanly verifiable) rational function identity



234 T. Chappell et al.

2

2
ty(m )]J)(bﬂu) H)(b—l—v—iu)
2
=> (Vb(el +C (m)) 5p(€" (m)) +rb(<5"(m))), (11.27)
i=0
where
rp(m) = — mo (b +v+my —mo)
P T T 6(b+ my —ma) (b my—mo)
X ((2b+v>(3b2+3bv+2w)+2(m1_mz)(3b2+3bv+v2—u\;))7
s (m) :_fbf1(el+m) _ (2u —mo)(b+v+mo—my)(b+my—my—1)
’ fo-1(m) (14+mo)(b+mo—my)(b+v+my—mo—1)~
t — fb(m) _ 2 b+v+mi—mi+1
p(m) = — — T T

fo-1(m) iy btmi—mig

and ey +m := (1 +mg,my,my). If we multiply (11.27) by —f,_;(m) and use that
fo(m) = £,(¢"(m)) we find that

2
fo(m) [T+ iu) = for(m) [J(b+v —iu)
0

=

M l;jm

{rb (e1 + %" (m)) fo—1(e1 + € (m)) — 1, (€ (m)) fy—1 (%i(m))} :

i=0

Summing this over m € Z? the right-hand side telescopes to zero, resulting in

(b+v—
By =Fi- 1H—b+m =

By b-fold iteration this yields

11.6 The Logarithmic Morris Constant Term Identity

This section contains three parts. In the first very short part, we present an integral
analogue of the logarithmic Morris constant term identity. This integral may be
viewed as a logarithmic version of the well-known Morris integral. The second



11 Logarithmic and Complex Constant Term Identities 235

and third, more substantial parts, contain, respectively, a proof of Theorem 11.3
and, exploiting some further results of Adamovi¢ and Milas, a strengthening of this
theorem.

11.6.1 A Logarithmic Morris Integral

By a repeated use of Cauchy’s integral formula, constant term identities such as
(11.4) or (11.9) may be recast in the form of multiple integral evaluations. In the
case of (11.4) this leads to the well-known Morris integral [10,27]

n .
[T ?%sint2(6;) ] sin*(6;—6;)d6;---de,

i=1 1<i<j<n

nfl .
+b+ik)!((i+ 1)k)!
Ben(a0)" T “
= (Bl )g (a+ik)!(b+ik) k!

where By ,(a,b) = mi¢ P kn-1)=a=b The Morris integral may be shown to be a
simple consequence of the Selberg integral [10,29]. Thanks to (11.9) we now have
a logarithmic analogue of the Morris integral as follows:

/ Hela b) ,Sma+b Hlog( 2i(65— 92,-71))
[-37.

X H sin® (6, — 6,)d6; ---do,

1<i<j<n
n 1 (2a+2b+iK)!((i+ DK)!!
n!l g (2a+iK)!'(2b+iK)!K!!

(Cknab)

where Cp,(a,b) = mi® t~m2~Km=a=b_ Unfortunately, this cannot be rewritten
further in a form that one could truly call a logarithmic Selberg integral.

11.6.2 Proof of Theorem 11.3

In this subsection we prove that the logarithmic Morris constant term identity (11.9)
is nothing but the mth derivative of the complex Morris constant term identity
(11.24) evaluated at u = K := 2k + 1.
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To set things up we first prepare a technical lemma. For G, the symmetric group
on n letters and w € &, we denote by sgn(w) the signature of the permutation w;
see, €.g., [26]. The identity permutation in &, will be written as 1.

Lemma 11.10. Forn an odd integer, set m:= (n—1)/2. Let t;j for 1 <i < j<n+1
be a collection of signatures (i.e., each t;; is either +1 or —1) such that t; 1 = 1
and Q a skew-symmetric matrix with entries Q,j =tjfor1 <i<j<n+1

If f(X) is a skew-symmetric polynomial in X = (x1,...,%,), §(z) a Laurent
polynomial or Laurent series in the scalar variable z, and g;j(X) = g((x;/x;)"i),
then the following statements hold:

1. Forw € &, denote g(w;X) =TI} &(Xwy | /Xwy, ). Then

CT [f(X)g(w:X)] = sgn(w) CT [f(X)g(ILX)].

2. For T a perfect matching on [n+ 1],

St 00 T1 a00] ~pr@CT 0], (128
T (i.j)en
Jj#n+1

We will be needing a special case of this lemma corresponding to t;; = T;;
for 1 <i,j < n, with the 7;; defined in (11.14). Then the matrix 0 coincides
with Q((1"*1),(1")) of (11.17), so that by Lemma 11.6, Pf(Q) = 1)@ n. we
summarise this in the following corollary.

Corollary 11.11. Ifin Lemma 11.10 we specialise t;; = T;j for 1 <i < j <n, then

>.cT {f(X) I gz;,-<X)} = (-)EnCT [f(X)g(1:X)]. (11.29)

(i,j)erm
Jj#n+1

Proof of Lemma 11.10.
1. According to the “Stanton—Stembridge trick” [33,34,39],

CT [n(X)] =CT [w(h(X))] forwe &,,

where w(h(X)) is shorthand for A(x,, ..., %, ).
For our particular choice of 4, the skew-symmetric factor f(X) produces the
claimed sign.

2. A permutation w € G, may be interpreted as a signed perfect matching
(= 1)) (wy,wa) -+ (Wa—2,Wn_1)(Wn,Wny1), where d(w) counts the number
[{k < m: wy_1 > wy}| By claim (11.10), the left-hand side of (11.28) is a
multiple of CT [ f(X)g(1;X)]; the factor is exactly the sum ¥ (— 1) []t;, in
which one recognises the Pfaffian of Q. |
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Conditional proof of (11.9). Suppressing the a and b dependence, denote the
left- and right-hand sides of (11.24) by L, (u) and R, (u), respectively. We then wish

to show that (11.9) is identical to

L (K) = Ry (K).

Let us first consider the right-hand side, which we write as R, (u) =

where
pn(tt) = X"Py(x2), x=x(u) = cos ({mu)
and

F(l—l—%nu)’i:[l (14 %it)asp
r(1+ 3u) i (14 Jiu)a(1+ Siu)y

ra(u) =
Since x(K) = 0, it follows that for 0 < j <m,

P ) = e (B)

Therefore, since r,,(u) is m times differentiable at u = K,
R (K) = p" (K)ra(K
n ( ) Pn ( )r"( )
By the functional equation for the gamma function
N127N2\ /m/2 if N> 0is odd,
r(1+1iN)=
NI12N/2 if N > 0 is even,

and, consequently,

(N +2a)!!

(12N = 5o

Pa()ra(u),

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)

for any nonnegative integer N. Applying these formulae to (11.30) with u = K, we

find that

r(K) =

(2)m"1:[1(2a+2b+iK)!!((i+1)K)!!
/) L5 (2a+iK)(2b+iK)IK!!

Combined with (11.31) and (11.32) this implies

" (2a+2b+iK)((i+ 1)K)!!

() gy — (10D i
Ry (K) = (- 1) ”H 2a+1K”(2b—|—lK)”K”'

i=0

(11.35)
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Next we focus on the calculation of L,(lm) (K). To keep all equations in check

we define

n

faX) =T —xi)“(l - l)b.

i=1 i

and

n

Fup(X) = AX) [ ™(1 —x,-)“(l - l)b I (1 - x—)k (11.36)

=1 XiZi<ifj<n

Leti:= (i1,...,im) and j := (j1,..., jm). Then, by a straightforward application
of the product rule,

L= Y Y L),
1<i|<ji<n 1<im<jm<n
where
s =t 1 (1-(2)°) e (1- (1))

For u = K the kernel without the product over logarithms is a skew-symmetric
function in X, so that L, (K) = 0 if there exists a pair of variables, say x, and x;,
that does not occur in the product of logarithms. In other words, L,.; j(K) vanishes
unless all of the 2m = n — 1 entries of i and j are distinct:

= ZCT {fab(x)lgggn(l _ (xj)fz/) ﬁlog (1 3 (i—;i)ﬂm)],

where the sum is over 1 < iy < j, < n for 1 < /¢ < m such that all of i,...,i,,
J1,---, jm are distinct. By (11.20) and

19139 (1 - (x,) ”) - (_1)(?)A(X)£[1x;m

this can be simplified to

L (k) = ()G Y er { w(X Hlog (1- (32" )}

X

Using the &,, symmetry of the product over the logarithmic terms, this reduces
further to
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L,({”) (K) = (— l)km+ m!ZCT [ (X Hlog (1 — (x,[) lw)},

X

Where1<1p<1p<nf0rl<€<m such that i} < i, < --- < iy and all of
i1y---yimy J1,---,jm are pairwise distinct.

For the term in the summand corresponding to i, j there is exactly one integer ¢
in [n] such that ¢ ¢ i, j. Pair this integer with n+ 1 to form the edge (/,n+1) in a
perfect matching on [n + 1]. The other edges of this perfect matching are given by
the m distinct pairs (i1, j1),- -, (im, jm). Hence

L) = 1 Om g er [mao TT e (1- (%))

(i.jem J
Jj#n+1

Since F,(X) is a skew-symmetric function (it is the product of a symmetric function
times the skew-symmetric Vandermonde product A (X)) we are in a position to apply
Corollary 11.11. Thus

(m) =(=1)"nm! 1 _ i .
LK) = (~1)f 'CT[Fab<x>Hlog(1 1))

X2i

Finally we replace X +— X ! using F,;,(X~!) = (—=1)"Fp,(X) and use the symmetry
in a and b to find

L (K) = (=1)®D™miCT |F, { Hlog (1 X 1)}

Equating this with (11.35) completes the proof of (11.9). ]

11.6.3 A Strengthening of Theorem 11.3

As will be described in more detail below, using some further results of Adamovié
and Milas, it follows that the logarithmic Morris constant term identity (11.9) holds
provided it holds for a = b = 0, i.e., provided the logarithmic analogue (11.2) of
Dyson’s identity holds. The proof of Theorem 11.3 given in the previous subsection
implies that the latter follows from what could be termed the complex analogue of
Dyson’s identity, i.e., the a = b = 0 case of (11.24):

5 T(1+ $nu)

CT{]‘[ I1 ( ( )””:x’”a( )m (11.37)

i=11<i<j<n

As a consequence of all this, Theorem 11.3 can be strengthened as follows.
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Theorem 11.12 (Logarithmic Morris constant term identity, strong version).
The complex Dyson constant term identity (11.37) implies the logarithmic Morris
constant term identity.

To justify this claim, let e,(X) for r = 0,1,...,n denote the rth elementary
symmetric function. The e,(X) have generating function [26]

ZZ er(X) =] +2xi). (11.38)
i=1

Recalling definition (11.36) of F;,, we now define f;(a) = f-(a,b,k,n) by

fr(a)=CT [(—l)re,(X)Gab(X)} ,

where

Gup(X l_Ilog(l—X2 1)

In the following b may be viewed as a formal or complex variable, but a must be
taken to be an integer.
From (11.38) with z = —1 it follows that

3 fo(@) = CT[Gay1p(X)] = fola+ 1), (11.39)
r=0

According to [2, Theorem 7.1] (translated into the notation of this paper) we also
have

(n=r)2b+1K)fr(a) = (r+1)2a+2+4 (n—r—1)K)fr+1(a), (11.40)

where we recall that K := 2k + 1. Iterating this recursion yields

n\ = 2b+iK
fr(@) _fO(“)<r) g2a+2+(n—i— DK’

Summing both sides over r and using (11.39) leads to

—n,2b/K

1-n—(2a+2)/K’ -

fo<a+1>=fo<a>zm[

The »F) series sums to ((2a+2b+2)/K),/((2a+2)K), by the Chu—Vandermonde
sum [3, Corollary 2.2.3]. Therefore,
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n—1 .
2a+2b+2+iK
fota+ 1) =fole) [T 75—

i=

This functional equation can be solved to finally yield

n(2a+2b+iK)! (iK)!!
=fo(0 H (2b+iK)1(2a+iK)!

=

To summarise the above computations, we have established that

nfl a i 1
CTGw)] = T 6000 TT G ey )

i=

But since G o(X) is homogeneous of degree 0 it follows that
CT [Go(X)] = CT [Goo(X)],

so that indeed the logarithmic Morris constant term identity is implied by its a =
b =0 case.

We finally remark that it seems highly plausible that the recurrence (11.40) has
the following analogue for the complex Morris identity (enhanced by the term
(—1)"e,(X) in the kernel):

(n—r)2b+ru)fr(a) = (r+1)2a+2+ n—r—Du)frr1(a).

However, the fact that for general complex u the kernel is not a skew-symmetric
function seems to prevent the proof of [2, Theorem 7.1] carrying over to the complex
case in a straightforward manner.

11.7 The Root System G;

In this section we prove complex and logarithmic analogues of the Habsieger—
Zeilberger identity (11.13).

Theorem 11.13 (Complex G, constant term identity). For u,v € C such that
Re(1+3u) > 0andRe(1+3(u+v)) >0,

(-2 (- (- 2703 (- (-]

~ cos(3mu)cos (37v)I(1+ 3 (u+v))I(1+ 3u)T (14 u)[(1+v) (11.41)
(4 3u+ D +u+ i) F A+ @+ v) P21+ L) r (1 +4v) ‘
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Proof. We adopt the method of proof employed by Habsieger and Zeilberger [15,
38] in their proof of Theorem 11.4.

If A(x,y,z;a,u) denotes the kernel on the left of the complex Morris identity
(11.23) for n = 3, and if and G(x,y,z;u,v) denotes the kernel on the left of
(11.41), then

G(x,y,zu,v) = A(x/y,y/z,2/x,v,u).
Therefore,

CTG(x,y,z;u,v) = CTA(x/y,y/z,2/x;v,u)

o CTA(.x,y7Z; v, M) ’xyzzl

i [X*yP 2P A(x,y,z;v,u)

I(1+3u —v,—lu—v,—u—v
Ch. )3F2 2 1,

1
=cos (5u) ———=—
( )F3(1+%u) 1+ 3u,1+u

where the last equality follows from (11.23). Summing the 3F, series by Dixon’s
sum (11.26) with (2a,b,c) — (—v, —%u — v, —u — v) completes the proof. |

Just as for the root system A,_;, we can use the complex G, constant term
identity to prove a logarithmic analogue of (11.13).

Theorem 11.14. Assume the representation of the Gy root system as given in
Sect. 11.3, and let @] and (DIJr denote the set of positive short and positive long
roots, respectively. Define

1 (3K +3M)11(3K)!1(2K) 1 (2M)!!
3 (3K +2M)!1(2K + M)N'(K + M) 1K' K TM 11

G(K,M) =
Then for k,m nonnegative integers,

CT[e3°‘12°‘2log(1—e°‘2) IT (=) JT 0= ] (1—e0‘)’”] =G(K,M),

Oce(pl+ acd; acds

where (K,M) := (2k+ 1,2m), and

CT[e2“1“21og(1—e“1) IT = [T (1= ] (1—e°‘)'"] =G(K,M),

(XE‘D;’ acd; acdg

where (K,M) := (2k,2m+1).
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We can more explicitly write the kernels of the two logarithmic G, constant term
identities as

2 2

A(C-D0-D0-D0-H0-50-2)
((-H0-H0-D0-H-H0-)

(-0 (-Hee(1-Y)
(-50-D0-50-50-50-2))
(-H0-H0-D-)0-H0-)"

Proof of Theorem 11.14. If we differentiate (11.41) with respect to u, use the cyclic
symmetry in (x,y,z) of the kernel on the left and finally set u = 2k+ 1 = K, we get

serlu (15050 F 0D 0D 0-0-9)]
o (=DM cos (3mv)I (14 3(K+v)T(14+3K)C(1+K)T(1+v)
T2 T(I43K+0 I (1+K+ (1 + L (k+v) P21+ 1) +1y)’

Setting v = 2m = M and carrying out some simplifications using (11.33) and (11.34)
completes the proof of the first claim.

In much the same way, if we differentiate (11.41) with respect to v, use the cyclic
symmetry in (x,y,z) and set v =2m+ 1 = M, we get

s s (13) -5 (-5 (-2 (200
o (=1)""cos (3mu)C(1+ 3 (u+M))T (14 3u)(1+u)[(1+M)
T2 (14 3u M)T (L4 u+ )T (1 4+ L+ M) P2 (1 + L)L (1+ 1M

Setting u = 2k = K yields the second claim. |



244 T. Chappell et al.
11.8 Other Root Systems

Although further root systems admit complex analogues of the Macdonald constant
term identities (11.3) or (11.12), it seems the existence of elegant logarithmic
identities is restricted to Ay, and G;. To see why this is so, we will discuss the
root systems B, C, and D,. In order to treat all three simultaneously, it will be
convenient to consider the more general non-reduced root system BC,,. With g; again
denoting the ith standard unit vector in R”, this root system is given by

D={tg: 1<i<n}U{£2g: 1 <i<n}U{xgte: 1<i<j<n}.
Using the Selberg integral, Macdonald proved that [25]
n
CT| [T —-x)"(1-x2" [ (—xx)
i=1 1<i<j<n

"1:[1 (k+ik)!(2a+ 2b + 2ik)!(2b + 2ik)!
kKl(a+b+ik)!(b+ik)(a+2b+ (n+i—1)k)!

i=

(11.42)

where a,b,k are nonnegative integers and where we have adopted the standard
shorthand notation (1 —x%) := (1 —x)(1 — 1/x), (1 —x%2) := (1 —x*)(1 — 1/x?),
(1 —xFy®) := (1 —xy)(1 —x/y)(1 —y/x)(1 — 1/xy). For b = 0 the above identity is
the B, case of (11.12), for a = 0 it is the C,, case of (11.12) and fora =b =0 it is
the D,, case of (11.12) [and also (11.3)].

A first task in finding a complex analogue of (11.42) is to fix signatures 7;; and
o;j for 1 <1, j < n such that

M a-x>H= 11 (1—(x,~x,~)""f) (1—(x’) )2. (11.43)

1<i<j<n 1<i<j<n Xj

This would allow the rewriting of (11.42) as

CT ﬁ(l—x)(l— )b H (1—()6,')6,')0”) (1_()6,)11'/)2/(]

i=1 1<i<j<n Xj
l:[1 (k+ik)!(2a + 2b + 2ik)!(2b + 2ik)! (11.44)
o kl(a+b+ik)!(b+ik)!(a+2b+ (n4i—1)k)! '

after which 2k can be replaced by the complex variable u.
In the following we abbreviate (11.43) as L(X) = Rg¢(X). In order to satisfy this
equation, we note that for an arbitrary choice of the signatures o;; and 7;;,



11 Logarithmic and Complex Constant Term Identities 245

L(X) = H (1 - (x,-xj)iﬁij) (1 _ (ﬁ)im‘)

1<i<j<n Xj
<\ — T N\ 2 i\ Tij\ 2
= I G (3) (1= 0a)”) (1= (3)7)
1<i<j<n J J
n
=2j>i(01j+7j)~ X j<i(0ji—Tji)
== RGT(X) H.xl J .
i=1
We must therefore fix the o;; and 7;; such that
n i—1
2 (04 7))+ X (05— i) =0 (11.45)
Jj=i+1 Jj=1

for all 1 <i <n. If we sum this over all i, this gives

0= Y G,'jE(;) (mod 2).

1<i<j<n

We thus conclude that a necessary condition for (11.45), and hence (11.43), to hold
isthatn = 0,1 (mod 4). As we shall show next it is also a sufficient condition, as
there are many solutions to (11.45) for the above two congruence classes.

Lemma 11.15. For n =1 (mod 4) define m := (n—1)/2 and p := m/2. If we
choose T;j as in (11.14) and 0;;, 1 <i< j<n, as

(11.46)

Oij = .
1 otherwise,

then (11.45), and thus (11.43), is satisfied.

We can extend the definition of o;; to all 1 < i, j < n by setting 0;; = —0j;. Then
the matrix X = (0;j)1<; j<n is a skew-symmetric Toeplitz matrix. For example, for
n =35, the above choice for the o;; generates

01 —-1-11
-10 1 —-1-1
X=1-10 1 -1
1 1 -10 1
-11 1 -10

Proof of Lemma 11.15. Note that by Lemma 11.5 we only need to prove that

n i—1
Z G,'j-l-ZGj,':O.
j=1

j=it1
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If for 1 < j <i—1 we define 0;,,; := —0;; = 0j; then this becomes
n+i—1
Z 0;j =0. (11.47)
j=i+1

We now observe that 6;,1 j11 = 0; ;. For j <n or j > n this follows immediately
from (11.46). For j = n it follows from o141 = 0;,, which again follows from
(11.46) since p <n—i < 3pis equivalent to p < i < 3p. Thanks to 0;41,j+1 = 0;j
we only need to check (11.47) for i = 1. Then

3p+1 n

n p+1
Yoj=X1- > 1+ > 1=n—4p—1=0. [ |
Jj=2 Jj=2 Jj=p+2 Jj=3p+2

Lemma 11.16. For n =0 (mod 4) define m := (n—2)/2. If we choose T;j as in
(11.14) and o;; as

o 1 ifi+jisevenori+j=m+2,
YUl =1 ifitjisoddanditj#m+2,

then (11.45), and thus (11.43), is satisfied.

Proof. By a simple modification of Lemma 11.5 it follows that for n even and m =
(n—2)/2,

U il -1 if1<i<m+1,
PCTEDII . .
=1 1 ifm+1<i<n.

j=it1
Hence we must show that

1 if1<i<m+1,
-1 ifm+1<i<n.

n i—1
2 Gijt 2 0ji= {
j=i+1 j=1

But this is obvious. The sum on the left is over n — 1 terms, with one more odd i + j
then even i 4 j. Hence, without the exceptional condition on i+ j = m + 2, the sum
would always be —1. To have i + j = m + 2 as part of one of the two sums we must
have i < m+ 1, in which case one —1 is changed to a 41 leading to a sum of +1
instead of —1. |

Lemmas 11.15 and 11.16 backed up with numerical data for n =4 and n =5
suggest the following generalisation of (11.44).
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Conjecture 11.17 (Complex BC,, constant term identity). Letn=_{ (mod 4) where
£ =0,1, and let u € C such that min{Re(1 +2b+ (n — 1)u),Re(1 + %nu)} > 0.
Assume that 7;; and o;; for 1 <i < j < n are signatures satisfying (11.45). Then
there exists a polynomial P,(x), independent of a and b, such that P,(1) = 1 and

n

CT H(l—x (1 —xF2)P H (1_(xixj)0ij) (1_()6,)%'/‘)1

i=1 1<i<j<n Xj

(14 4nu) l:[1 r(1+iu)
F+n—10)u)r(1+3u) =) D1+ (i — $u)

:x”fCPn(xz)

- + Sin)ayn(5 + 5it)s

H

: (11.48)
i=o ( (n+i—1)u)at2

where x = x(u) := cos ( u). Trivially, Py (x) = 1. Conjecturally,

1
Py(x)=1 and Ps(x)= E(3+4x+ 8x?).

We note that the D4 case of the conjecture, i.e., a = b =0 and n = 4, is equivalent
to the following new hypergeometric multisum identity

_1vkij u u . 401 u F(1+M)F2(1+2M)F(1+3M)
21<i11<4( 1) (ki./’) (mi/'> = COS (277: )F5(1+%M)F2(1+%M)F(l+%u)’

where the sum is over {k;; }1<i<j<4 and {m;;}1<i< j<4 subject to the constraints

kio — ki3 —kig+mip+mp3 —mis =0,
k1o — ko3 +kog — myy +mo3 —mos =0,
k13 — ko3 +kzg +my3 —ma3 —m3q =0,

k14 +koa — k3g —myg +mog —m34 =0,
or, equivalently,

Y, (mjkij+oimij) =0 for1 < p <4.
1<i<j<4
i=por j=p

Unfortunately, from the point of view of logarithmic constant term identities,
(11.48) is not good news. On the right-hand side the exponent n — { of x is too
high relative to the rank n of the root system. (Compare with m = (n — 1)/2 versus
n—1 for A,_;.) If we write (11.48) as L,,(u) = R,(u) and define K := 2k + 1, then
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due to the factor X5, R;j ) (K)=0forall 1 < j<n—{.Much like the Morris case,
R (K) yields a ratio of products of double factorials:

(nK)!! nl 21K)
((n—1)K) Kuan 2i— 1)K

R O(K) = (n—)!P:(0)

1 (2b+iK — 1)11(2a+2b+iK— 1) ((n+i— 1)K)!!
HO (2a+4b+ (n+i— HK)IGK—D)INGK— 1)

However, if we differentiate L,(u) as many as n — { times, a large number of

different types of logarithmic terms give a nonvanishing contribution to LS,'FO (K)—
unlike type A where only terms with the same functional form (corresponding to
perfect matchings) survive the specialisation u = K. For example, for n = 4 terms

such as
1
log3 (1 - ﬂ) log (1 - —)
X2 X2X3

1
log® (1 — —) log(1 —x1x;)log (1 — %)

log? (1 — ﬂ) log?(1 —x3x4),
X2
and many similar such terms, all give nonvanishing contributions.
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Preprocessing and Regularization
for Degenerate Semidefinite Programs

Yuen-Lam Cheung, Simon Schurr, and Henry Wolkowicz

Abstract This paper presents a backward stable preprocessing technique for
(nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for
which the Slater constraint qualification (SCQ), the existence of strictly feasible
points, (nearly) fails. Current popular algorithms for semidefinite programming rely
on primal-dual interior-point, p-d i-p, methods. These algorithms require the SCQ
for both the primal and dual problems. This assumption guarantees the existence
of Lagrange multipliers, well-posedness of the problem, and stability of algorithms.
However, there are many instances of SDPs where the SCQ fails or nearly fails.
Our backward stable preprocessing technique is based on applying the Borwein—
Wolkowicz facial reduction process to find a finite number, k, of rank-revealing
orthogonal rotations of the problem. After an appropriate truncation, this results
in a smaller, well-posed, nearby problem that satisfies the Robinson constraint
qualification, and one that can be solved by standard SDP solvers. The case k =1 is
of particular interest and is characterized by strict complementarity of an auxiliary
problem.
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12.1 Introduction

The aim of this paper is to develop a backward stable preprocessing technique to
handle (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs
for which the Slater constraint qualification (Slater CQ or SCQ), the existence
of strictly feasible points, (nearly) fails. The technique is based on applying the
Borwein—Wolkowicz facial reduction process [11,12] to find a finite number k of
rank-revealing orthogonal rotation steps. Each step is based on solving an auxiliary
problem (AP) where it and its dual satisfy the Slater CQ. After an appropriate
truncation, this results in a smaller, well-posed, nearby problem for which the
Robinson constraint qualification (RCQ) [52] holds; and one that can be solved
by standard SDP solvers. In addition, the case k = 1 is of particular interest and is
characterized by strict complementarity of the (AP).
In particular, we study SDPs of the following form:

(P) vp :=sup{b’y : /"y < C}, (12.1)
y

where the optimal value vp is finite, b € R”, C € S", and .« : " — R™ is an onto
linear transformation from the space S” of n x n real symmetric matrices to R™. The
adjoint of &7 is &/*y =3 | y;A;, where A; € S",i=1,...,m. The symbol < denotes
the Lowner partial order induced by the cone S’} of positive semidefinite matrices,
ie., "y X Cifand onlyif C —.&*y € §' . (Note that the cone optimization problem
(12.1) is commonly used as the dual problem in the SDP literature, though it is
often the primal in the linear matrix inequality (LMI) literature, e.g., [13].) If (P) is
strictly feasible, then one can use standard solution techniques; if (P) is strongly
infeasible, then one can set vp = —oo, e.g., [38,43,47,62,65]. If neither of these two
feasibility conditions can be verified, then we apply our preprocessing technique that
finds a rotation of the problem that is akin to rank-revealing matrix rotations. (See
e.g., [58,59] for equivalent matrix results.) This rotation finds an equivalent (nearly)
block diagonal problem which allows for simple strong dualization by solving only
the most significant block of (P) for which the Slater CQ holds. This is equivalent
to restricting the original problem to a face of S", i.e., the preprocessing can be
considered as a facial reduction of (P). Moreover, it provides a backward stable
approach for solving (P) when it is feasible and the SCQ fails; and it solves a
nearby problem when (P) is weakly infeasible.
The Lagrangian dual to (12.1) is

(D) vp = inf{(C.X) : o/ (X) =b,X = 0}, (12.2)

where (C,X) := traceCX = 3¥,;;C;;X;; denotes the trace inner product of the
symmetric matrices C and X and <7 (X) = ((A;,X)) € R™. Weak duality vp > vp
follows easily. The usual constraint qualification (CQ) used for (P) is SCQ,
i.e., strict feasibility &/*y < C (or C — &/*y € §'| |, the cone of positive definite
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matrices). If we assume the Slater CQ holds and the primal optimal value is finite,
then strong duality holds, i.e., we have a zero duality gap and attainment of the dual
optimal value. Strong duality results for (12.1) without any constraint qualification
are given in [10-12, 48, 49, 72], and more recently in [50, 66]. Related closure
conditions appear in [44]; and, properties of problems where strong duality fails
appear in [45].

