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Preface

In the week of May 16–20, 2011, the workshop Computational and Analytical
Mathematics (also known as JonFest) was held at the IRMACS Centre at Simon
Fraser University in honour of Jonathan Michael Borwein’s 60th birthday. It brought
together nearly 100 experts from 14 countries.

Jon Borwein is one of the most productive Canadian researchers ever. His
research interests are broad, ranging from analysis, computational mathematics, and
optimization to experimental mathematics and number theory. He has authored or
co-authored more than a dozen books and more than 300 papers.

Those who have had the fortune of collaborating with him as students or
colleagues will testify to his immense knowledge, technical mastery, and deep
intuition. He has been altering the life trajectories of many of his collaborators
significantly and sometimes dramatically. His passion and relentless pursuit for
useful and beautiful mathematics are extraordinary; the way he inspires and brings
out the best in his students and collaborators is Steve Jobs-like!

This book brings together 31 carefully refereed research and review papers in
the broad areas of Jon Borwein’s interests. Most papers in this volume grew out of
talks delivered at JonFest; however, some contributions are from experts who were
unable to attend. Very sadly, one of the contributors, Richard Crandall, passed away
in December 2012, before this book went into production.

We believe that the reader will find this book to be a delightful and valuable
state-of-the-art account on some fascinating areas of Computational and Analytical
Mathematics, ranging from Cantor fractals and strongly normal numbers to various
algorithms in optimization and fixed point theory.

The editors thank the sponsors of JonFest—Interdisciplinary Research in the
Mathematical and Computational Sciences (IRMACS) Centre at Simon Fraser Uni-
versity (SFU), Australian Mathematical Sciences Institute (AMSI), Mathematics of
Information Technology and Complex Systems (MITACS), Pacific Institute for the
Mathematical Sciences (PIMS), Fields Institute, and the Priority Research Centre
for Computer-Assisted Research Mathematics and its Applications (CARMA)—for
their financial and logistical support in hosting the workshop, and Pam Borghard
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vi Preface

and Veselin Jungic for their “on-site” help in the preparation and realization of the
workshop at the IRMACS Centre.

We are very grateful to Dr. Hung Phan for his hard work and great help in the
preparation of this volume which as a result not only is beautifully typeset but also
exhibits a consistent structure. We also thank Ms. Elizabeth Loew from Springer for
her help guiding this volume through production.

Finally, we thank the hardworking and dedicated referees who contributed
crucially to the quality of this volume through their constructive and insightful
reviews.

Berkeley, (USA) David H. Bailey
Kelowna, (Canada) Heinz H. Bauschke
Burnaby, (Canada) Peter Borwein
Gainesville, (USA) Frank Garvan
Limoges, (France) Michel Théra
Riverside, (USA) Jon D. Vanderwerff
Waterloo, (Canada) Henry Wolkowicz
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Chapter 1
Normal Numbers and Pseudorandom
Generators

David H. Bailey and Jonathan M. Borwein

Abstract For an integer b ≥ 2 a real number α is b-normal if, for all m > 0, every
m-long string of digits in the base-b expansion of α appears, in the limit, with
frequency b−m. Although almost all reals in [0,1] are b-normal for every b, it has
been rather difficult to exhibit explicit examples. No results whatsoever are known,
one way or the other, for the class of “natural” mathematical constants, such as
π , e,

√
2 and log2. In this paper, we summarize some previous normality results for

a certain class of explicit reals and then show that a specific member of this class,
while provably 2-normal, is provably not 6-normal. We then show that a practical
and reasonably effective pseudorandom number generator can be defined based on
the binary digits of this constant and conclude by sketching out some directions for
further research.

Key words: Normal numbers • Stoneham numbers • Pseudorandom number
generators
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2 D.H. Bailey and J.M. Borwein

1.1 Introduction

For an integer b ≥ 2 we say that a real number α is b-normal (or normal base b)
if, for all m > 0, every m-long string of digits in the base-b expansion of α appears,
in the limit, with frequency b−m, or, in other words, with exactly the frequency one
would expect if the digits appeared completely “at random.” It follows from basic
probability theory that, for any integer b ≥ 2, almost all reals in the interval (0,1)
are b-normal. What’s more, almost all reals in the unit interval are simultaneously
b-normal for all integers b≥ 2.

Yet identifying even a single explicitly given real number that is b-normal for
some b has proven frustratingly difficult. The first constant proven 10-normal was
the Champernowne constant [7], namely 0.12345678910111213 . . ., produced by
concatenating the natural numbers in decimal format. This was extended to base-b
normality (for base-b versions of the Champernowne constant). In 1946, Copeland
and Erdös established that the concatenation of primes 0.23571113171923 . . . and
also the concatenation of composites 0.46891012141516 . . ., among others, are also
10-normal [8]. In general they proved:

Theorem 1.1 ([8]). If a1,a2, · · · is an increasing sequence of integers such that for
every θ < 1 the number of a’s up to N exceeds Nθ provided N is sufficiently large,
then the infinite decimal

0.a1a2a3 · · ·

is normal with respect to the base β in which these integers are expressed.

This clearly applies to the primes of the form ak+ c with a and c relatively prime
in any given base and to the integers which are the sum of two squares (since every
prime of the form 4k+ 1 is included).

Some related results were established by Schmidt, including the following [15].
Write p∼ q if there are positive integers r and s such that pr = qs. Then

Theorem 1.2. If p ∼ q, then any real number that is p-normal is also q-normal.
However, if p �∼ q, then there are uncountably many p-normal reals that are not
q-normal.

In a recent survey, Queffelec [14] described the above result and also presented the
following, which he ascribed to Korobov:

Theorem 1.3. Numbers of the form ∑k p−2k
q−p2k

, where p and q are relatively
prime, are q-normal.

Nonetheless, we are still completely in the dark as to the b-normality of “natural”
constants of mathematics. Borel was the first to conjecture that all irrational
algebraic numbers are b-normal for every integer b≥ 2. Yet not a single instance of
this conjecture has ever been proven. We do not even know for certain whether or not
the limiting frequency of zeroes in the binary expansion of

√
2 is one-half, although
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numerous large statistical analyses have failed to show any significant deviation
from statistical normals. The same can be said for π and other basic constants, such
as e, log2, and ζ (3). Clearly any result (one way or the other) for one of these
constants would be a mathematical development of the first magnitude.

In the case of an algebraic number of degree d, it is now known that the number
of ones in the binary expansion through bit position n must exceed Cn1/d for a
positive number C (depending on the constant) and all sufficiently large n [4].
In particular, there must be at least

√
n ones in the first n bits of

√
2. But this is clearly

a relatively weak result, because, barring an enormous mathematical surprise, the
correct limiting frequency of ones in the binary expansion of

√
2 is one-half.

In this paper, we briefly summarize some previously published normality results
for a certain class of real constants, prove an interesting non-normality result, and
then demonstrate how these normality results can be parlayed into producing a
practical pseudorandom number generator. This generator can be implemented quite
easily, is reasonably fast-running, and, in initial tests, seems to produce results of
satisfactory “randomness.” In addition, we show how all of this suggests a future
direction to the long sought proof of normality for “natural” mathematical constants.

1.2 Normality of a Class of Generalized BBP-Type Constants

In [1], Richard Crandall and one of the present authors (Bailey) analyzed the class
of constants

αb,c(r) =
∞

∑
k=1

1

ckbck+rk
, (1.1)

where the integers b > 1 and c > 1 are co-prime, where r is any real in [0,1], and
where rk is the kth binary digit of r. These constants qualify as “generalized BBP-
type constants,” because the nth base-b digit can be calculated directly, without
needing to compute any of the first n− 1 digits, by a simple and efficient algorithm
similar to that first applied to π and log2 in the paper by Bailey et al. [3].

Bailey and Crandall were able to establish:

Theorem 1.4. Every real constant of the class (1.1) is b-normal.

Subsequently, Bailey and Misieurwicz were able to establish this same result
(at least in a simple demonstrative case) via a much simpler argument, utilizing
a “hot spot” lemma proven by ergodic theory techniques [2] (see also [5, p. 155]).

Fix integers b and c satisfying the above criteria, and let r and s be any reals
in [0,1]. If r �= s, then αb,c(r) �= αb,c(s), so that the class Ab,c = {αb,c(r), 0 ≤
r ≤ 1} has uncountably many distinct elements (this was shown by Bailey and
Crandall). However, it is not known whether the class Ab,c contains any constants of
mathematical significance, such as π or e.
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In this paper we will focus on the constant α2,3(0), which we will denote as α
for short:

α = α2,3(0) =
∞

∑
k=1

1

3k23k

= 0.0418836808315029850712528986245716824260967584654857 . . .10

= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B. . .16 .

(1.2)

Although its 2-normality follows from the results in either of the two papers
mentioned above [1, 2], this particular constant was first proved 2-normal by
Stoneham back in 1973 [16].

1.3 A Non-normality Result

It should be emphasized that just because a real constant is b-normal for some
integer b > 1, it does not follow that it is c-normal for any other integer c, except
in the case where br = cs for positive integers r and s (see Theorem 1.2). In other
words, if a constant is 8-normal, it is clearly 16-normal (since base-16 digits can be
written as four binary digits and base-8 digits can be written as three binary digits),
but nothing can be said a priori about that constant’s normality in any base that is
not a power of two.

As mentioned above, there are very few normality results, and none is known
for well-known constants of mathematics. But the same can be said about specific
non-normality results, provided we exclude rationals (which repeat and thus are
not normal) and examples, such as 1.0101000100000001 . . . (i.e., ones appear in
position 2m), that are constructed specifically not to be normal but otherwise have
relatively little mathematical interest (although Liouville’s class of transcendental
numbers is an exception). In particular, none of the well-known “natural” constants
of mathematics have ever been proven not to be b-normal for some b. Indeed, such
a result, say for π , log2, or

√
2, would be even more interesting than a proof of

normality for that constant.
In that vein, here is an intriguing result regarding the α constant mentioned

above:

Theorem 1.5. α is not 6-normal.

1.3.1 Discussion

Let the notation {·} denote fractional part. Note that the base-6 digits immediately
following position n in the base-6 expansion of α can be obtained by computing
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Table 1.1 Base-6 expansion of α

0.
0130140430003334251130502130000001243555045432233011500243525320551352
3435410104300000000000000005141130054040555455303144250433435101241345
2351125142125134505503545015053522052044340452151505102411552500425130
0511244540010441311500324203032130000000000000000000000000000000000000
0000014212034311121452013525445342113412240220525301054204423552411055
4150155204350414555400310145303033532002534340401301240104453254343502
1420204324150255551010040433000455441145010313314511510144514123443342
3412400551313335045423530553151153501533452435450250055521453054234342
1530350125024205404135451231323245353031534552304115020154242121145201
5422225343403404505301233255344404431033324453321414150142334545424124
3203125340050134150245514404300000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000313350542444431111055534141052014540213412313001424333133115
. . .

{6nα}, which can be written as follows:

{6nα} =
{�log3 n�
∑

m=1
3n−m2n−3m

}
+

{
∞

∑
m=�log3 n�+1

3n−m2n−3m

}
. (1.3)

Now note that the first portion of this expression is zero, since all terms of the
summation are integers. That leaves the second expression.

Consider the case when n = 3m, where m≥ 1 is an integer, and examine just the
first term of the second summation. We see that this expression is

33m−(m+1)23m−3m+1
= 33m−m−12−2·3m

= (3/4)3m
/3m+1. (1.4)

We can generously bound the sum of all terms of the second summation by 1.00001
times this amount, for all m ≥ 1, and by many times closer to unity for all m ≥ 2.
Thus we have

{63m
α} ≈

( 3
4

)3m

3m+1 , (1.5)

and this approximation is as accurate as one wishes (in ratio) for all sufficiently
large m.

Given the very small size of the expression (3/4)3m
/3m+1 for even moderate-

sized m, it is clear the base-6 expansion will have very long stretches of zeroes
beginning at positions 3m + 1. For example, by explicitly computing α to high
precision, one can produce the counts of consecutive zeroes Zm that immediately
follow position 3m in the base-6 expansion of α—see Tables 1.1 and 1.2.
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Table 1.2 Counts Zm of
consecutive zeroes
immediately following
position 3m in base-6
expansion of α

m 3m Zm

1 3 1
2 9 3
3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166
10 59049 9487

In total, there are 14,256 zeroes in these ten segments, which, including the
last segment, span the first 59,049+ 9,487 = 68,536 base-6 digits of α . In this
tabulation we have of course ignored the many zeroes in the large “random”
segments of the expansion. Thus the fraction of the first 68,536 digits that are zero
is at least 14,256/68,536 = 0.20800747 . . ., which is significantly more than the
expected value 1/6 = 0.166666 . . ..

A more careful analysis shows that this limiting ratio

lim
m→∞

∑m≥1 Zm

3m +Zm
=

3
2
· log6(4/3)

1+ log6(4/3)
(1.6)

=
1
2

log2(4/3) = 0.2075187496 . . . (1.7)

Complete details are given in the appendix. Also included in the appendix is a proof
of this generalization of Theorem 1.5:

Theorem 1.6. Given co-prime integers b≥ 2 and c≥ 2, the constant

αb,c = ∑
k≥1

1/(ckbck
)

is not bc-normal.

These results thus constitute simple and concrete counter-examples to the question
of whether normality in one base b implies normality in another base c (except in
simple cases covered by the first part of Theorem 1.2). In particular, these results
are explicit examples of part two of Theorem 1.2.

It is worth pointing out that Cassels proved that for almost all real x in the unit
interval, x is 2-normal but not 3-normal, although he did not present any explicit
example of such x [6]. Above we have presented an explicit real that is 2-normal
but not 6-normal, which is almost but not quite such an example. Some related
discussion is given in [13, 15, 17].
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1.4 Alpha as a Pseudorandom Generator

The normality result for α (Theorem 1.4) suggests that the binary digits of α
(certainly not its base-6 digits) could be used to fashion a practical pseudorandom
number generator. Indeed, this was suggested in [1] and [5, p. 169–170]. We will
show here how this can be done. The result is a generator that is both efficient on
single-processor systems and also well suited for parallel processing: each processor
can quickly and independently calculate the starting seed for its section of the
resulting global sequence, which global sequence is the same as the sequence
produced on a single-processor system (subject to some reasonable conditions).
However, it is acknowledged that before such a generator is used in a “practical”
application, it must be subjected to significant checking and testing. It should also
be noted that just because a number is normal does not guarantee its suitability for
pseudorandom generation (e.g., the convergence of the limiting frequencies might
be very slow), although this particular scheme does appear to be reasonably well
behaved.

1.4.1 Background

Define xn to be the binary expansion of α starting with position n+ 1. Note that
xn = {2nα}, where {·} means the fractional part of the argument. First consider the
case n = 3m for some integer m. In this case one can write

x3m = {23m
α} =

{
m

∑
k=1

23m−3k

3k

}
+

∞

∑
k=m+1

23m−3k

3k . (1.8)

Observe that the “tail” term (i.e., the second term) in this expression is exceedingly
small once m is even moderately large—for example, when m= 10, this term is only
about 10−35551. This term will hereafter be abbreviated as εm. By expanding the first
term, one obtains

x3m =
(3m−123m−3 + 3m−223m−32

+ · · ·+ 3 ·23m−3m−1
+ 1) mod 3m

3m

+εm. (1.9)

The numerator is taken modulo 3m, since only the remainder when divided by
3m is of interest when finding the fractional part. By Euler’s totient theorem, the
next-to-last term in the numerator, when reduced modulo 3m, is three. Similarly, it
can be seen that every other term in the numerator, when reduced modulo 3m, is
equivalent to itself without the power-of-two part. In other words, the expression
above reduces to
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x3m =
(3m−1 + 3m−2 + · · ·+ 3+ 1) mod 3m

3m + εm (1.10)

=
3m− 1
2 ·3m + εm =

�3m/2�
3m + εm. (1.11)

(The authors are indebted to Helaman Ferguson for a key idea in this proof.) More
generally, for n that is not a power of three, one can write

xn =
(2n−3m�3m/2�) mod 3m

3m + ε, (1.12)

where m is chosen so that 3m is the largest power of three less than or equal to n.
In this case, one can be assured that ε < 10−30 provided n is not within 100 of any
power of three.

1.4.2 Algorithm

With this explicit expression in mind, an algorithm can be given for generating
pseudorandom deviates, in the form of a sequence of IEEE 64-bit floating-point
numbers in (0,1). These deviates contain, in their mantissas, successive 53-bit
segments of the binary expansion of α , beginning at some given starting position.

1.4.2.1 Initialization

First select a starting index a in the range

333 + 100 = 5559060566555623≤ a≤ 253 = 9007199254740992. (1.13)

The value of a can be thought of as the “seed” of the generator. Then calculate

z0 = 2a−333 · �333/2� mod 333. (1.14)

1.4.2.2 Generate Iterates

Successive iterates of the generator can then be recursively computed by iterating

zk = 253 · zk−1 mod 333 (1.15)

and then returning the values zk3−33, which are 64-bit IEEE floating-point results in
the unit interval.
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1.4.2.3 Arithmetic

Several of the operations used in this scheme must be done with an accuracy of
at least 106 mantissa bits. This can be done using “double-double” arithmetic.
A double-double datum is represented by a pair of IEEE double-precision floating-
point numbers: the first word is the closest 64-bit IEEE value to the double-double
value, and the second word is the difference. Algorithms for performing basic
double-double arithmetic algorithms, using only rounded 64-bit IEEE floating-point
operations, are given in [9] or [5, p. 218–220]. These have been implemented in C++
and Fortran-90 double-double computation software packages, which include both
basic-level arithmetic functions as well as common algebraic and transcendental
functions, available from the first author’s web site: http://crd.lbl.gov/∼dhbailey/
mpdist.

On the other hand, one could also use 128-bit integer or 128-bit IEEE floating-
point arithmetic to do these operations, if these operations are available in hardware
(software implementations tend to be relatively slow).

1.4.2.4 Implementation Details

The operation 253 · zk−1 mod 333 can be performed efficiently as follows: (1)
multiply 253 by zk−1 (double times double yielding a double-double or 128-bit
result); (2) multiply the result of step 1 (just the high-order portion will do) by
3−33 and take the greatest integer; (3) multiply the result of step 2 by 333 (double
times double yielding a double-double or 128-bit result); and (4) subtract the result
of step 3 from the result of step 1 (using double-double or 128-bit arithmetic). It is
possible that the result of step 2 might be one unit too high, or one too low, so that
the result of step 4 may need to be adjusted accordingly: if it is negative, add 333; if
it exceeds 333, subtract 333.

1.4.2.5 Exponentiation

The exponentiation required in the initialization may be done efficiently using
the binary algorithm for exponentiation. This is merely the formal name for the
observation that exponentiation can be economically performed by means of a
factorization based on the binary expansion of the exponent. For example, one can
write 317 = ((((32)2)2)2) · 3, thus producing the result in only five multiplications,
instead of the usual 16. According to Knuth, this technique dates back at least
to 200 BCE [10, p. 461]. In this application, the exponentiation result is required
modulo a positive integer k. This can be done very efficiently by reducing modulo k
the intermediate multiplication result at each step of the exponentiation algorithm.
A formal statement of this scheme is as follows:

http://crd.lbl.gov/~{}dhbailey/mpdist
http://crd.lbl.gov/~{}dhbailey/mpdist
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To compute r = bn mod k, where r,b,n, and k are positive integers, first set t to be
the largest power of two such that t ≤ n, and set r = 1. Then

A: if n≥ t then r← br mod k; n← n− t; endif
t ← t/2
if t ≥ 1 then r← r2 mod k; go to A; endif

Note that the above algorithm is performed entirely with positive integers that do
not exceed k2 in size.

A full implementation of the entire pseudorandom scheme, which runs on any
computer system with IEEE 64-bit arithmetic and a Fortran-90 compiler, can be
obtained from the first author’s web site: http://crd.lbl.gov/∼dhbailey/mpdist. The
code is straightforward and can easily be converted to other languages, such as C or
Java.

1.4.3 Analysis

It can be seen from the above that the recursive sequence generating iterates, which
contain successive 53-long segments of binary digits from the expansion of α ,
is nothing more than a special type of linear congruential pseudorandom number
generator, a class that has been studied extensively by computer scientists and others
[10, p. 10–26]. In other words, the binary digits of α are “locally” (within a range
of indices spanned by successive powers of three) given by a linear congruential
generator, with a modulus that is a large power of three.

This observation makes it an easy matter to determine the period P of the
resulting generator [10, p. 17]: as specified above, P = 2 ·332 ≈ 3.706 ·1015. Note,
however, that the binary digits of the resulting sequence will match that of α only
if [a,a+ 53n], where a is the starting index and n is the number of floating-point
results generated, does not include a power of three or come within 100 of a power
of three. If one can utilize 128-bit integer arithmetic, one could use a larger modulus,
say 340, which would yield a period that is 2,187 times larger.

This scheme has one significant advantage over conventional linear congruential
generators that use a power-of-two modulus: it cleanly avoids anomalies that
sometimes arise in large scientific codes, when arrays with dimensions that are large
powers of two are filled with pseudorandom data and then accessed both by row and
by column (or plane), or which otherwise are accessed by large power-of-two data
strides (as in a power-of-two FFT). This is because the pseudorandom data sequence
accessed in this manner has a reduced period and thus may be not as “random” as
desired. The usage of a modulus that is a large power of three is immune to these
problems. The authors are not aware of any major scientific calculation that involves
data access strides that are large powers of three.

http://crd.lbl.gov/~{}dhbailey/mpdist
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1.4.4 Performance

As mentioned above, a Fortran-90 implementation of the scheme described above is
available on the first author’s web site. For comparison purposes, the conventional
linear congruential generator

zn = 521 · zn−1 mod 253 (1.16)

was implemented using the same software and programming style. These two
codes were then tested on a 2.8 GHz Apple MacPro workstation, using the gfortran
compiler (and running only on one of the eight cores). The program implementing
the normal-number-based scheme required 3.553 s to generate an array of 100
million double-precision deviates. The conventional linear congruential system
required essentially the same time.

By the way, the above program also is self-checking, in that it computes 100
million iterates using (1.15), then checks that the same value is produced by jumping
ahead 100 million steps, by using formula (1.14). The present authors have used this
program to check computational and data integrity on various computer systems.
In at least one instance, the program disclosed intermittent memory errors.

1.4.5 Parallel Implementation

The scheme described above is very well suited for parallel processing, a trait not
shared by a number of other commonly used pseudorandom schemes. Consider, for
example, an implementation of the above pseudorandom scheme on a distributed
memory system. Suppose that k is the processor number and p is the total number of
processors used. Assume that a total of n pseudorandom deviates are to be generated,
and assume that n is evenly divisible by p. Then each processor generates n/p
results, with processor p using as a starting value a+nk/p. Note that each processor
can quickly and independently generate its own value of z0 by using formula (1.14).

In this way, the collective sequence generated by all processors coincides
precisely with the sequence that is generated on a single-processor system. This
feature is crucially important in parallel processing; permitting one can verify that a
parallel program produces the same answers (to within reasonable numerical round-
off error) as the single-processor version. It is also important, for the same reason,
to permit one to compare results, say, between a run on 64 CPUs of a given system
with one on 128 CPUs.

This scheme has been used to generate data for the fast Fourier transform (FFT)
benchmark that is part of the benchmark suite for the high productivity computing
systems (HPCS) program, funded by the US Defense Advanced Research Projects
Agency (DARPA) and the US Department of Energy.
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1.4.6 Variations

Some initial tests, conducted by Nelson Beebe of the University of Utah, found that
if by chance one iterate is rather small, it will include as its trailing bits a few of
the leading bits of the next result (this is a natural consequence of the construction).
While the authors are not aware of any application for which this feature would have
significant impact, it can be virtually eliminated by advancing the sequence by more
than 53 bits—say by 64 bits—from iterate to iterate.

This can be done by simply altering formula (1.15) above to read

zk = 264 · zk−1 mod 333. (1.17)

This can be implemented as is, if one is using 128-bit integer or 128-bit IEEE
floating-point arithmetic, but does not work correctly if one is using double-double
arithmetic, because the product 264 · zk−1 could exceed 2106, which is the maximum
size of an integer that can be represented exactly as a double-double operand. When
using double-double arithmetic, one can compute each iterate using the following:

zk = 211 · (253 · zk−1 mod 333) mod 333. (1.18)

Tests by the present authors, advancing 64 bits per result, showed no significant
correlation to the leading bits of the next iterate. And, of course, the additional
“skip” here could be more than 11; it could be any value up to 53.

Finally, there is no reason that other constants from this class could not
also be used in a similar way. For example, a very similar generator could be
constructed based on α2,5. One could also construct pseudorandom generators based
on constants that are 3-normal or 5-normal, although one would lose the property
that successive digits are precisely retained in consecutive computer words (which
are based on binary arithmetic). The specific choice of multiplier and modulus can
be made based on application requirements and the type of high-precision arithmetic
that is available (e.g., double-double or 128-bit integer).

However, as we noted above, it is important to recognize that any proposed
pseudorandom number generator, including this one, must be subjected to lengthy
and rigorous testing [10–12]. Along this line, as noted above, generators of the
general linear congruential family have problems, and it is not yet certain whether
some variation or combination of generators in this class can be fashioned into a
robust, reliable scheme that is both efficient and practical. But we do believe that
these schemes are worthy of further study.

1.5 Conclusion and Directions for Further Work

In this paper, we have shown how the constant α = ∑n≥1 1/(3n23n
), which is

provably 2-normal, is not 6-normal, as well as some generalizations. These results
thus constitute simple and concrete counter-examples to the question of whether
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normality in one base b implies normality in another base c (except in simple cases
covered by the first part of Theorem 1.2). In particular, these results are explicit
examples of the second part of Theorem 1.2. We have also shown how a practical
pseudorandom number generator can be constructed based on the binary digits of α ,
where each generated word consists of successive sections of its binary expansion.

Perhaps the most significant implication of the algorithm we have presented is
not for its practical utility but instead for the insight it provides to the fundamental
question of normality. In particular, the pseudorandom number construction implies
that the digit expansions of one particular class of provably normal numbers consist
of successive segments of exponentially growing length, and within each segment
the digits are given by a specific type of linear congruential generator, with a period
that also grows exponentially. From this perspective, the 2-normality of α is entirely
plausible.

Now consider what this implies, say, for the normality of a constant such as log2.
First recall the classical formula

log2 =
∞

∑
n=1

1
n2n . (1.19)

Thus, following the well-known BBP approach (see [3] or [5, Chap. 4]), we can
write

{2d log2} =
{

d

∑
n=1

2d−n mod n
n

}
+

{
∞

∑
n=d+1

2d−n

n

}
. (1.20)

This leads immediately to the BBP algorithm for computing the binary digits of log2
beginning after position d, since each term of the first summation can be computed
very rapidly by means of the binary algorithm for exponentiation, and the second
summation quickly converges.

But we can also view (1.20) for its insight on normality. Note that the binary
expansion of log2 following position d can be seen as a sum of normalized linear
congruential pseudorandom number generators, with periods (at least in some
terms) that grow steadily with n (since the period of a linear congruential generator
depends on the factorization of the modulus). But with increasing n, at least some
terms will have prime moduli, resulting in relatively long periods. In fact, some
will be primitive primes modulo two, which give the maximal period (n− 1)/2.
Note that the sum of normalized linear congruential generators can be rewritten as
a single linear congruential generator. Thus it is plausible that the period of the sum
of generators in the first portion of (1.20) increases without bound, resulting in a
highly “random” expansion (although all of this needs to be worked out in detail).

We have attempted to develop these notions further, but so far we have not made a
great deal of progress. But, at the least, this approach may be effective for constants
such as
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β =
∞

∑
n∈W

1
n2n , (1.21)

where W is the set of primitive primes modulo two, which as mentioned above give
rise to maximal periods when used as a linear congruential modulus. Only time
will tell.
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Appendix

Proof. α2,3 is not 6-normal.

Let Qm be the base-6 expansion of α2,3 immediately following position 3m (i.e.,
after the “decimal” point has been shifted to the right 3m digits). We can write

Qm = 63m
α2,3 mod 1

=

(
m

∑
k=1

33m−k23m−3k

)
mod 1+

∞

∑
k=m+1

33m−k23m−3k
. (1.22)

The first portion of this expression is zero, since all terms in the summation are
integers. The small second portion is very accurately approximated by the first term
of the series, namely (3/4)3m

/3m+1. In fact, for all m≥ 1,

(3/4)3m

3m+1 < Qm <
(3/4)3m

3m+1 (1+ 2 ·10−6). (1.23)

Let Zm = �log6 1/Qm� be the number of zeroes in the base-6 expansion of α that
immediately follow position 3m. Then for all m≥ 1, (1.23) can be rewritten

3m log6

(
4
3

)
+(m+ 1) log6 3− 2

< Zm < 3m log6

(
4
3

)
+(m+ 1) log6 3. (1.24)

Now let Fm be the fraction of zeroes in the base-6 expansion of α up to position 3m+
Zm (i.e., up to the end of the block of zeroes that immediately follows position 3m).
Clearly

Fm >
∑m

k=1 Zk

3m +Zm
, (1.25)
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since the numerator only counts zeroes in the long stretches. The summation in the
numerator satisfies, for all sufficiently large m,

m

∑
k=1

Zk >
3
2

(
3m− 1

3

)
log6

(
4
3

)
+

m(m+ 3)
2

log6 3− 2m

>
3
2
·3m log6

(
4
3

)
− 1

2
log6

(
4
3

)
− 2m. (1.26)

Now given any ε > 0, we can write, for all sufficiently large m,

Fm >
3
2 ·3m log6

( 4
3

)− 1
2 log6

( 4
3

)− 2m

3m + 3m log6

( 4
3

)
+(m+ 1) log6 3

=
3
2 log6

(
4
3

)− 1
3m

(
1
2 log6

(
4
3

)
+ 2m

)
1+ log6

(
4
3

)
+

(m+1) log6 3
3m

≥
3
2 log6

( 4
3

)− ε
1+ log6

(
4
3

)
+ ε

≥ 1
2

log2

(
4
3

)
− 2ε. (1.27)

But β = 1
2 log2(4/3) (which has numerical value 0.2075187496 . . .) is clearly

greater than 1/6, since (4/3)3 = 64/27 > 2. This means that infinitely often
(namely, whenever n = 3m+Zm) the fraction of zeroes in the base-6 expansion of α
up to position n exceeds 1

2(1/6+β )> 1/6. Thus α is not 6-normal. �

Proof. Given co-prime integers b≥ 2 and c≥ 2, the constant αb,c =∑k≥1 1/(ckbck
)

is not bc-normal.

Let Qm(b,c) be the base-bc expansion of αb,c immediately following position cm.
Then

Qm(b,c) = (bc)cm
αb,c mod 1

=

(
m

∑
k=1

ccm−kbcm−ck

)
mod 1+

∞

∑
k=m+1

ccm−kbcm−ck
. (1.28)

As above, the first portion of this expression is zero, since all terms in the summation
are integers, and the second portion is very accurately approximated by the first term
of the series, namely [ c

b(c−1) ]
cm
/cm+1. In fact, for any choice of b and c as above,

and for all m≥ 1,

1
cm+1

[
c

b(c− 1)

]cm

< Qm(b,c) <
1

cm+1

[
c

b(c− 1)

]cm

· (1+ 1/10). (1.29)
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Let Zm(b,c) = �logbc 1/Qm(b,c)� be the number of zeroes that immediately follow
position cm. Then for all m≥ 1, (1.29) can be rewritten as

cm logbc

[
b(c− 1)

c

]
+(m+ 1) logbc c− 2

< Zm(b,c) < cm logbc

[
b(c− 1)

c

]
+(m+ 1) logbc c. (1.30)

Now let Fm(b,c) be the fraction of zeroes up to position cm +Zm(b,c). Clearly

Fm(b,c) >
∑m

k=1 Zk(b,c)
cm +Zm(b,c)

, (1.31)

since the numerator only counts zeroes in the long stretches. The summation in the
numerator of Fm(b,c) satisfies

m

∑
k=1

Zk(b,c) >
c

c− 1

(
cm− 1

c

)
logbc

[
b(c− 1)

c

]
+

m(m+ 3)
2

logbc c− 2m

>
cm+1

c− 1
logbc

[
b(c− 1)

c

]
− 1

c− 1
logbc

[
b(c− 1)

c

]
− 2m. (1.32)

Thus given any ε > 0, we can write, for all sufficiently large m,

Fm(b,c) >

cm+1

c−1 logbc

[
b(c−1)

c

]
− 1

c−1 logbc

[
b(c−1)

c

]
− 2m

cm + cm logbc

(
b(c−1)

c

)
+(m+ 1) logbc c

(1.33)

=

c
c−1 logbc

[
b(c−1)

c

]
− 1

cm

(
1

c−1 logbc

[
b(c−1)

c

]
+ 2m

)
1+ logbc

[
b(c−1)

c

]
+

(m+1) logbc c
cm

≥
c

c−1 logbc

[
b(c−1)

c

]
− ε

1+ logbc

[
b(c−1)

c

]
+ ε

≥ c
c− 1

·
logbc

[
b(c−1)

c

]
1+ logbc

[
b(c−1)

c

] − 2ε

= T (b,c)− 2ε, (1.34)

where

T (b,c) =
c

c− 1
·

logbc

[
b(c−1)

c

]
1+ logbc

[
b(c−1)

c

] . (1.35)
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To establish the desired result that T (b,c)> 1/(bc), first note that

T (b,c) >
1
2

logbc

[
b(c− 1)

c

]
≥ 1

2
logbc

(
b
2

)
. (1.36)

Raise bc to the power of the right-hand side and also to the power 1/(bc). Then it
suffices to demonstrate that

b
2
>
[
(bc)1/(bc)

]2
. (1.37)

The right-hand side is bounded above by (e1/e)2 = 2.0870652286 . . .. Thus this
inequality is clearly satisfied whenever b≥ 5.

If we also presume that c≥ 5, then by examining the middle of (1.36), it suffices
to demonstrate that

1
2

logbc
4b
5

>
1
bc

(1.38)

or

4b
5

>
(

e1/e
)2

. (1.39)

But this is clearly satisfied whenever b ≥ 3. For the case b = 2 and c ≥ 5, we can
write

T (b,c) =
c

c− 1
·

log2c

[
2(c−1)

c

]
1+ log2c

[
2(c−1)

c

] ≥ log2c

[
2(c−1)

c

]
1+ log10 2

, (1.40)

so by similar reasoning it suffices to demonstrate that

2(c− 1)
c

>
(

e1/e
)1+log10 2

= 1.61384928833 . . .. (1.41)

But this is clearly satisfied whenever c≥ 6.
The five remaining cases, namely (2,3),(2,5),(3,2),(3,4),(4,3), are easily

verified by explicitly computing numerical values of T (b,c) using (1.35). As it turns
out, the simple case that we worked out in detail above, namely b = 2 and c = 3, is
the worst case, in the sense that for all other (b,c), the fraction T (b,c) exceeds the
natural frequency 1/(bc) by greater margins. �
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Chapter 2
New Demiclosedness Principles for (Firmly)
Nonexpansive Operators

Heinz H. Bauschke

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The demiclosedness principle is one of the key tools in nonlinear analysis
and fixed point theory. In this note, this principle is extended and made more flexible
by two mutually orthogonal affine subspaces. Versions for finitely many (firmly)
nonexpansive operators are presented. As an application, a simple proof of the weak
convergence of the Douglas-Rachford splitting algorithm is provided.

Key words: Demiclosedness principle • Douglas-Rachford algorithm • Firmly
nonexpansive mapping • Maximal monotone operator • Nonexpansive mapping
• Proximal algorithm • Resolvent • Splitting algorithm
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2.1 Introduction

Throughout this paper, we assume that

X is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. (2.1)
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We shall assume basic notation and results from fixed point theory and from
monotone operator theory; see, e.g., [2, 4, 8, 15, 16, 20–22, 24]. The graph of
a maximally monotone operator A : X ⇒ X is denoted by graA, its resolvent
(A+ Id)−1 by JA, its set of zeros by zerA = A−1(0), and we set RA = 2JA− Id,
where Id is the identity operator. Weak convergence is indicated by ⇀ .

Let T : X → X . Recall that T is firmly nonexpansive if

(∀x ∈ X)(∀y ∈ X) ‖Tx−Ty‖2+ ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2. (2.2)

It is well know that T is firmly nonexpansive if and only if R = 2T − Id is
nonexpansive, i.e.,

(∀x ∈ X)(∀y ∈ X) ‖Rx−Ry‖≤ ‖x− y‖. (2.3)

Clearly, every firmly nonexpansive operator is nonexpansive. Building on work
by Minty [19], Eckstein and Bertsekas [13] clearly linked firmly nonexpansive
mappings to maximally monotone operators—the key result is the following: T is
firmly nonexpansive if and only if T = JA for some maximally monotone operator
A (namely, T−1 − Id). This implies also a correspondence between maximally
monotone operators and nonexpansive mappings (see [14, 17]). Thus, finding a
zero of A is equivalent to finding a fixed point of JA. Furthermore, the graph of
any maximally monotone operator is beautifully described by the associated Minty
parametrization:

graA =
{
(JAx,x− JAx) | x ∈ X

}
. (2.4)

The most prominent example of firmly nonexpansive mappings are projectors,
i.e., resolvents of normal cone operators associated with nonempty closed convex
subsets of X . Despite being (firmly) nonexpansive and hence Lipschitz continuous,
even projectors do not interact well with the weak topology as was first observed by
Zarantonello [25]:

Example 2.1. Suppose that X = �2(N), set C =
{

x ∈ X | ‖x‖ ≤ 1
}

, and denote the
sequence of standard unit vectors in X by (en)n∈N. Set (∀n ∈ N) zn = e0 + en. Then

zn ⇀ e0 yet PCzn ⇀ 1√
2
e0 �= e0 = PCe0. (2.5)

The following classical demiclosedness principle dates back to the 1960s and work
by Browder [6]. It comes somewhat as a surprise in view of the previous example.

Fact 2.2 (Demiclosedness principle). Let S be a nonempty closed convex subset
of X , let T : S→ X be nonexpansive, let (zn)n∈N be a sequence in S converging
weakly to z, and suppose that zn−Tzn→ x. Then z−Tz = x.
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Remark 2.3. One might inquire whether or not the following even less restrictive
demiclosedness principle holds:

zn ⇀ z
zn−Tzn ⇀ x

}
?⇒ z−Tz = x. (2.6)

However, this generalization is false: indeed, suppose that X , C, and (zn)n∈N are
as in Example 2.1, and set T = Id−PC, which is (even firmly) nonexpansive. Then
zn ⇀ e0 and zn−Tzn = PCzn ⇀ 1√

2
e0 yet e0−Te0 = PCe0 = e0 �= 1√

2
e0.

The aim of this note is to provide new versions of the demiclosedness principle
and illustrate their usefulness. The remainder of this paper is organized as follows.
Section 2.2 presents new demiclosedness principles for one (firmly) nonexpansive
operator. Multi-operator versions are provided in Sect. 2.3. The weak convergence
of the Douglas-Rachford algorithm is rederived with a very transparent proof in
Sect. 2.4.

2.2 Demiclosedness Principles

Fact 2.4 (Brezis). (See [5, Proposition 2.5 on P. 27], [23, Lemma 4], or [2,
Corollary 20.49].) Let A : X ⇒ X be maximally monotone, let (x,u) ∈ graA, and
let (xn,un)n∈N be a sequence in X×X such that (xn,un) ⇀ (x,u) and lim〈xn,un〉 ≤
〈x,u〉. Then 〈xn,un〉 → 〈x,u〉 and (x,u) ∈ graA.

Theorem 2.5 (See also [2, Proposition 20.50]). Let A : X ⇒ X be maximally
monotone, let (x,u) ∈ X ×X, and let C and D be closed affine subspaces of X such
that D−D = (C−C)⊥. Furthermore, let (xn,un)n∈N be a sequence in graA such
that

(xn,un) ⇀ (x,u) and (xn,un)−PC×D(xn,un)→ (0,0). (2.7)

Then (x,u) ∈ (C×D)∩graA and 〈xn,un〉 → 〈x,u〉.
Proof. Set V =C−C, which is a closed linear subspace. Since xn−PCxn→ 0, we
have PCxn ⇀ x and thus x ∈C. Likewise, u ∈D and hence

C = x+V and D = u+V⊥. (2.8)

It follows that

PC : z �→ PV z+PV⊥x and PD : z �→ PV⊥z+PV u. (2.9)

Therefore, since PV and PV⊥ are weakly continuous,
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〈xn,un〉= 〈PV xn +PV⊥xn,PV un +PV⊥un〉 (2.10a)

= 〈PV xn,PV un〉+ 〈PV⊥xn,PV⊥un〉 (2.10b)

= 〈PV xn,un−PV⊥un〉+ 〈xn−PV xn,PV⊥un〉 (2.10c)

= 〈PV xn,un− (PDun−PV u)〉 (2.10d)

+ 〈xn− (PCxn−PV⊥x),PV⊥un〉 (2.10e)

= 〈PV xn,un−PDun〉+ 〈PV xn,PV u〉 (2.10f)

+ 〈xn−PCxn,PV⊥un〉+ 〈PV⊥x,PV⊥un〉 (2.10g)

→ 〈PV x,PV u〉+ 〈PV⊥x,PV⊥u〉 (2.10h)

= 〈x,u〉. (2.10i)

The result now follows from Fact 2.4. �
Remark 2.6. Theorem 2.5 generalizes [1, Theorem 2], which corresponds to the
case when C is a closed linear subspace and D = C⊥. A referee pointed out that
Theorem 2.5 may be obtained from [1, Theorem 2] by a translation argument.
However, the above proof of Theorem 2.5 is different and much simpler than the
proof of [1, Theorem 2].

Corollary 2.7 (Firm Nonexpansiveness Principle). Let F : X → X be firmly non-
expansive, let (zn)n∈N be a sequence in X such that (zn)n∈N converges weakly to z ∈
X, and suppose that Fzn ⇀ x∈ X and that C and D are closed affine subspaces of X
such that D−D = (C−C)⊥, Fzn−PCFzn→ 0, and (zn−Fzn)−PD(zn−Fzn)→ 0.
Then x ∈C, z ∈ x+D, and x = Fz.

Proof. Set A = F−1− Id so that JA = F . By (2.4), A is maximally monotone and

(xn,un)n∈N := (Fzn,zn−Fzn)n∈N (2.11)

is a sequence in graA that converges weakly to (x,z− x). Thus, by Theorem 2.5,
x ∈C, z− x ∈ D, and z− x ∈ Ax. Therefore, z ∈ x+Ax, i.e., x = JAz = Fz. �
Corollary 2.8 (Nonexpansiveness Principle). Let T : X→ X be nonexpansive, let
(zn)n∈N be a sequence in X such that zn ⇀ z, and suppose that T zn ⇀ y and
that C and D are closed affine subspaces of X such that D−D = (C−C)⊥, zn+
T zn−PCzn−PCT zn→ 0, and zn−T zn−PDzn−PD(−Tzn)→ 0. Then 1

2 z+ 1
2 y ∈C,

1
2 z− 1

2 y ∈ D, and y = T z.

Proof. Set F = 1
2 Id+ 1

2 T , which is firmly nonexpansive. Then Fzn ⇀ 1
2 z+ 1

2 y =: x.
Since PC is affine, we get

zn +Tzn−PCzn−PCT zn→ 0 (2.12a)

⇔ zn +Tzn− 2
(

1
2 PCzn +

1
2 PCTzn

)→ 0 (2.12b)
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⇔ zn +Tzn− 2PC
(

1
2 zn +

1
2 T zn

)→ 0 (2.12c)

⇔ 2Fzn− 2PCFzn→ 0 (2.12d)

⇔ Fzn−PCFzn→ 0. (2.12e)

Likewise, since zn−Fzn = zn− 1
2 zn− 1

2 T zn =
1
2 zn− 1

2 T zn, we have

zn−Tzn−PDzn−PD(−T zn)→ 0 (2.13a)

⇔ zn−Tzn− 2
(

1
2 PDzn +

1
2 PD(−T zn)

)→ 0 (2.13b)

⇔ 2(zn−Fzn)− 2PD
(

1
2 zn +

1
2(−T zn)

)→ 0 (2.13c)

⇔ zn−Fzn−PD(zn−Fzn)→ 0. (2.13d)

Thus, by Corollary 2.7, x ∈ C, z ∈ x+D, and x = Fz, i.e., 1
2 z+ 1

2 y ∈ C, z ∈ 1
2 z+

1
2 y+D, and 1

2 z+ 1
2 y = Fz = 1

2 z+ 1
2 T z, i.e., 1

2 z+ 1
2 y ∈C, 1

2 z− 1
2 y ∈ D, and y = T z.

�
Corollary 2.9 (Classical Demiclosedness Principle). Let S be a nonempty closed
convex subset of X, let T : S→ X be nonexpansive, let (zn)n∈N be a sequence in S
converging weakly to z, and suppose that zn−Tzn→ x. Then z−Tz = x.

Proof. We may and do assume that S = X (otherwise, consider T ◦PS instead of
T ). Set y = z− x and note that Tzn ⇀ y. Now set C = X and D = {x/2}. Then
D−D = {0} = X⊥ = (X −X)⊥ = (D−D)⊥, zn + T zn−PCzn− PCTzn ≡ 0, and
zn − Tzn − PDzn − PD(−Tzn) = zn − T zn − x/2− x/2→ 0. Corollary 2.8 implies
y = T z, i.e., z− x = T z. �

2.3 Multi-operator Demiclosedness Principles

Set

I = {1,2, . . . ,m}, where m is an integer greater than or equal to 2. (2.14)

We shall work in the product Hilbert space

X = XI (2.15)

with induced inner product 〈x,y〉 = ∑i∈I〈xi,yi〉 and ‖x‖ =
√
∑i∈I ‖xi‖2, where

x = (xi)i∈I and y = (yi)i∈I denote generic elements in X.
We start with a multi-operator demiclosedness principle for firmly nonexpan-

sive mappings, which we derive from the corresponding two-operator version
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(Corollary 2.7). A referee pointed out that Theorem 2.10 is also equivalent to
[1, Corollary 3] (see also [23, Lemma 5] for a Banach space extension of [1,
Corollary 3]).

Theorem 2.10 (Multi-operator Demiclosedness Principle for Firmly Nonex-
pansive Operators). Let (Fi)i∈I be a family of firmly nonexpansive operators on
X, and let, for each i ∈ I, (zi,n)n∈N be a sequence in X such that for all i and j in I,

zi,n ⇀ zi and Fizi,n ⇀ x, (2.16a)

∑
i∈I
(zi,n−Fizi,n)→−mx+∑

i∈I
zi, (2.16b)

Fizi,n−Fjz j,n→ 0. (2.16c)

Then Fizi = x, for every i ∈ I.

Proof. Set x = (x)i∈I , z = (zi)i∈I , (zn) = (zi,n)n∈N, and C =
{
(y)i∈I | y ∈ X

}
.

Then zn ⇀ z and C is a closed subspace of X with C⊥ =
{
(yi)i∈I | ∑i∈I yi = 0

}
.

Furthermore, we set D = z− x+C⊥ so that (C−C)⊥ = C⊥ = D−D and also
F : (yi)i∈I �→ (Fyi)i∈I . Then F is firmly nonexpansive on X, and Fzn ⇀ x. Now
(2.16c) implies

(∀i ∈ I) Fizi,n− 1
m∑j∈I

Fjz j,n→ 0, (2.17)

which—when viewed in X—means that Fzn−PCFzn→ 0. Similarly, using (2.16b),

zn−Fzn−PD(zn−Fzn) = zn−Fzn−Pz−x+C⊥(zn−Fzn) (2.18a)

= zn−Fzn−
(
z− x+PC⊥

(
zn−Fzn− (z− x)

))
(2.18b)

=
(

Id−PC⊥
)
(zn−Fzn)−

(
Id−PC⊥

)
(z− x) (2.18c)

= PC(zn−Fzn)−PC(z− x) (2.18d)

=
(

1
m∑

i∈I

(
zi,n−Fizi,n− zi + x

))
j∈I

(2.18e)

→ 0. (2.18f)

Therefore, by Corollary 2.7, x = Fz. �
Theorem 2.11 (Multi-operator Demiclosedness Principle for Nonexpansive
Operators). Let (Ti)i∈I be a family of nonexpansive operators on X, and let, for
each i ∈ I, (xi,n)n∈N be a sequence in X such that for all i and j in I,

zi,n ⇀ zi and Tizi,n ⇀ yi, (2.19a)
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∑
i∈I

(
zi,n−Tizi,n

)→∑
i∈I

(
zi− yi

)
(2.19b)

zi,n− z j,n +Tizi,n−Tjz j,n→ 0. (2.19c)

Then Tizi = yi, for each i ∈ I.

Proof. Set (∀i ∈ I) Fi =
1
2 Id+ 1

2 Ti. Then Fi is firmly nonexpansive and Fizi,n ⇀
1
2 zi +

1
2 yi, for every i ∈ I. By (2.19c), 0← 2Fizi,n− 2Fjz j,n = (zi,n +Tizi,n)− (z j,n +

Tjz j,n) ⇀ (zi + yi)− (z j + y j), for all i and j in I. It follows that x = 1
2 zi +

1
2 yi is

independent of i ∈ I. Furthermore,

∑
i∈I

(
zi,n−Fizi,n

)
=∑

i∈I

1
2

(
zi,n−Tizi,n

)
(2.20a)

→∑
i∈I

1
2

(
zi− yi

)
(2.20b)

=∑
i∈I

(
1
2 zi−

(
x− 1

2 zi
))

(2.20c)

=−mx+∑
i∈I

zi. (2.20d)

Therefore, the conclusion follows from Theorem 2.10. �

2.4 Application to Douglas-Rachford Splitting

In this section, we assume that A and B are maximally monotone operators on X
such that

zer(A+B) = (A+B)−1(0) �=∅. (2.21)

We set

T = 1
2 Id+ 1

2 RBRA = JB(2JA− Id)+ (Id−JA), (2.22)

which is the Douglas-Rachford splitting operator and where RA = 2JA− Id and RB =
2JB− Id are the “reflected resolvents” already considered in Sect. 2.1. (The term
“reflected resolvent” is motivated by the fact that when JA is a projection operator,
then RA is the corresponding reflection.) See [2, 10, 11] for further information on
this algorithm and also [3] for some results for operators that are not maximally
monotone. One has (see [10, Lemma 2.6(iii)] or [2, Proposition 25.1(ii)])

JA
(

FixT
)
= zer(A+B). (2.23)
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Now let z0 ∈ X and define the sequence (zn)n∈N by

(∀n ∈ N) zn+1 = T zn. (2.24)

This sequence is very useful in determining a zero of A + B as the next result
illustrates.

Fact 2.12 (Lions–Mercier [18]). The sequence (zn)n∈N converges weakly to some
point z ∈ X such that z ∈ FixT and JAz ∈ zer(A + B). Moreover, the sequence
(JAzn)n∈N is bounded, and every weak cluster point of this sequence belongs to
zer(A+B).

Since JA is in general not sequentially weakly continuous (see Example 2.1), it is not
obvious whether or not JAzn ⇀ JAz. However, recently Svaiter provided a relatively
complicated proof that in fact weak convergence does hold. As an application, we
rederive the most fundamental instance of his result with a considerably simpler and
more conceptual proof.

Fact 2.13 (Svaiter [23]). The sequence (JAzn)n∈N converges weakly to JAz.

Proof. By Fact 2.12,

zn ⇀ z ∈ FixT. (2.25)

Since JA is (firmly) nonexpansive and (zn)n∈N is bounded, the sequence (JAzn)n∈N
is bounded as well. Let x be an arbitrary weak cluster point of (JAzn)n∈N, say

JAzkn ⇀ x ∈ zer(A+B) (2.26)

by Fact 2.12. Set (∀n ∈ N) yn = RAzn. Then

ykn ⇀ y = 2x− z ∈ X . (2.27)

Since the operator T is firmly nonexpansive and FixT �=∅, it follows from [7] that
zn−Tzn→ 0 (i.e., T is “asymptotically regular”); thus,

JAzn− JByn = zn−Tzn→ 0 (2.28)

and hence

JBykn ⇀ x. (2.29)

Next,

0← JAzkn − JBykn (2.30a)
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= zkn − JAzkn +RAzkn − JBykn (2.30b)

= zkn − JAzkn + ykn− JBykn (2.30c)

⇀ z+ y− 2x. (2.30d)

To summarize,

(zkn ,ykn) ⇀ (z,y) and (JAzkn ,JBykn) ⇀ (x,x), (2.31a)

(zkn − JAzkn)+ (ykn− JBykn)→−2x+ z+ y= 0, (2.31b)

JAzkn − JBykn → 0. (2.31c)

By Theorem 2.10, JAz = JBy = x. Hence JAzkn ⇀ JAz. Since x was an arbitrary weak
cluster point of the bounded sequence (JAzn)n∈N, we conclude that JAzn ⇀ JAz. �
Motivated by a referee’s comment, let us turn towards inexact iterations of T . The
following result underlines the usefulness of the multi-operator demiclosedness
principle.

Theorem 2.14. Suppose that (zn)n∈N is a sequence in X such that zn− T zn → 0
and zn ⇀ z, where z ∈ FixT . Then JAzn ⇀ JAz.

Proof. Argue exactly as in the proof of Fact 2.13. �
We now present a prototypical result on inexact iterations; see [9–11, 13, 23] for
many more results in this direction as well as [2] and also [12].

Corollary 2.15. Suppose that (zn)n∈N and (en)n∈N are sequences in X such that

∑
n∈N
‖en‖<+∞ and (∀n ∈ N) zn+1 = en +Tzn. (2.32)

Then there exists z ∈ FixT such that zn ⇀ z and JAzn ⇀ JAz.

Proof. Combettes’ [9, Proposition 4.2(ii)] yields zn−Tzn → 0 while the existence
of z ∈ FixT such that zn ⇀ z is guaranteed by his [9, Theorem 5.2(i)]. Now apply
Theorem 2.14. �
Unfortunately, the author is unaware of any existing actual numerical implemen-
tation guaranteeing summable errors; however, these theoretical results certainly
increase confidence in the numerical stability of the Douglas-Rachford algorithm.
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24. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River

Edge (2002)
25. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I.

Projections on convex sets. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional
Analysis, pp. 237–341. Academic Press, New York (1971)



Chapter 3
Champernowne’s Number, Strong Normality,
and the X Chromosome

Adrian Belshaw and Peter Borwein

This paper is dedicated to Jon Borwein in celebration of his 60th birthday

Abstract Champernowne’s number is the best-known example of a normal number,
but its digits are far from random. The sequence of nucleotides in the human X
chromosome appears nonrandom in a similar way. We give a new asymptotic test
of pseudorandomness, based on the law of the iterated logarithm; we call this new
criterion “strong normality.” We show that almost all numbers are strongly normal
and that strong normality implies normality. However, Champernowne’s number is
not strongly normal. We adapt a method of Sierpiński to construct an example of a
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3.1 Normality

We can write a real number α in any integer base r ≥ 2 as a sum of powers of
the base:

α =
∞

∑
j=−d

a jr
− j.

The standard “decimal” notation is

α = a−d a−(d−1) · · ·a0 . a1 a2 · · · .

The sequence of digits {a j} gives the representation of α in the base r, and
this representation is unique unless α is rational, in which case α may have two
representations. (For example, in the base 10, 0.1 = 0.0999 · · · .)

We call a subsequence of consecutive digits a string. The string may be finite or
infinite; we call a finite string of t digits a t-string. An infinite string beginning in a
specified position we call a tail, and we call a finite string beginning in a specified
position a block.

A numberα is simply normal in the base r if every 1-string in its base-r expansion
occurs with an asymptotic frequency approaching 1/r. That is, given the expansion
{a j} of α in the base r, and letting mk(n) be the number of times that a j = k for
j ≤ n, we have

lim
n→∞

mk(n)
n

=
1
r

for each k ∈ {0,1, . . . ,r− 1}. This is Borel’s original definition [6].
A number is normal in the base r if every t-string in its base-r expansion occurs

with a frequency approaching r−t . Equivalently, a number is normal in the base r if
it is simply normal in the base rt for every positive integer t (see [6, 14, 17]).

A number is absolutely normal if it is normal in every base. Borel [6] showed
that almost every real number is absolutely normal.

In 1933, Champernowne [8] produced the first concrete construction of a normal
number. Champernowne’s number is

γ10 = .1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · · .

The number is written in the base 10, and its digits are obtained by concatenating
the natural numbers written in the base 10. This number is likely the best-known
example of a normal number.

Generally, the base-r Champernowne number is formed by concatenating the
integers 1, 2, 3, . . . in the base r. For example, the base-2 Champernowne number is
written in the base 2 as

γ2 = .1 10 11 100 101 · · · .
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For any r, the base-r Champernowne number is normal in the base r. However, the
question of its normality in any other base (not a power of r) is open. For example,
it is not known whether the base-10 Champernowne number is normal in the base 2.

In 1917, Sierpiński [15] gave a construction of an absolutely normal number (in
fact, one such number for each ε with 0 < ε ≤ 1). A computable version of this
construction was given by Becher and Figueira [2].

Most fundamental irrational constants, such as
√

2, log2, π , and e, appear to
be normal, and statistical tests done to date are consistent with the hypothesis that
they are normal. (See, for example, Kanada on π [10] and Beyer, Metropolis and
Neergard on irrational square roots [5].) However, there is no proof of the normality
of any of these constants.

There is an extensive literature on normality in the sense of Borel. Introductions
to the literature may be found in [4, 7].

3.2 Walks on the Digits of Numbers and on Chromosomes

In this section we graphically compare two walks on the digits of numbers with a
walk on the values of the Liouville λ function and a walk on the nucleotides of the
human X chromosome.

The walks are generated on a binary sequence of digits (Figs. 3.1 and 3.2) by
converting each 0 in the sequence to−1 and then using digit pairs (±1,±1) to walk
(±1,±1) in the plane. The colour or shading in the figures gives a rough indication
of the number of steps taken in the walk. The values of the Liouville λ function
(Fig. 3.3) are already±1.

There are four nucleotides in the X chromosome sequence, and each of the four
is assigned one of the values (±1,±1) to create a walk on the nucleotide sequence
(Fig. 3.4). The nucleotide sequence is available on the UCSC Genome Browser [16].

A random walk on a million digits is expected to stay within roughly a thousand
units of the origin, and this will be seen to hold for the walks on the digits of π
and on the Liouville λ function values. On the other hand, the walks on the digits of
Champernowne’s number and on the X chromosome travel much farther than would
be expected of a random walk.

The walk on the Liouville λ function moves away from the origin like
√

n, but
it does not seem to move randomly near the origin. In fact, the positive values of
λ first outweigh the negative values when n = 906180359 [12], which is not at all
typical of a random walk.

3.3 Strong Normality

Mauduit and Sárközy [13] have shown that the digits of the base-2 Champernowne
number γ2 fail two tests of randomness. Dodge and Melfi [9] compared values of an
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100

0

–100

–200

0 100 200 300 400

Fig. 3.1 A walk on 106 binary digits of π

autocorrelation function for Champernowne’s number and π and found that π had
the expected pseudorandom properties but that Champernowne’s number did not.

Here we provide another test of pseudorandomness and show that it must be
passed by almost all numbers. Our test is a simple one, in the spirit of Borel’s test
of normality, and Champernowne’s number will be seen to fail the test.

If the digits of a real numberα are chosen at random in the base r, the asymptotic
frequency mk(n)/n of each 1-string approaches 1/r with probability 1. However,
the discrepancy mk(n)− n/r does not approach any limit, but fluctuates with an
expected value equal to the standard deviation

√
(r− 1)n/r.

Kolmogorov’s law of the iterated logarithm allows us to make a precise statement
about the discrepancy of a random number. We use this to define our criterion.

Definition 3.1. For real α , and mk(n) as above, α is simply strongly normal in the
base r if for each k ∈ {0, . . . ,r− 1}
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–20000 –15000 –10000 –5000 0

0

Fig. 3.2 A walk on 106 binary digits of the base-2 Champernowne number

limsup
n→∞

mk(n)− n
r√

r− 1
r

√
2n loglogn

= 1

and

liminf
n→∞

mk(n)− n
r√

r− 1
r

√
2n loglogn

=−1 .

We make two further definitions analogous to the definitions of normality and
absolute normality.

Definition 3.2. A number is strongly normal in the base r if it is simply strongly
normal in each of the bases r j, j = 1,2,3, . . ..
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Fig. 3.3 A walk on 106 values of the Liouville λ function

Definition 3.3. A number is absolutely strongly normal if it is strongly normal in
every base.

These definitions of strong normality are sharper than those given by one of the
authors in [3].

3.4 Almost All Numbers Are Strongly Normal

Theorem 3.4. Almost all numbers are simply strongly normal in any base r.

Proof. Without loss of generality, we consider numbers in the interval [0,1] and fix
the integer base r≥ 2. We take Lebesgue measure to be our probability measure. For
any k, 0≤ k≤ r−1, the ith digit of a randomly chosen number is k with probability
r−1. For i �= j, the ith and jth digits are both k with probability r−2, so the digits are
pairwise independent.
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Fig. 3.4 A walk on the nucleotides of the human X chromosome

We define the sequence of random variables Xj by

Xj =
√

r− 1

if the jth digit is k, with probability
1
r

, and

Xj =− 1√
r− 1

otherwise, with probability
r− 1

r
.

Then the Xj form a sequence of independent identically distributed random
variables with mean 0 and variance 1. Put

Sn =
n

∑
j=1

Xj .
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By the law of the iterated logarithm (see, for example, [11]), with probability 1,

limsup
n→∞

Sn√
2n loglogn

= 1 ,

and

liminf
n→∞

Sn√
2n loglogn

=−1 .

Now we note that if mk(n) is the number of occurrences of the digit k in the first n
digits of our random number, then

Sn = mk(n)
√

r− 1− n−mk(n)√
r− 1

.

Substituting this expression for Sn in the limits immediately above shows that the
random number satisfies Definition 3.1 with probability 1. �
This is easily extended.

Corollary 3.5. Almost all numbers are strongly normal in any base r.

Proof. By the theorem, the set of numbers in [0,1] which fails to be simply strongly
normal in the base r j is of measure zero, for each j. The countable union of these
sets of measure zero is also of measure zero. Therefore the set of numbers simply
strongly normal in every base r j is of measure 1. �
The following corollary is proved in the same way as the last.

Corollary 3.6. Almost all numbers are absolutely strongly normal.

The results for [0,1] are extended to R in the same way.

3.5 Champernowne’s Number Is Not Strongly Normal

We begin by examining the digits of Champernowne’s number in the base 2,

γ2 = 0.1 10 11 100 101 · · · .

Each integer q, 2n−1 ≤ q ≤ 2n − 1, has an n-digit base-2 representation and so
contributes an n-block to the expansion of γ2. In each of these n-blocks, the first digit
is 1. If we consider the remaining n−1 digits in each of these n-blocks, we see that
every possible (n−1)-string occurs exactly once. The n-digit integers, concatenated,
together contribute a block of length n2n−1, and in this block, if we set aside the
ones corresponding to the initial digit of each integer, the zeros and ones are equal
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in number. In the whole block there are (n− 1)2n−2 zeros and (n− 1)2n−2 + 2n−1

ones. The excess of ones over zeros in the entire
(
n2n−1

)
-block is just equal to the

number of integers, 2n−1, contributing to the block.
As we concatenate the integers from 1 to 2k− 1, we write the first

N− 1 =
k

∑
n=1

n2n−1 = (k− 1)2k + 1

digits of γ2. The excess of ones in the digits is

2k− 1.

The locally greatest excess of ones occurs at the first digit contributed by the integer
2k, since each power of 2 is written as 1 followed by zeros. At this point the number
of digits is N = (k−1)2k+2 and the excess of ones is 2k. That is, the actual number
of ones in the first N digits is

m1(N) = (k− 2)2k−1 + 1+ 2k.

This gives

m1(N)− N
2
= 2k−1 .

Thus, we have

m1(N)− N
2

N1/2+ε ≥ 2k−1

((k− 1)2k)
1/2+ε .

For any sufficiently small positive ε , the right-hand expression is unbounded as
k→ ∞. We have

limsup
N→∞

m1(N)− N
2

1
2

√
2N loglogN

≥ limsup
N→∞

m1(N)− N
2

N1/2+ε = ∞ .

We thus have:

Theorem 3.7. The base-2 Champernowne number is not strongly normal in the
base 2.

One can show that Champernowne’s number also fails the lower limit criterion. In

fact, m1(N)− N
2
> 0 for every N.

The theorem can be generalized to every Champernowne number, since there is a
shortage of zeros in the base-r representation of the base-r Champernowne number.
Each base-r Champernowne number fails to be strongly normal in the base r.
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3.6 Strongly Normal Numbers Are Normal

Our definition of strong normality is strictly more stringent than Borel’s definition
of normality:

Theorem 3.8. If a number α is simply strongly normal in the base r, then α is
simply normal in the base r.

Proof. It will suffice to show that if a number is not simply normal, then it cannot
be simply strongly normal.

Let mk(n) be the number of occurrences of the 1-string k in the first n digits of
the expansion of α in the base r, and suppose that α is not simply normal in the
base r. This implies that for some k

lim
n→∞

rmk(n)
n
�= 1.

Then there is some Q > 1 and infinitely many ni such that either

rmk(ni)> Qni

or

rmk(ni)<
ni

Q
.

If infinitely many ni satisfy the former condition, then for these ni,

mk(ni)− ni

r
> Q

ni

r
− ni

r
= niP

where P is a positive constant.
Then for any R > 0,

limsup
n→∞

R
mk(n)− n

r√
2n loglogn

≥ limsup
n→∞

R
nP√

2n loglogn
= ∞,

so α is not simply strongly normal.
On the other hand, if infinitely many ni satisfy the latter condition, then for

these ni,

ni

r
−mk(ni)>

ni

r
− ni

Qr
= niP,

and once again the constant P is positive. Now
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liminf
n→∞

mk(n)− n
r√

2n loglogn
=− limsup

n→∞

n
r −mk(n)√
2n loglogn

and so, in this case also, α fails to be simply strongly normal. �
The general result is an immediate corollary.

Corollary 3.9. If α is strongly normal in the base r, then α is normal in the base r.

3.7 No Rational Number Is Simply Strongly Normal

In light of Theorem 3.8, it will suffice to show that no simply normal rational number
can be simply strongly normal.

If α is rational and simply normal in the base r, then if we restrict ourselves to
the first n digits in the repeating tail of the expansion, the frequency of any 1-string
k is exactly n/r whenever n is a multiple of the length of the repeating string. The
excess of occurrences of k can never exceed the constant number of times k occurs
in the repeating string. Therefore, with mk(n) defined as in Sect. 3.3,

limsup
n→∞

(
mk(n)− n

r

)
= Q,

with Q a constant due in part to the initial non-repeating block and in part to the
maximum excess in the tail.

But

limsup
n→∞

Q√
2n loglogn

= 0 ,

so α does not satisfy Definition 3.1.

3.8 Construction of an Absolutely Strongly Normal Number

To determine an absolutely strongly normal number, we modify Sierpiński’s method
of constructing an absolutely normal number [15]. We begin with an easy lemma.

Lemma 3.10. Let f (n) be a real-valued function of the first n base r digits of a
number α ∈ [0,1], and suppose

P
[

limsup
n→∞

f (n) = 1

]
= 1
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and

P
[
liminf

n→∞ f (n) =−1
]
= 1 .

Given positive δ1 > δ2 > δ3 > · · · , and ε1 > ε2 > ε3 > · · · , we can find M1 < M2 <
M3 < · · · so that

P

[∣∣∣∣∣ sup
Mi≤n<Mi+1

f (n)− 1

∣∣∣∣∣> δi or

∣∣∣∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣∣∣∣> δi

]
< εi .

Notes. The function f (n) depends on both n and α . The probability is the Lebesgue
measure of the set of α ∈ [0,1] for which f satisfies the condition(s).

The lemma can easily be proved under more general assumptions.

Proof. For sufficiently large M,

P
[

sup
n≥M

f (n)> 1+ δ1

]
<
ε1

4
and

P
[

inf
n≥M

f (n)<−1− δ1

]
<
ε1

4
.

Set M1 to be the least such M.
Now, as M→ ∞,

P

[
sup

M1≤n<M
f (n)< 1− δ1

]
→ 0 ,

and also

P
[

inf
M1≤n<M

f (n)>−1+ δ1

]
→ 0 .

Thus, for sufficiently large M, these four conditions are satisfied:

P

[
sup

M1≤n<M
f (n)< 1− δ1

]
<
ε1

4
,

P
[

inf
M1≤n<M

f (n)>−1+ δ1

]
<
ε1

4
,

P
[

sup
n≥M

f (n)> 1+ δ2

]
<
ε2

4
,
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and

P
[

inf
n≥M

f (n)<−1− δ2

]
<
ε2

4
.

We set M2 to be the least M > M1 satisfying all four conditions. Since

P

[
sup

M1≤n<M2

f (n) > 1+ δ1

]
≤ P

[
sup

n≥M1

f (n)> 1+ δ1

]

and

P
[

inf
M1≤n<M2

f (n)<−1− δ1

]
≤ P
[

inf
n≥M1

f (n)<−1− δ1

]
,

we have

P

[∣∣∣∣∣ sup
M1≤n<M2

f (n)− 1

∣∣∣∣∣> δ1 or

∣∣∣∣ inf
M1≤n<M2

f (n)+ 1

∣∣∣∣> δ1

]
< ε1 .

We can continue in this way, recursively choosing M3,M4,M5, . . . so that each Mi

is the least satisfying the required conditions. �
Now we fix an integer base r ≥ 2 and a 1-string k ∈ {0,1, . . . ,r− 1}. For each α ∈
[0,1], put

f (n) = f (α,k,n) =
mk(n)− n

r√
r− 1
r

√
2n loglogn

.

Here, as in Definition 3.1 of Sect. 3.3, mk(n) is the number of occurrences of k in
the first n base r digits of α , and α is simply strongly normal in the base r if

limsup
n→∞

f (n) = 1

and

liminf
n→∞ f (n) =−1 .

By Theorem 3.4, Sect. 3.4, these conditions hold with probability 1, so f satisfies
the conditions of Lemma 3.10.

Now fix 0 < ε ≤ 1; set δi =
1
i

and εi = εr,i =
ε

3 ·2ir3 . These δi and εi also satisfy

the conditions of Lemma 3.10.
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We will construct a set Aε ⊂ [0,1], of measure less than 1, in such a way that
every element of AC

ε is absolutely strongly normal.
Let M1 < M2 < M3 < · · · be determined as in the proof of Lemma 3.10, so that

the conclusion of the lemma holds. We build a set Ar,i containing those α for which
the first Mi+1 digits are, in a loose sense, far from simply strongly normal in the
base r.

Around each α = .a1a2 · · ·aMi+1 · · · such that

∣∣∣∣∣ sup
Mi≤n<Mi+1

f (n)− 1

∣∣∣∣∣> δi (3.1)

or ∣∣∣∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣∣∣∣> δi (3.2)

we construct an open interval containing α:

(
a1

r
+

a2

r2 + · · ·+ aMi+1

rMi+1
− 1

rMi+1
,

a1

r
+

a2

r2 + · · ·+ aMi+1

rMi+1
+

2
rMi+1

)
.

Let Ar,k,i be the union of all the intervals constructed in this way. By our construc-
tion, the union of the closed intervals consisting of the numbers with initial digits
.a1a2 . . .aMi+1 satisfying one of our two conditions (3.1) or (3.2) has measure less
than εi, so, denoting Lebesgue measure by μ ,

μ
(
Ar,k,i

)
< 3εi =

ε
2ir3 .

In this way we construct Ar,k,i for every base r and 1-string k ∈ {0,1, . . . ,r− 1}.
We let

Aε =
∞⋃

r=2

r−1⋃
k=0

∞⋃
i=1

Ar,k,i ,

so

μ(Aε) ≤
∞

∑
r=2

r−1

∑
k=0

∞

∑
i=1
μ
(
Ar,k,i

)

<
∞

∑
r=2

r−1

∑
k=0

∞

∑
i=1

ε
2ir3

=

(
π2

6
− 1

)
ε .
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Let Eε be the complement of Aε in [0,1]. Since μ(Aε)< 1, Eε is of positive measure.
We claim that every element of Eε is absolutely strongly normal.

For each base r and 1-string k ∈ {0,1, . . . ,r− 1}, we have specified a set of
integers M1 < M2 < M3 < · · · , depending on r and k. By our construction, if α ∈ Eε ,
then, recalling that f depends on α , we have∣∣∣∣∣ sup

Mi≤n<Mi+1

f (n)− 1

∣∣∣∣∣< δi

and ∣∣∣∣ inf
Mi≤n<Mi+1

f (n)+ 1

∣∣∣∣< δi

for every i. Clearly for this α , since δi→ 0,

limsup
n→∞

f (n) = 1

and

liminf
n→∞ f (n) =−1 .

This is true for every k, so α is simply strongly normal to the base r, by
Definition 3.1 (Sect. 3.3). Thus α is simply strongly normal to every base, and is
therefore absolutely strongly normal by Definitions 3.2 and 3.3.

To specify an absolutely strongly normal number, we note that Eε contains no
interval, since, by Sect. 3.7, no rational number is simply strongly normal in any
base. Since Eε is bounded, infEε is well defined; and infEε ∈ Eε since otherwise
infEε would be interior to some open interval of Aε .

For example, infE1 is a well-defined absolutely strongly normal number.

3.9 Further Questions

It should be possible to construct a computable absolutely strongly normal number
by the method of Becher and Figueira [2].

We conjecture that such naturally occurring constants as the irrational numbers
π , e,

√
2, and log2 are absolutely strongly normal.

On the other hand, we speculate that the binary Liouville λ number, created in
the obvious way from the λ function values, may be normal but not strongly normal.

Bailey and Crandall [1] proved normality base 2 for an uncountable class of
“generalized Stoneham constants,” namely constants of the form

α2,3(r) =
∞

∑
k=0

1

3k23k+rk
,
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where rk is the kth binary digit of a real number r in the unit interval. This class of
numbers may be a good place to look for examples of strong normality. However,
new techniques may be required for this.
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Chapter 4
Optimality Conditions for Semivectorial Bilevel
Convex Optimal Control Problems

Henri Bonnel and Jacqueline Morgan

Abstract We present optimality conditions for bilevel optimal control problems
where the upper level is a scalar optimal control problem to be solved by a leader
and the lower level is a multiobjective convex optimal control problem to be solved
by several followers acting in a cooperative way inside the greatest coalition and
choosing amongst efficient optimal controls. We deal with the so-called optimistic
case, when the followers are assumed to choose the best choice for the leader
amongst their best responses, as well with the so-called pessimistic case, when
the best response chosen by the followers can be the worst choice for the leader.
This paper continues the research initiated in Bonnel (SIAM J. Control Optim.
50(6), 3224–3241, 2012) where existence results for these problems have been
obtained.
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4.1 Introduction

The aim of this paper is to obtain optimality conditions for the semivectorial bilevel
optimal control problems introduced in [17] where existence results have been
established.

Semivectorial bilevel optimal control problems are bilevel problems where the
upper level corresponds to a scalar optimization problem and the lower level to a
multiobjective optimal control problem. Multiobjective optimal control problems
arise in many application areas where several conflicting objectives need to be con-
sidered. Minimizing several objective functionals leads to solutions such that none
of the objective functional values can be improved further without deteriorating
another. The set of all such solutions is referred to as efficient (also called Pareto
optimal, noninferior, or nondominated) set of solutions (see, e.g. [38]). The lower
level of the semivectorial bilevel optimal control problems can be associated to
one player with p objective or to a “grand coalition” of a p-player “cooperative
differential game”, every player having its own objective and control function.
We consider situations in which these p players react as “followers” to every
decision imposed by a “leader” (who acts at the so-called upper level). The best
reply correspondence of the followers being in general non-uniquely determined,
the leader cannot predict the followers choice simply on the basis of his rational
behaviour. So, the choice of the best strategy from the leader point of view depends
of how the followers choose a strategy amongst his best responses. In this paper, we
will consider two (extreme) possibilities:

1. The optimistic situation, when for every decision of the leader, the followers will
choose a strategy amongst the efficient controls which minimizes the (scalar)
objective of the leader; in this case the leader will choose a strategy which
minimizes the best he can obtain amongst all the best responses of the followers:

2. The pessimistic situation, when the followers can choose amongst the efficient
controls one which maximizes the (scalar) objective of the leader; in this case the
leader will choose a strategy which minimizes the worst he could obtain amongst
all the best responses of the followers.

The semivectorial bilevel control problems which model these two situations, and
which will be described in the next section, include the following problems which
have been intensively studied in the last decades, so we will give essentially a few
earlier references:

• Optimizing a scalar-valued function over the efficient set associated to a multi-
objective optimization (mathematical programming) problem (introduced in [47]
and investigated in [8–13, 25–27, 33, 36, 37, 50] for a survey).
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• Optimizing a scalar-valued function over an efficient control set associated to
a multiobjective optimal control problem (introduced and investigated in [15],
followed by [18])

• Semivectorial bilevel static problems (introduced and investigated in [16],
followed by [3, 14, 22, 30, 31, 51], for the optimistic case)

• Stackelberg problems (introduced in [49] and investigated, e.g. in [6, 40, 43])
• Bilevel optimization problems (e.g. [24, 28, 29, 41, 44, 45] for an extensive

bibliography)
• Stackelberg dynamic problems (introduced in [23, 48] and investigated, e.g. in

[5, 6, 42, 45, 46], a book with an extensive bibliography)

In this paper, we rewrite the optimistic and pessimistic semivectorial bilevel control
problems as bilevel problems where the lower level is a scalar optimization
problem which admits a unique solution, using scalarization techniques as in [17].
So we are able to give optimality conditions for the lower level problem in the
general case (supposing that the leader’s controls are bounded) using Pontryagin
maximum principle. This theoretically allows to obtain under suitable conditions the
dependence of the optimal control on the leader’s variables. However, this approach
is very difficult to apply because one needs to solve a bilocal problem. That is why
we consider the particular but important case when the followers’ problem is linear-
quadratic. In this case we show that using a resolvent matrix obtained from data,
we can explicitly solve the bilocal problem and express the optimal control and
the state as functions of leader’s variables, and we show that these dependencies
are continuously differentiable. Finally we present optimality conditions for the
upper levels of the optimistic and pessimistic problems.

4.2 Preliminaries and Problem Statement

All the assumptions and notations considered in this section and introduced in [17]
will be kept throughout this paper.

For the leader we denote by Jl the scalar objective, by ul the control function and
by Ul the set of admissible controls. For the followers we denote by Jf = (J1, . . . ,Jp)
the vector objective (p-scalar objectives) and by uf = (u1, . . . ,up) the control
function whose values belong to the set Uf = U1× ·· ·×Up ⊆ R

mf = R
m1 × ·· ·×

R
mp . Uf is assumed to be nonempty, closed and convex, and 0 ∈ Uf. Real numbers

t0,T are fixed (t0 < T ) and represent respectively the initial time and an upper bound
of the final time. The set of final time values T = [t, t̄ ] ⊂]t0,T [, where t ≤ t̄. The
final time, denoted by t1 ∈T , may be variable and it is decided by the leader; hence
t1 is fixed in the followers’ problem. We assume that

Ul ⊂ Lml
2 ([t0,T ]) is closed, nonempty and convex. (4.1)
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For each fixed (t1,ul) ∈ T × Ul , the followers have to solve the following
parametric multiobjective control problem, called lower level problem:

(LL)(t1,ul )

{
MIN

(uf,x)
Jf(t1,ul ,uf,x)

subject to (uf,x) verifies (4.2)–(4.5)

uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ], (4.2)

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1], (4.3)

x(t0) = x0, (4.4)

x(t1) ∈ F , (4.5)

where A : [t0,T ]→R
n×n, Bl : [t0,T ]→R

n×ml and Bf : [t0,T ]→R
n×mf are continuous

matrix-valued functions and the control function uf = (u1, . . . ,up) ∈ L
mf
2 ([t0,T ]) =

Lm1
2 ([t0,T ])×·· ·×L

mp
2 ([t0,T ]).

Lm
2 ([t0,T ]) stands for the usual Hilbert space of equivalence classes (two

functions are equivalent iff they coincide a.e.) of (Lebesgue) measurable functions
u from [t0,T ] to R

m, such that the function t �→ uT (t)u(t) is (Lebesgue) integrable

over [t0,T ] endowed with the norm ‖u‖2 :=

(∫ T

t0
uT (t)u(t)dt

)1/2

. The target set

F ⊂ R
n is assumed to be closed, convex and nonempty.

The initial state x0 ∈ R
n is specified.

For each u = (t1,ul ,uf) ∈ T × Lml
2 ([t0,T ]) × L

mf
2 ([t0,T ]), under the above

assumptions, there exists a unique solution (in the sense of Carathéodory) xu of
the Cauchy problem (4.3) and (4.4), and xu ∈ Hn

1 ([t0, t1]). Hn
1 ([t0, t1]) stands for the

Hilbert space of absolutely continuous functions from [t0, t1] to R
n with derivative

in Ln
2([t0, t1]) endowed with the norm x �→ ‖x‖ := (‖ẋ‖2

2 + ‖x‖2
2)

1/2.
The feasible set S (t1,ul) for the problem (LL)(t1,ul )

is defined in the following
way:

S (t1,ul) = {(uf,x) ∈ L
m f
2 ([t0,T ])×Hn

1 ([t0, t1])| (uf,x) verifies relations (4.2)–(4.5)}.
(4.6)

Thus, problem (LL)(t1,ul) can be written as

(LL)(t1,ul )
MIN

(uf ,x)∈S (t1,ul )
Jf(t1,ul ,uf,x).

Next we give the following standard definitions.

Definition 4.1. For problem (LL)(t1,ul ) the element (ūf, x̄) ∈ S (t1,ul) is said
to be

• An efficient (or Pareto) control process if there is no element (uf,x) ∈S (t1,ul)
satisfying
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∀i ∈ {1, . . . , p} Ji(t1,ul ,uf,x)≤ Ji(t1,ul , ūf, x̄)

and

∃i0 ∈ {1, . . . , p} Ji0(t1,ul ,uf,x)< Ji0(t1,ul , ūf, x̄).

• A weakly efficient (or weakly Pareto) control process if there is no element
(uf,x) ∈S (t1,ul) satisfying

∀i ∈ {1, . . . , p} Ji(t1,ul ,uf,x)< Ji(t1,ul , ūf, x̄).

• A properly efficient (or properly Pareto) control process (see [34] or [19, 38]
for generalizations) if it is an efficient control process and there exists a real
number M > 0 so that for every i ∈ {1, . . . , p} and every (uf,x) ∈ S (t1,ul)
with Ji(t1,ul ,uf,x) < Ji(t1,ul , ūf, x̄) at least one k ∈ {1, . . . , p} exists with
Jk(t1,ul ,uf,x)> Jk(t1,ul , ūf, x̄) and

Ji(t1,ul , ūf, x̄)− Ji(t1,ul ,uf,x)
Jk(t1,ul ,uf,x)− Jk(t1,ul , ūf, x̄)

≤M.

In the sequel the symbol σ ∈ {e,we, pe} stands for “efficient” when σ = e, “weakly
efficient” when σ = we and “properly efficient” when σ = pe.

The set of all σ -control processes associated to problem (LL)(t1,ul) will be
denoted by Pσ (t1,ul).

Finally we consider the following semivectorial bilevel optimal control problems:

(OSVBC)σ min
(t1,ul )∈T ×Ul

min
(uf,x)∈Pσ (t1,ul)

Jl(t1,ul ,uf,x)

called optimistic semivectorial bilevel control problem and

(PSVBC)σ min
(t1,ul )∈T ×Ul

sup
(uf,x)∈Pσ (t1,ul)

Jl(t1,ul ,uf,x)

called pessimistic semivectorial bilevel control problem.

Remark 4.2. Note that the terminal time t1 is fixed for the lower level problem, but
it is a decision variable for the leader. Of course, a particular case can be obtained
when the terminal time t1 is fixed for the leader too, i.e. when T = {t1}.
Remark 4.3. (LL)(t1,ul)

may be also considered as the problem to be solved by
the grand coalition of a p-player cooperative differential game (see [35] and its
extensive references list) where the functional Ji and the control ui represent the
payoff and the control of the player number i, i ∈ {1, . . . , p}. Then, our optimistic
semivectorial bilevel problem corresponds to a strong Stackelberg problem in
which, for any choice of (t1,ul), the leader can force the followers to choose
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amongst the σ -control processes one which minimizes the leader payoff. On the
other hand, the pessimistic semivectorial bilevel problem corresponds to a weak
Stackelberg problem in which, for any choice of the leader variables (t1,ul), the
followers could choose amongst the σ -control processes one which is the worst for
the leader.

We assume that for all t1 ∈ [t0,T ] and all (ul ,uf,x) ∈ Lml
2 ([t0,T ])× L

mf
2 ([t0,T ])×

Hn
1 ([t0, t1]), we have

Jl(t1,ul ,uf,x) =
∫ t1

t0
fl(t,ul(t),uf(t),x(t))dt,

and also, for all i ∈ {1, . . . , p},

Ji(t1,ul ,uf,x) = ψi(x(t1))+
∫ t1

t0
fi(t,ul(t),uf(t),x(t))dt,

where, for all i ∈ {1, . . . , p}, the functions ψi,ψl : Rn → R, fi, fl : [t0,T ]×R
ml ×

R
mf ×R

n→R verify the following preliminary assumptions :

(PA )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

• ψi, fi, fl are continuously differentiable;
• there exist integrable functions ai, al : [t0,T ]→ R and real numbers

bi,bl ,ci,cl ,di,dl , such that, for all (t,ul,uf,x) ∈ [t0,T ]×R
ml×R

mf×R
n,

fi(t,ul ,uf,x)� ai(t)+ bixT x+ ciuT
l ul + diuf

T uf,

fl(t,ul ,uf,x)� al(t)+ blxT x+ cluT
l ul + dluf

T uf;
• ψi is a convex function;
• for each fixed t ∈ [t0,T ], the function fi(t, ·, ·, ·) is convex

on R
ml ×R

mf ×R
n.

4.3 The Lower Level Problem

Let t1 ∈T be fixed, and letΦ : [t0, t1]× [t0, t1]→R
n×n be the matrix-valued function

satisfying for each s ∈ [t0, t1]

∀t ∈ [t0, t1]
∂Φ
∂ t

(t,s) = A(t)Φ(t,s) (4.7)

Φ(s,s) = In (4.8)

where In is the identity matrix.
Since, for each (ul ,uf)∈Lml

2 ([t0,T ])×L
mf
2 ([t0,T ]), the unique solution x(t1,ul ,uf) ∈

Hn
1 ([t0, t1]) of the Cauchy problem (4.3) and (4.4) is given by
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∀t ∈ [t0, t1] x(t1,ul ,uf)
(t) =Φ(t, t0)x0 +

∫ t

t0
Φ(t,s)(Bl(s)ul(s)+Bf(s)uf(s))ds,

it is clear that the map (ul ,uf) �→ x(t1,ul ,uf)
is affine from Lml

2 ([t0,T ])×L
mf
2 ([t0,T ])

to Hn
1 ([t0, t1]). Moreover, using Cauchy–Schwartz inequality, we obtain easily that

the map (ul ,uf) �→ x(t1,ul ,uf) is also continuous from Lml
2 ([t0,T ])× L

mf
2 ([t0,T ]) to

Hn
1 ([t0, t1]).
For each i = 1, . . . , p, consider the functional

(ul ,uf) �→ J̃i(t1,ul ,uf) := Ji(t1,ul ,uf,x(t1,ul ,uf)
). (4.9)

Define also

(ul ,uf) �→ J̃l(t1,ul ,uf) := Jl(t1,ul ,uf,x(t1,ul ,uf)). (4.10)

From [17, Lemmas 1 and 2] and the fact that x(t1,·,·) is continuous and affine from

Lml
2 ([t0,T ])×L

mf
2 ([t0,T ]) to Hn

1 ([t0, t1]), we obtain the following.

Lemma 4.4. For each i = 1, . . . , p, the functional J̃i(t1, ·, ·) : Lml
2 ([t0,T ])×L

mf
2 ([t0,

T ])→ R∪{+∞} is well defined, lower semicontinuous and convex.
Also J̃l(t1, ·, ·) : Lml

2 ([t0,T ])×L
mf
2 ([t0,T ])→R∪{+∞} is well defined and lower

semicontinuous.

For each (t1,ul) ∈ T ×Ul [see (4.1)], denote

U f (t1,ul) = {uf ∈ L
mf
2 ([t0,T ])| uf(t) ∈ Uf a.e. on [t0,T ], (4.11)

uf(t) = 0 a.e. on [t1,T ], x(t1,ul ,uf)(t1) ∈F}.

For each (t1,ul) ∈ R× Lml
2 ([t0,T ]) \T ×Ul we put U f (t1,ul) = /0. Thus U f is a

set-valued function U f : R×Lml
2 ([t0,T ])⇒ L

mf
2 ([t0,T ]).

Recall that

dom (U f ) := {(t1,ul) ∈ R×Lml
2 ([t0,T ])|U f (t1,ul) �= /0}

and

Gr(U f ) = {(t1,ul ,uf) ∈ R×Lml
2 ([t0,T ])×L

mf
2 ([t0,T ])| uf ∈U f (t1,ul)}.

We will assume in the sequel that
(H ) dom (U f ) = T ×Ul .

Proposition 4.5. Each of the following is a sufficient condition for (H ):

(a) F = R
n.

(b) For each t1 ∈ T , the linear system
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ẋ(t) = A(t)x(t)+Bf(t)uf(t),x(t0) = 0, uf(t) ∈ Uf a.e. on [t0, t1]

is controllable, i.e. for any x1 ∈ R
n, there exists uf ∈ L

mf
2 ([t0, t1]) such that

uf(t) ∈Uf a.e. on [t0, t1], and the corresponding solution verifies x(t1) = x1.

Proof. It is easy to adapt the proof given in [17, Proposition 1], where the initial
condition is x(t0) = x0 (instead of x(t0) = 0 as above). �
It can be easily proved that U f (t1,ul) is a convex subset of L

mf
2 ([t0,T ]). Thus the

problem (LL)(t1,ul)
can be rewritten as a p-objective convex optimization problem:

(M)(t1,ul)

{
MIN

uf
(J̃1(t1,ul ,uf), . . . , J̃p(t1,ul ,uf))

subject to uf ∈U f (t1,ul).

Definition 4.6. Let σ ∈ {e, we, pe}. An element uf ∈ L
mf
2 ([t0,T ]) will be called

σ -control of problem (M)(t1,ul )
iff (uf,x(t1,ul ,uf)

) is a σ -control process of problem
(LL)(t1,ul )

. We will denote Eσ (t1,ul) the set of all σ -controls of the p-objective
optimization problem (M)(t1,ul)

.

Thus, using Lemma 4.4 and the well-known scalarization results from vector
optimization [38, p. 302] we obtain the following.

Theorem 4.7 (see [17]). Let (t1,ul) ∈ T ×Ul and ûf ∈ U f (t1,ul), where Ul and
U f are given in (4.1) and (4.11), respectively. The control process (ûf,x(t1,ul ,ûf))
is weakly (resp. properly) efficient for problem (LL)(t1,ul ) if and only if there exist
nonnegative real numbers (resp. positive real numbers) θ1, . . . ,θp with ∑p

i=1 θi = 1
such that ûf is an optimal control for the classical scalar optimal control problem:

(S)(θ1,...,θp,t1,ul )

⎧⎨
⎩min

uf

p

∑
i=1
θiJ̃i(t1,ul ,uf)

subject to uf ∈U f (t1,ul).

In the sequel we need the following sets:

Θσ =

⎧⎨
⎩
{(θ1, . . . ,θp) ∈]0,1[p|∑p

i=1 θi = 1} if σ = pe

{(θ1, . . . ,θp) ∈ [0,1]p|∑p
i=1 θi = 1} if σ = we

(4.12)

and the following hypotheses:

Hσ (t1) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∃i ∈ {1, . . . , p}) (∀(t,v,x) ∈ [t0, t1]×R
ml ×R

n
)

uf �→ fi(t,v,uf,x) is strictly convex on R
m if σ = pe

(∀i ∈ {1, . . . , p}) (∀(t,v,x) ∈ [t0, t1]×R
ml ×R

n
)

uf �→ fi(t,v,uf,x) is strictly convex on R
m if σ = we
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and

(Hc)σ :

{
∀i ∈ {1, . . . , p} : ψi � 0, bi = ci = 0, di � 0, ∑p

j=1 d j > 0 if σ = pe

∀i ∈ {1, . . . , p} : ψi � 0, bi = ci = 0, di > 0 if σ = we,

where bi,ci,di have been introduced in the preliminary assumptions (PA ).

Theorem 4.8 (see [17]). Let σ ∈ {we, pe} and (t1,ul) ∈ T ×Ul . Assume that
Hσ (t1) holds. Moreover, suppose that at least one of the following hypotheses
holds:

(i) Uf is bounded.
(ii) (Hc)σ .

Then, for each θ = (θ1, . . . ,θp) ∈ Θσ , there exists a unique optimal control
uf(θ , t1,ul , ·) ∈U f (t1,ul) of the scalar problem (S)(θ ,t1,ul )

.

It is obvious that according to Theorem 4.7, uf(θ , t1,ul , ·) is a σ -control for
multiobjective problem (M)(t1,ul). Moreover, Theorem 4.7 implies also that for
each σ -control uf ∈U f (t1,ul) of the multiobjective problem (M)(t1,ul ), there exists
θ ∈Θσ such that uf is the unique optimal control of the scalar problem (S)(θ ,t1,ul).

Thus we can state the following.

Corollary 4.9. Let (t1,ul) ∈ T ×Ul . Under the hypotheses of Theorem 4.8 we
have that the correspondence θ �→ uf(θ , t1,ul , ·) is a surjection from Θσ to the set
Eσ (t1,ul).

In the sequel we will keep all the hypotheses of Theorem 4.8 in addition to the
preliminary assumptions (PA ).

4.4 Equivalent Formulations of Problems (OSVBC)σ
and (PSVBC)σ

Consider, for each (θ , t1,ul) ∈Θσ ×T ×Ul ⊂ R
p×R×Lml

2 ([t0,T ]), the function
F(θ , t1,ul , ·) : U f (t1,ul)→R defined by

∀uf ∈U f (t1,ul) F(θ , t1,ul ,uf) :=
p

∑
i=1

θiJ̃i(t1,ul ,uf),

where U f (t1,ul) and J̃i are given respectively in (4.11) and (4.9).
Note that problem (OSVBC)σ can be written equivalently as an optimistic

semivectorial bilevel optimization problem:

(OSVB)σ min
(t1,ul)∈T ×Ul

min
uf∈Eσ (t1,ul)

J̃l(t1,ul,uf).
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According to Theorem 4.8, for each (θ , t1,ul) ∈Θσ ×T ×Ul , there exists a unique
minimizer uf(θ , t1,ul , ·) ∈ U f (t1,ul) of F(θ , t1,ul , ·) over U f (t1,ul). According to
Corollary 4.9, for each (t1,ul) ∈ T ×Ul, we have

Eσ (t1,ul) =
⋃
θ∈Θσ
{uf(θ , t1,ul , ·)}. (4.13)

Then we obviously have the following.

Proposition 4.10 (see [17]). Problem (OSVB)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

min
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·)).

Thus, the optimistic semivectorial problem (OSVB)σ can be rewritten as an
optimistic bilevel optimization problem (also called strong Stackelberg problem):

(OB)σ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(t1,ul )∈T ×Ul

min
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·))

where uf(θ , t1,ul , ·) is the unique minimizer to the problem

(S)(θ ,t1,ul)
: min

uf∈U f (t1,ul )
F(θ , t1,ul ,uf).

Here the upper and lower levels are given by scalar optimization problems and the
lower level admits a unique solution.

In the same way the pessimistic semivectorial problem can be rewritten as a
pessimistic bilevel optimization problem (leading to a so-called weak Stackelberg
problem; see [20] where this terminology was introduced).

Proposition 4.11 (see [17]). Problem (PSVBC)σ is equivalent to the problem

min
(t1,ul)∈T ×Ul

sup
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·)).

Finally, we can rewrite that problem as

(PB)σ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
(t1,ul )∈T ×Ul

sup
θ∈Θσ

J̃l(t1,ul ,uf(θ , t1,ul , ·))
where uf(θ , t1,ul , ·) is the unique minimizer of the problem

(S)(θ ,t1,ul)
: min

uf∈U f (t1,ul )
F(θ , t1,ul ,uf).
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4.5 Necessary and Sufficient Conditions for the Scalarized
Lower Level Problem

Let (t1,ul) ∈ T ×Ul and θ = (θ1, . . . ,θp) ∈Θσ be given. The scalarized problem
(S)(θ ,t1,ul) can be written as

min
(uf,x)∈L

m f
2 ([t0,T ])×Hn

1 ([t0,t1])

[
p

∑
i=1
θiψi(x(t1))+

∫ t1

t0

(
p

∑
i=1
θi fi(t,ul(t),uf(t),x(t))

)
dt

]

s.t. uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ],

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1]

x(t0) = x0

x(t1) ∈ F .

Let H : [t0, t1]×R
ml×R

mf ×R
n×R×R

n→R be the Hamilton-Pontryagin function
associated to this control problem (see, e.g. [2] or [39]) defined by

H(t,ul,uf,x,λ0,λ ) = λ T
(

A(t)x+Bl(t)ul +Bf(t)uf

)
−λ0

p

∑
i=1
θi fi(t,ul ,uf,x).

Let λ (·) = (λ1(·), . . . ,λn(·)) ∈W n
1,∞([t0, t1]) be the adjoint function, where W n

1,∞([t0,
t1]) is the Banach space of absolutely continuous functions from [t0, t1] to R

n

having derivative in the Banach space Ln
∞([t0, t1]) of essentially bounded measurable

functions (see, e.g. [21] for details).
Since we use L2 controls, and the Pontryagin maximum principle usually uses

controls in L∞, we will consider two particular situations in order to be able to get
necessary and sufficient conditions for problem (S)(θ ,t1,ul ), as stated below.

4.5.1 The Case When Uf Is Bounded
and Ul ⊂ Lml∞ ([t0,T ])∩Lml

2 ([t0,T ])

In this subsection we assume the set Uf is bounded (and closed, convex with
nonempty interior) and the leader’s controls are essentially bounded, i.e. Ul ⊂
Lml∞ ([t0,T ]) ∩ Lml

2 ([t0,T ]). Also, suppose the target set F = {x ∈ R
n|Gx = a},

where the matrix G ∈ R
k×n, and a ∈ R

k are given. Moreover we assume that
rank(G) = k > 0. However the results presented in this subsection are also valid
when F = R

n by taking G = 0, a = 0.
We obtain the following.
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Theorem 4.12 (Necessary conditions). Let (uf∗,x∗)∈ L
mf
2 ([t0,T ])×Hn

1 ([t0, t1]) be
an optimal control process for problem (S)(θ ,t1,ul ). Then there exist λ (·) ∈W n

1,∞([t0,

t1]), a nonnegative real number λ0 and a vector v ∈ R
k with (λ (·),λ0,v) �= 0 such

that

λ̇ T (t) =−λ T (t)A(t)+λ0

p

∑
i=1

θi
∂ fi

∂x
(t,ul(t),uf∗(t),x∗(t)) , a.e. on [t0, t1] (4.14)

λ T (t1) =−λ0

p

∑
i=1
θi
∂ψi

∂x
(x∗(t1))+ vT G , (4.15)

and, for almost all t ∈ [t0, t1],

H(t,ul(t),uf∗(t),x∗(t),λ0,λ (t)) = max
vf∈Uf

H(t,ul(t),vf,x∗(t),λ0,λ (t)). (4.16)

Moreover, if the linearized system

ẋ(t) = A(t)x(t)+Bf(t)uf(t) a.e. on [t0, t1] (4.17)

x(t0) = 0 (4.18)

is controllable,1 then we can take above λ0 = 1.

Sufficient conditions. Let (x∗,uf∗) ∈ Hn
1 ([t0, t1]) × L

mf
2 ([t0,T ]) verifying

(4.2)–(4.5). If there exist λ (·) ∈W n
1,∞([t0, t1]) and v ∈ R

k such that (4.14)–(4.16)
are verified with λ0 = 1, then (x∗,uf∗) is an optimal control process for problem
(S)(θ ,t1,ul)

.

Proof. Since Uf is bounded, {uf(·) ∈ L
mf
2 ([t0,T ])|uf(t) ∈ Uf} ⊂ L

mf
∞ ([t0,T ]). For

the same reason ul(·) ∈ Lml∞ ([t0, t1]). Thus we have uf∗ ∈ L
mf
∞ ([t0,T ]); hence x∗ ∈

W n
1,∞([t0, t1]) and λ (·) ∈W n

1,∞([t0, t1]). Therefore we can apply [39, Theorem 5.19]
to obtain the first part (necessary conditions). Note that [39, Theorem 5.19] is stated
for autonomous systems, but the same proof apply for non-autonomous systems.

For the second part (sufficiency conditions) we can use [39, Theorem 5.22] which
also holds for non-autonomous systems with the same proof. �

Remark 4.13. Since Uf is convex and closed and H is concave w.r.t. uf, relation
(4.16) can equivalently be written as a variational inequality:

∀vf ∈ Uf

(
λ T (t)Bf(t)−λ0

p

∑
i=1

θi
∂ fi

∂uf
(t,ul(t),uf∗(t),x∗(t)

)
(vf−uf∗(t))≤ 0

a.e. on [t0, t1].

1If A and Bf do not depend on t , it is well known that this system is controllable if, and only if,
rank (Bf,ABf,A2Bf, . . .,An−1Bf) = n.
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Finally, we can conclude the following.

Corollary 4.14. Let (t1,ul)∈Ul , and let θ ∈Θσ . Assume that the linearized system
(4.17) and (4.18) is controllable. Let uf ∈ L

mf
2 ([t0,T ]). Then uf(·) = uf(θ , t1,ul , ·)

(i.e. uf is the unique optimal control for problem S(θ ,t1,ul) presented in Theorem 4.8)
if, and only if, there exists

(
x(·),λ (·),v) ∈ Hn

1 ([t0, t1])×W n
1,∞([t0, t1])×R

k such that

uf(t) ∈ Uf a.e. on [t0,T ], uf(t) = 0 a.e. on [t1,T ], (4.19)

ẋ(t) = A(t)x(t)+Bl(t)ul(t)+Bf(t)uf(t) a.e. on [t0, t1], (4.20)

x(t0) = x0, (4.21)

Gx(t1) = a, (4.22)

λ̇ T (t) = −λ T (t)A(t)+
p

∑
i=1

θi
∂ fi

∂x
(t,ul(t),uf(t),x(t)) a.e. on [t0, t1], (4.23)

λ T (t1) = −
p

∑
i=1
θi
∂ψi

∂x
(x(t1))+ vT G , (4.24)

and, for almost all t ∈ [t0, t1],

∀vf ∈Uf

(
λ T (t)Bf(t)−

p

∑
i=1

θi
∂ fi

∂uf
(t,ul(t),uf(t),x∗(t)

)
(vf−uf(t))≤ 0. (4.25)

4.5.2 The Case Uf = R
m f : The Followers Problem

Is Linear-Quadratic; Explicit Expressions of
uf(θ , t1,ul, ·) and x(t1,ul ,uf(θ ,t1,ul ,·))

In this subsection we consider the case when Uf = R
mf , Ul is an arbitrary closed,

convex set with nonempty interior in Lml
2 ([t0,T ]) and the endpoint is free, i.e. the

target set F =R
n. The objectives of the followers are quadratic, i.e. for i = 1, . . . , p,

and (t,ul ,uf,x) ∈ [t0,T ]×R
ml ×R

mf ×R
n

fi(t,ul ,uf,x) = xT Qi(t)x+uf
T Ri(t)uf,

where Qi(·) : [t0,T ]→ R
n×n and Ri(·) : [t0,T ]→ R

mf×mf are continuous positive
semidefinite matrix-valued functions.

Also

ψi(x) = xT Q f
i x,

where Q f
i is a symmetric positive semidefinite matrix.
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Moreover we make the following assumption:

(HLQP)σ :

{
∀(i, t) ∈ {1, . . . , p}× [t0,T ] Ri(t)> 0 if σ = we,

(∃i ∈ {1, . . . , p})(∀t ∈ [t0,T ]) Ri(t)> 0 if σ = pe.

Note that this particular choice of fi and ψi agrees with all the assumptions (PA ).
Let us denote

Q(θ , ·) =
p

∑
i=1
θiQi(·); R(θ , ·) =

p

∑
i=1
θiRi(·); Q f (θ ) =

p

∑
i=1
θiQ

f
i .

Thus, the scalarized problem (S)(θ ,t1,ul)
becomes the linear-quadratic problem

(LQP)

⎧⎪⎪⎨
⎪⎪⎩

min
(

x(t1)
T Q f (θ )x(t1)+

∫ t1

t0
(x(t)T Q(θ , t)x(t)+uf(t)

T R(θ , t)uf(t))dt
)

s.t. ẋ(t) = A(t)x(t)+Bf(t)uf(t)+Bl(t)ul(t) a.e. on [t0, t1],
x(t0) = x0.

We have the following result which is probably known also for L2 controls, but we
will present a proof for the sake of completeness.

Theorem 4.15. Let (x∗(·),uf∗(·)) ∈Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) verify the differential

system and the initial condition for problem (LQP). Then the control process
(x∗(·),uf∗(·)) is optimal for problem (LQP) if, and only if, there exists a function
λ (·) ∈ Hn

1 ([t0, t1]) such that

λ̇ T (t) = −λ T (t)A(t)− xT
∗ (t)Q(θ , t) a.e. on [t0, t1], (4.26)

λ T (t1) = xT
∗ (t1)Q

f (θ ), (4.27)

uf∗(t) = −R−1(θ , t)Bf
T (t)λ (t) a.e. on [t0, t1]. (4.28)

Proof. Assume that λ (·) ∈ Hn
1 ([t0, t1]) verifies (4.26)–(4.28). Let (x,uf) ∈

Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) verify the differential system and the initial condition for

problem (LQP). We have for almost all t ∈ [t0, t1]

d
dt

(
λ T (t)(x(t)− x∗(t))

)
= λ̇ T (t)(x(t)− x∗(t))+λ T (t)(ẋ(t)− ẋ∗(t))

= − (λ T (t)A(t)+ xT
∗ (t)Q(θ , t))(x(t)− x∗(t))

+λ T (t)
(

A(t)(x(t)− x∗(t))+Bf(t)(uf(t)−uf∗(t))
)

= − xT
∗ (t)Q(θ , t)(x(t)− x∗(t))−uf

T
∗ (t)R(θ , t)(uf(t)−uf∗(t)).
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With the initial condition for x(·),x∗(·) and final condition for λ (·) we get by
integration

xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1)) =−
∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t))

)
dt.

(4.29)

Denote

J(x(·),uf(·)) =
(

x(t1)
T Q f (θ )x(t1)+

∫ t1

t0
(x(t)T Q(θ , t)x(t)+uf(t)

T R(θ , t)uf(t))dt
)
.

For any symmetric positive semidefinite matrix P and for all vectors v,v∗, we
obviously have

vT Pv− vT
∗Pv∗ ≥ 2vT

∗P(v− v∗).

Therefore

J(x(·),uf(·))− J(x∗(·),uf∗(·))≥2
[
xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1))

+

∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t))

)
dt
]
.

From (4.29) the last expression is zero; hence J(x(·),u(·))− J(x∗(·),uf∗(·)) ≥ 0.
Thus (x∗(·),uf∗(·)) is an optimal control process for problem (SQP).

Conversely, let (x∗(·),uf∗(·)) ∈ Hn
1 ([t0, t1])×L

mf
2 ([t0, t1]) be a solution of (LQP)

(which exists and is unique according to Theorem 4.8). Let λ (·) ∈ Hn
1 ([t0, t1]) be

the solution of the linear system (4.26) verifying the final condition (4.27). For any
uf(·) ∈ L

mf
2 ([t0, t1]), denoting by x(·) the corresponding solution of the differential

system and the initial condition for problem (LQP), we have (using a similar
calculus as before)

λ T (t1)(x(t1)− x∗(t1)) =−
∫ t1

t0

(
xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+λ T (t)Bf(t)(uf(t)−uf∗(t))
)

dt.

On the other, using the fact that the directional derivative of J at the optimal point
(x∗(·),uf∗(·)) in the direction (x(·),uf(·))− (x∗(·),uf∗(·)) is positive we have
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xT
∗ (t1)Q

f (θ )(x(t1)− x∗(t1))+
∫ t1

t0
(xT
∗ (t)Q(θ , t)(x(t)− x∗(t))

+uf
T
∗ (t)R(θ , t)(uf(t)−uf∗(t)))dt ≥ 0.

Finally we obtain

∫ t1

t0
(λ T (t)Bf(t)−uf

T
∗ (t)R(θ , t))(uf(t)−uf∗(t)))dt ≤ 0.

Since uf(·) can be arbitrarily chosen in L
mf
2 ([t0, t1]), we obtain that (4.28) is satisfied.

�
Next we will show that, in the linear-quadratic case, it is possible to compute
explicitly the optimal control and state as a function of the parameters θ , t1, ul by
means of a 2n× 2n resolvent matrix of a linear differential system based on data.
This fact will allow us to find explicit optimality conditions for our bilevel problems.

Recall that uf(θ , t1,ul , ·) denotes the unique optimal control of the scalarized
problem (S)(θ ,t1,ul). The corresponding unique state and adjoint state (verifying
Theorem 4.15) will be denoted by x(θ , t1,ul , ·) and λ (θ , t1,ul , ·).

To be more precise, the functions x(θ , t1,ul , ·) and λ (θ , t1,ul , ·) verify the
following boundary linear problem:

∂x
∂ t

(θ , t1,ul , t) =A(t)x(θ , t1,ul , t)−Bf(t)R
−1(θ , t)Bf(t)

Tλ (θ , t1,ul , t)

+Bl(t)ul(t) a.e. on [t0, t1], (4.30)

∂λ
∂ t

(θ , t1,ul , t) =−A(t)Tλ (θ , t1,ul , t)−Q(θ , t)x(θ , t1,ul , t) a.e. on [t0, t1],

(4.31)

x(θ , t1,ul , t0) =x0, (4.32)

λ (θ , t1,ul , t1) =Q f (θ )x(θ , t1,ul , t1) (4.33)

and

uf(θ , t1,ul , t) =−R−1(θ , t)Bf
T (t)λ (θ , t1,ul , t) a.e. on [t0, t1]. (4.34)

Given t1 ∈T and θ ∈Θσ , consider the matrix-valued function P(θ , t1, ·) : [t0, t1]→
R

n×n which, under our hypotheses about matrices Q f (θ ), Q(θ , t), R(θ , t), is the
unique continuously differentiable solution (see, e.g. [1]) of the Riccati matrix
differential equation (RMDE) on [t0, t1]:

∂P
∂ t

(θ , t1, t) = −A(t)T P(θ , t1, t)−P(θ , t1, t)A(t)−Q(θ , t)

+P(θ , t1, t)Bf(t)R(θ , t)−1Bf(t)
T P(θ , t1, t)
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satisfying the final time condition

P(θ , t1, t1) = Q f (θ ). (4.35)

Moreover, P(θ , t1, t) is a symmetric positive definite matrix for each t.
Following [18] we can express P in terms of a resolvent matrix depending

directly on data. Thus consider for all (θ , t) ∈Θσ × [t0, t1] the 2n×2n matrix which
defines the linear system (4.30) and (4.31)

L(θ , t) =

⎛
⎝ A(t) −Bf(t)R−1(θ , t)Bf

T (t)

−Q(θ , t) −AT (t)

⎞
⎠ .

The proof of the following result can be found in [18].

Proposition 4.16. Let Ψ(θ , ·, ·) be the resolvent (or state transition) matrix asso-
ciated to the linear differential system defined by L(θ , t), i.e. for each s ∈ [t0,T ],
Ψ(θ , ·,s) satisfies the Cauchy problem:

∂Ψ
∂ t

(θ , t,s) = L(θ , t)Ψ (θ , t,s), t ∈ [t0,T ], Ψ(θ ,s,s) = I2n.

Let us divide the matrixΨ(θ , t,s) into four n× n blocks:

Ψ (θ , t,s) =
(
Ψ11(θ , t,s)Ψ12(θ , t,s)
Ψ21(θ , t,s)Ψ22(θ , t,s)

)
.

Then, for all t ∈ [t0, t1], the matrix [Ψ11(θ , t, t1) +Ψ12(θ , t, t1)Q f (θ )] is invertible
and

P(θ ,t1,t) =
[
Ψ21(θ ,t,t1)+Ψ22(θ ,t,t1)Q f (θ)

][
Ψ11(θ ,t,t1)+Ψ12(θ ,t,t1)Q f (θ)

]−1
.

(4.36)

Next, let us denote by ξ (θ , t1,ul , ·)∈Hn
1 ([t0, t1]) the unique solution of the following

linear Cauchy problem:

∂ξ
∂ t

(θ , t1,ul , t) =
(−A(t)T +P(θ , t1, t)Bf(t)R

−1(θ , t)Bf(t)
)
ξ (θ , t1,ul , t)

−P(θ , t1, t)Bl(t)ul(t) a.e. on [t0, t1], (4.37)

ξ (θ , t1,ul , t1) =0. (4.38)

Lemma 4.17. For all t ∈ [t0, t1] we have

λ (θ , t1,ul , t) = P(θ , t1, t)x(θ , t1,ul , t)+ ξ (θ , t1,ul , t). (4.39)
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Proof. Computing the derivative
∂
∂ t

(
λ (θ , t1,ul , t) − P(θ , t1, t)x(θ , t1,ul , t) − ξ

(θ , t1,ul , t)
)

and then, using (4.30)–(4.33), (RMDE), (4.35), (4.37), and (4.38), the

result follows easily. �
Denote byΞ(θ , t1, ·, ·) the resolvent matrix associated to (4.37), i.e. for all (θ , t1,s)∈
Θσ ×T × [t0,T ]

∂Ξ
∂ t

(θ , t1, t,s) =
(−A(t)T +P(θ , t1, t)Bf(t)R

−1(θ , t)Bf(t)
)
Ξ(θ , t1, t,s), t ∈ [t0,T ]

(4.40)

Ξ(θ , t1,s,s) = In. (4.41)

Based on this we are able to solve the boundary problem (4.30)–(4.33) in terms of
data.

Corollary 4.18. For all (θ , t1,ul) ∈Θσ ×T ×Lml
2 ([t0,T ]) and for all t ∈ [t0, t1] we

have

⎛
⎝ x(θ , t1,ul , t)

λ (θ , t1,ul , t)

⎞
⎠=Ψ (θ , t, t0)

⎛
⎝ x0

P(θ , t1, t0)x0 + ξ (θ , t1,ul , t0)

⎞
⎠

+

∫ t

t0
Ψ(θ , t,s)

⎛
⎝Bl(s)ul(s)

0

⎞
⎠ds,

where

ξ (θ , t1,ul , t0) =
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)ul(s)ds.

Remark 4.19. The right-hand side member in the formulas giving x(θ , t1,ul , t) and
λ (θ , t1,ul , t) in Corollary 4.18 is defined for all (t1, t) ∈]t0,T [×[t0,T ] (and not only
for (t1, t) ∈T × [t0, t1]) and for all θ belonging to an open convex set Ω withΘσ ⊆
Ω . Indeed, the formulas in Corollary 4.18 have a meaning as long as R(θ , t)> 0.

When σ = pe, by (HLQP)pe it is obvious that we can take Ω = R
p
++.

When σ = we, the continuous function [t0,T ]× R
mf � (t,u f ) �→ uf

T Ri(t)uf
attains its minimum value, say αi, on the compact set [t0,T ]× S, where S is the
unit sphere in R

mf , i = 1, . . . , p. According to (HLQP)we we have αi > 0 for all i.
Then, it is easy to see that we can take

Ω = {θ ∈R
p|

p

∑
i=1

θiαi > 0}.
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We will extend the functions x(·, ·, ·, ·) and λ (·, ·, ·, ·) based on these formulas as
continuous functions from Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ] to R
n. Moreover, based

on (4.34), we will extend also the function uf(·, ·, ·, ·) as a continuous function from
Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ] to R
mf . These extensions are necessary further in

order to obtain optimality conditions for the upper level.

Using the differentiability with respect to parameters of a differential equation and
some straightforward computation we have the following.

Proposition 4.20. The resolvent Ψ(·, ·, ·) is continuously differentiable on Ω ×
[t0,T ]× [t0,T ]. We have the following formulas for all (θ , t,s) ∈Ω × [t0,T ]× [t0,T ]
and i = 1, . . . , p:

∂Ψ
∂θi

(θ , t,s) =
∫ t

s
Ψ (θ , t,τ)

∂L
∂θi

(θ ,τ)Ψ (θ ,τ,s)dτ, where (4.42)

∂L
∂θi

(θ , t) =

⎛
⎝ 0 Bf(t)R−1(θ , t)Ri(t)R−1(θ , t)Bf(t)T

−Qi(t) 0

⎞
⎠ , (4.43)

∂Ψ
∂ s

(θ , t,s) = −Ψ(θ , t,s)L(θ ,s). (4.44)

By (4.36) and the previous proposition we obtain immediately the following.

Proposition 4.21. The matrix-valued function P(·, ·, ·) is continuously differen-
tiable on Ω × [t0,T ]× [t0,T ] and verifies the following formulas:

∂P
∂θi

(θ , t1, t) =
[∂Ψ21

∂θi
(θ , t, t1)+

∂Ψ22

∂θi
(θ , t, t1)Q f (θ )+Ψ22(θ , t, t1)Q

f
i

]

×
[
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

−
[
Ψ21(θ , t, t1)+Ψ22(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

×
[∂Ψ11

∂θi
(θ , t, t1)+

∂Ψ12

∂θi
(θ , t, t1)Q f (θ )+Ψ12(θ , t, t1)Q

f
i

]

×
[
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

(4.45)

and

∂Ψ
∂θi

(θ , t,s) =

⎛
⎜⎜⎜⎝
∂Ψ11

∂θi
(θ , t,s)

∂Ψ12

∂θi
(θ , t,s)

∂Ψ21

∂θi
(θ , t,s)

∂Ψ22

∂θi
(θ , t,s)

⎞
⎟⎟⎟⎠ .
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Using an analogue calculus we obtain

∂P
∂ t1

(θ , t1, t)

=
[∂Ψ21

∂ t1
(θ , t, t1)+

∂Ψ22

∂ t1
(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

−
[
Ψ21(θ , t, t1)+Ψ22(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1

×
[∂Ψ11

∂ t1
(θ , t, t1)+

∂Ψ12

∂ t1
(θ , t, t1)Q f (θ )

][
Ψ11(θ , t, t1)+Ψ12(θ , t, t1)Q f (θ )

]−1
.

(4.46)

The computation of
∂Ψi j

∂ t1
(θ , t, t1) can be obtained using (4.44):

⎛
⎜⎜⎜⎝
∂Ψ11

∂ t1
(θ , t, t1)

∂Ψ12

∂ t1
(θ , t, t1)

∂Ψ21

∂ t1
(θ , t, t1)

∂Ψ22

∂ t1
(θ , t, t1)

⎞
⎟⎟⎟⎠=−

⎛
⎜⎜⎝
Ψ11(θ , t, t1)Ψ12(θ , t, t1)

Ψ21(θ , t, t1)Ψ22(θ , t, t1)

⎞
⎟⎟⎠L(θ , t1).

(4.47)

Proposition 4.22. The resolvent Ξ(·, ·, ·, ·) is continuously differentiable on Ω ×
[t0,T ]× [t0,T ], and denoting

A (θ , t1, t) :=−A(t)T +P(θ , t1, t)Bf(t)R
−1(θ , t)Bf(t), (4.48)

we have

∂Ξ
∂θi

(θ , t1, t,s) =
∫ t

s
Ξ(θ , t1, t,τ)

∂A

∂θi
(θ , t1,τ)Ξ(θ , t1,τ,s)dτ, (4.49)

∂Ξ
∂ t1

(θ , t1, t,s) =
∫ t

s
Ξ(θ , t1, t,τ)

∂A

∂ t1
(θ , t1,τ)Ξ(θ , t1,τ,s)dτ, (4.50)

∂Ξ
∂ s

(θ , t1, t,s) = −Ξ(θ , t1, t,s)A (θ , t1,s). (4.51)

The computation of the partial derivatives of A (θ , t1, t) can be obtained using
(4.36), Proposition 4.21 and the obvious formulas:

∂
∂θi

R−1(θ , t) =−R−1(θ , t)Ri(t)R
−1(θ , t).

Proposition 4.23. For all (θ , t1) ∈ Ω×]t0,T [, the maps ul �→ x(θ , t1,ul , ·), ul �→
λ (θ , t1,ul , ·), respectively, ul �→ uf(θ , t1,ul , ·) are affine and continuous from Lml

2 ([t0,
T ]) to Hn

1 ([t0, t1]), respectively, from Lml
2 ([t0,T ]) to L

mf
2 ([t0,T ]). Therefore they are



4 Semivectorial Bilevel Optimal Control 65

continuously Fréchet differentiable on Lml
2 ([t0,T ]) and, for any ul ∈ Lml

2 ([t0, t1]),
their Fréchet differentials (which are linear continuous maps from Lml

2 ([t0,T ]) to
Hn

1 ([t0, t1]) and, respectively, from Lml
2 ([t0,T ]) to L

mf
2 ([t0,T ])) verify for all h ∈

Lml
2 ([t0,T ]) and for all t ∈ [t0, t1]:

∂
∂ul

x(θ , t1,ul , t) ·h =Ψ12(θ , t, t0)
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)h(s)ds

+
∫ t

t0
Ψ11(θ , t,s)Bl(s)h(s)ds (4.52)

∂
∂ul

λ (θ , t1,ul , t) ·h =Ψ22(θ , t, t0)
∫ t1

t0
Ξ(θ , t1, t0,s)P(θ , t1,s)Bl(s)h(s)ds

+

∫ t

t0
Ψ21(θ , t,s)Bl(s)h(s)ds (4.53)

∂
∂ul

uf(θ , t1,ul , t) ·h = −R−1(θ , t)Bf(t)
T ∂
∂ul

λ (θ , t1,ul , t) ·h, . (4.54)

Proof. It is easy to see from Corollary 4.18 and (4.30) and (4.31) that the maps
ul �→ x(θ , t1,ul , ·) and ul �→ λ (θ , t1,ul , ·) are affine and continuous from Lml

2 ([t0,T ])
to Hn

1 ([t0, t1]); hence (4.52) and (4.53) hold. Then, by (4.34), we obtain that the map
ul �→ uf(θ , t1,ul , ·) from Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) is affine and continuous and we

get (4.54). �
Theorem 4.24 (Regularity of uf(·, ·, ·, ·) and x(·, ·, ·, ·)).
1. The functions uf(·, ·, ·, ·) :Ω×]t0,T [×Lml

2 ([t0,T ])× [t0,T ]→ R
mf and x(·, ·, ·, ·) :

Ω×]t0,T [×Lml
2 ([t0,T ])× [t0,T ]→R

n are continuous.
2. The function (θ , t1,ul) �→ uf(θ , t1,ul , ·) from Ω×]t0,T [×Lml

2 ([t0,T ]) to L
mf
2 ([t0,

T ]) is continuous as well as the function (θ , t1,ul) �→ x(θ , t1,ul , ·) from Ω×]t0,
T [×Lml

2 ([t0,T ]) to Ln
2([t0,T ]).

3. For each fixed (θ̄ , t̄1, ūl) ∈Ω×]t0,T [×Lml
2 ([t0,T ]):

• The function θ �→ uf(θ , t̄1, ūl , ·) from Ω to L
mf
2 ([t0,T ]) and the function2

θ �→ x(θ , t̄1, ūl , ·) fromΩ to Ln
2([t0,T ]) are continuously Fréchet differentiable

on Ω .
• The function ul �→ uf(θ̄ , t̄1,ul , ·) from Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) and the

function ul �→ x(θ̄ , t̄1,ul , ·) from Lml
2 ([t0,T ]) to Hn

1 ([t0,T ]) are continuously
Fréchet differentiable.

• The functions t1 �→uf(θ̄ , t1, ūl , ·) from ]t0,T [ to L
mf
2 ([t0,T ]) and t1 �→x(θ̄ , t1, ūl , ·)

from ]t0,T [ to Ln
2([t0,T ]) are a.e. differentiable on ]t0,T [, and for almost all

t1 ∈]t0,T [, ∂uf

∂ t1
(θ̄ , t̄1, ūl , ·) ∈ L

mf
2 ([t0,T ]) and

∂x
∂ t1

(θ̄ , t̄1, ūl , ·) ∈ Ln
2([t0,T ]).

2Note that the embedding Hn
1 ([t0,T ])⊂ Ln

2([t0,T ]) is continuous.
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Moreover, for each t1 ∈]t0,T [ such that ūl is continuous3 at t1, these
functions are differentiable in t1.

4. The functions uf(·, ·, ·, ·), x(·, ·, ·, ·) and their partial derivatives can be explicitly
represented as functions of data (supposing we are able to compute the resolvent
matricesΨ and Ξ ).

Proof. By Corollary 4.18, Remark 4.19 and Propositions 4.20–4.23, we obtain
points 1 and 4.

To prove point 2 we will use the fact that, by Corollary 4.18, we can write

x(θ , t1,ul , t) = α(θ , t1, t)+
∫ T

t0
X(θ , t1, t,s)ul(s)ds,

where

α(θ , t1, t) =
(
Ψ11(θ , t, t0)+Ψ12P(θ , t1, t0)

)
x0

and X(θ , t1, t,s) is described later in relations (4.61) and (4.63). Obviously α :
Ω×]t0,T [×[t0,T ]→R

n is a continuous function, and for each s ∈ [t0,T ], X(·, ·, ·,s)
is continuous onΩ×]t0,T [×[t0,T ]→R

n×ml , and, for each (θ , t1, t)∈Ω×]t0,T [×[t0,
T ], X(θ , t1, t, ·) ∈ Ln×ml

2 ([t0,T ]).
We obtain easily that the function (θ , t1) �→ α(θ , t1, ·) is continuous from

Ω×]t0,T [ to C ([t0,T ];Rn), where C ([t0,T ];Rn) is the Banach space of continuous
functions on [t0,T ] with values in R

n endowed with the uniform convergence norm.
Since the embedding C ([t0,T ];Rn)⊂ Ln

2([t0,T ]) is continuous, we obtain that the
function (θ , t1) �→ α(θ , t1, ·) is continuous from Ω×]t0,T [ to Ln

2([t0,T ]).
Also, using Lebesgue’s dominated convergence theorem, we obtain easily that

the function (θ , t1, t) �→ X(θ , t1, t, ·) is continuous from Ω×]t0,T [×[t0,T ] to Ln×ml
2

([t0,T ]). Denoting y(θ , t1,ul , t) =
∫ T

t0
X(θ , t1, t,s)ul(s)ds, and writing

y(θ ′, t ′1,u
′
l , t)− y(θ , t1,ul , t) =

(
y(θ ′, t ′1,u

′
l , t)− y(θ ′, t ′1,ul , t)

)
+
(
y(θ ′, t ′1,ul , t)− y(θ , t1,ul , t)

)
,

we obtain that

|y(θ ′, t ′1,u′l , t)− y(θ , t1,ul , t)| ≤‖X(θ ′, t ′1, t, ·)‖2 · ‖u′l− ul‖2

+ ‖X(θ ′, t ′1, t, ·)−X(θ , t1, t, ·)‖2 · ‖ul‖2

which finally prove the continuity of the function (θ , t1,ul) �→ x(θ , t1,ul , ·) from
Ω×]t0,T [×Lml

2 ([t0,T ]) to Ln
2([t0,T ]).

3In the sense that there exists a function ũl continuous at t1 and ūl(t) = ũl(t) a.e. on [t0,T ]. Note
that by Lusin’s theorem, we can find measurable sets of arbitrarily small positive measure and such
functions ũl which are continuous on the complement of those sets.
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With similar arguments we can prove the continuity of the function (θ , t1,ul) �→
uf(θ , t1,ul , ·) from Ω×]t0,T [×Lml

2 ([t0,T ]) to L
mf
2 ([t0,T ]) and point 3. �

4.6 Optimality Conditions for the Upper Level, i.e.
for Problems (OB)σ and (PB)σ

In this section we will restrain to the case considered in Sect. 4.5.2. Moreover we
will suppose that Ul is the closed ball

Ul =
{

ul ∈ Lml
2 ([t0,T ]) | ‖ul‖2 ≤ R

}
, (4.55)

where R is a strictly positive real.

4.6.1 The Optimistic Bilevel Problem

We begin with some preliminary results in order to obtain an existence result when
Uf is not assumed to be bounded, so we cannot apply the results obtained in [17].
We could adapt the proof given in [17], but we will give direct proofs for the sake
of completeness.

Lemma 4.25. Let X and Y be arbitrary sets and let J : X ×Y → R∪{+∞} such
that, for each x ∈ X, the set argmin J(x, ·) is nonempty. Then the problems

min
(x,y)∈X×Y

J(x,y) (4.56)

and

min
x∈X

min
y∈Y

J(x,y) (4.57)

are equivalent, i.e. problem (4.56) is solvable if and only if problem (4.57) is
solvable. In this case the solution sets coincide as well as the minimal values.

Proof. Let (x̂, ŷ)∈ X×Y be a solution for problem (4.56), i.e. (x̂, ŷ)∈ argmin J(·, ·).
Then, for each x ∈ X , we have obviously J(x̂, ŷ) = min

y∈Y
J(x̂,y) ≤ min

y∈Y
J(x,y); hence

J(x̂, ŷ) = min
x∈X

min
y∈Y

J(x,y), and (x̂, ŷ) is a solution for problem (4.57).

Conversely, let (x̄, ȳ) be a solution for problem (4.57). This means that, for all
x∈X and y′ ∈ argmin J(x, ·), we have we have J(x̄, ȳ)≤ J(x,y′) =min

y∈Y
J(x,y); hence

for all (x,y) ∈ X ×Y , we have J(x̄, ȳ) ≤ J(x,y). Therefore (x̄, ȳ) is a solution for
problem (4.56). �
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Lemma 4.26. Let X = X ′ ×X ′′ where X ′ is a compact metric space, X ′′ is a closed
bounded convex set in a reflexive Banach space X ′′ and let Y be a compact metric
space. Let J : X ×Y → R ∪ {+∞} be a lower semicontinuous function on the
topological product space X ′ × (X ′′,s)×Y , where s denotes the topology on X ′′
induced by the strong topology of X ′′. Suppose that J(x′, ·,y) is convex for each
fixed (x′,y) ∈ X ′ ×Y.

Then the hypotheses of Lemma 4.25 are fulfilled, and argmin J(·, ·, ·) �= /0.

Proof. 1. From Banach–Alaoglu–Kakutani theorem, X ′′ is compact for the weak
topology of X ′′ denoted w. Thus X × Y = (X ′ × X ′′)× Y is compact in the
topological product space [X ′ × (X ′′,w)]×Y . Let us show that J is sequentially
lower semicontinuous on [X ′ × (X ′′,wX ′′)]×Y , where wX ′′ stands for the topology
on X ′′ induced by the weak topology of X ′′. Indeed, for any real α , let us denote

SLα = {(x′,x′′,y) ∈ X ′ ×X ′′ ×Y |J(x′,x′′,y)≤ α}.

Since J is lower semicontinuous on X ′ × (X ′′,s)×Y we have that SLα is closed
in X ′ × (X ′′,s)×Y . Consider now a sequence ((x′k,x

′′
k ,yk))k in SLα convergent to

some (x′,x′′,y) in X ′ × (X ′′,w)×Y . Since (x′′k ) converges weakly to x′′, by Mazur’s
lemma [32, p. 6], there is a sequence (x̄′′k ) converging to x′′ in (X ′′,s) such that,
for any k, x̄′′k is a convex combination of x′′k ’s. Then, by the convexity of X ′′ and of
J(x′k, ·,yk), we have x̄′′k ∈ X ′′ and

J(x′k, x̄
′′
k ,yk)≤ J(x′k,x

′′
k ,yk)≤ α.

Thus (x′k, x̄
′′
k ,yk) ∈ SLα and (x′k, x̄

′′
k ,yk) converges to (x′,x′′,y) in X ′ × (X ′′,s)×Y ;

hence (x′,x′′,y) ∈ SLα . Therefore SLα is sequentially closed in X ′ × (X ′′,w)×
Y ; hence J is sequentially lower semicontinuous on X ′ × (X ′′,w)×Y . Finally, by
Weierstrass’ theorem, we obtain that argmin J(·, ·, ·) �= /0.

Let now x = (x′,x′′) ∈ X = X ′ × X ′′ be fixed. Since Y is compact and J(x, ·)
is lower semicontinuous on Y , we obtain from Weierstrass’ theorem that argmin
J(x, ·) �= /0. �
Let Ĵl :Ω×]t0,T [×Ul →R∪{+∞} be defined by

Ĵl(θ , t1,ul) := J̃l(t1,ul ,uf(θ , t1,ul , ·)) = Jl(t1,ul ,uf(θ , t1,ul , ·),x(θ , t1,ul , ·)).
(4.58)

Theorem 4.27. In addition to hypotheses (PA ) we suppose that, for each t ∈
[t0,T ], fl(t, ·, ·, ·) is a convex function.

Moreover we suppose the following hypothesis:

(Hf)

⎧⎨
⎩

there is some α ∈ L∞([t0,T]) and some real constant β such that,
for almost all t ∈ [t0,T], and for all (ul,uf,x) ∈ R

ml×R
mf×R

n,∣∣∇(ul ,uf,x) fl(t,ul ,uf,x)
∣∣≤ α(t)+β |(ul,uf,x)|.

(4.59)
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Then problem (OB)we has at least one solution and it is equivalent to the problem

(Pl) min
(θ ,t1,ul)∈Θwe×T ×Ul

Ĵl(θ , t1,ul).

Proof. We will show that all the hypotheses of Lemma 4.26 are fulfilled (denoting
X ′=T , X ′′ =Ul ,Y =Θwe, X ′′ = Lml

2 ([t0,T ]), x′ = t1, x′′ = ul ,y = θ , J(x′,x′′,y) =
Ĵl(θ , t1,ul)), and then the conclusion follows from Lemma 4.25.

Ul is (strongly) closed, bounded and convex in Lml
2 ([t0,T ]); T and Θwe are

compact. For fixed (t1,θ ) ∈ T ×Θwe, the function Ĵl(θ , ·, t1) is convex since, for
any t ∈ [t0,T ], the function fl(t, ·, ·, ·) is convex, and ul �→ uf(θ , t1,ul , ·), ul �→
x(θ , t1,ul , ·) are affine functions by Proposition 4.23.

To finish the proof it is sufficient to show that Ĵl is lower semicontinuous on
Θwe ×T ×Ul , where Ul is endowed with the topology induced by the strong
topology of Lml

2 ([t0,T ]). Let (θ k, tk
1 ,u

k
l )k be a sequence in Θwe ×T ×Ul which

converges (strongly) to an element (θ̄ , t̄1, ūl). SinceΘwe×T ×Ul is closed we have
(θ̄ , t̄1, ūl) ∈Θwe×T ×Ul .

We obtain from Lemma 4.4, Theorem 4.24 and (4.58) that, for each fixed t1 ∈T ,
the function Ĵl(·, t1, ·) is lower semicontinuous. On the other hand we have

Ĵl(θ k, tk
1 ,u

k
l ) = Ĵl(θ k, t̄1,u

k
l )+ (Ĵl(θ k, tk

1 ,u
k
l )− Ĵl(θ k, t̄1,u

k
l )),

and the term (Ĵl(θ k, tk
1 ,u

k
l )− Ĵl(θ k, t̄1,uk

l )) tends to 0 as k→+∞. Indeed,

Ĵl(θ k, tk
1 ,u

k
l )− Ĵl(θ k, t̄1,u

k
l ) =

∫ tk
1

t0
fl(t,u

k
l (t),uf(θ k, tk

1 ,u
k
l , t),x(θ

k, tk
1 ,u

k
l , t))dt

−
∫ t̄1

t0
fl(t,u

k
l (t),uf(θ k, t̄1,u

k
l , t),x(θ

k, t̄1,u
k
l , t))dt.

(4.60)

Since the sequence (uk
l ) is bounded in Lml

2 ([t0,T ]), by (Hf) and Theorem 4.24 there
is a constant M > 0, such that, for all k ∈ N and almost all t ∈ [t0,T ],

| fl(t,u
k
l (t),uf(θ k, tk

1 ,u
k
l , t),x(θ

k, tk
1 ,u

k
l , t))| ≤M

and

| fl(t,u
k
l (t),uf(θ k, t̄1,u

k
l , t),x(θ

k, t̄1,u
k
l , t))| ≤M.

Finally, let us show that both integrals in (4.60) have the same limit as k→ +∞,

which is
∫ t̄1

t0
fl(t, ūl(t),uf(θ̄ , t̄1, ūl , t),x(θ̄ , t̄1, ūl , t))dt. To do this it is sufficient to

prove that these convergences hold for a subsequence. Since (uk
l ) converges in
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Lml
2 ([t0,T ]), there exists a subsequence (uk′

l )k′ , such that (uk′
l (t))k′ converges to ūl(t)

a.e. on [t0,T ]. Then, we can apply Lebesgue’s dominated convergence theorem to
obtain the last claim.

Therefore, using the fact that for each t1 ∈ T the function Ĵl(·, t1, ·) is lower
semicontinuous, we obtain

lim
k→+∞

Ĵl(θ k, tk
1 ,u

k
l ) = lim

k→+∞
Ĵl(θ k, t̄1,u

k
l )≥ Ĵl(θ̄ , t̄1, ūl). �

We denote ( fl)
′
ul
(·, ·, ·, ·) : [t0,T ]×R

ml ×R
mf ×R

n→ R
ml , ( fl)

′
uf
(·, ·, ·, ·) : [t0,T ]×

R
ml ×R

mf ×R
n → R

mf , ( fl)
′
x(·, ·, ·, ·) : [t0,T ]×R

ml ×R
mf ×R

n→ R
n the partial

derivatives of fl with respect to the variables located on the second, third and fourth
position, respectively.

Also, let us denote for all (θ , t1, t,s) ∈Ω×]t0,T [×[t0,T ]× [t0,T ],

X(θ , t1, t,s) =
[
χ[t0,t1](s)Ψ12(θ , t, t0)Ξ(θ , t1, t0,s)P(θ , t1,s)

+ χ[t0,t](s)Ψ11(θ , t,s)
]
Bl(s) (4.61)

Y (θ , t1, t,s) = −R−1(θ , t)Bf(t)
T
[
χ[t0,t1](s)Ψ22(θ , t, t0)Ξ(θ , t1, t0,s)P(θ , t1,s)

+ χ[t0,t](s)Ψ21(θ , t,s)
]
Bl(s), (4.62)

where χ[t0,t] : [t0,T ]→R is the characteristic function

χ[t0,t](s) =
{

1 if s ∈ [t0, t],
0 otherwise.

(4.63)

Thus, formulas (4.52), (4.54) become

∂
∂ul

x(θ , t1,ul , ·) ·h =

∫ T

t0
X(θ , t1, ·,s)h(s)ds, (4.64)

∂
∂ul

uf(θ , t1,ul , ·) ·h =
∫ T

t0
Y (θ , t1, ·,s)h(s)ds. (4.65)

Next result is necessary to ensure the differentiability of Ĵl .

Lemma 4.28. Suppose that fl satisfies the hypothesis (Hf) given in Theorem 4.27,
in addition to the hypothesis (PA ). Then, for each fixed t1 ∈]t0,T [, the functional
Ĵl(·, t1, ·) : Ω ×Lml

2 ([t0,T ])→ R is well defined and continuously Fréchet differen-
tiable. Its partial derivatives with respect to θi, i = 1, . . . , p are given by
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∂ Ĵl

∂θi
(θ , t1,ul) =

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂uf

∂θi
(θ , t1,ul , t)dt

+

∫ t1

t0
( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂x
∂θi

(θ , t1,ul , t)dt.

(4.66)
Its partial Fréchet gradient with respect to ul at (θ , t1,ul) is given, for almost all
s ∈ [t0, t1], by4

∇ul Ĵl(θ , t1,ul)(s) = ( fl)
′
ul
(s,ul(s),uf(θ , t1,ul ,s),x(θ , t1,ul ,s))

+

∫ T

t0
LT (θ , t1, t,s)( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))dt

+

∫ T

t0
XT (θ , t1, t,s)( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))dt.

(4.67)

Moreover, for each fixed (θ ,ul) ∈Ω ×Lml
2 ([t0,T ]), the function Ĵl(θ , ·,ul) ∈H1([t0,

T ]), and for almost all t1 ∈]t0,T [, its derivative is given by

∂ Ĵl

∂ t1
(θ , t1,ul) = fl(t1,ul(t1),uf(θ , t1,ul , t1),x(θ , t1,ul , t1))

+

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂uf

∂ t1
(θ , t1,ul , t)dt

+

∫ t1

t0
( fl)

′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

T ∂x
∂ t1

(θ , t1,ul , t)dt.

(4.68)

In particular, at each point t1 such that ul is continuous at t1 (see footnote 3), the
real-valued function t �→ Ĵl(θ , t,ul) is differentiable.

Proof. By [4, Example 2, p. 20] we have that the functional Jl(t1, ·, ·, ·) : Lml
2 ([t0,

T ])× L
mf
2 ([t0,T ])×Hn

1 ([t0,T ]) → R is well defined and is continuously Fréchet
differentiable for each fixed t1 ∈]t0,T [. Moreover, its partial derivatives satisfy,
for all (t1,ul ,uf,x) ∈]t0,T [×Lml

2 ([t0,T ])× L
mf
2 ([t0,T ])×Hn

1 ([t0,T ]), the following
equations:

∂Jl

∂ul
(t1,ul ,uf,x) · v =

∫ t1

t0
( fl)

′
ul
(t,ul(t),uf(t),x(t))

T v(t)dt ∀v ∈ Lml
2 ([t0,T ]),

4We identify the Hilbert space Lml
2 ([t0,T ]) with its dual according to Riesz-Fréchet theorem; hence

∇ul Ĵl(θ , t1,ul) ∈ Lml
2 ([t0,T ]) (see, e.g. [7, p. 38]).
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∂Jl

∂uf
(t1,ul ,uf,x) ·w =

∫ t1

t0
( fl)

′
uf
(t,ul(t),uf(t),x(t))

T w(t)dt ∀w ∈ L
mf
2 ([t0,T ]),

∂Jl

∂x
(t1,ul ,uf,x) · z =

∫ t1

t0
( fl)

′
x(t,ul(t),uf(t),x(t))

T z(t)dt ∀z ∈ Hn
1 ([t0,T ]).

Also, for each fixed (ul ,uf,x) ∈ Lml
2 ([t0,T ])× L

mf
2 ([t0,T ])×Hn

1 ([t0,T ]) and for
almost all t1 ∈]t0,T ],

∂Jl

∂ t1
(t1,ul ,uf,x) = fl(t1,ul(t1),uf(t1),x(t1)).

Let us identify, using Riesz-Fréchet theorem, the Hilbert spaces Lml
2 ([t0,T ]), L

mf
2 ([t0,

T ]) and Ln
2([t0,T ]) with their duals, and do not identify Hn

1 ([t0,T ]) with its dual
Hn

1 ([t0,T ])
∗. Based on the fact that (see [21, pp. 81–82] for details)

Hn
1 ([t0,T ])⊂ Ln

2([t0,T ])≡ Ln
2([t0,T ])

∗ ⊂ Hn
1 ([t0,T ])

∗

and both embeddings are continuous and dense, and the duality product between
Hn

1 ([t0,T ]) and Hn
1 ([t0,T ])

∗ coincide with the inner product in Ln
2([t0,T ]) on Hn

1 ([t0,
T ])×Ln

2([t0,T ]), we have that the Fréchet gradients∇ul Jl(t1,ul ,uf,x) ∈ Lml
2 ([t0,T ]),

∇uf Jl(t1,ul ,uf,x) ∈ L
mf
2 ([t0,T ]) and ∇xJl(t1,ul ,uf,x) ∈ Ln

2([t0,T ]) are given for
almost all t ∈ [t0,T ] by

∇ul Jl(t1,ul ,uf,x)(t) =

{
( fl)

′
ul
(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

∇uf Jl(t1,ul ,uf,x)(t) =

{
( fl)

′
uf
(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

∇xJl(t1,ul ,uf,x)(t) =

{
( fl)

′
x(t,ul(t),uf(t),x(t)), if t ∈ [t0, t1],

0, if t ∈ ]t1,T ] ,

Now, using the chain rule in (4.58), we obtain immediately (4.66) and (4.68) and
also

∇ul Ĵl(θ , t1,ul)(t) =( fl)
′
ul
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

+

(
∂
∂ul

uf(θ , t1,ul , ·)
)∗

( fl)
′
uf
(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t))

+

(
∂
∂ul

x(θ , t1,ul , ·)
)∗

( fl)
′
x(t,ul(t),uf(θ , t1,ul , t),x(θ , t1,ul , t)),

(4.69)
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and, for almost all t ∈]t1,T ], ∇ul Ĵl(θ , t1,ul)(t) = 0, where M∗ stands for the adjoint
operator of a linear continuous operator M between two Hilbert spaces.

Fix (θ , t1,ul) ∈ Ω×]t0,T [×Lml
2 ([t0,T ]). Since the embedding Hn

1 ([t0,T ]) ⊂
Ln

2([t0,T ]) is continuous, we can consider the partial Fréchet derivative ∂
∂ul

x(θ , tt ,ul , ·)
as a linear continuous operator from Lml

2 ([t0,T ]) to Ln
2([t0,T ]). Denote 〈·, ·〉n the

inner product in Ln
2([t0,T ]). For all h ∈ Lml

2 ([t0,T ]), k ∈ Ln
2([t0,T ]) we have

〈 ∂
∂ul

x(θ , tt ,ul , ·)h,k〉n =

∫ T

t0
kT (t)

(∫ T

t0
X(θ , t1, t,s)h(s)ds

)
dt

=

∫ T

t0
hT (s)

(∫ T

t0
XT (θ , t1, t,s)k(t)dt

)
ds

= 〈h,
(
∂
∂ul

x(θ , tt ,ul , ·)
)∗

k〉ml ;

hence (
∂
∂ul

x(θ , tt ,ul , ·)
)∗
· k =

∫ T

t0
XT (θ , t1, t, ·)k(t)dt. (4.70)

In the same way we get for all k ∈ L
mf
2 ([t0,T ])

(
∂
∂ul

uf(θ , tt ,ul , ·)
)∗
· k =

∫ T

t0
Y T (θ , t1, t, ·)k(t)dt. (4.71)

Finally (4.67) follows from (4.69). �
Theorem 4.29 (First-order necessary conditions when the final time is fixed, i.e.
T = {t1}). Suppose that T = {t1}, and fl satisfies hypotheses (PA ), (Hf), and
fl(t, ·, ·, ·) is convex for all t ∈ [t0,T ].

Let (θ̄ , ūl) ∈Θwe×Ul solve (OB)we. Then there are nonnegative real numbers
μ , l1, . . . , lp and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.72)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)− li+ν = 0, i = 1, . . . , p, (4.73)

μ(‖ūl‖2−R) = 0, (4.74)

liθ̄i = 0, i = 1, . . . , p, (4.75)

and of course
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p

∑
i=1
θ̄i = 1, (4.76)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.77)

Remark 4.30. According to (4.67), equation (4.72) is a Fredholm integral equation
in the unknown ūl (linear if fl(t, ·, ·, ·) is quadratic, case which satisfies hypothesis
(Hf)), depending on 2p+ 1 parameters (μ and θ̄i). Assuming that we are able to
solve this integral equation, (4.73)–(4.76) represent a nonlinear system with 2p+ 2
equations and 2p+ 2 unknowns μ ,ν,θi, li. A similar remark applies to the next
theorem.

Theorem 4.31 (First-order necessary conditions when the final time t1 ∈ T =
[t, t ] ⊂]t0,T [). Suppose that fl satisfies hypotheses (PA ), (Hf) and fl(t, ·, ·, ·) is
convex for all t ∈ [t0,T ].

Let (t̄1, θ̄ , ūl) ∈ T ×Θwe×Ul solve (OB)we. Suppose that ūl is continuous at
t̄1 (see footnote 3). Then there are nonnegative real numbers μ , l1, . . . , lp, lp+1, lp+2

and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.78)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)− li+ν = 0, i = 1, . . . , p, (4.79)

∂ Ĵl

∂ t1
(θ̄ , t1, ūl)− lp+1 + lp+2 = 0, (4.80)

μ(‖ūl‖2−R) = 0, (4.81)

liθ̄i = 0, i = 1, . . . , p, (4.82)

lp+1(t̄1− t) = 0, (4.83)

lp+2(t− t̄1) = 0, (4.84)

and of course

p

∑
i=1
θ̄i = 1, (4.85)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.86)

The proof of Theorems 4.29 and 4.31 is a direct application of the generalized
Lagrange multiplier rule under Kurcyusz–Robinson–Zowe regularity condition (see
[39, Theorem 5.3]) and is based on Theorem 4.27 and on Lemma 4.28.
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4.6.2 The Pessimistic Bilevel Problem

In this section we assume that fl(t, ·, ·, ·) is quadratic, i.e. for all (t,ul ,uf,x) ∈
[t0,T ]×R

ml ×R
mf ×R

n,

fl(t,ul ,uf,x) = uT
l Sl(t)ul +uf

T Rl(t)uf + xT Ql(t)x, (4.87)

where Sl(·),Rl(·),Ql(·) are continuous symmetric matrix-valued functions. Note
that this function satisfies hypotheses (PA ) and (Hf).

According to [4, Example 3, p. 14] the functional Jl(t1, ·, ·, ·) : Lml
2 ([t0,T ])×

L
mf
2 ([t0,T ]) × Hn

1 ([t0,T ])× is well defined and continuous. Therefore, by
Theorem 4.24, the functional Ĵl(·, ·, ·) has finite values and is continuous on
Θwe×T ×Ul.

Moreover, since Θwe is compact, the pessimistic problem (PB)we can be writ-
ten as

min
(t1,ul)∈T ×Ul

max
θ∈Θwe

Ĵl(θ , t1,ul).

Theorem 4.32 (First-order necessary conditions when the final time is fixed, i.e.
T = {t1}). Suppose that T = {t1}.

Let (θ̄ , ūl) ∈Θwe×Ul solve (PB)we. Then there are nonnegative real numbers
μ , l1, . . . , lp and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.88)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)+ li +ν = 0, i = 1, . . . , p, (4.89)

μ(‖ūl‖2−R) = 0, (4.90)

liθ̄i = 0, i = 1, . . . , p, (4.91)

and of course

p

∑
i=1

θ̄i = 1, (4.92)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.93)

Proof. We have that θ̄ is a maximizer of Ĵl(·, t1, ūl) over Θwe. By Karush–Kuhn–
Tucker theorem, since on Θwe the linear independence of gradients of active
constraints holds (hence Mangasarian–Fromowitz regularity condition holds), and
based on Lemma 4.28, we obtain that there are nonnegative reals l1, . . . , lp and a real
ν such that (4.89) and (4.91) hold and of course (4.92) and (4.93).
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Moreover, ūl is a minimizer of Ĵl(θ̄ , t1, ·) over the ball Ul . By the generalized
Lagrange multiplier rule under Kurcyusz-Robinson-Zowe regularity condition (see
[39, Theorem 5.3]), and based on Lemma 4.28, we obtain (4.88) and (4.90). �
Theorem 4.33 (First-order necessary conditions when the final time t1 ∈ T =
[t, t]⊂ ]t0,T [). Let (t̄1, θ̄ , ūl) ∈ T ×Θwe ×Ul solve (PB)we. Suppose that ūl is
continuous at t̄1 (see footnote 3). Then there are nonnegative real numbers
μ , l1, . . . , lp, lp+1, lp+2 and a real number ν such that

∇ul Ĵl(θ̄ , t1, ūl)(t)+ μ ūl(t) = 0 a.e. on [t0,T ], (4.94)

∂ Ĵl

∂θi
(θ̄ , t1, ūl)+ li+ν = 0, i = 1, . . . , p, (4.95)

∂ Ĵl

∂ t1
(θ̄ , t1, ūl)− lp+1 + lp+2 = 0, (4.96)

μ(‖ūl‖2−R) = 0, (4.97)

liθ̄i = 0, i = 1, . . . , p, (4.98)

lp+1(t̄1− t) = 0, (4.99)

lp+2(t− t̄1) = 0, (4.100)

and of course

p

∑
i=1
θ̄i = 1, (4.101)

‖ūl‖2 ≤ R, θ̄i ≥ 0, i = 1, . . . , p. (4.102)

The proof is identical to the proof of Theorem 4.32.

Remark 4.34. A similar comment as in Remark 4.30 can be done for the last two
theorems. Moreover, in this case the computation of the partial derivatives and
gradients in Lemma 4.28 is simplified since, by (4.87), we have

( fl)
′
ul
(t,ul ,uf,x) = 2uT

l Sl(t),

( fl)
′
uf
(t,ul ,uf,x) = 2uf

T Rl(t),

( fl)
′
x(t,ul ,uf,x) = xT Ql(t).
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Abstract Enlargements have proven to be useful tools for studying maximally
monotone mappings. It is therefore natural to ask in which cases the enlargement
does not change the original mapping. Svaiter has recently characterized non-
enlargeable operators in reflexive Banach spaces and has also given some partial
results in the nonreflexive case. In the present paper, we provide another char-
acterization of non-enlargeable operators in nonreflexive Banach spaces under a
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spaces, we present a new proof of the maximality of the sum of two maximally
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5.1 Introduction

Maximally monotone operators have proven to be a significant class of objects in
both modern optimization and functional analysis. They extend both the concept
of subdifferentials of convex functions, as well as that of a positive semi-definite
function. Their study in the context of Banach spaces, and in particular nonreflexive
ones, arises naturally in the theory of partial differential equations, equilibrium
problems, and variational inequalities. For a detailed study of these operators, see,
e.g., [12–14], or the books [3, 15, 20, 27, 32–34, 46, 47].

A useful tool for studying or proving properties of a maximally monotone
operator A is the concept of the “enlargement of A”. A main example of this
usefulness is Rockafellar’s proof of maximality of the subdifferential of a convex
function (Fact 5.3 below), which uses the concept of ε-subdifferential. The latter is
an enlargement of the subdifferential introduced in [18].

Broadly speaking, an enlargement is a multifunction which approximates the
original maximally monotone operator in a convenient way. Another useful way
to study a maximally monotone operator is by associating to it a convex function
called the Fitzpatrick function. The latter was introduced by Fitzpatrick in [22] and
its connection with enlargements, as shown in [21], is contained in (5.4) below.
Enlargements of positive sets in SSDB spaces (see [34, Sect. 21]) have recently
been studied in [16].

Our first aim in the present paper is to provide further characterizations of
maximally monotone operators which are not enlargeable, in the setting of possibly
nonreflexive Banach spaces (see Sect. 5.4). In other words, in which cases the
enlargement does not change the graph of a maximally monotone mapping defined
in a Banach space. We address this issue Corollary 5.28, under a closedness
assumption on the graph of the operator.