General surveys on SDP are in, e.g., [4, 63, 68, 75]. Further general results on
SDP appear in the recent survey [31].

Many popular algorithms for (P) are based on Newton’s method and a primal-
dual interior-point, p-d i-p, approach, e.g., the codes (latest at the URLs in the
citations) CSDP, SeDuMi, SDPT3, SDPA [9, 60,67, 76]; see also the

SDP URL: www-user.tu-chemnitz.de/~helmberg/sdp_software.html.

To find the search direction, these algorithms apply symmetrization in combination
with block elimination to find the Newton search direction. The symmetrization
and elimination steps both result in ill-conditioned linear systems, even for well
conditioned SDP problems, e.g., [19, 73]. And, these methods are very susceptible
to numerical difficulties and high iteration counts in the case when SCQ nearly
fails; see, e.g., [21-24]. Our aim in this paper is to provide a stable regularization
process based on orthogonal rotations for problems where strict feasibility (nearly)
fails. Related papers on regularization are, e.g., [30, 39]; and papers on high
accuracy solutions for algorithms SDPA-GMP,-QD,-DD are, e.g., [77]. In addition,
a popular approach uses a self-dual embedding, e.g., [16, 17]. This approach results
in SCQ holding by using homogenization and increasing the number of variables.
In contrast, our approach reduces the size of the problem in a preprocessing step in
order to guarantee SCQ.

12.1.1 Outline

We continue in Sect. 12.1.2 with preliminary notation and results for cone program-
ming. In Sect. 12.2 we recall the history and outline the similarities and differences
of what facial reduction means first for linear programming (LP), and then for
ordinary convex programming (CP), and finally for SDP, which has elements from
both LP and CP. Instances and applications where the SCQ fails are given in
Sect. 12.2.3.1. Then, Sect. 12.3 presents the theoretical background and tools needed
for the facial reduction algorithm for SDP. This includes results on strong duality
in Sect. 12.3.1; and, various theorems of the alternative, with cones having both
nonempty and empty interior, are given in Sect. 12.3.2. A stable auxiliary problem
(12.18) for identifying the minimal face containing the feasible set is presented and
studied in Sect. 12.3.3; see, e.g., Theorem 12.13. In particular, we relate the question
of transforming the unstable problem of finding the minimal face to the existence
of a primal-dual optimal pair satisfying strict complementarity and to the number
of steps in the facial reduction. See Remark 12.12 and Sect. 12.3.5. The resulting
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information from the auxiliary problem for problems where SCQ (nearly) fails is
given in Theorem 12.17 and Propositions 12.18, 12.19. This information can be
used to construct equivalent problems. In particular, a rank-revealing rotation is
used in Sect. 12.3.4 to yield two equivalent problems that are useful in sensitivity
analysis, see Theorem 12.22. In particular, this shows the backward stability with
respect to perturbations in the parameter 8 in the definition of the cone 7p for the
problem. Truncating the (near) singular blocks to zero yields two smaller equivalent,
regularized problems in Sect. 12.3.4.1.

The facial reduction is studied in Sect. 12.4. An outline of the facial reduction
using a rank-revealing rotation process is given in Sect. 12.4.1. Backward stability
results are presented in Sect. 12.4.2.

Preliminary numerical tests, as well as a technique for generating instances with
a finite duality gap useful for numerical tests, are given in Sect. 12.5. Concluding
remarks appear in Sect. 12.6.

12.1.2 Preliminary Definitions

Let (#,(-,-),) be a finite-dimensional inner product space and K be a (closed)
convex conein ¥, i.e., AK CK,VYA >0,and K+ K C K. K is pointed if KN (—K) =
{0}; K is proper if K is pointed and intK # @; the polar or dual cone of K is
K*:={0:{¢,k) >0,Vk € K}. We denote by < the partial order with respect to
K. That is, x; <g xp means that x; —x; € K. We also write x| <g x; to mean that
X —x; € intK. In particular with ¥" = §", K = §'} yields the partial order induced
by the cone of positive semidefinite matrices in S”, i.e., the so-called Lowner partial
order. We denote this simply with X <Y for Y —X € S".. cone(S) denotes the
convex cone generated by the set S. In particular, for any nonzero vector x, the
ray generated by x is defined by cone (x). The ray generated by s € K is called an
extreme ray if 0 <g u <k s implies that u € cone (s). The subset F C K is a face of
the cone K, denoted F < K, if

(s€ F,0=<xu=gs) = (cone(u) CF). (12.3)

Equivalently, F <K if F is a cone and (x,y € K,1(x+y) € F) = ({x,y} CF).
If F <K but is not equal to K, we write F K. If {0} # F < K, then F is a proper
face of K. For S C K, we let face(S) denote the smallest face of K that contains S.
A face F <K is an exposed face if it is the intersection of K with a hyperplane.
The cone K is facially exposed if every face F <K is exposed. If F <K, then the
conjugate face is F¢ := K* N{F } . Note that the conjugate face F€ is exposed using
any s € relint ' (where relintS denotes the relative interior of the set S), i.e., F¢ =
K*N{s}*,Vs € relintF. In addition, note that S is self-dual (i.e., (S".)* =S") and
is facially exposed.
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For the general conic programming problem, the constraint linear transformation
& ¥ — W maps between two Euclidean spaces. The adjoint of ./ is denoted
by «* : W — ¥, and the Moore—Penrose generalized inverse of .2/ is denoted by
ARY N8

A linear conic program may take the form

(Peonic) Vo — sup {(b,y) : C— "y =g 0}, (12.4)
y

with b € # and C € /. Its dual is given by

(Deonic) pgonic — inf{(C,X) : o/(X) =b.X =x- 0}. (12.5)

Note that the RCQ is said to hold for the linear conic program (Pgopic) if 0 € int(C —
o/*(R™) —S); see [53]. As pointed out in [61], the Robinson CQ is equivalent
to the Mangasarian—Fromovitz constraint qualification in the case of conventional
nonlinear programming. Also, it is easy to see that the Slater CQ, strict feasibility,
implies RCQ.

Denote the feasible solution and slack sets of (12.4) and (12.5) by Fp = Fp =
{y: o*y=xC}, F6={2: Z=C—*y =0}, and Fp ={X: J(X)=
b, X =g~ 0}, respectively. The minimal face of (12.4) is the intersection of all faces
of K containing the feasible slack vectors:

fp:flg :=face(C— " (Fp))=N{HLK : C— " (%p) CH}.

Here, &/*(:%#p) is the linear image of the set .#p under &7*.

We continue with the notation specifically for ¥ = 8", K = §'1, and # = R™.
Then (12.4) [respectively, (12.5)] is the same as (12.1) [respectively, (12.2)]. We
let e; denote the ith unit vector, and E;; := \/ii(eie]T- +e jeiT) are the unit matrices
in S". For specific A; € S",i = 1,...,m, we let ||</||, denote the spectral norm of
o/ and  define the Frobenius norm (Hilbert-Schmidt norm) of & as ||.«7||F :=

2
/2 AillE-
Unless stated otherwise, all vector norms are assumed to be 2-norm, and all
matrix norms in this paper are Frobenius norms. Then, e.g., [32, Chap. 5], for any
X es",

1 X)l2 < [ |12 X lr < || FIIX]| - (12.6)

We summarize our assumptions in the following.

Assumption 12.1. .%p # 0; </ is onto.
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12.2 Framework for Regularization/Preprocessing

The case of preprocessing for linear programming is well known. The situation for
general convex programming is not. We now outline the preprocessing and facial
reduction for the cases of linear programming (LP); ordinary convex programming
(CP); and SDP. We include details on motivation involving numerical stability and
convergence for algorithms. In all three cases, the facial reduction can be regarded
as a Robinson-type regularization procedure.

12.2.1 The Case of Linear Programming, LP

Preprocessing is essential for LP, in particular for the application of interior-point
methods. Suppose that the constraint in (12.4) is o/*y <k ¢ with K = R}, the
nonnegative orthant, i.e., it is equivalent to the elementwise inequality ATy < ¢,c €
R", with the (full row rank) matrix A being m x n. Then (Popic) and (Degpic) form
the standard primal-dual LP pair. Preprocessing is an essential step in algorithms
for solving LP, e.g., [20,27,35]. In particular, interior-point methods require strictly
feasible points for both the primal and dual LPs. Under the assumption that .%p # 0,
lack of strict feasibility for the primal is equivalent to the existence of an unbounded
set of dual optimal solutions. This results in convergence problems, since current
primal-dual interior-point methods follow the central path and converge to the
analytic center of the optimal set. From a standard Farkas’ lemma argument, we
know that the Slater CQ, the existence of a strictly feasible point A7 < c, holds if
and only if

the system |0 # d > 0,Ad = 0,¢d = 0 |is inconsistent. (12.7)

In fact, after a permutation of columns if needed, we can partition both A, ¢ as
L c<
A=[A<A7], withAT sizemxt, c={( _|,
C

so that we have

A<TH <<, A=TH=c", for some § € R, andATy<c = A7 Ty=(",

)

i.e., the constraints A=7y < ¢= are the implicit equality constraints, with indices
given in

P:={1,....,n}, 2<:={1,....n—t}, P :={n—t+1,...,n}.
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Moreover, the indices for ¢~ (and columns of A7) correspond to the indices in a
maximal positive solution d in (12.7); and, the nonnegative linear dependence in
(12.7) implies that there are redundant implicit equality constraints that we can
discard, yielding the smaller (Az)"y = ¢ with Ax full column rank. Therefore,
an equivalent problem to (Pcopic) 1S

(Preg) vpi=max{bTy :A<Ty <<, AzTy =3z }. (12.8)

And this LP satisfies the RCQ; see Corollary 12.17, Item 2, below. In this case
RCQ is equivalent to the Mangasarian—Fromovitz constraint qualification (MFCQ),
i.e., there exists a feasible y which satisfies the inequality constraints strictly,
A<T)7 < ¢<, and the matrix A= for the equality constraints is full row rank;

see, e.g., [8, 40]. The MFCQ characterizes stability with respect to right-hand
side perturbations and is equivalent to having a compact set of dual optimal
solutions. Thus, recognizing and changing the implicit equality constraints to
equality constraints and removing redundant equality constraints provides a simple
regularization of LP.

Let fp denote the minimal face of the LP. Then note that we can rewrite the

constraint as

ATy =g e, with fpi={z€R" :z;=0,ic P~}

Therefore, rewriting the constraint using the minimal face provides a regularization
for LP. This is followed by discarding redundant equality constraints to obtain
the MFCQ. This reduces the number of constraints and thus the dimension of the
dual variables. Finally, the dimension of the problem can be further reduced by
eliminating the equality constraints completely using the nullspace representation.
However, this last step can result in loss of sparsity and is usually not done.

We can similarly use a theorem of the alternative to recognize failure of strict
feasibility in the dual, i.e., the (in)consistency of the system 0 # ATv > 0,57y = 0.
This corresponds to identifying which variables x; are identically zero on the
feasible set. The regularization then simply discards these variables along with the
corresponding columns of A, c.

12.2.2 The Case of Ordinary Convex Programming, CP

We now move from LP to nonlinear convex programming. We consider the ordinary
convex program (CP)

(CP) vep = sup{b’y : g(y) <0}, (12.9)
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where g(y) = (gi(y)) € R" and g; : R™ — R are convex functions, for all i. (Without
loss of generality, we let the objective function f(y) = by be linear. This can always
be achieved by replacing a concave objective function with a new variable sup?, and
adding a new constraint —f(y) < —t.) The quadratic programming case has been
well studied [28,41]. Some preprocessing results for the general CP case are known,
e.g., [15]. However, preprocessing for general CP is not as well known as for LP. In
fact (see [6]) as for LP there is a set of implicit equality constraints for CP, i.e., we
can partition the constraint index set & = {1,...,n} into two sets:

P~ ={ie P:yfeasible = gi(y) =0}, P~=P2\P". (12.10)

Therefore, as above for LP, we can rewrite the constraints in CP using the minimal
face fp to get g(y) =, 0. However, this is not a true convex program since the new
equality constraints are not affine. However, surprisingly the corresponding feasible
set for the implicit equality constraints is convex, e.g., [6]. We include the result and
a proof for completeness.

Lemma 12.2. Let the convex program (CP) be given, and let &7~ be defined as in
(12.10). Then the set F= :={y: gi(y) = 0,Yi € P~} satisfies
F-={y:aily) <0vVie 7},

and thus is a convex set.

Proof. Let g=(y) = (8i(¥));c - and g<(y) = (8i(y));c <. By definition of &<,
there exists a feasible § € .# with g<(9) < 0; and, suppose that there exists ¥ with
g~ (7) <0, and g, (y) <0, for some iy € &?~. Then for small o > 0 the point y, :=
oy+(1—o)y€.Z and gj,(ye) < 0. This contradicts the definition of &=, |

This means that we can regularize CP by replacing the implicit equality constraints
as follows:

(CPrep) vep :=sup{b’y :g<(y) <0,y € F~}. (12.11)
The generalized Slater CQ holds for the regularized convex program (CPyeg). Let

¢(A) = sup b'y—2A"g~(y)
yeF=

denote the regularized dual functional for CP. Then strong duality holds for CP with
the regularized dual program, i.e.,

= ;= inf (A
Ve = Vepp goq)( )

= ¢9(17),
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for some (dual optimal) A* > 0. The Karush-Kuhn-Tucker (KKT) optimality
conditions applied to (12.11) imply that

y* is optimal for CPyeg

if and only if
yeF (primal feasibility)
b—Vg=(y")A* € (F= —y*)", for some 1* > 0 (dual feasibility)
g =0 (complementary slackness)

This differs from the standard KKT conditions in that we need the polar set

*

(F7 =y =cone (F= =) = (D7), (12.12)

where D= (y*) denotes the cone of directions of constancy of the implicit equality
constraints &=, e.g., [6]. Thus we need to be able to find this cone numerically;
see [71]. A backward stable algorithm for the cone of directions of constancy is
presented in [37].

Note that a convex function f is faithfully convex if f is affine on a line
segment only if it is affine on the whole line containing that segment; see [54].
Analytic convex functions are faithfully convex, as are strictly convex functions . For
faithfully convex functions, the set %= is an affine manifold, #~ = {y: Vy =V3},
where § € .# is feasible, and the nullspace of the matrix V gives the intersection of
the cones of directions of constancy D~. Without loss of generality, let V be chosen
full row rank. Then in this case we can rewrite the regularized problem as

(CPreg) vep 1= sup{bTy g~ (y) <0,Vy =V3}, (12.13)

which is a convex program for which the MFCQ holds. Thus by identifying the
implicit equalities and replacing them with the linear equalities that represent the
cone of directions of constancy, we obtain the regularized convex program. If we let
<
Ry = (Vg (y‘z A) , then writing the constraint g(y) < 0 using g® and the minimal
y—=Vvy
cone fp as g&(y) <y, 0 results in the regularized CP for which MFCQ holds.

12.2.3 The Case of Semidefinite Programming, SDP

Finally, we consider our case of interest, the SDP given in (12.1). In this case, the
cone for the constraint partial order is S", a nonpolyhedral cone. Thus we have
elements of both LP and CP. Significant preprocessing is not done in current public
domain SDP codes. Theoretical results are known (see, e.g., [34]) for results on
redundant constraints using a probabilistic approach. However [10], the notion of
minimal face can be used to regularize SDP. Surprisingly, the above result for LP
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in (12.8) holds. A regularized problem for (P) for which strong duality holds has
constraints of the form &/*y <, C without the need for an extra polar set as in
(12.12) that is used in the CP case, i.e., changing the cone for the partial order
regularizes the problem. However, as in the LP case where we had to discard
redundant implicit equality constraints, extra work has to be done to ensure that
the RCQ holds. The details for the facial reduction now follow in Sect. 12.3. An
equivalent regularized problem is presented in Corollary 12.24, i.e., rather than
a permutation of columns needed in the LP case, we perform a rotation of the
problem constraint matrices, and then we get a similar division of the constraints
as in (12.8); and, setting the implicit equality constraints to equality results in a
regularized problem for which the RCQ holds.

12.2.3.1 Instances Where the Slater CQ Fails for SDP

Instances where SCQ fails for CP are given in [6]. It is known that the SCQ holds
generically for SDP, e.g., [3]. However, there are surprisingly many SDPs that arise
from relaxations of hard combinatorial problems where SCQ fails. In addition, there
are many instances where the structure of the problems allows for exact facial
reduction. This was shown for the quadratic assignment problem in [80] and for
the graph partitioning problem in [74]. For these two instances, the barycenter of the
feasible set is found explicitly and then used to project the problem onto the minimal
face; thus we simultaneously regularize and simplify the problems. In general, the
affine hull of the feasible solutions of the SDP are found and used to find Slater
points. This is formalized and generalized in [64, 65]. In particular, SDP relaxations
that arise from problems with matrix variables that have 0, 1 constraints along with
row and column constraints result in SDP relaxations where the Slater CQ fails.

Important applications occur in the facial reduction algorithm for sensor net-
work localization and molecular conformation problems given in [36]. Cliques in
the graph result in corresponding dimension reduction of the minimal face of the
problem resulting in efficient and accurate solution techniques. Another instance is
the SDP relaxation of the side chain positioning problem studied in [14]. Further
applications that exploit the failure of the Slater CQ for SDP relaxations appear in,
e.g.,[1,2,5,69].

12.3 Theory

We now present the theoretical tools that are needed for the facial reduction
algorithm for SDP. This includes the well-known results for strong duality, the
theorems of the alternative to identify strict feasibility, and, in addition, a stable
subproblem to apply the theorems of the alternative. Note that we use K to represent
the cone ' to emphasize that many of the results hold for more general closed
convex cones.
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12.3.1 Strong Duality for Cone Optimization

We first summarize some results on strong duality for the conic convex program
in the form (12.4). Strong duality for (12.4) means that there is a zero duality gap,
yeonic — yconic and the dual optimal value vp (12.5) is attained. However, it is easy
to construct examples where strong duality fails; see, e.g., [45,49,75] and Sect. 12.5
below.

It is well known that for a finite-dimensional LP, strong duality fails only if the
primal problem and/or its dual is infeasible. In fact, in LP both problems are feasible
and both of the optimal values are attained (and equal) if, and only if, the optimal
value of one of the problems is finite. In general (conic) convex optimization, the
situation is more complicated, since the underlying cones in the primal and dual
optimization problems need not be polyhedral. Consequently, even if a primal
problem and its dual are feasible, a nonzero duality gap and/or non-attainment
of the optimal values may ensue unless some constraint qualification holds; see,
e.g., [7,55]. More specific examples for our cone situations appear in, e.g., [38],
[51, Sect. 3.2], and [63, Sect. 4].

Failure of strong duality is problematic, since many classes of p-d i-p algorithms
require not only that a primal-dual pair of problems possess a zero duality gap, but
also that the (generalized) Slater CQ holds for both primal and dual, i.e., that strict

feasibility holds for both problems. In [10-12], an equivalent strongly dualized
primal problem corresponding to (12.4), given by

(SP) Ve = sup{(b,y) : o/*y <y, C}, (12.14)

where fp <K is the minimal face of K containing the feasible region of (12.4), is
considered. The equivalence is in the sense that the feasible set is unchanged

Ay 2x C <= "y =<y, C.
This means that for any face F we have
fPAF<LK = {&"y ¢ C <= &y <p C}.
The Lagrangian dual of (12.14) is given by
(DSP) Vi :=inf{(C,X) : &(X)=b, X = 0}. (12.15)

We note that the linearity of the constraint means that an equality set of the type in
(12.12) is not needed.

Theorem 12.3 ([10]). Suppose that the optimal value vfponic in (12.4) is finite. Then
strong duality holds for the pair (12.14) and (12.15), or equivalently, for the pair
(12.4) and (12.15); i.e., VP™M = vep"® = Vviop and the dual optimal value V{5’ is
attained.
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12.3.2 Theorems of the Alternative

In this section, we state some theorems of the alternative for the Slater CQ of the
conic convex program (12.4), which are essential to our reduction process. We first
recall the notion of recession direction [for the dual (12.5)] and its relationship with
the minimal face of the primal feasible region.

Definition 12.4. The convex cone of recession directions for (12.5) is
I ={De¥ :9(D)=0, (C,D)=0, D =g 0}. (12.16)

The cone Zp consists of feasible directions for the homogeneous problem along
which the dual objective function is constant.

Lemma 12.5. Suppose that the feasible set Fp # 0 for (12.4), and let 0 # D € %p.
Then the minimal face of (12.4) satisfies

fr<KN{D}*<K.
Proof. We have
0= (C.D) — (Fp. (D)) = (C— /" (Fp).D).

Hence C — &/*(%p) C {D}* N K, which is a face of K. It follows that fp C
{D}* NK. The required result now follows from the fact that fp is (by definition) a
face of K, and D is nonzero. |

Lemma 12.5 indicates that if we are able to find an element D € %p\{0}, then
D gives us a smaller face of K that contains .#%. The following lemma shows that
the existence of such a direction D is equivalent to the failure of the Slater CQ for
a feasible program (12.4). The lemma specializes [12, Theorem 7.1] and forms the
basis of our reduction process.

Lemma 12.6 ([12]). Suppose that intK # 0 and Fp # 0. Then exactly one of the
following two systems is consistent:

1. /(D)=0,(C,D)=0,and0#D =¢- 0 (%p\{0})
2. o*y < C (Slater CQ)

Proof. Suppose that D satisfies the system in Item 1. Then for all y € .%p, we have

(C—a/*y,D) = (C,D) — (y,(«/(D))) = 0. Hence F§ C KN{D}*. But {D}*+N

intK =0 as 0 # D >+ 0. This implies that the Slater CQ (as in Item 2) fails.
Conversely, suppose that the Slater CQ in Item 2 fails. We have intK # @ and

0¢ («*(R™) —C) +intK.
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Therefore, we can find D # 0 to separate the open set (&*(R™) — C) +intK from 0.
Hence we have

<sz> > <D,C—JZ{*y>,

forall Z € K and y € #'. This implies that D € K* and (D,C) < (D, .27*y), for all
y € #. This implies that (<7 (D),y) = 0 forall y € #; hence </ (D) = 0. To see that
(C,D)y =0, fix any § € Fp. Then 0 > (D,C) = (D,C — 27*§) > 0,50 (D,C) =0.1

We have an equivalent characterization for the generalized Slater CQ for the dual
problem. This can be used to extend our results to (D¢onic) -

Corollary 12.7. Suppose that intK* # 0 and Fp # 0. Then exactly one of the
following two systems is consistent:

1. 0# /v =k 0, and (b,v) = 0.
2. 4 (X)=bX =k 0 (generalized Slater CQ).

Proof. Let % be a one-one linear transformation with range Z (%) = A (), and
let X satisfy .o/ (}2 ) = b. Then, Item 2 is consistent if, and only if, there exists & such
that X = X — it =g+ 0. This is equivalent to .# il <+ X. Therefore, # X play
the roles of @7*,C, respectively, in Lemma 12.6. Therefore, an alternative system
is #*(Z) =0,0#Z =k 0, and (X,Z) = 0. Since A (#*) = Z(/*), this is
equivalent to 0 £ Z = &*v =g 0, and (X,Z) =0,0r0+# &/*v >k 0, and (b,v) =0.

]

We can extend Lemma 12.6 to problems with additional equality constraints.

Corollary 12.8. Consider the modification of the primal (12.4) obtained by adding
equality constraints:

(Pg) vpg = sup{(b,y) : ¥y <k C,By = [}, (12.17)

where B: W —>_7// is an onto linear transformation. Assume that intK = 0 and (Pg)
is feasible. Let C = C — o7* A" f. Then exactly one of the following two systems is
consistent:

1. o(D)+%#*v=0, (C,D)=0,0+#D = 0.
2. ¥y <x C, By =f.

Proof. Letj = 2" f be the particular solution (of minimum norm) of &y = f. Since
4 is onto, we conclude that By = f if, and only if, y = y+ €*v, for some v, where
the range of the linear transformation ¢ is equal to the nullspace of 8. We can now
substitute for y and obtain the equivalent constraint .o/ * (y+ % *v) =g C; equivalently
we get &/ *€*v <g C — o/*y. Therefore, Item 2 holds at y = § = y+ €V, for some
v, if, and only if, &*€*V <g C — o/*y. The result now follows immediately from
Lemma 12.6 by equating the linear transformation <7*%™* with <7* and the right-
hand side C — &7*y with C. Then the system in Item 1 in Lemma 12.6 becomes
€ (' (D)) =0,{(C— 2*y),D) = 0. The result follows since the nullspace of ¢ is
equal to the range of Z*. ]
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We can also extend Lemma 12.6 to the important case where intK = 0. This
occurs at each iteration of the facial reduction.

Corollary 12.9. Suppose that intK =0, Fp # 0, and C € span(K). Then the linear
manifold

Syi={ye# :C—"ycspan(K)}
is a subspace. Moreover, let & be a one-one linear transformation with

R(P) = (*) span(K).

Then exactly one of the following two systems is consistent:

1. 2*4/(D)=0, (C,D) =0, D € span(K), and 0 # D =g~ 0.
2. C—a/*y e relintK.
Proof. Since C € span(K) = K — K, we get that 0 € Sy, i.e., S, is a subspace.

Let .7 denote an onto linear transformation acting on ¥ such that the nullspace
N (T) =span(K)*, and T* is a partial isometry, i.e., 7* = 7 1. Therefore, 7 is
one-to-one and is onto span(K). Then

o*y g C <= /*y <k C and &*y € span(K), since C € K — K
— (F*P)w <k C, y = Pw, for some w, by definition of &
= (TA*P)w =27k 7 (C), y= Tw, for some w, by definition of 7,

i.e., (12.1) is equivalent to
vp 1= sup{(P*b,w) : (T P)w 27 T (C)}.
The corresponding dual is
vp :=inf {(F(C),D) : P* . T*(D) = P*b, D=7 k) 0}
By construction, int.7 (K) # 0, so we may apply Lemma 12.6. We conclude that

exactly one of the following two systems is consistent:

1. 9*%9*(D) ZO, O#D t(gu())* 0, and <9(C),D> =0.
2. (fﬂ*@)w %y(K) c?(D) (Slater CQ).

The required result follows, since we can now identify .7*(D) with D € span(K),
and 7 (C) with C. |

Remark 12.10. Ideally, we would like to find D € relint(F%)° = relint((C +
(2/*)) NK)°, since then we have found the minimal face fp = {D}* N K. This is

difficult to do numerically. Instead, Lemma 12.6 compromises and finds a point in
alarger set D € (A (/) N{C}*NK*)\{0}. This allows for the reduction of K +
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KN {D}*. Repeating to find another D is difficult without the subspace reduction
using & in Corollary 12.9. This emphasizes the importance of the minimal subspace
form reduction as an aid to the minimal cone reduction, [66].

A similar argument applies to the regularization of the dual as given in Corol-
lary 12.7. Let Zp = (X + .4 (&/)) N K*, where «/(X) = b. We note that a
compromise to finding Z € relint (.#5)¢ = relint((X + .4/ (7)) NK*)¢, fp = {Z}* N
K* is finding Z € (2(o/*)N{X}-NK)\{0}, where 0 = (Z,X) = (&/*v,X) = (v, b).

12.3.3 Stable Auxiliary Subproblem

From this section on we restrict the application of facial reduction to the SDP
in (12.1). (Note that the notion of auxiliary problem as well as Theorems 12.13
and 12.17, below, apply to the more general conic convex program (12.4).) Each
iteration of the facial reduction algorithm involves two steps. First, we apply
Lemma 12.6 and find a point D in the relative interior of the recession cone %Zp.
Then, we project onto the span of the conjugate face {D}+ N S O fp. This yields
a smaller dimensional equivalent problem. The first step to find D is well suited for
interior-point algorithms if we can formulate a suitable conic optimization problem.
We now formulate and present the properties of a stable auxiliary problem for
finding D. The following is well known, e.g., [42, Theorems 10.4.1, 10.4.7].

Theorem 12.11. If the (generalized) Slater CQ holds for both primal problem
(12.1) and dual problem (12.2), then as the barrier parameter g — 0T, the primal-
dual central path converges to a point (X ,$,2), where Z = C — o/*§, such that X is
in the relative interior of the set of optimal solutions of (12.2) and ($,2) is in the
relative interior of the set of optimal solutions of (12.1).

Remark 12.12. Many polynomial time algorithms for SDP assume that the Newton
search directions can be calculated accurately. However, difficulties can arise
in calculating accurate search directions if the corresponding Jacobians become
increasingly ill-conditioned. This is the case in most of the current implementations
of interior-point methods due to symmetrization and block elimination steps; see,
e.g., [19]. In addition, the ill-conditioning arises if the Jacobian of the optimality
conditions is not full rank at the optimal solution, as is the case if strict comple-
mentarity fails for the SDP. This key question is discussed further in Sect. 12.3.5,
below.

According to Theorem 12.11, if we can formulate a pair of auxiliary primal-
dual cone optimization problems, each with generalized Slater points such that the
relative interior of Z#p coincides with the relative interior of the optimal solution
set of one of our auxiliary problems, then we can design an interior-point algorithm
for the auxiliary primal-dual pair, making sure that the iterates of our algorithm stay
close to the central path (as they approach the optimal solution set) and generate our
desired X € relintZp.
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This is precisely what we accomplish next. In the special case of K = S, this
corresponds to finding maximum rank feasible solutions for the underlying auxiliary
SDPs, since the relative interiors of the faces are characterized by their maximal rank
elements.

Define the linear transformation .27 : " — R"*! by

= (23).

This presents a homogenized form of the constraint of (12.1) and combines the two
constraints in Lemma 12.6, Item 1. Now consider the following conic optimization
problem, which we shall henceforth refer to as the auxiliary problem:

valg*™ ;= min 1)
8.D

(AP) st [l (D)] Sf (12.18)

This auxiliary problem is related to the study of the distances to infeasibility in,
e.g., [46]. The Lagrangian dual of (12.18) is

o) - () (o)
Wzo,<u>zgo
= sup 11355(1—ﬁ)—<D,d§u+y%I+W>+% (12.19)

1)
W0, (ﬁ) =20
u

where 2 := { (ﬁ ) ERM™Z: |ul| < ﬁ} refers to the second-order cone. Since the

u
inner infimum of (12.19) is unconstrained, we get the following equivalent dual:

val§™ := sup Y
YW
* 1
(DAP) s.t. JZ{CM—I—Y%I—I—W:O (12.20)
lull <1
W = 0.

A strictly feasible primal-dual point for (12.18) and (12.20) is given by
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D:%I, 6>H.;zfc (%1) , and y:—l,u:O,W:%I, (12.21)
showing that the generalized Slater CQ holds for the pair (12.18)-(12.20).

Observe that the complexity of solving (12.18) is essentially that of solving
the original dual (12.2). Recalling that if a path-following interior-point method
is applied to solve (12.18), one arrives at a point in the relative interior of the set of
optimal solutions, a primal optimal solution (8*,D*) obtained is such that D* is of
maximum rank.

12.3.3.1 Auxiliary Problem Information for Minimal Face of 7%

This section outlines some useful information that the auxiliary problem pro-
vides. Theoretically, in the case when the Slater CQ (nearly) fails for (12.1), the
auxiliary problem provides a more refined description of the feasible region, as
Theorem 12.13 shows. Computationally, the auxiliary problem gives a measure
of how close the feasible region of (12.1) is to being a subset of a face of the
cone of positive semidefinite matrices, as shown by: (i) the cosine-angle upper
bound (near orthogonality) of the feasible set with the conjugate face given in
Theorem 12.17; (ii) the cosine-angle lower bound (closeness) of the feasible set
with a proper face of S in Proposition 12.18; and (iii) the near common block
singularity bound for all the feasible slacks obtained after an appropriate orthogonal
rotation, in Corollary 12.19.

We first illustrate the stability of the auxiliary problem and show how a primal-
dual solution can be used to obtain useful information about the original pair of
conic problems.

Theorem 12.13. The primal-dual pair of problems (12.18) and (12.20) satisfy the
generalized Slater CQ, both have optimal solutions, and their (nonnegative) optimal
values are equal. Moreover, letting (6*,D*) be an optimal solution of (12.18), the
following holds under the assumption that Fp # 0:

1. If 8* = 0 and D* = 0, then the Slater CQ fails for (12.1) but the generalized
Slater CQ holds for (12.2). In fact, the primal minimal face and the only primal
feasible (hence optimal) solution are

fr={0}, ¥y =(")(C).

2. If 6* = 0 and D* # O, then the Slater CQ fails for (12.1) and the minimal face
satisfies

fraStN{D*}+ S (12.22)

3. If 8" > 0, then the Slater CQ holds for (12.1).
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Proof. A strictly feasible pair for (12.18)—(12.20) is given in (12.21). Hence by
strong duality both problems have equal optimal values and both values are attained.

1. Suppose that 6* = 0 and D* > 0. It follows that o7 (D*) = 0 and D* # 0. It
follows from Lemma 12.5 that

fr a8 N{D"} = {0},

Hence all feasible points for (12.1) satisfy C — 27*y = 0. Since <7 is onto, we
conclude that the unique solution of this linear system is y = (.7*)"(C).
Since 47 is onto, there exists X such that .o/ ()_( ) = b. Thus, for every ¢t > 0,

& (X +1tD*) = b, and for ¢ large enough, X +¢D* - 0. Therefore, the generalized
Slater CQ holds for (12.2).

2. The result follows from Lemma 12.5.

3. If 6* > 0, then Zp = {0}, where Zp was defined in (12.16). It follows from
Lemma 12.6 that the Slater CQ holds for (12.1). |

Remark 12.14. Theorem 12.13 shows that if the primal problem (12.1) is feasible,
then by definition of (AP) as in (12.18), 6* = 0 if, and only if, </ has a right
singular vector D such that D = 0 and the corresponding singular value is zero,
i.e., we could replace (AP) with min{||«%(D)|| : |D|| = 1,D > 0}. Therefore, we
could solve (AP) using a basis for the nullspace of <, e.g., using an onto linear
function .47, on S" that satisfies Z(.47; ) = .4 (<), and an approach based on
maximizing the smallest eigenvalue:

8 2 sup { Amin(A,9) : trace( N 7y) = 1, [y < 1},
y

so, in the case when 6* = 0, both (AP) and (DAP) can be seen as a max-min
eigenvalue problem (subject to a bound and a linear constraint).
Finding 0 # D + 0 that solves < (D) = 0 is also equivalent to the SDP:

inf ||D||
D

(12.23)
st (D) =0, (I,D) =/, D=0,

a program for which the Slater CQ generally fails. (See Item 2 of Theorem 12.13.)
This suggests that the problem of finding the recession direction 0 # D = 0 that
certifies a failure for (12.1) to satisfy the Slater CQ may be a difficult problem.

One may detect whether the Slater CQ fails for the dual (12.2) using the auxiliary
problem (12.18) and its dual (12.20).

Proposition 12.15. Assume that (12.2) is feasible, i.e., there exists X e Si such
that of (}2 ) = b. Then we have that X is feasible for (12.2) if and only if

X=X+4y=0,
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where Ny : S* — R*HD/2=m s an onto linear transformation such that #(N ) =
N (). Then the corresponding auxiliary problem

e o (G5 |<0 0o =i o=

certifies either that (12.2) satisfies the Slater CQ or that O is the only feasible slack
of (12.2) or detects a smaller face of S, containing Fp.

The results in Proposition 12.15 follows directly from the corresponding results for
the primal problem (12.1). An alternative form of the auxiliary problem for (12.2)
can be defined using the theorem of the alternative in Corollary 12.7.

Proposition 12.16. Assume that (12.2) is feasible. The dual auxiliary problem

sup A st (Z(I)Tv=1,bTv=0, v = Al (12.24)
A

determines if (12.2) satisfies the Slater CQ. The dual of (12.24) is given by

inf fp st (LQ)=1,&(Q)— e/ ()~ ib=0,220, (1225
H,

and the following hold under the assumption that (12.2) is feasible:

1. If (12.24) is infeasible, then (12.2) must satisfy the Slater CQ.

2. If (12.24) is feasible, then both (12.24) and (12.25) satisfy the Slater CQ.
Moreover, the Slater CQ holds for (12.2) if and only if the optimal value of
(12.24) is negative.

3. If (v¥,A%) is an optimal solution of (12.24) with A* > 0, then Fp C S\ N
{7t asn.

Since X feasible for (12.2) implies that

(o7"v",X) = (V) ( (X)) = (") b =0,

we conclude that #p C S| N {avita S%. Therefore, if (12.2) fails the Slater
CQ, then, by solving (12.24), we can obtain a proper face of S'|. that contains the
feasible region Fp of (12.2).

Proof. The Lagrangian of (12.24) is given by

L, A1, Q) = A+ (1= (Z (D) + ta(—bTv) + (Q, o/ *v — A1)
= A(1—{1,Q2)) +v (o (Q2) — 1/ (I) — pob) + o

This yields the dual program (12.25).
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If (12.24) is infeasible, then we must have b # 0 and 7 (I) = kb for some k € R.
If k > 0, then kI is a Slater point for (12.2). If k = 0, then /(X + AI) = b and
X + A1 = 0 for any X satisfying .«7 (X) = b and sufficiently large A > 0. If k < 0,
then .o (2X +k~'I) = b for X > 0 satisfying .7 (X ) = b; and we have 2X +k~'1 - 0.

If (12.24) is feasible, i.e., if there exists ¥ such that (.27 (I))Tv = 1 and bT¥ = 0,
then

00 = (2h =dmaler 9 -1). @2~ (")) 1)

is strictly feasible for (12.24) and (12.25), respectively.

Let (v*,A1*) be an optimal solution of (12.25). If A* < 0, then for any v € R™
with @7*y = 0 and b”v = 0, v cannot be feasible for (12.24) so (I,.<7*v) < 0. This
implies that «7*v = 0. By Corollary 12.7, the Slater CQ holds for (12.2). If A* > 0,
then v* certifies that the Slater CQ fails for (12.2), again by Corollary 12.7. ]

The next result shows that 6* from (AP) is a measure of how close the Slater CQ
is to failing.

Theorem 12.17. Let (8*,D*) denote an optimal solution of the auxiliary problem
(12.18). Then &6* bounds how far the feasible primal slacks Z = C — o/*y = 0 are
from orthogonality to D*:

*

0< sup (D*,Z) ) Cuin() ifeea(”),
0=z=C-*y20 | p*[[1Z]| <a(,C):= S5* FC ¢ Bt
—_— 0 1 .
Omin(9C) (12.26)
Proof. Since <\/LEI,D*> =1, we get
410"
x Vi 1
|w|z<_LI>J_I_.
EE]

If C = o7*yc for some yc € R™, then for any Z =C — /"y = 0,

(D",C—ay) _ (D), yc )

[DIC = a*y[| = [l (yc =)l

< (D) llyc —yll

Omin (&) [lyc — ||
6*

Gmin(%).

cosOp+ 7 :=

IN
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Fig. 12.1 Minimal face;
0<d*x1

[face(D*)]" — (D*)l mSi

{Z=C—o*y:ye Fp,Z -0}
If C ¢ #Z(o/*), then by Assumption 12.1, o/ is onto so (D*,C—.a/*y) =
<4A/C(D*), (_1))) > implies that 0 <X C — &/*y # 0,Vy € .%p. Therefore the cosine
of the angle Op- 7 between D* and Z = C — &/*y > 0 is bounded by

(D*,C— o) <”C<D* (7))

cosborz = =y = H"Q{C E 1 )H
) (DY) H< 1y)H
~amle) (7]
= omlf(;fc)

Theorem 12.17 provides a lower bound for the angle and distance between feasible
slack vectors and the vector D* on the boundary of S{. For our purposes, the
theorem is only useful when o/(7,C) is small. Given that 6* = ||.27-(D*)||, we see
that the lower bound is independent of simple scaling of <7, though not necessarily
independent of the conditioning of <7. Thus, 6* provides qualitative information
about both the conditioning of .27 and the distance to infeasibility.

We now strengthen the result in Theorem 12.17 by using more information
from D*. In applications we expect to choose the partitions of U and D* to satisfy
)l'min(DqL) >> Amax(DS) (Flg 121)

Proposition 12.18. Let (6*,D*) denote an optimal solution of the auxiliary prob-
lem (12.18), and let

0 T
P P , 12.27
p=lrol [ o iral (1227
with U = [P Q] orthogonal, and D > 0.

Let0£Z:=C— /"y = 0and Zy := 0077Z0QT. Then Zy is the closest point
in Z(Q-07)N S% to Z; and, the cosine of the angle 6z z, between Z and the face
Z(Q-0T)NS" satisfies
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Zzel = 1z 2 O oy 12®

where o(</,C) is defined in (12.26). Thus the angle between any feasible slack and
the face Z(Q- Q") NS cannot be too large in the sense that

cos OZZQ =

: [[1D]]
inf cosbzz, >1—o(d,C)————.
04£Z=C—2/*y0 e ( ) Amin(D+)
Moreover, the normalized distance to the face is bounded as in

D*
1Z - Z|* < 2|1 2|2 a(%,C)% . (12.29)
1n

Proof. Since Z = 0, we have QT ZQ € argminy,. (|| Z — QW QT ||. This shows that
Zo = 00"ZQQT" is the closest point in Z(Q - o"Hn S to Z. The expression for
the angle in (12.28) follows using

(2.7) _ _|0"z0]> _|lo"z0|

— = 12.30
1Zlzo] ~ Tzlie’zo] ~ 1z (1230)

From Theorem 12.17, we see that 0 # Z = C — &/ *y = 0 implies that <ﬁZ,D*> <

o4/ ,C)||D*||. Therefore, the optimal value of the following optimization problem
provides a lower bound on the quantity in (12.30):

% = min [roxpe]l
st. (Z,D*) < a(/,C)|D"|| (12.31)
Iz|*=1, z=o.

Since (Z,D*) = (PTZP,D,) + (Q"ZQ,D¢) > (P"ZP,D. ) whenever Z = 0, we
have

% = v:i=min lo” zo|
st. (PTZP.D,) < a(«/,C)||D*| (12.32)
|1z =1, z=o.

It is possible to find the optimal value y of (12.32). After the orthogonal rotation

SV

V7 w} [P o]" = PSP" +PVQ" + QVTPT + WO,

z=1rq]|

where S € Sf‘[ﬁ, WeStandV e R("=M%7_(12.32) can be rewritten as
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Lo W]
st. (S,D+) < a(,C)|D¥|
S22V ]2+ W] =1 (12.33)
Y%
SV]ea,
Since
IVIZ < [ISIHIw]| (12.34)

holds whenever [‘fT V‘i//} > 0, we have that (||S|| + [|[W]|))2 > ||S]|?+2||V|*> + || W]>.

This yields
Y2 7:=mingyw Il 72 min =I5
s.t. (S,D4) < o(,0)|| DY s.t. (S,D4) <o(«,C)||D*|]
S]]/ + (W] =1 §=0
S>=0, W >0.

(12.35)

Since Amin (D4)||S|| < (S,D+) < a(«Z,C)||D*||, we see that the objective value of
the last optimization problem in (12.35) is bounded below by 1 — a(«7,C)||D*||/
Amin(D+ ). Now let u be a normalized eigenvector of D corresponding to its small-
est eigenvalue Ayin(D4). Then §* = %mﬁ solves the last optimization
problem in (12.35), with corresponding optimal value 1 — %.

Let B := min{%, 1}. Then y > 1 — f3. Also,

b= (25) (25) = [t T <

Therefore (S,V,W) is feasible for (12.33) and attains an objective value 1 — 8. This
shows that y = 1 — 8 and proves (12.28).
The last claim (12.29) follows immediately from

T 2
7 702 = Z2<1—|Q Z0|| )
1Z~Zo|* = |1Z] ZR
* 2
<|z|*1-(1- MC&)
<12 |1 - (1-ate.0 101
< 2HZH20¢(,QZ,C)M [

Amin(D+)
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These results are related to the extreme angles between vectors in a cone studied
in [29, 33]. Moreover, it is related to the distances to infeasibility in, e.g., [46], in
which the distance to infeasibility is shown to provide backward and forward error
bounds.

We now see that we can use the rotation U = [P Q} obtained from the
diagonalization of the optimal D* in the auxiliary problem (12.18) to reveal nearness
to infeasibility, as discussed in, e.g., [46]. Or, in our approach, this reveals nearness
to a facial decomposition. We use the following results to bound the size of certain
blocks of a feasible slack Z.

Corollary 12.19. Let (6*,D*) denote an optimal solution of the auxiliary problem
(12.18), as in Theorem 12.17, and let

D' =[P Q] R* gg] pol”, (12.36)

with U = [P Q} orthogonal, and Dy > 0. Then for any feasible slack 0 # Z =
C— "y =0, we have

D
tracePTZP < a o ,C —H Z|, 12.37
( )/’Lmin(DJr) H H ( )

where a(</,C) is defined in (12.26).

. /Dy O] [PTZP PTZQ
2= <[ 0 DJ’[QTZP QTZQ]>
= (D ,P"ZP) +(D.,0"20) (12.38)

> (D, ,P'ZP)
> Amin(D-) trace P ZP,

Proof. Since

the claim follows from Theorem 12.17. |

Remark 12.20. We now summarize the information available from a solution of
the auxiliary problem, with optima 6* > 0,D* # 0. Welet 0 £ Z=C— oy = 0
denote a feasible slack. In particular, we emphasize the information obtained from
the rotation U” ZU using the orthogonal U that block diagonalizes D* and from
the closest point Zg = QQTZQQT. We note that replacing all feasible Z with
the projected Zg provides a nearby problem for the backward stability argument.
Alternatively, we can view the nearby problem by projecting the data A; +
00" 4,00" Vi, C + Q0" CQQ".

1. From (12.26) in Theorem 12.17, we get a lower bound on the angle (upper bound

on the cosine of the angle):

0".2)
Opy=—""" < o(e,C).
08602 = ez < )
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2. In Proposition 12.18 with orthogonal U = [P Q] , we get upper bounds on the

angle between a feasible slack and the face defined using Q- Q7 and on the
normalized distance to the face:

(z,z9) _0"ZQ| D]
cosbzz, := = >1-o(o,C)————.
1zl Zoll I1Z|l Amin(D+)
Dl
Z—Zo|* <2||1Z|] ouzf,cH— .
1220l <2)2IP | (el )3 Z5

3. After the rotation using the orthogonal U, the (1, 1) principal block is bounded as

17|

trace PTZP < a(o/ ,C) ————
<o )lmin(DH

1Z]]-

12.3.4 Rank-Revealing Rotation and Equivalent Problems

We may use the results from Theorem 12.17 and Corollary 12.19 to get two rotated
optimization problems equivalent to (12.1). The equivalent problems indicate that,
in the case when 6* is sufficiently small, it is possible to reduce the dimension of
the problem and get a nearby problem that helps in the facial reduction. The two
equivalent formulations can be used to illustrate backward stability with respect to
a perturbation of the cone S’} .

First we need to find a suitable shift of C to allow a proper facial projection. This
is used in Theorem 12.22, below.

Lemma 12.21. Let §*,D*,U = [P Q} ,Dy,D¢ be defined as in the hypothesis of
Corollary 12.19. Let (yg,Wp) € R™ x S" be the best least squares solution to the
equation QW QT + o/*y = C, that is, (vo,Wp) is the optimal solution of minimum
norm to the linear least squares problem

min 2 €~ (QWO" + 7). (12.39)
Y

Let Cg := QWpQ! and Cres := C — (Co + 9/ *yg). Then
07CesQ = 0, and o (Crs) = O. (12.40)
Moreover, if 8* = 0, then for any feasible solution y of (12.1), we get
C—a*yeZ(Q-07), (12.41)

and further (y,Q (C — @/*y)Q) is an optimal solution of (12.39), whose optimal
value is zero.
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Proof. Let Q(y,W) := 1||C— (QWQT + o7*y)||%. Since

1 I, . 1 *
Q5. W) = 3 CI+ 4 51+ W[+ (QWQT a7y)
we have (yg,Wp) solves (12.39) if, and only if,

V,Q = o (QWQ" — (C—a*y)) =0, (12.42)
and V,Q = W-— [0 (C—a*y)0] =0. (12.43)

Then (12.40) follows immediately by substitution.
If 6* =0, then (D*,A;) =0 for i = 1,...,m and (D*,C) = 0. Hence, for any
yeR™,

(D ,PT(C—/"y)P) + (D¢, Q" (C—o/*y)Q) = (D".C— o/"y) = 0.

If C— /"y = 0, then we must have P? (C — .«7*y)P = 0 (as D, > 0), and so PT (C —
2/*y)0 = 0. Hence

C—a*y =U0UT(C—a*y)UUT
—ulpo] (C—ay)[PolUT
= 00" (C—o/*y)00",

i.e., we conclude (12.41) holds.
The last statement now follows from substituting W = Q7 (C — &/*y)Q in
(12.39). |

‘We can now use the rotation from Corollary 12.19 with a shift of C (to Cres +Cg =
C — a/*yp) to get two equivalent problems to (P). This emphasizes that when 6*
is small, then the auxiliary problem reveals a block structure with one principal
block and three small/negligible blocks. If & is small, then 8 in the following
Theorem 12.22 is small. Then fixing B = O results in a nearby problem to (P) that
illustrates backward stability of the facial reduction.

Theorem 12.22. Let §*,D*,U = [P Q} ,D+,D¢ be defined as in the hypothesis of
Corollary 12.19, and let yo,Wp,Co,Cies be defined as in Lemma 12.21. Define the
scalar

(12.44)
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and the convex cone Tg C S} partitioned appropriately as in (12.36),

Tg = {Z = L‘:T ﬂ €S : traceA < ﬁtraceZ}. (12.45)

Then we get the following two equivalent programs to (P) in (12.1):

1. Using the rotation U and the cone Tg,

PT'zZP P'Z .
vp = supy{bTy: [QTZP Qng] =1,0,Z=C—of y}; (12.46)

2. Using (yo,Wp),

PTzp PT7(Q

= Z=Cres —o/*y p. (1247
QTZP QTZQ] -y 07 Cres +CQ )’} ( )

vP:bTyQ + sup, {bTy : [
Proof. From Corollary 12.19,

P'ZP P'ZQ .
Tp= {y: [QTZP QTZQ] =1, 0,Z=C—of y}. (12.48)

Hence the equivalence of (12.1) with (12.46) follows.
For (12.47), first note that for any y € R™,

Z::Cres+CQ_M*y:C_%*(y+yQ)a
so Z = 0if and only if y+yp € Fp, if and only if Z € Tg. Hence

P'ZP P'ZQ

oTzp QTZQ] ET,} 0,Z="Cres + QWQQT — d*y} ,  (12.49)

«%D:yQ-i-{yi [

and (12.47) follows. |

Remark 12.23. As mentioned above, Theorem 12.22 illustrates the backward sta-
bility of the facial reduction. It is difficult to state this precisely due to the shifts
done and the changes to the constraints in the algorithm. For simplicity, we just
discuss one iteration. The original problem (P) is equivalent to the problem in
(12.46). Therefore, a facial reduction step can be applied to the original problem
or equivalently to (12.46). We then perturb this problem in (12.46) by setting § = 0.
The algorithm applied to this nearby problem with exact arithmetic will result in the
same step.
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12.3.4.1 Reduction to Two Smaller Problems

Following the results from Theorems 12.13 and 12.22, we focus on the case where
§*=0and ZpNS"_ = 0. In this case we get a proper face 0S" 07 <1S".. We obtain
two different equivalent formulations of the problem by restricting to this smaller
face. In the first case, we stay in the same dimension for the domain variable y but
decrease the constraint space and include equality constraints. In the second case,
we eliminate the equality constraints and move to a smaller dimensional space for y.
We first see that when we have found the minimal face, then we obtain an equivalent
regularized problem as was done for LP in Sect. 12.2.1.

Corollary 12.24. Suppose that the minimal face fp of (P) is found using the
orthogonal U = [Pﬁn Qﬁn}, so that fp = QﬁnS’;ngn, 0 < r < n. Then an equivalent
problem to (P) is

vp = sup by
(PpQ,reg) S.1. an(ﬂ*y)Qﬁn = anCQﬁn (12.50)
iy = Y0

where (yg;.;Woy,) solves the least squares problem minyy ||C — (&/*y + QW
O )|, and o, : R™ — R is a full rank (onto) representation of the linear
transformation

P‘T (M*y)Pﬁn:|
> | fin .
Y {Qg,w*wpﬁn

Moreover, (Ppg reg) is regularized, i.e., the RCQ holds.

Proof. The result follows immediately from Theorem 12.22, since the definition of
the minimal face implies that there exists a feasible § which satisfies the constraints
in (12.50). The new equality constraint is constructed to be full rank and not change
the feasible set. ]

Alternatively, we now reduce (12.1) to an equivalent problem over a spectrahe-
dron in a lower dimension using the spectral decomposition of D*.
Proposition 12.25. Let the notation and hypotheses in Theorem 12.22 hold with
D, 0
8*=0and D* = [P -
an [ Q} [ 00

Dy > 0. Then

T
} [ZT] where [P Q] is orthogonal, Q € R"™" and

vp=sup{bTy: Q" (C—a/*y)Q =0,
PT(a/*y)P = PT(/*yo)P, (12.51)
Q" (a*y)P = Q" (o/*yo)P }.
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Moreover:

If Z(Q-Q")NZ(/*) = {0}, then for any y\,y2 € Fp, b' y1 = b ys = vp.

2. If Z(Q-0"YN# (") # {0}, and if. for some i >0, & : R™ — R™ is an
injective linear map such that #(o* P) = Z(*) NZ(Q - QT), then we have

~

vp=bTyy + sup{(@*b)TV Wy — QT (a7 Pv)Q = o} . (12.52)

And, if v* is an optimal solution of (12.52), then y* = yo + Pv* is an optimal
solution of (12.1).

Proof. Since 6* = 0, from Lemma 12.21 we have that C = Cp + &*y,Co =
QW QT for some yp € R™ and W, € S™. Hence by (12.48),
Fp={yeR": Q" (C—o/*y)Q = 0,P"(C—&*y)P=0,0" (C— &/"y)P =0}
={yeR": 0" (C—"y)Q = 0,P (/" (y—y0))P=0,0" (/*(y—y0))P =0},
(12.53)

and (12.51) follows:

1. Since C— &*y € Z(Q-01),Vy € Fp, we get *(y, —y1) = (C— o *y;) —
(C—a*yy) € Z(Q-0T)NZ%(/*) = {0}. Given that «/ is onto, we get b =
a/(X), for some X € S”, and

A

b (yo—y1) = (X, *(y,—y1)) =0.
2. From (12.53),

Fp = yo+{y: Wo— 07 (/)0 = 0,PT (o/*y)P = 0,0 (o/*y)P =0}
=yo+{y:Wop— 0 (&*y)0 = 0,*y € Z(Q-0")}
=yo+{Pv:Wo— Q" (* Pv)Q = 0},

the last equality follows from the choice of &?. Therefore, (12.52) follows, and
if v* is an optimal solution of (12.52), then yp 4+ &?v* is an optimal solution of
(12.1).

Next we establish the existence of the operator & mentioned in Proposi-
tion 12.25.

Proposition 12.26. For any n x n orthogonal matrix U = [P Q} and any surjective
linear operator <7 : S" — R™ with i := dim(Z(=/*)NZ(Q- Q")) > 0, there exists
a one-one linear transformation & : R™ — R™ that satisfies
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R(A*P) = R(Q-0" )N (*) (12.54)
R(P) =N (PT (7" )P)NN (PT(4*)0). (12.55)
Moreover, o/ : S" — R™ is defined by
A7) = QN (" 2(-)Q
is onto.

Proof. Recall that for any matrix X € "
X =vUTxvu” = PP"XPPT + PP"XQ0" + 00" XPP" + 007X 00" .

Moreover, PTQ = 0. Therefore, X € 2(Q- Q") implies PTXP =0 and PTXQ = 0.
Conversely, PPXP = 0 and PTXQ = 0 implies X = Q07 XQQ". Therefore X €
Z(Q- Q) if, and only if, PP XP =0 and PTXQ = 0.

For any y € R™, o*y € %(Q- Q") if, and only if,

> (PTAP)yi =0 and Y (PTA;Q)yi =0,

i=1 i=1

which holds if, and only if, y € span{f}, where 8 := {y1,...,ym} is a basis of the
linear subspace

U

Now define & : R™ — R™ by

Ms
\Ms

(PTA; P)y,—O} { (PTA 0)yi }
1 —

= JV(PT(.;ZK*-)P) NA (PT(7*)Q).

7
Pv=" viyi fordeR"
i=1

Then, by definition of &, we have
R(A*P)=R(Q- Q") N K (")
and Z(P)=N (PT(M*-)P) nA (PT(,Q%*-)Q) .
The onto property of <7 follows from (12.54) and the fact that both &2, .o7* are
one-one. Note that if .&/*v = 0, noting that .&7* 2y = QW Q! for some W € S by

(12.54), we have that w = 0 so &/* v = 0. Since both &/* and & injective, we
have that v = 0. |
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12.3.5 LP, SDP, and the Role of Strict Complementarity

The (near) loss of the Slater CQ results in both theoretical and numerical difficulties,
e.g., [46]. In addition, both theoretical and numerical difficulties arise from the loss
of strict complementarity, [70]. The connection between strong duality, the Slater
CQ, and strict complementarity is seen through the notion of complementarity
partitions [66]. We now see that this plays a key role in the stability and in
determining the number of steps k for the facial reduction. In particular, we see
that k = 1 is characterized by strict complementary slackness and therefore results
in a stable formulation.