Our other aim is to use the Fitzpatrick function to derive new results which
establish the maximality of the sum of two maximally monotone operators in
nonreflexive spaces (see Sect. 5.5). First, we provide a different proof of the
maximality of the sum of two maximally monotone linear relations. Second, we
provide a proof of the maximality of the sum of a maximally monotone linear
relation and a normal cone operator when the domain of the operator intersects
the interior of the domain of the normal cone.
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5.2 Technical Preliminaries

Throughout this paper, X is a real Banach space with norm ‖ · ‖, and X∗ is the
continuous dual of X . The spaces X and X∗ are paired by the duality pairing, denoted
as 〈·, ·〉. The space X is identified with its canonical image in the bidual space X∗∗.
Furthermore, X×X∗ and (X×X∗)∗ := X∗×X∗∗ are paired via 〈(x,x∗),(y∗,y∗∗)〉 :=
〈x,y∗〉+ 〈x∗,y∗∗〉, where (x,x∗) ∈ X×X∗ and (y∗,y∗∗) ∈ X∗ ×X∗∗.

Let A : X ⇒ X∗ be a set-valued operator (also known as a multifunction) from X
to X∗, i.e., for every x ∈ X , Ax⊆ X∗, and let graA := {(x,x∗) ∈ X×X∗ | x∗ ∈ Ax} be
the graph of A. The domain of A is domA := {x ∈ X | Ax �=∅}, and ranA := A(X)
for the range of A. Recall that A is monotone if

〈x− y,x∗ − y∗〉 ≥ 0, ∀(x,x∗) ∈ graA ∀(y,y∗) ∈ graA, (5.1)

and maximally monotone if A is monotone and A has no proper monotone extension
(in the sense of graph inclusion). Let A : X ⇒ X∗ be monotone and (x,x∗) ∈ X×X∗.
We say (x,x∗) is monotonically related to graA if

〈x− y,x∗ − y∗〉 ≥ 0, ∀(y,y∗) ∈ graA.

Let A : X ⇒ X∗ be maximally monotone. We say A is of type (FPV) if for every open
convex set U ⊆ X such that U ∩domA �=∅, the implication

x ∈Uand(x,x∗) is monotonically related to graA∩U×X∗ ⇒ (x,x∗) ∈ graA

holds. Maximally monotone operators of type (FPV) are relevant primarily in the
context of nonreflexive Banach spaces. Indeed, it follows from [34, Theorem 44.1]
and a well-known result from [30] (or from [34, Theorems 38.4 and 39.1]) that every
maximally monotone operator defined in a reflexive Banach space is of type (FPV).
As mentioned in [34, Sect. 44], an example of a maximally monotone operator
which is not of type (FPV) has not been found yet.

Let A : X ⇒ X∗ be monotone such that graA �= ∅. The Fitzpatrick function
associated with A is defined by

FA : X×X∗ → ]−∞,+∞] : (x,x∗) �→ sup
(a,a∗)∈graA

(〈x,a∗〉+ 〈a,x∗〉− 〈a,a∗〉).
When A is maximally monotone, a fundamental property of the Fitzpatrick function
FA (see Fact 5.5) is that

FA(x,x
∗)≥ 〈x,x∗〉 for all (x,x∗) ∈ X×X∗, (5.2)

FA(x,x
∗) = 〈x,x∗〉 for all (x,x∗) ∈ graA. (5.3)
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Hence, for a fixed ε ≥ 0, the set of pairs (x,x∗) for which FA(x,x∗) ≤ 〈x,x∗〉+ ε
contains the graph of A. This motivates the definition of enlargement of A for a
general monotone mapping A, which is as follows.

Let ε ≥ 0. We define Aε : X ⇒ X∗ by

graAε :=
{
(x,x∗) ∈ X×X∗ | 〈x∗ − y∗,x− y〉 ≥ −ε, ∀(y,y∗) ∈ graA

}
=
{
(x,x∗) ∈ X×X∗ | FA(x,x

∗)≤ 〈x,x∗〉+ ε
}
. (5.4)

Let A : X ⇒ X∗ be monotone. We say A is enlargeable if graA � graAε for some
ε ≥ 0, and A is non-enlargeable if graA = graAε for every ε ≥ 0. Lemma 23.1
in [34, 36] proves that if a proper and convex function verifies (5.2), then the set
of all pairs (x,x∗) at which (5.3) holds is a monotone set. Therefore, if A is non-
enlargeable then it must be maximally monotone. As the referee has pointed out
another proof is as follows: if A is non-enlargeable then A = A0 and hence A is
maximally monotone.

We adopt the notation used in the books [15, Chap. 2] and [12, 33, 34]. Given a
subset C of X , intC is the interior of C, C is the norm closure of C. The support
function of C, written as σC, is defined by σC(x∗) := supc∈C〈c,x∗〉. The indicator
function of C, written as ιC, is defined at x ∈ X by

ιC(x) :=

{
0, if x ∈C;

+∞, otherwise.
(5.5)

For every x ∈ X , the normal cone operator of C at x is defined by NC(x) := {x∗ ∈
X∗ | supc∈C〈c− x,x∗〉 ≤ 0}, if x ∈C; and NC(x) :=∅, if x /∈C. The closed unit ball
is BX := {x ∈ X | ‖x‖ ≤ 1}, and N := {1,2,3, . . .}.

If Z is a real Banach space with dual Z∗ and a set S ⊆ Z, we denote S⊥ by
S⊥ := {z∗ ∈ Z∗ | 〈z∗,s〉 = 0, ∀s ∈ S}. The adjoint of an operator A, written A∗, is
defined by

graA∗ :=
{
(x∗∗,x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥

}
.

We will be interested in monotone operators which are linear relations, i.e., such
that graA is a linear subspace. Note that in this situation, A∗ is also a linear relation.
Moreover, A is symmetric if graA ⊆ graA∗. Equivalently, for all (x,x∗),(y,y∗) ∈
graA it holds that

〈x,y∗〉= 〈y,x∗〉. (5.6)

We say that a linear relation A is skew if graA ⊆ gra(−A∗). Equivalently, for all
(x,x∗) ∈ graA we have

〈x,x∗〉= 0. (5.7)
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We define the symmetric part a of A via

A+ := 1
2 A+ 1

2 A∗. (5.8)

It is easy to check that A+ is symmetric.
Let f : X→ ]−∞,+∞]. Then dom f := f−1(R) is the domain of f , and f ∗ : X∗ →

[−∞,+∞] : x∗ �→ supx∈X (〈x,x∗〉− f (x)) is the Fenchel conjugate of f . We denote
by f the lower semicontinuous hull of f . We say that f is proper if dom f �=∅. Let
f be proper. The subdifferential of f is defined by

∂ f : X ⇒ X∗ : x �→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y− x,x∗〉+ f (x)≤ f (y)}.

For ε ≥ 0, the ε-subdifferential of f is defined by

∂ε f : X ⇒ X∗ : x �→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y− x,x∗〉+ f (x)≤ f (y)+ ε}.

Note that ∂ f = ∂0 f . Given x ∈ X , we say ∂ειC(x) is the ε-normal set of C at x (see
[24]).

Relatedly, we say A is of Brønsted–Rockafellar (BR) type [15, 34] if whenever
(x,x∗) ∈ X×X∗, α,β > 0 while

inf
(a,a∗)∈graA

〈x− a,x∗− a∗〉>−αβ

then there exists (b,b∗) ∈ graA such that ‖x− b‖< α,‖x∗ − b∗‖ < β . The name is
motivated by the celebrated theorem of Brønsted and Rockafellar [15,34] which can
be stated now as saying that all closed convex subgradients are of type (BR).

Let g : X → ]−∞,+∞]. The inf-convolution of f and g, f�g, is defined by

f�g : x→ inf
y∈X

[ f (y)+ g(x− y)] .

Let Y be another real Banach space. We set PX : X×Y → X : (x,y) �→ x. We denote
Id : X → X by the identity mapping.

Let F1,F2 : X ×Y → ]−∞,+∞]. Then the partial inf-convolution F1�2F2 is the
function defined on X×Y by

F1�2F2 : (x,y) �→ inf
v∈Y

[F1(x,y− v)+F2(x,v)] . (5.9)

5.3 Auxiliary Results

We collect in this section some facts we will use later on. These facts involve convex
functions, maximally monotone operators, and Fitzpatrick functions.
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Fact 5.1 (See [27, Propositions 3.3 and 1.11]). Let f : X → ]−∞,+∞] be a lower
semicontinuous convex and intdom f �= ∅. Then f is continuous on intdom f and
∂ f (x) �=∅ for every x ∈ intdom f .

Fact 5.2 (Rockafellar). (See [29, Theorem 3(a)], [34, Corollary 10.3], or [46,
Theorem 2.8.7(iii)].) Let f ,g : X → ]−∞,+∞] be proper convex functions. Assume
that there exists a point x0 ∈ dom f ∩domg such that g is continuous at x0. Then for
every z∗ ∈ X∗, there exists y∗ ∈ X∗ such that

( f + g)∗(z∗) = f ∗(y∗)+ g∗(z∗ − y∗). (5.10)

Fact 5.3 (Rockafellar). (See [31, Theorem A], [46, Theorem 3.2.8], [34, The-
orem 18.7] or [25, Theorem 2.1].) Let f : X → ]−∞,+∞] be a proper lower
semicontinuous convex function. Then ∂ f is maximally monotone.

Fact 5.4 (Attouch-Brezis). (See [1, Theorem 1.1] or [34, Remark 15.2].) Let f ,g :
X → ]−∞,+∞] be proper lower semicontinuous and convex. Assume that

⋃
λ>0

λ [dom f − domg] is a closed subspace of X .

Then

( f + g)∗(z∗) = min
y∗∈X∗

[ f ∗(y∗)+ g∗(z∗ − y∗)] , ∀z∗ ∈ X∗.

Fact 5.3 above relates a convex function with maximal monotonicity. Fitzpatrick
functions go in the opposite way: from maximally monotone operators to convex
functions.

Fact 5.5 (Fitzpatrick). (See [22, Corollary 3.9] and [12, 15].) Let A : X ⇒ X∗ be
maximally monotone. Then for every (x,x∗) ∈ X × X∗, the inequality 〈x,x∗〉 ≤
FA(x,x∗) is true, and the equality holds if and only if (x,x∗) ∈ graA.

It was pointed out in [34, Problem 31.3] that it is unknown whether domA is
necessarily convex when A is maximally monotone and X is not reflexive. When
A is of type (FPV), the question was answered positively by using FA.

Fact 5.6 (Simons). (See [34, Theorem 44.2].) Let A : X ⇒ X∗ be maximally
monotone of type (FPV). Then domA = PX [domFA] and domA is convex.

We observe that when A is of type (FPV) then also domAε has convex closure.

Remark 5.7. Let A be of type (FPV) and fix ε ≥ 0. Then by (5.4), Facts 5.5 and 5.6,
we have domA⊆ domAε ⊆ PX [domFA]⊆ domA. Thus we obtain

domA = [domAε ] = PX [domFA],
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and this set is convex because domFA is convex. As a result, for every A of type
(FPV) it holds that domA = [domAε ] and this set is convex.

We recall below some necessary conditions for a maximally monotone operator to
be of type (FPV).

Fact 5.8 (Simons). (See [34, Theorem 46.1].) Let A : X ⇒ X∗ be a maximally
monotone linear relation. Then A is of type (FPV).

Fact 5.9 (Fitzpatrick-Phelps and Verona–Verona). (See [23, Corollary 3.4], [38,
Corollary 4] or [34, Theorem 48.4(d)].) Let f : X → ]−∞,+∞] be proper, lower
semicontinuous, and convex. Then ∂ f is of type (FPV).

Fact 5.10 (See [45, Corollary 3.3]). Let A : X ⇒ X∗ be a maximally monotone
linear relation, and f : X → ]−∞,+∞] be a proper lower semicontinuous convex
function with domA∩ intdom∂ f �=∅. Then A+ ∂ f is of type (FPV ).

Fact 5.11 (Phelps-Simons). (See [28, Corollary 2.6 and Proposition 3.2(h)].) Let
A : X→X∗ be monotone and linear. Then A is maximally monotone and continuous.

Fact 5.12 (See [7, Theorem 4.2] or [26, Lemma 1.5]). Let A : X ⇒ X∗ be
maximally monotone such that graA is convex. Then graA is affine.

Remark 5.13. In [42, Proposition 5(ii)], it was shown that Fact 5.12 can be extended
to a locally convex space.

Fact 5.14 (Simons). (See [34, Lemma 19.7 and Sect. 22].) Let A : X ⇒ X∗ be a
monotone operator such that graA is convex with graA �=∅. Then the function

g : X×X∗ → ]−∞,+∞] : (x,x∗) �→ 〈x,x∗〉+ ιgraA(x,x
∗) (5.11)

is proper and convex.

Fact 5.15 (See [40, Theorem 3.4 and Corollary 5.6], or [34, Theorem 24.1(b)]).
Let A,B : X ⇒ X∗ be maximally monotone operators. Assume that

⋃
λ>0

λ [PX(domFA)−PX(domFB)] is a closed subspace.

If

FA+B ≥ 〈·, ·〉 on X×X∗, (5.12)

then A+B is maximally monotone.

Definition 5.16 (Fitzpatrick family). Let A : X ⇒ X∗ be maximally monotone.
The associated Fitzpatrick family FA consists of all functions F : X × X∗ →
]−∞,+∞] that are lower semicontinuous and convex, and that satisfy F ≥ 〈·, ·〉, and
F = 〈·, ·〉 on graA.
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Fact 5.17 (Fitzpatrick). (See [22, Theorem 3.10] or [21].) Let A : X ⇒ X∗ be
maximally monotone. Then for every (x,x∗) ∈ X×X∗,

FA(x,x
∗) = min{F(x,x∗) | F ∈FA}.

Corollary 5.18. Let A : X ⇒ X∗ be a maximally monotone operator such that graA
is convex. Then for every (x,x∗) ∈ X×X∗,

FA(x,x
∗) = min{F(x,x∗) | F ∈FA} and g(x,x∗) = max{F(x,x∗) | F ∈FA},

where g := 〈·, ·〉+ ιgraA.

Proof. Apply Facts 5.14 and 5.17. �
Fact 5.19 (See [34, Lemma 23.9], or [4, Proposition 4.2]). Let A,B : X ⇒ X∗ be
monotone operators and domA∩domB �=∅. Then FA+B ≤ FA�2FB.

Let X ,Y be two real Banach spaces and let h : X ×Y → ]−∞,+∞] be a convex
function. We say that h is separable if there exist convex functions h1 : X →
]−∞,+∞] and h2 : Y → ]−∞,+∞] such that h(x,y) = h1(x)+ h2(y). This situation
is denoted as h = h1⊕ h2. We recall below some cases in which the Fitzpatrick
function is separable.

Fact 5.20 (See [2, Corollary 5.9] or [11, Fact 4.1]). Let C be a nonempty closed
convex subset of X . Then FNC = ιC⊕ ι∗C.

Fact 5.21 (See [2, Theorem 5.3]). Let f : X → ]−∞,+∞] be a proper lower
semicontinuous sublinear function. Then F∂ f = f ⊕ f ∗ and F∂ f =

{
f ⊕ f ∗}.

Remark 5.22. Let f be as in Fact 5.21, then

gra(∂ f )ε =
{
(x,x∗) ∈ X×X∗ | f (x)+ f ∗(x∗)≤ 〈x,x∗〉+ ε}

= gra∂ε f , ∀ε ≥ 0. (5.13)

Fact 5.23 (Svaiter). (See [37, p. 312].) Let A : X ⇒ X∗ be maximally monotone.
Then A is non-enlargeable if and only if graA = domFA and then graA is convex.

It is immediate from the definitions that:

Fact 5.24. Every non-enlargeable maximally monotone operator is of type (BR).

Fact 5.21 and the subsequent remark refer to a case in which all enlargements of A
coincide, or, equivalently, the Fitzpatrick family is a singleton. It is natural to deduce
that a non-enlargeable operator will also have a single element in its Fitzpatrick
family.

Corollary 5.25. Let A : X ⇒X∗ be maximally monotone. Then A is non-enlargeable
if and only if FA = ιgra A + 〈·, ·〉 and hence FA =

{
ιgraA + 〈·, ·〉

}
.
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Proof. “⇒”: By Fact 5.23, we have graA is convex. By Facts 5.5 and 5.23, we
have FA = ιgra A + 〈·, ·〉. Then by Corollary 5.18, FA =

{
ιgra A + 〈·, ·〉

}
. “⇐”: Apply

directly Fact 5.23. �
Remark 5.26. The condition that FA is singleton does not guarantee that graA is
convex. For example, let f : X → ]−∞,+∞] be a proper lower semicontinuous
sublinear function. Then by Fact 5.21, FA is singleton but gra∂ f is not necessarily
convex.

5.4 Non-enlargeable Monotone Linear Relations

We begin with a basic characterization.

Theorem 5.27. Let A : X ⇒ X∗ be a maximally monotone linear relation such
that graA is weak×weak∗ closed. Then A is non-enlargeable if and only if
gra(−A∗)∩ X × X∗ ⊆ graA. In this situation, we have that 〈x,x∗〉 = 0,∀(x,x∗) ∈
gra(−A∗)∩X×X∗.

Proof. “⇒”: By Corollary 5.25,

FA = ιgraA + 〈·, ·〉. (5.14)

Let (x,x∗) ∈ gra(−A∗)∩X×X∗. Then we have

FA(x,x
∗) = sup

(a,a∗)∈graA

{〈a∗,x〉+ 〈a,x∗〉− 〈a,a∗〉}
= sup

(a,a∗)∈graA

{−〈a,a∗〉}
= 0. (5.15)

Then by (5.15), (x,x∗) ∈ graA and 〈x,x∗〉= 0. Hence gra(−A∗)∩X×X∗ ⊆ graA.
“⇐”: By the assumption that graA is weak×weak∗ closed, we have

[gra(−A∗)∩X×X∗]⊥∩X∗ ×X =
[(

graA−1)⊥ ∩X×X∗
]⊥ ∩X∗×X = graA−1.

(5.16)

By [37, Lemma 2.1(2)], we have

〈z,z∗〉= 0, ∀(z,z∗) ∈ gra(−A∗)∩X×X∗. (5.17)

Hence A∗|X is skew. Let (x,x∗) ∈ X×X∗. Then by (5.17), we have
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FA(x,x
∗) = sup

(a,a∗)∈graA

{〈x,a∗〉+ 〈x∗,a〉− 〈a,a∗〉}
≥ sup

(a,a∗)∈gra(−A∗)∩X×X∗

{〈x,a∗〉+ 〈x∗,a〉− 〈a,a∗〉}
= sup

(a,a∗)∈gra(−A∗)∩X×X∗

{〈x,a∗〉+ 〈x∗,a〉}
= ι(

gra(−A∗)∩X×X∗
)⊥∩X∗×X

(x∗,x)

= ιgraA(x,x
∗) [by (5.16)]. (5.18)

Hence by Fact 5.5

FA(x,x
∗) = 〈x,x∗〉+ ιgraA(x,x

∗). (5.19)

Hence by Corollary 5.25, A is non-enlargeable. �
The following corollary, which holds in a general Banach space, provides a
characterization of non-enlargeable operators under a closedness assumption on the
graph. A characterization of non-enlargeable linear operators for reflexive spaces
(in which the closure assumption is hidden) was established by Svaiter in [37,
Theorem 2.5].

Corollary 5.28. Let A : X ⇒ X∗ be maximally monotone and suppose that graA is
weak×weak∗ closed. Select (a,a∗) ∈ graA and set gra Ã := graA−{(a,a∗)}. Then
A is non-enlargeable if and only if graA is convex and gra(−Ã∗)∩X ×X∗ ⊆ gra Ã.
In particular, 〈x,x∗〉= 0,∀(x,x∗) ∈ gra Ã∗ ∩X×X∗.

Proof. “⇒”: By the assumption that A is non-enlargeable, so is Ã. By Fact 5.23,
graA is convex and then graA is affine by Fact 5.12. Thus Ã is a linear relation.
Now we can apply Theorem 5.27 to Ã. “⇐”: Apply Fact 5.12 and Theorem 5.27
directly. �
Remark 5.29. We cannot remove the condition that “graA is convex” in Corol-
lary 5.28. For example, let X =R

n with the Euclidean norm. Suppose that f := ‖ ·‖.
Then ∂ f is maximally monotone by Fact 5.3, and hence gra∂ f is weak×weak∗
closed. Now we show that

gra(∂ f )∗ = {(0,0)}. (5.20)

Note that

∂ f (x) =

{
BX , if x = 0;

{ x
‖x‖}, otherwise.

(5.21)

Let (z,z∗) ∈ gra(∂ f )∗. By (5.21), we have (0,BX)⊆ gra∂ f and thus
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〈−z,BX〉= 0. (5.22)

Thus z = 0. Hence

〈z∗,a〉= 0, ∀a ∈ dom∂ f . (5.23)

Since dom∂ f = X , z∗ = 0 by (5.23). Hence (z,z∗) = (0,0) and thus (5.20) holds.
By (5.20), gra−(∂ f )∗ ⊆ gra∂ f . However, gra∂ f is not convex. Indeed, let ek =
(0, . . . ,0,1,0, · · · ,0) : the kth entry is 1 and the others are 0. Take

a =
e1− e2√

2
and b =

e2− e3√
2

.

Then (a,a) ∈ gra∂ f and (b,b) ∈ gra∂ f by (5.21), but

1
2
(a,a)+

1
2
(b,b) /∈ gra∂ f .

Hence ∂ f is enlargeable by Fact 5.23.

In the case of a skew operator we can be more exacting.

Corollary 5.30. Let A : X ⇒ X∗ be a maximally monotone and skew operator and
ε ≥ 0. Then

(i) graAε = {(x,x∗) ∈ gra(−A∗)∩X×X∗ | 〈x,x∗〉 ≥ −ε}.
(ii) A is non-enlargeable if and only if graA = gra(−A∗)∩X×X∗.

(iii) A is non-enlargeable if and only if domA = domA∗ ∩X.
(iv) Assume that X is reflexive. Then FA∗ = ιgra A∗ + 〈·, ·〉 and hence A∗ is non-

enlargeable.

Proof.

(i) By [10, Lemma 3.1], we have

FA = ιgra(−A∗)∩X×X∗ . (5.24)

Hence (x,x∗)∈ graAε if and only if FA(x,x∗)≤ 〈x,x∗〉+ε . This yields (x,x∗)∈
gra(−A∗)∩X×X∗ and 0≤ 〈x,x∗〉+ ε .

(ii) From Fact 5.23 we have that domFA = graA. The claim now follows by
combining the latter with (5.24).

(iii) For “⇒”: use (ii). “⇐”: Since A is skew, we have gra(−A∗)∩X×X∗ ⊇ graA.
Using this and (ii), it suffices to show that gra(−A∗)∩X × X∗ ⊆ graA. Let
(x,x∗) ∈ gra(−A∗)∩X ×X∗. By the assumption, x ∈ domA. Let y∗ ∈ Ax. Note
that 〈x,−x∗〉 = 〈x,y∗〉= 0, where the first equality follows from the definition
of A∗ and the second one from the fact that A is skew. In this case we claim that
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(x,x∗) is monotonically related to graA. Indeed, let (a,a∗) ∈ graA. Since A is
skew we have 〈a,a∗〉= 0. Thus

〈x− a,x∗− a∗〉= 〈x,x∗〉− 〈(x∗,x),(a,a∗)〉+ 〈a,a∗〉= 0

since (x∗,x)∈ (graA)⊥ and 〈x,x∗〉= 〈a,a∗〉= 0. Hence (x,x∗) is monotonically
related to graA. By maximality we conclude (x,x∗) ∈ graA. Hence gra(−A∗)∩
X×X∗ ⊆ graA.

(iv) Now assume that X is reflexive. By [17, Theorem 2] (or see [35, 43]), A∗ is
maximally monotone. Since graA ⊆ gra(−A∗) we deduce that gra(−A∗∗) =
gra(−A) ⊆ graA∗. The latter inclusion and Theorem 5.27 applied to the
operator A∗ yield A∗ non-enlargeable. The conclusion now follows by applying
Corollary 5.25 to A∗.

�

5.4.1 Limiting Examples and Remarks

It is possible for a non-enlargeable maximally monotone operator to be non-skew.
This is the case for the operator A∗ in Example 5.33.

Example 5.31. Let A : X ⇒ X∗ be a non-enlargeable maximally monotone operator.
By Fact 5.23 and Fact 5.12, graA is affine. Let f : X → ]−∞,+∞] be a proper lower
semicontinuous convex function with domA∩ intdom∂ f �= ∅ such that domA∩
dom∂ f is not an affine set. By Fact 5.10, A+ ∂ f is maximally monotone. Since
gra(A+ ∂ f ) is not affine, A+ ∂ f is enlargeable.

The operator in the following example was studied in detail in [9].

Fact 5.32. Suppose that X = �2, and that A : �2 ⇒ �2 is given by

Ax :=

(
∑i<n xi−∑i>n xi

)
n∈N

2
=

(
∑
i<n

xi +
1
2 xn

)
n∈N

, ∀x = (xn)n∈N ∈ domA,

(5.25)

where domA :=
{

x := (xn)n∈N ∈ �2 | ∑i≥1 xi = 0,

(
∑i≤n xi

)
n∈N
∈ �2
}

and

∑i<1 xi := 0. Now [9, Propositions 3.6] states that

A∗x =
(

1
2 xn +∑

i>n
xi

)
n∈N

, (5.26)

where

x = (xn)n∈N ∈ domA∗ =
{

x = (xn)n∈N ∈ �2

∣∣∣∣
(
∑
i>n

xi

)
n∈N
∈ �2
}
.
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Then A is an at most single-valued linear relation such that the following hold
(proofs of all claims are in brackets):

(i) A is maximally monotone and skew ([9, Propositions 3.5 and 3.2]).
(ii) A∗ is maximally monotone but not skew ([9, Theorem 3.9 and Proposi-

tion 3.6]).
(iii) domA is dense in �2 ([28, Theorem 2.5]), and domA � domA∗ ([9, Proposi-

tion 3.6]).
(iv) 〈A∗x,x〉 = 1

2 s2, ∀x = (xn)n∈N ∈ domA∗ with s := ∑i≥1 xi ([9, Proposi-
tion 3.7]).

Example 5.33. Suppose that X and A are as in Fact 5.32. Then A is enlargeable but
A∗ is non-enlargeable and is not skew. Moreover,

graAε =
{
(x,x∗) ∈ gra(−A∗) | ∣∣∑

i≥1

xi
∣∣≤√2ε, x = (xn)n∈N

}
,

where ε ≥ 0.

Proof. By Corollary 5.30(iii) and Fact 5.32(iii), A must be enlargeable. For the
second claim, note that X = �2 is reflexive, and hence by Fact 5.32(i) and
Corollary 5.30(iv), for every skew operator we must have A∗ non-enlargeable. For
the last statement, apply Corollary 5.30(i) and Fact 5.32(iv) directly to obtain graAε .

�
Example 5.34. Let C be a nonempty closed convex subset of X and ε ≥ 0. Then

gra(NC)ε =
{
(x,x∗) ∈C×X∗ | σC(x

∗)≤ 〈x,x∗〉+ ε}.
Moreover, (NC)ε = ∂ειC. Therefore, (for every x ∈ X) (NC)ε (x) is the ε−normal set
of C at x .

Proof. By Fact 5.20, we have

(x,x∗) ∈ gra (NC)ε ⇔ FNC(x,x
∗) = ιC(x)+σC(x

∗)≤ 〈x,x∗〉+ ε (5.27)

⇔ x ∈C, σC(x
∗)≤ 〈x,x∗〉+ ε.

By (5.27) and [46, Theorem 2.4.2(ii)], (NC)ε = ∂ειC. Hence (for every x ∈ X)
(NC)ε(x) is the ε−normal set of C at x. �
Example 5.35. Let f (x) := ‖x‖, ∀x ∈ X and ε ≥ 0. Then

gra(∂ f )ε =
{
(x,x∗) ∈ X×BX∗ | ‖x‖ ≤ 〈x,x∗〉+ ε

}
.

In particular, (∂ f )ε (0) = BX∗ .

Proof. Note that f is sublinear, and hence by Fact 5.21 and Remark 5.22 we
can write
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(x,x∗) ∈ gra(∂ f )ε ⇔ F∂ f (x,x
∗) = f (x)+ f ∗(x∗)≤ 〈x,x∗〉+ ε [by (5.13)]

⇔‖x‖+ ιBX∗ (x
∗)≤ 〈x,x∗〉+ ε (by [46, Corollary 2.4.16])

⇔ x∗ ∈ BX∗ , ‖x‖ ≤ 〈x,x∗〉+ ε.

Hence (∂ f )ε (0) = BX∗ . �
Example 5.36. Let p > 1 and f (x) := 1

p‖x‖p, ∀x ∈ X . Then

(∂ f )ε (0) = p
1
p (qε)

1
q BX∗ ,

where 1
p +

1
q = 1 and ε ≥ 0.

Proof. We have

x∗ ∈ (∂ f )ε (0)⇔ 〈x∗ − y∗,−y〉 ≥ −ε, ∀y∗ ∈ ∂ f (y)

⇔ 〈x∗,−y〉+ ‖y‖p≥−ε, ∀y ∈ X

⇔ 〈x∗,y〉−‖y‖p≤ ε, ∀y ∈ X

⇔ psup
y∈X

[
〈 1

p x∗,y〉− 1
p‖y‖p

]
≤ ε

⇔ p · 1
q‖ 1

p x∗‖q ≤ ε

⇔ ‖x∗‖q ≤ qε pq−1 = qε p
q
p

⇔ x∗ ∈ p
1
p (qε)

1
q BX∗ .

�

5.4.2 Applications of Fitzpatrick’s Last Function

For a monotone linear operator A : X → X∗ it will be very useful to define the
following quadratic function (which is actually a special case of Fitzpatrick’s last
function [15] for the linear relation A):

qA : x �→ 1
2 〈x,Ax〉.

Then qA = qA+ . We shall use the well-known fact (see, e.g., [28]) that

∇qA = A+, (5.28)

where the gradient operator ∇ is understood in the Gâteaux sense.
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The next result was first given in [8, Proposition 2.2] for a reflexive space. The
proof is easily adapted to a general Banach space.

Fact 5.37. Let A : X → X∗ be linear continuous, symmetric, and monotone. Then

(∀(x,x∗) ∈ X×X∗
)

q∗A(x
∗+Ax) = qA(x)+ 〈x,x∗〉+ q∗A(x

∗) (5.29)

and q∗A ◦A = qA.

The next result was first proven in [4, Proposition 3.7(iv)] and [5, Theorem 2.3(i)]
in Hilbert space. We now extend it to a general Banach space.

Proposition 5.38. Let A : X → X∗ be linear and monotone. Then

FA(x,x
∗) = 2q∗A+

( 1
2 x∗+ 1

2 A∗x) = 1
2 q∗A+

(x∗+A∗x), ∀(x,x∗) ∈ X×X , (5.30)

and ranA+ ⊆ dom∂q∗A+
⊆ domq∗A+

⊆ ranA+. If ranA+ is closed, then domq∗A+
=

dom∂q∗A+
= ranA+.

Proof. By Fact 5.11, domA∗ ∩X = X , so for every x,y ∈ X we have x,y ∈ domA∗ ∩
domA. The latter fact and the definition of A∗ yield 〈y,A∗x〉 = 〈x,Ay〉. Hence for
every (x,x∗) ∈ X×X∗,

FA(x,x
∗) = sup

y∈X
〈x,Ay〉+ 〈y,x∗〉− 〈y,Ay〉

= 2sup
y∈X
〈y, 1

2 x∗+ 1
2 A∗x〉− qA+(y)

= 2q∗A+
( 1

2 x∗+ 1
2 A∗x)

= 1
2 q∗A+

(x∗+A∗x), (5.31)

where we also used the fact that qA = qA+ in the second equality. The third equality
follows from the definition of Fenchel conjugate. By [46, Proposition 2.4.4(iv)],

ran∂qA+ ⊆ dom∂q∗A+
(5.32)

By (5.28), ran∂qA+ = ranA+. Then by (5.32),

ranA+ ⊆ dom∂q∗A+
⊆ domq∗A+

(5.33)

Then by the Brøndsted–Rockafellar Theorem (see [46, Theorem 3.1.2]),

ranA+ ⊆ dom∂q∗A+
⊆ domq∗A+

⊆ ranA+.

Hence, under the assumption that ranA+ is closed, we have ranA+ = dom∂q∗A+
=

domq∗A+
. �

We can now apply the last proposition to obtain a formula for the enlargement of a
single-valued operator.
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Proposition 5.39 (Enlargement of a monotone linear operator). Let A : X → X∗
be a linear and monotone operator, and ε ≥ 0. Then

Aε(x) =
{

Ax+ z∗ | q∗A(z∗)≤ 2ε
}
, ∀x ∈ X . (5.34)

Moreover, A is non-enlargeable if and only if A is skew.

Proof. Fix x∈ X , z∗ ∈ X∗ and x∗ = Ax+z∗. Then by Proposition 5.38 and Fact 5.37,

x∗ ∈ Aε(x)⇔ FA(x,Ax+ z∗)≤ 〈x,Ax+ z∗〉+ ε
⇔ 1

2 q∗A+
(Ax+ z∗+A∗x)≤ 〈x,Ax+ z∗〉+ ε

⇔ 1
2 q∗A+

(
A+(2x)+ z∗

)≤ 〈x,Ax+ z∗〉+ ε
⇔ 1

2

[
q∗A+

(z∗)+ 2〈x,z∗〉+ 2〈x,Ax〉]≤ 〈x,Ax+ z∗〉+ ε
⇔ q∗A(z

∗)≤ 2ε,

where we also used in the last equivalence the fact that qA = qA+ . Now we show
the second statement. By Fact 5.11, domA∗ ∩X = X . Then by Theorem 5.27 and
Corollary 5.30(iii), we have A is non-enlargeable if and only if A is skew. �
A result similar to Corollary 5.40 below was proved in [19, Proposition 2.2] in
reflexive space. Their proof still requires the constraint that ran(A+A∗) is closed.

Corollary 5.40. Let A : X → X∗ be a linear and monotone operator such that
ran(A+A∗) is closed. Then

Aε(x) =
{

Ax+(A+A∗)z | qA(z)≤ 1
2ε
}
, ∀x ∈ X .

Proof. By Fact 5.11, A is continuous and domA∗ ∩X = X . Proposition 5.39 yields

x∗ ∈ Aε(x)⇔ x∗ = Ax+ z∗, q∗A(z
∗)≤ 2ε. (5.35)

In particular, z∗ ∈ domq∗A. Since ran(A+) is closed, Proposition 5.38 yields

ran(A+) = ran(A+A∗) = domq∗A+
= domq∗A.

The above expression and the fact that z∗ ∈ domq∗A implies that there exists z ∈ X
such that z∗ = (A+A∗)z. Note also that (by Fact 5.37)

q∗A(z
∗) = q∗A+

(z∗) = q∗A+
(A+(2z)) = qA+(2z) = 4qA(z),

where we used Fact 5.37 in the last equality. Using this in (5.35) gives

x∗ ∈ Aε(x)⇔ x∗ = Ax+(A+A∗)z, 4qA(z)≤ 2ε
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⇔ x∗ = Ax+(A+A∗)z, qA(z) ≤ 1
2ε,

establishing the claim. �
We conclude the section with two examples.

Example 5.41 (Rotation). Assume that X is the Euclidean plane R2, let θ ∈ [0, π2 ],
and set

A :=

(
cosθ −sinθ
sinθ cosθ

)
. (5.36)

Then for every (ε,x) ∈ R+×R
2,

Aε(x) =
{

Ax+ v | v ∈ 2
√
(cosθ )ε BX

}
. (5.37)

Proof. We consider two cases.

Case 1: θ = π
2 .

Then A is skew operator. By Corollary 5.30, Aε = A and hence (5.37) holds.
Case 2: θ ∈ [0, π2 [.

Let x ∈R2. Note that A+A∗
2 = (cosθ ) Id, qA = cosθ

2 ‖ ·‖2. Then by Corollary 5.40,

Aε(x) =
{

Ax+ 2(cosθ )z | qA(z) =
cosθ

2 ‖z‖2 ≤ 1
2ε
}
.

Thus,

Aε(x) =
{

Ax+ v | ‖v‖ ≤ 2
√
(cosθ )ε

}
=
{

Ax+ v | v ∈ 2
√
(cosθ )ε BX

}
.

�
Example 5.42 (Identity). Assume that X is a Hilbert space, and A := Id. Let ε ≥ 0.
Then

graAε =
{
(x,x∗) ∈ X×X | x∗ ∈ x+ 2

√
εBX

}
.

Proof. By [4, Example 3.10], we have

(x,x∗) ∈ graAε ⇔ 1
4‖x+ x∗‖2 ≤ 〈x,x∗〉+ ε

⇔ 1
4‖x− x∗‖2 ≤ ε

⇔‖x− x∗‖ ≤ 2
√
ε

⇔ x∗ ∈ x+ 2
√
εBX .

�
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5.5 Sums of Operators

The conclusion of the lemma below has been established for reflexive Banach spaces
in [7, Lemma 5.8]. Our proof for a general Banach space assumes the operators to
be of type (FPV) and follows closely that of [7, Lemma 5.8].

Lemma 5.43. Let A,B : X ⇒ X∗ be maximally monotone of type (FPV), and
suppose that

⋃
λ>0λ [domA− domB] is a closed subspace of X. Then we have

⋃
λ>0

λ [domA− domB] =
⋃
λ>0

λ [PX domFA−PX domFB] .

Proof. By Facts 5.5 and 5.6, we have

⋃
λ>0

λ [domA− domB]⊆
⋃
λ>0

λ [PX domFA−PX domFB]⊆
⋃
λ>0

λ
[
domA− domB

]

⊆
⋃
λ>0

λ
[
domA− domB

]⊆ ⋃
λ>0

λ [domA− domB]

=
⋃
λ>0

λ [domA− domB] (by the assumption).

�
Corollary 5.44. Let A,B : X ⇒ X∗ be maximally monotone linear relations, and
suppose that domA− domB is a closed subspace. Then

[domA− domB] =
⋃
λ>0

λ [PX domFA−PX domFB] .

Proof. Directly apply Fact 5.8 and Lemma 5.43. �
Corollary 5.45. Let A : X ⇒ X∗ be a maximally monotone linear relation and let
C ⊆ X be a nonempty and closed convex set. Assume that

⋃
λ>0λ [domA−C] is a

closed subspace. Then

⋃
λ>0

λ
[
PX domFA−PX domFNC

]
=
⋃
λ>0

λ [domA−C] .

Proof. Let B = NC. Then apply directly Facts 5.8, 5.9 and Lemma 5.43. �
Theorem 5.46 below was proved in [7, Theorem 5.10] for a reflexive space.
We extend it to a general Banach space.

Theorem 5.46 (Fitzpatrick function of the sum). Let A,B : X ⇒X∗ be maximally
monotone linear relations, and suppose that domA− domB is closed. Then
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FA+B = FA�2FB,

and the partial infimal convolution is exact everywhere.

Proof. Let (z,z∗)∈X×X∗. By Fact 5.19, it suffices to show that there exists v∗ ∈X∗
such that

FA+B(z,z
∗)≥ FA(z,z

∗ − v∗)+FB(z,v
∗). (5.38)

If (z,z∗) /∈ domFA+B, clearly, (5.38) holds.
Now assume that (z,z∗) ∈ domFA+B. Then

FA+B(z,z
∗)

= sup
{x,x∗,y∗}

[〈x,z∗〉+ 〈z,x∗〉− 〈x,x∗〉+ 〈z− x,y∗〉− ιgraA(x,x
∗)− ιgraB(x,y

∗)
]
.

(5.39)

Let Y = X∗ and define F,K : X×X∗×Y → ]−∞,+∞] respectively by

F :(x,x∗,y∗) ∈ X×X∗×Y → 〈x,x∗〉+ ιgraA(x,x
∗)

K :(x,x∗,y∗) ∈ X×X∗×Y → 〈x,y∗〉+ ιgraB(x,y
∗)

Then by (5.39),

FA+B(z,z
∗) = (F +K)∗(z∗,z,z) (5.40)

By Fact 5.14 and the assumptions, F and K are proper lower semicontinuous and
convex. The definitions of F and K yield

domF− domK = [domA− domB]×X∗×Y, which is a closed subspace.

Thus by Fact 5.4 and (5.40), there exists (z∗0,z
∗∗
0 ,z∗∗1 ) ∈ X∗ ×X∗∗×Y ∗ such that

FA+B(z,z
∗) = F∗(z∗ − z∗0,z− z∗∗0 ,z− z∗∗1 )+K∗(z∗0,z

∗∗
0 ,z∗∗1 )

= F∗(z∗ − z∗0,z,0)+K∗(z∗0,0,z) (by (z,z∗) ∈ domFA+B)

= FA(z,z
∗ − z∗0)+FB(z,z

∗
0).

Thus (5.38) holds by taking v∗ = z∗0 and hence FA+B = FA�2FB. �
The next result was first obtained by Voisei in [39] while Simons gave a different
proof in [34, Theorem 46.3]. We are now in position to provide a third approach.

Theorem 5.47. Let A,B : X ⇒ X∗ be maximally monotone linear relations, and
suppose that domA− domB is closed. Then A+B is maximally monotone.
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Proof. By Fact 5.5, we have that FA ≥ 〈·, ·〉 and FB ≥ 〈·, ·〉. Using now Theo-
rem 5.46 and (5.9) implies that FA+B ≥ 〈·, ·〉. Combining the last inequality with
Corollary 5.44 and Fact 5.15, we conclude that A+B is maximally monotone. �
Theorem 5.48. Let A,B : X ⇒ X∗ be maximally monotone linear relations, and
suppose that domA− domB is closed. Assume that A and B are non-enlargeable.
Then

FA+B = ιgra(A+B) + 〈·, ·〉

and hence A+B is non-enlargeable.

Proof. By Corollary 5.25, we have

FA = ιgraA + 〈·, ·〉 and FB = ιgraB + 〈·, ·〉. (5.41)

Let (x,x∗) ∈ X×X∗. Then by (5.41) and Theorem 5.46, we have

FA+B(x,x
∗) = min

y∗∈X∗
{
ιgra A(x,x

∗ − y∗)+ 〈x∗ − y∗,x〉+ ιgraB(x,y
∗)+ 〈y∗,x〉}

= ιgra(A+B)(x,x
∗)+ 〈x∗,x〉.

By Theorem 5.47 we have that A+B is maximally monotone. Now we can apply
Corollary 5.25 to A+B to conclude that A+B is non-enlargeable. �
The proof of Theorem 5.49 in part follows that of [6, Theorem 3.1].

Theorem 5.49. Let A : X ⇒ X∗ be a maximally monotone linear relation. Suppose
C is a nonempty closed convex subset of X, and that domA ∩ intC �= ∅. Then
FA+NC = FA�2FNC , and the partial infimal convolution is exact everywhere.

Proof. Let (z,z∗)∈X×X∗. By Fact 5.19, it suffices to show that there exists v∗ ∈X∗
such that

FA+NC(z,z
∗)≥ FA(z,v

∗)+FNC(z,z
∗ − v∗). (5.42)

If (z,z∗) /∈ domFA+NC , clearly, (5.42) holds.
Now assume that

(z,z∗) ∈ domFA+NC . (5.43)

By Facts 5.10 and 5.6,

PX
[
domFA+NC

]⊆ [dom(A+NC)]⊆C.

Thus, by (5.43), we have

z ∈C. (5.44)
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Set

g : X×X∗ → ]−∞,+∞] : (x,x∗) �→ 〈x,x∗〉+ ιgraA(x,x
∗). (5.45)

By Fact 5.14, g is convex. Hence,

h = g+ ιC×X∗ (5.46)

is convex as well. Let

c0 ∈ domA∩ intC, (5.47)

and let c∗0 ∈ Ac0. Then (c0,c∗0) ∈ graA∩ (intC×X∗) = domg∩ intdom ιC×X∗ . Let
us compute FA+NC(z,z

∗). As in (5.39) we can write

FA+NC(z,z
∗)

= sup
(x,x∗,c∗)

[〈x,z∗〉+ 〈z,x∗〉− 〈x,x∗〉+ 〈z− x,c∗〉− ιgraA(x,x
∗)− ιgraNC (x,c

∗)
]

≥ sup
(x,x∗)

[〈x,z∗〉+ 〈z,x∗〉− 〈x,x∗〉− ιgraA(x,x
∗)− ιC×X∗(x,x

∗)
]

= sup
(x,x∗)

[〈x,z∗〉+ 〈z,x∗〉− h(x,x∗)]

= h∗(z∗,z),

where we took c∗ = 0 in the inequality. By Fact 5.1, ιC×X∗ is continuous at (c0,c∗0)∈
intdom ιC×X∗ . Since (c0,c∗0)∈ domg∩intdomιC×X∗ we can use Fact 5.2 to conclude
the existence of (y∗,y∗∗) ∈ X∗ ×X∗∗ such that

h∗(z∗,z) = g∗(y∗,y∗∗)+ ι∗C×X∗(z
∗ − y∗,z− y∗∗)

= g∗(y∗,y∗∗)+ ι∗C(z
∗ − y∗)+ ι{0}(z− y∗∗). (5.48)

Then by (5.43) and (5.48) we must have z = y∗∗. Thus by (5.48) and the definition
of g we have

FA+NC(z,z
∗)≥ g∗(y∗,z)+ ι∗C(z

∗ − y∗) = FA(z,y
∗)+ ι∗C(z

∗ − y∗)

= FA(z,y
∗)+ ι∗C(z∗ − y∗)+ ιC(z) [by (5.44)]

= FA(z,y
∗)+FNC(z,z

∗ − y∗) [by Fact 5.20].

Hence (5.42) holds by taking v∗ = y∗ and thus FA+NC = FA�2FNC . �
We decode the prior result as follows:
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Corollary 5.50 (Normal cone). Let A : X ⇒ X∗ be a maximally monotone linear
relation. Suppose C is a nonempty closed convex subset of X, and that domA∩
intC �=∅. Then A+NC is maximally monotone.

Proof. By Fact 5.5, we have that FA ≥ 〈·, ·〉 and FNC ≥ 〈·, ·〉. Using now Theo-
rem 5.49 and (5.9) implies that FA+NC ≥ 〈·, ·〉. Combining the last inequality with
Corollary 5.44 and Fact 5.15, we conclude that A+NC is maximally monotone. �
Remark 5.51. Corollary 5.50 was first established in [6, Theorem 3.1]. See [41, 44,
45] for generalizations.

To conclude we revisit a quite subtle example. All statements in the fact below have
been proved in [10, Example 4.1 and Theorem 3.6(vii)].

Fact 5.52. Consider X := c0, with norm ‖ ·‖∞ so that X∗ = �1 with norm ‖ ·‖1, and
X∗∗ = �∞ with second dual norm ‖ · ‖∗. Fix α := (αn)n∈N ∈ �∞ with limsupαn �= 0,
and define Aα : �1→ �∞ by

(Aαx∗)n := α2
n x∗n + 2∑

i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ �1. (5.49)

Finally, let Tα : c0 ⇒ X∗ be defined by

graTα :=
{
(−Aαx∗,x∗) | x∗ ∈ X∗,〈α,x∗〉= 0

}
=
{(

(−∑
i>n

αnαix
∗
i +∑

i<n

αnαix
∗
i )n,x

∗) | x∗ ∈ X∗,〈α,x∗〉= 0
}
. (5.50)

Then

(i) 〈Aαx∗,x∗〉= 〈α,x∗〉2, ∀x∗ = (x∗n)n∈N ∈ �1 and so (5.50) is well defined.
(ii) Aα is a maximally monotone operator on �1.

(iii) Tα is a maximally monotone and skew operator on c0.
(iv) FTα = ιC, where C := {(−Aαx∗,x∗) | x∗ ∈ X∗}.
This set of affairs allows us to show the following:

Example 5.53. Let X = c0, Aα , C, and Tα be defined as in Fact 5.52. Then Tα : c0 ⇒
�1 is a maximally monotone enlargeable skew linear relation. Indeed

gra(Tα +NBX )ε =
{
(−Aαx∗,z∗) ∈ BX ×X∗ | x∗ ∈ X ,‖z∗ − x∗‖1 ≤ 〈−Aαx∗,z∗〉+ ε

}
.

Proof. From (5.50), we have that graTα � C therefore Fact 5.52(iv) yields FTα �=
ιgraTα + 〈·, ·〉. Using now Fact 5.52(iii) and Corollary 5.25, we conclude that Tα is
enlargeable.

Now we determine gra(Tα +NBX )ε . By Fact 5.52(iii), Theorem 5.49, and (5.4),
we have
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(z,z∗) ∈ gra(Tα +NBX )ε

⇔ FTα�2FNBX
(z,z∗)≤ 〈z,z∗〉+ ε

⇔ FTα (z,x
∗)+ ιBX (z)+ ι

∗
BX
(z∗ − x∗)≤ 〈z,z∗〉+ ε, ∃x∗ ∈ X∗ (by Fact 5.20)

⇔ z ∈ BX , ιC(z,x∗)+ ‖z∗− x∗‖1 ≤ 〈z,z∗〉+ ε, ∃x∗ ∈ X∗ (by Fact 5.52(iv))

⇔ z =−Aαx∗ ∈ BX , ‖z∗ − x∗‖1 ≤ 〈z,z∗〉+ ε, ∃x∗ ∈ X∗

⇔ z =−Aαx∗ ∈ BX , ‖z∗ − x∗‖1 ≤ 〈−Aαx∗,z∗〉+ ε, ∃x∗ ∈ X∗.

This is the desired result. �
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Chapter 6
A Brøndsted–Rockafellar Theorem for Diagonal
Subdifferential Operators

Radu Ioan Boţ and Ernö Robert Csetnek

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract In this note we give a Brøndsted–Rockafellar Theorem for diagonal
subdifferential operators in Banach spaces. To this end we apply an Ekeland-type
variational principle for monotone bifunctions.
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6.1 Introduction

Throughout this paper X denotes a real Banach space and X∗ its topological dual
space endowed with the dual norm. Since there is no danger of confusion, we use
‖ · ‖ as notation for the norms of both spaces X and X∗. We denote by 〈x∗,x〉 the
value of the linear and continuous functional x∗ ∈ X∗ at x ∈ X .

A function f : X → R := R∪{±∞} is called proper if the set dom f := {x ∈ X :
f (x)<+∞}, called effective domain of f , is nonempty and f (x)>−∞ for all x ∈ X .
We consider also the epigraph of f , which is the set epi f = {(x,r) ∈ X ×R :
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f (x) ≤ r}. For a set C ⊆ X , let δC : X → R be its indicator function, which is the
function taking the values 0 on C and +∞ otherwise.

The (convex) subdifferential of f at an element x ∈ X such that f (x) ∈ R is
defined as ∂ f (x) := {x∗ ∈ X∗ : f (y)− f (x) ≥ 〈x∗,y− x〉 ∀y ∈ X}, while in case
f (x) /∈R one takes by convention ∂ f (x) := /0. For every ε ≥ 0, the ε-subdifferential
of f , defined as ∂ε f (x) = {x∗ ∈ X∗ : f (y)− f (x) ≥ 〈x∗,y− x〉− ε ∀y ∈ X} for x ∈
X such that f (x) ∈ R, and ∂ε f (x) := /0 otherwise, represents an enlargement of
its subdifferential. Let us notice that in contrast to the classical subdifferential, the
ε-subdifferential of a proper, convex, and lower semicontinuous function at each
point of its effective domain is in general a nonempty set, provided that ε > 0 (cf.
[12, Proposition 3.15]; see also [15, Theorem 2.4.4(iii)]).

For ε ≥ 0, the ε-normal set of C at x ∈ X is defined by Nε
C(x) := ∂εδC(x), that

is, Nε
C(x) = {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ ε ∀y ∈ C} if x ∈ C, and Nε

C(x) = /0 otherwise.
The normal cone of the set C at x ∈ X is NC(x) := N0

C(x), that is, NC(x) = {x∗ ∈ X∗ :
〈x∗,y− x〉 ≤ 0 ∀y ∈C} if x ∈C, and NC(x) = /0 otherwise.

For the following characterizations of the ε-subdifferential via the ε-normal set,
we refer, for instance, to [13] (the extension from finite to infinite dimensional
spaces is straightforward). If x ∈ X is such that f (x) ∈ R, then for all ε ≥ 0 it
holds x∗ ∈ ∂ε f (x) if and only if (x∗,−1) ∈ Nε

epi f (x, f (x)). Moreover, for r ∈ R

with f (x) ≤ r, the relation (x∗,−1) ∈ Nepi f (x,r) implies r = f (x). Furthermore,
if (x∗,−s) ∈ Nepi f (x,r), then s ≥ 0 and, if, additionally, s �= 0, then r = f (x) and
(1/s)x∗ ∈ ∂ f (x).

The celebrated Brøndsted–Rockafellar Theorem [6], which we recall as follows,
emphasizes the fact that the ε-subdifferential of a proper, convex, and lower
semicontinuous function can be seen as an approximation of its subdifferential.

Theorem 6.1 (Brøndsted–Rockafellar Theorem [6]). Let f : X →R be a proper,
convex, and lower semicontinuous function and x0 ∈ dom f . Take ε > 0 and x∗0 ∈
∂ε f (x0). Then for all λ > 0, there exist x ∈ X and x∗ ∈ X∗ such that

x∗ ∈ ∂ f (x), ‖x− x0‖ ≤ ε
λ

and ‖x∗ − x∗0‖ ≤ λ .

Let us mention that a method for proving this result is by applying the Ekeland
variational principle (see [12, Theorem 3.17]). For a more elaborated version of
Theorem 6.1, we refer the interested reader to a result given by Borwein in [4] (see,
also, [15, Theorem 3.1.1].

The aim of this note is to provide a Brøndsted–Rockafellar Theorem for so-called
diagonal subdifferential operators. These are set-valued operators AF : X ⇒ X∗
defined by (see [1, 5, 8–10])

AF(x) =

{ {x∗ ∈ X∗ : F(x,y)−F(x,x)≥ 〈x∗,y− x〉 ∀y ∈C}, if x ∈C,
/0, otherwise,
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where C is a nonempty subset of X and F : C×C→ R is a so-called bifunction.
The term diagonal subdifferential operator is justified by the formula AF(x) =
∂ (F(x, ·)+ δC)(x) for all x ∈ X .

Bifunctions have been intensively studied in connection with equilibrium prob-
lems since the publication of the seminal work of Blum and Oettli [3] and,
recently, in the context of diagonal subdifferential operators, when characterizing
properties like local boundedness [1], monotonicity, and maximal monotonicity in
both reflexive [8, 9] and nonreflexive Banach spaces [5, 10].

A further operator of the same type, which has been considered in the literature,
is FA : X ⇒ X∗, defined by

FA(x) =

{ {x∗ ∈ X∗ : F(x,x)−F(y,x)≥ 〈x∗,y− x〉 ∀y ∈C}, if x ∈C,
/0, otherwise.

Notice that when F is monotone, namely, F(x,y)+F(y,x) ≤ 0 for all x,y ∈C (see
[3]) and F(x,x) = 0 for all x ∈ C, then AF(x) ⊆ FA(x) for all x ∈ C. Furthermore,
if C is convex and closed, F(x,x) = 0, F(x, ·) is convex and F(·,y) is upper
hemicontinuous, i.e., upper semicontinuous along segments, for all x,y ∈ C, then
FA(x) ⊆ AF(x) for all x ∈ C (cf. [5, Lemma 5]). Under these hypotheses one can
transfer properties from FA to AF and vice versa.

In the following we will concentrate ourselves on AF and consider, in analogy
to the definition of the ε-subdifferential, what we call to be the ε-diagonal
subdifferential operator of F , AF

ε : X ⇒ X∗, defined by

AF
ε (x) =

{ {x∗ ∈ X∗ : F(x,y)−F(x,x) ≥ 〈x∗,y− x〉− ε ∀y ∈C}, if x ∈C,
/0, otherwise.

If C is a nonempty, convex, and closed set and x ∈ C is such that F(x, ·) is convex
and lower semicontinuous, then AF

ε (x) �= /0 for all ε > 0.
The main result of this paper is represented by a Brøndsted–Rockafellar Theorem

for the diagonal subdifferential operator AF , the proof of which relies on the Ekeland
variational principle for bifunctions given in [2].

For a generalization of the Brøndsted–Rockafellar Theorem for maximal mono-
tone operators, we refer to [14, Theorem 29.9], whereby, as pointed out in [14,
pp. 152–153], this result holds only in reflexive Banach spaces. Later, a special
formulation of this theorem in the nonreflexive case was given in [11].

In contrast to this, our approach does not rely on the maximal monotonicity of the
diagonal subdifferential operator, while the result holds in general Banach spaces.
We present also some consequences of the given Brøndsted–Rockafellar theorem
concerning the density of the domain of diagonal subdifferential operators. We close
the note by showing that a Brøndsted–Rockafellar-type theorem for subdifferential
operators can be obtained as a particular case of our main result.
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6.2 A Brøndsted–Rockafellar Theorem

The following Ekeland variational principle for bifunctions was given in [2].
Although this result was stated there in Euclidian spaces, it is valid in general
Banach spaces, too.

Theorem 6.2. Assume that C is nonempty, convex, and closed set and f :C×C→R

satisfies:

(i) f (x, ·) is lower bounded and lower semicontinuous for every x ∈C.
(ii) f (x,x) = 0 for every x ∈C.

(iii) f (x,y)+ f (y,z) ≥ f (x,z) for every x,y,z ∈C.

Then, for every ε > 0 and for every x0 ∈C, there exists x ∈C such that

f (x0,x)+ ε‖x0− x‖ ≤ 0

and

f (x,x)+ ε‖x− x‖> 0 ∀x ∈C, x �= x.

Remark 6.3. By taking z = x, the assumptions (iii) and (ii) in the above theorem
imply that f (x,y)+ f (y,x) ≥ 0 for all x,y ∈C, which means that − f is monotone.

Theorem 6.2 will be an essential ingredient in proving the following Brøndsted–
Rockafellar Theorem for diagonal subdifferential operators.

Theorem 6.4. Assume that C is a nonempty, convex, and closed set and F : C×C→
R satisfies:

(i) F(x, ·) is a convex and lower semicontinuous function for every x ∈C.
(ii) F(x,x) = 0 for every x ∈C.

(iii) F(x,y)+F(y,z)≥ F(x,z) for every x,y,z ∈C.

Take ε > 0, x0 ∈ C and x∗0 ∈ AF
ε (x0). Then for all λ > 0, there exist x∗ ∈ X∗ and

x ∈C such that

x∗ ∈ AF(x), ‖x− x0‖ ≤ ε
λ

and ‖x∗ − x∗0‖ ≤ λ .

Proof. We fix ε > 0, x0 ∈ C and x∗0 ∈ AF
ε (x0). According to the definition of the

operator AF
ε , we have

F(x0,y)≥ 〈x∗0,y− x0〉− ε ∀y ∈C. (6.1)

Let us define the bifunction f : C×C→ R by

f (x,y) = F(x,y)−〈x∗0,y− x〉 for all (x,y) ∈C×C.
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We want to apply Theorem 6.2 to f and show to this aim that the assumptions
(i)–(iii) in Theorem 6.2 are verified. Indeed, the lower semicontinuity of the function
f (x, ·) and the relation f (x,x) = 0, for all x∈C, are inherited from the corresponding
properties of F . One can easily see that (iii) is fulfilled, too: for x,y,z ∈C it holds

f (x,y)+ f (y,z) = F(x,y)+F(y,z)−〈x∗0,z− x〉 ≥ F(x,z)−〈x∗0,z− x〉= f (x,z).

It remains to prove that f (x, ·) is lower bounded for all x ∈ C. Take an arbitrary
x ∈C. By using (6.1) we get for all y ∈C

f (x,y) ≥ f (x0,y)− f (x0,x) = F(x0,y)−〈x∗0,y− x0〉− f (x0,x)≥−ε− f (x0,x)

and the desired property follows.
Take now λ > 0. A direct application of Theorem 6.2 guarantees the existence of

x ∈C such that

f (x0,x)+λ‖x0− x‖ ≤ 0 (6.2)

and

f (x,x)+λ‖x− x‖> 0 ∀x ∈C, x �= x. (6.3)

From (6.2) we obtain

F(x0,x)−〈x∗0,x− x0〉+λ‖x0− x‖ ≤ 0,

which combined with (6.1) ensures

λ‖x0− x‖ ≤ 〈x∗0,x− x0〉−F(x0,x)≤ ε,

hence ‖x0− x‖ ≤ ε
λ .

Further, notice that (6.3) implies

0 ∈ ∂( f (x, ·)+ δC +λ‖x−·‖)(x).
Since the functions in the above statement are convex and ‖x−·‖ is continuous,

we obtain via the subdifferential sum formula (cf. [15, Theorem 2.8.7])

0 ∈ ∂( f (x, ·)+ δC
)
(x)+ ∂

(
λ‖x−·‖)(x). (6.4)

Taking into account the definition of the bifunction f , we get (cf. [15, Theorem
2.4.2(vi)]) ∂

(
f (x, ·) + δC

)
(x) = ∂

(
F(x, ·) + δC

)
(x)− x∗0 = AF(x)− x∗0. Moreover,

∂
(
λ‖x− ·‖)(x) = λBX∗ , where BX∗ denotes the closed unit ball of the dual space

X∗ (see, for instance, [15, Corollary 2.4.16]). Hence, (6.4) is nothing else than
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0 ∈ AF(x)− x∗0 +λBX∗ ,

from which we conclude that there exists x∗ ∈ AF(x) with ‖x∗ − x∗0‖ ≤ λ and the
proof is complete. �
For a similar result like the one given in Theorem 6.4, but formulated in reflexive
Banach spaces and by assuming (Blum–Oettli) maximal monotonicity for the
bifunction F (see [3] for the definition of this notion), we refer the reader to [7,
Theorem 1.1].

A direct consequence of the above Brøndsted–Rockafellar Theorem is the
following result concerning the density of D(AF) in C, where D(AF) = {x ∈ X :
AF(x) �= /0} is the domain of the operator AF .

Corollary 6.5. Assume that the hypotheses of Theorem 6.4 are fulfilled. Then
D(AF) =C, hence D(AF) is a convex set.

Proof. The implication D(AF)⊆C is obvious. Take now an arbitrary x0 ∈C. For all
n ∈ N, we have that AF

1/n(x0) �= /0, hence we can choose x∗n ∈ AF
1/n(x0). Theorem 6.4

guarantees the existence of u∗n ∈ X∗ and un ∈C such that

u∗n ∈ AF(un), ‖un− x0‖ ≤
√

1/n and ‖u∗n− x∗n‖ ≤
√

1/n for all n ∈ N.

Since un ∈ D(AF) for all n ∈N, we get from above that x0 ∈D(AF). �
Remark 6.6. Similar statements to the one in Corollary 6.5 were furnished in [8,
Sect. 4] in reflexive Banach spaces and by assuming maximal monotonicity for AF .

Let us show how Theorem 6.4 can be used in order to derive the classical Brøndsted–
Rockafellar theorem for the subdifferential operator in case the domain of the
function is closed.

Corollary 6.7. Let f : X → R be a proper, convex, and lower semicontinuous
function such that dom f is closed. Take x0 ∈ dom f , ε > 0 and x∗0 ∈ ∂ε f (x0). Then
for all λ > 0, there exist x∗ ∈ X∗ and x ∈ X such that

x∗ ∈ ∂ f (x), ‖x− x0‖ ≤ ε
λ

and ‖x∗ − x∗0‖ ≤ λ .

Proof. The result follows by applying Theorem 6.4 for C = dom f and the
bifunction F : dom f × dom f →R defined by F(x,y) = f (y)− f (x). �
The restriction “dom f closed” comes from the fact that in Theorems 6.2 and 6.4
the set C is assumed to be a closed set. In the following Brøndsted–Rockafellar-
type Theorem for subdifferential operators, which we obtain as a consequence of
Corollary 6.7, we abandon this assumption.

Corollary 6.8. Let f : X → R be a proper, convex, and lower semicontinuous
function. Take x0 ∈ dom f , ε > 0 and x∗0 ∈ ∂ε f (x0). Then for all λ > 0, there exist
x∗ ∈ X∗ and x ∈ X such that
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x∗ ∈ ∂ f (x), ‖x− x0‖ ≤ ε
(

1
λ
+ 1

)
and ‖x∗ − x∗0‖ ≤ λ .

Proof. Take x0 ∈ dom f , ε > 0, x∗0 ∈ ∂ε f (x0) and λ > 0. We consider X×R endowed
with the norm defined for all (x,r) ∈ X ×R as being ‖(x,r)‖ = (‖x‖2 + r2)1/2.
We divide the proof in two steps.

(I) Consider the case x∗0 = 0. We have 0∈ ∂ε f (x0), hence (0,−1)∈Nε
epi f (x0, f (x0))

= ∂εδepi f (x0, f (x0)). By applying Corollary 6.7 for the function δepi f and λ :=
λ/(λ+1), we obtain the existence of (x,r)∈ epi f and (x∗,−s)∈ ∂δepi f (x,r) =
Nepi f (x,r) such that

‖(x,r)− (x0, f (x0))‖ ≤ ε 1+λ
λ

and ‖(x∗,−s)− (0,−1)‖ ≤ λ
1+λ

.

From here, it follows

‖x− x0‖ ≤ ε/λ + ε,s≥ 0,‖x∗‖ ≤ λ
1+λ

and |s− 1| ≤ λ
1+λ

.

The last inequality ensures 0 < 1
1+λ ≤ s, hence r = f (x) and (1/s)x∗ ∈ ∂ f (x).

Moreover, ‖(1/s)x∗‖ ≤ λ
1+λ · (1+λ ) = λ .

(II) Let us consider now the general case, when x∗0 ∈ ∂ε f (x0) is an arbitrary element.
Define the function g : X → R, g(x) = f (x)− 〈x∗0,x〉, for all x ∈ X . Notice
that ∂αg(x) = ∂α f (x)− x∗0 for all α ≥ 0, hence the condition x∗0 ∈ ∂ε f (x0)
guarantees 0 ∈ ∂εg(x0). Applying the statement obtained in the first part of the
proof for g, we obtain that there exist x∗ ∈ X∗ and x ∈ X such that

x∗ ∈ ∂g(x), ‖x− x0‖ ≤ ε
(

1
λ
+ 1

)
and ‖x∗‖ ≤ λ .

Thus, x∗+ x∗0 ∈ ∂ f (x), ‖x− x0‖ ≤ ε
(

1
λ + 1

)
and ‖(x∗+ x∗0)− x∗0‖= ‖x∗‖ ≤ λ ;

hence, the proof is complete.

�
The bounds in Corollary 6.8 differ from the ones in Theorem 6.1, nevertheless,
by taking λ =

√
ε , they become

√
ε + ε and, respectively,

√
ε , and allow one to

derive (by letting ε ↘ 0) the classical density result regarding the domain of the
subdifferential.

However, it remains an open question if Theorem 6.1 can be deduced from
Theorem 6.4.
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Chapter 7
A q-Analog of Euler’s Reduction Formula
for the Double Zeta Function

David M. Bradley and Xia Zhou

Abstract The double zeta function is a function of two arguments defined by a
double Dirichlet series and was first studied by Euler in response to a letter from
Goldbach in 1742. By calculating many examples, Euler inferred a closed-form
evaluation of the double zeta function in terms of values of the Riemann zeta
function, in the case when the two arguments are positive integers with opposite
parity. Here, we establish a q-analog of Euler’s evaluation. That is, we state and
prove a 1-parameter generalization that reduces to Euler’s evaluation in the limit as
the parameter q tends to 1.
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7.1 Introduction

The double zeta function is defined by

ζ (s, t) :=
∞

∑
n=1

1
ns

n−1

∑
k=1

1
kt , ℜ(s)> 1, ℜ(s+ t)> 2. (7.1)

The sums (7.1), and more generally those of the form

ζ (s1,s2, . . . ,sm) := ∑
k1>k2>···>km>0

m

∏
j=1

1

k
s j
j

,
n

∑
j=1

ℜ(s j)> n, n= 1,2, . . . ,m, (7.2)

have attracted increasing attention in recent years; see, e.g., [2–5, 7–10, 12, 15, 20].
The survey articles [6, 16, 22, 25] provide an extensive list of references. In (7.2)
the sum is over all positive integers k1, . . . ,km satisfying the indicated inequalities.
Note that with positive integer arguments, s1 > 1 is necessary and sufficient for
convergence. As is now customary, we refer to the parameter m in (7.2) as the depth.
Of course (7.2) reduces to the familiar Riemann zeta function when the depth m = 1.

The problem of evaluating sums of the form (7.1) with integers s > 1 and t > 0
seems to have been first proposed in a letter from Goldbach to Euler [18] in 1742.
(See also [17, 19] and [1, p. 253].) Calculating several examples led Euler to infer a
closed-form evaluation of the double zeta function in terms of values of the Riemann
zeta function, in the case when the two arguments have opposite parity. Euler’s
evaluation can be expressed as follows. Let s− 1 and t− 1 be positive integers with
opposite parity (i.e., s+ t is odd) and let 2h = max(s, t). Then

ζ (s, t) = (−1)s+1
h

∑
k=1

[(
s+ t− 2k− 1

t− 1

)
+

(
s+ t− 2k− 1

s− 1

)]
ζ (2k)ζ (s+ t− 2k)

+
1
2

(
(1+(−1)s)ζ (s)ζ (t)+ 1

2

[
(−1)s

(
s+ t

s

)
− 1

]
ζ (s+ t). (7.3)

If we interpret ζ (1) = 0, then Euler’s formula (7.3) gives true results also when t = 1
and s is even, but this case is subsumed by another formula of Euler, namely

2ζ (s,1) = sζ (s+ 1)−
s−1

∑
k=2

ζ (k)ζ (s+ 1− k), (7.4)

which is valid for all integers s > 1.
The evaluations (7.3) and (7.4) are both examples of reduction formulas, since

they both give a closed-form evaluation of a sum of depth 2 in terms of sums of
depth 1. More generally (see, e.g., [7, 8]) a reduction formula expresses an instance
of (7.2) in terms of lower depth sums.



7 A q-Analog of Euler’s Reduction Formula for the Double Zeta Function 115

With the general goal of gaining a more complete understanding of the myriad
relations satisfied by the multiple zeta functions (7.2) in mind, a q-analog of (7.2)
was introduced in [11] and independently in [21, 23] as

ζ [s1,s2, . . . ,sm] := ∑
k1>k2>···>km>0

m

∏
j=1

q(s j−1)k j

[k j]
s j
q

, (7.5)

where 0 < q < 1 and for any integer k,

[k]q :=
1− qk

1− q
.

Observe that we now have

ζ (s1, . . . ,sm) = lim
q→1

ζ [s1, . . . ,sm],

so that (7.5) represents a generalization of (7.2). The papers [11–14] consider
values of the multiple q-zeta functions (7.5) and establish several infinite classes
of relations satisfied by them. In particular, the following q-analog of (7.4) was
established.

Theorem 7.1 (Corollary 8 of [11]). Let s− 1 be a positive integer. Then

2ζ [s,1] = sζ [s+ 1]+ (1− q)(s− 2)ζ [s]−
s−1

∑
k=2

ζ [k]ζ [s+ 1− k].

Here, we continue this general program of study by establishing a q-analog of
Euler’s reduction formula (7.3). Throughout the remainder of this paper, s and t
denote positive integers with additional restrictions noted where needed, and q is
real with 0 < q < 1.

7.2 q-Analog of Euler’s Reduction Formula

Throughout this section, we assume s > 1. We’ve seen that ζ [s, t] as given by (7.5)
is a q-analog of ζ (s, t) in (7.1). Here, we introduce additional q-analogs of ζ (s, t)
by defining

ζ1[s, t] = ζ1[s, t;q] := (−1)t ∑
u>v>0

q(s−1)u+(t−1)(−v)

[u]sq[−v]tq
= ∑

u>v>0

q(s−1)u+v

[u]sq[v]tq

and

ζ2[s, t] = ζ2[s, t;q] := (−1)s ∑
u>v>0

q(s−1)(−u)+(t−1)v

[−u]sq[v]tq
= ∑

u>v>0

qu+(t−1)v

[u]sq[v]tq
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= qs+tζ1[s, t;1/q].

Let

ζ−[s] :=
∞

∑
n=1

q(s−1)(−n)

[−n]sq
= (−1)s

∞

∑
n=1

qn

[n]sq

and for convenience, put

ζ±[s] := ζ [s]+ ζ−[s] = ∑
0 �=n∈Z

q(s−1)n

[n]sq
= (−1)s ∑

0 �=n∈Z

qn

[n]sq
.

Note that if s− 1 is a positive integer and n �= 0, then

qn

[n]sq
=

qn

[n]2q

(
1− q+

qn

[n]q

)s−2

=
s−2

∑
k=0

(
s− 2

k

)
(1− q)k q(s−1−k)n

[n]s−k
q

and so

ζ−[s] = (−1)s
s−2

∑
k=0

(
s− 2

k

)
(1− q)kζ [s− k] (7.6)

and

ζ±[s] =
(
1+(−1)s)ζ [s]+ (−1)s

s−2

∑
k=1

(
s− 2

k

)
(1− q)kζ [s− k] (7.7)

are expressible in terms of values of the q-Riemann zeta function, i.e., (7.2) with
m = 1. Finally, as in [13], let

ϕ [s] :=
∞

∑
n=1

(n− 1)q(s−1)n

[n]sq
=

∞

∑
n=1

nq(s−1)n

[n]sq
− ζ [s].

We also employ the notation [24]

(
z

a, b

)
:=

(
z
a

)(
z− a

b

)
=

(
z
b

)(
z− b

a

)
=

(
z

a+ b

)
(a+ b)!

a!b!

for the trinomial coefficient, in which a, b are nonnegative integers and which
reduces to z!/a!b!(z− a− b)! if z is an integer not less than a+ b. We can now
state our main result.

Theorem 7.2 (q-Analog of Euler’s double zeta reduction). Let s−1 and t−1 be
positive integers, and let 0 < q < 1. Then
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(−1)tζ1[s, t]− (−1)sζ2[s, t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b(ζ±[s− a− b]ζ [a+ t]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)b(ζ±[t− a− b]ζ [a+ s]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1(2ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]

)

−ζ±[s]ζ [t]+ (−1)s
s−1

∑
k=0

(
s− 1

k

)
(1− q)kζ [s+ t− k].

Corollary 7.3 (Euler’s double zeta reduction). Let s− 1 and t − 1 be positive
integers with opposite parity, and let 2h = max(s, t). Then (7.3) holds.

Corollary 7.4. Let s− 1 and t − 1 be positive integers with like parity, and let
2h = max(s, t). Then

2
h

∑
k=1

[(
s+ t− 2k− 1

s− 1

)
+

(
s+ t− 2k− 1

t− 1

)]
ζ (2k)ζ (s+ t− 2k)

=
(
1+(−1)s)ζ (s)ζ (t)+[(s+ t

t

)
− (−1)s

]
ζ (s+ t).

Proof. Let q→ 1 in Theorem 7.2. With the obvious notation

ζ±(s) := lim
q→1

ζ±[s] = ∑
0 �=n∈Z

1
ns =

(
1+(−1)s)ζ (s),

we find that

(−1)tζ (s, t)− (−1)sζ (s, t) =
s−2

∑
a=0

(
a+ t− 1

a

)(
ζ±(s− a)ζ (a+ t)− ζ (s+ t)

)

+
t−2

∑
a=0

(
a+ s− 1

a

)(
ζ±(t− a)ζ (a+ s)− ζ (s+ t)

)

−2

(
s+ t− 2

s− 1

)
ζ (s+ t)− ζ±(s)ζ (t)+ (−1)sζ (s+ t).
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Since

s−2

∑
a=0

(
a+ t− 1

a

)
=

(
s+ t− 2

t

)
and

t−2

∑
a=0

(
a+ s− 1

a

)
=

(
s+ t− 2

s

)
,

and (
s+ t− 2

t

)
+

(
s+ t− 2

s

)
+ 2

(
s+ t− 2

s− 1

)
=

(
s+ t

t

)
,

it follows that

(−1)tζ (s, t)− (−1)sζ (s, t)

=
s−2

∑
a=0

(
a+ t− 1

a

)
ζ±(s− a)ζ (a+ t)+

t−2

∑
a=0

(
a+ s− 1

a

)
ζ±(t− a)ζ (a+ s)

−
[(

s+ t− 2
t

)
+

(
s+ t− 2

s

)
+ 2

(
s+ t− 2

s− 1

)
− (−1)s

]
ζ (s+ t)− ζ±(s)ζ (t)

=
s

∑
j=2

(
s+ t− j− 1

t− 1

)
ζ±( j)ζ (s+ t− j)+

t

∑
j=2

(
s+ t− j− 1

s− 1

)
ζ±( j)ζ (s+ t− j)

−
[(

s+ t
t

)
− (−1)s

]
ζ (s+ t)− ζ±(s)ζ (t)

= 2
s/2

∑
k=1

(
s+ t− 2k− 1

t− 1

)
ζ (2k)ζ (s+ t− 2k)

+2
t/2

∑
k=1

(
s+ t− 2k− 1

s− 1

)
ζ (2k)ζ (s+ t− 2k)

−(1+(−1)s)ζ (s)ζ (t)−[(s+ t
t

)
− (−1)s

]
ζ (s+ t). (7.8)

Since the binomial coefficients vanish if k exceeds the indicated range of summation
above, we can replace the two sums by a single sum on k ranging from 1 up to h.
If s and t have opposite parity, multiply both sides by (−1)t = (−1)s+1 and divide
each term by 2 to complete the proof of Corollary 7.3. For Corollary 7.4, note that
if s and t have like parity, then the left hand side of (7.8) vanishes. �

7.3 Proof of Theorem 7.2

The key ingredient is the following partial fraction decomposition.
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Lemma 7.5 (cf. Lemma 3.1 of [13] and Lemma 1 of [24]). If s and t are positive
integers, and u and v are non-zero real numbers such that u+ v �= 0, then

1
[u]sq[v]tq

=
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b q(t−1−b)u+av

[u]s−a−b
q [u+ v]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)b qau+(s−1−b)v

[v]t−a−b
q [u+ v]a+s

q

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j q(t− j)u+(s− j)v

[u+ v]s+t− j
q

.

Proof. As in [13], let x and y be non-zero real numbers such that x+y+(q−1)xy �=
0. Apply the partial differential operator

1
(r− 1)!

(
− ∂
∂x

)r−1 1
(s− 1)!

(
− ∂
∂y

)s−1

to both sides of the identity

1
xy

=
1

x+ y+(q− 1)xy

(
1
x
+

1
y
+ q− 1

)
;

then let x = [u]q, y = [v]q and observe that x+ y+(q− 1)xy= [u+ v]q. �
We now proceed with the proof of Theorem 7.2. First, multiply both sides of
Lemma 7.5 by q(s−1)u+(t−1)v to obtain

q(s−1)uq(t−1)v

[u]sq[v]tq
=

s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b q(s−a−b−1)uq(a+t−1)(u+v)

[u]s−a−b
q [u+ v]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)b q(t−a−b−1)vq(a+s−1)(u+v)

[v]t−a−b
q [u+ v]a+s

q

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j q(s+t− j−1)(u+v)

[u+ v]s+t− j
q

.

After replacing u by u− v and v by −v, we find that

q(s−1)(u+v)q(t−1)(−v)

[u+ v]sq[−v]tq
=

s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bq(s−a−b−1)(u+v)q(a+t−1)u

[u+ v]s−a−b
q [u]a+t

q

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bq(t−a−b−1)(−v)q(a+s−1)u

[−v]t−a−b
q [u]a+s

q
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−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) jq(s+t− j−1)u

[u]s+t− j
q

. (7.9)

We’d like to sum (7.9) over all ordered pairs of positive integers (u,v), but we
must exercise some care in doing so since some of the terms on the right hand
side may diverge. The difficulty can be circumvented by judiciously combining the
troublesome terms before summing. To this end, observe that

s−1

∑
a=0

(
a+ t− 1

a,s− 1− a

)
(1− q)s−1−aq(a+t−1)u

[u+ v]q[u]
a+t
q

+
t−1

∑
a=0

(
a+ s− 1

a, t− 1− a

)
(1− q)t−1−aq(a+s−1)u

[−v]q[u]
a+s
q

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) jq(s+t− j−1)u

[u]s+t− j
q

=
s

∑
j=1

(
s+ t− j− 1
s− j, j− 1

)
(1− q) j−1q(s+t− j−1)u

[u+ v]q[u]
s+t− j
q

+
t

∑
j=1

(
s+ t− j− 1
t− j, j− 1

)
(1− q) j−1q(s+t− j−1)u

[−v]q[u]
s+t− j
q

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) jq(s+t− j−1)u

[u]s+t− j
q

=

(
1

[u+ v]q
+

1
[−v]q

− (1− q)

)min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1q(s+t− j−1)u

[u]s+t− j
q

=

(
1

[u+ v]q
− 1

[v]q

)min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1q(s+t− j−1)u

[u]s+t− j
q

, (7.10)

where we have used the fact that(
s+ t− j− 1
s− j, j− 1

)
=

(
s+ t− j− 1
t− j, j− 1

)
=

(
s+ t− j− 1
s− j, t− j

)

vanishes if j > min(s, t). Substituting (7.10) into (7.9) yields

q(s−1)(u+v)q(t−1)(−v)

[u+ v]sq[−v]tq
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=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bq(s−a−b−1)(u+v)q(a+t−1)u

[u+ v]s−a−b
q [u]a+t

q

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bq(t−a−b−1)(−v)q(a+s−1)u

[−v]t−a−b
q [u]a+s

q

−
(

1
[v]q
− 1

[u+ v]q

)min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1q(s+t− j−1)u

[u]s+t− j
q

. (7.11)

Now assume that s > 1. Then

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

=
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

∑
k>n

(
1

[k− n]q
− 1

[k]q

)
.

Recalling that 0 < q < 1, we evaluate the telescoping sum

∑
k>n

(
1

[k− n]q
− 1

[k]q

)
= lim

N→∞

n+N

∑
k=n+1

(
1

[k− n]q
− 1

[k]q

)

= lim
N→∞

n

∑
k=1

(
1
[k]q
− 1

[N + k]q

)

= (q− 1)n+
n

∑
k=1

1
[k]q

,

so that

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

= (q− 1)
(
ϕ [s+ t− j]+ ζ [s+ t− j]

)
+

∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

n

∑
k=1

1
[k]q

.

But this last double sum evaluates as

∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

n

∑
k=1

1
[k]q

= ∑
n>k>0

q(s+t− j−1)n

[n]s+t− j
q [k]q

+
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j+1
q

= ζ [s+ t− j,1]+
∞

∑
n=1

q(s+t− j)n

[n]s+t− j+1
q

+
∞

∑
n=1

q(s+t− j−1)n− q(s+t− j)n

[n]s+t− j+1
q
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= ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]+ (1− q)
∞

∑
n=1

(
1− qn

1− q

)
q(s+t− j−1)n

[n]s+t− j+1
q

= ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]+ (1− q)
∞

∑
n=1

q(s+t− j−1)n

[n]s+t− j
q

= ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]+ (1− q)ζ [s+ t− j].

It follows that

∞

∑
u,v=1

(
1
[v]q
− 1

[u+ v]q

)
q(s+t− j−1)u

[u]s+t− j
q

= ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]+ (q− 1)ϕ [s+ t− j].

Consequently, summing (7.11) over all ordered pairs of positive integers (u,v) yields

(−1)tζ1[s, t] =
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bζ [s− a− b,a+ t]

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bζ−[t− a− b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1

×(ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]
)
.

(7.12)

Now assume also that t > 1. For each pair of integers (a,b) with 0 ≤ a ≤ s− 1,
0 ≤ b ≤ s− 2− a, we apply the q-stuffle multiplication rule [11, Equation (2.2)] in
the form

ζ [s− a− b]ζ [a+ t] = ζ [s− a− b,a+ t]+ζ [a+ t,s− a−b]

+ζ [s+ t− b]+ (1− q)ζ [s+ t− b− 1],

substituting for ζ [s− a− b,a+ t] in (7.12). Thus, we find that

(−1)tζ1[s, t] =
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b(ζ [s− a− b]ζ [a+ t]−ζ [s+ t− b]

−(1− q)ζ [s+ t− b− 1]− ζ [a+ t,s−a−b]
)
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+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bζ−[t− a− b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1

×(ζ [s+ t− j,1]+ ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]
)
.

The sum of ζ [s + t − j,1] over j can be combined with the double sum of
ζ [a+ t,s− a− b] over a and b by extending the range of the latter to include the
value b = s− 1− a. Doing this yields

(−1)tζ1[s, t] =
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b(ζ [s− a− b]ζ [a+ t]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bζ−[t− a− b]ζ [a+ s]

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1

×(ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]
)

−
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bζ [t + a,s− a− b].

It follows that for integers s > 1 and t > 1,

(−1)sζ1[t,s]+ (−1)tζ1[s, t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b(ζ±[s− a− b]ζ [a+ t]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)b(ζ±[t− a− b]ζ [a+ s]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

−2
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1(ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]

)
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−
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bζ [t + a,s− a− b]

−
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bζ [s+ a, t− a− b]. (7.13)

By Theorem 2.1 of [13],

ζ [s]ζ [t] =
s−1

∑
a=0

s−1−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)bζ [t + a,s− a− b]

+
t−1

∑
a=0

t−1−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)bζ [s+ a, t− a− b]

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) jϕ [s+ t− j].

We use this latter decomposition formula to eliminate the last two sums of double
q-zeta values in (7.13), obtaining

(−1)sζ1[t,s]+ (−1)tζ1[s, t]+ ζ [s]ζ [t]

=
s−2

∑
a=0

s−2−a

∑
b=0

(
a+ t− 1

a,b

)
(1− q)b(ζ±[s− a− b]ζ [a+ t]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

+
t−2

∑
a=0

t−2−a

∑
b=0

(
a+ s− 1

a,b

)
(1− q)b(ζ±[t− a− b]ζ [a+ s]

−ζ [s+ t− b]− (1− q)ζ [s+ t− b− 1]
)

−
min(s,t)

∑
j=1

(
s+ t− j− 1
s− j, t− j

)
(1− q) j−1

×(2ζ [s+ t− j+ 1]− (1− q)ϕ [s+ t− j]
)
. (7.14)

But

ζ−[s]ζ [t] = (−1)s
∞

∑
u=1

qu

[u]sq

∞

∑
v=1

q(t−1)v

[v]tq

= (−1)s ∑
u>v>0

qu+(t−1)v

[u]sq[v]tq
+(−1)s ∑

v>u>0

q(t−1)v+u

[v]tq[u]sq
+(−1)s

∞

∑
v=1

qtv

[v]s+t
q

.
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Since

qtv

[v]s+t
q

=
qtv

[v]t+1
q

(
1− q+

qv

[v]q

)s−1

=
s−1

∑
k=0

(
s− 1

k

)
(1− q)kq(s+t−k−1)v

[v]s+t−k
q

,

it follows that

∞

∑
v=1

qtv

[v]s+t
q

=
s−1

∑
k=0

(
s− 1

k

)
(1− q)kζ [s+ t− k],

and therefore

ζ−[s]ζ [t] = (−1)sζ2[s, t]+ (−1)sζ1[t,s]+ (−1)s
s−1

∑
k=0

(
s− 1

k

)
(1− q)kζ [s+ t− k].

We now use this formula to substitute the initial (−1)sζ1[t,s] term in (7.14) to
complete the proof.
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Abstract We consider the computation of Bernoulli, Tangent (zag), and Secant
(zig or Euler) numbers. In particular, we give asymptotically fast algorithms for
computing the first n such numbers O(n2(logn)2+o(1)). We also give very short
in-place algorithms for computing the first n Tangent or Secant numbers in O(n2)
integer operations. These algorithms are extremely simple and fast for moderate
values of n. They are faster and use less space than the algorithms of Atkinson (for
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8.1 Introduction

The Bernoulli numbers are rational numbers Bn defined by the generating function

∑
n≥0

Bn
zn

n!
=

z
exp(z)− 1

. (8.1)

Bernoulli numbers are of interest in number theory and are related to special values
of the Riemann zeta function (see Sect. 8.2). They also occur as coefficients in the
Euler–Maclaurin formula, so are relevant to high-precision computation of special
functions [7, Sect. 4.5].

It is sometimes convenient to consider scaled Bernoulli numbers

Cn =
B2n

(2n)!
, (8.2)

with generating function

∑
n≥0

Cn z2n =
z/2

tanh(z/2)
. (8.3)

The generating functions (8.1) and (8.3) only differ by the single term B1z, since the
other odd terms vanish.

The Tangent numbers Tn and Secant numbers Sn are defined by

∑
n>0

Tn
z2n−1

(2n− 1)!
= tanz, ∑

n≥0

Sn
z2n

(2n)!
= secz . (8.4)

In this paper, which is based on an a talk given by the first author at a workshop
held to mark Jonathan Borwein’s sixtieth birthday, we consider some algorithms for
computing Bernoulli, Tangent, and Secant numbers. For background, combinatorial
interpretations, and references, see Abramowitz and Stegun [1, Chap. 23] (where
the notation differs from ours, e.g. (−1)nE2n is used for our Sn), and Sloane’s [27]
sequences A000367, A000182, and A000364.

Let M(n) be the number of bit-operations required for n-bit integer multipli-
cation. The Schönhage–Strassen algorithm [25] gives M(n) = O(n logn loglogn),
and Fürer [17] has recently given an improved bound M(n) = O(n(logn)2log∗ n).
For simplicity we merely assume that M(n) = O(n(logn)1+o(1)), where the o(1)
term depends on the precise algorithm used for multiplication. For example, if
the Schönhage–Strassen algorithm is used, then the o(1) term can be replaced by
logloglogn/ loglogn.

In Sects. 8.2 and 8.3 we mention some relevant and generally well-known facts
concerning Bernoulli, Tangent, and Secant numbers.

Recently, Harvey [20] showed that the single number Bn can be computed in
O(n2(logn)2+o(1)) bit-operations using a modular algorithm. In this paper we show
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that all the Bernoulli numbers B0, . . . ,Bn can be computed with the same complexity
bound (and similarly for Secant and Tangent numbers).

In Sect. 8.4 we give a relatively simple algorithm that achieves the slightly
weaker bound O(n2(logn)3+o(1)). In Sect. 8.5 we describe the improvement to
O(n2(logn)2+o(1)). The idea is similar to that espoused by Steel [29], although we
reduce the problem to division rather than multiplication. It is an open question
whether the single number B2n can be computed in o(n2) bit-operations.

In Sect. 8.6 we give very short in-place algorithms for computing the first n
Secant or Tangent numbers using O(n2) integer operations. These algorithms are
extremely simple and fast for moderate values of n (say n ≤ 1000), although
asymptotically not as fast as the algorithms given in Sects. 8.4 and 8.5. Bernoulli
numbers can easily be deduced from the corresponding Tangent numbers using the
relation (8.14) below.

8.2 Bernoulli Numbers

From the generating function (8.1) it is easy to see that the Bn are rational numbers,
with B2n+1 = 0 if n > 0. The first few nonzero Bn are B0 = 1, B1 = −1/2, B2 =
1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66, B12 = −691/2730, and
B14 = 7/6.

The denominators of the Bernoulli numbers are given by the Von Staudt–Clausen
Theorem [12, 28], which states that

B′2n := B2n + ∑
(p−1)|2n

1
p
∈ Z .

Here the sum is over all primes p for which p− 1 divides 2n.
Since the “correction” B′2n−B2n is easy to compute, it might be convenient in a

program to store the integers B′2n instead of the rational numbers B2n or Cn.
Euler found that the Riemann zeta-function for even non-negative integer

arguments can be expressed in terms of Bernoulli numbers—the relation is

(−1)n−1 B2n

(2n)!
=

2ζ (2n)
(2π)2n . (8.5)

Since ζ (2n) = 1+O(4−n) as n→+∞, we see that

|B2n| ∼ 2(2n)!
(2π)2n .

From Stirling’s approximation to (2n)!, the number of bits in the integer part of
B2n is 2n lgn+O(n) (we write lg for log2). Thus, it takes Ω(n2 logn) space to store
B1, . . . ,Bn. We cannot expect any algorithm to compute B1, . . . ,Bn in fewer than
Ω(n2 logn) bit-operations.
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Another connection between the Bernoulli numbers and the Riemann zeta-
function is the identity

Bn+1

n+ 1
=−ζ (−n) (8.6)

for n ∈ Z, n ≥ 1. This follows from (8.5) and the functional equation for the zeta-
function or directly from a contour integral representation of the zeta-function [31].

From the generating function (8.1), multiplying both sides by exp(z)− 1 and
equating coefficients of z, we obtain the recurrence

k

∑
j=0

(
k+ 1

j

)
B j = 0 for k > 0. (8.7)

This recurrence has traditionally been used to compute B0, . . . ,B2n with O(n2)
arithmetic operations, for example, in [22]. However, this is unsatisfactory if
floating-point numbers are used, because the recurrence is numerically unstable:
the relative error in the computed B2n is of order 4nε if the floating-point arithmetic
has precision ε , i.e., lg(1/ε) bits.

Let Cn be defined by (8.2). Then, multiplying each side of (8.3) by sinh(z/2)/
(z/2) and equating coefficients gives the recurrence

k

∑
j=0

Cj

(2k+ 1− 2 j)!4k− j =
1

(2k)! 4k . (8.8)

Using this recurrence to evaluate C0,C1, . . . ,Cn, the relative error in the computed
Cn is only O(n2ε), which is satisfactory from a numerical point of view.

Equation (8.5) can be used in several ways to compute Bernoulli numbers. If we
want just one Bernoulli number B2n then ζ (2n) on the right-hand side of (8.5) can be
evaluated to sufficient accuracy using the Euler product: this is the “zeta-function”
algorithm for computing Bernoulli numbers mentioned (with several references to
earlier work) by Harvey [20]. On the other hand, if we want several Bernoulli
numbers, then we can use the generating function

πz
tanh(πz)

=−2
∞

∑
k=0

(−1)kζ (2k)z2k , (8.9)

computing the coefficients of z2k, k≤ n, to sufficient accuracy, as mentioned in [3,8,
9]. This is similar to the fast algorithm that we describe in Sect. 8.4. The similarity
can be seen more clearly if we replace πz by z in (8.9), giving

z
tanh(z)

=−2
∞

∑
k=0

(−1)k ζ (2k)
π2k z2k , (8.10)
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since it is the rational number ζ (2n)/π2n that we need in order to compute B2n

from (8.5). In fact, it is easy to see that (8.10) is equivalent to (8.3).
There is a vast literature on Bernoulli, Tangent, and Secant numbers. For

example, the bibliography of Dilcher and Slavutskii [15] contains more than 2,000
items. Thus, we do not attempt to give a complete list of references to related work.
However, we briefly mention the problem of computing irregular primes [10, 11],
which are odd primes p such that p divides the class number of the pth cyclotomic
field. The algorithms that we present in Sects. 8.4 and 8.5 below are not suitable
for this task because they take too much memory. It is much more space-efficient
to use a modular algorithm where the computations are performed modulo a single
prime (or maybe the product of a small number of primes), as in [10, 11, 14, 20].
Space can also be saved by the technique of “multisectioning”, which is described
by Crandall [13, Sect. 3.2] and Hare [19].

8.3 Tangent and Secant Numbers

The Tangent numbers Tn (n > 0) (also called zag numbers) are defined by

∑
n>0

Tn
z2n−1

(2n− 1)!
= tanz =

sinz
cosz

.

Similarly, the Secant numbers Sn (n ≥ 0) (also called Euler or zig numbers) are
defined by

∑
n≥0

Sn
z2n

(2n)!
= secz =

1
cosz

.

Unlike the Bernoulli numbers, the Tangent and Secant numbers are positive integers.
Because tanz and sec z have poles at z = π/2, we expect Tn to grow roughly like
(2n− 1)!(2/π)n and Sn like (2n)!(2/π)n. To obtain more precise estimates, let

ζ0(s) = (1− 2−s)ζ (s) = 1+ 3−s+ 5−s+ · · ·

be the odd zeta-function. Then

Tn

(2n− 1)!
=

22n+1ζ0(2n)
π2n ∼ 22n+1

π2n (8.11)

(this can be proved in the same way as Euler’s relation (8.5) for the Bernoulli
numbers). We also have [1, (23.2.22)]

Sn

(2n)!
=

22n+2β (2n+ 1)
π2n+1 ∼ 22n+2

π2n+1 , (8.12)
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where

β (s) =
∞

∑
j=0

(−1) j(2 j+ 1)−s. (8.13)

From (8.5) and (8.11), we see that

Tn = (−1)n−122n(22n− 1)
B2n

2n
. (8.14)

This can also be proved directly, without involving the zeta-function, by using the
identity

tanz =
1

tanz
− 2

tan(2z)
.

Since Tn ∈ Z, it follows from (8.14) that the odd primes in the denominator of B2n

must divide 22n−1. This is compatible with the Von Staudt–Clausen theorem, since
(p− 1)|2n implies p|(22n− 1) by Fermat’s little theorem.

Tn has about 4n more bits than #B2n$, but both have 2n lgn + O(n) bits, so
asymptotically there is not much difference between the sizes of Tn and #B2n$. Thus,
if our aim is to compute B2n, we do not lose much by first computing Tn, and this
may be more convenient since Tn ∈ Z, B2n ∈Q.

8.4 A Fast Algorithm for Bernoulli Numbers

Harvey [20] showed how Bn could be computed exactly, using a modular algorithm
and the Chinese remainder theorem, in O(n2(logn)2+o(1)) bit-operations. The same
complexity can be obtained using (8.5) and the Euler product for the zeta-function
(see the discussion in Harvey [20, Sect. 1]).

In this section we show how to compute all of B0, . . . ,Bn with almost the same
complexity bound (only larger by a factor O(logn)). In Sect. 8.5 we give an even
faster algorithm, which avoids the O(logn) factor.

Let A(z) = a0 + a1z+ a2z2 + · · · be a power series with coefficients in R, with
a0 �= 0. Let B(z) = b0 + b1z+ · · · be the reciprocal power series, so A(z)B(z) = 1.
Using the FFT, we can multiply polynomials of degree n− 1 with O(n logn) real
operations. Using Newton’s method [24, 26], we can compute b0, . . . ,bn−1 with the
same complexity O(n logn), up to a constant factor.

Taking A(z) = (exp(z) − 1)/z and working with N-bit floating-point num-
bers, where N = n lg(n) + O(n), we get B0, . . . ,Bn to sufficient accuracy to de-
duce the exact (rational) result. (Alternatively, use (8.3) to avoid computing
the terms with odd subscripts, since these vanish except for B1.) The work
involved is O(n logn) floating-point operations, each of which can be done with
N-bit accuracy in O(n(logn)2+o(1)) bit-operations. Thus, overall we get B0, . . . ,Bn
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with O(n2(logn)3+o(1)) bit-operations. Similarly for Secant and Tangent numbers.
We omit a precise specification of N and a detailed error analysis of the algorithm,
since it is improved in the following section.

8.5 A Faster Algorithm for Tangent and Bernoulli Numbers

To improve the algorithm of Sect. 8.4 for Bernoulli numbers, we use the
“Kronecker–Schönhage trick” [7, Sect. 1.9]. Instead of working with power series
A(z) (or polynomials, which can be regarded as truncated power series), we work
with binary numbers A(z) where z is a suitable (negative) power of 2.

The idea is to compute a single real number A which is defined in such a way
that the numbers that we want to compute are encoded in the binary representation
of A . For example, consider the series

∑
k>0

k2zk =
z(1+ z)
(1− z)3 , |z|< 1.

The right-hand side is an easily computed rational function of z, say A(z). We use
decimal rather than binary for expository purposes. With z = 10−3 we easily find

A(10−3) =
1001000

997002999
= 0.001004009016025036049064081100 · · ·

Thus, if we are interested in the finite sequence of squares (12,22,32, . . . ,102), it is
sufficient to compute A = A(10−3) correctly rounded to 30 decimal places, and we
can then “read off” the squares from the decimal representation of A .

Of course, this example is purely for illustrative purposes, because it is easy
to compute the sequence of squares directly. However, we use the same idea
to compute Tangent numbers. Suppose we want the first n Tangent numbers
(T1,T2, . . . ,Tn). The generating function

tanz = ∑
k≥1

Tk
z2k−1

(2k− 1)!

gives us almost what we need, but not quite, because the coefficients are rationals,
not integers. Instead, consider

(2n− 1)! tanz =
n

∑
k=1

T ′k,n z2k−1 +Rn(z), (8.15)

where
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T ′k,n =
(2n− 1)!
(2k− 1)!

Tk (8.16)

is an integer for 1≤ k≤ n, and

Rn(z) =
∞

∑
k=n+1

T ′k,n z2k−1 = (2n− 1)!
∞

∑
k=n+1

Tk
z2k−1

(2k− 1)!
(8.17)

is a remainder term which is small if z is sufficiently small. Thus, choosing
z = 2−p with p sufficiently large, the first 2np binary places of (2n−1)! tanz define
T ′1,n,T

′
2,n, . . . ,T

′
n,n. Once we have computed T ′1,n,T

′
2,n, . . . ,T

′
n,n it is easy to deduce

T1,T2, . . . ,Tn from

Tk =
T ′k,n

(2n− 1)!/(2k− 1)!
.

For this idea to work, two conditions must be satisfied. First, we need

0≤ T ′k,n < 1/z2 = 22p, 1≤ k≤ n, (8.18)

so we can read off the T ′k,n from the binary representation of (2n−1)! tanz. Since we
have a good asymptotic estimate for Tk, it is not hard to choose p sufficiently large
for this condition to hold.

Second, we need the remainder term Rn(z) to be sufficiently small that it does
not influence the estimation of T ′n,n. A sufficient condition is

0≤ Rn(z)< z2n−1. (8.19)

Choosing z sufficiently small (i.e., p sufficiently large) guarantees that condi-
tion (8.19) holds, since Rn(z) is O(z2n+1) as z→ 0 with n fixed.

Lemmas 8.3 and 8.4 below give sufficient conditions for (8.18) and (8.19) to
hold.

Lemma 8.1.

Tk

(2k− 1)!
≤
(

2
π

)2(k−1)

for k≥ 1.

Proof. From (8.11),

Tk

(2k− 1)!
= 2

(
2
π

)2k

ζ0(2k)≤ 2

(
2
π

)2k

ζ0(2)≤
(

2
π

)2k π2

4
=

(
2
π

)2(k−1)

.

�
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Lemma 8.2. (2n− 1)!≤ n2n−1 for n≥ 1.

Proof.

(2n− 1)!= n
n−1

∏
j=1

(n− j)(n+ j) = n
n−1

∏
j=1

(n2− j2)≤ n2n−1

with equality iff n = 1. �
Lemma 8.3. If k ≥ 1, n ≥ 2, p = #n lg(n)$, z = 2−p, and T ′k,n is as in (8.16), then

z≤ n−n and T ′k,n < 1/z2.

Proof. We have z = 2−p = 2−#n lg(n)$ ≤ 2−n lg(n) = n−n, which proves the first part
of the Lemma.

Assume k≥ 1 and n≥ 2. From Lemma 8.1, we have

T ′k,n ≤ (2n− 1)!

(
2
π

)2(k−1)

≤ (2n− 1)!,

and from Lemma 8.2 it follows that

T ′k,n ≤ n2n−1 < n2n.

From the first part of the Lemma, n2n ≤ 1/z2, so the second part follows. �
Lemma 8.4. If n≥ 2, p = #n lg(n)$, z = 2−p, and Rn(z) is as defined in (8.17), then
0 < Rn(z)< 0.1z2n−1 .

Proof. Since all the terms in the sum defining Rn(z) are positive, it is immediate that
Rn(z) > 0. Since n≥ 2, we have p≥ 2 and z≤ 1/4. Now, using Lemma 8.1,

Rn(z) =
∞

∑
k=n+1

T ′k,nz2k−1

≤ (2n− 1)!
∞

∑
k=n+1

(
2
π

)2(k−1)

z2k−1

≤ (2n− 1)!

(
2
π

)2n

z2n+1

(
1+

(
2z
π

)2

+

(
2z
π

)4

+ · · ·
)

≤ (2n− 1)!

(
2
π

)2n

z2n+1

/(
1−
(

2z
π

)2
)

.

Since z ≤ 1/4, we have 1/(1 − (2z/π)2) < 1.026. Also, from Lemma 8.2,
(2n− 1)!≤ n2n−1. Thus, we have
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Fig. 8.1 Algorithm FastTangentNumbers (also optionally computes Bernoulli numbers)

Rn(z)
z2n−1 < 1.026n2n−1

(
2
π

)2n

z2.

Now z2 ≤ n−2n from the first part of Lemma 8.3, so

Rn(z)
z2n−1 <

1.026
n

(
2
π

)2n

. (8.20)

The right-hand side is a monotonic decreasing function of n, so is bounded above
by its value when n = 2, giving Rn(z)/z2n−1 < 0.1 . �
A high-level description of the resulting Algorithm FastTangentNumbers is given
in Fig. 8.1. The algorithm computes the Tangent numbers T1,T2, . . . ,Tn using the
Kronecker–Schönhage trick as described above, and deduces the Bernoulli numbers
B2,B4, . . . ,B2n from the relation (8.14).

In order to achieve the best complexity, the algorithm must be implemented
carefully using binary arithmetic. The computations of S (an approximation to
(2n)! sinz) and C (an approximation to (2n)!cosz) involve computing ratios of
factorials such as (2n)!/(2k)!, where 0 ≤ k ≤ n. This can be done in time
O(n2(logn)2) by a straightforward algorithm. The N-bit division to compute S/C
(an approximation to tanz) can be done in time O(N log(N) log log(N)) by the
Schönhage–Strassen algorithm combined with Newton’s method [7, Sect. 4.2.2].
Here it is sufficient to take N = 2np+ 2= 2n2 lg(n)+O(n). Note that

V =
n

∑
k=1

22(n−k)pT ′k,n (8.21)

is just the finite sum in (8.15) scaled by z1−2n (a power of two), and the integers
T ′k,n can simply be “read off” from the binary representation of V in n blocks of
2p consecutive bits. The T ′k,n can then be scaled by ratios of factorials in time

O(n2(logn)2+o(1)) to give the Tangent numbers T1,T2, . . . ,Tn.
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The correctness of the computed Tangent numbers follows from Lemmas 8.3 and
8.4, apart from possible errors introduced by S/C being only an approximation to
tan(z). Lemma 8.5 shows that this error is sufficiently small.

Lemma 8.5. Suppose that n ≥ 2, z, S and C as in Algorithm FastTangentNumbers.
Then

z1−2n(2n− 1)!

∣∣∣∣ SC − tanz

∣∣∣∣ < 0.02 . (8.22)

Proof. We use the inequality∣∣∣∣AB − A′

B′

∣∣∣∣≤ |A| · |B−B′|+ |B| · |A−A′|
|B| · |B′| . (8.23)

Take A = sinz, B = cosz, A′ = S/(2n)!, B′ = C/(2n)! in (8.23). Since n ≥ 2
we have 0 < z ≤ 1/4. Then |A| = |sin z| < z. Also, |B| = |cosz| > 31/32 from
the Taylor series cosz = 1− z2/2+ · · · , which has terms of alternating sign and
decreasing magnitude. By similar arguments, |B′| ≥ 31/32, |B−B′|< z2n/(2n)!, and
|A−A′|< z2n+1/(2n+1)!. Combining these inequalities and using (8.23), we obtain

∣∣∣∣ SC − tanz

∣∣∣∣< 6 ·32 ·32
5 ·31 ·31

z2n+1

(2n)!
<

1.28z2n+1

(2n)!
.

Multiplying both sides by z1−2n(2n− 1)! and using 1.28z2/(2n)≤ 0.02, we obtain
the inequality (8.22). This completes the proof of Lemma 8.5. �
In view of the constant 0.02 in (8.22) and the constant 0.1 in Lemma 8.4, the effect of
all sources of error in computing z1−2n(2n−1)! tanz is at most 0.12< 1/2, which is
too small to change the computed integer V , that is to say, the computed V is indeed
given by (8.21).

The computation of the Bernoulli numbers B2,B4, . . . ,B2n from T1, . . . ,Tn, is
straightforward (details depending on exactly how rational numbers are to be
represented). The entire computation takes time

O(N(logN)1+o(1)) = O(n2(logn)2+o(1)).

Thus, we have proved:

Theorem 8.6. The Tangent numbers T1, . . . ,Tn and Bernoulli numbers B2,B4,
. . . ,B2n can be computed in O(n2(logn)2+o(1)) bit-operations using O(n2 logn)
space.

A small modification of the above can be used to compute the Secant numbers
S0,S1, . . . ,Sn in O(n2(logn)2+o(1)) bit-operations and O(n2 logn) space. The bound
on Tangent numbers given by Lemma 8.1 can be replaced by the bound
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Sn

(2n)!
≤ 2

(
2
π

)2n+1

which follows from (8.12) since β (2n+ 1)< 1.
We remark that an efficient implementation of Algorithm FastTangentNumbers

in a high-level language such as Sage [30] or Magma [5] is nontrivial, because
it requires access to the internal binary representation of high-precision integers.
Everything can be done using (implicitly scaled) integer arithmetic—there is no
need for floating-point—but for the sake of clarity we did not include the scaling in
Fig. 8.1. If floating-point arithmetic is used, a precision of N bits is sufficient, where
N = 2np+ 2.

Comparing our Algorithm FastTangentNumbers with Harvey’s modular algo-
rithm [20], we see that there is a space-time trade-off: Harvey’s algorithm uses less
space (by a factor of order n) to compute a single Bn, but more time (again by a factor
of order n) to compute all of B1, . . . ,Bn. Harvey’s algorithm has better locality and
is readily parallelizable.

In the following section we give much simpler algorithms which are fast enough
for most practical purposes and are based on three-term recurrence relations.

8.6 Algorithms Based on Three-Term Recurrences

Akiyama and Tanigawa [21] gave an algorithm for computing Bernoulli numbers
based on a three-term recurrence. However, it is only useful for exact computations,
since it is numerically unstable if applied using floating-point arithmetic. It is faster
to use a stable recurrence for computing Tangent numbers and then deduce the
Bernoulli numbers from (8.14).

8.6.1 Bernoulli and Tangent Numbers

We now give a stable three-term recurrence and corresponding in-place algorithm
for computing Tangent numbers. The algorithm is perfectly stable since all op-
erations are on positive integers and there is no cancellation. Also, it involves
less arithmetic than the Akiyama–Tanigawa algorithm. This is partly because the
operations are on integers rather than rationals and partly because there are fewer
operations since we take advantage of zeros.

Bernoulli numbers can be computed using Algorithm TangentNumbers and the
relation (8.14). The time required for the application of (8.14) is negligible.

The recurrence (8.24) that we use was given by Buckholtz and Knuth [23],
but they did not give our in-place Algorithm TangentNumbers explicitly. Related
recurrences with applications to parallel computation were considered by Hare [19].
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Fig. 8.2 Algorithm
TangentNumbers

Fig. 8.3 Dataflow in
algorithm TangentNumbers
for n = 3

Write t = tanx, D = d/dx, so Dt = 1+ t2 and D(tn) = ntn−1(1+ t2) for n ≥ 1.
It is clear that Dnt is a polynomial in t, say Pn(t). Write Pn(t) = ∑ j≥0 pn, jt j. Then
deg(Pn) = n+ 1 and, from the formula for D(tn),

pn, j = ( j− 1)pn−1, j−1+( j+ 1)pn−1, j+1. (8.24)

We are interested in Tk = (d/dx)2k−1 tanx |x=0 = P2k−1(0) = p2k−1,0, which can
be computed from the recurrence (8.24) in O(k2) operations using the obvious
boundary conditions. We save work by noticing that pn, j = 0 if n+ j is even. The
resulting algorithm is given in Fig. 8.2.

The first for loop initializes Tk = pk−1,k = (k− 1)!. The variable Tk is then used
to store pk,k−1, pk+1,k−2, . . ., p2k−2,1, p2k−1,0 at successive iterations of the second
for loop. Thus, when the algorithm terminates, Tk = p2k−1,0, as expected.

The process in the case n = 3 is illustrated in Fig. 8.3, where T (m)
k denotes the

value of the variable Tk at successive iterations m = 1,2, . . . ,n. It is instructive to
compare a similar figure for the Akiyama–Tanigawa algorithm in [21].

Algorithm TangentNumbers takes Θ(n2) operations on positive integers. The
integers Tn have O(n logn) bits, other integers have O(logn) bits. Thus, the overall
complexity is O(n3(logn)1+o(1)) bit-operations, or O(n3 logn) word-operations if n
fits in a single word.

The algorithm is not optimal, but it is good in practice for moderate values of n,
and much simpler than asymptotically faster algorithms such as those described in
Sects. 8.4 and 8.5. For example, using a straightforward Magma implementation of
Algorithm TangentNumbers, we computed the first 1,000 Tangent numbers in 1.50 s
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Fig. 8.4 Algorithm
SecantNumbers

on a 2.26 GHz Intel Core 2 Duo. For comparison, it takes 1.92 s for a single N-bit
division computing T in Algorithm FastTangentNumbers (where N = 19,931,568
corresponds to n = 1,000). Thus, we expect the crossover point where Algorithm
FastTangentNumbers actually becomes faster to be slightly larger than n = 1,000
(but dependent on implementation details).

8.6.2 Secant Numbers

A similar algorithm may be used to compute Secant numbers. Let s= secx, t = tanx,
and D = d/dx. Then Ds = st, D2s = s(1+2t2), and in general Dns = sQn(t), where
Qn(t) is a polynomial of degree n in t. The Secant numbers are given by Sk =Q2k(0).
Let Qn(t) = ∑k≥0 qn,ktk. From

D(stk) = stk+1 + kstk−1(1+ t2)

we obtain the three-term recurrence

qn+1,k = kqn,k−1 +(k+ 1)qn,k+1 for 1≤ k ≤ n. (8.25)

By avoiding the computation of terms qn,k that are known to be zero (n + k
odd), and ordering the computation in a manner analogous to that used for
Algorithm TangentNumbers, we obtain Algorithm SecantNumbers (see Fig. 8.4),
which computes the Secant numbers in place using non-negative integer arithmetic.

8.6.3 Comparison with Atkinson’s Algorithm

Atkinson [2] gave an elegant algorithm for computing both the Tangent numbers
T1,T2, . . . ,Tn and the Secant numbers S0,S1, . . . ,Sn using a “Pascal’s triangle”
style of algorithm that only involves additions of non-negative integers. Since a
triangle with 2n+ 1 rows in involved, Atkinson’s algorithm requires 2n2 +O(n)
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integer additions. This can be compared with n2/2+O(n) additions and n2 +O(n)
multiplications (by small integers) for our Algorithm TangentNumbers, and simi-
larly for Algorithm SecantNumbers.

Thus, we might expect Atkinson’s algorithm to be slower than Algorithm Tan-
gentNumbers. Computational experiments confirm this. With n = 1,000, Algorithm
TangentNumbers programmed in Magma takes 1.50 s on a 2.26 GHz Intel Core 2
Duo, algorithm SecantNumbers also takes 1.50 s, and Atkinson’s algorithm takes
4.51 s. Thus, even if both Tangent and Secant numbers are required, Atkinson’s
algorithm is slightly slower. It also requires about twice as much memory.
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Chapter 9
Monotone Operator Methods for Nash
Equilibria in Non-potential Games

Luis M. Briceño-Arias and Patrick L. Combettes

Abstract We observe that a significant class of Nash equilibrium problems in non-
potential games can be associated with monotone inclusion problems. We propose
splitting techniques to solve such problems and establish their convergence. App-
lications to generalized Nash equilibria, zero-sum games, and cyclic proximation
problems are demonstrated.
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9.1 Problem Statement

Consider a game with m≥ 2 players indexed by i∈ {1, . . . ,m}. The strategy xi of the
ith player lies in a real Hilbert space Hi and the problem is to find x1 ∈H1, . . . ,xm ∈
Hm such that
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(∀i ∈ {1, . . . ,m}) xi ∈ Argmin
x∈Hi

f(x1, . . . ,xi−1,x,xi+1, . . . ,xm)

+gi(x1, . . . ,xi−1,x,xi+1, . . . ,xm), (9.1)

where (gi)1≤i≤m represents the individual penalty of player i depending on the
strategies of all players and f is a convex penalty which is common to all players
and models the collective discomfort of the group. At this level of generality, no
reliable method exists for solving (9.1) and some hypotheses are required. In this
paper we focus on the following setting.

Problem 9.1. Let m≥ 2 be an integer and let f : H1⊕·· ·⊕Hm→ ]−∞,+∞] be a
proper lower semicontinuous convex function. For every i∈ {1, . . . ,m}, let gi : H1⊕
·· ·⊕Hm → ]−∞,+∞] be such that, for every x1 ∈H1, . . . ,xm ∈Hm, the function
x �→ gi(x1, . . . ,xi−1,x,xi+1, . . . ,xm) is convex and differentiable on Hi, and denote
by ∇i gi(x1, . . . ,xm) its derivative at xi. Moreover,

(∀(x1, . . . ,xm) ∈H1⊕·· ·⊕Hm
)(∀(y1, . . . ,ym) ∈H1⊕·· ·⊕Hm

)
m

∑
i=1
〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi− yi〉 ≥ 0. (9.2)

The problem is to find x1 ∈H1, . . . , xm ∈Hm such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈H1

f(x,x2, . . . ,xm)+ g1(x,x2, . . . ,xm)

...

xm∈ Argmin
x∈Hm

f(x1, . . . ,xm−1,x)+ gm(x1, . . . ,xm−1,x).

(9.3)

In the special case when, for every i ∈ {1, . . . ,m}, gi = g is convex, Problem 9.1
amounts to finding a Nash equilibrium of a potential game, i.e., a game in which the
penalty of every player can be represented by a common potential f +g [14]. Hence,
Nash equilibria can be found by solving

minimize
x1∈H1,...,xm∈Hm

f(x1, . . . ,xm)+ g(x1, . . . ,xm). (9.4)

Thus, the problem reduces to the minimization of the sum of two convex functions
on the Hilbert space H1⊕ ·· · ⊕Hm and various methods are available to tackle
it under suitable assumptions (see for instance [5, Chap. 27]). On the other hand,
in the particular case when f is separable, a review of methods for solving (9.3) is
provided in [8]. In this paper we address the more challenging non-potential setting,
in which the functions (gi)1≤i≤m need not be identical nor convex, but they must
satisfy (9.2), and f need not be separable. Let us note that (9.2) actually implies, for
every i ∈ {1, . . . ,m}, the convexity of gi with respect to its ith variable.
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Our methodology consists of using monotone operator splitting techniques for
solving an auxiliary monotone inclusion, the solutions of which are Nash equilibria
of Problem 9.1. In Sect. 9.2 we review the notation and background material
needed subsequently. In Sect. 9.3 we introduce the auxiliary monotone inclusion
problem and provide conditions ensuring the existence of solutions to the auxiliary
problem. We also propose two methods for solving Problem 9.1 and establish
their convergence. Finally, in Sect. 9.4, the proposed methods are applied to the
construction of generalized Nash equilibria, to zero-sum games, and to cyclic
proximation problems.

9.2 Notation and Background

Throughout this paper, H , G , and (Hi)1≤i≤m are real Hilbert spaces. For conve-
nience, their scalar products are all denoted by 〈· | ·〉 and the associated norms by
‖ · ‖. Let A : H → 2H be a set-valued operator. The domain of A is

domA =
{

x ∈H
∣∣ Ax �=∅

}
, (9.5)

the set of zeros of A is

zer A =
{

x ∈H
∣∣ 0 ∈ Ax

}
, (9.6)

the graph of A is

graA =
{
(x,u) ∈H ×H

∣∣ u ∈ Ax
}
, (9.7)

the range of A is

ranA =
{

u ∈H
∣∣ (∃x ∈H ) u ∈ Ax

}
, (9.8)

the inverse of A is the set-valued operator

A−1 : H → 2H : u �→ {x ∈H
∣∣ u ∈ Ax

}
, (9.9)

and the resolvent of A is

JA = (Id +A)−1. (9.10)

In addition, A is monotone if

(∀(x,y) ∈H ×H )(∀(u,v) ∈ Ax×Ay) 〈x− y | u− v〉 ≥ 0 (9.11)

and it is maximally monotone if, furthermore, every monotone operator B : H →
2H such that graA⊂ graB coincides with A.
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We denote by Γ0(H ) the class of lower semicontinuous convex functions
ϕ : H → ]−∞,+∞] which are proper in the sense that domϕ =

{
x ∈H

∣∣ ϕ(x) <
+∞
} �=∅. Let ϕ ∈ Γ0(H ). The proximity operator of ϕ is

proxϕ : H →H : x �→ argmin
y∈H

ϕ(y)+
1
2
‖x− y‖2, (9.12)

and the subdifferential of ϕ is the maximally monotone operator

∂ϕ : H → 2H : x �→ {u ∈H
∣∣ (∀y ∈H ) 〈y− x | u〉+ϕ(x)≤ ϕ(y)}. (9.13)

We have

Argmin
x∈H

ϕ(x) = zer∂ϕ and proxϕ = J∂ϕ . (9.14)

Let β ∈ ]0,+∞[. An operator T : H → H is β -cocoercive (or βT is firmly
nonexpansive) if

(∀x ∈H )(∀y ∈H ) 〈x− y | Tx−Ty〉 ≥ β‖Tx−Ty‖2, (9.15)

which implies that it is monotone and β−1–Lipschitzian. Let C be a nonempty
convex subset of H . The indicator function of C is

ιC : H → ]−∞,+∞] : x �→
{

0, if x ∈C;

+∞, if x /∈C
(9.16)

and ∂ιC = NC is the normal cone operator of C, i.e.,

NC : H → 2H : x �→
{{

u ∈H
∣∣ (∀y ∈C) 〈y− x | u〉 ≤ 0

}
, if x ∈C;

∅, otherwise.
(9.17)

If C is closed, for every x ∈H , there exists a unique point PCx ∈C such that ‖x−
PCx‖ = infy∈C ‖x− y‖; PCx is called the projection of x onto C and we have PC =
proxιC . In addition, the symbols ⇀ and → denote respectively weak and strong
convergence. For a detailed account of the tools described above, see [5].

9.3 Model, Algorithms, and Convergence

We investigate an auxiliary monotone inclusion problem, the solutions of which are
Nash equilibria of Problem 9.1 and propose two splitting methods to solve it. Both
involve the proximity operator proxf , which can be computed explicitly in several
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instances [5, 7]. We henceforth denote by HHH the direct sum of the Hilbert spaces
(Hi)1≤i≤m, i.e., the product space H1×·· ·×Hm equipped with the scalar product

〈〈· | ·〉〉 : ((xi)1≤i≤m,(yi)1≤i≤m
) �→ m

∑
i=1

〈xi | yi〉. (9.18)

We denote the associated norm by ||| · |||, a generic element of HHH by x = (xi)1≤i≤m,
and the identity operator on HHH by IdIdId.

9.3.1 A Monotone Inclusion Model

With the notation and hypotheses of Problem 9.1, let us set

A = ∂ f and B : HHH →HHH : x �→ (∇1 g1(x), . . . ,∇m gm(x)
)
. (9.19)

We consider the inclusion problem

find x ∈ zer (A+B). (9.20)

Since f ∈ Γ0(HHH ), AAA is maximally monotone. On the other hand, it follows from
(9.2) that BBB is monotone. The following result establishes a connection between the
monotone inclusion problem (9.20) and Problem 9.1.

Proposition 9.2. Using the notation and hypotheses of Problem 9.1, let A and B be
as in (9.19). Then every point in zer (A+B) is a solution to Problem 9.1.

Proof. Suppose that zer (A+B) �= ∅ and let (x1, . . . ,xm) ∈HHH . Then [5, Proposi-
tion 16.6] asserts that

A(x1, . . . ,xm)⊂ ∂
(
f(·,x2, . . . ,xm)

)
(x1)×·· ·× ∂

(
f(x1, . . . ,xm−1, ·)

)
(xm). (9.21)

Hence, since domg1(·,x2, . . . ,xm) = H1, . . . , domgm(x1, . . . ,xm−1, ·) = Hm, we
derive from (9.19), (9.14), and [5, Corollary 16.38(iii)] that

(x1, . . . ,xm) ∈ zer(A+B)

⇔ −B(x1, . . . ,xm) ∈ A(x1, . . . ,xm)

⇒

⎧⎪⎪⎨
⎪⎪⎩
−∇1 g1(x1, . . . ,xm)∈ ∂

(
f(·,x2, . . . ,xm)

)
(x1)

...

−∇m gm(x1, . . . ,xm)∈ ∂
(
f(x1, . . . ,xm−1, ·)

)
(xm)

⇔ (x1, . . . ,xm) solves Problem 9.1, (9.22)

which yields the result. �
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Proposition 9.2 asserts that we can solve Problem 9.1 by solving (9.20), provided
that the latter has solutions. The following result provides instances in which this
property is satisfied. First, we need the following definitions (see [5, Chaps. 21–
24]):

Let A : H → 2H be monotone. Then A is 3∗ monotone if domA× ranA ⊂
domFA, where

FA : H ×H → ]−∞,+∞] : (x,u) �→ 〈x | u〉− inf
(y,v)∈graA

〈x− y | u− v〉. (9.23)

On the other hand, A is uniformly monotone if there exists an increasing function
φ : [0,+∞[→ [0,+∞] vanishing only at 0 such that

(∀(x,y) ∈H ×H
)(∀(u,v) ∈ Ax×Ay

) 〈x− y | u− v〉 ≥ φ(‖x− y‖). (9.24)

A function ϕ ∈ Γ0(H ) is uniformly convex if there exists an increasing function
φ : [0,+∞[→ [0,+∞] vanishing only at 0 such that

(∀(x,y) ∈ domϕ× domϕ)(∀α ∈ ]0,1[)

ϕ(αx+(1−α)y)+α(1−α)φ(‖x− y‖)≤ αϕ(x)+ (1−α)ϕ(y). (9.25)

The function φ in (9.24) and (9.25) is called the modulus of uniform monotonicity
and of uniform convexity, respectively, and it is said to be supercoercive if
limt→+∞ φ(t)/t =+∞.

Proposition 9.3. With the notation and hypotheses of Problem 9.1, let B be as in
(9.19). Suppose that B is maximally monotone and that one of the following holds:

(i) lim|||x|||→+∞ inf |||∂ f(x)+Bx|||=+∞.
(ii) ∂ f+B is uniformly monotone with a supercoercive modulus.

(iii) (dom∂ f)∩domB is bounded.
(iv) f = ιC, where C is a nonempty closed convex bounded subset of HHH .
(v) f is uniformly convex with a supercoercive modulus.

(vi) B is 3∗ monotone, and ∂ f or B is surjective.
(vii) B is uniformly monotone with a supercoercive modulus.

(viii) B is linear and bounded, there exists β ∈ ]0,+∞[ such that B is β–cocoercive,
and ∂ f or B is surjective.

Then zer (∂ f + B) �= ∅. In addition, if (ii), (v), or (vii) holds, zer (∂ f + B) is a
singleton.
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Proof. First note that, for every (xi)1≤i≤m ∈HHH , dom∇1 g1(·,x2, . . . ,xm) = H1, . . . ,
dom∇m gm(x1, . . . ,xm−1, ·) = Hm. Hence, it follows from (9.19) that domB = HHH
and, therefore, from [5, Corollary 24.4(i)] that ∂ f +B is maximally monotone. In
addition, it follows from [5, Example 24.9] that ∂ f is 3∗ monotone.

(i) This follows from [5, Corollary 21.20].
(ii) This follows from [5, Corollary 23.37(i)].

(iii) Since dom(∂ f +B) = (dom∂ f )∩ domB, the result follows from [5,
Proposition 23.36(iii)].

(iv)⇒(iii) f = ιC ∈ Γ0(HHH ) and dom∂ f = C is bounded.
(v)⇒(ii) It follows from (9.19) and [5, Example 22.3(iii)] that ∂ f is uniformly

monotone. Hence, ∂ f +B is uniformly monotone.
(vi) This follows from [5, Corollary 24.22(ii)].

(vii)⇒(ii) Clear.
(viii)⇒(vi) This follows from [5, Proposition 24.12].

Finally, the uniqueness of a zero of ∂ f +B in cases (ii), (v), and (vii) follows from
the strict monotonicity of ∂ f +B. �

9.3.2 Forward–Backward–Forward Algorithm

Our first method for solving Problem 9.1 is derived from an algorithm proposed in
[6], which itself is a variant of a method proposed in [16].

Theorem 9.4. In Problem 9.1, suppose that there exist (z1, . . . ,zm) ∈HHH such that

− (∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)
) ∈ ∂ f(z1, . . . ,zm) (9.26)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1
‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2 ≤ χ2

m

∑
i=1
‖xi− yi‖2. (9.27)

Let ε ∈ ]0,1/(χ+ 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈Hi, and let (ai,n)n∈N, (bi,n)n∈N, and (ci,n)n∈N be
absolutely summable sequences in Hi. Now consider the following routine:
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(∀n ∈N)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . ,m
� yi,n = xi,n− γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(p1,n, . . . , pm,n) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n)

for i = 1, . . . ,m⌊
qi,n = pi,n− γn(∇i gi(p1,n, . . . , pm,n)+ ci,n)

xi,n+1 = xi,n− yi,n + qi,n.

(9.28)

Then there exists a solution (x1, . . . ,xm) to Problem 9.1 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and pi,n ⇀ xi.

Proof. Let A and B be defined as (9.19). Then (9.26) yields zer (A+B) �= ∅, and,
for every γ ∈ ]0,+∞[, (9.14) yields JγA = proxγf . In addition, we deduce from (9.2)
and (9.27) that B is monotone and χ-Lipschitzian. Now set

(∀n ∈N)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn = (x1,n, . . . ,xm,n)

yn = (y1,n, . . . ,ym,n)

pn = (p1,n, . . . , pm,n)

qn = (q1,n, . . . ,qm,n)

(9.29)

and

(∀n ∈ N)

⎧⎪⎪⎨
⎪⎪⎩

an = (a1,n, . . . ,am,n)

bn = (b1,n, . . . ,bm,n)

cn = (c1,n, . . . ,cm,n).

(9.30)

Then (9.28) is equivalent to

(∀n ∈N)

⎢⎢⎢⎢⎢⎣
yn = xn− γn(Bxn + an)

pn = JγnAyn + bn

qn = pn− γn(Bpn + cn)

xn+1 = xn− yn + qn.

(9.31)

Thus, the result follows from [6, Theorem 2.5(ii)] and Proposition 9.2. �
Note that two (forward) gradient steps involving the individual penalties (gi)1≤i≤m

and one (backward) proximal step involving the common penalty f are required at
each iteration of (9.28).
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9.3.3 Forward–Backward Algorithm

Our second method for solving Problem 9.1 is somewhat simpler than (9.28) but
requires stronger hypotheses on (gi)1≤i≤m. This method is an application of the
forward–backward splitting algorithm (see [3, 9] and the references therein for
background).

Theorem 9.5. In Problem 9.1, suppose that there exist (z1, . . . ,zm) ∈HHH such that

− (∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)
) ∈ ∂ f(z1, . . . ,zm) (9.32)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1
〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi− yi〉

≥ 1
χ

m

∑
i=1

‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2. (9.33)

Let ε ∈ ]0,2/(χ+ 1)[ and let (γn)n∈N be a sequence in [ε,(2− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈Hi, and let (ai,n)n∈N and (bi,n)n∈N be absolutely
summable sequences in Hi. Now consider the following routine:

(∀n ∈ N)

⎢⎢⎢⎢⎣
for i = 1, . . . ,m
� yi,n = xi,n− γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(x1,n+1, . . . ,xm,n+1) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n).

(9.34)

Then there exists a solution (x1, . . . ,xm) to Problem 9.1 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and ∇i gi(x1,n, . . . ,xm,n)→ ∇i gi(x1, . . . ,xm).

Proof. If we define A and B as in (9.19), (9.32) is equivalent to zer(A+B) �=∅, and
it follows from (9.33) that B is χ−1–cocoercive. Moreover, (9.34) can be recast as

(∀n ∈ N)

⌊
yn = xn− γn(Bxn + an)

xn+1 = JγnAyn + bn.
(9.35)

The result hence follows from Proposition 9.2 and [3, Theorem 2.8(i) and (ii)]. �
As illustrated in the following example, Theorem 9.5 imposes more restrictions
on (gi)1≤i≤m. However, unlike the forward–backward–forward algorithm used in
Sect. 9.3.2, it employs only one forward step at each iteration. In addition, this
method allows for larger gradient steps since the sequence (γn)n∈N lies in ]0,2/χ [,
as opposed to ]0,1/χ [ in Theorem 9.4.
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Example 9.6. In Problem 9.1, set m = 2, let L : H1 →H2 be linear and bounded,
and set {

g1 : (x1,x2) �→ 〈Lx1 | x2〉
g2 : (x1,x2) �→ −〈Lx1 | x2〉.

(9.36)

It is readily checked that all the assumptions of Problem 9.1 are satisfied, as well as
(9.27) with χ = ‖L‖. However, (9.33) does not hold since

(∀(x1,x2) ∈ H1⊕H2)(∀(y1,y2) ∈H1⊕H2)

〈∇1 g1(x1,x2)−∇1 g1(y1,y2) | x1− y1〉
+〈∇2 g2(x1,x2)−∇2 g2(y1,y2) | x2− y2〉= 0. (9.37)

9.4 Applications

The previous results can be used to solve a wide variety of instances of Problem 9.1.
We discuss several examples.

9.4.1 Saddle Functions and Zero-Sum Games

We consider an instance of Problem 9.1 with m = 2 players whose individual
penalties g1 and g2 are saddle functions.

Example 9.7. Let χ ∈ ]0,+∞[, let f ∈Γ0(H1⊕H2), and let LLL : H1⊕H2→R be
a differentiable function with a χ-Lipschitzian gradient such that, for every x1 ∈H1,
LLL (x1, ·) is concave and, for every x2 ∈H2, LLL (·,x2) is convex. The problem is to
find x1 ∈H1 and x2 ∈H2 such that

⎧⎪⎨
⎪⎩

x1 ∈Argmin
x∈H1

f(x,x2)+LLL (x,x2)

x2 ∈Argmin
x∈H2

f(x1,x)−LLL (x1,x).
(9.38)

Proposition 9.8. In Example 9.7, suppose that there exists (z1,z2) ∈ H1 ⊕H2

such that

(−∇1LLL (z1,z2),∇2 LLL (z1,z2)
) ∈ ∂ f(z1,z2). (9.39)

Let ε ∈ ]0,1/(χ+ 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
let (x1,0,x2,0) ∈ H1 ⊕H2, let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be absolutely
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summable sequences in H1, and let (a2,n)n∈N, (b2,n)n∈N, and (c2,n)n∈N be absolutely
summable sequences in H2. Now consider the following routine:

(∀n ∈N)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,n = x1,n− γn(∇1LLL (x1,n,x2,n)+ a1,n)

y2,n = x2,n + γn(∇2LLL (x1,n,x2,n)+ a2,n)

(p1,n, p2,n) = proxγnf(y1,n,y2,n)+ (b1,n,b2,n)

q1,n = p1,n− γn(∇1LLL (p1,n, p2,n)+ c1,n)

q2,n = p2,n + γn(∇2LLL (p1,n, p2,n)+ c2,n)

x1,n+1 = x1,n− y1,n + q1,n

x2,n+1 = x2,n− y2,n + q2,n.

(9.40)

Then there exists a solution (x1,x2) to Example 9.7 such that x1,n ⇀ x1, p1,n ⇀ x1,
x2,n ⇀ x2, and p2,n ⇀ x2.

Proof. Example 9.7 corresponds to the particular instance of Problem 9.1 in which
m = 2, g1 = LLL , and g2 = −LLL . Indeed, it follows from [15, Theorem 1] that the
operator

(x1,x2) �→
(
∇1LLL (x1,x2),−∇2LLL (x1,x2)

)
(9.41)

is monotone in H1⊕H2 and, hence, (9.2) holds. In addition, (9.39) implies (9.26)
and, since ∇LLL is χ-Lipschitzian, (9.27) holds. Altogether, since (9.28) reduces to
(9.40), the result follows from Theorem 9.4. �
Next, we examine an application of Proposition 9.8 to 2-player finite zero-sum
games.

Example 9.9. We consider a 2-player finite zero-sum game (for complements and
background on finite games, see [17]). Let S1 be the finite set of pure strategies of
player 1, with cardinality N1, and let

C1 =

{
(ξ j)1≤ j≤N1 ∈ [0,1]N1

∣∣∣∣ N1

∑
j=1

ξ j = 1

}
(9.42)

be his set of mixed strategies (S2, N2, and C2 are defined likewise). Moreover, let L
be an N1×N2 real cost matrix such that

(∃z1 ∈C1)(∃z2 ∈C2) −Lz2 ∈ NC1 z1 and L%z1 ∈ NC2 z2. (9.43)

The problem is to

find x1 ∈ R
N1 and x2 ∈ R

N2 such that

⎧⎪⎨
⎪⎩

x1 ∈ Argmin
x∈C1

x%Lx2

x2 ∈ Argmax
x∈C2

x%1 Lx.
(9.44)
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Since the penalty function of player 1 is (x1,x2) �→ x%1 Lx2 and the penalty function
of player 2 is (x1,x2) �→ −x%1 Lx2, (9.44) is a zero-sum game. It corresponds to the
particular instance of Example 9.7 in which H1 = R

N1 , H2 = R
N2 , f : (x1,x2) �→

ιC1(x1)+ ιC2(x2), and LLL : (x1,x2) �→ x%1 Lx2. Indeed, since C1 and C2 are nonempty
closed convex sets, f ∈ Γ0(H1 ⊕H2). Moreover, x1 �→ LLL (x1,x2) and x2 �→
−LLL (x1,x2) are convex, and ∇LLL : (x1,x2) �→ (Lx2,L%x1) is linear and bounded,
with ‖∇LLL ‖ = ‖L‖. In addition, for every γ ∈ ]0,+∞[, proxγf = (PC1 ,PC2) [5,
Proposition 23.30]. Hence, (9.40) reduces to (we set the error terms to zero for
simplicity)

(∀n ∈ N)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,n = x1,n− γnLx2,n

y2,n = x2,n + γnL%x1,n

p1,n = PC1y1,n

p2,n = PC2y2,n

q1,n = p1,n− γnLp2,n

q2,n = p2,n + γnL%p1,n

x1,n+1 = x1,n− y1,n + q1,n

x2,n+1 = x2,n− y2,n + q2,n,

(9.45)

where (γn)n∈N is a sequence in
[
ε, 1−ε
‖L‖
]

for some arbitrary ε ∈ ]0, 1
‖L‖+1

[
. Since

∂ f : (x1,x2) �→ NC1 x1 × NC2 x2, (9.43) yields (9.39). Altogether, Proposition 9.8
asserts that the sequence (x1,n,x2,n)n∈N generated by (9.45) converges to (x1,x2) ∈
R

N1 ×R
N2 , such that (x1,x2) is a solution to (9.44).

9.4.2 Generalized Nash Equilibria

We consider the particular case of Problem 9.1 in which f is the indicator function
of a closed convex subset of HHH = H1⊕·· ·⊕Hm.

Example 9.10. Let C ⊂HHH be a nonempty closed convex set and, for every i ∈
{1, . . . ,m}, let gi : HHH → ]−∞,+∞] be a function which is differentiable with respect
to its ith variable. Suppose that

(∀(x1, . . . ,xm) ∈HHH
)(∀(y1, . . . ,ym) ∈HHH

)
m

∑
i=1

〈∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym) | xi− yi〉 ≥ 0 (9.46)

and set

(∀(x1, . . . ,xm) ∈HHH )
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⎧⎪⎪⎨
⎪⎪⎩

Q1(x2, . . . ,xm) =
{

x ∈H1
∣∣ (x,x2, . . . ,xm) ∈ C

}
...

Qm(x1, . . . ,xm−1) =
{

x ∈Hm
∣∣ (x1, . . . ,xm−1,x) ∈ C

}
.

(9.47)

The problem is to find x1 ∈H1, . . . , xm ∈Hm such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈Q1(x2,...,xm)

g1(x,x2, . . . ,xm)

...

xm ∈ Argmin
x∈Qm(x1,...,xm−1)

gm(x1, . . . ,xm−1,x).

(9.48)

The solutions to Example 9.10 are called generalized Nash equilibria [11], social
equilibria [10], or equilibria of abstract economies [1], and their existence has been
studied in [1, 10]. We deduce from Proposition 9.2 that we can find a solution to
Example 9.10 by solving a variational inequality in HHH , provided the latter has
solutions. This observation is also made in [11], which investigates a Euclidean
setting in which additional smoothness properties are imposed on (gi)1≤i≤m. An
alternative approach for solving Example 9.10 in Euclidean spaces is also proposed
in [13] with stronger differentiability properties on (gi)1≤i≤m and a monotonicity
assumption of the form (9.46). However, the convergence of the method is not
guaranteed. Below we derive from Sect. 9.3.2 a weakly convergent method for
solving Example 9.10.

Proposition 9.11. In Example 9.10, suppose that there exist (z1, . . . ,zm) ∈ HHH
such that

− (∇1 g1(z1, . . . ,zm), . . . ,∇m gm(z1, . . . ,zm)
) ∈ NC(z1, . . . ,zm) (9.49)

and χ ∈ ]0,+∞[ such that

(∀(x1, . . . ,xm) ∈HHH )(∀(y1, . . . ,ym) ∈HHH )

m

∑
i=1

‖∇i gi(x1, . . . ,xm)−∇i gi(y1, . . . ,ym)‖2 ≤ χ2
m

∑
i=1

‖xi− yi‖2. (9.50)

Let ε ∈ ]0,1/(χ+ 1)[ and let (γn)n∈N be a sequence in [ε,(1− ε)/χ ]. Moreover,
for every i ∈ {1, . . . ,m}, let xi,0 ∈Hi, and let (ai,n)n∈N, (bi,n)n∈N, and (ci,n)n∈N be
absolutely summable sequences in Hi. Now consider the following routine:
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(∀n ∈ N)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . ,m
� yi,n = xi,n− γn(∇i gi(x1,n, . . . ,xm,n)+ ai,n)

(p1,n, . . . , pm,n) = PC(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n)

for i = 1, . . . ,m⌊
qi,n = pi,n− γn(∇i gi(p1,n, . . . , pm,n)+ ci,n)

xi,n+1 = xi,n− yi,n + qi,n.

(9.51)

Then there exists a solution (x1, . . . ,xm) to Example 9.10 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and pi,n ⇀ xi.

Proof. Example 9.10 corresponds to the particular instance of Problem 9.1 in which
f = ιC. Since PC = proxf , the result follows from Theorem 9.4. �

9.4.3 Cyclic Proximation Problem

We consider the following problem in HHH = H1⊕·· ·⊕Hm.

Example 9.12. Let G be a real Hilbert space, let f ∈ Γ0(HHH ), and, for every i ∈
{1, . . . ,m}, let Li : Hi → G be a bounded linear operator. The problem is to find
x1 ∈H1, . . . ,xm ∈Hm such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ Argmin
x∈H1

f(x,x2, . . . ,xm)+
1
2
‖L1x−L2x2‖2

x2 ∈ Argmin
x∈H2

f(x1,x, . . . ,xm)+
1
2
‖L2x−L3x3‖2

...

xm ∈ Argmin
x∈Hm

f(x1, . . . ,xm−1,x)+
1
2
‖Lmx−L1x1‖2.

(9.52)

For every i ∈ {1, . . . ,m}, the individual penalty function of player i models
his desire to keep some linear transformation Li of his strategy close to some
linear transformation of that of the next player i+ 1. In the particular case when
f : (xi)1≤i≤m �→ ∑m

i=1 fi(xi), a similar formulation is studied in [2, Sect. 3.1], where
an algorithm is proposed for solving (9.52). However, each step of the algorithm
involves the proximity operator of a sum of convex functions, which is extremely
difficult to implement numerically. The method described below circumvents this
difficulty.

Proposition 9.13. In Example 9.12, suppose that there exists (z1, . . . ,zm) ∈ HHH
such that

(
L∗1(L2z2−L1z1), . . . ,L

∗
m(L1z1−Lmzm)

) ∈ ∂ f(z1, . . . ,zm). (9.53)
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Set χ = 2max1≤i≤m ‖Li‖2, let ε ∈ ]0,2/(χ+ 1)[, and let (γn)n∈N be a sequence in
[ε,(2−ε)/χ ]. For every i ∈ {1, . . . ,m}, let xi,0 ∈Hi, and let (ai,n)n∈N and (bi,n)n∈N
be absolutely summable sequences in Hi. Now set Lm+1 = L1, for every n ∈ N, set
xm+1,n = x1,n, and consider the following routine:

(∀n ∈ N)

⎢⎢⎢⎢⎣
for i = 1, . . . ,m
� yi,n = xi,n− γn

(
L∗i (Lixi,n−Li+1xi+1,n)+ ai,n

)
(x1,n+1, . . . ,xm,n+1) = proxγnf(y1,n, . . . ,ym,n)+ (b1,n, . . . ,bm,n).

(9.54)

Then there exists a solution (x1, . . . ,xm) to Example 9.12 such that, for every i ∈
{1, . . . ,m}, xi,n ⇀ xi and L∗i

(
Li(xi,n− xi)−Li+1(xi+1,n− xi+1)

)→ 0.

Proof. Note that Example 9.12 corresponds to the particular instance of Problem 9.1
in which, for every i ∈ {1, . . . ,m}, gi : (xi)1≤i≤m �→ ‖Lixi−Li+1xi+1‖2/2, where we
set xm+1 = x1. Indeed, since

(∀(x1, . . . ,xm) ∈HHH )

⎧⎪⎪⎨
⎪⎪⎩
∇1 g1(x1, . . . ,xm) = L∗1(L1x1−L2x2)

...

∇m gm(x1, . . . ,xm) = L∗m(Lmxm−L1x1),

(9.55)

the operator (xi)1≤i≤m �→ (∇i gi(x1, . . . ,xm))1≤i≤m is linear and bounded. Thus, for
every (x1, . . . ,xm) ∈HHH ,

m

∑
i=1

〈∇i gi(x1, . . . ,xm) | xi〉

=
m

∑
i=1
〈L∗i (Lixi−Li+1xi+1) | xi〉

=
m

∑
i=1

〈Lixi−Li+1xi+1 | Lixi〉

=
m

∑
i=1
‖Lixi‖2−

m

∑
i=1
〈Li+1xi+1 | Lixi〉

=
1
2

m

∑
i=1
‖Lixi‖2 +

1
2

m

∑
i=1
‖Li+1xi+1‖2−

m

∑
i=1
〈Li+1xi+1 | Lixi〉

=
m

∑
i=1

1
2
‖Lixi−Li+1xi+1‖2

=
m

∑
i=1

1
2‖Li‖2 ‖Li‖2‖Lixi−Li+1xi+1‖2
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≥ χ−1
m

∑
i=1
‖L∗i (Lixi−Li+1xi+1)‖2

= χ−1
m

∑
i=1

‖∇i gi(x1, . . . ,xm)‖2, (9.56)

and, hence, (9.33) and (9.2) hold. In addition, (9.53) yields (9.32). Altogether, since
(9.34) reduces to (9.54), the result follows from Theorem 9.5. �
We present below an application of Proposition 9.13 to cyclic proximation problems
and, in particular, to cyclic projection problems.

Example 9.14. We apply Example 9.12 to cyclic evaluations of proximity opera-
tors. For every i ∈ {1, . . . ,m}, let Hi = H , let fi ∈ Γ0(H ), let Li = Id , and set
f : (xi)1≤i≤m �→ ∑m

i=1 fi(xi). In view of (9.12), Example 9.12 reduces to finding
x1 ∈H , . . . ,xm ∈H such that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = prox f1 x2

x2 = prox f2 x3
...

xm = prox fm x1.

(9.57)

It is assumed that (9.57) has at least one solution. Since proxf : (xi)1≤i≤m �→
(prox fi xi)1≤i≤m [5, Proposition 23.30], (9.54) becomes (we set errors to zero for
simplicity)

(∀n ∈ N)

⌊
for i = 1, . . . ,m
� xi,n+1 = proxγn fi

(
(1− γn)xi,n + γnxi+1,n

)
,

(9.58)

where (xi,0)1≤i≤m ∈H m and (γn)n∈N is a sequence in [ε,1− ε] for some arbitrary
ε ∈ ]0,1/2[. Proposition 9.13 asserts that the sequences (x1,n)n∈N, . . . , (xm,n)n∈N
generated by (9.58) converge weakly to points x1 ∈H , . . . , xm ∈H , respectively,
such that (x1, . . . ,xm) is a solution to (9.57).

In the particular case when for every i ∈ {1, . . . ,m}, fi = ιCi , a solution of (9.57)
represents a cycle of points in C1, . . . ,Cm. It can be interpreted as a Nash equilibrium
of the game in which, for every i ∈ {1, . . . ,m}, the strategies of player i belong to Ci

and its penalty function is (xi)1≤i≤m �→ ‖xi− xi+1‖2, that is, player i wants to have
strategies as close as possible to the strategies of player i+1. Such schemes go back
at least to [12]. It has recently been proved [4] that, in this case, if m > 2, the cycles
are not minimizers of any potential, from which we infer that this problem cannot
be reduced to a potential game. Note that (9.58) becomes

(∀n ∈N)

⌊
for i = 1, . . . ,m
� xi,n+1 = PCi

(
(1− γn)xi,n + γnxi+1,n

)
,

(9.59)
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and the sequences (x1,n)n∈N, . . . ,(xm,n)n∈N thus generated converge weakly to points
x1 ∈H , . . . ,xm ∈H , respectively, such that (x1, . . . ,xm) is a cycle. The existence
of cycles has been proved in [12] when one of the sets C1, . . . ,Cm is bounded. Thus,
(9.59) is an alternative parallel algorithm to the method of successive projections
[12].
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Abstract This is a survey about one of the most important achievements in
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to James’ weak compactness theorem and try to keep the technicalities needed as
simple as possible: Simons’ inequality is our preferred tool. Besides the expected
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10.1 Introduction

In 1957 James proved that a separable Banach space is reflexive whenever each
continuous and linear functional on it attains its supremum on the unit ball; see [82,
Theorem 3]. This result was generalized in 1964 to the nonseparable case in [83,
Theorem 5]: in what follows we will refer to it as James’ reflexivity theorem. More
generally (and we shall refer to it as to James’ weak compactness theorem), the
following characterization of weak compactness was obtained in [84, Theorem 5]:

Theorem 10.1 (James). A weakly closed and bounded subset A of a real Banach
space is weakly compact if, and only if, every continuous and linear functional
attains its supremum on A.

This central result in Functional Analysis can be extended to complete locally
convex spaces, as shown in [84, Theorem 6]. Note that it is not valid in the
absence of completeness, as seen in [86]. Since a complex Banach space can be
considered naturally as a real Banach space with the same weak topology, James’
weak compactness theorem is easily transferred to the complex case. Nonetheless,
and because of the strongly real nature of the optimization assumption, the setting
for this survey will be that of real Banach spaces.

We refer to [53, 81, 85] for different characterizations of weak compactness.
James’ weak compactness theorem has two important peculiarities. The first one

is that it has plenty of direct applications as well as it implies a number of important
theorems in the setting of Banach spaces. Regarding the latter, we can say that this
result is a sort of metatheorem within Functional Analysis. Thus, for instance, the
Krein–Šmulian theorem (i.e., the closed convex hull of a weakly compact subset
of a Banach space is weakly compact) or the Milman–Pettis theorem (i.e., every
uniformly convex Banach space is reflexive) straightforwardly follows from it. Also,
the Eberlein–Šmulian theorem, that states that a nonempty subset A of a Banach
space E is relatively weakly compact in E if, and only if, it is relatively weakly
countably compact in E , can be easily derived from James’ weak compactness
theorem. Indeed, assume that A is relatively weakly countably compact in E and
for a given continuous and linear functional x∗ on E , let {xn}n≥1 be a sequence in A
satisfying

lim
n

x∗(xn) = sup
A

x∗ ∈ (−∞,∞].

If x0 ∈ E is a w-cluster point of the sequence {xn}n≥1, then

sup
A

x∗ = x∗(x0)< ∞.
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The boundedness of A follows from the Banach–Steinhaus theorem, and that A
is relatively weakly compact is then a consequence of James’ weak compactness
theorem.

The second singularity regarding James’ weak compactness theorem is that this
result not only has attracted the attention of many researchers due to the huge
number of its different applications, but also that several authors in the last decades
tried to find a reasonable simple proof for it. This search has produced plenty of new
important techniques in the area.

Pryce, in [125], simplified the proof of James’ weak compactness theorem by
using two basic ideas. The first one was to use the Eberlein–Grothendieck double-
limit condition (see, for instance, [53, pp. 11–18] or [135, Theorem 28.36]) that
states that a bounded subset A of a Banach space E is relatively weakly compact if,
and only if,

lim
m

lim
n

x∗m(xn) = lim
n

lim
m

x∗m(xn) (10.1)

for all sequences {xn}n≥1 in A and all bounded sequences {x∗m}m≥1 in E∗ for which
the above iterated limits do exist. Pryce’s second idea was to use the following
diagonal argument.

Lemma 10.2 (Pryce). Let X be a nonempty set, { fn}n≥1 a uniformly bounded
sequence in �∞(X), and D a separable subset of �∞(X). Then there exists a
subsequence { fnk}k≥1 of { fn}n≥1 such that

sup
X

(
f − limsup

k
fnk

)
= sup

X

(
f − liminf

k
fnk

)
,

for every f ∈ D.

We should stress here that from the lemma above it follows that for any further
subsequence { fnk j

} j≥1 of { fnk}k≥1 we also have

sup
X

(
f − limsup

j
fnk j

)
= sup

X

(
f − liminf

j
fnk j

)
,

for every f ∈ D. With the above tools, Pryce’s proof of James’ weak compactness
theorem is done by contradiction: if a weakly closed and bounded subset A of a
Banach space E is not weakly compact, then there exist sequences {xn}n≥1 and
{x∗m}m≥1 for which (10.1) does not hold. Lemma 10.2 applied to {x∗m}m≥1 helped
Pryce to derive the existence of a continuous linear functional that does not attain
its supremum on A. In the text by Holmes [81, Theorem 19.A], one can find Pryce’s
proof for Banach spaces whose dual unit ball is w∗-sequentially compact: Pryce’s
original arguments are simplified in this case.
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In 1972 Simons gave another simpler proof of James’ weak compactness theorem
in [137]. The proof by Simons uses an ad hoc minimax theorem (with optimization
and convexity hypotheses) that follows from a diagonal argument different from that
of Pryce above, together with a deep result known henceforth as Simons’ inequality
(see [136, Lemma 2]) that we recall immediately below.

Lemma 10.3 (Simons). Let { fn}n≥1 be a uniformly bounded sequence in �∞(X)
and let W be its convex hull. If Y is a subset of X with the property that for every
sequence of nonnegative numbers {λn}n≥1 with ∑∞n=1λn = 1 there exists y ∈Y such
that

∞

∑
n=1

λn fn(y) = sup

{
∞

∑
n=1

λn fn(x) : x ∈ X

}
,

then

inf

{
sup

X
g : g ∈W

}
≤ sup

y∈Y

{
limsup

n
fn(y)

}
.

A converse minimax theorem (see [137, Theorem 15]) (see also [139, Theorem
5.6] and [133, Lemma 18]) provides an easier proof of James’ weak compactness
theorem and a minimax characterization of weak compactness.

A different proof of James’ weak compactness theorem, and even simpler than
that in [84], was stated by James himself in [87]. He took into account ideas coming
from Simons’ inequality in his new proof. The result proved is: A separable Banach
space E is reflexive if, and only if, there exists θ ∈ (0,1) such that for every sequence
{x∗n}n≥1 in the unit ball of its dual space, either {x∗n}n≥1 is not weak∗-null or

inf
x∗∈C
‖x∗‖< θ ,

where C is the convex hull of {x∗n : n ≥ 1}—the characterization of weak compact
subsets of a separable Banach spaces is easily guessed by analogy. If the assumption
of separability on E is dropped, a similar characterization is obtained, but perturbing
the functionals in the convex hull of {x∗n : n≥ 1} by functionals in the annihilator of
a nonreflexive separable subspace X of E: E is reflexive if, and only if, there exists
θ ∈ (0,1) such that for each subspace X of E and for every sequence {x∗n}n≥1 in the
unit ball of the dual space of E, either {x∗n}n≥1 is not null for the topology in E∗ of
pointwise convergence on X or

inf
x∗∈C, w∈X⊥

‖x∗ −w‖< θ ,

with C being the convex hull of {x∗n : n≥ 1}.
It should be noted that the new conditions that characterize reflexivity above

imply in fact that every continuous and linear functional attains the norm.
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In 1974 De Wilde [152] stated yet another proof of James’ weak compactness
theorem, that basically uses as main tools the diagonal argument of Pryce and
the ideas of Simons in [136] together with the Eberlein–Grothendieck double-limit
condition.

More recently, Morillon [111] has given a different proof of James’ reflexivity
theorem, based on a previous result by her [112, Theorem 3.9] establishing, on the
one hand, James’ reflexivity theorem for spaces with a w∗-block compact dual unit
ball by means of Simons’ inequality and Rosenthal’s �1-theorem, and extending,
on the other hand, the proof to the general case with an adaptation of a result of
Hagler and Jonhson [72]. Along with these ideas another proof of James’ reflexivity
theorem has been given by Kalenda in [92]. Very recently, Pfitzner has gone a
step further using the ideas above to solve the so-called boundary problem of
Godefroy, [59, Question 2]—see Sect. 10.4, giving yet another approach to James’
weak compactness theorem [122].

Another approach to James’ reflexivity theorem in the separable case is due to
Rodé [129], by using his form of the minimax theorem in the setting of the so-called
“superconvex analysis.” Let us also point out that for separable Banach spaces, the
proof in [45, Theorem I.3.2], directly deduced from the Simons inequality, can be
considered an easy one. A completely different proof using Bishop–Phelps and
Krein–Milman theorems is due to Fonf, Lindenstrauss, and Phelps [56, Theorem
5.9], and an alternative approach is due to Moors [108, Theorem 4]. Nevertheless,
the combinatorial principles involved (known in the literature as the (I)-formula)
are equivalent to Simons’ inequality; see [93, Lemma 2.1 and Remark 2.2] and [35,
Theorem 2.2]. We refer the interested reader to the papers by Kalenda [92, 93],
where other proofs for James’ reflexivity theorem using (I)-envelopes in some
special cases can be found.

The leitmotif in this survey is Simons’ inequality, which is used, to a large
extent, as the main tool for proving the results, most of them self-contained and
different from the original ones. Section 10.2 is devoted to the discussion of a
generalization of the Simons inequality, where the uniform boundedness condition
is relaxed, together with its natural consequences as unbounded sup-limsup’s and
Rainwater–Simons’ theorems. The first part of Sect. 10.3 is devoted to providing a
proof of James’ weak compactness theorem that, going back to the work of James,
explicitly supplies nonattaining functionals in the absence of weak compactness; in
the second part of Sect. 10.3 we study several measures of weak noncompactness
and we introduce a new one that is very close to Simons’ inequality. Section 10.4
deals with the study of boundaries in Banach spaces and some deep related results,
that can be viewed as extensions of James’ weak compactness theorem. Other
extensions of James’ weak compactness theorem are presented in Sect. 10.5, where
we mainly focus our attention on those of perturbed nature, which have found some
applications in mathematical finance and variational analysis, as seen in Sect. 10.6.

Let us note that each section of this paper concludes with a selected open
problem.
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10.1.1 Notation and Terminology

Most of our notation and terminology are standard, otherwise it is either explained
here or when needed: unexplained concepts and terminology can be found in our
standard references for Banach spaces [45, 49, 90] and topology [48, 95]. By letters
E,K,T,X , etc. we denote sets and sometimes topological spaces. Our topological
spaces are assumed to be completely regular.

All vector spaces E that we consider in this paper are assumed to be real.
Frequently, E denotes a normed space endowed with a norm ‖·‖, and E∗ stands
for its dual space. Given a subset S of a vector space, we write conv(S) and span(S)
to denote, respectively, the convex and the linear hull of S. If S is a subset of E∗,
then σ(E,S) denotes the weakest topology for E that makes each member of S
continuous, or equivalently, the topology of pointwise convergence on S. Dually, if
S is a subset of E , then σ(E∗,S) is the topology for E∗ of pointwise convergence on
S. In particular, σ(E,E∗) and σ(E∗,E) are the weak (denoted by w) and weak∗
(denoted by w∗) topologies, respectively. Of course, σ(E,S) is always a locally

convex topology, that is, Hausdorff if, and only if, E∗ = spanS
w∗

(and similarly
for σ(E∗,S)). Given x∗ ∈ E∗ and x∈ E , we write 〈x∗,x〉 and x∗(x) for the evaluation
of x∗ at x. If x ∈ E and δ > 0, we denote by B(x,δ ) (resp. B[x,δ ]) the open (resp.
closed) ball centered at x of radius δ : we will simplify our notation and just write
BE := B[0,1]; the unit sphere {x ∈ E : ‖x‖ = 1} will be denoted by SE . Given a
nonempty set X and f ∈R

X , we write

SX( f ) := sup
x∈X

f (x) ∈ (−∞,∞].

�∞(X) stands for the Banach space of real-valued bounded functions defined on X ,
endowed with the supremum norm SX(| · |).

10.2 Simons’ Inequality for Pointwise Bounded
Subsets of RX

The main goal of this section is to derive a generalized version of Simons’ inequality,
Theorem 10.5, in a pointwise bounded setting, as opposed to the usual uniform
bounded context. As a consequence, we derive an unbounded version of the so-
called Rainwater–Simons theorem, Corollary 10.7, that will provide us with some
generalizations of James’ weak compactness theorem, as well as new developments
and applications in Sects. 10.5 and 10.6. In addition, the aforementioned result will
allow us to present the state of the art of a number of issues related to boundaries in
Banach spaces in Sect. 10.4.

The inequality presented in Lemma 10.3, as Simons himself says in [136], is
inspired by some of James’ and Pryce’s arguments in [84, 125] and contains the
essence of the proof of James’ weak compactness theorem in the separable case.
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As mentioned in the Introduction, James included later the novel contribution of
Simons in his proof in [87]. We refer to [45, 61] for some applications of Simons’
inequality, to [35, 44, 99, 114] for proper extensions, and to [115] for a slightly
different proof.

Given a pointwise bounded sequence { fn}n≥1 in R
X , we define

coσp{ fn : n≥ 1} :=

{
∞

∑
n=1

λn fn : λn ≥ 0 for every n≥ 1 and
∞

∑
n=1

λn = 1

}
,

where a function of the form ∑∞n=1λn fn ∈ R
X is obviously defined by

( ∞

∑
n=1

λn fn

)
(x) :=

∞

∑
n=1

λn fn(x)

for every x ∈ X .
Instead of presenting the results of Simons in [136, 138], we adapt them to a

pointwise but not necessarily uniformly bounded framework. This adaptation allows
us to extend the original results of Simons and provides new applications, as we
show below.

The next result follows by arguing as in the “Additive Diagonal Lemma” in [138].
Hereafter, any sum ∑0

n=1 . . . is understood to be 0.

Lemma 10.4. If { fn}n≥1 is a pointwise bounded sequence in R
X and ε > 0, then

for every m≥ 1 there exists gm ∈ coσp{ fn : n≥ m} such that

SX

(
m−1

∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 .

Proof. It suffices to choose inductively, for each m ≥ 1, gm ∈ coσp{ fn : n ≥ m}
satisfying

SX

(
m−1

∑
n=1

gn

2n +
gm

2m−1

)
≤ inf

g∈coσp{ fn : n≥m}
SX

(
m−1

∑
n=1

gn

2n +
g

2m−1

)
+

2ε
4m . (10.2)

The existence of such gm follows from the easy fact that

inf
g∈coσp{ fn : n≥m}

SX(g)>−∞,

according with the pointwise boundedness of our sequence { fn}n≥1. Since

2m−1
∞

∑
n=m

gn

2n ∈ coσp{ fn : n≥ m},
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then inequality (10.2) implies

SX

((
m−1

∑
n=1

gn

2n

)
+

gm

2m−1

)
≤ SX

(
∞

∑
n=1

gn

2n

)
+

2ε
4m . (10.3)

From the equality

m−1

∑
n=1

gn

2n =
m−1

∑
k=1

1
2m−k

((
k−1

∑
n=1

gn

2n

)
+

gk

2k−1

)
,

and the help of (10.3) we finally derive that

SX

(
m−1

∑
n=1

gn

2n

)
≤

m−1

∑
k=1

1
2m−k SX

((
k−1

∑
n=1

gn

2n

)
+

gk

2k−1

)

≤
m−1

∑
k=1

1
2m−k

(
SX

(
∞

∑
n=1

gn

2n

)
+

2ε
4k

)

=

(
1− 1

2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

(
1− 1

2m−1

)
2ε
2m

≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 ,

and the proof is over. �
We now arrive at the announced extension of Simons’ inequality. Unlike the original
work [136], we only assume pointwise boundedness of the sequence { fn}n≥1. Let us
also emphasize that the extension of Simons’ inequality stated in [114] is a particular
case of the following non uniform version:

Theorem 10.5 (Simons’ inequality in R
X ). Let X be a nonempty set, let { fn}n≥1

be a pointwise bounded sequence in R
X , and let Y be a subset of X such that

for every g ∈ coσp{ fn : n≥ 1} there exists y ∈Y with g(y) = SX(g).

Then

inf
g∈coσp{ fn : n≥1}

SX(g)≤ SY

(
limsup

n
fn

)
.

Proof. It suffices to prove that for every ε > 0 there exist y∈Y and g∈ coσp{ fn : n≥
1} such that

SX(g)− ε ≤ limsup
n

fn(y).
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Fix ε > 0. Then Lemma 10.4 provides us with a sequence {gm}m≥1 in R
X such that

for every m≥ 1, gm ∈ coσp{ fn : n≥ m} and

SX

(
m−1

∑
n=1

gn

2n

)
≤
(

1− 1
2m−1

)
SX

(
∞

∑
n=1

gn

2n

)
+

ε
2m−1 . (10.4)

Let us write g :=∑∞n=1
gn
2n ∈ coσp{ fn : n≥ 1}. Then by hypothesis there exists y ∈Y

with

g(y) = SX(g), (10.5)

and so it follows from (10.4) and (10.5) that given m≥ 1,

(
1− 1

2m−1

)
g(y)+

ε
2m−1 ≥ SX

(
m−1

∑
n=1

gn

2n

)

≥
m−1

∑
n=1

gn(y)
2n

= g(y)−
∞

∑
n=m

gn(y)
2n .

Therefore,

inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n ≥ g(y)− ε. (10.6)

Since for every m≥ 1 we have 2m−1∑∞n=m 2n = 1, we conclude that

sup
n≥m

fn(y)≥ 2m−1
∞

∑
n=m

gn(y)
2n .

Now, with this last inequality in mind together with (10.5) and (10.6), we arrive at

limsup
n

fn(y) = inf
m≥1

sup
n≥m

fn(y)

≥ inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n

≥ g(y)− ε
= SX(g)− ε,

as was to be shown. �
Both in the original version of Simons’ inequality and in the previous one, a uniform
behavior follows from a pointwise one, resembling Mazur’s theorem for continuous
functions when X is a compact topological space; see [146, Sect. 3, p. 14]. Indeed,
it turns out that Simons’ inequality tell us that
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inf{‖g‖∞ : g ∈ co{ fn : n≥ 1}}= 0,

whenever a uniformly bounded sequence of continuous functions { fn}n≥1 pointwise
converges to zero on a compact space X.

As a consequence of the above version of Simons’ inequality we deduce the
following generalization of the sup-limsup theorem of Simons [136, Theorem 3]
(see also [133, Theorem 7]). This result has recently been stated in [119, Corollary
1], but using the tools in [133].

Corollary 10.6 (Simons’ sup-limsup theorem in R
X ). Let X be a nonempty set,

let { fn}n≥1 be a pointwise bounded sequence in R
X , and let Y be a subset of X such

that

for every g ∈ coσp{ fn : n≥ 1} there exists y ∈Y with g(y) = SX(g).

Then

SX

(
limsup

n
fn

)
= SY

(
limsup

n
fn

)
.

Proof. Let us assume, arguing by reductio ad absurdum, that there exists x0 ∈ X
such that

limsup
n

fn(x0)> SY

(
limsup

n
fn

)
.

We assume then, passing to a subsequence if necessary, that

inf
n≥1

fn(x0)> SY

(
limsup

n
fn

)
.

In particular,

inf
g∈coσp{ fn : n≥1}

g(x0)> SY

(
limsup

n
fn

)
,

and then, by applying Theorem 10.5, we arrive at

SY

(
limsup

n
fn

)
≥ inf

g∈coσp{ fn : n≥1}
SX(g)

≥ inf
g∈coσp{ fn : n≥1}

g(x0)

> SY

(
limsup

n
fn

)
,

a contradiction. �
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In the Banach space framework we obtain the sup-limsup’s type result below, which
also generalizes the so-called Rainwater–Simons theorem; see [136, Corollary 11]
(see also [138, Sup-limsup Theorem], [101, Theorem 5.1] and [116, Theorem 2.2],
the recent extension [108, Corollary 3], and for some related results [75]). It is a
direct consequence of the Simons sup-limsup theorem in R

X , Corollary 10.6, as
in the uniform setting; see [51, Theorem 3.134]. In particular it generalizes the
Rainwater theorem [127], which asserts that a sequence {xn}n≥1 in a Banach space
E is weakly null if it is bounded and for each extreme point e∗ of BE∗ ,

lim
n

e∗(xn) = 0.

Given a bounded sequence {xn}n≥1 in a Banach space E , we define

coσ{xn : n≥ 1} :=

{
∞

∑
n=1

λnxn : for all n≥ 1, λn ≥ 0 and
∞

∑
n=1

λn = 1

}

Note that the above series are clearly norm-convergent and that

coσ{xn : n≥ 1}= coσp{xn : n≥ 1}

when for the second set we look at the xn’s as functions defined on BE∗ .

Corollary 10.7 (Unbounded Rainwater–Simons’ theorem). If E is a Banach
space, C is a subset of E∗, B is a nonempty subset of C, and {xn}n≥1 is a bounded
sequence in E such that

for every x ∈ coσ{xn : n≥ 1} there exists b∗ ∈ B with b∗(x) = SC(x),

then

SB

(
limsup

n
xn

)
= SC

(
limsup

n
xn

)
.

As a consequence

σ(E,B)- lim
n

xn = 0 ⇒ σ(E,C)- lim
n

xn = 0.

The unbounded Rainwater–Simons theorem (or the Simons inequality in R
X )

not only gives as special cases those classical results that follow from Simons’s
inequality (some of them are discussed here, besides the already mentioned [45,61]),
but it also provides new applications whose discussion we delay until the next
sections. We only remark here that Moors has recently obtained a particular case
of the unbounded Rainwater–Simons theorem (see [108, Corollary 1]), which leads
him to a proof of James’ weak compactness theorem for Banach spaces whose dual
unit ball is w∗-sequentially compact.
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A very interesting consequence of Simons’ inequality in the bounded case is the
(I)-formula (10.7) of Fonf and Lindenstrauss; see [35, 55]:

Corollary 10.8 (Fonf–Lindenstrauss’ theorem). Let E be a Banach space, B a
bounded subset of E∗ such that for every x ∈ E there exists some b∗0 ∈ B satisfying
b∗0(x) = supb∗∈B b∗(x). Then we have that, for every covering B ⊂ ⋃∞n=1 Dn by

an increasing sequence of w∗-closed convex subsets Dn ⊂ co(B)
w∗

, the following
equality holds true:

∪∞n=1Dn
‖·‖

= co(B)
w∗
. (10.7)

Proof. Here is the proof given in [35, Theorem 2.2]. We proceed by contradiction

assuming that there exists z∗0 ∈ co(B)
w∗

such that z∗0 �∈ ∪∞n=1Dn
‖·‖

. Fix δ > 0 such
that

B[z∗0,δ ]∩Dn = /0, for every n≥ 1.

The separation theorem in (E∗,w∗), when applied to the w∗-compact set B[0,δ ] and
the w∗-closed set Dn− z∗0, provides us with a norm-one xn ∈ E and αn ∈R such that

inf
v∗∈B[0,δ ]

xn(v
∗)> αn > sup

y∗∈Dn

xn(y
∗)− xn(z

∗
0).

But

−δ = inf
v∗∈B[0,δ ]

xn(v
∗),

and consequently the sequence {xn}n≥1 in BE satisfies

xn(z
∗
0)− δ > xn(y

∗) (10.8)

for each n≥ 1 and y∗ ∈Dn. Fix a w∗-cluster point x∗∗ ∈BE∗∗ of the sequence {xn}n≥1

and let {xnk}k≥1 be a subsequence of {xn}n≥1 such that x∗∗(z∗0) = limk xnk(z
∗
0).

We can and do assume that for every k ≥ 1,

xnk(z
∗
0)> x∗∗(z∗0)−

δ
2
. (10.9)

Since B⊂∪∞n=1Dn and {Dn}n≥1 is an increasing sequence of sets, given b∗ ∈ B there
exists k0 ≥ 1 such that b∗ ∈ Dnk for each k≥ k0. Now inequality (10.8) yields

x∗∗(z∗0)− δ ≥ limsup
k

xnk(b
∗), for every b∗ ∈ B, (10.10)
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and, on the other hand, inequality (10.9) implies that

w(z∗0)≥ x∗∗(z∗0)−
δ
2
, for every w ∈ coσ{xnk : k ≥ 1}. (10.11)

Now Theorem 10.5 can be applied to the sequence {xnk}k≥1, to deduce

x∗∗(z∗0)− δ
(10.10)
≥ sup

b∗∈B
limsup

k
xnk(b

∗)≥

≥ inf
{

sup{w(z∗) : z∗ ∈ co(B)
w∗
,w ∈ coσ{xnk : k ∈ N}}}

≥ inf
{

w(z∗0) : w ∈ coσ{xnk : k ∈ N}} (10.11)
≥ x∗∗(z∗0)−

δ
2
.

From the inequalities above we obtain 0≥ δ , which is a contradiction that completes
the proof. �
To conclude this section, let us emphasize that in [35, Theorem 2.2] the equivalence
between Simons’ inequality, the sup-limsup theorem of Simons, and the (I)-formula
of Fonf and Lindenstrauss was established in the bounded case. However, in the
unbounded case we propose the following question:

Question 10.9. Are the unbounded versions of Simons’ inequality and sup-limsup
theorem of Simons equivalent to some kind of I-formula for the unbounded case?

10.3 Nonattaining Functionals

This section is devoted to describe how to obtain nonattaining functionals in the
absence of weak compactness. Simons’ inequality provides us a first way of doing
it in a wide class of Banach spaces, which includes those whose dual unit balls are
w∗-sequentially compact. We introduce a new measure of weak noncompactness,
tightly connected with Simons’ inequality, and we relate it with recent quantification
results of classical theorems about weakly compact sets.

When Simons’ inequality in l∞(N) holds for a w∗-null sequence {x∗n}n≥1 in a dual
Banach space E∗, it follows that the origin belongs to the norm-closed convex hull

of the sequence, co{x∗n : n≥ 1}‖·‖. Therefore every time we have a w∗-null sequence

{x∗n}n≥1 with 0 /∈ co{x∗n : n≥ 1}‖·‖ we will have some x∗0 ∈ coσ{x∗n : n≥ 1} such that
x∗0 does not attain its supremum on BE .

We note that just Simons’ inequality, or its equivalent sup-limsup theorem,
provides us with the tools to give a simple proof of James’ weak compactness
theorem for a wide class of Banach spaces. We first recall the following concept:
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Definition 10.10. Let E be a vector space, and let {xn}n≥1 and {yn}n≥1 be
sequences in E . We say that {yn}n≥1 is a convex block sequence of {xn}n≥1 if for a
certain sequence of nonempty finite subsets of integers {Fn}n≥1 with

maxF1 < minF2 ≤maxF2 < minF3 ≤ ·· · ≤maxFn < minFn+1 ≤ ·· ·

and adequate sets of positive numbers {λ n
i : i ∈ Fn} ⊂ (0,1] we have that

∑
i∈Fn

λ n
i = 1 and yn = ∑

i∈Fn

λ n
i xi.

For a Banach space E , its dual unit ball BE∗ is said to be w∗-convex block compact
provided that each sequence {x∗n}n≥1 in BE∗ has a convex block w∗-convergent
sequence.

It is clear that if the dual unit ball BE∗ of a Banach space E is w∗-sequentially
compact, then it is w∗-convex block compact. This happens, for example, when E
is a weakly Lindelöf determined (in short, WLD) Banach space; see [74]. Let us
emphasize that both kinds of compactness do not coincide. Indeed, on the one hand,
an example of a Banach space with a non w∗-sequentially compact dual unit ball
and not containing �1(N) is presented in [73]. On the other hand, it is proved in [24]
that if a Banach space E does not contain an isomorphic copy of �1(N), then BE∗ is
w∗-convex block compact. This last result was extended for spaces not containing an
isomorphic copy of �1(R) under Martin Axiom and the negation of the Continuum
hypothesis in [80].

For a bounded sequence {x∗n}n≥1 in a dual Banach space E∗, we denote by
LE∗{x∗n} the set of all cluster points of the given sequence in the w∗-topology, and
when no confusion arises, we just write L{x∗n}.
Lemma 10.11. Suppose that E is a Banach space, {xn}n≥1 is a bounded sequence
in E and x∗∗0 in E∗∗ is a w∗-cluster point of {xn}n≥1 with d(x∗∗0 ,E) > 0. Then for
every α with d(x∗∗0 ,E)> α > 0 there exists a sequence {x∗n}n≥1 in BE∗ such that

〈x∗n,x∗∗0 〉> α (10.12)

whenever n≥ 1, and

〈x∗0,x∗∗0 〉= 0 (10.13)

for any x∗0 ∈ L{x∗n}.
Proof. The Hahn–Banach theorem applies to provide us with x∗∗∗ ∈ BE∗∗∗ satisfying
x∗∗∗|E = 0 and x∗∗∗(x∗∗0 ) = d(x∗∗0 ,E). For every n≥ 1 the set

Vn :=
{

y∗∗∗ ∈ E∗∗∗ : y∗∗∗(x∗∗0 )> α, |y∗∗∗(xi)| ≤ 1
n
, i = 1,2, . . . ,n

}
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is a w∗-open neighborhood of x∗∗∗, and therefore, by Goldstein’s theorem, we can
pick up x∗n ∈ BE∗ ∩Vn. The sequence {x∗n}n≥1 clearly satisfies

lim
n
〈x∗n,xp〉= 0, for all p ∈ N,

and for each n≥ 1

〈x∗n,x∗∗0 〉> α.

Fix an arbitrary x∗0 ∈ L{x∗n}. For every p≥ 1 we have that

〈x∗0,xp〉= 0,

and thus

〈x∗0,x∗∗0 〉= 0,

because x∗∗0 ∈ {xp : p = 1,2, · · ·}w∗
. �

Theorem 10.12. Let E be a Banach space with a w∗-convex block compact dual
unit ball. If a bounded subset A of E is not weakly relatively compact, then there
exists a sequence of linear functionals {y∗n}n≥1 ⊂ BE∗ with a w∗-limit point y∗0, and
some g∗ ∈ coσ{y∗n : n≥ 1}, such that g∗ − y∗0 does not attain its supremum on A.

Proof. Assume that A is not weakly relatively compact, which in view of the
Eberlein–Šmulian theorem is equivalent to the existence of a sequence {xn}n≥1 in A
and a w∗-cluster point x∗∗0 ∈ E∗∗ \E of it. Then Lemma 10.11 applies to provide us
with a sequence {x∗n}n≥1 in BE∗ and α > 0 satisfying (10.12) and (10.13).

Let {y∗n}n≥1 be a convex block sequence of {x∗n}n≥1 and let y∗0 ∈ BE∗ such that
w∗- limn y∗n = y∗0. It is clear that (10.12) and (10.13) are valid when replacing {x∗n}n≥1

and x∗0 with {y∗n}n≥1 and y∗0, respectively. Then

S
A

w∗

(
limsup

n
(y∗n− y∗0)

)
≥ limsup

n
(y∗n− y∗0)(x

∗∗
0 )

≥ α
> 0

= SA

(
limsup

n
(y∗n− y∗0)

)
,

so in view of the Rainwater–Simons theorem, Corollary 10.7, there exists g∗ ∈
coσ{y∗n : n≥ 1} such that g∗ − y∗0 does not attain its supremum on A, as announced.

�
In Sect. 10.5.2 we shall show a nonlinear extension of this result, with the use of
the (necessarily unbounded) Rainwater–Simons theorem, Corollary 10.7. For the
space �1(N), James constructed in [82] a continuous linear functional g : �1(N)→R
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such that g can be extended to ĝ ∈ E∗ on any Banach space E containing �1(N),
but ĝ does not attain its supremum on BE . Rosenthal’s �1(N)-theorem, together with
Theorem 10.12, provides another approach for James’ reflexivity theorem. These
ideas, developed by Morillon in [111], are the basis for new approaches to the weak
compactness theorem of James, as the very successful one due to Pfitzner in [122].

We now deal with the general version of Theorem 10.12, that is, James’ weak
compactness theorem with no additional assumptions on the Banach space. If E is a
Banach space and A is a bounded subset of E , we denote by ‖ · ‖A the seminorm
on the dual space E∗ given by the Minkowski functional of its polar set, i.e.,
the seminorm of uniform convergence on the set A. If A = −A, given a bounded
sequence {x∗n}n≥1 in E∗ and h∗ ∈ L{x∗n}, Simons’ inequality for the sequence
{x∗n−h∗}n≥1 in �∞(A) reads as follows: Under the assumption that every element in
coσp{x∗n− h∗ : n≥ 1} attains its supremum on A,

dist‖·‖A
(h∗,co{x∗n : n≥ 1})≤ SA

(
limsup

n
x∗n− h∗

)
.

Therefore,

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1})≤ inf

h∗∈L{x∗n}
SA

(
limsup

n
x∗n− h∗

)
.

We state the following characterization:

Proposition 10.13. Let A be a bounded subset of a Banach space E. Then A is
weakly relatively compact if, and only if, for every bounded sequence {x∗n}n≥1 in E∗
we have

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1}) = 0. (10.14)

Proof. We first prove that if A is weakly relatively compact then equality (10.14)
holds for any bounded sequence {x∗n}n≥1 in E∗. To this end, we note that, since

co(A)
‖·‖

is weakly compact by the Krein–Šmulian theorem, the seminorm ‖ · ‖A =
‖ · ‖

co(A)
‖·‖ is continuous for the Mackey topology μ(E∗,E). Hence we have the

inclusions

L{x∗n} ⊂ co{x∗n : n≥ 1}w∗
= co{x∗n : n≥ 1}μ(E

∗,E) ⊂ co{x∗n : n≥ 1}‖·‖A

that clearly explain the validity of (10.14).
To prove the converse we will show that if A is not weakly relatively compact in

E , then there exists a sequence {x∗n}n≥1 ⊂ BE∗ such that

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1})> 0.
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Let us assume that A is not relatively weakly compact in E . Then the Eberlein–
Šmulian theorem guarantees the existence of a sequence {xn}n≥1 in A with a w∗-
cluster point x∗∗0 ∈ E∗∗ \E . If d(x∗∗0 ,E)>α > 0, an appeal to Lemma 10.11 provides
us with a sequence {x∗n}n≥1 in BE∗ satisfying

〈x∗n,x∗∗0 〉> α

whenever n≥ 1 and

〈x∗0,x∗∗0 〉= 0

for any x∗0 ∈ L{x∗n}. Therefore we have that

‖
n

∑
i=1
λix
∗
ni
− x∗0‖A ≥

〈
n

∑
i=1
λix
∗
ni
− x∗0,x

∗∗
0

〉
> α

for any convex combination ∑n
i=1 λix∗ni

, and consequently

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1})≥ α > 0, (10.15)

and the proof is over. �
Pryce’s diagonal procedure is used in the proof of the following result:

Proposition 10.14. Let E be a Banach space, A a bounded subset of E with A =
−A, {x∗n}n≥1 a bounded sequence in the dual space E∗ and D its norm-closed linear
span in E∗. Then there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1 such that

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)
= dist‖·‖A

(x∗,L{x∗nk
}) (10.16)

for all x∗ ∈ D.

Proof. Lemma 10.2 implies the existence of a subsequence {x∗nk
}k≥1 of {x∗n}n≥1

such that

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)

for all x∗ ∈D. Since for any h∗ ∈ L{x∗nk
} we have

liminf
k

x∗nk
(a)≤ h∗(a)≤ limsup

k
x∗nk

(a)

for all a ∈ A, it follows that

SA

(
x∗ − liminf

k
x∗nk

)
= ‖x∗ − h∗‖A = SA

(
x∗ − limsup

k
x∗nk

)
.
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Therefore

SA

(
x∗ − liminf

k
x∗nk

)
= SA

(
x∗ − limsup

k
x∗nk

)
= dist‖·‖A

(x∗,L{x∗nk
})

for all x∗ ∈D, and the proof is finished. �
Equality (10.16) will be in general the source to look for nonattaining linear
functionals whenever we have

dist‖·‖A
(L{x∗nk

},co{x∗nk
: k≥ 1})> 0,

which means, in view of Proposition 10.13, whenever A is a nonrelatively weakly
compact subset of E . Until now all such constructions depend on this fact, which is
called the technique of the undetermined function. The next result is so far the most
general perturbed version for the existence of nonattaining functionals; see [133,
Corollary 8]:

Theorem 10.15. Let X be a nonempty set, {h j} j≥1 a bounded sequence in �∞(X),
ϕ ∈ �∞(X) with ϕ ≥ 0 and δ > 0 such that

SX

(
h− limsup

j
h j−ϕ

)
= SX

(
h− liminf

j
h j−ϕ

)
≥ δ ,

whenever h ∈ coσ{h j : j ≥ 1}. Then there exists a sequence {gi}i≥1 in �∞(X) with

gi ∈ coσ{h j : j ≥ i}, for all i≥ 1,

and there exists g0 ∈ coσ{gi : i≥ 1} such that for all g ∈ �∞(X) with

liminf
i

gi ≤ g≤ limsup
i

gi on X ,

the function g0− g−ϕ does not attain its supremum on X .

The proof given in [133] for the above result involves an adaptation of the additive
diagonal lemma we have used for Simons’ inequality in R

X , Theorem 10.5. Let us
include here a proof for the following consequence, that was stated first in this way
by James in [87, Theorems 2 and 4].

Theorem 10.16 (James). Let A be a nonempty bounded subset of a Banach space
E which is not weakly relatively compact. Then there exist a sequence {g∗n}n≥1 in
BE∗ and some g0 ∈ coσ{g∗n : n≥ 1} such that, for every h ∈ �∞(A) with

liminf
n

g∗n ≤ h≤ limsup
n

g∗n on A,

we have that g0− h does not attain its supremum on A.
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Proof. Without loss of generality we can assume that A is convex and that A =−A.
Proposition 10.13 gives us a sequence {x∗n}n≥1 in BE∗ such that dist‖·‖A

(L{x∗n},co{x∗n :
n ≥ 1})> 0. By Proposition 10.14 there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1

that verifies the hypothesis of Theorem 10.15 with ϕ = 0. So we find a sequence
{g∗n}n≥1 with g∗n ∈ coσ{x∗nk

: k ≥ n}, for every n ∈ N, and g0 ∈ coσ{g∗n : n ≥ 1}
such that g0−h does not attain its supremum on A, where h is any function in �∞(A)
with liminfn g∗n ≤ h≤ limsupn g∗n on A. �
In particular we have seen how to construct linear functionals g0− g that do not
attain their supremum on A, whenever g is a w∗-cluster point of the sequence
{g∗n}n≥1 in BE∗ .

We finish this section with a short visit to the so-called measures of weak
noncompactness in Banach spaces: the relationship of these measures with the
techniques already presented in this survey will be plain clear when progressing
in our discussion below.

We refer the interested reader to [14,105], where measures of weak noncompact-
ness are axiomatically defined. A measure of weak noncompactness is a nonnegative
function μ defined on the family ME of bounded subsets of a Banach space E , with
the following properties:

(i) μ(A) = 0 if, and only if, A is weakly relatively compact in E
(ii) If A⊂ B then μ(A)≤ μ(B)

(iii) μ(conv(A)) = μ(A)
(iv) μ(A∪B) = max{μ(A),μ(B)}
(v) μ(A+B)≤ μ(A)+ μ(B)

(vi) μ(λA) = |λ |μ(A)
Inspired by Proposition 10.13, we introduce the following:

Definition 10.17. For a bounded subset A of a Banach space E , σ(A) stands for the
quantity

sup
{x∗n}n≥1⊂BE∗

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1}).

Observe that σ satisfies properties (i), (ii), (iii), (iv), and (vi), and therefore σ
can be considered as a measure of weak noncompactness. Beyond the formalities
we will refer in general to measures of weak noncompactness to quantities as
above fulfilling property (i) and sometimes a few of the others. These measures of
noncompactness or weak noncompactness have been successfully applied to the
study of compactness, operator theory, differential equations, and integral equations;
see, for instance, [10–12, 20, 33, 36, 50, 64, 66, 68, 103–105].

The next definition collects several measures of weak noncompactness that
appeared in the aforementioned literature. If A and B are nonempty subsets of E∗∗,
then d(A,B) denotes the usual inf distance (associated to the bidual norm) between
A and B, and the Hausdorff nonsymmetrized distance from A to B is defined by
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d̂(A,B) = sup{d(a,B) : a ∈ A}.

Notice that d̂(A,B) can be different from d̂(B,A), and that max{ d̂(A,B), d̂(B,A)}
is the Hausdorff distance between A and B. Notice further that d̂(A,B) = 0 if, and
only if, A⊂ B (norm-closure) and that

d̂(A,B) = inf{ε > 0 : A⊂ B+ εBE∗∗}.

Definition 10.18. Given a bounded subset A of a Banach space E we define

ω(A) := inf{ε > 0 : A⊂ Kε + εBE and Kε ⊂ E is w-compact},

γ(A) := sup{| lim
n

lim
m

x∗m(xn)− lim
m

lim
n

x∗m(xn)| : {x∗m}m≥1 ⊂ BE∗ ,{xn}n≥1 ⊂ A},

assuming the involved limits exist,

ckE(A) := sup
{xn}n≥1⊂A

d(LE∗∗{xn},E),

k(A) := d̂(A
w∗
,E) = sup

x∗∗∈A
w∗

d(x∗∗,E),

and

JaE(A) := inf{ε > 0 : for every x∗ ∈ E∗, there exists x∗∗ ∈ A
w∗

such that x∗∗(x∗) = SA(x
∗) and d(x∗∗,E)≤ ε}.

The function ω was introduced by de Blasi [20] as a measure of weak noncom-
pactness that is somehow the counterpart for the weak topology of the classical
Kuratowski measure of norm noncompactness. Properties for γ can be found
in [11, 12, 33, 50, 105] and for ckE in [11]—note that ckE is denoted as ck in
that paper. The quantity k has been used in [11, 33, 50, 64]. A thorough study for
JaE has been done in [36] to prove, amongst other things, a quantitative version
of James’ weak compactness theorem, whose statement is presented as part of
Theorem 10.19 bellow. This theorem tells us that all classical approaches used
to study weak compactness in Banach spaces (Tychonoff’s theorem, Eberlein–
Šmulian’s theorem, Eberlein–Grothendieck double-limit criterion, and James’ weak
compactness theorem) are qualitatively and quantitatively equivalent.

Theorem 10.19. For any bounded subset A of a Banach space E the following
inequalities hold true:
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σ(A) ≤ 2ω(A)
r ≤

1
2 γ(A) ≤ JaE(A) ≤ ckE(A) ≤ k(A) ≤ γ(A).

(10.17)

Moreover, for any x∗∗ ∈ A
w∗

there exists a sequence {xn}n≥1 in A such that

‖x∗∗ − y∗∗‖ ≤ γ(A) (10.18)

for any w∗-cluster point y∗∗ of {xn}n≥1 in E∗∗.
Furthermore, A is weakly relatively compact in E if, and only if, one (equiva-

lently, all) of the numbers γ(A),JaE(A),ckE(A),k(A),σ(A), and ω(A) is zero.

Proof. A full proof with references to prior work for the inequalities

1
2
γ(A)≤ ckE(A)≤ k(A)≤ γ(A)≤ 2ω(A)

and (10.18) is provided in [11, Theorem 2.3]. The inequalities

1
2
γ(A)≤ JaE(A)≤ ckE(A)

are established in Theorem 3.1 and Proposition 2.2 of [36].
To prove ckE(A) ≤ σ(A) we proceed as follows. If 0 = ckE(A), the inequality

is clear. Assume that 0 < ckE(A) and take an arbitrary 0 < α < ckE(A). By the
very definition of ckE(A) there exist a sequence {xn}n≥1 in A and a w∗-cluster point
x∗∗0 ∈ E∗∗ with d(x∗∗0 ,E) > α > 0. If we read now the second part of the proof of
Proposition 10.13, we end up producing a sequence {x∗n}n≥1 in BE∗ that according
to inequality (10.15) satisfies

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1})≥ α.

Sinceα with 0<α< ckE(A) is arbitrary, the above inequality yields ckE(A)≤σ(A).
To complete the chain of inequalities we establish σ(A)≤ 2ω(A). Let ω(A)< ε

and take a weakly compact subset Kε of E such that A ⊂ Kε + εBE . This inclusion
leads to the inequality

‖·‖A ≤ ‖·‖Kε + ε‖·‖. (10.19)

Fix an arbitrary sequence {x∗n}n≥1 in BE∗ and now take a w∗-cluster point x∗0 ∈
L{x∗n}. Since Kε is weakly compact we know that x∗0 ∈ co{x∗n : n≥ 1}‖·‖Kε . Hence,
for an arbitrary η > 0, we can find a convex combination ∑n

i=1λix∗ni
with ‖x∗0−

∑n
i=1λix∗ni

‖Kε < η . Thus, inequality (10.19) allows us to conclude that
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dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1})≤

∥∥∥x∗0−
n

∑
i=1
λix
∗
ni

∥∥∥
A

≤
∥∥∥x∗0−

n

∑
i=1

λix
∗
ni

∥∥∥
Kε

+ ε
∥∥∥x∗0−

n

∑
i=1

λix
∗
ni

∥∥∥≤ η+ 2ε.

Since ε,η and {x∗n}n≥1 are arbitrary, we conclude σ(A)≤ 2ω(A).
Finally, recall a well-known result of Grothendieck [46, Lemma 2, p. 227] stating

that ω(A) = 0 if, and only if, A is weakly relatively compact in E . Observe that, as
a consequence of (10.17), one of the numbers γ(A),JaE(A),ckE(A),k(A) is zero

if, and only if, all of them are zero. Clearly, k(A) = 0 if, and only if, A
w∗ ⊂ E ,

that is equivalent to the fact that A is weakly relatively compact by Tychonoff’s
theorem. To establish σ(A) = 0 if, and only if, A is weakly relatively compact either
use Proposition 10.13 or the comments above for ω and ckE , together with the
inequalities ckE(A)≤ σ(A)≤ ω(A). The proof is over. �
It is worth noticing that the inequalities

ckE(A)≤ k(A)≤ 2ckE(A),

that follow from (10.17), offer a quantitative version (and imply) of the Eberlein–
Šmulian theorem saying that weakly relatively countably compact sets in Banach
spaces are weakly relatively compact. Note also that (10.18) implies that points in
the weak closure of a weakly relatively compact set of a Banach space are reachable
by weakly convergent sequences from within the set (summing up, the inequalities
are a quantitative version of the angelicity of weakly compact sets in Banach spaces;
see Definition 10.20). In a different order of ideas the inequality

1
2
γ(A)≤ JaE(A) (10.20)

implies James’ weak compactness theorem, Theorem 10.1, and since JaE(A) ≤
ckE(A) as well, we therefore know that James’ weak compactness theorem can be
derived and implies the other classical results about weak compactness in Banach
spaces. We should mention that the proof of inequality (10.20) in [36, Theorem
3.1] follows the arguments by Pryce in [125] suitably adapted and strengthened
for the occasion: assuming that 0 < r < γ(A), two sequences {xn}n≥1 ⊂ A and
{x∗m}m≥1 ⊂ BE∗ are produced satisfying

lim
m

lim
n

x∗m(xn)− lim
n

lim
m

x∗m(xn)> r.

Then Lemma 10.2 is applied to the sequence {x∗m}m≥1, and after some twisting and
fine adjustments in Pryce’s original arguments, for arbitrary 0 < r′ < r a sequence
{g∗n}n≥1 in BE∗ and g0 ∈ coσ{g∗n : n ≥ 1} are produced with the property that for

any w∗-cluster point h ∈ BE∗ of {g∗n}n≥1, if x∗∗ ∈ A
w∗

is such that

x∗∗(g0− h) = SA(g0− h)
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then d(x∗∗,E) ≥ 1
2 r′. Since 0 < r < γ(A) and r′ ∈ (0,r) are arbitrary the inequal-

ity (10.20) follows. Of course, g0− h ∈ E∗ does not attain its supremum on A but

we moreover know how far from E in A
w∗

we need to go in order that g0− h might
attain it: compare with Theorem 10.16.

The aforementioned references contain examples showing when the inequalities
in (10.17) are sharp, as well as sufficient conditions of when the inequalities become
equalities. An example of the latter is given in the theorem below, where we use the
notion of angelic space that follows.

Definition 10.20 (Fremlin). A regular topological space T is angelic if every
relatively countably compact subset A of T is relatively compact and its closure
A is made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative compactness
coincide: the (relatively) countably compact, (relatively) compact, and (relatively)
sequentially compact subsets are the same, as seen in [53]. Examples of angelic
spaces include C(K) endowed with the topology tp(K) of pointwise convergence
on a countably compact space K ([71, 96]) and all Banach spaces in their weak
topologies. Another class of angelic spaces are dual spaces of weakly countably
K-determined Banach spaces, endowed with their w∗-topology [117].

Theorem 10.21 ([36, Theorem 6.1]). Let E be a Banach space such that (BE∗ ,w∗)
is angelic. Then for any bounded subset A of E we have

1
2
γ(A)≤ γ0(A) = JaE(A) = ckE(A) = k(A)≤ γ(A),

where

γ0(A) := sup{| lim
i

lim
j

x∗i (x j)| : {x j} j≥1 ⊂ A,{x∗i }i≥1 ⊂ BE∗ ,x
∗
i

w∗→ 0}.

A moment of thought and the help of Riesz’s lemma suffice to conclude that for the
unit ball BE we have that

k(BE) = sup
x∗∗∈BE∗∗

d(x∗∗,E) ∈ {0,1}.

Reflexivity of E is equivalent to k(BE) = 0 and non reflexivity to k(BE) = 1. Note
then that, when (BE∗ ,w∗) is angelic, reflexivity of E is equivalent to JaE(BE) = 0,
and non reflexivity to JaE(BE) = 1. In other words, James’ reflexivity theorem can
be strengthened to: If there exists 0 < ε < 1 such that for every x∗ ∈ E∗ there exists
x∗∗ ∈ BE∗∗ with d(x∗∗,E) ≤ ε and SBE (x

∗) = x∗∗(x∗), then E is reflexive. Indeed,
the above comments provide a proof of this result when (BE∗ ,w∗) is angelic; for the
general case we refer to [69].

With regard to convex hulls, the quantities in Theorem 10.19 behave quite
differently. Indeed, if A is a bounded set of a Banach space E , then the following
statements hold:
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γ(co(A)) = γ(A), JaE(co(A))≤ JaE(A);
ckE(co(A))≤ 2ckE(A), k(co(A))≤ 2k(A);
σ(co(A)) = σ(A), ω(co(A)) = ω(A).

Constant 2 for ckE and k is sharp, [36, 64, 68], and it is unknown if JaE might
really decrease when passing to convex hulls. The equality γ(A) = γ(co(A)) is a
bit delicate and has been established in [33, 50].

Last, but not least, we present yet another measure of weak noncompactness
inspired by James’ ideas in [85]. Following [105], for a given bounded sequence
{xn}n≥1 in a Banach space, we define

csep({xn}n≥1) := inf{‖u1− u2‖ : (u1,u2) ∈ scc({xn}n≥1)},

where

scc({xn}n≥1) := {(u1,u2) : u1 ∈ conv{xi}1≤i≤m,u2 ∈ conv{xi}i≥m+1,m ∈ N}.

Definition 10.22 ([105, Definition 2.2]). If A is a bounded subset of a Banach
space, we define

α(A) := sup{csep({xn}n≥1) : {xn}n≥1 ⊂ A}.

It is proved in [105] that the relationship of α with the measures of weak
noncompactness already presented are given by the formulas:

α(A) = sup
{

d(x∗∗,conv{xn : n≥ 1} : {xn}n≥1 ⊂ A, x∗∗ ∈ LE∗∗{xn}
}

and

γ(A) = α(conv(A)).

For the measure of weak noncompactness σ introduced in Definition 10.17, and in
view of Theorem 10.19, the following question naturally arises:

Question 10.23. With regard to the measure of weak noncompactness σ , are the
derived estimates sharp? Is it equivalent to the others (except ω)?

10.4 Boundaries

Given a w∗-compact subset C of E∗, a boundary for C is a subset B of C with the
property that

for every x ∈ E there exists some b∗ ∈ B such that b∗(x) = sup{c∗(x) : c∗ ∈C} .
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Note that if C is moreover convex, then the Hahn–Banach theorem shows that

co(B)
w∗

= C. In addition, the set ext(C) of the extreme points of C is a boundary
for C, thanks to Bauer’s maximum principle (see [53, p. 6]), and therefore also

satisfies C = co(ext(C))
w∗

. Note that Milman’s theorem [46, Corollary IX.4] tells

us that ext(C) ⊂ B
w∗

. Nonetheless, in general, boundaries can be disjoint of the set
of extreme points as the following example shows: let Γ be a uncountable set and
consider

(
�1(Γ ),‖·‖1

)
and

B :=
{
(xγ )γ∈Γ : xγ ∈ {−1,0,1} and {γ ∈ Γ : xγ �= 0} is countable

}
.

A moment of thought suffices to conclude that B is a boundary for the dual unit ball
B�∞(Γ ) that is clearly disjoint from ext

(
B�∞(Γ )

)
; see [136, Example 7].

If B is a boundary for BE∗ , we will say that B is a boundary for E .
Two problems regarding boundaries in Banach spaces have attracted the attention

of a good number of authors during the years, namely:

The study of strong boundaries. The goal here is to find conditions under which

a boundary B for the w∗-compact convex C is strong, i.e., co(B)
‖·‖

=C.
The boundary problem. Let E be a Banach space, let B be a boundary for E ,

and let A be a bounded and σ(E,B)-compact subset of E . Is A weakly compact?
(Godefroy, [59, Question V.2]).

At first glance, the two questions above may look unrelated. They are not. Indeed,
on the one hand, the boundary problem has an easy and positive answer for all strong
boundaries B in BE∗ . On the other hand, many studies about strong boundaries
and several partial answers to the boundary problem use Simons’ inequality as a
tool. Regarding strong boundaries, the following references are a good source for
information [34, 35, 39, 45, 51, 55, 56, 59, 61, 77, 78, 88, 123, 130, 148]. At the end of
this section we will provide some recent results on strong boundaries.

Let us start by considering the boundary problem. It has been recently solved in
full generality in the paper [122]. It is interesting to recall the old roots and the long
history of the problem.

The first result that provided a partial positive result to the boundary problem
(before its formulation as such a question) was the following characterization of
weak compactness in continuous function spaces, due to Grothendieck; see [71,
Théorème 5]:

Theorem 10.24. If K is a Hausdorff and compact topological space and A is a
subset of C(K), then A is weakly compact if, and only if, it is bounded and compact
for the topology of the pointwise convergence on K.

More generally, Theorem 10.24 was generalized by Bourgain and Talagrand [25,
Théorème 1] in the following terms:

Theorem 10.25. Let E be a Banach space, B = ext(BE∗) and let A be a bounded
and σ(E,B)-compact subset of E. Then A is weakly compact.
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Note that the result of Bourgain and Talagrand is far from being a full solution to the
boundary problem, because as presented above there are examples of boundaries of
Banach spaces that do not contain any extreme point.

Bearing in mind the Rainwater–Simons theorem, Corollary 10.7, it is easy to give
another partial solution to the boundary problem.

Corollary 10.26. For any separable Banach space E and any boundary for E, the
boundary problem has positive answer.

Proof. Let B be a boundary for E and let A be a bounded and σ(E,B)-compact
subset of E . Since E is separable, the unit ball (BE∗ ,w∗) is metrizable and separable.
It follows that B is w∗-separable. Take D a countable and w∗-dense subset of B.
The topology σ(E,D) is then Hausdorff, metrizable, and coarser than σ(E,B).
Consequently we obtain that σ(E,D) and σ(E,B) coincide when restricted to
A and we conclude that (A,σ(E,B)) is sequentially compact. An application of
Corollary 10.7 taking into account the Eberlein–Šmulian theorem gives us that A is
weakly compact, which concludes the proof. �
A first approach to the next result appears implicitly in [136, Theorem 5]. Using the
ideas of Pryce in [125] and those of Rodé on the so-called “superconvex analysis”
in [129], Konig formulated it in [101, Theorem 5.2, p. 104]. We present here our
approach based on the criteria given by Theorem 10.15.

Theorem 10.27. Let E be a Banach space and B(⊂ BE∗) a boundary for E. If A is
a bounded convex subset of E such that for every sequence {an}n≥1 in A there exists
z ∈ E such that

liminf
n
〈an,b

∗〉 ≤ 〈z,b∗〉 ≤ limsup
n
〈an,b

∗〉 (10.21)

for every b∗ ∈ B, then A is weakly relatively compact.

Proof. Let us proceed by contradiction and assume that A is not weakly relatively
compact in E . Then the Eberlein–Šmulian theorem says that there exists a sequence
{an}n≥1 ⊂ A without weak cluster points in E . According to Pryce’s diagonal
argument, Lemma 10.2, we can and do assume that

SB

(
a− liminf

n
an

)
= SB

(
a− liminf

k
ank

)

= SB

(
a− limsup

k
ank

)

= SB

(
a− limsup

n
an

)

for every a ∈ coσ{an : n≥ 1} and every subsequence of integers n1 < n2 < · · · .
Let us fix x0 ∈ E such that for every b∗ ∈ B
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liminf〈an,b
∗〉 ≤ 〈x0,b

∗〉 ≤ limsup〈an,b
∗〉.

Keeping in mind that A is w∗-relatively compact in E∗∗, we know that {an}n≥1 has
a w∗-cluster point x∗∗0 ∈ E∗∗ \E . Let us fix h∗ ∈ BE∗ and ξ ∈ R such that

h∗(x0)< ξ < h∗(x∗∗0 ).

Since h∗(x∗∗0 ) is a cluster point of the sequence {h∗(an)}n≥1, then there exists a
subsequence {ank}k≥1 of {an}n≥1 such that h∗(ank) > ξ for every k ≥ 1. Thus we
also have h∗(a)≥ ξ for every a ∈ coσ{ank : k ≥ 1}. Consequently we have that

SB

(
a− liminf

n
an

)
= SB

(
a− liminf

k
ank

)
= SB

(
a− limsup

k
ank

)

= SB

(
a− limsup

n
an

)
= SB (a− x0) = SBE∗ (a− x0)

≥ h∗(a)− h∗(x0)≥ ξ − h∗(x0)> 0

for every a ∈ coσ{ank : k ≥ 1}. We can apply now Theorem 10.15 with X := B,
ϕ = 0 and {h j} j≥1 being {ank}k≥1 to get a sequence {yi}i≥1 such that for all i≥ 1,
yi ∈ coσ{an j : j ≥ i}, together with some y0 ∈ coσ{yi : i ≥ 1}, in such a way that
y0− y does not attain its supremum on B for any y with

liminf
i

yi(b
∗)≤ y(b∗)≤ limsup

i
yi(b

∗), for all b∗ ∈ B.

Given i ≥ 1, since yi ∈ co‖·‖{an j : j ≥ i} we can pick up zi ∈ co{an j : j ≥ i} with
‖yi− zi‖∞ < 2−i. Note that the convexity of A implies zi ∈ A for every i≥ 1. But our
hypothesis provide us with some z ∈ E such that

liminf
i

yi(b
∗) = liminf

i
zi(b

∗)≤ z(b∗)≤ limsup
i

zi(b
∗) = limsup

i
yi(b

∗)

for every b∗ ∈ B. Thus we have that y0− z ∈ E does not attain its norm on B, which
contradicts that B is a boundary for E and the proof is over. �
The following result straightforwardly follows from Theorem 10.27.

Theorem 10.28. Let E be a Banach space and B(⊂ BE∗) a boundary for E. If A is
a convex bounded and σ(E,B)-relatively countably compact subset of E, then it is
weakly relatively compact.

Proof. It suffices to note that if A is σ(E,B)-relatively countably compact in E , then
for any given sequence {an}n≥1 in A and each σ(E,B)-cluster point z ∈ E of it, z
satisfies the inequalities in (10.21). Then Theorem 10.27 applies and the proof is
over. �
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A different proof for Theorem 10.28, even in a more general setting, can be found
in [53, Corollary 3, p. 78]: the arguments for this proof go back to the construction
of norm-nonattaining functionals in Pryce’s proof of James’ weak compactness
theorem. A different proof by Godefroy appeared in [60, Proposition II.21] (this
proof has been rewritten in [51, Theorem 3.140]).

Theorem 10.28 opens another door for positive answers to the boundary problem
as long as for the given boundary B(⊂ BE∗) for E and the norm-bounded σ(E,B)-
compact set A( ⊂ E) we have that co(A)

σ(E,B) ⊂ E is σ(E,B)-compact. In other
words, the boundary problem would have a positive answer subject to the locally
convex space (E,σ(E,B)) satisfies Krein–Šmulian’s property just mentioned. Note
though, that the classical Krein–Šmulian theorem only works for locally convex
topologies in between the weak and the norm-topology of E and that σ(E,B) can
be strictly coarser than the weak topology, [102, Sect. 24]. Positive results along this
direction were established in [30–32].

Recall that a subset B of BE∗ is said to be norming (resp. 1-norming) if

|‖x|‖= sup{|b∗(x)| : b∗ ∈ B}

is a norm in E equivalent (resp. equal) to the original norm of E . Particularly, if
B(⊂ BE∗) is a boundary for E then B is 1-norming.

The three results that follow are set up to address the boundary problem from the
point of view of the existence of isomorphic copies of the basis of �1(R). A proof
for these results can be found in [32] (see also [30]).

Theorem 10.29 (Krein–Šmulian type result). Let E be a Banach space and let B
be a norming subset of BE∗ . If E does not contain an isomorphic copy of �1(R), then
the σ(E,B)-closed convex hull of every bounded σ(E,B)-relatively compact subset
of X is σ(E,B)-compact.

Corollary 10.30. Let E be a Banach space which does not contain an isomorphic
copy of �1(R) and let B(⊂ BE∗) be a boundary for E. Then, every bounded σ(E,B)-
compact subset of E is weakly compact.

Theorem 10.31. Let E be a Banach, B( ⊂ BE∗) a boundary for E and let A be a
bounded subset of E. Then, the following statements are equivalent:

(i) A is weakly compact.
(ii) A is σ(E,B)-compact and does not contain a family (xα)α∈R equivalent to the

usual basis of �1(R).

Note that Theorems 10.29 and 10.28 straightforwardly imply Corollary 10.30.
Theorem 10.29 is of interest by itself. The original proof for this result in [32]
uses techniques of Pettis integration together with fine subtleties about independent
families of sets in the sense of Rosenthal. Other proofs are available as for instance
in [30,67], where it is established that if for the Banach space E the Krein–Šmulian
property in Theorem 10.29 holds true for any norming set B(⊂ BE∗) then E cannot
contain isomorphically �1(R) (see also [21] for related results).
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It is worth mentioning a few things about the class of Banach spaces not
containing isomorphic copies of �1(R). Good references for this class of Banach
spaces are [79, 106, 144]. On the one hand, a Banach space E does not contain
isomorphically �1(R) if, and only if, �∞(N) is not a quotient of E , [120, Lemma
4.2]. On the other hand, E does not admit �∞(N) as a quotient if, and only if, the
dual unit ball (BE∗ ,w∗) does not contain a homeomorphic copy of the Stone-Čech
compactification of the natural numbers, βN, [144]. In particular each one of the
following classes of Banach spaces are made up of spaces which do not contain
isomorphically �1(R):

(a) Banach spaces with a weak∗-sequentially compact dual unit ball
(b) Banach spaces which are Lindelöf for their weak topologies, or more in general,

Banach spaces with the property (C ) of Corson

Recall that E has property (C ) (see [124]), if every family of convex closed subsets
of it with empty intersection has a countable subfamily with empty intersection.

Finally, the positive answer to the boundary problem due to Pfitzner (see [122,
Theorem 9]) is formulated as follows:

Theorem 10.32 (Pfitzner). Let A be a bounded set in a Banach space E and let
B(⊂ E∗) be a boundary of a w∗-compact subset C of E∗. If A is σ(E,B)-countably
compact then A is σ(E,C)-sequentially compact. In particular, if B is a boundary
for E, then a bounded subset of E is weakly compact if, and only if, it is σ(E,B)-
compact.

In the proof of this fine result, Pfitzner does a localized analysis on A that goes
beyond Theorem 10.31 and involves the quantitative version of Rosenthal’s �1-
theorem in [17], Simons’ inequality, and a modification of a result of Hagler and
Johnson in [72].

Although Theorem 10.32 answers in full generality the boundary problem a few
open problems still remain. For instance, it is unknown if given a boundary B
(⊂ BE∗) for E , the topology σ(E,B) is angelic on bounded subsets of E . A few
comments are needed here. We first note that since in angelic spaces compact
subsets are sequentially compact, [53], when σ(E,B) is angelic on bounded subsets
of E , a positive answer to the boundary problem is easily given as a consequence of
Rainwater–Simons’ theorem, Corollary 10.7—see Corollary 10.26 as illustration.
In general it is not true that (E,σ(E,B)) is angelic; see [141, Theorem 1.1(b)]:
an L1-predual E is constructed together with a σ(E,ext(BE∗)-countably compact

set A ⊂ E for which not every point x ∈ A
σ(E,ext(BE∗ ) is the σ(E,ext(BE∗)-limit of

a sequence in A (see also [110]). Nonetheless there are cases where angelicity of
σ(E,B) (or σ(E,B) on bounded sets) is known, and therefore for these cases a
stronger positive answer to the boundary problem is provided. One of this cases
is presented in [25] where it is proved that for any Banach space E the topology
σ(E,ext(BE∗)) is angelic on bounded sets—compared with [141, Theorem 1.1(b)].
Two more of these positive cases are presented below in Theorems 10.35 and 10.36.
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The proof of Theorem 10.35 needs the two lemmas that follow. The first one
(see [30, Lemma 4.5]) that implicitly appears in a particular case in [29] can be
considered as a kind of strong version of an “Angelic Lemma” in the spirit of [53,
Lemma in p. 28].

Lemma 10.33. Let X be a nonempty set and τ , T two Hausdorff topologies on X
such that (X ,τ) is regular and (X ,T) is angelic. Assume that for every sequence
{xn}n≥1 in X with a τ-cluster point x ∈ X, x is T-cluster point of {xn}n≥1. The
following assertions hold true:

(i) If L is a τ-relatively countably compact subset of X, then L is T-relatively
compact.

(ii) If L is a τ-compact subset of X, then L is T- compact.
(iii) (X ,τ) is an angelic space.

The lemma below (see [29, Lemma 1] and [30, Lemma 4.7]) evokes properties of
the real-compactification (also called the repletion) of a topological space, cf. [53,
Sect. 4.6].

Lemma 10.34. Let K be a compact space and B( ⊂ BC(K)∗) a boundary for the
Banach space (C(K),‖·‖∞). If { fn}n≥1 is an arbitrary sequence in C(K) and x ∈K,
then there exists μ ∈ B such that

fn(x) =
∫

K
fndμ

for every n≥ 1.

Proof. If we define the continuous function g : K→ [0,1] by the expression

g(t) := 1−
∞

∑
n=1

1
2n

| fn(t)− fn(x)|
1+ | fn(t)− fn(x)| (t ∈ K),

then

F :=
∞⋂

n=1

{y ∈ K : fn(y) = fn(x)}= {y ∈ K : g(y) = 1 = ‖g‖∞}. (10.22)

Since B is a boundary, there exists μ ∈ B such that
∫

K gdμ = 1. So we arrive at

1 = ‖μ‖= |μ |(K)≥
∫

K
gd|μ | ≥

∫
K

gdμ = 1, (10.23)

in other words,

0 = |μ |(K)−
∫

K
gd|μ |=

∫
K
(1− g)d|μ |.

Since 1− g≥ 0 we obtain |μ |({y ∈ K : 1− g(y)> 0}) = 0, that is |μ |(K \F) = 0.
Therefore, for every n ∈ N, we have
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∫
K

fndμ =

∫
F

fndμ =

∫
F

fn(x)dμ = fn(x)

because μ(F) =
∫

F gdμ =
∫

K gdμ = 1 by the equalities (10.22) and (10.23) (note
that μ is actually a probability!). �
We are ready to proof the next result that appeared in [29, 30]:

Theorem 10.35. Let K be a compact space and B( ⊂ BC(K)∗) a boundary for the
Banach space (C(K),‖ · ‖∞). Then the following statements hold true:

(i) (C(K),σ(C(K),B)) is angelic.
(ii) If a subset A of C(K) is σ(C(K),B)-relatively countably compact in C(K), then

A is σ(C(K),B)-relatively sequentially compact.
(iii) If A is a norm-bounded and σ(C(K),B)-compact subset of C(K), then A is

weakly compact.

Proof. Let us fix the notation X := C(K), τ := σ(C(K),B) and T := tp(K) the
topology of pointwise convergence on C(K). Then Lemma 10.34 implies that
the hypotheses in Lemma 10.33 are fulfilled. On the one hand, let { fn}n≥1 be a
sequence in C(K) that has τ-cluster point f0 ∈ C(K) and take an arbitrary T-open
neighborhood of f0

V ( f0,x1,x2, . . . ,xm,ε) := {g ∈C(K) : sup
1≤i≤m

|g(xi)− f0(xi)|< ε},

with ε > 0, x1,x2, . . . ,xm ∈ K. Use Lemma 10.34 to pick μi ∈ B associated to each
xi and the sequence { fn}n≥1∪{ f0}, 1 ≤ i ≤ m. Since { fn}n≥1 visits frequently the
τ-open neighborhood of f0

V ( f0,μ1,μ2, . . . ,μm,ε) :=
{

g ∈C(K) : sup
1≤i≤m

∣∣∣∫
K

gdμi−
∫

K
f0dμi

∣∣∣< ε
}
,

we conclude that { fn}n≥1 visits frequently V ( f0,x1,x2, . . . ,xm,ε), hence f0 is also
a T-cluster point of { fn}n≥1. On the other hand, the space (C(K), tp(K)) is angelic,
[71, 96] (see also [53]). Therefore (C(K),σ(C(K),B)) is angelic by Lemma 10.33
that explains (i). Since in angelic spaces relatively countably compactness implies
relatively sequentially compactness, statement (ii) follows from (i). Finally (iii)
follows from (ii) and the Rainwater–Simons theorem, Corollary 10.7—we have no
need here for the general solution given in Theorem 10.32 for the boundary problem.

�
Given a topological space X we denote by Cb(X) the Banach space of bounded
continuous real-valued functions on X endowed with the supremum norm ‖·‖∞.
M (X) stands for the dual space (Cb(X),‖·‖∞)∗, for which we adopt the Alexandroff
representation as the space of finite, finitely additive and zero-set regular Baire
measures on X [150, Theorem 6].

The following result was published in [31]:
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Theorem 10.36. Let E be a Banach space whose dual unit ball BE∗ is w∗-angelic
and let B be a subset of BE∗:

(i) If B is norming and A is a bounded and σ(E,B)-relatively countably compact

subset of E, then co(A)
σ(E,B)

is σ(E,B)-compact.
(ii) If B if a boundary for E, then every bounded σ(E,B)-relatively countably

compact subset of E is weakly relatively compact. Therefore the topology
σ(E,B) is angelic on bounded sets of E.

Proof. It is clear that (ii) follows from (i) when taking into account Theorem 10.28.
Here is a proof for (i). We note first that is not restrictive to assume that B is

1-norming and in this case co(B)
w∗

= BE∗ . Consider X := A
σ(E,B)

endowed with
the topology induced by σ(E,B). Now we will state that every Baire probability μ
on X has a barycenter xμ in X . Since A is σ(E,B)-relatively countably compact,
every σ(E,B)-continuous real function on X is bounded, which means that X is a
pseudocompact space. For pseudocompact spaces X , the space M (X) is made up of
countably additive measures defined on the Baire σ -field Ba of X , [58] and [150,
Theorem 21]. Take a Baire probability μ on X and x∗ ∈ BE∗ . On the one hand,
since (BE∗ ,w∗) is angelic, for every x∗ ∈ BE∗ there exists a sequence in co(B) that
w∗-converges to x∗, and therefore x∗|X is Ba-measurable. On the other hand, X is
norm-bounded and thus x∗|X is also bounded, hence μ-integrable. Since x∗ ∈ E∗ is
arbitrary, for the given μ we can consider the linear functional Tμ : E∗ → R given
for each x∗ ∈ E∗ by the formula

Tμ(x
∗) :=

∫
X

x∗|X dμ.

We claim that Tμ |BE∗ is w∗-continuous. To this end it is enough to prove that for any
subset C of BE∗ we have that

Tμ(C
w∗
)⊂ Tμ(C). (10.24)

Take y∗ ∈ C
w∗

and use the angelicity of (BE∗ ,w∗) to pick up a sequence {y∗n}n≥1

in C with y∗ = w∗- limn y∗n; in particular we have that considered as functions, the
sequence {y∗n|X}n≥1 converges pointwise to y∗|X and it is uniformly bounded on
X . The Lebesgue convergence theorem gives us that Tμ(y∗) = limn Tμ(y∗n) and this
proves (10.24). Now Grothendieck’s completeness theorem, [102, Sect. 21.9.4],
applies to conclude the existence of an element xμ in E such that Tμ(x∗) = x∗(xμ)
for every x∗ ∈ E∗. xμ is the barycenter of μ that we are looking for. Now we define
the map φ : μ → xμ from the σ(M (X),Cb(X))-compact convex set P(X) of all
Baire probabilities on X into E . It is easy to prove that φ is σ(M (X),Cb(X))-to-
σ(E,B) continuous and its range φ(P(X)) is a σ(E,B)-compact convex set that
contains X . The proof is concluded. �
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A particular class of angelic compact spaces is that of the Corson compact spaces: a
compact space K is said to be Corson compact if for some setΓ it is (homeomorphic
to) a compact subset of [0,1]Γ such that for every x = (x(γ)) in K the set {γ : x(γ) �=
0} is countable; see [40]. If we assume that (BE∗ ,w∗) is Corson compact, techniques
of Radon–Nikodým compact spaces introduced in [113] can be used to prove that
(i) in Theorem 10.36 can be completed by proving that A is also σ(E,B)-relatively
sequentially compact. Let us remark that many Banach spaces have w∗-angelic dual
unit ball as for instance the weakly compactly generated or more general the weakly
countably K-determined Banach spaces; see [117, 145].

We finish this section with a few brief comments regarding strong boundaries.
If B is a norm-separable boundary for a w∗-compact subset C in E∗, then B is a
strong boundary of C, in the sense that C is the norm-closed convex hull of B. This
result was first stated in [130], and later, with techniques based on (I)-generation in
[55,56]—note that it straightforwardly follows from Corollary 10.8. If the boundary
B is weakly Lindelöf it is an open problem to know if it is strong. When B is weakly
Lindelöf determined, the angelic character of Cp((B,w)) (see [117]) tells us that
every x∗∗ ∈ BE∗∗ is the pointwise limit of a sequence of elements in BE and Simons’
inequality implies that B is a strong boundary (see [59, Theorem I.2]). If C is a w∗-
compact and weakly Lindelöf subset of E∗ we also have that every boundary of C is
strong (see [34, Theorem 5.7]). For separable Banach spaces E without isomorphic
copies of �1(N) we also have that every boundary of any w∗-compact set is a strong
boundary [59]. In the nonseparable case the same is true if the boundary is assumed
to be w∗-K-analytic as established in the result below that can be found in [35,
Theorem 5.6]:

Theorem 10.37. A Banach space E does not contain isomorphic copies of �1(N)
if, and only if, each w∗-K-analytic boundary of any w∗-compact subset C of E∗ is
strong.

In particular, w∗-analytic boundaries are always strong boundaries in the former
situation. We note that recently Theorem 10.37 has been extended to w∗-K-
countably determined boundaries in [65]. In a different order of ideas, let us remark
here that the sup-limsup theorem can be extended to more general functions in this
situation; see [35, Theorem 5.9]:

Theorem 10.38. Let E be a Banach space without isomorphic copies of �1(N), C a
w∗-compact subset in E∗ and B a boundary of C. Let {z∗∗n }n≥1 be a sequence in E∗∗
such that for all n≥ 1, z∗∗n = w∗- limm zn

m, for some {zn
m}m≥1 ⊂ E. Then we have

sup
b∗∈B
{limsup

n
z∗∗n (b∗)}= sup

x∗∈C
{limsup

n
z∗∗n (x∗)}.

When the boundary is built up by using a measurable map, it is always strong.

Theorem 10.39. Let E be a Banach space, and let C be a w∗-compact subset of E∗.
Assume that f : E→C is a norm-to-norm Borel map such that 〈x, f (x)〉= SC(x) for
every x ∈ E. Then
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co( f (X))
‖·‖

=C.

Proof. Cascales et al. [34, Corollary 2.7] says that we are in conditions to apply [35,
Theorem 4.3] to get the conclusion. �
Borel maps between complete metric spaces send separable sets to separable
ones; see [142, Theorem 4.3.8]. This fact implies that a w∗-compact set C as in
Theorem 10.39 is going to be fragmented by the norm of E∗. Indeed, for every
separable subspace S of E , we have that f (S) is a separable boundary of the w∗-
compact set C|S(⊂ S∗), thus C|S = co f (S)|S

‖·‖S∗ is a separable subset of S∗, and
therefore C is fragmented by the norm of E∗; see [113]. If C = BE∗ the space E
must be an Asplund space. With these results in mind, strong boundaries of an
Asplund space are characterized in terms of the following concept, introduced in
[35]. A subset C of the dual of a Banach space E is said to be finitely self-predictable
if there is a map ξ : FE −→Fco(C) from the family of all finite subsets of E into the
family of all finite subsets of co(C) such that for each increasing sequence {σn}n≥1

in FE with

Σ =
∞⋃

n=1

σn, D =
∞⋃

n=1

ξ (σn),

we have that

C|Σ ⊂ co‖·‖(D|Σ ).

The characterization of strong boundaries in Asplund spaces is stated in the
following terms; see [35, Theorem 3.9]:

Theorem 10.40. For a boundary B of an Asplund space, B is a strong boundary if,
and only if, it is finitely self-predictable.

In particular, Asplund spaces are those Banach spaces for which the above
equivalence holds; see [35, Theorem 3.10]. A procedure for generating finitely
self-predictable subsets is also provided in [35, Corollary 4.4], as the range of σ -
fragmented selectors (see [88] for the definition) of the duality mapping, which leads
to another characterization of Asplund spaces; see [35, Corollary 4.5].

In a different order of ideas, the paper [94] contains a good number of interesting
results of how to transfer topological properties from a boundary B of C to the
whole set C (in particular fragmentability) as well as how to embed a Haar system
in an analytic boundary of a separable non-Asplund space. Other results about w∗-
K-analytic boundaries not containing isomorphic copies of the basis of �1(R) can
be found in [65]—see also Theorem 10.31.

We finish this section with the following open question:

Question 10.41. Let E be a Banach space and B a boundary of it. Is σ(E,B) an
angelic topology on bounded sets of E?
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10.5 Extensions of James’ Weak Compactness Theorem

Since its appearance, James’ weak compactness theorem has become the subject
of much interest for many researchers. As discussed in the Introduction, one of the
concerns about it has been to obtain proofs which are simpler than the original one.
Another, and we deal with it in this section, is to generalize it, which in particular
has led to new applications that we will show in Sect. 10.6. Clearly the commented
developments on boundaries represent a first group of results along these lines. The
other extensions that we present fall into two kind of results. On the one hand, we
can have those that for a Banach space E guarantee reflexivity, whenever the set
NA(E) of the continuous and linear functionals that attain their norms,

NA(E) := {x∗ ∈ E∗ : there exists x0 ∈ BE such that x∗(x0) = ‖x∗‖},

is large enough. On the other hand, we have James’ type results but considering
more general optimization problems.

10.5.1 Size of the Set of Norm Attaining Functionals

Roughly speaking, the basic question we are concerned with here is whether the
reflexivity of a Banach space E follows from the fact that the set of norm-attaining
functionals NA(E) is not small in some sense. Most of these results are based on a
suitable meaning for being topologically big.

With regard to the norm-topology, the concrete question is to know whether
a Banach space E is reflexive provided that the set NA(E) has nonempty norm-
interior. The space �1(N) shows that the answer is negative, and in addition it is
easily proven in [3, Corollary 2] that every Banach space admits an equivalent norm
for which the set of norm-attaining functionals has nonempty norm-interior. For
this very reason we cannot assume an isomorphic hypothesis on the space when
studying the question above. Some geometric properties have been considered.
Before collecting some results in this direction, let us say something more from the
isomorphic point of view. In 1950 Klee proved that a Banach space E is reflexive
provided that for every space isomorphic to E , each functional attains its norm [100].
Latter, in 1999 Namioka asked whether a Banach space E is reflexive whenever the
set NA(X) has nonempty norm-interior for each Banach space X isomorphic with
E . In [1, Theorem 1.3], Acosta and Kadets provided a positive answer (see also [2]).

In order to state the known results for the norm-topology, let us recall that a
Banach space E has the Mazur intersection property when each bounded, closed,
and convex subset of E is an intersection of closed balls ([107]). This is the case of a
space with a Fréchet differentiable norm ([45, Proposition II.4.5]). Another different
geometric condition is this one: a Banach space E is weakly Hahn–Banach smooth
if each x∗ ∈NA(E) has a unique Hahn–Banach extension to E∗∗. It is clear that if E
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is very smooth (its duality mapping is single valued and norm-to-weak continuous
[140]), then it is weakly Hahn–Banach smooth. Examples of very smooth spaces
are those with a Fréchet differentiable norm and those which are an M-ideal in
its bidual [76, 151]—for instance c0 or the space of compact operators on �2. The
following statement, shown in [89, Proposition 3.3] and [4, Theorem 1], provides
a first generalization of James’ reflexivity theorem for the above classes of Banach
spaces:

Theorem 10.42. Suppose that E is a Banach space that has the Mazur intersection
property or is weakly Hahn–Banach smooth. Then E is reflexive if, and only if,
NA(E) has nonempty norm-interior.

The above result is a consequence of James’ reflexivity theorem applied to an
adequate renorming, in the Mazur intersection property case, and of the Simons
inequality after a sequential reduction, for weakly Hahn–Banach smooth spaces.

Note that Theorem 10.42 fails when the space is smooth (norm Gâteaux
differentiable). Indeed, any separable Banach space is isomorphic to another smooth
Banach space whose set of norm-attaining functional has nonempty norm-interior;
see [3, Proposition 9].

For some concrete Banach spaces we can say something better. For instance, the
sequence space c0 satisfies that the set NA(c0) is of the first Baire category, since it
is nothing more than the subset of sequences in �1(N) with finite support. Bourgain
and Stegall generalized it for any separable Banach space whose unit ball is not
dentable. As a matter of fact, they established the following result in [26, Theorem
3.5.5]:

Theorem 10.43. If E is a Banach space and C is a closed, bounded, and convex
subset of E that is separable and nondentable, then the set of functionals in E∗ that
attain their supremum on C is of the first Baire category in E∗.

When C is the unit ball of the continuous function space on a infinite Hausdorff
and compact topological space K, Kenderov, Moors, and Sciffer proved in [97] that
NA(C(K)) is also of the first Baire category. However we do not know whether or
not Theorem 10.43 is valid if C is nonseparable. However, Moors has provided
us (private communication) with the proof of the following unpublished result
which follows from Lemma 4.3 in [109]: Suppose that a Banach space E admits
an equivalent weakly midpoint LUR norm and that E has the Namioka property,
i.e., every weakly continuous mapping acting from a Baire space into E is densely
norm continuous. Then every closed, bounded, and convex subset C of E for which
the set of functionals in E∗ attaining their supremum on C is of the second Baire
category in E∗ has at least one strongly exposed point. In particular, C is dentable.

Now we present a group of results whose hypotheses involve the weak topol-
ogy of the dual space. Jiménez-Sevilla and Moreno showed a series of results,
from which we emphasize the following consequence of Simons’ inequality [89,
Proposition 3.10]:
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Theorem 10.44. Let E be a separable Banach space such that the set NA(E)∩SE∗
has nonempty relative weak interior in SE∗ . Then E is reflexive.

Regarding the w∗-topology in the dual space, the first result was obtained, also
applying Simons’ inequality, by Deville, Godefroy, and Saint Raymond [41, Lemma
11] and is the version for the w∗-topology of the preceding theorem. Later,
an adequate use of James’ reflexivity theorem for a renorming of the original
space implies the same assertion, but removing the separability assumption [89,
Proposition 3.2]:

Theorem 10.45. A Banach space is reflexive if, and only if, the set of norm-one
norm-attaining functionals contains a nonempty relative w∗-open subset of its unit
sphere.

This result has been improved for a certain class of Banach spaces, for instance, for
Grothendieck spaces, i.e., those Banach spaces for which the sequential convergence
in its dual space for the w-topology is equal to that of the w∗-topology. It is clear that
any reflexive space is a Grothendieck space and the converse is true when the space
does not contain �1(N); see [63, 149]. Moreover, the Eberlein–Šmulian theorem
guarantees that a Banach space with a w∗-sequentially compact dual unit ball is
reflexive whenever is a Grothendieck space.

Theorem 10.46. If E is a Banach space E that is not Grothendieck, then NA(E) is
not a w∗-Gδ subset of E∗.

This result has been stated in [1, Theorem 2.5], although it previously appeared in
[41, Theorem 3] for separable spaces. Finally, a characterization of the reflexivity
in terms of the w∗-topology, and once again by means of the Simons inequality but
with other kind of assumptions, was obtained in [6, Theorem 1]:

Theorem 10.47. Assume that E is a Banach space that does not contain �1(N) and
that for some r > 0

BE∗ = cow∗{x∗ ∈ SE∗ : x∗+ rBE∗ ⊂ NA(E)}.

Then E is reflexive.

A similar result is stated in [6, Proposition 4], but replacing the assumption of non
containing �1(N) with that of the norm of the space is not rough, i.e., there exists
ε > 0 such that for all x ∈ E

limsup
h→0

‖x+ h‖+ ‖x− h‖−2‖x‖
‖h‖ ≥ ε.

Here we have emphasized some extensions of James’ reflexivity theorem in
connection to the size of the set of norm-attaining functionals, but there are other
ways of measuring such size. For example, one can look for linear subspaces into
NA(E).
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The first of these results was obtained by Petunin and Plichko in [121].
To motivate it, let us observe that for a dual space E = F∗ we have that F is a
closed and w∗-dense subspace of E∗ with F ⊂ NA(E). Their result deals with the
converse:

Theorem 10.48. A separable Banach space E is isometric to a dual space provided
that there exists a Banach space F which is w∗-dense in E∗ and satisfies F ⊂NA(E).

There are some recent results that provide conditions implying that the set of norm-
attaining functionals contains an infinite-dimensional linear subspace. See [9,15,57]
and the references therein. For instance, in [57] the following renorming result is
stated:

Theorem 10.49. Every Banach space that admits an infinite-dimensional separa-
ble quotient is isomorphic to another Banach space whose set of norm-attaining
functionals contains an infinite-dimensional linear subspace.

However, some questions still remain to be studied. For instance, whether for every
infinite-dimensional Banach space E , the set NA(E) contains a linear subspace of
dimension 2 is an irritating open problem, posed in [15, Question 2.24].

10.5.2 Optimizing Other Kind of Functions

In the past several years, some extensions of James’ weak compactness theorem
appeared. A common thing for these results is that the optimization condition—
each continuous and linear functional attains its supremum on a weakly closed and
bounded subset of the space—is replaced by another one: the objective function is
more general. We present some of them here, when considering either polynomials
or perturbed functionals.

For a Banach space E and n ≥ 1, let us consider the space P (nE) of all
continuous n-homogeneous polynomials on E, endowed with its usual sup norm.
Recall that a polynomial in P (nE) attains the norm when the supremum defining
its norm is a maximum. It is clear that if for some n each polynomial in P
(nE) attains its norm, then every functional attains the norm and thus James’
reflexivity theorem implies the reflexivity of E . So the polynomial version of James’
reflexivity theorem should be stated in terms of a subset of P (nE). This is done
in the following characterization (see [131, Theorem 2]), when dealing with weak
compactness of a bounded, closed, and convex subset of E:

Theorem 10.50. A bounded, closed, and convex subset A of a Banach space E is
weakly compact if, and only if, there exist n≥ 1 and x∗1, . . . ,x

∗
n ∈ E∗ such that for all

x∗ ∈ E∗, the absolute value of the continuous (n+ 1)-homogeneous polynomial

x �→ x∗1(x) · · ·x∗n(x)x∗(x), (x ∈ E),
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when restricted to A, attains its supremum and

A �⊂ ∪n
j=1 kerx∗j .

Similar results for symmetric multilinear forms, including some improved versions
for the case A = BE , can be found in [8, 131].

A related question to that of “norm attaining” (or “sup attaining”) is that
of “numerical radius attaining.” More specifically, the numerical radius of a
continuous and linear operator T : E −→ E is the real number v(T ) given by

v(T ) := sup{|x∗T x| : (x,x∗) ∈Π(E)},

where Π(E) := {(x,x∗) ∈ SE × SE∗ : x∗(x) = 1} and such an operator T is said to
attain the numerical radius when there exists (x0,x∗0) ∈Π(E) with |x∗0T x0|= v(T ).

The following sufficient condition for reflexivity was stated in [5, Theorem 1]
(see also [132, Corollary 3.5] for a more general statement about weak compact-
ness), and was obtained by applying the minimax theorem [137, Theorem 5].

Theorem 10.51. A Banach space such that every rank-one operator on it attains
its numerical radius is reflexive.

Surprisingly enough, the easy-to-prove part in the classical James’ reflexivity
theorem does not hold. Indeed, a Banach space is finite dimensional if, and only
if, in any equivalent norm each rank-one operator attains its numerical radius, as
seen in [5, Example] and [7, Theorem 7].

However, the James type result that seems to be more applied nowadays (see
Sect. 10.6) is a perturbed version: there exists a fixed function f : E −→ R∪{∞}
such that

for every x∗ ∈ E∗, x∗ − f attains its supremum on E.

Let us note that this optimization condition generalizes that in the classical James’
weak compactness theorem. Indeed, x∗ ∈ E∗ attains its supremum on the set A(⊂ E)
if, and only if, x∗ − δA attains its supremum on E , where δA denotes the indicator
function of A defined as

δA(x) :=

{
0, if x ∈ A
∞, otherwise

.

The first result along these lines was stated in [27, 52] by Calvert and Fitzpatrick.

Theorem 10.52. A Banach space is reflexive whenever its dual space coincides
with the range of the subdifferential of an extended real-valued coercive, convex,
and lower semicontinuous function whose effective domain has nonempty norm-
interior.
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The erratum [27] makes [52] more difficult to follow, since the main addendum
requires to correct non-written proofs of some statements in [52], which are adapted
from [84]. A complete and more general approach was presented in Theorems 2, 5
and 7 of [118].

Let us point out that, for a Banach space E and a proper function f : E −→
R∪{∞}, coercive means

lim
‖x‖→∞

f (x)
‖x‖ = ∞,

and that the effective domain of f , dom( f ), is the set of those x ∈ E with f (x) finite.
Taking into account that for a function f : E −→ R ∪ {∞} which is proper

(dom( f ) �= /0), and x ∈ dom( f ), we have that the subdifferential of f at x is given by

∂ f (x) = {x∗ ∈ E∗ : x∗ − f attains its supremum on E at x},

then the surjectivity assumption in Calvert and Fitzpatrick’s theorem is once again
a perturbed optimization result.

Another perturbed version of James’ weak compactness theorem, different from
the preceding one, was established in [133, Theorem 16] as a consequence of
a minimax result [133, Theorem 14]. In order to state that minimax theorem,
generalizing [137, Theorem 14], the authors used the ideas of Pryce in Lemma 10.2
and a refinement of the arguments in [138]. Such a perturbed theorem reads as
follows in the Banach space framework:

Theorem 10.53. Let A be a weakly closed subset of a Banach space E for which
there exists ψ ∈ �∞(A) such that

for each x∗ ∈ E∗, x∗|A−ψ attains its supremum.

Then A is weakly compact.

Here the perturbation f (defined on the whole E) is given by

f (x) :=

{
ψ(x), if x ∈ A
∞, for x ∈ E\A .

The second named author in this survey obtained another perturbed James type
result in the class of separable Banach spaces. This result was motivated by financial
applications, and once again, it was proved by applying adequately Simons’
inequality. Its proof was included in the Appendix of [91]:

Theorem 10.54. Suppose that E is a separable Banach space and that f : E −→
R∪{∞} is a proper function whose effective domain is bounded and such that

for each x∗ ∈ E∗, x∗ − f attains its supremum on E.
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Then for every c ∈ R the sublevel set f−1((−∞,c]) is weakly compact.

In the preceding versions of the weak compactness theorem of James, the pertur-
bation functions are coercive. Recently, the following characterization has been
developed in [118, Theorem 5]:

Theorem 10.55. Let E be a Banach space and suppose that f : E −→R∪{+∞} is
a proper, coercive, and weakly lower semicontinuous function. Then

for all x∗ ∈ E∗, x∗ − f attains its supremum on E

if, and only if,

for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly compact.

The proof makes use of the perturbed technique of the undetermined function as
explained in Theorem 10.15.

Let us also emphasize that there are previous topological results along the lines
of Theorem 10.55; see [23, Theorems 2.1 and 2.4].

Since for any reflexive Banach space E the proper, noncoercive, and weakly
lower semicontinuous function f = ‖·‖ satisfies that for every c∈R the sublevel set
f−1((−∞,c]) is weakly compact, although ∂ f (E) = BE∗ , then the coercivity cannot
be dropped in one direction of the former theorem. Nevertheless, for the converse
implication, Saint Raymond has just obtained the nice theorem that follows, [134,
Theorem 11]:

Theorem 10.56 (Saint Raymond). If E is a Banach space and f : E −→ R∪{∞}
is a proper weakly lower semicontinuous function such that for every x∗ ∈ E∗, x∗− f
attains its supremum, then for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly
compact.

Remark 10.57. The fact that for a proper function f : E −→R∪{∞} with ∂ f (E) =
E∗ all its sublevel sets are relatively weakly compact can be straightforwardly
derived from Theorem 10.56. To see it, replace f with the proper weakly lower
semicontinuous function f̃ : E −→R∪{∞} defined for every x ∈ E as

f̃ (x) := inf{t ∈R : (x, t) ∈ epi( f )
σ(E×R,E∗×R)},

where epi( f ) is the epigraph of f , that is,

epi( f ) := {(x, t) ∈ E×R : f (x) ≤ t}.

Furthermore, when dom( f ) has nonempty norm-interior, we have that E is reflexive
as a consequence of the Baire Category theorem.

Note that Theorem 10.56 provides an answer to the problem posed in [27]: given a
Banach space E and a convex and lower semicontinuous function f : E −→R∪{∞}
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whose effective domain has nonempty norm-interior, is it true that the surjectivity of
its subdifferential is equivalent to the reflexivity of E and the fact that for all x∗ ∈E∗,
the function x∗ − f is bounded above?

On the other hand, Bauschke proved that each real infinite-dimensional reflexive
Banach space E has a proper, convex, and lower semicontinuous function f : E −→
R∪{+∞} such that

for each x∗ ∈ E∗, x∗ − f is bounded above,

but f is not coercive; see [16, Theorem 3.6]. From here it follows that ∂ f (E) = E∗,
as seen in [118, Theorem 3]. Thus Theorem 10.56 properly extends one direction of
Theorem 10.55.

Now let us show how Saint Raymond’s result, Theorem 10.56, following the
ideas in [118, Corollary 5], has some consequences for multivalued mappings. Let
us recall that given a Banach space E and a multivalued operatorΦ : E −→ 2E∗ , the
domain of Φ is the subset of E

D(Φ) := {x ∈ E :Φ(x) is nonempty},

and its range is the subset of E∗

Φ(E) := {x∗ ∈ E∗ : there exists x ∈ E with x∗ ∈Φ(x)}.

In addition,Φ is said to be monotone if

inf
x,y∈D(Φ)

x∗∈Φ(x), y∗∈Φ(y)

〈x∗ − y∗,x− y〉 ≥ 0,

and cyclically monotone when the inequality

n

∑
j=1

〈x∗j ,x j− x j−1〉 ≥ 0

holds, whenever n≥ 2, x0,x1, . . . ,xn ∈ D(Φ) with x0 = xn and for j = 1, . . . ,n, x∗j ∈
Φ(x j).

If Φ is a cyclically monotone operator then there exists a proper and convex
function f : E −→R∪{+∞} such that for every x ∈ E ,

Φ(x) ⊂ ∂ f (x),

see [128, Theorem 1], and so Theorem 10.56 leads to the following James’ type
result for cyclically monotone operators:

Corollary 10.58. Let E be a Banach space and let Φ : E −→ 2E∗ be a cyclically
monotone operator such that D(Φ) has nonempty norm-interior and
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Φ(E) = E∗.

Then E is reflexive.

Note that this result does not provide a satisfactory answer to the following open
problem, posed in [52]: Assume that E is a Banach space and Φ : E −→ 2E∗ is
a monotone operator such that D(Φ) has nonempty interior and Φ(E) = E∗. Is E
reflexive?

To conclude this section we provide a proof of Theorem 10.56 for the wide
class of Banach spaces with w∗-convex block compact dual unit balls, which easily
follows from the unbounded Rainwater–Simons theorem, Corollary 10.7; see [119,
Theorem 4]. The following lemma produces the sequence needed to apply it:

Lemma 10.59. Suppose that the dual unit ball of E is w∗-convex block compact
and that A is a nonempty, bounded subset of E. Then A is weakly relatively compact

if, and only if, each w∗-null sequence in E∗ is also σ(E∗,Aw∗
)-null.

Proof. If A is weakly relatively compact, then we have A = A
w∗

and the conclusion
follows. According to Proposition 10.13, to see the reverse implication we have to
check the validity of the identity

dist‖·‖A
(L{x∗n},co{x∗n : n≥ 1}) = 0 (10.25)

for every bounded sequence {x∗n}n≥1 in E∗. Thus, let us fix {x∗n}n≥1 a bounded
sequence in BE∗ . Since BE∗ is w∗-convex block compact, there exist a block
sequence {y∗n}n≥1 of {x∗n}n≥1 and an x∗0 ∈ BE∗ such that

w∗- lim
n

y∗n = x∗0.

Then, by assumption, {y∗n}n≥1 also converges to x∗0 pointwise on A
w∗ ⊂E∗∗. Mazur’s

theorem applied to the sequence of continuous functions {y∗n}n≥1 restricted to the

w∗-compact space A
w∗

tells us that

0 = dist‖·‖
Aw∗ (x

∗
0,co{y∗n : n≥ 1}) = dist‖·‖A

(x∗0,co{x∗n : n≥ 1})≥ 0,

It is not difficult to check that x∗0 ∈ L{x∗n} and (10.25) is proved, and we have
concluded the proof. �
Following [119], we present the next proof of Theorem 10.56 for the class of Banach
spaces with w∗-convex block compact dual unit balls:

Theorem 10.60. Let E be a Banach space whose dual unit ball is w∗-convex block
compact and let f : E −→ R∪{+∞} be a proper map such that

for all x∗ ∈ E∗, x∗ − f attains its supremum on E.
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Then

for every c ∈ R, the sublevel set f−1((−∞,c]) is weakly relatively compact.

Proof. We first claim that for every (x∗,λ ) ∈ E∗×R with λ < 0, there exists x0 ∈ E
with f (x0)<+∞ and such that

sup{(x∗,λ )(x, t) : (x, t) ∈ epi( f )} = x∗(x0)−λ f (x0). (10.26)

In fact, the optimization problem

sup
x∈E
{〈x,x∗〉− f (x)} (10.27)

may be rewritten as

sup
(x,t)∈epi( f )

{(x∗,−1),(x, t)} (10.28)

and the supremum in (10.27) is attained if, and only if, the supremum in (10.28) is
attained.

Let us fix c ∈ R and assume that A := f−1((−∞,c]) is nonempty. The uni-
form boundedness principle and the optimization assumption on f imply that
A is bounded. In order to obtain the relative weak compactness of A we apply
Lemma 10.59. Thus, let us consider a w∗-null sequence {x∗n}n≥1 in E∗ and let us

show that it is also σ(E∗,Aw∗
)-null.

It follows from the unbounded Rainwater–Simons theorem, Corollary 10.7,
taking the Banach space E∗ ×R,

B := epi( f )⊂C := epi( f )
σ(E∗∗×R,E∗×R)

and the bounded sequence

{(
x∗n,−

1
n

)}
n≥1

,

that

σ(E∗ ×R,B)- lim
n

(
x∗n,−

1
n

)
= σ(E∗ ×R,C)- lim

n

(
x∗n,−

1
n

)
,

But w∗- limn≥1 x∗n = 0, so we have that

σ(E∗ ×R,C)- lim
n

(
x∗n,−

1
n

)
= 0.
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As a consequence, since A×{c} ⊂ B, then A
w∗ ×{c} ⊂C, and so

σ(E∗,Aw∗
)- lim

n
x∗n = 0,

as announced. �
Theorem 10.60 was first presented at the meeting Analysis, Stochastics, and
Applications, held at Viena in July 2010, to celebrate Walter Schachermayer’s 60th
Birthday; see

http://www.mat.univie.ac.at/$\sim$anstap10/slides/Orihuela.pdf,

where the conjecture of its validity for any Banach space was considered. Later
on, in the Workshop on Computational and Analytical Mathematics in honor of
Jonathan Borwein’s 60th Birthday, held at Vancouver in May 2011; see

http://conferences.irmacs.sfu.ca/jonfest2011/,

Theorem 10.60 and its application Theorem 10.65 were discussed too. Both results
can be found published by the second and third named authors of this survey in the
paper [119]. In September 2011 we were informed by J. Saint Raymond that he had
independently obtained Theorem 10.60 without any restriction on the Banach space
E in [134]: Saint Raymond’s proof is based upon a clever and nontrivial reduction to
the classical James’ weak compactness theorem instead of dealing with unbounded
sup-limsup results as presented here, as well as in [119]. Nevertheless, our approach
contains classical James’ result without using it inside the proof, together with the
generalizations of Simons’ inequalities for unbounded sets in Sect. 10.2.

The proof of Theorem 10.60 has been obtained by means of elementary
techniques for Banach spaces with a w∗-convex block compact dual unit ball, in
particular for the separable ones. For this very reason, an easy reduction to the
separable case would provide us with a basic proof of the theorem. In that direction,
we suggest the following question:

Question 10.61. Let E be a Banach space, ρ : E∗ ×E∗ −→ [0,∞) a pseudometric
on E∗ for pointwise convergence on a countable set A(⊂ BE∗∗), where

A = A0∪{x∗∗0 },A0 ⊂ E,x∗∗0 ∈ A0
w∗
.

Given {x∗n}n≥1 a sequence in BE∗ such that

σ(E∗,A0)- lim
n

x∗n = 0,

is it possible to find a sequence {y∗n}n≥1 in E∗ with

w∗- lim
n

y∗n = 0

and

lim
n
ρ(x∗n,y

∗
n) = 0?

http://www.mat.univie.ac.at/$sim $anstap10/slides/Orihuela.pdf
http://conferences.irmacs.sfu.ca/jonfest2011/
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10.6 Applications to Convex Analysis and Finance

Since its publication, the applicability of James’ weak compactness theorem has
been steady. As mentioned in the Introduction, James’ weak compactness theorem
implies almost straightforwardly a number of important results in Functional
Analysis. In this section we focus on some consequences of Theorem 10.56, which
have been recently obtained from Theorems 10.55 and 10.60 in the areas of finance
and variational analysis. But before describing them, a bit of history on known
applications of the theorem of weak compactness of James.

It is in 1968 when appeared the first work mentioning application: in [147] it
was proved that a quasi-complete locally convex space-valued measure always has
a relatively weakly compact range. On the other hand, Dieudonné [47] gave an
example of a Banach space for which the Peano theorem about the existence of
solutions to ordinary differential equations fails. Then Cellina [37] stated, with the
aid of James’ reflexivity theorem, that a Banach space is reflexive provided that the
Peano theorem holds true for it. Later, Godunov [62] proved that indeed the space is
finite dimensional. In [13] one can find some related results to the failure of Peano’s
theorem in an infinite dimensional Banach space, as a consequence of James’
reflexivity theorem. Finally, let us emphasize the well-known fact (see, for instance,
[22, Theorem 2.2.5]) that the completeness of a metric space is equivalent to the
validity of the famous Ekeland variational principle. In [143] a characterization
of the reflexivity of a normed space is established, also in terms of the Ekeland
variational principle, and making use once again of James’ reflexivity theorem.

10.6.1 Nonlinear Variational Problems

Our goal is to deal with some consequences of Theorem 10.56 for nonlinear
variational problems, following the ideas in [118, Sect. 4]. For this very reason,
let us first recall that variational equations are the standard setting to studying and
obtaining weak solutions for large portion of differential problems. Such variational
equations, in the presence of symmetry, turn into variational problems for which one
has to deduce the existence of a minimum. We prove that this kind of result, always
stated in the reflexive context, only make sense for this class of Banach spaces.

To be more precise, let us evoke the so-called main theorem on convex minimum
problems (see, for instance, [153, Theorem 25E, p. 516]), which is a straightforward
consequence of the classical theorem of Weierstrass (continuous functions defined
on a compact space attain their minimum): in a reflexive Banach space E the sub-
differential of every proper, coercive, convex, and lower semicontinuous function
f : E −→ R∪{+∞} is onto, that is, for each x∗ ∈ E∗, the optimization problem

find x0 ∈ E such that f (x0)− x∗(x0) = inf
x∈E

( f (x)− x∗(x)) (10.29)
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admits a solution. This result guarantees the solvability of nonlinear variational
equations derived from the weak formulation of a wide range of boundary value
problems. For instance, given 1 < p < ∞, a positive integer N, and a bounded open
subset Ω of RN , let E be the reflexive Sobolev space W 1,p

0 (Ω) and consider the
coercive, convex, and continuous function f : E −→ R defined by

f (x) :=
1
p

∫
Ω
|∇x|pdλ (x ∈ E),

where | · | is the Euclidean norm. By the main theorem on convex minimum problems
we have ∂ f (E) = E∗. But taking into account that the p-laplacian operator &p,
defined for each x ∈ E as

&p(x) := div
(|∇x|p−2∇x

)
,

satisfies that for all x ∈ E

∂ f (x) = {−&px}

(see [98, Proposition 6.1]), then given any h∗ ∈ E∗, the nonlinear boundary value
problem

{−&px = h∗ in Ω
x = 0 on ∂Ω

admits a weak solution x ∈ E .
We conclude this subsection by applying Theorem 10.56 (see also Remark 10.57)

to show that the adequate setting for dealing with some common variational
problems, as p-laplacian above, is that of the reflexive spaces. To properly frame
the result it is convenient to recall some usual notions. For a Banach space E , an
operatorΦ : E −→ E∗ is said to be strongly monotone if

inf
x,y∈E
x�=y

〈Φ(x)−Φ(y),x− y〉
‖x− y‖2 > 0,

hemicontinuous if for all x,y,z ∈ E , the function

t ∈ [0,1] �→ (Φ(x+ ty))(z) ∈ R

is continuous, bounded when the image under Φ of a bounded set is also bounded,
and coercive whenever the function

x ∈ E �→ (Φ(x))(x) ∈ R
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is coercive. The result below appears in [28, Corollary 2.101] and it includes as a
special case the celebrated Lax–Milgram theorem:

Proposition 10.62. If E is a reflexive Banach space and Φ : E −→ E∗ is a
monotone, hemicontinuous, bounded, and coercive operator, then Φ is surjective.

This result applies to several problems in nonlinear variational analysis, including
one of its most popular particular cases: in a real reflexive Banach space E , given
x∗0 ∈ E∗, the equation

find x ∈ E such that Φ(x) = x∗0

admits a unique solution, whenever Φ : E −→ E∗ is a Lipschitz continuous and
strongly monotone operator. We refer to [70, Example 3.51] for usual applications.

When Φ is symmetric, that is,

for every x,y ∈ E, 〈Φ(x),y〉 = 〈Φ(y)),x〉,

the equation Φ(x) = x∗0 leads to the nonlinear optimization problem involving the
function

f (x) :=
1
2
(Φ(x))(x), x ∈ E.

As a consequence of Theorem 10.56, or more specifically of Remark 10.57, the
natural context for Proposition 10.62, at least with symmetry, is the reflexive one,
as shown in the next corollary whose proof is completely analogous to that of [118,
Corollary 3]:

Corollary 10.63. A Banach space E is reflexive, provided there exists a monotone,
symmetric, and surjective operator Φ : E −→ E∗.

10.6.2 Mathematical Finance

We now turn our attention to some recent applications of James’ weak compactness
theorem in mathematical finance. Let us fix a probability space (Ω ,F ,P) together
with X , a linear space of functions in R

Ω that contains the constant functions.
We assume here that (Ω ,F ,P) is atomless, although in practice this is not a
restriction, since the property of being atomless is equivalent to the fact that we can
define a random variable on (Ω ,F ,P) that has a continuous distribution function.
The space X will describe all possible financial positions X : Ω −→ R, where
X(ω) is the discounted net worth of the position at the end of the trading period if
the scenario ω ∈ Ω is realized. The problem of quantifying the risk of a financial
position X ∈X is modeled with functions ρ : X −→ R that satisfy:
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(i) Monotonicity: if X ≤ Y , then ρ(X)≥ ρ(Y ).
(ii) Cash invariance: if m ∈ R then ρ(X +m) = ρ(X)−m.

Such a function ρ is called a monetary measure of risk (see Chapter 4 in [54]).
When ρ is also a convex function, then it is called a convex measure of risk. In
many occasions we have X = L

∞(Ω ,F ,P), and it is important to have results for
representing the risk measure as

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )}. (10.30)

Here ρ∗ is the Fenchel–Legendre conjugate of ρ , that is, for every Y ∈ (L∞(Ω ,F ,
P))∗,

ρ∗(Y ) = sup
X∈L∞(Ω ,F ,P)

{〈Y,X〉−ρ(X)}.

To have this representation is equivalent to have the so-called Fatou property, i.e.,
for any bounded sequence {Xn}n≥1 that converges pointwise almost surely (shortly,
a.s) to some X ,

ρ(X)≤ liminf
n

ρ(Xn)

(see [54, Theorem 4.31]). A natural question is whether the supremum (10.30) is
attained. In general the answer is no, as it is shown by the essential supremum map
on L

∞(Ω ,F ,P); see [54, Example 4.36]. The representation formula (10.30) with a
maximum instead of a supremum has been studied by Delbaen (see [42, Theorems
8 and 9]) (see also [54, Corollary 4.35]) in the case of coherent risk measures, that
is, the convex ones that also are positively homogeneous. The fact that the order
continuity of ρ is equivalent to the supremum becoming a maximum, that is, for
every X ∈ L

∞(Ω ,F ,P):

ρ(X) = max
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )},

for an arbitrary convex risk measure ρ , is the statement of the so-called Jouini–
Schachermayer–Touzi theorem in [42, Theorem 2] (see also [91, Theorem 5.2] for
the original reference). Let us remark that order sequential continuity for a map ρ
in L

∞(Ω ,F ,P) is equivalent to have

lim
n
ρ(Xn) = ρ(X),

whenever {Xn}n≥1 is a bounded sequence in L
∞ pointwise a.s. convergent to X .

Indeed, it is said that a map ρ : L∞(Ω ,F ,P) −→ R∪{+∞} verifies the Lebesgue
property provided that it is sequentially order continuous. The precise statement is
the following one:
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Theorem 10.64 (Jouini, Schachermayer, and Touzi). Let ρ :L∞(Ω ,F ,P)−→R

be a convex risk measure with the Fatou property, and let ρ∗ : (L∞(Ω ,F ,P))∗ −→
[0,+∞] be its Fenchel–Legendre conjugate. The following are equivalent:

(i) For every c ∈ R, {Y ∈ L
1(Ω ,F ,P) : ρ∗(Y ) ≤ c} is a weakly compact subset

of L1(Ω ,F ,P).
(ii) For every X ∈ L

∞(Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[XY ]−ρ∗(Y )}

is attained.
(iii) For every bounded sequence {Xn}n≥1 in L

∞(Ω ,F ,P) tending a.s. to X ∈
L
∞(Ω ,F ,P), we have

lim
n
ρ(Xn) = ρ(X).

The proof of this result required compactness arguments of the perturbed James
type and it was based on Theorem 10.54; see [91, Theorem A.1]. In [42] this result
is already presented as a generalization of James’ weak compactness theorem. Let
us observe that we can apply Theorem 10.60 for f = ρ∗ to obtain the proof for
the main implication (ii)⇒ (i) above. Indeed, L1(Ω ,F ,P) is weakly compactly
generated and so its dual ball is w∗-sequentially compact.

Delbaen gave a different approach for Theorem 10.64. His proof is valid for
nonseparable L

1(Ω ,F ,P) spaces, and it is based in a homogenization trick to
reduce the matter to a direct application of the classical James’ weak compactness
theorem, as well as the Dunford–Pettis theorem characterizing weakly compact sets
in L

1(Ω ,F ,P).
For our next application let us recall that a Young functionΨ is an even, convex

functionΨ : E→ [0,+∞] with the properties:

1. Ψ (0) = 0
2. limx→∞Ψ (x) = +∞
3. Ψ <+∞ in a neighborhood of 0

The Orlicz space LΨ is defined as

LΨ (Ω ,F ,P) := {X ∈ L0(Ω ,F ,P) : there exists α > 0 with eP[Ψ(αX)]<+∞},

and we consider the Luxembourg norm on it:

NΨ (X) := inf

{
c > 0 : eP

[
Ψ
(

1
c

X

)]
≤ 1

}
, (X ∈ LΨ (Ω ,F ,P)).

With the usual pointwise lattice operations, LΨ (Ω ,F ,P) is a Banach lattice and we
have the inclusions
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L∞(Ω ,F ,P) ⊂ LΨ (Ω ,F ,P) ⊂ L1(Ω ,F ,P).

Moreover, (LΨ )∗ = LΨ
∗ ⊕G where G is the singular band and LΨ

∗
is the order

continuous band identified with the Orlicz space LΨ
∗
, where

Ψ ∗(y) := sup
x∈R
{yx−Ψ(x)}

is the Young function conjugate toΨ , [126].
Risk measures defined on LΨ (Ω ,F ,P) and their robust representation are of

interest in mathematical finance too. Delbaen has recently proved that a risk measure
defined on L

∞(Ω ,F ,P) finitely extends to an Orlicz space if, and only if, it verifies
the equivalent conditions of Theorem 10.64; see [43, Sect. 4.16]. Theorem 10.64 is
extended to Orlicz spaces in [119, Theorem 1].

Theorem 10.65 (Lebesgue risk measures in Orlicz spaces). Let Ψ be a Young
function with finite conjugateΨ∗ and let

α : (LΨ (Ω ,F ,P))∗ →R∪{+∞}

be a σ((LΨ )∗,LΨ )-lower semicontinuous penalty function representing a finite
monetary risk measure ρ as

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y)}.

The following are equivalent:

(i) For each c ∈ R, α−1((−∞,c]) is a weakly compact subset of MΨ∗(Ω ,F ,P).
(ii) For every X ∈ L

Ψ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y )}

is attained.
(iii) ρ is order sequentially continuous.

Let us notice that order sequential continuity for a map ρ in L
Ψ is equivalent to

having

lim
n
ρ(Xn) = ρ(X)

whenever (Xn) is a sequence in LΨ a.s. convergent to X and bounded by some
Z ∈ LΨ , i.e., |Xn| ≤ Z for all n ∈ N. For that reason it is also said that a map
ρ : LΨ → (−∞,+∞] verifies the Lebesgue property whenever it is sequentially
order continuous. Orlicz spaces provide a general framework of Banach lattices
for applications in mathematical finance, for a general picture see [18, 19, 38].
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Noncoercive growing conditions for penalty functions in the Orlicz case have been
studied in [38]. More precisely, let us recall that a Young functionΦ verifies the Δ2

condition if there exist t0 > 0 and K > 0 such that for every t > t0

Φ(2t)≤ KΦ(t).

In addition, the Orlicz heart MΨ is the Morse subspace of all X ∈ LΨ such that for
every β > 0

eP[Ψ(βX)]<+∞.

In [38, Theorem 4.5] it is proved that a risk measure ρ , defined by a penalty function
α , is finite on the Morse subspace MΨ ⊂ LΨ if, and only if, α satisfies the growing
condition

α(Y )≥ a+ b‖Y‖Ψ∗

for all Y ∈ L
Ψ ∗ , and fixed numbers a,b with b > 0. Theorem 10.60 can be applied

for f = ρ∗ because the spaces involved in the representation formulas have w∗-
sequentially compact dual balls.

When Ψ is a Young function such that either Ψ or its conjugate verify the Δ2

condition we have the following result for the risk measures studied by Cheredito
and Li in [38]:

Corollary 10.66 ([119], Corollaries 6 and 7). Let Ψ be a Young with finite
conjugate Ψ ∗ and such that either Ψ or Ψ∗ verify the Δ2 condition. Let ρ :
L
Ψ (Ω ,F ,P)→ R be a finite convex risk measure with the Fatou property, and

ρ∗ : LΨ
∗
(Ω ,F ,P)→ R∪{+∞}

its Fenchel–Legendre conjugate defined on the dual space. The following are
equivalent:

(i) For every c∈R, (ρ∗)−1((−∞,c]) is a weakly compact subset ofMΨ ∗(Ω ,F ,P).
(ii) For every X ∈ L

Ψ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈(MΨ∗ )+,e(Y )=1

{−E[X ·Y ]−ρ∗(−Y )}

is attained.
(iii) ρ is sequentially order continuous.
(iv) limnρ(Xn) = ρ(X) whenever Xn↗ X in L

Ψ .
(v) dom(ρ∗)⊂M

Ψ∗ .

We conclude this section with the following question:

Question 10.67. Does Corollary 10.63 remain valid in absence of symmetry?
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26. Bourgin, R.D.: Geometric Aspects of Convex Sets with the Radon–Nikodym Property.

Lecture Notes in Mathematics, vol. 993. Springer, Berlin (1983)
27. Calvert, B., Fitzpatrick, S.: Erratum: In a nonreflexive space the subdifferential is not onto.

Math. Zeitschrift 235, 627 (2000)
28. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities:

Comparison Principles and Applications. Springer Monographs in Mathematics. Springer,
New York (2007)

29. Cascales, B., Godefroy, G.: Angelicity and the boundary problem. Mathematika 45, 105–112
(1998)
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(1974)
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the Virasoro minimal models M(2, p), Adamović and Milas discovered logarithmic
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11.1 Jonathan Borwein

Jon Borwein is known for his love of mathematical constants. We hope this paper
will spark his interest in constant terms.

11.2 Constant Term Identities

The study of constant term identities originated in Dyson’s famous 1962 paper
Statistical theory of the energy levels of complex systems [9]. In this paper Dyson
conjectured that for a1, . . . ,an nonnegative integers,

CT ∏
1≤i�= j≤n

(
1− xi

x j

)ai
=

(a1 + a2 + · · ·+ an)!
a1!a2! · · ·an!

, (11.1)

where CT f (X) stands for the constant term of the Laurent polynomial (or possibly
Laurent series) f (X) = f (x1, . . . ,xn). Dyson’s conjecture was almost instantly
proved by Gunson and Wilson [14, 36]. In a very elegant proof, published several
years later [13], Good showed that (11.1) is a direct consequence of Lagrange
interpolation applied to f (X) = 1.

In 1982 Macdonald generalised the equal-parameter case of Dyson’s ex-conject-
ure, i.e.,

CT ∏
1≤i�= j≤n

(
1− xi

x j

)k
=

(kn)!
(k!)n , (11.2)

to all irreducible, reduced root systems; here (11.2) corresponds to the root system
An−1. Adopting standard notation and terminology—see [17] or the next section—
Macdonald conjectured that [25]

CT ∏
α∈Φ

(1− eα)k =
r

∏
i=1

(
kdi

k

)
, (11.3)

whereΦ is one of the root systems An−1,Bn,Cn,Dn,E6,E7,E8,F4,G2 of rank r and
d1, . . . ,dr are the degrees of its fundamental invariants. For k = 1 the Macdonald
conjectures are an easy consequence of Weyl’s denominator formula

∑
w∈W

sgn(w)ew(ρ)−ρ = ∏
α>0

(
1− e−α

)

(where W is the Weyl group of Φ and ρ the Weyl vector), and for Bn,Cn,Dn but k
general they follow from the Selberg integral. The first uniform proof of (11.3)—
based on hypergeometric shift operators—was given by Opdam in 1989 [24].
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In his Ph.D. thesis [27] Morris used the Selberg integral to prove a generalisation
of (11.2), now commonly referred to as the Morris or Macdonald–Morris constant
term identity:

CT

[ n

∏
i=1

(1− xi)
a
(

1− 1
xi

)b

∏
1≤i�= j≤n

(
1− xi

x j

)k
]
=

n−1

∏
i=0

(a+ b+ ik)!((i+ 1)k)!
(a+ ik)!(b+ ik)!k!

,

(11.4)

where a and b are arbitrary nonnegative integers.
In their recent representation-theoretic work on W -algebra extensions of the

M(2, p) minimal models of conformal field theory [1, 2], Adamović and Milas
discovered a novel type of constant term identities, which they termed logarithmic
constant term identities. Before stating the results of Adamović and Milas, some
more notation is needed.

Let (a)m = a(a+1) · · ·(a+m−1) denote the usual Pochhammer symbol or rising
factorial, and let u be either a formal or complex variable. Then the (generalised)
binomial coefficient

(u
m

)
is defined as(

u
m

)
= (−1)m (−u)m

m!
.

We now interpret (1− x)u and log(1− x) as the (formal) power series

(1− x)u =
∞

∑
m=0

(−x)m
(

u
m

)
(11.5)

and

log(1− x) =−
∞

∑
m=1

xm

m
=

d
du

(1− x)u
∣∣∣
u=0

.

Finally, for X = (x1, . . . ,xn), we define the Vandermonde product

Δ(X) = ∏
1≤i< j≤n

(xi− x j).

One of the discoveries of Adamović and Milas is the following beautiful
logarithmic analogue of the equal-parameter case (11.2) of Dyson’s identity.

Conjecture 11.1 ([1, Conjecture A.12]). For n an odd positive integer and k a
nonnegative integer define m := (n− 1)/2 and K := 2k+ 1. Then

CT

[
Δ(X)

n

∏
i=1

x−m
i

m

∏
i=1

log
(

1− x2i

x2i−1

)
∏

1≤i�= j≤n

(
1− xi

x j

)k
]
=

(nK)!!
n!!(K!!)n . (11.6)
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We remark that the kernel on the left is a Laurent series in X of (total) degree 0.
Moreover, in the absence of the term ∏m

i=1 log(1− x2i/x2i−1) the kernel is a skew-
symmetric Laurent polynomial which therefore has a vanishing constant term. Using
identities for harmonic numbers, Adamović and Milas proved (11.6) for n = 3; see
[1, Corollary 11.11].

Another result of Adamović and Milas, first conjectured in [1, Conjecture 10.3]
(and proved for n = 3 in (the second) Theorem 1.1 of that paper, see page 3925) and
subsequently proved in [2, Theorem 1.4], is the following Morris-type logarithmic
constant term identity.

Theorem 11.2. With the same notation as above,

CT

[
Δ(X)

n

∏
i=1

x2−(k+1)(n+1)
i (1− xi)

a
m

∏
i=1

log
(

1− x2i

x2i−1

)
∏

1≤i�= j≤n

(
1− xi

x j

)k
]

= cnk

n−1

∏
i=0

(
a+Ki/2

(m+ 1)K− 1

)
, (11.7)

where a is an indeterminate, cnk a nonzero constant, and

c3,k =
(3K)!(k!)3

6(3k+ 1)!(K!)3

(
3K− 1
2K− 1

)−1(5K/2− 1
2K− 1

)−1

. (11.8)

As we shall see later, the above can be generalised to include an additional free
parameter resulting in a logarithmic constant term identity more closely resembling
Morris’ identity; see (11.9) below.

The work of Adamović and Milas raises the following obvious questions:

1. Can any of the methods of proof of the classical constant term identities, see,
e.g., [7, 8, 11–15, 19–21, 24, 30–32, 36–40], be utilised to prove the logarithmic
counterparts?

2. Do more of Macdonald’s identities (11.3) admit logarithmic analogues?
3. All of the classical constant term identities have q-analogues [16, 18, 25, 27]. Do

such q-analogues also exist in the logarithmic setting?

As to the first and third questions, we can be disappointingly short; we have not
been able to successfully apply any of the known methods of proof of constant term
identities to also prove Conjecture 11.1, and attempts to find q-analogues have been
equally unsuccessful. (In fact, we now believe q-analogues do not exist.)

As to the second question, we have found a very appealing explanation—
itself based on further conjectures!—of the logarithmic constant term identities
of Adamović and Milas. They arise by differentiating a complex version of
Morris’ constant term identity. Although such complex constant term identities are
conjectured to exist for other root systems as well—this is actually proved in the
case G2—it seems that only for A2n and G2 these complex identities imply elegant
logarithmic identities.
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α1

α2

α1

α2

Fig. 11.1 The root systems A2 (left) and G2 (right) with Δ = {α1,α2}

The remainder of this paper is organised as follows. In the next section we
introduce some standard notation related to root systems. Then, in Sect. 11.4, we
study certain sign functions and prove a related Pfaffian identity needed subse-
quently. In Sect. 11.5, we conjecture a complex analogue of the Morris constant
term identity (11.4) for n odd and prove this for n = 3 using Zeilberger’s method of
creative telescoping [4, 28]. In Sect. 11.6 we show that the complex Morris identity
implies the following logarithmic analogue of (11.4).

Theorem 11.3 (Logarithmic Morris constant term identity). With the same
notation as in Conjecture 11.1 and conditional on the complex Morris constant
term identity (11.24) to hold, we have

CT

[
Δ(X)

n

∏
i=1

x−m
i (1− xi)

a
(

1− 1
xi

)b m

∏
i=1

log
(

1− x2i

x2i−1

)
∏

1≤i�= j≤n

(
1− xi

x j

)k
]

=
1

n!!

n−1

∏
i=0

(2a+ 2b+ iK)!!((i+ 1)K)!!
(2a+ iK)!!(2b+ iK)!!K!!

, (11.9)

where a,b are nonnegative integers.

In Sect. 11.7 we prove complex as well as logarithmic analogues of (11.3) for
the root system G2, and finally, in Sect. 11.8, we briefly discuss the classical roots
systems Bn, Cn and Dn.

11.3 Preliminaries on Root Systems and Constant Terms

In the final two sections of this paper we consider root systems of types other than
A, and below we briefly recall some standard notation concerning root systems and
constant term identities. For more details we refer the reader to [17, 25].

Let Φ be an irreducible, reduced root system in a real Euclidean space E with
bilinear symmetric form (· , ·). Fix a base Δ of Φ and denote by Φ+ the set of
positive roots. Write α > 0 if α ∈ Φ+. The Weyl vector ρ is defined as half the
sum of the positive roots: ρ = 1

2 ∑α>0α . The height ht(β ) of the root β is given
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by ht(β ) = (β ,ρ). Let r be the rank of Φ (that is, the dimension of E). Then the
degrees 1 < d1 ≤ d2 ≤ ·· · ≤ dr of the fundamental invariants of Φ are uniquely
determined by

∏
i≥1

1− tdi

1− t
= ∏
α>0

1− tht(α)+1

1− tht(α) .

For example, in the standard representation of the root system An−1,

E = {(x1, . . . ,xn) ∈ R
n : x1 + · · ·+ xn = 0}, (11.10)

Φ = {εi− ε j : 1≤ i �= j ≤ n}
and

Δ = {α1, . . . ,αn−1}= {εi− εi+1 : 1≤ i≤ n− 1},
where εi denotes the ith standard unit vector in R

n. Since ht(εi− ε j) = j− i,

∏
α>0

1− tht(α)+1

1− tht(α) = ∏
1≤i< j≤n

1− t j−i+1

1− t j−i =
n

∏
i=1

1− ti

1− t
.

The degrees of An−1 are thus {2,3, . . . ,n}, and the An−1 case of (11.3) is readily
seen to be (11.2).

As a second example we consider the root system G2 which is made up of two
copies of A2—one scaled. E is (11.10) for n = 3, and the canonical choice of simple
roots is given by

α1 = ε1− ε2 and α2 = 2ε2− ε1− ε3.

The following additional four roots complete the set of positive rootΦ+:

α1 +α2 = ε2− ε3,

2α1 +α2 = ε1− ε3,

3α1 +α2 = 2ε1− ε2− ε3,

3α1 + 2α2 = ε1 + ε2− 2ε3.

The degrees of G2 are now easily found to be {2,6} and, after the identification
(eε1 ,eε2 ,eε2) = (x,y,z), the constant term identity (11.3) becomes

CT

[(
1− x2

yz

)k(
1− y2

xz

)k(
1− z2

xy

)k(
1− yz

x2

)k(
1− xz

y2

)k(
1− xy

z2

)k

×
(

1− x
y

)k(
1− x

z

)k(
1− y

x

)k(
1− y

z

)k(
1− z

x

)k(
1− z

y

)k
]
=

(
2k
k

)(
6k
k

)
.

(11.11)
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This was first proved, in independent work, by Habsieger and Zeilberger [15, 38],
who both utilised the A2 case of Morris’ constant term identity (11.4). They in fact
proved a (q-analogue of a) slightly more general result related to another conjecture
of Macdonald we discuss next.

Macdonald’s (ex-)conjecture (11.3) may be generalised by replacing the ex-
ponent k on the left by kα , where kα depends only on the length of the root
α , i.e., kα = kβ if ‖α‖ = ‖β‖, where ‖ · ‖ := (· , ·)1/2. If α∨ = 2α/‖α‖2 is the
coroot corresponding to α and ρk =

1
2 ∑α>0 kαα , then Macdonald’s generalisation

of (11.3) is

CT ∏
α∈Φ

(1− eα)kα = ∏
α>0

|(ρk,α∨)+ kα |!
|(ρk,α∨)|! . (11.12)

If kα is independent of α , i.e., kα = k, then ρk = kρ and the above right-hand side
may be simplified to that of (11.3).

As an example of (11.12) we consider the full Habsieger–Zeilberger theorem for
G2 [15, 38].

Theorem 11.4. Let Φs and Φl denote the set of short and long roots of G2,
respectively. Then

CT ∏
α∈Φl

(1− eα)k ∏
α∈Φs

(1− eα)m =
(3k+ 3m)!(3k)!(2k)!(2m)!

(3k+ 2m)!(2k+m)!(k+m)!k!k!m!
. (11.13)

Note that for k = 0 or m = 0 this yields (11.2) for n = 3. As we shall see in
Sect. 11.7, it is the above identity, not its equal-parameter case (11.11), that admits
a logarithmic analogue.

11.4 The Signatures τi j

In our discussion of complex and logarithmic constant term identities in Sects.
11.5–11.8, an important role is played by certain signatures τi j. For the convenience
of the reader, in this section we have collected all relevant facts about the τi j .

For a fixed odd positive integer n and m := (n− 1)/2 define τi j for 1 ≤ i <
j ≤ n by

τi j =

{
1 if j ≤ m+ i,

−1 if j > m+ i,
(11.14)

and extend this to all 1≤ i, j ≤ n by setting τi j =−τ ji. Assuming that 1≤ i < n we
have

τin = χ(n≤ m+ i)− χ(n> m+ i),
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where χ(true) = 1 and χ(false) = 0. Since n−m = m+ 1, this is the same as

τin = χ(i > m)− χ(i≤ m) =−τ1,i+1 = τi+1,1.

For 1≤ i, j < n we clearly also have τi j = τi+1, j+1. Hence the matrix

T := (τi j)1≤i, j≤n (11.15)

is a skew-symmetric circulant matrix. For example, for n = 5,

T =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 −1 −1
−1 0 1 1 −1
−1 −1 0 1 1

1 −1 −1 0 1
1 1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎠ .

We note that all of the row sums (and column sums) of the above matrix are zero.
Because T is a circulant matrix, to verify this property holds for all (odd) n, we only
need to verify this for the first row:

n

∑
j=1

τ1 j =
m+1

∑
j=2

1−
n

∑
j=m+2

1 = m− (n−m− 1)= m−m = 0.

By the skew symmetry, the vanishing of the row sums may also be stated as follows.

Lemma 11.5. For 1≤ i≤ n,

i−1

∑
j=1
τ ji =

n

∑
j=i+1

τi j.

A property of the signatures τi j, which will be important in our later discussions,
can be neatly clarified by having recourse to Pfaffians.

By a perfect matching (or 1-factor) on [n+1] : ={1,2, . . . ,n+1} we mean a graph
on the vertex set [n+1] such that each vertex has degree one; see, e.g., [6, 35]. If
in a perfect matching π the vertices i< j are connected by an edge we say that
(i, j)∈π . Two edges (i, j) and (k, l) of π are said to be crossing if i<k< j<l or
k<i<l< j. The crossing number c(i, j) of the edge (i, j) ∈ π is the number of edges
crossed by (i, j), and the crossing number c(π) is the total number of pairs of
crossing edges: c(π)= 1

2 ∑(i, j)∈π c(i, j). We can embed perfect matching in the xy-
plane, such that (i) the vertex labelled i occurs at the point (i,0), and (ii) the edges
(i, j) and (k, l) intersect exactly once if they are crossing and do not intersect if they
are non-crossing. For example, the perfect matching {(1,3),(2,7),(4,5),(6,8)}
corresponds to
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31 2 4 5 6 7 8

and has crossing number 2 (c(4,5) = 0, c(1,3) = c(6,8) = 1 and c(2,7) = 2).
The Pfaffian of a (2N)× (2N) skew-symmetric matrix A is defined as [6, 22, 23,

35]:

Pf(A) :=∑
π
(−1)c(π) ∏

(i, j)∈π
Ai j. (11.16)

After these preliminaries on perfect matching and Pfaffians we now form a second
skew-symmetric matrix, closely related to T. First we extend the τi j to 1 ≤ i, j ≤
n+ 1 by setting τi,n+1 = bi. We then define the (n+ 1)× (n+ 1) skew-symmetric
matrix Q(a,b) = (Qi j(a,b))1≤i, j≤n+1, where a= (a1, . . . ,an+1) and b= (b1, . . . ,bn),
as follows:

Qi j(a,b) = τi jaia j for 1≤ i < j ≤ n+ 1. (11.17)

For example, for n = 5,

Q(a,b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 a1a2 a1a3 −a1a4 −a1a5 a1a6b1

−a2a1 0 a2a3 a2a4 −a2a5 a2a6b2

−a3a1 −a3a2 0 a3a4 a3a5 a3a6b3

a4a1 −a4a2 −a4a3 0 a4a5 a4a6b4

a5a1 a5a2 −a5a3 −a5a4 0 a5a6b5

−a6a1b1 −a6a2b2 −a6a3b3 −a6a4b4 −a6a5b5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that T is the submatrix of Q
(
(1n+1),b

)
obtained by deleting the last row and

column.

Proposition 11.6. We have

Pf
(
Q(a,b)

)
= (−1)(

m
2)a1a2 · · ·an+1(b1 + b2 + · · ·+ bn).

Proof. The main point of our proof below is to exploit a cyclic symmetry of the
terms contributing to Pf

(
Q(a,b)

)
. This reduces the computation of the Pfaffian to

that of a sub-Pfaffian of lower order.
Let S(π ;a,b) denote the summand of Pf

(
Q(a,b)

)
, that is,

Pf
(
Q(a,b)

)
=∑

π
S(π ;a,b) with S(π ;a,b) = (−1)c(π) ∏

(i, j)∈π
Qi j(a,b).

From the definition (11.17) of Qi j(a,b) and the fact that π is a perfect matching on
[n+ 1],
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S(π ;a,b) = (−1)c(π) ∏
(i, j)∈π

aia jτi j = (−1)c(π)a1 · · ·an+1 ∏
(i, j)∈π

τi j . (11.18)

We now observe that S(π ;a,b) is, up to a cyclic permutation of b, invariant under
the permutation w given by (1,2,3, . . . ,n,n+ 1) �→ (n,1,2, . . . ,n− 1,n+ 1). To see
this, denote by π ′ the image of π under w. For example, the image of the perfect
matching given on the previous page is

31 2 4 5 6 7 8

Under the permutation w, all edges not containing the vertices 1 or n+1 are shifted
one unit to the left: (i, j) �→ (i−1, j−1). For the edge (1, j) containing vertex 1 we
have:

(i) If j ≤ n then (1, j) �→ ( j−1,n). This also implies that the edge ( j′,n+1) ( j′ ≥
2) containing vertex n+ 1 maps to ( j′ − 1,n+ 1).

(ii) If j = n+ 1 then (1, j) = (1,n+ 1) �→ (n,n+ 1) = ( j− 1,n+ 1).

First we consider (i). If we remove the edge (1, j) from π and carry out w, then
the number of crossings of its image is exactly that of π . Hence we only need to
focus on the edge (1, j) and its image under w. In π the edge (1, j) has crossing
number c(1, j) ≡ j (mod 2), while the edge ( j− 1,n) in π ′ has crossing number
c( j− 1,n) ≡ n− j ≡ j + 1 (mod 2). Hence (−1)c(π) = −(−1)c(π ′). Since τi j =
τi−1, j−1 (for 2≤ i < j ≤ n) and τ1, j =−τ j−1,n it thus follows that π and π ′ have the
same sign. Finally we note that under w, bi = τi,n+1 �→ τi−1,n+1 = bi−1 (since i �= 1).
We thus conclude that

S
(
π ;a,(b1, . . . ,bn)

) �→ S
(
π ′;a,(b2, . . . ,bn,b1)

)
, (11.19)

where we note that both sides depend on a single bi(�= b1) only. For example, the
perfect matching in the above two figures correspond to

S
(
(1,3),(2,7),(4,5),(6,8);a,(b1, . . . ,b7)

)
= (−1)2 ·a1a3 · (−a2a7) ·a4a5 ·a6a8b6 =−a1 · · ·a8b6

and

S
(
(1,6),(2,7),(3,4),(5,8);a,(b1, . . . ,b7)

)
= (−1)3 · (−a1a6) · (−a2a7) ·a3a4× a5a8b5 =−a1 · · ·a8b5.
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The case (ii) is even simpler; the edge (1,n+ 1) in π and its image (n,n+ 1) in π ′
both have crossing number 0. The crossing numbers of all other edges do not change
by a global shift of one unit to the right, so that c(π) = c(π ′):

w

Moreover, τi j = τi−1, j−1 (for 2 ≤ i < j ≤ n) so that π and π ′ again have the same
sign. Finally, from b1 = τ1,n+1 �→ τn,n+1 = bn, it follows that once again (11.19)
holds, where this time both sides depend only on b1.

From (11.19) it follows that the Pfaffian Pf
(
Q(a,b)

)
is symmetric under cyclic

permutations of the bi. But since the Pfaffian, viewed as a function of b, has degree
1 it thus follows [see also (11.18)] that

Pf
(
Q(a,b)

)
=Ca1 · · ·an+1(b1 + · · ·+ bn)

for some yet-unknown constant C. We shall determine C by computing the coeffi-
cient of bn of Pf

(
Q((1n+1),b

)
, which is equal to the Pfaffian of the (2m)× (2m)

submatrix M of T obtained by deleting its last row and column.
We recall the property Pf(M) = Pf(UtMU) of Pfaffians, where U is a unipotent

triangular matrix [35]. Choosing the nonzero entries of the (2m)× (2m) matrix U to
be Uii = 1 for i = 1, . . . ,2m, and Ui,i+m = 1 for i = 1, . . . ,m, one transforms M into

(
M′ I

−I ∅

)
,

where M′ is the upper-left m×m submatrix of M and I is the m×m identity
matrix. The Pfaffian of the above matrix, and hence that of M, is exactly (cf. [35])

(−1)(
m
2) det(I) = (−1)(

m
2). This, in turn, implies that C = (−1)(

m
2), and the required

formula follows. �
Remark 11.7. By a slight modification of the above proof the following more
general Pfaffian results. Let

Qi j(X ,a,b) := τi jaia j(xi + x j) for 1≤ i < j ≤ n

and

Qi,n+1(X ,a,b) := τi,n+1aian+1 = aian+1bi for 1≤ i≤ n,

and use this to form the (n+ 1)× (n+ 1) skew-symmetric matrix Q(X ,a,b).
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Then

Pf
(
Q(X ,a,b)

)
= 2m−1(−1)(

m
2)a1a2 · · ·an+1

n

∑
i=1

bi(xi+1 · · ·xi+m+xi+m+1 · · ·xi+n−1),

where xi+n := xi for i≥ 1. For X = (1/2, . . . ,1/2) this yields Proposition 11.6.

11.5 The Complex Morris Constant Term Identity

Thanks to Lemma 11.5,

∏
1≤i�= j≤n

(
1− xi

x j

)
= ∏

1≤i< j≤n

(
− x j

xi

)τi j
(

1−
( xi

x j

)τi j
)2

= (−1)(
n
2)

n

∏
i=1

x
∑i−1

j=1 τ ji−∑n
j=i+1 τi j

i ∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)2

= (−1)m ∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)2

. (11.20)

For odd values of n Morris’ constant term identity (11.4) can thus be rewritten in
the equivalent form

CT

[ n

∏
i=1

(1− xi)
a
(

1− 1
xi

)b

∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)2k
]

= (−1)km
n−1

∏
i=0

(a+ b+ ik)!((i+ 1)k)!
(a+ ik)!(b+ ik)!k!

. (11.21)

The crucial point about this rewriting is that in the product

∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)2k

each of the variables x1,x2, . . . ,xn occurs exactly m times in one of the numerators
and m times in one of the denominators. For example,

∏
1≤i< j≤3

(
1−
( xi

x j

)τi j
)2k

=
(

1− x1

x2

)2k(
1− x2

x3

)2k(
1− x3

x1

)2k
.

Obviously, for n even such a rewriting is not possible.



11 Logarithmic and Complex Constant Term Identities 231

We are now interested in the question as to what happens when 2k is replaced
by an arbitrary complex variable u. For n = 3 we will later prove the following
proposition.

Proposition 11.8. For a,b nonnegative integers and Re(1+ 3
2 u)> 0,

CT

[
(1− x)a(1− y)a(1− z)a

(
1− 1

x

)b(
1− 1

y

)b(
1− 1

z

)b

×
(

1− x
y

)u(
1− y

z

)u(
1− z

x

)u
]

= cos
(

1
2πu
) Γ (1+ 3

2 u)

Γ 3(1+ 1
2 u)

2

∏
i=0

(1+ 1
2 iu)a+b

(1+ 1
2 iu)a(1+ 1

2 iu)b
. (11.22)

As follows from its proof, a slightly more general result in fact holds. Using
(z)n+m = (z)n(z+ n)m and (1− x)a(1− x−1)b = (−x)−b(1− x)a+b, then replacing
a �→ a− b, and finally using (z− b)b = (−1)b(1− z)b, the identity (11.22) can also
be stated as

[
xbybzb][(1− x)a(1− y)a(1− z)a

(
1− x

y

)u(
1− y

z

)u(
1− z

x

)u
]

= cos
( 1

2πu
) Γ (1+ 3

2 u)

Γ 3(1+ 1
2 u)

2

∏
i=0

(−a− 1
2 iu)b

(1+ 1
2 iu)b

, (11.23)

where
[
Xc] f (X) (with Xc = xc1

1 · · ·xcn
n ) denotes the coefficient of Xc in f (X). This

alternative form of (11.22) is true for all a,u ∈C such that Re(1+ 3
2 u)> 0.

In view of Proposition 11.8 it seems reasonable to make the following more
general conjecture.

Conjecture 11.9 (Complex Morris constant term identity). Let n be an odd positive
integer, a,b nonnegative integers and u ∈ C such that Re(1+ 1

2 nu)> 0. Then there
exists a polynomial Pn(x), independent of a and b, such that Pn(0) = 1/(n− 2)!!,
Pn(1) = 1, and

CT

[ n

∏
i=1

(1− xi)
a
(

1− 1
xi

)b

∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)u
]

= xmPn(x
2)
Γ (1+ 1

2 nu)

Γ n(1+ 1
2 u)

n−1

∏
i=0

(1+ 1
2 iu)a+b

(1+ 1
2 iu)a(1+ 1

2 iu)b
, (11.24)

where x = x(u) := cos
(

1
2πu
)

and m := (n− 1)/2.

Note that for u an odd positive integer the kernel on the left of (11.24) is a skew-
symmetric function, so that its constant term trivially vanishes. When u is an even
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integer, say 2k then x= cos(πk) = (−1)k so that xmPn(x2) = (−1)kmPn(1) = (−1)km

in accordance with (11.21). Similar to the case n = 3, in the form

[
(x1 · · ·xn)

b][CT

[ n

∏
i=1

(1− xi)
a ∏

1≤i< j≤n

(
1−
( xi

x j

)τi j
)u
]

= xmPn(x
2)
Γ (1+ 1

2 nu)

Γ n(1+ 1
2 u)

n−1

∏
i=0

(−a− 1
2 iu)b

(1+ 1
2 iu)b

,

Conjecture 11.9 should hold for all a ∈ C.
For n = 1 the left-side of (11.24) does not depend on u so that P1(x) = 1.

Moreover, from Proposition 11.8, it follows that also P3(x) = 1. Extensive numerical
computations leave little doubt that the next two instances of Pn(x) are given by

P5(x) =
1
3
(1+ 2x)

P7(x) =
1

45
(3+ 26x− 16x2+ 32x3).

Conjecturally, we also have deg(Pn(x)) =
(m

2

)
and

P′n(0) = 2

(
m
2

)
2n− 1

9(n− 2)!!

P′n(1) =
2
3

(
m
2

)
, P′′n (1) =

2
45

(
m
3

)
(19m+ 23),

but beyond this we know very little about Pn(x).
To conclude our discussion of the polynomials Pn(x) we note that if zi = zi(u) :=

cos(iπu), then

P5
(
x2(u)

)
=

1
3
(2+ z1)

P7
(
x2(u)

)
=

1
45

(20+ 20z1+ 4z2 + z3),

suggesting that the coefficients of zi admit a combinatorial interpretation.
As will be shown in the next section, the complex Morris constant term identity

(11.24) implies the logarithmic Morris constant term identity (11.9), and the only
properties of Pn(x) that are essential in the proof are Pn(0) = 1/(n− 2)!! and
Pn(1) = 1.

To conclude this section we give a proof of Proposition 11.8. The reader
unfamiliar with the basic setup of the method of creative telescoping is advised
to consult the text [28].
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Proof of Proposition 11.8. Instead of proving (11.22) we establish the slightly more
general (11.23).

By a sixfold use of the binomial expansion (11.5), the constant term identity
(11.23) can be written as the following combinatorial sum:

∞

∑
m0,m1,m2=0

2

∏
i=0

(−1)mi

(
u
mi

)(
a

b+mi−mi+1

)

= cos
( 1

2πu
) Γ (1+ 3

2 u)

Γ 3(1+ 1
2 u)

2

∏
i=0

(−a− 1
2 iu)b

(1+ 1
2 iu)b

,

where m3 := m0 and where a,u∈C such that Re(1+ 3
2 u)> 0 and b is a nonnegative

integer. If we denote the summand of this identity by fb(
1
2 u,−1−a;m) where m :=

(m0,m1,m2), then we need to prove that

Fb(u,v) := ∑
m∈Z3

fb(u,v;m) = cos
(
πu
) Γ (1+ 3u)
Γ 3(1+ u)

2

∏
i=0

(1+ v− iu)b

(1+ iu)b
, (11.25)

for Re(1+ 3u)> 0.
In our working below we suppress the dependence of the various functions on the

variables u and v. In particular we write Fb and fb(m) for Fb(u,v) and fb(u,v;m).
The function f0(m) vanishes unless m0 = m1 = m2. Hence

F0 =
∞

∑
m=0

(−1)m
(

2u
m

)3

= 3F2

[−2u,−2u,−2u
1,1

;1

]
,

where we adopt standard notation for (generalised) hypergeometric series; see, e.g.,
[3,5]. The 3F2 series is summable by the 2a = b = c =−2u case of Dixon’s sum [3,
Eq. (2.2.11)]

3F2

[
2a,b,c

1+ 2a− b,1+ 2a− c
;1

]

=
Γ (1+ a)Γ (1+ 2a− b)Γ(1+ 2a− c)Γ(1+ a− b− c)
Γ (1+ 2a)Γ (1+ a− b)Γ (1+ a− c)Γ (1+ 2a− b− c)

(11.26)

for Re(1+ a− b− c)> 0. As a result,

F0 =
Γ (1− u)Γ (1+ u)
Γ (1− 2u)Γ (1+ 2u)

· Γ (1+ 3u)
Γ 3(1+ u)

= cos(πu)
Γ (1+ 3u)
Γ 3(1+ u)

,

proving the b = 0 instance of (11.25).
In the remainder we assume that b≥ 1.
Let C be the generator of the cyclic group C3 acting on m as C (m) =

(m2,m0,m1). With the help of the multivariable Zeilberger algorithm [4], one
discovers the (humanly verifiable) rational function identity
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tb(m)
2

∏
i=0

(b+ iu)+
2

∏
i=0

(b+ v− iu)

=
2

∑
i=0

(
rb
(
e1 +C i(m)

)
sb
(
C i(m)

)
+ rb
(
C i(m)

))
, (11.27)

where

rb(m) =− m0(b+ v+m2−m0)

6(b+m1−m2)(b+m2−m0)

× ((2b+ v)(3b2+ 3bv+ 2uv)+ 2(m1−m2)(3b2 + 3bv+ v2− uv)
)
,

sb(m) =− fb−1(e1 +m)

fb−1(m)
=

(2u−m0)(b+ v+m0−m1)(b+m2−m0− 1)
(1+m0)(b+m0−m1)(b+ v+m2−m0− 1)

,

tb(m) =− fb(m)

fb−1(m)
=

2

∏
i=0

b+ v+mi−mi+1

b+mi−mi+1
,

and e1 +m := (1+m0,m1,m2). If we multiply (11.27) by − fb−1(m) and use that
fb(m) = fb(C

i(m)) we find that

fb(m)
2

∏
i=0

(b+ iu)− fb−1(m)
2

∏
i=0

(b+ v− iu)

=
2

∑
i=0

[
rb
(
e1 +C i(m)

)
fb−1
(
e1 +C i(m)

)− rb
(
C i(m)

)
fb−1
(
C i(m)

)]
.

Summing this over m ∈ Z
3 the right-hand side telescopes to zero, resulting in

Fb = Fb−1

2

∏
i=0

(b+ v− iu)
(b+ iu)

.

By b-fold iteration this yields

Fb = F0

2

∏
i=0

(1+ v− iu)b

(1+ iu)b
. �

11.6 The Logarithmic Morris Constant Term Identity

This section contains three parts. In the first very short part, we present an integral
analogue of the logarithmic Morris constant term identity. This integral may be
viewed as a logarithmic version of the well-known Morris integral. The second



11 Logarithmic and Complex Constant Term Identities 235

and third, more substantial parts, contain, respectively, a proof of Theorem 11.3
and, exploiting some further results of Adamović and Milas, a strengthening of this
theorem.

11.6.1 A Logarithmic Morris Integral

By a repeated use of Cauchy’s integral formula, constant term identities such as
(11.4) or (11.9) may be recast in the form of multiple integral evaluations. In the
case of (11.4) this leads to the well-known Morris integral [10, 27]

∫
[− 1

2π ,
1
2π ]n

n

∏
i=1

ei(a−b)θi sina+b(θi) ∏
1≤i< j≤n

sin2k(θi−θ j)dθ1 · · ·dθn

=
(
Bk,n(a,b)

)n
n−1

∏
i=0

(a+ b+ ik)!((i+ 1)k)!
(a+ ik)!(b+ ik)!k!

,

where Bk,n(a,b) = π ia−b 2−k(n−1)−a−b. The Morris integral may be shown to be a
simple consequence of the Selberg integral [10, 29]. Thanks to (11.9) we now have
a logarithmic analogue of the Morris integral as follows:

∫
[− 1

2π ,
1
2π ]n

n

∏
i=1

ei(a−b)θi sina+b(θi)
m

∏
i=1

log
(
1− e2i(θ2i−θ2i−1)

)

× ∏
1≤i< j≤n

sinK(θi−θ j)dθ1 · · ·dθn

=
(
Ck,n(a,b)

)n 1
n!!

n−1

∏
i=0

(2a+ 2b+ iK)!!((i+ 1)K)!!
(2a+ iK)!!(2b+ iK)!!K!!

,

where Ck,n(a,b) = π ia−b−m 2−Km−a−b. Unfortunately, this cannot be rewritten
further in a form that one could truly call a logarithmic Selberg integral.

11.6.2 Proof of Theorem 11.3

In this subsection we prove that the logarithmic Morris constant term identity (11.9)
is nothing but the mth derivative of the complex Morris constant term identity
(11.24) evaluated at u = K := 2k+ 1.
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To set things up we first prepare a technical lemma. For Sn the symmetric group
on n letters and w ∈ Sn, we denote by sgn(w) the signature of the permutation w;
see, e.g., [26]. The identity permutation in Sn will be written as 1I.

Lemma 11.10. For n an odd integer, set m := (n−1)/2. Let ti j for 1≤ i < j≤ n+1
be a collection of signatures (i.e., each ti j is either +1 or −1) such that ti,n+1 = 1
and Q̃ a skew-symmetric matrix with entries Q̃i j = ti j for 1≤ i < j ≤ n+ 1.

If f (X) is a skew-symmetric polynomial in X = (x1, . . . ,xn), g(z) a Laurent
polynomial or Laurent series in the scalar variable z, and gi j(X) := g((xi/x j)

ti j ),
then the following statements hold:

1. For w ∈Sn, denote g(w;X) :=∏m
k=1 g(xw2k−1/xw2k). Then

CT
[

f (X)g(w;X)
]
= sgn(w)CT

[
f (X)g(1I;X)

]
.

2. For π a perfect matching on [n+ 1],

∑
π

CT

[
f (X) ∏

(i, j)∈π
j �=n+1

gi j(X)

]
= Pf(Q̃)CT

[
f (X)g(1I;X)

]
. (11.28)

We will be needing a special case of this lemma corresponding to ti j = τi j

for 1 ≤ i, j ≤ n, with the τi j defined in (11.14). Then the matrix Q̃ coincides

with Q
(
(1n+1),(1n)

)
of (11.17), so that by Lemma 11.6, Pf(Q̃) = (−1)(

m
2)n. We

summarise this in the following corollary.

Corollary 11.11. If in Lemma 11.10 we specialise ti j = τi j for 1≤ i < j ≤ n, then

∑
π

CT

[
f (X) ∏

(i, j)∈π
j �=n+1

gi j(X)

]
= (−1)(

m
2)nCT

[
f (X)g(1I;X)

]
. (11.29)

Proof of Lemma 11.10.

1. According to the “Stanton–Stembridge trick” [33, 34, 39],

CT
[
h(X)

]
= CT

[
w
(
h(X)

)]
for w ∈Sn,

where w(h(X)) is shorthand for h(xw1 , . . . ,xwn).
For our particular choice of h, the skew-symmetric factor f (X) produces the

claimed sign.
2. A permutation w ∈ Sn may be interpreted as a signed perfect matching

(−1)d(w)(w1,w2) · · · (wn−2,wn−1)(wn,wn+1), where d(w) counts the number
|{k ≤ m : w2k−1 > w2k}|. By claim (11.10), the left-hand side of (11.28) is a
multiple of CT

[
f (X)g(1I;X)

]
; the factor is exactly the sum ∑π(−1)c(π)∏ ti j, in

which one recognises the Pfaffian of Q̃. �
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Conditional proof of (11.9). Suppressing the a and b dependence, denote the
left- and right-hand sides of (11.24) by Ln(u) and Rn(u), respectively. We then wish
to show that (11.9) is identical to

L(m)
n (K) = R(m)

n (K).

Let us first consider the right-hand side, which we write as Rn(u) = pn(u)rn(u),
where

pn(u) = xmPn(x
2), x = x(u) = cos

( 1
2πu
)

and

rn(u) =
Γ (1+ 1

2 nu)

Γ n(1+ 1
2 u)

n−1

∏
i=0

(1+ 1
2 iu)a+b

(1+ 1
2 iu)a(1+ 1

2 iu)b
. (11.30)

Since x(K) = 0, it follows that for 0≤ j ≤ m,

p( j)
n (K) = (−1)km+m

(π
2

)m m!
(n− 2)!!

δ jm. (11.31)

Therefore, since rn(u) is m times differentiable at u = K,

R(m)
n (K) = p(m)

n (K)rn(K). (11.32)

By the functional equation for the gamma function

Γ (1+ 1
2 N) =

⎧⎨
⎩

N!!2−N/2
√
π/2 if N > 0 is odd,

N!!2−N/2 if N ≥ 0 is even,
(11.33)

and, consequently,

(1+ 1
2 N)a =

(N + 2a)!!
2aN!!

(11.34)

for any nonnegative integer N. Applying these formulae to (11.30) with u = K, we
find that

rn(K) =
( 2
π

)m n−1

∏
i=0

(2a+ 2b+ iK)!!((i+ 1)K)!!
(2a+ iK)!!(2b+ iK)!!K!!

.

Combined with (11.31) and (11.32) this implies

R(m)
n (K) = (−1)(k+1)m m!

(n− 2)!!

n−1

∏
i=0

(2a+ 2b+ iK)!!((i+ 1)K)!!
(2a+ iK)!!(2b+ iK)!!K!!

. (11.35)
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Next we focus on the calculation of L(m)
n (K). To keep all equations in check

we define

fab(X) :=
n

∏
i=1

(1− xi)
a
(

1− 1
xi

)b
.

and

Fab(X) := Δ(X)
n

∏
i=1

x−m
i (1− xi)

a
(

1− 1
xi

)b

∏
1≤i�= j≤n

(
1− xi

x j

)k
. (11.36)

Let i := (i1, . . . , im) and j := ( j1, . . . , jm). Then, by a straightforward application
of the product rule,

L(m)
n (u) = ∑

1≤i1< j1≤n

· · · ∑
1≤im< jm≤n

Ln;i, j(u),

where

Ln;i, j(u) = CT

[
fab(X) ∏

1≤i< j≤n

(
1−
( xi

x j

)τi j
)u m

∏
�=1

log
(

1−
( xi�

x j�

)τi� j�
)]

.

For u = K the kernel without the product over logarithms is a skew-symmetric
function in X , so that Ln;i, j(K) = 0 if there exists a pair of variables, say xr and xs,
that does not occur in the product of logarithms. In other words, Ln;i, j(K) vanishes
unless all of the 2m = n− 1 entries of i and j are distinct:

L(m)
n (K) =∑CT

[
fab(X) ∏

1≤i< j≤n

(
1−
( xi

x j

)τi j
)K m

∏
�=1

log
(

1−
( xi�

x j�

)τi� j�
)]

,

where the sum is over 1 ≤ i� < j� ≤ n for 1 ≤ � ≤ m such that all of i1, . . . , im,
j1, . . . , jm are distinct. By (11.20) and

∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)
= (−1)(

m
2)Δ(X)

n

∏
i=1

x−m
i

this can be simplified to

L(m)
n (K) = (−1)km+(m

2)∑CT

[
Fab(X)

m

∏
�=1

log
(

1−
( xi�

x j�

)τi� j�
)]

.

Using the Sm symmetry of the product over the logarithmic terms, this reduces
further to
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L(m)
n (K) = (−1)km+(m

2)m!∑CT

[
Fab(X)

m

∏
�=1

log
(

1−
( xi�

x j�

)τi� j�
)]

,

where 1 ≤ i� < j� ≤ n for 1 ≤ � ≤ m such that i1 < i2 < · · · < im and all of
i1, . . . , im, j1, . . . , jm are pairwise distinct.

For the term in the summand corresponding to i, j there is exactly one integer �
in [n] such that � �∈ i, j. Pair this integer with n+ 1 to form the edge (�,n+ 1) in a
perfect matching on [n+ 1]. The other edges of this perfect matching are given by
the m distinct pairs (i1, j1), . . . ,(im, jm). Hence

L(m)
n (K) = (−1)km+(m

2)m!∑
π

CT

[
Fab(X) ∏

(i, j)∈π
j �=n+1

log
(

1−
( xi

x j

)τi j
)]

.

Since Fab(X) is a skew-symmetric function (it is the product of a symmetric function
times the skew-symmetric Vandermonde productΔ(X)) we are in a position to apply
Corollary 11.11. Thus

L(m)
n (K) = (−1)kmnm!CT

[
Fab(X)

m

∏
i=1

log
(

1− x2i−1

x2i

)]
.

Finally we replace X �→ X−1 using Fab(X−1) = (−1)mFba(X) and use the symmetry
in a and b to find

L(m)
n (K) = (−1)(k+1)mnm!CT

[
Fab(X)

m

∏
i=1

log
(

1− x2i

x2i−1

)]
.

Equating this with (11.35) completes the proof of (11.9). �

11.6.3 A Strengthening of Theorem 11.3

As will be described in more detail below, using some further results of Adamović
and Milas, it follows that the logarithmic Morris constant term identity (11.9) holds
provided it holds for a = b = 0, i.e., provided the logarithmic analogue (11.2) of
Dyson’s identity holds. The proof of Theorem 11.3 given in the previous subsection
implies that the latter follows from what could be termed the complex analogue of
Dyson’s identity, i.e., the a = b = 0 case of (11.24):

CT

[ n

∏
i=1

∏
1≤i< j≤n

(
1−
( xi

x j

)τi j
)u
]
= xmPn(x

2)
Γ (1+ 1

2 nu)

Γ n(1+ 1
2 u)

. (11.37)

As a consequence of all this, Theorem 11.3 can be strengthened as follows.
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Theorem 11.12 (Logarithmic Morris constant term identity, strong version).
The complex Dyson constant term identity (11.37) implies the logarithmic Morris
constant term identity.