Definition 12.27. The pair of faces Fy IK,F, < K* form a complementarity
partition of K,K* if F; C (F,)°. (Equivalently, F; C (F})¢.) The partition is proper
if both F and F; are proper faces. The partition is strict if (F})° = F, or (F,)° = F}.

We now see the importance of this notion for the facial reduction.

Theorem 12.28. Let 6* = 0,D* = 0 be the optimum of (AP) with dual optimum

(v*,u*,W*). Then the following are equivalent:

1 IfD —[PQ][O 0
orthogonal, Q € R™" and Dy = 0, then the reduced problem in (12.52) using
D* satisfies the Slater CQ; only one step of facial reduction is needed.

2. Strict complementarity holds for (AP); that is, the primal-dual optimal solution
pair (0,D%),(0,u*,W*) for (12.18) and (12.20) satisfy rank(D*) + rank(W*) = n.

3. The faces of S| defined by

T
} [ZT} is a maximal rank element of %Zp, where [P Q] is

foup = face({D €S": /(D) =0, (C,D) =0, D = 0})
f‘?”va = face ({W € §": W = &’z = 0, for some z € R""'})
form a strict complementarity partition of S} .

Proof. (1) = (2): If (12.52) satisfies the Slater CQL then there exists ¥ € R™ such
that Wy — &/*¥ > 0. This implies that Z := Q(Wyp — «7*7) Q" is of rank 1. Moreover,

0=<Z=0WpQ— " Pi=C—o*(yg+ PV) = (_(yQ;“@ﬁ))

Hence, letting
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we have that (0,7, W) is an optimal solution of (12.20). Since rank(D*) +rank(W) =
(n—0)+ 7 = n, we get that strict complementarity holds.

Conversely, suppose that strict complementarity holds for (AP), and let D* be
a maximum rank optimal solution as described in the hypothesis of Item 1. Then
there exists an optimal solution (0,u*,W*) for (12.20) such that rank(W*) = 7. By
complementary slackness, 0 = (D*,W*) = (D, ,PTW*P), so W* € Z(Q- Q") and
O"W*Q = 0. Let u* = < y~)’ e}

W* = 6C— "5 = 6Cy — o (5 — Gyp).

Since W*,Cp € Z(Q- Q) implies that &/ *(§ — éyg) = &/* P for some ¥ € R™,
we get

0<0"W*Q=6aC— .

Without loss of generality, we may assume that & = #1 or 0. If & = 1, then C —
/7 - 01s a Slater point for (12.52). Consider the remaining two cases. Since (12.1)
is assumed to be feasible, the equivalent program (12.52) is also feasible so there
exists ¥ such that C — &/*9 = 0. If & = 0, then C — &/* ($ +¥) = 0. If & = —1, then
C— o/*(20+¥) = 0. Hence (12.52) satisfies the Slater CQ.

(2) <= (3): Notice that f(?ux7 p and ff;ux’ p are the minimal faces of §'} containing

the optimal slacks of (12.18) and (12.20), respectively, and that ff;ux’ ps (?Lm p forma
complementarity partition of ", = (S'} )*. The complementarity partition is strict if
and only if there exist primal-dual optimal slacks D* and W* such that rank(D*) +
rank(W*) = n. Hence (2) and (3) are equivalent. |

In the special case where the Slater CQ fails and (12.1) is a linear program (and,
more generally, the special case of optimizing over an arbitrary polyhedral cone;
see, e.g., [56,57,78,79]), we see that one single iteration of facial reduction yields
a reduced problem that satisfies the Slater CQ.

Corollary 12.29. Assume that the optimal value of (AP) equals zero, with D* being
a maximum rank optimal solution of (AP). If A; = Diag(a;) for some a; € R", for
i=1,...,m, and C = Diag(c), for some ¢ € R", then the reduced problem (12.52)
satisfies the Slater CQ.

Proof. In this diagonal case, the SDP is equivalent to an LP. The Goldman—Tucker
theorem [25] implies that there exists a required optimal primal-dual pair for (12.18)
and (12.20) that satisfies strict complementarity, so Item 2 in Theorem 12.28 holds.
By Theorem 12.28, the reduced problem (12.52) satisfies the Slater CQ. |
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12.4 Facial Reduction

We now study facial reduction for (P) and its sensitivity analysis.

12.4.1 Two Types

We first outline two algorithms for facial reduction that find the minimal face fp
of (P). Both are based on solving the auxiliary problem and applying Lemma 12.6.
The first algorithm repeatedly finds a face F' containing the minimal face and then
projects the problem into F' — F, thus reducing both the size of the constraints and
the dimension of the variables till finally obtaining the Slater CQ. The second
algorithm also repeatedly finds F; but then it identifies the implicit equality
constraints till eventually obtaining MFCQ.

12.4.1.1 Dimension Reduction and Regularization for the Slater CQ

Suppose that Slater’s CQ fails for our given input &7 : S" — R™, C € §", i.e., the
minimal face fp </ F :=§'}.. Our procedure consists of a finite number of repetitions
of the following two steps that begin with k = n.

1. We first identify 0 # D € (fp)¢ using the auxiliary problem (12.18). This means
that fp IF (S’fF N{D}*) and the interior of this new face F is empty.

2. We then project the problem (P) into span(F). Thus we reduce the dimension
of the variables and size of the constraints of our problem; the new cone satisfies
intF # 0. We set k < dim(F).!

Therefore, in the case that intF = (), we need to obtain an equivalent problem
to (P) in the subspace span(F) = F — F. One essential step is finding a subspace
intersection. We can apply the algorithm in, e.g., [26, Thm 12.4.2]. In particular, by
abuse of notation, let Hy, H> be matrices with orthonormal columns representing the
orthonormal bases of the subspaces J#], .74, respectively. Then we need only find
a singular value decomposition H lT H, = UXVT and find which singular vectors
correspond to singular values X;,i = 1,...,r, (close to) 1. Then both H U (:,1 : r)
and H,V (:,1 : r) provide matrices whose ranges yield the intersection. The cone S}
possesses a “self-replicating” structure. Therefore we choose an isometry .# so that
(S N(F —F)) is a smaller dimensional PSD cone §, .

Algorithm 12.1 outlines one iteration of facial reduction. The output returns an
equivalent problem (<7, b,C) on a smaller face of S'! that contains the set of feasible

Note that for numerical stability and well-posedness, it is essential that there exists Lagrange
multipliers and that int F # 0. Regularization involves finding both a minimal face and a minimal
subspace; see [66].
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Algorithm 12.1: One iteration of facial reduction

1 Input: & :S" > R", beR", C e §S";

2 Obtain an optimal solution (6*,D*) of (AP)
3 if 6* >0, then

4 | STOP; Slater CQ holds for («7,b,C).

5 else
6
7
8
9

if D* = 0, then
| STOP; generalized Slater CQ holds for (<7, b, C) (see Theorem 12.13);
else
L .. . D, 0] [PT L
Obtain eigenvalue decomposition D* = [P Q] [ 0 O} [ QT} as described in
Proposition 12.25, with Q € R"™7;
10 if Z(Q-QT)N%(o/*) = {0}, then
11 | STOP; all feasible solutions of supy{bTy :C—o/*y = 0} are optimal.
12 else
13 find 7, & : R™ — R™ satisfying the conditions in Proposition 12.25;
14 solve (12.39) for (yo,Wp);
15 C—Wy;
16 b+ P*b;
17 O (el P()0:
18 Output: o7 : " - R, b e R™, C €S yp €R™, P : R" = R™;
19 end if
20 end if
21 end if

slacks ., 5 ; and, we also obtain the linear transformation &7 and point yp, which
are needed for recovering an optimal solution of the original problem (P). (See
Proposition 12.25.)

Two numerical aspects arising in Algorithm 12.1 need to be considered. The first
issue concerns the determination of rank(D*). In practice, the spectral decomposi-
tion of D* would be of the form

D" = [P Q} {D(; DO} {gq with D, =~ 0, instead of D* = [p Q] [DO+ 8} {gi} '

We need to decide which of the eigenvalues of D* are small enough so that they
can be safely rounded down to zero. This is important for the determination of Q,
which gives the smaller face Z(Q- QT )NS". containing the feasible region .74 The
partitioning of D* can be done by using similar techniques as in the determination of
numerical rank. Assuming that A;(D*) > A,(D*) > --- > 4,(D*) > 0, the numerical
rank rank(D*, €) of D* with respect to a zero tolerance € > 0 is defined via

)LTank(D*,E)(D*) >€2 )LTank(D*,E)Jrl (D*)
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In implementing Algorithm 12.1, to determine the partitioning of D*, we use

the numerical rank with respect to M\/HH where € € (0,1) is fixed: take r =

rank (D*, —SH\%H),

D, =Diag(A(D"),...,A+(D*)), D¢ =Diag(A1(D"),...,A,(D")),

and partition [P Q] accordingly. Then

e||D*
Din(D) > '\F' > Jmax(De) = [|Dell < €l|D"].
Also,
D2 D] 2P 1

=i < = — (12.56)
[D4|* (D> [[Dell* — (1=€})[D*[|> e2-1

that is, D¢ is negligible comparing with D_..

The second issue is the computation of intersection of subspaces, Z(Q -
0T)NZ%(</*) (and in particular, finding one-one map & such that Z(o/* &) =
Z(Q-0")NZ%(<7*)). This can be done using the following result on subspace
intersection.

Theorem 12.30 ([26], Sect. 12.4.3). Given Q € R™" of full rank and onto linear
map <f :S" — R™, there exist Ufp, LU VISP, LV € S" such that

’ min{mﬁz}’ min{mﬁz}
o7 = (UF V") = max{(U,V): |U||=1=|V|,U€#(Q-0"), VeR(a*)},
o,” = (U, V") = max {(U,V) : |U|| =1=|]V|], U e 2(Q-Q"), V € Z(*),
U UPYy=0=(V,V?) Vi=1,....k—1},
(12.57)
fork=2,...,min{m,i*}, and1> o’ > ;" >--- > Gmln{mn ) > 0. Suppose that
ol =-=of=1>00,> > o;f;n{m}, (12.58)

then

Z(Q-0"YN%(/*) =span (U",...,UF) =span(V}*,...,V,F),  (12.59)

rtm

and & : R™ — R™ defined by v =3 vy}’ forv € R™, where o*y;* =V, for
i=1,...,m, is one-one linear and satisfies #(/* P) = Z(Q- QT )N % ().

In practice, we do not get GiSp =1 (fori=1,...,m) exactly. For a fixed tolerance
€% > 0, suppose that

1>0°>.-. >0 >1—-eP>0  >--->0r >0 (12.60)

= “min{a,m}
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Then we would take the approximation
Z(Q-0")NR(A*) ~ span (U}P,...,UF) ~span (V}P,...,V;F).  (12.61)

Observe that with the chosen tolerance £°P, we have that the cosines of the principal
angles between Z(Q - Q") and span (pr, e ,V§p) is no less than 1 — €%; in

m

particular, [|U;* — VP[> < 2% and | QTV,PQ|| > 6P > 1 — &P fork =1,...,m
Remark 12.31. Using V;*,.... V™ {mi) from Theorem 12.30, we may replace
Ay,...,Ap by pr, ...,V,? (which may require extending VISP,...,VSp {mi) to a

miny m,ii
basis of Z ("), if m > ii?).
If the subspace intersection is exact (as in (12.58) and (12.59) in Theorem 12.30),
then Z(Q-Q7)NZ%(/*) = span(Ay,...,As) would hold. If the intersection is
inexact (as in (12.60) and (12.61)), then we may replace <7 by o St — R™,

defined by
y Ur ifi=1,....m,
A=l .
A ifi=m+1,....m

1

which is a perturbation of &7 with ||.&7* — &*||p = \/2 " U = VP2 < V2mesp.

Then Z(Q-QT)N%(/*) =span(Ay,...,As) because A; € Z(Q- QT )N (/) for
i=1,...,mand

max {(U,V) :U € 2(0-0"),|U| = 1,V € 2(7), V| =1,

<U,Ujp> —0= <V,U;"> V)= 1m}

S“&%X{<U Suurs 3y Sp>1U€9?(Q-QT),|IU||=1,|y||=1,

i= i=m+1

<U,U;P>:0w:1,...,m,}

:max{< 2 Vi Sp>:Ue%(Q.QT)7||U||=1,||y|=1,
i=m+1

<U,U;p>=0v]'=1,...,m,}

— 5P _ o8P
=05, <l-€P <1

To increase the robustness of the computation of Z(Q- QT )NZ% (<7 *) in deciding
whether GiSp is 1 or not, we may follow similar treatment in [ 18] where one decides
which singular values are zero by checking the ratios between successive small
singular values.
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Algorithm 12.2: Preprocessing for (AP)

1 Input: Ay,..., A, Apy1:=CeSY
2 Output: §*, P e R™("7)_ D, e §" 7 satisfying D, > 0; (so D* = PD,PT);
3 ifone of the A; (i€ {1,..., m+ 1}) is definite then

4 | STOP; (12.62) does not have a solution.

5 else
. - [Do][uT . A
6 if some of the A = [U U} {0 0} {04 e{A;:i=1,...,m+1} satisfies D = 0, then
7 | reduce the size using A; < U7 A;U,Vi;
8 else
9 if 30#V € R™ such that A;V =0foralli=1,...,m+ 1, then
10 We get (A;,VVT)=0Vi=1,....m+1;
11 §*=0,D* =VVT solves (AP); STOP;
12 else
13 | Use an SDP solver to solve (AP).
14 end if
15 end if
16 end if

12.4.1.2 Implicit Equality Constraints and Regularization for MFCQ

The second algorithm for facial reduction involves repeated use of two steps
again:

1. We repeat step 1 in Sect. 12.4.1.1 and use (AP) to find the face F.
2. We then find the implicit equality constraints and ensure that they are linearly
independent, see Corollary 12.24 and Proposition 12.25.

12.4.1.3 Preprocessing for the Auxiliary Problem

We can take advantage of the fact that eigenvalue-eigenvector calculations are
efficient and accurate to obtain a more accurate optimal solution (8*,D*) of (AP),
i.e., to decide whether the linear system

(A,D) =0 Vi=1,...,m+1 (whereA,;; :=C), 0£D=0  (12.62)

has a solution, we can use Algorithm 12.2 as a preprocessor for Algorithm 12.1.

More precisely, Algorithm 12.2 tries to find a solution D* satisfying (12.62)
without using an SDP solver. It attempts to find a vector v in the nullspace of all
the A;, and then sets D* = v’ . In addition, any semidefinite A; allows a reduction
to a smaller dimensional space.
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12.4.2 Backward Stability of One Iteration of Facial Reduction

We now provide the details for one iteration of the main algorithm, see Theorem
12.38. Algorithm 12.1 involves many nontrivial subroutines, each of which would
introduce some numerical errors. First we need to obtain an optimal solution
(6*,D*) of (AP); in practice we can only get an approximate optimal solution, as
6" is never exactly zero, and we decide whether the true value of 6* is zero when
the computed value is only close to zero. Second we need to obtain the eigenvalue
decomposition of D*. There comes the issue of determining which of the nearly
zero eigenvalues are indeed zero. (Since (AP) is not solved exactly, the approximate
solution D* would have eigenvalues that are positive but close to zero.) Finally,
the subspace intersection Z(Q - Q7 )N % (/*) (for finding /i and ) can only be
computed approximately via a singular value decomposition, because in practice we
would take singular vectors corresponding to singular values that are approximately
(but not exactly) 1.

It is important that Algorithm 12.1 is robust against such numerical issues arising
from the subroutines. We show that Algorithm 12.1 is backward stable (with respect
to these three categories of numerical errors), i.e., for any given input (&7, b, c), there
exists (o7, b,C) ~ (b, C) such that the computed result of Algorithm 12.1 applied
on (#7,b,C) is equal to the exact result of the same algorithm applied on (<7, b, C)
(when (AP) is solved exactly and the subspace intersection is determined exactly).

We first show that ||Cres|| is relatively small, given a small o(«7,C).

Lemma 12.32. Let yg,Cp,Cres be defined as in Lemma 12.21. Then the norm of
Cres 15 small in the sense that

. 1/2
fewll < V2| 0 e o] (_min_121). aze

Amin(D+ Z=C—o/*y>0

Proof. By optimality, for any y € .%,,
ICres | < min||C — 27"y — QWQ" | = |- 00" 200",

where Z := C — o/*y. Therefore (12.63) follows from Proposition 12.18. ]

The following technical results shows the relationship between the quantity
minjy_; [|7*y||* — || Q" («/*y)Q||* and the cosine of the smallest principal angle
between Z(</*) and Z(Q - Q7), defined in (12.57).

Lemma 12.33. Let Q € R™7 satisfy QT Q = I. Then

T: —”nﬁln {Il*y|I* = |07 («*y)Q|I*} = (1= (6}")?) Omin(*)* > 0, (12.64)

where Gfp is defined in (12.57). Moreover,

T=0 <= 0" =1 < Z(Q-0")N% (") #{0}. (12.65)
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Proof. By definition of 0,7,

max{ max <U,V>:||V|:1,V€%’(.;z¥*)}
Ve ull=1uez(-0")

Z max U7 VSP 2 USP, VSp = GSP
||U\\:1,Ue%(Q-QT)< 1 > < 1:"1 > |

Zmax{ max <U,V>:||V|:1,V€%’(.;z¥*)},
Ve \ul=1uez(e-0")

so equality holds throughout, implying that

G]Sp :max{ max <U7V> |V|:17V€%(’Q{*)}
v HU”:L,UG«%(Q-QU

= max{ max (OWQ!, o/*y) : ||/ *y|| = 1}

v Uwi=t

= max {[|0" (/)0 : |y = 1}

Obviously, [|.27*y| = 1 implies that the orthogonal projection QQ7 (.27*y)QQ onto
Z#(Q-QT) is of norm no larger than one:

107 («*y)Q| = |QQ" («7*y)QQ" || < ||*y|| = 1. (12.66)

Hence o, € [0, 1]. In addition, equality holds in (12.66) if and only if &7*y € Z(Q-
Q7), hence

ol =1 <= Z(Z*)NZ(Q-Q") #{0}. (12.67)
Whenever ||y|| = 1, ||.«/*y|| > Omin(<*). Hence

T= rnyin{llﬁf*yl\z— 10" («*y) Q> : Ilyll = 1}

1
= Opin (™ 2min{ *V* =107 (o* 2.1yl = }
() min ["yI" = 107N Dl = —s
2 Gmin(»‘Zf*)zlnyin{|\»@f*y|\2 — Q" (& y)0l*: |y > 1}

= Guin(a* 2 min {31~ 1€ (V)PP 7"yl =1}
— nler ") (1= max {107 ()OI 5] = 1}

= mn(7)? (1= (o))
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This together with o," € [0,1] proves (12.64). If T = 0, then o," = 1 since
Omin(7*) > 0. Then (12.67) implies that Z(7*)NZ(Q - Q) # {0}. Conversely,
if #(/*)N%(Q-QT) # {0}, then there exists § such that ||§|| = 1 and &7*§ €
Z(Q- Q). This implies that

0<t< 9|~ 10" (7 *9)0|* =
so T = 0. This together with (12.67) proves the second claim (12.65). |

Next we prove that two classes of matrices are positive semidefinite and show
their eigenvalue bounds, which will be useful in the backward stability result.

Lemma 12.34. Suppose Ay,...,Ap,D* €S". Then the matrix M € S™ defined by
Mij = (A;,D") <Aj,D*> (i,j=1,...,m)

is positive semidefinite. Moreover; the largest eigenvalue Amax(M) < Y™ | (A;, D* >

2
(Ai, D)y ) :
1

Hence M is positive semidefinite. Moreover, by the Cauchy Schwarz inequality

Proof. For any y € R™,

M=

m
Z (Ai,D" <A./"D*>yiy.i—<

1

we have
2 m
i=1 i=1
Hence Amax (M) < 37, (A;,D*)?. |

Lemma 12.35. Suppose Ay, ...,A, €S" and Q € R™7" has orthonormal columns.
Then the matrix M € S™ defined by

Mij = (Ai,A;) —(QTA4;0,0TA;0), i,j=1,...,m,

is positive semidefinite, with the smallest eigenvalue Amin(M) > T, where T is
defined in (12.64).
Proof. For any y € R™, we have

yMy = 2 <y,A,,yj > <th AiQ, yJQ Aj Q>
ij=1

= [lor*y]? — [|o" (&7 *»)||* > <lyII*

Hence M € S and Ayin(M) > 7. [ ]
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The following lemma shows that when nonnegative 6* is approximately zero and
D*=PD,P" +QD.Q" ~ PD,PT with D, > 0, under a mild assumption (12.70) it
is possible to find a linear operator .7 “near” </ such that we can take the following
approximation:

8«0, D*«PD,P, o*« ",

and we maintain that A (PD.PT) =0 and Z(Q-0")NR(*) = Z(Q-0")N

Lemma 12.36. Let o :S" —R™: X — ((A;, X)) be onto. Let D* = [P Q)] [ 0 g}
£

T
{ZT} € S, where [P Q] € R"™" is an orthogonal matrix, Dy > 0 and D¢ = 0.
Suppose that

R(Q-0")YNR (/") = span(Ay,...,Am), (12.68)

forsomem e {1,...,m}. Then

2 2

m—m
— 07 ApsiO > 0. (12.69)
llyll= 1>eRm i =
Assume that
2 _ 2
m—m T
- Q" AntiQ
Iyll=LyeRn— ~ "
(12.70)

i=m+1

2 m
> —— [l (DY)|]* + || De|? Al .
PHE (II (D> +1IDel” Y, [IAi

Define A; to be the projection of A; on {PD+PT }J':

o (Ai,PD,.PT) - .
A, —A,—WPD+P 5 Vi= l,...,m. (1271)
Then
R(Q-0")NA(T*) = R(Q-0")NA(F"). (12.72)

Proof. We first prove the strict inequality (12.69). First observe that since

2 _

—m m—m
As |l —

= i=1

2 2

0" AptiQ (Ajti — Q0T AmiQOT)|| >0

)
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the optimal value is always nonnegative. Let ¥ solve the minimization problem in
(12.69). If HZ, L yi m+tH HZ, 1 ))IQTAmHQH =0, then

04 Y idnii € Z(Q-0T)N R (/") = span(Ay, ... Ay),
i=1

which is absurd since Ay, ...,A,, are linearly independent.
Now we prove (12.72). Observe that for j = 1,...,m, A; € Z(Q- Q") so
<A j,PD+PT> = 0, which implies that A; = A ;. Moreover,

span(Ay,...,Az) C Z(0Q-0")NZ(A").
Conversely, suppose that B := /"y € Z(Q- Q7). Since A; = A; € Z(Q- Q7) for
j=1,...,m

B=00"BOQ" = Y yj(A;—00"4;00")=0

j=m+

We show that y;11 = -+ =y, = 0. In fact, since Q" (PDyP")Q =0, 37, y;
(A;—QQOTA;00T) = 0 implies

< u n (Aj,PDP"
D yj00TA; 00" = Y yiAi—| X <’—+>y, PD,P".
j=m+1 <D+5D+>

j=m—+1 j=m+1
Fori=m+1,...,m, taking inner product on both sides with A; ,
o o n (Ai,PD.PT)(A;,PD,PT)
> (074i0.0"A,0)yj= 3 (AnAj)yi— X DD Vi
Jj=m+1 j=m+1 Jj=im+1 +, 4

which holds if, and only if,
(M—M) : =0, (12.73)

where M, M € S"~™ are defined by

Moy (j-m) = (AiAj) —(QTA:0,0"A;0),
i ~ (A,PD.PT)(A;,PD.PT)
N (D4,Dy)

Nij=m+1,... m.



12 Preprocessing and Regularization for Degenerate Semidefinite Programs 293

We show that (12.73) implies that y;, 1 = --- = y,, = 0 by proving that M — M is
indeed positive definite. By Lemmas 12.34 and 12.35,

Aamin(M — M) > Aanin(M)) — Amax (M)

2 2

Z1 m+1 <A”PD+PT>
(D4,Dy)

m—m
D vidinyi

i=1

> min
lIyll=1

m—m
- 0" AiiQ
-1

To see that Apin (M — M) > 0, note that since D* = PD, PT 4+ QD Q" for all i,

|(Ai,PDP")| < [(Ai,D*) |+ |(Ai, OD:Q")|
< |(Ai,D*)| + [|Ai]||@D:Q" ||
= [(A;, D)+ ||Ai|[| De |

. 1/2
< V2 (1(An D) P+ 41D 1)

Hence
m
Y (P, P) <2 Y (1(4uDY) + 47 IDeR)
i=m+1 i=m+1

m
<2/l (D")|P +2(IDel* 3, Al
i=m+1

and that Qt,mm(M M) > 0 follows from the assumption (12.70). This implies that
Vil = -+ = ym = 0. Therefore B = Z 1y,A,, and by (12.68)

#(Q-Q") N (") =span(Ay, ..., Az) = Z(Q- Q") NA(F™).

Remark 12.37. We make a remark about the assumption (12.70) in Lemma 12.36.
We argue that the right-hand side expression

2 . n
PR <|J27(D IZ+ Dl Y, |Ai|2>

i=m+1

is close to zero (when 6* ~ 0 and when Dy is chosen appropriately). Assume that
the spectral decomposition of D* is partitioned as described in Sect. 12.4.1.1. Then
(since || De|| < e[ D*])

2087 28 _2n(8)
= I |De = o P —eX[D P = 1-e2
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and

2||De* & 2 282 & 2
[Ail]" < —— [ A~
D] i:%l I 1—g2 i:%l I

Therefore as long as € and §* are small enough (taking into account n and
S i1 ||Ai]?), then the right-hand side of (12.70) would be close to zero.

Here we provide the backward stability result for one step of the facial reduction
algorithm. That is, we show that the smaller problem obtained from one step of
facial reduction with 6* > 0 is equivalent to applying facial reduction exactly to an
SDP instance “nearby” to the original SDP instance.

Theorem 12.38. Suppose o : S" — R", b € R™, and C € S" are given so that
(12.1) is feasible and Algorithm 12.1 returns (0*,D*), with 0 < 8* ~ 0 and spectral

0] [P S = .
ol and (<7,b,C,yg, ). In addition,

decomposition D* = [P Q] {D(; D
£

assume that
P R" S R" v (5) . S0 R(A*P) =span(Ay,...,An).

Assume also that (12.770) holds. For i =1,...,m, deﬁr_le_A,' € S"as in (12.71), and
*y =" viA;. Let C = A yo + QCQT. Then (<7 ,b,C) is the exact output of
Algorithm 12.1 applied on (<7 ,b,C), that is, the following hold:

- o/ (PD,PT)
1 z(PD PT) =" =0,

c(PDF) ((C,PD+PT>

2. (yo,C) solves
. 1 7% T ~112
%niu,ef y+owo"'-C|". (12.74)

3. BT P)=R(Q-0")NR(A*).
Moreover; (o ,b,C) is close to (o ,b,C) in the sense that

m - 2 . m

14i = Al < ——= | (8" +IIDell* X I1Aill* |, (12.75)
= D4 i=1

1/2
v m
IC=Cll < == (&) + D> X MAll* | Iyl

D]l =

+v2 Ma(d C) v min  ||Z (12.76)

Amin(D+) ’ Z=C—/*y=0 ’ ’

where a (< ,c) is defined in (12.26).
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Proof. First we show that (<7, b,C) is the exact output of Algorithm 12.1 applied

on («,b,C):

1. Fori=1,...,m, by definition of A; in (12.71), we have (4;, PD, P" ) = 0. Hence
d(()PD+PT) = 0. Also, (C,PDP") = y{,(</(PD.P")) + (C,Q" (PD.P")Q)

2. By definition, C —.&/*ygp — QCQ" =0, s0 (yg,C) solves the least squares problem
(12.74),

3. Given (12.70), we have that

R0 -ONNR(T*)=R(Q- Q") NR(A*) =R (Ay,....An)
=R(A,....Ap) = R(T* P).