To justify this claim, let er(X) for r = 0,1, . . . ,n denote the rth elementary
symmetric function. The er(X) have generating function [26]

n

∑
r=0

zrer(X) =
n

∏
i=1

(1+ zxi). (11.38)

Recalling definition (11.36) of Fab, we now define fr(a) = fr(a,b,k,n) by

fr(a) = CT
[
(−1)rer(X)Gab(X)

]
,

where

Gab(X) = Fab(X)
m

∏
i=1

log
(

1− x2i

x2i−1

)
.

In the following b may be viewed as a formal or complex variable, but a must be
taken to be an integer.

From (11.38) with z =−1 it follows that

n

∑
r=0

fr(a) = CT
[
Ga+1,b(X)

]
= f0(a+ 1). (11.39)

According to [2, Theorem 7.1] (translated into the notation of this paper) we also
have

(n− r)(2b+ rK) fr(a) = (r+ 1)(2a+ 2+(n− r−1)K) fr+1(a), (11.40)

where we recall that K := 2k+ 1. Iterating this recursion yields

fr(a) = f0(a)

(
n
r

) r−1

∏
i=0

2b+ iK
2a+ 2+(n− i−1)K

.

Summing both sides over r and using (11.39) leads to

f0(a+ 1) = f0(a)2F1

[ −n,2b/K
1− n− (2a+ 2)/K

;1

]
.

The 2F1 series sums to ((2a+2b+2)/K)n/((2a+2)K)n by the Chu–Vandermonde
sum [3, Corollary 2.2.3]. Therefore,
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f0(a+ 1) = f0(a)
n−1

∏
i=0

2a+ 2b+ 2+ iK
2a+ 2+ iK

.

This functional equation can be solved to finally yield

f0(a) = f0(0)
n−1

∏
i=0

(2a+ 2b+ iK)!!(iK)!!
(2b+ iK)!!(2a+ iK)!!

.

To summarise the above computations, we have established that

CT
[
Gab(X)

]
= CT

[
G0,b(X)

]n−1

∏
i=0

(2a+ 2b+ iK)!!(iK)!!
(2b+ iK)!!(2a+ iK)!!

.

But since G0,0(X) is homogeneous of degree 0 it follows that

CT
[
G0,b(X)

]
= CT

[
G0,0(X)

]
,

so that indeed the logarithmic Morris constant term identity is implied by its a =
b = 0 case.

We finally remark that it seems highly plausible that the recurrence (11.40) has
the following analogue for the complex Morris identity (enhanced by the term
(−1)rer(X) in the kernel):

(n− r)(2b+ ru) fr(a) = (r+ 1)(2a+ 2+(n− r− 1)u) fr+1(a).

However, the fact that for general complex u the kernel is not a skew-symmetric
function seems to prevent the proof of [2, Theorem 7.1] carrying over to the complex
case in a straightforward manner.

11.7 The Root System G2

In this section we prove complex and logarithmic analogues of the Habsieger–
Zeilberger identity (11.13).

Theorem 11.13 (Complex G2 constant term identity). For u,v ∈ C such that
Re(1+ 3

2 u)> 0 and Re(1+ 3
2 (u+ v))> 0,

CT

[(
1− yz

x2

)u(
1− xz

y2

)u(
1− xy

z2

)u(
1− x

y

)v(
1− y

z

)v(
1− z

x

)v
]

=
cos
( 1

2πu
)

cos
( 1

2πv
)
Γ (1+ 3

2(u+ v))Γ (1+ 3
2 u)Γ (1+ u)Γ (1+ v)

Γ (1+ 3
2 u+ v)Γ (1+ u+ 1

2 v)Γ (1+ 1
2 (u+ v))Γ 2(1+ 1

2 u)Γ (1+ 1
2 v)

. (11.41)



242 T. Chappell et al.

Proof. We adopt the method of proof employed by Habsieger and Zeilberger [15,
38] in their proof of Theorem 11.4.

If A(x,y,z;a,u) denotes the kernel on the left of the complex Morris identity
(11.23) for n = 3, and if and G(x,y,z;u,v) denotes the kernel on the left of
(11.41), then

G(x,y,z;u,v) = A(x/y,y/z,z/x,v,u).

Therefore,

CTG(x,y,z;u,v) = CTA(x/y,y/z,z/x;v,u)

= CTA(x,y,z;v,u)
∣∣
xyz=1

=
∞

∑
b=0

[
xbybzb]A(x,y,z;v,u)

= cos
(

1
2πu
) Γ (1+ 3

2 u)

Γ 3(1+ 1
2 u)

3F2

[−v,− 1
2u− v,−u− v

1+ 1
2 u,1+ u

;1

]
,

where the last equality follows from (11.23). Summing the 3F2 series by Dixon’s
sum (11.26) with (2a,b,c) �→ (−v,− 1

2 u− v,−u− v) completes the proof. �
Just as for the root system An−1, we can use the complex G2 constant term

identity to prove a logarithmic analogue of (11.13).

Theorem 11.14. Assume the representation of the G2 root system as given in
Sect. 11.3, and let Φ+

s and Φ+
l denote the set of positive short and positive long

roots, respectively. Define

G(K,M) =
1
3

(3K + 3M)!!(3K)!!(2K)!!(2M)!!
(3K + 2M)!!(2K+M)!!(K+M)!!K!!K!!M!!

.

Then for k,m nonnegative integers,

CT

[
e−3α1−2α2 log(1−eα2) ∏

α∈Φ+
l

(1−eα) ∏
α∈Φl

(1−eα)k ∏
α∈Φs

(1−eα)m
]
=G(K,M),

where (K,M) := (2k+ 1,2m), and

CT

[
e−2α1−α2 log(1−eα1) ∏

α∈Φ+
s

(1−eα) ∏
α∈Φl

(1−eα)k ∏
α∈Φs

(1−eα)m
]
= G(K,M),

where (K,M) := (2k,2m+ 1).



11 Logarithmic and Complex Constant Term Identities 243

We can more explicitly write the kernels of the two logarithmic G2 constant term
identities as

z2

xy

(
1− x2

yz

)(
1− y2

xz

)(
1− xy

z2

)
log
(

1− y2

xz

)

×
((

1− x2

yz

)(
1− y2

xz

)(
1− z2

xy

)(
1− yz

x2

)(
1− xz

y2

)(
1− xy

z2

))k

×
((

1− x
y

)(
1− x

z

)(
1− y

x

)(
1− y

z

)(
1− z

x

)(
1− z

y

))m

and

z
x

(
1− x

y

)(
1− y

z

)(
1− x

z

)
log
(

1− x
y

)

×
((

1− x2

yz

)(
1− y2

xz

)(
1− z2

xy

)(
1− yz

x2

)(
1− xz

y2

)(
1− xy

z2

))k

×
((

1− x
y

)(
1− x

z

)(
1− y

x

)(
1− y

z

)(
1− z

x

)(
1− z

y

))m

,

respectively.

Proof of Theorem 11.14. If we differentiate (11.41) with respect to u, use the cyclic
symmetry in (x,y,z) of the kernel on the left and finally set u = 2k+ 1 = K, we get

3CT

[
log
(

1− xz
y2

)(
1− yz

x2

)K(
1− xz

y2

)K(
1− xy

z2

)K(
1− x

y

)v(
1− y

z

)v(
1− z

x

)v
]

=
π
2

(−1)k+1 cos
(

1
2πv
)
Γ (1+ 3

2(K + v))Γ (1+ 3
2 K)Γ (1+K)Γ (1+ v)

Γ (1+ 3
2 K + v)Γ (1+K+ 1

2 v)Γ (1+ 1
2 (K + v))Γ 2(1+ 1

2 K)Γ (1+ 1
2 v)

.

Setting v= 2m=M and carrying out some simplifications using (11.33) and (11.34)
completes the proof of the first claim.

In much the same way, if we differentiate (11.41) with respect to v, use the cyclic
symmetry in (x,y,z) and set v = 2m+ 1 = M, we get

3CT

[
log
(

1− x
y

)(
1− yz

x2

)u(
1− xz

y2

)u(
1− xy

z2

)u(
1− x

y

)M(
1− y

z

)M(
1− z

x

)M
]

=
π
2

(−1)m+1 cos
( 1

2πu
)
Γ (1+ 3

2(u+M))Γ (1+ 3
2 u)Γ (1+ u)Γ (1+M)

Γ (1+ 3
2 u+M)Γ (1+ u+ 1

2 M)Γ (1+ 1
2(u+M))Γ 2(1+ 1

2 u)Γ (1+ 1
2 M)

.

Setting u = 2k = K yields the second claim. �



244 T. Chappell et al.

11.8 Other Root Systems

Although further root systems admit complex analogues of the Macdonald constant
term identities (11.3) or (11.12), it seems the existence of elegant logarithmic
identities is restricted to A2n and G2. To see why this is so, we will discuss the
root systems Bn, Cn and Dn. In order to treat all three simultaneously, it will be
convenient to consider the more general non-reduced root system BCn. With εi again
denoting the ith standard unit vector in R

n, this root system is given by

Φ = {±εi : 1≤ i≤ n}∪{±2εi : 1≤ i≤ n}∪{±εi± ε j : 1≤ i < j ≤ n}.

Using the Selberg integral, Macdonald proved that [25]

CT

[ n

∏
i=1

(1− x±i )
a(1− x±2

i )b ∏
1≤i< j≤n

(1− x±i x±j )
k
]

=
n−1

∏
i=0

(k+ ik)!(2a+ 2b+ 2ik)!(2b+2ik)!
k!(a+ b+ ik)!(b+ ik)!(a+2b+(n+ i−1)k)!

, (11.42)

where a,b,k are nonnegative integers and where we have adopted the standard
shorthand notation (1− x±) := (1− x)(1− 1/x), (1− x±2) := (1− x2)(1− 1/x2),
(1− x±y±) := (1− xy)(1− x/y)(1− y/x)(1−1/xy). For b = 0 the above identity is
the Bn case of (11.12), for a = 0 it is the Cn case of (11.12) and for a = b = 0 it is
the Dn case of (11.12) [and also (11.3)].

A first task in finding a complex analogue of (11.42) is to fix signatures τi j and
σi j for 1≤ i, j ≤ n such that

∏
1≤i< j≤n

(1− x±i x±j ) = ∏
1≤i< j≤n

(
1− (xix j

)σi j
)2(

1−
( xi

x j

)τi j
)2

. (11.43)

This would allow the rewriting of (11.42) as

CT

[ n

∏
i=1

(1− x±i )
a(1− x±2

i )b ∏
1≤i< j≤n

(
1− (xix j

)σi j
)2k(

1−
( xi

x j

)τi j
)2k
]

=
n−1

∏
i=0

(k+ ik)!(2a+ 2b+ 2ik)!(2b+2ik)!
k!(a+ b+ ik)!(b+ ik)!(a+2b+(n+ i−1)k)!

, (11.44)

after which 2k can be replaced by the complex variable u.
In the following we abbreviate (11.43) as L(X) = Rστ(X). In order to satisfy this

equation, we note that for an arbitrary choice of the signatures σi j and τi j,
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L(X) = ∏
1≤i< j≤n

(
1− (xix j

)±σi j
)(

1−
( xi

x j

)±τi j
)

= ∏
1≤i< j≤n

(xix j)
−σi j

( xi

x j

)−τi j
(

1− (xix j
)σi j
)2(

1−
( xi

x j

)τi j
)2

= Rστ(X)
n

∏
i=1

x
−∑ j>i(σi j+τi j)−∑ j<i(σ ji−τ ji)

i .

We must therefore fix the σi j and τi j such that

n

∑
j=i+1

(σi j + τi j)+
i−1

∑
j=1

(σ ji− τ ji) = 0 (11.45)

for all 1≤ i≤ n. If we sum this over all i, this gives

0 = ∑
1≤i< j≤n

σi j ≡
(

n
2

)
(mod 2).

We thus conclude that a necessary condition for (11.45), and hence (11.43), to hold
is that n ≡ 0,1 (mod 4). As we shall show next it is also a sufficient condition, as
there are many solutions to (11.45) for the above two congruence classes.

Lemma 11.15. For n ≡ 1 (mod 4) define m := (n− 1)/2 and p := m/2. If we
choose τi j as in (11.14) and σi j , 1≤ i < j ≤ n, as

σi j =

{
−1 if p < j− i≤ 3p,

1 otherwise,
(11.46)

then (11.45), and thus (11.43), is satisfied.

We can extend the definition of σi j to all 1≤ i, j ≤ n by setting σi j =−σ ji. Then
the matrix Σ = (σi j)1≤i, j≤n is a skew-symmetric Toeplitz matrix. For example, for
n = 5, the above choice for the σi j generates

Σ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1 −1 1
−1 0 1 −1 −1
1 −1 0 1 −1
1 1 −1 0 1
−1 1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎠ .

Proof of Lemma 11.15. Note that by Lemma 11.5 we only need to prove that

n

∑
j=i+1

σi j +
i−1

∑
j=1
σ ji = 0.
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If for 1≤ j ≤ i− 1 we define σi,n+ j :=−σi j = σ ji then this becomes

n+i−1

∑
j=i+1

σi j = 0. (11.47)

We now observe that σi+1, j+1 = σi, j. For j < n or j > n this follows immediately
from (11.46). For j = n it follows from σ1,i+1 = σi,n, which again follows from
(11.46) since p < n− i≤ 3p is equivalent to p < i≤ 3p. Thanks to σi+1, j+1 = σi, j

we only need to check (11.47) for i = 1. Then

n

∑
j=2

σi j =
p+1

∑
j=2

1−
3p+1

∑
j=p+2

1+
n

∑
j=3p+2

1 = n− 4p− 1= 0. �

Lemma 11.16. For n ≡ 0 (mod 4) define m := (n− 2)/2. If we choose τi j as in
(11.14) and σi j as

σi j =

{
1 if i+ j is even or i+ j = m+ 2,

−1 if i+ j is odd and i+ j �= m+ 2,

then (11.45), and thus (11.43), is satisfied.

Proof. By a simple modification of Lemma 11.5 it follows that for n even and m =
(n− 2)/2,

n

∑
j=i+1

τi j−
i−1

∑
j=1

τ ji =

{
−1 if 1≤ i≤ m+ 1,

1 if m+ 1 < i < n.

Hence we must show that

n

∑
j=i+1

σi j +
i−1

∑
j=1

σ ji =

{
1 if 1≤ i≤ m+ 1,

−1 if m+ 1 < i < n.

But this is obvious. The sum on the left is over n−1 terms, with one more odd i+ j
then even i+ j. Hence, without the exceptional condition on i+ j = m+ 2, the sum
would always be −1. To have i+ j = m+ 2 as part of one of the two sums we must
have i ≤ m+ 1, in which case one −1 is changed to a +1 leading to a sum of +1
instead of −1. �

Lemmas 11.15 and 11.16 backed up with numerical data for n = 4 and n = 5
suggest the following generalisation of (11.44).
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Conjecture 11.17 (Complex BCn constant term identity). Let n≡ ζ (mod 4) where
ζ = 0,1, and let u ∈ C such that min{Re(1+ 2b+(n− 1)u),Re(1+ 1

2 nu)} > 0.
Assume that τi j and σi j for 1 ≤ i < j ≤ n are signatures satisfying (11.45). Then
there exists a polynomial Pn(x), independent of a and b, such that Pn(1) = 1 and

CT

[ n

∏
i=1

(1− x±i )
a(1− x±2

i )b ∏
1≤i< j≤n

(
1− (xix j

)σi j
)u(

1−
( xi

x j

)τi j
)u
]

= xn−ζPn(x
2)

Γ (1+ 1
2 nu)

Γ (1+ 1
2 (n− 1)u)Γ n(1+ 1

2 u)

n−1

∏
i=1

Γ (1+ iu)

Γ (1+(i− 1
2)u)

×
n−1

∏
i=0

( 1
2 +

1
2 iu)a+b(

1
2 +

1
2 iu)b

(1+ 1
2(n+ i− 1)u)a+2b

, (11.48)

where x = x(u) := cos
( 1

2πu
)
. Trivially, P1(x) = 1. Conjecturally,

P4(x) = 1 and P5(x) =
1

15
(3+ 4x+ 8x2).

We note that the D4 case of the conjecture, i.e., a = b = 0 and n = 4, is equivalent
to the following new hypergeometric multisum identity

∑ ∏
1≤i< j≤4

(−1)ki j

(
u

ki j

)(
u

mi j

)
= cos4( 1

2πu)
Γ (1+ u)Γ 2(1+ 2u)Γ (1+ 3u)

Γ 5(1+ 1
2 u)Γ 2(1+ 3

2 u)Γ (1+ 5
2 u)

,

where the sum is over {ki j}1≤i< j≤4 and {mi j}1≤i< j≤4 subject to the constraints

k12− k13− k14 +m12 +m13−m14 = 0,

k12− k23 + k24−m12 +m23−m24 = 0,

k13− k23 + k34 +m13−m23−m34 = 0,

k14 + k24− k34−m14 +m24−m34 = 0,

or, equivalently,

∑
1≤i< j≤4

i=p or j=p

(τi jki j +σi jmi j) = 0 for 1≤ p≤ 4.

Unfortunately, from the point of view of logarithmic constant term identities,
(11.48) is not good news. On the right-hand side the exponent n− ζ of x is too
high relative to the rank n of the root system. (Compare with m = (n− 1)/2 versus
n− 1 for An−1.) If we write (11.48) as Ln(u) = Rn(u) and define K := 2k+ 1, then
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due to the factor xn−ζ , R( j)
n (K) = 0 for all 1≤ j < n−ζ . Much like the Morris case,

R(n−ζ )
n (K) yields a ratio of products of double factorials:

R(n−ζ )
n (K) = (n− ζ )!Pn(0)

(nK)!!
((n− 1)K)!!(K!!)n

n−1

∏
i=1

(2iK)!!
((2i− 1)K)!!

×
n−1

∏
i=0

(2b+ iK− 1)!!(2a+ 2b+ iK− 1)!!((n+ i− 1)K)!!
(2a+ 4b+(n+ i−1)K)!!(iK− 1)!!(iK− 1)!!

.

However, if we differentiate Ln(u) as many as n− ζ times, a large number of

different types of logarithmic terms give a nonvanishing contribution to L(n−ζ )
n (K)—

unlike type A where only terms with the same functional form (corresponding to
perfect matchings) survive the specialisation u = K. For example, for n = 4 terms
such as

log3
(

1− x1

x2

)
log
(

1− 1
x2x3

)
,

log2
(

1− x1

x2

)
log(1− x1x2) log

(
1− 1

x2x3

)
,

log2
(

1− x1

x2

)
log2(1− x3x4),

and many similar such terms, all give nonvanishing contributions.
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Chapter 12
Preprocessing and Regularization
for Degenerate Semidefinite Programs

Yuen-Lam Cheung, Simon Schurr, and Henry Wolkowicz

Abstract This paper presents a backward stable preprocessing technique for
(nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for
which the Slater constraint qualification (SCQ), the existence of strictly feasible
points, (nearly) fails. Current popular algorithms for semidefinite programming rely
on primal-dual interior-point, p-d i-p, methods. These algorithms require the SCQ
for both the primal and dual problems. This assumption guarantees the existence
of Lagrange multipliers, well-posedness of the problem, and stability of algorithms.
However, there are many instances of SDPs where the SCQ fails or nearly fails.
Our backward stable preprocessing technique is based on applying the Borwein–
Wolkowicz facial reduction process to find a finite number, k, of rank-revealing
orthogonal rotations of the problem. After an appropriate truncation, this results
in a smaller, well-posed, nearby problem that satisfies the Robinson constraint
qualification, and one that can be solved by standard SDP solvers. The case k = 1 is
of particular interest and is characterized by strict complementarity of an auxiliary
problem.
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12.1 Introduction

The aim of this paper is to develop a backward stable preprocessing technique to
handle (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs
for which the Slater constraint qualification (Slater CQ or SCQ), the existence
of strictly feasible points, (nearly) fails. The technique is based on applying the
Borwein–Wolkowicz facial reduction process [11, 12] to find a finite number k of
rank-revealing orthogonal rotation steps. Each step is based on solving an auxiliary
problem (AP) where it and its dual satisfy the Slater CQ. After an appropriate
truncation, this results in a smaller, well-posed, nearby problem for which the
Robinson constraint qualification (RCQ) [52] holds; and one that can be solved
by standard SDP solvers. In addition, the case k = 1 is of particular interest and is
characterized by strict complementarity of the (AP).

In particular, we study SDPs of the following form:

(P) vP := sup
y
{bT y : A ∗y)C}, (12.1)

where the optimal value vP is finite, b ∈ R
m, C ∈ S

n, and A : Sn→ R
m is an onto

linear transformation from the space Sn of n×n real symmetric matrices to R
m. The

adjoint of A is A ∗y =∑m
i=1 yiAi, where Ai ∈ Sn, i = 1, . . . ,m. The symbol) denotes

the Löwner partial order induced by the cone S
n
+ of positive semidefinite matrices,

i.e., A ∗y)C if and only if C−A ∗y∈ Sn
+. (Note that the cone optimization problem

(12.1) is commonly used as the dual problem in the SDP literature, though it is
often the primal in the linear matrix inequality (LMI) literature, e.g., [13].) If (P) is
strictly feasible, then one can use standard solution techniques; if (P) is strongly
infeasible, then one can set vP =−∞, e.g., [38,43,47,62,65]. If neither of these two
feasibility conditions can be verified, then we apply our preprocessing technique that
finds a rotation of the problem that is akin to rank-revealing matrix rotations. (See
e.g., [58,59] for equivalent matrix results.) This rotation finds an equivalent (nearly)
block diagonal problem which allows for simple strong dualization by solving only
the most significant block of (P) for which the Slater CQ holds. This is equivalent
to restricting the original problem to a face of Sn

+, i.e., the preprocessing can be
considered as a facial reduction of (P). Moreover, it provides a backward stable
approach for solving (P) when it is feasible and the SCQ fails; and it solves a
nearby problem when (P) is weakly infeasible.

The Lagrangian dual to (12.1) is

(D) vD := inf
X
{〈C,X〉 : A (X) = b,X * 0} , (12.2)

where 〈C,X〉 := traceCX = ∑i j Ci jXi j denotes the trace inner product of the
symmetric matrices C and X and A (X) = (〈Ai,X〉) ∈ R

m. Weak duality vD ≥ vP

follows easily. The usual constraint qualification (CQ) used for (P) is SCQ,
i.e., strict feasibility A ∗y ≺ C (or C−A ∗y ∈ S

n
++, the cone of positive definite
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matrices). If we assume the Slater CQ holds and the primal optimal value is finite,
then strong duality holds, i.e., we have a zero duality gap and attainment of the dual
optimal value. Strong duality results for (12.1) without any constraint qualification
are given in [10–12, 48, 49, 72], and more recently in [50, 66]. Related closure
conditions appear in [44]; and, properties of problems where strong duality fails
appear in [45].

General surveys on SDP are in, e.g., [4, 63, 68, 75]. Further general results on
SDP appear in the recent survey [31].

Many popular algorithms for (P) are based on Newton’s method and a primal-
dual interior-point, p-d i-p, approach, e.g., the codes (latest at the URLs in the
citations) CSDP, SeDuMi, SDPT3, SDPA [9, 60, 67, 76]; see also the

SDP URL: www-user.tu-chemnitz.de/∼helmberg/sdp software.html.

To find the search direction, these algorithms apply symmetrization in combination
with block elimination to find the Newton search direction. The symmetrization
and elimination steps both result in ill-conditioned linear systems, even for well
conditioned SDP problems, e.g., [19, 73]. And, these methods are very susceptible
to numerical difficulties and high iteration counts in the case when SCQ nearly
fails; see, e.g., [21–24]. Our aim in this paper is to provide a stable regularization
process based on orthogonal rotations for problems where strict feasibility (nearly)
fails. Related papers on regularization are, e.g., [30, 39]; and papers on high
accuracy solutions for algorithms SDPA-GMP,-QD,-DD are, e.g., [77]. In addition,
a popular approach uses a self-dual embedding, e.g., [16,17]. This approach results
in SCQ holding by using homogenization and increasing the number of variables.
In contrast, our approach reduces the size of the problem in a preprocessing step in
order to guarantee SCQ.

12.1.1 Outline

We continue in Sect. 12.1.2 with preliminary notation and results for cone program-
ming. In Sect. 12.2 we recall the history and outline the similarities and differences
of what facial reduction means first for linear programming (LP), and then for
ordinary convex programming (CP), and finally for SDP, which has elements from
both LP and CP. Instances and applications where the SCQ fails are given in
Sect. 12.2.3.1. Then, Sect. 12.3 presents the theoretical background and tools needed
for the facial reduction algorithm for SDP. This includes results on strong duality
in Sect. 12.3.1; and, various theorems of the alternative, with cones having both
nonempty and empty interior, are given in Sect. 12.3.2. A stable auxiliary problem
(12.18) for identifying the minimal face containing the feasible set is presented and
studied in Sect. 12.3.3; see, e.g., Theorem 12.13. In particular, we relate the question
of transforming the unstable problem of finding the minimal face to the existence
of a primal-dual optimal pair satisfying strict complementarity and to the number
of steps in the facial reduction. See Remark 12.12 and Sect. 12.3.5. The resulting

www-user.tu-chemnitz.de/~{}helmberg/sdp_software.html
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information from the auxiliary problem for problems where SCQ (nearly) fails is
given in Theorem 12.17 and Propositions 12.18, 12.19. This information can be
used to construct equivalent problems. In particular, a rank-revealing rotation is
used in Sect. 12.3.4 to yield two equivalent problems that are useful in sensitivity
analysis, see Theorem 12.22. In particular, this shows the backward stability with
respect to perturbations in the parameter β in the definition of the cone Tβ for the
problem. Truncating the (near) singular blocks to zero yields two smaller equivalent,
regularized problems in Sect. 12.3.4.1.

The facial reduction is studied in Sect. 12.4. An outline of the facial reduction
using a rank-revealing rotation process is given in Sect. 12.4.1. Backward stability
results are presented in Sect. 12.4.2.

Preliminary numerical tests, as well as a technique for generating instances with
a finite duality gap useful for numerical tests, are given in Sect. 12.5. Concluding
remarks appear in Sect. 12.6.

12.1.2 Preliminary Definitions

Let (V ,〈·, ·〉V ) be a finite-dimensional inner product space and K be a (closed)
convex cone in V , i.e., λK ⊆K,∀λ ≥ 0, and K+K ⊆K. K is pointed if K∩(−K) =
{0}; K is proper if K is pointed and intK �= /0; the polar or dual cone of K is
K∗ := {φ : 〈φ ,k〉 ≥ 0,∀k ∈ K}. We denote by )K the partial order with respect to
K. That is, x1 )K x2 means that x2− x1 ∈ K. We also write x1 ≺K x2 to mean that
x2− x1 ∈ intK. In particular with V = S

n, K = S
n
+ yields the partial order induced

by the cone of positive semidefinite matrices in S
n, i.e., the so-called Löwner partial

order. We denote this simply with X ) Y for Y − X ∈ S
n
+. cone(S) denotes the

convex cone generated by the set S. In particular, for any nonzero vector x, the
ray generated by x is defined by cone(x). The ray generated by s ∈ K is called an
extreme ray if 0 )K u )K s implies that u ∈ cone(s). The subset F ⊆ K is a face of
the cone K, denoted F �K, if

(s ∈ F,0)K u)K s) =⇒ (cone(u)⊆ F) . (12.3)

Equivalently, F �K if F is a cone and
(
x,y ∈ K, 1

2 (x+ y) ∈ F
)
=⇒ ({x,y} ⊆ F).

If F �K but is not equal to K, we write F �K. If {0} �= F �K, then F is a proper
face of K. For S ⊆ K, we let face(S) denote the smallest face of K that contains S.
A face F �K is an exposed face if it is the intersection of K with a hyperplane.
The cone K is facially exposed if every face F �K is exposed. If F �K, then the
conjugate face is Fc := K∗∩{F}⊥. Note that the conjugate face Fc is exposed using
any s ∈ relintF (where relintS denotes the relative interior of the set S), i.e., Fc =
K∗ ∩{s}⊥,∀s ∈ relintF . In addition, note that Sn

+ is self-dual (i.e., (Sn
+)
∗ = S

n
+) and

is facially exposed.
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For the general conic programming problem, the constraint linear transformation
A : V → W maps between two Euclidean spaces. The adjoint of A is denoted
by A ∗ : W → V , and the Moore–Penrose generalized inverse of A is denoted by
A † : W → V .

A linear conic program may take the form

(Pconic) vconic
P = sup

y
{〈b,y〉 : C−A ∗y*K 0}, (12.4)

with b ∈W and C ∈ V . Its dual is given by

(Dconic) vconic
D = inf

X
{〈C,X〉 : A (X) = b,X *K∗ 0}. (12.5)

Note that the RCQ is said to hold for the linear conic program (Pconic) if 0∈ int(C−
A ∗(Rm)− S

n
+); see [53]. As pointed out in [61], the Robinson CQ is equivalent

to the Mangasarian–Fromovitz constraint qualification in the case of conventional
nonlinear programming. Also, it is easy to see that the Slater CQ, strict feasibility,
implies RCQ.

Denote the feasible solution and slack sets of (12.4) and (12.5) by FP = F y
P =

{y : A ∗y )K C}, F Z
P = {Z : Z = C−A ∗y *K 0}, and FD = {X : A (X) =

b, X *K∗ 0}, respectively. The minimal face of (12.4) is the intersection of all faces
of K containing the feasible slack vectors:

fP = f Z
P := face(C−A ∗(FP)) = ∩{H �K : C−A ∗(FP)⊆ H} .

Here, A ∗(FP) is the linear image of the set FP under A ∗.
We continue with the notation specifically for V = S

n, K = S
n
+, and W = R

m.
Then (12.4) [respectively, (12.5)] is the same as (12.1) [respectively, (12.2)]. We
let ei denote the ith unit vector, and Ei j := 1√

2
(eieT

j + e jeT
i ) are the unit matrices

in S
n. For specific Ai ∈ S

n, i = 1, . . . ,m, we let ‖A ‖2 denote the spectral norm of
A and define the Frobenius norm (Hilbert–Schmidt norm) of A as ‖A ‖F :=√
∑m

i=1 ‖Ai‖2
F .

Unless stated otherwise, all vector norms are assumed to be 2-norm, and all
matrix norms in this paper are Frobenius norms. Then, e.g., [32, Chap. 5], for any
X ∈ S

n,

‖A (X)‖2 ≤ ‖A ‖2‖X‖F ≤ ‖A ‖F‖X‖F . (12.6)

We summarize our assumptions in the following.

Assumption 12.1. FP �= /0; A is onto.



256 Y.-L. Cheung et al.

12.2 Framework for Regularization/Preprocessing

The case of preprocessing for linear programming is well known. The situation for
general convex programming is not. We now outline the preprocessing and facial
reduction for the cases of linear programming (LP); ordinary convex programming
(CP); and SDP. We include details on motivation involving numerical stability and
convergence for algorithms. In all three cases, the facial reduction can be regarded
as a Robinson-type regularization procedure.

12.2.1 The Case of Linear Programming, LP

Preprocessing is essential for LP, in particular for the application of interior-point
methods. Suppose that the constraint in (12.4) is A ∗y )K c with K = R

n
+, the

nonnegative orthant, i.e., it is equivalent to the elementwise inequality AT y≤ c,c ∈
R

n, with the (full row rank) matrix A being m× n. Then (Pconic) and (Dconic) form
the standard primal-dual LP pair. Preprocessing is an essential step in algorithms
for solving LP, e.g., [20,27,35]. In particular, interior-point methods require strictly
feasible points for both the primal and dual LPs. Under the assumption that FP �= /0,
lack of strict feasibility for the primal is equivalent to the existence of an unbounded
set of dual optimal solutions. This results in convergence problems, since current
primal-dual interior-point methods follow the central path and converge to the
analytic center of the optimal set. From a standard Farkas’ lemma argument, we
know that the Slater CQ, the existence of a strictly feasible point AT ŷ < c, holds if
and only if

the system 0 �= d ≥ 0,Ad = 0,cT d = 0 is inconsistent. (12.7)

In fact, after a permutation of columns if needed, we can partition both A,c as

A =
[
A< A=

]
, with A= size m× t, c =

(
c<

c=

)
,

so that we have

A<T ŷ < c<, A=T ŷ = c=, for some ŷ ∈ R
m, and AT y≤ c =⇒ A=T y = c=,

i.e., the constraints A=T y ≤ c= are the implicit equality constraints, with indices
given in

P := {1, . . . ,n}, P< := {1, . . . ,n− t}, P= := {n− t+ 1, . . . ,n}.
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Moreover, the indices for c= (and columns of A=) correspond to the indices in a
maximal positive solution d in (12.7); and, the nonnegative linear dependence in
(12.7) implies that there are redundant implicit equality constraints that we can
discard, yielding the smaller (A=

R )
T y = c=R with A=

R full column rank. Therefore,
an equivalent problem to (Pconic) is

(Preg) vP := max{bT y : A<T y≤ c<, A=
R

T y = c=R }. (12.8)

And this LP satisfies the RCQ; see Corollary 12.17, Item 2, below. In this case
RCQ is equivalent to the Mangasarian–Fromovitz constraint qualification (MFCQ),
i.e., there exists a feasible ŷ which satisfies the inequality constraints strictly,
A<T ŷ < c<, and the matrix A= for the equality constraints is full row rank;
see, e.g., [8, 40]. The MFCQ characterizes stability with respect to right-hand

side perturbations and is equivalent to having a compact set of dual optimal
solutions. Thus, recognizing and changing the implicit equality constraints to
equality constraints and removing redundant equality constraints provides a simple
regularization of LP.

Let fP denote the minimal face of the LP. Then note that we can rewrite the
constraint as

AT y) fP c, with fP := {z ∈R
n
+ : zi = 0, i ∈P=}.

Therefore, rewriting the constraint using the minimal face provides a regularization
for LP. This is followed by discarding redundant equality constraints to obtain
the MFCQ. This reduces the number of constraints and thus the dimension of the
dual variables. Finally, the dimension of the problem can be further reduced by
eliminating the equality constraints completely using the nullspace representation.
However, this last step can result in loss of sparsity and is usually not done.

We can similarly use a theorem of the alternative to recognize failure of strict
feasibility in the dual, i.e., the (in)consistency of the system 0 �= AT v≥ 0,bT v = 0.
This corresponds to identifying which variables xi are identically zero on the
feasible set. The regularization then simply discards these variables along with the
corresponding columns of A,c.

12.2.2 The Case of Ordinary Convex Programming, CP

We now move from LP to nonlinear convex programming. We consider the ordinary
convex program (CP)

(CP) vCP := sup{bT y : g(y)≤ 0}, (12.9)
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where g(y) = (gi(y)) ∈Rn and gi : Rm→R are convex functions, for all i. (Without
loss of generality, we let the objective function f (y) = bT y be linear. This can always
be achieved by replacing a concave objective function with a new variable sup t, and
adding a new constraint − f (y) ≤ −t.) The quadratic programming case has been
well studied [28,41]. Some preprocessing results for the general CP case are known,
e.g., [15]. However, preprocessing for general CP is not as well known as for LP. In
fact (see [6]) as for LP there is a set of implicit equality constraints for CP, i.e., we
can partition the constraint index set P = {1, . . . ,n} into two sets:

P= = {i ∈P : y feasible =⇒ gi(y) = 0}, P< = P\P=. (12.10)

Therefore, as above for LP, we can rewrite the constraints in CP using the minimal
face fP to get g(y)) fP 0. However, this is not a true convex program since the new
equality constraints are not affine. However, surprisingly the corresponding feasible
set for the implicit equality constraints is convex, e.g., [6]. We include the result and
a proof for completeness.

Lemma 12.2. Let the convex program (CP) be given, and let P= be defined as in
(12.10). Then the set F= := {y : gi(y) = 0,∀i ∈P=} satisfies

F= = {y : gi(y)≤ 0,∀i ∈P=},

and thus is a convex set.

Proof. Let g=(y) = (gi(y))i∈P= and g<(y) = (gi(y))i∈P< . By definition of P<,
there exists a feasible ŷ ∈F with g<(ŷ) < 0; and, suppose that there exists ȳ with
g=(ȳ)≤ 0, and gi0(ȳ)< 0, for some i0 ∈P=. Then for small α > 0 the point yα :=
α ŷ+(1−α)ȳ ∈F and gi0(yα)< 0. This contradicts the definition of P=. �
This means that we can regularize CP by replacing the implicit equality constraints
as follows:

(CPreg) vCP := sup{bT y : g<(y)≤ 0,y ∈F=}. (12.11)

The generalized Slater CQ holds for the regularized convex program (CPreg). Let

φ(λ ) = sup
y∈F=

bT y−λ T g<(y)

denote the regularized dual functional for CP. Then strong duality holds for CP with
the regularized dual program, i.e.,

vCP = vCPD := inf
λ≥0

φ(λ )

= φ(λ ∗),



12 Preprocessing and Regularization for Degenerate Semidefinite Programs 259

for some (dual optimal) λ ∗ ≥ 0. The Karush–Kuhn–Tucker (KKT) optimality
conditions applied to (12.11) imply that

y∗ is optimal for CPreg

if and only if⎧⎨
⎩

y∗ ∈F (primal feasibility)
b−∇g<(y∗)λ ∗ ∈ (F=− y∗)∗ , for some λ ∗ ≥ 0 (dual feasibility)
g<(y∗)Tλ ∗ = 0 (complementary slackness)

This differs from the standard KKT conditions in that we need the polar set

(F=− y∗)∗ = cone (F=− y∗)
∗
= (D=(y∗))∗ , (12.12)

where D=(y∗) denotes the cone of directions of constancy of the implicit equality
constraints P=, e.g., [6]. Thus we need to be able to find this cone numerically;
see [71]. A backward stable algorithm for the cone of directions of constancy is
presented in [37].

Note that a convex function f is faithfully convex if f is affine on a line
segment only if it is affine on the whole line containing that segment; see [54].
Analytic convex functions are faithfully convex, as are strictly convex functions . For
faithfully convex functions, the set F= is an affine manifold, F= = {y : Vy =Vŷ},
where ŷ ∈F is feasible, and the nullspace of the matrix V gives the intersection of
the cones of directions of constancy D=. Without loss of generality, let V be chosen
full row rank. Then in this case we can rewrite the regularized problem as

(CPreg) vCP := sup{bT y : g<(y)≤ 0,Vy =Vŷ}, (12.13)

which is a convex program for which the MFCQ holds. Thus by identifying the
implicit equalities and replacing them with the linear equalities that represent the
cone of directions of constancy, we obtain the regularized convex program. If we let

gR(y) =

(
g<(y)

Vy−Vŷ

)
, then writing the constraint g(y)≤ 0 using gR and the minimal

cone fP as gR(y)) fP 0 results in the regularized CP for which MFCQ holds.

12.2.3 The Case of Semidefinite Programming, SDP

Finally, we consider our case of interest, the SDP given in (12.1). In this case, the
cone for the constraint partial order is S

n
+, a nonpolyhedral cone. Thus we have

elements of both LP and CP. Significant preprocessing is not done in current public
domain SDP codes. Theoretical results are known (see, e.g., [34]) for results on
redundant constraints using a probabilistic approach. However [10], the notion of
minimal face can be used to regularize SDP. Surprisingly, the above result for LP
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in (12.8) holds. A regularized problem for (P) for which strong duality holds has
constraints of the form A ∗y ) fP C without the need for an extra polar set as in
(12.12) that is used in the CP case, i.e., changing the cone for the partial order
regularizes the problem. However, as in the LP case where we had to discard
redundant implicit equality constraints, extra work has to be done to ensure that
the RCQ holds. The details for the facial reduction now follow in Sect. 12.3. An
equivalent regularized problem is presented in Corollary 12.24, i.e., rather than
a permutation of columns needed in the LP case, we perform a rotation of the
problem constraint matrices, and then we get a similar division of the constraints
as in (12.8); and, setting the implicit equality constraints to equality results in a
regularized problem for which the RCQ holds.

12.2.3.1 Instances Where the Slater CQ Fails for SDP

Instances where SCQ fails for CP are given in [6]. It is known that the SCQ holds
generically for SDP, e.g., [3]. However, there are surprisingly many SDPs that arise
from relaxations of hard combinatorial problems where SCQ fails. In addition, there
are many instances where the structure of the problems allows for exact facial
reduction. This was shown for the quadratic assignment problem in [80] and for
the graph partitioning problem in [74]. For these two instances, the barycenter of the
feasible set is found explicitly and then used to project the problem onto the minimal
face; thus we simultaneously regularize and simplify the problems. In general, the
affine hull of the feasible solutions of the SDP are found and used to find Slater
points. This is formalized and generalized in [64,65]. In particular, SDP relaxations
that arise from problems with matrix variables that have 0,1 constraints along with
row and column constraints result in SDP relaxations where the Slater CQ fails.

Important applications occur in the facial reduction algorithm for sensor net-
work localization and molecular conformation problems given in [36]. Cliques in
the graph result in corresponding dimension reduction of the minimal face of the
problem resulting in efficient and accurate solution techniques. Another instance is
the SDP relaxation of the side chain positioning problem studied in [14]. Further
applications that exploit the failure of the Slater CQ for SDP relaxations appear in,
e.g., [1, 2, 5, 69].

12.3 Theory

We now present the theoretical tools that are needed for the facial reduction
algorithm for SDP. This includes the well-known results for strong duality, the
theorems of the alternative to identify strict feasibility, and, in addition, a stable
subproblem to apply the theorems of the alternative. Note that we use K to represent
the cone S

n
+ to emphasize that many of the results hold for more general closed

convex cones.



12 Preprocessing and Regularization for Degenerate Semidefinite Programs 261

12.3.1 Strong Duality for Cone Optimization

We first summarize some results on strong duality for the conic convex program
in the form (12.4). Strong duality for (12.4) means that there is a zero duality gap,
vconic

P = vconic
D , and the dual optimal value vD (12.5) is attained. However, it is easy

to construct examples where strong duality fails; see, e.g., [45,49,75] and Sect. 12.5
below.

It is well known that for a finite-dimensional LP, strong duality fails only if the
primal problem and/or its dual is infeasible. In fact, in LP both problems are feasible
and both of the optimal values are attained (and equal) if, and only if, the optimal
value of one of the problems is finite. In general (conic) convex optimization, the
situation is more complicated, since the underlying cones in the primal and dual
optimization problems need not be polyhedral. Consequently, even if a primal
problem and its dual are feasible, a nonzero duality gap and/or non-attainment
of the optimal values may ensue unless some constraint qualification holds; see,
e.g., [7, 55]. More specific examples for our cone situations appear in, e.g., [38],
[51, Sect. 3.2], and [63, Sect. 4].

Failure of strong duality is problematic, since many classes of p-d i-p algorithms
require not only that a primal-dual pair of problems possess a zero duality gap, but
also that the (generalized) Slater CQ holds for both primal and dual, i.e., that strict
feasibility holds for both problems. In [10–12], an equivalent strongly dualized

primal problem corresponding to (12.4), given by

(SP) vconic
SP := sup{〈b,y〉 : A ∗y) fP C}, (12.14)

where fP �K is the minimal face of K containing the feasible region of (12.4), is
considered. The equivalence is in the sense that the feasible set is unchanged

A ∗y)K C ⇐⇒ A ∗y) fP C.

This means that for any face F we have

fP �F �K =⇒ {A ∗y)K C ⇐⇒ A ∗y)F C} .

The Lagrangian dual of (12.14) is given by

(DSP) vconic
DSP := inf{〈C,X〉 : A (X) = b, X * f ∗P 0}. (12.15)

We note that the linearity of the constraint means that an equality set of the type in
(12.12) is not needed.

Theorem 12.3 ([10]). Suppose that the optimal value vconic
P in (12.4) is finite. Then

strong duality holds for the pair (12.14) and (12.15), or equivalently, for the pair
(12.4) and (12.15); i.e., vconic

P = vconic
SP = vconic

DSP and the dual optimal value vconic
DSP is

attained.
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12.3.2 Theorems of the Alternative

In this section, we state some theorems of the alternative for the Slater CQ of the
conic convex program (12.4), which are essential to our reduction process. We first
recall the notion of recession direction [for the dual (12.5)] and its relationship with
the minimal face of the primal feasible region.

Definition 12.4. The convex cone of recession directions for (12.5) is

RD := {D ∈ V : A (D) = 0, 〈C,D〉= 0, D*K∗ 0}. (12.16)

The cone RD consists of feasible directions for the homogeneous problem along
which the dual objective function is constant.

Lemma 12.5. Suppose that the feasible set FP �= /0 for (12.4), and let 0 �= D ∈RD.
Then the minimal face of (12.4) satisfies

fP �K∩{D}⊥�K.

Proof. We have

0 = 〈C,D〉− 〈FP,A (D)〉= 〈C−A ∗(FP),D〉.

Hence C −A ∗(FP) ⊆ {D}⊥ ∩ K, which is a face of K. It follows that fP ⊆
{D}⊥∩K. The required result now follows from the fact that fP is (by definition) a
face of K, and D is nonzero. �

Lemma 12.5 indicates that if we are able to find an element D ∈RD\{0}, then
D gives us a smaller face of K that contains F Z

P . The following lemma shows that
the existence of such a direction D is equivalent to the failure of the Slater CQ for
a feasible program (12.4). The lemma specializes [12, Theorem 7.1] and forms the
basis of our reduction process.

Lemma 12.6 ([12]). Suppose that intK �= /0 and FP �= /0. Then exactly one of the
following two systems is consistent:

1. A (D) = 0, 〈C,D〉= 0, and 0 �= D*K∗ 0 (RD\{0})
2. A ∗y≺K C (Slater CQ)

Proof. Suppose that D satisfies the system in Item 1. Then for all y ∈FP, we have
〈C−A ∗y,D〉 = 〈C,D〉 − 〈y,(A (D))〉 = 0. Hence F Z

P ⊆ K ∩ {D}⊥. But {D}⊥ ∩
intK = /0 as 0 �= D*K∗ 0. This implies that the Slater CQ (as in Item 2) fails.

Conversely, suppose that the Slater CQ in Item 2 fails. We have intK �= /0 and

0 /∈ (A ∗(Rm)−C)+ intK.
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Therefore, we can find D �= 0 to separate the open set (A ∗(Rm)−C)+ intK from 0.
Hence we have

〈D,Z〉 ≥ 〈D,C−A ∗y〉 ,
for all Z ∈ K and y ∈ W . This implies that D ∈ K∗ and 〈D,C〉 ≤ 〈D,A ∗y〉, for all
y ∈W . This implies that 〈A (D),y〉= 0 for all y ∈W ; hence A (D) = 0. To see that
〈C,D〉= 0, fix any ŷ ∈FP. Then 0≥ 〈D,C〉= 〈D,C−A ∗ŷ〉 ≥ 0, so 〈D,C〉= 0. �

We have an equivalent characterization for the generalized Slater CQ for the dual
problem. This can be used to extend our results to (Dconic) .

Corollary 12.7. Suppose that intK∗ �= /0 and FD �= /0. Then exactly one of the
following two systems is consistent:

1. 0 �= A ∗v*K 0, and 〈b,v〉= 0.
2. A (X) = b,X ,K∗ 0 (generalized Slater CQ).

Proof. Let K be a one-one linear transformation with range R(K ) =N (A ), and
let X̂ satisfy A (X̂) = b. Then, Item 2 is consistent if, and only if, there exists û such
that X = X̂ −K û ,K∗ 0. This is equivalent to K û ≺K∗ X̂ . Therefore, K , X̂ play
the roles of A ∗,C, respectively, in Lemma 12.6. Therefore, an alternative system
is K ∗(Z) = 0,0 �= Z *K 0, and 〈X̂ ,Z〉 = 0. Since N (K ∗) = R(A ∗), this is
equivalent to 0 �= Z = A ∗v*K 0, and 〈X̂ ,Z〉= 0, or 0 �= A ∗v*K 0, and 〈b,v〉= 0.

�
We can extend Lemma 12.6 to problems with additional equality constraints.

Corollary 12.8. Consider the modification of the primal (12.4) obtained by adding
equality constraints:

(PB) vPB := sup{〈b,y〉 : A ∗y)K C,By = f}, (12.17)

where B : W →W ′ is an onto linear transformation. Assume that intK �= /0 and (PB)
is feasible. Let C̄ = C−A ∗B† f . Then exactly one of the following two systems is
consistent:

1. A (D)+B∗v = 0,
〈
C̄,D

〉
= 0, 0 �= D*K∗ 0.

2. A ∗y≺K C, By = f .

Proof. Let ȳ =B† f be the particular solution (of minimum norm) of By = f . Since
B is onto, we conclude that By = f if, and only if, y = ȳ+C ∗v, for some v, where
the range of the linear transformation C ∗ is equal to the nullspace of B. We can now
substitute for y and obtain the equivalent constraint A ∗(ȳ+C ∗v))K C; equivalently
we get A ∗C ∗v)K C−A ∗ȳ. Therefore, Item 2 holds at y = ŷ = ȳ+C ∗v̂, for some
v̂, if, and only if, A ∗C ∗v̂ ≺K C−A ∗ȳ. The result now follows immediately from
Lemma 12.6 by equating the linear transformation A ∗C ∗ with A ∗ and the right-
hand side C−A ∗ȳ with C. Then the system in Item 1 in Lemma 12.6 becomes
C (A (D)) = 0,〈(C−A ∗ȳ),D〉 = 0. The result follows since the nullspace of C is
equal to the range of B∗. �
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We can also extend Lemma 12.6 to the important case where intK = /0. This
occurs at each iteration of the facial reduction.

Corollary 12.9. Suppose that intK = /0, FP �= /0, and C ∈ span(K). Then the linear
manifold

Sy := {y ∈W : C−A ∗y ∈ span(K)}

is a subspace. Moreover, let P be a one-one linear transformation with

R(P) = (A ∗)† span(K).

Then exactly one of the following two systems is consistent:

1. P∗A (D) = 0, 〈C,D〉= 0, D ∈ span(K), and 0 �= D*K∗ 0.
2. C−A ∗y ∈ relintK.

Proof. Since C ∈ span(K) = K−K, we get that 0 ∈ Sy, i.e., Sy is a subspace.
Let T denote an onto linear transformation acting on V such that the nullspace

N (T ) = span(K)⊥, and T ∗ is a partial isometry, i.e., T ∗ = T †. Therefore, T is
one-to-one and is onto span(K). Then

A ∗y)K C ⇐⇒ A ∗y)K C and A ∗y ∈ span(K), since C ∈ K−K
⇐⇒ (A ∗P)w)K C, y = Pw, for some w, by definition of P

⇐⇒ (T A ∗P)w)T (K) T (C), y = T w, for some w, by definition of T ,

i.e., (12.1) is equivalent to

vP := sup{〈P∗b,w〉 : (T A ∗P)w)T (K) T (C)}.

The corresponding dual is

vD := inf
{〈T (C),D〉 : P∗AT ∗(D) = P∗b, D*(T (K))∗ 0

}
.

By construction, intT (K) �= /0, so we may apply Lemma 12.6. We conclude that
exactly one of the following two systems is consistent:

1. P∗AT ∗(D) = 0, 0 �= D*(T (K))∗ 0, and 〈T (C),D〉= 0.
2. (T A ∗P)w≺T (K) T (D) (Slater CQ).

The required result follows, since we can now identify T ∗(D) with D ∈ span(K),
and T (C) with C. �
Remark 12.10. Ideally, we would like to find D̂ ∈ relint

(
F Z

P

)c
= relint((C+

R(A ∗))∩K)c, since then we have found the minimal face fP = {D̂}⊥ ∩K. This is
difficult to do numerically. Instead, Lemma 12.6 compromises and finds a point in
a larger set D ∈ (N (A )∩{C}⊥∩K∗

)\{0}. This allows for the reduction of K←
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K ∩{D}⊥. Repeating to find another D is difficult without the subspace reduction
using P in Corollary 12.9. This emphasizes the importance of the minimal subspace
form reduction as an aid to the minimal cone reduction, [66].

A similar argument applies to the regularization of the dual as given in Corol-
lary 12.7. Let FD = (X̂ + N (A )) ∩ K∗, where A (X̂) = b. We note that a
compromise to finding Ẑ ∈ relint(F z

P)
c = relint((X̂ +N (A ))∩K∗)c, fD = {Ẑ}⊥∩

K∗ is finding Z ∈ (R(A ∗)∩{X̂}⊥∩K)\{0}, where 0 = 〈Z, X̂〉= 〈A ∗v, X̂〉= 〈v,b〉.

12.3.3 Stable Auxiliary Subproblem

From this section on we restrict the application of facial reduction to the SDP
in (12.1). (Note that the notion of auxiliary problem as well as Theorems 12.13
and 12.17, below, apply to the more general conic convex program (12.4).) Each
iteration of the facial reduction algorithm involves two steps. First, we apply
Lemma 12.6 and find a point D in the relative interior of the recession cone RD.
Then, we project onto the span of the conjugate face {D}⊥ ∩Sn

+ ⊇ fP. This yields
a smaller dimensional equivalent problem. The first step to find D is well suited for
interior-point algorithms if we can formulate a suitable conic optimization problem.
We now formulate and present the properties of a stable auxiliary problem for
finding D. The following is well known, e.g., [42, Theorems 10.4.1, 10.4.7].

Theorem 12.11. If the (generalized) Slater CQ holds for both primal problem
(12.1) and dual problem (12.2), then as the barrier parameter μ → 0+, the primal-
dual central path converges to a point (X̂ , ŷ, Ẑ), where Ẑ =C−A ∗ŷ, such that X̂ is
in the relative interior of the set of optimal solutions of (12.2) and (ŷ, Ẑ) is in the
relative interior of the set of optimal solutions of (12.1).

Remark 12.12. Many polynomial time algorithms for SDP assume that the Newton
search directions can be calculated accurately. However, difficulties can arise
in calculating accurate search directions if the corresponding Jacobians become
increasingly ill-conditioned. This is the case in most of the current implementations
of interior-point methods due to symmetrization and block elimination steps; see,
e.g., [19]. In addition, the ill-conditioning arises if the Jacobian of the optimality
conditions is not full rank at the optimal solution, as is the case if strict comple-
mentarity fails for the SDP. This key question is discussed further in Sect. 12.3.5,
below.

According to Theorem 12.11, if we can formulate a pair of auxiliary primal-
dual cone optimization problems, each with generalized Slater points such that the
relative interior of RD coincides with the relative interior of the optimal solution
set of one of our auxiliary problems, then we can design an interior-point algorithm
for the auxiliary primal-dual pair, making sure that the iterates of our algorithm stay
close to the central path (as they approach the optimal solution set) and generate our
desired X ∈ relintRD.
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This is precisely what we accomplish next. In the special case of K = S
n
+, this

corresponds to finding maximum rank feasible solutions for the underlying auxiliary
SDPs, since the relative interiors of the faces are characterized by their maximal rank
elements.

Define the linear transformation AC : Sn→R
m+1 by

AC(D) =

(
A (D)

〈C,D〉
)
,

This presents a homogenized form of the constraint of (12.1) and combines the two
constraints in Lemma 12.6, Item 1. Now consider the following conic optimization
problem, which we shall henceforth refer to as the auxiliary problem:

(AP)

valaux
P := min

δ ,D
δ

s.t. ‖AC(D)‖ ≤ δ
〈 1√

n I,D〉= 1

D* 0.

(12.18)

This auxiliary problem is related to the study of the distances to infeasibility in,
e.g., [46]. The Lagrangian dual of (12.18) is

sup

W*0,

⎛
⎝β

u

⎞
⎠*Q0

inf
δ ,D

δ + γ
(

1−
〈

D,
1√
n

I

〉)
−〈W,D〉−

〈(
β
u

)
,

(
δ

AC(D)

)〉

= sup

W*0,

⎛
⎝β

u

⎞
⎠*Q0

inf
δ ,D

δ (1−β )−
〈

D, A ∗
C u+ γ

1√
n

I+W

〉
+ γ, (12.19)

where Q :=

{(
β
u

)
∈ R

m+2 : ‖u‖ ≤ β
}

refers to the second-order cone. Since the

inner infimum of (12.19) is unconstrained, we get the following equivalent dual:

(DAP)

valaux
D := sup

γ,u,W
γ

s.t. A ∗
C u+ γ 1√

n I +W = 0

‖u‖ ≤ 1
W * 0.

(12.20)

A strictly feasible primal-dual point for (12.18) and (12.20) is given by
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D =
1√
n

I, δ >

∥∥∥∥AC

(
1√
n

I

)∥∥∥∥ , and γ =−1, u = 0, W =
1√
n

I, (12.21)

showing that the generalized Slater CQ holds for the pair (12.18)–(12.20).
Observe that the complexity of solving (12.18) is essentially that of solving

the original dual (12.2). Recalling that if a path-following interior-point method
is applied to solve (12.18), one arrives at a point in the relative interior of the set of
optimal solutions, a primal optimal solution (δ ∗,D∗) obtained is such that D∗ is of
maximum rank.

12.3.3.1 Auxiliary Problem Information for Minimal Face of F Z
P

This section outlines some useful information that the auxiliary problem pro-
vides. Theoretically, in the case when the Slater CQ (nearly) fails for (12.1), the
auxiliary problem provides a more refined description of the feasible region, as
Theorem 12.13 shows. Computationally, the auxiliary problem gives a measure
of how close the feasible region of (12.1) is to being a subset of a face of the
cone of positive semidefinite matrices, as shown by: (i) the cosine-angle upper
bound (near orthogonality) of the feasible set with the conjugate face given in
Theorem 12.17; (ii) the cosine-angle lower bound (closeness) of the feasible set
with a proper face of S

n
+ in Proposition 12.18; and (iii) the near common block

singularity bound for all the feasible slacks obtained after an appropriate orthogonal
rotation, in Corollary 12.19.

We first illustrate the stability of the auxiliary problem and show how a primal-
dual solution can be used to obtain useful information about the original pair of
conic problems.

Theorem 12.13. The primal-dual pair of problems (12.18) and (12.20) satisfy the
generalized Slater CQ, both have optimal solutions, and their (nonnegative) optimal
values are equal. Moreover, letting (δ ∗,D∗) be an optimal solution of (12.18), the
following holds under the assumption that FP �= /0:

1. If δ ∗ = 0 and D∗ , 0, then the Slater CQ fails for (12.1) but the generalized
Slater CQ holds for (12.2). In fact, the primal minimal face and the only primal
feasible (hence optimal) solution are

fP = {0}, y∗ = (A ∗)†(C).

2. If δ ∗ = 0 and D∗ �, 0, then the Slater CQ fails for (12.1) and the minimal face
satisfies

fP �S
n
+∩{D∗}⊥�S

n
+. (12.22)

3. If δ ∗ > 0, then the Slater CQ holds for (12.1).
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Proof. A strictly feasible pair for (12.18)–(12.20) is given in (12.21). Hence by
strong duality both problems have equal optimal values and both values are attained.

1. Suppose that δ ∗ = 0 and D∗ , 0. It follows that AC(D∗) = 0 and D∗ �= 0. It
follows from Lemma 12.5 that

fP � S
n
+∩{D∗}⊥ = {0}.

Hence all feasible points for (12.1) satisfy C−A ∗y = 0. Since A is onto, we
conclude that the unique solution of this linear system is y = (A ∗)†(C).

Since A is onto, there exists X̄ such that A (X̄) = b. Thus, for every t ≥ 0,
A (X̄ + tD∗) = b, and for t large enough, X̄ + tD∗ , 0. Therefore, the generalized
Slater CQ holds for (12.2).

2. The result follows from Lemma 12.5.
3. If δ ∗ > 0, then RD = {0}, where RD was defined in (12.16). It follows from

Lemma 12.6 that the Slater CQ holds for (12.1). �
Remark 12.14. Theorem 12.13 shows that if the primal problem (12.1) is feasible,
then by definition of (AP) as in (12.18), δ ∗ = 0 if, and only if, AC has a right
singular vector D such that D * 0 and the corresponding singular value is zero,
i.e., we could replace (AP) with min{‖AC(D)‖ : ‖D‖= 1,D* 0}. Therefore, we
could solve (AP) using a basis for the nullspace of AC, e.g., using an onto linear
function NAC on S

n that satisfies R(N ∗
AC

) = N (AC), and an approach based on
maximizing the smallest eigenvalue:

δ ≈ sup
y

{
λmin(N

∗
AC

y) : trace(N ∗
AC

y) = 1,‖y‖ ≤ 1
}
,

so, in the case when δ ∗ = 0, both (AP) and (DAP) can be seen as a max-min
eigenvalue problem (subject to a bound and a linear constraint).

Finding 0 �= D* 0 that solves AC(D) = 0 is also equivalent to the SDP:

inf
D
‖D‖

s.t. AC(D) = 0, 〈I,D〉=√n, D* 0,
(12.23)

a program for which the Slater CQ generally fails. (See Item 2 of Theorem 12.13.)
This suggests that the problem of finding the recession direction 0 �= D * 0 that
certifies a failure for (12.1) to satisfy the Slater CQ may be a difficult problem.

One may detect whether the Slater CQ fails for the dual (12.2) using the auxiliary
problem (12.18) and its dual (12.20).

Proposition 12.15. Assume that (12.2) is feasible, i.e., there exists X̂ ∈ S
n
+ such

that A (X̂) = b. Then we have that X is feasible for (12.2) if and only if

X = X̂ +N ∗
A y* 0,
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where NA : Sn→R
n(n+1)/2−m is an onto linear transformation such that R(N ∗

A ) =
N (A ). Then the corresponding auxiliary problem

inf
δ ,D

δ s.t.

∥∥∥∥
(

NA (D)〈
X̂ ,D

〉 )∥∥∥∥≤ δ , 〈I,D〉=√n, D* 0

certifies either that (12.2) satisfies the Slater CQ or that 0 is the only feasible slack
of (12.2) or detects a smaller face of Sn

+ containing FD.

The results in Proposition 12.15 follows directly from the corresponding results for
the primal problem (12.1). An alternative form of the auxiliary problem for (12.2)
can be defined using the theorem of the alternative in Corollary 12.7.

Proposition 12.16. Assume that (12.2) is feasible. The dual auxiliary problem

sup
v,λ

λ s.t. (A (I))T v = 1, bT v = 0, A ∗v* λ I (12.24)

determines if (12.2) satisfies the Slater CQ. The dual of (12.24) is given by

inf
μ,Ω

μ2 s.t. 〈I,Ω〉= 1, A (Ω)− μ1A (I)− μ2b = 0, Ω * 0, (12.25)

and the following hold under the assumption that (12.2) is feasible:

1. If (12.24) is infeasible, then (12.2) must satisfy the Slater CQ.
2. If (12.24) is feasible, then both (12.24) and (12.25) satisfy the Slater CQ.

Moreover, the Slater CQ holds for (12.2) if and only if the optimal value of
(12.24) is negative.

3. If (v∗,λ ∗) is an optimal solution of (12.24) with λ ∗ ≥ 0, then FD ⊆ S
n
+ ∩

{A ∗v∗}⊥�S
n
+.

Since X feasible for (12.2) implies that

〈A ∗v∗,X〉= (v∗)T (A (X)) = (v∗)T b = 0,

we conclude that FD ⊆ S
n
+∩{A ∗v∗}⊥�S

n
+. Therefore, if (12.2) fails the Slater

CQ, then, by solving (12.24), we can obtain a proper face of Sn
+ that contains the

feasible region FD of (12.2).

Proof. The Lagrangian of (12.24) is given by

L(v,λ ,μ ,Ω) = λ + μ1(1− (A (I)T v))+ μ2(−bT v)+ 〈Ω ,A ∗v−λ I〉
= λ (1−〈I,Ω〉)+ vT (A (Ω)− μ1A (I)− μ2b)+ μ2.

This yields the dual program (12.25).
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If (12.24) is infeasible, then we must have b �= 0 and A (I) = kb for some k ∈R.
If k > 0, then k−1I is a Slater point for (12.2). If k = 0, then A (X̂ + λ I) = b and
X̂ +λ I , 0 for any X̂ satisfying A (X̂) = b and sufficiently large λ > 0. If k < 0,
then A (2X̂+k−1I) = b for X̂ * 0 satisfying A (X̂) = b; and we have 2X̂ +k−1I , 0.

If (12.24) is feasible, i.e., if there exists v̂ such that (A (I))T v = 1 and bT v̂ = 0,
then

(v̂, λ̂ ) =
(

v̂, λ̂ = λmin(A
∗v̂)− 1

)
, (μ̂ ,Ω̂ ) =

((
1/n

0

)
,

1
n

I

)

is strictly feasible for (12.24) and (12.25), respectively.
Let (v∗,λ ∗) be an optimal solution of (12.25). If λ ∗ ≤ 0, then for any v ∈ R

m

with A ∗y * 0 and bT v = 0, v cannot be feasible for (12.24) so 〈I,A ∗v〉 ≤ 0. This
implies that A ∗v = 0. By Corollary 12.7, the Slater CQ holds for (12.2). If λ ∗ > 0,
then v∗ certifies that the Slater CQ fails for (12.2), again by Corollary 12.7. �

The next result shows that δ ∗ from (AP) is a measure of how close the Slater CQ
is to failing.

Theorem 12.17. Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(12.18). Then δ ∗ bounds how far the feasible primal slacks Z = C−A ∗y * 0 are
from orthogonality to D∗:

0≤ sup
0)Z=C−A ∗y�=0

〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C) :=

⎧⎪⎪⎨
⎪⎪⎩

δ ∗

σmin(A )
if C ∈R(A ∗),

δ ∗

σmin(AC)
if C /∈R(A ∗).

(12.26)

Proof. Since 〈 1√
n I,D∗〉= 1, we get

‖D∗‖ ≥
〈

1√
n I,D∗

〉
‖ 1√

n I‖ =
1

1√
n‖I‖

= 1.

If C = A ∗yC for some yC ∈ R
m, then for any Z =C−A ∗y* 0,

cosθD∗,Z :=
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈A (D∗),yC− y〉
‖A ∗(yC− y)‖

≤ ‖A (D∗)‖ ‖yC− y‖
σmin(A ∗)‖yC− y‖

≤ δ ∗

σmin(A )
.
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Fig. 12.1 Minimal face;
0 < δ ∗ - 1

If C /∈ R(A ∗), then by Assumption 12.1, AC is onto so 〈D∗,C−A ∗y〉 =〈
AC(D∗),

(−y
1

)〉
implies that 0 ) C−A ∗y �= 0,∀y ∈FP. Therefore the cosine

of the angle θD∗,Z between D∗ and Z =C−A ∗y* 0 is bounded by

cosθD∗,Z =
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈
AC(D

∗),
(−y

1

)〉
∥∥∥∥A ∗

C

(−y
1

)∥∥∥∥
≤
‖AC(D

∗)‖
∥∥∥∥
(−y

1

)∥∥∥∥
σmin(AC)

∥∥∥∥
(−y

1

)∥∥∥∥
=

δ ∗

σmin(AC)
.

�
Theorem 12.17 provides a lower bound for the angle and distance between feasible
slack vectors and the vector D∗ on the boundary of S

n
+. For our purposes, the

theorem is only useful when α(A ,C) is small. Given that δ ∗ = ‖AC(D∗)‖, we see
that the lower bound is independent of simple scaling of AC, though not necessarily
independent of the conditioning of AC. Thus, δ ∗ provides qualitative information
about both the conditioning of AC and the distance to infeasibility.

We now strengthen the result in Theorem 12.17 by using more information
from D∗. In applications we expect to choose the partitions of U and D∗ to satisfy
λmin(D+)>> λmax(Dε) (Fig. 12.1).

Proposition 12.18. Let (δ ∗,D∗) denote an optimal solution of the auxiliary prob-
lem (12.18), and let

D∗ =
[
P Q
][D+ 0

0 Dε

][
P Q
]T

, (12.27)

with U =
[
P Q
]

orthogonal, and D+ , 0.
Let 0 �= Z := C−A ∗y * 0 and ZQ := QQT ZQQT . Then ZQ is the closest point

in R(Q ·QT )∩Sn
+ to Z; and, the cosine of the angle θZ,ZQ between Z and the face

R(Q ·QT )∩Sn
+ satisfies
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cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

, (12.28)

where α(A ,C) is defined in (12.26). Thus the angle between any feasible slack and
the face R(Q ·QT )∩Sn

+ cannot be too large in the sense that

inf
0 �=Z=C−A ∗y*0

cosθZ,ZQ ≥ 1−α(A ,C)
‖D∗‖

λmin(D+)
.

Moreover, the normalized distance to the face is bounded as in

‖Z−ZQ‖2 ≤ 2‖Z‖2
[
α(A ,C)

‖D∗‖
λmin(D+)

]
. (12.29)

Proof. Since Z * 0, we have QT ZQ ∈ argminW*0‖Z−QWQT‖. This shows that
ZQ := QQT ZQQT is the closest point in R(Q ·QT )∩Sn

+ to Z. The expression for
the angle in (12.28) follows using

〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖2

‖Z‖‖QT ZQ‖ =
‖QT ZQ‖
‖Z‖ . (12.30)

From Theorem 12.17, we see that 0 �= Z =C−A ∗y* 0 implies that
〈

1
‖Z‖Z,D

∗
〉
≤

α(A ,C)‖D∗‖. Therefore, the optimal value of the following optimization problem
provides a lower bound on the quantity in (12.30):

γ0 := min
Z

‖QT ZQ‖
s.t. 〈Z,D∗〉 ≤ α(A ,C)‖D∗‖

‖Z‖2 = 1, Z * 0.

(12.31)

Since 〈Z,D∗〉 = 〈PT ZP,D+

〉
+
〈
QT ZQ,Dε

〉 ≥ 〈PT ZP,D+

〉
whenever Z * 0, we

have

γ0 ≥ γ := min
Z

‖QT ZQ‖
s.t.
〈
PT ZP,D+

〉 ≤ α(A ,C)‖D∗‖
‖Z‖2 = 1, Z * 0.

(12.32)

It is possible to find the optimal value γ of (12.32). After the orthogonal rotation

Z =
[
P Q
][ S V

V T W

][
P Q
]T

= PSPT +PVQT +QV T PT +QWQT ,

where S ∈ S
n−n̄
+ , W ∈ S

n̄
+ and V ∈ R

(n−n̄)×n̄, (12.32) can be rewritten as
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γ = min
S,V,W

‖W‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖2+ 2‖V‖2 + ‖W‖2 = 1[
S V

V T W

]
∈ S

n
+.

(12.33)

Since

‖V‖2 ≤ ‖S‖‖W‖ (12.34)

holds whenever

[
S V

V T W

]
* 0, we have that (‖S‖+‖W‖)2 ≥ ‖S‖2+2‖V‖2+‖W‖2.

This yields

γ ≥ γ̄ := minS,V,W ‖W‖ γ̄ ≥ min
S

1−‖S‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖ s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖+ ‖W‖ ≥ 1 S * 0
S * 0, W * 0.

(12.35)

Since λmin(D+)‖S‖ ≤ 〈S,D+〉 ≤ α(A ,C)‖D∗‖, we see that the objective value of
the last optimization problem in (12.35) is bounded below by 1−α(A ,C)‖D∗‖/
λmin(D+). Now let u be a normalized eigenvector of D+ corresponding to its small-

est eigenvalue λmin(D+). Then S∗ = α(A ,C)‖D∗‖
λmin(D+)

uuT solves the last optimization

problem in (12.35), with corresponding optimal value 1− α(A ,C)‖D∗‖
λmin(D+)

.

Let β := min
{
α(A ,C)‖D∗‖
λmin(D+)

,1
}

. Then γ ≥ 1−β . Also,

[
S V

V T W

]
:=

( √
βu√

1−β e1

)( √
βu√

1−βe1

)T

=

[
βuuT

√
β (1−β )ueT

1√
β (1−β )e1uT (1−β )e1eT

1

]
∈ S

n
+.

Therefore (S,V,W) is feasible for (12.33) and attains an objective value 1−β . This
shows that γ = 1−β and proves (12.28).

The last claim (12.29) follows immediately from

‖Z−ZQ‖2 = ‖Z‖2
(

1− ‖Q
T ZQ‖2

‖Z‖2

)

≤ ‖Z‖2

[
1−
(

1−α(A ,C)
‖D∗‖

λmin(D+)

)2
]

≤ 2‖Z‖2α(A ,C)
‖D∗‖

λmin(D+)
. �
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These results are related to the extreme angles between vectors in a cone studied
in [29, 33]. Moreover, it is related to the distances to infeasibility in, e.g., [46], in
which the distance to infeasibility is shown to provide backward and forward error
bounds.

We now see that we can use the rotation U =
[
P Q
]

obtained from the
diagonalization of the optimal D∗ in the auxiliary problem (12.18) to reveal nearness
to infeasibility, as discussed in, e.g., [46]. Or, in our approach, this reveals nearness
to a facial decomposition. We use the following results to bound the size of certain
blocks of a feasible slack Z.

Corollary 12.19. Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(12.18), as in Theorem 12.17, and let

D∗ =
[
P Q
][D+ 0

0 Dε

][
P Q
]T

, (12.36)

with U =
[
P Q
]

orthogonal, and D+ , 0. Then for any feasible slack 0 �= Z =
C−A ∗y* 0, we have

tracePT ZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖, (12.37)

where α(A ,C) is defined in (12.26).

Proof. Since

〈D∗,Z〉 =
〈[

D+ 0
0 Dε

]
,

[
PT ZP PT ZQ
QT ZP QT ZQ

]〉
=
〈
D+ ,PT ZP

〉
+
〈
Dε ,QT ZQ

〉
≥ 〈D+ ,PT ZP

〉
≥ λmin(D+) tracePT ZP,

(12.38)

the claim follows from Theorem 12.17. �
Remark 12.20. We now summarize the information available from a solution of
the auxiliary problem, with optima δ ∗ ≥ 0,D∗ �, 0. We let 0 �= Z = C−A ∗y * 0
denote a feasible slack. In particular, we emphasize the information obtained from
the rotation UT ZU using the orthogonal U that block diagonalizes D∗ and from
the closest point ZQ = QQT ZQQT . We note that replacing all feasible Z with
the projected ZQ provides a nearby problem for the backward stability argument.
Alternatively, we can view the nearby problem by projecting the data Ai ←
QQT AiQQT ,∀i, C← QQTCQQT .

1. From (12.26) in Theorem 12.17, we get a lower bound on the angle (upper bound
on the cosine of the angle):

cosθD∗,Z =
〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C).
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2. In Proposition 12.18 with orthogonal U =
[
P Q
]
, we get upper bounds on the

angle between a feasible slack and the face defined using Q ·QT and on the
normalized distance to the face:

cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖ =

‖QT ZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

.

‖Z−ZQ‖2 ≤ 2‖Z‖2
[
α(A ,C)

‖D∗‖
λmin(D+)

]
.

3. After the rotation using the orthogonal U , the (1,1) principal block is bounded as

tracePT ZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖.

12.3.4 Rank-Revealing Rotation and Equivalent Problems

We may use the results from Theorem 12.17 and Corollary 12.19 to get two rotated
optimization problems equivalent to (12.1). The equivalent problems indicate that,
in the case when δ ∗ is sufficiently small, it is possible to reduce the dimension of
the problem and get a nearby problem that helps in the facial reduction. The two
equivalent formulations can be used to illustrate backward stability with respect to
a perturbation of the cone Sn

+.
First we need to find a suitable shift of C to allow a proper facial projection. This

is used in Theorem 12.22, below.

Lemma 12.21. Let δ ∗,D∗,U =
[
P Q
]
,D+,Dε be defined as in the hypothesis of

Corollary 12.19. Let (yQ,WQ) ∈ R
m× S

n̄ be the best least squares solution to the
equation QWQT +A ∗y =C, that is, (yQ,WQ) is the optimal solution of minimum
norm to the linear least squares problem

min
y,W

1
2
‖C− (QWQT +A ∗y)‖2. (12.39)

Let CQ := QWQQT and Cres :=C− (CQ +A ∗yQ). Then

QTCresQ = 0, and A (Cres) = 0. (12.40)

Moreover, if δ ∗ = 0, then for any feasible solution y of (12.1), we get

C−A ∗y ∈R(Q ·QT ), (12.41)

and further (y,QT (C−A ∗y)Q) is an optimal solution of (12.39), whose optimal
value is zero.
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Proof. Let Ω(y,W ) := 1
2‖C− (QWQT +A ∗y)‖2. Since

Ω(y,W ) =
1
2
‖C‖2 +

1
2
‖A ∗y‖2 +

1
2
‖W‖2 +

〈
QWQT ,A ∗y

〉
− 〈QTC Q,W

〉−〈A (C),y〉 ,

we have (yQ,WQ) solves (12.39) if, and only if,

∇yΩ = A
(
QWQT − (C−A ∗y)

)
= 0, (12.42)

and ∇wΩ = W − [QT (C−A ∗y)Q
]
= 0. (12.43)

Then (12.40) follows immediately by substitution.
If δ ∗ = 0, then 〈D∗,Ai〉 = 0 for i = 1, . . . ,m and 〈D∗,C〉 = 0. Hence, for any

y ∈ R
m,

〈D+ ,PT (C−A ∗y)P〉+ 〈Dε ,Q
T (C−A ∗y)Q〉= 〈D∗,C−A ∗y〉= 0.

If C−A ∗y* 0, then we must have PT (C−A ∗y)P = 0 (as D+ , 0), and so PT (C−
A ∗y)Q = 0. Hence

C−A ∗y = UUT (C−A ∗y)UUT

= U
[
P Q
]T

(C−A ∗y)
[
P Q
]
UT

= QQT (C−A ∗y)QQT ,

i.e., we conclude (12.41) holds.
The last statement now follows from substituting W = QT (C − A ∗y)Q in

(12.39). �
We can now use the rotation from Corollary 12.19 with a shift of C (to Cres+CQ =

C−A ∗yQ) to get two equivalent problems to (P). This emphasizes that when δ ∗
is small, then the auxiliary problem reveals a block structure with one principal
block and three small/negligible blocks. If δ is small, then β in the following
Theorem 12.22 is small. Then fixing β = 0 results in a nearby problem to (P) that
illustrates backward stability of the facial reduction.

Theorem 12.22. Let δ ∗,D∗,U =
[
P Q
]
,D+,Dε be defined as in the hypothesis of

Corollary 12.19, and let yQ,WQ,CQ,Cres be defined as in Lemma 12.21. Define the
scalar

β := α(A ,C)
‖D∗‖

λmin(D+)
, (12.44)
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and the convex cone Tβ ⊆ S
n
+ partitioned appropriately as in (12.36),

Tβ :=

{
Z =

[
A B

BT C

]
∈ S

n
+ : traceA≤ β traceZ

}
. (12.45)

Then we get the following two equivalent programs to (P) in (12.1):

1. Using the rotation U and the cone Tβ ,

vP = supy

{
bT y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
*Tβ 0,Z =C−A ∗y

}
; (12.46)

2. Using (yQ,WQ),

vP=bT yQ + supy

{
bT y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
*Tβ 0,Z=Cres +CQ−A ∗y

}
. (12.47)

Proof. From Corollary 12.19,

FP =

{
y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
*Tβ 0,Z =C−A ∗y

}
. (12.48)

Hence the equivalence of (12.1) with (12.46) follows.
For (12.47), first note that for any y ∈ R

m,

Z :=Cres +CQ−A ∗y =C−A ∗(y+ yQ),

so Z * 0 if and only if y+ yQ ∈FP, if and only if Z ∈ Tβ . Hence

FP = yQ +

{
y :

[
PT ZP PT ZQ
QT ZP QT ZQ

]
*Tβ 0,Z =Cres +QWQQT −A ∗y

}
, (12.49)

and (12.47) follows. �
Remark 12.23. As mentioned above, Theorem 12.22 illustrates the backward sta-
bility of the facial reduction. It is difficult to state this precisely due to the shifts
done and the changes to the constraints in the algorithm. For simplicity, we just
discuss one iteration. The original problem (P) is equivalent to the problem in
(12.46). Therefore, a facial reduction step can be applied to the original problem
or equivalently to (12.46). We then perturb this problem in (12.46) by setting β = 0.
The algorithm applied to this nearby problem with exact arithmetic will result in the
same step.
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12.3.4.1 Reduction to Two Smaller Problems

Following the results from Theorems 12.13 and 12.22, we focus on the case where
δ ∗= 0 and RD∩Sn

++ = /0. In this case we get a proper face QS
n̄
+QT �S

n
+. We obtain

two different equivalent formulations of the problem by restricting to this smaller
face. In the first case, we stay in the same dimension for the domain variable y but
decrease the constraint space and include equality constraints. In the second case,
we eliminate the equality constraints and move to a smaller dimensional space for y.
We first see that when we have found the minimal face, then we obtain an equivalent
regularized problem as was done for LP in Sect. 12.2.1.

Corollary 12.24. Suppose that the minimal face fP of (P) is found using the
orthogonal U =

[
Pfin Qfin

]
, so that fP = QfinS

r
+QT

fin, 0 < r < n. Then an equivalent
problem to (P) is

(PPQ,reg)
vP = sup bT y

s.t. QT
fin(A

∗y)Qfin ) QT
finCQfin

A ∗
finy = A ∗

finyQfin ,

(12.50)

where (yQfin ,WQfin) solves the least squares problem miny,W ‖C− (A ∗y + QfinW
QT

fin)‖, and A ∗
fin : Rm → R

t is a full rank (onto) representation of the linear
transformation

y �→
[

PT
fin(A

∗y)Pfin

QT
fin(A

∗y)Pfin

]
.

Moreover, (PPQ,reg) is regularized, i.e., the RCQ holds.

Proof. The result follows immediately from Theorem 12.22, since the definition of
the minimal face implies that there exists a feasible ŷ which satisfies the constraints
in (12.50). The new equality constraint is constructed to be full rank and not change
the feasible set. �

Alternatively, we now reduce (12.1) to an equivalent problem over a spectrahe-
dron in a lower dimension using the spectral decomposition of D∗.

Proposition 12.25. Let the notation and hypotheses in Theorem 12.22 hold with

δ ∗ = 0 and D∗ =
[
P Q
][D+ 0

0 0

][
PT

QT

]
, where

[
P Q
]

is orthogonal, Q ∈ R
n×n̄ and

D+ , 0. Then

vP = sup
{

bT y : QT (C−A ∗y)Q* 0,
PT (A ∗y)P = PT (A ∗yQ)P,
QT (A ∗y)P = QT (A ∗yQ)P } .

(12.51)
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Moreover:

1. If R(Q ·QT )∩R(A ∗) = {0}, then for any y1,y2 ∈FP, bT y1 = bT y2 = vP.
2. If R(Q ·QT )∩R(A ∗) �= {0}, and if, for some m̄ > 0, P : Rm̄ → R

m is an
injective linear map such that R(A ∗P) = R(A ∗)∩R(Q ·QT ), then we have

vP = bT yQ + sup
v

{
(P∗b)T v : WQ−QT (A ∗Pv)Q* 0

}
. (12.52)

And, if v∗ is an optimal solution of (12.52), then y∗ = yQ +Pv∗ is an optimal
solution of (12.1).

Proof. Since δ ∗ = 0, from Lemma 12.21 we have that C = CQ + A ∗yQ,CQ =
QWQQT , for some yQ ∈ R

m and WQ ∈ S
n̄. Hence by (12.48),

FP =
{

y ∈ R
m : QT (C−A ∗y)Q* 0,PT (C−A ∗y)P = 0,QT (C−A ∗y)P = 0

}
=
{

y ∈ R
m : QT (C−A ∗y)Q* 0,PT (A ∗(y− yQ))P = 0,QT (A ∗(y− yQ))P = 0

}
,

(12.53)

and (12.51) follows:

1. Since C−A ∗y ∈ R(Q ·QT ),∀y ∈ FP, we get A ∗(y2 − y1) = (C−A ∗y1)−
(C−A ∗y2) ∈ R(Q ·QT )∩R(A ∗) = {0}. Given that A is onto, we get b =
A (X̂), for some X̂ ∈ S

n, and

bT (y2− y1) =
〈
X̂ ,A ∗(y2− y1)

〉
= 0.

2. From (12.53),

FP = yQ +
{

y : WQ−QT (A ∗y)Q* 0,PT (A ∗y)P = 0,QT (A ∗y)P = 0
}

= yQ +
{

y : WQ−QT (A ∗y)Q* 0,A ∗y ∈R(Q ·QT )
}

= yQ +
{
Pv : WQ−QT (A ∗Pv)Q* 0

}
,

the last equality follows from the choice of P . Therefore, (12.52) follows, and
if v∗ is an optimal solution of (12.52), then yQ +Pv∗ is an optimal solution of
(12.1).

�
Next we establish the existence of the operator P mentioned in Proposi-

tion 12.25.

Proposition 12.26. For any n×n orthogonal matrix U =
[
P Q
]

and any surjective
linear operator A : Sn→R

m with m̄ := dim(R(A ∗)∩R(Q ·QT ))> 0, there exists
a one-one linear transformation P : Rm̄→R

m that satisfies
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R(A ∗P) = R(Q ·QT )∩R(A ∗), (12.54)

R(P) = N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q) . (12.55)

Moreover, ¯A : Sn̄→R
m̄ is defined by

¯A ∗(·) := QT (A ∗P(·))Q
is onto.

Proof. Recall that for any matrix X ∈ S
n

X =UUT XUUT = PPT XPPT +PPT XQQT +QQT XPPT +QQT XQQT .

Moreover, PT Q = 0. Therefore, X ∈R(Q ·QT ) implies PT XP = 0 and PT XQ = 0.
Conversely, PT XP = 0 and PT XQ = 0 implies X = QQT XQQT . Therefore X ∈
R(Q ·QT ) if, and only if, PT XP = 0 and PT XQ = 0.

For any y ∈ R
m, A ∗y ∈R(Q ·QT ) if, and only if,

m

∑
i=1

(PT AiP)yi = 0 and
m

∑
i=1

(PT AiQ)yi = 0,

which holds if, and only if, y ∈ span{β}, where β := {y1, . . . ,ym̄} is a basis of the
linear subspace

{
y :

m

∑
i=1

(PT AiP)yi = 0

}
∩
{

y :
m

∑
i=1

(PT AiQ)yi = 0

}

= N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q).

Now define P : Rm̄→ R
m by

Pv =
m̄

∑
i=1

viyi for λ ∈ R
m̄.

Then, by definition of P , we have

R(A ∗P) = R(Q ·QT )∩R(A ∗)

and R(P) = N
(
PT (A ∗·)P)∩N

(
PT (A ∗·)Q) .

The onto property of ¯A follows from (12.54) and the fact that both P ,A ∗ are
one-one. Note that if ¯A ∗v = 0, noting that A ∗Pv = QWQT for some W ∈ S

n̄ by
(12.54), we have that w = 0 so A ∗Pv = 0. Since both A ∗ and P injective, we
have that v = 0. �
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12.3.5 LP, SDP, and the Role of Strict Complementarity

The (near) loss of the Slater CQ results in both theoretical and numerical difficulties,
e.g., [46]. In addition, both theoretical and numerical difficulties arise from the loss
of strict complementarity, [70]. The connection between strong duality, the Slater
CQ, and strict complementarity is seen through the notion of complementarity
partitions [66]. We now see that this plays a key role in the stability and in
determining the number of steps k for the facial reduction. In particular, we see
that k = 1 is characterized by strict complementary slackness and therefore results
in a stable formulation.

Definition 12.27. The pair of faces F1 � K,F2 � K∗ form a complementarity
partition of K,K∗ if F1 ⊆ (F2)

c. (Equivalently, F2 ⊆ (F1)
c.) The partition is proper

if both F1 and F2 are proper faces. The partition is strict if (F1)
c = F2 or (F2)

c = F1.

We now see the importance of this notion for the facial reduction.

Theorem 12.28. Let δ ∗ = 0,D∗ * 0 be the optimum of (AP) with dual optimum
(γ∗,u∗,W ∗). Then the following are equivalent:

1. If D∗ =
[
P Q
][D+ 0

0 0

][
PT

QT

]
is a maximal rank element of RD, where

[
P Q
]

is

orthogonal, Q ∈ R
n×n̄ and D+ , 0, then the reduced problem in (12.52) using

D∗ satisfies the Slater CQ; only one step of facial reduction is needed.
2. Strict complementarity holds for (AP); that is, the primal-dual optimal solution

pair (0,D∗),(0,u∗,W ∗) for (12.18) and (12.20) satisfy rank(D∗)+ rank(W ∗) = n.
3. The faces of Sn

+ defined by

f 0
aux,P := face({D ∈ S

n : A (D) = 0, 〈C,D〉= 0, D* 0})
f 0
aux,D := face

({
W ∈ S

n : W = A ∗
C z* 0, for some z ∈ R

m̄+1})
form a strict complementarity partition of Sn

+.

Proof. (1)⇐⇒ (2): If (12.52) satisfies the Slater CQ, then there exists ṽ ∈ R
m̄ such

that WQ−Ā ∗ṽ, 0. This implies that Z̃ := Q(WQ−Ā ∗ṽ)QT is of rank n̄. Moreover,

0) Z̃ = QWQQ−A ∗P ṽ =C−A ∗(yQ +P ṽ) = A ∗
C

(−(yQ +P ṽ)
1

)
.

Hence, letting

ũ =

(
yQ +P ṽ
−1

)
∥∥∥∥
(

yQ +P ṽ
−1

)∥∥∥∥
and W̃ =

1∥∥∥∥
(

yQ +P ṽ
−1

)∥∥∥∥
Z̃,
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we have that (0, ũ,W̃ ) is an optimal solution of (12.20). Since rank(D∗)+rank(W̃ )=
(n− n̄)+ n̄ = n, we get that strict complementarity holds.

Conversely, suppose that strict complementarity holds for (AP), and let D∗ be
a maximum rank optimal solution as described in the hypothesis of Item 1. Then
there exists an optimal solution (0,u∗,W ∗) for (12.20) such that rank(W ∗) = n̄. By
complementary slackness, 0 = 〈D∗,W ∗〉 = 〈D+,PTW ∗P

〉
, so W ∗ ∈R(Q ·QT ) and

QTW ∗Q, 0. Let u∗ =
(

ỹ
−α̃
)

, so

W ∗ = α̃C−A ∗ỹ = α̃CQ−A ∗(ỹ− α̃yQ).

Since W ∗,CQ ∈R(Q ·QT ) implies that A ∗(ỹ− α̃yQ) = A ∗P ṽ for some ṽ ∈ R
m̄,

we get

0≺ QTW ∗Q = α̃C̄− ¯A ∗ṽ.

Without loss of generality, we may assume that α̃ = ±1 or 0. If α̃ = 1, then C̄−
¯A ∗ṽ, 0 is a Slater point for (12.52). Consider the remaining two cases. Since (12.1)

is assumed to be feasible, the equivalent program (12.52) is also feasible so there
exists v̂ such that C̄− ¯A ∗v̂* 0. If α̃ = 0, then C̄− ¯A ∗(v̂+ ṽ), 0. If α̃ =−1, then
C̄− ¯A ∗(2v̂+ ṽ), 0. Hence (12.52) satisfies the Slater CQ.

(2)⇐⇒ (3): Notice that f 0
aux,P and f 0

aux,D are the minimal faces of Sn
+ containing

the optimal slacks of (12.18) and (12.20), respectively, and that f 0
aux,P, f 0

aux,D form a
complementarity partition of Sn

+ = (Sn
+)
∗. The complementarity partition is strict if

and only if there exist primal-dual optimal slacks D∗ and W ∗ such that rank(D∗)+
rank(W ∗) = n. Hence (2) and (3) are equivalent. �

In the special case where the Slater CQ fails and (12.1) is a linear program (and,
more generally, the special case of optimizing over an arbitrary polyhedral cone;
see, e.g., [56, 57, 78, 79]), we see that one single iteration of facial reduction yields
a reduced problem that satisfies the Slater CQ.

Corollary 12.29. Assume that the optimal value of (AP) equals zero, with D∗ being
a maximum rank optimal solution of (AP). If Ai = Diag(ai) for some ai ∈ R

n, for
i = 1, . . . ,m, and C = Diag(c), for some c ∈ R

n, then the reduced problem (12.52)
satisfies the Slater CQ.

Proof. In this diagonal case, the SDP is equivalent to an LP. The Goldman–Tucker
theorem [25] implies that there exists a required optimal primal-dual pair for (12.18)
and (12.20) that satisfies strict complementarity, so Item 2 in Theorem 12.28 holds.
By Theorem 12.28, the reduced problem (12.52) satisfies the Slater CQ. �
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12.4 Facial Reduction

We now study facial reduction for (P) and its sensitivity analysis.

12.4.1 Two Types

We first outline two algorithms for facial reduction that find the minimal face fP

of (P). Both are based on solving the auxiliary problem and applying Lemma 12.6.
The first algorithm repeatedly finds a face F containing the minimal face and then
projects the problem into F −F , thus reducing both the size of the constraints and
the dimension of the variables till finally obtaining the Slater CQ. The second
algorithm also repeatedly finds F ; but then it identifies the implicit equality
constraints till eventually obtaining MFCQ.

12.4.1.1 Dimension Reduction and Regularization for the Slater CQ

Suppose that Slater’s CQ fails for our given input A : Sn → R
m, C ∈ S

n, i.e., the
minimal face fP �F := S

n
+. Our procedure consists of a finite number of repetitions

of the following two steps that begin with k = n.

1. We first identify 0 �= D ∈ ( fP)
c using the auxiliary problem (12.18). This means

that fP �F← (Sk
+∩{D}⊥

)
and the interior of this new face F is empty.

2. We then project the problem (P) into span(F). Thus we reduce the dimension
of the variables and size of the constraints of our problem; the new cone satisfies
intF �= /0. We set k← dim(F).1

Therefore, in the case that intF = /0, we need to obtain an equivalent problem
to (P) in the subspace span(F) = F −F . One essential step is finding a subspace
intersection. We can apply the algorithm in, e.g., [26, Thm 12.4.2]. In particular, by
abuse of notation, let H1,H2 be matrices with orthonormal columns representing the
orthonormal bases of the subspaces H1,H2, respectively. Then we need only find
a singular value decomposition HT

1 H2 = UΣV T and find which singular vectors
correspond to singular values Σii, i = 1, . . . ,r, (close to) 1. Then both H1U(:,1 : r)
and H2V (:,1 : r) provide matrices whose ranges yield the intersection. The cone Sn

+

possesses a “self-replicating” structure. Therefore we choose an isometry I so that
I (Sn

+∩ (F−F)) is a smaller dimensional PSD cone Sr
+.

Algorithm 12.1 outlines one iteration of facial reduction. The output returns an
equivalent problem ( ¯A , b̄,C̄) on a smaller face of Sn

+ that contains the set of feasible

1Note that for numerical stability and well-posedness, it is essential that there exists Lagrange
multipliers and that intF �= /0. Regularization involves finding both a minimal face and a minimal
subspace; see [66].
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Algorithm 12.1: One iteration of facial reduction
1 Input: A : Sn→ R

m, b ∈ R
m, C ∈ S

n;
2 Obtain an optimal solution (δ ∗,D∗) of (AP)
3 if δ ∗ > 0, then
4 STOP; Slater CQ holds for (A ,b,C).
5 else
6 if D∗ , 0, then
7 STOP; generalized Slater CQ holds for (A ,b,C) (see Theorem 12.13);
8 else

9 Obtain eigenvalue decomposition D∗ =
[
P Q
][D+ 0

0 0

][
PT

QT

]
as described in

Proposition 12.25, with Q ∈ R
n×n̄;

10 if R(Q ·QT )∩R(A ∗) = {0}, then
11 STOP; all feasible solutions of supy{bT y : C−A ∗y* 0} are optimal.
12 else
13 find m̄, P : Rm̄→ R

m satisfying the conditions in Proposition 12.25;
14 solve (12.39) for (yQ,WQ);
15 C̄←WQ ;
16 b̄←P∗b;
17 Ā ∗ ← QT (A ∗P(·))Q;
18 Output: ¯A : Sn̄→ R

m̄, b̄ ∈ R
m̄, C̄ ∈ S

n̄; yQ ∈R
m, P : Rm̄→ R

m;
19 end if
20 end if
21 end if

slacks F Z
P ; and, we also obtain the linear transformation P and point yQ, which

are needed for recovering an optimal solution of the original problem (P). (See
Proposition 12.25.)

Two numerical aspects arising in Algorithm 12.1 need to be considered. The first
issue concerns the determination of rank(D∗). In practice, the spectral decomposi-
tion of D∗ would be of the form

D∗ =
[
P Q
][D+ 0

0 Dε

][
PT

QT

]
with Dε ≈ 0, instead of D∗ =

[
P Q
][D+ 0

0 0

][
PT

QT

]
.

We need to decide which of the eigenvalues of D∗ are small enough so that they
can be safely rounded down to zero. This is important for the determination of Q,
which gives the smaller face R(Q ·QT )∩Sn

+ containing the feasible region F Z
P . The

partitioning of D∗ can be done by using similar techniques as in the determination of
numerical rank. Assuming that λ1(D∗)≥ λ2(D∗)≥ ·· · ≥ λn(D∗)≥ 0, the numerical
rank rank(D∗,ε) of D∗ with respect to a zero tolerance ε > 0 is defined via

λrank(D∗,ε)(D
∗)> ε ≥ λrank(D∗,ε)+1(D

∗).
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In implementing Algorithm 12.1, to determine the partitioning of D∗, we use
the numerical rank with respect to ε‖D∗‖√

n
where ε ∈ (0,1) is fixed: take r =

rank
(

D∗, ε‖D
∗‖√
n

)
,

D+ = Diag(λ1(D
∗), . . . ,λr(D

∗)) , Dε = Diag(λr+1(D
∗), . . . ,λn(D

∗)) ,

and partition
[
P Q
]

accordingly. Then

λmin(D+)>
ε‖D∗‖√

n
≥ λmax(Dε) =⇒ ‖Dε‖ ≤ ε‖D∗‖.

Also,

‖Dε‖2

‖D+‖2 =
‖Dε‖2

‖D∗‖2−‖Dε‖2 ≤
ε2‖D∗‖2

(1− ε2)‖D∗‖2 =
1

ε−2− 1
(12.56)

that is, Dε is negligible comparing with D+.
The second issue is the computation of intersection of subspaces, R(Q ·

QT )∩R(A ∗) (and in particular, finding one-one map P such that R(A ∗P) =
R(Q ·QT ) ∩R(A ∗)). This can be done using the following result on subspace
intersection.

Theorem 12.30 ([26], Sect. 12.4.3). Given Q ∈ R
n×n̄ of full rank and onto linear

map A : Sn→R
m, there exist U sp

1 , . . . ,U sp
min{m,n̄2},V

sp
1 , . . . ,V sp

min{m,n̄2} ∈ S
n such that

σ sp
1 :=

〈
U sp

1 ,V sp
1

〉
= max

{〈U,V 〉 : ‖U‖= 1 = ‖V‖, U ∈R(Q ·QT ), V ∈R(A ∗)
}
,

σ sp
k :=

〈
U sp

k ,V sp
k

〉
= max

{〈U,V 〉 : ‖U‖= 1 = ‖V‖, U ∈R(Q ·QT ), V ∈R(A ∗),〈
U,U sp

i

〉
= 0 =

〈
V,V sp

i

〉
, ∀ i = 1, . . . ,k−1

}
,

(12.57)
for k = 2, . . . ,min

{
m, n̄2

}
, and 1≥ σ sp

1 ≥ σ sp
2 ≥ ·· · ≥ σ sp

min{m,n̄2} ≥ 0. Suppose that

σ sp
1 = · · ·= σ sp

m̄ = 1 > σ sp
m̄+1 ≥ ·· · ≥ σ sp

min{n̄,m}, (12.58)

then

R(Q ·QT )∩R(A ∗) = span
(
U sp

1 , . . . ,U sp
m̄

)
= span

(
V sp

1 , . . . ,V sp
m̄

)
, (12.59)

and P : Rm̄→ R
m defined by Pv = ∑m̄

i=1 viy
sp
i for v ∈ R

m̄, where A ∗ysp
i =V sp

i for
i = 1, . . . , m̄, is one-one linear and satisfies R(A ∗P) = R(Q ·QT )∩R(A ∗).

In practice, we do not get σ sp
i = 1 (for i = 1, . . . , m̄) exactly. For a fixed tolerance

εsp ≥ 0, suppose that

1≥ σ sp
1 ≥ ·· · ≥ σ sp

m̄ ≥ 1− εsp > σ sp
m̄+1 ≥ ·· · ≥ σ sp

min{n̄,m} ≥ 0. (12.60)
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Then we would take the approximation

R(Q ·QT )∩R(A ∗)≈ span
(
U sp

1 , . . . ,U sp
m̄

)≈ span
(
V sp

1 , . . . ,V sp
m̄

)
. (12.61)

Observe that with the chosen tolerance εsp, we have that the cosines of the principal
angles between R(Q · QT ) and span

(
V sp

1 , . . . ,V sp
m̄

)
is no less than 1− εsp; in

particular, ‖U sp
k −V sp

k ‖2 ≤ 2εsp and ‖QTV sp
k Q‖ ≥ σ sp

k ≥ 1− εsp for k = 1, . . . , m̄.

Remark 12.31. Using V sp
1 , . . . ,V sp

min{m,n̄2} from Theorem 12.30, we may replace

A1, . . . ,Am by V sp
1 , . . . ,V sp

m (which may require extending V sp
1 , . . . ,V sp

min{m,n̄2} to a

basis of R(A ∗), if m > n̄2).
If the subspace intersection is exact (as in (12.58) and (12.59) in Theorem 12.30),

then R(Q ·QT ) ∩R(A ∗) = span(A1, . . . ,Am̄) would hold. If the intersection is
inexact (as in (12.60) and (12.61)), then we may replace A by ˘A : Sn → R

m,
defined by

Ăi =

{
U sp

i if i = 1, . . . , m̄,

V sp
i if i = m̄+ 1, . . . ,m,

which is a perturbation of A with ‖A ∗− ˘A ∗‖F =
√
∑m̄

i=1 ‖U sp
i −V sp

i ‖2 ≤√2m̄εsp.

Then R(Q ·QT )∩R( ˘A ∗) = span(Ă1, . . . , Ăm̄) because Ăi ∈R(Q ·QT )∩R( ˘A ∗) for
i = 1, . . . , m̄ and

max
U,V

{〈U,V 〉 : U ∈R(Q ·QT ),‖U‖= 1,V ∈R( ˘A ∗),‖V‖= 1,

〈
U,U sp

j

〉
= 0 =

〈
V,U sp

j

〉
∀ j = 1, . . . , m̄,

}

≤max
U,y

{〈
U,

m̄

∑
i=1

y jU
sp
j +

m

∑
i=m̄+1

y jV
sp
j

〉
: U ∈R(Q ·QT ),‖U‖= 1,‖y‖= 1,

〈
U,U sp

j

〉
= 0 ∀ j = 1, . . . , m̄,

}

= max
U,y

{〈
U,

m

∑
i=m̄+1

y jV
sp
j

〉
: U ∈R(Q ·QT ),‖U‖= 1,‖y‖= 1,

〈
U,U sp

j

〉
= 0 ∀ j = 1, . . . , m̄,

}

= σ sp
m̄+1 < 1− εsp < 1.

To increase the robustness of the computation of R(Q ·QT )∩R(A ∗) in deciding
whether σ sp

i is 1 or not, we may follow similar treatment in [18] where one decides
which singular values are zero by checking the ratios between successive small
singular values.
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Algorithm 12.2: Preprocessing for (AP)

1 Input: A1, . . .,Am,Am+1 :=C ∈ S
n;

2 Output: δ ∗, P ∈ R
n×(n−n̄), D+ ∈ S

n−n̄ satisfying D+ , 0; (so D∗ = PD+PT );
3 if one of the Ai (i ∈ {1, . . . ,m+1}) is definite then
4 STOP; (12.62) does not have a solution.
5 else

6 if some of the A =
[
U Ũ

][D̂ 0
0 0

][
UT

ŨT

]
∈ {Ai : i = 1, . . . ,m+1} satisfies D̂, 0, then

7 reduce the size using Ai← ŨT AiŨ ,∀i;
8 else
9 if ∃0 �=V ∈ R

n×r such that AiV = 0 for all i = 1, . . .,m+1, then
10 We get 〈Ai,VV T 〉= 0 ∀ i = 1, . . .,m+1 ;
11 δ ∗ = 0,D∗ =VV T solves (AP); STOP;
12 else
13 Use an SDP solver to solve (AP).
14 end if
15 end if
16 end if

12.4.1.2 Implicit Equality Constraints and Regularization for MFCQ

The second algorithm for facial reduction involves repeated use of two steps
again:

1. We repeat step 1 in Sect. 12.4.1.1 and use (AP) to find the face F .
2. We then find the implicit equality constraints and ensure that they are linearly

independent, see Corollary 12.24 and Proposition 12.25.

12.4.1.3 Preprocessing for the Auxiliary Problem

We can take advantage of the fact that eigenvalue-eigenvector calculations are
efficient and accurate to obtain a more accurate optimal solution (δ ∗,D∗) of (AP),
i.e., to decide whether the linear system

〈Ai,D〉= 0 ∀ i = 1, . . . ,m+ 1 (where Am+1 :=C), 0 �= D* 0 (12.62)

has a solution, we can use Algorithm 12.2 as a preprocessor for Algorithm 12.1.
More precisely, Algorithm 12.2 tries to find a solution D∗ satisfying (12.62)

without using an SDP solver. It attempts to find a vector v in the nullspace of all
the Ai, and then sets D∗ = vvT . In addition, any semidefinite Ai allows a reduction
to a smaller dimensional space.
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12.4.2 Backward Stability of One Iteration of Facial Reduction

We now provide the details for one iteration of the main algorithm, see Theorem
12.38. Algorithm 12.1 involves many nontrivial subroutines, each of which would
introduce some numerical errors. First we need to obtain an optimal solution
(δ ∗,D∗) of (AP); in practice we can only get an approximate optimal solution, as
δ ∗ is never exactly zero, and we decide whether the true value of δ ∗ is zero when
the computed value is only close to zero. Second we need to obtain the eigenvalue
decomposition of D∗. There comes the issue of determining which of the nearly
zero eigenvalues are indeed zero. (Since (AP) is not solved exactly, the approximate
solution D∗ would have eigenvalues that are positive but close to zero.) Finally,
the subspace intersection R(Q ·QT )∩R(A ∗) (for finding m̄ and P) can only be
computed approximately via a singular value decomposition, because in practice we
would take singular vectors corresponding to singular values that are approximately
(but not exactly) 1.

It is important that Algorithm 12.1 is robust against such numerical issues arising
from the subroutines. We show that Algorithm 12.1 is backward stable (with respect
to these three categories of numerical errors), i.e., for any given input (A ,b,c), there
exists ( ˜A , b̃,C̃)≈ (A ,b,C) such that the computed result of Algorithm 12.1 applied
on (A ,b,C) is equal to the exact result of the same algorithm applied on ( ˜A , b̃,C̃)
(when (AP) is solved exactly and the subspace intersection is determined exactly).

We first show that ‖Cres‖ is relatively small, given a small α(A ,C).

Lemma 12.32. Let yQ,CQ,Cres be defined as in Lemma 12.21. Then the norm of
Cres is small in the sense that

‖Cres‖ ≤
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y*0
‖Z‖
)
. (12.63)

Proof. By optimality, for any y ∈Fp,

‖Cres‖ ≤min
W
‖C−A ∗y−QWQT‖= ‖Z−QQT ZQQT ‖,

where Z :=C−A ∗y. Therefore (12.63) follows from Proposition 12.18. �
The following technical results shows the relationship between the quantity

min‖y‖=1 ‖A ∗y‖2−‖QT (A ∗y)Q‖2 and the cosine of the smallest principal angle
between R(A ∗) and R(Q ·QT ), defined in (12.57).

Lemma 12.33. Let Q ∈ R
n×n̄ satisfy QT Q = In̄. Then

τ := min
‖y‖=1

{‖A ∗y‖2−‖QT (A ∗y)Q‖2}≥ (1− (σ sp
1 )2)σmin(A

∗)2 ≥ 0, (12.64)

where σ sp
1 is defined in (12.57). Moreover,

τ = 0 ⇐⇒ σ sp
1 = 1 ⇐⇒ R(Q ·QT )∩R(A ∗) �= {0} . (12.65)
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Proof. By definition of σ sp
1 ,

max
V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V 〉 : ‖V‖= 1,V ∈R(A ∗)

}

≥ max
‖U‖=1,U∈R(Q·QT )

〈
U,V sp

1

〉 ≥ 〈
U sp

1 ,V sp
1

〉
= σ sp

1

≥ max
V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V 〉 : ‖V‖= 1,V ∈R(A ∗)

}
,

so equality holds throughout, implying that

σ sp
1 = max

V

{
max

‖U‖=1,U∈R(Q·QT )
〈U,V〉 : ‖V‖= 1,V ∈R(A ∗)

}

= max
y

{
max
‖W‖=1

〈
QWQT ,A ∗y

〉
: ‖A ∗y‖= 1

}

= max
y

{‖QT (A ∗y)Q‖ : ‖A ∗y‖= 1
}
.

Obviously, ‖A ∗y‖= 1 implies that the orthogonal projection QQT (A ∗y)QQT onto
R(Q ·QT ) is of norm no larger than one:

‖QT (A ∗y)Q‖= ‖QQT (A ∗y)QQT‖ ≤ ‖A ∗y‖= 1. (12.66)

Hence σ sp
1 ∈ [0,1]. In addition, equality holds in (12.66) if and only if A ∗y∈R(Q ·

QT ), hence

σ sp
1 = 1 ⇐⇒ R(A ∗)∩R(Q ·QT ) �= {0} . (12.67)

Whenever ‖y‖= 1, ‖A ∗y‖ ≥ σmin(A
∗). Hence

τ = min
y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖y‖= 1
}

= σmin(A
∗)2 min

y

{
‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖y‖= 1

σmin(A ∗)

}

≥ σmin(A
∗)2 min

y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖A ∗y‖ ≥ 1
}

= σmin(A
∗)2 min

y

{‖A ∗y‖2−‖QT (A ∗y)Q‖2 : ‖A ∗y‖= 1
}

= σmin(A
∗)2
(

1−max
y

{‖QT (A ∗y)Q‖2 : ‖A ∗y‖= 1
})

= σmin(A
∗)2
(

1− (σ sp
1

)2
)
.



290 Y.-L. Cheung et al.

This together with σ sp
1 ∈ [0,1] proves (12.64). If τ = 0, then σ sp

1 = 1 since
σmin(A

∗) > 0. Then (12.67) implies that R(A ∗)∩R(Q ·QT ) �= {0}. Conversely,
if R(A ∗)∩R(Q ·QT ) �= {0}, then there exists ŷ such that ‖ŷ‖ = 1 and A ∗ŷ ∈
R(Q ·QT ). This implies that

0≤ τ ≤ ‖A ∗ŷ‖2−‖QT (A ∗ŷ)Q‖2 = 0,

so τ = 0. This together with (12.67) proves the second claim (12.65). �
Next we prove that two classes of matrices are positive semidefinite and show

their eigenvalue bounds, which will be useful in the backward stability result.

Lemma 12.34. Suppose A1, . . . ,Am,D∗ ∈ S
n. Then the matrix M̂ ∈ S

m defined by

M̂i j = 〈Ai,D
∗〉〈A j,D

∗〉 (i, j = 1, . . . ,m)

is positive semidefinite. Moreover, the largest eigenvalue λmax(M̂)≤∑m
i=1 〈Ai,D∗〉2.

Proof. For any y ∈ R
m,

yT M̂y =
m

∑
i, j=1
〈Ai,D

∗〉〈A j,D
∗〉yiy j =

(
m

∑
i=1
〈Ai,D

∗〉yi

)2

.

Hence M̂ is positive semidefinite. Moreover, by the Cauchy Schwarz inequality
we have

yT M̂y =

(
m

∑
i=1
〈Ai,D

∗〉yi

)2

≤
(

m

∑
i=1
〈Ai,D

∗〉2
)
‖y‖2

2.

Hence λmax(M̂)≤ ∑m
i=1 〈Ai,D∗〉2. �

Lemma 12.35. Suppose A1, . . . ,Am ∈ S
n and Q ∈ R

n×n̄ has orthonormal columns.
Then the matrix M ∈ S

m defined by

Mi j =
〈
Ai,A j

〉− 〈QT AiQ,QT A jQ
〉
, i, j = 1, . . . ,m,

is positive semidefinite, with the smallest eigenvalue λmin(M) ≥ τ , where τ is
defined in (12.64).

Proof. For any y ∈ R
m, we have

yT My =
m

∑
i, j=1

〈
yiAi,y jA j

〉− 〈yiQ
T AiQ,y jQ

T A jQ
〉

= ‖A ∗y‖2−∥∥QT (A ∗y)Q
∥∥2 ≥ τ‖y‖2.

Hence M ∈ S
m
+ and λmin(M)≥ τ . �
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The following lemma shows that when nonnegative δ ∗ is approximately zero and
D∗ = PD+PT +QDεQT ≈ PD+PT with D+ , 0, under a mild assumption (12.70) it
is possible to find a linear operator ˆA “near” A such that we can take the following
approximation:

δ ∗ ← 0, D∗ ← PD+PT , A ∗ ← ˆA ∗,

and we maintain that ˆA (PD+PT ) = 0 and R(Q ·QT )∩R(A ∗) = R(Q ·QT )∩
R( ˆA ∗).

Lemma 12.36. Let A : Sn→R
m : X �→ (〈Ai,X〉) be onto. Let D∗=

[
P Q
][D+ 0

0 Dε

]
[

PT

QT

]
∈ S

n
+, where

[
P Q
] ∈ R

n×n is an orthogonal matrix, D+ , 0 and Dε * 0.

Suppose that

R(Q ·QT )∩R(A ∗) = span(A1, . . . ,Am̄), (12.68)

for some m̄ ∈ {1, . . . ,m}. Then

min
‖y‖=1,y∈Rm−m̄

⎧⎨
⎩
∥∥∥∥∥

m−m̄

∑
i=1

yiAm̄+i

∥∥∥∥∥
2

−
∥∥∥∥∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥∥∥∥∥
2
⎫⎬
⎭> 0. (12.69)

Assume that

min
‖y‖=1,y∈Rm−m̄

⎧⎨
⎩
∥∥∥∥∥

m−m̄

∑
i=1

yiAm̄+i

∥∥∥∥∥
2

−
∥∥∥∥∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥∥∥∥∥
2
⎫⎬
⎭

>
2

‖D+‖2

(
‖A (D∗)‖2 + ‖Dε‖2

m

∑
i=m̄+1

‖Ai‖2

)
.

(12.70)

Define Ãi to be the projection of Ai on
{

PD+PT
}⊥

:

Ãi := Ai−
〈
Ai,PD+PT

〉
〈D+,D+〉 PD+PT , ∀ i = 1, . . . ,m. (12.71)

Then

R(Q ·QT )∩R( ˜A ∗) = R(Q ·QT )∩R(A ∗). (12.72)

Proof. We first prove the strict inequality (12.69). First observe that since

∥∥∥∥∥
m−m̄

∑
i=1

yiAm̄+i

∥∥∥∥∥
2

−
∥∥∥∥∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥∥∥∥∥
2

=

∥∥∥∥∥
m−m̄

∑
i=1

yi(Am̄+i−QQT Am̄+iQQT )

∥∥∥∥∥
2

≥ 0,
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the optimal value is always nonnegative. Let ȳ solve the minimization problem in
(12.69). If

∥∥∑m−m̄
i=1 ȳiAm̄+i

∥∥2−∥∥∑m−m̄
i=1 ȳiQT Am̄+iQ

∥∥2
= 0, then

0 �=
m−m̄

∑
i=1

ȳiAm̄+i ∈R(Q ·QT )∩R(A ∗) = span(A1, . . . ,Am̄),

which is absurd since A1, . . . ,Am are linearly independent.
Now we prove (12.72). Observe that for j = 1, . . . , m̄, A j ∈ R(Q · QT ) so〈

A j,PD+PT
〉
= 0, which implies that Ã j = A j. Moreover,

span(A1, . . . ,Am̄)⊆R(Q ·QT )∩R(Ã∗).

Conversely, suppose that B := ˜A ∗y ∈ R(Q ·QT ). Since Ã j = A j ∈ R(Q ·QT ) for
j = 1, . . . , m̄,

B = QQT BQQT =⇒
m

∑
j=m̄+1

y j(Ã j−QQT Ã jQQT ) = 0

We show that ym̄+1 = · · · = ym = 0. In fact, since QT (PD+PT )Q = 0, ∑m
j=m̄+1 y j

(Ã j−QQT Ã jQQT ) = 0 implies

m

∑
j=m̄+1

y jQQT A jQQT =
m

∑
j=m̄+1

y jA j−
(

m

∑
j=m̄+1

〈
A j,PD+PT

〉
〈D+,D+〉 y j

)
PD+PT .

For i = m̄+ 1, . . . ,m, taking inner product on both sides with Ai ,

m

∑
j=m̄+1

〈
QT AiQ,QT A jQ

〉
y j =

m

∑
j=m̄+1

〈
Ai,A j

〉
y j−

m

∑
j=m̄+1

〈
Ai,PD+PT

〉〈
A j,PD+PT

〉
〈D+,D+〉 y j,

which holds if, and only if,

(M− M̃)

⎛
⎜⎝

ym̄+1
...

ym

⎞
⎟⎠= 0, (12.73)

where M,M̃ ∈ S
m−m̄ are defined by

M(i−m̄),( j−m̄) =
〈
Ai,A j

〉− 〈QT AiQ,QT A jQ
〉
,

M̃(i−m̄),( j−m̄) =

〈
Ai,PD+PT

〉〈
A j,PD+PT

〉
〈D+,D+〉 ,∀ i, j = m̄+ 1, . . . ,m.
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We show that (12.73) implies that ym̄+1 = · · · = ym = 0 by proving that M− M̃ is
indeed positive definite. By Lemmas 12.34 and 12.35,

λmin(M− M̃)≥ λmin(M)−λmax(M̃)

≥ min
‖y‖=1

⎧⎨
⎩
∥∥∥∥∥

m−m̄

∑
i=1

yiAm̄+i

∥∥∥∥∥
2

−
∥∥∥∥∥

m−m̄

∑
i=1

yiQ
T Am̄+iQ

∥∥∥∥∥
2
⎫⎬
⎭− ∑

m
i=m̄+1

〈
Ai,PD+PT

〉2

〈D+,D+〉 .

To see that λmin(M− M̃)> 0, note that since D∗ = PD+PT +QDεQT , for all i,

∣∣〈Ai,PD+PT 〉∣∣ ≤ ∣∣〈Ai,D
∗〉 |+ |〈Ai,QDεQ

T 〉∣∣
≤ |〈Ai,D

∗〉|+ ‖Ai‖‖QDεQ
T‖

= |〈Ai,D
∗〉|+ ‖Ai‖‖Dε‖

≤
√

2
(
|〈Ai,D

∗〉|2 + ‖Ai‖2‖Dε‖2
)1/2

.

Hence

m

∑
i=m̄+1

∣∣〈Ai,PD+PT 〉∣∣2 ≤ 2
m

∑
i=m̄+1

(
|〈Ai,D

∗〉|2 + ‖Ai‖2‖Dε‖2
)

≤ 2‖A (D∗)‖2 + 2‖Dε‖2
m

∑
i=m̄+1

‖Ai‖2,

and that λmin(M− M̃) > 0 follows from the assumption (12.70). This implies that
ym̄+1 = · · ·= ym = 0. Therefore B = ∑m̄

i=1 yiÃi, and by (12.68)

R(Q ·QT )∩R( ˜A ∗) = span(A1, . . . ,Am̄) = R(Q ·QT )∩R(A ∗).

�
Remark 12.37. We make a remark about the assumption (12.70) in Lemma 12.36.
We argue that the right-hand side expression

2
‖D+‖2

(
‖A (D∗)‖2 + ‖Dε‖2

m

∑
i=m̄+1

‖Ai‖2

)

is close to zero (when δ ∗ ≈ 0 and when Dε is chosen appropriately). Assume that
the spectral decomposition of D∗ is partitioned as described in Sect. 12.4.1.1. Then
(since ‖Dε‖ ≤ ε‖D∗‖)

2
‖D+‖2 ‖A (D∗)‖2 ≤ 2(δ ∗)2

‖D∗‖2−‖Dε‖2 ≤
2(δ ∗)2

‖D∗‖2− ε2‖D∗‖2 ≤
2n(δ ∗)2

1− ε2
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and

2‖Dε‖2

‖D+‖2

m

∑
i=m̄+1

‖Ai‖2 ≤ 2ε2

1− ε2

m

∑
i=m̄+1

‖Ai‖2.

Therefore as long as ε and δ ∗ are small enough (taking into account n and
∑m

i=m̄+1 ‖Ai‖2), then the right-hand side of (12.70) would be close to zero.

Here we provide the backward stability result for one step of the facial reduction
algorithm. That is, we show that the smaller problem obtained from one step of
facial reduction with δ ∗ ≥ 0 is equivalent to applying facial reduction exactly to an
SDP instance “nearby” to the original SDP instance.

Theorem 12.38. Suppose A : Sn → R
m, b ∈ R

m, and C ∈ S
n are given so that

(12.1) is feasible and Algorithm 12.1 returns (δ ∗,D∗), with 0≤ δ ∗ ≈ 0 and spectral

decomposition D∗ =
[
P Q
][D+ 0

0 Dε

][
PT

QT

]
, and ( ¯A , b̄,C̄,yQ,P). In addition,

assume that

P : Rm̄→ R
m : v �→

(
v
0

)
, so R(A ∗P) = span(A1, . . . ,Am̄).

Assume also that (12.70) holds. For i = 1, . . . ,m, define Ãi ∈ S
n as in (12.71), and

˜A ∗y := ∑m
i=1 yiÃi. Let C̃ = ˜A ∗yQ +QC̄QT . Then ( ¯A , b̄,C̄) is the exact output of

Algorithm 12.1 applied on ( ˜A ,b,C̃), that is, the following hold:

1. ˜AC̃(PD+PT ) =

( ˜A (PD+PT )〈
C̃,PD+PT

〉)= 0,

2. (yQ,C̄) solves

min
y,Q

1
2

∥∥ ˜A ∗y+QWQT − C̃
∥∥2

. (12.74)

3. R( ˜A ∗P) = R(Q ·QT )∩R( ˜A ∗).

Moreover, ( ˜A ,b,C̃) is close to (A ,b,C) in the sense that

m

∑
i=1
‖Ai− Ãi‖2 ≤ 2

‖D+‖2

(
(δ ∗)2 + ‖Dε‖2

m

∑
i=1
‖Ai‖2

)
, (12.75)

‖C− C̃‖ ≤
√

2
‖D+‖

(
(δ ∗)2 + ‖Dε‖2

m

∑
i=1
‖Ai‖2

)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y*0
‖Z‖
)
, (12.76)

where α(A ,c) is defined in (12.26).
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Proof. First we show that ( ¯A , b̄,C̄) is the exact output of Algorithm 12.1 applied
on ( ˜A ,b,C̃):

1. For i = 1, . . . ,m, by definition of Ãi in (12.71), we have
〈
Ãi,PD+PT

〉
= 0. Hence

˜A (PD+PT ) = 0. Also,
〈
C̃,PD+PT

〉
= yT

Q(
˜A (PD+PT )) +

〈
C̄,QT (PD+PT )Q

〉
= 0.

2. By definition, C̃− ˜A ∗yQ−QC̄QT = 0, so (yQ,C̄) solves the least squares problem
(12.74).

3. Given (12.70), we have that

R(Q ·QT )∩R( ˜A ∗) = R(Q ·QT )∩R(A ∗) = R(A1, . . . ,Am̄)

= R(Ã1, . . . , Ãm̄) = R( ˜A ∗P).

The results (12.75) and (12.76) follow easily:

m

∑
i=1

‖Ai− Ãi‖2 =
m

∑
i=1

∣∣〈Ai,PD+PT
〉∣∣2

‖D+‖2 ≤
m

∑
i=1

2 |〈Ai,D∗〉|2 + 2‖Ai‖2‖Dε‖2

‖D+‖2

≤ 2
‖D+‖2

(
(δ ∗)2 + ‖Dε‖2

m

∑
i=1

‖Ai‖2

)
,

and

‖C− C̃‖ ≤ ‖A ∗yQ− ˜A ∗yQ‖+ ‖Cres‖

≤
m

∑
i=1

|(yQ)i|‖Ai− Ãi‖+ ‖Cres‖

≤ ‖yQ‖
(

m

∑
i=1
‖Ai− Ãi‖2

)1/2

+ ‖Cres‖

≤
√

2
‖D+‖

(
(δ ∗)2 + ‖Dε‖2

m

∑
i=1

‖Ai‖2

)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(
min

Z=C−A ∗y*0
‖Z‖
)
,

from (12.75) and (12.63). �
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12.5 Test Problem Descriptions

12.5.1 Worst-Case Instance

From Tunçel [65], we consider the following worst-case problem instance in the
sense that for n ≥ 3, the facial reduction process in Algorithm 12.1 requires n− 1
steps to obtain the minimal face. Let b = e2 ∈ R

n, C = 0, and A : Sn
+ → R

n be
defined by

A1 = e1eT
1 , A2 = e1eT

2 + e2eT
1 , Ai = ei−1eT

i−1 + e1eT
i + eie

T
1 for i = 3, . . . ,n.

It is easy to see that

F Z
P =

{
C−A ∗y ∈ S

n
+ : y ∈R

n}= {μe1eT
1 : μ ≥ 0

}
,

(so F Z
P has empty interior) and

sup{bT y : C−A ∗y* 0}= sup{y2 :−A ∗y = μe1eT
1 ,μ ≥ 0}= 0,

which is attained by any feasible solution.
Now consider the auxiliary problem

min‖AC(D)‖=
[

D2
11 + 4D2

12 +
n

∑
i=3

(Di−1,i−1 + 2D1i)

]1/2

s.t. 〈D, I〉=√n, D* 0.

An optimal solution is D∗ =
√

neneT
n , which attains objective value zero. It is easy

to see this is the only solution. More precisely, any solution D attaining objective
value 0 must satisfy D11 = 0, and by the positive semidefiniteness constraint D1,i =
0 for i = 2, . . . ,n and so Dii = 0 for i = 2, . . . ,n− 1. So Dnn is the only nonzero
entry and must equal

√
n by the linear constraint 〈D, I〉 = √n. Therefore, Q from

Proposition 12.18 must have n− 1 columns, implying that the reduced problem is
in S

n−1. Theoretically, each facial reduction step via the auxiliary problem can only
reduce the dimension by one. Moreover, after each reduction step, we get the same
SDP with n reduced by one. Hence it would take n−1 facial reduction steps before
a reduced problem with strictly feasible solutions is found. This realizes the result
in [12] on the upper bound of the number of facial reduction steps needed.

12.5.2 Generating Instances with Finite Nonzero Duality Gaps

In this section we give a procedure for generating SDP instances with finite nonzero
duality gaps. The algorithm is due to the results in [66, 70].
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Algorithm 12.3: Generating SDP instance that has a finite nonzero duality gap

1 Input: problem dimensions m, n; desired duality gap g;
2 Output: linear map A : Sn→ R

m, b ∈ R
m, C ∈ S

n such that the corresponding primal dual
pair (12.1)–(12.2) has a finite nonzero duality gap;
1. Pick any positive integer r1,r3 that satisfy r1 + r3 +1 = n,

and any positive integer p≤ r3.
2. Choose Ai * 0 for i = 1, . . . , p so that dim(face({Ai : i = 1, . . . , p})) = r3.

Specifically, choose A1, . . .,Ap so that

face({Ai : 1, . . . , p}) =
⎡
⎣ 0 0 0

0 0 0
0 0 S

r3
+

⎤
⎦ . (12.77)

3. Choose Ap+1, . . . ,Am of the form

Ai =

⎡
⎣ 0 0 (Ai)13

0 (Ai)22 ∗
(Ai)

T
13 ∗ ∗

⎤
⎦ ,

where an asterisk denotes a block having arbitrary elements, such that (Ap+1)13, . . ., (Am)13
are linearly independent, and (Ai)22 , 0 for some i ∈ {p+1, . . . ,m}.

4. Pick

X̄ =

⎡
⎣0 0 0

0
√

g 0
0 0 0

⎤
⎦ . (12.78)

5. Take b = A (X̄), C = X̄ .

Finite nonzero duality gaps and strict complementarity are closely tied together
for cone optimization problems; using the concept of a complementarity partition,
we can generate instances that fail to have strict complementarity; these in turn can
be used to generate instances with finite nonzero duality gaps. See [66, 70].

Theorem 12.39. Given any positive integers n, m ≤ n(n+ 1)/2 and any g > 0 as
input for Algorithm 12.3, the following statements hold for the primal-dual pair
(12.1)–(12.2) corresponding to the output data from Algorithm 12.3:

1. Both (12.1) and (12.2) are feasible.
2. All primal feasible points are optimal and vP = 0.
3. All dual feasible point are optimal and vD = g > 0.

It follows that (12.1) and (12.2) possess a finite positive duality gap.

Proof. Consider the primal problem (12.1). Equation (12.1) is feasible because
C := X̄ given in (12.78) is positive semidefinite. Note that by definition of A in
Algorithm 12.3, for any y ∈R

m,
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C−
p

∑
i=1

yiAi =

⎡
⎣0 0 0

0
√

g 0
0 0 ∗

⎤
⎦ and −

m

∑
i=p+1

yiAi =

⎡
⎣0 0 ∗

0 ∗ ∗
∗ ∗ ∗

⎤
⎦ ,

so if y∈Rm satisfies Z :=C−A ∗y* 0, then∑m
i=p+1 yiAi = 0 must hold. This implies

∑m
i=p+1 yi(Ai)13 = 0. Since (Ap+1)13, . . . ,(Am)13 are linearly independent, we must

have yp+1 = · · ·= ym = 0. Consequently, if y is feasible for (12.1), then

A ∗y =

⎡
⎣0 0 0

0 0 0
0 0 −Z33

⎤
⎦

for some Z33 * 0. The corresponding objective value in (12.1) is given by

bT y = 〈X̄ ,A ∗y〉= 0.

This shows that the objective value of (12.1) is constant over the feasible region.
Hence vP = 0, and all primal feasible solutions are optimal.

Consider the dual problem (12.2). By the choice of b, X̄ * 0 is a feasible solution,
so (12.2) is feasible too. From (12.77), we have that b1 = · · · = bp = 0. Let X * 0
be feasible for (12.1). Then 〈Ai,X〉= bi = 0 for i = 1, . . . , p, implying that the (3,3)
block of X must be zero by (12.77), so

X =

⎡
⎣∗ ∗ 0
∗ ∗ 0
0 0 0

⎤
⎦ .

Since α = (A j)22 > 0 for some j ∈ {p+ 1, . . . ,m}, we have that

αX22 =
〈
A j,X

〉
=
〈
A j, X̄

〉
= α
√

g,

so X22 =
√

g and 〈C,X〉= g. Therefore the objective value of (12.2) is constant and
equals g > 0 over the feasible region, and all feasible solutions are optimal. �

12.5.3 Numerical Results

Table 12.1 shows a comparison of solving SDP instances with versus without facial
reduction. Examples 1 through 9 are specially generated problems available online
at the URL for this paper.2 In particular: Example 3 has a positive duality gap,
vP = 0 < vD = 1; for Example 4, the dual is infeasible; in Example 5, the Slater
CQ holds; Examples 9a, 9b are instances of the worst-case problems presented

2orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html.
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Table 12.1 Comparisons with/without facial reduction

Name n m
True primal
optimal value

True dual
optimal value

Primal optimal
value with facial
reduction

Primal optimal
value without
facial reduction

Example 1 3 2 0 0 0 −6.30238e−016
Example 2 3 2 0 1 0 +0.570395
Example 3 3 4 0 0 0 +6.91452e−005
Example 4 3 3 0 Infeasible 0 +Inf
Example 5 10 5 * * +5.02950e+02 +5.02950e+02
Example 6 6 8 1 1 +1 +1
Example 7 5 3 0 0 0 −2.76307e−012
Example 9a 20 20 0 Infeasible 0 Inf
Example 9b 100 100 0 Infeasible 0 Inf
RandGen1 10 5 0 1.4509 +1.5914e−015 +1.16729e−012
RandGen2 100 67 0 5.5288e+003 +1.1056e−010 NaN
RandGen4 200 140 0 2.6168e+004 +1.02803e−009 NaN
RandGen5 120 45 0 0.0381 −5.47393e−015 −1.63758e−015
RandGen6 320 140 0 2.5869e+005 +5.9077e−025 NaN
RandGen7 40 27 0 168.5226 −5.2203e−029 +5.64118e−011
RandGen8 60 40 0 4.1908 −2.03227e−029 NaN
RandGen9 60 40 0 61.0780 +5.61602e−015 −3.52291e−012
RandGen10 180 100 0 5.1461e+004 +2.47204e−010 NaN
RandGen11 255 150 0 4.6639e+004 +7.71685e−010 NaN

in Sect. 12.5.1. The remaining instances RandGen1–RandGen11 are generated
randomly with most of them having a finite positive duality gap, as described
in Sect. 12.5.2. These instances generically require only one iteration of facial
reduction. The software package SeDuMi is used to solve the SDPs that arise.

One general observation is that, if the instance has primal-dual optimal solutions
and has zero duality gap, SeDuMi is able to find the optimal solutions. However,
if the instance has finite nonzero duality gaps, and if the instance is not too small,
SeDuMi is unable to compute any solution, and returns NaN.

SeDuMi, based on self-dual embedding, embeds the input primal-dual pair into a
larger SDP that satisfies the Slater CQ [16]. Theoretically, the lack of the Slater CQ
in a given primal-dual pair is not an issue for SeDuMi. It is not known what exactly
causes problem on SeDuMi when handling instances where a nonzero duality gap
is present.

12.6 Conclusions and Future Work

In this paper we have presented a preprocessing technique for SDP problems where
the Slater CQ (nearly) fails. This is based on solving a stable auxiliary problem that
approximately identifies the minimal face for (P). We have included a backward
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error analysis and some preliminary tests that successfully solve problems where
the CQ fails and also problems that have a duality gap. The optimal value of our
(AP) has significance as a measure of nearness to infeasibility.

Though our stable (AP) satisfied both the primal and dual generalized Slater CQ,
high accuracy solutions were difficult to obtain for unstructured general problems.
(AP) is equivalent to the underdetermined linear least squares problem

min‖AC(D)‖2
2 s.t. 〈I,D〉=√n, D* 0, (12.79)

which is known to be difficult to solve. High accuracy solutions are essential in
performing a proper facial reduction.

Extensions of some of our results can be made to general conic convex
programming, in which case the partial orderings in (12.1) and (12.2) are induced
by a proper closed convex cone K and the dual cone K∗, respectively.
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Chapter 13
The Largest Roots of the Mandelbrot
Polynomials

Robert M. Corless and Piers W. Lawrence

Abstract This paper gives some details of the experimental discovery and partial
proof of a simple asymptotic development for the largest magnitude roots of the
Mandelbrot polynomials defined by p0(z) = 1 and pn+1(z) = zp2

n(z)+ 1.

Key words: Asymptotic expansion • Eigenvalues • Mandelbrot polynomials
• Periodic points • Polynomial zeros

Mathematics Subject Classifications (2010): Primary 37F10; Secondary 37F45,
41A60.

13.1 Background, Experiments, and Results

In the paper [5] we undertook to use the Mandelbrot polynomials, which satisfy
p0(z) = 1 and

pn+1(z) = zp2
n(z)+ 1 , (13.1)

as a family of test examples for a general class of eigenvalue methods for finding
roots of polynomials. More, one of us (PWL) invented an interesting recursively
constructed zero-one matrix family whose eigenvalues were the roots of pn(z)
and which allowed the computation of all 220− 1 = 1,048,575 roots of p20(z).
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When another of us (RMC) was presenting these results at JonFest DownUnder,
in Newcastle, Neil Calkin asked about the root of largest magnitude. That question
sparked this paper, and we thank Neil for the discussions that took place at the
conference.

We begin with the well-known observation that the largest root is quite close to,
but slightly closer to zero than, −2. The classical approach to find a root, given
an initial guess, is Newton’s method. For that, we need derivatives: obviously,
p′0(z) = 0, and

p′n+1(z) = p2
n(z)+ 2zpn(z)p′n(z) . (13.2)

Notice also that p0(−2) = 1 but p1(−2) = −2 · 12 + 1 = −1 and thereafter
pn+1(−2) =−2 ·(−1)2+1=−1. Thus, all first derivatives p′k(−2) are known from

p′n+1(−2) = (−1)2 + 2 · (−2)(−1)p′n(−2)

= 4p′n(−2)+ 1 , (13.3)

which is easily solved to give

p′n(−2) =
4n− 1

3
. (13.4)

That the derivatives are all integers also follows from the definition, as it is easily
seen that the coefficients of pk(z) in the monomial basis are positive integers.

The Newton estimate (which is not quite right, as we will see very soon) is thus

zk
.
=−2+

3
4k− 1

. (13.5)

In one sense this is quite successful. For large k this suggests that the largest
magnitude zero is close to −2, which it is. But in another sense, it is not
very successful; the error is in fact O(4−k), not smaller (even though the initial
guess is already O(4−k) accurate, so this is not an improvement), and taking yet
another Newton step hardly improves this estimate at all! Indeed Newton’s method
converges initially only very slowly from here. Of course the problem is growth in
the higher derivatives. The Newton estimate is based on the expansion

pk(−2+ ε) = pk(−2)+ p′k(−2)ε+
1
2

p′′k (−2)ε2 + · · · (13.6)

neglecting the (usually benign) terms of O(ε2). However, here p′k(−2) = (4k−1)/3
and ε = 3/(4k− 1), so while ε is very small, and ε2 is smaller, we really should
check p′′k (−2).

Taking the second derivative is simple: With p′′0(z) = 0 and

p′′n+1(z) = 4pn(z)p′n(z)+ 2z(p′(z))2 + 2zpn(z)p′′n(z) , (13.7)
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we can compute all values of p′′k (−2). At z = −2, pk(−2) = −1 and p′k(−2) =
(4k− 1)/3; therefore the recurrence for the second derivatives is

p′′n+1(−2) =−4

(
4n− 1

3

)
− 4

(
4n− 1

3

)2

+ 4p′′n(−2), (13.8)

which is nearly as easy to solve as the first one. One can use Maple’s rsolve, as
we did, to find

p′′k (−2) =− 1
27

42k +

(
1
3
− k

9

)
4k− 8

27
. (13.9)

Now the problem with Newton’s method becomes apparent: This is O(ε−2),
therefore we cannot neglect the O(ε2) term!

In a fit of enthusiasm we compute a few more derivatives:

p′′′k (−2) =
1

15
ε−3 +O(ε−2), (13.10)

p(iv)k (−2) =− 1
105

ε−4 +O(ε−3), (13.11)

and so on, giving (to O(ε))

0
=

wishful
pn(−2+ε) =−1+1− 1

3 ·2!
+

1
15 ·3!

− 1
105 ·4!

+ · · · (13.12)

which is tantalizing, but wrong.
But what if, instead of using Newton to move from −2 to −2+ ε , we instead

moved to −2+αε? Could we find a useful α from the series?
This would give

0 = pn(−2+αε) =−1+α− α2

3 ·2!
+

α3

15 ·3!
− α4

105 ·4!
+ · · · . (13.13)

Now the natural thing to do is to ask the on-line encyclopedia of integer sequences
[6] (OEIS) if it knows those integers. It does! (And in fact they are easy: they are
the coefficients of−cos

√
2α =−1+α− α2

6 + α3

90 −·· · .) This is the first really big
break and in essence leads to everything that follows.

To make things explicit we present, in tidier form,

Fact 1:

pk(−2+
3
2
·θ 2 ·4−k) =−cosθ +O(4−k). (13.14)
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Table 13.1 Numerical
verification of Eq. (13.15):
comparison of the prediction
of the formula with the
numerically computed largest
magnitude root (computed by
the method of [5])

k log4(z− zk,0)

1 −1.87
2 −3.09
3 −4.76
4 −6.52
5 −8.34
6 −10.19
7 −12.07
8 −13.97
9 −15.87
10 −17.79
11 −19.72
12 −21.65
13 −23.59
14 −25.54
15 −27.48
16 −29.43
17 −31.39
18 −33.35
19 −35.31
20 −37.27

The error improves as
k increases, being ap-
proximately O(4−2k), as
claimed

This suggests that the largest magnitude zero of pk(z) begins (with θ = π/2) (Table
13.1):

Fact 2:

z =−2+
3
8
π2 ·4−k +O(4−2k) . (13.15)

We numerically verified this to high precision, as the reader may do for themselves:
choose your favourite multiple-precision arithmetic, write a recursive program to
compute pk(z) given z and k (don’t, of course, expand into the monomial basis—
just use the recurrence relation itself), and choose a large value of k (say k = 30),
evaluate the value of z given above to high precision, and then evaluate p30(z). Its
value should be comparable to 4−30, indeed≈−1.23 ·10−17, while both p29(z) and
p31(z) are order 1.

Greatly encouraged, we go back to the recurrence relations for p(�)k (−2) to look
at the higher-order terms. Indeed we can make progress there, too, which we do not
describe in all its false starts and missteps here; but the

(
1
3 − k

9

)
4k term in p′′k (−2),

which correctly leads us to the conjecture
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pk

(
−2+

3
2
θ 24−k

)
=−cosθ +(ã(θ )k+ b̃(θ ))4−k +O(4−2k) , (13.16)

allows similar use of the OEIS with computer-generated series terms to succeed.
Instead of detailing that experimental approach, we start over, with more rigour.

13.2 What’s Really True

We now proceed with a partial proof containing a kind of analytical discovery of
what ã(θ ) and b̃(θ ) are. Consider the basic iteration (13.1), and suppose, as a sort
of inductive step, that pk

(−2+ 3
2θ

24−k
)

is as given in Eq. (13.16). It is easy to
see that p1(z) = z+ 1 is quite close to −cosθ when z = −2+ 3θ 2/2 · 4−1 on, say,
0 ≤ θ ≤ √30/3

.
= 1.8257, for example, so that we may begin the approximations

already when k = 1. Now consider the case with a fixed but unspecified k.
Then it must be true that

pk+1

(
−2+

3
2
θ 24−k−1

)

=

(
−2+

3
8
θ 24−k

)
p2

k

(
−2+

3
2

(
θ
2

)2

4−k

)
+ 1

=

(
−2+

3
8
θ 24−k

)(
−cos

θ
2
+

(
ã

(
θ
2

)
k+ b̃

(
θ
2

))
4−k
)2

+ 1, (13.17)

which is supposed to equal

− cosθ +
(
ã(θ )(k+ 1)+ b̃(θ )

)
4−k−1 + · · · . (13.18)

When we expand the right-hand side out, we get(
−2+

3
8
θ 24−k

)(
cos2 θ

2
− 2cos

θ
2

(
ã

(
θ
2

)
k+ b̃

(
θ
2

))
4−k + · · ·

)
+ 1

= 1− 2cos2 θ
2
+

(
3
8
θ 2 cos2 θ

2
+ 4cos

θ
2

(
ã

(
θ
2

)
k+ b̃

(
θ
2

)))
4−k + · · ·

(13.19)

and we are delighted to see that 1− 2cos2 θ
2 becomes−cosθ , as desired.

The other terms are a little more complicated: equating terms multiplied by k4−k

we get

ã(θ )
4

= 4cos
θ
2
· ã
(
θ
2

)
. (13.20)
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Now, taking advantage of our earlier experimental work, we merely verify that

ã(θ ) = Kθ 3 sinθ (13.21)

solves this, for any K:

Kθ 3 sinθ = 16cos
θ
2
·K ·
(
θ
2

)3

sin
θ
2
. (13.22)

This is a linear homogeneous functional equation and has a unique solution [1].
Therefore ã(θ ) has been identified.

Now consider b̃(θ ). This must satisfy

1
4
(b̃(θ )+ ã(θ )) =

3
8
θ 2 cos2 θ

2
+ 4cos

θ
2

b̃

(
θ
2

)
(13.23)

or

b̃(θ ) =−Kθ 3 sinθ +
3
2
θ 2 cos2 θ

2
+ 16cos

θ
2
· b̃
(
θ
2

)
. (13.24)

This can be simplified as follows. Put θ = 0: b̃(0) =−0+0+16 · b̃(0) or b̃(0) = 0.

Similarly lim
θ→0

(
b̃(θ )
θ

)
= 0. Thus put b̃(θ ) = θ 2b(θ ). Then

θ 2b(θ ) =−Kθ 3 sinθ +
3
2
θ 2 cos2 θ

2
+ 16cos

θ
2
·
(
θ
2

)2

b

(
θ
2

)
(13.25)

or

b(θ ) =−Kθ sinθ +
3
2

cos2 θ
2
+ 4cos

θ
2

b

(
θ
2

)
. (13.26)

Now as θ → 0, if b(θ ) is continuous, we must have

b(0) =
3
2
+ 4b(0) (13.27)

or

b(0) =−1
2
. (13.28)

Trying a power series solution

b(θ ) =−1
2
+∑

�≥1

b� ·θ 2� (13.29)
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(the functional equation is even, so it makes sense to look for an even solution),
we have

(−1
2
+ b1θ 2 + · · ·) =−Kθ 2 +

3
2

(
1− (θ/2)2

2
+ · · ·

)2

+ 4

(
1− (θ/2)2

2
+ · · ·

)(
−1

2
+ b1

θ 2

4
+ · · ·

)
(13.30)

and the terms containing b1 drop out, leaving

0 =

(
−K− 3

8
+ 4 · 1

16

)
θ 2 + · · ·

=

(
−K− 1

8

)
θ 2 + · · · (13.31)

and thus we can only solve for b(θ ) if K =− 1
8 , that is, this requires

ã(θ ) = θ 3a(θ ) =
θ 3 sinθ

8
. (13.32)

Thereafter, equating coefficients places no restriction on b1 but requires each
coefficient to be constrained as follows:

b2 =
1

144
− b1

3!
, (13.33)

b3 =− 1
5,400

+
b1

5!
, (13.34)

b4 =− 11
25,401,600

− b1

7!
, (13.35)

and so on. The OEIS does not recognize these numbers (neither did we, but a little
more work later pays off, as we will see).

Experimentally, by computing p80(−2+ 3
2θ

24−80) to a ridiculous number of

places, at θ = 10−50, adding cosθ + 4−80( 1
8θ

3 sinθ ·80+ θ2

2 ), we find that b1 =
3
8 ,

to beyond reasonable doubt. This, then, requires the sequence of bk to start

[
−1

2
,

3
8
,− 1

18
,

127
43,200

,− 1,901
25,401,600

, · · ·
]
. (13.36)

This essentially completes our construction (we return to 3/8 in a moment).
What we have proved is, if for all θ we have

pk(−2+
3
2
θ 24−k) =−cosθ +

(
−1

8
θ 3 sinθ · k+θ 2b(θ )

)
4−k +O(4−2k),

(13.37)
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where b(θ ) =− 1
2 +

3
8θ

2− 1
18θ

4 + 127
43,200θ

6 + · · · satisfies

b(θ ) = 4cos
θ
2

b

(
θ
2

)
+

1
8
θ sinθ +

3
2

cos2 θ
2
, (13.38)

then it follows that

pk+1(−2+
3
2
θ 24−k−1)

=−cosθ +
(
−1

8
θ 3 sinθ · (k+ 1)+θ 2b(θ )

)
4−k−1 +O(4−2k−2) . (13.39)

13.3 The Mysterious 3/8 or 1
2!b
′′(0)

By numerical evidence (high-precision finite differences on computer values of
pk(z) for large values of k and values of z very near −2) we identified b′′(0) = 3

4 .
Later, we found the functional equation (13.38) but noted that while this equation
requires b(0) = −1/2 and b′(0) = 0 all by itself, it leaves free a multiple of the
homogeneous solution, namely Kθ sinθ = K(θ 2 − θ 4/3! + θ 6/5!− ·· · ) and so
cannot by itself determine b′′(0). What helps is a boundary condition, applied at
θ = 0, for all k. Using Eq. (13.37) we find by differentiating four times with respect
to θ that

d4

dθ 4 pk(−2+
3
2
θ 24−k)

∣∣∣∣
θ=0

=−1+ 4−k · (−3k+ 12b′′(0))+O(4−2k). (13.40)

But we already know how to differentiate pk(z) and so, using the chain rule,

d
dθ

pk(ξ ) = p′k(ξ ) · (3 ·4−k),θ (13.41)

d2

dθ 2 pk(ξ ) = p′k(ξ ) · (3 ·4−k)+ p′′k(ξ ) · (3 ·4−k)2θ 2, (13.42)

d3

dθ 3 pk(ξ ) = 3 · p′′k(ξ ) · (3 ·4−k)2θ + p′′′k (ξ ) · (3 ·4−k)3θ 3, (13.43)

d4

dθ 4 pk(ξ ) = 3 · p′′k(ξ ) · (3 ·4−k)2 + 6 · p′′′k (ξ ) · (3 ·4−k)3θ 2 + p(iv)k (ξ )(3 ·4−k)4θ 4,

(13.44)

where, of course, ξ =−2+ 3
2θ

24−k.
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Therefore, at θ = 0,

d4

dθ 4 pk(ξ )
∣∣∣∣
θ=0

= 27 ·4−2kp′′k (−2) . (13.45)

We have already worked out p′′k (−2) which is

p′′k (−2) =− 1
27

42k +

(
1
3
− k

9

)
4k− 8

27
, (13.46)

so 27 · 4−2k p′′k (−2) = −1 + (9− 3k)4−k − 8 · 4−2k forcing, for compliance, the
equality of −1+(12b′′(0)− 3k)4−k +O(4−2k).

This in turn requires

12b′′(0) = 9 (13.47)

or

b′′(0) =
3
4
. (13.48)

This retrospective identification of b′′(0) fixes the choice of K · θ sinθ and thereby
b(θ ). It seems to us remarkable that this non-standard initial condition suffices.

13.4 The Taylor Series for b(θ)

Define the numbers bn by b0 =−1/2, b1 = 3/8, and for n≥ 2 by

bn =
1

22n− 4

[
4

n

∑
�=1

(−1)�

(2�)!
bn−�+

3
4
(−1)n22n

(2n)!
+

(−1)n−122n−1

4(2n− 1)!

]
. (13.49)

This recurrence relation gives a sequence starting

[
−1

2
,

3
8
,− 1

18
,

127
43,200

,− 1,901
25,401,600

, · · ·
]
. (13.50)

Lemma 13.1. If bn =
(−1)n−1an
(2n−2)! , then |an|< 1, for n≥ 1.

Proof. If n = 1, b1 =
3
8 = (−1)1−1·a1

0! so a1 =
3
8 < 1.
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Assume |a j|< 1 for 1≤ j ≤ k− 1. Then

bk =
(−1)k−1ak

(2k− 2)!
=

1
2k−4− 4

[
4

k−1

∑
j=1

(−1) j(−1)k− j−1ak− j

(2 j)!(2(k− j)− 2)!

+4
(−1)k(−1/2)

(2k)!
+

3
4
(−1)k22k

(2k)!
+

(−1)k−122k−1

4(2k− 1)!

]
(13.51)

multiplying through by (−1)k−1(2k− 2)!,

ak =
1

22k− 4

[
4

k−1

∑
j=1

(2k− 2)!ak− j

(2 j)!(2(k− j)− 2)!
+

2
(2k)(2k− 1)

+
22k−3

(2k− 1)
− 2 ·22k−2

(2k)(2k− 1)

]
. (13.52)

The triangle inequality gives

|ak|< 4
4k− 4

k−1

∑
j=1

(2k− 2)!
(2 j)!(2(k− j)− 2)!

+

∣∣∣∣ 22k−3

2k− 1
+

2− 3 ·22k−2

(2k)(2k− 1)

∣∣∣∣ 1
4k− 4

. (13.53)

Using Maple, we find that

k−1

∑
j=1

(2k− 2)!
(2 j)!(2(k− j)− 2)!

=
1
2

4k−1− 1, (13.54)

so for k ≥ 2

|ak|< 1
4k−1− 1

·
(

1
2

4k−1− 1

)
+

1
4k− 4

∣∣∣∣ 2− 3 ·4k−1

(2k)(2k− 1)

∣∣∣∣+ 1
2 4k−1

(2k− 1)(4k− 4)
.

(13.55)

The last term is less than 1
6

1
(4−4−k)

< 1
12 , and the second last term is less than

2
4k

3·4k−1

4·3 = 1
8 , so

|ak|< 1
2
+

1
8
+

1
12

< 1 . (13.56)

�
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Corollary 13.2. The series

b(θ ) =−1
2
+

3
8
θ 2 +∑

k≥2

bkθ 2k (13.57)

defines an entire function.

Remark 13.3. Solving the equation

b(θ ) = 4cos
θ
2
·b
(
θ
2

)
+

1
8
θ sinθ +

3
2

cos2 θ
2

(13.58)

subject to b′′(0) = 3/4, in series, gives the recurrence relation (13.49). The process
is tedious but straightforward.

Theorem 13.4. Suppose n = 2�q and q is odd. Then

b(nπ) =
22�− 1

2
. (13.59)

Proof.

b(qπ) = 4cos
(qπ

2

)
b
(qπ

2

)
+

1
8
(qπ)sin(qπ)+

3
2

cos2
(qπ

2

)
= 0 (13.60)

since cos
( qπ

2

)
= sin(qπ) = 0.

Then this is � = 0, the base of the induction. Suppose the theorem is true for
�= n. Consider

b(2n+1qπ) = 4cos(2nqπ)b(2nqπ)+
1
8
(2n+1qπ)sin(2n+1qπ)+

3
2

cos2 (2nqπ)

(13.61)

=

{ −4 ·0+ 3
2 if n = 0

4 ·
(

22n−1
2

)
+ 3

2 if n > 0
(13.62)

because cos2 (2nqπ) = 1. Then

b(2n+1qπ) =

{
22−1

2 if n = 0
22(n+1)−1

2 if n > 0

}
(13.63)

and the theorem is proved by induction. �
The above theorem suggests that b(θ ) grows at most quadratically. We prove

something a little weaker, below; it is likely that the function really does grow only
quadratically, but the following theorem suffices for the purposes of this paper.
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Theorem 13.5. |b(θ )| < ( 3
8 + 25

8 �log2 θ�) · θ 2 + 1
2 , for all θ > 1. That is, b(θ )

grows moderately slowly for real θ .

Proof. Notice that the series alternate in sign and decrease; hence, on 0 < θ ≤ 1,
|b(θ )|< 1

2 +
3
8 ·θ 2. This gives a base for the following induction.

Suppose the theorem is true on 0< θ ≤ 2�. Now consider the functional equation,
expressed in terms of 2θ :

b(2θ ) = 4cos(θ ) ·b(θ )+ θ sin(2θ )
4

+
3
2

cos2(θ ) . (13.64)

Taking absolute values and using the triangle inequality,

|b(2θ )|< 4

(
1
2
+

(
3
8
+

25�
8

)
θ 2
)
+
θ
4
+

3
2

(13.65)

or

|b(2θ )|<
(

3
8
+

25�
8

)
(2θ )2 +

(2θ )
8

+ 3+
1
2
. (13.66)

�
Since 2θ > 1, without loss of generality, 3/8+ 25/8(�+ 1) > 3/8+ 25/8�+

1/(8|2θ |)+3/(2θ )2, and this establishes the truth of the theorem for 2� < θ ≤ 2�+1.

13.5 Implications

We have now shown that

pk(−2+
3
2
θ 2 ·4−k) =−cosθ +

(
−θ

3 sinθ
8

k+θ 2b(θ )
)

4−k +O(4−2k) (13.67)

(strictly speaking, we have not given a bound for the O(4−2k) term; there is work
that remains, here, but at this point there is little doubt), where b(θ ) is entire and
satisfies the functional equation (13.38), as well as a growth bound of the form
|b(θ )| ≤M(θ ) ·θ 2. Thus, for a fixed large k, if M(θ ) ·θ 4 < 2k, say, then

∣∣∣∣pk(−2+
3
2
θ 2 ·4−k)+ cosθ

∣∣∣∣< O(2−k) . (13.68)
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13.5.1 Several Largest Roots

This formula approximately locates several zeros of pk(z), near θ = (2�+ 1)π/2,
so long as (2�+1)π/2< O(2k/4), roughly; the larger k is, the more zeros we locate.
Explicitly, the zeros are near

zk,� =−2+
3
2

(
(2�+ 1)π

2

)2

4−k +O(4−2k) (13.69)

because here |pk(zk,�)|< O(2−k).
Interestingly, this formula is already accurate for k = 1. Recall that p0(z) = 1 and

p1(z) = z+ 1, which has a root at z =−1. The formula predicts

z1,0 =−2+
3
2

(π
2

)2
4−1 +O(4−2)

=−2+
3π2

32

=−2+ 0.92527

=−1.0747, (13.70)

which is remarkably accurate for such small k. For k = 2, we have p2(z) = z
(z+ 1)2 + 1 = z(z2 + 2z+ 1)+ 1 = z3 + 2z2 + z+ 1, and the largest magnitude zero
is predicted to be

z2,0 =−2+
3
2

(π
2

)2
4−2 +O(4−4)

=−2+ 0.2313188

=−1.768681. (13.71)

The true largest root is (see also Fig. 13.1 and Table 13.2)

− 1/6
3
√

100+ 12
√

69− 2/3
1

3
√

100+ 12
√

69
− 2/3≈−1.75487766624670.

(13.72)

13.5.2 Newton-Like Improvements

We may improve the accuracy of these estimates by using Newton’s method, as
follows. Note that we will need p′k(z) at z = zk,�, but this will be simple, using the
formula (ξ =−2+ 3

2θ
24−k) so ξ ′(θ ) = 3θ4−k,
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1 2 3 4 5 6 7 8 9 10
10-12

10-10

10-8

10-6

10-4

10-2

100

k

E
rr
or

Fig. 13.1 Error in
approximating the largest
three roots of pk(z). Circles,
squares, and crosses are the
largest, second largest, and
third largest roots,
respectively

Table 13.2 Largest three roots of pk(z)

k z0 z1 z2

1 −1 – –
2 −1.7548776662466928 – –
3 −1.9407998065294848 −1.3107026413368329 −1
4 −1.9854242530542053 −1.8607825222048549 −1.6254137251233037
5 −1.9963761377111938 −1.9667732163929287 −1.9072800910653020
6 −1.9990956823270185 −1.9918141725491222 −1.9771795870062574
7 −1.9997740486937273 −1.9979629155977143 −1.9943329667155349
8 −1.9999435217656740 −1.9994914380163981 −1.9985865888422069
9 −1.9999858811403921 −1.9998729117663291 −1.9996469177332729
10 −1.9999964703350087 −1.9999682317097476 −1.9999117502085037

d
dθ

pk(ξ (θ ))− sin(θ ) = p′k(ξ (θ ))ξ
′(θ )− sin(θ )

=

(
−1

8
(3θ 2 sinθ +θ 3 cosθ )k+ 2θb(θ )+θ 2b′(θ )

)
4−k +O(4−2k).

(13.73)

At θ = (2�+ 1)π/2, the derivative of pk(z) is therefore

(−1)�+

(
−1

8

(
3
4
(2�+ 1)2π2

)
k+(2�+ 1)πb

(
(2�+ 1)π

2

)

+

(
(2�+ 1)π

2

)2

b′
(
(2�+ 1)π

2

))
4−k +O(4−2k). (13.74)

Even without the O(4−k) term, this gives us
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p′k(ξ (θ )) =
4k

3θ
sinθ +O(1)

=
4k

3(2�+ 1)π/2
(−1)�+O(1), (13.75)

which is enough to improve the accuracy of zk,� to O(4−3k). If we work harder
and include the next term (which requires us to compute b′(θ ), not that this is
so very hard), then we get something better, but with just this estimate p′k(−2+
3θ 24−k/2)≈−sinθ , we get

z(1)k,� = zk,�− pk(zk,�)

p′k(zk,�)
(13.76)

=−2+
3
2
θ 24−k− (−cosθ + 4−k( θ

3

8 sinθk+θ 2b(θ )))
sinθ4k/3+O(1)

(13.77)

and if θ = (2�+ 1)π/2,

=−2+
3
2

(
(2�+ 1)π

2

)2

4−k− 3(−1)�4−2k
(
θ 3

8
sinθk+θ 2b(θ )

)
+O(4−3k).

(13.78)
For k = 1, this gives, with �= 0,

z(1)1,0 =−2+
3
2

(π
2

)2
4−1− 3

(
− (π/2)3

8
·1+

(π
2

)2
b
(π

2

))
·4−2 (13.79)

and, since b(π/2) = 0.1285353, this gives z(1)1,0 = −1.0434, which is better than
before. Of course, an accurate Newton step, using either p′k(z) directly or the
formula with b′(θ ) above, is better yet: also of course, this formula is better for
larger k.

13.5.3 Interlacing

The largest roots, as predicted by this formula, have a curious interlacing property:
between every root of pk(z) there are two roots of pk+1(z) and sometimes one of
pk−1(z), as can be seen by graphing −cos(θ/2), −cos(θ ), and −cos(2θ ) on the
same graph.

Compare p7(−2+ 3/2cosθ 24−7) = p7(−2+ 3/2(2θ )2 ·4−8), p8(−2+ 3/2θ 2 ·
4−8) and p9(−2 + 3/2(θ/2)2 · 4−8). See Figs. 13.2 and 13.3. Furthermore, the
largest root of pk+1(z) must lie between −2 and the largest root of pk(z).
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Fig. 13.2 −cos(θ/2),
−cos(θ ), and −cos(2θ )

Fig. 13.3 The difference
between
p7(−2+3/2(2θ )24−8),
p8(−2+3/2θ 24−8), and
p9(−2+3/2(θ/2)24−8) and
the cosines in Fig. 13.2. The
solid line is k = 7, the dotted
line is k = 8, and the dashed
line is k = 9

13.5.4 Barycentric Weights

In [5] the authors consider eigenvalue methods based on Lagrange interpolation at
the nodes z= 0, z=−2, and z= ξk−1, j for 1≤ j≤ 2k−1−1, where pk−1(ξk−1, j) = 0,
and on Hermite interpolation at the same nodes. It turns out to matter greatly
how widely varying the weights are: the condition number for evaluation (and
rootfinding) is proportional to the ratio of the maximum barycentric weight to
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the minimum barycentric weight and inversely proportional to the minimum node
separation raised to the maximum confluency. See [2–4].

Here, we can explicitly compute some of these barycentric weights, which are
really just coefficients in partial fraction expansions. The expansions we need are

1
zpk−1(z)(z+ 2)

=
γ0

z
+

2k−1−1

∑
j=1

γ j

(z− ξk−1, j)
+

γN

(z+ 2)
(13.80)

and

1

zp2
k−1(z)(z+ 2)

=
γ0

z
+

2k−1−1

∑
j=1

(
γ j,0

(z− ξk−1, j)
+

γ j,1

(z− ξk−1, j)2

)
+

γN

(z+ 2)
. (13.81)

It is easy to see that γ0 = γN = 1/2, because pk−1(0) = 1 and (for k > 0), pk−1

(−2) =−1.
Using our formulas for the roots ξk−1,�

.
= −2+ 3((2�+ 1)/2)24−k+1 (changing

our notation somewhat), we can show that the weights in the Lagrange case are
−4/(2�+ 1)2/π2 (for zeros near the maximum point −2), whereas for the Hermite
case their ratios vary by a factor 4k (which is not as bad as it seems—that is, after
all, just the square of the degree of the polynomial, more or less).

This matters more because the minimum node separation also goes like 4−k, and
hence the condition number must be at least O(43k) for the Hermite case, whereas
for the Lagrange case we have only shown O(4k). The other weights also matter, and
experimental work (not given here) shows that their variation is somewhat greater
but that the conclusion still holds: the Lagrange basis is better-conditioned.

13.6 More About the Functional Equation for b(θ)

The functional equation (13.38) can be simplified. Note first that the homogeneous
equation

b(θ ) = 4cos
θ
2

b

(
θ
2

)
(13.82)

has solution H(θ ) = Kθ sinθ :

Kθ sinθ = 4cos
θ
2
·K · θ

2
· sin

θ
2
= K ·θ ·2 · sin

θ
2
· cos

θ
2
= K ·θ · sinθ . (13.83)

If we use the homogeneous solution, θ sinθ , to try to identify b(θ ) using
variation of parameters, we are led to look at the change of variable b(θ ) =
θ sinθB(θ ). This gives
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θ sinθB(θ ) = 4cos

(
θ
2

)(
θ
2

)
sin

(
θ
2

)
B

(
θ
2

)
+

1
8
θ sinθ +

3
2

cos2
(
θ
2

)

= θ sinθ

(
B

(
θ
2

)
+ 1/8+

3
8

cot
( θ

2

)
( θ

2

)
)

. (13.84)

Dividing by θ sinθ , this leads to the curious series

B(θ ) =
N
8
+

3
8

(
N

∑
�=1

cot(θ/2�)
θ/2�

)
+B

(
θ
2N

)
. (13.85)

One is tempted to let N→∞, but this series (obviously) diverges. But we know quite
a bit about b(θ ) for small θ , namely that its Taylor series begins −1/2+ 3/8θ 2−
1/18θ 4+ · · · , and hence we know how B(θ/2N) behaves for large N:

B(θ/2N) =
1

θ/2N sinθ/2N

(
−1

2
+

3
8
θ 2

22N −
1

18
θ 4

24N + · · ·
)

=− 1
2θ 2 22N +

7
24

+O(2−2N). (13.86)

This is enough terms to identify and cancel all the singular parts as N → ∞, in a
rigorous form of renormalization, as we will see.

We also need the (well-known) series for the cotangent function:

cotθ = ∑
m≥0

(−1)m B2m4m

(2m)!
θ 2m−1 , (13.87)

where here B2m represents the 2mth Bernoulli number. Using this, we can expand
cot(θ/2�)/(θ/2�) in Taylor series to get

N

∑
�=1

cot(θ/2�)
θ/2�

=
∞

∑
m=0

(−1)m B2m4m

(2m)!

N

∑
�=1

(
θ/2�

)2m−2
, (13.88)

where we have interchanged the order of the (finite) first sum with the (absolutely
convergent if |θ | < π) second sum. But now the inner sum is a finite geometric
series, which we can identify (even in the cases where the ratio is 1, when m = 1
and the sum is just −N/3, and larger than 1, when m = 0). If m is not 1,

N

∑
�=1

(
θ/2�

)2m−2
= θ 2m−2

(
1− 1/2N(2m−2)

)
22m−2− 1

(13.89)

and putting this all together (not forgetting the factor 3/8), we have
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B(θ ) =
N
8
+

(
−N

8
+

1
2

22N

θ 2 −
1

2θ 2 +
3
8

∞

∑
m=2

(−1)mB2m4m

(2m)!(22m−2− 1)
θ 2m−2

)

− 1
2

22N

θ 2 +
7

24
+O(4−N), (13.90)

which, as N→ ∞, gives us an explicit expression for the series coefficients of B(θ )
and hence b(θ ):

b(θ ) =−1
2

sinθ
θ

+
7

24
θ sinθ +

3
8
θ sinθ ∑

m≥2

(−1)mB2m4m

(2m)!(22m−2− 1)
θ 2m−2 . (13.91)

This is still not a closed form, but somehow it is more satisfying than the recurrence
relation. One could go a little further yet and write down an explicit finite sum
containing factorials and Bernoulli numbers, for each Taylor coefficient of b(θ ), by
multiplying the known series for θ sinθ explicitly. But we have to lay the pen down
somewhere, and it may as well be here.

13.7 Concluding Remarks

There remains quite a bit to be done. It seems obvious that we can compute many
more terms in this expansion:

pk(−2+
3
2
θ 24−k) =−cosθ +∑

�≥1

vk(θ )4−�k , (13.92)

where each vk(θ ) will be a polynomial of degree �, in k, and give various linear
inhomogeneous functional equations for the coefficients of those polynomials. This
series might even be convergent.

One can ask about the smallest root, instead. Preliminary computations using a
homotopy method to find the smallest root, from the previous iteration’s smallest
root, suggest (but only suggest, as we have only computed about 4 digits) that the
smallest roots begin sk = 1/4+π2/k± iβ/k2+ · · · for some real β near 20. The π2

is very speculative and may well be completely wrong. Again, we leave that pursuit
for another day.

However, the computations that we have done, using the OEIS, helped to
discover an analytic formula for a family of roots of a nonlinear recurrence relation;
more, a recurrence relation that has roots that approach a fractal boundary as k→∞.
One wonders if any other interesting nonlinear equations are also susceptible of such
a treatment.
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Chapter 14
On the Fractal Distribution of Brain Synapses

Richard Crandall†

Abstract Herein we present mathematical ideas for assessing the fractal character
of distributions of brain synapses. Remarkably, laboratory data are now available
in the form of actual three-dimensional coordinates for millions of mouse-brain
synapses (courtesy of Smithlab at Stanford Medical School). We analyze synapse
datasets in regard to statistical moments and fractal measures. It is found that
moments do not behave as if the distributions are uniformly random, and this
observation can be quantified. Accordingly, we also find that the measured fractal
dimension of each of two synapse datasets is 2.8± 0.05. Moreover, we are able to
detect actual neural layers by generating what we call probagrams, paramegrams,
and fractagrams—these are surfaces one of whose support axes is the y-depth (into
the brain sample). Even the measured fractal dimension is evidently neural-layer
dependent.
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14.1 Motivation

Those who study or delight in fractals know full well that often the fractal nature
is underscored by structural rules. When the author was informed by colleagues1

that 3D synapse data is now available in numerical form, it loomed natural that
mathematical methods should be brought to bear.

Thus we open the discussion with the following disclaimer: The present paper is
not a neurobiological treatise of any kind. It is a mathematical treatise. Moreover,
there is no medical implication here, other than the possibility of using such
measures as we investigate for creation of diagnostic tools.2

There is some precedent for this kind of mathematical approach. Several of many
fractal studies on neurological structures and signals include [8–10]. on random
point-clouds per se have even been suggested for the stringent testing of random-
number generators [7]. Some researchers have attempted to attribute notions of
context-dependent processing, or even competition to the activity within neural
layers [1]. Indeed, it is known that dendrites—upon which synapses subsist—travel
through layers. Some good rendition graphics are found in [16]. Again, our input
datasets do not convey any information about dendritic structure; although, it could
be that deeper analysis will ultimately be able to suggest dendritic presence [17].

14.2 Synapse Data for Mathematical Analysis

Our source data is in the section Appendix: Synapse datasets. It is important to note
that said data consists exclusively of triples (x,y,z) of integers, each triple locating
a single brain synapse, and we rescale to nanometers to yield physically realistic
point-clouds. There is no neurological structure per se embedded in the data. This
lack of structural information actually allows straightforward comparison to random
point-clouds (Fig. 14.1).

To be clear, each synapse dataset has the form

x0 y0 z0

x1 y1 z1

1From Smithlab, of Stanford Medical School [15].
2Indeed, one motivation for high-level brain science in neurobiology laboratories is the under-
standing of such conditions as Alzheimer’s syndrome. One should not rule out the possibility of
“statistical” detection of some brain states and conditions—at least, that is our primary motive for
bringing mathematics into play.
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Fig. 14.1 Frame from video: The beginning (top layer, y∼ 0) of a mouse-brain section. Synapses
(our present data of interest) are red points. The vertical strip at upper left represents the complete
section—the small light-pink rectangle indicates the region we are currently seeing in the video
(courtesy of Smithlab, Stanford medical school [15])
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· · ·

x j y j z j (= r)

· · ·

xk yk zk (= q)

· · ·

xN−1 yN−1 zN−1,

where each x,y,z is an integer (Appendix 1 gives the nanometer quantization). There
are N points, and we have indicated symbolically here that we envision some row
as point r and some other row as point q, for the purposes of statistical analysis
(Fig. 14.2). (A point r may or may not precede a q on the list, although in our
calculations we generally enforce r �= q to avoid singularities in some moments.)

14.3 The Modern Theory of Box Integrals

Box integrals—essentially statistical expectations, also called moments, over a unit
box rather than over all of space—have a rich, decades-long history (see [2,3,5] and
historical references therein). The most modern results involve such functions as

Δn(s) := 〈|r−q|〉|r,q∈[0,1]n

=

∫ 1

0
· · ·
∫ 1

0

(
n

∑
k=1

(rk− qk)
2

)s/2

dr1dq1dr2dq2 · · ·drndqn.

This can be interpreted physically as the expected value of vs, where separation
v = |v|, v := r−q is the distance between two uniformly random points each lying
in the unit n-cube (Fig. 14.3).

It is of theoretical interest that Δn(s) can be given a closed form for every integer
s, in the cases n = 1,2,3,4,5 [5]. For example, the expected distance between two
points in the unit 3-cube is given exactly by
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Fig. 14.2 A subsection in neural layer 5b. The chemical color-coding is as follows. Green: Thy1-
H-YFP (layer 5B neuron subset); Red: Synapsin I (synapses); Blue: DAPI (DNA in all nuclei). All
of our present analyses involve only the synapsin-detected synapses
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Fig. 14.3 Views of 5,000 random points (left) and 5,000 actual synapses (right) in a cuboid of
given sides as follows (all in nanometers): a = Δx∼ 103,300;b = Δy∼ 78,200;c = Δz∼ 11,400,
for horizontal, vertical, and transverse (angled into page), respectively. To convey an idea of
scale, a millimeter is about 10x the horizontal span of either point-cloud. It is hard to see visual
differences between the random points at left and the actual brain points at right. Nevertheless,
sufficiently delicate statistical measures such as moments 〈|v|s〉 as well as fractal measurement do
reveal systematic, quantifiable differences

Δ3(1) = −118
21
− 2

3
π+

34
21

√
2− 4

7

√
3+ 2 log

(
1+
√

2
)
+ 8 log

(
1+
√

3√
2

)

= 0.66170718226717623515583113324841358174640013579095 . . ..

The exact formula allows a comparison between a given point-cloud and a random
cloud: One may calculate the empirical expectation 〈|r−q|〉, where r,q each runs
over the point-cloud and compares with the exact expression Δ3(1)≈ . . .. Similarly
it is known that the expected inverse separation in the 3-cube is

Δ3(−1) :=

〈
1

|r−q|
〉

=
2
5
− 2

3
π+

2
5

√
2− 4

5

√
3+ 2log

(
1+
√

2
)
+ 12log

(
1+
√

3√
2

)
− 4log

(
2+
√

3
)

= 1.88231264438966016010560083886836758785246288031070 . . ..
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Fig. 14.4 Pictorial of the role of cuboid calculus in our analysis scenario. The right-hand entity
pictorializes an array-tomography section of mouse brain (see Appendix: Synapse datasets for
details). At the left is an idealized, long cuboid representing the full brain sample, inside of which
is a chosen subsection as an (a,b,c)-cuboid. The idea is to statistically compare the synapse
distribution within an (a,b,c)-cuboid against a random distribution having the same cuboid
population. By moving the (a,b,c) cuboid downward, along the y-axis, one can actually detect
neural layers

Such exact forms do not directly apply in our analysis of the brain data, because
we need volume sections that are not necessarily cubical. For this reason, we next
investigate a generalization of box integrals to cuboid volumes (Fig. 14.4).

14.4 Toward a Theory of Cuboid Integrals

In the present study we shall require a more general three-dimensional box integral
involving a cuboid of sides (a,b,c).3 Consider therefore an expectation for two
points r,q lying in the same cuboid (Fig. 14.5):

Δ3(s;a,b,c) := 〈|r−q|〉|r,q∈ [0,a]×[0,b]×[0,c]

=
1

a2b2c2

∫ a

0

∫ a

0

∫ b

0

∫ b

0

∫ c

0

∫ c

0
|r−q|s dr1 dq1 dr2 dq2 dr3 dq3.

This agrees with the standard box integral Δ3(s) when (a,b,c) = (1,1,1).

3A cuboid being a parallelepiped with all faces rectangular—essentially a “right parallelepiped.”
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Fig. 14.5 Probability density curves for the separation v = |r − q| (horizontal axis), taken
over a cuboid of data, in the spirit of Fig. 14.4. The green curve (with highest peak) is
extracted from subsegment 2 of dataset I, under the segmentation paradigm {12,1,128,{1,128}}.
The red curve (with rightmost peak) is theoretical—calculated from the Philip formula for
F3(v; 146700,107900,2730). The blue “excess curve” is the point-wise curve difference (amplified
3×) and can be used in our “probagram” plots to show excess as a function of section depth y.
The expected separations within this cuboid turn out to be 〈v〉 = 62018,66789 for brain, random,
respectively

Figure 14.6 shows the result of empirical assessment of cuboid expectations for
dataset I.

We introduce a generalized box integral, as depending on fixed parameters
k,a1,a2,a3 (we use ai here rather than a,b,c just for economy of notation):

G3(k;a1,a2,a3) := 〈e−k|p−q|2〉

=
1

∏a2
i

∫ a1

0

∫ a1

0
· · ·
∫ a3

0

∫ a3

0
e−k|r−q|2 dr1 dr2 dr3 dq1 dq2 dq3,

which, happily, can be given a closed form

G3(k;a1,a2,a3) =
1
k3∏

i

e−a2
i k + ai

√
πkerf

(
ai
√

k
)
− 1

a2
i

,

where erf(z) := 2/
√
π
∫ z

0 e−t2
dt denotes the error function. The closed form here is

quite useful, and by expanding the erf() in a standard series, we obtain for example
a three-dimensional summation for G3. The question is, can one write a summation
that is of lower dimension? One possible approach is to expand the Gaussian in even
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Fig. 14.6 Results for cuboid expectations of separation v and 1/v for cuboids of the type in
Fig. 14.4, running over all y-depth. (The dark green horizontal strip represents the full sample,
oriented left-right for these plots.) In both left- and right-hand plots, the horizontal red line
is calculated from the exact formula for Δ3(1;a,b,c). The segmentation paradigm here is
{12,2,80,{1,32}}, dataset I

powers of |p−q| and leverage known results in regard to box integrals Δn of Bailey
et al. [2, 3]. Such dimensionality reduction remains an open problem.

Yet another expectation that holds promise for point-cloud analysis is what one
might call a Yukawa expectation:

Y3(k;a1,a2,a3) :=

〈
e−k|r−q|

|r−q|

〉
.

This is the expected Yukawa potential—of nuclear physics lore—between two
points within the cuboid. The reason such potentials are of interest is that being
“short-range” (just like nuclear forces) means that effects of closely clustered points
will be amplified. Put another way: The boundary effects due to finitude of a cuboid
can be rejected to some degree in this way.

14.4.1 Cuboid Statistics

Not just the exact expectation Δ3(1;a,b,c) but the very probability density F3(v;a,
b,c) has been worked out by Philip [14]. Both exact expressions in terms of a,b,c
are quite formidable—see Appendix: Exact-density code for a programmatic way
to envision the complexity. By probability density, we mean

Prob{|r−q| ∈ (v,v+ dv)} = F3(v;a,b,c)dv;
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hence we have a normalization integral with upper limit being the long cuboid
diagonal:

∫ √a2+b2+c2

0
F3(v;a,b,c)dv = 1.

More generally we can represent the moment Δ3 in the form

Δ3(s;a,b,c) =

∫ √a2+b2+c2

0
vs F3(v;a,b,c)dv.

The Philip density for separation v can also be used directly to obtain the density
for a power of v, so

f3(X := vs;a,b,c) =
1
|s|X

1
s−1F3(X

1
s ;a,b,c).

For example, if we wish to plot the density of inverse separation X := 1/v for
a random point-cloud, we simply plot X−2F3(1/X ;a,b,c) for X running from
1/
√

a2 + b2 + c2 up to infinity; the area under this density will be 1.

14.5 Fractal Dimension

For the present research we used two fractal-measurement methods: The classical
box-counting method, and a new, space-fill method. For a survey of various fractal-
dimension definitions, including estimates for point-cloud data, see [6].

As for box-counting, we define a box dimension

δ := limε→0
log#(ε)
− logε

,

where for a given side ε of a microbox, #(ε) is the number of microboxes that
minimally, collectively contain all the points of the point-cloud. Of course, our
clouds are always finite, so the limit does not exist. But it has become customary
to develop a #-vs.ε curve, such as the two curves atop Fig. 14.7, and report in some
sense “best slope” as the measured box dimension.

There are two highly important caveats at this juncture: We choose to redefine
the box-count number, as

# → # · 1

1− e−Nε3 ,

when the cloud has N total points. This statistical warp factor attempts to handle
the scenario in which microboxes are so small that the finitude of points causes
many empty microboxes. Put another way: The top curve of the top part of
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Fig. 14.7 Fractal-dimension measurement. Within a given cuboid we use the standard box-
counting method, namely, in the upper figure is plotted log# vs. log(1/ε) for random points
(upper, blue curve), then for the actual synapse points (lower, red curve), and with the excess as the
green (lowest) plot. In the bottom figure, we use the excess to estimate fractal dimension for each
cuboid in a segmentation paradigm {12,2,80,{2,80}}. Evidently, the fractal dimension fluctuates
depending on layer characteristics at depths y, with an average fractal dimension of ∼ 2.8 for the
whole of dataset I

Fig. 14.7—which curve should have slope 3 for N random points—stays straight
and near slope 3 for a longer dynamic range because of the warp factor.

The second caveat is that we actually use not ε-microboxes but microcuboids.
When the segment being measured is originally of sides (a,b,c), we simply rescale
the cuboid to be in a unit box, which is equivalent to using a “microbrick” whose
aspect ratios are that of the cuboid, and transform that microbrick to a cube of side
ε := (abc)1/3.

14.5.1 Space-Fill Method for Fractal Measurement

During this research, we observed that a conveniently stable fractal-measurement
scheme exists for point-cloud datasets. We call this method the “space-fill” algo-
rithm, which runs like so4:

4The present author devised this method in 1997, in an attempt to create “1/ f ” noise by digital
means, which attempt begat the realization that fractal dimension could be measured with a Hilbert
space-fill.
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Fig. 14.8 The “space-fill” method for measuring point-cloud dimension. This algorithm as
described in the text yields similar results to the more standard box-counting method, yet
preliminary research reveals the space-fill method to be rather more stable with respect to graph
noise. The basic idea is to create a set of pullbacks on the line [0,1) and then use a quick sort and
a simple one-dimensional fractal assessment

1. Assume a three-dimensional unit cube containing a point-cloud and construct a
Hilbert space-filling curve, consisting of discrete visitation points H(t), where t
runs over the integers in [0,23b−1]. (The resolution of this curve will be b binary
bits per coordinate, therefore.)

2. Create a list of “pullback” rationals tk/23b, corresponding to the points rk of the
point-cloud data.

3. Perform a one-dimensional sort on the set of pullbacks and measure the fractal
dimension δ1 using a simple interval counter.

4. Report fractal dimension of the point-cloud data as δ = 3 ·δ .

We do not report space-fill measurements herein—all of the results and figures
employ the box-counting method—except to say (a) the space-fill method appears to
be quite stable, with the fractagram surfaces being less noisy, and (b) the dimensions
obtained in preliminary research with the space-fill approach are in good agreement
with the box-counting method. Figure 14.8 pictorializes the space-fill algorithm.

14.6 Probagrams, Paramegrams, and Fractagrams

Our “grams” we have so coined to indicate their three-dimensional-embedding
character.5 Each ‘gram is a surface, one of whose support dimensions is the section

5As in “sonogram”—which these days can be a medical ultrasound image, but originally was a
moving spectrum, like a fingerprint of sound that would fill an entire sheet of strip-chart.
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Fig. 14.9 The “fractagram” concept—which is similar for probagrams and paramegrams. For
each cuboid in a given segmentation paradigm (here, paradigm {12,2,80,{2,80}}) we generate
the fractal-slope excess as in Fig. 14.7. The resulting “strands” of fractal data vs. y-depth in the
dataset (here, dataset I) are much easier to interpret if plotted as a surface, which surface we then
call a fractagram as pictured in Fig. 14.11

depth y. In our “grams”, as in the original synapse datasets, y= 0 is the outside (pial)
surface, while y increases into the brain sample. We typically have, in our “grams”,
downward increasing y, so that the top of a ‘gram pictorial is the outside surface.

Precise definitions are:

• Probagram: Surface whose height is probability density of a given variable within
a cuboid, horizontal axis is the variable, and the vertical axis is the y-depth into
the sample.

• Paramegram: Surface whose height is a parameterized expectation (such as our
function G3(k;a,b,c)), horizontal axis is the parameter (such as k), and the
vertical axis is y-depth.

• Fractagram: Surface whose height is the excess between the fractal-slope curve
for a random cloud in a cuboid and the actual data cloud’s fractal-slope curve,
horizontal axis is − logε , and vertical axis is as before the y-depth (Fig. 14.9).
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Fig. 14.10 A baseline experiment. At left is the probagram for dataset I and density f3(X :=
1/v2;a,b,c) under segmentation paradigm {12,2,16,{2,10}}. At the right is the result of using
the same number of points (N = 1,119,299) randomly placed within the full sample cuboid. This
kind of experiment shows that the brain synapses are certainly not randomly distributed

In general, we display these “grams” looking down onto the surface or possible at a
small tilt to be able to understand the surface visually.

What we shall call a segmentation paradigm is a set P of parameters that
determine the precise manner in which we carve (a,b,c)-cuboids out of a full
synapse dataset (Fig. 14.10). Symbolically,

P := {M,G,H,{b,e}},

where

• M is the “magnification” factor—the y-thickness of a cuboid divided into the full
y-span of the dataset.

• G is the “grain”—which determines the oversampling; 1/G is the number of
successively overlapping cuboids in one cuboid.

• H is the number of histogram bins in a ‘gram plot, and we plot from bin b to
bin e.

We generally use g < 1 to avoid possible alias effects at cuboid boundaries. The
total number of cuboids analyzed in a ‘gram thus turns out to be

S = 1 + G(M− 1).
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Fig. 14.11 Typical set of three “grams”: At far left is a pictorialized a full-section sample, with a
small box indicating a cuboid subsection. As said section is moved downward (increasing y), we
obtain, left-to-right and for separation, v := |r−q|, the probagram for v−1, then the paramegram for
〈exp(−kv2)〉, then the fractalgram. The phenomenon of neural layering is evident and qualitatively
consistent (either correlated or anticorrelated) across all three “grams” for this sample (dataset I,
detailed in Appendix: Synapse datasets)

For example, with grain G = 3 and M = 10, we calculate over a total of 28 cuboids.
This is because there are generally G = 3 cuboids overlapping a given cuboid. In
any case, one may take cuboid dimensions a,b,c as

a = xmax− xmin; b =
ymax− ymin

M
;c = zmax− zmin,

where min, max coordinates are deduced from the data (Fig. 14.11). (In our “grams”,
we continually recompute the min, max for every cuboid to guard against such as
corner holes in the data.)

14.7 How Do We Explain the Observed Fractal Dimension?

Let us give an heuristic argument for the interaction of cuboid expectations and
fractal-dimension estimates. Whereas the radial volume element in 3-space is
4πr2dr, imagine a point-cloud having the property that the number of points a
distance r from a given point scales as rδ−1 where δ < 3, say. Then, if the
characteristic size of a point sample is R (here we are being rough, avoiding
discussion of the nature of the region boundaries), we might estimate an expectation
for point-separation v to the sth power as

〈vs〉 ∼
∫ R

0 usuδ−1 du∫ R
0 uδ−1 du

.
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Note that we can avoid calculation of a normalization constant by dividing this way,
to enforce 〈v0〉= 1. This prescription gives the estimate

〈vs〉 ∼ δ
s+ δ

Rs,

showing a simple dependence on the fractal dimension δ . In fact, taking the left-
hand plot of Fig. 14.6, we can right off estimate the fractal dimension of the whole
dataset as

δ ∼ 2.6,

not too off the mark from our more precise fractal measurements that we report as
2.8± 0.05.

So one way to explain our discovered fractal dimension ∼ 2.8 < 3 for both
datasets is to surmise that the distance metric is weighted in some nonuniform
fashion (Fig. 14.12).

14.7.1 Generalized Cantor Fractals

One aspect undertaken during the present research was to attempt to fit the observed
fractal properties of the datasets to some form of Cantor fractal. There is a way to
define a generalized Cantor fractal in n dimensions so that virtually any desired
fractal dimension in the interval [n log2

log3 ,n] (see [4]).6 Such generalized Cantor
fractals were used to fine-tune our fractal measurement machinery.

Interestingly, the cuboid expectations for dataset II seem qualitatively resonant
with the corresponding expectations for a certain generalized Cantor set called
C3(33111111) having dimension δ = 2.795 . . . . However, dataset I does not have
similar expectations on typical cuboids. For one thing, the highest-peak curve in
Fig. 14.5—which is from a cuboid within dataset I—shows 〈v〉 for the laboratory
data being less than the same expectation for random data; yet, a Cantor fractal
tends to have such expectation larger than random data.

We shall soon turn to a different fractal model that appears to encompass the
features of both datasets. But first, a word is appropriate here as to the meaning
of “holes” in a dataset. Clearly, holes in the laboratory point-clouds will be caused

6Mathematically, the available fractal dimensions for the generalized Cantor fractals are dense in
said interval.
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Fig. 14.12 The “grams” for the synapse-location datasets I, II. The top row shows G3
paramegrams and baseline test for segmentation paradigm {12,2,32,{1,10}}. The second row
shows probagrams for inverse separation 1/v, in the same segmentation paradigm. The two 3D
plots at bottom are the fractagrams. At far-left and far-right bottom are graphical displays of the
per-cuboid fractal-dimension estimate. Note that the baseline test here is for a randomly filled
cuboid; the horizontal lines at dimension 3.0 really are less noisy than one pixel width. Thus the
datasets I, II can be said both to have overall fractal dimension 2.8± 0.5, although the dimension
is evidently neural-layer dependent

by the simple fact of synapses not subsisting within large bodies.7 So, too, Cantor
fractals can be created by successive removal of holes that scale appropriately. But
here is the rub: The existence of holes does not in itself necessarily alter fractal
dimension.8 For example, take a random cloud and remove large regions, to create
essentially a swiss-cheese structure in between whose holes are equidistributed
points. The key is, fractal-measurement machinery will still give a dimension very
close to δ = 3.

7Synapses live on dendrites, exterior to actual neurons.
8Of course, the situation is different if hole existence is connected with microscopic synapse
distribution, e.g., if synapses were to concentrate near surfaces of large bodies.
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14.7.2 “Bouquet” Fractal as a Possible Synapse-Distribution
Model

We did find a kind of fractal that appears to lend itself well to comparison with
synapse distributions.9 We shall call such artificial constructs “bouquet” fractals.
A generating algorithm to create a bouquet point-cloud having N points runs as
follows:

1. In a unit 3-cube, generate N0 random points (N0 and other parameters can be
used to “tune” the statistics of a bouquet fractal). Thus the point-cloud starts
with population N0.

2. Choose an initial radius r = r0, a multiplicity number m, and a scale factor c < 1.
3. For each point in the point-cloud, generate m new points a mean distance r away

(using, say, a normal distribution with deviation r away from a given point). At
this juncture the point-cloud population will be N0 ·mk for k being the number of
times this step 3 has been executed. If this population is ≥ N, go to step 5.

4. Reduce r by r = c · r and go to step 3.
5. Prune the point-cloud population so that the exact population is achieved.

The bouquet fractal will have fractal dimension on the order of

δ ∼ logm
− logc

,

but this is an asymptotic heuristic; in practice, one should simply tune all parameters
to obtain experimental equivalencies.10 For example, our dataset I corresponds
interestingly to bouquet parameters

{N0,r0,m,c} = {1000,N−1/3
0 ,23,1/3}.

The measured fractal dimension of the resulting bouquet for population N =
1,119,299 is δ ∼ 2.85 and statistical moments also show some similarity.

Once again, something like a bouquet fractal may not convey any neurophys-
iological understanding of synapses locations, but there could be a diagnostic
parameter set, namely that set for which chosen statistical measures come out
quantitatively similar.

9Again, we are not constructing here a neurophysiological model; rather, a phenomenological
model whose statistical measures have qualitative commonality with the given synapse data.
10The heuristic form of dimension δ here may not be met if there are not enough total points. This
is because the fractal-slope paradigm has low-resolution box counts that depend also on parameters
N0, r.
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14.7.3 Nearest-Neighbor Calculus

Another idea that begs for further research is to perform nearest-neighbor calculus
on synapse cuboids. This is yet a different way to detect departure from randomness.

In an n-dimensional unit volume, the asymptotic behavior of the nearest-pair
distance for N uniformly randomly placed points, namely

μ1 := 〈min |r−q|〉r,q ∈V ,

is given—in its first asymptotic term—by

μ1 ∼ Γ
(

1+
1
n

)
21/n
√
π
Γ 1/n

(
1+

n
2

) 1

N2/d
+ . . . .

In our (n = 3)-dimensional scenarios, we thus expect the nearest-pair separation
to be

μ1 ∼ Γ (4/3)

π1/3

1

N2/3
≈ 0.6097

N2/3
.

It is interesting that this expression can be empirically verified with perhaps less
inherent noise than one might expect.

Presumably a nearest-pair calculation on the synapse distributions will reveal
once again significant departures from randomness. What we expect is a behavior
like so

μ1 ∼ constant

N2/δ

for fractal dimension δ . Probably the best research avenue, though, is to calculate
the so-called k-nearest-pairs, meaning ordered k-tuples of successively more sep-
arate pairs, starting with the minimal pair, thus giving a list of expected ordered
distances μ1,μ2, . . . ,μk.
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Appendix 1: Synapse Datasets

Referring to Table 14.1: Both datasets I, II are from adult-mouse “barrel cortex”
which is a region of the somatosensory neocortex involved in processing sensation
from the facial whiskers (one of the mouse’s primary sensory modalities). The long
y-axis of the volumes crosses all 6 layers of the neocortex (these are layers parallel
to the cortical surface, and the long axis is perpendicular to the surface).

Neurophysiological considerations including array-tomography technology are
discussed in [11–13] and web URL [15]; we give a brief synopsis:

Array tomography (AT) is a new high-throughput proteomic imaging method
offering unprecedented capabilities for high-resolution imaging of tissue molecular
architectures. AT is based on (1) automated physical, ultrathin sectioning of tissue
specimens embedded in a hydrophilic resin, (2) construction of planar arrays of
these serial sections on optical coverslips, (3) staining and imaging of these two-
dimensional arrays, and (4) computational reconstruction into three dimensions,
followed by (5) volumetric image analysis. The proteomic scope of AT is enhanced
enormously by its unique amenability to high-dimensional immunofluorescence
multiplexing via iterative cycles of antibody staining, imaging and antibody elution.

Appendix 2: Exact-Density Code

(* Evaluation of the exact Philip density F3[v,a,b,c]
for an (a,b,c)-cuboid. *)

h11[u_, a_, b_, c_] := 1/(3 aˆ2 bˆ2 cˆ2) *
If[u <= bˆ2, -3 Pi b c u + 4 b uˆ(3/2),

If[u <= cˆ2,
4 bˆ4 + 6 bˆ2 c Sqrt[u - bˆ2] -
6 b c u ArcSin[b/Sqrt[u]],
If[u <= bˆ2 + cˆ2, 4 bˆ4 + 6 bˆ2 c *

Sqrt[u - bˆ2] +
6 b c u (ArcCos[c/Sqrt[u]] -
ArcSin[b/Sqrt[u]]) -

Table 14.1 Synapse dataset characteristics

File, voxel nm×nm×nm N (xmin,xmax) (ymin,ymax) (zmin, zmax)

I
KDM-100824B 100×100×70 1,119,299 (2800,151300) (2300,1298000) (105,2835)

II
mMos3 Syn 100×100×200 1,732,051 (100,103400) (100,1252600) (105,4095)

The point-cloud population N exceeds 106 for each dataset. The min, max parameters have been
converted here to nm
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2 b (2 u + cˆ2) Sqrt[u - cˆ2],
0

]
]

];

h12[u_, a_, b_, c_] := 1/(6 aˆ2 bˆ2 cˆ2) *
If[u <= aˆ2,

12 Pi a b c Sqrt[u] - 6 Pi a (b + c) u +
8 (a + c) uˆ(3/2) - 3 uˆ2,
If[u <= cˆ2,

5 aˆ4 - 6 Pi aˆ3 b +
12 Pi a b c Sqrt[u] +
8 c uˆ(3/2) - 12 Pi a b c *
Sqrt[u - aˆ2] - 8 c *
(u - aˆ2)ˆ(3/2) -
12 a c u ArcSin[a/Sqrt[u]],
If[u <= aˆ2 + cˆ2,

5 aˆ4 - 6 Pi aˆ3 b +
6 Pi a b cˆ2 -
cˆ4 + 6 (Pi a b + cˆ2) u +
3 uˆ2 - 12 Pi a b c *
Sqrt[u - aˆ2] -
8 c (u - aˆ2)ˆ(3/2) -
4 a (2 u + cˆ2)*
Sqrt[u - cˆ2] +
12 a c u *

(ArcCos[c/Sqrt[u]]-ArcSin[a/Sqrt[u]]),
0

]
]

];

h22[u_, a_, b_, c_] := 1/(3 aˆ2 bˆ2 cˆ2) *
If[u <= aˆ2, 0,

If[u <= aˆ2 + bˆ2,
3 Pi aˆ2 b (a + c) - 3 aˆ4 -
6 Pi a b c Sqrt[u] +
3 (aˆ2 + Pi b c) u +
(6 Pi a b c - 2 (b + 3 c) aˆ2-4 b u)*
Sqrt[u - aˆ2] -
6 a b u ArcSin[a/Sqrt[u]],
If[u <= aˆ2 + cˆ2,

3 aˆ2 b (Pi a - b) - 4 bˆ4-
12 a b c Sqrt[u]*



346 R. Crandall

ArcSin[b Sqrt[u]/(Sqrt[aˆ2 + bˆ2] * Sqrt[u - aˆ2])]-
6 a c (a - Pi b) Sqrt[u - aˆ2]-
6 c (bˆ2 - aˆ2 +

2 a b ArcSin[a/Sqrt[aˆ2 + bˆ2]])*
Sqrt[u - aˆ2 - bˆ2] -
6 a b (aˆ2 + bˆ2)*
ArcSin[a/Sqrt[aˆ2 + bˆ2]] +
6 b c (aˆ2 + u) *
ArcSin[b/Sqrt[u - aˆ2]],
3 aˆ2 (aˆ2 - bˆ2 - cˆ2)-4 bˆ4-
3 aˆ2 u - 12 a b c Sqrt[u] *

(ArcSin[b Sqrt[u]/(Sqrt[aˆ2 + bˆ2] * Sqrt[u-aˆ2])]-
ArcCos[a c/(Sqrt[u - cˆ2] Sqrt[u - aˆ2])]) +

2 b (aˆ2 + cˆ2 + 2 u) *
Sqrt[u - aˆ2 - cˆ2] -
6 c *

(bˆ2 - aˆ2 + 2 a b ArcSin[a/Sqrt[aˆ2 + bˆ2]]) *
Sqrt[u - aˆ2 - bˆ2] -
6 a b (aˆ2 + bˆ2) *
ArcSin[a/Sqrt[aˆ2 + bˆ2]] +
6 b c (aˆ2 + u) *

(ArcSin[b/Sqrt[u - aˆ2]] - ArcCos[c/Sqrt[u - aˆ2]])+
6 a b (cˆ2 + u) *
ArcSin[a/Sqrt[u - cˆ2]]

]
]

];

h32[u_, a_, b_, c_] := h22[u, b, a, c];

h33[u_, a_, b_, c_] := 1/(6 aˆ2 bˆ2 cˆ2) *
If[u <= bˆ2, 0,

If[u <= aˆ2 + bˆ2,
3 (2 Pi a b + bˆ2 + u) (u - bˆ2) -
4 c (bˆ2 + 3 Pi a b + 2 u) *
Sqrt[u - bˆ2],
If[u <= bˆ2 + cˆ2, 3 (aˆ2 + bˆ2)ˆ2 -

3 bˆ4 + 6 Pi aˆ3 b -
4 c (bˆ2 + 3 Pi a b + 2 u) *
Sqrt[u - bˆ2] +
4 c (aˆ2 + bˆ2 + 3 Pi a b + 2 u)*
Sqrt[u - aˆ2 - bˆ2],

3 (aˆ2 + bˆ2)ˆ2 + cˆ4 +
6 Pi a b (aˆ2 + bˆ2 - cˆ2) -
6 (Pi a b + cˆ2) u - 3 uˆ2 +
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4 c (aˆ2 + bˆ2 + 3 Pi a b + 2 u)*
Sqrt[u - aˆ2 - bˆ2]

]
]

];

(* Next, the Philip density function for separation v.
It must be arranged that a <= b <= c. *)

F3[v_, a_, b_, c_] :=
2 v (h11[vˆ2, a, b, c] + h12[vˆ2, a, b, c] +
h22[vˆ2, a, b, c] + h32[vˆ2, a, b, c] +
h33[vˆ2, a, b, c]);
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Chapter 15
Visible Points in Convex Sets and Best
Approximation

Frank Deutsch, Hein Hundal, and Ludmil Zikatanov

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The concept of a visible point of a convex set relative to a given point is
introduced. A number of basic properties of such visible point sets are developed. In
particular, it is shown that this concept is useful in the study of best approximation,
and it also seems to have potential value in the study of robotics.

Key words: Best approximation from convex sets • Visible points in convex sets
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15.1 Introduction

Unless explicitly stated otherwise, throughout this paper X will always denote a
(real) normed linear space, and C a closed convex set in X . For any two distinct
points x,v in X , we define interval notation analogous to that on the real line by
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[x,v] : = {λx+(1−λ )v | 0≤ λ ≤ 1},
[x,v[ : = {λx+(1−λ )v | 0 < λ ≤ 1},
]x,v] : = {λx+(1−λ )v | 0≤ λ < 1}= [v,x[ , and

]x,v[ : = {λx+(1−λ )v | 0 < λ < 1}.

In other words, [x,v] is just the closed line segment joining x and v, [x,v[ is the same
line segment but excluding the end point v, and ]x,v[ is the line segment [x,v] with
both end points x and v excluded.

Definition 15.1. Let x ∈ X . A point v ∈C is said to be visible to x with respect to
C if and only if [x,v]∩C = {v} or, equivalently, [x,v[∩C = /0. The set of all visible
points to x with respect to C is denoted by VC(x).

Thus

VC(x) = {v ∈C | [x,v]∩C = {v}}= {v ∈C | [x,v[∩C = /0}. (15.1)

Geometrically, one can regard VC(x) as the “light” that would be cast on the set C
if there were a light source at the point x emanating in all directions. Alternatively,
one can regard the set C as an “obstacle” in X , a “robot” is located at a point x ∈ X ,
and the directions determined by the intervals [x,v], where v ∈ VC(x), as directions
to be avoided by the robot so as not to collide with the obstacle C.

In this paper we begin a study of visible sets. In Sect. 15.2, we will give some
characterizations of visible sets (see Lemmas 15.4 and 15.10, and Theorem 15.15
below). We show that the visible set mapping VC satisfies a translation property just
like the well-known metric projection PC (see Lemma 15.6 below). Recall that the
generally set-valued metric projection (or nearest point mapping) PC is defined on
X by

PC(x) := {y ∈C | ‖x− y‖= inf
c∈C
‖x− c‖}.

Those closed convex sets C such that the set of visible points to each point not in
C is the whole set C are precisely the affine sets (Proposition 15.7). In Sect. 15.3
we study the connection between visible points and best approximations. Finally,
in Sect. 15.4 we consider characterizing best approximations to a point in a Hilbert
space from a polytope, i.e., the convex hull of a finite set of points.

15.2 Visibility from Convex Sets

The first obvious consequence of the definition of visibility is the following.

Lemma 15.2. Let C be a closed convex set in X. If x ∈C, then VC(x) = {x}.
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This lemma shows that the most interesting case is when x ∈ X \C and the main
results to follow actually require this condition as part of their hypotheses. Indeed,
when x /∈C, there are additional useful criteria that characterize visible points. For
any set C, let bdC denote the boundary of C.

Unlike the metric projection, the visibility operator is never empty-valued.

Lemma 15.3. Let C be a closed convex set in X. Then

1. VC(x) �= /0 for each x ∈ X, and
2. VC(x)⊂ bdC for each x ∈ X \C.

Proof.

1. Let x ∈ X . By Lemma 15.2 we may assume that x /∈C. Fix any y ∈C. Then the
interval [x,y] contains points in C (e.g., y) and points not in C (e.g., x). Let

λ0 := sup{λ ∈ [0,1] | λx+(1−λ )y∈C}.

Since C is closed, it follows that v0 := λ0x+(1−λ0)y ∈ C. Hence λ0 < 1, and
[x,v0]∩C = {v0}. That is, v0 ∈VC(x).

2. Fix any x ∈ X \C. To show that v ∈ bdC for each v ∈ VC(x). If not, then there
exists some v ∈VC(x) such that v ∈C\bdC. Hence v is in the interior of C. Thus
there must be a subinterval [v0,v] of the interval [x,v] which lies in C. Hence
[x,v]∩C �= {v}, a contradiction to v ∈VC(x).

�
Lemma 15.4 (Characterization of visible points). Let C be a closed convex set in
X, x ∈ X \C, and v ∈C. Then the following statements are equivalent:

1. v is visible to x with respect to C.
2. λx+(1−λ )v /∈C for each 0 < λ ≤ 1.
3. max{λ ∈ [0,1] | λx+(1−λ )v∈C}= 0.

Proof. (1)⇒ (2): If (1) holds, then [x,v[∩C = /0. Since [x,v[= {λx+(1−λ )v | 0 <
λ ≤ 1}, (2) follows.

(2)⇒ (3): Since v ∈C, (3) is an obvious consequence of (2).
(3)⇒ (1): If (3) holds, then [x,v[∩C = /0. That is, v ∈VC(x). �
Simple examples in the Euclidean plane (e.g., a box) show that although C is

convex, VC(x) is not convex in general. These simple examples also might seem
to indicate that VC(x) is always closed. However, the following example in 3
dimensions shows that this is false in general.

Consider the subset of Euclidean 3-space �2(3) defined by

C := (1,0,0)+ cone{(1,α,β ) | α2 +(β − 1)2 ≤ 1}. (15.2)

Example 15.5. The set C defined by (15.2) is a closed convex subset of �2(3) such
that 0 /∈C and VC(0) is not closed.
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Fig. 15.1 The set C from
Example 15.5

Proof. The result is geometrically obvious (see Fig. 15.1) by observing that the
points (2,sin t,1+ cost) are in VC(0) for each 0 < t < π , but that the limit point
(2,0,0) (as t → π) is not. However, the formal proof of this fact is a bit lengthy.
Clearly, 0 /∈ C since the first component of any element of C is at least 1. We first
verify the following claim.

Claim. The points v(t) := (2, sin t, 1+ cost) are in VC(0) for each 0 < t < π .

Using the classical trig identity sin2 t+cos2 t = 1, it is clear that v(t)∈C for each
0< t < π . To complete the proof of the claim, it is enough to show that [0,v(t)[∩C =
/0 for each 0< t < π . By way of contradiction, suppose the claim is false. Then there
exists 0 < t0 < π such that [0,v(t0)[∩C �= /0. Since 0 /∈C, it follows that there exists
0 < λ < 1 such that λv(t0) ∈C. That is,

λ (2, sin t0,1+ cost0) ∈C = (1,0,0)+ cone{(1,α,β ) | α2 +(β − 1)2 ≤ 1}
= (1,0,0)+∪ρ≥0ρ{(1,α,β ) | α2 +(β − 1)2 ≤ 1}.

Since λ sin t0 �= 0, it follows that for some ρ > 0,

λ (2, sin t0,1+ cost0) = (1,0,0)+ρ(1,α,β ) (15.3)

for some α and β such that

α2 +(β − 1)2 ≤ 1. (15.4)
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By equating the corresponding components in (15.3), we obtain

2λ = 1+ρ (15.5)

λ sin t0 = ρα (15.6)

λ (cost0 + 1) = ρβ (15.7)

From (15.5) is deduced that ρ = 2λ − 1 < 2− 1 = 1 and hence that

0 < ρ < 1. (15.8)

Also, from (15.6) and (15.7) we deduce that α = μ sin t0 and β = μ(1+ cost0),
where μ := λ/ρ . Substituting these values for α and β into (15.4), we deduce after
some algebra that 1≥ 2μ2(1+ cost0)−2μ(1+ cost0)+1. Subtracting 1 from both
sides of this inequality and then dividing both sides of the resulting inequality by the
positive number 2μ(1+cost0), we obtain μ ≤ 1, i.e., λ ≤ ρ . From (15.5), it follows
that ρ ≥ 1, which contradicts (15.8). This proves the claim.

It remains to note that the limit point limt→π v(t) = v(π) = (2,0,0) is not in
VC(0). For this, it is enough to note that [0,v(π)[∩C �= /0. And for this, it suffices to
show that (3/4)v(π) ∈C. But

3
4

v(π) =
(

6
4
,0,0

)
= (1,0,0)+

1
2
(1,0,0) ∈C.

�
The following simple fact will be useful to us. It shows that the visible set

mapping VC satisfies a translation property that is also satisfied by the (generally
set-valued) metric projection PC.

Lemma 15.6. Let C be a closed convex set and x,y ∈ X. Then

VC(x) =VC+y(x+ y)− y. (15.9)

Proof. Let v ∈C. Note that v ∈VC(x)⇔ [x,v[∩C = /0⇔ [x+ y,v+ y[∩(C+ y) = /0
⇔ v+ y∈VC+y(x+ y)⇔ v ∈VC+y(x+ y)− y. �

It is natural to ask which closed convex sets C have the property that VC(x) = C
for each x /∈C. That is, for which sets is the whole set visible to any point outside
the set? The next result shows that this is precisely the class of affine sets. Recall
that a set A is affine if the line through each pair of points in A lies in A. That is,
if the line aff{a1,a2} := {α1a1 +α2a2 | α1 +α2 = 1} ⊂ A for each pair a1,a2 ∈ A.
Equivalently, A is affine if and only if A = M+ a for some (unique) linear subspace
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M (namely, M = A−A) and (any) a ∈ A. Finally, the affine hull of a set C, aff(C),
is the intersection of all affine sets which contain C. As is well known,

aff(C) =

{
∑
j∈J
α jx j

∣∣∣∣ J finite, ∑
j∈J
α j = 1, x j ∈C

}
. (15.10)

Proposition 15.7. Let C be a closed convex set in X. Then the following statements
are equivalent:

1. C is affine.
2. VC(x) =C for each x ∈ X \C.

Proof. (1) ⇒ (2): Let us assume first that C = M is actually a subspace, i.e., that
0 ∈C. Fix any x /∈M. Since VM(x)⊂M, it suffices to show that M ⊂VM(x). To this
end, let m∈M. If m /∈VM(x), then [x,m[∩M �= /0. Hence there exists 0 < λ < 1 such
that λx+(1−λ )m ∈M. Since m ∈M, this implies that λx ∈M and hence x ∈M, a
contradiction. This proves (2) in case C is a subspace.

In general, suppose C is affine. Then C = M+ c for some subspace M and c ∈C.
For any x ∈ X \C, we see that x− c /∈M and by the above proof and Lemma 15.6
we obtain

VC(x) =VM+c(x) =VM(x− c)+ c = M+ c =C.

(2) ⇒ (1): Assume (2) holds. If C is not affine, then there exist distinct points
c1,c2 in C such that aff{c1,c2} �⊂ C. Since C is closed convex and aff{c1,c2} is a
line, it follows that either aff{c1,c2}∩C = [y1,y2] or aff{c1,c2}∩C = y1+{ρ(y2−
y1) | ρ ≥ 0} for some distinct points y1,y2 in C. In either case, it is easy to verify that
x := 2y1− y2 /∈ C. Also, y1 = 1

2 x+ 1
2 y2 ∈ [x,y2[∩C, which proves that y2 /∈ VC(x)

and hence contradicts the hypothesis that VC(x) =C. Thus C must be affine. �
Definition 15.8. Let C be a closed convex subset of X . For any point y ∈ X , we
define the translated cone Cy of C by

Cy := cone(C− y)+ y.

Some basic facts about the translated cone follow.

Lemma 15.9. Let C be a closed convex set in X. Then the following statements
hold:

1. Cy ⊃C for each y ∈ X.
2. The set cone(C− y), and hence also Cy, is not closed in general.
3. If y ∈ C and the set cone(C− y) is closed, then Cy = TC(y)+ y, where TC(y) is

the tangent cone to C at y.
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Proof.

1. Cy = cone(C− y)+ y⊃C− y+ y=C.
2. Consider the closed ball C of radius one in the Euclidean plane centered at the

point (0,1) and let y denote the origin (0,0). Then Cy is the open upper half-plane
plus the origin, which is not closed.

3. This follows since the definition of the tangent cone to C at the point y ∈ C is
given by TC(y) = cone(C− y) (see, e.g., [1, p. 100]).

�
One can also characterize the visible points via the translated cone.

Lemma 15.10. Let C be a closed convex set in X, x ∈ X \C, and v ∈ C. Then v ∈
VC(x) if and only if x /∈Cv. Equivalently, v /∈VC(x) if and only if x ∈Cv.

Proof. If v /∈ VC(x), then [x,v[∩C �= /0. Thus there exists 0 < λ < 1 such that y :=
λx+(1−λ )v∈C. Hence x−v = (1/λ )(y−v) ∈ cone(C−v) and therefore x ∈Cv.

Conversely, if x∈Cv, then there exist ρ ≥ 0 and y∈C such that x= ρ(y−v)+v=
ρy+(1−ρ)v. If ρ ≤ 1, then x, being a convex combination of two points in C, must
lie in C, a contradiction. It follows that ρ > 1 and y = (1/ρ)x+((ρ − 1)/ρ)v ∈
[x,v[∩C. Thus [x,v[∩C �= /0, and so v /∈VC(x) by (15.1). �

The following proposition shows that the translated cones of C form the external
building blocks for C.

Proposition 15.11. Let C be a closed convex set in X. Then

⋂
y∈bdC

Cy =
⋂
y∈C

Cy =
⋂
y∈X

Cy =C.

Proof. By Lemma 15.9,∩y∈XCy ⊃C. Thus to complete the proof, it suffices to show
that ∩y∈bdCCy ⊂ C. If not, then there exists x ∈ ∩y∈bdCCy \C. Thus x ∈ Cy \C for
each y ∈ bdC. By Lemma 15.10 y /∈ VC(x) for all y ∈ bdC. But VC(x) ⊂ bdC by
Lemma 15.3(2). This shows that VC(x) = /0, which contradicts Lemma 15.3(1). �

A somewhat deeper characterization of visible points is available by using the
strong separation theorem. Recall that two sets C1 and C2 in the normed linear space
X can be strongly separated by a continuous linear functional x∗ ∈ X∗ if

sup
y∈C1

x∗(y)< inf
z∈C2

x∗(z). (15.11)

One can also interpret strong separation geometrically. Suppose C1 and C2 are
strongly separated by the functional x∗ such that (15.11) holds. Let b be any scalar
such that

sup
y∈C1

x∗(y)≤ b≤ inf
z∈C2

x∗(z).
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Define the hyperplane H and the (open) half-spaces H+ and H− by

H := {y ∈ X | x∗(y) = b}, H+ := {y ∈ X | x∗(y)> b}, and

H− := {y ∈ X | x∗(y)< b}.

(Note that H, H−, and H+ are disjoint sets such that X = H ∪H− ∪H+.) Then
H is said to strongly separate the sets C1 and C2 in the sense that C1 ⊂ H ∪H−,
C2 ⊂ H ∪H+, and (at least) one of the sets C1 or C2 is disjoint from H.

Fact 15.12 (Strong Separation Theorem; see [4, Theorem V.2.10, p. 417]). Let
C1 and C2 be two disjoint closed convex sets in X , one of which is compact. Then
the sets can be strongly separated by a continuous linear functional.

Definition 15.13. Let K be a convex subset of X . A point e∈K is called an extreme
point of K if k1 ∈ K, k2 ∈ K, 0 < λ < 1, and e = λk1 +(1−λ )k2 imply that k1 =
k2 = e. The set of extreme points of K is denoted by extK.

The following fact is well known (see, e.g., [4, pp. 439–440]), and it will be
needed in this section and the next.

Fact 15.14 (Krein–Milman). Let K be a nonempty compact convex subset of X .
Then:

1. K has extreme points and K is the closed convex hull of its extreme points: K =
conv(extK).

2. If x∗ ∈ X∗, then x∗ attains its maximum (resp., minimum) value over K at an
extreme point of K.

Theorem 15.15 (Another characterization of visible points). Let C be a closed
convex subset of X, x ∈ X \C, and v ∈ C. Then the following statements are
equivalent:

1. v is visible to x with respect to C.
2. For each point y ∈]x,v[, there exists a functional x∗ ∈ X∗ that strongly separates

[x,y] and C, and x∗(y) = maxz∈[x,y] x∗(z).
3. For each point y ∈]x,v[, there exists a hyperplane H = Hy that contains y and

strongly separates [x,y] and C.

Proof. (1)⇒ (2): Suppose v is visible to x from C. Then [x,v[∩C = /0. In particular,
for each y ∈ [x,v[, [x,y]∩C ⊂ [x,v[∩C = /0. Thus [x,y] and C are disjoint closed
convex sets, and [x,y] is compact. By Fact 15.12, there exists x∗ ∈ X∗ such that

b := sup
z∈[x,y]

x∗(z)< inf
c∈C

x∗(c). (15.12)

To verify (2), it remains to show that x∗(y) = b. If x = y, this is clear. Thus we may
assume that x �= y. Since [x,y] is compact, the supremum on the left side of (15.12)
is attained. Further, this maximum must be attained at an extreme point of [x,y] by
Fact 15.14(2). Since x and y are the only two extreme points of [x,y], we must have
x∗(x) = b or x∗(y) = b.
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Suppose x∗(x) = b. Since v ∈ C, we have x∗(v) > b by (15.12). Since y ∈]x,v[,
there exists 0 < λ < 1 such that y = λx+(1−λ )v. Then

x∗(y) = λx∗(x)+ (1−λ )x∗(v)> λb+(1−λ )b= b,

which contradicts the definition of b. Thus the condition x∗(x) = b is not possible,
and we must have that x∗(y) = b, which verifies (2).

(2)⇒ (3): Assume (2) holds. Let y ∈]x,v[. Choose x∗ ∈ X∗ as in (2), and define
H := {z∈X | x∗(z) = b}, where b=maxz∈[x,y] x∗(z). Then H strongly separates [x,y]
and C, x∗(y) = b, and so y ∈ H. Thus (3) holds.

(3) ⇒ (1): Suppose (3) holds but (1) fails. Then [x,v[∩C �= /0. Choose any y ∈
]x,v[∩C. By (3), there is a hyperplane H that strongly separates [x,y] and C such
that y ∈H. Writing H = {z∈ X | x∗(z) = b}, we see that [x,y]⊂ {z∈ X | x∗(z)≤ b},
C ⊂ {z ∈ X | x∗(z) > b}, and x∗(y) = b. But y ∈C and hence x∗(y) > b, which is a
contradiction. �

15.3 Visibility and Best Approximation

In this section we explore the connection between visibility and best approximation.
The first such result states that the set of best approximations to x from C is always
contained in the set of visible points to x with respect to C.

Lemma 15.16. Let C be a closed convex subset of X. Then PC(x) ⊂VC(x) for each
x ∈ X.

Proof. The result is trivial if PC(x) = /0. If x ∈ C, then clearly PC(x) = {x} and
VC(x) = {x} by Lemma 15.2.

Now suppose x∈X \C and let x0 ∈PC(x). Then x0 ∈C so x0 �= x. If [x,x0[∩C �= /0,
then there exists 0 < λ < 1 such that xλ := λx+(1−λ )x0 ∈C. Hence

‖x− xλ‖= ‖(1−λ )(x− x0)‖= (1−λ )‖x− x0‖< ‖x− x0‖,

which is a contradiction to x0 being a closest point in C to x. This shows that
[x,x0[∩C = /0 and hence that x0 ∈VC(x). �

Recall that if X is a strictly convex reflexive Banach space, then each closed
convex subset C is Chebyshev (see, e.g., [7]). That is, for each x ∈ X , there is a
unique best approximation (i.e., nearest point) PC(x) to x from C. As is well known,
the most important example of a strictly convex reflexive Banach space is a Hilbert
space. It is convenient to use the following notation. If S is any subset of X , then the
convex hull of S is denoted by conv(S) and the closed convex hull of S is denoted
by conv(S).

Another such relationship between visibility and best approximation is the
following.
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Lemma 15.17. Let X be a strictly convex reflexive Banach space and C a closed
convex subset of X. Then C is a Chebyshev set and if x ∈ X \C, then

PC(x) = PVC(x)(x) = PconvVC(x)(x). (15.13)

Proof. By Lemma 15.16, PC(x) ∈ VC(x). Since VC(x) ⊂ convVC(x) ⊂C, it follows
that PC(x) ∈ PVC(x)(x) and PC(x) = PconvVC(x)(x). Thus PVC(x)(x) is a singleton and
(15.13) holds. �

While the Krein–Milman theorem [Fact 15.14(1)] shows that the set of extreme
points extC of a compact convex set C forms the internal building blocks of C, the
next result shows that the sets Ce, where e ∈ extC, form the external building blocks
for C. It is a sharpening of Proposition 15.11 in the special case when the closed
convex set C is actually compact.

Theorem 15.18. Let C be a compact convex set in X. Then

C =
⋂
{Ce | e ∈ extC}=

⋂
{Cy | y ∈C}. (15.14)

Proof. Using Proposition 15.11, it suffices to show that ∩{Ce | e ∈ extC} ⊂ C. If
not, then there exists x ∈ ∩{Ce | e ∈ extC} \C. By Fact 15.12, there exists x∗ ∈ X∗
such that

s := sup
c∈C

x∗(c)< x∗(x). (15.15)

By compactness of C, the supremum of x∗ over C is attained, i.e., there exists c0 ∈C
such that x∗(c0) = s. As is easily verified, the set

C̃ =C∩{y ∈ X | x∗(y) = s} (15.16)

is extremal in C and has extreme points (since it is a closed, hence compact, convex
subset of C), and each extreme point of C̃ is an extreme point of C (see, e.g., [4,
pp. 439–440]). Choose any extreme point c̃ in C̃. Then c̃ ∈ extC. Also, x ∈ Cc̃ =
cone(C− c̃)+ c̃ implies that x = ρ(c− c̃)+ c̃ for some ρ > 0 and c ∈C (see, e.g.,
[3, Theorem 4.4(5), p. 45]). Hence

s < x∗(x) = ρ [x∗(c)− x∗(c̃)]+ x∗(c̃)≤ x∗(c̃) = s,

which is impossible. This contradiction completes the proof. �
Proposition 15.19. Let C be a closed convex set in X, x ∈ X \C, and let x0 ∈C be
a proper convex combination of points ei in C. That is, x0 = ∑k

1λiei for some λi > 0
with ∑k

1λi = 1. If x0 is visible to x with respect to C, then each ei is also visible to x.

Proof. If k = 1 the result is trivial. Assume that k = 2. (We will reduce the general
case to this case.)
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If the result were false, then we may assume without loss of generality that e1

is not visible to x. Thus ]x,e1[∩C �= /0. Hence there exists 0 < μ < 1 such that
x1 := μx+(1− μ)e1 ∈C. It follows that

e1 =
1

1− μ x1− μ
1− μ x. (15.17)

Next consider, for each ρ ∈ [0,1], the expression x(ρ) := ρx1 +(1−ρ)e2. Clearly,
x(ρ)∈C for all such ρ since both x1 and e2 are in C and C is convex. Omitting some
simple algebra, we deduce that

x(ρ) = ρ [μx+(1− μ)e1]+ (1−ρ)e2

= ρμx+(1−ρμ)x0+ρ(1− μ)e1+(1−ρ)e2− (1−ρμ)x0

= ρμx+(1−ρμ)x0+[ρ(1− μ+λ1μ)−λ1]e1 +[−ρ(1− μ+λ1μ)+λ1]e2.

In particular, if we choose

ρ̃ :=
λ1

1− μ+λ1μ
, (15.18)

it is not hard to check that 0 < ρ̃ < 1. Thus 0 < ρ̃μ < 1 and

x(ρ̃) = ρ̃μx+(1− ρ̃μ)x0 ∈C. (15.19)

This proves that x(ρ̃) ∈ ]x,x0[∩C, which contradicts the fact that x0 is visible to x.
Finally, consider the case when k ≥ 3. If the result were false, then without loss

of generality, we may assume that e1 fails to be visible to x. Write

x0 = λ1e1 + μ
k

∑
i=2

λi

μ
ei,

where μ := ∑k
2λi = 1−λ1. Then 0 < μ < 1, λ1 = 1− μ , and x0 = (1− μ)e1 + μy,

where y = ∑k
2
λi
μ ei ∈C by convexity. By the case when k = 2 that we proved above,

we get that e1 (as well as y) is visible to x, which is a contradiction. �
Remark 15.20. Simple examples in the plane (e.g., a triangle) show that the
converse to Proposition 15.19 is false! That is, one could have a closed convex set
C, a point x ∈ X \C, points ei ∈VC(x) for i = 1,2, . . . ,k, k ≥ 2, but x0 =

1
k ∑

k
1 ei ∈C

is not visible to x.

Theorem 15.21. Let C be a closed and bounded convex set in an n-dimensional
normed linear space X. Then

C =

{
k

∑
1

λiei

∣∣∣∣ 1≤ k≤ n+ 1, λi ≥ 0,
k

∑
1

λi = 1, ei ∈ extC

}
. (15.20)
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Further, let x ∈ X \C. Then each point in PC(x) is a proper convex combination of
no more than n+ 1 extreme points of C all of which are visible to x with respect to
C. That is,

PC(x)⊂
{

k

∑
1

λiei

∣∣∣∣ 1≤ k ≤ n+ 1, λi ≥ 0,
k

∑
1

λi = 1, ei ∈ (extC)∩VC(x)

}
.

(15.21)

Proof. By [6, Corollary 18.5.1], C = conv(extC). By Caratheodory’s theorem (see,
e.g., [2, p. 17]), each point in conv(extC) may be expressed as a convex combination
of at most n+ 1 points of extC. That is,

conv(extC) =

{
n+1

∑
1
λiei

∣∣∣∣ ei ∈ extC,λi ≥ 0,
n+1

∑
1
λi = 1

}
. (15.22)

This proves (15.20).
Now let x ∈ X \C. By the first part, each point of PC(x) is in conv(extC). By

Proposition 15.19 and Lemma 15.16, (15.21) follows. �

15.4 Best Approximation from a Simplex

In this section we investigate the problem of finding best approximations from a
polytope, i.e., the convex hull of a finite number of points in a Hilbert space X .
Such sets are compact (because they are closed and bounded in a finite-dimensional
subspace).

Let E := {e0,e1, . . . ,en} be a set of n+1 points in X that is affinely independent,
i.e., {e1− e0,e2− e0, . . . ,en− e0} is linearly independent. This implies that each
point in the convex hull C = conv{e0,e1, . . . ,en} has a unique representation as a
convex combination of the points of E . In this case, C is also called an n-dimensional
simplex with vertices ei, since the dimension of the affine hull aff(C) of C is n.
Further, the relative interior of C, that is, the interior of C relative to aff(C), is
given by

ri(C) :=

{ n

∑
i=0

λiei
∣∣ λi > 0,

n

∑
i=0

λi = 1

}
. (15.23)

It follows that the relative boundary of C, rbd(C) :=C \ ri(C), is given by

rbd(C) =

{ n

∑
i=0
λiei
∣∣ λi ≥ 0,

n

∑
i=0
λi = 1, λ j = 0 for at least one j

}
. (15.24)
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(See [6, p. 44ff] and [5, p. 7ff] for more detail and proofs about the facts stated in
this paragraph.)

We consider sets of affinely independent points, since this case captures the
essence of our constructions and arguments. Convex hulls of n affinely dependent
points (i.e., finite point sets that are not affinely independent) can be split into the
union of a finite number of convex hulls of subsets of affinely independent points.
Thus the problem of finding best approximation from the convex hull of an affinely
dependent set of points can be reduced to a finite number of problems analogous to
the one that we consider below in detail.

Under the above hypothesis that C is an n-dimensional simplex, we wish to
compute PC(x) for any x ∈ X .

We give an explicit formula for PC(x) in the case when n = 1, that is, when
C = [e0,e1] is a line segment. Then, by a recursive argument, we will indicate how
to compute PC(x) when C is an n-dimensional simplex for any n≥ 2. First we recall
that the truncation function [·]10 is defined on the set of real numbers by

[α]10 =

⎧⎨
⎩

0 if α < 0,
α if 0≤ α ≤ 1,
1 if α > 1.

(Note that in the space X = R, [α]10 = P[0,1](α) for all α ∈ R.)

Proposition 15.22. Let C = conv{e0,e1} = [e0,e1] be a 1-dimensional simplex.
Then, for each x ∈ X,

PC(x) = e0 +

[〈x− e0,e1− e0〉
‖e1− e0‖2

]1

0
(e1− e0). (15.25)

Proof. Let α := 〈x− e0,e1− e0〉‖e1− e0‖−2 and c0 := e0+[α]10(e1−e0). Then c0 ∈
C, and by the well-known characterization of best approximations from convex sets
in Hilbert space (see, e.g., [3, p. 43]) it suffices to show that

〈x− c0,y− c0〉 ≤ 0 for each y ∈C. (15.26)

Let y ∈C. Then y = e0 +λ (e1− e0) for some λ ∈ [0,1]. Hence

〈x− c0,y− c0〉 = 〈x− e0− [α]10(e1− e0),λ (e1− e0)− [α]10(e1− e0)〉
= (λ − [α]10)[〈x− e0,e1− e0〉− [α]10‖e1− e0‖2]

= (λ − [α]10)‖e1− e0‖2 [α− [α]10
]
.

By considering the three possible cases: α < 0, α ∈ [0,1], and α > 1, it is easy to
see that the last expression is always ≤ 0. Hence (15.26) is verified. �
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Before considering the cases when n ≥ 2, let us first consider the problem of
computing PA(x) for any x ∈ X , where A = affC.

Fact 15.23. Let C = conv{e0,e1, . . . ,en} be an n-dimensional simplex, and let A =
aff(C). For any x ∈ X , we have

PA(x) = e0 +
n

∑
j=1

α j(e j− e0), (15.27)

where the scalars αi satisfy the “normal” equations:

n

∑
j=1

α j〈e j− e0,ei− e0〉= 〈x− e0,ei− e0〉 (i = 1,2, . . . ,n). (15.28)

The proof of this fact can be found e.g., in [1, p. 418] or [3, p. 215]. Moreover,
the “reduction principle” that was established in [3, p. 80] (where it was stated in
the particular case of a subspace) can be easily extended to affine sets as follows.

Fact 15.24 (Reduction principle). Let C be a closed convex set in the Hilbert
space X and let A = aff(C). Then PC = PC ◦PA. That is, for each x ∈ X ,

PC(x) = PC(PA(x)) and d2(x,C) = d2(x,A)+ d2(PA(x),C).

We are going to use the Reduction Principle as follows. We assume that it is
straightforward to find the best approximation to any x in the set A = affC, where
C is an n-dimensional simplex (since it involves only solving a linear system of n
equations in n unknowns by Fact 15.23). The Reduction Principle states that (by
replacing x with PA(x) if necessary) we may as well assume that our point x is in A
to begin with, and we shall do this in what follows. We will see that the case when
n = 2 can be reduced to the case when n = 1 (i.e., Proposition 15.22 above) for
which there is an explicit formula.

Proposition 15.25. Let C = conv{e0,e1,e2} be a 2-dimensional simplex. Then for
each x ∈ aff(C), either x ∈C, in which case PC(x) = x, or x /∈C, in which case

PC(x) = P[ei,ei+1](x) for any i ∈ {0,1,2} that satisfies (15.29)

‖x−P[ei,ei+1](x)‖= min
j
‖x−P[e j,e j+1](x)‖. (15.30)

(Here e3 := e0.)

Proof. If x ∈C, then obviously PC(x) = x. Thus we can assume that x ∈ aff(C)\C.
It follows that PC(x) must lie on rbdC = ∪2

i=0[ei,ei+1]. That is, PC(x) ∈ [ei,ei+1] for
some i = 0,1, or 2.
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Claim. PC(x) = P[ei,ei+1](x) for each i such that PC(x) ∈ [ei,ei+1].

To see this, we observe that since PC(x) ∈ [ei,ei+1], we have

‖x−PC(x)‖ = d(x,C) ≤ d(x, [ei,ei+1])≤ ‖x−PC(x)‖

which implies that ‖x−P[ei,ei+1](x)‖= d(x, [ei,ei+1]) = ‖x−PC(x)‖. By uniqueness
of best approximations from convex sets in Hilbert space, the claim is proved.

If k is any index such that ‖x−P[ek,ek+1]
(x)‖ = min j ‖x−P[e j,e j+1](x)‖, then it is

clear that we must have PC(x) = P[ek,ek+1](x). �
Now it appears to be straightforward to apply the idea of Proposition 15.25 to

any n-dimensional simplex to describe how to determine PC(x).
Let C = conv{e0,e1, . . . ,en} be an n-dimensional simplex in X and x ∈ aff(C). If

x ∈C, we have PC(x) = x. Thus we may assume that x ∈ aff(C)\C. It follows that
PC(x) ∈ rbd(C). From (15.24) we see

rbd(C) =

{ n

∑
0

λiei
∣∣ λi ≥ 0,

n

∑
0

λi = 1, λ j = 0 for some j

}
.

Since every y ∈ rbdC is contained in (at least) one of the sets

Cj :=

{ n

∑
i=0

λiei
∣∣ λi ≥ 0 for all i, λ j = 0, and

n

∑
0

λi = 1

}
, (15.31)

it follows that

rbdC =
n⋃

j=0

Cj.

Further, each Cj is a simplex of dimension n− 1 in C, PC(x) ∈Cj for at least one j,
and for all such j, we have that

‖x−PC(x)‖ = d(x,C)≤ ‖x−PCj(x)‖= d(x,Cj)≤ ‖x−PC(x)‖.

This implies that equality holds throughout these inequalities, and hence by the
uniqueness of best approximations, we have PC(x) = PCj(x). If J = { j | ‖x−
PCj(x)‖ = mini ‖x−PCi(x)‖}, then clearly PC(x) = PCj(x) for each j ∈ J.

This discussion suggests the following recursive algorithm for computing PC(x)
when C = conv{e0,e1, . . . ,en} is an n-dimensional simplex. Let Cj be the (n− 1)-
dimensional simplices as defined in (15.31). Let A = affC, A j = affCj for each
j = 0,1, . . . ,n, x ∈ A \C, and x j = PCj(x j) for all j. The algorithm below defines a
function P(n,x,C) which takes as input n and x and the set C and returns the best
approximation PC(x).
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Algorithm

1. If n = 1, then find P(1,x,C) by using the formula given in Proposition 15.22.
2. If n > 1, then compute x j = PA j(x) and PCj(x j) = P(n− 1,x j,Cj) for j =

0,1, . . . ,n.
3. Set PC(x) = PCj (x j) for any j ∈ argmink‖xk−PCk(xk)‖.
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Chapter 16
On Derivative Criteria for Metric Regularity

Asen L. Dontchev and Hélène Frankowska

Abstract We give a simple self-contained proof of the equality which links directly
the graphical derivative and coderivative criteria for metric regularity. Then we
present a sharper form of the criterion for strong metric regularity involving the
paratingent derivative.
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• Graphical derivative • Coderivative • Paratingent derivative
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16.1 Introduction

In this paper we prove two theorems. The first one is as follows.

Theorem 16.1. Let F : Rn ⇒ R
m be a set-valued map, let ȳ ∈ F(x̄), and assume

that gphF is locally closed at (x̄, ȳ). Then
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limsup
(x,y)→(x̄,ȳ),
(x,y)∈gphF

‖DF(x |y)−1‖− = ‖D∗F(x̄ | ȳ)−1‖+. (16.1)

The quantity on the left side of (16.1) involves the inner norm of the graphical
derivative and the condition that it is finite is the so-called derivative criterion for
metric regularity. The quantity on the right side is the outer norm of the coderivative
and it is well known that F is metrically regular if and only if this quantity is finite.
The graphical derivative and the coderivative are defined in further lines. In the case
when F is metrically regular both quantities in (16.1) are equal to the regularity
modulus of F . The reader can find these criteria and much more in books [2,5,8,9].

Recall that F is said to be metrically regular at x̄ for ȳ when ȳ ∈ F(x̄) and there
is a constant κ > 0 together with neighborhoods U of x̄ and V of ȳ such that

d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈U×V.

The infimum of κ over all combinations of κ , U and V is called the regularity
modulus and denoted by reg(F ; x̄ | ȳ).

Clearly, the equality (16.1) follows immediately from the combination of the
derivative and coderivative criteria for metric regularity. In this paper we give a
direct proof of (16.1) using a rather elementary duality argument without referring
to metric regularity. This proof employs the approach used to prove basically the
same result in [7]; however, the proof given here is simpler and, most importantly,
self-contained. It may be used in an alternative proof of the coderivative criterion
provided that derivative criterion is already proven, and vice versa.

Our second result is a derivative criterion for strong metric regularity. Recall that
a mapping F : Rn ⇒ R

m is strongly metrically regular at x̄ for ȳ when there exist
neighborhoods U of x̄ and V of ȳ such that the localization V � y �→ F−1(y)∩U of
the inverse mapping F−1 around (ȳ, x̄) is a Lipschitz continuous function.

Theorem 16.2. Consider a set-valued mapping F : Rn ⇒ R
m and (x̄, ȳ) ∈ gphF.

If F is strongly metrically regular at x̄ for ȳ, then

‖PF(x̄ | ȳ)−1‖+ < ∞. (16.2)

Furthermore, if the graph of F is locally closed at (x̄, ȳ) and

x̄ ∈ Liminf
y→ȳ

F−1(y), (16.3)

then condition (16.2) is also sufficient for strong metric regularity of F at x̄ for ȳ.
In this case the quantity on the left side of (16.2) equals reg(F ; x̄ | ȳ).

Here PF(x |y) denotes the paratingent derivative which we define below. Theo-
rem 16.2 sharpens [9, Theorem 9.54], where it is assumed that the mapping F−1 has
a local continuity property around (ȳ, x̄) which is much stronger than (16.3). It also
improves [8, Lemma 3.1], where another condition, again stronger than (16.3), is
used.
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Let us briefly introduce the notation and terminology used in the paper. The
closed ball with center x and radius r is denoted by IBr(x); the closed unit ball is IB.
We denote by ‖ · ‖ the Euclidean norm and by 〈·, ·〉 the usual inner product. The
Painlevé–Kuratowski lower and upper limits are denoted by Liminf and Limsup,
respectively. A set C is said to be locally closed at x∈C when there exists r > 0 such
that the set C∩ IBr(x) is closed. For a set C ⊂ R

n, a tangent vector v to C at x ∈ C,
written v ∈ TC(x), is a vector for which there exist sequences vk → v and tk → 0+
such that x+tkvk ∈C. The set of tangents, TC(x), is a closed cone, named the tangent
cone. A paratingent vector w to C at x ∈C, written w ∈ PC(x), is a vector for which
there exist sequences xk ∈ C, xk → x, tk → 0+ and vk → v such that xk + tkvk ∈ C.
Clearly, TC(x)⊂ PC(x). The polar K∗ to the cone K consists of all vectors y such that
〈y,x〉 ≤ 0 for all x∈ K. As is well known, K∗∗ = clcoK; here and later “clco” means
closed convex hull. The regular normal cone to a set C at a point x ∈ C, denoted
N̂C(x), is defined as the polar T ∗C (x) to the tangent cone to C at x. A vector w is a
generalized normal to C at x, written w ∈ NC(x), when there are sequences uk → w
and xk → x, xk ∈C such that uk ∈ N̂C(xk). The set of generalized normals NC(x) is
the general normal cone to C at x. That is, NC(x) = Limsup

y→x,y∈C
N̂C(y)⊃ N̂C(x).

Consider a mapping F : Rn ⇒ R
m and denote by gphF its graph defined by

gphF := {(x,y) |y ∈ F(x)}. For a pair (x,y) with y ∈ F(x), recall that the graphical
(also called contingent) derivative of F at x for y is the mapping DF(x |y) :Rn ⇒R

m

whose graph is the tangent cone TgphF(x,y) to gphF at (x,y):

v ∈ DF(x |y)(u) ⇔ (u,v) ∈ TgphF(x,y).

The coderivative of F at x for y is the mapping D∗F(x |y) : Rm ⇒ R
n whose

graph is defined by the general normal cone NgphF(x,y) to gphF at (x,y) in the
following way:

q ∈ D∗F(x |y)(p) ⇔ (q,−p) ∈ NgphF(x,y).

Finally, the paratingent derivative of F at x for y is the mapping PF(x |y) : Rn ⇒R
m

whose graph is the paratingent cone PgphF(x,y) to gphF at (x,y):

v ∈ PF(x |y)(u) ⇔ (u,v) ∈ PgphF(x,y).

Both the tangent and the paratingent cones were introduced by Bouligand in
1930s. Further discussion on tangent cones and graphical derivatives can be found
for instance in [2]. The paratingent derivative is called in [9] the strict graphical
derivative and in [8] it is called Thibault’s limit set. Directly from the definition we
have DF−1(y |x) =DF(x |y)−1 and the same for the coderivative and the paratingent
derivative.

A mapping H : Rn ⇒ R
m is said to be positively homogeneous if its graph is

a cone with vertex at zero. For any positively homogeneous mapping H, the outer
norm and the inner norm are defined, respectively, by
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‖H‖+ = sup
‖x‖≤1

sup
y∈H(x)

‖y‖ and ‖H‖− = sup
‖x‖≤1

inf
y∈H(x)

‖y‖

with the convention infy∈ /0 ‖y‖ = ∞ and supy∈ /0 ‖y‖ = −∞. The inner norm can be
also defined as

‖H‖− = inf
{
κ > 0

∣∣∣H(x)∩κIB �= /0 for all x ∈ IB
}
, (16.4)

while the outer norm satisfies

‖H‖+ = inf
{
κ > 0

∣∣∣y ∈ H(x) ⇒ ‖y‖ ≤ κ‖x‖
}
. (16.5)

If H has closed graph, then furthermore ‖H‖+ < ∞ ⇔ H(0) = {0}. The notation
and terminology used in the paper are mainly from [5].

16.2 Proof of Theorem 16.1

In the proof of Theorem 16.1 we employ the following lemma whose proof is
presented after the proof of the theorem.

Lemma 16.3. Let C be a convex and compact set in R
d, K ⊂ R

d be a closed set
and x̄ ∈ K. Then C∩TK(x) �= /0 for all x ∈ K near x̄ if and only if C∩clcoTK(x) �= /0
for all x ∈ K near x̄.

Proof (of Theorem 16.1). Since the graphical derivative and the coderivative are
defined only locally around (x̄, ȳ), we can assume without loss of generality that the
graph of the mapping F is closed. We will show first that

limsup
(x,y)→(x̄,ȳ),
(x,y)∈gphF

‖DF(x |y)−1‖− ≥ ‖D∗F(x̄ | ȳ)−1‖+. (16.6)

If the left side of (16.6) equals +∞ there is nothing to prove. Let a positive constant
c satisfy

c > limsup
(x,y)→(x̄,ȳ),
(x,y)∈gphF

‖DF(x |y)−1‖−.

From (16.4) there exists δ > 0 such that for all (x,y) ∈ gphF ∩ (IBδ (x̄)× IBδ (ȳ)) and
for every v ∈ IB there exists u ∈ DF(x |y)−1(v) such that ‖u‖ < c. Also, note that
(u,v) ∈ TgphF(x,y)⊂ clcoTgphF(x,y) = T ∗∗gphF(x,y).

Fix (x,y) ∈ gphF∩(IBδ (x̄)× IBδ (ȳ)) and let v∈ IB⊂R
m. Then there exists u with

(u,v) ∈ T ∗∗gphF(x,y) such that u = cw for some w ∈ IB. Let (p,q) ∈ N̂gphF(x,y) =
T ∗gphF(x,y). From the inequality 〈u, p〉+ 〈v,q〉 ≤ 0 we get
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cmin
w∈IB
〈w, p〉+ 〈v,q〉 ≤ 0 which yields − c‖p‖+ 〈v,q〉 ≤ 0.

Since v is arbitrarily chosen in IB, we conclude that

‖q‖ ≤ c‖p‖ whenever (p,q) ∈ N̂gphF(x,y). (16.7)

Now, let (p,q) ∈ NgphF(x̄, ȳ); then there exist sequences (xk,yk) ∈ gphF, (xk,yk)→
(x̄, ȳ) and (pk,qk) ∈ N̂gphF(xk,yk) such that (pk,qk)→ (p,q). But then, from (16.7),
‖qk‖ ≤ c‖pk‖ and in the limit ‖q‖ ≤ c‖p‖. Thus, ‖q‖ ≤ c‖p‖ whenever (−p,q) ∈
NgphF(x̄, ȳ) and therefore we have ‖q‖ ≤ c‖p‖ whenever (q,−p) ∈ NgphF−1(ȳ, x̄).
By the definition of the coderivative,

‖q‖ ≤ c‖p‖ whenever q ∈D∗F(x̄ | ȳ)−1(p).

This together with (16.5) implies that c≥ ‖D∗F(x,y)−1‖+ and we obtain (16.6) by
the arbitrariness of c.

For the converse inequality, it is enough to consider the case ‖D∗F(x̄ | ȳ)−1‖+ <
∞. Let

c > ‖D∗F(x̄ | ȳ)−1‖+. (16.8)

We first show that there exists δ > 0 such that for any (x,y) ∈ gphF ∩ (IBδ (x̄)×
IBδ (ȳ)) we have that

(0,v) ∈ N̂gphF(x,y) =⇒ v = 0. (16.9)

On the contrary, assume that there exist sequences (xk,yk) ∈ gphF with (xk,yk)→
(x̄, ȳ) and vk ∈ R

m with ‖vk‖= 1 such that (0,vk) ∈ N̂gphF(xk,yk) for all k. But then
there is v �= 0 such that (0,v)∈ NgphF(x̄, ȳ). Hence, there exists a nonzero v such that
v ∈ D∗F(x̄ | ȳ)−1(0). Taking into account (16.5), this contradicts (16.8).

Using (16.9), we will now prove a statement more general than (16.9) that there
exists δ > 0 such that for any (x,y) ∈ gphF ∩ (IBδ (x̄)× IBδ (ȳ)) we have

(v,−u) ∈ N̂gphF−1(y,x) =⇒ ‖v‖ ≤ c‖u‖. (16.10)

On the contrary, assume that there exists a sequence (yk,xk)→ (ȳ, x̄) such that for
each k we can find (vk,−uk) ∈ N̂gphF−1(yk,xk) satisfying ‖vk‖ > c‖uk‖. If uk = 0
for some k, then from (16.9) we get vk = 0, a contradiction. Thus, without loss of
generality we assume that ‖uk‖ = 1. Let vk be unbounded and let w be a cluster
point of 1

‖vk‖vk; then ‖w‖= 1. Since ( 1
‖vk‖vk,− 1

‖vk‖uk) ∈ N̂gphF−1(yk,xk), passing to

the limit we get (w,0) ∈ NgphF−1(ȳ, x̄) which contradicts (16.8) because of (16.5).
Further, if vk is bounded, then (vk,uk)→ (v,u) for a subsequence, where ‖u‖ = 1,
(v,−u) ∈ NgphF−1(ȳ, x̄), and ‖v‖ ≥ c. This again contradicts (16.8). Thus, (16.10)
holds for all (y,x) ∈ gphF−1 close to (ȳ, x̄).
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Let δ > 0 be such that (16.10) is satisfied for any (x,y) ∈ gphF ∩ (IBδ (x̄)×
IBδ (ȳ)). Pick such (x,y). We will show that

(cIB×{w})∩T ∗∗gphF(x,y) �= /0 for every w ∈ IB. (16.11)

On the contrary, assume that there exists w∈ IB such that (cIB×{w})∩T ∗∗gphF(x,y) =
/0. Then, by the theorem on separation of convex sets, there exists a nonzero (p,q)∈
T ∗gphF(x,y) = N̂gphF(x,y) such that

min
u∈IB
〈p,cu〉+ 〈q,w〉> 0.

If p = 0, then q �= 0 and then (q,0) ∈ N̂gphF−1(y,x) in contradiction with (16.10).

Hence, p �= 0. Without loss of generality, let ‖p‖ = 1. Then (q, p) ∈ N̂gphF−1(y,x)
and

〈q,w〉> max
u∈IB
〈p,cu〉= c‖p‖= c. (16.12)

By (16.5) and (16.10), ‖q‖ ≤ c and since w ∈ IB, this contradicts (16.12). Thus,
(16.11) is satisfied.

By Lemma 16.3, for all (x,y) ∈ gphF sufficiently close to (x̄, ȳ), we have that
(16.11) holds when the set T ∗∗gphF(x,y) = clcoTgphF(x,y) is replaced with TgphF(x,y).

This means that for any w ∈ IB there exists u ∈ DF(x |y)−1(w) such that ‖u‖ ≤ c.
But then c ≥ ‖DF(x |y)−1‖− for all (x,y) ∈ gphF sufficiently close to (x̄, ȳ). This
combined with the arbitrariness of c in (16.8) implies the inequality opposite to
(16.6) and hence the proof of the theorem if complete. �
Proof (of Lemma 16.3). Clearly, C∩TK(x) �= /0 implies C∩clcoTK(x) �= /0. Assume
that there exists an open neighborhood U of x̄ such that C∩ clcoTK(x) �= /0 for all
x ∈ K ∩U . Let ε > 0 be such that IBε (x̄) ⊂U . Take any x ∈ IBε/3(x̄) and let v be a
projection of x on K. Then ‖v− x‖ ≤ ‖x̄− x‖ ≤ ε/3 and hence,

‖v− x̄‖ ≤ ‖v− x‖+ ‖x− x̄‖ ≤ ε/3+ ε/3 < ε.

Thus, there exists an open neighborhood W of x̄ such that any metric projection of
a point x ∈W on K belongs to K∩U .

Fix x ∈ K∩W . For all t ≥ 0 define ϕ(t) := min{‖u−v‖ | u ∈ x+ tC,v ∈ K}. The
function ϕ is Lipschitz continuous. Indeed, for any ti ≥ 0, i = 1,2 there exist ci ∈C
and ki ∈ K such that ϕ(ti) = ‖x+ tici− ki‖, i = 1,2. Then

ϕ(t1)−ϕ(t2) = ‖x+ t1c1− k1‖−‖x+ t2c2− k2‖
≤ ‖x+ t1c2− k2‖−‖x+ t2c2− k2‖ ≤ ‖c2‖|t1− t2|.
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Hence ϕ is absolutely continuous, that is, its derivative ϕ ′ exists almost everywhere
and ϕ(s) = ϕ(t)+

∫ s
t ϕ ′(τ)dτ for all s≥ t ≥ 0. We will prove next that

ϕ(t) = 0 for all sufficiently small t > 0. (16.13)

If this holds, then for every small t > 0 there exists vt ∈ C such that x+ tvt ∈ K.
Consider sequences tk → 0+ and vtk ∈ C such that vtk converges to some v. Then
v ∈ TK(x)∩C and since x ∈ K ∩W is arbitrary, we arrive at the claim of the lemma.

To prove (16.13), let γ > 0 be such that x+[0,γ]C⊂W . Assume that there exists
t0 ∈ (0,γ] such that ϕ(t0) > 0. Define t̄ = max{t | ϕ(t) = 0 and 0 ≤ t < t0}. Let
t ∈ (t̄, t0] be such that ϕ ′(t) exists. Then for some vt ∈C and xt ∈ K we have ϕ(t) =
‖x+ tvt − xt‖ > 0. Since xt is a projection of x+ tvt on K, by the observation in
the beginning of the proof, we have xt ∈ K ∩U . By assumption, there exists wt ∈
clcoTK(xt) such that wt ∈C. Then, for any h > 0 sufficiently small,

x+ tvt + hwt = x+(t + h)

(
t

t + h
vt +

h
t + h

wt

)
∈ x+(t + h)C⊂W

because the set C is assumed convex. Thus

ϕ(t + h)−ϕ(t)≤ ‖x+ tvt + hwt− xt‖−‖x+ tvt− xt‖.

Dividing both sides of this inequality by h> 0 and passing to the limit when h→ 0+,
we get

ϕ ′(t)≤
〈

x+ tvt− xt

‖x+ tvt− xt‖ ,wt

〉
. (16.14)

Recall that xt is a projection of x+ tvt on K and also the elementary fact that in this
case x+ tvt−xt ∈ N̂K(xt), see Proposition 4.1.2 in [2] or Example 6.16 in [9]. Since
wt ∈ clcoTK(xt), we obtain from (16.14) that ϕ ′(t)≤ 0. Having in mind that t is any
point of differentiability of ϕ in (t̄, t0), we get ϕ(t0) ≤ ϕ(t̄) = 0. This contradicts
the choice of t0 according to which ϕ(t0) > 0. Hence (16.13) holds and the lemma
is proved. �

We note that more general versions of Lemma 16.3 are proved in [3, 4].
At the end of this section, we add the following corollary which is a simple

consequence of the proof of Theorem 16.1 and recovers the last part of Theorem
1.2 in [6] and the first part of Theorem 4.3 in [1]. For a mapping F : Rn ⇒ R

m and
a pair (x,y) with y ∈ F(x), recall that the convexified graphical derivative of F at x
for y is the mapping D̃F(x |y) : Rn ⇒ R

m whose graph is the closed convex hull of
the tangent cone TgphF(x,y) to gphF at (x,y):

v ∈ D̃F(x |y)(u) ⇔ (u,v) ∈ clcoTgphF(x,y).
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Corollary 16.4. Let F : Rn ⇒ R
m be a set-valued map, let ȳ ∈ F(x̄) and assume

that gphF is locally closed at (x̄, ȳ). Then

limsup
(x,y)→(x̄,ȳ),
(x,y)∈gphF

‖D̃F(x |y)−1‖− = ‖D∗F−1(ȳ | x̄)‖+.

Proof. Since D̃F(x |y)−1(v) ⊃ DF(x |y)−1(v) we obtain ‖D̃F(x |y)−1‖− ≤ ‖DF
(x |y)−1‖−. Thus, from (16.1),

limsup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D̃F(x |y)−1‖− ≤ ‖D∗F−1(ȳ | x̄)‖+.

The converse inequality follows from the first part of the proof of Theorem 16.1, by
limiting the argument to the convexified graphical derivative. �

16.3 Proof of Theorem 16.2

Proposition 3G.1 in [5] says that a mapping F is strongly metrically regular at x̄ for
ȳ if and only if it is metrically regular there and F−1 has a localization around (ȳ, x̄)
which is nowhere multi-valued. Furthermore, in this case for any c > reg(F; x̄ | ȳ),
there exists a neighborhood V of ȳ such that F−1 has a localization around (ȳ, x̄)
which is a Lipschitz continuous function on V with constant c.

Let F be strongly metrically regular at x̄ for ȳ, let c > reg(F ; x̄ | ȳ) and let U and
V be open neighborhoods of x̄ and ȳ, respectively, such that the localization V �
y �→ ϕ(y) := F−1(y)∩U is a Lipschitz continuous function on V with a Lipschitz
constant c. We will show first that for any v∈Rm the set PF(x̄ | ȳ)−1(v) is nonempty.
Let v ∈ R

m. Since domϕ ⊃ V , we can choose sequences tk → 0+ and uk such that
x̄ + tkuk = ϕ(ȳ + tkv) for large k. Then, from the Lipschitz continuity of ϕ with
Lipschitz constant c, we conclude that ‖uk‖ ≤ c‖v‖; hence uk has a cluster point
u which, by definition, is from PF(x̄ | ȳ)−1(v). Now choose any v ∈ R

m and u ∈
PF(x̄ | ȳ)−1(v); then there exist sequences (xk,yk)∈ gphF , (xk,yk)→ (x̄, ȳ), tk→ 0+,
uk→ u, and vk→ v such that yk + tkvk ∈V , xk = ϕ(yk), and xk + tkuk = ϕ(yk + tkvk)
for k sufficiently large. But then, again from the Lipschitz continuity of ϕ with
Lipschitz constant c, we obtain that ‖uk‖ ≤ c‖vk‖. Passing to the limit we conclude
that ‖u‖ ≤ c‖v‖ which implies that ‖PF(x̄ | ȳ)−1‖+ ≤ c. Hence (16.2) is satisfied.

To prove the second statement, we first show that F−1 has a single-valued
bounded localization, that is, there exist a bounded neighborhood U of x̄ and a
neighborhoodV of ȳ such that V � y �→F−1(y)∩U is single-valued. On the contrary,
assume that for any bounded neighborhood U of x̄ and any neighborhood V of ȳ
the intersection gphF−1 ∩ (V ×U) is the graph of a multi-valued mapping. This
means that there exist sequences εk→ 0+, xk→ x̄, x′k→ x̄, xk �= x′k for all k such that
F(xk)∩F(x′k)∩IBεk(ȳ) �= /0 for all k. Let tk = ‖xk−x′k‖ and let uk =(xk−x′k)/tk. Then
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tk → 0 and ‖uk‖ = 1 for all k. Hence {uk} has a cluster point u �= 0. Consider any
yk ∈ F(xk)∩F(x′k)∩ IBεk (ȳ). Then, yk + tk0∈ F(x′k + tkuk) for all k. By the definition
of the paratingent derivative, 0 ∈ PF(x̄, ȳ)(u). Hence ‖PF(x̄, ȳ)−1‖+ = ∞ by (16.5),
which contradicts (16.2). Thus, there exist neighborhoods U of x̄ and V of ȳ such
that ϕ(y) := F−1(y)∩U is at most single-valued on V and U is bounded. By (16.3),
there exists a neighborhood V ′ ⊂ V of ȳ such that F−1(y)∩U �= /0 for any y ∈ V ′;
hence V ′ ⊂ domϕ . Further, since gphF is locally closed at (x̄, ȳ) and ϕ is bounded,
there exists an open neighborhood V ′′ ⊂V ′ of ȳ such that ϕ is a continuous function
on V ′′.

From the definition of the paratingent cone we deduce that the set-valued map
(x,y) �→ PF(x,y) has closed graph. We claim that condition (16.2) implies that

limsup
(x,y)→(x̄,ȳ),
(x,y)∈gphF

‖PF(x |y)−1‖+ < ∞. (16.15)

On the contrary, assume that there exist sequences (xk,yk) ∈ gphF converging to
(x̄, ȳ), vk ∈ IB and uk ∈ PF(xk |yk)

−1(vk) such that ‖uk‖> k‖vk‖.
Case 1: There exists a subsequence vki = 0 for all ki. Since gphPF(xki |yki)

−1 is
a cone, we may assume that ‖uki‖ = 1. Let u be a cluster point of {uki}. Then,
passing to the limit we get 0 �= u ∈ PF(x̄, ȳ)−1(0) which, combined with (16.5),
contradicts (16.2).

Case 2: For all large k, vk �= 0. Since gphPF(xk |yk)
−1 is a cone, we may

assume that ‖vk‖= 1. Then limk→∞ ‖uk‖=∞. Define wk := 1
‖uk‖uk ∈PF(xk |yk)

−1(
1
‖uk‖vk

)
and let w be a cluster point of wk. Then, passing to the limit we obtain

0 �= w ∈ PF(x̄, ȳ)−1(0) which, combined with (16.5), again contradicts (16.2).

Hence (16.15) is satisfied. Therefore, there exists an open neighborhood Ṽ ⊂V ′′ of
ȳ such that ‖PF(ϕ(y)|y)−1‖+ < ∞ for all y ∈ Ṽ .

We will now prove that for every (x,y) ∈ gphF near (x̄, ȳ) and every v ∈ R
m we

have that DF(x,y)−1(v) �= /0. Fix (x,y) ∈ gphF ∩ (U×Ṽ ) and v ∈ R
m, and let hk→

0+; then there exists uk ∈ R
n such that x+ hkuk = F−1(y+ hkv)∩U = ϕ(y+ hkv)

for all large k and we also have that hkuk → 0 by the continuity of ϕ . Assume that
‖uk‖ → ∞ for some subsequence (which is denoted in the same way without loss
of generality). Set tk = hk‖uk‖ and wk = 1

‖uk‖uk. Then tk → 0+ and, for a further

subsequence, wk → w for some w with ‖w‖ = 1. Since (y + tk
1
‖uk‖v,x + tkwk) ∈

gphF−1 we obtain that w ∈ DF(x,y)−1(0) ⊂ PF(x,y)−1(0) for some w �= 0. Thus
‖PF(x,y)−1‖+ = ∞ contradicting the choice of Ṽ . Hence the sequence {uk} cannot
be unbounded and since y+ hkv ∈ F(x+ hkuk) for all k, any cluster point u of {uk}
satisfies u ∈ DF(x,y)−1(v). Hence DF(x,y)−1 is nonempty-valued. From this and
the inclusion DF(x,y)−1(v)⊂ PF(x,y)−1(v) we obtain

‖DF(x,y)−1‖− ≤ ‖PF(x,y)−1‖+. (16.16)
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Putting together (16.15) and (16.16), and utilizing the derivative criterion for metric
regularity, that is, the fact that the finiteness of the expression on the left side of
(16.1) implies metric regularity, we obtain that F is metrically regular at x̄ for ȳ.
But since F−1 has a single-valued localization around (ȳ, x̄) we conclude that F is
strongly metrically regular at x̄ for ȳ. The proof is complete.
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Chapter 17
Five Classes of Monotone Linear Relations
and Operators

Mclean R. Edwards

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The relationships among five classes of monotonicity, namely 3∗-, 3-
cyclic, strictly, para-, and maximal monotonicity, are explored for linear operators
and linear relations in Hilbert space. Where classes overlap, examples are given;
otherwise their relationships are noted for linear operators in R

2, R3, and general
Hilbert spaces. Along the way, some results for linear relations are obtained.

Key words: 3∗-monotone • Cyclic monotone • Cyclically monotone • Linear
relations • Maximal monotone • Maximally monotone • Monotone operators
• Paramonotone • Rectangular • Strictly monotone

Mathematics Subject Classifications (2010): Primary 47H05, 47A06; Secondary
47J20, 47N10.

17.1 Introduction

Monotone operators are multi-valued operators T : X→ 2X such that for all x∗ ∈ Tx
and all y∗ ∈ Ty,

〈x− y,x∗ − y∗〉 ≥ 0. (17.1)
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They arise as a generalization of subdifferentials of convex functions and are used
extensively in variational inequality (and by reformulation, equilibrium) theory.

Variational inequalities were first outlined in 1966 [23] and have since been used
to model a large number of problems.

Definition 17.1 (Variational Inequality Problem). Given a nonempty closed
convex set C and a monotone operator T acting on C, the variational inequality
problem, VIP(T,C), is to find an x̄ ∈C such that for some x̄∗ ∈ T (x̄)

〈c− x̄, x̄∗〉 ≥ 0 for all c ∈C. (17.2)

They provide a unified framework for, among others, constrained optimization,
saddle point, Nash equilibrium, traffic equilibrium, frictional contact, and comple-
mentarity problems. For a good overview of sample problems and current methods
used to solve them, see [19] and [20].

Monotone operators are also important for the theory of partial differential
equations, where monotonicity both characterizes the vector fields of self-dual
Lagrangians [21] and is crucial for the determination of equilibrium solutions
(using a variational inequality) for elliptical and evolution differential equations and
inclusions (see for instance [1]).

Over the years, various classes of monotone operators have been introduced
in the exploration of their theory; however there have been few attempts to
comprehensively compare those in use across disciplines.

Five special classes of monotone operators are studied here: strictly monotone,
3-cyclic monotone, 3∗-monotone, paramonotone, and maximal monotone. All pos-
sible relationships among these five properties are explored for linear operators in
R

2, Rn, and in general Hilbert space, and the results are summarized in Tables 17.1
and 17.2 and in Figs. 17.1, 17.2, and 17.3.

Definition 17.2 (paramonotone). An operator T : X→ 2X is said to be paramono-
tone if T is monotone and for x∗ ∈ T x,y∗ ∈ Ty, 〈x− y,x∗ − y∗〉 = 0 implies that
x∗ ∈ Ty and y∗ ∈ Tx.

A number of iterative methods for solving (17.2) have required paramonotonicity
to converge. Examples include an interior point method using Bregman functions
[15], an outer approximation method [14], and proximal point algorithms [2, 13].
Often, as in [8], with more work it is possible to show convergence with para-
monotonicity where previously stronger conditions, such as strong monotonicity,
were required. Indeed, the condition first emerged in this context [12] as a sufficient
condition for the convergence of a projected-gradient-like method. For more on the
theory of paramonotone operators and why this condition is important for variational
inequality problems, see [24] and [31].

Definition 17.3 (strictly monotone). An operator T : X → 2X is said to be strictly
monotone if T is monotone and for all (x,x∗),(y,y∗) ∈ graT , 〈x− y,x∗ − y∗〉 = 0
implies that x = y.
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Table 17.1 Monotone linear operators on R
2: monotone class relationships

PM SM 3CM 3*

0 0 0 0 ∃ Example 17.41 (Rπ/2)
0 * * 1 /0 Proposition 17.33
* * 1 0 /0 Fact 17.9
0 * 1 * /0 Proposition 17.10
0 1 * * /0 Fact 17.8
1 * * 0 /0 Proposition 17.47
1 0 0 * /0 Remark 17.45
1 0 1 1 ∃ Example 17.43 (A(x1 ,x2) := (x1,0))
1 1 0 1 ∃ Example 17.41 (Rθ , π/2 > |θ |> π/3)
1 1 1 1 ∃ Id

Where:
“PM” represents paramonotone
“SM” represents strictly monotone
“3CM” represents 3-cyclic monotone
“3*” represents 3∗-monotone
1 represents that the property is present
0 represents an absence of that property
* represents that both 0/1 are covered by the result
∃ represents that an example with these properties exists
/0 represents that this combination of properties is impossible

Table 17.2 Monotone linear operators: monotone class relationships

PM SM 3CM 3* X

0 0 0 0 R
2 ∃ Rπ/2

0 * * 1 – /0 Proposition 17.33
* * 1 0 – /0 Fact 17.9
0 * 1 * – /0 Proposition 17.10
0 1 * * – /0 Fact 17.8
1 0 0 0 �2 ∃ Remark 17.51
1 0 0 1 R

2 ∃ Example 17.49
1 0 1 1 R ∃ 0
1 1 0 0 �2 ∃ Example 17.50
1 1 0 1 R

2 ∃ Example 17.41 (Rθ , π/2 > |θ |> π/3)
1 1 1 1 R ∃ Id

Where:
“PM” represents paramonotone
“SM” represents strictly monotone
“3CM” represents 3-cyclic monotone
“3*” represents 3∗ monotone
“X” represents the space the operator acts upon
1 represents that the property is present
0 represents an absence of that property
* represents that both 0/1 are covered by the result
∃ represents that an example with these properties exists
/0 represents that this combination of properties is impossible
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Fig. 17.1 Monotone linear
operators: monotone class
relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

Fig. 17.2 Monotone linear
operators on R

2: monotone
class relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

Strict monotonicity is a stronger condition than paramonotonicity (Fact 17.8),
and the strict monotonicity of an operator T guarantees the uniqueness of a solution
to the variational inequality problem (see for instance [19]). These operators are
somewhat analogous to the subdifferentials of strictly convex functions.

We adopt the notation of [32] and use the term 3∗-monotone, although this
property was first introduced with no name. The property was first referenced
simply by “∗” [11] by Brézis and Haraux, and such operators were sometimes called



17 Five Classes of Monotone Linear Relations and Operators 379

Fig. 17.3 Monotone linear
operators on R

n: monotone
class relationships. PM =
paramonotone, SM = strictly
monotone, 3CM = 3 cyclic
monotone, 3* = 3∗-monotone

(BH)-operators [16] in honour of these original authors. More recently the property
has also taken on the name “rectangular” since the domain of the Fitzpatrick
function of a monotone operator is rectangular precisely when the operator is 3∗-
monotone [29].

Definition 17.4 (3∗-monotone). An operator T : X→ 2X is said to be 3∗-monotone
if T is monotone and for all z in the domain of T and for all x∗ in the range of T

sup
(y,y∗)∈graT

〈z− y,y∗ − x∗〉<+∞. (17.3)

3∗-monotonicity has the important property in that if T1 and T2 are 3∗-monotone,
then as long as their sum is maximal monotone, the closure of the sum of their ranges
is identical to the closure of the range of their sum. For instance, if two operators
are 3∗-monotone, and one is surjective, then if the sum is maximal monotone, it
is also surjective. Furthermore, if both are continuous monotone linear operators,
and at least one is 3∗-monotone, then the kernel of the sum is the intersection of the
kernels [3]. This property can be used, as shown in [11], to determine when solutions
to T−1(0) exist by demonstrating that 0 is in the interior (or is not in the closure)
of the sum of the ranges of an intelligent decomposition of a difficult to evaluate
maximal monotone operator. It has also been shown for linear relations on Banach
spaces that 3∗-monotonicity guarantees the existence of solutions to the primal-dual
problem pairs in [27]. It should also be noted that operators with bounded range [32]
and strongly coercive operators [11] are 3∗-monotone.
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Definition 17.5 (n-cyclic monotone). Let n≥ 2. An operator T : X → 2X is said to
be n-cyclic monotone if

(x1,x∗1) ∈ graT
(x2,x∗2) ∈ graT
· · · ∈ graT

(xn,x∗n) ∈ graT
xn+1 = x1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
⇒

n

∑
i=1
〈xi− xi+1,x

∗
i 〉 ≥ 0. (17.4)

A cyclical monotone operator is one that is n-cyclic monotone for all n ∈ N.

Note that 2-cyclic monotonicity is equivalent to monotonicity. By substituting
(an,a∗n) := (a1,a∗1), it easily follows from the definition that any n-cyclic monotone
operator is (n− 1)-cyclic monotone. 1-cyclic monotonicity is not defined, since
the n = 1 case for (17.4) is trivial. 3-cyclic monotone operators serve to represent
a special case of n-cyclic monotone operators that is also a stronger condition
than 3∗-monotonicity. Of note, all subdifferentials of convex functions are cyclical
monotone [28].

Definition 17.6 (maximality). An operator is maximal n-cyclic monotone if its
graph cannot be extended while preserving n-cyclic monotonicity. A maximal
monotone operator is a maximal 2-cyclic monotone operator. A maximal cyclical
monotone operator is a cyclical monotone operator such that all proper graph
extensions are not cyclical monotone.

There is a rich literature on the theory (see [9] for a good overview) and
application (for instance [18]) of maximal monotone operators. Furthermore, it is
well known that a maximal monotone operator T has the property that T−1(0)
is convex, a property shared by paramonotone operators with convex domain
(Proposition 17.11), and analogous to the fact that the minimizers of a convex
function form a convex set. Maximal monotonicity is also an important property
for general differential inclusions [10, 26].

Definition 17.7 (Five classes of monotone operator). An operator T : X → 2X is
said to be [Class] (with abbreviation [Code]) if and only if T is monotone and for
every (x,x∗),(y,y∗),(z,z∗) in gra T one has [Condition].

Code Class Condition (A)

Monotone 〈x− y,x∗ − y∗〉 ≥ 0
PM Paramonotone 〈x− y,x∗ − y∗〉= 0⇒ (x,y∗),(y,x∗) ∈ graT
SM Strictly monotone 〈x− y,x∗ − y∗〉= 0⇒ x = y
3CM 3-cyclic monotone 〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉 ≥ 0
MM Maximal monotone (∀a ∈ X)(∀a∗ ∈ X)

〈x− a,x∗ − a∗〉 ≥ 0⇒ (x,x∗) ∈ graT
3* 3∗-monotone sup(a,a∗)∈graT 〈z− a,a∗− x∗〉<+∞
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The order above, PM-SM-3CM-MM-3*, is fixed to allow a binary label of the
classes to which an operator belongs. For instance, an operator with the label 10111
is paramonotone, not strictly monotone, 3-cyclic monotone, maximal monotone,
and 3∗-monotone.

After noting some general relationships among these classes in Sect. 17.2, we
note in Sect. 17.3 that monotone operators belonging to particular combinations of
these classes can be constructed in a product space.

Linear relations are a multi-valued extension of linear operators and are defined
by those operators whose graph forms a vector space. This is a natural extension to
consider as monotone operators are often multi-valued. We consider linear relations
in Sect. 17.4 and explore their characteristics and structure. Of particular note, we
fully explore the manner in which linear relations can be multi-valued and remark
on a curious property of linear relations whose domains are not closed. Finally,
we obtain a generalization to the fact that bounded linear operators that are 3∗-
monotone are also paramonotone (a corollary to a result in [11]), with conditions
different from those in [7], and demonstrate by example that there is 3∗-monotone
linear relation that is not paramonotone.

In Sect. 17.5, we list various examples of linear operators satisfying or failing
to satisfy the 5 properties defined above. The examples are chosen to have full
domain, low dimension, and be continuous where possible. This is shown to yield a
complete characterization of the dependence or independence of these five classes
of monotone operator in R

2, Rn, and in a general Hilbert space X . One result of this
section is that paramonotone and linear operators in R

2 are exactly the symmetric
or strictly monotone operators in R

2.
We assume throughout that X is a real Hilbert space, with inner product 〈·, ·〉.

When an operator T : X → 2X is such that for all x ∈ X , Tx contains at most
one element, such operators are called single-valued. When T is single-valued,
for brevity T x is at times considered as a point rather than as a set (i.e., x∗ ∈ T x).
The orthogonal complement of a set C ⊂ X is denoted by C⊥ and defined by

C⊥ := {x ∈ X : 〈x,c〉= 0 ∀c ∈C}. (17.5)

Note that for any set C ⊂ X , the set C⊥ is closed in X . The operator PV is the metric
projection where V is a closed subspace of X . We use the convention that for set
addition A+ /0 = /0, where /0 is the empty set. A monotone extension T̃ : X → 2X of
a monotone operator T : X → 2X is a monotone operator such that graT � gra T̃ ,
where graT := {(x,x∗) : x ∈ domT,x∗ ∈ Tx}. An operator T : X → 2X is said to
be locally bounded if for every x ∈ domT , there is a neighbourhood V of x and an
M > 0 such that for every v ∈ V , supv∗∈T v ‖v∗‖ < M. A selection of an operator
T : X → 2X is an operator T̃ such that gra T̃ ⊂ graT , and a single-valued selection
of T is such an operator T̃ where T̃ : X → X .
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17.2 Preliminaries

The following arises from the definitions of strict monotonicity and
paramonotonicity.

Fact 17.8. Any strictly monotone operator T : X → 2X is also paramonotone.

Two synonymous definitions of 3-cyclic monotonicity are worth explicitly stat-
ing. For an operator T : X→ 2X to be 3-cyclic monotone, every (x,x∗),(y,y∗),(z,z∗)
∈ graT must satisfy

〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉 ≥ 0, (17.6)

or equivalently

〈z− y,y∗ − x∗〉 ≤ 〈x− z,x∗ − z∗〉. (17.7)

From (17.7), the following fact is obvious.

Fact 17.9. Any 3-cyclic monotone operator T : X → 2X is also 3∗-monotone.

Another relationship among these classes of monotone operator was discovered
in 2006 (Proposition 3.1 in [22]).

Proposition 17.10 ([22]). If T is 3-cyclic monotone and maximal (2-cyclic) mono-
tone, then T is paramonotone.

Proof. Suppose that for some choice of (x,x∗),(y,y∗) ∈ gra(T ), 〈x−y,x∗ −y∗〉= 0,
so 〈y− x,x∗〉 = 〈y− x,y∗〉. Since T is 3-cyclic monotone, every (z,z∗) ∈ gra(T )
satisfies

0 ≥ 〈y− x,x∗〉+ 〈z− y,y∗〉+ 〈x− z,z∗〉
= 〈−x,y∗〉+ 〈z,y∗〉+ 〈x− z,z∗〉
= 〈z− x,y∗〉+ 〈x− z,z∗〉
= 〈x− z,z∗ − y∗〉

and so

〈x− z,y∗ − z∗〉 ≥ 0 ∀(z,z∗) ∈ gra(T ).

Since T is maximal monotone, y∗ ∈ T x. By exchanging the roles of x and y above,
it also holds that x∗ ∈ T (y), and so T is paramonotone. �

When finding the zeros of a monotone operator, it can be useful to know if the
solution set is convex or not. It is well known that for a maximal monotone operator
T , T−1(0) is a closed convex set (see for instance [4]). A similar result also holds
for paramonotone operators.



17 Five Classes of Monotone Linear Relations and Operators 383

Proposition 17.11. Let T : X → 2X be a paramonotone operator with convex
domain. Then T−1(0) is a convex set.

Proof. Suppose T−1(0) is nonempty. Let x,y,z∈X such that 0∈ Tx, 0∈T z, and y=
αx+(1−α)z for some α ∈]0,1[. Then, x−y = (1−α)(x− z) and y− z = α(x− z),
so x− y = 1−α

α (y− z). Since T has convex domain, Ty �= /0. By the monotonicity of
T , for all y∗ ∈ Ty

0≤ 〈x− y,−y∗〉= 1−α
α
〈y− z,−y∗〉 and 0≤ 〈y− z,y∗〉,

and so 〈y−z,y∗〉= 0. Therefore, by the paramonotonicity of T , 0∈ T (y), and so the
set T−1(0) is convex. �

However, if an operator is not maximal monotone, there is no guarantee
that T−1(0) is closed, even if paramonotone, as the operator T : R → R below
demonstrates:

T x :=

⎧⎨
⎩
−1, x≤−1,
0, x ∈]− 1,1[,
1, x≥ 1.

(17.8)

17.3 Monotone Operators on Product Spaces

Let X1 and X2 be Hilbert spaces, and consider set valued operators T1 : X1 → 2X1

and T2 : X2 → 2X2 . The product operator T1× T2 : X1×X2 → 2X1×X2 is defined as
(T1×T2)(x1,x2) := {(x∗1,x∗2) : x∗1 ∈ T1x1 and x∗2 ∈ T2x2 }.
Proposition 17.12. If both T1 and T2 are monotone, then the product operator T1×
T2 is also monotone.

Proof. For any points ((x1,x2),(x∗1,x
∗
2)) ,((y1,y2),(y∗1,y

∗
2)) ∈ gra(T1×T2),

〈(x1,x2)− (y1,y2),(x∗1,x
∗
2)− (y∗1,y

∗
2)〉

= 〈x1− y1,x∗1− y∗1〉+ 〈x2− y2,x∗2− y∗2〉 ≥ 0.

Hence, T1×T2 is monotone. �
Proposition 17.13. If both T1 and T2 are paramonotone, then the product operator
T1×T2 is also paramonotone.

Proof. If x∗i ∈ Tixi, y∗i ∈ Tiyi for i ∈ {1,2} and

〈(x1,x2)− (y1,y2),(x
∗
1,x
∗
2)− (y∗1,y

∗
2)〉= 0,
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then 〈xi − yi,x∗i − y∗i 〉 = 0 for i ∈ {1,2} since both T1 and T2 are monotone. By
the paramonotonicity of T1 and T2, y∗i ∈ Tixi and x∗i ∈ Tiyi for i ∈ {1,2}, and so
(x∗1,x

∗
2) ∈ (T1×T2)(y1,y2) and (y∗1,y

∗
2) ∈ (T1×T2)(x1,x2). �

By following the same proof structure as Proposition 17.13, a similar result
immediately follows for some other monotone classes.

Proposition 17.14. If both T1 and T2 belong to the same monotone class, where
that class is one of strict, n-cyclic, or 3∗-monotonicity, then so does their product
operator T1×T2.

Proposition 17.15. If both T1 and T2 are maximal monotone, then the product
operator T1×T2 is also maximal monotone.

Proof. Suppose T1×T2 is not maximal monotone. Then there exists a point ((x1,x2),
(x∗1,x

∗
2)) /∈ gra(T1×T2) such that for all ((y1,y2),(y∗1,y

∗
2)) ∈ gra(T1×T2)

〈x1− y1,x
∗
1− y∗1〉+ 〈x2− y2,x

∗
2− y∗2〉 ≥ 0, (17.9)

and at least one of (x1,x∗1) /∈ graT1 or (x2,x∗2) /∈ graT2. Suppose without loss of
generality that (x1,x∗1) /∈ graT1.

By the maximality of T1, 〈x1− z1,x∗1− z∗1〉 < 0 for some (z1,z∗1) ∈ graT1, and
so by setting (y1,y∗1) := (z1,z∗1) in (17.9), 〈x2− y2,x∗2 − y∗2〉 ≥ 0 for all (y2,y∗2) ∈
graT2. Since T2 is maximal monotone, it must be that (x2,x∗2) ∈ graT2. Clearly,
((z1,x2),(z∗1,x

∗
2)) ∈ gra(T1×T2), yet

〈(x1,x2)− (z1,x2),(x
∗
1,x
∗
2)− (z∗1,x

∗
2)〉< 0.

This is a contradiction of (17.9), and so T1×T2 is maximal monotone. �
Of course, if an operator T1 : X → 2X fails to satisfy the conditions for any of the

classes of monotone operator here considered, then the product of that operator with
any other operator T2 : Y → 2Y , namely T1×T2 : X ×Y → 2X×Y , will also fail the
same condition. Simply consider the set of points P in the graph of T1 which violate
a particular condition in X , and instead consider the set of points P̃ := {(p,a)×
(p∗,a∗) : p ∈ P} for a fixed arbitrary point (a,a∗) ∈ graT2. Clearly P̃⊂ graT1×T2,
and this set will violate the same conditions in X ×Y that P violates for T1 in X .
For instance,

〈(w,a)− (x,a),(y∗,a∗)− (z∗,a∗)〉= 〈w− x,y∗ − z∗〉.
In this manner, the lack of a monotone class property (be it n-cyclic, para-, maximal,
3∗-, nor strict monotonicity) is dominant in the product space.

Taken together, the results of this section are that the product operator T1× T2

of monotone operators T1 and T2 operates with respect to monotone class inclusion
as a logical AND operator applied to the monotone classes of T1 and T2. For in-
stance, suppose that T1 is paramonotone, not strictly monotone, 3-cyclic monotone,
maximal monotone, and 3∗-monotone (with binary label 10111), and suppose that
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T2 is paramonotone, strictly monotone, not 3-cyclic monotone, maximal monotone,
and not 3∗-monotone (with binary label 11010). Then, T1×T2 is paramonotone, not
strictly monotone, not 3-cyclic monotone, maximal monotone, and not 3∗-monotone
(with binary label 10010).

17.4 Linear Relations

Linear relations are the set-valued generalizations of linear operators, which we
define using the nomenclature of R. Cross [17].

Definition 17.16 (linear relation). An operator A : X → 2X is a linear relation if
domA is a linear subspace of X and for all x,y ∈ domA, λ ∈ R

1. λAx⊂ A(λx),
2. Ax+Ay⊂ A(x+ y).

Equivalently, linear relations are exactly those operators T : X → 2X whose
graphs are linear subspaces of X ×X . The following results on linear relations are
well known. Of note, Fact 17.17(1) and (2) are considered basic results and will not
be cited in the work below.

Fact 17.17 ([30]). For any linear relation A : X → 2X ,

(1) λAx = A(λx) for all x ∈ domA, 0 �= λ ∈ R,
(2) Ax+Ay = A(x+ y) for all x,y ∈ domA,
(3) A0 is a linear subspace of X ,
(4) Ax = x∗+A0 for all (x,x∗) ∈ graA,
(5) If A is single-valued at any point, it is single-valued at every point in its domain.

Proposition 17.18. Suppose A : X → 2X is a linear relation, and let x ∈ domA.
Then, PA0⊥Ax is a singleton and

Ax⊂ PA0⊥Ax+A0. (17.10)

If A0 is closed, then there is a unique x∗0 ∈ Ax such that x∗0 ∈ A0⊥, where x∗0 = PA0⊥x∗
for all x∗ ∈ Ax.

Proof. Let x∈ domA. Since A0 and A0⊥ are closed subspaces such that A0+A0⊥=
X , then for all x∗ ∈ X , x∗ = PA0x∗+PA0⊥x∗. By Fact 17.17 (4), (17.10) holds and
PA0⊥Ax is a singleton. If A0 is closed, then for all x∗ ∈ Ax,

Ax = x∗+A0 = PA0⊥x∗+A0.

Therefore, PA0⊥y∗ = PA0⊥x∗ for all y∗ ∈ Ax. Furthermore, since 0 ∈ A0 always,
PA0⊥x∗ ∈ Ax. �
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Proposition 17.19. Any monotone linear relation A : X → 2X with full domain is
maximal monotone and single-valued.

Proof. Suppose that A : X → 2X is a linear relation where domA = X . Let (z,z∗)
be a point such that 〈z− y,z∗ − y∗〉 ≥ 0 for all (y,y∗) ∈ graA. Choose an arbitrary
z∗0 ∈ Az. Let y = z− εx for arbitrary (x,x∗) ∈ graA and ε > 0, so that by linearity
−εx∗ ∈ A(−εx). Therefore z∗0− εx∗ ∈ Ay and so 〈εx,z∗ − z∗0 + εx∗〉 ≥ 0. Divide out
the ε , and send ε → 0+ so that 〈x,z∗ − z∗0〉 ≥ 0 for all x ∈ X . Hence z∗ = z∗0 and T is
single-valued and maximal monotone. �

The following results appear respectively as Proposition 2.2(i) and Proposi-
tion 2.4 in [5].

Proposition 17.20 ([5]). If A : X→ 2X is a monotone linear relation, then domA⊂
(A0)⊥ and A0⊂ (domA)⊥.

Corollary 17.21 ([5]). If a linear relation A : X → 2X is maximal monotone, then
(domA)⊥ = A0, and so domA = (A0)⊥ and A0 is a closed subspace.

This leads to a partial converse result to Proposition 17.19.

Corollary 17.22. If a maximal monotone single-valued linear relation A : X → X
is locally bounded, then it has full domain.

Proof. Since A is single-valued, A0 = 0, and so by Corollary 17.21, domA =
(A0)⊥ = X . Choose any point x ∈ X . Since domA is dense in X , there exist
a sequence (yn,y∗n)n∈N ⊂ graA such that yn → x. Since A is locally bounded,
a subsequence (y∗φ(n))n∈N of (y∗n)n∈N weakly converges to some point x∗ ∈ X .
Therefore, for all (z,z∗) ∈ graA,

0≤ lim
n→+∞

〈yφ(n)− z,y∗φ(n)− z∗〉= 〈x− z,x∗ − z∗〉.

Since A is maximal monotone, (x,x∗) ∈ graA, and so A has full domain. �
The following fact appears in Proposition 2.2 in [5].

Fact 17.23 ([5]). Let A : X → 2X be a monotone linear relation. For any x,y ∈
domA, the set

{〈y,x∗〉 : x∗ ∈ Ax}
is a singleton, the value of which can be denoted simply by 〈y,Ax〉.
Proof. Let x,y ∈ domA and suppose that x∗1,x

∗
2 ∈ Ax. By Fact 17.17 (4), x∗2− x∗1 ∈

A0. Now, by Proposition 17.20, A0 ⊂ (domA)⊥, and so x∗2− x∗1 ∈ (domA)⊥. Since
y ∈ domA, 〈y,x∗1〉= 〈y,x∗2〉. �

Proposition 17.24 below demonstrates that multivalued linear relations are
closely related to a number of single-valued linear relations. Note especially that
V = A0⊥ and V = domA both satisfy the conditions below.
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Proposition 17.24 (dimension reduction). Suppose that A : X→ 2X is a monotone
linear relation. Let V ⊂ X satisfy

(1) V is a closed subspace of X,
(2) domA⊂V, and
(3) A0⊂V⊥.

Define the operator Ã : V → 2V , by Ãx := PV Ax on domA, and let Ã = /0 when
x /∈ domA. Then, Ã is a single-valued monotone linear relation and domA = dom Ã.
In the case where V = A0⊥ and A0 is closed, the operator Ã is a single-valued
selection of A. If A is maximal monotone, then V = A0⊥ = domA is the only
subspace satisfying conditions (17.24)–(17.24) above, and Ã is a maximal monotone
single-valued selection of A.

Proof. For any x ∈ X , PV (x) = PV (PA0⊥x + PA0x) = PV (PA0⊥x) as A0 ⊂ V⊥.
By Proposition 17.18, Ã is always single-valued, and if A0 is closed, PA0⊥x∗ ∈ Ax
for each (x,x∗) ∈ graA, and so if V = A0⊥, then Ã is a selection of A. Consider now
arbitrary (y, ỹ∗),(z, z̃∗) ∈ gra Ã, and λ ∈ R. Then, for y∗ ∈ Ay and z∗ ∈ Az, we have
that PV y∗ = ỹ∗ and PV z∗ = z̃∗. Since A is a linear relation, (y+λ z,y∗+λ z∗) ∈ graA.
Therefore, (y+ λ z,PV (y∗+ λ z∗)) ∈ gra Ã, and since PV is itself a linear operator,
PV (y∗+λ z∗) = ỹ∗+λ z̃∗, it follows that ỹ∗+λ z̃∗ ∈ Ã(y+λ z). Since domA= dom Ã,
the operator Ã is a linear relation. Finally, suppose that A is maximal monotone, and
so from Corollary 17.21 we have that A0⊥ = domA and A0 is closed. The only
subspace V satisfying the conditions in this case is V = A0⊥. Suppose there exists
a point (x,x∗) where x ∈ V = A0⊥, that is monotonically related to gra Ã. For all
(z,z∗) ∈ graA, there is a y ∈ A0 such that y+PV z∗ = z∗. Then, by Fact 17.17 (4),

〈x− z,x∗ − z∗〉= 〈x− z,x∗ − y−PVz∗〉= 〈x− z,x∗−PV z∗〉 ≥ 0.

Therefore, (x,x∗) is also monotonically related to A, and since A is maximal
monotone, (x,x∗)∈ graA. Since x∗ ∈V , PV x∗ = x∗, and so (x,x∗)∈ gra Ã. Therefore,
Ã is maximal monotone. �

From the results in this section so far, we know that monotone linear relations
A : X → 2X can only be multi-valued such that A0 is a subspace of X , Ax = x∗+A0
for any x∗ ∈ Ax, and A0 ⊂ (domA)⊥. For the purposes of calculation by the inner
product, for any x,z ∈ domA,

〈x,Az〉= 〈x, Ãz〉, (17.11)

where Ã is the single-valued operator (a selection of A if A0 is closed) as calculated
in Proposition 17.24 for V = A0⊥. In the other direction, any single-valued
monotone linear relation Ã : X → 2X can be extended to a multivalued monotone
linear relation A : X → 2X by choosing any subspace V ⊂ (domA)⊥ and setting
Ax := Ãx+V .

Now, in the unbounded linear case, maximal monotone operators may not have
a closed domain. The concept of a halo well captures this aspect.
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Definition 17.25 (halo). The halo of a monotone linear relation A : X → 2X is
the set

haloA := {x ∈ X : (∃M)(∀(y,y∗) ∈ graA)〈x− y,y∗〉 ≤M‖x− y‖} . (17.12)

The following is an amalgamation of Proposition 6.2 and Theorem 6.5 in [5].

Fact 17.26 ([5]). If A : X→ 2X is a monotone linear relation, then domA⊂ haloA⊂
(A0)⊥. Furthermore, A is maximal monotone if and only if A0⊥ = domA and
haloA = domA.

Now, if the domain of a linear relation is not closed, we have the following
curious result. Below, Am denotes the iterated operator composition, where for
instance A3x = A(A(Ax)). Note that if domA is dense in X , the operator PV A is
the same as A.

Proposition 17.27. Suppose a maximal monotone linear relation A : X → 2X is
such that domA is not closed, and let V := domA. Then, there is a sequence
(zn)n∈N ⊂ domA such that

(PV A)m(zn) ∈ domA, ∀1≤ m < n, (17.13)

(PV A)n(zn) /∈ domA, (17.14)

where for all z ∈ domA, PV Az is a singleton set.

Proof. Since A is maximal monotone, domA = haloA � domA, and by Corol-
lary 17.21, V = A0⊥. Therefore, by Proposition 17.18, PV Az⊂ Az and is a singleton
for every z ∈ domA. Choose any point z0 ∈ V such that z0 /∈ domA. We shall
generate the sequence (zn)n∈N ⊂ domA iteratively as follows. For some n ≥ 0,
suppose that zn ∈ V . By Minty’s theorem [25], since A is maximal monotone,
ran(Id+A) = X . Therefore, there exists a zn+1 ∈ domA such that zn ∈ zn+1 +Azn+1.
Since zn,zn+1 ∈V , zn ∈ zn+1 +PV Azn+1, and so as PV Azn+1 is a singleton,

PV Azn+1 = {zn− zn+1}.

Now, since both PV and A are linear operators, if n≥ 2

(PV A)2zn+1 = PV A(zn− zn+1)

= PV Azn−PV Azn+1

= {zn−1− 2zn + zn+1},
(17.15)

a linear combination of the terms zn−1,zn, and zn+1, with zn−1 appearing with
coefficient 1. Similarly, if n≥ 3,
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(PV A)3zn+1 = PV A(zn−1− 2zn + zn+1)

= {zn−2− zn−1− 2zn−1+ 2zn + zn− zn+1}
= {zn−2− 3zn−1 + 3zn− zn+1}.

(17.16)

By iterative composition, (PV A)mzn+1 is linear combination of the terms zp for n−
m+1≤ p≤ n+1, with zn−m+1 appearing with coefficient 1, as long as n−m+1≥ 0.
Since domA is a linear subspace of X , (PV A)mzn+1 ⊂ domA if n ≥ m. However, if
n+ 1 = m, the single point in (PV A)mzn+1 is not in domA since z0 = x /∈ domA. �

For any linear relation A : X → 2X where domA is not closed, sequences like
those in Proposition 17.27 are plentiful. Every point x ∈ domA such that x /∈ domA,
including for instance the points λx for λ > 0, generates a different sequence
(zn)n∈N using the method from the proof of Proposition 17.27.

To explore these concepts, consider the following example.

Example 17.28. Consider the infinite dimensional Hilbert space �2, the space of
infinite sequences x = (xk)k∈N such that ∑+∞

k=1 x2
k < +∞. Let ek denote the kth

standard unit vector (the kth element in the sequence is 1, and all other elements
in the sequence are 0). Define the single-valued monotone relation A : �2→ �2 for
x ∈ domA by

Ax = A(
+∞

∑
k=1

xkek) :=
+∞

∑
k=1

kxkek,

where

domA := {x ∈ �2 : ∃N ∈ N s.t. xk = 0 ∀k ≥ N} .

Considering the linear relation A in the example above, the point x :=∑+∞
k=1

1
k ek is

not in haloA. This is because the sequence (yn)n∈N ⊂ domA where yn := ∑n
i=1

1
2i ei

eventually violates (17.12) for any choice of M > 0 for a large enough n. (Therefore
we know that A is not maximal monotone.) However, the point z := ∑+∞

i=1
1
i2

ei is in
haloA, and graA could be extended by the point (z,x) and remain monotone. Since
x ∈ domA but x /∈ haloA, yet x = Az and z ∈ haloA, we have the beginning of a
sequence like those in Proposition 17.27 for any monotone extension of A containing
(z,x) that is also a linear relation.

Finally, the following result is used later and appears in Proposition 4.6 in [6].

Proposition 17.29 ([6]). Suppose that A : X → 2X is a linear relation. Then A
is maximal monotone and symmetric if and only if there exists a proper lower
semicontinuous convex function f : X →R

⋃{+∞} such that A = ∂ f .
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17.5 Monotone Classes of Linear Relations

The recent result for paramonotonicity and 3∗-monotonicity is a portion of the main
result in [7].

Proposition 17.30 ([7]). Suppose A : X → 2X is a maximal monotone linear
relation such that domA and ranA+ are closed (A+ is the symmetric part of A).
Then, A is 3∗-monotone if and only if A is paramonotone.

In this section we use a different approach to that used for Proposition 17.30,
where we (while avoiding the use of the Fitzpatrick function) obtain results that
apply to all monotone operators regardless maximal monotonicity. This is done
by examining the density of domA rather than its closure, further extending
these results. First, we characterize paramonotonicity for linear relations with the
following two facts.

Fact 17.31. Suppose A : X → 2X is a monotone linear relation. Then, A is
paramonotone if and only if for all x ∈ X

〈x,Ax〉= 0⇒ Ax = A0. (17.17)

Proof. Suppose that A is paramonotone and that for some x ∈ domA, 〈x,Ax〉 = 0.
Then, 〈x−0,Ax−A0〉= 0, since A0⊂ (domA)⊥ (Proposition 17.20). Therefore, by
paramonotonicity, every x∗ ∈ Ax is also in A0. By Fact 17.17 (3) and (4), Ax = A0.

Now, suppose that (17.17) holds for A and that for some (y,y∗),(z,z∗) ∈ graA,

〈y− z,y∗− z∗〉= 0.

Let x = y−z. Since A is a linear relation, y∗−z∗ ∈ Ax, and so 〈x,Ax〉= 0. Therefore,
Ax = A0, and so y∗ − z∗ ∈ A0 and

y∗ ∈ z∗+A0; −z∗ ∈ −y∗+A0.

By Fact 17.17 (1) and (4), −y∗+A0 = −Ay. Hence y∗ ∈ Az and z∗ ∈ Ay, so A is
paramonotone. �
Fact 17.32. Suppose A : X→ 2X is a monotone linear relation, and let x ∈ X . Then,
Ax = A0 if and only if 0 ∈ Ax and if 0 ∈ Ax, then PA0⊥Ax = {0}. If A0 is closed and
PA0⊥Ax = {0}, then 0 ∈ Ax.

Proof. Let Ax = A0. Since A0 is a linear subspace of X (Fact 17.17 (3)), 0 ∈ Ax.
Now, let 0 ∈ Ax. Then, by Fact 17.17 (4), Ax = A0.

By Proposition 17.18, PA0⊥Ax is a singleton, and since 0 ∈ A0⊥ by the definition
of the orthogonal complement, PA0⊥Ax = {0}. Now, let PA0⊥Ax = {0} and suppose
that A0 is closed. Then, by Proposition 17.18, 0 ∈ Ax. �
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Proposition 17.33. Suppose A : X → 2X is a monotone linear relation such that
domA is dense in A0⊥ and A0 is closed. If A is 3∗-monotone, then A is also
paramonotone.

Proof. Suppose that A is not paramonotone. Then, there exists an x ∈ domA such
that 〈x,Ax〉= 0 yet Ax �=A0. Choose any x∗ ∈Ax, and let x∗0 =PA0⊥x∗. By Fact 17.32,
x∗0 �= 0 since A0 is closed. If x∗0 ∈ domA, let w = 1

2 x∗0. If x∗0 /∈ domA, there is a
sequence (yn)n∈N ⊂ domA converging to x∗0 since domA is dense in A0⊥. In this
case, let w = yn for some n such that

〈w,Ax〉= 〈yn,x
∗
0〉 ≥

1
2
‖x∗0‖2.

Let v = λx for some λ > 0 and let u = 0 so that

〈w− v,Av−Au〉= 〈w−λx,λAx〉 ≥ λ
2
‖x∗0‖2

which is unbounded with respect to λ . Hence, A is not 3∗-monotone, yielding the
contrapositive. �

We therefore obtain by a different method Proposition 4.5 from [7].

Corollary 17.34 ([7]). If the linear relation A : X → 2X is maximal monotone and
3∗-monotone, then A is paramonotone.

Proof. Follows directly from Proposition 17.33 and Corollary 17.21. �
Corollary 17.35. If the linear relation A : X → 2X is 3∗-monotone, then the
operator Ã : X → 2X defined by

Ãx := Ax+(domA)⊥ (17.18)

is a linear relation and is a 3∗-monotone extension of A that is paramonotone.

Proof. The operator Ã is a linear relation since A is a linear relation, since dom Ã =
domA, and since (domA)⊥ is a linear subspace. (Recall that we are using the
convention that /0+ S = /0 for any set S.) More specifically, for all x,y ∈ domÃ =
domA and for all λ ∈ R,

λ Ãx = λAx+λ (domA)⊥ ⊂ A(λx)+ (domA)⊥ = Ã(λx),

and

Ãx+ Ãy = Ax+(domA)⊥+Ay⊂ A(x+ y)+ (domA)⊥ = Ã(x+ y).

By the definition of (domA)⊥, for all x,y,z ∈ dom Ã

〈z− y, Ãy− Ãz〉= 〈z− y,Ay−Az〉.
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Therefore, Ã is monotone and 3∗-monotone because A is monotone and 3∗-
monotone. Since by Proposition 17.20, A0 ⊂ (domA)⊥, it follows from Fact 17.17
(4) that Ã is a monotone extension of A and that Ã0 = (domA)⊥. Therefore, Ã0⊥ =
domA, and so by Proposition 17.33 and since domA= domÃ, Ã is paramonotone.�

If the linear relation A from Proposition 17.33 is also a single-valued bounded
linear operator, then Proposition 17.33 is a corollary to the stronger result of
Proposition 2 in [11].

Proposition 17.36 ([11]). Let A : X → X be a bounded monotone linear operator.
Then, A is 3∗-monotone if and only if there exists an α > 0 such that

〈x,Ax〉 ≥ α〈Ax,Ax〉= α‖Ax‖2.

Corollary 17.37. If A : X→ X is a bounded linear 3∗-monotone operator, then it is
paramonotone.

However, there are 3∗-monotone linear relations that are not paramonotone.

Example 17.38. Let X = �2 and define the operators Ã,A : X → 2X for x =
(x1,x2, . . .) ∈ �2 by

Ãx :=
+∞

∑
k=1

x2ke2k (17.19)

and

Ax := x1u+ Ãx+A0, (17.20)

where

u :=

(
∞

∑
k=1

1
k

e2k+1

)
, (17.21)

A0 := {x ∈ �2 : ∃N ∈ N s.t. xk = 0 ∀k ≥ N and x2k+1 = 0 ∀k ∈ N} , (17.22)

and

domA = domÃ = span{e1,e2,e4,e6, . . .}. (17.23)

Then, A is a 3∗-monotone linear relation, but it is not paramonotone.

Proof. Both A and Ã are by definition linear relations. Note that Ã = 0× J where
J is a subgraph of Id. Therefore, Ã is 3∗-monotone as both Id and 0 are 3∗-
monotone. Also, A0 is a dense subspace of span{e2k+1 : k ∈ N}, and so A0⊥ =
span{e2k : k ∈N}. Therefore, PA0⊥Ax = Ãx as u ∈ (domA)⊥. Since A0⊂ (domA)⊥
(Proposition 17.20), for all (x,x∗),(y,y∗),(z,z∗) ∈ graA,
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〈z− y,y∗− x∗〉= 〈z− y,PA0⊥y∗ −PA0⊥x∗〉= 〈z− y,Ay−Ax〉,

and so A is also 3∗-monotone. Now,

Ae1 = u+A0 �⊂ A0,

and so Ae1 �= A0. However, 〈e1,Ae1〉= 〈e1, Ãe1〉= 0. Therefore, A is not paramono-
tone. �

17.6 Monotone Classes of Linear Operators

A linear operator is a single-valued linear relation with full domain, which is
maximal monotone by Proposition 17.19. Although being single-valued and having
full domain are restrictive conditions, when it comes to monotone classes, linear
operators are highly characteristic of linear relations with closed domain.

If a monotone linear relation A : X → 2X has closed domain, which is always the
case if X = R

n, then domA is itself a Hilbert space and the results of Sects. 17.4
and 17.5 hold in their strongest form, as they do for all linear operators.

Let Ã : domA → 2domA be the single-valued selection of A generated in the
manner of Proposition 17.24 with V = domA. By Proposition 17.19, Ã is a
monotone linear operator. As the only difference between A and Ã are elements
perpendicular to the domain, for any (x,x∗),(y,y∗) ∈ graA,

〈x− y,x∗ − y∗〉= 〈x− y, Ãx− Ãy〉,
and so the monotone classes of each, while not necessarily equivalent, are highly
correlated.

Below, we consider linear operators operating on R
2, Rn, and on Hilbert spaces

of infinite dimension. Note that linear operators acting on R
n will be identified with

their matrix representation in the standard basis, and recall from Proposition 17.29
that symmetric linear operators are the subdifferentials of a lower semicontinuous
convex function.

17.6.1 Monotone Linear Operators on R
2

In this section we consider linear operators A : R2→ R
2, which can be represented

by the matrix

A =

[
a c
b d

]
.
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The operator A so defined is monotone if and only if a+ d ≥ 0 and 4ad ≥ (b+ c)2.
We consider some simple examples, examine their properties, and provide some
sufficient and necessary conditions for inclusion within various monotone classes.

Proposition 17.39 (3-cyclic monotone linear operators on R
2). If A is 3-cyclic

monotone, then

max{|b|, |c|}− a− d≤ 0. (17.24)

Proof. Choose x = (0,0), y = (1,0), and z = (0,1); let x∗ = Ax = (0,0), y∗ =
Ay = (a,b), and z∗ = Az = (c,d). If the mapping associated with A is 3-cyclic
monotone, then

0 ≤ 〈x− y,x∗〉+ 〈y− z,y∗〉+ 〈z− x,z∗〉
= 〈(1,−1),(a,b)〉+ 〈(0,1),(c,d)〉
= a+ d− b.

Similarly, by choosing different y and z, the following conditions are also necessary
for any matrix A as defined above:

0≥

⎧⎪⎪⎨
⎪⎪⎩

b− a− d, y = (1,0),z = (0,1),
−b− a− d, y = (−1,0),z = (0,1),
c− a− d, y = (0,1),z = (1,0),
−c− a− d, y = (0,−1),z = (1,0).

(17.25)

In all cases, x = (0,0). �
There are many monotone linear operators in R

2 that are not 3-cyclic monotone,
and furthermore Examples 17.40 and 17.41 below demonstrate that 3-cyclic mono-
tonicity does not follow from strict and maximal monotonicity.

Example 17.40. Consider the monotone linear operator R̃ : R2→ R
2 defined by

R̃ =

[
1 −2
3 1

]
. (17.26)

The operator R̃ violates the necessary condition (17.24) for 3-cyclic monotonicity
since b−a−d > 0 and R̃ satisfies the monotonicity conditions (a+d)≥ 0 and 4ad≥
(b+c)2, using the format R̃=

[
a c
b d

]
above. Note that 〈x, R̃x〉= 0 implies that x= 0,

so R̃ is strictly monotone and therefore paramonotone. Hence, by Proposition 17.47,
R̃ is also 3∗-monotone. Finally, R̃ is maximal monotone by Proposition 17.19.

Example 17.41. Consider the rotation operator Rθ : R
2 → R

2 with matrix
representation
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Rθ =

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
. (17.27)

Note that Rθ is monotone if and only if |θ | ≤ π/2, since this is precisely when
cos(θ )≥ 0. In this range, Rθ is maximal monotone by Proposition 17.19.

Now, Rθ is 3-cyclic monotone if and only if |θ |< π/3 by Fact 17.42 below.
Therefore, for any θ ∈]π/3,π/2[, Rθ is maximal monotone and strictly mono-

tone, but not 3-cyclic monotone.
Now, 〈x,Rθx〉 = 0 implies that x = 0 unless θ = π/2. Therefore, Rθ is strictly

monotone and hence paramonotone when |θ | < π/2. By Proposition 17.47, Rθ is
3∗-monotone as well when |θ |< π/2. When θ = π/2, Rθ is not paramonotone, and
therefore neither is it strictly monotone nor, by Proposition 17.33, is it 3∗-monotone.

By the following fact (Proposition 7.1 in [3]), R2 is large enough to contain
distinct instances of n-cyclic monotone operators for n≥ 2.

Fact 17.42 ([3]). Let n ∈ {2,3, . . .}. Then Rθ is n-cyclic monotone if and only if
|θ | ∈ [0,π/n].

Proof. See Example 4.6 in [3] for a detailed proof. �
The zero operator yields trivial solutions to any associated variational inequality

problem, and so the following, which shares the monotone classes of 0, is introduced
in its stead.

Example 17.43. The orthogonal projection A : R2 → R
2 defined by A(x1,x2) :=

(x1,0) is maximal monotone, paramonotone, 3-cyclic monotone, and 3∗-monotone.

Proof. Using the notation of Sect. 17.3, we have that A = Id× 0, where 0 : R→
R is the zero operator, and Id : R→ R is the identity. The 0 operator is maximal
monotone, paramonotone, 3-cyclic monotone, and 3∗-monotone, as is Id, which is
also strictly monotone, while 0 is not. The properties of A follow directly from the
results in Sect. 17.3. �

Finally, paramonotone linear operators in R
2 are further restricted to be either

strictly monotone or symmetric.

Proposition 17.44. A linear operator A : R2→ R
2 is paramonotone if and only if

it is strictly monotone or symmetric.

Proof. Strictly monotone operators and symmetric linear operators are paramono-
tone by Facts 17.8 and 17.48, respectively. It remains to show that these are the only
two possibilities. Assuming then that A is paramonotone, consider the general case,

A =

[
a c
b d

]
and A+ =

[
a b+c

2
b+c

2 d

]
. If ker(A+) = {0}, then A is strictly monotone

by Fact 17.48. If ker(A+) �= {0}, then by Fact 17.48 ker(A+) ⊆ ker(A), and so
ker(A) �= {0}, from which det(A) = 0 and ad = bc. Hence, since det(A+) = 0,
4bc = (b+ c)2, so (b− c)2 = 0 and b = c. Therefore A is symmetric. �
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Remark 17.45. The only paramonotone linear operators in R
2 that are not strictly

monotone are the symmetric linear operators A :=

[
a b

b b2

a

]
for a > 0 and b ∈ R

and the zero operator x �→ (0,0). By Proposition 17.29, since both examples of
A are symmetric linear operators, they are also maximal monotone and maximal
cyclical monotone, as they are subdifferentials of proper lower semicontinuous
convex functions.

All relationships among the classes of monotone linear operators in R
2 are now

known completely and are summarized in Table 17.1. Recall that all monotone linear
operators are assumed to have full domain and are therefore maximal monotone by
Proposition 17.19.

17.6.2 Linear Operators on R
n

On R
n the restriction that linear operators are single-valued is redundant as this also

follows from having full domain.

Proposition 17.46. A single-valued monotone linear relation A : Rn → R
n is

maximal monotone if and only if domA = R
n.

Proof. In R
n, all subspaces are closed, and so by Corollary 17.21, any maximal

monotone single-valued linear relations have full domain. The converse follows
from Proposition 17.19. �

Since linear operators are maximal monotone, the following result is a conse-
quence of Proposition 17.30 and appears in Remark 4.11 in [3].

Proposition 17.47 ([3]). Given a monotone linear operator A : Rn→ R
n, A is 3∗-

monotone if and only if A is paramonotone.

In the following fact (from Proposition 3.2 in [24]), we denote by A+ := 1
2 (A+

A∗) the symmetric part of a linear operator A : Rn→ R
n and by kerA := {x ∈ R

n :
Ax = 0} the kernel of A.

Fact 17.48 ([24]). Let A : Rn→ R
n be a linear operator. Then A is paramonotone

if and only if A is monotone and ker(A+)⊆ ker(A).

In Remark 17.45 we noted that the converse of Proposition 17.10 holds for
monotone linear operators that are not strictly monotone operators on R

2. We now
demonstrate that this result does not generalize to R

3.