The results (12.75) and (12.76) follow easily:

¥\ |2
< §2|<Ai=D )™ +2]|A*[|De |2
D> 4 D42

m m

~ (A;,PD,PT)[?
S Ai—AlP=Y [{4.PD. PT)|
P i i £

i=1

2 . m
<o ((6 )2—|—|D£||22||A,~|2>,

i=1
and
IC=Cll < [l yo — o yol| + || Ces|

m
< Y 100)illlAi — Aill + [|Cees|
i=1

1/2
m
< HyQH <2||Ai_Ai|2> +||CresH

i=1

1/2

V2 \ z

ST (8 +1IDell> X lAd1* | lvoll
+ i—1

A

l

+\/§{ﬂa(dc)r/z( min ||Z||)
Amin(D) ’ Z=C—a/*y0 ’

from (12.75) and (12.63). (]
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12.5 Test Problem Descriptions

12.5.1 Worst-Case Instance

From Tungel [65], we consider the following worst-case problem instance in the
sense that for n > 3, the facial reduction process in Algorithm 12.1 requires n — 1
steps to obtain the minimal face. Let b =e; € R", C =0, and &/ : S, — R" be
defined by

Al = elelT, Ay = eleg—i—eze{, A= e[,leﬁl —|—elel~T—|—eielT fori=3,...,n.
It is easy to see that
3“52{C—sz*yGSﬁ’r:yER”}:{uele{:uzo},
(so 7% has empty interior) and
sup{b'y:C— /"y = 0} = sup{y, : —/*y = pere] .t > 0} =0,

which is attained by any feasible solution.
Now consider the auxiliary problem

12
n
min||#%c(D)|| = |D}; +4D1,+ > (Di-1;1+2Dy)| st (D,I)=+/n, D= 0.
i=3

An optimal solution is D* = \/ne,el, which attains objective value zero. It is easy
to see this is the only solution. More precisely, any solution D attaining objective
value 0 must satisfy Dy = 0, and by the positive semidefiniteness constraint Dy ; =
Ofori=2,...,nand so D;; =0 fori=2,...,n—1. So D,, is the only nonzero
entry and must equal \/n by the linear constraint (D,I) = /n. Therefore, Q from
Proposition 12.18 must have n — 1 columns, implying that the reduced problem is
in S"~!. Theoretically, each facial reduction step via the auxiliary problem can only
reduce the dimension by one. Moreover, after each reduction step, we get the same
SDP with n reduced by one. Hence it would take n — 1 facial reduction steps before
a reduced problem with strictly feasible solutions is found. This realizes the result
in [12] on the upper bound of the number of facial reduction steps needed.

12.5.2 Generating Instances with Finite Nonzero Duality Gaps

In this section we give a procedure for generating SDP instances with finite nonzero
duality gaps. The algorithm is due to the results in [66, 70].
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Algorithm 12.3: Generating SDP instance that has a finite nonzero duality gap

1 Input: problem dimensions m, n; desired duality gap g;
2 Output: linear map o : §" — R™, b € R", C € §" such that the corresponding primal dual
pair (12.1)—(12.2) has a finite nonzero duality gap;
1. Pick any positive integer ry,r3 that satisfy r| +r3+ 1 =n,
and any positive integer p < r3.
2. Choose A; = Ofori=1,..., pso thatdim(face({A; :i=1,...,p})) =r3.

Specifically, choose Ay, ...,A, so that

000
face({A;: 1,...,p})= ({000 |. (12.77)
00S?
3. Choose Apy1,...,Ap of the form
0 0 (A3
Ai=| 0 (A)n =

(A3 = *

where an asterisk denotes a block having arbitrary elements, such that (A,,1)13,...,(An)13
are linearly independent, and (A;)2 = 0 for some i € {p+1,...,m}.
4. Pick
000
x=0z0|. (12.78)
000

5. Take b=/ (X),C=X.

Finite nonzero duality gaps and strict complementarity are closely tied together
for cone optimization problems; using the concept of a complementarity partition,
we can generate instances that fail to have strict complementarity; these in turn can
be used to generate instances with finite nonzero duality gaps. See [66,70].

Theorem 12.39. Given any positive integers n, m < n(n+1)/2 and any g > 0 as
input for Algorithm 12.3, the following statements hold for the primal-dual pair
(12.1)—~(12.2) corresponding to the output data from Algorithm 12.3:

1. Both (12.1) and (12.2) are feasible.
2. All primal feasible points are optimal and vp = 0.
3. All dual feasible point are optimal and vp = g > 0.

It follows that (12.1) and (12.2) possess a finite positive duality gap.

Proof. Consider the primal problem (12.1). Equation (12.1) is feasible because
C := X given in (12.78) is positive semidefinite. Note that by definition of 7 in
Algorithm 12.3, for any y € R™,
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P 000 m 00 x
C—YyAi=|0,/g0| and — > yAi= [0*x],
=1 00 x i=p+1 %k ok
soif y € R satisfies Z := C —.o/*y = 0, then Zf”:pﬂ viA; = 0 must hold. This implies
% p41Yi(Ai)13 = 0. Since (Ap+1)13,---,(Am)13 are linearly independent, we must
have y,,1 = --- =y, = 0. Consequently, if y is feasible for (12.1), then
00 O
*y=100 0
00 —Zs3

for some Z33 = 0. The corresponding objective value in (12.1) is given by
by =(X,o/*y) =0.

This shows that the objective value of (12.1) is constant over the feasible region.
Hence vp = 0, and all primal feasible solutions are optimal.

Consider the dual problem (12.2). By the choice of b, X > 0is a feasible solution,
so (12.2) is feasible too. From (12.77), we have that by = --- = b, =0.Let X = 0
be feasible for (12.1). Then (A;,X) =b; =0fori=1,..., p, implying that the (3,3)
block of X must be zero by (12.77), so

* %0
X=1]%xx0
000

Since ot = (Aj)22 > 0 for some j € {p+1,...,m}, we have that
oXy = <Aj,X> = <A]',X> = (X\/g,

$0 Xp; = /g and (C,X) = g. Therefore the objective value of (12.2) is constant and
equals g > 0 over the feasible region, and all feasible solutions are optimal. |

12.5.3 Numerical Results

Table 12.1 shows a comparison of solving SDP instances with versus without facial
reduction. Examples 1 through 9 are specially generated problems available online
at the URL for this paper.” In particular: Example 3 has a positive duality gap,
vp =0 <vp = 1; for Example 4, the dual is infeasible; in Example 5, the Slater
CQ holds; Examples 9a, 9b are instances of the worst-case problems presented

2orion.math.uwaterloo.ca/"hwolkowi/henry/reports/ ABSTRACTS.html.
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Table 12.1 Comparisons with/without facial reduction
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True primal

True dual

Primal optimal
value with facial

Primal optimal
value without

Name n m optimal value optimal value reduction facial reduction
Example 1 3 2 0 0 0 —6.30238¢—016
Example 2 3 2 0 1 0 +0.570395
Example 3 3 4 0 0 0 +6.91452e—005
Example 4 3 30 Infeasible 0 +Inf

Example 5 10 5 * * +5.02950e+02 +5.02950e+02
Example 6 8§ 1 1 +1 +1

Example 7 5 3 0 0 0 —2.76307e—012
Example 92 20 20 O Infeasible 0 Inf

Example 9b 100 100 O Infeasible 0 Inf

RandGenl 10 5 0 1.4509 +1.5914e—015  +1.16729e—012
RandGen2 100 67 0 5.5288e+003  +1.1056e—010  NaN

RandGend 200 140 O 2.6168e+004  +1.02803e—009 NaN

RandGen5 120 45 0 0.0381 —5.47393e—015 —1.63758e—015
RandGen6 320 140 O 2.5869e+005  +5.9077e—025  NaN

RandGen7 40 27 0 168.5226 —5.2203e—029  +5.64118e—011
RandGen8 60 40 0 4.1908 —2.03227¢e—029 NaN

RandGen9 60 40 0 61.0780 +5.61602e—015 —3.52291e—012
RandGenl0 180 100 O 5.1461e+004  +2.47204e—010 NaN
RandGenll 255 150 O 4.6639e+004  +7.71685¢e—010 NaN

in Sect. 12.5.1. The remaining instances RandGenl-RandGenll are generated
randomly with most of them having a finite positive duality gap, as described
in Sect. 12.5.2. These instances generically require only one iteration of facial
reduction. The software package SeDuMi is used to solve the SDPs that arise.

One general observation is that, if the instance has primal-dual optimal solutions
and has zero duality gap, SeDuMi is able to find the optimal solutions. However,
if the instance has finite nonzero duality gaps, and if the instance is not too small,
SeDuMi is unable to compute any solution, and returns NaN.

SeDuMi, based on self-dual embedding, embeds the input primal-dual pair into a
larger SDP that satisfies the Slater CQ [16]. Theoretically, the lack of the Slater CQ
in a given primal-dual pair is not an issue for SeDuMi. It is not known what exactly
causes problem on SeDuMi when handling instances where a nonzero duality gap
is present.

12.6 Conclusions and Future Work

In this paper we have presented a preprocessing technique for SDP problems where
the Slater CQ (nearly) fails. This is based on solving a stable auxiliary problem that
approximately identifies the minimal face for (P). We have included a backward
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error analysis and some preliminary tests that successfully solve problems where
the CQ fails and also problems that have a duality gap. The optimal value of our
(AP) has significance as a measure of nearness to infeasibility.

Though our stable (AP) satisfied both the primal and dual generalized Slater CQ,
high accuracy solutions were difficult to obtain for unstructured general problems.
(AP) is equivalent to the underdetermined linear least squares problem

min || (D)||3 st (I,D)=+/n, D>*0, (12.79)

which is known to be difficult to solve. High accuracy solutions are essential in
performing a proper facial reduction.

Extensions of some of our results can be made to general conic convex
programming, in which case the partial orderings in (12.1) and (12.2) are induced
by a proper closed convex cone K and the dual cone K*, respectively.
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Chapter 13
The Largest Roots of the Mandelbrot
Polynomials

Robert M. Corless and Piers W. Lawrence

Abstract This paper gives some details of the experimental discovery and partial
proof of a simple asymptotic development for the largest magnitude roots of the
Mandelbrot polynomials defined by po(z) = 1 and p,.1(z) = zp2(z) + 1.

Key words: Asymptotic expansion e Eigenvalues ¢ Mandelbrot polynomials
* Periodic points ¢ Polynomial zeros

Mathematics Subject Classifications (2010): Primary 37F10; Secondary 37F45,
41A60.

13.1 Background, Experiments, and Results

In the paper [5] we undertook to use the Mandelbrot polynomials, which satisfy
po(z) =1 and

Pus1(2) =z2p2(2) + 1, (13.1)

as a family of test examples for a general class of eigenvalue methods for finding
roots of polynomials. More, one of us (PWL) invented an interesting recursively
constructed zero-one matrix family whose eigenvalues were the roots of p,(z)
and which allowed the computation of all 22 — 1 = 1,048,575 roots of pao(z).
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When another of us (RMC) was presenting these results at JonFest DownUnder,
in Newcastle, Neil Calkin asked about the root of largest magnitude. That question
sparked this paper, and we thank Neil for the discussions that took place at the
conference.

We begin with the well-known observation that the largest root is quite close to,
but slightly closer to zero than, —2. The classical approach to find a root, given
an initial guess, is Newton’s method. For that, we need derivatives: obviously,
py(z) =0, and

Phi1(2) = Pa(2) +22pu(2) P () - (13.2)

Notice also that po(—2) = 1 but p;(—2) = —2-1>4+1 = —1 and thereafter
Pni1(—=2)=—2-(=1)2+1=—1. Thus, all first derivatives p} (—2) are known from

Prii(=2) = (=12 +2- (=2)(=)p(-2)
=4p (=2)+1, (13.3)
which is easily solved to give
4" —1
Pu(=2) = —— (13.4)

That the derivatives are all integers also follows from the definition, as it is easily
seen that the coefficients of py(z) in the monomial basis are positive integers.
The Newton estimate (which is not quite right, as we will see very soon) is thus

) 3

k= 2+4k_1. (13.5)
In one sense this is quite successful. For large k this suggests that the largest
magnitude zero is close to —2, which it is. But in another sense, it is not
very successful; the error is in fact O(47%), not smaller (even though the initial
guess is already O(4%) accurate, so this is not an improvement), and taking yet
another Newton step hardly improves this estimate at all! Indeed Newton’s method
converges initially only very slowly from here. Of course the problem is growth in

the higher derivatives. The Newton estimate is based on the expansion

2y (13.6)

1
pi(=2+8) = pi(=2) + Pi(=2)e + 3P (-2)e
neglecting the (usually benign) terms of O(&?). However, here p}(—2) = (45 —1)/3
and € = 3/(4% — 1), so while £ is very small, and £ is smaller, we really should
check p}/(—2).
Taking the second derivative is simple: With p{j(z) = 0 and

Pl (2) = 4pa(2) Pl (2) +22(p'(2)) + 22pa(2) Pl (2) (13.7)
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we can compute all values of p}/(—2). At z = =2, py(—2) = —1 and p}(-2) =
(4F — 1)/3; therefore the recurrence for the second derivatives is

4n—1 4n—1\?
pf{+1(—2)=—4< 3 )—4( 3 )+4p§;(—2), (13.8)

which is nearly as easy to solve as the first one. One can use Maple’s rsolve, as
we did, to find

1 1k 8
"ne - 2k - _r k_ °
Pi(=2) = —5-4 +(3 9>4 > (13.9)

Now the problem with Newton’s method becomes apparent: This is O(e2),
therefore we cannot neglect the O(g?) term!
In a fit of enthusiasm we compute a few more derivatives:

1

pl(=2) = Esﬁ3 +0(e72), (13.10)
(iv) " -3
P (-2) =5 0T, (13.11)

and so on, giving (to O(g))

pa(=2+8)=—1+1- 37+ 1=~ 1054

wishful +--- (13.12)

which is tantalizing, but wrong.

But what if, instead of using Newton to move from —2 to —2 + €, we instead
moved to —2 + a.€? Could we find a useful o from the series?

This would give

2 3 4

o o o

O=pu(=2t+ae)=—l+o— 0+ 1~ 1057

SR (13.13)

Now the natural thing to do is to ask the on-line encyclopedia of integer sequences
[6] (OEIS) if it knows those integers. It does! (And in fact they are easy: they are

the coefficients of —cosv2a=—14+a — %2 + 8‘—3 —---.) This is the first really big
break and in essence leads to everything that follows.
To make things explicit we present, in tidier form,

Fact 1:

pk(—2+§-92-4*’<) =—cos8+0(47%). (13.14)
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Table 13.1 Numerical

verification of Eq. (13.15): K logy (2 — 2k0)
comparison of the prediction 1 —1.87
of the formula with the 2 —3.09
numerically computed largest 3 —4.76
magnitude root (computed by 4 —6.52
the method of [5]) 5 —8.34
6 —10.19
7 —12.07
8 —13.97
9 —15.87
10 —17.79
11 —19.72
12 —21.65
13 —23.59
14 —25.54
15 —27.48
16 —29.43
17 —31.39
18 —33.35
19 —35.31
20 —37.27

The error improves as
k increases, being ap-
proximately O(4~%), as
claimed

This suggests that the largest magnitude zero of py(z) begins (with 6 = 7r/2) (Table
13.1):

Fact 2:
3
Z:—2+§n2-4’k+0(4’2"). (13.15)

We numerically verified this to high precision, as the reader may do for themselves:
choose your favourite multiple-precision arithmetic, write a recursive program to
compute py(z) given z and k (don’t, of course, expand into the monomial basis—
just use the recurrence relation itself), and choose a large value of k (say k = 30),
evaluate the value of z given above to high precision, and then evaluate p3(z). Its
value should be comparable to 43, indeed ~ —1.23-10~!7, while both py(z) and
p31(z) are order 1.

Greatly encouraged, we go back to the recurrence relations for p,(f) (—2) to look
at the higher-order terms. Indeed we can make progress there, too, which we do not
describe in all its false starts and missteps here; but the (% — g) 4% term in Pi(=2),
which correctly leads us to the conjecture
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Dr (—2+%624") =—cosO+(a(0)k+5b(8))4*+0(47%), (13.16)

allows similar use of the OEIS with computer-generated series terms to succeed.
Instead of detailing that experimental approach, we start over, with more rigour.

13.2 What’s Really True

We now proceed with a partial proof containing a kind of analytical discovery of
what @(6) and b(8) are. Consider the basic iteration (13.1), and suppose, as a sort
of inductive step, that py (—2+36%47*) is as given in Eq.(13.16). It is easy to
see that pi(z) = z+ 1 is quite close to —cos® when z = —2+362/2-47! on, say,
0<06< \/E/ 3 = 1.8257, for example, so that we may begin the approximations
already when k = 1. Now consider the case with a fixed but unspecified k.

Then it must be true that

Prst (—2+%924“>
(2430t 2 (242 (8 24*" +1
- 8 Pr 2\2
= —2+§924*" —cos9+ al? k+b LARPR 2+1 (13.17)
- 8 2 2 2 T

which is supposed to equal
—cosO+ (a(0)(k+1)+b(8))4 4. (13.18)

When we expand the right-hand side out, we get

(—2+§924"> (Coszg—Zcosg <a <g)k+i)(g))4"+---) +1
0 3 0 0 0 ~ (0

1 _ 27 ~pn2 27 Al Z e —k

=1-—2cos 2+<89 cos 2+4cosz<a<2>k+b<2)>)4 +

(13.19)

and we are delighted to see that 1 — 2 cos? % becomes — cos 0, as desired.
The other terms are a little more complicated: equating terms multiplied by k4 —*
we get

a(9) —4cos§~d<9) . (13.20)
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Now, taking advantage of our earlier experimental work, we merely verify that
a(0) =K6%sin@ (13.21)

solves this, for any K:

0 0\ . o
K63sin9=16cosE-K-(E) sinE. (13.22)

This is a linear homogeneous functional equation and has a unique solution [1].
Therefore @(6) has been identified.
Now consider b(6). This must satisfy

Lo 3, 5,8 0.(6
Z(b(@)—i—a(@)) = 86 cos” > +4cos 2b<2) (13.23)
or
= 3 0 6 -/6
b(G):—K93sin9+§92c0525+16cos§-b<5> ) (13.24)

This can be simplified as follows. Put 8 = 0: 5(0) = —0+ 0+ 16-5(0) or 5(0) = 0.
b(o -
Similarly éin}) ((T)) = 0. Thus put 5(8) = 6?b(8). Then
—

3 0 0 /0\> /6
6%b(6) = —K63sin 6 + E92cos2 5 +16c0s - (—) b (—) (13.25)

2 \2 2
or
3 0 6 (6
b(e):_Kesin9+§cos2§+4cos§b <5> . (13.26)
Now as 6 — 0, if 5(6) is continuous, we must have
3
b(0) = 5 +4b(0) (13.27)
or
1
b(0) = —5- (13.28)
Trying a power series solution
1
b(9):—§+2b4~62£ (13.29)



13 The Largest Roots of the Mandelbrot Polynomials 311

(the functional equation is even, so it makes sense to look for an even solution),
we have

2
1 2 o pg2 3 (6/2)*
( 2+b19+ )=—K0 +2(1 >+

(62 e
+4<1‘T+"') (—§+b17+---> (13.30)

and the terms containing b; drop out, leaving

0= <_K_§+4.L> 0z ...

8 16
1 2
= _K_§ 0°+--- (13.31)
and thus we can only solve for b(0) if K = —%, that is, this requires
63sin 6
a(0) = 0%a() = SSm . (13.32)

Thereafter, equating coefficients places no restriction on b; but requires each
coefficient to be constrained as follows:

1 by

1 b
b3="5300 "5 (1334
11 by
b4__25,401,600_ﬂ’ (1335)

and so on. The OEIS does not recognize these numbers (neither did we, but a little
more work later pays off, as we will see).

Experimentally, by computing pgo(—2 + %924’80) to a; ridiculous number of
places, at 6 = 107", adding cos 6 + 4’80(§ 03sin6 - 80 + 97), we find that by = %,
to beyond reasonable doubt. This, then, requires the sequence of by, to start

1 1 127 1,901
{ 3 ,90 ] (13.36)

7278’ 18743,200° 25,401,600°

This essentially completes our construction (we return to 3/8 in a moment).
What we have proved is, if for all 8 we have

3 1
pre(—2+ E924%) = —cosf+ (—§e3 sin @ - k+ 6%(6)) 4% o4,
(13.37)



312 R.M. Corless and P.W. Lawrence

where b(0) = —%—i— %92— %94—1—%964—--- satisfies

6. (6 1, . 3 ,0
b(6) =4cos Eb (5) + §6 sin 6 + 5008”5, (13.38)

then it follows that

3 e
Pk+1(—2+§924 =1

= —cosO+ (—%93 sin@ - (k+1) + ezb(e)> 471022 (13.39)

13.3 The Mysterious 3/8 or 30" (0)

By numerical evidence (high-precision finite differences on computer values of
pi(z) for large values of k and values of z very near —2) we identified 5”(0) = 2.
Later, we found the functional equation (13.38) but noted that while this equation
requires b(0) = —1/2 and b'(0) = 0 all by itself, it leaves free a multiple of the
homogeneous solution, namely K@sin® = K(6? — 6*/3!+6%/5! —.-.) and so
cannot by itself determine »”(0). What helps is a boundary condition, applied at
0 =0, for all k. Using Eq. (13.37) we find by differentiating four times with respect

to 6 that

4
ka(—er%e%k) = —14+47% (=3k+12"(0)) +0(47%%).  (13.40)
6=0

But we already know how to differentiate p;(z) and so, using the chain rule,

2 plE) = Pl(E) (34746 (13.41)
8 = PA(E)- (34714 () (3474262 (13.42)
dd—;pk(é) =3-p{(&)-(3-47%0+p{'(§)-3-4716°, (13.43)
A nE) =3 D(E)- (-4 6. (E)- (347104 () (347116,

(13.44)

where, of course, & = —24 36247,
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Therefore, at 6 =0,

We have already worked out p}/(—2) which is

"e __1 2k l_k k_8
P2 =-547 4 (375 )4 o

313

(13.45)

(13.46)

s0 27 -4 2%pl(=2) = —1 + (9 — 3k)4 ¥ — 8- 472 forcing, for compliance, the

equality of —1 + (12b"(0) — 3k)4~* + 0(472F).
This in turn requires

126"(0) =9
or

bl/ (O) —

1w

(13.47)

(13.48)

This retrospective identification of ”(0) fixes the choice of K - 0sin 6 and thereby
b(0). It seems to us remarkable that this non-standard initial condition suffices.

13.4 The Taylor Series for b(0)
Define the numbers b, by by = —1/2, b; =3/8, and for n > 2 by

3 (_1)n22n (_1)n7122n71

by— - |4 2 = 1)219 + +
T T A2 T T E T (2n)! 42n—1)!
This recurrence relation gives a sequence starting

13 1 127 1,901
2°8’ 18743,200° 25,401,600" |

1 n—1

Lemma 13.1. Ifb, = ‘50—, then|a,| < 1, forn> 1.

-1,

Proof. Ifn:l,blzgz(*l)o—!“lsoal:%<ll

] . (13.49)

(13.50)
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Assume |aj| < 1for1 < j<k—1.Then
(—l)kilak i —l)kfjilak,j

1 & (=D
b=k oy Tk [4].21 CH2k—j)—2)!

(_1)k(_1/2) 3 (_1)k22k (_1)k7122k71
4 - 13.51
P ar i o T A (13.51)
multiplying through by (—1)¥1(2k —2)!,
ot 2k 2v
i 2 )ak j 2
= —)=2)! (2k)(2k—1)
22k73 2_22k72
_ 13.52
TS T k=) ] (13.52)
The triangle inequality gives
4 g 2k—2)! 243 2-3.2%2
|ak|<4k 42 2,,( ) ' ’ —. (13.53)
—4 S 2)2k—j)=2)!  [2k—1 " (2k)(2k—1)| 4k —4
Using Maple, we find that
- 2k 2)! 1,
; ) ) _54 -1, (13.54)
sofork>2
1 1 [2-3.41 4kt
|Clk|< — . —4k71—1 + 2 .
=11 \2 4k —4 | (2k)2k—1)| = (2k—1)(4%—4)
(13.55)

The last term is less than %ﬁ < 1—12, and the second last term is less than

)
2 341

¥ 23 T 380

1 1 1
|ak| < 5 + §+E <1. (13.56)
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Corollary 13.2. The series

1 3
b(0)=—-+>0>+ bo* (13.57)
2 8 =
defines an entire function.
Remark 13.3. Solving the equation
0 0 I, . 3 ,06
b(@)—4cos§-b<5) +§Osm9+zcos 5 (13.58)

subject to b”(0) = 3/4, in series, gives the recurrence relation (13.49). The process
is tedious but straightforward.

Theorem 13.4. Suppose n =2'q and q is odd. Then

20
b(nn):2 5 L (13.59)

Proof.

b(gm) = 4cos (%)b (%) + %(qn) sin (gm) + %cos2 (%) =0 (13.60)

since cos (4%) = sin (q7) = 0.
Then this is ¢ = 0, the base of the induction. Suppose the theorem is true for

¢ = n. Consider

1 3
b(2" qm) = 4cos (2"qm)b(2"qm) + 5 (2" ) sin (2" gr) + 5 cos? (2"gr)

(13.61)
—4.0+3 ifn=0 36
4-(22";1)+§ifn>o (13.62)
because cos? (2"gm) = 1. Then
221
fn=20
b2 gm) =14 .2 13.63
( q ) {22( 4»21)71 1fn>0 ( )
and the theorem is proved by induction. ]

The above theorem suggests that 5(6) grows at most quadratically. We prove
something a little weaker, below; it is likely that the function really does grow only
quadratically, but the following theorem suffices for the purposes of this paper.
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Theorem 13.5. |b(0)| < (3 + % |log,0]) - 6%+ %, for all 6 > 1. That is, b(0)
grows moderately slowly for real 6.

Proof. Notice that the series alternate in sign and decrease; hence, on 0 < 6 < 1,
|b(0)| < %+ 3 - 62. This gives a base for the following induction.

Suppose the theorem is true on 0 < 6 < 2¢. Now consider the functional equation,
expressed in terms of 20:

b(26) :4cos(9)~b(9)+95inT(26)+%cosz(9). (13.64)

Taking absolute values and using the triangle inequality,

1 3 250\ ., 6 3
|b(29)|<4<§+<§+?>9 >+Z+§ (13.65)
or
3 25¢ ,  (20) 1
|b(20)| < <8 + 3 ) (20)~+ 3 3+ 3 (13.66)
|

Since 26 > 1, without loss of generality, 3/8 +25/8(¢+ 1) > 3/8 +25/8(+
1/(8|26])+3/(26)?, and this establishes the truth of the theorem for 2¢ < § < 2¢*1,

13.5 Implications

We have now shown that

03sin6
8

pr(—2+ %ez 47Ky = —cosB + <— k+ 9%(9)) 4% 042 (13.67)

(strictly speaking, we have not given a bound for the O(4~2K) term; there is work
that remains, here, but at this point there is little doubt), where b(0) is entire and
satisfies the functional equation (13.38), as well as a growth bound of the form
|b(0)| < M(0)-62%. Thus, for a fixed large k, if M(6) - 0* < 2%, say, then

pk(—2+%92-4k)+0059’ <0(27). (13.68)
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13.5.1 Several Largest Roots

This formula approximately locates several zeros of pi(z), near 6 = (2 + 1)7/2,
so long as (204 1)7/2 < O(2%/*), roughly; the larger k is, the more zeros we locate.
Explicitly, the zeros are near

3/20+rn
Zk7£:_2+_ (%

2
5 ) 47 1 0(47%) (13.69)

because here |pi(z.0)| < O(27F).
Interestingly, this formula is already accurate for k = 1. Recall that py(z) = 1 and
p1(z) = z+ 1, which has a root at z = — 1. The formula predicts
3 /m\2
— 242 (—) 47110472
210 513 +0(477)
372
= —2 _
+ 32
= —-2+40.92527

=—1.0747, (13.70)
which is remarkably accurate for such small k. For k = 2, we have p,(z) = z

(z4+ 1241 =z(z> +2z+1)+1 =73 +272 +z+ 1, and the largest magnitude zero
is predicted to be

B 3/m\?2 4
no=-2+5(3) 4206
= —2+40.2313188

=—1.768681. (13.71)

The true largest root is (see also Fig. 13.1 and Table 13.2)

1
—1/64/100+ 1269 —2/3 ———— —2/3 ~ —1.75487766624670.
V1004 12/69
(13.72)

13.5.2 Newton-Like Improvements

We may improve the accuracy of these estimates by using Newton’s method, as
follows. Note that we will need p}(z) at z = z ¢, but this will be simple, using the
formula (§ = —2+36%47%) s0 £(0) = 36047,
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Fig. 13.1 Error in

P 10° .
approximating the largest 5
three roots of py(z). Circles,
squares, and crosses are the 102} © a
largest, second largest, and o o
third largest roots, 104} o ;
respectively o x
— a
o
£ 10° o *
I} o
o X
-8 =}
10 o
1}
107101 °
10-12 L
1 2 3 4 5 6 7 8 9 10
k
Table 13.2 Largest three roots of py(z)
20 21 22

1 _ _
—1.7548776662466928  — -
—1.9407998065294848 —1.3107026413368329 -1
—1.9854242530542053 —1.8607825222048549 —1.6254137251233037
—1.9963761377111938 —1.9667732163929287 —1.9072800910653020
—1.9990956823270185 —1.9918141725491222 —1.9771795870062574
—1.9997740486937273 —1.9979629155977143 —1.9943329667155349
—1.9999435217656740 —1.9994914380163981 —1.9985865888422069
—1.9999858811403921 —1.9998729117663291 —1.9996469177332729
10 —1.9999964703350087 —1.9999682317097476 —1.9999117502085037

O 0 NN W=

;iepk(é(e)) —sin(6) = p;(£(6))&'(6) —sin(6)

= (—%(3@2 sin 6 4 63 cos 0)k +20b(0) + sz/(e)) 475 o).