Example 17.49. Let T : R3→R
3 be the linear operator defined by

Tx :=

⎡
⎣ 1 −2 1

3 1 3
1 −2 1

⎤
⎦x. (17.28)
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The operator T is paramonotone and maximal monotone, but not strictly monotone.
Further, T is not 3-cyclic monotone, but is 3∗-monotone.

Proof. The symmetric part of T is

T+ :=

⎡
⎣ 1 1/2 1

1/2 1 1/2
1 1/2 1

⎤
⎦ .

Since the eigenvalues of T+, consisting of {0, 1
2 (3+

√
3), 1

2(3−
√

3)}, are nonnega-
tive, T+ is positive semidefinite, hence monotone, and so T is monotone.

An elementary calculation yields that kerT+ = {t(−1,0,1) : t ∈ R}. Clearly,
kerT = kerT+, so by Fact 17.48, T is paramonotone. However, T is not strictly
monotone since the kernel contains more than the zero element.

Furthermore, T is maximal monotone since it is linear and has full domain
(Proposition 17.19). The operator T is not 3-cyclic monotone since the points
(0,0,0),(1,0,0), and (0,1,0) do not satisfy the defining condition (17.6). (For
a shortcut, call to mind Example 17.40 and Proposition 17.39.) Finally, since T
is a linear operator in R

3 that is paramonotone, it is 3∗-monotone by Proposi-
tion 17.47. �

17.6.3 Monotone Linear Operators in Infinite Dimensions

Recall from Proposition 17.47 that linear paramonotone operators on R
n are

3∗ monotone. Example 17.50 below demonstrates that larger spaces are more
permissive. A similar example appears in [7].

Example 17.50. Let θk := π/2− 1/k4 and let A : �2 → �2 be the linear operator
defined by

Ax �→
+∞

∑
k=1

(cos(θk)x2k−1− sin(θk)x2k)e2k−1 +(sin(θk)x2k−1 + cos(θk)x2k)e2k.

(17.29)
The structure of A is such that every x∗ = Ax obeys[

x∗2k−1
x∗2k

]
= Rθk

[
x2k−1

x2k

]
(17.30)

for all x ∈ �2 and k ∈ N, where Rθk is the rotation matrix as introduced in Exam-
ple 17.41. A is strictly monotone and maximal monotone, but not 3∗-monotone.
It follows that A is also paramonotone but not 3-cyclic monotone.

Proof. The monotonicity of T is evident from (17.30). Suppose that x ∈ �2 is such
that 〈x,Ax〉= 0. Now,
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〈x,Ax〉=
+∞

∑
k=1

cos(θk)(x
2
2k−1 + x2

2k)

is equal to zero if and only if x = 0, and so A is strictly monotone.
By Proposition 17.19, A is maximal monotone since it is linear and has full

domain.
Let x = 0, so that Ax = 0, and let z = ∑+∞

k=1
1
k (e2k−1 + e2k). Define a sequence

yn ∈ �2 by yn := n2e2n−1, and so Ayn = n2 cos(θn)e2n−1 + n2 sin(θn)e2n. For all n,
0 < cos(θn)≤ 1/n4, and from the Taylor’s series sin(θn)≥ 1−1/(2n8) for all large
n. Considering the inequality (17.3) for 3∗-monotonicity, we have

〈z− yn,Ayn−Ax〉 = n(cos(θn)+ sin(θn))− n4 cos(θn)

≥ n(0+ 1− 1/(2n8))− 1
→ +∞, as n→+∞,

(17.31)

and so A fails to be 3∗-monotone. �
Remark 17.51. The operator A from Example 17.50 can be modified to lose its
strict monotonicity property by using the zero function 0 : R→ R as a prefactor in
the product space, yielding T = 0×A. In this manner,

T x :=
+∞

∑
k=1

[
(cos(θk)x2k− sin(θk)x2k+1)e2k

+(sin(θk)x2k + cos(θk)x2k+1)e2k+1

]
. (17.32)

Proof. The Hilbert space �2 can be written as a product space �2 = R× �2. More
precisely, all of these spaces can be embedded in the larger space �2(Z ) with
standard unit vectors ei for i in Z , the set of integers. In this setting �2 = span{ei : i∈
N}, and let V0 = span{e0} so that �2(N

⋃{0}) =V0× �2. Let T = 0×A, where A is
the linear operator from Example 17.50. The operator 0 : V0→V0 is paramonotone,
maximal monotone, 3-cyclic monotone, and 3∗-monotone, but not strictly monotone
on R. The operator A : �2 → �2 from Example 17.50 is strictly monotone and
maximal monotone, but not 3∗-monotone. Therefore, by the results of Sect. 17.3,
T := 0×A is paramonotone and maximal monotone and fails to be strictly monotone
or 3∗-monotone. �

Note that all linear operators are assumed to have full domain and are therefore
maximal monotone by Proposition 17.19. Also, if a linear operator fails to be
paramonotone, it fails to be 3∗-monotone and 3-cyclic monotone as well. The mono-
tone class characterizations for linear operators in a Hilbert space are now known
completely, as summarized in Table 17.2 below.

Since the only linear operators on R are the constant operators, by the results
shown in Table 17.1 and by Proposition 17.47, each example in Table 17.2 operates
on a space with the lowest dimension for which its monotone class combination
is possible. In particular, note how examples with binary label 1000, 1001, and
1100, although absent in Table 17.1, exist for spaces of higher dimension. Finally,
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for every operator T in Table 17.2, an operator with the same monotone class
combination on any higher dimension can be constructed by a product space
composition with Id (T × Id).

17.7 Summary

The relationships among the five classes of monotone linear operator considered,
that is, maximal, para-, 3∗-, 3-cyclic, and strictly monotone operators, are now fully
understood in R

2, Rn, and in general Hilbert spaces. They are depicted in each
case with the Venn diagrams below. Further, a sample linear monotone operator has
been provided for every possible combination of monotone class. In Sect. 17.3, a
method by which these examples can be combined and extended to create linear
operators in higher dimension with a known monotone class configuration has been
described. Various properties and monotone class relationships of linear relations
have been explored above. Furthermore, only two monotone class relationships
do not apply for linear relations: a linear relation may be 3∗-monotone and not
paramonotone (as in Example 17.38), and 3-cyclic monotone linear relations that
are not paramonotone could exist, but they must not be maximal monotone.

Some of the results and examples in this paper were presented at a meeting of the
Canadian Mathematical Society in Vancouver, Canada, on December 4, 2010, and
a similar and complete characterization of these same monotone class relationships
for nonlinear operators will appear shortly.
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Chapter 18
Upper Semicontinuity of Duality and Preduality
Mappings

J.R. Giles

To celebrate Jonathan Borwein’s 60th birthday

Abstract In their paper studying Hausdorff weak upper semicontinuity of duality
and preduality mappings on the dual of a Banach space, Godefroy and Indumathi
related these by an interesting geometrical property. This property actually char-
acterises Hausdorff upper semicontinuity of the preduality mapping. When the
duality mapping is Hausdorff upper semicontinuous with weakly compact image,
we investigate how this same property persists with natural embedding into higher
duals.
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bility • Hausdorff upper semicontinuity

Mathematics Subject Classifications (2010): Primary: 46B20; Secondary: 54C60,
58C20

18.1 Introduction

In their paper [6] Godefroy and Indumathi studied weak upper semicontinuity of
duality and preduality mappings on a Banach space. Given a Banach space X , the
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subdifferential of the norm at x ∈ S(X) is the non-empty weak∗ compact convex
subset

∂‖x‖ ≡ { f ∈ X∗ : f (y)≤ ‖x‖′+(y) for all y ∈ X}.
The set-valued subdifferential mapping x �→ ∂‖x‖ is called the duality mapping
on X . Denoting by τ the weak∗, weak or norm topology on X∗, the duality mapping
is Hausdorff τ upper semicontinuous at x ∈ S(X) if given a τ neighbourhood N of
O in X∗ there exists δ > 0 such that

∂‖B(x,δ )‖ ⊆ ∂‖x‖+N;

equivalently, if and only if for each τ neighbourhood N of O in X∗ there exists δ > 0
such that

{ f ∈ B(X∗) : f (x)> 1− δ} ⊆ ∂‖x‖+N[3, Theorem 2.1, p. 102].

The duality mapping x �→ ∂‖x‖ is always Hausdorff weak∗ upper semicontinuous
[9, Proposition 2.5, p. 19]. The duality mapping x �→ ∂‖x‖ is Hausdorff norm upper
semicontinuous at x ∈ S(X) if and only if the norm is strongly subdifferentiable at
x; that is, given ε > 0 there exists δ > 0 such that

0≤ ‖x+ y‖−‖x‖−‖x‖′+(y)≤ ε‖y‖ for all ‖y‖< δ [5, Theorem 3.2, p. 28].

The norm is Gateaux differentiable at x ∈ S(X) if ∂‖x‖ is singleton, is very
smooth at x if also the duality mapping x �→ ∂‖x‖ is Hausdorff weak upper
semicontinuous at x and is Fréchet differentiable at x if also the duality mapping
x �→ ∂‖x‖ is Hausdorff norm upper semicontinuous at x.

On the dual space X∗, given f ∈ S(X∗), we call ∂‖ f‖∩ X̂ the presubdifferential
of the dual norm at f , often considering ∂‖ f‖∩ X̂ as a subset of X . Of course this
set could be empty. The mapping f �→ ∂‖ f‖∩ X̂ is called the preduality mapping on
X∗ and considering τ to be the weak or norm topology on X is said to be Hausdorff
τ upper semicontinuous at f , provided ∂‖ f‖∩ X̂ �= /0 and given a τ neighbourhood
N of O in X there exists δ > 0 such that

∂‖B( f ,δ )‖∩ X̂ ⊆ (∂‖ f‖∩ X̂)+ N̂;

equivalently, if and only if for each τ neighbourhood N of O in X there exists δ > 0
such that

{x ∈ B(X) : f (x) > 1− δ} ⊆ (∂‖ f‖∩ X̂)+ N̂, [6, Lemma 2.1, p. 319].

Hausdorff weak upper semicontinuity of the duality and preduality mappings has
significant characterisation by density properties.
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Proposition 18.1. Given a Banach space X,

(i) The duality mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous
at x ∈ S(X) if and only if

∂̂‖x‖ is weak∗ dense σ(X∗∗∗,X∗∗) in ∂‖x̂‖, [3, Theorem 3.1, p. 103].

(ii) Given f ∈ S(X∗) where ∂‖ f‖∩ X̂ �= /0, the preduality mapping f �→ ∂‖ f‖∩ X̂
on X∗ is Hausdorff weak upper semicontinuous at f if and only if

∂‖ f‖∩ X̂ is weak∗ dense σ(X∗∗,X∗) in ∂‖ f‖, [6, Lemma 2.2, p. 320].

In Sect. 18.2 we show that a geometrical property introduced by Godefroy
and Indumathi actually characterises Hausdorff weak upper semicontinuity of the
preduality mapping at f ∈ S(X∗) where ∂‖ f‖∩ X̂ �= /0. In Sect. 18.3 we investigate
how Hausdorff upper semicontinuity properties of the duality mapping affect higher
duals in particular when the subdifferential image is weakly compact.

18.2 The Geometrical Property of Godefroy and Indumathi

To establish links between duality and preduality mappings on the dual X∗,
Godefroy and Indumathi introduced the following property. We say that a Banach
space X has the G-I Property at f ∈ S(X∗) if for any convex subset C of B(X) such
that sup

C
f = 1 we have d(Ĉ,∂‖ f‖) = 0, [6, Fact 1, p. 321]. Following their argument

[6, Theorem 2.3, p. 321] we determine significant implications of this property.

Lemma 18.2. For a Banach space X with the G-I Property at f ∈ S(X∗)

(i) ∂‖ f‖∩ X̂ �= /0
(ii) For any y ∈ B(X), d(ŷ,∂‖ f‖∩ X̂) = d(ŷ,∂‖ f‖)
Proof. Given y ∈ B(X) choose r > d(ŷ,∂‖ f‖). Then there exists F ∈ ∂‖ f‖ such
that ‖ŷ− F‖ < r. Since the natural embedding of B(y,r)∩ B(X) is weak∗ dense
in B∗∗(ŷ,r) ∩ B(X∗∗) there exists a net {xα} in B(y,r) ∩ B(X) such that {x̂α} is
weak∗ convergent to F and so f (xα)→ 1. Then for C ≡ B(y,r)∩B(X) we have
supC f = 1 and so from the G-I Property given ε > 0 there exists x1 ∈ C such that
d(x̂1,∂‖ f‖)< ε . Again there exists F1 ∈ ∂‖ f‖ such that ‖x̂1−F1‖< ε . Again using
the weak∗ density of the natural embedding of B(x1,ε)∩B(X) in B∗∗(x̂1,ε)∩B(X∗∗)
we have for C1 ≡ B(x1,ε)∩B(X) with similar argument that there exists x2 ∈ C1

such that d(x̂2,∂‖ f‖) < ε/2. Continuing this argument we have a sequence {xn}
such that

‖xn− xn+1‖< ε/2n−1 and d(x̂n,∂‖ f‖)< ε/2n−1 .

The sequence {xn} is Cauchy so converges to say z and we have d(ẑ,∂‖ f‖) = 0
which implies that ẑ ∈ ∂‖ f‖∩ X̂ so ∂‖ f‖∩ X̂ �= /0. This completes the proof of (i).
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Also

‖y− xn‖ ≤ ‖y− x1‖+ ‖x1− x2‖+ . . .+ ‖xn−1− xn‖
< r+ ε+

ε
2
+ . . .+

ε
2n−2

< r+ 2ε.

As {xn} converges to z so ‖y− z‖ ≤ r+2ε and since r > d(ŷ,∂‖ f‖) and ε > 0 were
chosen arbitrarily and z ∈ ∂‖ f‖∩ X̂ we have

d(ŷ,∂‖ f‖∩ X̂) = d(ŷ,∂‖ f‖).

This completes the proof of (ii). �
Lemma 18.2(ii) has an immediate consequence.

Corollary 18.3. Given a Banach space X with the G-I Property at f ∈ S(X∗), for
any convex subset C of B(X) such that sup

C
f = 1 we have d(Ĉ,∂‖ f‖∩ X̂) = 0.

Lemma 18.2 enables us to give a characterisation of the G-I Property.

Theorem 18.4. A Banach space X has the G-I Property at f ∈ S(X∗) if and only if
∂‖ f‖∩ X̂ �= /0 and the preduality mapping f �→ ∂‖ f‖∩ X̂ on X∗ is Hausdorff weak
upper semicontinuous at f .

Proof. Suppose that the preduality mapping f �→ ∂‖ f‖∩ X̂ on X∗ is not Hausdorff

weak upper semicontinuous at f . Then by Proposition 18.1(ii), ∂‖ f‖∩ X̂
ω∗ �= ∂‖ f‖.

For F ∈ ∂‖ f‖ \ ∂‖ f‖∩ X̂
ω∗

there exists a convex weak∗ neighbourhood V of O
in X∗∗ such that

∂‖ f‖∩ X̂
ω∗ ∩ (F +V) = /0.

The convex set ĈV ≡ (F +V)∩B(X̂) has sup
CV

f = 1 but

d(ĈV ,∂‖ f‖∩ X̂)> 0.

So by Corollary 18.3, X does not have the G-I property at f .
Conversely, suppose there exists a convex subset C of B(X) where

sup
C

f = 1 but d(Ĉ,∂‖ f‖) = r > 0. Then (∂‖ f‖+ rB(X∗∗))∩ Ĉ = /0 which implies

that the duality mapping f �→ ∂‖ f‖ on X∗ is not Hausdorff norm upper semi-
continuous at f . But further, this implies that there exists an F ∈ X∗∗∗ strongly

separating Ĉ and ∂‖ f‖ in X∗∗. So F ∈ X∗∗∗ strongly separates ̂̂Cω∗ and ∂̂‖ f‖
ω∗

in X∗∗∗∗. Since ∂̂‖ f‖
ω∗

is weak∗ compact σ(X∗∗∗∗,X∗∗∗) there exists a weak∗ open

neighbourhood WF of O in X∗∗∗∗ such that (∂̂‖ f‖
ω∗

+WF)∩ ̂̂Cω∗

= /0. But then
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(∂‖ f‖+(WF ∩X∗∗))∩ Ĉ = /0 which implies that the duality mapping f �→ ∂‖ f‖
on X∗ is not Hausdorff weak upper semicontinuous at f . But further, given that
∂‖ f‖∩ X̂ �= /0, we have that

((∂‖ f‖∩ X̂)+ (WF∩ X̂))∩Ĉ = /0,

which implies that the preduality mapping f �→ ∂‖ f‖∩ X̂ on X∗ is not Hausdorff
weak upper semicontinuous at f . �

In the proof of this characterisation we have revealed the following relation
between duality and preduality mappings on the dual which are Hausdorff weak
upper semicontinuous.

Corollary 18.5 ([6, Theorem 3.2, p. 321]). Given a Banach space X if the duality
mapping f �→ ∂‖ f‖ on X∗ is Hausdorff weak upper semicontinuous at f ∈ S(X∗)
then the preduality mapping f �→ ∂‖ f‖ ∩ X̂ on X∗ is Hausdorff weak upper
semicontinuous at f .

Godefroy and Indumathi have pointed out that the converse of this result for
Hausdorff weak upper semicontinuity does not hold [6, p. 322]. Nevertheless for
Hausdorff norm upper semicontinuity we do have a reciprocal relation.

Theorem 18.6 ([7, Theorem 2.2, p. 400]). On the dual X∗ of a Banach space X,
the duality mapping f �→ ∂‖ f‖ is Hausdorff norm upper semicontinuous at f ∈
S(X∗) if and only if the preduality mapping f �→ ∂‖ f‖∩ X̂ is Hausdorff norm upper
semicontinuous at f .

Proof. For the duality mapping f �→ ∂‖ f‖ Hausdorff norm upper semicontinuous
at f , given ε > 0 there exists δ > 0 such that

{F ∈ B(X∗∗) : F( f ) > 1− δ} ⊆ ∂‖ f‖+ εB(X∗∗) so

{x ∈ B(X) : f (x)> 1− δ}̂⊆ ∂‖ f‖+ εB(X∗∗).

We saw in the proof of Theorem 18.4 that the duality mapping f �→ ∂‖ f‖ on X∗
being Hausdorff norm upper semicontinuous at f implies that the space X has the
G-I Property at f . So from Lemma 18.2(ii) we have that for z ∈ B(X)

ẑ ∈ ∂‖ f‖+ εB(X∗∗) if and only if ẑ ∈ ∂‖ f‖∩ X̂ + εB(X̂).

Then {x ∈ B(X) : f (x) > 1− δ}̂ ⊆ ∂‖ f‖ ∩ X̂ + εB(X̂); that is, the preduality
mapping f �→ ∂‖ f‖∩ X̂ on X∗ is Hausdorff norm upper semicontinuous at f .

Conversely, for the preduality mapping f �→ ∂‖ f‖ ∩ X̂ on X∗ Hausdorff norm
upper semicontinuous at f , given ε > 0, there exists δ > 0 such that

{x ∈ B(X) : f (x) > 1− δ}̂⊆ (∂‖ f‖∩ X̂ + εB(X̂))

⊆ ∂‖ f‖+ εB(X∗∗).
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Since ∂‖ f‖ is weak∗ compact, ∂‖ f‖+ εB(X∗∗) is weak∗ closed so

{F ∈ B(X∗∗) : F( f ) > 1− δ} ⊆ {x ∈ B(X) : f (x) > 1− δ}̂ ω∗
⊆ ∂‖ f‖+ εB(X∗∗)

[3, Theorem 2.1, p. 102]; that is, the duality mapping f �→ ∂‖ f‖ on X∗ is Hausdorff
norm upper semicontinuous at f . �

Contreras and Payá proved that a Banach space X is reflexive if the duality
mapping f �→ ∂‖ f‖ on X∗ is Hausdorff weak upper semicontinuous at every
f ∈ S(X∗) [1, Theorem 1.3, p. 453]. However from Lemma 18.2 and James Theorem
[2, Corollary 3.56, p. 84] we deduce the improved result that X is reflexive if it
satisfies the G-I Property at every f ∈ S(X∗).

It follows from Proposition 18.1(ii) that if ∂‖ f‖ ∩ X̂ �= /0 and the preduality
mapping f �→ ∂‖ f‖ ∩ X̂ is Hausdorff weak upper semicontinuous residually on

S(X∗) then ∂‖ f‖∩ X̂
ω∗

= ∂‖ f‖ residually on S(X∗) and that the dual norm is
Fréchet differentiable residually on S(X∗), [4, Theorem 1.3, p. 415].

18.3 Hausdorff Upper Semicontinuity and Higher Duals

Duality and preduality mappings are of particular interest when the subdifferential
image is weakly compact.

Theorem 18.7. Consider a Banach space X and f ∈ S(X∗) where ∂‖ f‖∩ X̂ �= /0.
The preduality mapping f �→ ∂‖ f‖∩ X̂ on X∗ is Hausdorff weak upper semicontin-
uous at f and ∂‖ f‖ is weakly compact σ(X∗∗,X∗∗∗) if and only if ∂‖ f‖ ⊆ X̂ .

Proof. Given that the preduality mapping f �→ ∂‖ f‖∩ X̂ on X∗ is Hausdorff weak
upper semicontinuous at f we have from Proposition 18.1(ii) that

∂‖ f‖∩ X̂
ω∗

= ∂‖ f‖.
But if ∂‖ f‖ is weakly compact σ(X∗∗,X∗∗∗) then so also is ∂‖ f‖∩ X̂ . So ∂‖ f‖∩ X̂
is weak∗ closed σ(X∗∗,X∗) and

∂‖ f‖∩ X̂ = ∂‖ f‖ and then ∂‖ f‖ ⊆ X̂ .

Conversely, the duality mapping f �→ ∂‖ f‖ on X∗ is Hausdorff weak∗ upper
semicontinuous at f so given a weak open neighbourhood V of O in X and a weak∗
open neighbourhood W of O in X∗∗ such that V̂ = W ∩ X̂ there exists a δ > 0
such that

∂‖B( f ,δ )‖ ⊆ ∂‖ f‖+W.
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As ∂‖ f‖ ⊆ X̂ then

∂‖B( f ,δ )‖∩ X̂ ⊆ (∂‖ f‖∩ X̂)+ V̂ ;

that is, the preduality mapping f �→ ∂‖ f‖ ∩ X̂ on X∗ is Hausdorff weak upper
semicontinuous at f . As ∂‖ f‖ is weak∗ compact σ(X∗∗,X∗) but ∂‖ f‖ ⊆ X̂ then
∂‖ f‖ is weakly compact σ(X∗∗,X∗∗∗). �

Hausdorff weak upper semicontinuity of duality and preduality mappings is
linked across duals.

Theorem 18.8. Given a Banach space X, if the preduality mapping
F �→ ∂‖F‖∩ X̂∗ on X∗∗is Hausdorff weak upper semicontinuous at x̂ ∈ S(X∗∗) then
the duality mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous at x.

Conversely, if the duality mapping x �→ ∂‖x‖ on X is Hausdorff weak upper

semicontinuous at x ∈ S(X) with weak compact image ∂‖x‖ then ∂‖x̂‖ = ∂̂‖x‖
and the preduality mapping F �→ ∂‖F‖ ∩ X̂∗ on X∗∗ is Hausdorff weak upper
semicontinuous at x̂ ∈ S(X∗∗) with weak compact image ∂‖x̂‖.
Proof. Since the preduality mapping F �→ ∂‖F‖ ∩ X̂∗ on X∗∗ is Hausdorff weak
upper semicontinuous at x̂ ∈ S(X∗∗), given a weak open neighbourhood V of O in
X∗ there exists δ > 0 such that

∂‖B(x̂,δ )‖∩ X̂∗ ⊆ (∂‖x̂‖∩ X̂∗)+ V̂ .

But ̂∂‖B(x,δ )‖= ∂‖B(x̂,δ )‖∩ X̂∗ and ∂̂‖x‖= ∂‖x̂‖∩ X̂∗ so
∂‖B(x,δ )‖ ⊆ ∂‖x‖+ V̂ . Then the duality mapping x �→ ∂‖x‖ on X is Hausdorff
weak upper semicontinuous at x.

Conversely, since the duality mapping x �→ ∂‖x‖ on X is Hausdorff weak upper

semicontinuous at x ∈ S(X) then by Proposition 18.1(i), we have ∂‖x̂‖ = ∂̂‖x‖ω
∗
.

The natural embedding of X∗ into X∗∗∗ maps ∂‖x‖ weakly compact σ(X∗,X∗∗) to

∂ ‖̂x‖ weakly compact σ(X∗∗∗,X∗∗∗∗). Then ∂̂‖x‖ is weak∗ closed σ(X∗∗∗,X∗∗),
so ∂‖x̂‖ = ∂̂‖x‖ ⊆ X̂∗. Theorem 18.7 implies that the preduality mapping F �→
∂‖F‖∩ X̂∗ on X∗∗ is Hausdorff weak upper semicontinuous at x̂ with weak compact
image ∂‖x̂‖. �

Hausdorff norm upper semicontinuity of the duality mapping does have signifi-
cant persistence properties for higher duals.

Theorem 18.9 ([3, Corollary 2.1, p. 103]). Given a Banach space X, if the duality
mapping x �→ ∂‖x‖ on X is Hausdorff norm upper semicontinuous at x ∈ S(X) then
the duality mapping F �→ ∂‖F‖ on X∗∗ is Hausdorff norm upper semicontinuous
at x̂ ∈ S(X∗∗) and through all even dual spaces. If also ∂‖x‖ is weakly compact
σ(X∗,X∗∗) then ∂‖x̂‖ is weakly compact σ(X∗∗∗,X∗∗∗∗) and the subdifferential
remains constant through all even dual spaces.
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Proof. Since the duality mapping x �→ ∂‖x‖ on X is Hausdorff norm upper
semicontinuous at x ∈ S(X) given ε > 0 there exists δ > 0 such that

{ f ∈ B(X∗) : f (x)> 1− δ} ⊆ ∂‖x‖+ εB(X∗).

Then

{F ∈ B(X∗∗∗) : F(x̂)> 1− δ} ⊆ { f ∈ B(X∗) : f (x) > 1− δ}̂ ω∗
⊆ (∂‖x‖+ εB(X∗))̂ ω∗
⊆ ∂‖x̂‖+ εB(X∗∗∗), [3, Theorem 2.1, p. 102].

So the duality mapping F �→ ∂‖F‖ on X∗∗ is Hausdorff norm upper semicontinuous
at x̂. If also ∂‖x‖ is weakly compact σ(X∗,X∗∗) then from Theorem 18.8 we have

that ∂‖x̂‖ = ∂̂‖x‖ and so ∂‖x̂‖ is weakly compact σ(X∗∗∗,X∗∗∗∗). So applying
Theorem 18.8 to duality mapping F �→ ∂‖F‖ on X∗∗ we have

∂‖̂̂x‖= ∂̂‖x̂‖= ̂∂̂‖x‖ ⊆ ̂̂X∗∗. �

This has a special case that if the norm of a Banach space X is Fréchet
differentiable at x ∈ S(X) then the norm of X∗∗ is also Fréchet differentiable at
x̂ ∈ S(X∗∗) and so on for all subsequent even dual spaces.

Such a persistence property does not hold generally for Hausdorff weak upper
semicontinuity of the duality mapping. Godefroy and Indumathi give an example of
a separable Banach space with X∗∗/X non-reflexive to show that even if the norm
of X is very smooth at x ∈ S(X) the norm of X∗∗ is not necessarily very smooth at
x̂ ∈ S(X∗∗) [6, Proposition 4.1, p. 326] (see also [8, Theorem 2.5, p. 1025]).

However, a similar persistence property does hold for Hausdorff weak upper
semicontinuous duality mappings for a large class of Banach spaces, those which
are an M-ideal in their second dual. A Banach space X which has X̂ an M-ideal in

X∗∗ has ̂̂X an M-ideal in X∗∗∗∗ [10, p. 1391] and this implies that for any element
Φ ∈ X∗∗∗∗∗ = X⊥⊥⊥⊕X∗⊥⊥ and Φ =Φ1 +Φ2 where Φ1 ∈ X⊥⊥⊥ and Φ2 ∈ X∗⊥⊥
we have ‖Φ‖ = ‖Φ1‖+ ‖Φ2‖, [6, p. 325]. Godefroy and Indumathi explored the
persistence of smoothness properties to higher duals [6, Proposition 3.2, p. 324],
but following their argument we have a more general result.

Lemma 18.10. Given a Banach space X, if the duality mapping x �→ ∂‖x‖ on X
is Hausdorff weak upper semicontinuous at x ∈ S(X) with ∂‖x‖ weakly compact
σ(X∗,X∗∗) then

∂‖̂̂x‖ |
X⊥⊥= ∂̂‖x̂‖ |

X⊥⊥ .

Proof. We are considering ∂‖̂̂x| and ∂ ‖̂x̂‖ on X∗∗∗∗= X∗⊥⊕X⊥⊥. Since the duality
mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous at x ∈ S(X) and

∂‖x‖ is weakly compact σ(X∗,X∗∗) then by Theorem 18.8 we have ∂‖x̂‖ = ∂̂‖x‖.
So ∂̂‖x̂‖ ⊆ X̂∗ and ∂̂‖x̂‖ |

X∗⊥= 0.
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We denote by io the natural embedding of X into X∗∗. Consider ϕ ∈ X⊥⊥ =
i∗∗o (X∗∗) ⊆ X∗∗∗∗. Now there exists F ∈ X∗∗ such that ϕ = i∗∗o F . Since the
natural embedding of B(X∗∗∗) is weak∗ dense σ(X∗∗∗∗∗,X∗∗∗∗) in B(X∗∗∗∗∗), given
Φ ∈ ∂‖̂̂x‖ there exists a net {Fα} in B(X∗∗∗) such that {F̂α} is weak∗ convergent
to Φ ∈ B(X∗∗∗∗∗). Then F̂α(̂̂x)→ Φ(̂̂x) = 1 and so i∗oFα(x̂)→ 1. Since the duality
mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous at x ∈ S(X) and
∂‖x‖ is weakly compact then {i∗oFα} has a subnet {i∗oFαβ } weakly convergent to
some f ∈ ∂‖x‖ [3, Theorem 3.2, p. 104]. Then

Φ(ϕ) = limFαβ (ϕ) = lim i∗∗o F(Fαβ ) = limF(i∗oFαβ ) = F( f ).

But also

Φ( f̂ ) = i∗∗o F( f ) = F(i∗o f̂ ) = F( f ).

So forΦ∈ ∂‖̂̂x‖ |
X⊥⊥ we haveΦ∈ ∂̂‖x̂‖ |

X⊥⊥ remembering that ∂‖x̂‖= ∂̂‖x‖. Since

∂̂‖x̂‖ ⊆ ∂‖̂̂x‖ we conclude that

∂‖̂̂x‖ |
X⊥⊥= ∂̂‖x̂‖ |

X⊥⊥ . �

Theorem 18.11. Given a Banach space X which is an M-ideal in X∗∗, if the duality
mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous at x ∈ S(X) and
∂‖x‖ is weakly compact σ(X∗,X∗∗) then

∂‖̂̂x‖= ∂̂‖x̂‖= ̂∂̂‖x‖ ⊆ ̂̂X∗.
Further, all duality mappings on even duals are Hausdorff weak upper semicontin-
uous at embeddings of x∈ S(X) and the subdifferentials of these embeddings are all
weakly compact and remain constant through all even duals.

Proof. ConsiderΦ∈ ∂‖̂̂x‖⊆ X∗∗∗∗∗= X⊥⊥⊥⊕X∗⊥⊥ andΦ=Φ1+Φ2 whereΦ1 ∈
X⊥⊥⊥ and Φ2 ∈ X∗⊥⊥. Since ̂̂X is an M-ideal in X∗∗∗∗, ‖Φ‖= ‖Φ1‖+ ‖Φ2‖. Now
Φ1(̂̂x) = 0 and Φ(̂̂x) = 1 so Φ2(̂̂x) = 1. But ‖Φ‖= 1 so ‖Φ2‖ ≤ 1, yet Φ2(̂̂x) = 1 so
‖Φ2‖= 1. Then ‖Φ1‖= 0 soΦ1 = 0. This means thatΦ∈ X∗⊥⊥ then ∂‖̂̂x‖ |

X∗⊥= 0.
From Lemma 18.10 and Theorem 18.8 we conclude that

∂‖̂̂x‖= ∂̂‖x̂‖= ̂∂̂‖x‖ ⊆ ̂̂X∗.
From Theorem 18.7 we deduce that the preduality mappingΦ �→ ∂‖Φ‖∩ (X̂∗∗∗)

on X∗∗∗∗ is Hausdorff weak upper semicontinuous at ̂̂x with ∂‖̂̂x‖ weakly compact.
By Theorem 18.8 we deduce that the duality mapping F �→ ∂‖F‖ on X∗∗ is
Hausdorff weak upper semicontinuous at x̂ with ∂‖x̂‖ weakly compact. Since X
is an M-ideal in all duals of even order [10, Theorem 2, p. 1390] we can continue to
establish our theorem. �
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This has as a special case that, if the norm of a Banach space X which is an
M-ideal in X∗∗ is very smooth at x ∈ S(X), then the norm of X∗∗ is very smooth at
x̂ ∈ S(X∗∗) and so on for all subsequent even dual spaces.

Although Theorem 18.11 does not hold for Banach spaces in general, neverthe-
less it is worth noting that Theorems 18.7 and 18.8 imply that if a Banach space X
has the property

∂‖x̂‖= ∂̂‖x‖ ⊆ X̂∗ at x ∈ S(X)

then the duality mapping x �→ ∂‖x‖ on X is Hausdorff weak upper semicontinuous at
x and ∂‖x‖ is weakly compact. So if the subdifferentials at x ∈ S(X) and its natural
embeddings remain constant on all even dual spaces then the duality mappings on
all such dual spaces are Hausdorff weak upper semicontinuous at such embedding
points and with weakly compact images.
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19.1 Introduction

The title of this paper resembles the name of the third chapter in the remarkable book
of Borwein and Zhu [3]. But the emphasis is somewhat different. In [3] variational
techniques directly “refer to proofs by way of establishing that an appropriate
auxiliary function attains a minimum.” This interpretation of variational analysis
is close to its original meaning in the classical Morse’s monograph [33]. But a more
recent and also already classical monograph by Rockafellar and Wets [37] offers
a much broader interpretation of the term which has become widely accepted by
now. Pursuit of maximum generality is immanent in this interpretation and this is
definitely an indication of the power and ambition of the emerging theory. But there
are also some dangers.

Needless to say that general theories often offer good starting observation points
to attack concrete problems. But equally true is that neglecting specific features
and details may lead to heavy and awkward constructions poorly connected with
the nature of the problem. These are rather trivial remarks, but there is a worrying
tendency to indiscriminately use techniques of general variational analysis as the
main tool to study very well structured problems for which a proper use of
techniques taking specified structures into account could be much more efficient.1

My main intention in this paper is to demonstrate the interplay between methods
of general variational analysis, on the one hand, and convex analysis, on the other
(with more emphasis on the efficiency of the latter), in treating problems that come
from the general variational analysis when applied in substantial or virtual presence
of convexity.

We shall consider several problems connected either with (metric) regularity and
perturbation stability of set-valued mappings or first-order optimality conditions.
Not all of the problems are originally convex, but in either case the analysis involves
convexity in one or another way. The paper basically surveys some results that
recently have been or are about to be published, although there are some new results
as well (those not supplied with references in the text or in the comments at the ends
of each section), e.g., Theorem 19.28 containing an exact estimate for the modulus
of Lipschitz stability of the set of solutions of a generalized equation with respect
to joint variations of the right-hand part and linear perturbations of the set-valued
mapping. For the majority of other results we just give new proofs, usually shorter
than those available in the literature.

Now about the content of the paper. The next section contains necessary
information from convex and modern variational analysis. In the third section we
speak about calculation of global error bounds, for convex functions in the first
part of the section and nonconvex l.s.c. functions in the second. This problem is an
excellent example of the effect of specific structural properties of the objects and

1Some time ago I was literally horrified by an article by three acknowledged authors published in
a respected journal in which a fairly elementary result, an error bound for a polyhedral function,
was proved on more than ten pages using “advanced” technique of nonconvex subdifferentiation.
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the concrete setting of the problem on the choice of technical instruments to solve
the problem and on the result itself. We demonstrate this by considering first convex
functions separately on Hilbert spaces, reflexive spaces, and arbitrary Banach spaces
and then arbitrary lower semicontinuous functions on Banach spaces. The general
results presented in the section can be found in Azé-Corvellec’s papers [1, 2] and
the monograph [46] by Zalinescu although our statements and proofs contain some
new elements (more detailed bibliographic information is contained in comments
concluding each of the last three sections). In the fourth section we consider set-
valued mappings with convex graphs and systems of convex inequalities. The main
questions discussed in the section relate to metric regularity (exact formulas for
regularity moduli) and stability estimates of the regularity properties with respect
to linear perturbation. We start with a new and a very short proof of the Robinson-
Ursescu theorem substantially based on the general metric regularity criterion of
[20]. Subsequent results are closely related to Canovas et al. [4–8], Ioffe-Sekiguchi
[25], and Ioffe [23]. The first statement of the mentioned final result of the section
Theorem 19.28 applies to all set-valued mappings with closed graph.

The main message of the last section is that, as far as the first-order necessary
optimality conditions are concerned, smooth nonconvex inequality constraint or cost
functions do not exist. By that I mean that if such a function appears in the statement
of the problem, it can be replaced by a convex continuous local majorant with the
same value and the same derivative at the point. This is the content of main lemma
in the last section. This simple lemma does not seem to have appeared earlier, but a
similar and even more elaborate idea was behind the Levitin-Milyutin-Osmolovski
upper approximation in [27] (see also [19]). Using convex majorants offered by the
lemma dramatically simplify the derivation of necessary optimality conditions.

A discussion with B. Mordukhovich after his talk (based on his joint paper with
Nghia [32]) at J. Borwein anniversary conference in Vancouver revealed however
that utility of such tricks may not seem to be obvious for everybody. So we show
here that it is possible to furnish, based on the lemma, fairly elementary and short
proofs for the main results of [32] and even for stronger versions of some of
them. In fact, the message can be even strengthened: the convex majorant that
appears after the application of the lemma is necessarily strictly differentiable, no
matter whether the original function has this property or not. Thus, when we deal
with first-order optimality conditions, for inequality constraint and cost functions
the differentiability and strict differentiability assumptions make no difference.
Of course, the difference is substantial for equality constraints.

In the text we supply with references mainly the results that are stated without
proofs. The statements of known results supplied with proofs may slightly differ
from the original statements, and we give relevant references in the comments at the
ends of the sections.

Notation. Throughout the paper X ,Y , etc. are Banach spaces, X∗ is the topological
dual of X , and 〈x∗,x〉 is the canonical pairing on X∗ ×X . By d(x,Q) we denote the
distance from x to Q. We shall always consider X∗ with the weak∗-topology and
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the symbol cl∗ means closure in this topology. The symbol F : X ⇒ Y is used for
set-valued mappings from X into Y , F−1 is the inverse mapping: F−1(y) = {x : y ∈
F(x)}.

If Q ⊂ X , then convQ is the convex hull of Q, coneQ = ∪λ≥0λQ is the cone
generated by Q, SQ(x) stands for the support function of Q, and IndQ indicator of Q:

SQ(x
∗) = sup

x∈Q
〈x∗,x〉; IndQ =

{
0, if x ∈ Q,

∞, otherwise.

19.2 Preliminaries

19.2.1 A Few Facts from Convex Analysis

Let X be a Banach space and f an extended-real-valued convex function on X .
We call f proper if f (x)>−∞. We define as usual the domain dom f = {x : f (x)<
∞} and epigraph epi f = {(x,α) ∈ X×R : α ≥ f (x)} of f . It is said that f is closed
if epi f is a closed set or, equivalently, if f is lower semicontinuous. The (Fenchel)
conjugate of f is

f ∗(x∗) = sup
u
(〈x∗,u〉− f (u)).

The closure cl f of a convex function f is the greatest closed convex function
majorized by f :

cl f (x) = liminf
u→x

f (u) = f ∗∗(x) = sup
x∗

(〈x∗,x〉− f ∗(x∗)). (19.1)

Observe that the lower bounds of a function and its closure coincide.
Recall that the subdifferential of f at x ∈ dom f is

∂ f (x) = {x∗ ∈ X∗ : 〈x∗,h〉 ≤ f (x+ h)− f (x), ∀ h ∈ X}.
It is always a weak∗ closed set, bounded (hence weak∗-compact) if f is continuous
at x. Moreover, the set-valued mapping x �→ ∂ f (x) is norm-to-weak∗ upper semi-
continuous; in particular, the function d(0,∂ f (·)) is lower semicontinuous.

If x ∈ dom f , then the directional derivative of f at x in the direction h is

f ′(x;h) = lim
t→+0

t−1( f (x+ th)− f (x)).

This limit, finite or infinite, always exists, thanks to the following elementary fact:
if ϕ(t) is a convex function on a real line and t1 < t2 ≤ t4, t1 ≤ t3 < t4 belong to the
domain of ϕ , then
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ϕ(t2)−ϕ(t1)
t2− t1

≤ ϕ(t4)−ϕ(t3)
t4− t3

. (19.2)

As another immediate consequence, we get f ′(x;h)≥− f ′(x;−h).
The function f ′(x; ·) is sublinear, that is, convex and positively homogeneous

of degree one: f ′(x;λh) = λ f ′(x;h) if λ > 0. It is continuous if f is continuous
at x. Note that the closure of a sublinear function is also a sublinear function. The
connection between the subdifferential and the directional derivative is described by
the equality

sup
x∗∈∂ f (x)

〈x∗,h〉= (cl f ′(x; ·))(h).

We also have that f (x) = (cl f )(x) and ∂ f (x) = ∂ (cl f )(x) if ∂ f (x) �= /0.
The following proposition reveals the connection between the directional deriva-

tive and the subdifferential at the same point.

Proposition 19.1. Let f be a proper closed convex function on a Banach space X.
Then

d(0,∂ f (x)) = sup
‖h‖≤1

(− f ′(x; ·))(h) = sup
‖h‖≤1

(−cl( f ′(x; ·)))(h).

(Here we adopt the standard conventions: sup /0 = −∞, inf /0 = ∞, so that
d(x, /0) = ∞.)

Proof. If ∂ f (x) = /0, the equality holds by the standard convention. Furthermore,
0 ∈ ∂ f (x) if and only if f ′(x;h) ≥ 0 for all h and the equality obviously holds in
this case (just take h = 0). Assume now that 0 �∈ ∂ f (x) �= /0. Then d(0,∂ f (x)) > 0.
As ∂ f (x) is a weak∗ closed set and ‖ · ‖ is weak∗ l.s.c., there is an x∗ ∈ ∂ f (x) such
that ‖x∗‖ = d(0,∂ f (x)). Take a small ε > 0 and set Qε = (1− ε)‖x∗‖BX∗ . This set
is weak∗-compact and does not meet ∂ f (x). Therefore there is an h ∈ X , ‖h‖ = 1
separating the sets, e.g.,

(1− ε)‖x∗‖= sup
‖u∗‖≤(1−ε)‖x∗‖

〈u∗,h〉 ≤ inf
u∗∈∂ f (x)

〈u∗,h〉 ≤ 〈x∗,h〉 ≤ ‖x∗‖.

On the other hand

inf
u∗∈∂ f (x)

〈u∗,h〉=− sup
u∗∈∂ f (x)

〈u∗,−h〉=−cl( f ′(x; ·))(−h)

and we get |d(0,∂ f (x))− (−cl( f ′(x, ·))(−h)| ≤ εd(0,∂ f (x)). �
Given a convex set Q⊂ X and an x ∈ Q, the tangent cone to Q at x is

T (Q,x) = cl [cone(Q− x)] = cl
( ⋃
λ>0

λ (T − x)
)
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and the normal cone to Q at x is

N(Q,x) = {x∗ ∈ X∗ : 〈x∗,x− x〉 ≤ 0, ∀ x ∈ Q}.
If Qi, i = 1,2 are convex sets such that Q1 meets the interior of Q2 then for any
x ∈ Q1∩Q2

N(Q1∩Q2,x)⊂ N(Q1,x)+N(Q2,x).

If F : X ⇒Y is a set-valued mapping with convex graph and (x̄, ȳ)∈GraphF , then
T (GraphF,(x̄, ȳ)) can be considered the graph of the set-valued mapping DF(x̄, ȳ)
defined by

DF(x̄, ȳ)(h) = {v ∈ Y : (h,v) ∈ T (GraphF,(x̄, ȳ))}.
This mapping is usually called the derivative (or contingent derivative) of F at (x̄, ȳ).

19.2.2 A Few Facts from General Variational Analysis

We need some facts from the local (metric) regularity theory of variational analysis.
Given a set-valued mapping F : X ⇒ Y and an (x̄, ȳ) ∈ GraphF , it is said that:

• F is open (or covering) at a linear rate at (or near) (x̄, ȳ) if there are r > 0 and
ε > 0 such that

B(v, tr)∩B(y,ε)⊂ F(B(x, t))

whenever ‖x− x‖ < ε , 0 ≤ t < ε and v ∈ F(x). The upper bound of such r is
called the modulus or rate of surjection or openness of F at (x̄, ȳ) and is denoted
surF(x|y). If no such r and ε exist, we set surF(x|y) = 0.

• F is metrically regular at (or near) (x̄, ȳ) if there are K > 0 and ε > 0 such that

d(x,F−1(y))≤ Kd(y,F(x))

whenever ‖x− x‖< ε and ‖y− y‖< ε . The lower bound of such K is called the
modulus or rate of metric regularity of F at (x̄, ȳ) and is denoted regF(x|y). If no
such K and ε exist, we set regF(x|y) = ∞.

• F−1 is said to be pseudo-Lipschitz or to have the Aubin property at (or near) (y,x)
if there are K > 0 and ε > 0 such that

d(x,F−1(y))≤ Kd(y,v)

whenever ‖x− x‖ < ε,‖y− y‖ < ε and v ∈ F(x). The lower bound of such K is
called the Lipschitz modulus or rate of F−1 at (y|x) and is denoted lipF−1(y|x).
If no such K or ε exist, we set lipF−1(y,x) = ∞.
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Theorem 19.2 (equivalence theorem). Under the convention that 0 ·∞ = 1, for
any set-valued mapping F : X ⇒ Y and any (x̄, ȳ) ∈ GraphF

surF(x|y) · regF(x|y) = 1; regF(x|y) = lipF−1(y|x).

We say that F is regular at (x̄, ȳ) if the three properties are satisfied at (x̄, ȳ).

Theorem 19.3 (criterion for local regularity). Let F be a set-valued mapping
whose graph is locally complete in the product metric, and let (x̄, ȳ) ∈ GraphF.
Then F is regular near (x̄, ȳ) if and only if there are ε > 0 and r > 0 such that for
any x, y, and v satisfying d(x,x) < ε, d(v,y) < ε, y ∈ F(x), and 0 < d(y,v) < ε ,
there is a pair (u,z) ∈GraphF, (u,z) �= (x,y), and a ξ > 0 such that

‖y− z‖ ≤ ‖y− v‖− rdξ((x,y),(u,z)). (19.3)

The upper bound of such r coincides with surF(x|y).
Moreover if F is u.s.c. in the sense that the functions ϕy = d(y,F(·)) are l.s.c. for

any y, (19.3) can be replaced by

‖y− z‖ ≤ ‖y− v‖− r‖x− u‖.

Here dξ is the distance in X×Y associated with the norm max{‖x− u‖,ξ‖y− z‖}.
Note that the definitions and results extend without change (except for obvious
replacement of the norms by distances) to arbitrary metric spaces. For the proofs
of the theorems see, e.g., [20, 22].

The geometric meaning of the criterion is obvious: for any observation point
(x,v) of the graph (close to (x̄, ȳ)) and any y �= v you can find a better observation
position (u,w) ∈ GraphF such that the gain in the distance to y is proportional to
the distance between the observation points. Less obvious is that the criterion is
an excellent practical instrument, often better than more sophisticated means using
slopes and subdifferentials.2

Calculation of regularity rates is typically a difficult task. But in certain cases it
is sufficiently easy. Denote by Epi f the set-valued mapping X ⇒ R whose graph
coincides with the epigraph of f ;

2To support this declaration we give below a proof of a set-valued version of the famous Milyutin’s
perturbation theorem [14] for the case when F is upper semicontinuous: Let Y be a Banach space,
F : X ⇒ Y with y ∈ F(x), and let g : X →Y be Lipschitz near x. Then

sur (F +g)(x,y+g(x)) ≥ surF(x̄, ȳ)− lipg(x).

Proof. Set Φ(x) = F(x)+g(x), �= lipg(x). Then v ∈ F(x) ⇔ w = v+g(x) ∈Φ(x). Take a y �= v
and set z= g(x)+y. Then ‖y−v‖= ‖z−w‖. By the criterion (as F is regular) ∃ (x′,v′)∈Graph F
s.t. (x′,v′) �= (x,v) and

‖y− v′‖ ≤ ‖y− v‖− rd(x,x′).

Set w′ = g(x′)+ v′ ∈Φ(x′). Then
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Epi f (x) = {α ∈R : α ≥ f (x)}.

Proposition 19.4. Let f be a closed convex function on X. Then for any x ∈ dom f

sur(Epi f )(x, f (x)) = liminf
(u, f (u))→(x, f (x))

d(0,∂ f (u)). (19.4)

Proof. Note that forα ∈Epi f (x) the inclusion B(α,ε)=α+[−ε,ε]⊂Epi f (B(u, t))
is equivalent to α+[−ε,∞]⊂ Epi f (B(u, t)). On the other hand, let ∂ f (u) �= /0. Set
ρ = d(0,∂ f (u)). We have f (u+ th)≥ f (u)+ t〈u∗,h〉 for any h∈ X , any u∗ ∈ ∂ f (u),
and any t > 0. Together with Proposition 19.1 this implies that for any ε > 0

f (u)+ t(1− ε)ρ [−1,∞)⊂ Epi f (B(u, t))⊂ f (u)+ tρ [−1,∞)

and (19.4) follows (as d(0,∂ f (·)) is an l.s.c. function). �
The contingent or Bouligand tangent cone to Q at x ∈Q is

TB(Q,x) = limsup
λ→+0

λ−1(Q− x) = {h : liminf
λ→+0

λ−1d(x+λh,Q) = 0}.

The polar of TB(Q,x)

NDH(Q,x) = {x∗ ∈ X∗ : 〈x∗,u− x〉 ≤ 0, ∀ u ∈ Q}

is called the Dini-Hadamard normal cone to Q at x. Any normal cone to the graph
of a set-valued mapping X ⇒ Y can be viewed as the graph of a set-valued mapping
from Y ∗ into X∗. In particular, given F : X ⇒ Y and (x,y) ∈ GraphF , the set-valued
mapping

y∗ �→ {x∗ : (x∗,−y∗) ∈ NDH(GraphF,(x,y)} := D∗DHF(x,y)(y∗)

is called the Dini-Hadamard coderivative of F at (x,y). We shall not need
coderivatives associated with other types of normal cones.

The Clarke tangent cone TC(Q,x) to Q at x is the collection of h∈ X such that for
any sequence (xn) ⊂ Q converging to x and any sequence (tn) of positive numbers
converging to zero there is a sequence (hn) converging to h such that xn + tnhn ∈ Q.
This is always a closed convex cone. Its polar NC(Q,x) is called Clarke’s normal
cone to Q at x.

The inclusions TC(Q,x)⊂ TB(Q,x) and NDH(Q,x)⊂NC(Q,x) always hold. If we
actually have equalities, then Q is called Clarke regular at x ∈ Q.

‖z−w′‖ = ‖z−g(x′)− v′‖ ≤ ‖z−g(x)− v′‖+ �d(x,x′)
= ‖y− v′‖+ �d(x,x′)
≤ ‖y− v‖− rd(x,x′)+ �d(x,x′)
= ‖z−w‖− (r− �)d(x,x′).

The proof in the general case is almost equally simple.



19 Convexity and Variational Analysis 419

19.3 Global Error Bounds

Let X be a metric space, and let f be an extended-real-valued function on X .
We define the domain of f by dom f = {x : | f (x)| < ∞} and set [ f ≤ α] = {x ∈
dom f : f (x)≤ α}, [ f = α] = {x ∈ dom f : f (x) = α}, etc.

Definition 19.5. Suppose [ f ≤ α] �= /0. A number K ≥ 0 is called a global error
bound for f at level α if

d(x, [ f ≤ α])≤ K( f (x)−α)+, ∀ x ∈ X .

Clearly the set of all global error bounds has the minimal element. We shall
denote by Kf (α) the smallest global error bound for f at level α . The reciprocal
quantity Kf (α)−1 is sometimes called the condition number of f at the level α .

We shall look for estimates or exact expressions for global error bounds
(condition numbers) that use only infinitesimal information about the function.

19.3.1 Convex Function on a Banach Space

As follows from the title of the subsection we shall consider here the case when X
is a Banach space and f is a convex function. We assume throughout that

(A1) f is a proper closed convex function and [ f ≤ α] �= /0.

In this subsection we prove the following theorem.

Theorem 19.6. Let X be a Banach space and f a proper closed convex function on
X satisfying (A1). Then for any α with [ f ≤ α] �= /0

Kf (α)−1 = inf
x∈[ f>α ]

sup
‖h‖≤1

(− f ′(x;h))

= inf
x∈[ f>α ]

d(0,∂ f (x))

= inf
x∈[ f>α ]

sur(Epi f )(x, f (x)). (19.5)

Moreover, if X is a Hilbert space, then we also have

Kf (α)−1 = inf
x∈[ f=α ]

inf
h∈N([ f≤α ],x),‖h‖=1

f ′(x;h). (19.6)

Proof. The second and the third equalities follow from Propositions 19.1 and 19.4.
So in order to prove the first statement we only have to show that Kf (α)−1 coincides
with any of the quantities on the right. We shall do this separately for Hilbert spaces
(along with (19.6)), reflexive spaces, and general Banach spaces. Set for brevity
S = [ f ≤ α], S0 = [ f = α].
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1. The Case of a Hilbert Space. To begin with, consider a continuous convex
function ϕ on the real segment [0,T ] which is equal to zero at 0 and strictly
positive on (0,T ]. Denote by ϕ ′(t±) the right and left derivatives of ϕ at t.
We have ϕ ′(t+)+ϕ ′(t−)≥ 0 for all t ∈ (0,T ) and (by (19.2))

ϕ ′(0+) = lim
t→0

ϕ ′(t) = lim
t→0

(−ϕ ′(t−)) = inf
t>0

(−ϕ ′(t−)). (19.7)

It follows further from (19.2) and the mean value theorem that for any t > 0 there
is a τ ∈ (0, t) such that −tϕ ′(t−)≥ ϕ(t)≥−τϕ ′(τ−). Together with (19.7) this
implies that

sup{k≥ 0 : kt ≤ ϕ(t), ∀t ∈ [0,T ]} = ϕ ′(0+)

= − lim
t→0

ϕ ′(t−) = inf
t>0

(−ϕ ′(t−)). (19.8)

Let x ∈ (dom f )\S, and x ∈ S be such that ‖x− x‖= d(x,S). As f (x)<∞, we
necessarily have x ∈ S0. Set T = ‖x− x‖, h = T−1(x− x) and let ϕ(t) = f (x+
th), t ∈ [0,T ]. It is clear that ϕ ′(t+)= f ′(x+ th;h) and ϕ ′(t−) = f ′(x+ th;−h).
Note further that for any x ∈ S either N(S,x) = {0} or x+ h �∈ dom f for any
nonzero h ∈ N(S,x) in which case f ′(x;h) = ∞ for such h, or finally there is an
h ∈ N(S,x), ‖h‖= 1 such that f (x+ th)< ∞ for some positive t. In the last case
x is necessarily the closest to x+ th element of S. Combining this with (19.8),
we get

Kf (α)−1 = sup{k≥ 0 : kd(x,S)≤ f (x)−α, ∀ x �∈ S}
= inf

x∈S0
inf

h∈N(S,x),‖h‖=1
f ′(x;h) = inf

x�∈S
sup
‖h‖≤1

(− f ′(x;h)).

This proves both (19.6) and the first equality in (19.5).
2. The General Case: Proof that

Kf (α)−1 ≤ inf
x∈[ f>α ]

sup
‖h‖≤1

(− f ′(x;h)) = r. (19.9)

Take an x∈ [ f > α]∩dom f and an x∈ S0. Set u = x−x and h= u/‖u‖. We have
from (19.2)

f (x)− f (x)
‖x− x‖ ≤ − f ′(x;h)

and (19.9) follows because x can be chosen to make ‖x− x‖ arbitrarily close to
d(x,S). So it remains to prove the opposite inequality for which we can assume
that r > 0.

3. The Case of a Reflexive Space: Completion of the Proof. We have inf‖h‖≤1
f ′(x;h) ≤ −r for all x ∈ [ f > α]. This means that for any such x and any r′ < r
there is a t > 0 such that for some u we have
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‖u− x‖ ≤ t, f (u)≤ f (x)− r′t. (19.10)

Fix x and ε , denote by TU(x) the collection of pairs (t,u) satisfying (19.10), and
consider the lower bound β of f (u) over TU(x).

We claim that there is a (u, t) ∈ TU(x) such that f (u)≤ α . This is obvious if
β < α . For a β > −∞, the set TU(x) is convex and bounded by (19.10) and, as
f is lower semicontinuous, it is a closed set. Since X is a reflexive space, then
TU(x) is weakly compact, so the lower bound is attained at some (u, t̄). If we
had assumed that β > α then there would be a pair (u, t) ∈ TU(u) in which case
(u, t + t̄) ∈ TU(x) and f (u)< β , a contradiction. Thus f (u) = β = α .

4. General Case: Completion of the Proof. The last argument does not work if X
is not reflexive. In this case by Ekeland’s variational principle for any δ > 0 there
is a pair (u, t̄) ∈ TU(x) such that f (u)+ δ‖u− u‖ attains its minimum at u. We
take δ < r′. If f (u) =α , we are done. If f (u)>α , there is an h with ‖h‖= 1 such
that − f ′(u;h)> r′, that is, f (u+ th)> f (u)− r′t for some t > 0. Set u = u+ th.
Then (u, t) ∈ TU(u) and we get a contradiction with the definition of u, proving
the claim. As x is an arbitrary point of [ f > α], it follows that Kf (α) ≤ 1/r′ and
the desired inequality follows since r′ can be arbitrarily close to r. �

Remark 19.7. Observe that for the cases of a Hilbert and reflexive X we only needed
elementary convex analysis, whereas for a general case we have been compelled to
invoke the variational principle of Ekeland. It would be interesting (albeit doubtful)
to find a proof completely based on convex analysis also in the general case.
An alternative simple proof that Kf (α)−1 ≥ infx∈[ f>α ] d(0,∂ f (x)), also based on
Ekeland’s principle, easily follows from Lemma 19.8 below (see also [26]).

19.3.2 General Results on Global Error Bounds

Here we consider the general case of an l.s.c. function on a complete metric space
and the ways from these results to those of the preceding subsection. Recall [13]
that the slope of f at x is

|∇ f |(x) = limsup
u→x,u �=x

( f (x)− f (u))+

d(x,u)

where α+ = max{α,0}.
Lemma 19.8. Let X be a complete metric space and f a lower semicontinuous
function on X. Assume that for some x ∈ dom f , and α < f (x), we have |∇ f |(u) ≥
r > 0 if α < f (u)≤ f (x). Then [ f ≤ α] �= /0 and d(x, [ f ≤ α])≤ r−1( f (x)−α)+.

Proof. Set g(u) = ( f (u)−α)+. By Ekeland’s principle for any δ > 0 there is a
u such that g(u) ≤ g(x), d(u,x) ≤ g(x)/δ , and g(u) + δd(u,u) ≥ g(u) for all u.
It follows that |∇g|(u)≤ δ . If δ < r, this can happen only if g(u) = 0 for otherwise
we would have |∇g|(u) = |∇ f |(u)≥ r. Taking δ arbitrarily close to (and still smaller
than) r, we prove the second statement. �
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Denote by Kf (α,β ) (where β > α) the lower bound of K such that

d(x, [ f ≤ α])≤ K( f (x)−α)+ if α < f (x) ≤ β .
Clearly, Kf (α) = limβ→∞Kf (α,β ).

Theorem 19.9. Let X be a complete metric space and f a lower semicontinuous
function on X. If [ f ≤ α] �= /0, then

inf
x∈[α< f≤β ]

|∇ f |(x) = inf
γ∈[α ,β )

Kf (γ,β )−1.

Proof. Set r = infx∈[α< f≤β ] |∇ f |(x). The inequality Kf (γ,β )−1 ≥ r for α ≤ γ < β is
immediate from Lemma 19.8. This proves that the left side of the equality cannot be
greater than the quantity on the right. To prove the opposite inequality it is natural
to assume that Kf (γ,β )−1 ≥ ξ > 0 for all γ ∈ [α,β ). For any x ∈ [ f > α] and
any ε > 0 such that f (x)− ε > α , choose a u = u(ε) ∈ [ f ≤ f (x)− ε] such that
d(x,u)≤ (1+ ε)d(x, [ f ≤ f (x)− ε]) ≤ (1+ ε)ξ−1ε and therefore u→ x as ε → 0.
On the other hand, ξd(x,u)≤ f (x)− f (u) which (as u �= x) implies that ξ ≤ |∇ f |(x),
whence ξ ≤ |∇ f |(x), and the result follows. �

As an immediate consequence we get

Corollary 19.10. Under the assumption of the theorem

Kf (α)−1 ≥ inf
x∈[ f>α ]

|∇ f |(x).

A trivial example of a function f having an isolated local minimum at a certain x
and such that inf f < f (x) shows that the inequality can be strict. This may happen
of course even if the slope is different from zero everywhere on [ f > α]. In this case
an estimate of another sort can be obtained. Set (for β > α)

d f (α,β ) = sup
x∈[ f≤β ]

d(x, [ f ≤ α])

and define the functions

κ f ,ε(t) = sup{ 1
|∇ f |(x) : | f (x)− t|< ε}; κ f (t) = lim

ε→0
κ f ,ε(t).

Proposition 19.11. Let β > α . Assume that [ f ≤ α] �= /0 and |∇ f |(x) ≥ r > 0 if
x ∈ [α < f ≤ β ]. Then

d f (α,β ) ≤
∫ β

α
κ f (t)dt.

Proof. First we note that κ f is measurable (so as it is nonnegative, the integral makes
sense). Indeed, it is enough to verify that every κ f ,ε is measurable. In fact the latter
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is even lower semicontinuous. Indeed, take a δ > 0 and find an x with | f (x)− t|< ε
such that |∇ f |(x) > κ f ,ε(t)− δ . Take a positive γ < ε − | f (x)− t|. Then for any τ
with |t− τ|< γ we have | f (x)− τ|< ε and therefore κ f ,ε(τ)≥ κ f ,ε(t)− δ .

Now fix an ε > 0 and let α = τ0 < .. . < τk = β be a partition of [α,β ] with
(1/2)(τi+1 − τi) = εi < ε . Set ti = (τi + τi−1)/2, i = 1, . . . ,k. As follows from
Theorem 19.9, d f (τi−1,τi)≤ κ f ,εi(ti)(τi+1− τi) and therefore

d f (α,β )≤
k

∑
i=1

κ f ,εi(ti)(τi+1− τi)≤
k

∑
i=1

κ f ,ε(ti)(τi+1− τi).

Passing to the limit over the net of all partitions of [α,β ] we conclude that

d f (α,β )≤
∫ β

α
κ f ,ε(t)dt.

The result now follows from the Lebesgue majorized convergence theorem as by
the assumption κ f ,ε(t)≤ r−1 for all t and ε if t ∈ (α,β ]. �

Returning to the case of a convex function on a Banach space, we first state the
following elementary fact that serves as a bridge between the general and convex
situations.

Proposition 19.12. Let X be a convex function on a Banach space X, and let x ∈
dom f . Then

|∇ f |(x) = sup
‖h‖≤1

(− f ′(x;h)) = d(0,∂ f (x)).

Proof. Clearly |∇ f |(x) = 0 if and only f ′(x,h) ≥ 0 for all h and the equality
holds with h = 0. If ‖h‖ = 1 and u = x + th, then t = ‖x− u‖, so the equality
− f ′(x;h) = limt→0( f (x)− f (x + th)) implies − f ′(x;h) ≤ |∇ f |(x). On the other
hand, as f ′(x;h) ≤ t−1( f (x+ th)− f (x)) for all t and h, for a given u �= x, we get
− f (x;h)≥ ‖u− x‖ if we set t = ‖u− x‖ and h = t−1(u− x). �
Proposition 19.13. Let f be a convex function on a Banach space X. Assume that
[ f ≤ α] �= /0. Let β > α . Then for any γ ∈ (α,β )

Kf (α,β )≥ Kf (γ,β ).

Proof. We may assume that Kf (α,β ) < ∞ and Kf (γ,β ) > 0 (which by definition
means that [ f > γ]∩dom f �= /0). Take an x∈ [ f > γ]∩dom f and a K >Kf (α,β ) and
find a u ∈ [ f ≤ α] such that ‖x−u‖≤ K( f (x)−α). As earlier, we may assume that
f (u) = α . As α < γ < f (x), there is a t > 0 such that f (w) = γ for w = tu+(1− t)x.
By convexity t( f (x)−α)≤ f (x)− γ . We therefore have

‖x−w‖= t‖x− u‖ ≤ ‖x− u‖ f (x)− γ
f (x)−α ≤ K( f (x)− γ).

This is true for all x ∈ [ f > γ]∩dom f and all K > Kf (α,β ), whence the result. �
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Combining Theorem 19.9 and Propositions 19.12 and 19.13 we get still another
proof of the first equality in Theorem 19.6.

19.3.3 Comments

Following the pioneering 1952 work by Hoffmann [18], error bounds, both for
nonconvex and, especially, convex functions, are intensively studied, especially
during last 2–3 decades, both theoretically, in connection with metric regularity,
and also in view of their role in numerical analysis; see, e.g., [12, 17, 29, 31, 34,
39, 40, 44, 47, 48]. A finite dimensional version of (19.6) was proved in Lewis-Pang
[29]. The equality can actually be extended to reflexive spaces (see Azé-Corvellec
[1]). The equality Kf (α)−1 = inf{d(0,∂ f (x)) : x ∈ [ f > α]} in Theorem 19.6 was
proved by Zalinescu [45] (see also [46], Proposition 3.10.8, and for earlier results
[11]). The first two equalities in the theorem can be found in [1, 2]. Theorem 19.9
and Proposition 19.13 were proved by Azé and Corvellec in [1]. The papers also
contain sufficiently thorough bibliographic comments.

19.4 Convex Set-Valued Mappings

Let X and Y be Banach spaces and F : X ⇒ Y . We shall say that F is a convex
mapping if its graph GraphF is a convex set. In this section we shall mainly discuss
the regularity problems for convex mappings.

19.4.1 Theorem of Robinson–Ursescu

The standard statement of the Robinson-Ursescu theorem reads: Let X and Y be
Banach spaces, and let F : X ⇒ Y be a set-valued mapping with convex and locally
closed graph. Assume that the image of X under F has a nonempty interior. Then F
is regular at every (x̄, ȳ) such that y ∈ intF(X).

This theorem can be rightfully viewed as an extension of the Banach-Schauder
open mapping theorem. Moreover, the original proofs of the theorem followed the
pattern of the classical proof of the open mapping theorem: first the Baire category
theorem is applied to show that under the assumptions y belongs to the interior of the
closure if the F-image of some ball around x and then basically the same iteration
scheme as in the classical Banach proof is applied to show that the closure operation
can be dropped and y belongs to the interior of the F-image (of the same ball) itself.
Later it became clear that (as in many other results of the regularity theory) instead
of the iteration procedure the variational principle of Ekeland can be used at the
second stage of the proof. The latter is the basic fact behind the proof of the general
regularity criterion of Theorem 19.3 quoted in the previous section.



19 Convexity and Variational Analysis 425

The following elementary and short argument shows that the conclusion of the
second part of the proof of the Robinson-Ursescu theorem, even in a more precise
quantitative form, is a simple consequence of the general regularity criterion of
Theorem 19.3. The only use of convexity in this argument is connected with the
following obvious observation.

Proposition 19.14. Let F : X ⇒ Y be a set-valued mapping with convex graph.
If α > 0 and β > 0 are such that F(B(x,α)) is dense in B(y,β ) and y ∈ F(x) , then
for any λ ∈ (0,1) the F-image of B(x,λα) is dense in B(y,λβ ).

Passing to the proof of the Robinson-Ursescu theorem, we first find α > 0 and
β > 0 such that B(y,β ) ⊂ clF(B(x,α)) (whose existence as we have mentioned
is proved through a standard application of the Baire category theorem) and then
fix an ε > 0 such that 4ε < min{α,β}. Let x,y,v satisfy ‖x− x‖ < ε, y ∈ F(x),
‖v− y‖< ε, ‖v− y‖< ε . Then

B(y,β − 2ε)⊂ B(y,β )⊂ clF(x,α)⊂ clF(x,α+ ε).

Setting ξ = (α + ε)/(β − 2ε) we get from Proposition 19.14 that B(y, t) ⊂
clF(x,ξ t) if, e.g., t ∈ (0,ε). Let z = λv + (1− λ )y for some λ ∈ (0,1). Then
t = ‖z− y‖< ε and there is a u with ‖u− x‖ ≤ ξ t such that z ∈ F(u). We have

dξ ((x,y),(u,v)) = max{‖x− u‖,ξ‖y− z‖}= ξ‖y− z‖

and therefore ‖v− z‖ = ‖v− y‖−‖z− y‖ ≤ ‖v− y‖− rdξ ((x,y),(u,z)) if r < ξ−1.
A reference to Theorem 19.3 completes the proof. Moreover, we see that

surF(x|y)≥ β/α.

19.4.2 Regularity Moduli of Convex Multifunctions

The next question we shall discuss in this section is how to compute regularity
moduli of convex multifunction. As immediately follows from the arguments
concluding the previous subsection (when ε → 0), surF(x|y) ≥ β/α . A slight
elaboration on this result gives a more precise conclusion.

Proposition 19.15. Let F : X ⇒ Y have a convex and locally closed graph. Then

surF(x|y) = lim
ε→0

sup{r ≥ 0 : B(y,rε) ⊂ clF(B(x,ε))}
= lim

ε→0
ε−1 sup{t ≥ 0 : B(y, t)⊂ clF(B(x,ε))}.

Proof. The second equality is obvious (just take rε = t). The first equality is trivial
if y does not belong to intcl [F(B(x,ε))]. For the case when y lies in the interior
of clF(B(x,ε)), the inequality surF(x|y) ≥ sup{r ≥ 0 : B(y,rε) ⊂ clF(B(x,ε))}
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follows from the proof following Proposition 19.14: just take β = rε and α = ε .
And the opposite inequality is immediate from the definition of the modulus of
surjection. �

Although the formula can hardly be recommended for practical computation of
the surjection moduli, it brings about a substantial simplification compare to the
general case as there is no longer a need to verify similar inclusions for other points
of the graph close to (x̄, ȳ). A duality-based working formula for the surjection
modulus is offered by the following theorem.

Theorem 19.16. Let F : X ⇒ Y be a set-valued mapping with convex and locally
closed graph. If y ∈ F(x), then

surF(x|y) = lim
ε→+0

inf
‖y∗‖=1

inf
x∗

(
‖x∗‖+ 1

ε
SGraphF−(x̄,ȳ)(x∗,y∗)

)
.

Proof. To begin with we observe the following. Let Q ⊂ Y be a closed convex set
and y ∈ Q. Then B(y,r) ⊂ Q if and only if sup{〈y∗,y− y〉 : y ∈ Q} ≥ r for any y∗
with ‖y∗‖= 1. It follows that the lower bound of the supremum over the unit sphere
in Y ∗ coincides with the upper bound of r ≥ 0 such that B(y,r)⊂ Q.

We have furthermore

sup{r ≥ 0 : B(y,r)⊂ clF(B(x,ε))}
= inf
‖y∗‖=1

sup{〈y∗,y− y〉 : y ∈ F(x+ h), ‖h‖ ≤ ε}
= inf
‖y∗‖=1

sup{〈y∗,v〉 : (h,v) ∈ GraphF− (x̄, ȳ), ‖h‖ ≤ ε}
= inf
‖y∗‖=1

(IndGraphF−(x̄,ȳ) + IndεB×Y )
∗(0,y∗).

(19.11)

As (0,0) ∈ (GraphF − (x̄, ȳ))∩ int(εB×Y ), it follows from the standard duality
between summation and infimal convolution:

(IndGraphF−(x̄,ȳ) + IndεB×Y )
∗(0,y∗)

= inf
(x∗,v∗)

{SGraphF−(x̄,ȳ)(x∗,v∗)+ SεB×Y (−x∗,y∗ − v∗)}
= inf

x∗
{SGraphF−(x̄,ȳ)(x∗,y∗)+ ε‖x∗‖}

= ε inf
x∗
{‖x∗‖+ ε−1SGraphF−(x̄,ȳ)(x∗,y∗)}.

Together with (19.11) and Proposition 19.15 this completes the proof. �

19.4.3 Systems of Convex Inequalities

This is the system of relations
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ϕt(x)≤ bt , t ∈ T, (19.12)

where x ∈ X , X is a Banach space, T is a set of an arbitrary nature, and for any t,
ϕt is a proper closed convex function on X and bt ∈ R. Set b = (bt) and let S (b)
be the set of solutions of (19.12). Clearly, S (b) is a closed convex set (possibly
empty). A natural question is about Lipschitz stability of the set-valued mapping S
with respect to small perturbations of b near some nominal value b.

Although we impose no a priori restrictions on elements of b, there is no loss
of generality in assuming that b = 0. Otherwise, we can consider, instead of ϕt , the
functions ϕt−bt . As perturbations of the right-hand side we shall consider arbitrary
uniformly bounded real-valued functions on T , that is, elements of the space �∞(T )
with the standard uniform norm. As follows from the equivalence theorem, Lipschitz
stability of solutions of (19.12) with b = 0 is guaranteed by regularity at (x,0) of the
following set-valued mapping from X into �∞(T ):

F(x) = {a = (at) ∈ �∞(T ) : at ≥ ϕt(x), ∀ t ∈ T}
and

lipS (0;x) = (surF(x|0))−1.

Set

Φ(x) = sup
t∈T

(ϕt(x)− bt).

Clearly, Φ(x)≤ 0.

Theorem 19.17. Let x be a solution of (19.12) with b = b = 0. Then either
surF(x|b) = ∞ or Φ(x) = 0, ∂Φ(x) �= /0 and

surF(x|b) = d(0,∂Φ(x)).

Thus the theorem effectively says that Lipschitz stability of the solution map S
at (0,x) is equivalent to Lipschitz stability of the solution set of the single convex
inequality

Φ(x) = sup
t∈T

ϕt(x)≤ α

at (0,x) with the same Lipschitz modulus equal to [d(0,∂Φ(x)]−1.
Applying the theorem to the simplest case when T is a singleton, that is, when

we deal with one convex function f and f (x) = α , we conclude (again by virtue of
the equivalence theorem) that

d(x, [ f ≤ α])≤ K( f (x)−α)+

for all x and α close to x and α , respectively, with K = (d(0,∂ f (x)))−1, provided
∂ f (x) �= /0. (Note that regularity of f in this sense is a stronger property than the
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existence of a local error bound at the level α . ) We can now proceed with the proof
of the theorem.

Proof. So we assume in the proof that b = 0. We may also harmlessly assume
that ϕt are uniformly bounded from below (otherwise we can replace ϕt , say by
max{ϕt ,−1}).
1. The cone K = {a ∈ �∞ : at ≥ 0, ∀ t ∈ T} defines the standard order in �∞(T ).

The dual cone K ∗ consists of all p∗ ∈ (�∞)∗ such that 〈p∗,a〉 ≥ 0 if at ≥ 0 for all
t. We shall simply write p∗ ≥ 0 for elements of K ∗. For any p∗ ≥ 0, we define
the function

(p∗ ◦F)(x) = inf{〈p∗,a〉 : a ∈ F(x)}
(clearly, the infimum is −∞ if p∗ �∈ K ∗). This function is obviously convex.
We claim that for any x∗ the function p∗ �→ (p∗ ◦F)∗(x∗) on (�∞)

∗ is convex and
weak∗ lower semicontinuous on its domain. Indeed, convexity follows from the
obvious inequality:

sup
x

(〈x∗,x〉− ((α p∗1 +(1−α)p∗2)◦F)(x)
)

= sup
x

(
α(〈x∗,x〉− (p∗1 ◦F)(x))+ (1−α)(〈x∗,x〉− (p∗2 ◦F)(x))

)
≤ α sup

x
(〈x∗,x〉− (p∗1 ◦F)(x))+ (1−α)sup

x
(〈x∗,x〉− (p∗2 ◦F)(x)).

On the other hand, if a ∈ �∞, then p∗ �→ 〈p∗,a〉 is linear and weak∗-continuous.
It follows that for any x∗ the function p∗ �→ (p∗ ◦F)∗(x∗) is an upper bound of
affine and weak∗-continuous functions 〈x∗,x〉−〈p∗,a〉 corresponding to (x,a) ∈
GraphF .

2. Set P∗ = {p∗ ≥ 0, ‖p∗‖= 1}. We shall show next that

Φ(x) = sup
p∗∈P∗

(p∗ ◦F)(x); Φ∗(x∗) = inf
p∗∈P∗

(p∗ ◦F)∗(x∗). (19.13)

Indeed, the inequality (p∗ ◦ F)(x) ≥ Φ(x) is obvious. The opposite inequality
follows from the fact that (δt ◦F)(x) = ϕt(x), where δt is the “Dirac measure” at
t: 〈δt ,a〉= at . This proves the first equality.

As P∗ is a convex and weak∗-compact set, it follows, in view of the minimax
theorem of Sion [38], that

Φ∗(x∗) = sup
x
(〈x∗,x〉)− sup

p∗∈P∗
(p∗ ◦F)(x))

= sup
x

inf
p∗∈P∗

(〈x∗,x〉− (p∗ ◦F)(x))

= inf
p∗∈P∗

sup
x
(〈x∗,x〉− (p∗ ◦F)(x))

= inf
p∗∈P∗

(p∗ ◦F)∗(x∗).

As the function p∗ �→ (p∗ ◦F)(x∗) is weak∗ l.s.c., it follows that the infimum in
the last expression is attained, so that Φ∗(x∗) = (p∗ ◦F)∗(x∗) for some p∗ ∈ P∗.
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3. We have for x∗ ∈ X∗, p∗ ∈ (�∞)
∗

SGraphF−(x,0)(x∗,−p∗) = sup{〈x∗,x〉− 〈p∗,a〉 : at ≥ ϕt(x+ x), ∀ t ∈ T}.

If SGraphF−(x,0)(x∗,−p∗)< ∞, then necessarily p∗ ≥ 0 and

SGraphF−(x,0)(x∗,−p∗) = sup
x

(〈x∗,x〉− (p∗ ◦F)(x+x)
)
= (p∗ ◦F)∗(x∗)−〈x∗,x〉.

Thus Theorem 19.16 along with (19.13) and the last equality gives

surF(x|0) = lim
ε→0

inf
x∗

(
‖x∗‖+ 1

ε
(Φ∗(x∗)−〈x∗,x〉)

)
.

If surF(x|0) = r < ∞, then for any ε > the infimum is attained at a certain x∗(ε)
with ‖x∗(ε)‖ ≤ r (indeed,Φ∗(x∗)−〈x∗,x〉 ≥ −Φ(x)≥ 0 and the function in the
parentheses is weak∗ lower semicontinuous and nondecreasing as ε → 0).

Let x∗ be a weak∗ limit point of (x∗(ε)) as ε→ 0. Then necessarily Φ∗(x∗)−
〈x∗,x〉 ≤ 0 which (as Φ(x) ≤ 0) may happen only if Φ(x) = 0 and x∗ ∈ ∂Φ(x).
On the other hand, if x∗ ∈ ∂Φ(x) and Φ(x) = 0, we get

surF(x|0) = inf{‖x∗‖ : x∗ ∈ ∂Φ(x)}
and the proof is completed. �

Remark 19.18. It is to be emphasized that in no point in the proof the representation
of elements of �∞ by finitely additive measures has been needed.

19.4.4 Perfect Regularity and Linear Perturbations

As follows from the formula for the modulus of surjection in Theorem 19.16, the
value of the modulus is fully determined by the restriction of the support function
to GraphF− (x̄, ȳ) to the set on which it is smaller than ε > 0, no matter however
small this ε is. But in general we cannot replace such sets by the zero level of the
support function (which, as it is easy to see, is precisely the normal cone to GraphF
at (x̄, ȳ)).

Example 19.19. Let X = Y = L2[0,1] and F : X ⇒ Y is defined by F(x) = x+K
where K is the cone of nonnegative functions. Let x(t)≡ −1 and y(t) ≡ 0. Clearly,
y ∈ F(x). Direct calculation gives

SGraphF−(x̄,ȳ)(x∗,y∗) =

⎧⎨
⎩‖y

∗‖+
∫ 1

0
|y∗(t)|dt, if x∗+ y∗ = 0,y∗(t)≤ 0 a.e.

∞, otherwise.

As the infimum of the L1-norm on the unit sphere of L2 is zero, it follows that
surF(x|y) = 1.
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On the other hand, the zero level set of the support function contains only the zero
element, so by the standard convention (inf /0 = ∞), we conclude that restricting the
infimum in the formula of Theorem 19.16 only to this set (which does not meet the
unit sphere) we get ∞, not 1.

Definition 19.20. We shall say that F is perfectly regular at (x̄, ȳ) if

surF(x|y) = inf{‖x∗‖ : (x∗,y∗) ∈ N(GraphF,(x̄, ȳ)), ‖y∗‖= 1}.3 (19.14)

An example of infinite dimensional perfectly regular mapping is the F associated
with the system of convex inequalities (19.12) in the concluding part of the previous
section (see [23]).

It is possible to give a primal characterization of perfect regularity. Remind first
that a convex process is a set-valued mapping whose graph is a convex cone and
note that the surjection modulus of a convex process A : X ⇒ Y coincides with
sup{r ≥ 0 : rBY ⊂ A(BX)}. The latter is implicitly contained in [28]. It is a simple
consequence of the fact that the inclusion x+K⊂K holds for any point x of a convex
cone K. Indeed, it follows that, given a convex process A, the inclusion rBY ⊂ A(BX)
implies that for any (x,y) ∈ GraphA we have y+ rBy ⊂ A(x+BX).

If F is convex set-valued mapping and (x̄, ȳ) ∈ GraphF , then the set-valued
mapping DF(x̄, ȳ) whose graph is T (GraphF,(x̄, ȳ)) is a convex process. It is clear
that the tangent cone T (GraphF,(x̄, ȳ)) to GraphF at (x̄, ȳ) contains GraphF−(x̄, ȳ).
Therefore

surF(x|y) ≤ sup{r ≥ 0 : B(y, tr)⊂ F(B(x, t))}
≤ sup{r ≥ 0 : rBY ⊂ DF(x̄, ȳ)(BX )}= surDF(x̄, ȳ)(0|0). (19.15)

On the other hand the support function of T (GraphF,(x̄, ȳ)) is precisely the indicator
of N(GraphF,(x̄, ȳ)) and therefore by Theorem 19.16 the right-hand side of the
equality in the definition (19.20) is the modulus of surjection of DF(x̄, ȳ) at (0,0).
Thus

Proposition 19.21. A convex mapping F is perfectly regular at (x̄, ȳ) ∈ GraphF if
and only if the surjection moduli of F at (x̄, ȳ) and of the derivative of DF(x̄, ȳ) at
the origin coincide.

The following two propositions offer some sufficient conditions for perfect
regularity.

Proposition 19.22 ([25], Proposition 5). Let F : X ⇒ Y be a set-valued mapping
with convex and locally closed graph. Suppose there is a weak-star closed convex
subset Q∗ of the unit sphere in Y ∗ such that for some (x̄, ȳ) ∈ GraphF

3The equality (19.14) can be used as the definition of perfect regularity for arbitrary set-valued
mappings if as N we use limiting Fréchet or G-normal cones (depending on the geometry of the
spaces).
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SGraphF−(x̄,ȳ)(x∗,y∗)< ∞ and ‖y∗‖= 1 ⇒ y∗ ∈Q∗.

Then F is perfectly regular at (x̄, ȳ).

The simplest situation when the conditions of the last proposition are satisfied
occurs when X is a space of continuous functions over a compact set T , Q∗ is the
set of probability measures on T , and K, the cone of nonnegative elements of X , is
contained in F(0).

The second proposition is an easy consequence of Theorem 19.16.

Proposition 19.23. Let F be as above and (x̄, ȳ) ∈GraphF. For any ε > 0 set

Lε = {(x∗,y∗) : SGraphF−(x̄,ȳ)(x∗,y∗)≤ ε, ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1}.
If the excess of Lε over N(GraphF,(x̄, ȳ))

ex(Lε .N(GraphF,(x̄, ȳ))) = sup{d((x∗,y∗),N(GraphF(x̄, ȳ))) : (x∗,y∗) ∈Lε}
goes to zero when ε → 0, then F is perfectly regular at (x̄, ȳ).

Note that the condition of the proposition is automatically satisfied if both X and
Y are finite dimensional.

Our main interest in this subsection is the effect of linear perturbations of F on
regularity moduli. Specifically we shall consider mappings F +A with A being a
linear bounded operator from X into Y . We have (setting y = v+Ax)

SGraph (F+A)−(x,y+Ax)(x
∗,y∗) = sup{〈x∗,x− x〉+ 〈y∗,y− (y+Ax)〉 :

y ∈ F(x)+Ax}
= sup{〈x∗+A∗y∗,x− x〉+ 〈y∗,v− y〉 : v ∈ F(x)}
= SGraphF−(x̄,ȳ)(x∗+A∗y∗,y∗).

Theorem 19.16 now immediately gives

Proposition 19.24. Let F : X ⇒ Y be a set-valued mapping with convex closed
graph, let (x̄, ȳ) ∈ GraphF, and let A : X → Y be a bounded linear operator. Then

sur(F(x|y+Ax) = lim
ε→0

inf
‖y∗‖=1

inf
x∗
(‖x∗ −A∗y∗‖+ 1

ε
SGraphF−(x̄,ȳ)(x∗,y∗))

and consequently

sur(F(x|y+Ax)≥ surF(x|y)−‖A‖.

This is a version of Milyutin’s perturbation theorem [14, 16, 20] for the specific
case of a convex mapping and a linear perturbation. A natural question that arises
in connection with the last result is about the minimal norm of a linear perturbation
which destroys regularity.
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Definition 19.25 ([15]). The radius of regularity of F : X ⇒Y at (x̄, ȳ)∈GraphF is
the lower bound of norms of linear bounded operators A : X → Y such that sur(F +
A)(x|y+Ax) = 0. We shall denote it radF(x|y).
Theorem 19.26. Let F : X ⇒Y be a set-valued mapping with convex closed graph,
and let (x̄, ȳ) ∈ GraphF. Suppose that F is perfectly regular at (x,y). Then

radF(x|y) = surF(x|y).

Note that the condition of the theorem is satisfied under the assumptions of
Propositions 19.22 and 19.23.

Proof. It follows from Proposition 19.24 that radF(x|y)≥ surF(x|y), so we have to
prove the opposite inequality. Set r := surF(x|y). The theorem is obviously valid if
r = 0. So we assume that r > 0. As F is perfectly regular at (x̄, ȳ), for any ε > 0 there
are (x∗ε ,y∗ε) ∈ N(GraphF,(x̄, ȳ)) such that ‖y∗ε‖ = 1, ‖x∗ε‖ ≤ (1+ ε)r. In particular
we have

SGraphF−(x̄,ȳ)(x∗ε ,y
∗
ε) = 0 (19.16)

Let further xε ∈ X and yε ∈ Y satisfy

‖xε‖= ‖yε‖= 1, 〈x∗ε ,xε〉 ≥ (1− ε)‖x∗ε‖, 〈y∗ε ,yε〉 ≥ (1− ε).
We use these four vectors to define an operator Aε : X → Y as follows:

Aεx =
〈x∗ε ,x〉
〈y∗ε ,yε 〉

xε .

Then ‖Aε‖ ≤ 1+ ε
1− ε r and

A∗εy
∗ =
〈y∗,yε〉
〈y∗ε ,yε〉

x∗ε .

In particular we see that −x∗ε = A∗εy∗ε . Combining this with Propositions 19.24 and
(19.16) we get sur(F +A)(x|y+Ax) = 0, that is, radF(x̄, ȳ)≤ ‖Aε‖→ r as ε→ 0.�
Remark 19.27. 1. The perfect regularity condition is not necessary for the equality

of the radius of regularity and the modulus of surjection. It can be easily verified
that the equality holds in Example 19.19: just take A to be minus identity.

2. For mappings (even nonconvex) between finite dimensional spaces the equality
holds [15]. It is also known that the inequality may fail to hold already for single-
valued Lipschitz mappings from a Hilbert space into itself [21]. It would be
interesting to find an example of a convex mapping for which the equality does
not hold.

A natural related problem concerns stability of solutions of the inclusion
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y ∈ F(x)+Ax (19.17)

with respect to small variations of both y and A around some nominal values y and
A, given a nominal solution x corresponding to y and A. This question moves us
beyond the realm of convex problems (as (x,A) �→ Ax is not a convex mapping).

Let S(y,A) denote the set of solutions of (19.17). Our goal is to find the Lipschitz
modulus of S at the nominal point. By the equivalence theorem, all we need is to
find the modulus of surjection of the inverse mapping

Φ(x) = {(y,A) ∈ Y ×L (X ,Y ) : y ∈ F(x)+Ax}.
Here L (X ,Y ) is the space of linear bounded operators from X into Y with the
standard operator norm. To correctly state the question we need to fix some norm
in Y ×L (X ,Y ) (assuming the norms in X and Y are given). To this end, we take a
norm ν in R

2 and set

‖(y,A)‖= ν(‖y‖,‖A‖).

We assume for convenience that c ·max{‖y‖,‖A‖}≥ ‖(y,A)‖ ≥max{‖y‖,‖A‖} for
some c > 1. By ν∗ we denote the dual norm on R

2.

Theorem 19.28. Let F : X ⇒ Y be a set-valued mapping with closed graph. Let
A ∈L (X ,Y ) and (x̄, ȳ) ∈ Graph(F +A) be given. Then

surΦ(x|(y,A))≥ 1
ν∗(1,‖x‖) sur(F +A)(x|y+Ax). (19.18)

The equality holds if F is a convex mapping which is perfectly regular at (x̄, ȳ).
Therefore

lipS((y,A)|x)≤ ν∗(1,‖x‖)reg(F +A)(x|y+Ax)

with the equality if F has the property specified above.

Proof. With no loss of generality we may assume in the proof that y = 0 and A = 0.
Set r = surF(x|(0,0)).
1. The inequality (19.18) automatically holds if r = 0, so we assume r > 0. Take a

positive ρ < r. To prove the statement it will be sufficient to show that there is a
δ > 0 such that whenever

‖x− x‖< δ , ‖y‖< δ , ‖A‖< δ , (y,A) ∈Φ(x), t ∈ (0,δ ), (19.19)

we have

B
(
(y,A),

ρ
ν∗(1,‖x‖) t

)⊂Φ(B(x, t)). (19.20)



434 A.D. Ioffe

The definition of the modulus of surjection along with Milyutin’s theorem
imply that there is an ε > 0 such that for x, y, t, and A satisfying (19.19) with δ
replaced by ε the inclusion

B(y,ρt)⊂ (F +A)(B(x, t)) (19.21)

holds. Take a δ > 0 satisfying

δ <
ε
2
, δ (1+ δ + ‖x‖)< ε.

Let x, y, t, and A satisfy (19.19) and

(y′,A′) ∈ B
(
(y,A),

ρ
ν∗(1,‖x‖) t

)
. (19.22)

We have y ∈ F(x)+Ax = F(x)+A′(x)+ (A−A′)x, that is,

y− (A−A′)x ∈ F(x)+A′x (19.23)

and

‖y− (A−A′)x‖ ≤ ‖y‖+ ‖A−A′‖‖x‖ ≤ δ + δ (‖x‖+ δ )< ε.

On the other hand, by (19.22)

‖y′ − (y− (A−A′)x)‖ ≤ ‖y′ − y‖+ ‖A′−A‖‖x‖
≤ ν∗(1,‖x‖)‖(y′ − y,A′ −A)‖ ≤ ρt.

By (19.21) and (19.23) there must be a u such that ‖u−x‖< t and y′ ∈ F(u)+
A′u which means that (y′,A′) ∈ Φ(u) and (19.20) follows. This completes the
proof of (19.18).

2. To prove the equality in case of a convex F which is perfectly regular at (x,0),
note first that for anyΨ : X ⇒ Y with (x̄, ȳ) ∈GraphΨ

surΨ (x|y)≤ sup{r ≥ 0 : B(y, tr)⊂Ψ(B(x, t))} (19.24)

for all sufficiently small t ≥ 0. This is immediate from the definition.
Consider the operatorΛ : Y ×L (X ,Y )→ Y defined by Λ(y,A) = y−Ax. We

claim that

ex
(
(Λ(Φ(x)∩ tBY×L (X ,Y )),F(x)

)≤ ct‖x− x‖. (19.25)

Here ex(Q,P) stands for the excess of Q over P:

ex(Q,P) = sup
u∈Q

d(u,P).
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Indeed, let (y,A) ∈ Φ(x) and ‖(y,A)‖ ≤ t. Then y− Ax ∈ F(x), that is,
Λ(y,A) ∈ F(x)+‖A‖‖x− x‖BY . This means that d(Λ(y,A),F(x))≤ ‖A‖‖x− x‖
and (19.25) follows.

We observe furthermore that F(x) ⊂ DF(x,0)(x− x) (as the graph of F is
convex), so (19.25) implies that

ex
(
Λ(Φ(x)∩ tBY×L (X ,Y )),(DF(x,0)(x− x))

)≤ ct‖x− x‖. (19.26)

This along with (19.24) (applied toΨ =Λ ◦Φ) and (19.15) implies that

sur(Λ ◦Φ)(x,(0,0))≤ surDF(x,0). (19.27)

The inequality

sur(Λ ◦Φ)(x|0)≥ surΛ(0,0) · surΦ(x|(0,0)) (19.28)

is straightforward. Finally, as Λ is a linear bounded operator, its surjection
modulus is the same at any point and

surΛ = inf{‖Λ∗y∗‖ : ‖y∗‖= 1}. (19.29)

We have

〈y∗,y−Ax〉= 〈y∗,y〉− 〈y∗⊗ x,A〉,
so Λ∗(y∗) = (y∗,−y∗ ⊗ x) and

‖Λ∗y∗‖= sup{〈y∗,y〉− 〈y∗⊗ x,A〉 : ν(‖y‖,‖A‖)≤ 1}= ν∗(‖y∗‖,‖y∗⊗ x‖)

and therefore (as ‖y∗ ⊗ x‖ = ‖y∗‖‖x‖) surΛ = ν∗(1,‖x‖). Combining this with
(19.27), (19.28), and (19.29) and taking into account that F is perfectly regular
at (x,0), we complete the proof. �

19.4.5 Comments

For original proofs of the Robinson-Ursescu theorem see [36, 42]. In both
publications this was, as we have mentioned, a purely qualitative result. But the
first estimate (an upper estimate for the modulus of regularity) for convex set-
valued mappings was obtained by Robinson even earlier in [35] for so-called linear
constraint systems using the Hörmander homogenization transform which with
any convex set Q ⊂ X associates a cone in X ×R generated by the set Q×{1}.
Robinson worked with the norm max{‖x‖, |t|} in X ×R. In [25] we showed that
the lower bound (over ε) of Robinson-type formulas corresponding to the norms
max{‖x‖,ε|t|} in X ×R gives the exact value of the modulus of metric regularity.
It was actually the first corollary of Theorem 19.16 also proved in [25]. Here the
proof of the theorem has been substantially simplified. Systems of convex and linear
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inequalities have been thoroughly studied by Canovas et al. in [4–8]. My interest
to the subject has been stimulated by some of their works. Theorem 19.17 was
proved originally in [23]. The concept of perfect regularity was introduced in [25]
Theorem 19.26. Its predecessor for arbitrary maps can be found in [23], but there it
was assumed that F +A is perfectly regular at (x,y+Ax) for any A. Theorem 19.28
is also a new result as has been mentioned in the introduction. An earlier result of
such sort was established in a recent paper [6] for systems of convex inequalities
in R

n in which every inequality was independently perturbed by linear functions.
Observe that the set-valued mappings associated with systems of convex inequalities
are perfectly regular at all points of their graphs [23].

19.5 First-Order Necessary Conditions
in Mathematical Programming

We start with the principal lemma.

Lemma 19.29 (Lemma on convex majorant). Let f be a function on a Banach
space X which is Fréchet differentiable at a certain x. Then there is an ε > 0 and a
convex continuous function on X with the following properties:

(a) ϕ(x) = f (x) and ϕ(x)≥ f (x) if ‖x− x‖< ε .
(b) ϕ is strictly differentiable at x and ϕ ′(x) = f ′(x).
(c) 0≤ ϕ(x)−ϕ(x)−〈ϕ ′(x),x− x〉 ≤ 2‖x− x‖ for all x.

Proof. Let x∗ = f ′(x). Then | f (x)− f (x)−〈x∗,x−x〉| ≤ r(‖x−x‖), where r(λ )≥ 0
and λ−1r(λ )→ 0 as λ → 0. Without loss of generality we may assume that r is non-
decreasing. As r(λ = o(λ ), there is an ε > 0 such that r(λ )≤ λ if λ ≤ ε . Set

g(ξ ) = sup
0<λ≤ε

r(λ )
2ξ −λ
λ

.

Then g is a convex l.s.c. function on R as the upper envelop of a family of affine
functions. We have g(ξ )≤ 2ξ for all ξ ≥ 0. Furthermore, g(ξ ) = 0 for ξ ≤ 0 and
g(ξ ) > 0 if ξ > 0. Thus g is convex continuous on [0,∞]. It is also clear that g is
strictly increasing on [0,∞).

We notice next that for any ξ the function under the sign of supremum is
nonnegative if and only if λ ≤ 2ξ , so for any ξ we can take supremum over (0,2ξ ].
It follows that

0≤ g(ξ )≤ ξ sup
0<λ≤2ξ

r(λ )
λ

= o(ξ ), as ξ → 0.

Define ϕ by

ϕ(x) = f (x)+ 〈x∗,x− x〉+ g(‖x− x‖).
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Then (a) and (c) are obvious as well as differentiability of ϕ at x and the equality of
derivatives of ϕ and f at x. We have further for ξ ≥ ξ ′

g(ξ )− g(ξ ′)≤ sup
0<λ≤2ξ

[
r(λ )

2ξ −λ
λ

− r(λ )
2ξ ′ −λ
λ

]≤ 2 sup
0<λ≤ξ

r(λ )
λ

(ξ − ξ ′)

which immediately implies (b) . �
Corollary 19.30. Let T be a set and for any t ∈ T let ft be a function on X Fréchet
differentiable at x. Moreover, we assume that ft are uniformly differentiable in the
sense that there is an r(·) common for all ft . Then there are functions ϕt (t ∈ T) and
an ε > 0 such that

(a) For any t the function ϕt is convex continuous on X, Fréchet differentiable at x,
and such that ϕt(x) = ft (x), ϕ ′t (x) = f ′t (x) and ϕt(x)≥ ft(x) if ‖x− x‖< ε .

(b) ϕt are uniformly strictly differentiable at x, that is,

lim
δ→0

sup{(‖x−x′‖−1|ϕt(x)−ϕ(x′)−〈ϕ ′(x),x−x′〉| : x,x′ ∈B(x,δ ), x �= x′}= 0.

(c) The inequality 0≤ ϕt(x)−ϕt (x)−〈ϕ ′t (x),x−x〉 ≤ 2‖x−x‖ holds for all x ∈ X
and t ∈ T.

Proof. Just set ϕt(x) = ft (x) + 〈 f ′t (x),x− x〉+ g(x− x) with the same g as in the
lemma. �

An immediate consequence of the lemma is the practical trivialization of the
procedure of developing first-order necessary optimality conditions when the cost
function and the inequality constraint functions are Fréchet differentiable at the
solution. Indeed, consider the problem:

(P1) minimize f0(x) s.t. ft (x)≤ 0, t ∈ T ; x ∈Q.

Here T is an arbitrary set, no matter finite or infinite. The nature of the constraint
x ∈ Q is not essential for a time being.

If f0 and all ft are Fréchet differentiable at x, then we denote by ϕ0 and ϕt convex
functions obtained from f0 and ft using Lemma 19.29. Set further

ϕ(x) = sup
t∈T

ϕt(x).

Set Tε = {t ∈ T : ϕt(x)≥−ε}= {t ∈ T : ft(x)≥−ε}. We assume that

(A2) there is an ε > 0 such that the set { f ′t (x) : t ∈ Tε} is norm bounded in X∗.

By Corollary 19.30 ϕ is a convex continuous function satisfying for some K > 0

ϕ(x)≤ ϕ(x)+K‖x− x‖, ∀x ∈ X . (19.30)
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For the subdifferential of ϕ at x we have the formula (see, e.g., [30, 43])

∂ϕ(x) =
⋂
ε>0

cl ∗conv
( ⋃

t∈Tε

∂ϕt(x)
)
=
⋂
ε>0

cl∗conv
( ⋃

t∈Tε

{ f ′t (x)}
)
. (19.31)

Under additional conditions it is possible to guarantee the equality

∂ϕ(x) = cl∗conv
( ⋃

t∈T0

f ′t (x)
)
,

for instance, if

(QC1) T is a compact Hausdorff space and the function t �→ ϕt(x) is upper
semicontinuous for any x of a neighborhood of x,
or

(QC2) there is an ε > 0 such that the set conv{(ϕ ′t (x),ϕt (x)) : t ∈ Tε} is weak∗
closed.

Both conditions are well known and verification does not present any difficulty.
Moreover in both cases it is possible to give precise representations for elements of
∂ϕ(x): if (QC1) holds and X is a separable Banach space, then for any x∗ ∈ ∂ϕ(x)
there is a probability measure μ on T0 such that

x∗ =
∫

T0

ϕ ′t (x)dμ(t) (19.32)

(see, e.g., [9, 24]. The same is obviously true if (QC2) holds, but here in this case
we can consider only measures μ supported on finite sets so that the necessary
conditions assume the form: for any x∗ ∈ ∂ϕ(x) there are ti ∈ T0, i = 1, . . . ,k and
positive numbers αi with ∑αi = 1 such that

x∗ = α1ϕ ′t1(x)+ · · ·+αkϕ ′tk (x). (19.33)

Let us return to the problem (P1) assuming that x is a solution. It is straightfor-
ward to see that x also solves

(P2) minimize ϕ0(x) s.t. ϕ(x)≤ 0, x ∈Q.

Thus a problem with infinitely many inequality constraints reduces to a simple
problem with one inequality constraint and both cost and constraint functions
convex continuous. Further analysis depends of course on the structure of the
constraint x ∈ Q. The simplest case occurs when Q is defined by the condition
F(x) = 0 with F : X → Y strictly differentiable at x and the image of F ′(x) (i.e.,
F ′(x)(X)) being a subspace of finite codimension. In this case (P2) is a standard
problem for which the Lagrange multiplier rule holds: there are λ0 ≥ 0, λ ≥ 0, and
a y∗ ∈Y ∗, not all equal to zero and such that

0 ∈ λ0ϕ ′0(x)+λ∂ϕ(x)+ (F ′(x))∗y∗. (19.34)
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The standard constrained qualification condition. F ′(x) is surjective (that is to say,
F ′(x)(X) = Y ) and there is a h ∈ X such that (F ′(x)h = 0 and ϕ(x) + h < 0)
guarantees that λ0 > 0. In view of (19.31) the “Slater” part of this condition simply
means that there are ε > 0 and δ > 0 such that ϕt(x+ h) ≤ −δ for all t ∈ Tε . We
can further specify the necessary condition (19.34) under (QC1), ( QC2), or alike.
There is also no problem to express all these conclusions in terms of the original
problem (P1). The standard constraint qualification condition gives now precisely
the “perturbed Mangasarian-Fromovitz qualification condition”(PMFQC) of [32].

The conclusions of the last paragraph contain (with the exception of one theorem)
all main results of [32].4 But we can make a step further and easily get necessary
conditions for more general types of the constraint x∈Q. The following proposition
is straightforward.

Proposition 19.31. Let f0 and all ft , t ∈ T be Fréchet differentiable at x. We assume
that f0(x) = 0. Set

ψ(x) = max{ϕ0(x),ϕ(x)}.
If x is a local solution of (P1), then it is a local solution of the problem

(P3) minimize ϕ(x) s.t. x ∈Q.

In particular if (A2) holds then there is an N > 0 such that x is an unconditional
local minimizer of ψ(x)+Nd(x,Q).

For the first statement see, e.g., [19] and for the second, e.g., Proposition 2.4.3 in
[10]. Recall that ϕ is Lipschitz if { f ′t (x), t ∈ T} is a bounded set .

If the constrained x ∈ Q is not convex, nonconvex subdifferentials of one or
another sort become in principle necessary for further analysis. However reasonable
optimality conditions can be obtained only under assumption that the behavior of Q
near x is sufficiently regular which considerably simplifies the situation.

Proposition 19.32. We assume that

(a) (A2) holds
(b) Q is Clarke regular at x

If x is a solution of (P1) then there is a λ ∈ [0,1] such that

0 ∈ λ∂ϕ0(x)+ (1−λ )ϕ(x)+NDH(Q,x). (19.35)

If moreover the Slater-type qualification condition

(QC3) there is an h ∈ TB(Q,x) such that ψ(x+ h)< 0,

is satisfied, then λ > 0.

4The exception is Theorem 5.4 in which the cost function is assumed just lower semicontinu-
ous.But in this case the problem of minimizing f (x) s.t. ϕ(x) ≤ 0 and F(x) = 0 with convex
continuous ϕ and strictly differentiable F is standard for nonsmooth mathematical programming
and can be easily treated by already standard techniques using either the limiting Fréchet
subdifferential (if X is an Asplund space) or the approximate G-subdifferential in the general case.
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Proof. The first statement follows from Proposition 19.31 and standard calculus
rules for Clarke’s generalized gradient, as ψ is globally Lipschitz by (a). The second
statement follows from (b) and, again, continuity of ψ as (19.35) cannot hold in this
case with λ = 0. �

The specification of the result for one or another structure of the constraint x ∈Q
also does not present much difficulty. Let for instance Q = {x : 0 ∈ F(x)}, where
F : X ⇒ Y .

Proposition 19.33. Let F : X ⇒ Y , and let (x̄, ȳ) ∈ GraphF. Assume that F is
metrically regular at (x,0). If under this condition ϕ is a function on X which
is Lipschitz near x and which attains a local minimum at x subject to 0 ∈ F(x),
then there is a K > 0 such that the function g(x,y) = ϕ(x)+K‖y‖ attains a local
minimum at (x,0) subject to (x,y) ∈ GraphF.

Proof. Let � be the Lipschitz constant of ϕ in a neighborhood of x. Take K >
�regF(x|0). By the equivalence theorem, for any (x,y) ∈ GraphF sufficiently close
to (x,0) there is a u such that 0 ∈ F(u) and �‖x− u‖ ≤ K‖y‖. For such (x,y) and u,
we have

ϕ(x)+K‖y‖ ≥ ϕ(x)+ �‖x− u‖≥ ϕ(u)≥ ϕ(x)
as claimed. �
Proposition 19.34. Let F be metrically subregular at (x,0) ∈GraphF, that is (see,
e.g., [16]),

d(x,F−1(0))≤ Kd(0,F(x))

for all x of a neighborhood of x. Then

TB(Q,x) = PrX{h : (h,0) ∈ TB(GraphF,(x,0))}.

Proof. If h ∈ TB(Q,x), then 0 ∈ F(x + tnhn) for some tn → +0, hn → h, that is,
(x,0)+tn(hn,0)∈GraphF ; hence (h,0)∈ TB(GraphF,(x,0)). Conversely, if the last
inclusion holds then there are tn→ 0 hn→ h and vn→ 0 such that tnvn ∈ F(x+ tnhn).
By subregularity, d(x+ tnhn,F−1(0))≤ tnK‖vn‖ which means that there are un ∈ X
with ‖un‖ ≤ 2K‖vn‖ such that 0 ∈ F(x + tn(hn + un)) but hn + un → h, whence
h ∈ TB(Q,x). �

Combining the last three propositions and taking into the account that metric
regularity implies subregularity, we get

Proposition 19.35. Consider (P1) with Q = F−1(0), where F : X ⇒ Y is a set-
valued mapping with closed graph. Assume that

(a) (A2) holds
(b) F is metrically regular at (x,0)
(b) GraphF is Clarke regular at (x,0)
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If x is a solution of (P1) then there are λ ∈ [0,1] and y∗ such that

0 ∈ λϕ ′(x)+ (1−λ )∂ϕ(x)+D∗DHF(x,0)(y∗).

If moreover the Slater-type qualification condition

(QC3) ∃ h ∈ X such that (h,0) ∈ TB(GraphF,(x,0)) and ϕ(x+ h)< 0,

is satisfied, then λ > 0.

Proof. The first statement is a consequence of the first part of Proposition 19.32
and 19.33, and the second is the consequence of the second part of Proposi-
tions 19.32 and 19.34. �

As above we can make the necessary condition more specific using either (19.32)
or (19.33) under (QC1) or (QC2). Thus we get finally

Proposition 19.36. We posit the assumptions of Proposition 19.35.

(a) If (QC1) holds with X being a separable Banach space, then there are λ ∈ [0,1]
and a probability measure μ supported on T0 such that

0 ∈ λϕ ′(x)+ (1−λ )
∫

T
f ′t (x)dμ(t)+D∗DHF(x,0)(y∗).

(b) If (QC2) holds then there are ti ∈ T0, i = 1, . . . ,k and nonnegative λ ,λ1, . . . ,λk

such that

0 ∈ λ f ′t (x)+
k

∑
i=1
λi f ′ti(x)+D∗DHF(x,0)(y∗).

In either case the condition

∃ h ∈ X such that 〈 f ′t (x),h〉< 0 for all t ∈ T, (h,0) ∈ TB(GraphF,(x,0)),
implies that necessarily λ > 0.

19.5.1 Comments

As have been mentioned in Introduction, this section has been written following the
discussion with B. Mordukhovich at J. Borwein’s 60th anniversary conference in
Vancouver in May 2011.5 My point was that generalized subdifferentiation is not an
adequate tool to treat semi-infinite programming problems with differentiable data
and the aim of the first part of the section was to demonstrate that convex analysis

5Video of B. Mordukhovich’s talk and the subsequent discussion is available in the Internet: http://
conferences.irmacs.sfu.ca/jonfest2011/talk/55,

http://conferences.irmacs.sfu.ca/jonfest2011/talk/55,
http://conferences.irmacs.sfu.ca/jonfest2011/talk/55,
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offers a much more viable alternative. Another consequence of the discussion of
this section is that, as far as first-order optimality conditions are concerned, semi-
infinite programming with differentiable or convex inequalities and cost functions
is not a particularly meaningful object to study: all results can be obtained from
the standard results for problems with finitely many inequality constraints and
convex subdifferential calculus. On the other hand, semi-infinite programming with
non-differentiable inequality constraint functions remains rather Terra incognita
and I am not aware of any results relating to the first-order necessary conditions
for such problems. And of course for other problems, e.g., stability of solutions
(or even feasible sets), the infinite number of constraints is an additional and serious
challenge (see, e.g., [4–8, 23, 41]).

Acknowledgments I am thankful to V. Roschina for showing me a mistake in the original proof
of Theorem 19.6.
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43. Volle, M.: Sous-différential d’une enveloppe supérieure de fonctions convexes. C.R. Acad. Sci.
Paris , Sér. I 317 845–849 (1993)

44. Wu, Z., Ye, J.: Sufficient conditions for error bounds. SIAM J. Optim. 12, 421–435 (2001)
45. Zalinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex

inequalities in Banach spaces. In: Bulatov, V., Baturin, V. (eds.) Proceedings of the 12th Baikal
International Conference on Optimization Methods and Their Applications pp. 272–284.
Institute for System Dynamics Control Theory of SB RAS, Irkutsk (2001)

46. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)
47. Zhang, S.: Global error bounds for convex conic problems. SIAM J. Optim. 10, 836–851 (2000)
48. Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities

in Banach spaces. SIAM J. Optim. 14, 757–772 (2004)



Chapter 20
Generic Existence of Solutions and Generic
Well-Posedness of Optimization Problems

P.S. Kenderov and J.P. Revalski

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract We exhibit a large class of topological spaces in which the generic
attainability of the infimum by the bounded continuous perturbations of a lower
semicontinuous function implies generic well-posedness of the perturbed optimiza-
tion problems. The class consists of spaces which admit a winning strategy for one
of the players in a certain topological game and contains, in particular, all metrizable
spaces and all spaces that are homeomorphic to a Borel subset of a compact space.
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20.1 Introduction

Let X be a completely regular topological space and f : X → R∪{+∞} be a fixed
bounded from below lower semicontinuous function which is proper (the latter
means that f has at least one finite value). We say that f attains its infimum in
X , if there exists some x ∈ X for which f (x) = infX f . Denote by C(X) the space
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of all bounded real-valued and continuous functions in X which we equip with the
usual sup-norm ‖g‖∞ = sup{|g(x)| : x ∈ X}, g ∈ C(X). It has been shown in [17]
that the set E( f ) = {g ∈ C(X) : f + g attains its infimum in X} is dense in C(X).
We call the statement “E( f ) is dense in C(X)” a variational principle for f with
C(X) as a set of perturbations. The variational principle is called generic if the set
E( f ) is residual in C(X). Recall that E( f ) is residual in C(X) if its complement is
of the first Baire category in C(X). Such a (or similar) setting, with different sets
of perturbations, is present in several well-known variational principles–see, e.g.,
Ekeland [9], Stegall [22], Borwein and Preiss [3] and Deville, Godefroy, and Zizler
[7,8] for the case of metric spaces X and [4,5] outside the case of metrizable spaces.

Our aim in this paper is to show that, for a very large class of spaces X , the
residuality of E( f ) in C(X) implies the residuality in the same space of the set
W ( f ) := {g ∈C(X) : f + g is well posed}. Let us recall that a bounded from below
function h : X → R∪{+∞} (or more precisely, the problem to minimize h on X) is
called well posed if every minimizing net (xλ )λ ⊂ X for h has a cluster point. If h is
lower semicontinuous and is well posed, then the set M(h) of minimizers of h in X
is a nonempty compact set in X and for every open U ⊃M(h) there exists ε > 0 for
which {x ∈ X : h(x)< infX h+ ε} ⊂U .

The spaces X for which we prove here that residuality of E( f ) (in C(X)) implies
residuality of W ( f ) are described by a topological game called a determination
game and denoted by DG(X). The reasons for this terminology will become clear
later. Two players, Σ (who starts the game) and Ω , play by choosing at each step
n ≥ 1 nonempty sets An (the choices of Σ ) and Bn (the choices of Ω ) so that
Bn is relatively open in An and An+1 ⊂ Bn ⊂ An for any n. Playing this way the
players generate a sequence p = {An,Bn}n≥1 which is called a play. The player
Ω wins the play p if the intersection ∩nAn = ∩nBn is either empty or a nonempty
compact set such that, for each open set U containing ∩nBn, there is some n with
Bn ⊂ U . Otherwise, by definition, player Σ is declared to have won the play p.
A partial play in the game DG(X) is any finite sequence of the type (A1,B1, . . . ,An)
or (A1,B1, . . . ,An,Bn), n ≥ 1, where for i = 1, . . . ,n, the sets Ai and Bi are moves
in DG(X) of Σ and Ω correspondingly. A strategy ω for the player Ω is defined
recursively and is a rule which to any possible partial play of the type (A1, . . . ,An),
n ≥ 1, puts into correspondence a nonempty set Bn := ω(A1, . . . ,An) ⊂ An which
is relatively open in An. If in a given play {An,Bn}n≥1 of the game DG(X) each
choice Bn of Ω is obtained via the strategy ω , that is, Bn = ω(A1, . . . ,An) for every
n≥ 1, then this play p is called an ω-play. The strategy ω for the playerΩ is called
winning if the player Ω wins every ω-play in this game. The notions of strategy
and winning strategy for the player Σ are introduced in a similar way. The term the
game is favorable (resp. unfavorable) for some player means that the corresponding
player has (resp. does not have) a winning strategy in the game.

In Theorem 20.3 we prove that if the player Ω has a winning strategy in the
game DG(X) and if for some proper bounded from below lower semicontinuous
function f the set E( f ) is residual in C(X), then the set W ( f ) is also residual
in C(X). In other words, generic attainability of the infimum by the perturbations
implies generic well-posedness of the perturbations. Let us mention that the class



20 Generic Existence of Solutions and Generic Well-Posedness of . . . 447

of spaces X for which Ω has a winning strategy for the game DG(X) is quite large:
it contains all metrizable spaces, all Borel subsets of compact spaces, a large class
of fragmentable spaces, etc. (see the Concluding Remarks for more information
about this class). There are spaces X however for which the phenomenon does not
hold. In Example 20.4 we give a space X and a function f such that E( f ) = C(X)
and W ( f ) = /0.

The game DG(X) has been used in [11] in order to give sufficient conditions
when a semitopological group is, in fact, a topological group and in [12] to study
the points of continuity of the so-called quasi-continuous mappings. Variants of
DG(X) have been used by Michael [19] (for the study of completeness properties
of metric spaces), by Kenderov and Moors [13–15] (for characterization of the
fragmentability of topological spaces), and by the authors in [6,16,17] (for proving
the validity of generic variational principles).

20.2 Preliminary Results and Notions

Let X be a completely regular topological space and consider, as above, the Banach
space C(X) of all continuous and bounded functions in X equipped with its sup-
norm. For a given function f : X → R∪ {+∞}, the symbol dom( f ) denotes the
effective domain of f , which is the set of points x ∈ X for which f (x) ∈ R. For our
further considerations we need the following statement:

Proposition 20.1 ([17], Lemma 2.1). Let f : X → R∪{+∞} be a lower semicon-
tinuous function which is bounded from below and proper. Let x0 ∈ dom( f ) and
ε > 0 be such that f (x0) < infX f + ε . Then, there exists a continuous function
g : X → R

+ for which ‖g‖∞ ≤ ε and the function f + g attains its infimum at x0.

In particular, this proposition shows that the set E( f ) = {g∈C(X) : f +g attains
its infimum in X} is dense in C(X).

Further, any proper function f : X → R∪{+∞} which is bounded from below
defines a set-valued mapping Mf : C(X)⇒ X as follows:

Mf (g) := {x ∈ X : ( f + g)(x) = inf
X
( f + g)}, g ∈C(X),

which to each g ∈ C(X) puts into correspondence the (possibly empty) set of
minimizers in X of the perturbation f + g. It is known as the solution mapping
determined by f .

We denote by Gr(Mf ) the graph of Mf and by Dom(Mf ) the set {g ∈ C(X) :
Mf (g) �= /0} which is called effective domain of Mf . The following properties are
well known in the case when f ≡ 0. For an arbitrary proper bounded from below
and lower semicontinuous f the proof of these properties is given in [6]. Recall that,
for a set A⊂ X , the symbol A denotes the closure of A in X .
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Proposition 20.2 ([6], Proposition 2.4). Let X be a completely regular topological
space and let f : X → R∪{+∞} be a proper bounded from below lower semicon-
tinuous function. Then the solution mapping Mf : C(X)⇒ X satisfies the following
properties:

(a) Gr(Mf ) is closed in the product topology in C(X)×X.
(b) Dom(Mf ) is dense in C(X).
(c) Mf maps C(X) onto dom( f ).
(d) For any two open sets U of C(X) and W of X such that Mf (U)∩W �= /0 there is

a nonempty open set V ⊂U such that Mf (V )⊂W .
(e) If (Vn)n≥1 is a base of neighborhoods of g0 ∈C(X) then Mf (g0) = ∩nM(Vn).

The tool we use to show that a certain set is residual in a topological space is the
well-known Banach-Mazur game. Given a topological space X and a set S⊂ X , two
players, denoted by α and β , play a game by choosing alternatively nonempty open
sets Un (the choices of β who starts the game) and Vn (the choices of α), n ≥ 1,
with the rule Un+1 ⊂ Vn ⊂Un. The player α wins the play {Un,Vn}n≥1 if ∩nUn =
∩nVn⊂ S. Otherwise, β wins. The game is known as the Banach-Mazur game and is
denoted by BM(X ,S). The notions of (winning) strategies for the players are defined
as in the game DG(X). It was proved by Oxtoby [20] that the playerα has a winning
strategy in BM(X ,S) if and only if the set S is residual in X .

20.3 Generic Well-Posedness of Perturbed
Optimization Problems

In this section we formulate and prove our main result. Namely, we have the
following

Theorem 20.3. Let X be a completely regular topological space which admits a
winning strategy for the player Ω in the determination game DG(X). Suppose that
for some proper bounded from below lower semicontinuous function f : X → R∪
{+∞} the set E( f ) = {g ∈ C(X) : f + g attains its minimum in X} is residual in
C(X). Then the set W ( f ) = {g∈C(X) : f +g is well posed} is also residual in C(X).

Proof. Let X and f be as in the theorem. We will prove that the player α has
a winning strategy in the Banach-Mazur game B(C(X),W ( f )) played in C(X)
equipped with the sup-norm. According to the result of Oxtoby cited above this
will imply that W ( f ) is residual in C(X).

First, knowing that E( f ) is residual in C(X), let (On)n be a countable family of
open and dense subsets of C(X) such that ∩nOn ⊂ E( f ). Let us denote by ω the
winning strategy in the game DG(X) for the player Ω . We will construct now a
winning strategy s for the player α in the game BM(C(X),W ( f )).

To this end, let U1 be an arbitrary nonempty open set of C(X) which can be a legal
move of the player β in this game. Take A1 := Mf (U1) which is a nonempty set of
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X , according to Proposition 20.2 (b). Consider this set as a first move of the player
Σ in the determination game DG(X). Then put B1 := ω(A1) to be the answer of the
player Ω in the game DG(X) according to his/her strategy ω . Since B1 is relatively
open subset of A1 there is some open set W1 ⊂ X such that B1 =W1∩A1. Now, by
Proposition 20.2 (d), there is a nonempty open set V1 of C(X) for which V1⊂U1 and
Mf (V1)⊂W1. Thus Mf (V1)⊂W1∩Mf (U1) =W1∩A1 = B1. We may think, without
loss of generality, that V1 ⊂ O1, V 1 ⊂U1 and that in addition diam(V1) < 1. Define
the value of the strategy s for the player α in the game BM(C(X),W ( f )) at the set
U1 to be s(U1) := V1. Let further the nonempty open set U2 ⊂ V1 be an arbitrary
legitimate choice of the player β in the game BM(C(X),W ( f )) at the second step.
Put A2 := Mf (U2) which is a nonempty set of X according again to Proposition 20.2
(b). Since A2 = Mf (U2)⊂Mf (V1)⊂ B1 the set A2 can be a legal move of the player
Σ in the game DG(X) at the second step. Put B2 := ω(A1,B1,A2) to be the answer
of the player Ω according to his/her strategy ω . The set B2 is a nonempty relatively
open subset of A2; thus, there is some nonempty open set W2 ⊂ X such that B2 =
W2∩A2. Now, using once again Proposition 20.2 (d), there is some nonempty open
subset V2 of U2 for which Mf (V2) ⊂W2. Therefore, Mf (V2) ⊂W2∩Mf (U2) = B2.
Moreover, without loss of generality, we may think that V2 ⊂ O2, V 2 ⊂U2 and that
diam(V2)< 1/2. Define the value of the strategy s by s(U1,V1,U2) :=V2.

Proceeding by induction we define a strategy s for the player α in the Banach-
Mazur game BM(C(X),W ( f )) such that for any s-play {Un,Vn}n≥1 in this game
(i.e., Vn = s(U1,V1, . . . ,Un) for each n ≥ 1) there exists an associated ω-play
{An,Bn}n≥1 in the game DG(X) such that the following properties are satisfied for
any n≥ 1:

(i) An = Mf (Un).
(ii) Mf (Vn)⊂ Bn.

(iii) Vn ⊂ On.
(iv) V n+1 ⊂Un+1 ⊂Vn.
(v) diam(Vn)< 1/n.

Conditions (iv) and (v) ensure that the intersection ∩nVn is a one point set,
say g ∈ C(X) and condition (iii) entails that g ∈ ∩nOn ⊂ E( f ). According to
Proposition 20.2 (e) and taking into account (i) and (iv) we have

Mf (g) = ∩nMf (Vn) = ∩nMf (Un) = ∩nAn.

Since g ∈ E( f ), the set Mf (g) = ∩nAn is nonempty and therefore, because ω is a
winning strategy for Ω in the determination game DG(X), this set is compact and
the family (Bn)n behaves like a base for ∩nAn = Mf (g), that is, for any open set U
containing Mf (g) there is some n such that Bn ⊂ U . We will show that g ∈W ( f )
and this will complete the proof. To show that the function f + g is well posed let
(xλ )λ be a minimizing net for f +g, that is, f (xλ )+g(xλ )→ infX( f +g). We have to
show that this net has a cluster point (necessarily lying in Mf (g)). For this, having in
mind that the set of minima Mf (g) for f +g is nonempty and compact, it is enough
to show that if U is an open subset of X so that Mf (g)⊂U , then xλ ∈U eventually.
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Fix n ≥ 1 so large that Bn ⊂ U . Put ελ := f (xλ ) + g(xλ )− infX ( f + g) ≥ 0.
We may think, without loss of generality, that ελ > 0 for every λ . By Propo-
sition 20.1, for each λ , there is gλ ∈ C(X) with ‖gλ‖∞ < ελ and such that
xλ ∈ Mf (g+ gλ ). Since (gλ )λ converges uniformly to zero, we have g+ gλ ∈ Vn

eventually. Thus, we have (using also (ii) above) xλ ∈Mf (Vn) ⊂ Bn eventually (for
λ ). Therefore, xλ ∈U eventually, and this completes the proof. �

The next example shows that there are spaces in which we have generic
attainment of the infimum by the perturbations, without having generic well-
posedness of the perturbed optimization problems.

Example 20.4. Take Y to be the product of uncountably many copies of the
unit interval [0,1] with the usual product topology under which it is a compact
topological space. Let X be the so-called sigma-product in Y , i.e., the subset of
those x ∈ Y for which only countable number of coordinates are different from
zero. With the inherited topology X is a sequentially compact space which is not
compact. Thus, for any proper bounded from below lower semicontinuous function
f : X → R∪ {+∞} we will have E( f ) = C(X). In particular, this is so for any
function f ∈ C(X). Fix such a function f . In this case all the perturbations f + g,
g∈C(X) are continuous in X . On the other hand, it is easy to see that, for each value
r of a continuous function h in X , the level set h−1(r) = {x ∈ X : h(x) = r} contains
as a closed subset a copy of the sigma-product of uncountably many copies of the
interval [0,1]. Hence, the set h−1(r) is not compact for r = infX h and thus W ( f ) = /0.

20.4 Concluding Remarks

Some versions of the determination game DG(X) have already been used for
different purposes. We have in mind games in which the rules for selection of sets
are as in DG(X), but the rules for winning a play are different. We consider three
of these versions here. In the first one, which is denoted by G(X), Ω wins a play
{An,Bn}n≥1 if ∩nAn = ∩nBn �= /0. Otherwise Σ wins this play. The game G(X) was
used by Michael [19] for the study of completeness properties of metric spaces.
It was also used by the authors in [6, 17] to show that the existence of a winning
strategy for the player Ω in G(X) ensures the validity of the following generic
variational principle.

Theorem 20.5 ([17], Theorem 3.1). If the player Ω has a winning strategy in
the game G(X), then, for any proper bounded from below lower semicontinuous
function f : X → R∪{+∞}, the set E( f ) = {g ∈C(X) : f + g attains its minimum
in X} is residual in C(X).

Note however that, for some particular functions f , the set E( f ) may be residual
in C(X) even if the space X does not admit a winning strategy for G(X) (see, e.g.,
Example 5.2 from [6]).
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In the second variant, denoted by FG(X) and called fragmenting game, the player
Ω wins a play {An,Bn}n≥1 if ∩nAn = ∩nBn is either empty or a one point set.
Otherwise Σ wins this play. The game FG(X) was used in [13–15] for the study
of fragmentable spaces. Recall that a topological space X is called fragmentable
(see Jayne and Rogers [10]) if there is a metric d in X such that for any nonempty
set A of X and any ε > 0 there is a relatively open set B of A with the property
d-diam(B) < ε , with d-diam(B) having the usual meaning of the diameter of the
set B with respect to the metric d. Every metric space is fragmentable by its own
metric. There are however interesting examples of nonmetrizable spaces which
are fragmentable. For example every weakly compact subset of a Banach space
is fragmented by the metric generated by the norm. Every bounded subset of the
dual of an Asplund space is fragmented by the metric of the dual norm. The class of
fragmentable spaces has proved its usefulness in the study of different problems
in topology (e.g., single-valuedness of set-valued maps) and in the geometry of
Banach spaces (e.g., differentiability of convex functions)–see [10, 13–15, 21] and
the reference therein. It was proved in [13, 14] that

Theorem 20.6. The space X is fragmentable if and only if the player Ω has a
winning strategy in the fragmenting game FG(X).

Fragmentability is closely related to generic Tykhonov well-posedness of mini-
mization problems. Tykhonov well posed are the problems which are well posed
and have unique minimizer.

Theorem 20.7. Let X be a topological space which is fragmented by a metric
whose topology contains the original topology in X. Suppose that for some bounded
from below and lower semicontinuous function f : X → R∪{+∞} which is proper,
the set E( f ) is residual in C(X). Then the set T ( f ) := {g∈C(X) : f +g is Tykhonov
well posed} is residual in C(X) as well.

Proof. Fragmentability by a metric whose topology contains the original topology
in X is characterized by the fact that the player Ω possesses a special winning
strategy ω in the determination game DG(X) such that, for any ω-play {An,Bn}n≥1,
the set ∩nAn is either empty or consists of just one point, say {x}, for which the
family (Bn)n behaves like a base: for every open U � x there is some n≥ 1 such that
Bn ⊂U . Further we proceed exactly as in the proof of Theorem 20.3 and construct
a strategy s for the player α in the game BM(C(X),T ( f )) such that, for any s-play
{Un,Vn}n≥1, there exists an associate ω-play {An,Bn}n≥1 in the game DG(X) with
the properties (i)-(v). As above ∩nUn = ∩nVn is a one point set, say g ∈ C(X), for
which g∈W ( f ). Since, in addition, we have that the target sets of the corresponding
ω-plays are singletons, then we have, in fact, that g ∈ T ( f ). And this completes
the proof. �

Let us mention that if in the above theorem the metric which fragments X is also
complete, then the set T ( f ) is residual in C(X)–see [18], Theorem 2.3.
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The third version of the game DG(X) explains where the name “determination
game” comes from. This version is played in a compactification bX of the
completely regular topological space X . The moves of the players Σ andΩ are as in
DG(bX). The player Ω wins a play p = {An,Bn}n≥1 in this new game if the target

set T (p) = ∩nA
bX
n (which is always nonempty in this setting) is either entirely in X

or entirely in bX \X . In the next statement the term equivalent games, for games with
the same players, is used in the sense that the games are simultaneously favorable
(unfavorable) for any of the players.

Proposition 20.8 ([12], Proposition 4). Let X be a completely regular topological
space and bX be any compactification of X. Then the game described above in bX
and the game DG(X) are equivalent. In particular, if some of the players Σ or Ω
has a winning strategy in one compactification of X, then he/she has such a winning
strategy in any other compactification of X.

In other words, in the game DG(X) the existence of a winning strategy for
the payer Ω determines that, when using this strategy, the target sets of the
corresponding plays in the compactification bX will be either entirely in X or
entirely in the complement bX \ X . In a certain sense the game “determines” or
“identifies” the space X .

Let us turn back to the game DG(X) and denote by GD the class of game
determined spaces X (for which the player Ω has a winning strategy in the game
DG(X)). It has turned out that the class GD is rather large (for the following facts
we refer to [12]): it includes all fragmentable spaces which are fragmented by a
metric d whose topology contains the original topology in X ; in particular, the class
contains all metrizable spaces; the class GD contains also all p-spaces introduced
by Arhangel’skii [1] and also all Moore spaces.

The class GD includes also the class of topological spaces introduced in [15] and
called spaces with countable separation: the completely regular topological space
X is said to have countable separation if for some compactification bX of X there is
a countable family (Un)n of open (in bX) sets such that for any two points x,y with
x ∈ X and y ∈ bX \X there is an element Un of the family which contains exactly
one of the points x and y. If X has countable separation then the latter property
is satisfied in any compactification of X . Let us mention that each Borel set of a
space with countable separation has again countable separation. Moreover, each
set obtained by applying Souslin operations on subsets with countable separation
has countable separation as well. The class GD also includes all spaces with star
separation introduced in [2].

Acknowledgments The authors wish to thank an anonymous referee for the helpful suggestions to
improve the presentation of the results. Both authors have been partially supported by the Bulgarian
National Fund for Scientific Research, under grant DO02-360/2008.



20 Generic Existence of Solutions and Generic Well-Posedness of . . . 453

References

1. Arhangel’skii, A.V.: On a class containing all metric and all locally bicompact spaces. Dokl.
Akad. Nauk. SSSR 151, 751–754 (1963)
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Chapter 21
Legendre Functions Whose Gradients Map
Convex Sets to Convex Sets

Alexander Knecht and Jon Vanderwerff

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract We show that a differentiable function on a Banach space of dimension at
least two has an affine gradient provided the gradient is continuous and one-to-one
and maps convex sets to convex sets.

Key words: Affine • Convex function • Convex set • Gradient

Mathematics Subject Classifications (2010): Primary 52A41; Secondary 46T20,
49J50.

21.1 Introduction

We work in a real Banach space, usually denoted by X . We will say a nonempty
C ⊂ X is convex if λx+(1−λ )y∈C whenever x,y ∈C and 0≤ λ ≤ 1. A function
f : X→ (−∞,+∞] is said to be proper provided dom f �= /0 where dom f := {x∈ X |
f (x)< ∞}. A proper function f : X → (−∞,+∞] is convex if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y) for all x,y ∈ dom f , 0≤ λ ≤ 1.

In fact, in this note, we will focus on real-valued (convex) functions.
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A closed set in a Banach space is said to be a Chebyshev set if every point in the
space has exactly one closest point in the set. It is a classical result that in Euclidean
spaces a closed set is Chebyshev if and only if it is convex [11,14]. The situation for
infinite-dimensional Hilbert spaces remains a long-standing open problem. For more
information on Chebyshev sets the reader may wish to see Borwein’s survey paper
[9] and Deutsch’s book [12].

Recently, several authors have focused their attention on Chebyshev sets and
related concepts with respect to Bregman distances [5, 7, 8]. The survey [5] also
poses several open questions in this topic. In particular, [5, Question 3] asks whether
there exists a convex function of Legendre type (which we will call Legendre
functions) with full domain whose gradient maps convex sets to convex sets, and
yet the gradient is not affine. We refer the reader to [16, Sect. 26] and [3, Sect. 5] for
further information on fundamental properties of Legendre functions in Euclidean
and general Banach spaces, respectively. For our purposes, it will be sufficient to
know that the derivative of a Legendre function with full domain on R

n is continuous
and one-to-one although more can be said (see [16, Theorem 26.5]), and in general
Banach spaces, a Legendre function with full domain has a one-to-one (though not
necessarily continuous) derivative [3].

The primary purpose of this note is to show that as long as the Banach space has
dimension at least two, the answer to [5, Question 3] is negative. In addition, we
have endeavored to use elementary techniques to the extent that only introductory
analysis and linear algebra are needed in the event X is the Euclidean space R

n.
The interested reader can find additional relevant information on convex analysis in
sources such as [4, 10, 15–17].

21.2 Main Result and Examples

We begin by outlining some natural elementary properties of mappings between
Banach spaces.

Lemma 21.1. Let X and Y be Banach spaces and suppose T : X → Y is a
continuous and one-to-one mapping such that T (0) = 0 and T maps convex subsets
of X into convex subsets of Y . Then

(a) T maps lines in X into lines in Y , moreover given x,y ∈ X we have

(i) T (x+R+y)⊂ T (x)+R+[T (x+ y)−T(x)]
(ii) T (x−R+y)⊂ T (x)−R+[T (x+ y)−T(x)], where R+ := [0,∞)

(c) When y �= 0, T (y) �= 0, and T (−y) = αT (y) for some α < 0.
(d) T (x) and T (y) are linearly independent when x and y are linearly independent.
(e) For α,β ∈R, T (αx+βy) ∈ {tT (x)+ sT (y) | s, t ∈ R}.
Proof. (a) Both (i) and (ii) are trivial if y = 0 and so we assume y �= 0. Now suppose

T (x+R+y) �⊂ L where L := T (x)+R+[T (x+ y)−T(x)].
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We fix t0 > 0 such that T (x+ t0y) �∈ L. Now fix a number β > max{t0,1} and let
S be the line segment with endpoints T (x) and T (x+βy). Then S ⊂ T (x+[0,β ]y)
because T (x+ [0,β ]y) is a convex set. We can choose 0 < α < β such that T (x+
αy) �∈ S. Indeed, in the case T (x+βy) ∈ L, then S ⊂ L because both endpoints of S
are in the ray L. Then we let α = t0, and so T (x+αy) �∈ S because T (x+ t0y) �∈ L.
In the case T (x+βy) �∈ L we let α = 1. Because T (x+βy) �∈ L, the line segment S
meets the ray L only at T (x); in particular T (x+ y) ∈ L\ S and so T (x+αy) �∈ S in
this case as well.

Now let C1 := T (x+ [0,α]y) and C2 := T (x+ [α,β ]y). Then C1, C2 are convex
and compact as continuous images of compact sets. Moreover, because T is one-to-
one, C1 ∩C2 = {T (x+αy)}. It follows that C1 ∩ S and C2 ∩ S are disjoint because
T (x+αy) �∈ S. Thus we have two nonempty disjoint closed sets whose union is S.
This contradicts that S is connected. Therefore T (x+R+y)⊂ L as desired.

For (ii), when t ≥ 0, we use (i) to write

T (x) = T (x− ty+ ty) = T (x− ty)+α[T(x)−T (x− ty)], and similarly

T (x+ y) = T (x− ty+(t+ 1)y) = T (x− ty)+β [T(x)−T (x− ty)],

where the one-to-one property of T additionally ensures β > α . Thus T (x+ y)−
T (x) = (β −α)[T (x)−T (x− ty)] from which (ii) follows.

Let us note that part (b) is a consequence of (a) and the injectivity of T . Now
to prove (c), we suppose x and y are linearly independent in X , but T (x) and
T (y) are not linearly independent. Because T (x) �= 0 and T (y) �= 0 we may write
T (x) = λT (y) for some λ �= 0. Then applying (a) and (b) we can find δ > 0 so that
(−δ ,δ )T (x)⊂ T (Rx)∩T (Ry). This contradicts the one-to-one property of T .

Part (d) can also be deduced in a natural fashion with the help of (a). �
The following lemma is also elementary, but is crucial to our argument.

Lemma 21.2. Let X and Y be any Banach spaces where X contains two linearly
independent vectors. Suppose T : X → Y is a continuous and one-to-one mapping
such that T (0) = 0 and T maps convex subsets of X into convex subsets of Y .
Suppose x,y are linearly independent in X, then there exists b ∈ R such that
T (x+ y) = T (x)+ bT(y).

Proof. First, Lemma 21.1(c) ensures T (x) and T (y) are linearly independent. Then
using Lemma 21.1(d), we fix a,b ∈ R such that

T (x+ y)−T(x) = aT (x)+ bT(y). (21.1)

We note b �= 0 in (21.1) because otherwise T (x+y)−(1+a)T (x) = 0 which cannot
occur since Lemma 21.1(c) ensures T (x + y) and T (x) are linearly independent.
We now consider numbers λ > 1. Then Lemma 21.1(a)(i) implies there exists sλ > 0
so that

T (x+λy) = T (x)+ sλ [aT (x)+ bT(y)]. (21.2)
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Now, Lemma 21.1(d) implies T (y+ 1
λ x) = cλT (x)+ dλT (y) for some cλ ,dλ ∈ R.

Moreover, because 0, 1
λ (x+λy), and x+λy are on the same line, Lemma 21.1(a)

ensures that

T (x+λy) = tλT

(
1
λ
(x+λy)

)
for some tλ ∈R.

Consequently,

tλ (cλT (x)+ dλT (y)) = T (x)+ sλ [aT (x)+ bT (y)]. (21.3)

Equating coefficients of T (x) and T (y) in (21.3) we obtain tλ cλ = sλa + 1 and
tλdλ = sλb. The quantities sλ and b are both nonzero, so dividing and cancelling

cλ
dλ

=
sλa+ 1

sλb
=

a+ 1
sλ

b
.

By the continuity of T , limλ→∞T ( 1
λ (x+λy)) = T (y). Therefore, limλ→∞ dλ = 1,

and limλ→∞
cλ
dλ

= 0. Therefore, a+ 1/sλ → 0 and so 0 < 1/sλ →−a which means
a≤ 0.

To complete the proof, we will show a≥ 0 by proceeding along the lines above.
Indeed, for λ > 1, similar to (21.2) we write

T (x−λy) = T (x)+σλ [aT (x)+ bT(y)]

where a and b are as in (21.1), and σλ < 0. Again, we can also find cλ ,dλ , and τλ
in R such that

T

(
1
λ

x− y

)
= cλT (x)+ dλT (y) and T (x−λy) = τλT

(
1
λ
(x−λy)

)
.

According to Lemma 21.1(b), T (−y) = αT (y) where α < 0; consequently

lim
λ→∞

T

(
1
λ
(x−λy)

)
= T (−y) = αT (y).

Proceeding as above, limλ→∞ cλ = 0 and limλ→∞ dλ = α . Then as above

lim
λ→∞

σλa+ 1
σλb

= lim
λ→∞

a+ 1
σλ

b
= 0.

Because σλ < 0, we deduce a≥ 0, and thus a = 0 as desired. �
The following is our main result concerning general mappings.

Theorem 21.3. Let X and Y be any Banach spaces where X contains two linearly
independent vectors. Suppose T : X → Y is a continuous and one-to-one mapping
such that T maps convex sets to convex sets. Then T is affine.
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Proof. Define S(x) := T (x)−T (0) for x ∈ X . Then S has the assumed properties of
T , and additionally, S(0) = 0. To prove the theorem, we will show that S is linear.

First, let x and y be any two linearly independent vectors in X . Lemma 21.2
implies there exist r and s ∈ R such that

S(x+ y) = S(x)+ rS(y) and S(y+ x) = S(y)+ sS(x).

Subtracting equations, (r− 1)S(y)− (s− 1)S(x) = 0. Now Lemma 21.1(c) implies
S(x) and S(y) are linearly independent, and so (r− 1) = (s− 1) = 0. Consequently,
r = s = 1, and thus

S(x+ y) = S(x)+ S(y) when x and y are linearly independent. (21.4)

We next show S preserves scalar multiplication. For this, we let x �= 0 and choose
any y linearly independent with x. By (21.4), we know for n ∈ N and t > 0, S(x+
nx+ ty) = S(x)+ S(nx+ ty). Letting t → 0+, the continuity of S along with (21.4)
implies

S(x+ nx) = lim
t→0+

S(x+ nx+ ty)= lim
t→0+

S(x)+ S(nx+ ty)= S(x)+ S(nx).

Using induction, it is easy to deduce that S(kx) = kS(x) for any k ∈N.
Then for k ∈ N, S(x) = S(kk−1x) = kS(k−1x), and so S(k−1x) = k−1S(x) for any

x �= 0, and k ∈ N. Then for m,n ∈ N, S(mn−1x) = mS(n−1x) = mn−1S(x). That
is, S(rx) = rS(x) for any positive rational number r. Now for any t ≥ 0 choose
a sequence of positive rational numbers rn → t. Then the continuity of S implies
S(tx) = limn→∞ S(rnx) = limn→∞ rnS(x) = tS(x). Consequently, for t > 0,

0 = S(0) = S(tx− tx) = S(tx)+ S(−tx) = tS(x)+ S(−tx),

and so S(−tx) = −tS(x) when t > 0. Therefore, S(tx) = tS(x) for x ∈ X and t ∈ R.
This with (21.4) implies S is a linear mapping as desired. �

The following consequence of Theorem 21.3 answers [5, Question 3].

Corollary 21.4. Suppose X is any Banach space that contains two linearly inde-
pendent vectors. Let f : X → R be a Legendre function such that ∇ f (C) is convex
whenever C is a convex subset of X. Then ∇ f is affine.

Proof. In the case X is finite dimensional, the result follows from Theorem 21.3
because ∇ f is continuous and one-to-one when f is Legendre with full domain (in
fact more is true, see [16, Theorem 26.5]).

Suppose X is infinite dimensional. We will assume ∇ f is not affine and proceed
by way of contradiction. Because ∇ f is not affine, there exist x,y ∈ X and λ ∈ R

so that

∇ f (λx+(1−λ )y) �= λ∇ f (x)+ (1−λ )∇ f (y).

Now choose u ∈ X so that
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〈∇ f (λx+(1−λ )y),u〉 �= 〈λ∇ f (x)+ (1−λ )∇ f (y),u〉.
Let F be the linear span of x, y, and u (one can add an additional vector if necessary
to the spanning set of F to ensure F has dimension at least two). Because f is
Legendre with full domain, this means f is Gâteaux differentiable (see [3, Sect. 5]
and [10, Chap. 7]), and so

〈∇ f (v),h〉 = lim
t→0

f (v+ th)− f (v)
t

, v,h ∈ X .

Thus defining the convex function g : F → R by g := f |F , it follows that ∇g(x) =
∇ f (x)|F , and for x,y, and u as above we have

〈∇g(λx+(1−λ )y),u〉 �= 〈λ∇g(x)+ (1−λ )∇g(y),u〉.
Hence ∇g is not affine. However, because f is Legendre with full domain, g is a
strictly convex differentiable function; see [3, Sect. 5]. Consequently ∇g is one-
to-one and also continuous because F is finite dimensional [16, Corollary 25.5.1].
Finally, let C be any convex subset of F , and let v,w ∈ C and 0 ≤ λ ≤ 1. Because
∇ f (C) is convex, there exists z ∈C such that

∇ f (z) = λ∇ f (v)+ (1−λ )∇ f (w).

Therefore,∇ f (z)|F = λ∇ f (v)|F +(1−λ )∇ f (w)|F . That is, ∇g(C) is convex. Then
Theorem 21.3 ensures ∇g is affine which is a contradiction. �

The following provides elementary examples that illustrate the necessity of
various conditions in Theorem 21.3.

Example 21.5. (a) The function t �→ t4 has a derivative that is continuous and one-
to-one and maps convex sets to convex sets, but is not affine. So Theorem 21.3
fails on the one-dimensional Banach space R.

(b) Let f (t) = e−|t|+ |t|. Then the derivative of f is one-to-one, continuous, and
bounded and maps convex sets to convex sets, but is not affine.

(c) Let g : R2 → R be defined by g(x,y) := x4. Then ∇g is continuous and maps
convex sets into convex sets (convex subsets of R×{0}), but ∇g is not one-to-
one, nor is it affine.

(d) Let h(x,y) := x4 + y4. Then h is a continuously differentiable convex function
and ∇h is one-to-one. However, ∇h does not map convex sets to convex sets,
nor is ∇h affine.

We close with some comments on how Corollary 21.4 relates to some other
results in convex analysis.

Remark 21.6. The recent result [6, Theorem 4.2] shows a maximally monotone
operator has an affine graph provided the graph is convex, and it is a now classical
result that the gradient of a (proper lower-semi)continuous convex function is a
maximally monotone operator (see e.g. [10, 17]). Thus it is natural to ask whether
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[6, Theorem 4.2] could be used to deduce Corollary 21.4, and we thank L. Yao for
bringing this question to our attention when the first author spoke about the subject
of this note at the conference on Analytical and Computational Mathematics held
in honor of Jonathan Borwein on the occasion of his 60th birthday in May 2011.

In this direction, observe that the graphs of the gradients of the convex functions
in Example 21.5(a), (b), and (c) are not convex; thus a differentiable convex function
may have a gradient that maps convex sets to convex sets, yet the graph of the
gradient is not convex. Consequently, [6, Theorem 4.2] does not immediately
provide the result of Corollary 21.4. However, this does not mean [6, Theorem 4.2]
could not be used to provide an alternate or more efficient proof of Corollary 21.4 or
extensions thereof. Indeed, the functions provided in Example 21.5(a),(b), and (c)
are quite limited in that all have gradients whose ranges lie in a one-dimensional
space, so it is a natural question to ask for weaker conditions than given in
Theorem 21.3—or a characterization—for when maximally monotone operators
(or other types of mappings between Banach spaces) are affine provided they map
convex sets into convex sets.

Remark 21.7. We thank H.H. Bauschke for bringing the recent paper [13] to our
attention and alerting us to its relevance to the subject of our note. In particular, [13,
Corollary 3] shows that if V and W are arbitrary real vector spaces with dim(V)≥ 2
and if T : V →W is one-to-one and maps segments to segments, then T is affine.
The proof is built upon a similar result for finite-dimensional vector spaces as can
be found in [1]; see also [2]. Further, it is important to note that no continuity
assumption is needed on T , and this follows because affine mappings are continuous
in finite-dimensional vector spaces.

Acknowledgments We are grateful to an anonymous referee for several suggestions that helped
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17. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)



Chapter 22
On the Convergence of Iteration Processes for
Semigroups of Nonlinear Mappings in Banach
Spaces

W.M. Kozlowski and Brailey Sims

In tribute to Jonathan Borwein on his 60th birthday

Abstract Let C be a bounded, closed, convex subset of a uniformly convex Banach
space X . We investigate the convergence of the generalized Krasnosel’skii-Mann
and Ishikawa iteration processes to common fixed points of pointwise Lipschitzian
semigroups of nonlinear mappings Tt : C→C. Each of Tt is assumed to be pointwise
Lipschitzian, that is, there exists a family of functions αt : C → [0,∞) such that
‖Tt(x)−Tt(y)‖ ≤ αt(x)‖x− y‖ for x,y ∈C.

Key words: Asymptotic pointwise nonexpansive mapping • Common fixed
point • Fixed-point • Fixed point iteration process • Ishikawa process •
Krasnosel’skii-Mann process • Lipschitzian mapping • Mann process • Opial
property • Pointwise Lipschitzian mapping • Semigroup of mappings • Uni-
formly convex Banach space

Mathematics Subject Classifications (2010): Primary 47H09; Secondary 47H10.

COMMUNICATED BY HEINZ H. BAUSCHKE.

W.M. Kozlowski (�)
School of Mathematics and Statistics, University of New South Wales, Sydney,
NSW 2052, Australia
e-mail: w.m.kozlowski@unsw.edu.au

B. Sims
School of Mathematical and Physical Sciences, The University of Newcastle,
Callaghan, NSW 2308, Australia
e-mail: Brailey.Sims@newcastle.edu.au

D.H. Bailey et al. (eds.), Computational and Analytical Mathematics, Springer
Proceedings in Mathematics & Statistics 50, DOI 10.1007/978-1-4614-7621-4 22,
© Springer Science+Business Media New York 2013

463

mailto:w.m.kozlowski@unsw.edu.au
mailto:Brailey.Sims@newcastle.edu.au


464 W.M. Kozlowski and B. Sims

22.1 Introduction

Let C be a bounded, closed, convex subset of a Banach space X . Let us consider a
pointwise Lipschitzian semigroup of nonlinear mappings, that is, a family of map-
pings Tt : C→C satisfying the following conditions: T0(x) = x, Ts+t(x) = Ts(Tt(x)),
t �→ Tt(x) is strong continuous for each x ∈C, and each Tt is pointwise Lipschitzian.
The latter means that there exists a family of functions αt : C→ [0,∞) such that
‖Tt(x)−Tt(y)‖ ≤ αt (x)‖x− y‖ for x,y ∈C (see Definitions 22.1, 22.2, and 22.3 for
more details). Such a situation is quite typical in mathematics and applications. For
instance, in the theory of dynamical systems, the Banach space X would define the
state space and the mapping (t,x)→ Tt(x) would represent the evolution function of
a dynamical system. Common fixed points of such a semigroup can be interpreted
as points that are fixed during the state space transformation Tt at any given point of
time t. Our results cater for both the continuous and the discrete time cases. In the
setting of this paper, the state space may be an infinite-dimensional Banach space.
Therefore, it is natural to apply these results not only to deterministic dynamical
systems but also to stochastic dynamical systems.

The existence of common fixed points for families of contractions and nonex-
pansive mappings has been investigated since the early 1960s; see e.g., DeMarr [8],
Browder [4], Belluce and Kirk [1, 2], Lim [22], and Bruck [5, 6]. The asymptotic
approach for finding common fixed points of semigroups of Lipschitzian (but not
pointwise Lipschitzian) mappings has been also investigated for some time; see
e.g., Tan and Xu [33]. It is worthwhile mentioning the recent studies on the special
case, when the parameter set for the semigroup is equal to {0,1,2,3, . . .} and
Tn = T n, the nth iterate of an asymptotic pointwise nonexpansive mapping, i.e.
such a T : C → C that there exists a sequence of functions αn : C → [0,∞) with
‖T n(x)−T n(y)‖≤αn(x)‖x−y‖ and limsupn→∞αn(x)≤ 1. Kirk and Xu [17] proved
the existence of fixed points for asymptotic pointwise contractions and asymptotic
pointwise nonexpansive mappings in Banach spaces, while Hussain and Khamsi
extended this result to metric spaces [11] and Khamsi and Kozlowski to modular
function spaces [14, 15]. Recently, Kozlowski proved existence of common fixed
points for semigroups of nonlinear contractions and nonexpansive mappings in
modular function spaces [20].

Several authors studied the generalizations of known iterative fixed-point
construction processes like the Mann process (see e.g. [10, 23]) or the Ishikawa
process (see, e.g., [12]) to the case of asymptotic and pointwise asymptotic nonex-
pansive mappings. There exists an extensive literature on the subject of iterative
fixed-point construction processes for asymptotically nonexpansive mappings in
Hilbert, Banach and metric spaces; see, e.g., [3, 7, 9, 11, 13, 24, 25, 27–37] and the
works referred there. Schu [31] proved the weak convergence of the modified Mann
iteration process to a fixed point of asymptotic nonexpansive mappings in uniformly
convex Banach spaces with the Opial property and the strong convergence for
compact asymptotic nonexpansive mappings in uniformly convex Banach spaces.
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Tan and Xu [35] proved the weak convergence of the modified Mann and modified
Ishikawa iteration processes for asymptotic nonexpansive mappings in uniformly
convex Banach spaces satisfying the Opial condition or possessing Fréchet differ-
entiable norm. Kozlowski [18] proved that – under some reasonable assumptions –
the generalized Mann and Ishikawa processes converge weakly to a fixed point of
an asymptotic pointwise nonexpansive mapping T : C→C, where C is a bounded,
closed, and convex subset of a uniformly convex Banach space X which satisfies the
Opial condition.