(13.73)
At 0 = (20 + 1)1 /2, the derivative of p(z) is therefore
(-1 + <—l (g(zu 1)2n2> k+(20+1)mb (M)
8\4 2
2
+ <—(2€; 1)”) b (—(26“; U”)) 4750472, (13.74)

Even without the O(47*) term, this gives us
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4k

PL(E(8)) = S5 5in6+0(1)
= a (- +o(1) (13.75)
320+ 1)w/2 ’ ’

which is enough to improve the accuracy of z; ¢ to 0(473K), If we work harder

and include the next term (which requires us to compute b'(6), not that this is

so very hard), then we get something better, but with just this estimate pj(—2+

30%47%/2) ~ —sin 6, we get

1) Pi(2ke)
RO N (13.76)
kit P (ze)
PN pryw (—cos 0 +4 (& sin 0k + 62b(0))) 1377
- 2 sin 04k /34 0(1) (13.77)

andif 6 = (20+ 1)7/2,

2 3
~ oyl (M) 47k _3(—1)f47 % (%sin@k—i— 6°56(0) | +0(4h).

2 2
(13.78)
For k = 1, this gives, with £ =0,

a2 (3 s (T ()5 (5) 4w

and, since b(m/2) = 0.1285353, this gives z{|) = —1.0434, which is better than
before. Of course, an accurate Newton step, using either pj(z) directly or the
formula with 2’ (0) above, is better yet: also of course, this formula is better for
larger k.

13.5.3 Interlacing

The largest roots, as predicted by this formula, have a curious interlacing property:
between every root of pi(z) there are two roots of pyy1(z) and sometimes one of
Pk—1(2), as can be seen by graphing —cos(6/2), —cos(6), and —cos(26) on the
same graph.

Compare p7(—2+3/2c0s0%477) = p7(—2+3/2(20)?-478), pg(—2+3/26%-
478) and po(—2+3/2(6/2)>-478). See Figs.13.2 and 13.3. Furthermore, the
largest root of py(z) must lie between —2 and the largest root of py(z).



320 R.M. Corless and P.W. Lawrence

Fig. 13.2 —cos(6/2), 11
—cos(0), and —cos (26)
0.5 1
0
K
2
0.5
1 -

1
n 3n

Fig. 13.3 The difference 0.014 1
between
p1(—2+3/2(20)°47%), 0.012
ps(—2+3/26%478), and
p9(_2+3/2(9/2)2478) and 0.010
the cosines in Fig. 13.2. The
solid line is k = 7, the dotted 0.008 -
line is k = 8, and the dashed ’
lineisk=9 0.006
0.004
0.002 A
0
—0.002 A
—0.004 A

13.5.4 Barycentric Weights

In [5] the authors consider eigenvalue methods based on Lagrange interpolation at
thenodesz=0,z=—2,andz=¢&_ ; for 1 < j<2*"1—1 where py_1(&-—1 ) =0,
and on Hermite interpolation at the same nodes. It turns out to matter greatly
how widely varying the weights are: the condition number for evaluation (and
rootfinding) is proportional to the ratio of the maximum barycentric weight to
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the minimum barycentric weight and inversely proportional to the minimum node
separation raised to the maximum confluency. See [2—4].

Here, we can explicitly compute some of these barycentric weights, which are
really just coefficients in partial fraction expansions. The expansions we need are

1 2611

W
_ 13.80
e R 27 oty (3
and
1 _ @+Zk§l“l< vio Vi1 >+ W (13.81)
i (2)(z+2)  z = (z=&-1j)  (z—&1))? (z+2)° )

It is easy to see that ¥ = Y = 1/2, because p;_1(0) = 1 and (for k > 0), pr_;
(=2)=-1.

Using our formulas for the roots &1 = —2+3((2¢+ 1)/2)?4 ¥ (changing
our notation somewhat), we can show that the weights in the Lagrange case are
—4/(2¢+ 1)?/x? (for zeros near the maximum point —2), whereas for the Hermite
case their ratios vary by a factor 4% (which is not as bad as it seems—that is, after
all, just the square of the degree of the polynomial, more or less).

This matters more because the minimum node separation also goes like 4%, and
hence the condition number must be at least O(4%) for the Hermite case, whereas
for the Lagrange case we have only shown O(4%). The other weights also matter, and
experimental work (not given here) shows that their variation is somewhat greater
but that the conclusion still holds: the Lagrange basis is better-conditioned.

13.6 More About the Functional Equation for b(0)

The functional equation (13.38) can be simplified. Note first that the homogeneous
equation

0 (6
b(8) =4cos 5b <5> (13.82)

has solution H(0) = K6 sin6:

. 0 6 .0 . 0 0 .
K951n9—4cosE-K-§-smE—K-6-2-31n5-cos§—K-O-sm6. (13.83)
If we use the homogeneous solution, 6sinf, to try to identify b(0) using

variation of parameters, we are led to look at the change of variable b(0) =
0sinOB(0). This gives
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63in6B(6)=4cos(g) (g)sm( ) ( >+% in6 L COSZ(?)
9
;

t
:esine<3(g>+1/8+§coe 1384
7

Dividing by 6 sin 0, this leads to the curious series

B(6) = %4‘% <§ %) +B (%) . (13.85)

(=1

One is tempted to let N — oo, but this series (obviously) diverges. But we know quite
a bit about b(0) for small 8, namely that its Taylor series begins —1/2 + 3/862 —
1/186*+ -, and hence we know how B(8/2V) behaves for large N:

1 1 362 1 6*
oMy~ _ .
B(8/27) = 6/2Vsin @ /2N < 278y g T >

7
1w 02~ M), 13.86
This is enough terms to identify and cancel all the singular parts as N — oo, in a
rigorous form of renormalization, as we will see.
We also need the (well-known) series for the cotangent function:

BomA™ om—1
coteng(—l)'"ﬁem , (13.87)

where here B,,, represents the 2mth Bernoulli number. Using this, we can expand
cot(6/2%)/(6/2") in Taylor series to get

N oo m N m—
ZCOt@(T = 2(—1)’”%’::;, 3 (02)"" (13.88)

C =1

where we have interchanged the order of the (finite) first sum with the (absolutely
convergent if |0| < m) second sum. But now the inner sum is a finite geometric
series, which we can identify (even in the cases where the ratio is 1, when m = 1
and the sum is just —N /3, and larger than 1, when m = 0). If m is not 1,

i (G/ZZ)ZW2 =2 ( _221,12: (_2”;2)) (13.89)
(=1

and putting this all together (not forgetting the factor 3/8), we have
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N N 122V 1 3 (=1)"By 4",
B I o - - N ) e m—2
(6) +< g 7262 292+8m§2 (2m)!(22’”*2—1)9

1228V 7
292+ +0(47™), (13.90)

which, as N — oo, gives us an explicit expression for the series coefficients of B(0)
and hence b(0):

1 sin6 7

1)’"Bzm4

2m—2

3
Gsm6+895m6 z

This is still not a closed form, but somehow it is more satisfying than the recurrence
relation. One could go a little further yet and write down an explicit finite sum
containing factorials and Bernoulli numbers, for each Taylor coefficient of 5(0), by
multiplying the known series for 0 sin 6 explicitly. But we have to lay the pen down
somewhere, and it may as well be here.

13.7 Concluding Remarks

There remains quite a bit to be done. It seems obvious that we can compute many
more terms in this expansion:

3
pk(—2+5624*’<) =—cosO+ Y vi(0)4~*, (13.92)
>1

where each v;(0) will be a polynomial of degree ¢, in k, and give various linear
inhomogeneous functional equations for the coefficients of those polynomials. This
series might even be convergent.

One can ask about the smallest root, instead. Preliminary computations using a
homotopy method to find the smallest root, from the previous iteration’s smallest
root, suggest (but only suggest, as we have only computed about 4 digits) that the
smallest roots begin s; = 1/4 + % /k+if /k* + - - - for some real 8 near 20. The 2
is very speculative and may well be completely wrong. Again, we leave that pursuit
for another day.

However, the computations that we have done, using the OEIS, helped to
discover an analytic formula for a family of roots of a nonlinear recurrence relation;
more, a recurrence relation that has roots that approach a fractal boundary as k — .
One wonders if any other interesting nonlinear equations are also susceptible of such
a treatment.
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Chapter 14
On the Fractal Distribution of Brain Synapses

Richard Crandall

Abstract Herein we present mathematical ideas for assessing the fractal character
of distributions of brain synapses. Remarkably, laboratory data are now available
in the form of actual three-dimensional coordinates for millions of mouse-brain
synapses (courtesy of Smithlab at Stanford Medical School). We analyze synapse
datasets in regard to statistical moments and fractal measures. It is found that
moments do not behave as if the distributions are uniformly random, and this
observation can be quantified. Accordingly, we also find that the measured fractal
dimension of each of two synapse datasets is 2.8 = 0.05. Moreover, we are able to
detect actual neural layers by generating what we call probagrams, paramegrams,
and fractagrams—these are surfaces one of whose support axes is the y-depth (into
the brain sample). Even the measured fractal dimension is evidently neural-layer
dependent.
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14.1 Motivation

Those who study or delight in fractals know full well that often the fractal nature
is underscored by structural rules. When the author was informed by colleagues'
that 3D synapse data is now available in numerical form, it loomed natural that
mathematical methods should be brought to bear.

Thus we open the discussion with the following disclaimer: The present paper is
not a neurobiological treatise of any kind. It is a mathematical treatise. Moreover,
there is no medical implication here, other than the possibility of using such
measures as we investigate for creation of diagnostic tools.”

There is some precedent for this kind of mathematical approach. Several of many
fractal studies on neurological structures and signals include [8—10]. on random
point-clouds per se have even been suggested for the stringent testing of random-
number generators [7]. Some researchers have attempted to attribute notions of
context-dependent processing, or even competition to the activity within neural
layers [1]. Indeed, it is known that dendrites—upon which synapses subsist—travel
through layers. Some good rendition graphics are found in [16]. Again, our input
datasets do not convey any information about dendritic structure; although, it could
be that deeper analysis will ultimately be able to suggest dendritic presence [17].

14.2 Synapse Data for Mathematical Analysis

Our source data is in the section Appendix: Synapse datasets. It is important to note
that said data consists exclusively of triples (x,y,z) of integers, each triple locating
a single brain synapse, and we rescale to nanometers to yield physically realistic
point-clouds. There is no neurological structure per se embedded in the data. This
lack of structural information actually allows straightforward comparison to random
point-clouds (Fig. 14.1).

To be clear, each synapse dataset has the form

X0 Yo 20

X1 Y1 21

IFrom Smithlab, of Stanford Medical School [15].

2Indeed, one motivation for high-level brain science in neurobiology laboratories is the under-
standing of such conditions as Alzheimer’s syndrome. One should not rule out the possibility of
“statistical” detection of some brain states and conditions—at least, that is our primary motive for
bringing mathematics into play.
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Fig. 14.1 Frame from video: The beginning (fop layer, y ~ 0) of a mouse-brain section. Synapses
(our present data of interest) are red points. The vertical strip at upper left represents the complete
section—the small light-pink rectangle indicates the region we are currently seeing in the video
(courtesy of Smithlab, Stanford medical school [15])




328 R. Crandall

Xk Yk Zk (=q)

XN-1 YN—-1 ZIN-1,

where each x,y, z is an integer (Appendix 1 gives the nanometer quantization). There
are N points, and we have indicated symbolically here that we envision some row
as point r and some other row as point q, for the purposes of statistical analysis
(Fig. 14.2). (A point r may or may not precede a q on the list, although in our
calculations we generally enforce r # q to avoid singularities in some moments.)

14.3 The Modern Theory of Box Integrals

Box integrals—essentially statistical expectations, also called moments, over a unit
box rather than over all of space—have a rich, decades-long history (see [2,3,5] and
historical references therein). The most modern results involve such functions as

A,,(S) = <|l‘ - q|> |r,qe[0,1]”

1 ] " s/2
= /0 /0 (2 (" —ar) ) dridgidradqs - - - drndgp.

This can be interpreted physically as the expected value of v*, where separation
v =|v|,v:=r—qis the distance between two uniformly random points each lying
in the unit n-cube (Fig. 14.3).

It is of theoretical interest that A, (s) can be given a closed form for every integer
s, in the cases n = 1,2,3,4,5 [5]. For example, the expected distance between two
points in the unit 3-cube is given exactly by
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Fig. 14.2 A subsection in neural layer 5b. The chemical color-coding is as follows. Green: Thyl-
H-YFP (layer 5B neuron subset); Red: Synapsin I (synapses); Blue: DAPI (DNA in all nuclei). All
of our present analyses involve only the synapsin-detected synapses
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ok

v=r—¢

Fig. 14.3 Views of 5,000 random points (left) and 5,000 actual synapses (right) in a cuboid of
given sides as follows (all in nanometers): a = Ax ~ 103,300;6 = Ay ~ 78,200;¢c = Az ~ 11,400,
for horizontal, vertical, and transverse (angled into page), respectively. To convey an idea of
scale, a millimeter is about 10x the horizontal span of either point-cloud. It is hard to see visual
differences between the random points at left and the actual brain points at right. Nevertheless,
sufficiently delicate statistical measures such as moments (|v|*) as well as fractal measurement do
reveal systematic, quantifiable differences

118 2 34 4 1++3
A1) = —— -+ —V2——-\3+2log(1+V2) +81
5(1) o 37r+21\/_ 7\/_+ 0g< +\/_>+ oz| =7

= 0.66170718226717623515583113324841358174640013579095... ..

The exact formula allows a comparison between a given point-cloud and a random
cloud: One may calculate the empirical expectation (|r — q|), where r,q each runs
over the point-cloud and compares with the exact expression Az(1) ~ .... Similarly
it is known that the expected inverse separation in the 3-cube is

= (5t3)

2 2 2 4 1+V3
—§—§n+§\/§—§\/§+210g<1+\/§)+1210g - ~4log (2+3)

= 1.88231264438966016010560083886836758785246288031070....
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Fig. 14.4 Pictorial of the role of cuboid calculus in our analysis scenario. The right-hand entity
pictorializes an array-tomography section of mouse brain (see Appendix: Synapse datasets for
details). At the left is an idealized, long cuboid representing the full brain sample, inside of which
is a chosen subsection as an (a,b,c)-cuboid. The idea is to statistically compare the synapse
distribution within an (a,b,c)-cuboid against a random distribution having the same cuboid
population. By moving the (a,b,c) cuboid downward, along the y-axis, one can actually detect
neural layers

Such exact forms do not directly apply in our analysis of the brain data, because
we need volume sections that are not necessarily cubical. For this reason, we next
investigate a generalization of box integrals to cuboid volumes (Fig. 14.4).

14.4 Toward a Theory of Cuboid Integrals

In the present study we shall require a more general three-dimensional box integral
involving a cuboid of sides (a,b,c).> Consider therefore an expectation for two
points r, q lying in the same cuboid (Fig. 14.5):

As(ssa,b,c) = (v —d|)|r,qe 0.0 [05]x[0,d

1 a ra b b rc pc s
:a2b2c2/0 /0 /0 /0 /0 /0 r—q[* drydg1dr2dg> drs dgs.

This agrees with the standard box integral Az (s) when (a,b,c) = (1,1,1).

3A cuboid being a parallelepiped with all faces rectangular—essentially a “right parallelepiped.”
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Fig. 14.5 Probability density curves for the separation v = |r — q| (horizontal axis), taken
over a cuboid of data, in the spirit of Fig.14.4. The green curve (with highest peak) is
extracted from subsegment 2 of dataset I, under the segmentation paradigm {12,1,128, {1,128} }.
The red curve (with rightmost peak) is theoretical—calculated from the Philip formula for
F3(v;146700,107900,2730). The blue “excess curve” is the point-wise curve difference (amplified
3x) and can be used in our “probagram” plots to show excess as a function of section depth y.
The expected separations within this cuboid turn out to be (v) = 62018,66789 for brain, random,
respectively

Figure 14.6 shows the result of empirical assessment of cuboid expectations for
dataset I.

We introduce a generalized box integral, as depending on fixed parameters
k,ay,az,a3 (we use a; here rather than a, b, c just for economy of notation):

_ _al2
Gs(k;ar,az,a3) = (e FP=al)

1 ay ay as as 7k‘r7 ‘2
:ﬁ/() /0 /0 /0 € a drldrgdr3dq1dq2dq3,

which, happily, can be given a closed form

1 e aik + a;v/wkerf (a,-\/E) -1

KB a? ’

1 1

Gs(k;ai,ar,a3) =

where erf(z) :=2//7 [§ e~ dr denotes the error function. The closed form here is
quite useful, and by expanding the erf() in a standard series, we obtain for example
a three-dimensional summation for G3. The question is, can one write a summation
that is of lower dimension? One possible approach is to expand the Gaussian in even
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Fig. 14.6 Results for cuboid expectations of separation v and 1/v for cuboids of the type in
Fig. 14.4, running over all y-depth. (The dark green horizontal strip represents the full sample,
oriented left-right for these plots.) In both left- and right-hand plots, the horizontal red line
is calculated from the exact formula for Asz(1;a,b,c). The segmentation paradigm here is
{12,2,80,{1,32}}, dataset I

powers of |p — q| and leverage known results in regard to box integrals A, of Bailey
et al. [2, 3]. Such dimensionality reduction remains an open problem.

Yet another expectation that holds promise for point-cloud analysis is what one
might call a Yukawa expectation:

efk‘rfq‘
Y3(k;a1,a2,a3) = W .

This is the expected Yukawa potential—of nuclear physics lore—between two
points within the cuboid. The reason such potentials are of interest is that being
“short-range” (just like nuclear forces) means that effects of closely clustered points
will be amplified. Put another way: The boundary effects due to finitude of a cuboid
can be rejected to some degree in this way.

14.4.1 Cuboid Statistics

Not just the exact expectation A3(1;a,b,c) but the very probability density F;(v;a,
b, c) has been worked out by Philip [14]. Both exact expressions in terms of a,b, ¢
are quite formidable—see Appendix: Exact-density code for a programmatic way
to envision the complexity. By probability density, we mean

Prob{|r—q| € (v,v+dv)} = Fi(v;a,b,c)dv;
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hence we have a normalization integral with upper limit being the long cuboid
diagonal:

F3(via,b,c)dv = 1.

/\/ a+b24c?

0
More generally we can represent the moment A3 in the form

/-\/ a?+-b24-c?

As(s;a,b,c) =
Jo

v F3(v;a,b,c)dv.

The Philip density for separation v can also be used directly to obtain the density
for a power of v, so

1
HX :=via,b,c) = HX%’1F3(X%;a,b,C).

For example, if we wish to plot the density of inverse separation X := 1/v for
a random point-cloud, we simply plot X 2F3(1/X;a,b,c) for X running from
1/va*+ b? + 2 up to infinity; the area under this density will be 1.

14.5 Fractal Dimension

For the present research we used two fractal-measurement methods: The classical
box-counting method, and a new, space-fill method. For a survey of various fractal-
dimension definitions, including estimates for point-cloud data, see [6].

As for box-counting, we define a box dimension

log#(¢€)
—loge

0 = lim,_y

)

where for a given side € of a microbox, #(g) is the number of microboxes that
minimally, collectively contain all the points of the point-cloud. Of course, our
clouds are always finite, so the limit does not exist. But it has become customary
to develop a #-vs.€ curve, such as the two curves atop Fig. 14.7, and report in some
sense “best slope” as the measured box dimension.

There are two highly important caveats at this juncture: We choose to redefine
the box-count number, as

1
# — #.—1—e*N€3’
when the cloud has N total points. This statistical warp factor attempts to handle
the scenario in which microboxes are so small that the finitude of points causes
many empty microboxes. Put another way: The top curve of the top part of



14 On the Fractal Distribution of Brain Synapses 335

log#(6)

W

. —y

Fig. 14.7 Fractal-dimension measurement. Within a given cuboid we use the standard box-
counting method, namely, in the upper figure is plotted log# vs. log(1/¢) for random points
(upper; blue curve), then for the actual synapse points (lower; red curve), and with the excess as the
green (lowest) plot. In the bottom figure, we use the excess to estimate fractal dimension for each
cuboid in a segmentation paradigm {12,2,80,{2,80}}. Evidently, the fractal dimension fluctuates
depending on layer characteristics at depths y, with an average fractal dimension of ~ 2.8 for the
whole of dataset I

Fig. 14.7—which curve should have slope 3 for N random points—stays straight
and near slope 3 for a longer dynamic range because of the warp factor.

The second caveat is that we actually use not £-microboxes but microcuboids.
When the segment being measured is originally of sides (a,b,c), we simply rescale
the cuboid to be in a unit box, which is equivalent to using a “microbrick” whose
aspect ratios are that of the cuboid, and transform that microbrick to a cube of side
g := (abc)'/3.

14.5.1 Space-Fill Method for Fractal Measurement

During this research, we observed that a conveniently stable fractal-measurement
scheme exists for point-cloud datasets. We call this method the “space-fill” algo-
rithm, which runs like so*:

“The present author devised this method in 1997, in an attempt to create “1/f” noise by digital
means, which attempt begat the realization that fractal dimension could be measured with a Hilbert
space-fill.
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Fig. 14.8 The ‘“space-fill” method for measuring point-cloud dimension. This algorithm as
described in the text yields similar results to the more standard box-counting method, yet
preliminary research reveals the space-fill method to be rather more stable with respect to graph
noise. The basic idea is to create a set of pullbacks on the line [0, 1) and then use a quick sort and
a simple one-dimensional fractal assessment

1. Assume a three-dimensional unit cube containing a point-cloud and construct a
Hilbert space-filling curve, consisting of discrete visitation points H(z), where ¢
runs over the integers in [0,23” — 1]. (The resolution of this curve will be b binary
bits per coordinate, therefore.)

2. Create a list of “pullback” rationals ; /23, corresponding to the points r; of the
point-cloud data.

3. Perform a one-dimensional sort on the set of pullbacks and measure the fractal
dimension §; using a simple interval counter.

4. Report fractal dimension of the point-cloud dataas 6 = 3- 6.

We do not report space-fill measurements herein—all of the results and figures
employ the box-counting method—exceptto say (a) the space-fill method appears to
be quite stable, with the fractagram surfaces being less noisy, and (b) the dimensions
obtained in preliminary research with the space-fill approach are in good agreement
with the box-counting method. Figure 14.8 pictorializes the space-fill algorithm.

14.6 Probagrams, Paramegrams, and Fractagrams

Our “grams” we have so coined to indicate their three-dimensional-embedding
character.’ Each ‘gram is a surface, one of whose support dimensions is the section

3As in “sonogram”—which these days can be a medical ultrasound image, but originally was a
moving spectrum, like a fingerprint of sound that would fill an entire sheet of strip-chart.
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Fig. 14.9 The “fractagram” concept—which is similar for probagrams and paramegrams. For
each cuboid in a given segmentation paradigm (here, paradigm {12,2,80,{2,80}}) we generate
the fractal-slope excess as in Fig. 14.7. The resulting “strands” of fractal data vs. y-depth in the
dataset (here, dataset I) are much easier to interpret if plotted as a surface, which surface we then
call a fractagram as pictured in Fig. 14.11

depth y. In our “grams”, as in the original synapse datasets, y = 0 is the outside (pial)

surface, while y increases into the brain sample. We typically have, in our “grams”,

downward increasing y, so that the top of a ‘gram pictorial is the outside surface.
Precise definitions are:

* Probagram: Surface whose height is probability density of a given variable within
a cuboid, horizontal axis is the variable, and the vertical axis is the y-depth into
the sample.

* Paramegram: Surface whose height is a parameterized expectation (such as our
function Gs(k;a,b,c)), horizontal axis is the parameter (such as k), and the
vertical axis is y-depth.

» Fractagram: Surface whose height is the excess between the fractal-slope curve
for a random cloud in a cuboid and the actual data cloud’s fractal-slope curve,
horizontal axis is —logé€, and vertical axis is as before the y-depth (Fig. 14.9).
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Fig. 14.10 A baseline experiment. At left is the probagram for dataset I and density f3(X :=
1/v*;a,b,c) under segmentation paradigm {12,2,16,{2,10}}. At the right is the result of using
the same number of points (N = 1,119,299) randomly placed within the full sample cuboid. This
kind of experiment shows that the brain synapses are certainly not randomly distributed

In general, we display these “grams” looking down onto the surface or possible at a
small tilt to be able to understand the surface visually.

What we shall call a segmentation paradigm is a set P of parameters that
determine the precise manner in which we carve (a,b,c)-cuboids out of a full
synapse dataset (Fig. 14.10). Symbolically,

P = {M,G,H,{b,E}},

where

e M is the “magnification” factor—the y-thickness of a cuboid divided into the full
y-span of the dataset.

* G is the “grain”—which determines the oversampling; 1/G is the number of
successively overlapping cuboids in one cuboid.

e H is the number of histogram bins in a ‘gram plot, and we plot from bin b to
bin e.

We generally use g < 1 to avoid possible alias effects at cuboid boundaries. The
total number of cuboids analyzed in a ‘gram thus turns out to be

S=1+GM-1).
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Fig. 14.11 Typical set of three “grams”: At far left is a pictorialized a full-section sample, with a
small box indicating a cuboid subsection. As said section is moved downward (increasing y), we
obtain, left-to-right and for separation, v := |r — q|, the probagram for v_!, then the paramegram for
(exp(—kv?)), then the fractalgram. The phenomenon of neural layering is evident and qualitatively
consistent (either correlated or anticorrelated) across all three “grams” for this sample (dataset I,
detailed in Appendix: Synapse datasets)

|

For example, with grain G = 3 and M = 10, we calculate over a total of 28 cuboids.
This is because there are generally G = 3 cuboids overlapping a given cuboid. In
any case, one may take cuboid dimensions a, b, ¢ as

b= Ymax — Ymin |

a4 = Xmax — Xmin, 0 = T ;€ = Zmax — Zmin,

where min, max coordinates are deduced from the data (Fig. 14.11). (In our “grams”,
we continually recompute the min, max for every cuboid to guard against such as
corner holes in the data.)

14.7 How Do We Explain the Observed Fractal Dimension?

Let us give an heuristic argument for the interaction of cuboid expectations and
fractal-dimension estimates. Whereas the radial volume element in 3-space is
4rr’dr, imagine a point-cloud having the property that the number of points a
distance r from a given point scales as ! where 8 < 3, say. Then, if the
characteristic size of a point sample is R (here we are being rough, avoiding
discussion of the nature of the region boundaries), we might estimate an expectation
for point-separation v to the sth power as

f(fzusua’ldu
SR ud=tdu

() ~
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Note that we can avoid calculation of a normalization constant by dividing this way,
to enforce (V') = 1. This prescription gives the estimate

showing a simple dependence on the fractal dimension . In fact, taking the left-
hand plot of Fig. 14.6, we can right off estimate the fractal dimension of the whole
dataset as

5 ~ 2.6,

not too off the mark from our more precise fractal measurements that we report as
2.8£0.05.

So one way to explain our discovered fractal dimension ~ 2.8 < 3 for both
datasets is to surmise that the distance metric is weighted in some nonuniform
fashion (Fig. 14.12).

14.7.1 Generalized Cantor Fractals

One aspect undertaken during the present research was to attempt to fit the observed
fractal properties of the datasets to some form of Cantor fractal. There is a way to
define a generalized Cantor fractal in n dimensions so that virtually any desired
fractal dimension in the interval [n%,n] (see [4]).° Such generalized Cantor
fractals were used to fine-tune our fractal measurement machinery.

Interestingly, the cuboid expectations for dataset II seem qualitatively resonant
with the corresponding expectations for a certain generalized Cantor set called
C3(33111111) having dimension 8 = 2.795.... However, dataset I does not have
similar expectations on typical cuboids. For one thing, the highest-peak curve in
Fig. 14.5—which is from a cuboid within dataset I—shows (v) for the laboratory
data being less than the same expectation for random data; yet, a Cantor fractal
tends to have such expectation larger than random data.

We shall soon turn to a different fractal model that appears to encompass the
features of both datasets. But first, a word is appropriate here as to the meaning
of “holes” in a dataset. Clearly, holes in the laboratory point-clouds will be caused

6Mathematically, the available fractal dimensions for the generalized Cantor fractals are dense in
said interval.
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Fig. 14.12 The ‘“grams” for the synapse-location datasets I, II. The fop row shows Gj
paramegrams and baseline test for segmentation paradigm {12,2,32,{1,10}}. The second row
shows probagrams for inverse separation 1/v, in the same segmentation paradigm. The two 3D
plots at bottom are the fractagrams. At far-left and far-right bottom are graphical displays of the
per-cuboid fractal-dimension estimate. Note that the baseline test here is for a randomly filled
cuboid; the horizontal lines at dimension 3.0 really are less noisy than one pixel width. Thus the
datasets I, II can be said both to have overall fractal dimension 2.8 4 0.5, although the dimension
is evidently neural-layer dependent

by the simple fact of synapses not subsisting within large bodies.” So, too, Cantor
fractals can be created by successive removal of holes that scale appropriately. But
here is the rub: The existence of holes does not in itself necessarily alter fractal
dimension.® For example, take a random cloud and remove large regions, to create
essentially a swiss-cheese structure in between whose holes are equidistributed
points. The key is, fractal-measurement machinery will still give a dimension very
close to 6 = 3.

7Synapses live on dendrites, exterior to actual neurons.

80f course, the situation is different if hole existence is connected with microscopic synapse
distribution, e.g., if synapses were to concentrate near surfaces of large bodies.
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14.7.2 “Bougquet” Fractal as a Possible Synapse-Distribution
Model

We did find a kind of fractal that appears to lend itself well to comparison with
synapse distributions.” We shall call such artificial constructs “bouquet” fractals.
A generating algorithm to create a bouquet point-cloud having N points runs as
follows:

1. In a unit 3-cube, generate Ny random points (Ny and other parameters can be
used to “tune” the statistics of a bouquet fractal). Thus the point-cloud starts
with population Ny.

2. Choose an initial radius r = rg, a multiplicity number m, and a scale factor ¢ < 1.

3. For each point in the point-cloud, generate m new points a mean distance r away
(using, say, a normal distribution with deviation r away from a given point). At
this juncture the point-cloud population will be Ny - m* for k being the number of
times this step 3 has been executed. If this population is > N, go to step 5.

4. Reduce r by r = c¢-rand go to step 3.

5. Prune the point-cloud population so that the exact population is achieved.

The bouquet fractal will have fractal dimension on the order of

logm

~

—logc’

but this is an asymptotic heuristic; in practice, one should simply tune all parameters
to obtain experimental equivalencies.!” For example, our dataset I corresponds
interestingly to bouquet parameters

{No,ro,m,c} = {1000,N, />

,23,1/3}.
The measured fractal dimension of the resulting bouquet for population N =
1,119,299 is 6 ~ 2.85 and statistical moments also show some similarity.

Once again, something like a bouquet fractal may not convey any neurophys-
iological understanding of synapses locations, but there could be a diagnostic
parameter set, namely that set for which chosen statistical measures come out
quantitatively similar.

9 Again, we are not constructing here a neurophysiological model; rather, a phenomenological
model whose statistical measures have qualitative commonality with the given synapse data.

10The heuristic form of dimension & here may not be met if there are not enough total points. This
is because the fractal-slope paradigm has low-resolution box counts that depend also on parameters
No, r.
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14.7.3 Nearest-Neighbor Calculus

Another idea that begs for further research is to perform nearest-neighbor calculus
on synapse cuboids. This is yet a different way to detect departure from randomness.

In an n-dimensional unit volume, the asymptotic behavior of the nearest-pair
distance for N uniformly randomly placed points, namely

= (min|r—qfrqev,
is given—in its first asymptotic term—by

1 2/, ny 1
~ IV (et
" r(1+n> T (143)

In our (n = 3)-dimensional scenarios, we thus expect the nearest-pair separation
to be
re/3 1 0.6097
Mo~ =93 e © N

It is interesting that this expression can be empirically verified with perhaps less
inherent noise than one might expect.

Presumably a nearest-pair calculation on the synapse distributions will reveal
once again significant departures from randomness. What we expect is a behavior
like so

constant
Hy ~ N

for fractal dimension 6. Probably the best research avenue, though, is to calculate
the so-called k-nearest-pairs, meaning ordered k-tuples of successively more sep-
arate pairs, starting with the minimal pair, thus giving a list of expected ordered
distances Uy, Uy, . .., Ug.

Acknowledgments The author is grateful to S. Arch of Reed College, as well as N. Weiler,
S. Smith, and colleagues of Smithlab at Stanford Medical School, for their conceptual and
algorithmic contributions to this project. T. Mehoke aided this research via statistical algorithms
and preprocessing of synapse files. Mathematical colleague T. Wieting supported this research by
being a selfless, invaluable resource for the more abstract fractal concepts. D. Bailey, J, Borwein,
and M. Rose aided the author in regard to experimental mathematics on fractal sets. This author
benefitted from productive discussions with the Advanced Computation Group at Apple, Inc.; in
particular, D. Mitchell provided clutch statistical tools for various of the moment analyses herein.



344 R. Crandall
Appendix 1: Synapse Datasets

Referring to Table 14.1: Both datasets I, II are from adult-mouse “barrel cortex”
which is a region of the somatosensory neocortex involved in processing sensation
from the facial whiskers (one of the mouse’s primary sensory modalities). The long
y-axis of the volumes crosses all 6 layers of the neocortex (these are layers parallel
to the cortical surface, and the long axis is perpendicular to the surface).

Neurophysiological considerations including array-tomography technology are
discussed in [11-13] and web URL [15]; we give a brief synopsis:

Array tomography (AT) is a new high-throughput proteomic imaging method
offering unprecedented capabilities for high-resolution imaging of tissue molecular
architectures. AT is based on (1) automated physical, ultrathin sectioning of tissue
specimens embedded in a hydrophilic resin, (2) construction of planar arrays of
these serial sections on optical coverslips, (3) staining and imaging of these two-
dimensional arrays, and (4) computational reconstruction into three dimensions,
followed by (5) volumetric image analysis. The proteomic scope of AT is enhanced
enormously by its unique amenability to high-dimensional immunofluorescence
multiplexing via iterative cycles of antibody staining, imaging and antibody elution.

Appendix 2: Exact-Density Code

(# Evaluation of the exact Philip density F3([v,a,b,cl]
for an (a,b,c)-cuboid. x)

hilfu , a , b, ¢ 1 :=1/(3 a2 b"2 c"2) =
If[u <= b"2, -3 P1i bcu+ 4bu(3/2),
If[u <= ¢”2,
4 b™4 + 6 b"2 ¢ Sgrt[u - b"2] -
6 b ¢ u ArcSin[b/Sgrt[ull,
If[u <= b"2 + ¢”™2, 4 b4 + 6 b2 ¢ *

Sgrt[u - b"2] +
6 b ¢ u (ArcCoslc/Sqgrt[ull -
ArcSin[b/Sgrt[ull) -

Table 14.1 Synapse dataset characteristics

File, voxel nmxnmxnm N (Xmin, Xmax) (Ymin» Ymax) (Zmin , Zmax)
I
KDM-100824B 100x100x70 1,119,299 (2800, 151300) (2300,1298000) (105,2835)

I
mMos3_Syn 100x100x200 1,732,051 (100, 103400) (100, 1252600) (105,4095)

The point-cloud population N exceeds 10° for each dataset. The min, max parameters have been
converted here to nm
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1;

hi2[u , a , b_, c_]
If[u <= a”2,

2 b (2 u+ c"2)

0

Sgrt[u - c¢”2],

1/(6 a2 b"2 c¢”2)

12 Pi a b ¢ Sgrt[u] -
- 3 ut2,

8 (a + ¢c) u
If[u <= ¢
5 a”4

8 c u

" (3/2)
>

6 Pi a

- 6 Pi a™3 b +
12 Pi a b ¢ Sgrt[ul]
- 12 Pi a b c «
8 C *

" (3/2)

Sgrt[u - a”2] -
(u - a~2)"(3/2)
12 a ¢ u ArcSinla/sSqgrt(ul]l,

If[u <= a2 + ¢”2,

5 a”4

c™4 4+

3 u”2

Sgrt [u
8 ¢ (u
4 a (2
Sgrt [u
12 a ¢

6

+

*

6 Pi a"3 b +
6 Pi a b c”2
(Pi a b+ c”2) u +
12 Pi a b c *

- a”2]
a®2)"(3/2)
+ c”2) %
- c¢”2]

u

u *

+

(b + ¢) u +

(ArcCos[c/Sqrt [ul ] -ArcSin[a/Sqrt[ull),

0

1;

h22[u , a , b, c_]
If[u <= a”2,

Sgrt[u - a”2]
6 a b u ArcSin[a/Sgrt[ul],
If[u <= a2 + c"2,

3

a2 b

(Pi a - b)

+
+
+

3

12 a b ¢ Sgrt[ul] *

c)

a"2-4 b u)*

4 b™4-

345
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ArcSin[b Sgrt(ul/(Sgrt[a”2 + b"2] % Sgrtfu - a”"2])]-
6 ac (a - Pib) sgrtfu - a"2]-
6 c (b"2 - a”2 +
2 a b ArcSinla/Sgrt[a”™2 + b"2]])x
Sgrt[u - a2 - b"2] -
6 ab (a”2 + b™2)«*
ArcSinf[a/Sgrt[a”™2 + b"2]] +
6 bc (a"2 + u) =*
ArcSin[b/Sgrt[u - a”2]],
3 a2 (a”2 - b"2 - ¢"2)-4 b"4-
3 a2 u - 12 a b ¢ Sgrtlu]l =«
(ArcSin([b Sgrt[ul/(Sgrtl[a”2 + b"2] * Sgrt[u-a”2])]-
ArcCos[a c¢/(Sgrt[u - c”2] Sgrtlu - a”2])]1) +
2 b ("2 + ¢”™2 + 2 u) «*
Sgrt[u - a2 - c¢"2] -
6 C *
(b"2 - a”2 + 2 a b ArcSin[a/Sgrt[a”™2 + b"2]]) =*
Sgrt[u - a2 - b"2] -
6 ab (a2 + b™2) =*
ArcSinf[a/Sgrt[a”™2 + b"2]] +
6 bc (a"2 + u) =*
(ArcSin[b/Sgrt[u - a”2]] - ArcCos[c/Sgrtlu - a”2]1)+
6 ab (¢c™2 + u) =*
ArcSin[a/Sgrt[u - c¢”2]]

1;

h32[u , a , b_, c] h22[u, b, a, cl;
h33[u , a , b, c ] :=1/(6 a”2 b"2 c"2) =«
If[u <= b2, 0,
If[u <= a”2 + b"2,
3 (2 Piab+b'2 +u (u-Db'2) -
4 ¢ (b2 + 3 P1i ab+ 2 u)
Sgrt[u - b"2],
If[u <= b™2 + ¢”2, 3 (a2 + b™2)"2 -
3 b + 6 P1 a”"3 b -
4 ¢ (b2 + 3 P1iab+ 2 u) *
Sqgrt[u - b"2] +
4 ¢c (a2 + b2 + 3 Piab+ 2 u)sx*
Sgrt[u - a2 - b"2],
3 (a"2 + b™2)72 + c”4 +
6 P1ab (a2 + b™2 - ¢"2) -
6 (P11 ab+ c™2) u-3u2 +
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4 ¢c (a2 + b2 + 3 Piab+ 2 u)sx*
Sgrt[u - a2 - b"2]

1;

(*» Next, the Philip density function for separation v.

It must be arranged that a <= b <= c. *)

F3[lv._, a, b, c ] :=

2 v (hili[v"2, a, b, c] + hil2[v"2, a, b, cl +
h22[v"2, a, b, c¢] + h32[v"2, a, b, c] +
h33[v"2, a, b, cl);
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Chapter 15
Visible Points in Convex Sets and Best
Approximation

Frank Deutsch, Hein Hundal, and Ludmil Zikatanov

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The concept of a visible point of a convex set relative to a given point is
introduced. A number of basic properties of such visible point sets are developed. In
particular, it is shown that this concept is useful in the study of best approximation,
and it also seems to have potential value in the study of robotics.

Key words: Best approximation from convex sets * Visible points in convex sets

Mathematics Subject Classifications (2010): 41A65, 52A27.

15.1 Introduction

Unless explicitly stated otherwise, throughout this paper X will always denote a
(real) normed linear space, and C a closed convex set in X. For any two distinct
points x,v in X, we define interval notation analogous to that on the real line by
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v i ={Ax+(1-A)|0<A <1},
ov[i={Ax+(1-A)w|0<A <1},
v i ={Ax+(1-A)w|0<A <1} =[vx[, and
ovli={Ax+(1-Aw|0<A <1}

In other words, [x,V] is just the closed line segment joining x and v, [x, v[ is the same
line segment but excluding the end point v, and ]x,v[ is the line segment [x, v] with
both end points x and v excluded.

Definition 15.1. Let x € X. A point v € C is said to be visible to x with respect to
C if and only if [x,v]NC = {v} or, equivalently, [x,v[NC = 0. The set of all visible
points to x with respect to C is denoted by V¢(x).

Thus
Ve(x)={veC|xvNnC={v}}={veC|xv[NC=0}. (15.1)

Geometrically, one can regard V¢ (x) as the “light” that would be cast on the set C
if there were a light source at the point x emanating in all directions. Alternatively,
one can regard the set C as an “obstacle” in X, a “robot” is located at a point x € X,
and the directions determined by the intervals [x,v], where v € V¢ (x), as directions
to be avoided by the robot so as not to collide with the obstacle C.

In this paper we begin a study of visible sets. In Sect. 15.2, we will give some
characterizations of visible sets (see Lemmas 15.4 and 15.10, and Theorem 15.15
below). We show that the visible set mapping V satisfies a translation property just
like the well-known metric projection Pr (see Lemma 15.6 below). Recall that the
generally set-valued metric projection (or nearest point mapping) Pc is defined on
X by

Pe(x) i= {y €C| v = inf |x— e}

Those closed convex sets C such that the set of visible points to each point not in
C is the whole set C are precisely the affine sets (Proposition 15.7). In Sect. 15.3
we study the connection between visible points and best approximations. Finally,
in Sect. 15.4 we consider characterizing best approximations to a point in a Hilbert
space from a polytope, i.e., the convex hull of a finite set of points.

15.2 Visibility from Convex Sets

The first obvious consequence of the definition of visibility is the following.

Lemma 15.2. Let C be a closed convex set in X. If x € C, then V¢ (x) = {x}.



15 Visible Points in Convex Sets and Best Approximation 351

This lemma shows that the most interesting case is when x € X \ C and the main
results to follow actually require this condition as part of their hypotheses. Indeed,
when x ¢ C, there are additional useful criteria that characterize visible points. For
any set C, let bdC denote the boundary of C.

Unlike the metric projection, the visibility operator is never empty-valued.

Lemma 15.3. Let C be a closed convex set in X. Then

1. Ve(x) # 0 for each x € X, and
2. Ve(x) CbdC for eachx € X\ C.

Proof.

1. Let x € X. By Lemma 15.2 we may assume that x ¢ C. Fix any y € C. Then the
interval [x,y] contains points in C (e.g., y) and points not in C (e.g., x). Let

Ao :=sup{A €[0,1] | Ax+ (1 —A)ye C}.

Since C is closed, it follows that v := Apx+ (1 — Ag)y € C. Hence Ay < 1, and
[x,vo] NC = {wo}. That is, vy € Vc(x).

2. Fix any x € X \ C. To show that v € bdC for each v € V¢(x). If not, then there
exists some v € Vo(x) such that v € C\ bdC. Hence v is in the interior of C. Thus
there must be a subinterval [vy,v] of the interval [x,v] which lies in C. Hence
[x,v]NC # {v}, a contradiction to v € V¢(x).

Lemma 15.4 (Characterization of visible points). Let C be a closed convex set in
X, x € X\C, and v € C. Then the following statements are equivalent:

1. v is visible to x with respect to C.
2. Ax+(1=2A)w ¢ C foreach0< A < 1.
3. max{A €[0,1]| Ax+(1—-A)veC}=0.

Proof. (1) = (2): If (1) holds, then [x,v[NC = 0. Since [x,v[={Ax+(1—A)v|0<
A < 1}, (2) follows.

(2) = (3): Since v € C, (3) is an obvious consequence of (2).

(3) = (1): If (3) holds, then [x,v[NC = 0. That is, v € V¢ (x). |

Simple examples in the Euclidean plane (e.g., a box) show that although C is
convex, V¢(x) is not convex in general. These simple examples also might seem
to indicate that V¢ (x) is always closed. However, the following example in 3
dimensions shows that this is false in general.

Consider the subset of Euclidean 3-space ¢»(3) defined by

C:=(1,0,0)+cone{(1,0,B) | &>+ (B —1)* < 1}. (15.2)

Example 15.5. The set C defined by (15.2) is a closed convex subset of £,(3) such
that 0 ¢ C and V(0) is not closed.
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Fig. 15.1 The set C from
Example 15.5

ta

Proof. The result is geometrically obvious (see Fig.15.1) by observing that the
points (2,sint, 1+ cost) are in V¢(0) for each 0 < 7 < &, but that the limit point
(2,0,0) (as r — m) is not. However, the formal proof of this fact is a bit lengthy.
Clearly, 0 ¢ C since the first component of any element of C is at least 1. We first
verify the following claim.

Claim. The points v(t) := (2, sint, 1 4 cost) are in V¢(0) for each 0 <t < m.

Using the classical trig identity sin®7 +cos?f = 1, it is clear that v(t) € C for each
0 <t < m. To complete the proof of the claim, it is enough to show that [0,v(¢)[NC =
0 foreach 0 < ¢t < m. By way of contradiction, suppose the claim is false. Then there
exists 0 < fp < 7 such that [0,v(#9)[NC # 0. Since 0 ¢ C, it follows that there exists
0 < A < 1 such that Av(ty) € C. That s,

A(2, sinty, 1 +costy) € C = (1,0,0) +cone{(1,a,B) | &®> +(B—1)> < 1}
= (1a0a0)+UP20p{(17aaﬁ) | 0524—([3 - 1)2 < 1}

Since A sinfy # 0, it follows that for some p > 0,
A(2, sinfy, 1 4 costy) = (1,0,0)+p(1,0, ) (15.3)
for some o and 3 such that

o>+ (B-1)?%<1. (15.4)
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By equating the corresponding components in (15.3), we obtain

WA =14p (15.5)
Asingg =po (15.6)
A(costo+1)=pp (15.7)

From (15.5) is deduced that p =24 — 1 < 2 — 1 = 1 and hence that
O<p<l. (15.8)

Also, from (15.6) and (15.7) we deduce that oo = psinty and 8 = (1 + costy),
where [t := A /p. Substituting these values for o and 3 into (15.4), we deduce after
some algebra that 1 > 2u?(1 +costy) — 2 (1 +costy) + 1. Subtracting 1 from both
sides of this inequality and then dividing both sides of the resulting inequality by the
positive number 21t (1 + cost), we obtain u < 1,1i.e., A < p. From (15.5), it follows
that p > 1, which contradicts (15.8). This proves the claim.

It remains to note that the limit point lim;_,; v(¢t) = v(rr) = (2,0,0) is not in
Vc(0). For this, it is enough to note that [0,v(7)[NC # 0. And for this, it suffices to
show that (3/4)v(m) € C. But

3 6 1
Tv(m = (Z’O’O) = (1,0,0)+ 5(1,0,0) €C.

The following simple fact will be useful to us. It shows that the visible set
mapping V¢ satisfies a translation property that is also satisfied by the (generally
set-valued) metric projection Pc.

Lemma 15.6. Let C be a closed convex set and x,y € X. Then
Vc(x) :Vc+y(x+y) - (15.9)

Proof. Letv € C.Note thatv € Ve(x) < [x,y[NC=0< [x+y,v+y[N(C+y)=0
Sv+ye Ve (x+y) & ve Ve (x+y) —y. [ |

It is natural to ask which closed convex sets C have the property that V¢ (x) = C
for each x ¢ C. That is, for which sets is the whole set visible to any point outside
the set? The next result shows that this is precisely the class of affine sets. Recall
that a set A is affine if the line through each pair of points in A lies in A. That is,
if the line aff {a;,a,} := {a1a; + opay | oy + oy = 1} C A for each pair aj,a; € A.
Equivalently, A is affine if and only if A = M + a for some (unique) linear subspace
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M (namely, M = A — A) and (any) a € A. Finally, the affine hull of a set C, aff (C),
is the intersection of all affine sets which contain C. As is well known,

aff (C) = { Y ox;

jer

J finite, Za.,-_l,xjec}. (15.10)
jeJ

Proposition 15.7. Let C be a closed convex set in X. Then the following statements
are equivalent:

1. C is affine.
2. Ve(x) =C for eachx € X\ C.

Proof. (1) = (2): Let us assume first that C = M is actually a subspace, i.e., that
0 € C. Fix any x ¢ M. Since Vy;(x) C M, it suffices to show that M C Vy(x). To this
end, let m € M. If m ¢ Vj(x), then [x,m[NM # 0. Hence there exists 0 < A < 1 such
that Ax+ (1 — A)m € M. Since m € M, this implies that Ax € M and hence x € M, a
contradiction. This proves (2) in case C is a subspace.

In general, suppose C is affine. Then C = M + ¢ for some subspace M and c € C.
For any x € X \ C, we see that x — ¢ ¢ M and by the above proof and Lemma 15.6
we obtain

Ve(x) = Vige(x) =Vyu(x—c)+c=M+c=C.

(2) = (1): Assume (2) holds. If C is not affine, then there exist distinct points
c1,¢3 in C such that aff{c;,c2} ¢ C. Since C is closed convex and aff{cy,c,} is a
line, it follows that either aff {c1,c2 } NC = [y1,y2] oraff{c1,c2}NC=y1 +{p(y2 —
y1) | p > 0} for some distinct points y;,y, in C. In either case, it is easy to verify that
x:=2y;—y, ¢ C. Also, y; = %x—l— %yz € [x,y2[NC, which proves that y, ¢ V¢ (x)
and hence contradicts the hypothesis that Ve (x) = C. Thus C must be affine. |

Definition 15.8. Let C be a closed convex subset of X. For any point y € X, we
define the translated cone C, of C by
Cy:=cone(C—y)+y.

Some basic facts about the translated cone follow.

Lemma 15.9. Let C be a closed convex set in X. Then the following statements
hold:

1. G, D C foreachy € X.

2. The set cone (C —y), and hence also Cy, is not closed in general.

3. If y € C and the set cone (C —y) is closed, then C, = Tc(y) +y, where Tc(y) is
the tangent cone to C at y.
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Proof.

1. Cy=cone(C—y)+yDC—y+y=C.

2. Consider the closed ball C of radius one in the Euclidean plane centered at the
point (0, 1) and let y denote the origin (0,0). Then Cy is the open upper half-plane
plus the origin, which is not closed.

3. This follows since the definition of the tangent cone to C at the point y € C is
given by T¢(y) = cone (C —y) (see, e.g., [1, p. 100]).

]
One can also characterize the visible points via the translated cone.

Lemma 15.10. Ler C be a closed convex set in X, x € X\ C, and v € C. Then v €
Ve(x) if and only if x ¢ C,. Equivalently, v ¢ V¢ (x) if and only if x € C,.

Proof. If v ¢ Ve(x), then [x,v[NC # 0. Thus there exists 0 < A < 1 such that y :=
Ax+(1—=2A)veC.Hencex—v=(1/A)(y—v) € cone(C —v) and therefore x € C,.

Conversely, if x € C,, then there exist p > 0andy € C such thatx=p(y—v)+v=
py+ (1 —p)v.If p <1, then x, being a convex combination of two points in C, must
lie in C, a contradiction. It follows that p > 1 and y = (1/p)x+ ((p —1)/p)v €
[x,vy[NC. Thus [x,v[NC #£ 0, and so v ¢ V¢(x) by (15.1). [ |

The following proposition shows that the translated cones of C form the external
building blocks for C.

Proposition 15.11. Let C be a closed convex set in X. Then

N a=N&=()¢=C.

yebdC yeC yeX

Proof. By Lemma 15.9, N,cxCy D C. Thus to complete the proof, it suffices to show
that NycpacCy C C. If not, then there exists x € NyepacCy \ C. Thus x € C, \ C for
each y € bdC. By Lemma 15.10 y ¢ V¢(x) for all y € bdC. But V¢(x) C bdC by
Lemma 15.3(2). This shows that V¢ (x) = 0, which contradicts Lemma 15.3(1). H

A somewhat deeper characterization of visible points is available by using the
strong separation theorem. Recall that two sets C; and C; in the normed linear space
X can be strongly separated by a continuous linear functional x* € X* if

sup x*(y) < inf x*(z). (15.11)

yel; z€Cy

One can also interpret strong separation geometrically. Suppose C; and C, are
strongly separated by the functional x* such that (15.11) holds. Let b be any scalar
such that

sup x*(y) < b < inf x*(z).
yeC z2eCy
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Define the hyperplane H and the (open) half-spaces H™ and H™ by

H:={yeX|x*(y)=b}, H":={yeX|x"(y)> b}, and
H ={yeX|x"(y) <b}.

(Note that H, H~, and H* are disjoint sets such that X = HUH~ UH™".) Then
H is said to strongly separate the sets C; and C; in the sense that C; C HUH ™,
C, C HUH™, and (at least) one of the sets C; or C, is disjoint from H.

Fact 15.12 (Strong Separation Theorem; see [4, Theorem V.2.10, p. 417]). Let
C; and G, be two disjoint closed convex sets in X, one of which is compact. Then
the sets can be strongly separated by a continuous linear functional.

Definition 15.13. Let K be a convex subset of X. A point e € K is called an extreme
pointof Kifky € K, kp € K,0< A < 1,and e = Ak; + (1 — A)k; imply that k; =
ko = e. The set of extreme points of K is denoted by extK.

The following fact is well known (see, e.g., [4, pp. 439—440]), and it will be
needed in this section and the next.

Fact 15.14 (Krein-Milman). Let K be a nonempty compact convex subset of X.
Then:

1. K has extreme points and K is the closed convex hull of its extreme points: K =
conv (extK).

2. If x* € X*, then x* attains its maximum (resp., minimum) value over K at an
extreme point of K.

Theorem 15.15 (Another characterization of visible points). Let C be a closed
convex subset of X, x € X\ C, and v € C. Then the following statements are
equivalent:

1. v isvisible to x with respect to C.

2. For each point y €|x, V|, there exists a functional x* € X* that strongly separates
[x,y] and C, and x*(y) = max ey, X" (2).

3. For each point y €]x,v|, there exists a hyperplane H = H, that contains y and
strongly separates [x,y] and C.

Proof. (1) = (2): Suppose v is visible to x from C. Then [x,v[NC = 0. In particular,
for each y € [x,v], [x,y] NC C [x,v[NC = 0. Thus [x,y] and C are disjoint closed
convex sets, and [x,y] is compact. By Fact 15.12, there exists x* € X* such that

b:= sup x*(z) < infx*(c). (15.12)

z€xy] ceC

To verify (2), it remains to show that x*(y) = b. If x =y, this is clear. Thus we may
assume that x # y. Since [x,y] is compact, the supremum on the left side of (15.12)
is attained. Further, this maximum must be attained at an extreme point of [x,y] by
Fact 15.14(2). Since x and y are the only two extreme points of [x,y], we must have
x*(x) =borx*(y) =b.
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Suppose x*(x) = b. Since v € C, we have x*(v) > b by (15.12). Since y €]x, V],
there exists 0 < A < 1 such that y = Ax+ (1 — A)v. Then

@) =Ax(x)+ (1 =A)x"(v) > Ab+(1—-A)b=b,

which contradicts the definition of b. Thus the condition x*(x) = b is not possible,
and we must have that x*(y) = b, which verifies (2).

(2) = (3): Assume (2) holds. Let y €]x,v[. Choose x* € X* as in (2), and define
H:={z€X|x"(z) = b}, where b = max_¢[, , x"(z). Then H strongly separates [x, ]
and C, x*(y) = b, and so y € H. Thus (3) holds.

(3) = (1): Suppose (3) holds but (1) fails. Then [x,v[NC # 0. Choose any y €
]x,vy[NC. By (3), there is a hyperplane H that strongly separates [x,y] and C such
thaty € H. Writing H = {z € X | x*(z) = b}, we see that [x,y] C {z € X | x*(z) < b},
CC{zeX|x*(z) > b},and x*(y) = b. But y € C and hence x*(y) > b, which is a
contradiction. ]

15.3 Visibility and Best Approximation

In this section we explore the connection between visibility and best approximation.
The first such result states that the set of best approximations to x from C is always
contained in the set of visible points to x with respect to C.

Lemma 15.16. Let C be a closed convex subset of X. Then Pc(x) C Vc(x) for each
xeX.

Proof. The result is trivial if Pc(x) = 0. If x € C, then clearly Pc(x) = {x} and
Ve(x) = {x} by Lemma 15.2.