Let us note that the existence of common fixed points for asymptotic pointwise
nonexpansive semigroups has been recently proved by Kozlowski in [19]. However,
the proof of this result does not provide a constructive method of finding such
common fixed points. The aim of the current paper is to fill this gap. We prove that
– under some reasonable assumptions – the generalized Krasnosel’skii-Mann and
Ishikawa processes converge weakly, and – under additional assumptions – strongly,
to a common fixed point of the asymptotic pointwise nonexpansive semigroups.

The paper is organized as follows:

(a) Section 22.2 provides the necessary preliminary material.
(b) Section 22.3 presents some technical results on approximate fixed-point

sequences.
(c) Section 22.4 is devoted to proving the Demiclosedness Principle in a version

relevant for this paper.
(d) Section 22.5 deals with the weak convergence of generalized Krasnosel’skii-

Mann iteration processes to common fixed points of asymptotic pointwise
nonexpansive semigroups.

(e) Section 22.6 deals with the weak convergence of generalized Ishikawa iteration
processes to common fixed points of asymptotic pointwise nonexpansive
semigroups.

(f) Section 22.7 presents the strong convergence result for both Krasnosel’skii-
Mann and Ishikawa processes.

22.2 Preliminaries

Throughout this paper X will denote a Banach space, C a nonempty, bounded,
closed, and convex subset of X , and J will be a fixed parameter semigroup
of nonnegative numbers, i.e. a subsemigroup of [0,∞) with normal addition.
We assume that 0∈ J and that there exists t > 0 such that t ∈ J. The latter assumption
implies immediately that +∞ is a cluster point of J in the sense of the natural
topology inherited by J from [0,∞). Typical examples are: J = [0,∞) and ideals
of the form J = {nα : n = 0,1,2,3, . . .} for a given α > 0. The notation t→ ∞ will
mean that t tends to infinity over J.
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Let us start with more formal definitions of pointwise Lipschitzian mappings
and pointwise Lipschitzian semigroups of mappings and associated notational
conventions.

Definition 22.1. We say that T : C→C is a pointwise Lipschitzian mapping if there
exists a function α : C→ [0,∞) such that

‖T (x)−T (y)‖ ≤ α(x)‖x− y‖ for all x,y ∈C. (22.1)

If the function α(x) < 1 for every x ∈ C, then we say that T is a pointwise
contraction. Similarly, if α(x) ≤ 1 for every x ∈C, then T is said to be a pointwise
nonexpansive mapping.

Definition 22.2. A one-parameter family F = {Tt ; t ∈ J} of mappings from C into
itself is said to be a pointwise Lipschitzian semigroup on C if F satisfies the
following conditions:

(i) T0(x) = x for x ∈C
(ii) Tt+s(x) = Tt(Ts(x)) for x ∈C and t,s ∈ J

(iii) For each t ∈ J, Tt is a pointwise Lipschitzian mapping, i.e. there exists a
function αt : C→ [0,∞) such that

‖Tt(x)−Tt(y)‖ ≤ αt(x)‖x− y‖ for all x,y ∈C. (22.2)

(iv) For each x ∈C, the mapping t �→ Tt(x) is strongly continuous.

For each t ∈ J let F(Tt) denote the set of its fixed points. Note that if x ∈ F(Tt) then
x is a periodic point (with period t) for the semigroup F , i.e. Tkt(x) = x for every
natural k. Define then the set of all common fixed points for mappings from F as
the following intersection:

F(F ) =
⋂
t∈J

F(Tt).

The common fixed points are frequently interpreted as the stationary points of the
semigroup F .

Definition 22.3. Let F be a pointwise Lipschitzian semigroup. F is said to be
asymptotic pointwise nonexpansive if limsupt→∞αt (x)≤ 1 for every x ∈C.

Denoting a0 ≡ 1 and at(x) = max(αt(x),1) for t > 0, we note that without loss
of generality we can assume that F is asymptotically nonexpansive if

‖Tt(x)−Tt(y)‖ ≤ at(x)‖x− y‖ for all x,y ∈C, t ∈ J, (22.3)

lim
t→∞at(x) = 1, at(x) ≥ 1 for all x ∈C, and t ∈ J. (22.4)

Define bt(x) = at(x)− 1. In view of (22.4), we have

lim
t→∞bt(x) = 0. (22.5)

The above notation will be consistently used throughout this paper.
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Definition 22.4. By S (C) we will denote the class of all asymptotic pointwise
nonexpansive semigroups on C such that

Mt = sup{at(x) : x ∈C}< ∞, for every t ∈ J, (22.6)

limsup
t→∞

Mt = 1. (22.7)

Note that we do not assume that all functions at are bounded by a common constant.
Therefore, we do not assume that F is uniformly Lipschitzian.

Definition 22.5. We will say that a semigroup F ∈S (C) is equicontinuous if the
family of mappings {t �→ Tt(x) : x ∈C} is equicontinuous at t = 0.

The following result of Kozlowski will be used in this paper to ensure existence
of common fixed points.

Theorem 22.6. [19] Assume X is uniformly convex. Let F be an asymptotically
nonexpansive pointwise Lipschitzian semigroup on C. Then F has a common fixed
point and the set F(F ) of common fixed points is closed and convex.

The following elementary, easy to prove, lemma will be used in this paper.

Lemma 22.7. [7] Suppose {rk} is a bounded sequence of real numbers and {dk,n}
is a doubly indexed sequence of real numbers which satisfy

limsup
k→∞

limsup
n→∞

dk,n ≤ 0, and rk+n ≤ rk + dk,n

for each k,n≥ 1. Then {rk} converges to an r ∈ R.

The notion of bounded away sequences of real numbers will be used extensively
throughout this paper.

Definition 22.8. A sequence {cn} ⊂ (0,1) is called bounded away from 0 if there
exists 0 < a < 1 such that cn > a for every n ∈ N. Similarly, {cn} ⊂ (0,1) is called
bounded away from 1 if there exists 0 < b < 1 such that cn < b for every n ∈N.

The following property of uniformly convex Banach spaces will play an important
role in this paper.

Lemma 22.9. [31,38] Let X be a uniformly convex Banach space. Let {cn}⊂ (0,1)
be bounded away from 0 and 1, and {un},{vn} ⊂ X be such that

limsup
n→∞

‖un‖ ≤ a, limsup
n→∞

‖vn‖ ≤ a, lim
n→∞‖cnun +(1− cn)vn‖= a.

Then lim
n→∞‖un− vn‖= 0.

Using Kirk’s result [16] (Proposition 2.1), Kozlowski [19] proved the following
proposition.
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Proposition 22.10. Let F be a semigroup on C. Assume that all mappings Tt ∈F
are continuously Fréchet differentiable on an open convex set A containing C. Then
F is asymptotic pointwise nonexpansive on C if and only if for each x ∈C

limsup
t→∞

‖(Tt)
′
x‖ ≤ 1. (22.8)

This result, combined with Theorem 22.6, produces the following fixed-point
theorem.

Theorem 22.11. [19, Theorem 3.5] Assume X is uniformly convex. Let F be a
pointwise Lipschitzian semigroup on C. Assume that all mappings Tt ∈ F are
continuously Fréchet differentiable on an open convex set A containing C and for
each x ∈C

limsup
t→∞

‖(Tt)
′
x‖ ≤ 1. (22.9)

Then F has a common fixed point and the set F(F ) of common fixed points is
closed and convex.

Because of the above, all the results of this paper can be applied to the semigroups
of nonlinear mappings satisfying condition (22.9). This approach may be very useful
for applications provided the Fréchet derivatives can be estimated.

22.3 Approximate Fixed-Point Sequences

The technique of approximate fixed-point sequences will play a critical role in
proving fixed convergence to common fixed points for semigroups of mappings. Let
us recall that given T : C→C, a sequence {xk} ⊂C is called an approximate fixed-
point sequence for T if ‖T (xk)− xk‖ → 0 as k→ ∞. We will also use extensively
the following notion of a generating set.

Definition 22.12. A set A⊂ J is called a generating set for the parameter semigroup
J if for every 0 < u ∈ J there exist m ∈ N, s ∈ A, t ∈ A such that u = ms+ t.

Lemma 22.13. Let C be a nonempty, bounded, closed, and convex subset of a
Banach space X. Let F ∈S (C). If ‖Ts(xn)− xn‖ → 0 for an s ∈ J as n→ ∞ then
for any m ∈ N, ‖Tms(xn)− xn‖→ 0 as n→ ∞

Proof. It follows from the fact that every at is a bounded function that there exists
a finite constant M > 0 such that

m−1

∑
j=1

sup{a js(x);x ∈C} ≤ M. (22.10)

It follows from
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‖Tms(xn)− xn‖ ≤
m−1

∑
j=1

‖T( j+1)s(xn)−Tjs(xn)‖+ ‖Ts(xn)− xn‖

≤ ‖Ts(xn)− xn‖
(m−1

∑
j=1

a js(xn)+ 1
)
≤ (M+ 1)‖Ts(xn)− xn‖ (22.11)

that

lim
n→∞‖Tms(xn)− xn‖= 0, (22.12)

which completes the proof. �
Lemma 22.14. Let C be a nonempty, bounded, closed, and convex subset of a
Banach space X. Let F ∈S (C). If {xk}⊂C is an approximate fixed-point sequence
for Ts ∈ F for any s ∈ A where A is a generating set for J then {xk} is an
approximate fixed-point sequence for Ts for any s ∈ J.

Proof. Let s, t ∈ A and m∈N. We need to show that ‖Tms+t(xn)−xn‖→ 0 as n→∞.
Indeed,

‖Tms+t(xn)− xn‖ ≤ ‖Tms+t(xn)−Tms(xn)‖+ ‖Tms(xn)− xn‖
≤ ams(xn)‖Tt(xn)− xn‖+ ‖Tms(xn)− xn‖,

which tends to zero by boundedness of the function ams and by Lemma 22.13. �
Lemma 22.15. Let F ∈S (C) be equicontinuous and B = A⊂ J. If {xk} ⊂C is an
approximate fixed-point sequence for Tt for every t ∈ B then {xk} is an approximate
fixed-point sequence for Ts for every s ∈ A.

Proof. Let s ∈ A, then there exists a sequence {sn} ⊂ B such that sn→ s. Note that

‖Ts(xk)− xk‖ ≤ ‖Ts(xk)−Tsn(xk)‖+ ‖Tsn(xk)− xk‖
≤ sup

x∈C
amin(s,sn)(x) sup

x∈C
‖T|s−sn|(x)− x‖+ ‖Tsn(xk)− xk‖. (22.13)

Fix ε > 0. By equicontinuity of F and by (22.6) there exists n0 ∈ N such that

sup
x∈C

amin(s,sn0 )
(x) sup

x∈C
‖T|s−sn0 |(x)− x‖< ε

2
. (22.14)

Since {xk} is an approximate fixed point for Tsn0
we can find k0 ∈ N such that for

every natural k ≥ k0

‖Tsn0
(xk)− xk‖< ε

2
. (22.15)

By substituting (22.14) and (22.15) into (22.13) we get ‖Ts(xk)− xk‖ < ε for large
k. Hence {xk} is an approximate fixed point for Ts as claimed. �
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22.4 The Demiclosedness Principle

The following version of the Demiclosedness Principle will be used in the proof of
our main convergence theorems. There exist several versions of the Demiclosedness
Principle for the case of asymptotic nonexpansive mappings; see, e.g., Li and Sims
[21], Gornicki [9], or Xu [37]. Recently, Kozlowski [18] proved a version of the
Demiclosedness Principle for the asymptotic pointwise nonexpansive mappings,
using the “parallelogram inequality” valid in the uniformly convex Banach spaces
(Theorem 2 in [36]). For the completeness sake, we provide the proof for asymptotic
pointwise nonexpansive semigroups.

Let us recall the definition of the Opial property which will play an essential role
in this paper.

Definition 22.16. [26] A Banach space X is said to have the Opial property if for
each sequence {xn} ⊂ X weakly converging to a point x ∈ X (denoted as xn ⇀ x)
and for any y ∈ X such that y �= x there holds

liminf
n→∞ ‖xn− x‖< liminf

n→∞ ‖xn− y‖, (22.16)

or equivalently

limsup
n→∞

‖xn− x‖< limsup
n→∞

‖xn− y‖. (22.17)

Theorem 22.17. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a nonempty, bounded, closed, and convex subset of X, and let
F ∈S (C). Assume that there exists w∈ X and {xn} ⊂C such that xn ⇀ w. Assume
that there exists an s ∈ J such that ‖Ts(xn)− xn‖ → 0 as n→ ∞. Then w ∈ F(Tks)
for any natural k.

Proof. Define a type ϕ(x) = limsup
n→∞

‖xn−x‖ for x ∈C. Let us fix m ∈N, m > 2 and

observe that

‖Tms(xn)− x‖ ≤
m

∑
i=1

‖Tis(xn)−T(i−1)s(xn)‖+ ‖xn− x‖

≤ ‖Ts(xn)− xn‖
( m

∑
i=2

a(i−1)s(xn)+ 1
)
+ ‖xn− x‖.

Since all functions ai are bounded and ‖Ts(xn)− xn‖→ 0, it follows that

limsup
n→∞

‖Tms(xn)− x‖ ≤ limsup
n→∞

‖xn− x‖= ϕ(x).

On the other hand, by Lemma 22.13, we have

ϕ(x)≤ limsup
n→∞

‖xn−Tms(xn)‖+ limsup
n→∞

‖Tms(xn)− x‖= limsup
n→∞

‖Tms(xn)− x‖.
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Hence,

ϕ(x) = limsup
n→∞

‖Tms(xn)− x‖. (22.18)

Because F is asymptotic pointwise nonexpansive, it follows that ϕ
(

Tms(x)
)
≤

ams(x)ϕ(x) for every x ∈C. Applying this to w and passing with m→ ∞, we obtain

lim
m→∞ϕ

(
Tms(w)

)
≤ ϕ(w). (22.19)

Since xn ⇀ w, by the Opial property of X , we have that for any x �= w

ϕ(w) = limsup
n→∞

‖xn−w‖< limsup
n→∞

‖xn− x‖= ϕ(x),

which implies that ϕ(w) = inf{ϕ(x) : x ∈C}. This together with (22.19) gives us

lim
m→∞ϕ

(
Tms(w)

)
= ϕ(w). (22.20)

By Proposition 3.4 in [17] (see also Theorem 2 in [36]) for each d > 0 there exists
a continuous function λ : [0,∞)→ [0,∞) such that λ (t) = 0⇔ t = 0, and

‖αx+(1−α)y‖2≤ α‖x‖2 +(1−α)‖y‖2−α(1−α)λ (‖x− y‖), (22.21)

for any α ∈ [0,1] and all x,y ∈ X such that ‖x‖ ≤ d and ‖y‖ ≤ d. Applying (22.21)
to x = xn−w, y = xn−Tms(w) and α = 1

2 we obtain the following inequality:

‖xn− 1
2
(w+Tms(w))‖2 ≤ 1

2
‖xn−w‖2 +

1
2
‖xn−Tms(w)‖2− 1

4
λ
(
‖Tms(w)−w‖

)
.

Applying to both side limsup
n→∞

and remembering that ϕ(w) = inf{ϕ(x) : x ∈ C}
we have

ϕ(w)2 ≤ 1
2
ϕ(w)2 +

1
2
ϕ
(

Tms(w)
)2− 1

4
λ
(
‖Tms(w)−w‖

)
,

which implies

λ
(
‖Tms(w)−w‖

)
≤ 2ϕ

(
Tms(w)

)2− 2ϕ(w)2.

Letting m→ ∞ and applying (22.20) we conclude that

lim
m→∞λ

(
‖Tms(w)−w‖

)
= 0.

By the properties of λ , we have Tms(w)→ w. Fix any natural number k. Observe
that, using the same argument, we conclude that T(m+k)s(w)→ w. Note that

Tks(Tms(w)) = T(m+k)s(w)→ w
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By the continuity of Tks,

Tks(Tms(w))→ Tks(w)

and finally Tks(w) = w as claimed. �

22.5 Weak Convergence of Generalized Krasnosel’skii-Mann
Iteration Processes

Let us start with the precise definition of the generalized Krasnosel’skii-Mann
iteration process for semigroups of nonlinear mappings.

Definition 22.18. Let F ∈ S (C ), {tk} ⊂ J and {ck} ⊂ (0,1). The generalized
Krasnosel’skii-Mann iteration process gKM(F ,{ck},{tk}) generated by the semi-
group F , the sequences {ck} and {tk}, is defined by the following iterative formula:

xk+1 = ckTtk (xk)+ (1− ck)xk, where x1 ∈C is chosen arbitrarily, (22.22)

and

1. {ck} is bounded away from 0 and 1
2. limk→∞ tk = ∞
3. ∑∞n=1 btn(x)< ∞ for every x ∈C

Definition 22.19. We say that a generalized Krasnosel’skii-Mann iteration process
gKM(F ,{ck},{tk}) is well defined if

limsup
k→∞

atk(xk) = 1. (22.23)

We will prove a series of lemmas necessary for the proof of the generalized
Krasnosel’skii-Mann process convergence theorems.

Lemma 22.20. Let C be a bounded, closed, and convex subset of a Banach space X.
Let F ∈S (C), w ∈ F(F ), and let {xk} be a sequence generated by a generalized
Krasnosel’skii-Mann process gKM(F ,{ck},{tk}). Then there exists an r ∈ R such
that lim

k→∞
‖xk−w‖= r.

Proof. Let w ∈ F(F ). Since

‖xk+1−w‖ ≤ ck‖Ttk (xk)−w‖+(1− ck)‖xk−w‖
= ck‖Ttk (xk)−Ttk(w)‖+(1− ck)‖xk−w‖
≤ ck(1+ btk(w))‖xk−w‖+(1− ck)‖xk−w‖
≤ ckbtk (w)‖xk−w‖+ ‖xk−w‖
≤ btk(w)diam(C)+ ‖xk−w‖,
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it follows that for every n ∈ N

‖xk+n−w‖ ≤ ‖xk−w‖+ diam(C)
k+n−1

∑
i=k

bti(w). (22.24)

Denote rp = ‖xp−w‖ for every p ∈ N and dk,n = diam(C)
k+n−1

∑
i=k

bti(w). Observe

that limsup
k→∞

limsup
n→∞

dk,n = 0. By Lemma 22.7 then, there exists an r ∈ R such that

lim
k→∞
‖xk−w‖= r. �

Lemma 22.21. Let C be a bounded, closed, and convex subset of a uniformly
convex Banach space X. Let F ∈ S (C). Let {xk} be a sequence generated by a
well-defined generalized Krasnosel’skii-Mann process gKM(F ,{ck},{tk}). Then

lim
k→∞
‖Ttk(xk)− xk‖= 0 (22.25)

and

lim
k→∞
‖xk+1− xk‖= 0. (22.26)

Proof. By Theorem 22.6, F(F ) �= /0. Let us fix w ∈ F(F ). By Lemma 22.20, there
exists an r ∈ R such that lim

k→∞
‖xk−w‖ = r. Because w ∈ F(F ), and the process is

well defined, then there holds

limsup
k→∞

‖Ttk(xk)−w‖= limsup
k→∞

‖Ttk (xk)−Ttk(w)‖

≤ limsup
k→∞

atk (xk)‖xk−w‖= r.

Observe that

lim
k→∞
‖ck(Ttk (xk)−w)+ (1− ck)(xk−w)‖= lim

k→∞
‖xk+1−w‖= r.

By Lemma 22.9 applied to uk = xk−w, vk = Ttk (xk)−w,

lim
k→∞
‖Ttk(xk)− xk‖= 0, (22.27)

which by the construction of the sequence {xk} is equivalent to

lim
k→∞
‖xk+1− xk‖= 0. (22.28)

�
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Let us prove an important technical result which demonstrates that under suitable
assumption the sequence {xk} generated by the generalized Krasnosel’skii-Mann
iteration process becomes an approximate fixed-point sequence, which will provide
a crucial step for proving the process convergence.

Lemma 22.22. Let C be a bounded, closed, and convex subset of a uniformly
convex Banach space X. Let F ∈S (C ). Let the generalized Krasnosel’skii-Mann
process gKM(F ,{ck},{tk}) be well defined. Let A ⊂ J be such that to every s ∈ A
there exists a strictly increasing sequence of natural numbers { jk} satisfying the
following conditions:

(a) ‖xk− x jk‖→ 0 as k→ ∞
(b) limk→∞ ‖Tdk(x jk )− x jk‖= 0, where dk = |t jk+1 − t jk − s|.
Then {xk} is an approximate fixed-point sequence for all mappings {Tms} where
s ∈ A and m ∈ N, that is,

lim
k→∞
‖Tms(xk)− xk‖= 0 (22.29)

for every s ∈ A and m ∈ N. If, in addition, A is a generating set for J, then

lim
k→∞
‖Tt(xk)− xk‖= 0 (22.30)

for any t ∈ J.

Proof. In view of Lemma 22.13, it is enough to prove (22.29) for m = 1. To this
end, let us fix s ∈ A. Note that

‖x jk − x jk+1‖→ 0 as k→ ∞. (22.31)

Indeed,

‖x jk − x jk+1‖ ≤ ‖x jk − xk‖+ ‖xk− xk+1‖+ ‖xk+1− x jk+1‖→ 0, (22.32)

in view of the above assumption (a) and of (22.26) in Lemma 22.21.
Observe that

‖x jk −Ts(x jk )‖→ 0 as k→ ∞. (22.33)

Indeed,

‖x jk −Ts(x jk )‖ ≤ ‖x jk − x jk+1‖+ ‖x jk+1−Tt jk+1
(x jk+1)‖

+‖Tt jk+1
(x jk+1)−Tt jk+1

(x jk)‖+ ‖Tt jk+1
(x jk )−Ts+t jk

(x jk )‖
+‖Ts+t jk

(x jk )−Ts(x jk )‖
≤ ‖x jk − x jk+1‖+ ‖x jk+1−Tt jk+1

(x jk+1)‖
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+ at jk+1
(x jk+1)‖x jk+1− x jk‖+ as+t jk

(x jk)‖Tdk(x jk )− x jk‖
+sup

x∈C
as(x)‖Tt jk

(x jk )− x jk‖,

which tends to the zero as k→∞ because of (22.31), Lemma 22.21, the fact that the
process is well defined, assumptions (b) and (22.7), and the boundedness of each
function as.

On the other hand,

‖xk−Ts(xk)‖ ≤ ‖xk− x jk‖+ ‖x jk−Tt jk
(x jk )‖+ ‖Tt jk

(x jk )−Ts+t jk
(x jk )‖

+‖Ts+t jk
(x jk)−Ts(x jk )‖+ ‖Ts(x jk )−Ts(xk)‖

≤ ‖xk− x jk‖+ ‖x jk−Tt jk
(x jk )‖+ at jk

(x jk )‖x jk −Ts(x jk )‖
+ as(x jk )‖Tt jk

(x jk)− x jk‖+ as(xk)‖x jk − xk‖

which tends to the zero as k → ∞ because of assumption (a), Lemma 22.21, the
fact that the process is well defined, and the fact that the semigroup is asymptotic
pointwise nonexpansive. If A is a generating set for J then by Lemma 22.14, {xk}
is an approximate fixed point sequence for any Ts. This completes the proof of the
Lemma. �

We will prove next a generic version of the weak convergence theorem for the
sequences {xk} which are generated by the Krasnosel’skii-Mann iteration process
and are at the same time approximate fixed-point sequences.

Theorem 22.23. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed, and convex subset of a X. Let F ∈ S (C).
Assume that gKM(F ,{ck},{tk}) is a well-defined Krasnosel’skii-Mann iteration
process. If the sequence {xk} generated by gKM(F ,{ck},{tk}) is an approximate
fixed-point sequence for every s∈ A⊂ J where A is a generating set for J, then {xk}
converges weakly to a common fixed point w ∈ F(F ).

Proof. Consider y,z ∈C, two weak cluster points of the sequence {xk}. Then there
exist two subsequences {yk} and {zk} of {xk} such that yk ⇀ y and zk ⇀ z. Fix any
s ∈ A. Since {xk} is an approximate fixed-point sequence for s it follows that

lim
k→∞
‖Ts(xk)− xk‖= 0. (22.34)

It follows from the Demiclosedness Principle (Theorem 22.17) that Ts(y) = y and
Ts(z) = z. By Lemma 22.20 the following limits exist:

r1 = lim
k→∞
‖xk− y‖, r2 = lim

k→∞
‖xk− z‖. (22.35)
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We claim that y= z. Indeed, assume to the contrary that y �= z. By the Opial property,
we have

r1 = liminf
k→∞

‖yk− y‖ < liminf
k→∞

‖yk− z‖= r2

= liminf
k→∞

‖zk− z‖ < liminf
k→∞

‖zk− y‖= r1. (22.36)

The contradiction implies y = z which means that the sequence {xk} has at most
one weak cluster point. Since C is weakly sequentially compact, we deduce that the
sequence {xk} has exactly one weak cluster point w ∈C, which means that xk ⇀ w.
Applying the Demiclosedness Principle again, we get Ts(w) = w. Since s ∈ A was
chosen arbitrarily and the construction of w did not depend on the selection of s, and
A is a generating set for J, we conclude that Tt(w) = w for any t ∈ J, as claimed. �

Let us apply the above result to some more specific situations. Let us start with a
discrete case. First, we need to recall the following notions.

Definition 22.24. A strictly increasing sequence {ni} ⊂ N is called quasi-periodic
if the sequence {ni+1− ni} is bounded, or equivalently if there exists a number
p ∈ N such that any block of p consecutive natural numbers must contain a term
of the sequence {ni}. The smallest of such numbers p will be called a quasi-period
of {ni}.
Theorem 22.25. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed and convex subset of a X. Let F ∈ S (C)
be a semigroup with a discrete generating set A = {α1,α2,α3 . . .}. Assume that
gKM(F ,{ck},{tk}) is a well defined Krasnosel’skii-Mann iteration process. As-
sume that for every m∈N, there exists a strictly increasing, quasi-periodic sequence
of natural numbers { jk(m)}, with a quasi-period pm, such that for every k ∈ N,
t jk+1(m) = αm + t jk(m). Then the sequence {xk} generated by gKM(F ,{ck},{tk})
converges weakly to a common fixed point w ∈ F(F ).

Proof. We will apply Lemma 22.22. Note that the assumption (b) of Lemma 22.22
is trivially satisfied since t jk+1(m)− t jk(m)−αm = 0. To prove (a), observe that by the
quasi-periodicity of { jk(m)}, to every positive integer k, there exists jk(m) such that
|k− jk(m)| ≤ pm. Assume that k− pm ≤ jk(m) ≤ k (the proof for the other case is

identical). Fix ε > 0. Note that by Lemma 22.21, ‖xk+1−xk‖< ε
pm

for k sufficiently

large. Hence for k sufficiently large there holds

‖xk− x jk‖ ≤ ‖xk− xk−1‖+ . . .+ ‖x jk(m)+1− x jk(m)‖ ≤ pm
ε

pm
= ε. (22.37)

This proves that (a) is also satisfied. Therefore, by Lemma 22.22, {xk} is an
approximate fixed-point sequence for every Ts where s ∈J . By Theorem 22.23,
{xk} converges weakly to a common fixed point w ∈ F(F ). �
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Remark 22.26. Note that Theorem 4.1 in [18] is actually a special case of
Theorem 22.25 with A = {1}.
Remark 22.27. It is easy to see that we can always construct a sequence {tk} with
the properties specified in the assumptions of Theorem 22.25. When constructing
concrete implementations of this algorithm, the difficulty will be to ensure that the
constructed sequence {tk} is not “too sparse” in the sense that the Krasnosel’skii-
Mann process gKM(F ,{ck},{tk}) remains well defined (see Definition 22.19).

The following theorem is an immediate consequence of Theorem 22.23 and
Lemmas 22.14, 22.22, and 22.15.

Theorem 22.28. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed, and convex subset of X. Let F ∈ S (C)
be equicontinuous and B ⊂ B = A ⊂ J where A is a generating set for J.
Let {xk} be generated by a well-defined Krasnosel’skii-Mann iteration process
gKM(F ,{ck},{tk}). If to every s ∈ B there exists a strictly increasing sequence
of natural numbers { jk} satisfying the following conditions:

(a) t jk+1 − t jk → s as k→ ∞
(b) ‖xk− x jk‖→ 0 as k→ ∞

then the sequence {xk} converges weakly to a common fixed point w ∈ F(F ).

Remark 22.29. Observe that the set B in Theorem 22.28 can be made countable.
Hence by Remark 22.27 a sequence {tk} satisfying assumptions of Theorem 22.28
can be always constructed. Again, the main difficulty is in ensuring that the
corresponding process gKM(F ,{ck},{tk}) is well defined.

22.6 Weak Convergence of Generalized Ishikawa
Iteration Processes

The two-step Ishikawa iteration process is a generalization of the one-step Krasno-
sel’skii-Mann process. The Ishikawa iteration process provides more flexibility
in defining the algorithm parameters which is important from the numerical
implementation perspective.

Definition 22.30. Let F ∈S (C ), {tk} ⊂ J. Let {ck} ⊂ (0,1), and {dk} ⊂ (0,1).
The generalized Ishikawa iteration process generated by the semigroup F , the
sequences {ck}, {dk}, and {tk}, is defined by the following iterative formula:

xk+1 = ckTtk(dkTtk(xk)+ (1− dk)xk)+ (1− ck)xk, (22.38)
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where x1 ∈C is chosen arbitrarily, and

1. {ck} is bounded away from 0 and 1, and {dk} is bounded away from 1
2. limk→∞ tk = ∞
3. ∑∞n=1 btn(x)< ∞ for every x ∈C

Definition 22.31. We say that a generalized Ishikawa iteration process gI(F ,{ck},
{dk},{tk}) is well defined if

limsup
k→∞

atk(xk) = 1. (22.39)

Lemma 22.32. Let C be a bounded, closed, and convex subset of a Banach space
X. Let F ∈ S (C), w ∈ F(F ), and let gI(F ,{ck},{dk},{tk}) be a generalized
Ishikawa process. Then there exists an r ∈ R such that lim

k→∞
‖xk−w‖= r.

Proof. Define Gk : C→C by

Gk(x) = ckTtk

(
dkTtk (x)+ (1− dk)x

)
+(1− ck)x, x ∈C. (22.40)

It is easy to see that xk+1 = Gk(xk) and that F(F ) ⊂ F(Gk) for every k ≥ 1.
Moreover, a straight calculation shows that each Gk satisfies

‖Gk(x)−Gk(y)‖ ≤ Ak(x)‖x− y‖, (22.41)

where

Ak(x) = 1+ ckatk

(
dkTtk (x)+ (1− dk)x

)
(1+ dkatk(x)− dk)− ck. (22.42)

Note that Ak(x) ≥ 1 which follows directly from the fact that atk (z) ≥ 1 for any
z ∈C. Using (22.42) and remembering that w ∈ F(F ) we have

Bk(w) = Ak(w)− 1 = ck(1+ dkatk(w))(atk (w)− 1)≤ (1+ atk(w))btk (w). (22.43)

Fix any M > 1. Since lim
k→∞

atk(w) = 1, it follows that there exists a k0 ≥ 1 such

that for k > k0, atk(w) ≤M. Therefore, using the same argument as in the proof of
Lemma 22.20, we deduce that for k > k0 and n > 1

‖xk+n−w‖ ≤ ‖xk−w‖+ diam(C)
k+n−1

∑
i=k

Bti(w)

≤ ‖xk−w‖+ diam(C)(1+M)
k+n−1

∑
i=k

bti(w). (22.44)

Arguing like in the proof of Lemma 22.20, we conclude that there exists an r ∈ R

such that lim
k→∞
‖xk−w‖= r. �



22 Semigroups of Nonlinear Mappings 479

Lemma 22.33. Let C be a bounded, closed, and convex subset of a uniformly
convex Banach space X. Let F ∈ S (C). Let gI(F ,{ck},{dk},{tk}) be a well-
defined generalized Ishikawa iteration process. Then

lim
k→∞
‖Ttk(xk)− xk‖= 0 (22.45)

and

lim
k→∞
‖xk+1− xk‖= 0. (22.46)

Proof. By Theorem 22.6, F(F ) �= /0. Let us fix w ∈ F(F ). By Lemma 22.32, the
limit lim

k→∞
‖xk−w‖ exists. Let us denote it by r. Let us define

yk = dkTtk (xk)+ (1− dk)xk. (22.47)

Since w ∈ F(F ), F ∈S (C), and lim
k→∞
‖xk−w‖= r, we have the following:

limsup
k→∞

‖Ttk(yk)−w‖ = limsup
k→∞

‖Ttk(yk)−Ttk(w)‖

≤ limsup
k→∞

atk(w)‖yk−w‖

= limsup
k→∞

atk(w)‖dkTtk(xk)+ (1− dk)xk−w‖

≤ limsup
k→∞

(
dkatk(w)‖Ttk (xk)−w‖+(1− dk)atk (w)‖xk−w‖

)

≤ lim
k→∞

(
dka2

tk(w)‖xk−w‖+(1− dk)atk (w)‖xk−w‖
)
≤ r.

(22.48)

Note that

lim
k→∞
‖dk(Ttk (yk)−w)+ (1− dk)(xk−w)‖

= lim
k→∞
‖dkTtk (yk)+ (1− dk)xk−w‖= lim

k→∞
‖xk+1−w‖= r. (22.49)

Applying Lemma 22.9 with uk = Ttk (yk)−w and vk = xk−w, we obtain the equality
lim
k→∞
‖Ttk(yk)− xk‖= 0. This fact, combined with the construction formulas for xk+1

and yk, proves (22.46).
Since

‖Ttk(xk)− xk‖ ≤ ‖Ttk (xk)−Ttk(yk)‖+ ‖Ttk(yk)− xk‖
≤ atk (xk)‖xk− yk‖+ ‖Ttk(yk)− xk‖
= dkatk (xk)‖Ttk (xk)− xk‖+ ‖Ttk(yk)− xk‖, (22.50)
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it follows that

‖Ttk(xk)− xk‖ ≤ (1− dkatk(xk))
−1‖Ttk(yk)− xk‖. (22.51)

The right-hand side of this inequality tends to zero because ‖Ttk (yk)− xk‖ → 0,
limsup

k→∞
atk (xk) = 1 by the fact that the Ishikawa process is well defined, and {dk} ⊂

(0,1) is bounded away from 1. �
We need the following technical result being the Ishikawa version of

Lemma 22.22.

Lemma 22.34. Let C be a bounded, closed, and convex subset of a uniformly
convex Banach space X. Let F ∈ S (C ). Let the generalized Ishikawa process
gI(F ,{ck},{dk},{tk}) be well defined. Let A⊂ J be such that to every s ∈ A there
exists a strictly increasing sequence of natural numbers { jk} satisfying the following
conditions:

(a) ‖xk− x jk‖→ 0 as k→ ∞
(b) limk→∞ ‖Tek(x jk )− x jk‖= 0, where ek = |t jk+1 − t jk − s|
Then {xk} is an approximate fixed-point sequence for all mappings {Tms} where
s ∈ A and m ∈ N, that is,

lim
k→∞
‖Tms(xk)− xk‖= 0 (22.52)

for every s ∈ A and m ∈ N. If, in addition, A is a generating set for J then

lim
k→∞
‖Tt(xk)− xk‖= 0 (22.53)

for any t ∈ J.

Proof. The proof is analogous to that of Lemma 22.22 with Lemma 22.20 replaced
by Lemma 22.32 and Lemma 22.21 replaced by Lemma 22.33. �

We are now ready to provide the weak convergence results for the Ishikawa
iteration processes.

Theorem 22.35. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed, and convex subset of a X. Let F ∈ S (C).
Assume that gI(F ,{ck},{dk},{tk}) is a well-defined Ishikawa iteration process.
If the sequence {xk} generated by gI(F ,{ck},{dk},{tk}) is an approximate fixed-
point sequence for every s ∈ A ⊂ J where A is a generating set for J, then {xk}
converges weakly to a common fixed point w ∈ F(F ).

Proof. The proof is analogous to that of Theorem 22.23 with Lemma 22.22 replaced
by Lemma 22.34 and Lemma 22.20 replaced by Lemma 22.32. �



22 Semigroups of Nonlinear Mappings 481

Similarly, it is easy to modify the proof of Theorems 22.25 and 22.28 to obtain the
next two results.

Theorem 22.36. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed, and convex subset of a X. Let F ∈ S (C)
be a semigroup with a discrete generating set A = {α1,α2,α3 . . .}. Assume that
gI(F ,{ck},{dk},{tk}) is a well-defined Ishikawa iteration process. Assume that for
every m ∈ N there exists a strictly increasing, quasi-periodic sequence of natural
numbers { jk(m)}, with a quasi-period pm, such that for every k ∈ N, t jk+1(m) =
αm + t jk(m). Then the sequence {xk} generated by gI(F ,{ck},{dk},{tk}) converges
weakly to a common fixed point w ∈ F(F ).

Theorem 22.37. Let X be a uniformly convex Banach space X with the Opial
property. Let C be a bounded, closed, and convex subset of X. Let F ∈ S (C) be
equicontinuous and B ⊂ B = A ⊂ J where A is a generating set for J. Let {xk} be
generated by a well-defined Ishikawa iteration process gI(F ,{ck},{dk},{tk}). If
to every s ∈ B there exists a strictly increasing sequence of natural numbers { jk}
satisfying the following conditions:

(a) t jk+1 − t jk → s as k→ ∞
(b) ‖xk− x jk‖→ 0 as k→ ∞

then the sequence {xk} converges weakly to a common fixed point w ∈ F(F ).

22.7 Strong Convergence of Generalized
Krasnosel’Skii-Mann and Ishikawa Iteration Processes

Lemma 22.38. Let C be a compact subset of a Banach space X. Let F ∈ S (C)
and {sn} ⊂ J. If sn→ 0 as n→ ∞ then F is equicontinuous, that is,

lim
n→∞ sup

x∈C
‖Tsn(x)− x‖= 0. (22.54)

Proof. Assume to the contrary that (22.54) does not hold. Then there exist {wk}
a subsequence of {sn}, a sequence {yk} ⊂ C and η > 0 such that for every k ∈ N

there holds

‖Twk(yk)− yk‖> η > 0. (22.55)

Using compactness of C and passing to a subsequence of {yk} if necessary we can
assume that there exists w ∈C such that ‖yk−w‖→ 0 as k→ ∞.
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0 < η ≤ limsup
k→∞

‖Twk(yk)− yk‖

≤ limsup
k→∞

(‖Twk(yk)−Twk(w)‖+ ‖Twk(w)−w‖+ ‖w− yk‖)

≤ limsup
k→∞

(awk(w)‖yk−w‖+ ‖Twk(w)−w‖+ ‖w− yk‖) = 0 (22.56)

since limsupk→∞ awk(w)≤ 1 and t �→ Tt(w) is continuous, a contradiction. �
Theorem 22.39. Let C be a compact, convex subset of a uniformly convex Banach
space X. Let F ∈ S (C) and B ⊂ B = A ⊂ J where A is a generating set for
J. Let {xk} be generated by a well-defined Krasnosel’skii-Mann iteration process
gKM(F ,{ck},{tk}) (resp. generalized Ishikawa process gI(F ,{ck},{dk},{tk})).
If to every s ∈ B there exists a strictly increasing sequence of natural numbers { jk}
satisfying the following conditions:

(a) t jk+1 − t jk → s as k→ ∞
(b) ‖xk− x jk‖→ 0 as k→ ∞

then the sequence {xk} converges strongly to a common fixed point x ∈ F(F ).

Proof. We apply Lemma 22.22 (resp. Lemma 22.34) for the parameter set B. Note
that condition (a) of Lemma 22.22 (resp. Lemma 22.34) is assumed. By Lemma
22.38 the semigroup F is equicontinuous and hence the assumption (b) of
Lemma 22.22 (resp. Lemma 22.34) is satisfied. By Lemma 22.22 (resp. Lemma
22.34) then {xk} is an approximate fixed-point sequence for any Tt where t ∈ B.
By Lemma 22.15 {xk} is an approximate fixed-point sequence for any Tt where
t ∈ A. Since A is a generating set for J, it follows that {xk} is an approximate
fixed-point sequence for any Tt where t ∈ J (again, by Lemma 22.22 or respectively
Lemma 22.34 for the Ishikawa case). Hence for every t ∈ J

‖Tt(xk)− xk‖→ 0 as k→ ∞. (22.57)

Since C is compact there exist a subsequence {xpk} of {xk} and x ∈C such that

‖Tt(xpk)− x‖→ 0 as k→ ∞. (22.58)

Observe that

‖xpk− x‖ ≤ ‖xpk −Tt(xpk)‖+ ‖Tt(xpk)− x‖, (22.59)

which tends to zero as k→ ∞ by (22.57) and (22.58). Hence

lim
k→∞
‖xpk − x‖= 0. (22.60)

Finally
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‖Tt(x)− x‖ ≤ ‖Tt(x)−Tt(xpk)‖+ ‖Tt(xpk)− xpk‖+ ‖xpk− x‖
≤ at(x)‖xpk − x‖+ ‖Tt(xpk)− xpk‖+ ‖xpk− x‖, (22.61)

which tends to zero as k→ ∞ by boundedness of the function at , by (22.60) and
(22.57). Therefore, Tt(x) = x for every t ∈ J, that is, x is a common fixed point for
the semigroup F . By Lemma 22.20 (resp. Lemma 22.32), limk→∞ ‖xk− x‖ exists
which, via (22.60), implies that

lim
k→∞
‖xk− x‖= 0 (22.62)

completing the proof of the theorem. �
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23.1 Introduction

Many important results and theories in convex optimization rely on convex analysis
concepts like the conjugate function, the inf-convolution, the Moreau envelope,
and the proximal mapping. Computational convex analysis (CCA) studies the
computation of these transforms. Numerous applications of CCA are listed in [33].
Computer-aided convex analysis, where visualization of examples is essential, gives
particular motivation to CCA for functions of one or two variables.

Algorithms to compute the conjugate, Moreau envelope, addition, and scalar
multiplication of convex functions, when implemented, form a toolbox to manip-
ulate convex functions [18, 19, 32]. New transforms, like the proximal average
[2–5, 25], can be studied by composing these four transforms applied to convex
functions. The toolbox can be extended to the composition of these four trans-
forms applied to nonconvex functions with the addition of the convex envelope
transform [17].

Computing a transform in CCA involves solving an optimization problem for
each value of a parameter. It is a parametric optimization problem. To achieve
acceptable computation times, CCA avoids the curse of dimensionality (storing
graphs requires a number of points that increase exponentially with the dimension)
by considering mostly functions of one (univariate) or two (bivariate) variables and
rarely functions of more than two (multivariate) variables.

In such a low-dimensional framework, efficient algorithms are obtained by using
combinations of ideas from computational geometry and convex analysis. The first
suggestion of such an algorithm can be found in [35, Remark 5c, p. 282] where the
author suggests to use the nonexpansiveness of the proximal operator to compute
the Moreau envelope efficiently. The resulting nonexpansive prox (NEP) algorithm
was studied much later in [32]. Other authors noted that convexity can be used to
obtain more efficient algorithms to compute the conjugate, giving birth to the fast
Legendre transform (FLT) algorithm [9, 36] that was studied in [13, 28]. Their log-
linear worst-case time complexity was subsequently improved to linear time in [30]
with the linear-time Legendre transform (LLT) algorithm.

The LLT algorithm linear-time complexity has been matched by the NEP
algorithm [32] and the parabolic Moreau envelope (PE) algorithm [14, 16, 32].
All these algorithms belong to a family of algorithms named fast algorithms that
approximate the input function with a piecewise linear model (linear spline). While
the addition, scalar multiplication, and conjugate of a piecewise linear function are
still piecewise linear, it is no longer the case for the Moreau envelope of even
the simplest functions, e.g., the absolute value. Consequently, composing several
transforms increases approximation errors and requires much technical skill to
deduce the graph of the resulting operator. The proximal average operator is a prime
example of such difficulties. Two new families of algorithms were introduced to
solve that issue.
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The piecewise linear-quadratic (PLQ) algorithms manipulate PLQ function
(a univariate PLQ function is a quadratic spline). By allowing quadratic pieces,
the class of PLQ functions is closed under all core convex operators, including the
Moreau envelope. One can then compute proximal averages of PLQ functions as
easily as proximal averages of piecewise linear functions. Moreover, a linear-time
algorithm to compute the convex envelope of a PLQ function is available [17], which
extends the PLQ toolbox to nonconvex functions.

A faster family of algorithms [19] for convex PLQ functions is based on
Goebel’s graph-matrix calculus [20]. Instead of storing the coefficients of quadratic
polynomials, graph-matrix (GPH) algorithms store the (piecewise linear) graph of
the subdifferential along with the value of the function at a finite set of points.
Functions such as the conjugate are then computed as a matrix multiplication.
Most of the GPH algorithms give rise to embarrassingly parallel algorithms.
(An embarrassingly parallel algorithm can be split effortlessly into separate tasks
that can be run concurrently.)

After introducing notations and definitions in Sect. 23.2, the present paper
summarizes the techniques used to obtain efficient algorithms in CCA in Sect. 23.3.
We list open questions in Sect. 23.4.

23.2 Preliminaries

We follow standard notations in convex analysis as found in [40] and [23].
We write the standard inner product either as 〈x,y〉, or in vector notation as xT y.
The associated Euclidean norm is noted ‖ · ‖. The identity operator is noted I.

We make the distinction between functions, operators, and transforms as follow.
We call f a function if f : Rd → R{−∞,+∞} is always single valued ( f may take
the value−∞ or +∞). An operator P :Rd ⇒R

d is an application from R
d to the sets

of Rd , i.e., P(x) is a subset of Rd . (Operators are also called multi-valued functions
or set-valued functions in the literature.) A transform Γ : X → X is defined on the
set of functions and takes images in the set of functions, i.e., Γ ( f ) is a function.
(Transforms are sometimes called functionals in the literature.)

As is standard in convex analysis, we say a function f is proper if for all x ∈
R

d , f (x) > −∞ and there exists x ∈ R
d with f (x) < +∞. An important class of

functions in convex analysis is the class of proper lower semicontinuous (lsc) convex
functions.

We recall the main transforms and operators in convex analysis. The subdifferen-
tial operator ∂ f : Rd ⇒ R

d of a function f : Rd →R{−∞,+∞} is defined as

∂ f (x) = {s ∈R
d | f (y) ≥ f (x)+ 〈s,y− x〉,∀y ∈R

d}.
(When the function f is differentiable at x with gradient ∇ f (x), we have ∂ f (x) ⊆
{∇ f (x)} with equality when in addition the function is convex.)
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The Legendre-Fenchel transform associates a function f with its conjugate
function f ∗ defined as

f ∗(s) = sup
x∈Rd

[〈s,x〉− f (x)] .

The Moreau-Yosida approximate transform associates to a function f its Moreau
envelope

f λ (x) = inf
y∈Rd

[
f (y)+

‖x− y‖2

2λ

]
.

The proximal mapping operator is the set of points where the Moreau envelope
attains its minimum

Pλ (x) = Argmin
y∈Rd

[
f (y)+

‖x− y‖2

2λ

]
,

where Pλ (x) = /0 if f λ (x) is not finite.
The inf-convolution transform takes two functions f1 and f2 and associates a new

function

f1⊕ f2(x) = inf
y∈Rd

[ f1(y)+ f2(x− y)] .

The proximal average transform associates to two functions f0, f1 and two numbers
λ0, λ1 the proximal average function P( f0, f1;λ0,λ1) defined as a composition of
Legendre-Fenchel transforms, additions, and scalar multiplications by

P( f0, f1;λ0,λ1) =

(
λ0

(
f0 +
‖ · ‖2

2

)∗
+λ1

(
f1 +
‖ · ‖2

2

)∗)∗
− ‖ · ‖

2

2
. (23.1)

The convex envelope transform associates to a function f its convex envelope

co f (x) = inf

{
d+1

∑
i=1
λi f (xi)|

d+1

∑
i=1
λixi = x,λi ≥ 0,

d+1

∑
i=1
λi = 1

}

which is the greatest convex function majorized by f (a function g is majorized by
a function h if g(x)≤ h(x) for all x).

We say that an operator P is monotone if for all x1, x2, and all s1 ∈ P(x1), s2 ∈
P(x2), we have 〈s1− s2,x1− x2〉 ≥ 0. Subdifferentials of proper lsc convex functions
are monotone operators.
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23.3 Techniques

In this section, we list several techniques that, when applicable, allow one to write
an efficient algorithm. The goal is to provide researchers with a starting point to
compute new transforms. Unless otherwise specified, we restrict our attention to
univariate functions.

23.3.1 Symbolic Computation

If we assume the supremum is attained, computing the conjugate amounts to finding
its critical points x defined by

s ∈ ∂ f (x). (23.2)

When the function f is convex and differentiable everywhere, relation (23.2)
becomes

s = ∇ f (x), (23.3)

an equation that may be solved symbolically by inverting the gradient. The Maple
SCAT package [7] is based on that idea. It can even handle multivariate functions
by repeatedly applying the partial conjugate and is very useful to check manual
computation.

The main drawback of solving (23.3) is there is no guarantee that a closed form
formula exists. Moreover, a closed form formula that requires pages to write is of
limited use.

23.3.2 Monotonicity of the Argmax/Argmin

Convexity brings monotonicity which can be used to build faster algorithms.
The FLT algorithm was the first to exploit that idea in CCA. It was noted that for a
univariate function f we have

s �→Argmax[sx− f (x)]

is a monotone operator for convex univariate functions f . Consequently, the
computation of

s j �→max
i
[s jxi− f (xi)]
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can be reduced from a quadratic brute-force algorithm to a log-linear algorithm
similar to the fast Fourier transform (FFT) [9, 13, 28, 36]. The technique applies to
any transform that has a monotone argmax (or argmin).

A similar monotonicity property was used in the LLT algorithm to reduce the
computation to merging two sorted sequences [30]. The key was to introduce
convexity explicitly by first computing the convex envelope of the function. Then
computing the conjugate amounts to finding the point where the line with slope s j

touches the epigraph of f . Since both s j, j = 1, . . . ,m and the slopes of the convex
envelope of the epigraph are nondecreasing sequences, we only need to merge the
two sequences and extract where they intersect to obtain the conjugate in linear time.

The conjugate of multivariate functions can be computed in linear time by
applying the partial conjugate repeatedly using the fact the dot product is a separable
function.

23.3.3 Lipschitzness of the Argmin

The NEP algorithm exploits the nonexpansiveness of the proximal mapping to com-
pute the Moreau envelope of a convex function f : R �→ R∪{+∞}. By considering
a grid of points, computing the minimum is reduced to only one if statement, i.e.,
for each point xi on the grid,

f λ (xi) = min

[
f (x j)+

‖xi− x j‖2

2λ
, f (x j+1)+

‖xi− x j+1‖2

2λ

]
,

where x j = Pλ (xi) is a point in the grid and x j+1 = Succ(x j) = Succ(Pλ (xi)).
Consequently, if the argmin (or argmax) of an operator is Lipschitz (not

necessarily with constant 1), we obtain a linear-time algorithm.
Since the squared norm is a separable function, we obtain a linear-time algorithm

for multivariate functions by repeatedly applying the algorithm to each dimension.
(Computing the Moreau envelope of a function of d variables requires d application
of the algorithm.)

23.3.4 Using a Formula

Operators that can be reduced to the composition of core operators immediately ben-
efit from efficient algorithms. For example, the Moreau envelope of a (multivariate)
convex function f can be computed by [31], [40, Example 11.26c]

f λ (y) =
‖y‖2

2λ
− 1
λ

(
λ f +

1
2
‖ · ‖2

)�

(y). (23.4)
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Conversely, the conjugate can be computed using

f �(s) =
‖s‖2

2
−λ
(

1
λ

f − ‖ · ‖
2

2λ

)λ
(s).

Similarly, the availability of an efficient algorithm to compute the conjugate, the
addition, and the scalar multiplication transforms allow one to compute the proximal
average of two convex lsc proper functions efficiently using Formula (23.1) and to
compute the inf-convolution of two convex lsc proper functions f1 and f2 using
the fact

f1⊕ f2 = ( f ∗1 + f ∗2 )
∗.

Other convex analysis formulas can be used as the basis for a fast algorithm. For
example, the formula [2, Theorem 6.7]

Pμ(P( f0, f1;λ0,λ1)) = λ0Pμ f0 +λ1Pμ f1

could be used to build a fast algorithm to compute the Moreau envelope of the
proximal average.

23.3.5 Graph-Matrix Calculus

Considering the availability of matrix-based mathematical software like MATLAB
and Scilab, which have optimized linear algebra subroutines, it is greatly advanta-
geous to write an algorithm as a matrix multiplication for both ease of reading and
performance. It turns out that computing core convex transforms amounts to a linear
transformation of the subgradient and can be reduced to a matrix multiplication or
vector operations.

First, we need to detail the data structure used in CCA algorithms. Instead of
storing a PLQ univariate function f : R→R∪{+∞} defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1x2 + b1x+ c1 if x≤ x1,
...

...

anx2 + bnx+ cn if xn−1 ≤ x≤ xn,

an+1x2 + bn+1x+ cn+1 if x > xn,

as a matrix (called the PLQ matrix)

⎡
⎢⎢⎢⎣

x1 a1 b1 c1
...

...
...

...
xn an bn cn

+∞ an+1 bn+1 cn+1

⎤
⎥⎥⎥⎦,
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where ai,bi ∈R and ci ∈ R∪{+∞}, the GPH toolbox stores f in GPH matrix form⎡
⎣ξ1, · · · ,ξm

s1, · · · ,sm

y1, · · · ,ym

⎤
⎦,

where ξ j,s j,y j ∈R, s j ∈ ∂ f (ξ j) and y j = f (ξ j). The PLQ matrix is easily converted
into a GPH matrix using the formulas

ξ j = x� j+1
2 �

, j = 1, . . . ,2n,

s2i−1 = 2aixi + bi, i = 1, . . . ,n,

s2i = 2ai+1xi + bi+1, i = 1, . . . ,n,

f2i = f2i−1 = aix
2
i + bixi + ci, i = 1, . . . ,n.

(The values for i = 1 and i = n+ 1 are special cases; see [19].)
From the formulas representing a convex function f as s ∈ ∂ f (x) and y = f (x),

we get the representation of f ∗ as x ∈ ∂ f ∗(s) and y∗ = sx− f (x) resulting in the
following MATLAB/Scilab coded algorithm:(

x∗

s∗

)
=

(
s
x

)
=

[
0 1
1 0

](
x
s

)
,

y∗ = s.∗ x− y,

where .∗ represents the element-wise multiplication operator.
Similarly, the Moreau envelope is computed from the GPH matrix [x;s;y] as the

GPH matrix [ξ ;σ ;m] with(
ξ
σ

)
=

(
x+λ s

s

)
=

[
1 λ
0 1

](
x
s

)

m = f +
λ
2

s.̂2,

where .̂ denotes the element-wise power operator.
Such vector formulas have three advantages: they provide a compact algorithm

easily coded in MATLAB/Scilab, they immediately benefit from optimized matrix
operations, and the resulting algorithm is embarrassingly parallel.

23.3.6 Parametrization

The parametric Legendre transform (PLT) algorithm [24] uses an explicit descrip-
tion of the graph of the conjugate to achieve its optimal linear-time complexity.
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Indeed, the graph of f ∗ can be split in pieces where each piece is either linear and
corresponds to a kink on the graph of f or is the inverse of the gradient of f . It can
be parameterized by x as

s ∈ ∂ f (x),

f ∗(s) = sx− f (x).

Since we want to compute the full graph when f is PLQ, the previous formula gives
the PLT algorithm: for x in each piece, compute s and deduce f ∗(s).

The parametrization idea was also used in [19] to obtain a faster algorithm to
compute the proximal average of two proper lsc convex univariate functions. Given
f1 (resp. f2) as a GPH matrix G1 = [x1;s1;y1] (resp. G2 = [x2;s2;y2]) and λ1 = 1−λ ,
λ2 = λ with λ ∈ [0,1], define the operator

P = (I + ∂ f2)
−1(I+ ∂ f1),

where I is the identity. The operator P can be explicitly computed in GPH matrix
form from G1 and G2. Then we compute

x = λ1x1 +λ2Px1,

s = x1 + s1− s,

yPx1 = f2(Px1)

to deduce the GPH matrix [x;s;y] of the proximal average, where

y = λ1(y1 +
1
2

x1 .̂2)+λ2(yPx1 +
1
2
(Px1).̂2− 1

2
x.̂2.

23.3.7 Parallel Computing

Using p processors, computing the maximum of n values on a CREW PRAM
computer takes

O

(
n
p
+ log p

)

time by splitting the values into p chunks of size n
p assigned to each processor and

applying a max reduction operation (see, e.g., [39] for a presentation of computer
models). When p≥ n+1 we can improve the resulting O(log p) complexity to O(1)
on a common CRCW PRAM computer by taking ε > 0 such that n1+ε < n+ 1 and
applying [41]. The O(1) running time applies when using the formula

f ∗(s j) = max
i

s jxi− f (xi),

for a univariate function f and does not use any convexity assumption. However, it
is restricted to piecewise linear functions.
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If convexity is assumed, consider the input as a GPH matrix G = [x;s;y]; then the
conjugate has GPH matrix [s;x;s.∗x−y] and can be computed directly in O(1) time
on an EREW PRAM computer when p ≥ m, where m is the number of columns
of G. This strategy is much more efficient than using [41]: we do not even need to
write an explicit parallel algorithm if we use a parallel linear algebra library.

When convexity is not assumed, computing the convex envelope is not easily
parallelizable and one has to use Wang’s technique [41] to achieve O(1) worst-case
running time to compute the conjugate. Note that optimal algorithms to compute
the convex envelope, including output sensitive algorithms, are known in various
computational models [6, 11, 21, 22, 34], but none achieve an O(1) running time.

Since bivariate PLQ functions do not have a grid structure, no straightforward
extension from the univariate case is available.

Remark 23.1. The complexity results give an insight into the difficulty of
computing the conjugate in parallel. Considering that most computers have less
than 8 processors today and that computing the maximum of 108 values using a
serial program on a 2.4 GHz dual core computer in C takes 0.3 s, the sequential
algorithm is expected to be used for many more years on the CPU. However, if
massive conjugate computations are required, using a GPU with tens of thousands
of threads may give more speedup.

23.4 Open Questions

We now list several open problems in computational convex analysis.

23.4.1 Nonconvex Inf-Convolution

Computing the inf-convolution of univariate PLQ convex functions can be done in
linear time using

f1⊕ f2 = ( f ∗1 + f ∗2 )
∗.

However, the nonconvex case is more challenging even for univariate functions.
We first consider the case when one function is convex and the other nonconvex.

We first define some notations. For two univariate PLQ functions f and g, we note

ϕx(y) = f (x− y)+ g(y),

H(x) = Argmin
y

ϕx(y),

h(x) = supH(x).
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For example, when f ≡ 0 and g ≡ 1, we have f ⊕ g ≡ 1, H ≡ R, and h ≡ +∞.
Note that in this case H is not monotone, which is why the sup is needed in the
definition of h.

When f = I[−8,2] (the indicator function of the set [−8,2], which is equal to 0
on that set and +∞ outside) and g = I[0,1], we find dom f ⊕ g = [−8,3]. When x �∈
dom f ⊕ g, f ⊕ g(x) = +∞, H(x) = /0, and h(x) = −∞. Otherwise, x ∈ dom f ⊕ g,
f ⊕ g(x) = 0, H(x) = [x− 2,x+ 8], and h(x) = max(x+ 8,1). This example shows
that h is not monotone on R.

Another example to keep in mind is f ≡ 0 and g(x) = −x2. Then f ⊕ g ≡ −∞,
H(x)≡ /0, h≡−∞, and dom f ⊕ g = /0. In this case, f ⊕ g is not proper.

Remark 23.2. It is straightforward to check whether f ⊕ g is proper for univariate
PLQ functions f and g. One has only to check the coefficients of the quadratic
functions on the unbounded intervals and ensure that the function ϕx(y) does not
converge to −∞ when y goes to either −∞ or +∞.

We are now ready to state our main result for the convex-nonconvex case.

Lemma 23.3. Assume f and g are two univariate PLQ functions. In addition,
assume f is convex. Then for all x1, x2 ∈ dom f ⊕ g, x1 < x2⇒ h(x1)≤ h(x2).

Proof. The proof is sketched in [13, p. 1549–1550] under different assumptions that
ensure that h is always finite. We use the same core argument for PLQ functions and
handle the infinite case.

The lemma is vacuously true if dom f ⊕ g is empty or if it is a singleton (these
cases are straightforward to handle numerically). We assume this is not the case and
take x1, x2 ∈ dom f ⊕ g with x1 < x2.

First, we assume that h(x1) is finite. Take z < h(x1). Then

x1− h(x1)< x2− h(x1)< x2− z

and

x1− h(x1)< x1− z < x2− z.

Since f is convex, its slopes are nondecreasing as illustrated in Fig. 23.1.
In other words,

f (x1− z)− f (x1− h(x1))

h(x1)− z
≤ f (x2− z)− f (x2− h(x1))

h(x1)− z

so

f (x1− z)+ f (x2− h(x1))≤ f (x1− h(x1))+ f (x2− z).

But by definition of h we have

g(h(x1))+ f (x1− h(x1))≤ g(z)+ f (x1− z)
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x1 − h(x1)
x2 −h(x1)

x1 − x2 −

f(x1−h(x1))

(x2−h(x1))

(x1−h(x1))

(x2−h(x1))

f

f(x1 − )

f(x2 − )

x1 −h(x1) x2 −h(x1)
x1 −

x2 −

f

f

f(x1 − )
f(x2 − )

a b

Fig. 23.1 Univariate convex functions have nondecreasing slopes. (a) Case x1 − h(x1) ≤ x2 −
h(x1)≤ x1− z≤ x2− z. (b) Case x1−h(x1)≤ x1− z≤ x2−h(x1)≤ x2− z

so we deduce

g(h(x1))+ f (x2−h(x1)) = g(h(x1))+ f (x1−h(x1))− f (x1−h(x1))+ f (x2−h(x1)),

≤ g(z)+ f (x1−z)+ f (x2−h(x1))− f (x1−h(x1)),

≤ g(z)+ f (x1−h(x1))+ f (x2−z)− f (x1− h(x1)),

= g(z)+ f (x2−z).

Since the inequality is true for all z < h(x1), we deduce h(x2)≥ h(x1).
Now consider the case h(x1) = +∞. Then there exists a sequence hk

1 converging
to +∞ with hk

1 ∈ H(x1). Take z < hk
1 and apply the previous argument to get

f ⊕ g(x2)≤ g(hk
1)+ f (x1− hk

1)≤ g(z)+ f (x2− z).

Since x2 ∈ dom f ⊕ g and f and g are PLQ functions, we deduce that for k large
enough infz<hk

1
[g(z)+ f (x2− z)] = f ⊕g(x2). Hence, hk

1 ∈H(x2) which implies that

h(x2) = +∞.
The only remaining case is h(x1) =−∞. We show that case cannot happen when

x1 ∈ dom f ⊕g. Under our assumption we can always find x and y with ϕx(y) finite.
By definition of the inf, there is a sequence yk with ϕx(yk)→ f ⊕ g(x). Extracting
subsequences if necessary, we have yk converges to ȳ either a finite or an infinite
value. If the limit is finite, since f and g are continuous, we deduce ϕx(ȳ) = f ⊕g(x)
so ȳ ∈ H(x1) and h(x1) > −∞. Otherwise |ȳ| = ∞. Assume for simplicity ȳ = +∞.
Since ϕx is PLQ, there is a nonempty unbounded interval [x̄,+∞) on which the
function ϕx is quadratic. But the only way a quadratic function has a finite limit at
infinity is when it is a constant function. In that case, H(x1) is nonempty and the
proof is complete. �



23 Techniques and Open Questions in Computational Convex Analysis 497

Using the above lemma, a log-linear-time algorithm can be built (see Sect.
23.3.2). When none of the functions are convex, the problem is related to the
all-pairs shortest-path problem [8] and a nontrivial subquadratic algorithm exists.

The nonconvex case raises the following open questions:

• Does a linear-time algorithm exist for the convex-nonconvex case?
• Does a log-linear algorithm exist for the nonconvex-nonconvex case?

23.4.2 Testing for Convexity

Given a set of points in R
3 that corresponds to the sampling of a function, we

can test whether there is a convex function interpolating the sample by checking
a quadratic number of inequalities, i.e., by checking that all points are above any
plane going through three neighboring points. A faster convexity test consists in
computing the convex envelope and checking that all points are vertices of the graph
of the convex envelope. Computing the convex envelope of a set of points in space
can be performed in log-linear time [10] so convexity can be checked in log-linear
time.

The following question is still open:

• Can we identify the log-linear number of inequalities that are required to check
convexity?

A positive answer would give a faster algorithm to compute the closest convex
function to a given nonconvex PLQ function. The resulting mathematical pro-
gramming problem has been studied in [26, 27] in which several applications are
listed. A different approach that approximates the convex envelope was proposed
in [37, 38].

23.4.3 Bivariate Functions

Extending the CCA library [29] to bivariate functions is a work in progress [18].
The computation of the conjugate can be performed in log-linear time in the worst
case and in linear time in the average-case. Moreover, a worst-case linear time
algorithm exists when one restricts the desired precision for example for plotting
purposes.

While the scalar multiplication of a bivariate PLQ function takes trivially linear
time, the addition does not. In fact, adding two convex PLQ bivariate functions is
known as the map overlay problem in computation geometry and has a quadratic
output size in the worst case. The result can be refined using output sensitive
algorithms [1, 12], and a linear-time algorithm can be achieved when one has some
control on the domain of the functions to be added [15].
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The Moreau envelope is directly deduced from the conjugate using Formula 23.4.
Consequently, we obtain a toolbox to manipulate convex PLQ bivariate func-

tions. However, the class of convex PLQ bivariate function is not closed under
the max operator. For univariate PLQ functions f1 and f2, the function max( f1, f2)
(resp. min( f1, f2)) is a univariate PLQ function and can be computed in linear time
using a straightforward algorithm. This is no longer true for bivariate PLQ functions.
Consider f1(x) = 1 and f2(x) = ‖x‖2. Then max( f1, f2) is not a PLQ function since
its domain cannot be decomposed into the union of a finite number of polygons on
which the function is quadratic.

The following questions are open:

• Is there a class of bivariate functions that is closed for the addition, scalar
multiplication, conjugation, Moreau envelope, and maximum operators that still
allows for linear-time algorithms? The question is open even in the convex case.

• Is there a worst-case linear-time algorithm to compute the conjugate of convex
PLQ bivariate functions that does not need any precision assumption?
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24.1 Introduction

The study of nonexpansive operators in Banach spaces has been an important
topic in nonlinear functional analysis and optimization theory for almost 50 years
now [3, 19–21]. There are several significant classes of nonexpansive operators
which enjoy remarkable properties not shared by all such operators. We refer, for
example, to firmly nonexpansive operators [11, 12]. These operators are of utmost
importance in fixed-point, monotone mapping, and convex optimization theories
in view of Minty’s theorem regarding the correspondence between firmly nonex-
pansive operators and maximally monotone mappings [3, 19, 21, 27]. The largest
class of nonexpansive operators comprises the quasi-nonexpansive operators. These
operators still enjoy relevant fixed-point properties although nonexpansivity is only
required about each fixed point [18].

In this paper we are concerned with certain analogous classes of operators which
are, in some sense, nonexpansive not with respect to the norm, but with respect to
Bregman distances [2,9,14,17]. Since these distances are not symmetric in general,
it seems natural to distinguish between left and right Bregman nonexpansive
operators. Some left classes, so to speak, have already been studied and applied
quite intensively [1, 4–6, 24, 31]. We have recently introduced and studied several
classes of right Bregman nonexpansive operators in reflexive Banach spaces [22,23].
In these two papers we focused on the properties of their fixed-point sets. Our main
aim in the present paper is to study the existence and approximation of fixed points
of these operators.

Our paper is organized as follows In Sect. 24.2 we discuss several pertinent
facts of convex analysis and Bregman operator theory. In Sect. 24.3 we present
necessary and sufficient conditions for right quasi-Bregman nonexpansive operators
to have (asymptotic) fixed points in general reflexive Banach spaces. Section 24.4
is devoted to a study of a Browder-type implicit algorithm [10] for computing fixed
points of right Bregman firmly nonexpansive operators. Finally, in Sect. 24.5, we
use the implicit method proposed in Sect. 24.4 to approximate zeroes of monotone
mappings.

24.2 Preliminaries

All the results in this paper are set in a real reflexive Banach space X . The norms
of X and X∗, its dual space, are denoted by ‖·‖ and ‖·‖∗, respectively. The pairing
〈ξ ,x〉 is defined by the action of ξ ∈ X∗ at x ∈ X , that is, 〈ξ ,x〉 := ξ (x). The set
of all real numbers is denoted by R and R = (−∞,+∞] is the extended real line,
while N stands for the set of nonnegative integers. The closure of a subset K of X
is denoted by K. The (effective) domain of a convex function f : X → R is defined
to be
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dom f := {x ∈ X : f (x)<+∞} .

When dom f �= /0 we say that f is proper. The Fenchel conjugate function of f is the
convex function f ∗ : X∗ → R defined by

f ∗ (ξ ) = sup{〈ξ ,x〉− f (x) : x ∈ X} .
It is not difficult to check that when f is proper and lower semicontinuous, so is f ∗.
The function f is called cofinite if dom f ∗ = X∗.

In this section we present the basic notions and facts that are needed in the sequel.
We divide this section into two parts in the following way. The first one (Sect. 24.2.1)
is devoted to admissible functions, while the second (Sect. 24.2.2) concern, certain
types of Bregman nonexpansive operators.

24.2.1 Admissible Functions

Let x ∈ intdom f , that is, let x belong to the interior of the domain of the convex
function f : X → R. For any y ∈ X , we define the right-hand derivative of f at the
point x by

f ◦(x,y) := lim
t→0+

f (x+ ty)− f (x)
t

. (24.1)

If the limit as t → 0 in (24.1) exists for each y, then the function f is said to be
Gâteaux differentiable at x. In this case, the gradient of f at x is the linear function
∇ f (x), which is defined by 〈∇ f (x) ,y〉 := f ◦ (x,y) for all y ∈ X [25, Definition 1.3,
p. 3]. The function f is called Gâteaux differentiable if it is Gâteaux differentiable
at each x ∈ intdom f . When the limit as t→ 0 in (24.1) is attained uniformly for any
y ∈ X with ‖y‖= 1, we say that f is Fréchet differentiable at x.

The function f is called Legendre if it satisfies the following two conditions:

(L1) intdom f �= /0 and the subdifferential ∂ f is single-valued on its domain.
(L2) intdom f ∗ �= /0 and ∂ f ∗ is single-valued on its domain.

The class of Legendre functions in infinite dimensional Banach spaces was first in-
troduced and studied by Bauschke, Borwein, and Combettes in [4]. Their definition
is equivalent to conditions (L1) and (L2) because the space X is assumed to be
reflexive (see [4, Theorems 5.4 and 5.6, p. 634]). It is well known that in reflexive
spaces, ∇ f = (∇ f ∗)−1 (see [7, p. 83]). When this fact is combined with conditions
(L1) and (L2), we obtain

ran∇ f = dom∇ f ∗ = intdom f ∗ and ran∇ f ∗ = dom∇ f = intdom f .

It also follows that f is Legendre if and only if f ∗ is Legendre (see [4, Corollary
5.5, p. 634]) and that the functions f and f ∗ are Gâteaux differentiable and strictly
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convex in the interior of their respective domains. When the Banach space X is
smooth and strictly convex, in particular, a Hilbert space, the function (1/p)‖·‖p

with p ∈ (1,∞) is Legendre (cf. [4, Lemma 6.2, p. 639]). For examples and more
information regarding Legendre functions, see, for instance, [1, 4].

Throughout this paper, f : X → R is always an admissible function, that is, a
proper, lower semicontinuous, convex, and Gâteaux differentiable function. Under
these conditions we know that f is continuous in intdom f (see [4, Fact 2.3, p. 619]).

The bifunction D f : dom f × intdom f → [0,+∞), which is defined by

D f (y,x) := f (y)− f (x)−〈∇ f (x) ,y− x〉 , (24.2)

is called the Bregman distance (cf. [9, 16]).
The Bregman distance does not satisfy the well-known properties of a metric, but

it does enjoy the following two important properties:

• The three-point identity: for any x ∈ dom f and y,z ∈ intdom f , we have

D f (x,y)+D f (y,z)−D f (x,z) = 〈∇ f (z)−∇ f (y) ,x− y〉 . (24.3)

• The four-point identity: for any y,w ∈ dom f and x,z ∈ intdom f , we have

D f (y,x)−D f (y,z)−D f (w,x)+D f (w,z) = 〈∇ f (z)−∇ f (x) ,y−w〉 . (24.4)

According to [14, Sect. 1.2, p. 17] (see also [13]), the modulus of total convexity of
f is the bifunction υ f : intdom f × [0,+∞)→ [0,+∞], which is defined by

υ f (x, t) := inf
{

D f (y,x) : y ∈ dom f , ‖y− x‖= t
}
.

The function f is called totally convex at a point x ∈ intdom f if υ f (x, t) > 0
whenever t > 0. The function f is called totally convex when it is totally convex
at every point x ∈ intdom f . This property is less stringent than uniform convexity
(see [14, Sect. 2.3, p. 92]).

Examples of totally convex functions can be found, for instance, in [8, 14, 15].
We remark in passing that f is totally convex on bounded subsets if and only if f is
uniformly convex on bounded subsets (see [15, Theorem 2.10, p. 9]).

24.2.2 Right Bregman Operators

Let f : X → R be admissible and let K be a nonempty subset of X . The fixed-point
set of an operator T : K → X is the set {x ∈ K : T x = x}. It is denoted by Fix(T ).
Recall that a point u ∈ K is said to be an asymptotic fixed point [28] of T if there
exists a sequence {xn}n∈N in K such that xn ⇀ u (i.e., {xn}n∈N is weakly convergent
to u) and ‖xn−Txn‖ → 0 as n→ ∞. We denote the asymptotic fixed-point set of T
by F̂ix(T ).
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We first list significant types of nonexpansivity with respect to the Bregman
distance.

Definition 24.1 (Right Bregman nonexpansivity). Let K and S be nonempty
subsets of dom f and intdom f , respectively. An operator T : K→ intdom f is said
to be:

(i*) Right Bregman firmly nonexpansive (R-BFNE) if

〈∇ f (T x)−∇ f (Ty) ,T x−Ty〉 ≤ 〈∇ f (Tx)−∇ f (Ty) ,x− y〉 (24.5)

for all x,y ∈ K or, equivalently,

D f (T x,Ty)+D f (Ty,T x)+D f (x,T x)+D f (y,Ty)

≤ D f (x,Ty)+D f (y,T x) . (24.6)

(ii*) Right quasi-Bregman firmly nonexpansive (R-QBFNE) with respect to S if

0≤ 〈∇ f (p)−∇ f (T x) ,T x− x〉 (24.7)

for all x ∈ K and p ∈ S or, equivalently,

D f (T x, p)+D f (x,T x)≤ D f (x, p) . (24.8)

(iii*) Right quasi-Bregman nonexpansive (R-QBNE) with respect to S if

D f (T x, p)≤ D f (x, p) , ∀x ∈ K, p ∈ S. (24.9)

(iv*) Right Bregman strongly nonexpansive (R-BSNE) with respect to S, if it is R-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S, and

lim
n→∞
(
D f (xn, p)−D f (T xn, p)

)
= 0, (24.10)

it follows that

lim
n→∞D f (xn,T xn) = 0. (24.11)

For the sake of completeness we also give here the definitions of left Bregman
nonexpansivity.

Definition 24.2 (Left Bregman nonexpansivity). Let K and S be nonempty sub-
sets of intdom f and dom f , respectively. An operator T : K → intdom f is said
to be:

(i) Left Bregman firmly nonexpansive (L-BFNE) if

〈∇ f (T x)−∇ f (Ty) ,T x−Ty〉 ≤ 〈∇ f (x)−∇ f (y) ,T x−Ty〉 (24.12)
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Table 24.1 Connections among types of right Bregman nonexpansivity

Strictly R-QBFNE ⇒ Strictly R-BSNE ⇒ Strictly R-QBNE
⇓ ⇓ ⇓

R-BFNE ⇒ Properly R-QBFNE ⇒ Properly R-BSNE ⇒ Properly R-QBNE

for any x,y ∈ K or, equivalently,

D f (Tx,Ty)+D f (Ty,Tx)+D f (T x,x)+D f (Ty,y)

≤ D f (T x,y)+D f (Ty,x) . (24.13)

(ii) Left quasi-Bregman firmly nonexpansive (L-QBFNE) with respect to S if

0≤ 〈∇ f (x)−∇ f (Tx) ,T x− p〉 (24.14)

for any x ∈ K and p ∈ S, or equivalently,

D f (p,Tx)+D f (T x,x)≤ D f (p,x) . (24.15)

(iii) Left quasi-Bregman nonexpansive (L-QBNE) with respect to S if

D f (p,T x)≤ D f (p,x) ∀x ∈ K, p ∈ S. (24.16)

(iv) Left Bregman strongly nonexpansive (L-BSNE) with respect to S if it is L-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S, and

lim
n→∞
(
D f (p,xn)−D f (p,T xn)

)
= 0, (24.17)

it follows that

lim
n→∞D f (T xn,xn) = 0. (24.18)

Remark 24.3 (Types of Bregman nonexpansivity with respect to S). As in [24], we
distinguish between two types of Bregman nonexpansivity, depending on the set S,
in such a way that if S = Fix(T ) we say that T is properly Bregman nonexpansive,
whereas if S = F̂ix(T ) we say that T is strictly Bregman nonexpansive, according to
the different notions of Bregman nonexpansivity. The connections among all these
classes of right Bregman nonexpansive operators are presented in Table 24.1.

The following result [22] is essential for the proof of our approximation result in
Sect. 24.4. It shows that the operator I− T has a certain demiclosedness property.
Before formulating this result, we recall that a mapping B : X → X∗ is said to be
weakly sequentially continuous if the weak convergence of {xn}n∈N⊂ X to x implies
the weak∗ convergence of {Bxn}n∈N to Bx.

Proposition 24.4 (Asymptotic fixed-point set of R-BFNE operators). Let f :
X → R be Legendre and uniformly continuous on bounded subsets of X, and let
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∇ f be weakly sequentially continuous. Let K be a nonempty subset of dom f and let
T : K→ intdom f be an R-BFNE operator. Then Fix(T ) = F̂ix(T ).

In [22] we studied properties of several classes of right Bregman nonexpansive
operators from the point of view of their fixed-point sets. A useful tool for such
a study is the following operator.

Definition 24.5 (Conjugate operator). Let f : X→R be Legendre and let T : K ⊂
intdom f → intdom f be an operator. We define the conjugate operator associated
with T by

T ∗f := ∇ f ◦T ◦∇ f ∗ : ∇ f (K)→ intdom f ∗.

When there is no danger of confusion we use the notation T ∗ for T ∗f . We also denote(
T ∗f
)∗

f ∗
by T ∗∗. It is very natural to ask what the connections between left and right

classes of Bregman nonexpansivity are. This question can be answered by using the
following [22, Proposition 2.7].

Proposition 24.6 (Properties of the conjugate operator). Let f : X → R be
Legendre and let T : K ⊂ intdom f → intdom f be an operator. Then the following
properties hold:

(i) domT ∗ = ∇ f (domT ) and ranT ∗ = ∇ f (ranT ).
(ii) T is R-BFNE if and only if T ∗ is L-BFNE.

(iii) Fix(T ) = ∇ f ∗ (Fix(T ∗)).
(iv) T is R-QBFNE (R-QBNE or R-BSNE) if and only if T ∗ is L-QBFNE (L-QBNE

or L-BSNE).
(v) T ∗∗ = T.

(vi) If, in addition, ∇ f and ∇ f ∗ are uniformly continuous on bounded subsets of
intdom f and intdom f ∗, respectively, then

F̂ix(T ∗) = ∇ f
(

F̂ix(T )
)
.

This connection between left and right Bregman nonexpansive operators allows
us to get properties of right Bregman nonexpansive operators from their left
counterparts (cf. [22]). The following result is an example of this.

Proposition 24.7 (∇ f (Fix(T )) of an R-QBNE operator is closed and convex).
Let f : X → R be a Legendre function and let K be a nonempty subset of intdom f
such that ∇ f (K) is closed and convex. If T : K→ intdom f is an R-QBNE operator,
then ∇ f (Fix(T )) is closed and convex.

Proof. Since T is R-QBNE, the conjugate operator T ∗ is L-QBNE with respect to
f ∗ [see Proposition 24.6(iv)]. Moreover, f ∗ is Legendre, and the domain of T ∗ is
∇ f (K), which is closed and convex by assumption. Applying [31, Lemma 15.5,
p. 307] and Proposition 24.6(iii), we get that Fix(T ∗) = ∇ f (Fix(T )) is closed and
convex, as asserted. �
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The right Bregman projection cf. [6, 22]) with respect to f of x ∈ intdom f onto a
nonempty, closed, and convex set K ⊂ intdom f is defined by

−−→
proj f

K (x) := argmin
y∈K

{
D f (x,y)

}
=
{

z ∈ K : D f (x,z)≤ D f (x,y) ∀y ∈ K
}
. (24.19)

It is not clear a priori that the right Bregman projection is well defined because Df

is not convex in its second variable. However, Bauschke et al. (cf. [6, Proposition
7.1, p. 9]) proved that

−−→
proj f

K = ∇ f ∗ ◦←−−proj f ∗
∇ f (K) ◦∇ f , (24.20)

where
←−−
proj f

K stands for the left Bregman projection onto K with respect to f (see
[14,15] for more information). As a consequence, one is able to prove that the right
Bregman projection with respect to functions with admissible and totally convex
conjugates has a variational characterization (cf. [22, Proposition 4.10]) as long as
∇ f (K) is closed and convex.

Proposition 24.8 (Characterization of the right Bregman projection). Let f :
X → R be a function such that f ∗ is admissible and totally convex. Let x ∈ X and
let K be a subset in intdom f such that ∇ f (K) is closed and convex. If x̂ ∈ K, then
the following conditions are equivalent:

(i) The vector x̂ is the right Bregman projection of x onto K with respect to f .
(ii) The vector x̂ is the unique solution of the variational inequality

〈∇ f (z)−∇ f (y) ,z− x〉 ≥ 0 ∀y ∈ K.

(iii) The vector x̂ is the unique solution of the inequality

D f (z,y)+D f (x,z)≤ D f (x,y) ∀y ∈ K.

Given two subsets K ⊂C ⊂ X , an operator R : C→ K is said to be a retraction of
C onto K if Rx = x for each x ∈ K. A retraction R : C→ K is said to be sunny (see
[21, 26]) if

R(Rx+ t (x−Rx)) = Rx

for each x ∈C and any t ≥ 0, whenever Rx+ t (x−Rx) ∈C.
Under certain conditions on f , it turns out that the right Bregman projection is

the unique sunny R-QBNE retraction of X onto its range (cf. [22, Corollary 4.6]).

Proposition 24.9 (Properties of the right Bregman projection). Let f : X → R

be a Legendre, cofinite, and totally convex function, and assume that f ∗ is totally
convex. Let K be a nonempty subset of X.

(i) If ∇ f (K) is closed and convex, then the right Bregman projection,
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−−→
proj f

K = ∇ f ∗ ◦←−−proj f ∗
∇ f (K)

◦∇ f ,

is the unique sunny R-QBNE retraction of X onto K.
(ii) If K is a sunny R-QBNE retract of X, then ∇ f (K) is closed and convex, and−−→

proj f
K is the unique sunny R-QBNE retraction of X onto K.

The previous result yields the fact that the fixed-point set of any R-QBNE operator
is a sunny R-QBNE retract of X and the corresponding retraction is uniquely defined
by the right Bregman projection onto the fixed-point set (cf. [22, Corollary 4.7]).

Proposition 24.10 (Fix(T ) is a sunny R-QBNE retract). Let f : X → R be
Legendre, cofinite, and totally convex, with a totally convex conjugate f ∗. If T :
X→ X is an R-QBNE operator, then there exists a unique sunny R-QBNE retraction
of X onto Fix(T ), and this is the right Bregman projection onto Fix(T ).

24.3 Existence of Fixed Points

In this section we obtain necessary and sufficient conditions for R-QBNE operators
to have (asymptotic) fixed points in general reflexive Banach spaces. We begin
with a necessary condition for a strictly R-QBNE operator to have an asymptotic
fixed point.

Proposition 24.11 (Necessary condition for F̂ix(T ) to be nonempty). Let f :
X → R be an admissible and totally convex function. Let T : K ⊂ intdom f → K
be an operator. The following assertions hold:

(i) If T is strictly R-QBNE and F̂ix(T ) is nonempty or
(ii) If T is properly R-QBNE and Fix(T ) is nonempty,

then {T nx}n∈N is bounded for each x ∈ K.

Proof.

(i) We know from (24.9) that

D f (T x, p)≤ D f (x, p)

for any p ∈ F̂ix(T ) and x ∈ K. Therefore

D f (T
nx, p)≤ D f

(
T n−1x, p

)≤ ·· · ≤ D f (x, p)

for any p ∈ F̂ix(T ) and x ∈ K. This inequality shows that the nonnegative
sequence

{
D f (T nx, p)

}
n∈N is bounded. Now the boundedness of the sequence

{T nx}n∈N follows from [30, Lemma 3.1, p. 31].

(ii) This result is a consequence of the arguments in assertion (i) when p ∈ F̂ix(T )
is replaced with p ∈ Fix(T ). �
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A left variant of Proposition 24.11(ii) has already been proved in [31, Theorem
15.7, p. 307]. Note that this left variant result can be rewritten as follows, where the
conditions on f , T , and K are somewhat different.

Proposition 24.12 (Necessary condition for Fix(T ) to be nonempty (left
variant)). Let f : X→R be an admissible function and assume that∇ f ∗ is bounded
on bounded subsets of intdom f ∗. Let T : K ⊂ intdom f →K be a properly L-QBNE
operator. If Fix(T ) is nonempty, then {T nx}n∈N is bounded for each x ∈ K.

Using this result and the properties of the conjugate operator, we can now obtain a
variant of Proposition 24.11(ii) under different assumptions on f .

Proposition 24.13 (Necessary condition for Fix(T ) to be nonempty (second
version)). Let f : X → R be a function such that f ∗ is admissible, and assume
that ∇ f and ∇ f ∗ are bounded on bounded subsets of intdom f and intdom f ∗,
respectively. Let T : K ⊂ intdom f → K be a properly R-QBNE operator. If Fix(T )
is nonempty, then {T nx}n∈N is bounded for each x ∈ K.

Proof. Since T is a properly R-QBNE operator with Fix(T ) �= /0, it follows from
Proposition 24.6(iii) and (iv) that

T ∗ := ∇ f ◦T ◦∇ f ∗ : ∇ f (K)→ ∇ f (K) (24.21)

is a properly L-QBNE operator with respect to f ∗ with Fix(T ∗) = ∇ f (Fix(T )) �=
/0. Since the assumptions of Proposition 24.12 hold, the sequence {(T ∗)n ξ}n∈N is
bounded for each ξ ∈ ∇ f (K).

Next we note that

(T ∗)n = T ∗ ◦ · · · ◦T ∗ = ∇ f ◦Tn ◦∇ f ∗ = (T n)∗ . (24.22)

Therefore
{
(T n)∗ ξ

}
n∈N is bounded for each ξ ∈ ∇ f (K), which means that the

sequence {∇ f (T nx)}n∈N is bounded for each x ∈ K. Now the desired result follows
because ∇ f ∗ is bounded on bounded subsets of intdom f ∗. �

Given an operator T : K ⊂ intdom f → K, we let

S f
n (z) := (1/n)

n

∑
k=1

∇ f
(

T kz
)
, z ∈ K. (24.23)

Using these f -averages, we now present a sufficient condition for R-BFNE operators
to have a fixed point. We start by proving this result directly.

Proposition 24.14 (Sufficient condition for Fix(T ) to be nonempty). Let f : X→
R be an admissible function. Let K be a nonempty subset of intdom f such that
∇ f (K) is closed and convex, and let T : K → K be an R-BFNE operator. If there

exists x ∈ K such that
∥∥∥S f

n (x)
∥∥∥� ∞ as n→ ∞, then Fix(T ) is nonempty.

Proof. Assume there exists x ∈ K such that
∥∥∥S f

n (x)
∥∥∥� ∞ as n→ ∞. Let y ∈ K,

k ∈N, and n ∈ N be given. Since T is R-BFNE, we have [see (24.6)]
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D f

(
T k+1x,Ty

)
+D f

(
Ty,T k+1x

)
≤ D f

(
y,T k+1x

)
+D f

(
T kx,Ty

)
, (24.24)

where T 0 = I, the identity operator. From the three-point identity [see (24.3)] and
(24.24) we get

D f

(
T k+1x,Ty

)
+D f

(
Ty,T k+1x

)
≤ D f

(
T kx,Ty

)
+D f

(
Ty,T k+1x

)
+D f (y,Ty)

+
〈
∇ f
(

T k+1x
)
−∇ f (Ty) ,Ty− y

〉
.

This implies that

0≤ D f (y,Ty)+D f

(
T kx,Ty

)
−D f

(
T k+1x,Ty

)
+
〈
∇ f
(

T k+1x
)
−∇ f (Ty) ,Ty− y

〉
.

Summing up these inequalities with respect to k = 0,1, . . . ,n− 1, we now obtain

0≤ nD f (y,Ty)+D f (x,Ty)−D f (T
nx,Ty)

+

〈
n−1

∑
k=0

∇ f
(

T k+1x
)
− n∇ f (Ty) ,Ty− y

〉
.

Dividing this inequality by n, we get

0≤ D f (y,Ty)+
1
n

[
D f (x,Ty)−D f (T

nx,Ty)
]

+

〈
1
n

n−1

∑
k=0

∇ f
(

T k+1x
)
−∇ f (Ty) ,Ty− y

〉

and hence

0≤ D f (y,Ty)+
1
n

D f (x,Ty)+
〈
S f

n (x)−∇ f (Ty) ,Ty− y
〉
. (24.25)

Since
∥∥∥S f

n (x)
∥∥∥ � ∞ as n → ∞ by assumption, we know that there exists a

subsequence
{

S f
nk (x)

}
k∈N

of
{

S f
n (x)

}
n∈N

such that S f
nk (x) ⇀ ξ ∈ X∗ as k→ ∞.

Substituting nk for n in (24.25) and letting k→ ∞ , we obtain

0≤D f (y,Ty)+ 〈ξ −∇ f (Ty) ,Ty− y〉 . (24.26)

Since∇ f (K) is closed and convex, we know that ξ ∈∇ f (K). Therefore there exists
p ∈ K such that ∇ f (p) = ξ and from (24.26) we obtain
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0≤ D f (y,Ty)+ 〈∇ f (p)−∇ f (Ty) ,Ty− y〉 . (24.27)

Setting y = p in (24.27), we get from the four-point identity [see (24.4)] that

0≤ D f (p,T p)+ 〈∇ f (p)−∇ f (T p) ,T p− p〉
= D f (p,T p)+D f (p, p)−D f (p,T p)−D f (T p, p)+D f (T p,T p)

=−D f (T p, p) .

Hence D f (T p, p) ≤ 0 and so D f (T p, p) = 0. It now follows from [4, Lemma
7.3(vi), p. 642] that T p = p. That is, p ∈ Fix(T ). �
At this point we recall the left variant of this result [31, Theorem 15.8, p. 310], where

Sn (z) := (1/n)
n

∑
k=1

T kz, z ∈ K. (24.28)

Proposition 24.15 (Sufficient condition for Fix(T ) to be nonempty (left
variant)). Let f : X → R be an admissible function. Let K be a nonempty, closed,
and convex subset of intdom f , and let T : K→ K be an L-BFNE operator. If there
exists x ∈ K such that ‖Sn (x)‖� ∞ as n→ ∞, then Fix(T ) is nonempty.

Using this result, we obtain a second version of Proposition 24.14 under different
assumptions on the function f .

Proposition 24.16 (Sufficient condition for Fix(T ) to be nonempty (second
version)). Let f : X → R be a function such that f ∗ is admissible. Let K be
a nonempty subset of intdom f such that ∇ f (K) is closed and convex, and let

T : K → K be an R-BFNE operator. If there exists x ∈ K such that
∥∥∥S f

n (x)
∥∥∥� ∞

as n→ ∞, then Fix(T ) is nonempty.

Proof. Since T is an R-BFNE operator, we obtain from Proposition 24.6(ii) that T ∗
is an L-BFNE operator. In addition, from (24.22), we get the following connection
between the f -average operator S f

n [see (24.23)] and the operator Sn (defined by
(24.28) for the operator T ) with respect to the conjugate operator T ∗, which here we
denote by ST∗

n . Given x ∈ K and ξ := ∇ f (x) ∈∇ f (K),

S f
n (x) =

1
n

n

∑
k=1

∇ f
(

T kx
)
=

1
n

n

∑
k=1

∇ f
(

T k (∇ f ∗ (ξ ))
)

=
1
n

n

∑
k=1

(∇ f ◦T ◦∇ f ∗ (ξ ))k =
1
n

n

∑
k=1

(T ∗ (ξ ))k := ST∗
n (ξ ) .

Hence the assumption that there exists x ∈ K such that
∥∥∥S f

n (x)
∥∥∥� ∞ as n→ ∞ is

equivalent to the assumption that there exists ξ ∈ ∇ f (K) such that
∥∥ST ∗

n (ξ )
∥∥� ∞

as n → ∞. Now we apply Proposition 24.15 to f ∗ and T ∗ on ∇ f (K), which
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is assumed to be closed and convex, and get that Fix(T ∗) is nonempty. From
Proposition 24.6(iii) we obtain that Fix(T ) is nonempty too. �

From Propositions 24.14 and 24.16 we deduce the following result which says
that every nonempty set K such that ∇ f (K) is bounded, closed, and convex has the
fixed-point property for R-BFNE self-operators.

Corollary 24.17. Let f : X→R be either an admissible function or a function such
that f ∗ is admissible. Let K be a nonempty subset of intdom f such that ∇ f (K) is
bounded, closed, and convex, and let T : K → K be an R-BFNE operator. Then
Fix(T ) is nonempty.

24.4 Approximation of Fixed Points

In this section we study the convergence of a Browder-type implicit algorithm
[10] for computing fixed points of R-BFNE operators with respect to a Legendre
function f .

Theorem 24.18 (Implicit method for approximating fixed points). Let f : X →
R be a Legendre and positively homogeneous function of degree α > 1, which
is uniformly continuous on bounded subsets of X. Assume that ∇ f is weakly
sequentially continuous and f ∗ is totally convex. Let K be a nonempty and bounded
subset of X such that ∇ f (K) is bounded, closed, and convex with 0∗ ∈ ∇ f (K), and
let T : K→ K be an R-BFNE operator. Then the following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈ K satisfying ut = tTut .

(ii) The net {ut}t∈(0,1) converges strongly to
−−→
proj f

Fix(T ) (0) as t→ 1−.

Proof.

(i) Fix t ∈ (0,1) and let St be the operator defined by St = tT . Note that, since ∇ f
is positively homogeneous of degree α−1 > 0, we have∇ f (0) = 0∗ ∈∇ f (K).
This implies that St is an operator from K into K. Indeed, it is easy to see that
for any x ∈ K, since tα−1 ∈ (0,1) and ∇ f (K) is convex, we have

∇ f ∗
(
tα−1∇ f (T x)+

(
1− tα−1)∇ f (0)

) ∈ K.

On the other hand,

∇ f ∗
(
tα−1∇ f (T x)+

(
1− tα−1)∇ f (0)

)
=∇ f ∗

(
tα−1∇ f (T x)

)
=∇ f ∗ (∇ f (tTx))

= tT x.

Hence Stx ∈ K for any x ∈ K. Next we show that St is an R-BFNE operator.
Given x,y ∈ K, since T is R-BFNE, we have
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〈∇ f (Stx)−∇ f (Sty) ,Stx− Sty〉= tα 〈∇ f (T x)−∇ f (Ty) ,T x−Ty〉
≤ tα 〈∇ f (T x)−∇ f (Ty) ,x− y〉
= t 〈∇ f (Stx)−∇ f (Sty) ,x− y〉
≤ 〈∇ f (Stx)−∇ f (Sty) ,x− y〉 .

Thus St is indeed R-BFNE. Since ∇ f (K) is bounded, closed, and convex, it
follows from Corollary 24.17 that St has a fixed point. Furthermore, Fix(St)
consists of exactly one point. Indeed, if u,u′ ∈ Fix(St), then it follows from the
right Bregman firm nonexpansivity of St that〈

∇ f (u)−∇ f
(
u′
)
,u− u′

〉
=
〈
∇ f (Stu)−∇ f

(
Stu
′) ,Stu− Stu

′〉
≤ 〈∇ f (Stu)−∇ f

(
Stu
′) ,u− u′

〉
= tα−1 〈∇ f (u)−∇ f

(
u′
)
,u− u′

〉
,

which means that 〈
∇ f (u)−∇ f

(
u′
)
,u− u′

〉≤ 0.

Since f is Legendre, we know that f is strictly convex and therefore ∇ f is
strictly monotone. Hence u = u′. Thus there exists a unique point ut ∈ K such
that ut = Stut .

(ii) Note that, since T is R-BFNE, it follows from Corollary 24.17 that Fix(T )
is nonempty. Furthermore, since T is R-QBNE (see Table 24.1), from Propo-
sition 24.7, we know that ∇ f (Fix(T )) is closed and convex. Therefore

Proposition 24.8 shows that
−−→
proj f

Fix(T ) is well defined and has a variational

characterization. Let {tn}n∈N be an arbitrary sequence in the real interval (0,1)
such that tn→ 1− as n→ ∞. Denote xn = utn for all n ∈ N. It suffices to show

that xn →−−→proj f
Fix(T ) (0) as n→ ∞. Since K is bounded, there is a subsequence{

xnk

}
k∈N of {xn}n∈N such that xnk ⇀ v as k→ ∞. From the definition of xn, we

see that ‖xn−Txn‖= (1− tn)‖Txn‖ for all n∈N. So, we have ‖xn−Txn‖→ 0
as n→ ∞ and hence v ∈ F̂ix(T ). Proposition 24.4 now implies that v ∈ Fix(T ).
We next show that xnk → v as k→ ∞. Fix n∈N. Since T is properly R-QBFNE
(see Table 24.1), we have

0≤ 〈∇ f (T xn)−∇ f (v) ,xn−Txn〉 .
Since xn−Txn = (tn− 1)T xn, we also have

0≤ 〈∇ f (Txn)−∇ f (v) ,(tn− 1)T xn〉 .

This yields

0≤ 〈∇ f (T xn)−∇ f (v) ,−Txn〉 (24.29)
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and

〈∇ f (Txn)−∇ f (v) ,T xn− v〉 ≤ 〈∇ f (Txn)−∇ f (v) ,−v〉 . (24.30)

Since xnk ⇀ v and
∥∥xnk −Txnk

∥∥→ 0 as k→ ∞, it follows that Txnk ⇀ v. From

the weak sequential continuity of ∇ f we obtain that ∇ f
(
T xnk

) ∗
⇀ ∇ f (v) as

k→ ∞. Hence it follows from the monotonicity of ∇ f and from (24.30) that

0≤ liminf
k→∞

〈
∇ f
(
Txnk

)−∇ f (v) ,T xnk − v
〉

≤ limsup
k→∞

〈
∇ f
(
Txnk

)−∇ f (v) ,−v
〉

= 0. (24.31)

Thus

lim
k→∞
〈
∇ f
(
Txnk

)−∇ f (v) ,Txnk − v
〉
= 0.

Since

D f
(
v,T xnk

)
+D f

(
Txnk ,v

)
=
〈
∇ f
(
T xnk

)−∇ f (v) ,T xnk − v
〉
,

it follows that

lim
k→∞

D f
(
v,T xnk

)
= lim

k→∞
D f
(
T xnk ,v

)
= 0.

From [32, Proposition 2.2, p. 3] we get that
∥∥T xnk − v

∥∥→ 0 as k→ ∞. Finally,

we claim that v =
−−→
proj f

Fix(T ) (0). Indeed, note that inequality (24.29) holds when

we replace v with any p∈ Fix(T ). Then, since∇ f
(
Txnk

) ∗
⇀∇ f (v) and T xnk →

v as k→ ∞, letting k→ ∞ in this inequality, we get

0≤ 〈∇ f (v)−∇ f (p) ,−v〉
for any p ∈ Fix(T ). In other words,

0≤ 〈∇ f (v)−∇ f (p) ,0− v〉

for any p∈Fix(T ). Now we obtain from Proposition 24.8 that v=
−−→
proj f

Fix(T ) (0),
as asserted. �

Here is the left variant of this result [31].

Proposition 24.19 (Implicit method for approximating fixed point (left
variant)). Let f : X → R be a Legendre and totally convex function, which is
positively homogeneous of degree α > 1, uniformly Fréchet differentiable, and
bounded on bounded subsets of X. Let K be a nonempty, bounded, closed, and
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convex subset of X with 0 ∈ K, and let T : K → K be an L-BFNE operator. Then
the following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈ K satisfying ut = tTut .

(ii) The net {ut}t∈(0,1) converges strongly to
←−−
proj f

Fix(T ) (∇ f ∗ (0∗)) as t→ 1−.

Again using the left variant and the conjugation properties, we can obtain a right
variant under somewhat different conditions.

Theorem 24.20 (Implicit method for approximating fixed points (second
version)). Let f : X → R be a Legendre and cofinite function. Assume that f ∗
is totally convex, positively homogeneous of degree α > 1, and uniformly Fréchet
differentiable and bounded on bounded subsets of X∗. Let K be a nonempty subset
of intdom f such that ∇ f (K) is bounded, closed, and convex with 0∗ ∈ ∇ f (K). Let
T : K→ K be an R-BFNE operator. Then the following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ut ∈ K satisfying ut = tTut .

(ii) The net {ut}t∈(0,1) converges strongly to
−−→
proj f

Fix(T ) (0) as t→ 1−.

Proof.

(i) Since T is an R-BFNE operator, we obtain from Proposition 24.6(ii) that the
conjugate operator T ∗ : ∇ f (K)→ ∇ f (K) is an L-BFNE operator with respect
to f ∗. Now we apply Proposition 24.19(i) to T ∗ and get that for each t ∈ (0,1),
there exists a unique ξt ∈∇ f (K) satisfying ξt = tT ∗ξt . Denote ut =∇ f ∗ (ξt) ∈
K. Then from the definition of conjugate operators we get

ξt = tT ∗ξt ⇔ ∇ f (ut) = tT ∗∇ f (ut)

⇔ ∇ f (ut) = t (∇ f ◦T ◦∇ f ∗) (∇ f (ut))

⇔ ∇ f (ut) = t∇ f (Tut) .

Note that, since ∇ f ∗ is positively homogeneous of degree α − 1 > 0, the
gradient ∇ f is positively homogeneous of degree 1/(α− 1)> 0. Hence

∇ f (ut) = ∇ f
(
tα−1Tut

)
.

So, for each t ∈ (0,1), there exists a unique ut ∈ K satisfying ut = tα−1Tut ,
which yields assertion (i) because α− 1 > 0 and 0 < t < 1.

(ii) From the positive homogeneity, we deduce that ∇ f ∗ (0∗) = 0. Therefore,
applying Proposition 24.19(ii) to f ∗ and the conjugate operator T ∗ on ∇ f (K),
we get that the net {ξt}t∈(0,1) converges strongly to

←−−
proj f ∗

Fix(T ∗) (∇ f (0)) =
←−−
proj f ∗

Fix(T ∗) (0
∗)

as t → 1−. Now, since ut = ∇ f ∗ (ξt) ∈ K for all t ∈ (0,1), it follows from
(24.20) that



24 Fixed Points of Right Bregman Nonexpansive Operators 517

lim
t→1−

∇ f (ut) =
←−−
proj f ∗

Fix(T ∗) (0
∗)

= ∇ f
(−−→

proj f
Fix(T ) (∇ f ∗ (0∗))

)
= ∇ f

(−−→
proj f

Fix(T ) (0)
)
. (24.32)

Since f ∗ is uniformly Fréchet differentiable and bounded on bounded subsets
of intdom f ∗, we know that ∇ f ∗ is uniformly continuous on bounded subsets of
X∗ [29, Proposition 2.1]. Since {ξt = ∇ f (ut)}t∈(0,1) is bounded as a convergent
sequence, it now follows from (24.32) that {ut}t∈(0,1) converges strongly to
−−→
proj f

Fix(T ) (0) as t→ 1−. �

Remark 24.21. Under the hypotheses of Theorem 24.20, since ∇ f (K) is closed
and convex, if we assume, in addition, that f is totally convex, then Proposition 24.9
implies that the right Bregman projection onto Fix(T ) is the unique sunny R-QBNE
retraction of X onto Fix(T ). In other words, the sequence {ut}t∈(0,1) converges
strongly to the value of the unique sunny R-QBNE retraction of X onto Fix(T ) at
the origin. In the setting of a Hilbert space, when f = (1/2)‖·‖2, this fact recovers
the result of Browder [10], which shows that, for a nonexpansive mapping T , the
approximating curve xt = (1− t)u+ tTxt generates the unique sunny nonexpansive
retraction onto Fix(T ) when t→ 1−, in the particular case where u = 0.

24.5 Zeroes of Monotone Mappings

Let A : X → 2X∗ be a set-valued mapping. Recall that the (effective) domain of the
mapping A is the set domA = {x ∈ X : Ax �= /0}. We say that A is monotone if for
any x,y ∈ domA, we have

ξ ∈ Ax and η ∈ Ay =⇒ 0≤ 〈ξ −η ,x− y〉 . (24.33)

A monotone mapping A is said to be maximal if the graph of A is not a proper subset
of the graph of any other monotone mapping.

A problem of great interest in optimization theory is that of finding zeroes of
set-valued mappings A : X → 2X∗ . Formally, the problem can be written as follows:

Find x ∈ X such that 0
∗ ∈ Ax. (24.34)

This problem occurs in practice in various forms. For instance, minimizing a lower
semicontinuous and convex function f : X → R, a basic problem of optimization,
amounts to finding a zero of the mapping A = ∂ f , where ∂ f (x) stands for the
subdifferential of f at the point x ∈ X . Finding solutions of some classes of
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differential equations can also be reduced to finding zeroes of certain set-valued
mappings A : X → 2X∗ .

In the case of a Hilbert space H , one of the most important methods for solving
(24.34) consists of replacing it with the equivalent fixed-point problem for the
classical resolvent RA : H → 2H of A, defined by

RA := (I+A)−1 .

In this case, provided that A satisfies some monotonicity conditions, the resolvent
RA is single-valued, nonexpansive, and even firmly nonexpansive. When X is not
a Hilbert space, the classical resolvent RA is of limited interest and other operators
should be employed. For example, in several papers (see, for instance, [5, 31]), the
f -resolvent Res f

A was used for finding zeroes of monotone mappings A in general
reflexive Banach spaces. More precisely, given a set-valued mapping A : X → 2X∗ ,
the f -resolvent of A is the operator Res f

A : X → 2X which is defined by

Res f
A := (∇ f +A)−1 ◦∇ f . (24.35)

In this paper we consider another variant of the classical resolvent for general
reflexive Banach spaces, namely, the conjugate resolvent of a mapping A [22].

Definition 24.22 (Conjugate f -resolvent). Let A : X → 2X∗ be a set-valued map-
ping. The conjugate resolvent of A with respect to f , or the conjugate f -resolvent,
is the operator CRes f

A : X∗ → 2X∗ defined by

CRes f
A := (I +A◦∇ f ∗)−1 . (24.36)

The conjugate resolvent satisfies the following properties [22].

Proposition 24.23 (Properties of conjugate f -resolvents). Let f : X → R be an
admissible function and let A : X→ 2X∗ be a mapping such that intdom f ∩domA �=
/0. The following statements hold:

(i) domCRes f
A ⊂ intdom f ∗.

(ii) ranCRes f
A ⊂ intdom f ∗.

(iii) ∇ f ∗
(

Fix
(

CRes f
A

))
= intdom f ∩A−1 (0∗).

(iv) Suppose, in addition, that A is a monotone mapping. Then the following
assertions also hold:

(a) If f |intdom f is strictly convex, then the operator CRes f
A is single-valued on

its domain and R-BFNE.
(b) If f : X → R is such that ran∇ f ⊂ ran(∇ f +A), then domCRes f

A =
intdom f ∗.

According to Proposition 24.23(iii) and (iv)(a), we can apply Theorem 24.18 in the
dual space X∗ to the conjugate resolvent CRes f

A and obtain an implicit method for
approximating zeroes of monotone mappings.
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Theorem 24.24 (Implicit method for approximating zeroes). Let f : X → R be
a Legendre and totally convex function such that f ∗ is positively homogeneous of
degree α > 1 and uniformly continuous on bounded subsets of X∗. Assume that ∇ f ∗
is weakly sequentially continuous. Let K∗ be a nonempty and bounded subset of
X∗ such that ∇ f ∗ (K∗) is bounded, closed, and convex with 0 ∈ ∇ f ∗ (K∗). Let λ be
any positive real number and let A : X → 2X∗ be a monotone mapping such that
∇ f (domA)⊂ K∗ ⊂ ran(I+λA◦∇ f ∗). Then the following two assertions hold:

(i) For each t ∈ (0,1), there exists a unique ξt ∈ K∗ satisfying ξt = tCRes f
λAξt .

(ii) The net {ξt}t∈(0,1) converges strongly to
−−→
proj f

∇ f(A−1(0∗))
(0∗) as t→ 1−.
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Chapter 25
Primal Lower Nice Functions and Their Moreau
Envelopes

Marc Mazade and Lionel Thibault

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract This paper studies two equivalent definitions of primal lower nice
functions and some subdifferential characterizations of such functions. Various
regularity properties of the associated Moreau envelopes and proximal mappings
are also provided.
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Subdifferentials
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25.1 Introduction

The class of primal lower nice (pln for short) functions covers a large class of
functions with an underlying subsmooth structure. Among these functions, we quote
all lower semicontinuous (lsc) proper convex functions, lower-C 2 functions, and
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qualified convexly composite functions. The first definition of pln functions was
given in [22] by Poliquin in the finite-dimensional setting. Poliquin began the
study of this class of functions and their properties, as the coincidence of their
proximal and Clarke subdifferentials and a first subdifferential characterization.
He also obtained the following integration theorem: if two lsc functions f and g
are pln at some point x of their effective domain and have the same subgradients
on a neighborhood of x, then g = f +α near x, where α is a constant. Carrying
on this way, Levy, Poliquin, and Thibault showed in [15] that the subdifferential
characterization for pln functions is still valid in the context of a general Hilbert
space, as well as the coincidence of proximal and Clarke subdifferentials. Then
Thibault and Zagrodny [25] extended to the infinite-dimensional Hilbert setting
Poliquin’s integration theorem for pln functions. In [4], Bernard, Thibault, and
Zagrodny developed some additional results of integration for this class of functions.

One of the interests in studying regularity properties of pln functions is due
to the strong connection between this class of functions and differentiability
properties of Moreau envelopes. Such properties arise in the study of existence
of solutions of nonconvex dynamical differential inclusions (see, e.g., [9, 16] and
the references therein) and also in the development of proximal-like algorithms
for some nonconvex optimization problems. Several authors have developed a
series of local properties of Moreau envelopes, first Poliquin and Rockafellar
[23], concerning prox-regular functions in the finite-dimensional setting. In [3],
Bernard and Thibault carried on working on local regularity properties of Moreau
envelopes and the related proximal mappings of prox-regular and pln functions.
Some years later, Marcellin and Thibault [16] obtained some existence results for
differential inclusions associated with subdifferentials of pln functions, studying
the corresponding differential equations governed by the gradients of the Moreau
envelopes. Recently, Bac̆ák, Borwein, Eberhard, and Mordukhovich [1] established
some new subdifferential properties of Moreau envelopes of prox-regular functions
in Hilbert spaces.

Pln functions have been currently involved in optimal controlled problems. Serea
and Thibault obtained new results in [24] for pln properties of value functions of
Mayer-type control problems. In that paper, the authors also revisited the historical
Poliquin’s definition of pln functions, giving a new one which is equivalent.

All these facts motivated us to study the class of pln functions and their associated
Moreau envelopes through the new definition given in [24]. Our approach involves
for the subdifferential characterization of pln functions some ideas in [2] and
for differential properties of Moreau envelopes of such functions some recent
techniques used in [1] for the study of Moreau envelopes of prox-regular functions.
The paper is organized as follows. Section 25.2 is devoted to some preliminaries
and to a first comparison between two definitions of pln functions. In Sect. 25.3, we
establish a subdifferential characterization of pln functions as in [15, 22] with the
new definition. Section 25.4 studies some regularity properties of Moreau envelopes
of pln functions, considering again the equivalent definition.
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25.2 Pln Functions and First Properties

Let us recall some fundamental definitions. Throughout all the paper, unless
otherwise stated, (X ,‖ ‖) is a Banach space and X∗ is its topological dual endowed
with the dual norm ‖ ‖∗ that we will denote by ‖ ‖ for convenience. When X will
be a Hilbert space, we will identify, as usual, X∗ with X through the Riesz isometry.
The open (resp. closed) ball of X centered at x̄ with radius ε is denoted by B(x̄,ε)
(resp. B[x̄,ε]), and we will set BX := B[0,1]. For a set-valued mapping M : X ⇒ Y
from X into a Banach space Y , we will denote by DomM and gphM its effective
domain and graph, respectively, that is,

DomM := {x ∈ X : M(x) �= /0} and gphM := {(x,y) ∈ X×Y : y ∈M(x)}.
For a set S of X and x̄ ∈ S, the Clarke tangent cone of S at x̄ is defined as the
Painlevé–Kuratowski limit inferior of the set-differential quotient

TC(S; x̄) := Liminf
t↓0;x→

S
x̄

1
t
(S− x),

that is, a vector h ∈ TC(S; x̄) if for any sequence (xn)n in S converging to x̄ and any
sequence (tn)n of positive numbers converging to 0 there exists a sequence (hn)n in
X converging to h such that

xn + tnhn ∈ S for all n ∈ N.

The Clarke tangent cone TC(S; x̄) is known to be closed and convex (see [6]). The
Clarke normal cone NC(S; x̄) of S at x̄ is the negative polar (TC(S; x̄))0 of the Clarke
tangent cone, that is,

NC(S; x̄) := {ζ ∈ X∗ : 〈ζ ,h〉 ≤ 0 ∀h ∈ TC(S; x̄)}.
Let f : X→R∪{+∞} be an extended real-valued function and let x̄∈ dom f , that is,
f (x̄)<+∞. Through the Clarke normal cone, one defines the Clarke subdifferential
∂C f (x̄) of the function f at x̄ as

∂C f (x̄) := {ζ ∈ X∗ : (ζ ,−1) ∈ NC(epi f ;(x, f (x))
)},

where epi f := {(x;r) ∈ X ×R : f (x) ≤ r} is the epigraph of f in X ×R. One
also puts ∂C f (x̄) = /0 when f (x̄) = +∞. When f is lsc on an open set O , then
O ∩Dom∂C f is dense in O ∩dom f .

If f is Lipschitz continuous near x̄, one has

∂C f (x̄) = {ζ ∈ X∗ : 〈ζ ,h〉 ≤ f o(x̄;h) ∀h ∈ X},
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where

f o(x̄;h) := limsup
t↓0,x→x̄

t−1[ f (x+ th)− f (x)].

For f Lipschitz continuous (resp. C 1) near x̄ one has

∂C( f + g)(x̄)⊂ ∂C f (x̄)+ ∂Cg(x̄)
(
resp. ∂C( f + g)(x̄) = D f (x̄)+ ∂Cg(x̄)

)
(25.1)

for any extended real-valued function g : X → R∪{+∞}.
Besides the Clarke subdifferential, some other subdifferentials will be crucial in

the development of the paper. First, we recall that the Fréchet subdifferential of f at
x̄ is the set

∂F f (x̄) :=

{
ζ ∈ X∗ : liminf

x→x̄

f (x)− f (x̄)−〈ζ ,x− x̄〉
‖x− x̄‖ ≥ 0

}
.

In other words, ζ ∈ ∂F f (x̄) provided that for each ε > 0, there exists η > 0 such
that for all x ∈ B(x̄,η),

〈ζ ,x− x̄〉 ≤ f (x)− f (x̄)+ ε‖x− x̄‖.

When f (x̄) = +∞, by convention, ∂F f (x̄) = /0.
If X is an Asplund space (i.e., the topological dual of any separable subspace of

X is separable) the Mordukhovich limiting subdifferential (see [17]) of f at x̄ is then
given by

∂L f (x̄) := {w∗ − limζn : ζn ∈ ∂F f (xn),xn→ f x̄},

where w∗− limζn is the weak star limit of ζn and where xn→ f x̄ means ‖xn− x̄‖→ 0
with f (xn)→ f (x̄). (Of course, any reflexive Banach space is Asplund.) Under the
Asplund property of X one has

∂F f (x̄)⊂ ∂L f (x̄)⊂ ∂C f x̄).

The proximal subdifferential is known to be an efficient tool for many variational
studies. Below, it will be involved in the differential study of the Moreau envelope.
An element ζ ∈ X∗ belongs to the proximal subdifferential ∂P f (x̄) of f at x̄
whenever there exist η > 0 and r > 0 such that

〈ζ ,x− x̄〉 ≤ f (x)− f (x̄)+ r‖x− x̄‖2, for all x ∈ B(x̄,η).

By convention, one sets ∂P f (x̄) = /0 when f (x̄) = +∞. We obviously see that
∂P f (x̄)⊂ ∂F f (x̄). We also recall (see [17]) that, when X is a Hilbert space, one has

∂L f (x̄) := {w− limζn : ζn ∈ ∂P f (xn),xn→ f x̄}.
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Like for the Clarke subdifferential if f is lsc on an open set O and if X is an Asplund
space (resp. a Hilbert space), then O ∩Dom∂F f (resp. O ∩Dom∂P f ) is dense in
O ∩dom f (see [17]).

Now we define the concept of pln functions in a quantified way.

Definition 25.1. Let f : X → R∪{+∞} be a function defined on the Banach space
X . For an open convex subset O of X with O ∩dom f �= /0, the function f is said to
be pln on O provided that f is lsc on O and there exists some real number c ≥ 0
such that for all x ∈ O ∩Dom∂C f and for all ζ ∈ ∂C f (x) we have

f (y) ≥ f (x)+ 〈ζ ,y− x〉− c(1+ ‖ζ‖)‖y− x‖2 (25.2)

for each y∈O . The real c≥ 0 will be called a pln constant for f over O and we will
say that f is c-pln on O . For x̄ ∈ dom f , we say that f is pln at x̄ whenever it is pln
on some open convex set containing the point x̄.

Remark 25.2. The definition above is an adaptation of the one in [24]. For conve-
nience, we use in the definition above ∂C f (x) instead of ∂F f (x), but it will be seen
in Theorem 25.10 that requiring (25.2) with ∂C f (x) is equivalent to requiring it with
∂F f (x).

Using the arguments in Proposition 2.2 in [24], it is easily seen that the definition
above is equivalent to the pioneering definition of pln functions, introduced by
Poliquin in [22], if in the definition in [22] we invoke the Clarke subdifferential
in place of the proximal one. We state this in the following proposition.

Proposition 25.3. A function f : X →R∪{+∞} is pln at x̄ ∈ dom f in the sense of
Definition 25.1 if and only if it is pln at x̄ in the pioneering sense of Poliquin, that
is, there are positive constant real numbers s0,c0,Q0, such that f is lsc on an open
set containing B[x̄,s0] and for all x ∈ B[x̄,s0], for all q≥Q0, and for all ζ ∈ ∂C f (x)
with ‖ζ‖ ≤ c0q, one has

f (y) ≥ f (x)+ 〈ζ ,y− x〉− q
2
‖y− x‖2 (25.3)

for each y ∈ B[x̄,s0].

The proof is given in detail in [24].
Our first result below will establish a link between continuous pln functions

and semiconvex functions. Recall that a function f : X → R∪{+∞} is said to be
(linearly) semiconvex on a convex set O ⊂ X with constant c ≥ 0 whenever for all
reals λ ∈]0,1[

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)+ cλ (1−λ )‖x− y‖2.

When f is semiconvex near each point of O , we will say that f locally semiconvex
on O .

The link between pln and semiconvex continuous functions will use the following
proposition.



526 M. Mazade and L. Thibault

Proposition 25.4. Assume that X is a Hilbert space and let f : O ⊂ X→R∪{+∞}
be a function on a convex set O of X. The following are equivalent:

(a) the function f is semiconvex on O with constant c≥ 0.
(b) the function f + c‖ ‖2 is convex on O .

Proof. For all λ ∈]0,1[, all x,y ∈O , the following inequalities are equivalent:

f (λx+(1−λ )y)+c‖λx+(1−λ )y‖2≤ λ f (x)+ cλ‖x‖2 +(1−λ ) f (y)

+ c(1−λ )‖y‖2

f (λx+(1−λ )y)≤ λ f (x)+ cλ‖x‖2 +(1−λ ) f (y)

+ c(1−λ )‖y‖2− c‖λx+(1−λ )y‖2

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)+ cλ‖x‖2+ c(1−λ )‖y‖2

− cλ 2‖x‖2− 2cλ (1−λ )〈x,y〉− c(1−λ )2‖y‖2

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)+ cλ (1−λ )‖x‖2

+ c(1−λ )λ‖y‖2− 2cλ (1−λ )〈x,y〉

and hence the convexity of f + c‖ · ‖2 is equivalent to the inequality

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)+ cλ (1−λ )‖x− y‖2,

for all λ ∈]0,1[,x,y ∈ O . �
Now we can establish the link between pln and semiconvex functions in showing

that a continuous function on O is pln at each point of O if and only if it is locally
semiconvex on O . So, we extend a result proved in [24] in the finite-dimensional
setting. (The general result in the context of any Banach space will appear in a
forthcoming work.)

Proposition 25.5. Assume that X is a Hilbert space and f : O → R∪{+∞} is a
proper lsc function, defined on an open set O of X. The following are equivalent :

(a) f is locally semiconvex, finite, and locally Lipschitz continuous on O .
(b) f is locally semiconvex, finite and continuous on O .
(c) f is locally bounded from above on O and pln at any point of O .

Proof. Clearly, (a) implies (b). Suppose now f is locally semiconvex, finite, and
continuous on O . Let x̄ ∈ O . There exist η > 0 and c ≥ 0 such that f + c‖ · ‖2 is
convex on B(x̄,η). As f is continuous, we may suppose without loss of generality
that f is bounded from above on B(x̄,η). Choose x ∈ B(x̄,η) and ζ ∈ ∂C f (x).
Note that
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ζ + 2cx ∈ ∂C f (x)+∇(c‖ · ‖2)(x) = ∂C( f + c‖ · ‖2)(x)

since c‖ · ‖2 is C 1 on X . Thus, for all x′ ∈ B(x̄,η),

〈ζ + 2cx,x′ − x〉 ≤ f (x′)+ c‖x′‖2− f (x)− c‖x‖2

〈ζ ,x′ − x〉 ≤ f (x′)− f (x)+ c‖x′ − x‖2

and we get f is pln at x̄. So, (b)⇒ (c) since the local boundedness property obviously
follows from the continuity of f on O .

Now suppose that (c) holds and let x̄∈O . Since f is lsc, there exist some positive
number η0 and some γ ∈ R such that f (x) ≥ γ for all x ∈ B(x̄,η0). By assumption,
we can find 0 < η1 < η0 and β1 such that f (x) ≤ β1 for all x ∈ B(x̄,η1). So, for
β := β1 + |γ| we have | f (x)| ≤ β for all x ∈ B(x̄,η1). Since f is pln at x̄, there exist
0 < η < η1 and c≥ 0 such that for all x ∈ B(x̄,η) and all ζ ∈ ∂C f (x) the inequality

〈ζ ,x′ − x〉 ≤ f (x′)− f (x)+ c(1+ ‖ζ‖)‖x′− x‖2 (25.4)

is valid for all x′ ∈ B(x̄,η). Choose some real number r > 0 such that cr < 1 and
B(x̄,2r) ⊂ B(x̄,η). Considering x ∈ B(x̄,r)∩Dom∂C f and ζ ∈ ∂C f (x), for x′ =
x+ rb, where b ∈ B, we obtain from (25.4)

〈ζ ,rb〉 ≤ 2β + c(1+ ‖ζ‖)r2.

Hence

‖ζ‖ ≤ r−1(1− cr)−1(2β + cr2) =: k. (25.5)

This entails that f is Lipschitz continuous on B(x̄,r) (see [25]) which ensures
the desired local Lipschitz property of f on O . It then remains to establish the
semiconvexity of f near x̄. To get that we first observe by (25.4) and (25.5) that
for any ζ ∈ ∂C f (x), with x ∈ B(x̄,r),

〈ζ ,x′ − x〉 ≤ f (x′)− f (x)+ c(1+ k)‖x′− x‖2

for all x′ ∈ B(x̄,r). So, if we set c′ := c(1+ k),

〈(ζ1 + 2c′x1)− (ζ2 + 2c′x2),x1− x2〉 ≥ 0

for all ζi ∈ ∂C f (xi) with xi ∈ B(x̄,r). The latter inequality is equivalent (see [7,8,21])
to the convexity of f + c′‖ · ‖2 on B(x̄,r). Consequently, (c)⇒ (a) is established.

�
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25.3 Subdifferential Characterizations

Recall that a set-valued mapping T : X ⇒ X∗ is hypomonotone on a subset O of X
if there exists σ > 0 such that

〈ζ1− ζ2,x1− x2〉 ≥ −σ‖x1− x2‖2

whenever ζi ∈ T (xi),xi ∈ O . The pln behavior of a function f is characterized by
some local linear hypomonotonicity of ∂P f or ∂C f in [15,21]. Using Definition 25.1,
as the main result of the paper, we establish in the next theorem a similar character-
ization with a variant of the hypomonotonicity property of the subdifferential ∂C f .
Before stating Theorem 25.7, we prove the following lemma which is an adaptation
of Lemma 4.2 in [25] and ideas in [12].

Lemma 25.6 (see [25]). Let X be a normed vector space and let f : X→R∪{+∞}
be a function with f (x̄) < +∞. Let s be a positive number such that f is bounded
from below over B[x̄,s] by some real α . Let β ∈ R and θ be a nonegative number.
For each real c≥ 0, let

Fβ ,c(ζ ,x,y) := f (y)+β 〈ζ ,x− y〉+ c(1+ ‖ζ‖)‖x− y‖2 for all x,y ∈ X , ζ ∈ X∗.

Let any real c0 ≥ 16|β |
3s such that c0 >

16
3s2 (θ + f (x̄)−α). Then, for any real c≥ c0,

for any ζ ∈ X∗, and for any x ∈ B[x̄, s
4 ], any point u ∈ B[x̄,s] such that

Fβ ,c(ζ ,x,u)≤ inf
y∈B[x̄,s]

Fβ ,c(ζ ,x,y)+θ (25.6)

must belong to B(x̄, 3s
4 ).

Proof. Fix x ∈ B[x̄,s/4] and ζ ∈ X∗ and fix also any real c≥ c0. Take any y ∈ B[x̄,s]
with ‖y− x̄‖> 3s/4. Since ‖x− y‖ ≥ ‖x̄− y‖−‖x− x̄‖ ≥ s/2, we observe that

‖x− y‖2−‖x− x̄‖2 ≥ s2

4
− s2

16
=

3s2

16
.

Then, for F(y) := Fβ ,c(ζ ,x,y), we have

F(y)−F(x̄)−θ ≥ α− f (x̄)−θ +β 〈ζ , x̄− y〉+ c(1+ ‖ζ‖)(‖x− y‖2−‖x− x̄‖2)

≥ α− f (x̄)−θ − s|β |‖ζ‖+ c(1+ ‖ζ‖)3s2

16

=
(
α− f (x̄)−θ + c

3s2

16

)
+ s(c

3s
16
−|β |)‖ζ‖,

so, for η := α− f (x̄)−θ + c 3s2

16 > 0, we obtain F(y)−η ≥ F(x̄)+θ , finishing the
proof of the lemma. �

Additional properties of function of type (25.6) will be developed in Sect. 25.4.
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Theorem 25.7. Let f : X →R∪{+∞} be a function on the Banach space X which
is finite at x̄ ∈ X and lsc near x̄. The following are equivalent :

(a) f is pln at x̄.
(b) There exist ε > 0 and c≥ 0 such that

〈ζ1− ζ2,x1− x2〉 ≥ −c(1+ ‖ζ1‖+ ‖ζ2‖)‖x1− x2‖2

whenever ζi ∈ ∂C f (xi) and ‖xi− x̄‖ ≤ ε .

Proof. We first show that (a) implies (b). Since f is pln at x̄, there exist η0 > 0 and
c≥ 0 such that the inequality

f (x′)≥ f (x)+ 〈ζ ,x′ − x〉− c(1+ ‖ζ‖)‖x′− x‖2

holds true for all x′ ∈ X with ‖x′ − x̄‖ ≤ η0, x ∈ Dom∂C f with ‖x′ − x̄‖ ≤ η0, and
ζ ∈ ∂C f (x). If ζi ∈ ∂C f (xi), with ‖xi− x̄‖ ≤ η0, then f (x1) and f (x2) are finite and

f (x1) ≥ f (x2)+ 〈ζ2,x1− x2〉− c(1+ ‖ζ2‖)‖x1− x2‖2

f (x2) ≥ f (x1)+ 〈ζ1,x2− x1〉− c(1+ ‖ζ1‖)‖x2− x1‖2.

Adding these inequalities yields

〈ζ1− ζ2,x1− x2〉 ≥ −c(2+ ‖ζ1‖+ ‖ζ2‖)‖x1− x2‖2 (25.7)

and then

〈ζ1− ζ2,x1− x2〉 ≥ −2c(1+ ‖ζ1‖+ ‖ζ2‖)‖x1− x2‖2.

Now, using some ideas in [2], we show that (b) implies (a). Let ε > 0 and c≥ 0 for
which the inequality of the assertion (b) holds and such that f is lsc on B(x̄,ε). Fix
0 < ε ′ < min{ε, 1

c} (with the convention 1
c =+∞ if c = 0) such that α := infB[x̄,ε ′] f

is finite according to the lsc property of f . Following the lemma above fix c0 ≥ 16
3ε ′

satisfying c0 > 16
3(ε ′)2 (1+ f (x̄)−α) and fix also any real c′ > max{c0,

c
1−cε ′ }. Let

x ∈ B(x̄, ε
′

4 )∩Dom∂C f and ζ ∈ ∂C f (x). Put

ϕ(y) := f (y)+ 〈ζ ,x− y〉+ c′(1+ ‖ζ‖)‖y− x‖2 for all y ∈ X

and

ϕ̄(y) :=

{
ϕ(y) if y ∈ B[x̄,ε ′]
+∞ otherwise,

and note that the function ϕ̄ is lsc on X .
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Let (εn)n be a sequence of real numbers converging to 0 with 0 < εn < min{1,
(ε ′/4)2}. For each integer n, take un ∈ X such that

ϕ̄(un)≤ inf
X
ϕ̄+ εn.

By Lemma 25.6 applied with β = θ = 1 , we have {un} ⊂ B(x̄, 3ε ′
4 ). By the Ekeland

variational principle (see [10]), there exists (xn)n such that

ϕ̄(xn)< inf
X
ϕ̄+ εn, ‖xn− un‖<

√
εn and ϕ̄(xn) = inf

u∈X
{ϕ̄(u)+√εn‖u− xn‖}.

We deduce ‖xn− x̄‖< ε ′ and

0 ∈ ∂C(ϕ+
√
εn‖ ·−xn‖)(xn);

hence

0 ∈ ∂C f (xn)− ζ + c′(1+ ‖ζ‖)∂C(‖ ·−x‖2)(xn)+
√
εnBX∗ .

This gives ζn ∈ ∂C f (xn) and ξn ∈ −ζ + c′(1+ ‖ζ‖)∂C(‖ ·−x‖2)(xn) such that

‖ζn + ξn‖ ≤ √εn. (25.8)

Putting ξ ′n =
ξn + ζ

c′(1+ ‖ζ‖) , we have ξ ′n ∈ ∂C(‖ ·−x‖2)(xn), so

〈ξ ′n,xn− x〉= 2‖xn− x‖2 and ‖ξ ′n‖= 2‖xn− x‖. (25.9)

For n large enough, say n≥ n0, we have ‖xn− x‖< ε ′ since

‖xn− x‖ ≤ ‖xn− un‖+ ‖un− x̄‖+ ‖x̄− x‖<√εn +
3ε ′

4
+ ‖x̄− x‖

and
3ε ′

4
+ ‖x̄− x‖< ε ′.

Then, for n ≥ n0, we have ‖ξ ′n‖ = 2‖xn− x‖ < 2ε ′ and from the equality ξn =
−ζ + c′(1+ ‖ζ‖)ξ ′n we get

‖ξn‖ ≤ ‖ζ‖+ c′(1+ ‖ζ‖)‖ξ ′n‖ ≤ ‖ζ‖+ 2c′ε ′(1+ ‖ζ‖),

which yields by (25.8)

‖ζn‖= ‖ζn+ξn−ξn‖≤ ‖ζn+ξn‖+‖ξn‖≤
√
εn +‖ζ‖+2c′ε ′(1+‖ζ‖). (25.10)

We note by the assertion (b) applied with ζ2 = ζ and ζ1 = ζn that

〈ζ − ζn,x− xn〉 ≥ −c(1+ ‖ζ‖+ ‖ζn‖)‖x− xn‖2. (25.11)
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On the other hand, (25.8) and (25.9) entail that

〈ζ − ζn,x− xn〉= 〈c′(1+ ‖ζ‖)ξ ′n− ξn− ζn,x− xn〉
= 〈c′(1+ ‖ζ‖)ξ ′n,x− xn〉+ 〈−ξn− ζn,x− xn〉
=−2c′(1+ ‖ζ‖)‖x− xn‖2 + 〈−ξn− ζn,x− xn〉
≤ −2c′(1+ ‖ζ‖)‖x− xn‖2 +

√
εn‖x− xn‖,

and concerning the last member above, (25.11) ensures

−2c′(1+ ‖ζ‖)‖x− xn‖2 +
√
εn‖x− xn‖ ≥ −c(1+ ‖ζ‖+ ‖ζn‖)‖x− xn‖2.

This leads to (
2c′(1+ ‖ζ‖)− c(1+ ‖ζ‖+‖ζn‖)

)‖x− xn‖ ≤ √εn.

Through the inequality (25.10) we have the estimation

2c′(1+ ‖ζ‖)− c(1+ ‖ζ‖+ ‖ζn‖)≥ 2c′(1+ ‖ζ‖)− c(1+ ‖ζ‖)
− c(
√
εn + ‖ζ‖+ 2c′ε ′(1+ ‖ζ‖))

> 2c′(1+ ‖ζ‖)− c(1+ ‖ζ‖)
− c(1+ ‖ζ‖+ 2c′ε ′(1+ ‖ζ‖))

= 2(c′ − c− cc′ε ′)(1+ ‖ζ‖).
Consequently,

2(c′ − c− cc′ε ′)(1+ ‖ζ‖)‖x− xn‖ ≤
√
εn

and the inequality c′ > c
1−cε ′ (in the choice above of c′) guarantees that c′ − c−

cc′ε ′ > 0. It follows that xn→ x as n→+∞ and un→ x. Recall that un satisfies

f (un)+ 〈ζ ,x− un〉+c′(1+ ‖ζ‖)‖un− x‖2 ≤
inf

y∈B[x̄,ε ′]
{ f (y)+ 〈ζ ,x− y〉+ c′(1+ ‖ζ‖)‖y− x‖2}+ εn.

Thus, according to the lower semicontinuity of f , we obtain

f (x) ≤ liminf
n

f (un)≤ inf
y∈B[x̄,ε ′]

{ f (y)+ 〈ζ ,x− y〉+ c′(1+ ‖ζ‖)‖y− x‖2},

which entails that

f (y)≥ f (x)+ 〈ζ ,y− x〉− c′(1+ ‖ζ‖)‖y− x‖2

for all y ∈ B(x̄, ε
′

4 ), which means that f is c′-pln on B(x̄, ε
′

4 ). �
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Remark 25.8. With this proposition, when X is a Hilbert space, writing (a) implies
(b) for a c-pln function f , we get

〈ζ1− ζ2,x1− x2〉 ≥ −c(2+ ‖ζ1‖+ ‖ζ2‖)‖x1− x2‖2 (HYPM)

for all ζi ∈ ∂C f (xi), with ‖xi− x̄‖ ≤ η̄ . For some c′ > c, we set c0 := 1
4c′ , q0 := 4c′.

Then for all xi ∈ B[x̄, η̄ ], for all q≥ q0, and for all ζi ∈ ∂C f (xi), such that ‖ζi‖ ≤ c0q
we have

〈ζ1− ζ2,x1− x2〉 ≥ −q‖x1− x2‖2.

Indeed, if ‖ζ1‖+ ‖ζ2‖ ≤ 2, putting this in (25.7), we obtain

〈ζ1− ζ2,x1− x2〉 ≥ −4c′‖x1− x2‖2 ≥−q‖x1− x2‖2.

Else, if ‖ζ1‖+ ‖ζ2‖> 2,

〈ζ1−ζ2,x1−x2〉 ≥−c(2+‖ζ1‖+‖ζ2‖)‖x1−x2‖2 ≥−4c(‖ζ1‖+‖ζ2‖)‖x1−x2‖2;

hence the inequality ‖ζi‖ ≤ c0q ensures

〈ζ1− ζ2,x1− x2〉 ≥ −4c′c0q‖x1− x2‖2 ≥−q‖x1− x2‖2.

As a result, the operator qI + T q
4c′

is monotone for all q ≥ 4c′, where T q
4c′

is the

truncation of ∂C f at x̄ whose graph is defined by

gphT q
4c′

:=
{
(x,ζ ) ∈ gph∂C f : ‖x− x̄‖ ≤ η̄ ,‖ζ‖ ≤ q

4c′
}
.

Note that when c > 0, we can take c′ = c.

The next proposition is a slight modification of Proposition 1.6 in [16], which gives
a closure property concerning the graph of the (proximal) subdifferential of a pln
function (see also Lemma 2.4 in [13]).

Proposition 25.9. Let O be an open convex set of the Banach space X and f : X →
R∪{+∞} be a function which is lsc on O with O ∩ dom f �= /0. Let ∂ f be any of
the subdifferentials ∂P f ,∂F f ,∂C f . Assume that the inequality (25.2) holds for all
x′ ∈ O ∩Dom∂ f and all ζ ∈ ∂ f (x′). Let x ∈ O ∩Dom∂ f and (x j) j∈J be a net
converging strongly to x in X, and let (ζ j) j∈J be a bounded net of X∗ converging
weakly star to some ζ in X∗ with ζ j ∈ ∂ f (x j). Then

ζ ∈ ∂P f (x) ⊂ ∂ f (x) and lim
j∈J

f (x j) = f (x);

hence in particular ∂ f (x) is weakly star closed in X∗.
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Proof. Take c≥ 0 such that

f (x′)≥ f (x′′)+ 〈ζ ,x′ − x′′〉− c(1+ ‖z‖)‖x′− x′′‖2

whenever x′,x′′ ∈O and ζ ∈ ∂ f (x′′). Choose a real γ > 0 such that ‖ζ j‖ ≤ γ for all
j ∈ J (according to the boundedness assumption) and choose also some j0 ∈ J such
that x j ∈ O for all j * j0 (since x j → x). Fixing x′ ∈ O , this yields, for all j * j0,

f (x′) ≥ f (x j)+ 〈ζ j,x
′ − x j〉− c(1+ ‖ζ j‖)‖x′ − x j‖2

≥ f (x j)+ 〈ζ j,x
′ − x j〉− c(1+ γ)‖x′− x j‖2. (25.12)

Taking the limit inferior, it follows that

f (x′)≥ f (x)+ 〈ζ ,x′ − x〉− c(1+ γ)‖x′− x‖2,

which means ζ ∈ ∂P f (x). Further, putting x′ = x in (25.12), we obtain

f (x) ≥ f (x j)+ 〈ζ j,x− x j〉− c(1+ γ)‖x− x j‖2

for j * j0, which allows us to write

f (x) ≥ limsup
j∈J

f (x j)≥ liminf
j∈J

f (x j)≥ f (x).

It remains to show that ∂ f (x) is weak star closed. From the definition of the Clarke
subdifferential, this is obvious for ∂C f (x). So, consider ∂ f as ∂F f (resp. ∂P f ) if X
is Asplund (resp. Hilbert). Then the set ∂ f (x) being convex, the Krein–Šmulian
theorem guarantees that ∂ f (x) is weakly star closed since the arguments above
ensure that the weak star limit of any bounded net of ∂ f (x) remains in ∂ f (x). �
A characterization result for pln functions (due to Poliquin [22] in finite dimension
and Levy–Poliquin–Thibault [15] in Hilbert space) ensures that if a function f :
X :→ R∪ {+∞} is pln at x̄ ∈ dom f , then for all x in a neighborhood of x̄, the
proximal subdifferential of f at x agrees with the Clarke subdifferential of f at x.
Here, in the same vein of [15, 22], we get the same result at any point of O with
Definition 25.1 for a pln function on O .

Theorem 25.10. Let O be an open convex set of the Banach space X and f : X →
R∪{+∞} be a function which is lsc on O with O∩dom f �= /0. The following hold:

(a) If f is pln on O , then for all x ∈O , we have

∂P f (x) = ∂F f (x) = ∂L f (x) = ∂C f (x).
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(b) Assume that X is an Asplund space (resp. a Hilbert space) and let c ≥ 0. The
function f is c-pln on O if and only if for all x ∈ O ∩Dom∂F f (resp. x ∈
Dom∂P f ) and for all ζ ∈ ∂F f (x) (resp. ζ ∈ ∂P f (x)) one has

f (y) ≥ f (x)+ 〈ζ ,y− x〉− c(1+ ‖ζ‖)‖y− x‖2, (25.13)

for each y ∈ O .

Proof. To prove (a), fix any x ∈ O . First we always have ∂P f (x) ⊂ ∂C f (x). Let
ζ ∈ ∂C f (x). According to the definition of a pln function, there exists c≥ 0 such that

f (y) ≥ f (x)+ 〈ζ ,y− x〉− c(1+ ‖ζ‖)‖y− x‖2

for all y ∈ O; hence ζ ∈ ∂P f (x).
(b): Assume that X is an Asplund space (resp. a Hilbert space). The implication⇒
being obvious, let us show the converse one. The arguments of the proof are similar
to [15]. Let c ≥ 0 be as in Definition 25.1, that is, for each (x,ζ ) ∈ gph∂F f (resp.
ζ ∈ gph∂P f ) with x ∈ O

f (y) ≥ f (x)+ 〈ζ ,y− x〉− c(1+ ‖ζ‖)‖y− x‖2 for all y ∈ O. (25.14)

Fix any point x ∈ O . Since the subdifferential ∂F f (x) [resp. ∂P f (x)] is included
in the Clarke subdifferential ∂C f (x), we may suppose that ∂C f (x) �= /0. From
Mordukhovich and Shao (see [18]), we have

∂C f (x) = co ∗[V +V0],

where co∗ denotes the weak star closed convex hull in X∗, and for ∂ f (u) := ∂F f (u)
[resp. ∂ f (u) = ∂P f (u)],

V := {w− limζn : ζn ∈ ∂ f (xn),xn→ f x̄}= ∂L f (x̄),

where xn→ f x̄ means ‖xn− x̄‖→ 0 with f (xn)→ f (x̄) and

V0 := {w− limσnζn : ζn ∈ ∂ f (xn),xn→ f x̄,σn ↓ 0}=: ∂∞L f (x̄).

Let ζ ∈ V . There exist xn, converging strongly to x, and ζn ∈ ∂ f (xn), with (ζn)
converging weakly star to ζ , and ( f (xn)) converging to f (x). The weak star
convergence of (ζn) gives some γ > 0 such that ‖ζn‖ ≤ γ for all n. Further, for
n large enough xn ∈O , so by (25.14), we have, for any y ∈ O ,

f (y)≥ f (xn)+ 〈ζn,y− xn〉− c(1+ ‖ζn‖)‖y− xn‖2.

Taking the limit as n→ ∞, we get

f (y) ≥ f (x)+ 〈ζ ,y− x〉− c(1+ γ)‖y− x‖2 (25.15)

for all y ∈ O .
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Now consider ζ0 ∈V0, i.e., there exist (xn) converging strongly to x, σn ↓ 0, and
ζn ∈ ∂ f (xn) such that f (xn) converges to f (x) and σnζn converges weakly star to
ζ0. Since σnζn converges weakly star, there exists some δ > 0 such that ‖σnζn‖ ≤ δ
for all n. From (25.14) again, for each y ∈ O ∩dom f , we get for n large enough

f (y)≥ f (xn)+ 〈ζn,y− xn〉− c(1+ ‖ζn‖)‖y− xn‖2

and then

σn f (y) ≥ σn f (xn)+ 〈σnζn,y− xn〉−σnc(1+ ‖ζn‖)‖y− xn‖2

which entails

σn f (y)≥ σn f (xn)+ 〈σnζn,y− xn〉−σnc‖y− xn‖2− cδ‖y− xn‖2.

Taking the limit, we get

0≥ 〈ζ0,y− x〉− cδ‖y− x‖2 (25.16)

for all y ∈ O ∩dom f .
Finally, we show V +V0⊂ ∂P f (x). Indeed, for any ζ ∈V and ζ0 ∈V0, combining

(25.15) and (25.16), we have for any y ∈ O ∩dom f

f (y)≥ f (x)+ 〈ζ + ζ0,y− x〉− c(1+ γ+ δ )‖y− x‖2,

and the latter obviously still holds for any y ∈ O . Thus, the set ∂P f (x) being weak
star closed according to the proposition above, we conclude that

∂C f (x) = co ∗[V +V0]⊂ co ∗∂P f (x) = ∂P f (x)⊂ ∂C f (x).

So the inequality (25.14) holds for each (x,ζ ) ∈ gph∂C f , which means that f is pln
in the sense of Definition 25.1. �

25.4 Regularity Properties of Moreau Envelopes

This section is devoted to properties of Moreau envelopes, also known as infimal
convolutions. For two extended real-valued functions f ,g : X → R∪ {+∞} on a
normed space X , the Moreau infimum convolution of f and g is defined by

( f�g)(x) = inf
y∈X
{ f (y)+ g(y− x)} for all x ∈ X .

The particular important case of 1
2λ ‖ · ‖2 as function g yields to the concepts of

Moreau envelope and proximal mapping.
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Definition 25.11 (see [19,20]). Let X be a normed vector space and let f : X→R∪
{+∞} be a proper function. Consider two positive numbers λ and ε . The Moreau
envelope of f with index λ is the function from X into [−∞,+∞] defined by

eλ f (x) := inf
y∈X

{
f (y)+

1
2λ
‖x− y‖2

}
, for all x ∈ X ,

and the corresponding proximal mapping is defined by

Pλ f (x) := argmin
y∈X

{
f (y)+

1
2λ
‖x− y‖2

}
, for all x ∈ X .

The local Moreau envelope of f associated with λ and ε is defined by

eλ ,ε f (x) := inf
‖y‖≤ε

{
f (y)+

1
2λ
‖x− y‖2

}
, for all x ∈ X ,

and the corresponding local proximal mapping is defined by

Pλ ,ε f (x) := argmin
‖y‖≤ε

{
f (y)+

1
2λ
‖x− y‖2

}
, for all x ∈ X .

For any λ > 0, the function eλ f is the infimum convolution of f and 1
2λ ‖ · ‖2

(see [20]), so we can write eλ f = f� 1
2λ ‖ · ‖2. Given any λ ,ε > 0, we have

eλ ,ε f (x) = eλ ( f + δB[0,ε])(x)

and

Pλ ,ε f (x) = Pλ ( f + δB[0,ε])(x),

where δC is the indicator function of the subset C, that is, δC(x) = 0 if x ∈ C and
δc(x) = +∞ otherwise.

The following lemma is of great importance to prove some regularity properties of
eλ f .

Lemma 25.12 (from Correa-Jofré-Thibault [8]). Let X be a normed space and
f ,g : X → R∪{+∞}. Let x̄ ∈ X be a point where ( f�g)(x̄) is finite. If the infimum
convolution at x̄

( f�g)(x̄) = inf
y∈H
{ f (y)+ g(x̄− y)}

is exact, that is, if the preceding infimum is attained at some ȳ, then

∂P( f�g)(x̄)⊂ ∂P f (ȳ)∩∂Pg(x̄− ȳ).
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Proof. Let ζ ∈ ∂P( f�g)(x̄), ε > 0, and c > 0 such that

〈ζ ,x− x̄〉 ≤ ( f�g)(x)− ( f�g)(x̄)+ c‖x− x̄‖2 forallx ∈ B(x̄,ε).

Then for all y ∈ B(ȳ,ε)

〈ζ ,y− ȳ〉= 〈ζ ,y− ȳ+ x̄− x̄〉
≤ ( f�g)(y− ȳ+ x̄)− ( f�g)(x̄)+ c‖y− ȳ‖2

≤ f (y)+ g(x̄− ȳ)− f (ȳ)− g(x̄− ȳ)+ c‖y− ȳ‖2

= f (y)− f (ȳ)+ c‖y− ȳ‖2,

so ζ ∈ ∂P f (ȳ). Analogously for all y ∈ B(x̄− ȳ,ε)

〈ζ ,y− (x̄− ȳ)〉= 〈ζ ,y− x̄+ ȳ〉
≤ ( f�g)(y+ ȳ)− ( f�g)(x̄)+ c‖y+ ȳ− x̄‖2

≤ f (ȳ)+ g(y)− f (ȳ)− g(x̄− ȳ)+ c‖y+ ȳ− x̄‖2

= g(y)− g(x̄− ȳ)+ c‖y+ ȳ− x̄‖2;

hence ζ ∈ ∂Pg(x̄− ȳ). �
Throughout the remaining of the paper, X is assumed to be a Hilbert space endowed
with the inner product 〈·, ·〉 and the associated norm ‖x‖=√〈x,x〉.

Let us recall the link between the C 1 property of eλ f and the Lipschitz continuity
of Pλ f . We refer to [26, Example 3.14] for some complements about C1 property of
eλ f and continuity property of Pλ f .

Proposition 25.13 (see [3]). Let X be a Hilbert space and f : X → R∪{+∞} be
a proper lsc function minorized by a quadratic function on X. Consider λ > 0
and let U be an open subset of the Hilbert space X. The following properties are
equivalent:

(a) eλ f is C 1 on U.
(b) Pλ f is nonempty, single-valued, and continuous on U.

When these properties hold, ∇eλ f = λ−1(I−Pλ f ) on U.

We can now establish, for a pln function f , a list of properties of the Moreau
envelope and proximal mapping of f + δ (·,B) for an appropriate closed ball B.
We proceed, involving some arguments of [1], to developing a proof avoiding the use
(made in [16]) of the truncation of the graph of ∂P. In [11], the authors observed that
a real-valued function is locally C 1,1 if and only if it is simultaneously semiconvex
and semiconcave. We state this result in the next theorem.
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Theorem 25.14. Let X be a Hilbert space and f : X → R be a function which
is continuous on B(x̄,γ). Then, f is locally C 1,1 around x̄ ∈ X if and only if
it is simultaneously locally semiconvex and locally semiconcave around x̄. More
precisely, if there exists c> 0 such that f +(c/2)‖·‖2 and (c/2)‖·‖2− f are convex
on B(0,γ), then f is C 1,1 on B(0,γ), with ∇ f c-Lipschitz continuous on B(x̄,γ) and
conversely.

See [11] or [1] for an alternative proof. Theorem 25.14 is also a consequence of
Theorem 6.1 in [14] concerning a ψ(·)-paraconvex function on a normed space.

Proposition 25.15. Let X be a Hilbert space and F : X→R∪{+∞} be an extended
real-valued lsc function with F(0) = 0 and such that there exists σ > 0 for which

F(x)≥−σ
2
‖x‖2 forallx ∈ X . (25.17)

Let λ0 ∈]0, 1
σ [ and η > 0. Let β ,γ > 0 be positive real numbers such that

(1+ 2(1−λ0σ)−1)γ+
√

2λ0(1−λ0σ)−1β < η . (25.18)

Then for all λ ∈]0,λ0[, the following hold:

(a) For all x ∈ B(0,γ) and x′ ∈ PλF(x) one has ‖x′‖< η ,‖x− x′‖< η .
(b) For any x ∈ B(0,γ)

eλF(x) = inf
x′∈B(0,η)

{
F(x′)+

1
2λ
‖x− x′‖2

}
.

(c) The function eλF is Lipschitz continuous on B(0,γ), with Lipschitz modulus
η/λ .

The proof requires first the following lemma due to Poliquin–Rockafellar (see [23,
Lemma 4.1]). For completeness we reproduce their proof in the Hilbert setting.

Lemma 25.16 (see [23]). Let X be a Hilbert space and F : X → R∪ {+∞} be
an extended real-valued function with F(0) = 0 and satisfying (25.17). Let λ ∈
]0,1/σ [,ρ ≥ 0, and x,x′ ∈ X. If

F(x′)+
1

2λ
‖x′ − x‖2 ≤ eλF(x)+ρ , (25.19)

we have the estimate

‖x′‖ ≤ 2(1−λσ)−1‖x‖+
√

2λ (1−λσ)−1ρ.

Proof. First with x′ = 0 we observe for all x ∈ X the inequality
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eλF(x)≤ F(0)+
1

2λ
‖0− x‖2 =

1
2λ
‖x‖2.

So for any x,x′ satisfying (25.19) we have according to (25.17)

−σ
2
‖x′‖2 +

1
2λ
‖x′ − x‖2 ≤ F(x′)+

1
2λ
‖x′ − x‖2 ≤ eλF(x)+ρ ≤ 1

2λ
‖x‖2 +ρ ;

hence

−σ
2
‖x′‖2 +

1
2λ
‖x′ − x‖2 ≤ 1

2λ
‖x‖2 +ρ .

Computing this, we get(
1

2λ
− σ

2

)
‖x′‖2 ≤ 1

λ
〈x′,x〉+ρ

(1−λσ)‖x′‖2 ≤ 2〈x′,x〉+ 2λρ .

Putting α := (1−λσ)−1, we obtain

‖x′‖2 ≤ 2α〈x′,x〉+ 2λαρ ≤ 2α‖x′‖‖x‖+ 2λαρ ;

hence

(‖x′‖−α‖x‖)2 ≤ α2‖x‖2 + 2λαρ ,

which yields

‖x′‖ ≤ α‖x‖+
√
α2‖x‖2 + 2λαρ ≤ 2α‖x‖+

√
2λαρ. �

The proof of the next lemmas uses strong ideas from [5].

Lemma 25.17. Let X be a Hilbert space and F : X → R∪{+∞} be a proper lsc
function. Assume that there exist β ,γ,σ ≥ 0 such that

F(y)≥−σ
2
‖y‖2−β‖y‖− γ for all y ∈ X .

Let x ∈Dom∂PeλF. Then, for all λ ∈]0, 1
σ [ (with convention 1

σ =+∞ when σ = 0),
PλF(x) �= /0 and, for all x′ ∈ PλF(x), the following hold:

∂PeλF(x) = {λ−1(x− x′)} and λ−1(x− x′) ∈ ∂PF(x′).

Consequently, ∂PeλF(x) and PλF(x) are singleton sets whenever x ∈ Dom∂PeλF.
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Proof. Let x ∈ X be such that ∂PeλF(x) �= /0 and let ζ ∈ ∂PeλF(x). Fix a sequence
of positive numbers (tn)n with tn ↓ 0 and a sequence (yn)n such that

F(yn)+
1

2λ
‖x− yn‖2 ≤ eλF(x)+ t2

n .