Now suppose x € X \ C and let xg € Pc(x). Then xg € C s0 xo # x. If [x,x0[NC # 0,
then there exists 0 < A < 1 such that x; := Ax+ (1 —A)xp € C. Hence

[lx =2 [ = [[(1=2A) (x = x0) || = (1 = A)[[x = xo]l < [[x =0,

which is a contradiction to xy being a closest point in C to x. This shows that
[x,x0[NC = 0 and hence that xo € V¢(x). [ ]

Recall that if X is a strictly convex reflexive Banach space, then each closed
convex subset C is Chebyshev (see, e.g., [7]). That is, for each x € X, there is a
unique best approximation (i.e., nearest point) Pc(x) to x from C. As is well known,
the most important example of a strictly convex reflexive Banach space is a Hilbert
space. It is convenient to use the following notation. If S is any subset of X, then the
convex hull of S is denoted by conv (S) and the closed convex hull of S is denoted
by conv (S).

Another such relationship between visibility and best approximation is the
following.
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Lemma 15.17. Let X be a strictly convex reflexive Banach space and C a closed
convex subset of X. Then C is a Chebyshev set and if x € X \ C, then

Pc(x) = PVC(x) (x) = vac(x) (x). (15.13)

Proof. By Lemma 15.16, Pc(x) € Ve(x). Since Ve(x) C conv Ve(x) C C, it follows
that Pc(x) € Py (y)(x) and Pc(x) = Peonyy(x) (X)- Thus Py, (x) is a singleton and
(15.13) holds. |

While the Krein—Milman theorem [Fact 15.14(1)] shows that the set of extreme
points extC of a compact convex set C forms the internal building blocks of C, the
next result shows that the sets C,, where e € extC, form the external building blocks
for C. It is a sharpening of Proposition 15.11 in the special case when the closed
convex set C is actually compact.

Theorem 15.18. Let C be a compact convex set in X. Then
C=({C.|eecextC}=({C|yeC} (15.14)

Proof. Using Proposition 15.11, it suffices to show that N{C, | e € extC} C C. If
not, then there exists x € N{C, | e € extC} \ C. By Fact 15.12, there exists x* € X*
such that

s :=supx*(c) < x"(x). (15.15)

ceC

By compactness of C, the supremum of x* over C is attained, i.e., there exists ¢g € C
such that x*(cg) = s. As is easily verified, the set

C=Ccn{yeX|x*(y)=s} (15.16)

is extremal in C and has extreme points (since it is a closed, hence compact, convex
subset of C), and each extreme point of C is an extreme point of C (see, e.g., [4,
pp. 439-440]). Choose any extreme point & in C. Then & € extC. Also, x € Cr =
cone (C — ¢) + ¢ implies that x = p(c — &) + ¢ for some p > 0 and ¢ € C (see, e.g.,
[3, Theorem 4.4(5), p. 45]). Hence

s < x*(x) = px*(c) —x*(&)] +x%(¢) <x*(¢) =,

which is impossible. This contradiction completes the proof. ]

Proposition 15.19. Let C be a closed convex set in X, x € X \ C, and let xo € C be
a proper convex combination of points e; in C. That is, xo = Z'f Aze; for some A; >0
with Z'f Ai = L. If xg is visible to x with respect to C, then each e; is also visible to x.

Proof. 1If k =1 the result is trivial. Assume that kK = 2. (We will reduce the general
case to this case.)
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If the result were false, then we may assume without loss of generality that e;
is not visible to x. Thus ]x,e;[NC # 0. Hence there exists 0 < g < 1 such that
xp:=ux+ (1 —p)e; € C. It follows that

1
I—u

el = x| — X. (15.17)

I—p

Next consider, for each p € [0, 1], the expression x(p) := px; + (1 — p)e,. Clearly,
x(p) € C for all such p since both x| and e; are in C and C is convex. Omitting some
simple algebra, we deduce that

x(p) = plux+(1—p)e]+ (1 —p)e
=pux+(1—-pu)xo+p(1—p)ei+(1—plex—(1-pu)xo
=pux+(1—p)xo+[p(1 = p+Ai ) = Aijer + [—p(1 — p+ Aip) + AiJe.

In particular, if we choose

~ A
::—’ 15.18
P T (15.18)
it is not hard to check that 0 < p < 1. Thus 0 < pu < 1 and
x(p) =pux+ (1 —pu)x € C. (15.19)

This proves that x(p) € ]x,xo[NC, which contradicts the fact that x is visible to x.
Finally, consider the case when k > 3. If the result were false, then without loss
of generality, we may assume that e fails to be visible to x. Write

k A
Xo=Aler+1Y —ei,
i M

where 1 := Y54 =1—2A;. Then0 < u < 1, 4; = 1 —u, and xo = (1 — p)es + py,
where y = 2’5 %ei € C by convexity. By the case when k = 2 that we proved above,
we get that e (as well as y) is visible to x, which is a contradiction. |

Remark 15.20. Simple examples in the plane (e.g., a triangle) show that the
converse to Proposition 15.19 is false! That is, one could have a closed convex set
C, apointx € X \ C, points ¢; € Ve(x) fori = 1,2,... k, k> 2, but xg = %Zlfe,- eC
is not visible to x.

Theorem 15.21. Let C be a closed and bounded convex set in an n-dimensional
normed linear space X. Then

k
C = {2%’6‘,’
1

k
1<k<n+1,4>0, Z)L,»_l,e,»eextc}. (15.20)
1
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Further, let x € X \ C. Then each point in Pc(x) is a proper convex combination of
no more than n+ 1 extreme points of C all of which are visible to x with respect to
C. That is,

k
1<k<n+1,4>0, Z)L,‘Z 1, e € (extC)ﬂVC(x)}.
1

k

Pc(x) C {Z)L,‘e,'
1

(15.21)

Proof. By [6, Corollary 18.5.1], C = conv (extC). By Caratheodory’s theorem (see,
e.g., [2, p. 17]), each point in conv (extC) may be expressed as a convex combination
of at most n+ 1 points of extC. That is,

n+1

n+1
conv (extC) = { Y Aiei | ei € extC,2; >0, Y A; = 1} . (15.22)
1 1

This proves (15.20).
Now let x € X \ C. By the first part, each point of Pc(x) is in conv (extC). By
Proposition 15.19 and Lemma 15.16, (15.21) follows. |

15.4 Best Approximation from a Simplex

In this section we investigate the problem of finding best approximations from a
polytope, i.e., the convex hull of a finite number of points in a Hilbert space X.
Such sets are compact (because they are closed and bounded in a finite-dimensional
subspace).

Let E :={eo,e1,...,en} be aset of n+ 1 points in X that is affinely independent,
ie., {e; —eg,e0 —ep,...,e, —eo} is linearly independent. This implies that each
point in the convex hull C = conv{eg,e,...,e,} has a unique representation as a
convex combination of the points of E. In this case, C is also called an n-dimensional
simplex with vertices e;, since the dimension of the affine hull aff(C) of C is n.
Further, the relative interior of C, that is, the interior of C relative to aff (C), is
given by

n n
1i (C) := {ZAiei |i>0,> A= 1}. (15.23)
i=0 i=0
It follows that the relative boundary of C, rbd (C) := C\1i(C), is given by

rbd (C) = {

14

n n
Aie; ] Ai >0, Zli =1, A; =0 for at least onej}. (15.24)
—0 i=0
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(See [6, p. 44ff] and [5, p. 7ff] for more detail and proofs about the facts stated in
this paragraph.)

We consider sets of affinely independent points, since this case captures the
essence of our constructions and arguments. Convex hulls of » affinely dependent
points (i.e., finite point sets that are not affinely independent) can be split into the
union of a finite number of convex hulls of subsets of affinely independent points.
Thus the problem of finding best approximation from the convex hull of an affinely
dependent set of points can be reduced to a finite number of problems analogous to
the one that we consider below in detail.

Under the above hypothesis that C is an n-dimensional simplex, we wish to
compute Pc(x) for any x € X.

We give an explicit formula for Po(x) in the case when n = 1, that is, when
C = [eg,e1] is a line segment. Then, by a recursive argument, we will indicate how
to compute Pc(x) when C is an n-dimensional simplex for any n > 2. First we recall
that the truncation function ||} is defined on the set of real numbers by

0 ifa<0,
[ay={ a if0<a <1,
1 ifo>1.
(Note that in the space X =R, [a]} = Pp,1j(e) forall o € R.)

Proposition 15.22. Let C = conv{eg,e;} = [eo,e1] be a 1-dimensional simplex.
Then, for each x € X,

B (x—ep,e1 —eg) ]
PC(.X) =ey+ [W]O(el —e()). (1525)

Proof. Let o := (x — eg,e1 — ep)|ler — eol| % and co := e + [e]{(e1 — o). Then cp €
C, and by the well-known characterization of best approximations from convex sets
in Hilbert space (see, e.g., [3, p. 43]) it suffices to show that

(x—co,y—co) <0 foreachyeC. (15.26)
Lety € C. Theny = ey + A(e; — ep) for some A € [0, 1]. Hence

(x—co,y—co) = (x—eo—[@p(e1 — o), A (e1 — e0) — [a]g(e1 —e0))
= (A —Ia]
= (A —Ia]

)[(x— eo,e1 — eo) — [t]p]ler — eol*]

ler —eoll* [or — [edo] -

o= O~

By considering the three possible cases: o < 0, o € [0,1], and & > 1, it is easy to
see that the last expression is always < 0. Hence (15.26) is verified. ]
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Before considering the cases when n > 2, let us first consider the problem of
computing P4 (x) for any x € X, where A = affC.

Fact 15.23. Let C =conv{ey,e1,...,e,} be an n-dimensional simplex, and let A =
aff (C). For any x € X, we have

Py(x) =eo+ Y, ajej —eo), (15.27)
j=1

where the scalars ¢ satisfy the “normal” equations:
n
Y ajlej —eo,ei—eq) = (x—ep, e — eq) (i=1,2,...,n). (15.28)
j=1

The proof of this fact can be found e.g., in [1, p. 418] or [3, p. 215]. Moreover,
the “reduction principle” that was established in [3, p. 80] (where it was stated in
the particular case of a subspace) can be easily extended to affine sets as follows.

Fact 15.24 (Reduction principle). Let C be a closed convex set in the Hilbert
space X and let A = aff (C). Then Pc = Pco P4. That is, for each x € X,

Pe(x) = Po(Py(x)) and  d*(x,C) = d*(x,A) +d*(Ps(x),C).

We are going to use the Reduction Principle as follows. We assume that it is
straightforward to find the best approximation to any x in the set A = affC, where
C is an n-dimensional simplex (since it involves only solving a linear system of n
equations in n unknowns by Fact 15.23). The Reduction Principle states that (by
replacing x with Py (x) if necessary) we may as well assume that our point x is in A
to begin with, and we shall do this in what follows. We will see that the case when
n = 2 can be reduced to the case when n = 1 (i.e., Proposition 15.22 above) for
which there is an explicit formula.

Proposition 15.25. Ler C = conv{eg, ey, ez} be a 2-dimensional simplex. Then for

each x € aff (C), either x € C, in which case Pc(x) = x, or x ¢ C, in which case

Pc(x) = Py, e;, () foranyi€{0,1,2} that satisfies (15.29)

Il =Py ()| = min]lx = Pl e,y ()] (15.30)

(Here e3 := e.)

Proof. If x € C, then obviously Pc(x) = x. Thus we can assume that x € aff (C) \ C.
It follows that Pc(x) must lie on thdC = U?_[e;, e;41]. That is, Pc(x) € [e;,e;11] for
some i =0,1, or 2.
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Claim. Pc(x) = Py, ... ,1(x) for each i such that Pc(x) € [e;,ei11].

To see this, we observe that since Pc(x) € [e;,ei11], we have
X = Fe(x)[| = d(x,C) < d(x, [ei,ein1]) < [x— Pe(x)]

which implies that [|x — Py, ... ,1(x)|| = d(x, [, ei41]) = ||x — Pc(x)]|. By uniqueness
of best approximations from convex sets in Hilbert space, the claim is proved.

If k is any index such that [[x— Py, (x)|| = minj|lx— P, . (x)], then it is
clear that we must have Pc(x) = P, , (%) |

Now it appears to be straightforward to apply the idea of Proposition 15.25 to
any n-dimensional simplex to describe how to determine Pe(x).

Let C =conv{eg,ei,...,e,} be an n-dimensional simplex in X and x € aff (C). If
x € C, we have Pc(x) = x. Thus we may assume that x € aff (C) \ C. It follows that
Pc(x) € rbd (C). From (15.24) we see

n n
rbd (C) = {Z?Liei |4 >0, 4 =1, A; =0 for some j}.
0 0
Since every y € rbdC is contained in (at least) one of the sets
n n
Cj:= {ine,- | 4;>0foralli,A; =0, and ) A; = 1}, (15.31)
i=0 0
it follows that

n
rbdC = | J C;.
j=0

Further, each C; is a simplex of dimensionn —1in C, Pe(x)eC ; for at least one j,
and for all such j, we have that

llx = Pe(x)|| = d(x,C) < |lx— Fe;(0) | = d(x,Cj) < |lx = Fe(x)].

This implies that equality holds throughout these inequalities, and hence by the
uniqueness of best approximations, we have Pc(x) = Pc;(x). If J = {j | [[x—
Pc;(x)|| = min; [[x — Pc;(x) ||}, then clearly Pc(x) = Pc;(x) for each j € J.

This discussion suggests the following recursive algorithm for computing Pe(x)
when C = conv{e,ey,...,e,} is an n-dimensional simplex. Let C; be the (n — 1)-
dimensional simplices as defined in (15.31). Let A = affC, A; = affC; for each
i=0,1,...,n,x € A\C, and x; = Pc,(x;) for all j. The algorithm below defines a
function P(n,x,C) which takes as input n and x and the set C and returns the best
approximation Pc(x).
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Algorithm

1. If n =1, then find P(1,x,C) by using the formula given in Proposition 15.22.

2. If n > 1, then compute x; = Py, (x) and Pc,(x;) = P(n—1,x;,C;) for j =
0,1,...,n.

3. Set Pc(x) = Pc;(x;) for any j € argmin [[x — Pey (xi) |-
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Chapter 16
On Derivative Criteria for Metric Regularity

Asen L. Dontchev and Hélene Frankowska

Abstract We give a simple self-contained proof of the equality which links directly
the graphical derivative and coderivative criteria for metric regularity. Then we
present a sharper form of the criterion for strong metric regularity involving the
paratingent derivative.

Key words: Set-valued mapping ¢ Metric regularity ¢ Strong metric regularity
* Graphical derivative * Coderivative * Paratingent derivative
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16.1 Introduction

In this paper we prove two theorems. The first one is as follows.

Theorem 16.1. Let F : R" = R™ be a set-valued map, let § € F(X), and assume
that gphF is locally closed at (X,y). Then
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limsup ||DF (x|y) ||~ = ||D*F(%|5) """ (16.1)
(20,9) = (%),
(x.y)EgphF

The quantity on the left side of (16.1) involves the inner norm of the graphical
derivative and the condition that it is finite is the so-called derivative criterion for
metric regularity. The quantity on the right side is the outer norm of the coderivative
and it is well known that F is metrically regular if and only if this quantity is finite.
The graphical derivative and the coderivative are defined in further lines. In the case
when F is metrically regular both quantities in (16.1) are equal to the regularity
modulus of F. The reader can find these criteria and much more in books [2,5,8,9].

Recall that F is said to be metrically regular at  for y when y € F(X) and there
is a constant k¥ > 0 together with neighborhoods U of X and V of y such that

d(x,F~1(y)) < xd(y,F(x)) forall (x,y) €U xV.

The infimum of x over all combinations of k, U and V is called the regularity
modulus and denoted by reg(F;x|y).

Clearly, the equality (16.1) follows immediately from the combination of the
derivative and coderivative criteria for metric regularity. In this paper we give a
direct proof of (16.1) using a rather elementary duality argument without referring
to metric regularity. This proof employs the approach used to prove basically the
same result in [7]; however, the proof given here is simpler and, most importantly,
self-contained. It may be used in an alternative proof of the coderivative criterion
provided that derivative criterion is already proven, and vice versa.

Our second result is a derivative criterion for strong metric regularity. Recall that
a mapping F : R" = R"™ is strongly metrically regular at X for y when there exist
neighborhoods U of % and V of j such that the localization V 3 y — F~!(y) N U of
the inverse mapping F ! around (7, %) is a Lipschitz continuous function.

Theorem 16.2. Consider a set-valued mapping F : R" = R™ and (%,y) € gphF.
If F is strongly metrically regular at X for y, then

IPF(|3)~"||" < oe. (16.2)
Furthermore, if the graph of F is locally closed at (%,y) and

% € Liminf F~1(y), (16.3)

Y=y

then condition (16.2) is also sufficient for strong metric regularity of F at X for 3.
In this case the quantity on the left side of (16.2) equals reg(F;x|¥).

Here PF(x|y) denotes the paratingent derivative which we define below. Theo-
rem 16.2 sharpens [9, Theorem 9.54], where it is assumed that the mapping F~! has
a local continuity property around (¥, ) which is much stronger than (16.3). It also
improves [8, Lemma 3.1], where another condition, again stronger than (16.3), is
used.



16  On Derivative Criteria for Metric Regularity 367

Let us briefly introduce the notation and terminology used in the paper. The
closed ball with center x and radius r is denoted by B,(x); the closed unit ball is B.
We denote by || - || the Euclidean norm and by (-,-) the usual inner product. The
Painlevé—Kuratowski lower and upper limits are denoted by Liminf and Limsup,
respectively. A set C is said to be locally closed at x € C when there exists r > 0 such
that the set C N B,(x) is closed. For a set C C R", a tangent vector v to C at x € C,
written v € Te(x), is a vector for which there exist sequences vy — v and f;, — 04
such that x+ ;v € C. The set of tangents, T¢(x), is a closed cone, named the tangent
cone. A paratingent vector w to C at x € C, written w € Pc(x), is a vector for which
there exist sequences x; € C, x; — x, f; — 04 and vy — v such that x; + 7,9, € C.
Clearly, Tc(x) C Pc(x). The polar K* to the cone K consists of all vectors y such that
(y,x) <O0forall x € K. As is well known, K** = clco K; here and later “clco” means
closed convex hull. The regular normal cone to a set C at a point x € C, denoted
Ne(x), is defined as the polar T (x) to the tangent cone to C at x. A vector w is a
generalized normal to C at x, written w € N¢(x), when there are sequences u; — w
and x; — x, x; € C such that u; € Nc(x;). The set of generalized normals N¢(x) is
the general normal cone to C at x. That is, N¢(x) = LimsupNe (y) D Ne(x).

—x,yeC

Consider a mapping F : R" = R™ and denoteybygphF its graph defined by
gphF :={(x,y)|y € F(x)}. For a pair (x,y) with y € F(x), recall that the graphical
(also called contingent) derivative of F at x for y is the mapping DF (x|y) : R" = R™
whose graph is the tangent cone Ty, (%) to gphF at (x,y):

VEDF('x'y)(M) A (u7v)€TgphF(-x7y)'

The coderivative of F at x for y is the mapping D*F(x|y) : R" = R" whose
graph is defined by the general normal cone Ngpnr(x,y) to gphF at (x,y) in the
following way:

q € D'F(x|y)(p) < (q,—Pp) € Ngpnr(x,y).

Finally, the paratingent derivative of F at x for y is the mapping PF (x|y) : R" = R"™
whose graph is the paratingent cone Pypnr(X,y) to gphF at (x,y):

vePF(x|y)(u) < (u,v)€ Pypnr(x,y).

Both the tangent and the paratingent cones were introduced by Bouligand in
1930s. Further discussion on tangent cones and graphical derivatives can be found
for instance in [2]. The paratingent derivative is called in [9] the strict graphical
derivative and in [8] it is called Thibault’s limit set. Directly from the definition we
have DF~!(y|x) = DF (x|y)~! and the same for the coderivative and the paratingent
derivative.

A mapping H : R" = R™ is said to be positively homogeneous if its graph is
a cone with vertex at zero. For any positively homogeneous mapping H, the outer
norm and the inner norm are defined, respectively, by



368 A.L. Dontchev and H. Frankowska

IH]" = sup sup [yl and [|H|" = sup inf [y

Il <tyer(x) Il<17EH ()
with the convention infyeg [|y|| = e and supycg [|y|| = —co. The inner norm can be
also defined as
|\H|\*:inf{K>0}H(x)mxB¢@fora11xeB}, (16.4)

while the outer norm satisfies
11 = inf{ x> 0|y € H(x) = 1] < ] |- (165)

If H has closed graph, then furthermore ||H||* <o < H(0) = {0}. The notation
and terminology used in the paper are mainly from [5].

16.2 Proof of Theorem 16.1

In the proof of Theorem 16.1 we employ the following lemma whose proof is
presented after the proof of the theorem.

Lemma 16.3. Let C be a convex and compact set in RY, K c R? be a closed set
and x € K. Then CN Tk (x) # 0 for all x € K near % if and only if CNclco Tk (x) # 0
for all x € K near x.

Proof (of Theorem 16.1). Since the graphical derivative and the coderivative are
defined only locally around (X, ¥), we can assume without loss of generality that the
graph of the mapping F is closed. We will show first that

limsup |DF (x|y)~"||~ > |D*F(x|3)""||*. (16.6)

(x,y)—=(%.5),
(x.y)€gphF

If the left side of (16.6) equals oo there is nothing to prove. Let a positive constant
c satisfy
¢ > limsup ||DF(x|y)~!||".

(xy)=(%.5),

(x.y)€gphF
From (16.4) there exists 6 > 0 such that for all (x,y) € gphF N (Bg(x) X B5(¥)) and
for every v € B there exists u € DF (x|y)~ 1(v) such that ||u|| < ¢. Also, note that
("‘ V) € TgphF(x Y) - ClCOTgphF(x )’) T*pEF( a)’)~

Fix (x,y) € gphF N (Bs(%X) x Bs(¥)) and let v € B C R™. Then there exists u with

(,v) € Topr(x,y) such that u = cw for some w € B. Let (p,q) € Nephr (x,y) =
Tapnr (%,¥). From the inequality (u, p) + (v,q) < 0 we get
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crnér;(w,m +{v,q) <0 whichyields —c|p||+ (v,q) <O0.
w

Since v is arbitrarily chosen in B, we conclude that
lgll <clipll ~ whenever  (p.q) € Nepnr (x,y). (16.7)

Now, let (p,q) € Ngphr(%,7); then there exist sequences (x¢,yx) € gphF, (xg,yx) —
(%,9) and (pr,qx) € nghp(xk,yk) such that (pg,qx) — (p,q). But then, from (16.7),
l9kll < cllpill and in the limit [|g|| < c[| p[|. Thus, [lg|| < c[|p[| whenever (—p,q) €
Nephr (%) and therefore we have ||g|| < c||p|| whenever (¢, —p) € Nyyp-1 (5, %)
By the definition of the coderivative,

gl <cllp| whenever g€ D*F(|3)'(p).

This together with (16.5) implies that ¢ > |D*F(x,y)~!||* and we obtain (16.6) by
the arbitrariness of c.

For the converse inequality, it is enough to consider the case ||D*F (% |7)~!||T <
oo, Let

> [D*F(x[3) " (16.8)

We first show that there exists & > 0 such that for any (x,y) € gphF N (Bg(%¥) x
Bs(¥)) we have that

(0,v) € Ngphr(x,y) = v=0. (16.9)

On the contrary, assume that there exist sequences (xg,yx) € gphF with (xg,yx) —
(%,5) and v € R™ with [|v¢]| = 1 such that (0,v¢) € Nephr (x¢,yx) for all k. But then
there is v # 0 such that (0,v) € Ngpn (%, ¥). Hence, there exists a nonzero v such that
v € D*F(x|y)~!(0). Taking into account (16.5), this contradicts (16.8).

Using (16.9), we will now prove a statement more general than (16.9) that there
exists 0 > 0 such that for any (x,y) € gphF N (Bs(¥) x Bs(¥)) we have

(v —u) € Nypp1(x) = VIl < c|lul. (16.10)

On the contrary, assume that there exists a sequence (yg,x;) — (¥,%) such that for
each k we can find (v, —uy) € nghF—l (Vk,xx) satisfying ||ve|| > c|luk||- I uxy =0
for some k, then from (16.9) we get v = 0, a contradiction. Thus, without loss of
generality we assume that ||ug|| = 1. Let v be unbounded and let w be a cluster
point of mvk; then |jw|| = 1. Since (Hv—ll(”vk, _Hv_lkﬂuk) € ngth (Vk,xx), passing to
the limit we get (w,0) € Ny, p-1(§,X) which contradicts (16.8) because of (16.5).
Further, if vy is bounded, then (vy,u;) — (v,u) for a subsequence, where ||u|| = 1,
(v,—u) € Nypp-1 (7, %), and |[v|| > c. This again contradicts (16.8). Thus, (16.10)
holds for all (y,x) € gph F~! close to (7,%).
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Let 0 > 0 be such that (16.10) is satisfied for any (x,y) € gphF N (Bg(X) x
Bs(7)). Pick such (x,y). We will show that

(ecBx {wh)NTyup(x,y) #0  forevery w € B. (16.11)

On the contrary, assume that there exists w € B such that (cB x {w}) N Ty} - (x,y) =
0. Then, by the theorem on separation of convex sets, there exists a nonzero (p,q) €
Topnr (:¥) = Nephr (x,y) such that

21€11191<p,cu> + {(g,w) > 0.

If p =0, then ¢ # 0 and then (g,0) € nghp] (y,x) in contradiction with (16.10).

Hence, p # 0. Without loss of generality, let ||p|| = 1. Then (g, p) € nghF—l (y,x)
and

(q.w) > max(p,cu) = c|}p]| = . (16.12)

By (16.5) and (16.10), ||¢|| < ¢ and since w € B, this contradicts (16.12). Thus,
(16.11) is satisfied.

By Lemma 16.3, for all (x,y) € gphF sufficiently close to (%,7), we have that
(16.11) holds when the set T}, - (x, y) = clco Tgpn r (x, ) is replaced with Teph - (x, ).
This means that for any w € B there exists u € DF (x|y)~'(w) such that |ju|| < c.
But then ¢ > ||DF(x|y)~!||~ for all (x,y) € gphF sufficiently close to (%,¥). This
combined with the arbitrariness of ¢ in (16.8) implies the inequality opposite to
(16.6) and hence the proof of the theorem if complete. |

Proof (of Lemma 16.3). Clearly, CN Tk (x) # 0 implies C Nclco Tk (x) # 0. Assume
that there exists an open neighborhood U of x such that C Nclco Tk (x) # @ for all
x € KNU. Let € > 0 be such that B¢ (¥) C U. Take any x € B, 3(X) and let v be a
projection of x on K. Then ||v —x|| < ||¥—x|| < &/3 and hence,

v—x|| <|lv—x|+|lx—x| <e/3+¢/3<e.

Thus, there exists an open neighborhood W of X such that any metric projection of
apointx € W on K belongsto KNU.

Fix x € KNW. For all t > 0 define ¢(¢) := min{|ju—v|| |u € x+tC,v € K}. The
function ¢ is Lipschitz continuous. Indeed, for any #; > 0, i = 1,2 there exist ¢; € C
and k; € K such that ¢(t;) = ||x+tic; — k||, i = 1,2. Then

o) — @) = ||x+ticr — k|| =[x+ t2c2 — ka|
< Hx+116‘2 —kz” — Hx-f—lzCQ —kQH < H6‘2H|l1 —l2|.
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Hence ¢ is absolutely continuous, that is, its derivative ¢’ exists almost everywhere
and @(s) = (1) + [’ ¢’ (7)d7 for all s > ¢ > 0. We will prove next that

o(t)=0 for all sufficiently small 7> 0. (16.13)

If this holds, then for every small # > 0 there exists v; € C such that x+rv; € K.
Consider sequences #; — 0+ and v, € C such that v, converges to some v. Then
v € Tg(x) NC and since x € KNW is arbitrary, we arrive at the claim of the lemma.

To prove (16.13), let v > 0 be such that x+ [0, y]C C W. Assume that there exists
to € (0,7] such that ¢(9) > 0. Define 7 = max{t | ¢(t) =0 and 0 <t < fy}. Let
t € (F,1p) be such that ¢’(¢) exists. Then for some v; € C and x; € K we have ¢(r) =
|lx+#v; —x;]| > 0. Since x; is a projection of x+ v, on K, by the observation in
the beginning of the proof, we have x, € KNU. By assumption, there exists w; €
clco Tk (x;) such that w, € C. Then, for any & > 0 sufficiently small,

t h
x—i—tv,—i—hw, :X+(l+h) (l‘—l-_hvz—i_t—l-_]’th) EX+(I+I’!)CCW

because the set C is assumed convex. Thus
@1+ 1) — (1) < |lx+ v, +Iw, — x| = [[x+ v, — x|

Dividing both sides of this inequality by & > 0 and passing to the limit when z — O,
we get

o'(t) < <m > (16.14)

et —x| "

Recall that x; is a projection of x +¢v; on K and also the elementary fact that in this
case x+1tv, —x; € ]VK (x;), see Proposition 4.1.2 in [2] or Example 6.16 in [9]. Since
wy € clco Tk (x; ), we obtain from (16.14) that 