Since

F(y)≥−σ
2
‖y‖2−β‖y‖− γ for all y ∈ X ,

we get

−σ
2
‖yn‖2−β‖yn‖− γ+ 1

2λ
‖x− yn‖2 ≤ eλF(x)+ t2

n(
1

2λ
− σ

2

)
‖yn‖2−β‖yn‖− 1

λ
〈x,yn〉+ 1

2λ
‖x‖2 ≤ eλF(x)+ t2

n + γ(
1

2λ
− σ

2

)
‖yn‖2−β‖yn‖− 1

λ
‖x‖‖yn‖ ≤ eλF(x)+ t2

n + γ−
1

2λ
‖x‖2

(
1

2λ
− σ

2

)
‖yn‖2− (β +

1
λ
‖x‖)‖yn‖ ≤ eλF(x)+ t2

n + γ−
1

2λ
‖x‖2;

hence

(
1

2λ
− σ

2

)(
‖yn‖−

β + 1
λ ‖x‖

2
( 1

2λ − σ
2

)
)2

≤ eλF(x)+ t2
n + γ−

1
2λ
‖x‖2

+

(
1

2λ
− σ

2

)( β + 1
λ ‖x‖

2
(

1
2λ − σ

2

)
)2

.

Since λ < 1
σ , that is, ( 1

2λ − σ
2 ) > 0, the sequence (yn) must be bounded and there

exists a subsequence that we will not relabel converging weakly to some ȳ and such
that ‖x− yn‖→ α .

We will prove that ‖x− ȳ‖=α and we will conclude that (yn) converges strongly
to ȳ and hence ȳ ∈ PλF(x). The inequality ‖x− ȳ‖ ≤ α being a consequence of
the weak lower semicontinuity of the norm, let us prove that ‖x− ȳ‖ ≥ α . Since
ζ ∈ ∂PF(x), there is some r > 0 such that for n large enough,

〈ζ ,yn− x〉 ≤ t−1
n

(
eλF(x− tn(x− yn))− eλF(x)

)
+ tnr‖x− yn‖2

≤ t−1
n

(
F(yn)+

1
2λ
‖(1− tn)(x− yn)‖2−F(yn)− 1

2λ
‖x− yn‖2 + t2

n

)

+ tnr‖x− yn‖2

=− 1
λ
‖x− yn‖2 +

tn
2λ
‖x− yn‖2 + tn + tnr‖x− yn‖2,
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and taking the limit, we obtain

〈ζ , ȳ− x〉 ≤ − 1
λ
α2 and then

α2

λ
≤ ‖ζ‖‖x− ȳ‖. (25.20)

Analogously, for any z ∈ X and n large enough, we have

〈ζ ,z〉 ≤ t−1
n

(
eλF(x+ tnz)− eλF(x)

)
+ tnr‖x‖2

≤ t−1
n

(
F(yn)+

1
2λ
‖x− yn+ tnz‖2−F(yn)− 1

2λ
‖x− yn‖2 + t2

n

)
+ tnr‖x‖2

≤ 1
λ
‖x− yn‖‖z‖+ tn

2λ
‖z‖2 + tn + tnr‖x‖2.

Taking the limit, we obtain

〈ζ ,z〉 < α
λ
‖z‖ and then ‖ζ‖ ≤ α

λ
. (25.21)

From (25.20) and (25.21), we obtain that ‖x− ȳ‖ ≥α; hence α = ‖x− ȳ‖ as desired.
The nonemptiness of PλF(x) is fulfilled. According to Lemma 25.12, for any x′ ∈
PλF(x), we have

∂PeλF(x)⊂ ∂PF(x′)∩{(1/λ )(x′ − x)}

which is exactly what we expected. �
Proof.

(a) Fix λ0,η ,β , and γ as in Proposition 25.15. Let λ ∈]0,λ0[ and x∈ B(0,γ). Given
x′ ∈ PλF(x), according to Lemma 25.16 with ρ = 0, one obtains

‖x′‖ ≤ 2(1−λσ)−1‖x‖< 2(1−λ0σ)−1γ < η .

Moreover

‖x− x′‖ ≤ ‖x‖+ ‖x′‖ ≤ γ+ 2(1−λσ)−1γ < γ+ 2(1−λ0σ)−1γ < η .

(b) Suppose that some x′ ∈ X satisfies the inequality

F(x′)+
1

2λ
‖x′ − x‖2 ≤ eλF(x)+β .

Applying Lemma 25.16 we have

‖x′‖ ≤ 2(1−λσ)−1γ+
√

2λ (1−λσ)−1β

< 2(1−λ0σ)−1γ+
√

2λ0(1−λ0σ)−1β < η ,

which justifies our representation in (b) .
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(c) Observe that for any x ∈ B(0,γ) we have on one hand

eλF(x)≤ F(0)+
1

2λ
‖x‖2 =

1
2λ
‖x‖2

and on the other hand the inequalities, for any y ∈ B(0,η),

F(y)+
1

2λ
‖x− y‖2 ≥−σ

2
‖y‖2 +

1
2λ
‖x− y‖2 ≥ −ση

2

2
,

give through (b) that eλF(x)≥ −ση2

2 . This says in particular that eλF(·) is finite
over B(0,γ).

So, putting Φx′(x) := F(x′)+ 1
2λ ‖x′ − x‖2 for each x′ ∈DF,η := B(0,η)∩domF

and noting that the family of functions (Φx′)x′∈DF,η is equi-Lipschitzian on B(0,γ),
we obtain that eλF is Lipschitz continuous on B(0,γ). Let us estimate the Lipschitz
constant of eλF(·) over B(0,γ). For any x ∈ Dom∂PeλF with ‖x‖ < γ and any
ζ ∈ ∂PeλF(x) we have by Lemma 25.17

ζ =
1
λ
(x− x′) for x′ = PλF(x);

hence according to the assertion (a)

‖ζ‖ ≤ η
λ
.

The function eλF being lsc on B(0,γ) we deduce (see [25, Theorem 2.1]) that eλF
is η

λ -Lipschitz continuous on B(0,γ). �
The proof of the next proposition is an adaptation of the arguments of [1,

Theorem 4.9].

Proposition 25.18. Let X be a Hilbert space and F : X →R∪{+∞} be a function
which is c-pln on an open convex set containing B[0,s0] for a positive constant
c satisfying s0 < 1/2c. Assume F(0) = 0, 0 ∈ ∂CF(0) and define F̄(·) = F(·) +
δ (·,B[0,s0]). Let λ0 ∈]0, 1−2cs0

2c [. Then for any β ,γ > 0 satisfying

(1+ 2(1− 2λ0c)−1)γ+
√

2λ0(1− 2λ0c)−1β < s0, (25.22)

the following properties hold:

(a) For all λ ∈]0,λ0[, the function eλ F̄(·) is C 1,1 on B(0,γ) with∇eλ F̄ aλ -Lipschitz
continuous on B(0,γ) for aλ := 1

λ (1−2cλ (1+s0/λ ))
.

(b) Pλ F̄(·) is nonempty, single-valued, and (1+ 1
1−2cλ0(1+s0)

)-Lipschitz continous

on B(0,γ).

Proof. (a) By assumption, for all x ∈ B[0,s0], all ζ ∈ ∂CF(x),
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F(y)−F(x)≥ 〈ζ ,y− x〉− c(1+ ‖ζ‖)‖y− x‖2

for all y ∈ B[0,s0]. Since 0 ∈ ∂CF(0) and F(0) = 0, the latter inequality yields

F(x)≥−c‖x‖2 for all x ∈ B[0,s0].

Consequently

F̄(x)≥−c‖x‖2 for all x ∈ X .

So F̄(·) satisfies (25.17) with σ = 2c and F̄ is lsc on X since F is by assumption
lsc at each point of B[0,s0]. Fix λ0 ∈]0, 1−2cs0

2c [ and η = s0. Take, for the function
F̄ , any positive real numbers β ,γ satisfying (25.18) in Proposition 25.15 for σ =
2c, that is, satisfying (25.22). For any λ ∈]0,λ0[, let x ∈ B(0,γ) where eλ F̄ is ∂P-
subdifferentiable and let ζ ∈ ∂Peλ F̄(x). We know by Lemma 25.17 that Pλ F̄(x) is
a singleton and that for x′ = Pλ F̄(x) we have ζ = λ−1(x− x′) and ζ ∈ ∂PF̄(x′).
Moreover, according to (a) and (c) in Proposition 25.15, we have

‖x′‖< s0, ‖x− x′‖< s0 and ‖ζ‖< s0/λ ;

hence in particular ζ ∈ ∂PF̄(x′) = ∂PF(x′). Since F is c-pln on an open convex set
containing B[0,s0], we get

F(z)−F(x′)≥ 〈ζ ,z− x′〉− c(1+ ‖ζ‖)‖z− x′‖2

for all z ∈ B(0,s0), which yields for any y ∈ X

F(z)+
1

2λ
‖z− y‖2−

(
F(x′)+

1
2λ
‖x′ − x‖2

)

≥ 1
2λ

(‖z− y‖2−‖x′ − x‖2)+ 〈ζ ,z− x′〉− c(1+ ‖ζ‖)‖z− x′‖2 =: h(z).

(25.23)

Note that the equality x′ = Pλ F̄(x) entails eλ F̄(x) = F̄(x′)+ 1
2λ ‖x− x′‖2 = F(x′)+

1
2λ ‖x− x′‖2 and due to (b) of Proposition 25.15 applied with the function F̄

eλ F̄(y) = inf
z∈B(0,s0)

{
F(z)+

1
2λ
‖z− y‖2

}
(25.24)

for all y ∈ B(0,γ). According to the inequality ‖ζ‖< s0/λ , we observe that

1
2λ

(‖z− y‖2−‖x′ − x‖2)+ 〈ζ ,z− x′〉− c(1+ ‖ζ‖)‖z− x′‖2

≥ 1
2λ

(‖z− y‖2−‖x′ − x‖2)+ 〈ζ ,z− x′〉− c
(

1+
s0

λ

)
‖z− x′‖2.
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Since λ0 <
1−2cs0

2c , we have ( 1
2c − s0)

1
λ0

> 1; hence

1
2λ
− c
(

1+
s0

λ

)
= c

((
1
2c
− s0

)
1
λ
− 1

)
> c

((
1
2c
− s0

)
1
λ0
− 1

)
> 0.

We deduce that

lim
‖z‖→+∞

1
2λ

(‖z− y‖2−‖x′ − x‖2)+ 〈ζ ,z− x′〉− c
(

1+
s0

λ

)
‖z− x′‖2 =+∞.

The function h in the right-hand side in (25.23) is then a coercive lsc convex function
and hence attains its minimum on X at some point z̄ ∈ X . Writing ∇h(z̄) = 0 and
using the equality ζ = λ−1(x− x′) yield

0 =
1
λ
(z̄− y)+

1
λ
(x− x′)− 2c(1+ ‖ζ‖)(z̄− x′),

which gives

z̄ = x′ − 1
1− 2cλ (1+ ‖ζ‖)(x− y).

So

inf
X

h = h(z̄)

=
1

2λ
(‖x′ − y− 1

1− 2cλ (1+ ‖ζ‖)(x− y)‖2−‖x′ − x‖2)

+ 〈ζ ,− 1
1− 2cλ (1+ ‖ζ‖)(x− y)〉

− 2c(1+ ‖ζ‖)
2

‖ 1
1− 2cλ (1+ ‖ζ‖)(x− y)‖2

=
1

2λ
(‖x′ − x+(1− 1

1− 2cλ (1+ ‖ζ‖))(x− y)‖2

−‖x′ − x‖2)+ 1
1− 2cλ (1+ ‖ζ‖)〈ζ ,y− x〉

− 2c(1+ ‖ζ‖)
2

1
(1− 2cλ (1+ ‖ζ‖))2‖(x− y)‖2;

hence
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inf
X

h =
1

2λ

(
− 4cλ (1+ ‖ζ‖)

1− 2cλ (1+ ‖ζ‖)〈x
′ − x,x− y〉

)

+

(
2cλ (1+ ‖ζ‖)

1− 2cλ (1+ ‖ζ‖)
)2

‖x− y)‖2
)

+
1

1− 2cλ (1+ ‖ζ‖)〈ζ ,y− x〉− 2c(1+ ‖ζ‖)
2(1− 2cλ (1+ ‖ζ‖))2‖x− y‖2

=

(
1

1− 2cλ (1+ ‖ζ‖)−
2cλ (1+ ‖ζ‖)

1− 2cλ (1+ ‖ζ‖)
)
〈ζ ,y− x〉

−
( 2c(1+ ‖ζ‖)

2(1− 2cλ (1+ ‖ζ‖))2 −
1

2λ

(
2cλ (1+ ‖ζ‖)

1− 2cλ (1+ ‖ζ‖)
)2)
‖x− y‖2

= 〈ζ ,y− x〉− 2c(1+ ‖ζ‖)
2(1− 2cλ (1+ ‖ζ‖))‖x− y‖2

= 〈ζ ,y− x〉− c(1+ ‖ζ‖)
(1− 2cλ (1+ ‖ζ‖))‖x− y‖2.

The latter equality combined with the inequality (25.23) and the equality (25.24)
gives

eλ F̄(y)− eλ F̄(x)≥ 〈ζ ,y− x〉− c(1+ ‖ζ‖)
1− 2cλ (1+ ‖ζ‖)‖x− y‖2

≥ 〈ζ ,y− x〉− c
1− 2cλ (1+ s0/λ )

(1+ s0/λ )‖x− y‖2

for all y ∈ B(0,γ). Setting kλ := c
1−2cλ (1+s0/λ )

(1 + s0/λ ), we see through the

equality ‖x− y‖2 = ‖y‖2−‖x‖2− 2〈x,y− x〉 that, for all x ∈ B(0,γ)∩Dom∂PF̄
and ζ ∈ ∂PF̄(x),

eλ F̄(y)+ kλ‖y‖2− eλ F̄(x)− kλ‖x‖2 ≥ 〈ζ + 2kλx,y− x〉 for all y ∈ B(0,γ),

which means by [8] that the function eλ F̄(·) + kλ‖ · ‖2 is convex on B(0,γ). We
deduce that eλ F̄(·)+ kλ‖ · ‖2 + 1

2λ ‖ · ‖2 is also convex on B(0,γ).
Writing, for each x ∈ B(0,γ),

−
(

eλ F̄(x)− 1
2λ
‖x‖2

)
=−

(
inf
y∈X
{F̄(y)+ 1

2λ
‖x− y‖2}− 1

2λ
‖x‖2

)

= sup
y∈X

{
1
λ
〈x,y〉− (

1
2λ
‖y‖2 + F̄(y))

}
,
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we get that −(eλ F̄(·)− 1
2λ ‖ · ‖2) is a pointwise supremum of affine functions

and hence convex, so eλ F̄(·)− 1
2λ ‖ · ‖2 is concave. Thus we get the concavity of

eλ F̄(·)− kλ‖ · ‖2− 1
2λ ‖ · ‖2 on B(0,γ). We observe that

kλ +
1

2λ
=

1
1− 2cλ (1+ s0/λ )

(
c(1+ s0/λ )+

1
2λ

(1− 2cλ (1+ s0/λ ))
)

=
1

2λ (1− 2cλ (1+ s0/λ ))
.

Therefore eλ F̄(·) is simultaneously semiconvex and semiconcave on B(0,γ), or
more precisely, eλ F̄(·)+(aλ/2)‖ ·‖2 and (aλ/2)‖ ·‖2− eλ F̄(·) are both convex for

aλ := λ−1(1− 2cλ (1+ s0/λ ))−1. (25.25)

So, the function eλ F̄(·) being continuous on B(0,γ) according to Proposition 25.15
we conclude via Theorem 25.14 that eλ F̄(·) is C 1,1 on B(0,γ) with ∇eλ F̄(·)
aλ -Lipschitz continuous on B(0,γ). The assertion (a) of the proposition is then
established.

It remains to prove the assertion (b). Since eλ F̄(·) is C 1,1 on B(0,γ), according
to Proposition 25.13, we have

∇eλ F̄(·) = λ−1(I−Pλ F̄(·)) on B(0,γ).

Then for all x,y ∈ B(0,γ), we have

‖Pλ F̄(y)−Pλ F̄(x)‖ = ‖(I−Pλ F̄)(x)− (I−Pλ F̄)(y)− (x− y)‖
≤ ‖(I−Pλ F̄)(x)− (I−Pλ F̄)(y)‖+ ‖x− y‖
≤ (1+λaλ )‖x− y‖.

Computing 1+λaλ , according to (25.25), we get

1+λaλ = 1+
1

(1− 2cλ (1+ s0/λ ))

≤ 1+
1

1− 2c(λ0+ s0)
,

hence Pλ F̄(·) is (1+ 1
1−2c(λ0+s0)

)-Lipschitz continous on B(0,γ). �

Now we are in a position to establish the second main result of the paper. It concerns
the C 1,1-property of the Moreau envelope of a pln function.

Theorem 25.19. Let X be a Hilbert space and f : X → R∪{+∞} be an extended
real-valued function. Assume that f is c-pln on an open convex set containing
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B[u0,s0] for a positive constant c satisfying s0 < (1/2c). Let (x0,y0) ∈ gph∂C f with
‖x0− u0‖< s0

18 and let

f̄ (·) = f (·)+ δ
(
·,B
[
x0,

s0

2

])
.

Then there exists some threshold λ0 such that for any λ ∈]0,λ0[:

(a) eλ f̄ is C 1,1 on B(u0,
s0
18) with ∇eλ f̄ dλ -Lipschitz continuous on B(u0,

s0
18 ) for

dλ :=
1

λ (1− 2c(λ (1+ ‖y0‖)+ s0/2))
+ ‖y0‖.

(b) Pλ f̄ is nonempty, single-valued, and k0-Lipschitz continuous on B(u0,
s0
18) for

k0 := 1+λ0+
1

1− 2c(λ0+ s0/2)
.

(c) Pλ f̄ (x0 +λy0) = x0.
(d) ∇eλ f̄ = λ−1(I−Pλ f̄ ) on B(u0,

s0
18).

(e) ‖∇eλ f̄ (x0)‖ ≤ k0‖y0‖.
(f) Pλ f̄

(
B(u0,

s0
18 )
)⊂ B(u0,

7
16 s0).

Further, given any x ∈ B(u0,
s0
18 ):

(g) ∇eλ f̄ (x) ∈ ∂P f (Pλ f̄ (x)).
(h) ‖x− x0‖ ≥ (1− cλ (2+ ‖∇eλ f̄ (x)‖+ k0‖y0‖))‖Pλ f̄ (x)−Pλ f̄ (x0)‖.
Proof. Let O be an open convex set containing B[u0,s0] such that f is c-pln on O .
(a): For all x ∈ X , put

F(x) :=
1

1+ ‖y0‖
(
g(x+ x0)− f (x0)−〈y0,x〉

)
,

where g(x) := f (x)+ δ (x,B[u0,s0]), and put also

F̄(x) := F(x)+ δ (x,B[0,ε]) with ε = s0/2.

The function F(·) is lsc on X , F(0) = 0 and for ζ ∈ ∂PF(x) with x ∈ B(u0− x0,ε)
we have (1+ ‖y0‖)ζ + y0 ∈ ∂P f (x+ x0).

The c-pln property of f on the open convex set O containing B[u0,s0] ensures that
F is c-pln on O0 := B(0,17s0/18). Indeed, we have for all ζ ∈ ∂PF(x) with x ∈ O0

f (x′+ x0)− f (x+ x0)≥ 〈(1+ ‖y0‖)ζ + y0,x
′ − x〉

− c(1+(1+ ‖y0‖)‖ζ‖+ ‖y0‖)‖x′ − x‖2
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for all x′ ∈O0 = B(0,17s0/18), because for such x′ we have x′+x0 ∈ B(u0,s0)⊂O .
Then

F(x′)−F(x) ≥ 〈ζ ,x′ − x〉− c
1+ ‖y0‖ (1+(1+ ‖y0‖)‖ζ‖+ ‖y0‖)‖x′ − x‖2,

F(x′)−F(x)≥ 〈ζ ,x′ − x〉− c(1+ ‖ζ‖)‖x′− x‖2,

for all x′ ∈ O0, which means that F is c-pln on O0 = B(0,17s0/18). Further,
B(0,17s0/18)⊃ B[0,ε] and 0 ∈ ∂PF(0) since y0 ∈ ∂P f (x0). Consequently, F̄(x) ≥
−c‖x‖2, for all x ∈ X . As regards the Moreau envelopes, for any x ∈ X and λ > 0,
we can write

eλ (1+‖y0‖)F̄(x)

= inf
u∈X
{F(u)+ δ (u,B[0,ε])+ 1

2λ (1+ ‖y0‖)‖x− u‖2}

= inf
u∈X
{g(u+ x0)− f (x0)−〈y0,u〉

1+ ‖y0‖ + δ (u,B[0,ε])+
1

2λ (1+ ‖y0‖)‖x− u‖2}

=
− f (x0)+ 〈y0,x0〉

1+ ‖y0‖ + inf
u∈X

{g(u+ x0)−〈y0,u+ x0〉
1+ ‖y0‖ + δ (u+ x0,B[x0,ε])

+
1

2λ (1+ ‖y0‖)‖x− u‖2
}

=
− f (x0)+ 〈y0,x0〉

1+ ‖y0‖ + inf
z∈X

{g(z)−〈y0,z〉
1+ ‖y0‖ + δ (z,B[x0,ε])

+
1

2λ (1+ ‖y0‖)‖x+ x0− z‖2
}

=
− f (x0)+ 〈y0,x0〉

1+ ‖y0‖ +
1

1+ ‖y0‖ inf
z∈X

{
f (z)−〈y0,z〉+ δ (z,B[u0,s0]∩B[x0,ε])

+
1

2λ
‖x+ x0− z‖2

}
.

Since ‖x0− u0‖< s0
18 and ε = s0

2 , we have B[u0,s0]∩B[x0,ε] = B[x0,ε] and hence

eλ (1+‖y0‖)F̄(x) =
− f (x0)+ 〈y0,x0〉

1+ ‖y0‖ +
1

1+ ‖y0‖
(− λ

2
‖y0‖2−〈y0,x〉− 〈y0,x0〉

+ inf
z∈X
{ f (z)+ δ (z,B[x0,ε])+

1
2λ
‖x+ x0+λy0− z‖2}).

Thus

eλ (1+‖y0‖)F̄(x) =
− f (x0)−〈y0,x〉− λ

2 ‖y0‖2

1+ ‖y0‖ +
1

1+ ‖y0‖eλ f̄ (x+ x0 +λy0).
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So, for any x ∈ X and any λ > 0,

eλ f̄ (x) = (1+ ‖y0‖)eλ (1+‖y0‖)F̄(x− (x0 +λy0))

+ f (x0)+ 〈y0,x− (x0 +λy0)〉+ λ
2
‖y0‖2. (25.26)

Let λ0 ∈]0,min{ 1−2cs0
2c , 3

14c}[. Since the inequality λ0 <
3

14c yields

1+
2

1− 2cλ0
<

9
2

or equivalently (1+ 2(1− 2cλ0)
−1)−1 s0

2
>

s0

9
,

we can choose γ > 0 such that

s0

9
< γ <

s0

2

(
1+

2
1− 2cλ0

)−1

.

Then there exists β > 0 such that

(1+ 2(1− 2cλ0)
−1)γ+

√
2λ0(1− 2cλ0)−1β < s0/2.

Applying Proposition 25.18 to F , c, and ε < 1/2c, we get that for all λ ∈]0,λ0[,
eλ F̄(·) is C 1,1 on B(0,γ) with ∇eλ F̄ bλ -Lipschitz continuous on B(0,γ), for bλ :=

1
λ (1−2cλ (1+ε/λ )). Define λ̄0 = min{λ0,γ − s0/9}. We deduce according to (25.26)

that, for all λ ∈]0, λ̄0
1+‖y0‖ [, eλ f̄ (·) is C 1,1 on B(x0 + λy0,γ). Given any 0 < λ <

λ̄0
1+‖y0‖ , if x belongs to B[u0,s0/18], then

‖x− (x0 +λy0)‖ ≤ ‖x− u0‖+ ‖x0− u0‖+ ‖λy0‖

≤ s0/18+ s0/18+
λ̄0‖y0‖

1+ ‖y0‖
< s0/9+ γ− s0/9 = γ,

so B[u0,s0/18]⊂B(x0+λy0,γ); hence eλ f̄ (·) is C 1,1 on B(u0,s0/18) and according
to (25.26), ∇eλ f̄ is dλ -Lipschitz continuous on B(u0,s0/18) for

dλ := (1+ ‖y0‖)bλ (1+‖y0‖) + ‖y0‖

=
(1+ ‖y0‖)

λ (1+ ‖y0‖)(1− 2cλ (1+ ‖y0‖)(1+ ε
λ (1+‖y0‖) ))

+ ‖y0‖

=
1

λ (1− 2c(λ (1+ ‖y0‖)+ ε)) + ‖y0‖.

This finishes the proof of (a).
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(b), (c), and (d): As in Proposition 25.18, thanks to Proposition 25.13, we deduce
that Pλ f̄ is nonempty, single-valued, and continuous on B(u0,

s0
18 ), and

∇eλ f̄ (·) = λ−1(I−Pλ f̄ )(·) on B(u0,s0/18). (25.27)

So, Pλ f̄ is (1+λdλ )-Lipschitz continuous on B(u0,
s0
18). Computing, we get that for

all λ ∈]0, λ̄0
1+‖y0‖ [

1+λdλ = 1+λ‖y0‖+ 1
1− 2c(λ (1+ ‖y0‖)+ ε) ,

1+λdλ < 1+
λ̄0‖y0‖

1+ ‖y0‖ +
1

1− 2c(λ̄0+ ε)
< 1+ λ̄0+

1

1− 2c(λ̄0+ ε)
;

hence Pλ f̄ is k0-Lipschitz continuous on B(u0,s0/18) for k0 := 1+ λ̄0+(1−2c(λ̄0+
ε))−1. Furthermore, given any λ ∈]0, λ̄0/(1 + ‖y0‖)[, combining with (25.26),
we get

x0 +Pλ (1+‖y0‖)F̄(u) = Pλ f̄ (u+ x0 +λy0) (25.28)

for all u ∈ B(0,ε/4), both mappings being nonempty and single-valued on this ball.
Indeed let u ∈ B(0,ε/4) and p ∈ X such that

eλ (1+‖y0‖)F̄(u) = F̄(p)+
1

2λ (1+ ‖y0‖)‖u− p‖2.

Then, according to (25.26) and the definition of F̄ , we have

eλ f̄ (u+ x0 +λy0) = (1+ ‖y0‖)(F̄(p)+
1

2λ (1+ ‖y0‖)‖u− p‖2)

+ f (x0)+ 〈y0,u〉+ λ
2
‖y0‖2

= f (x0 + p)+ δ (x0+ p,B[u0,s0])+ δ (p,B[0,ε])

+
1

2λ
‖u− p‖2−〈y0, p〉+ 〈y0,u〉+ λ

2
‖y0‖2

= f (x0 + p)+ δ (x0+ p,B[u0,s0]∩B[x0,ε])

+
1

2λ
‖u+ x0+λy0− (x0 + p)‖2,

and since B[u0,s0]∩B[x0,ε] = B[x0,ε] we obtain

eλ f̄ (u+ x0 +λy0) = f (x0 + p)+ δ (x0+ p,B[x0,ε])
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+
1

2λ
‖u+ x0+λy0− (x0 + p)‖2

= f̄ (x0 + p)+
1

2λ
‖u+ x0+λy0− (x0 + p)‖2,

which justifies the desired equality (25.28).
Using the inequality

F̄(x)≥−c‖x‖2 for all x ∈ X ,

we get that for all x ∈ X

F̄(x)+
1

2λ (1+ ‖y0‖)‖x‖
2 ≥

(
1

2λ (1+ ‖y0‖) − c

)
‖x‖2 ≥ 0

(
since λ (1+ ‖y0‖)< λ̄0 <

1
2c

)

so we deduce that 0 ∈ Pλ (1+‖y0‖)F̄(0). Since Pλ (1+‖y0‖)F̄(·) is single-valued on
B(0,γ) we get that Pλ (1+‖y0‖)F̄(0) = 0. Putting this in (25.28) with u = 0 we obtain

Pλ f̄ (x0 +λy0) = x0 whenever λ ∈]0, λ̄0/(1+ ‖y0‖)[. (25.29)

So (b), (c), and (d) are established.
(e): To get (e), we observe thanks to (25.29), (25.27), and the inequality 1+λdλ < k0

that

‖∇eλ f̄ (x0)‖= ‖λ−1(x0−Pλ f̄ (x0))‖
= ‖λ−1(Pλ f̄ (x0 +λy0)−Pλ f̄ (x0)

)‖
≤ λ−1(1+λdλ)‖x0 +λy0− x0‖= (1+λdλ)‖y0‖ ≤ k0‖y0‖.

(f), (g): The arguments to get (f) and (g) are similar to those in the proof of
Proposition 2.8 in [16]. We give them in detail for completeness. As f is bounded
from below on B[x0,

s0
2 ] with f (x0) ∈ R, Lemma 25.6 (applied with β = 0, θ = 0

and ζ = 0) provides some real number λ ′0 > 0 such that for all λ ∈]0,λ ′0[,
Pλ f̄ (B[x0,

s0
8 ]) ⊂ B[x0,

3s0
8 ]. We set λ̄1 := min{ λ̄0

1+‖y0‖ ,λ
′
0}. As B[u0,

s0
18 ] ⊂ B[x0,

s0
8 ]

and B[x0,
3s0
8 ]⊂ B(u0,

7s0
16 ), we get (f) for each λ ∈]0, λ̄1[.

Let x ∈ B(u0,
s0
18 ) and λ ∈]0, λ̄1[ be fixed in the remaining of the proof. We first

show that ∇eλ f̄ (x) ∈ ∂P f (Pλ f̄ (x)). By the assertion (f) proved above we have
Pλ f̄ (x) ∈ B(u0,

7s0
16 ) ⊂ B(x0,

s0
2 ). The functions f and f̄ are lsc and coincide on an

open neighborhood of Pλ f̄ (x). It follows that

∂P f̄ (Pλ f̄ (x)) = ∂P f (Pλ f̄ (x)). (25.30)
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Combining Lemma 25.12 and the single valuedness of Pλ f̄ on B(u0,
s0
18 ), we get

∇eλ f̄ (x) ∈ ∂P f̄ (Pλ f̄ (x)), so (g) is true.
(h): To get finally (h), since x,x0 ∈ B(u0,s0/18) ⊂ O , we use (g) and the hypo-
monotonicity-like property of ∂P f on O [see the inequality (25.7)] to see that

〈∇eλ f̄ (x) − ∇eλ f̄ (x0),Pλ f̄ (x)−Pλ f̄ (x0)〉
≥ −c(2+ ‖∇eλ f̄ (x)‖+ ‖∇eλ f̄ (x0)‖)‖Pλ f̄ (x)−Pλ f̄ (x0)‖2

≥−c(2+ ‖∇eλ f̄ (x)‖+ k0‖y0‖)‖Pλ f̄ (x)−Pλ f̄ (x0)‖2,

where the latter inequality is due to the assertion (e) proved above. This entails,
according to the equality (25.27),

〈x − x0,Pλ f̄ (x)−Pλ f̄ (x0)〉
≥ (1−cλ (2+‖∇eλ f̄ (x)‖+k0‖y0‖))‖Pλ f̄ (x)−Pλ f̄ (x0)‖2,

and this yields (h) and finishes the proof of the theorem. �
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Chapter 26
Bundle Method for Non-Convex Minimization
with Inexact Subgradients and Function Values

Dominikus Noll

Abstract We discuss a bundle method to minimize locally Lipschitz functions
which are both nonconvex and nonsmooth. We analyze situations where only inexact
subgradients or function values are available. For suitable classes of such non-
smooth functions we prove convergence of our algorithm to approximate critical
points.

Key words: Convergence • Inexact function values • Inexact subgradients •
Lower C1 functions • Nonconvex bundle method

Mathematics Subject Classifications (2010): Primary 90C56; Secondary 49J52,
65K05, 65K10.

26.1 Introduction

We consider optimization programs of the form

min
x∈Rn

f (x), (26.1)

where f : Rn → R is locally Lipschitz but neither differentiable nor convex.
We present a bundle algorithm which converges to a critical point of (26.1) if exact
function and subgradient evaluation of f are provided and to an approximate critical
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point if subgradients or function values are inexact. Here x̄ ∈ R
n is approximate

critical if

dist (0,∂ f (x̄))≤ ε, (26.2)

where ∂ f (x) is the Clarke subdifferential of f at x.
The method discussed here extends the classical bundle concept to the nonconvex

setting by using downshifted tangents as a substitute for cutting planes. This idea
was already used in the 1980s in Lemaréchal’s M2FC1 code [32] or in Zowe’s
BT codes [48, 54]. Its convergence properties can be assessed by the model-based
bundle techniques [6, 7, 40, 42]. Recent numerical experiments using the downshift
mechanism are reported in [8, 19, 50]. In the original paper of Schramm and Zowe
[48] downshift is discussed for a hybrid method combining bundling, trust region,
and line-search elements.

For convex programs (26.1) bundle methods which can deal with inexact function
values or subgradients have been discussed at least since 1985; see Kiwiel [26, 28].
More recently, the topic has been revived by Hintermüller [22], who presented
a method with exact function values but inexact subgradients g ∈ ∂ε f (x), where
ε remains unknown to the user. Kiwiel [30] expands on this idea and presents
an algorithm which deals with inexact function values and subgradients, both
with unknown errors bounds. Kiwiel and Lemaréchal [31] extend the idea further
to address column generation. Incremental methods to address large problems
in stochastic programming or Lagrangian relaxation can be interpreted in the
framework of inexact values and subgradients; see, e.g., Emiel and Sagastizábal
[15, 16] and Kiwiel [29]. In [39] Nedic and Bertsekas consider approximate
functions and subgradients which are in addition affected by deterministic noise.

Nonsmooth methods without convexity have been considered by Wolfe [52],
Shor [49], Mifflin [38], Schramm and Zowe [48], and more recently by Lukšan
and Vlček [35], Noll and Apkarian [41], Fuduli et al. [17, 18], Apkarian et al. [6],
Noll et al. [42], Hare and Sagastizábal [21], Sagastizábal [47], Lewis and Wright
[33], and Noll [40]. In the context of control applications, early contributions are
Polak and Wardi [44], Mayne and Polak [36,37], Kiwiel [27], Polak [43], Apkarian
et al. [1–7], and Bompart et al. [9]. All these approaches use exact knowledge of
function values and subgradients.

The structure of the paper is as follows. In Sect. 26.2 we explain the concept
of an approximate subgradient. Section 26.3 discusses the elements of the algo-
rithm, acceptance, tangent program, aggregation, cutting planes, recycling, and the
management of proximity control. Section 26.4 presents the algorithm. Section 26.5
analyzes the inner loop in the case of exact function values and inexact subgradients.
Section 26.6 gives convergence of the outer loop. Section 26.7 extends to the case
where function values are also inexact. Section 26.8 uses the convergence theory of
Sects. 26.5–26.7 to derive a practical stopping test. Section 26.9 concludes with a
motivating example from control.
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26.2 Preparation

Approximate subgradients in convex bundle methods refer to the ε-subdifferential
[24]:

∂ε f (x) = {g ∈ R
n : g%(y− x)≤ f (y)− f (x)+ ε for all y ∈R

n}, (26.3)

whose central property is that 0 ∈ ∂ fε (x̄) implies ε-minimality of x̄, i.e., f (x̄) ≤
min f +ε . Without convexity we cannot expect a tool with similar global properties.
We shall work with the following very natural approximate subdifferential

∂[ε] f (x) = ∂ f (x)+ εB, (26.4)

where B is the unit ball in some fixed Euclidian norm and ∂ f (x) is the Clarke
subdifferential of f . The present section motivates this choice.

The first observation concerns the optimality condition (26.2) arising from the
choice (26.4). Namely 0 ∈ ∂[ε] f (x̄) can also be written as 0 ∈ ∂ ( f + ε‖ ·−x‖)(x),
meaning that a small perturbation of f is critical at x.

We can also derive a weak form of ε-optimality from 0 ∈ ∂[ε] f (x) for composite
functions f = g ◦F with g convex and F smooth or, more generally, for lower C2

functions (see [45]) which have such a representation locally.

Lemma 26.1. Let f = g ◦F where g is convex and F is of class C2, and suppose
0 ∈ ∂[ε] f (x). Fix r > 0, and define

cr := max
‖d‖=1

max
‖x′−x‖≤r

max
φ∈∂g(F(x))

φ%D2F(x′)[d,d].

Then x is (rε+ r2cr/2)-optimal on the ball B(x,r).

Proof. We have to prove f (x) ≤ f (x+)+ rε + r2cr/2 for every x+ ∈ B(x,r). Write
x+ = x+ td for some ‖d‖ = 1 and t ≤ r. Since 0 ∈ ∂[ε] f (x), and since ∂ f (x) =
DF(x)∗∂g(F(x)), there exists φ ∈ ∂g(F(x)) such that ‖DF(x)∗φ‖ ≤ ε . In other
words, ‖φ%DF(x)d‖ ≤ ε because ‖d‖= 1. By the subgradient inequality we have

φ% (F(x+ td)−F(x)) ≤ g(F(x+ td))− g(F(x)) = f (x+)− f (x). (26.5)

Second-order Taylor expansion of t �→ φ%F(x+ td) at t = 0 gives

φ%F(x+ td) = φ%F(x)+ tφ%DF(x)d + t2

2 φ
%D2F(xt)[d,d]

for some xt on the segment [x,x+ td]. Substituting this into (26.5) and using the
definition of cr give

f (x)≤ f (x+)+ t‖φ%DF(x)d‖+ t2

2 ‖φ%D2F(xt)[d,d]‖ ≤ f (x+)+ rε+ r2

2 cr,

hence the claim. �
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Remark 26.2. For convex f we can try to relate the two approximate subdifferen-
tials in the sense that

∂ε f (x) ⊂ ∂[ε ′] f (x)

for a suitable ε ′= ε ′(x,ε). For a convex quadratic function f (x) = 1
2 x%Qx+q%x it is

known that ∂ε f (x) = {∇ f (x)+Q1/2z : 1
2‖z‖2 ≤ ε}, [24], so that ∂ε f (x) ⊂ ∂ f (x)+

ε ′B = ∂[ε ′] f (x) for ε ′ = sup{‖Q1/2z‖ : 1
2‖z‖2 ≤ ε}, which means that ε ′(x,ε) is

independent of x and behaves as ε ′=O(ε1/2). We expect this type of relation to hold
as soon as f has curvature information around x. On the other hand, if f (x) = |x|,
then ∂ fε (x) = ∂ f (x)+ ε

|x|B for x �= 0 (and ∂ε f (0) = ∂ f (0)), which means that the

relationship ε ′ = ε/|x| is now linear in ε for fixed x �= 0. In general it is difficult
to relate ε to ε ′. See Hiriart-Urruty and Seeger [23] for more information on this
question.

Remark 26.3. For composite functions f = g ◦F with g convex and F of class C1

we can introduce

∂ε f (x) = DF(x)∗∂εg(F(x)),

where ∂εg(y) is the usual convex ε-subdifferential (26.3) of g and DF(x)∗ is the
adjoint of the differential of F at x. Since the corresponding chain rule is valid in
the case of an affine F , ∂ε f (x) is consistent with (26.3). Without convexity ∂ fε (x)
no longer preserves the global properties of (26.3). Yet, for composite functions
f = g◦F , a slightly more general version of Lemma 26.1 combining ∂[σ ] f and ∂ε f
can be proved along the lines of [41, Lemma 2]. In that reference the result is shown
for the particular case g = λ1, but an extension can be obtained by reasoning as in
Lemma 26.1.

Remark 26.4. For convex f the set ∂[ε] f (x) coincides with the Fréchet ε-sub
differential ∂F

ε f (x). According to [34, Corollary 3.2] the same remains true for
approximate convex functions. For the latter see Sect. 26.5.

26.3 Elements of the Algorithm

26.3.1 Local Model

Let x be the current iterate of the outer loop. The inner loop with counter k generates
a sequence yk of trial steps, one of which is eventually accepted to become the new
serious step x+. At each instant k we dispose of a convex working model φk(·,x),
which approximates f in a neighborhood of x. We suppose that we know at least
one approximate subgradient g(x) ∈ ∂[ε] f (x). The affine function

m0(·,x) = f (x)+ g(x)%(·− x)
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will be referred to as the exactness plane at x. For the moment we assume that it
gives an exact value of f at x, but not an exact subgradient. The algorithm assures
φk(·,x)≥m0(·,x) at all times k, so that g(x)∈ ∂φk(x,x) for all k. In fact we construct
φk(·,x) in such a way that ∂φk(x,x)⊂ ∂[ε] f (x) at all times k.

Along with the first-order working model φk(·,x) we also consider an associated
second-order model of the form

Φk(y,x) = φk(y,x)+
1
2(y− x)%Q(x)(y− x),

where Q(x) depends on the serious iterate x, but is fixed during the inner loop k. We
allow Q(x) to be indefinite.

26.3.2 Cutting Planes

Suppose yk is a null step. Then model Φk(·,x) which gave rise to yk was not rich
enough and we have to improve it at the next inner loop step k + 1 in order to
perform better. We do this by modifying the first-order part. In convex bundling
one includes a cutting plane at yk into the new model φk+1(·,x). This remains the
same with approximate subgradients and values (cf. [22,30]) as soon as the concept
of cutting plane is suitably modified. Notice that we have access to gk ∈ ∂[ε] f (yk),
which gives us an approximate tangent

tk(·) = f (yk)+ g%k (·− yk)

at yk. Since f is not convex, we cannot use tk(·) directly as cutting plane.
Instead we use a technique originally developed in Schramm and Zowe [48] and
Lemaréchal [32], which consists in shifting tk(·) downwards until it becomes useful
for φk+1(·,x). Fixing c > 0 once and for all, we call

sk := [tk(x)− f (x)]+ + c‖yk− x‖2 (26.6)

the downshift and introduce

mk(·,x) = tk(·)− sk,

called the downshifted tangent.
We sometimes use the following more stringent notation, where no reference

to the counter k is made. The approximate tangent is ty,g(·) = f (y) + g%(· − y),
bearing a reference to the point y where it is taken and to the specific approximate
subgradient g ∈ ∂[ε] f (y). The downshifted tangent is then my,g(·,x) = ty,g(·)− s,
where s = s(y,g,x) = [ty,g(x)− f (x)]+ + c‖y− x‖2 is the downshift. Since this
notation is fairly heavy, we will try to avoid it whenever possible and switch to
the former, bearing in mind that tk(·) depends both on yk and the subgradient
gk ∈ ∂[ε] f (yk). Similarly, the downshifted tangent plane mk(·,x) depends on yk, gk,
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and on x, as does the downshift sk. We use mk(·,x) as a substitute for the classical
cutting plane. For convenience we continue to call mk(·,x) a cutting plane.

The cutting plane satisfies mk(x,x)≤ f (x)−c‖yk−x‖2, which assures that it does
not interfere with the subdifferential of φk+1(·,x) at x. We build φk+1(·,x) in such a
way that it has mk(·,x) as an affine minorant.

Proposition 26.5. Let φk+1(·,x) =max{mν(·,x) : ν = 0, . . . ,k}. Then ∂φk+1(x,x)⊂
∂[ε] f (x).

Proof. As all the downshifts sk are positive, φk+1(y,x) = m0(y,x) in a neighborhood
of x; hence ∂φk+1(x,x) = ∂m0(x,x) = {g(x)} ⊂ ∂[ε] f (x). �

26.3.3 Tangent Program

Given the local model Φk(·,x) = φk(·,x)+ 1
2 (·− x)%Q(x)(·− x) at serious iterate x

and inner loop counter k, we solve the tangent program

min
y∈Rn

Φk(y,x)+
τk
2 ‖y− x‖2. (26.7)

We assume that Q(x) + τkI , 0, which means (26.7) is strictly convex and has a
unique solution yk, called a trial step. The optimality condition for (26.7) implies

(Q(x)+ τkI)(x− yk) ∈ ∂φk(y
k,x). (26.8)

If φk(·,x) = max{mν(·,x) : ν = 0, . . . ,k}, with mν(·,x) = aν + g%ν (· − x), then we
can find λ0 ≥ 0, . . . ,λk ≥ 0, summing up to 1, such that

g∗k := (Q(x)+ τkI)(x− yk) =
k

∑
ν=0

λνgν .

Traditionally, g∗k is called the aggregate subgradient at yk. We build the aggregate
plane

m∗k(·,x) = a∗k + g∗%k (·− x),

where a∗k = ∑k
ν=1λνaν . Keeping m∗k(·,x) as an affine minorant of φk+1(·,x) allows

to drop some of the older cutting planes to avoid overflow. As ∂φk(yk,x) is the
subdifferential of a max-function, we know that λν > 0 precisely for those mν(·,x)
which are active at yk. That is,∑k

ν=1λνmν (yk,x) = φk(yk,x). Therefore the aggregate
plane satisfies

m∗k(y
k,x) = φk(y

k,x). (26.9)
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As our algorithm chooses φk+1 such that m∗k(·,x) ≤ φk+1(·,x), we have φk(yk,x) ≤
φk+1(yk,x). All this follows the classical line originally proposed in Kiwiel [25].
Maintaining a model φk(·,x) which contains aggregate subgradients from previous
sweeps instead of all the older gν , ν = 0, . . . ,k does not alter the statement of
Proposition 26.5 nor of formula (26.9).

26.3.4 Testing Acceptance

Having computed the kth trial step yk via (26.7), we have to decide whether it should
be accepted as the new serious iterate x+. We compute the test quotient

ρk =
f (x)− f (yk)

f (x)−Φk(yk,x)
.

Fixing constants 0 < γ < Γ < 1, we call yk bad if ρk < γ and good if ρk ≥ Γ . If
yk is not bad, meaning ρk ≥ γ , then it is accepted to become x+. We refer to this as
a serious step. Here the inner loop ends. On the other hand, if yk is bad, then it is
rejected and referred to as a null step. In this case the inner loop continues.

26.3.5 Management of τ in the Inner Loop

The most delicate point is the management of the proximity control parameter
during the inner loop. Namely, it may turn out that the trial steps yk proposed by
the tangent program (26.7) are too far from the current x, so that no decrease below
f (x) can be achieved. In the convex case one relies entirely on the mechanism of
cutting planes. Indeed, if yk is a null step, then the convex cutting plane, when added
to model φk+1(·,x), will cut away the unsuccessful yk, paving the way for a better
yk+1 at the next sweep.

The situation is more complicated without convexity, where cutting planes are
no longer tangents to f . In the case of downshifted tangents the information stored
in the ideal set of all theoretically available cutting planes may not be sufficient to
represent f correctly when yk is far away from x. This is when we have to force
smaller steps by increasing τ , i.e., by tightening proximity control. As a means to
decide when this has to happen, we use the parameter

ρ̃k =
f (x)−Mk(yk,x)
f (x)−Φk(yk,x)

, (26.10)
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where mk(·,x) is the new cutting plane drawn for yk as in Sect. 26.3.1 and
Mk(·,x) = mk(·,x) + 1

2 (· − x)%Q(x)(· − x). We fix a parameter γ̃ with γ < γ̃ < 1
and make the following decision.

τk+1 =

{
2τk if ρk < γ and ρ̃k ≥ γ̃,
τk if ρk < γ and ρ̃k < γ̃.

(26.11)

The idea in (26.11) can be explained as follows. The quotient ρ̃k in (26.10) can also
be written as ρ̃k =

(
f (x)−Φk+1(yk,x)

)
/
(

f (x)−Φk(yk,x)
)
, because the cutting

plane at stage k will be integrated into model Φk+1 at stage k + 1. If ρ̃k ≈ 1,
we can therefore conclude that adding the new cutting plane at the null step yk

hardly changes the situation. Put differently, had we known the cutting plane before
computing yk, the result would not have been much better. In this situation we
decide to force smaller trial steps by increasing the τ-parameter. If on the other
hand ρ̃k- 1, then the gain of information provided by the new cutting plane at yk is
substantial with regard to the information already stored in Φk. Here we continue to
add cutting planes and aggregate planes only, hoping that we will still make progress
without having to increase τ . The decision ρ̃k ≈ 1 versus ρ̃k - 1 is formalized by
the rule (26.11).

Remark 26.6. By construction ρ̃k ≥ 0, because aggregation assures that φk+1(yk,x)
≥ φk(yk,x). Notice that in contrast ρk may be negative. Indeed, ρk < 0 means that the
trial step yk proposed by the tangent program (26.7) gives no descent in the function
values, meaning that it is clearly a bad step.

26.3.6 Management of τ in the Outer Loop

The proximity parameter τ will also be managed dynamically between serious steps
x→ x+. In our algorithm we use a memory parameter τ�j , which is specified at the

end of the ( j−1)st inner loop and serves to initialize the jth inner loop with τ1 = τ�j .
A first rule which we already mentioned is that we need Q(x j)+ τkI , 0 for all k

during the jth inner loop. Since τ is never decreased during the inner loop, we can
assure this if we initialize τ1 >−λmin(Q(x j)).

A more important aspect is the following. Suppose the ( j−1)st inner loop ended
at inner loop counter k j−1, i.e., x j = ykj−1 with ρk j−1 ≥ γ . If acceptance was good,
i.e., ρk j−1 ≥ Γ , then we can trust our model, and we account for this by storing a

smaller parameter τ�j =
1
2τk j−1 < τk j−1 for the jth outer loop. On the other hand, if

acceptance of the ( j− 1)st step was neither good nor bad, meaning γ ≤ ρk j−1 ≤ Γ ,
then there is no reason to decrease τ for the next outer loop, so we memorize τk j−1 ,
the value we had at the end of the ( j− 1)st inner loop. Altogether
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τ�j =

{
max{ 1

2τk j−1 ,−λmin(Q(x j))+ ζ} if ρk j−1 ≥ Γ ,
max{τk j−1 ,−λmin(Q(x j))+ ζ} if γ ≤ ρk j−1 < Γ ,

(26.12)

where ζ > 0 is some small threshold fixed once and for all.

26.3.7 Recycling of Planes

In a convex bundle algorithm one keeps in principle all cutting planes in the model,
using aggregation to avoid overflow. In the nonconvex case this is no longer possible.
Cutting planes are downshifted tangents, which links them to the value f (x) of
the current iterate x. As we pass from x to a new serious iterate x+, the cutting plane
mz,g(·,x)= a+g%(·−x) with g∈ ∂[ε] f (z) for some z cannot be used as such, because
we have no guarantee whether a+ g%(x+− x) ≤ f (x+). But we can downshift it
again if need be. We recycle the plane as

mz,g(·,x+) = a− s++ g%(·− x), s+ = [mz,g(x
+,x)− f (x+)]+ + c‖x+− z‖2.

In addition one may also apply a test whether z is too far from x+ to be of interest,
in which case the plane should simply be removed from the stock.

26.4 Algorithm

Algorithm (Proximity control algorithm for (26.1)).

Parameters: 0 < γ < Γ < 1, γ < γ̃ < 1, 0 < q < ∞, q < T < ∞, ε̃ > 0.
1: Initialize outer loop. Choose initial guess x1 and an initial matrix Q1 = Q%1

with −qI ) Q1 ) qI. Fix memory control parameter τ�1 such that Q1 + τ�1I , 0.
Put j = 1.

2: Stopping test. At outer loop counter j, stop if 0 ∈ ∂[ε̃] f (x j). Otherwise go to
inner loop.

3: Initialize inner loop. Put inner loop counter k = 1 and initialize τ-parameter
using the memory element, i.e., τ1 = τ�j . Choose initial convex working model

φ1(·,x j), possibly recycling some planes from previous sweep j− 1, and let
Φ1(·,x j) = φ1(·,x j)+ 1

2(·− x j)%Q j(·− x j).
4: Trial step generation. At inner loop counter k solve tangent program

min
y∈Rn

Φk(y,x
j)+ τk

2 ‖y− x j‖2.

The solution is the new trial step yk.
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5: Acceptance test. Check whether

ρk =
f (x j)− f (yk)

f (x j)−Φk(yk,x j)
≥ γ.

If this is the case put x j+1 = yk (serious step), quit inner loop, and go to step 8.
If this is not the case (null step) continue inner loop with step 6.

6: Update proximity parameter. Compute a cutting plane mk(·,x j) at x j for
the null step yk. Let Mk(·,x j) = mk(·,x j)+ 1

2(· − x j)%Q j(· − x j) and compute
secondary control parameter

ρ̃k =
f (x j)−Mk(yk,x j)

f (x j)−Φk(yk,x j)
.

Put τk+1 =

{
τk, if ρ̃k < γ̃ (bad)

2τk, if ρ̃k ≥ γ̃ (too bad)

7: Update working model. Build new convex working model φk+1(·,x j) based
on null step yk by adding the new cutting plane mk(·,x j) (and using aggregation
to avoid overflow). Keep exactness plane in the working model. Then increase
inner loop counter k and continue inner loop with step 4.

8: Update Q j and memory element. Update matrix Q j → Q j+1, respecting
Q j+1 = Q%j+1 and −qI ) Q j+1 ) qI. Then store new memory element

τ�j+1 =

⎧⎨
⎩
τk, if γ ≤ ρk < Γ (not bad)

1
2τk, if ρk ≥ Γ (good)

Increase τ�j+1 if necessary to ensure Q j+1 + τ�j+1I , 0. If τ�j+1 > T then reset

τ�j+1 = T . Increase outer loop counter j by 1 and loop back to step 2.

26.5 Analysis of the Inner Loop

In this section we analyze the inner loop and show that there are two possibilities.
Either the inner loop terminates finitely with a step x+ = yk satisfying ρk ≥ γ or we
get an infinite sequence of null steps yk which converges to x. In the latter case, we
conclude that 0 ∈ ∂[ε̃] f (x), i.e., that x is approximate optimal.

Suppose the inner loop turns forever. Then there are two possibilities. Either τk

is increased infinitely often, so that τk→∞, or τk is frozen, τk = τk0 for some k0 and
all k ≥ k0. These scenarios will be analyzed in Lemmas 26.9 and 26.11. Since the
matrix Q(x) is fixed during the inner loop, we write it simply as Q.

To begin with, we need an auxiliary construction. We define the following convex
function:
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φ(y,x) = sup{mz,g(y,x) : z ∈ B(0,M),g ∈ ∂[ε] f (y)}, (26.13)

where B(0,M) is a fixed ball large enough to contain x and all trial steps encountered
during the inner loop. Recall that mz,g(·,x) is the cutting plane at z with approximate
subgradient g ∈ ∂[ε] f (z) with respect to the serious iterate x. Due to boundedness of
B(0,M), φ(·,x) is defined everywhere.

Lemma 26.7. We have φ(x,x) = f (x), ∂φ(x,x) = ∂[ε] f (x), and φ is jointly upper
semicontinuous. Moreover, if yk ∈ B(0,M) for all k, then φk(·,x)≤ φ(·,x) for every
first-order working model φk.

Proof. (1) The first statement follows because every cutting plane drawn at some
z �= x and g ∈ ∂[ε] f (z) satisfies mz,g(x,x) ≤ f (x)− c‖x− z‖2 < f (x), while
cutting planes at x obviously have mx,g(x,x) = f (x).

(2) Concerning the second statement, let us first prove ∂[ε] f (x)⊂ ∂φ(x,x). We con-
sider the set of limiting subgradients

∂ l f (x) = { lim
k→∞

∇ f (yk) : yk→ x, f is differentiable at yk}.

Then co∂ l f (x) = ∂ f (x) by [13]. It therefore suffices to show ∂ l f (x) + εB ⊂
∂φ(x,x), because ∂φ(x,x) is convex and we then have ∂φ(x,x) ⊃ co(∂ l f (x)+
εB) = co∂ l f (x)+ εB = ∂ f (x)+ εB.

Let ga ∈ ∂ l f (x) + εB. We have to show ga ∈ ∂φ(x,x). Choose g ∈ ∂ l f (x)
such that ‖g−ga‖ ≤ ε . Pick a sequence yk→ x and gk =∇ f (yk) ∈ ∂ f (yk) such
that gk→ g. Let ga,k = gk + ga− g and then ga,k ∈ ∂[ε] f (yk) and ga,k→ ga. Let
mk(·,x) be the cutting plane drawn at yk with approximate subgradient ga,k, then
mk(yk,x)≤ φ(yk,x). By the definition of the downshift process

mk(y,x) = f (yk)+ g%a,k(y− yk)− sk,

where sk is the downshift (26.6). There are two cases, sk = c‖yk − x‖2, and
sk = tk(x)− f (x) + c‖yk− x‖2 according to whether the term [. . . ]+ in (26.6)
equals zero or not.

Let us start with the second case, where tk(x) > f (x). Then sk = f (yk) +
g%a,k(x− yk)− f (x)+ c‖yk− x‖2 and

mk(y,x) = f (yk)+ g%a,k(y− yk)− f (yk)− g%a,k(x− yk)+ f (x)− c‖yk− x‖2

= f (x)+ g%a,k(y− x)− c‖yk− x‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y,x)− f (x) = g%a,k(y− x)− c‖yk− x‖2.

Passing to the limit using yk→ x and ga,k→ ga proves ga ∈ ∂φ(x,x).
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It remains to discuss the first case, where tk(x)≤ f (x), so that sk = c‖yk−x‖2.
Then

mk(·,x) = f (yk)+ g%a,k(·− yk)− c‖yk− x‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y,x)− f (x)

= f (yk)− f (x)+ g%a,k(y− yk)− c‖yk− x‖2

= f (yk)− f (x)+ g%a,k(x− yk)+ g%a,k(y− x)− c‖yk− x‖2.

As y is arbitrary, we have ga,k ∈ ∂|ζk |φ(x,x), where ζk = f (yk)− f (x)+g%a,k(x−
yk)− c‖yk− x‖2. Since ζk → 0, yk → x and ga,k → ga, we deduce again ga ∈
∂φ(x,x). Altogether for the two cases [. . . ]+ = 0 and [. . . ]+ > 0 we have shown
∂ l f (x)+ εB⊂ ∂φ(x,x).

(3) Let us now prove ∂φ(x,x)⊂ ∂ f (x)+ εB. Let g ∈ ∂φ(x,x) and m(·,x) = f (x)+
g%(· − x) the tangent plane to the graph of φ(·,x) at x associated with g. By
convexity m(·,x) ≤ φ(·,x). We fix h ∈ R

n and consider the values φ(x+ th,x)
for t > 0. According to the definition of φ(·,x) we have φ(x+ th,x) =mzt ,gt (x+
th,x), where mzt ,gt (·,x) is a cutting plane drawn at some zt ∈ B(0,M) with gt ∈
∂[ε] f (zt ). The slope of the cutting plane along the ray x+R+h is g%t h. Now the
cutting plane passes through φ(x+ th,x) ≥ m(x+ th,x), which means that its
value at x+ th is above the value of the tangent. On the other hand, according to
the downshift process, the cutting plane satisfies mzt ,gt (x,x)≤ f (x)−c‖x−zt‖2.
Its value at x is therefore below the value of m(x,x) = f (x). These two facts
together tell us that mzt ,gt (·,x) is steeper than m(·,x) along the ray x+R+h. In
other words, g%h≤ g%t h. Next observe that φ(x+ th,x)→ φ(x,x) = f (x) as t→
0+. That implies mzt ,gt (x+ th,x)→ f (x). Since by the definition of downshift
mzt ,gt (x+ th,x)≤ f (x)−c‖x− zt‖2, it follows that we must have ‖x− zt‖2→ 0,
i.e., zt→ x as t→ 0+. Passing to a subsequence, we may assume gt→ ĝ for some
ĝ. With zt→ x it follows from upper semicontinuity of the Clarke subdifferential
that ĝ ∈ ∂[ε] f (x). On the other hand, g%h ≤ g%t h for all t implies g%h ≤ ĝ%h.
Therefore g%h≤ σK(h) = max{g̃%h : g̃ ∈ K}, where σK is the support function
of K = ∂[ε] f (x). Given that h was arbitrary, and as K is closed convex, this
implies g ∈ K by Hahn–Banach.

(4) Upper semicontinuity of φ follows from upper semicontinuity of the Clarke
subdifferential. Indeed, let x j → x, y j → y. Using the definition (26.13) of φ ,
find cutting planes mz j ,g j(·,x j) = tz j (·)− s j at serious iterate x j, drawn at z j

with g j ∈ ∂[ε] f (z j), such that φ(y j ,x j)≤mz j ,g j(y j,x j)+ε j and ε j→ 0. We have
tz j (y) = f (z j)+ g%j (y− z j). Passing to a subsequence, we may assume z j → z
and g j→ g∈ ∂[ε] f (z). That means tz j (·)→ tz(·), and since y j→ y also tz j (y j)→
tz(y). In order to conclude for the mz j ,g j(·,x j) we have to see how the downshift
behaves. We have indeed s j→ s, where s is the downshift at z with respect to the
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approximate subgradient g and serious iterate x. Therefore mz,g(·,x) = tz(·)− s.
This shows mz j ,g j (·,x j) = tz j(·)− s j → tz(·)− s = mz,g(·,x) as j→ ∞, and then
also mz j ,g j (y j,x j)= tz j(y j)−s j→ tz(y)−s=mz,g(y,x), where uniformity comes
from boundedness of the g j. This implies limmz j ,g j(y j,x j) =mz,g(y,x)≤ φ(y,x)
as required.

(5) The inequality φk ≤ φ is clear, because φk(·,x) is built from cutting planes
mk(·,x), and all these cutting planes are below the envelope φ(·,x). �

Remark 26.8. In [40, 42] the case ε = 0 is discussed and a function φ(·,x) with
the properties in Lemma 26.7 is called a first-order model of f at x. It can be
understood as a generalized first-order Taylor expansion of f at x. Every locally
Lipschitz function f has the standard or Clarke model φ �(y,x) = f (x)+ f 0(x,y−x),
where f 0(x,d) is the Clarke directional derivative at x. In the present situation it is
reasonable to call φ(·,x) an ε-model of f at x.

Following [34] a function f is called ε-convex on an open convex set U if f (tx+
(1− t)y) ≤ t f (x) + (1− t) f (y) + εt(1− t)‖x− y‖ for all x,y ∈ U and 0 ≤ t ≤ 1.
Every ε-convex function satisfies f ′(y,x− y) ≤ f (x)− f (y)+ ε‖x− y‖; hence for
g ∈ ∂ f (y),

g%(x− y)≤ f (x)− f (y)+ ε‖x− y‖. (26.14)

A function f is called approximate convex if for every x and ε > 0 there exists
δ > 0 such that f is ε-convex on B(x,δ ). Using results from [14,34] one may show
that approximate convex functions coincide with lower C1 function in the sense of
Spingarn [51].

Lemma 26.9. Suppose the inner loop turns forever and τk → ∞.

1. If f is ε ′-convex on a set containing all yk, k ≥ k0, then 0 ∈ ∂[ε̃] f (x), where
ε̃ = ε+(ε ′+ ε)/(γ̃− γ).

2. If f is lower C1, then 0 ∈ ∂[αε] f (x), where α = 1+(γ̃− γ)−1.

Proof.

(i) The second statement follows from the first, because every lower C1 function
is approximate convex, hence ε ′-convex on a suitable neighborhood of x.
We therefore concentrate on the first statement.

(ii) By assumption none of the trial steps is accepted, so that ρk < γ for all k ∈
N. Since τk is increased infinitely often, there are infinitely many inner loop
instances k where ρ̃k ≥ γ̃ . Let us prove that under these circumstances yk→ x.
Recall that g∗k = (Q+ τkI)(x− yk) ∈ ∂φk(yk,x). By the subgradient inequality
this gives

g∗%k (x− yk)≤ φk(x,x)−φk(y
k,x). (26.15)
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Now use φk(x,x) = f (x) and observe that m0(yk,x)≤ φk(yk,x), where m0(·,x)
is the exactness plane. Since m0(y,x) = f (x)+ g(x)%(y− x) for some g(x) ∈
∂[ε] f (x), expanding the term on the left of (26.15) gives

(x− yk)%(Q+ τkI)(x− yk)≤ g(x)%(x− yk)≤ ‖g(x)‖‖x− yk‖. (26.16)

Since τk→∞, the term on the left-hand side of (26.16) behaves asymptotically
like τk‖x− yk‖2. Dividing (26.16) by ‖x− yk‖ therefore shows that τk‖x− yk‖
is bounded by ‖g(x)‖. As τk→ ∞, this could only mean yk→ x.

(iii) Let us use yk → x and go back to formula (26.15). Since the left hand side
of (26.15) tends to 0 and φk(x,x) = f (x), we see that the limit superior of
φk(yk,x) is f (x). On the other hand, φk(yk,x)≥m0(yk,x), where m0(·,x) is the
exactness plane. Since clearly m0(yk,x)→ m0(x,x) = f (x), the limit inferior
is also f (x), and we conclude that φk(yk,x)→ f (x).

Keeping this in mind, let us use the subgradient inequality (26.15) again and
subtract a term 1

2(x− yk)%Q(x− yk) from both sides. That gives the estimate

1
2 (x− yk)%Q(x− yk)+ τk‖x− yk‖2 ≤ f (x)−Φk(yk,x).

Fix 0 < ζ < 1. Using τk→ ∞ we have

(1− ζ )τk‖x− yk‖ ≤ ‖g∗k‖ ≤ (1+ ζ )τk‖x− yk‖
and also

1
2(x− yk)%Q(x− yk)+ τk‖x− yk‖2 ≥ (1− ζ )τk‖x− yk‖2

for sufficiently large k. Therefore,

f (x)−Φk(y
k,x)≥ 1−ζ

1+ζ ‖g∗k‖‖x− yk‖ (26.17)

for k large enough.
(iv) Now let ηk := dist

(
g∗k,∂φ(x,x)

)
. We argue that ηk → 0. Indeed, using the

subgradient inequality at yk in tandem with φ(·,x) ≥ φk(·,x), we have for all
y ∈R

n

φ(y,x) ≥ φk(y
k,x)+ g∗k

%(y− yk).

Here our upper envelope function (26.13) is defined such that the ball B(0,M)
contains x and all trial points yk at which cutting planes are drawn.

Since the subgradients g∗k are bounded by part (ii), there exists an infinite
subsequence N ⊂ N such that g∗k → g∗, k ∈ N , for some g∗. Passing to
the limit k ∈ N and using yk → x and φk(yk,x)→ f (x) = φ(x,x), we have
φ(y,x) ≥ φ(x,x) + g∗%(y− x) for all y. Hence g∗ ∈ ∂φ(x,x), which means
ηk = dist(g∗k ,∂φ(x,x)) ≤ ‖g∗k− g∗‖ → 0, k ∈N , proving the argument.
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(v) Using the definition of ηk, choose g̃k ∈ ∂φ(x,x) such that ‖g∗k − g̃k‖ = ηk.
Now let dist(0,∂φ(x,x)) = η . Then ‖g̃k‖ ≥ η for all k ∈N . Hence ‖g∗k‖ ≥
η−ηk > (1−ζ )η for k ∈N large enough, given that ηk→ 0 by (iv). Going
back with this to (26.17) we deduce

f (x)−Φk(y
k,x)≥ (1−ζ )2

1+ζ η‖x− yk‖ (26.18)

for k ∈N large enough.
(vi) We claim that f (yk)≤Mk(yk,x)+(1+ζ )(ε ′+ε)‖x−yk‖ for all k sufficiently

large. Indeed, we have mk(·,x) = tk(·)− sk, where sk is the downshift of the
approximate tangent tk(·) at yk, gεk ∈ ∂[ε] f (yk), with regard to the serious
iterate x. There are two cases. Assume first that tk(x)> f (x). Then

mk(y,x) = f (yk)+ g%εk(y− yk)− sk

= f (yk)+ g%εk(y− yk)− c‖x− yk‖2− tk(x)+ f (x)

= f (x)+ g%εk(y− x)− c‖x− yk‖2.

In consequence

f (yk)−mk(y
k,x) = f (yk)− f (x)−g%εk(y

k−x)+c‖x−yk‖2

= f (yk)− f (x)−g%k (y
k−x)+(gk−gεk)

%(x−yk)+c‖x−yk‖2.

Now since f is ε ′-convex, estimate (26.14) is valid under the form

g%k (x− yk)≤ f (x)− f (yk)+ ε ′‖x− yk‖.

We therefore get

f (yk)−mk(y
k,x)≤ (ε ′+ ε)‖x− yk‖+ c‖x− yk‖2.

Subtracting a term 1
2(x− yk)%Q(x− yk) on both sides gives

f (yk)−Mk(y
k,x)≤ (ε ′+ ε+νk)‖x− yk‖,

where νk := c‖x− yk‖2− 1
2(x− yk)%Q(x− yk)→ 0 and Mk(y,x) = mk(y,x)+

1
2 (y− x)%Q(y− x). Therefore

f (yk)−Mk(y
k,x)≤ (1+ ζ )(ε ′+ ε)‖x− yk‖ (26.19)

for k large enough.
Now consider the second case tk(x) ≤ f (x). Here we get an even better

estimate than (26.19), because sk = c‖x− yk‖2, so that f (yk)−mk(yk,x) =
c‖x− yk‖2 ≤ ε‖x− yk‖ for k large enough.
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(vii) To conclude, using (26.18) and (26.19) we expand the coefficient ρ̃k as

ρ̃k = ρk +
f (yk)−Mk(yk,x)
f (x)−Φk(yk,x)

≤ ρk +
(1+ ζ )2(ε ′+ ε)‖x− yk‖

(1− ζ )2η‖x− yk‖ = ρk +
(1+ ζ )2(ε ′+ ε)

(1− ζ )2η
.

This shows

η <
(1+ ζ )2(ε ′+ ε)
(1− ζ )2(γ̃− γ) .

For suppose we had η ≥ (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ) , then ρ̃k ≤ ρk +(γ̃ − γ) ≤ γ̃ for all k,

contradicting ρ̃k > γ̃ for infinitely many k. As 0 < ζ < 1 was arbitrary, we
have the estimate η ≤ ε ′+ε

γ̃−γ . Since ∂φ(x,x) = ∂ f (x)+ εB by Lemma 26.7, we
deduce 0 ∈ ∂φ(x,x)+ηB ⊂ ∂ f (x)+ (ε +η)B, and this is the result claimed
in statement 1. �

Remark 26.10. Suppose we choose γ very small and γ̃ close to 1, then α = 2+ ξ
for some small ξ , so roughly α ≈ 2.

Lemma 26.11. Suppose the inner loop turns forever and τk is frozen. Then yk→ x
and 0 ∈ ∂[ε] f (x).
Proof.

(i) The control parameter is frozen from counter k0 onwards, and we put τ := τk,
k ≥ k0. This means that ρk < γ and ρ̃k < γ̃ for all k ≥ k0.

(ii) We prove that the sequence of trial steps yk is bounded. Notice that

g∗%k (x− yk)≤ φk(x,x)−φk(y
k,x)

by the subgradient inequality at yk and the definition of the aggregate subgra-
dient. Now observe that φk(x,x) = f (x) and φk(yk,x) ≥ m0(yk,x). Therefore,
using the definition of g∗k , we have

(x−yk)%(Q+τI)(x−yk)≤ f (x)−m0(y
k,x)= g(x)%(x−yk)≤‖g(x)‖‖x−yk‖.

Since the τ-parameter is frozen and Q+τI, 0, the expression on the left is the
square ‖x− yk‖2

Q+τI of the Euclidean norm derived from Q+ τI. Since both

norms are equivalent, we deduce after dividing by ‖x−yk‖ that ‖x−yk‖Q+τI ≤
C‖g(x)‖ for some constant C > 0 and all k. This proves the claim.

(iii) Let us introduce the objective function of tangent program (26.7) for k ≥ k0:

ψk(·,x) = φk(·,x)+ 1
2 (·− x)%(Q+ τI)(·− x).
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Let m∗k(·,x) be the aggregate plane, then φk(yk,x) = m∗k(y
k,x) by (26.9) and

therefore also

ψk(y
k,x) = m∗k(y

k,x)+ 1
2 (y

k− x)%(Q+ τI)(yk− x).

We introduce the quadratic function ψ∗k (·,x) = m∗k(·,x) + 1
2 (· − x)%(Q+ τI)

(·− x). Then

ψk(y
k,x) = ψ∗k (y

k,x) (26.20)

by what we have just seen. By construction of model φk+1(·,x) we have
m∗k(y,x) ≤ φk+1(y,x), so that

ψ∗k (y,x) ≤ ψk+1(y,x). (26.21)

Notice that ∇ψ∗k (y,x) = ∇m∗k(y,x)+ (Q+ τI)(y− x) = g∗k +(Q+ τI)(y− x),
so that ∇ψ∗k (y

k,x) = 0 by (26.8). We therefore have the relation

ψ∗k (y,x) = ψ∗k (y
k,x)+ 1

2 (y− yk)%(Q+ τI)(y− yk), (26.22)

which is obtained by Taylor expansion of ψ∗k (·,x) at yk. Recall that step 8 of
the algorithm assures Q+ τI , 0, so that the quadratic expression defines the
Euclidean norm ‖ · ‖Q+τI.

(iv) From the previous point (iii) we now have

ψk(yk,x) ≤ ψ∗k (yk,x)+ 1
2‖yk− yk+1‖2

Q+τI [using (26.20)]
= ψ∗k (y

k+1,x) [using (26.22)]
≤ ψk+1(yk+1,x) [using (26.21)]
≤ ψk+1(x,x) (yk+1 minimizer of ψk+1)
= φk+1(x,x) = f (x).

(26.23)
We deduce that the sequence ψk(yk,x) is monotonically increasing and
bounded above by f (x). It therefore converges to some value ψ∗ ≤ f (x).

Going back to (26.23) with this information shows that the term 1
2‖yk−

yk+1‖2
Q+τI is squeezed in between two convergent terms with the same limit,

ψ∗, which implies 1
2‖yk − yk+1‖2

Q+τI → 0. Consequently, ‖yk − x‖2
Q+τI −

‖yk+1 − x‖2
Q+τI also tends to 0, because the sequence of trial steps yk is

bounded by part (ii).
Recalling φk(y,x) = ψk(y,x)− 1

2‖y− x‖2
Q+τI, we deduce, using both con-

vergence results, that

φk+1(y
k+1,x)−φk(y

k,x)

= ψk+1(y
k+1,x)−ψk(y

k,x)− 1
2‖yk+1− x‖2

Q+τI +
1
2‖yk− x‖2

Q+τI→ 0.

(26.24)
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(v) We want to show that φk(yk,x)− φk+1(yk,x) → 0 and then of course also
Φk(yk,x)−Φk+1(yk,x)→ 0.

Recall that by construction the cutting plane mk(·,x) is an affine support
function of φk+1(·,x) at yk. By the subgradient inequality this implies

g%k (y− yk)≤ φk+1(y,x)−φk+1(y
k,x) (26.25)

for all y. Therefore

0 ≤ φk+1(y
k,x)−φk(y

k,x) (using aggregation)

= φk+1(y
k,x)+ g%k (y

k+1− yk)−φk(y
k,x)− g%k (y

k+1− yk)

≤ φk+1(y
k+1,x)−φk(y

k,x)+ ‖gk‖‖yk+1− yk‖ [using (26.25)]

and this term converges to 0, because of (26.24), because the gk are bounded,
and because yk−yk+1→ 0 according to part (iv) above. Boundedness of the gk

follows from boundedness of the trial steps yk shown in part (ii). Indeed, gk ∈
∂ f (yk)+εB, and the subdifferential of f is uniformly bounded on the bounded
set {yk : k ∈ N}. We deduce that φk+1(yk,x)− φk(yk,x)→ 0. Obviously, that
also gives Φk+1(yk,x)−Φk(yk,x)→ 0.

(vi) We now proceed to proveΦk(yk,x)→ f (x) and then also Φk+1(yk,x)→ f (x).
Assume this is not the case, then limsupk→∞ f (x)−Φk(yk,x) =:η > 0. Choose
δ > 0 such that δ < (1− γ̃)η . It follows from (v) above that there exists k1≥ k0

such that

Φk+1(y
k,x)− δ ≤Φk(y

k,x)

for all k ≥ k1. Using ρ̃k ≤ γ̃ for all k ≥ k0 then gives

γ̃
(
Φk(y

k,x)− f (x)
)
≤ Φk+1(y

k,x)− f (x)≤Φk(y
k,x)+ δ − f (x).

Passing to the limit implies −γ̃η ≤ −η + δ , contradicting the choice of δ .
This proves η = 0.

(vii) Having shown Φk(yk,x)→ f (x) and therefore also Φk+1(yk,x)→ f (x), we
now argue that yk→ x. This follows from the definition of ψk, because

Φk(y
k,x)≤ ψk(y

k,x) =Φk(y
k,x)+ τ

2‖yk− x‖2 ≤ ψ∗ ≤ f (x).

Since Φk(yk,x) → f (x) by part (vi), we deduce τ
2‖yk − x‖2 → 0 using

a sandwich argument, which also proves en passant that ψ∗ = f (x) and
φk(yk,x)→ f (x).

To finish the proof, let us now show 0 ∈ ∂[ε] f (x). Remember that by
the necessary optimality condition for (26.7) we have (Q + τI)(x− yk) ∈
∂φk(yk,x). By the subgradient inequality,
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(x− yk)%(Q+ τI)(y− yk) ≤ φk(y,x)−φk(y
k,x)

≤ φ(y,x)−φk(y
k,x),

where φ is the upper envelope (26.13) of all cutting planes drawn at z ∈
B(0,M), g ∈ ∂[ε] f (z), which we choose large enough to contain the bounded
set {x} ∪ {yk : k ∈ N}, a fact which assures φk(·,x) ≤ φ(·,x) for all k
(see Lemma 26.7). Passing to the limit, observing ‖x− yk‖2

Q+τI → 0 and

φk(yk,x)→ f (x) = φ(x,x), we obtain

0≤ φ(y,x)−φ(x,x)

for all y. This proves 0 ∈ ∂φ(x,x). Since ∂φ(x,x) ⊂ ∂[ε] f (x) by Lemma 26.7,
we have shown 0 ∈ ∂[ε] f (x). �

26.6 Convergence of the Outer Loop

In this section we prove subsequence convergence of our algorithm for the case
where function values are exact and subgradients are in ∂[ε] f (yk). We write Q j =

Q(x j) for the matrix of the second-order model, which depends on the serious
iterates x j.

Theorem 26.12. Let x1 be such that Ω = {x ∈ R
n : f (x) ≤ f (x1)} is bounded.

Suppose f is ε ′-convex on Ω and that subgradients are drawn from ∂[ε] f (y),
whereas function values are exact. Then every accumulation point x̄ of the sequence
of serious iterates x j satisfies 0 ∈ ∂[ε̃] f (x̄), where ε̃ = ε+(ε ′+ ε)/(γ− γ̃).
Proof.

(i) From the analysis in Sect. 26.5 we know that if we apply the stopping test in
step 2 with ε̃ = ε +(ε ′+ ε)/(γ − γ̃), then the inner loop ends after a finite
number of steps k with a new x+ satisfying the acceptance test in step 5,
unless we have finite termination due to 0 ∈ ∂[ε̃] f (x). Let us exclude this case,
and let x j denote the infinite sequence of serious iterates. We assume that at
outer loop counter j the inner loop finds a serious step at inner loop counter
k = k j. In other words, ykj = x j+1 passes the acceptance test in step 5 of the
algorithm and becomes a serious iterate, while the yk with k < k j are null
steps. That means

f (x j)− f (x j+1)≥ γ
(

f (x j)−Φk j(x
j+1,x j)

)
. (26.26)
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Now recall that (Q j + τk j I)(x
j − x j+1) ∈ ∂φk j (x

j+1,x j) by optimality of the
tangent program (26.7). The subgradient inequality for φk j (·,x j) at x j+1

therefore gives

(
x j− x j+1)% (Q j + τk j I)(x

j− x j+1) ≤ φk j (x
j,x j)−φk j(x

j+1,x j)

= f (x j)−φk j(x
j+1,x j),

using φk j (x
j,x j) = f (x j). With Φk(y,x j) = φk(y,x j)+ 1

2 (y− x j)%Q j(y− x j)
we have

1
2‖x j+1− x j‖2

Qj+τk j
I ≤ f (x j)−Φk j(x

j+1,x j)≤ γ−1
(

f (x j)− f (x j+1)
)
,

(26.27)

using (26.26). Summing (26.27) from j = 1 to j = J gives

J

∑
j=1

‖x j+1−x j‖2
Qj+τk j

I ≤ γ−1
J

∑
j=1

(
f (x j)− f (x j+1)

)
= γ−1 ( f (x1)− f (xJ+1)

)
.

Here the right-hand side is bounded above because our method is of descent
type in the serious steps and Ω is bounded. Consequently the series on the
left is summable, and therefore ‖x j+1− x j‖2

Qj+τk j
I → 0 as j → ∞. Let x̄ be

an accumulation point of the sequence x j. We have to prove 0 ∈ ∂[ε̃] f (x̄).
We select a subsequence j ∈ J such that x j → x̄, j ∈ J. There are now two
cases. The first is discussed in part (ii); the second is more complicated and
will be discussed in (iii)–(ix).

(ii) Suppose there exists an infinite subsequence J′ of J such that g j := (Q j +
τk j I)

(
x j− x j+1

)
converges to 0, j ∈ J′. We will show that in this case 0 ∈

∂[ε̃] f (x̄).
In order to prove this claim, notice first that since Ω = {x ∈ R

n : f (x) ≤
f (x1)} is bounded by hypothesis, and since our algorithm is of descent type
in the serious steps, the sequence x j, j ∈ N is bounded. We can therefore use
the convex upper envelope function φ of (26.13), where B(0,M) contains Ω
and also all the trial points yk visited during all inner loops j.

Indeed, the set of x j being bounded, so are the ‖g(x j)‖, where g(x j) ∈
∂[ε] f (x j) is the exactness subgradient of the jth inner loop. From (26.16)
we know that ‖x j − yk‖Qj+τkI ≤ ‖g(x j)‖ for every j and every trial step yk

arising in the jth inner loop at some instant k. From the management of the
τ-parameter in the outer loop (26.12) we know that Q j + τkI , ζ I for some
ζ > 0, so ‖x j − yk‖ ≤ ζ−1‖g(x j)‖ ≤ C < ∞, meaning the yk are bounded.
During the following the properties of φ obtained in Lemma 26.7 will be
applied at every x = x j.
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Since g j is a subgradient of φk j (·,x j) at x j+1 = ykj+1, we have for every
test vector h

g%j h ≤ φk j (x
j+1 + h,x j)−φk j (x

j+1,x j)

≤ φ(x j+1 + h,x j)−φk j(x
j+1,x j) [using φk j (·,x j)≤ φ(·,x j)].

Now ykj = x j+1 was accepted in step 5 of the algorithm, which means

γ−1 ( f (x j)− f (x j+1)
)≥ f (x j)−Φk j(x

j+1,x j).

Combining these two estimates for a fixed test vector h gives

g%j h ≤ φ(x j+1 + h,x j)− f (x j)+ f (x j)−φk j(x
j+1,x j)

= φ(x j+1 + h,x j)− f (x j)+ f (x j)−Φk j (x
j+1,x j)

+ 1
2(x

j− x j+1)%Q j(x j− x j+1)

≤ φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j− x j+1)%Q j(x j− x j+1)

= φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j− x j+1)%(Q j + τk j I)(x
j− x j+1)− τk j

2 ‖x j− x j+1‖2

≤ φ(x j+1 + h,x j)− f (x j)+ γ−1( f (x j)− f (x j+1)
)

+ 1
2(x

j− x j+1)%(Q j + τk j I)(x
j− x j+1).

Now fix h′ ∈ R
n. Plugging h = x j− x j+1 + h′ in the above estimate gives

1
2‖x j−x j+1‖2

Qj+τk j
I+g%j h′ ≤ φ(x j + h′,x j)− f (x j)+γ−1

(
f (x j)− f (x j+1)

)
.

(26.28)

Passing to the limit j ∈ J′ and using, in the order named, ‖x j−x j+1‖2
Qj+τk j

I→
0, g j→ 0, x j→ x̄, f (x j)→ f (x̄) = φ(x̄, x̄) and f (x j)− f (x j+1)→ 0, we obtain

0≤ φ(x̄+ h′, x̄)−φ(x̄, x̄). (26.29)

In (26.28) the rightmost term f (x j)− f (x j+1)→ 0 converges by monotonic-
ity, convergence of the leftmost term was shown in part (i), and g j → 0 is
the working hypothesis. Now the test vector h′ in (26.29) is arbitrary, which
shows 0 ∈ ∂φ(x̄, x̄). By Lemma 26.7 we have 0 ∈ ∂[ε] f (x̄)⊂ ∂[ε̃ ] f (x̄).
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(iii) The second more complicated case is when ‖g j‖ = ‖(Q j + τk j I)(x
j −

x j+1)‖ ≥ μ > 0 for some μ > 0 and every j ∈ J. The remainder of this proof
will be entirely dedicated to this case.

We notice first that under this assumption the τk j , j ∈ J, must be
unbounded. Indeed, assume on the contrary that the τk j , j ∈ J, are bounded.
By boundedness of Q j and boundedness of the serious steps, there exists then
an infinite subsequence j ∈ J′ of J such that Q j, τk j , and x j− x j+1 converge
respectively to Q̄, τ̄ , and δ x̄ as j ∈ J′. This implies that the corresponding
subsequence of g j converges to (Q̄+ τ̄I)δ x̄, where ‖(Q̄+ τ̄I)δ x̄‖ ≥ μ > 0.
Similarly, (x j− x j+1)%(Q j + τk j I)(x

j− x j+1)→ δ x̄%(Q̄+ τ̄I)δ x̄. By part (i)

of the proof we have g%j (x j+1− x j) = ‖x j+1− x j‖2
Qj+τk j

I → 0, which means

δ x̄%(Q̄+ τ̄I)δ x̄ = 0. Since Q̄+ τ̄I is symmetric and Q̄+ τ̄I * 0, we deduce
(Q̄+ τ̄I)δ x̄ = 0, contradicting ‖(Q̄+ τ̄I)δ x̄‖ ≥ μ > 0. This argument proves
that the τk j , j ∈ J, are unbounded.

(iv) Having shown that the sequence τk j , j ∈ J is unbounded, we can without loss
assume that τk j → ∞, j ∈ J, passing to a subsequence if required. Let us now
distinguish two types of indices j ∈ J. We let J+ be the set of those j ∈ J
for which the τ-parameter was increased at least once during the jth inner
loop. The remaining indices j ∈ J− are those where the τ-parameter remained
unchanged during the jth inner loop. Since the jth inner loop starts at τ�j and
ends at τk j , we have

J+ = { j ∈ J : τk j < τ�j} and J− = { j ∈ J : τk j = τ�j}.

We claim that the set J− must be finite. For suppose J− is infinite, then τk j →
∞, j ∈ J−. Hence also τ�j → ∞, j ∈ J−. But this contradicts the rule in step 8

of the algorithm, which forces τ�j ≤ T < ∞. This contradiction shows that J+

is cofinal in J.
(v) Remember that we are still in the case whose discussion started in point (iii).

We are now dealing with an infinite subsequence j ∈ J+ of j ∈ J such that
τk j → ∞, ‖g j‖ ≥ μ > 0, and such that the τ-parameter was increased at least
once during the jth inner loop. Suppose this happened for the last time at
stage k j−ν j for some ν j ≥ 1. Then

τk j = τk j−1 = · · ·= τk j−ν j+1 = 2τk j−ν j . (26.30)

According to step 6 of the algorithm, the increase at counter k j−ν j is due to
the fact that

ρk j−ν j < γ and ρ̃k j−ν j ≥ γ̃. (26.31)

This case is labelled too bad in step 6 of the algorithm.
(vi) Condition (26.31) means that there are infinitely many j ∈ J+ satisfying
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ρk j−ν j =
f (x j)− f (ykj−ν j)

f (x j)−Φk j−ν j (y
kj−ν j ,x j)

< γ

and

ρ̃k j−ν j =
f (x j)−Mkj−ν j(y

kj−ν j ,x j)

f (x j)−Φk j−ν j(y
kj−ν j+1,x j)

≥ γ̃.

Notice first that as τk j → ∞ and τk j = 2τk j−ν j , boundedness of the subgradi-

ents g̃ j := (Q j +
1
2τk j I)(x

j− ykj−ν j ) ∈ ∂φk j−ν j (y
kj−ν j ,x j) shows ykj−ν j → x̄.

Indeed, boundedness of the g̃ j follows from the subgradient inequality

(x j−ykj−ν j )%(Q j+τk j−ν j I)(x
j−ykj−ν j) ≤ φk j−ν j (x

j,x j)−φk j−ν j (y
kj−ν j ,x j)

≤ f (x j)−m0(y
kj−ν j ,x j)

= g(x j)%(x j−ykj−ν j )

≤ ‖g(x j)‖‖x j−ykj−ν j‖, (26.32)

where m0(·,x j) = f (x j) + g(x j)%(· − x j) is the exactness plane at x j. As
τk j → ∞, we have τk j−ν j =

1
2τk j → ∞, too, so the left-hand side of (26.32)

behaves asymptotically like constant times τk j−ν j‖x j−ykj−ν j‖2. On the other
hand the x j ∈ Ω are bounded, hence so are the g(x j). The right-hand side
therefore behaves asymptotically like constant times ‖x j − ykj−ν j‖. This
shows boundedness of τk j−ν j‖x j − ykj−ν j‖, and therefore x j − ykj−ν j → 0,
because τk j−ν j → ∞.

(vii) Recall that x j → x̄, j ∈ J. By (vi) we know that ykj−ν j → x̄, j ∈ J. Passing
to a subsequence J′ of J, we may assume g̃ j → g̃ for some g̃. We show g̃ ∈
∂φ(x̄, x̄).

For a test vector h and j ∈ J′,

g̃%j h ≤ φk j−ν j (y
kj−ν j + h,x j)−φk j−ν j(y

kj−ν j ,x j)

≤ φ(ykj−ν j + h,x j)−φk j−ν j (y
kj−ν j ,x j). (26.33)

Using the fact that ρ̃k j−ν j ≥ γ̃ , we have

f (x j)−Φk j−ν j (y
kj−ν j ,x j)≤ γ̃−1

(
f (x j)−Mkj−ν j(y

kj−ν j ,x j)
)
.

Adding 1
2 (y

kj−ν j − x j)%Q j(ykj−ν j − x j) on both sides gives

f (x j)−φk j−ν j (y
kj−ν j ,x j)

≤ γ̃−1
(

f (x j)−Mkj−ν j (y
kj−ν j ,x j)

)
+ 1

2 (y
kj−ν j − x j)%Q j(ykj−ν j − x j).
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Combining this and estimate (26.33) gives

g̃%j h ≤ φ(ykj−ν j + h,x j)− f (x j)+ γ̃−1
(

f (x j)−Mkj−ν j(y
kj−ν j ,x j)

)
+ 1

2(y
kj−ν j − x j)%Q j(ykj−ν j − x j). (26.34)

As we have seen ykj−ν j − x j → 0, hence the rightmost term in (26.34)
converges to 0 by boundedness of Q j. Moreover, we claim that lim f (x j)−
Mkj−ν j(y

kj−ν j ,x j) = 0, so the term γ̃−1(. . . ) on the right-hand side of
(26.34) converges to 0. Indeed, to see this claim, notice first that it suf-
fices to show f (x j) − mkj−ν j (y

kj−ν j ,x j) → 0, because the second-order
term converges to 0. Since mkj−ν j (·,x j) is a cutting plane at x j, we have

mkj−ν j (y
kj−ν j ,x j)≤ f (ykj−ν j ) by definition of the downshift. So it suffices to

show liminfmkj−ν j (y
kj−ν j ,x j) ≥ f (x̄). Now this follows from the definition

of the downshift s j at ykj−ν j with regard to x j . Recall that for the tangent
tk j−ν j(·) at ykj−ν j , approximate subgradient g̃ j, and serious iterate x j, we have

s j = [tk j−ν j(x
j)− f (x j)]+ + c‖ykj−ν j − x j‖2.

We can clearly concentrate on proving tk j−ν j(x
j)− f (x j)→ 0. Now tk j−ν j (x

j)

− f (x j) = f (ykj−ν j)− f (x j)+ g̃%j (x j− ykj−ν j ), and since ykj−ν j → x̄, x j→ x̄,
and the g̃ j are bounded, our claim follows.

Going back to (26.34) with the information g̃%j h→ g̃%h, it remains to prove

limsupφ(ykj−ν j +h,x j)≤ φ(x̄+h, x̄). Indeed, once this is proved, passing to
the limit in (26.34) shows g̃%h ≤ φ(x̄+ h, x̄)− f (x̄) = φ(x̄+ h, x̄)− φ(x̄, x̄).
This proves g̃ ∈ ∂φ(x̄, x̄), and then g̃ ∈ ∂[ε] f (x̄) by Lemma 26.7.

What remains to be shown is obviously joint upper semicontinuity of φ at
(x̄+h, x̄), and this follows from Lemma 26.7; hence our claim g̃ ∈ ∂[ε] f (x̄) is
proved.

(viii) Let η := dist(0,∂φ(x̄, x̄)). Then ‖g̃‖≥ η by (vii) above. Let us fix 0 < ζ < 1;
then, as g̃ j→ g̃, we have ‖g̃ j‖ ≥ (1− ζ )η for j ∈ J′ large enough.

Now, assuming first [. . . ]+ > 0 in the downshift, we have

mkj−ν j (·,x j) = f (ykj−ν j)+ g̃%j (·− ykj−ν j )− s j

= f (ykj−ν j)+g̃%j (·−ykj−ν j )−c‖ykj−ν j−x j‖2−tk j−ν j(x
j)+ f (x j)

= f (x j)+ g̃%j (·− x j)− c‖ykj−ν j − x j‖2,

for g̃ j ∈ ∂[ε] f (ykj−ν j ) as above. Pick g j ∈ ∂ f (ykj−ν j) such that ‖g j− g̃ j‖ ≤ ε .
Then

f (ykj−ν j )−mkj−ν j (y
kj−ν j ,x j) = f (ykj−ν j )− f (x j)− g̃%j (y

kj−ν j − x j)

+c‖ykj−ν j − x j‖2
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= f (ykj−ν j )− f (x j)− g%j (y
kj−ν j − x j)

+(g̃ j− g j)(y
kj−ν j − x j)+ c‖ykj−ν j − x j‖2.

Since f is ε ′-convex, we have g%j (y
kj−ν j−x j)≤ f (x j)− f (ykj−ν j )+ε ′‖ykj−ν j

− x j‖. Substituting this we get

f (ykj−ν j )−mkj−ν j (y
kj−ν j ,x j)≤ (ε ′+ ε)‖ykj−ν j − x j‖+ c‖ykj−ν j − x j‖2.

(26.35)

In the case [. . . ]+ = 0 an even better estimate is obtained, so that (26.35)
covers both cases. Subtracting a term 1

2(y
kj−ν j −x j)%Q j(ykj−ν j −x j) on both

sides of (26.35) and using ykj−ν j − x j→ 0, we get

f (ykj−ν j )−Mkj−ν j(y
kj−ν j ,x j)≤ (ε ′+ ε+ν j)‖ykj−ν j − x j‖,

where ν j → 0. In consequence

f (ykj−ν j)−Mkj−ν j (y
kj−ν j ,x j)≤ (1+ ζ )(ε ′+ ε)‖ykj−ν j − x j‖ (26.36)

for j large enough. Recall that g̃ j = (Q j +
1
2τk j I)(x

j − ykj−ν j ) ∈ ∂φk j−ν j

(ykj−ν j ,x j) by (26.8) and (26.30). Hence by the subgradient inequality

g̃%j (x
j− ykj−ν j )≤ φk j−ν j (x

j,x j)−φk j−ν j(y
kj−ν j ,x j).

Subtracting a term 1
2(x

j− ykj−ν j )%Q j(x j− ykj−ν j ) from both sides gives

1
2 (x

j−yk j−ν j )%Qj(x j−yk j−ν j )+ 1
2τk j‖x j−yk j−ν j‖2 ≤ f (x j)−Φk j−ν j (y

k j−ν j ,x j).

(26.37)

As τk j → ∞, we have

(1− ζ ) 1
2τk j‖x j− ykj−ν j‖ ≤ ‖g̃ j‖ ≤ (1+ ζ ) 1

2τk j‖x j− ykj−ν j‖ (26.38)

and

1
2 (x

j−yk j−ν j )%Qj(x j−yk j−ν j )+ 1
2τk j‖x j−yk j−ν j‖2 ≥ (1−ζ ) 1

2 τk j‖x j−yk j−ν j‖2

(26.39)

both for j large enough. Therefore, plugging (26.38) and (26.39) into (26.37)
gives

f (x j)−Φk j−ν j (y
kj−ν j ,x j)≥ 1−ζ

1+ζ ‖g̃ j‖‖x j− ykj−ν j‖
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for j large enough. Since ‖g̃ j‖ ≥ (1− ζ )η for j large enough, we deduce

f (x j)−Φk j−ν j(y
kj−ν j ,x j)≥ (1−ζ )2

1+ζ η‖x j− ykj−ν j‖. (26.40)

(ix) Combining (26.36) and (26.40) gives the estimate

ρ̃k j−ν j = ρk j−ν j +
f (ykj−ν j)−Mkj−ν j (y

kj−ν j ,x j)

f (x j)−Φk j−ν j (y
kj−ν j ,x j)

≤ ρk j−ν j +
(1+ ζ )2(ε ′+ ε)‖ykj−ν j − x j‖

(1− ζ )2η‖ykj−ν j − x j‖ . (26.41)

This proves

η ≤ (1+ ζ )2(ε ′+ ε)
(1− ζ )2(γ̃− γ) .

For suppose we had η > (1+ζ )2(ε ′+ε)
(1−ζ )2(γ̃−γ) , then (1+ζ )2(ε ′+ε)

(1−ζ )2η < γ̃ − γ , which gave

ρ̃k j−ν j ≤ ρk j−ν j + γ̃ − γ < γ̃ for all j, contradicting ρ̃k j−ν j ≥ γ̃ for infinitely
many j ∈ J.

Since ζ in the above discussion was arbitrary, we have shown η ≤ ε ′+ε
γ̃−γ .

Recall that η = dist
(
0,∂[ε] f (x̄)

)
. We therefore have shown 0 ∈ ∂[ε̃] f (x̄),

where ε̃ = ε+η . This is what is claimed. �
Corollary 26.13. SupposeΩ = {x ∈Rn : f (x)≤ f (x1)} is bounded and f is lower
C1. Let approximate subgradients be drawn from ∂[ε] f (y), whereas function values
are exact. Then every accumulation point x̄ of the sequence of serious iterates x j

satisfies 0 ∈ ∂[αε] f (x̄), where α = 1+(γ̃− γ)−1.

Remark 26.14. At first glance one might consider the class of lower C1 functions
used in Corollary 26.13 as too restrictive to offer sufficient scope. This misappre-
hension might be aggravated, or even induced, by the fact that lower C1 functions
are approximately convex [14, 34], an unfortunate nomenclature which erroneously
suggests something close to a convex function. We therefore stress that lower C1 is
a large class which includes all examples we have so far encountered in practice.
Indeed, applications are as a rule even lower C2, or amenable in the sense of
Rockafellar [45], a much smaller class, yet widely accepted as of covering all
applications of interest.

Recent approaches to nonconvex nonsmooth optimization like [21, 33, 47] all
work with composite (and therefore lower C2) functions. This is in contrast with
our own approach [19, 20, 40, 42], which works for lower C1 and is currently the
only one I am aware of that has the technical machinery to go beyond lower C2.
On second glance one will therefore argue that it is rather the class of lower C2

functions which does not offer sufficient scope to justify the development of a new
theory, because the chapter on nonsmooth composite convex functions f = g ◦F in



26 Non-Convex Inexact Bundle Method 581

[46] covers this class nicely and leaves little space for new contributions and because
one can do things for lower C1.

26.7 Extension to Inexact Values

In this section we discuss what happens when we have not only inexact subgradients
but also inexact function values. In the previous sections we assumed that for every
approximate subgradient ga of f at x, there exists an exact subgradient g ∈ ∂ f (x)
such that ‖ga− g‖ ≤ ε . Similarly, we will assume that approximate function values
fa(x) satisfy | fa(x)− f (x)| ≤ ε̄ for a fixed error tolerance ε̄ . We do not assume any
link between ε and ε̄ .

Let us notice the following fundamental difference between the convex and
the nonconvex case, where it is often reasonable to assume fa ≤ f ; see, e.g.,
[30, 31]. Suppose f is convex, x is the current iterate, and an approximate value
f (x)− ε̄ ≤ fa(x) ≤ f (x) is known. Suppose yk is a null step, so that we draw
an approximate tangent plane tk(·) = fa(yk) + g%k (· − yk) at yk with respect to
gk ∈ ∂[ε] f (yk). If we follow [30, 31], then tk(·), while not a support plane, is still an
affine minorant of f . It may then happen that tk(x) = fa(yk)+ g%k (x− yk) > fa(x),
because fa(x), fa(yk) are approximations only. Now the approximate cutting plane
gives us viable information as to the fact that the true value f (x) satisfies f (x) ≥
tk(x)> fa(x). We shall say that we can trust the value tk(x)> fa(x).

What should we do if we find a value tk(x) in which we can trust and which
reveals our estimate fa(x) as too low? Should we correct fa(x) and replace it by
the better estimate now available? If we do this we create trouble. Namely, we have
previously rejected trial steps yk during the inner loop at x based on the incorrect
information fa(x). Some of these steps might have been acceptable, had we used
tk(x) instead. But on the other hand, x was accepted as serious step in the inner loop
at x− because fa(x) was sufficiently below fa(x−). If we correct the approximate
value at x, then acceptance of x may become unsound as well. For short, correcting
values as soon as better estimates arrive is not a good idea, because we might be
forced to go repeatedly back all the way through the history of our algorithm.

In order to avoid this backtracking, Kiwiel [30] proposes the following original
idea. If fa(x), being too low, still allows progress in the sense that x+ with fa(x+)<
fa(x) can be found, then why waste time and correct the value fa(x)? After all,
there is still progress! On the other hand, if the underestimation fa(x) is so severe
that the algorithm will stop, then we should be sure that no further decrease within
the error tolerances ε̄,ε is possible. Namely, if this is the case, then we can stop in
all conscience. To check this, Kiwiel progressively relaxes proximity control in the
inner loop, until it becomes clear that the model of all possible approximate cutting
planes itself does not allow to descend below fa(x) and, therefore, does not allow to
descend more than ε̄ below f (x).

The situation outlined is heavily based on convexity and does not appear to
carry over to nonconvex problems. The principal difficulty is that without convexity
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we cannot trust values ty,g(x) > fa(x) even in the case of exact tangent planes,
g ∈ ∂ f (y). We know that tangents have to be downshifted, and without the exact
knowledge of f (x), the only available reference value to organize the downshift is
fa(x). Naturally, as soon as we downshift with reference to fa(x), cutting planes
my,g(·,x) satisfying my,g(x,x) > fa(x) can no longer occur. This removes one of the
difficulties. However, it creates, as we shall see, a new one.

In order to proceed with inexact function values, we will need the following
property of the cutting plane mk(·,x) := tk(·)− sk at null step yk and approximate
subgradient gk ∈ ∂[ε] f (yk). We need to find ε̃ > 0 such that fa(yk) ≤ mk(yk,x) +
ε̃‖x− yk‖. More explicitly, this requires

fa(y
k)≤ fa(x)+ g%k (y

k− x)+ ε̃‖x− yk‖.

If f is ε ′-convex, then

f (yk) ≤ f (x)+ g%(yk− x)+ ε ′‖x− yk‖
≤ f (x)+ g%k (y

k− x)+ (ε ′+ ε)‖x− yk‖

for g ∈ ∂ f (yk) and ‖g− gk‖ ≤ ε . That means

f (yk)− ( f (x)− fa(x))≤ fa(x)+ g%k (y
k− x)+ (ε+ ε ′)‖x− yk‖.

So what we need in addition is something like

fa(y
k)≤ f (yk)− ( f (x)− fa(x))+ ε ′′‖x− yk‖,

because then we get the desired relation with ε̃ = ε + ε ′+ ε ′′. The condition can
still be slightly relaxed to make it more useful in practice. The axiom we need is
that there exist δk→ 0+ such that

f (x)− fa(x)≤ f (yk)− fa(y
k)+ (ε ′′+ δk)‖x− yk‖ (26.42)

for every k ∈N. Put differently, as yk→ x, the error we make at yk by underestimat-
ing f (yk) by fa(yk) is larger than the corresponding underestimation error at x, up
to a term proportional to ‖x− yk‖. The case of exact values f = fa corresponds to
ε ′′ = 0,δk = 0.

Remark 26.15. As f is continuous at x, condition (26.42) implies upper semi-
continuity of fa at serious iterates, i.e., limsup fa(yk)≤ fa(x).

We are now ready to modify our algorithm and then run through the proofs of
Lemmas 26.9 and 26.11 and Theorem 26.12 and see what changes need to be made
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to account for the new situation. As far as the algorithm is concerned, the changes
are easy. We replace f (yk) and f (x) by fa(yk) and fa(x). The rest of the procedure
is the same.

We consider the same convex envelope function φ(·,x) defined in (26.13).
We have the following.

Lemma 26.16. The upper envelope model satisfies φ(x,x) = fa(x), φk ≤ φ . φ is
jointly upper 2ε̄-semicontinuous, and ∂φ(x,x) ⊂ ∂[ε] f (x) ⊂ ∂2ε̄ φ(x,x), where
∂2ε̄ φ(x,x) is the 2ε̄-subdifferential of φ(·,x) at x in the usual convex sense.

Proof.

(1) Any cutting plane mz,g(·,x) satisfies mz,g(x,x) ≤ fa(x)− c‖x− z‖2. This shows
φ(x,x) ≤ fa(x), and if we take z = x, we get equality φ(x,x) = fa(x).

(2) We prove ∂[ε] f (x) ⊂ ∂2ε̄ φ(x,x). Let g ∈ ∂ f (x) be a limiting subgradient, and
choose yk→ x, where f is differentiable at yk with gk = ∇ f (yk) ∈ ∂ f (yk) such
that gk → g. Let ga be an approximate subgradient such that ‖g− ga‖ ≤ ε .
We have to prove ga ∈ ∂2ε̄ φ(x,x). Putting ga,k := gk + ga− g ∈ ∂[ε] f (yk) we
have ga,k → ga. Let mk(·,x) be the cutting plane drawn at yk with approximate
subgradient ga,k. That is, mk(·,x) = myk,ga,k

(·,x). Then

mk(y,x) = fa(y
k)+ g%a,k(y− yk)− sk,

where sk = [ fa(x)− tk(x)]+ + c‖x− yk‖2 is the downshift and where tk(·) is
the approximate tangent at yk with respect to ga,k. There are two cases, sk =
c‖x− yk‖2 and sk = fa(x)+ tk(x)+ c‖x− yk‖2, according to whether [. . . ]+ = 0
or [. . . ]+ > 0. Let us start with the case tk(x)> fa(x). Then

sk = fa(y
k)+ g%a,k(x− yk)+ c‖x− yk‖2

and

mk(y,x) = fa(y
k)+ g%a,k(y− yk)− fa(y

k)− g%a,k(x− yk)+ fa(x)− c‖x− yk‖2.

Therefore

φ(y,x)−φ(x,x) ≥ mk(y
k,x)− fa(x) = g%a,k(y− x)− c‖x− yk‖2.

Passing to the limit k → ∞ proves ga ∈ ∂φ(x,x), so in this case a stronger
statement holds.

Let us next discuss the case where tk(x) ≤ fa(x), so that sk = c‖x− yk‖2.
Then

mk(y,x) = fa(y
k)+ g%a,k(y− yk)− c‖x− yk‖2.
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Therefore

φ(y,x)−φ(x,x) ≥ mk(y
k,x)− fa(x)

= fa(y
k)− fa(x)+ g%a,k(y− yk)− c‖x− yk‖2

= fa(y
k)− fa(x)+ g%a,k(x− yk)− c‖x− yk‖2 + g%a,k(y− x).

Put ζk := g%a,k(x− yk)− c‖x− yk‖2 +(ga,k− ga)
%(y− x) then

φ(y,x)−φ(x,x) ≥ fa(y
k)− fa(x)+ ζk + g%a (y− x).

Notice that limζk = 0, because ga,k → ga and yk → x. Let Fa(x) := liminfk→∞
fa(yk), then we obtain

φ(y,x)−φ(x,x) ≥ Fa(x)− fa(x)+ g%a (y− x).

Putting ε(x) := [ fa(x)−Fa(x)]+, we therefore have shown

φ(y,x)−φ(x,x) ≥−ε(x)+ g%a (y− x),

which means ga ∈ ∂ε(x)φ(x,x). Since approximate values fa are within ε̄ of
exact values f , we have | fa(x)− Fa(x)| ≤ 2ε̄ , hence ε(x) ≤ 2ε̄ . That shows
ga ∈ ∂ε(x)φ(x,x) ⊂ ∂2ε̄ φ(x,x).

(3) The proof of ∂φ(x,x) ⊂ ∂[ε] f (x) remains the same, after replacing f (x) by
fa(x).

(4) If a sequence of planes mr(·), r ∈ N, contributes to the envelope function
φ(·,x) and if mr(·)→ m(·) in the pointwise sense, then m(·) also contributes
to φ(·,x), because the graph of φ(·,x) is closed. On the other hand, we may
expect discontinuities as x j → x. We obtain limsup j→∞ φ(y j ,x j) ≤ φ(y,x)+ ε̄
for y j→ y, x j→ x. �

Remark 26.17. If approximate function values are underestimations, fa ≤ f , as is
often the case, then |Fa− fa| ≤ ε̄ and the result holds with ∂φ(x,x) ⊂ ∂[ε] f (x) ⊂
∂ε̄φ(x,x).

Corollary 26.18. Under the hypotheses of Lemma 26.16, if x is a point of continuity
of fa, then ∂φ(x,x) = ∂[ε] f (x) and φ is jointly upper semicontinuous at (x,x).

Proof. Indeed, as follows from part (2) of the proof above, for a point of continuity
x of fa, we have ε(x) = 0. �
Lemma 26.19. Suppose the inner loop at serious iterate x turns forever and τk →
∞. Suppose f is ε ′-convex on a set containing all yk, k ≥ k0, and let (26.42) be
satisfied. Then 0 ∈ ∂[ε̃] f (x), where ε̃ = ε+(ε ′′+ ε ′+ ε)/(γ̃− γ).
Proof. We go through the proof of Lemma 26.9 and indicate the changes caused
by using approximate values fa(yk), fa(x). Part (ii) remains the same, except that
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φ(x,x) = fa(x). The exactness subgradient has still g(x)∈ ∂[ε] f (x). Part (iii) leading
to formula (26.17) remains the same with fa(x) instead of f (x). Part (iv) remains
the same, and we obtain the analogue of (26.18) with f (x) replaced by fa(x).

Substantial changes occur in part (v) of the proof leading to formula (26.19).
Indeed, consider without loss the case where tk(x)> fa(x). Then

mk(y,x) = fa(y
k)+ g%εk(y− yk)− sk

= fa(x)+ g%εk(y− x)− c‖x− yk‖2,

as in the proof of Lemma 26.9, and therefore

fa(y
k)−mk(y

k,x) = fa(y
k)− fa(x)−g%k (y

k− x)+(gk−gεk)
%(x−yk)+c‖x− yk‖2.

Since f is ε ′-convex, we have g%k (x− yk)≤ f (x)− f (yk)+ ε ′‖x− yk‖. Hence

fa(y
k)−mk(y

k,x)≤ f (x)− fa(x)−
(

f (yk)− fa(y
k)
)
+(ε ′+ ε+νk)‖x− yk‖,

where νk → 0. Now we use axiom (26.42), which gives

fa(y
k)−mk(y

k,x)≤ (ε ′′+ ε ′+ ε+ δk +νk)‖x− yk‖,

for δk,νk → 0. Subtracting the usual quadratic expression on both sides gives
fa(yk)−Mk(yk,x) ≤ (ε ′′+ ε ′+ ε + δk + ν̃k)‖x− yk‖ with δk, ν̃k → 0. Going back
with this estimation to the expansion ρ̃k ≤ ρk +

ε ′′+ε ′+ε
η shows η < ε ′′+ε ′+ε

γ̃−γ as in
the proof of Lemma 26.9, where η = dist(0,∂φ(x,x)). Since ∂φ(x,x)⊂ ∂[ε] f (x) by
Lemma 26.16, we have 0 ∈ ∂[ε+η] f (x). This proves the result. �
Lemma 26.20. Suppose the inner loop turns forever and τk is frozen from some
counter k onwards. Then 0 ∈ ∂[ε] f (x).
Proof. Replacing f (x) by fa(x), the proof proceeds in exactly the same fashion
as the proof of Lemma 26.11. We obtain 0 ∈ ∂φ(x,x) and use Lemma 26.16 to
conclude 0 ∈ ∂[ε] f (x). �
As we have seen, axiom (26.42) was necessary to deal with the case τk → ∞ in
Lemma 26.19, while Lemma 26.20 gets by without this condition. Altogether, that
means we have to adjust the stopping test in step 2 of the algorithm to 0 ∈ ∂[ε̃ ] f (x j),
where ε̃ = ε+(ε ′′+ε ′+ε)/(γ̃−γ). As in the case of exact function values, we may
delegate the stopping test to the inner loop, so if the latter halts due to insufficient
progress, we interpret this as 0 ∈ ∂[ε̃] f (x j), which is the precision we can hope for.
Section 26.8 below gives more details.

Let us now scan through the proof of Theorem 26.12 and see what changes occur
through the use of inexact function values fa(yk), fa(x j).

Theorem 26.21. Let x1 be such thatΩ ′ = {x∈Rn : f (x)≤ f (x1)+2ε̄} is bounded.
Suppose f is ε ′-convex on Ω , that subgradients are drawn from ∂[ε] f (y), and that
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inexact function values fa(y) satisfy | f (y)− fa(y)| ≤ ε̄ . Suppose axiom (26.42) is
satisfied. Then every accumulation point x̄ of the sequence x j satisfies 0 ∈ ∂[ε̃] f (x̄),
where ε̃ = ε+(ε ′′+ ε ′+ ε)/(γ̃− γ).
Proof. Notice that ε̃ used in the stopping test has a different meaning than in
Theorem 26.21. Replacing f (x j) by fa(x j) and f (ykj ) by fa(ykj ), we follow the
proof of Theorem 26.12. Part (i) is still valid with these changes. Notice that
Ω = {x : fa(x)≤ fa(x1)} ⊂Ω ′ and Ω ′ is bounded by hypothesis, so Ω is bounded.

As in the proof of Theorem 26.12 the set of all trial points y1, . . . ,ykj visited
during all the inner loops j is bounded. However, a major change occurs in part
(ii). Observe that the accumulation point x̄ used in the proof of Theorem 26.12
is neither among the trial points nor the serious iterates. Therefore, fa(x̄) is never
called for in the algorithm. Now observe that the sequence fa(x j) is decreasing and
by boundedness of Ω converges to a limit Fa(x̄). We redefine fa(x̄) = Fa(x̄), which
is consistent with the condition | fa(x̄)− f (x̄)| ≤ ε̄ , because fa(x j) ≥ f (x j)− ε̄ , so
that Fa(x̄)≥ f (x̄)− ε̄.

The consequences of the redefinition of fa(x̄) are that the upper envelope model
φ is now jointly upper semicontinuous at (x̄, x̄), and that the argument leading to
formula (26.29) remains unchanged, because fa(x j)→ φ(x̄, x̄).

Let us now look at the longer argument carried out in parts (iii)–(ix) of the proof
of Theorem 26.12, which deals with the case where ‖g j‖ ≥ μ > 0 for all j. Parts
(iii)–(vii) are adapted without difficulty. Joint upper semicontinuity of φ at (x̄+h, x̄)
is used at the end of (vii), and this is assured as a consequence of the redefinition
fa(x̄) = Fa(x̄) of fa at x̄.

Let us next look at part (viii). In Theorem 26.12 we use ε ′-convexity. Since the
latter is in terms of exact values, we need axiom (26.42) for the sequence ykj−ν j → x̄,
similarly to the way it was used in Lemma 26.16. We have to check that despite the
redefinition of fa at x̄ axiom (26.42) is still satisfied. To see this, observe that ykj−ν j

is a trial step which is rejected in the jth inner loop, so that its approximate function
value is too large. In particular, fa(ykj−ν j) ≥ fa(x j+1), because x j+1 is the first trial
step accepted. This estimate shows that (26.42) is satisfied at x̄.

Using (26.42) we get the analogue of (26.36), which is

fa(y
kj−ν j )−Mkj−ν j(y

kj−ν j ,x j)≤ (ε ′′+ ε ′+ν j + δ j)‖ykj−ν j − x j‖

for certain ν j,δ j → 0. Estimate (26.40) remains unchanged, so we can combine the
two estimates to obtain the analogue of (26.41) in part (ix), which is

ρ̃k j−ν j ≤ ρk j−ν j +
(1+ ζ 2)(ε ′′+ ε ′+ ε)

(1− ζ )2η
.

Using the same argument as in the proof of Theorem 26.12, we deduce

η ≤ (1+ ζ )2(ε ′′+ ε ′+ ε)
(1− ζ )2(γ̃− γ)
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for η = dist(0,∂φ(x,x)). Since 0 < ζ < 1 was arbitrary, we obtain η ≤ ε ′′+ε ′+ε
γ̃−γ .

Now as x̄ is a point of continuity of fa, Corollary 26.18 tells us that η =
dist(0,∂[ε] f (x̄)). Therefore 0 ∈ ∂[ε+η] f (x̄). Since ε+η = ε̃ , we are done. �

26.8 Stopping

In this section we address the practical problem of stopping the algorithm. The idea
is to use tests which are based on the convergence theory developed in the previous
sections.

In order to save time, the stopping test in step 2 of the algorithm is usually
delegated to the inner loop. This is based on Lemmas 26.9 and 26.11 and the
following.

Lemma 26.22. Suppose tangent program (26.7) has the solution yk = x. Then 0 ∈
∂[ε] f (x).

Proof. From (26.8) we have 0 ∈ ∂φk(x,x)⊂ ∂φ(x,x) ⊂ ∂[ε] f (x) by Lemma 26.16.
�

In [20] we use the following two-stage stopping test. Fixing a tolerance level tol
> 0, if x+ is the serious step accepted by the inner loop at x, and if x+ satisfies

‖x− x+‖
1+ ‖x‖ < tol,

then we stop the outer loop and accept x+ as the solution, the justification being
Lemma 26.22. On the other hand, if the inner loop at x fails to find x+ and
either exceeds a maximum number of allowed inner iterations or provides three
consecutive trial steps yk satisfying

‖x− yk‖
1+ ‖x‖ < tol,

then we stop the inner loop and the algorithm and accept x as the final solution. Here
the justification comes from Lemmas 26.9 and 26.11.

Remark 26.23. An interesting aspect of inexactness theory with unknown
precisions ε,ε ′,ε ′′ are the following two scenarios, which may require different
handling. The first is when functions and subgradients are inexact or noisy, but we
do not take this into account and proceed as if information were exact. The second
scenario is when we deliberately use inexact information in order to gain speed
or deal with problems of very large size. In the first case we typically arrange all
elements of the algorithm like in the exact case, including situations where we are
not even aware that information is inexact. In the second case we might introduce
new elements which make the most of the fact that data are inexact.
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As an example of the latter, in [30] where f is convex, the author does not use
downshift with respect to fa(x), and as a consequence one may have φk(x,x) >
fa(x), so that the tangent program (26.7) may fail to find a predicted descent step
yk at x. The author then uses a sub-loop of the inner loop, where the τ-parameter
is decreased until either a predicted descent step is found or optimality within the
allowed tolerance of function values is established.

26.9 Example from Control

Optimizing the H∞-norm [4,7,19,20] is a typical application of (26.1) where inexact
function and subgradient evaluations may arise. The objective function is of the form

f (x) = max
ω∈R

σ (G(x, jω)) , (26.43)

where G(x,s) =C(x)(sI−A(x))−1 B(x)+D(x) is defined on the open set S = {x ∈
R

n : A(x) stable} and where A(x), B(x), C(x), D(x) are matrix-valued mappings
depending smoothly on x ∈ R

n. In other words, for x ∈ S each G(x,s) is a stable
real-rational transfer matrix.

Notice that f is a composite function of the form f = ‖ · ‖∞ ◦G , where ‖ · ‖∞ is
the H∞-norm, which turns the Hardy space H∞ of functions G which are analytic
and bounded in the open right-half plane [53, p. 100] into a Banach space,

‖G‖∞ = sup
ω∈R

σ (G( jω)) ,

and G : S→H∞, x �→ G(x, ·) = C(x)(·I−A(x))−1B(x)+D(x) ∈H∞ is a smooth
mapping, defined on the open subset S = {x ∈ R

n : A(x) stable}. Since composite
functions of this form are lower C2, and therefore also lower C1, we are in business.
For the convenience of the reader we also include a more direct argument proving
the same result:

Lemma 26.24. Let f be defined by (26.43), then f is lower C2, and therefore also
lower C1, on the open set S = {x ∈ R

n : A(x) stable}.
Proof. Recall that σ(G) = max‖u‖=1 max‖v‖=1 Re uGvH , so that

f (x) = max
ω∈S1

max
‖u‖=1

max
‖v‖=1

Re uG(x, jω)vH .

Here, for x ∈ S, the stability of G(x, ·) assures that G(x,s) is analytic in s on a
band B on the Riemann sphere C∪ {∞} containing the zero meridian jS1 with
S

1 = {ω : ω ∈ R∪{∞}}, a compact set homeomorphic to the real 1-sphere. This
shows that f is lower C2 on the open set S. Indeed, (x,ω ,u,v) �→ F(x,ω ,u,v) :=
Re uG(x, jω)vH is jointly continuous on S× S

1×C
m×C

p and smooth in x, and
f (x) = max(ω,u,v)∈K F(x,ω ,u,v) for the compact set K = S

1 × {u ∈ C
m : ‖u‖ =

1}×{v∈ C
p : ‖v‖= 1‖}. �
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The evaluation of f (x) is based on the iterative bisection method of Boyd et al.
[10]. Efficient implementations use Boyd and Balakrishnan [11] or Bruisma and
Steinbuch [12] and guarantee quadratic convergence. All these approaches are based
on the Hamiltonian test from [10], which states that f (x) > γ if and only if the
Hamiltonian

H(x,γ) =
[

A(x) 0
0 −A(x)%

]
−
[

0 B(x)
C(x)% 0(x)

][
γI D(x)

D(x)% γI

]−1 [
C(x) 0

0 −B(x)%

]

(26.44)

has purely imaginary eigenvalues jω . The bundle method of [7], which uses (26.44)
to compute function values, can now be modified to use approximate values fa(yk)
for unsuccessful trial points yk. Namely, if the trial step yk is to become the new
serious iterate x+, its value f (yk) has to be below f (x). Therefore, as soon as the
Hamiltonian test (26.44) certifies f (yk) > f (x) even before the exact value f (yk)
is known, we may dispense with the exact computation of f (yk). We may stop the
Hamiltonian algorithm at the stage where the first γ with f (yk) > γ ≥ f (x) occurs,
compute the intervals where ω �→ σ (G(x, jω)) is above γ , take the midpoints
of these intervals, say ω1, . . . ,ωr, and pick the one where the frequency curve is
maximum. If this is ων , then fa(yk) = σ (G(x, jων )). The approximate subgradient
ga is computed via the formulas of [4] with ων replacing an active frequency. This
procedure is trivially consistent with (26.42), because f (x) = fa(x) and fa(y) ≤
f (y).

If we wish to allow inexact values not only at trial points y but also at serious
iterates x, we can use the termination tolerance of the Hamiltonian algorithm [11].
The algorithm works with estimates fl(x) ≤ f (x) ≤ fu(x) and terminates when
fu(x)− fl(x) ≤ 2ηxF(x), returning fa(x) := ( fl(x)+ fu(x))/2, where we have the
choice F(x) ∈ { fl(x), fu(x), fa(x)}. Then | f (x)− fa(x)| ≤ 2ηx|F(x)|. As ηx is under
control, we can arrange that ηx|F(x)| ≤ ηy|F(y)|+ o(‖x− y‖) in order to assure
condition (26.42).

Remark 26.25. The outlined method applies in various other cases in feedback
control where function evaluations use iterative procedures, which one may stop
short to save time. We mention IQC-theory [2], which uses complex Hamiltonians,
[7] for related semi-infinite problems, or the multidisk problem [3], where several
H∞-criteria are combined in a progress function. The idea could be used quite
naturally in the ε-subgradient approaches [36, 37] or in search methods like [1].

Acknowledgements The author acknowledges funding by Fondation d’Entreprise EADS under
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27.1 Introduction

Global convergence for linesearch descent methods traditionally only assures
subsequence convergence to critical points (see, e.g., [4, Proposition 1.2.1] or
[13, Theorem 3.2]), while convergence of the entire sequence of iterates is not
guaranteed. Similarly, subsequence convergence in trust-region methods is estab-
lished by relating the progress of trial points to the minimal progress achieved
by the Cauchy point. These results are usual proved for C1,1 or C2-functions; see
[8, Theorem 6.4.6] or [13, Theorem 4.8].

Recently Absil et al. [1] proved convergence of iterates of descent methods to
a single limit point for analytic objective functions, using the fact that this class
satisfies the so-called Łojasiewicz inequality [11,12]. Here we prove convergence of
linesearch and trust-region descent methods to a single critical point for C1 functions
satisfying the Kurdyka–Łojasiewicz (KL) inequality [10], a generalization of the
Łojasiewicz inequality. This is motivated by recent convergence results based on
this condition in other fields; see, e.g., [2, 3, 5, 6].

For linesearch methods we prove convergence for C1 functions, and we show
that it is allowed to memorize the accepted steplength between serious steps if the
objective is of class C1,1. This option may be of interest for large-scale applications,
where second-order steps are not practical, and restarting each linesearch at t = 1
may lead to unnecessary and costly backtracking.

For trust-region methods we discuss acceptance tests which feature conditions
on the curvature of the objective along the proposed step, in tandem with the usual
criteria relating the achieved progress to the minimal progress guaranteed by the
Cauchy point.

The paper is organized as follows. Section 27.2 presents the Kurdyka–Łojasiewicz
inequality. Sections 27.3–27.5 are devoted to the convergence of backtracking
linesearch for functions satisfying the KL inequality. In Sect. 27.6 convergence for
trust-region methods under the KL condition is discussed and new conditions to
guarantee convergence in practice are investigated.

27.2 The Kurdyka–Łojasiewicz Condition

In 1963 Łojasiewicz [11, 12] proved that a real analytic function f : Rn → R has
the following property, now called the Łojasiewicz property. Given a critical point
x̄ ∈ R

n of f , there exists a neighborhood U of x̄, c > 0 and 1
2 ≤ θ < 1 such that

| f (x)− f (x̄)|θ ≤ c‖∇ f (x)‖
for all x ∈U . In 1998 K. Kurdyka presented a more general construction which ap-
plies to differentiable functions definable in an o-minimal structure [10].
The following extension to nonsmooth functions has been presented in [5]:
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Definition 27.1. A proper lower semicontinuous function f : Rn→ R∪{+∞} has
the Kurdyka–Łojasiewicz property (for short KL-property) at x̄ ∈ dom∂ f = {x ∈
R

n : ∂ f (x) �= /0} if there exist η > 0, a neighborhood U of x̄, and a continuous
concave function ϕ : [0,η ]→ [0,+∞) such that:

1. ϕ(0) = 0, ϕ is C1 on (0,η), and ϕ ′ > 0 on (0,η).
2. For every x ∈U ∩{x ∈ R

n : f (x̄)< f (x) < f (x̄)+η},

ϕ ′ ( f (x)− f (x̄))dist(0,∂ f (x)) ≥ 1. (27.1)

The Łojasiewicz inequality or property is a special case of the KL-property when
ϕ(s) = s1−θ , θ ∈ [ 1

2 ,1). It is automatically satisfied for noncritical points, so (27.1)
is in fact a condition on critical points. We will need the following preparatory result.

Lemma 27.2. Let K ⊂R
n be compact. Suppose f is constant on K and has the KL-

property at every x̄ ∈ K. Then there exist ε > 0, η > 0, and a continuous concave
function ϕ : [0,η ]→ [0,∞), which is C1 on (0,η) and satisfies ϕ(0) = 0, ϕ ′ > 0 on
(0,η), such that

ϕ ′( f (x)− f (x̄))dist (0,∂ f (x)) ≥ 1

for every x̄ ∈ K and every x such that dist(x,K)< ε and f (x̄)< f (x) < f (x̄)+η .

Proof. The proof is a slight extension of a similar result in [2] for functions having
the Łojasiewicz property.

For every x̄ ∈ K pick a neighborhood B(x̄,εx̄) of x̄ and ηx̄ > 0 in tandem with
a function ϕx̄ as in Definition 27.1. Since K is compact, there exist finitely many
x̄i ∈ K, i = 1, . . . ,N such that K ⊂ ⋃N

i=1 B(x̄i,
1
2εx̄i). Write for simplicity εi := εx̄i ,

ηi := ηx̄i , ϕi := ϕx̄i . Then put

η = min
i=1...N

ηi > 0 and ε = min
i=1,...,N

1
2εi > 0.

It follows immediately that {x ∈ R
n : dist(x,K)< ε} ⊂

N⋃
i=1

B(x̄i,εi).

Suppose f (x) = f for every x ∈ K. Then (27.1) holds uniformly on K in the
sense that given any x with dist(x,K)< ε and f < f (x) < f +η , there exists i(x) ∈
{1, . . . ,N} such that

ϕ ′i(x)( f (x)− f ) dist(0,∂ f (x)) ≥ 1.

To conclude the proof, it remains to define the function ϕ : [0,η ]→ [0,∞). We let

ϕ(t) =
∫ t

0
max

i=1...N
ϕ ′i (τ)dτ, t ∈ [0,η ].

Observe that τ �→ max
i=1...N

ϕ ′i (τ) is continuous on (0,η) and decreasing on [0,η ].

Then ϕ is well defined and continuous on [0,η ] and of class C1 on (0,η). We also
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easily check ϕ(0) = 0, ϕ concave on [0,η ] and strictly increasing on (0,η). Finally
we have

ϕ ′( f (x)− f (x̄)) dist(0,∂ f (x)) = ϕ ′( f (x)− f ) dist(0,∂ f (x))
≥ ϕ ′i(x)( f (x)− f (x̄)) dist(0,∂ f (x)) ≥ 1

for all x̄ ∈ K and all x ∈ R
n such that dist(x,K)< ε and f < f (x)< f +η . �

Next we address convergence of linesearch methods assuming f of class C1 and
having the (KL) property. We will need the following technical lemma, whose proof
can be found, e.g., in [7]:

Lemma 27.3. Let f be of class C1 and x j→ x, y j → x. Then

f (y j)− f (x j)−∇ f (x j)
%(y j− x j)

‖y j− x j‖ → 0.

27.3 Linesearch Without Memory

Descent methods which attempt second-order steps usually start the linesearch at
the steplength t = 1. We refer to this as memory-free. The challenge is to prove
convergence for C1 functions.

The algorithm discussed hereafter uses the following well-known definition:

Definition 27.4. A sequence d j of descent directions chosen by a descent algorithm
at points x j is called gradient oriented if there exists 0 < c < 1 such that the angle
φ j := ∠

(
d j,−∇ f (x j)

)
satisfies

∀ j ∈ N,0 < c≤ cosφ j. (27.2)

Algorithm (Linesearch descent method without memory).

Parameters: 0 < γ < 1, 0 < θ < θ < 1, τ > 0, 0 < c < 1.
1: Initialize. Choose initial guess x1. Put counter j = 1.
2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise

compute a gradient oriented descent direction d j with cosφ j ≥ c and goto
linesearch.

3: Initialize linesearch. Put linesearch counter k = 1 and initialize steplength t1
such that:

t1 ≥ τ ‖∇ f (x j)‖
‖d j‖ .

4: Acceptance test. At linesearch counter k and steplength tk > 0 check whether
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ρk =
f (x j)− f (x j + tkd j)

−tk∇ f (x j)%d j
≥ γ.

If ρk ≥ γ , put x j+1 = x j + tkd j, quit linesearch, increment counter j, and go back
to step 2.
On the other hand, if ρk < γ , reduce steplength such that tk+1 ∈ [θ tk,θ tk],
increment linesearch counter k, and continue linesearch with step 4.

Lemma 27.5. Suppose f is differentiable and ∇ f (x j) �= 0 and let d j be a descent
direction at x j. Then the linesearch described in Algorithm 27.3 needs a finite
number of backtracks to find a steplength tk such that x j+tkd j passes the acceptance
test ρk ≥ γ .

Proof. The proof is straightforward. Suppose the linesearch never ends, then ρk < γ
for all k and tk→ 0. Since f ′(x j,d j) = ∇ f (x j)%d j < 0, ρk < γ transforms into

f (x j + tkd j)− f (x j)

tk
> γ∇ f (x j)%d j = γ f ′(x j,d j),

and the left-hand side converges to f ′(x j,d j). This leads to 0 > f ′(x j,d j) ≥
γ f ′(x j,d j), contradicting 0 < γ < 1. �
Having proved that an acceptable steplength is found in a finite number of
backtracks, we now focus on convergence of the whole algorithm. The proof of
Theorem 27.6 below first establishes stationarity of limit points, generalizing well-
known results for gradient methods (see, e.g., [4, Proposition 1.2.1]), and then
proves the convergence of the iterates using the Kurdyka–Łojasiewicz condition.

Theorem 27.6. LetΩ = {x∈Rn : f (x)≤ f (x1)} be bounded. Suppose f is of class
C1 and satisfies the Kurdyka–Łojasiewicz condition. Then the sequence of iterates
x j generated by Algorithm 27.3 is either finite and ends with ∇ f (x j) = 0, or it
converges to a critical point x̄ of f .

Proof.

(1) We can clearly concentrate on the case of an infinite sequence x j. Consider the
following normalized sequence of descent directions d̃ j = (‖∇ f (x j)‖/‖d j‖)d j.
Then the directions d̃ j are also gradient oriented and ‖d̃ j‖ = ‖∇ f (x j)‖. A trial
step x j + td j can then also be written as x j + t̃ d̃ j, where the stepsizes t, t̃ are in
one-to-one correspondence via t̃ =(‖d j‖/‖∇ f (x j)‖)t. Neither the backtracking
rule in step 4 nor the acceptance test is affected if we write steps x j + td j as x j +
t̃ d̃ j. The initial condition in step 3 becomes t̃ ≥ τ . Switching back to the notation
x j + td j, we may therefore assume ‖d j‖ = ‖∇ f (x j)‖ and that the linesearch is
initialized at t1 ≥ τ . The gradient oriented direction d j now satisfies

‖∇ f (x j)‖2 ≥−∇ f (x j)%d j ≥ c‖d j‖‖∇ f (x j)‖= c‖∇ f (x j)‖2. (27.3)
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(2) From Lemma 27.5 we know that the linesearch ends after a finite number of
backtracks, let us say with steplength tk j > 0. So x j+1 = x j + tk j d

j. From the
acceptance test ρk j ≥ γ we know that

f (x j)− f (x j+1) ≥ −γ∇ f (x j)%(x j+1− x j),

≥ −γtk j∇ f (x j)%d j

≥ cγtk j‖∇ f (x j)‖2 [according to (27.3)]. (27.4)

By construction we have tk j = ‖x j+1− x j‖/‖d j‖ = ‖x j+1− x j‖/‖∇ f (x j)‖,
so that

f (x j)− f (x j+1)≥ cγ‖∇ f (x j)‖‖x j+1− x j‖, (27.5)

in which we recognize the so-called strong descent condition in [1]. Summing
(27.5) from j = 1 to j = m− 1 gives

m−1

∑
j=1

‖∇ f (x j)‖‖x j+1−x j‖ ≤ (cγ)−1
m−1

∑
j=1

f (x j)− f (x j+1) = (cγ)−1 ( f (x1)− f (xm)
)
.

Since the algorithm is of descent type, the right-hand side is bounded above, so
the series on the left is summable. In particular, ‖∇ f (x j)‖‖x j+1− x j‖ → 0, or
equivalently tk j‖∇ f (x j)‖2→ 0.

(3) Fix an accumulation point x̄ of x j and select a subsequence j ∈ J such that
x j → x̄, j ∈ J. To show that x̄ is critical, it suffices to find a subsequence j′ ∈ J′
such that ∇ f (x j′)→ 0.

Suppose on the contrary that no such subsequence exists, so that ‖∇ f (x j)‖≥
μ > 0 for some μ > 0 and all j ∈ J. To obtain a contradiction, we will focus on
the last step before acceptance.

(3.1) First note that we must have tk j → 0, j ∈ J. Indeed using ‖∇ f (x j)‖‖x j+1−
x j‖ ≥ μ‖x j+1− x j‖, j ∈ J in tandem with the results from part (2), we see
that ‖x j+1− x j‖→ 0, j ∈ J. Then, knowing that

tk j = ‖x j+1− x j‖/‖∇ f (x j)‖ ≤ μ−1‖x j+1− x j‖,

we deduce tk j → 0 and by boundedness of the x j also tk j‖∇ f (x j)‖→ 0, j ∈ J.
(3.2) We now claim that there exists an infinite subsequence J′ of J such that (i)

‖∇ f (x j)‖ ≥ μ > 0, j ∈ J′, (ii) tk j → 0, j ∈ J′, and (iii) k j ≥ 2 for j ∈ J′,
i.e., for j ∈ J′, there was at least one backtrack during the jth linesearch.
Item (iii) is a consequence of the initial condition t1 ≥ τ in step 3 of the
algorithm. Namely, in tandem with tk j → 0, j ∈ J, this condition says that
the set J′ = { j ∈ J : k j ≥ 2}= { j ∈ J : tk j < t1} cannot be finite.
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This sequence j ∈ J′ satisfies ρk j ≥ γ , ρk j−1 < γ , tk j → 0, ‖∇ f (x j)‖ ≥
μ > 0. Because of the backtracking rule, we then also have tk j−1 → 0.

Putting ykj−1 = x j + tk j−1d j, given that x j→ x̄, tk j‖∇ f (x j)‖→ 0, j ∈ J′, and

tk j−1‖d j‖= tk j−1‖∇ f (x j)‖ ≤ θ−1tk j‖∇ f (x j)‖, we have ykj−1→ x̄, j ∈ J′.
Note that d j is gradient oriented so that ykj−1 − x j is also gradient

oriented and

−∇ f (x j)%(ykj−1− x j) ≥ c‖∇ f (x j)‖‖ykj−1− x j‖ ≥ cμ‖ykj−1− x j‖.
(27.6)

(3.3) Now we expand

ρk j−1 =
f (x j)− f (yk j−1)

−∇ f (x j)%(yk j−1−x j)
= 1− f (yk j−1)− f (x j)−∇ f (x j)%(yk j−1−x j)

−∇ f (x j)%(yk j−1−x j)

=: 1−R j.

Using (27.6) gives

|R j| =
∣∣ f (ykj−1)− f (x j)−∇ f (x j)%(ykj−1− x j)

∣∣
−∇ f (x j)%(ykj−1− x j)

≤
∣∣ f (ykj−1)− f (x j)−∇ f (x j)%(ykj−1− x j)

∣∣
cμ‖ykj−1− x j‖ .

Since f is of class C1 and since x j → x̄, ykj−1→ x̄, Lemma 27.3 guarantees
the existence of a sequence ε j → 0 such that∣∣∣ f (ykj−1)− f (x j)−∇ f (x j)%(ykj−1− x j)

∣∣∣≤ ε j‖ykj−1− x j‖.

We deduce |R j| ≤ ε j/(cμ)→ 0; hence ρk j−1 → 1 contradicting ρk j−1 < γ .
This proves that ‖∇ f (x j)‖ ≥ μ > 0 for all j ∈ J was impossible. Therefore
x̄ is critical, and so are all the accumulation points of x j.

(4) By boundedness of the sequence x j the set K of its accumulation points x̄ is
bounded and consists of critical points of f . It is also closed, as can be shown
by a diagonal argument. Hence K is compact. Since the algorithm is of descent
type, f has constant value on K.

Since f satisfies the Kurdyka–Łojasiewicz condition at every x̄ ∈ K,
Lemma 27.2 gives us ε > 0, η > 0, and a continuous concave function ϕ :
[0,η ]→ [0,∞) with ϕ(0) = 0 and ϕ ′ > 0 on (0,η) such that for every x̄ ∈ K
and every x with dist(x,K)< ε and f (x̄)< f (x) < f (x̄)+η we have

ϕ ′ ( f (x)− f (x̄))‖∇ f (x)‖ ≥ 1. (27.7)
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(5) Assume without loss of generality that f (x̄) = 0 on K. Then f (x j)> 0 for all j,
because our algorithm is of descent type. Concavity of ϕ implies

ϕ
(

f (x j)
)−ϕ ( f (x j+1)

) ≥ ϕ ′ ( f (x j)
)(

f (x j)− f (x j+1)
)
. (27.8)

Using f (x̄) = 0, the Kurdyka–Łojasiewicz estimate (27.7) gives

ϕ ′
(

f (x j)
)
= ϕ ′

(
f (x j)− f (x̄)

)≥ ‖∇ f (x j)‖−1
. (27.9)

Hence by (27.8)

ϕ
(

f (x j)
)−ϕ ( f (x j+1)

) ≥ ‖∇ f (x j)‖−1 ( f (x j)− f (x j+1)
)

≥ cγ‖x j+1− x j‖ [using (27.5)].

Summing from j = 1 to j = m− 1 gives

cγ
m−1

∑
j=1

‖x j− x j+1‖ ≤ ϕ ( f (x1)
)−ϕ ( f (xm)) ,

and since the term on the right-hand side is bounded, the series on the left
converges. This shows that x j is a Cauchy sequence, which converges therefore
to some x̄ ∈ K, proving that K = {x̄} is singleton. �

27.4 Memorizing the Steplength

In Newton-type descent schemes it is standard to start the linesearch at steplength
t = 1. However, if a first-order method is used, a different strategy may be more
promising. To avoid unnecessary backtracking, we may decide to start the ( j+ 1)st
linesearch where the jth ended. Such a concept may be justified theoretically if f is
of class C1,1.

Standard proofs for backtracking linesearch algorithms use indeedC1,1 functions.
The Lipschitz constant of ∇ f on Ω allows a precise estimation of the Armijo
stepsize

tγ = sup{t > 0 : f (x+ td)− f (x)< γt∇ f (x)%d}.

As long as the linesearch starts with large steps, t > tγ , backtracking tk+1 ∈ [θ tk,θ tk]
will lead to an acceptable steplength t∗ such that θ tγ ≤ t∗ ≤ tγ . This mechanism
guarantees that the accepted steplength is not too small and replaces the usual
conditions against small stepsizes. However, what we plan to do in this section is
to memorize the last accepted steplength. So the above argument will not work,



27 Convergence of Linesearch and Trust-Region Methods Using KL Inequality 601

because our linesearch may already start small, and we will have no guarantee to
end up in the interval [θ tγ , tγ ]. In that situation the safeguard against too small steps
is more subtle to assure. We propose the following:

Algorithm (Descent method with memorized steplength).

Parameters: 0 < γ < Γ < 1, 0 < c < 1, 0 < θ < θ < 1,Θ > 1.
1: Initialize. Choose initial guess x1. Fix memory steplength τ1 = 1. Put counter

j = 1.
2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise

compute descent direction d j with ‖d j‖ = ‖∇ f (x j)‖ and cosφ j ≥ c and goto
linesearch.

3: Initialize linesearch. Put linesearch counter k = 1 and use memory steplength
τ j to initialize linesearch at steplength t1 = τ j .

4: Acceptance test. At linesearch counter k and steplength tk > 0 check whether

ρk =
f (x j)− f (x j + tkd j)

−tk∇ f (x j)%d j
≥ γ.

If ρk ≥ γ put x j+1 = x j + tkd j, quit linesearch and goto step 5. On the other
hand, if ρk < γ backtrack by reducing steplength to tk+1 ∈ [θ tk,θ tk] and continue
linesearch with step 4.

5: Update memory steplength. Define the new memory steplength τ j+1 as

τ j+1 =

{
tk if γ ≤ ρk < Γ
Θ tk if ρk ≥ Γ ,

where tk is the accepted steplength in step 4. Increment counter j and go back
to step 2.

Theorem 27.7. Let Ω = {x ∈ R
n : f (x) ≤ f (x1)} be bounded, and suppose f

satisfies the Kurdyka–Łojasiewicz condition and is of class C1,1(Ω). Let x j be the
sequence of steps generated by the descent Algorithm 27.4. Then either ∇ f (x j) = 0
for some j or x j converges to a critical point of f .

Proof.

(1) As in the proof of Theorem 27.6 we concentrate on the case where the sequence
x j is infinite. As required by Algorithm 27.4, the sequence d j is already
normalized to ‖d j‖ = ‖∇ f (x j)‖. We now follow the proof of Theorem 27.6
until the end of part (2), where tk j‖∇ f (x j)‖2→ 0 is proved.

(2) We wish to prove ∇ f (x j)→ 0, j ∈ N. Assume on the contrary that there exists
an infinite set J ⊂ N such that ‖∇ f (x j)‖ ≥ μ > 0 for all j ∈ J. Then we must
have tk j → 0, j ∈ J. This is shown precisely as in part (3.1) of the proof of
Theorem 27.6.

(3) Using the sequence j ∈ J which satisfies ‖∇ f (x j)‖ ≥ μ and tk j → 0, j ∈ J,
we now have the first substantial modification. We construct another infinite
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sequence J′ ⊂N such that tk j → 0, j ∈ J′, and such that in addition for every j ∈
J′ the jth linesearch did at least one backtrack. In other words, k j ≥ 2 for every
j ∈ J′. In contrast with Theorem 27.6 we do not claim that J′ is a subsequence
of J. Neither do we have any information as to whether ‖∇ f (x j)‖ ≥ μ for j ∈
J′, and we therefore cannot use such an estimate, as we did in the proof of
Theorem 27.6.

Now J′ can be constructed as follows. Put

j′( j) = min{ j′ ∈ N : j′ ≥ j,k j′ ≥ 2}, and J′ = { j′( j) : j ∈ J}.
We claim that j′( j) < ∞ for every j ∈ J. Suppose there exists j ∈ J such that
k j′ = 1 for all j′ ≥ j. Then no backtracking is done in any of the linesearches
j′ following j. Since the stepsize t is not decreased between linesearches, it
is not decreased at all, so it cannot become arbitrarily small any more. This
contradicts tk j → 0, j ∈ J. This argument shows j ≤ j′( j) < ∞ for all j ∈ J, so
J′ is an infinite set.

For the indices j ∈ J′ we have k j ≥ 2 and

tk j accepted, tk j−1 rejected, θ tk j−1 ≤ tk j ≤ θ tk j−1.

In particular, ρk j−1 < γ , ρk j ≥ γ . Moreover, tk j−1→ 0, j ∈ J′. Writing ykj−1 =

x j + tk j−1d j, we see that x j− ykj−1→ 0, j ∈ J′. Now we expand

ρk j−1 =
f (x j)− f (ykj−1)

−tk j−1∇ f (x j)%d j
= 1− f (ykj−1)− f (x j)−∇ f (x j)%(ykj−1− x j)

−tk j−1∇ f (x j)%d j

=: 1+R j.

Since f is of class C1,1 and since the sequences x j and ykj−1 are bounded and
x j− ykj−1 → 0, there exists a constant L > 0 (the Lipschitz constant of ∇ f on
Ω ) such that∣∣∣ f (ykj−1)− f (x j)−∇ f (x j)(ykj−1− x j)

∣∣∣≤ L
2‖ykj−1− x j‖2 = L

2 t2
k j−1‖d j‖2

for all j ∈ J′. Gradient orientedness of d j implies |∇ f (x j)%d j| ≥ c‖d j‖2, so the
residual term R j may be estimated as

|R j| ≤
L
2 t2

k j−1‖d j‖2

ctk j−1‖d j‖2 = (L/2c)tk j−1→ 0 ( j ∈ J′).

That shows ρk j−1→ 1, ( j ∈ J′), contradicting ρk j−1 < γ . This argument proves
∇ f (x j) → 0, j → ∞. In consequence, every accumulation point x̄ of the
sequence x j is a critical point.

(4) The remainder of the proof is now identical with (4)–(5) in the proof of
Theorem 27.6, and the conclusion is the same. �
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27.5 A Practical Method

In Algorithm 27.4 we cannot a priori exclude the possibility that τ j becomes
arbitrarily small, even though it has in principle the possibility to recover if
good steps are made (see step 5 of Algorithm 27.4). Let us see what happens if
d j = −P−1

j ∇ f (x j), where Pj is the Hessian of f or a quasi-Newton substitute of
the Hessian. The crucial question is, will this method eventually produce good steps
ρk ≥ Γ , so that the memorized steplength increases to reach τ j = 1, from whereon
the full Newton step is tried first?

Theorem 27.8. Let 0 < γ < Γ < 1
2 . Let the Newton steps d j =−∇2 f (x j)−1∇ f (x j)

at x j form a sequence of gradient oriented descent directions. Let x̄ be a local
minimum of f satisfying the second-order sufficient optimality condition.

Then there exists a neighborhood V of x̄ such that as soon as x j ∈V, the iterates
stay in V , the first trial step x j+1 = x j + t1d j is accepted with ρ1 ≥ Γ , so that the
memory steplength is increased from τ j to τ j+1 = min{Θτ j,1}, until it reaches 1
after a finite number of steps. From that moment on the full Newton step is tried and
accepted, and the method converges quadratically to x̄.

Proof. This theorem is similar to Theorem 6.4 from [9] with the following
differences: the step tk does not necessarily satisfy the second Wolfe condition, and
the sequence x j of iterates is not assumed to converge toward x̄. Instead we have
to use the hypothesis of gradient orientedness and the backtracking process of the
linesearch to prove the same result.

Since the local minimum x̄ satisfies the second-order sufficient optimality condi-
tion, the Hessian of f at x̄ is positive definite, and we have μ := λmin(∇2 f (x̄))> 0.
Using a well-known result on Newton’s method (see, e.g., [9, Theorem 2.1]), there
exists an open neighborhood U of the local minimum x̄, where the Newton iterates
are well defined, remain in U , and converge to x̄ and

λmin(∇2 f (x)) ≥ μ
2

and λmax(∇2 f (x)) ≤ K < ∞ (27.10)

for every x ∈U .
Assume now that the iterates x j reach U . We first prove that the Newton step

is acceptable in the sense that f (x j + d j)− f (x j) < γ∇ f (x j)%d j because of γ < 1
2 .

Indeed, as in the proof of Theorem 6.4 in [9], the combined use of the mean value
theorem, gradient orientedness, and hypothesis (27.10) implies that for all j with
x j ∈ U , the Newton iterate x j + d j is accepted by any Armijo parameter < 1

2 , so
that it even passes the acceptance test with the larger constant Γ instead of γ due
to 0 < γ < Γ < 1

2 . Note that the same is then true for every damped Newton step,
namely as soon as t = 1 passes the acceptance test, so does any t < 1.

The last point is to prove that if the iterates x j enter U with τ j < 1, then our
algorithm starts to increase τ until the Newton step is actually made. Indeed, even
though at the beginning a smaller step x j + td j with t < 1 is made, according to what
was previously shown, this step is accepted at once with ρ1 > Γ and remains in U .
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We then update τ j+1 =Θτ j (with a fixedΘ > 1), meaning that τ j is increased until
it hits 1 after a finite number of iterations j. From that moment onward the Newton
step is tried first and then accepted at once, and quadratic convergence prevails. �
Remark 27.9. This result indicates that Γ should be only slightly larger than γ , at
least near the second-order minimum.

Remark 27.10. The following modification of the update rule of τ seems interest-
ing. Fix 1 <Θ < Ξ and put

τ j+1 =

⎧⎪⎨
⎪⎩

tk j if γ ≤ ρk j < Γ ,
Θ tk j if ρk j ≥ Γ and k j ≥ 2,
Ξ tk j if ρk j ≥ Γ and k j = 1.

This accelerates the increase of τ if acceptance is immediate and helps to get back
to τ = 1 faster if the neighborhood of attraction of Newton’s method is reached. Our
convergence analysis covers this case as well.

27.6 Convergence of Trust-Region Methods for Functions
of Class C1

The idea of memorizing the steplength in a linesearch method is paralleled by the
trust-region strategy. The basic trust-region algorithm uses a quadratic model

m(y,x j) = f (x j)+∇ f (x j)%(y− x j)+
1
2
(y− x j)%B j(y− x j)

to approximate the objective function f within the trust-region {x ∈R
n : ‖y− x j‖ ≤

Δk} around the current iterate x j, where Δk > 0 is the trust-region radius and B j

an approximation of the Hessian at x j. One then computes an approximate solution
yk+1 of the tangent program

min{m(y,x j) : ‖y− x j‖ ≤ Δk,y ∈R
n}. (27.11)

Instead of minimizing the trust-region model, the step yk+1 is only supposed to
achieve a decrease of m(·,x j), which is at least a given percentage of the reduction
obtained by the Cauchy point x j+1

C . This means yk+1 satisfies

f (x j)−m(yk+1,x j)≥ c
[

f (x j)−m(x j+1
C ,x j)

]
, (27.12)

where 0 < c < 1 is fixed once and for all and where the Cauchy point x j+1
C is defined

as the solution of the one-dimensional problem:
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min

{
m

(
x j− t

∇ f (x j)

‖∇ f (x j)‖ ,x
j
)

: t ∈ R,0≤ t ≤ Δk

}
. (27.13)

Here we follow the line of Conn et al. [8], who determine a step yk+1 satisfying the
weaker condition

f (x j)−m(yk+1,x j)≥ c‖∇ f (x j)‖min

(
Δk,
‖∇ f (x j)‖
1+ ‖B j‖

)
. (27.14)

It can be shown that (27.12) implies (27.14) and that the exact solution of (27.11)
satisfies (27.14). With these preparations we can now state our algorithm.

Algorithm (Trust-region method).

Parameters: 0 < γ < Γ < 1, 0 < θ < θ < 1, τ > 0.
1: Initialize. Choose initial guess x1 and initial trust-region radius Δ �

1 > 0. Put
counter j = 1.

2: Stopping test. Given iterate x j at counter j, stop if ∇ f (x j) = 0. Otherwise goto
step 3.

3: Model definition. Define a model m(·,x j) of f in {x ∈ R
n : ‖x− x j‖ ≤ Δ �

j}:

m(y,x j) = f (x j)+∇ f (x j)%(y− x j)+ 1
2 (y− x j)%B j(y− x j).

4: Initialize inner loop. Put counter k = 1 and Δ1 = Δ �
j .

5: Tangent program. At inner loop counter k let yk+1 be an approximate
solution of

min{m(y,x j) : ‖y− x j‖ ≤ Δk,y ∈ R
n}

in the sense of (27.12).
6: Acceptance test. At counter k, check whether

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
≥ γ. (27.15)

• If ρk ≥ γ put x j+1 = yk+1, and update:

Δ �
j+1 ∈

{
[Δk,+∞[ if ρk > Γ and ‖yk+1− x j‖= Δk

[θ̄Δk,Δk] otherwise.

Increment outer counter j, and go back to step 2.
• If ρk < γ , then:Δk+1 ∈ [θΔk,θΔk]. Increment inner counter k and go to step 5.
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The trial point yk+1 computed in step 5 of the algorithm is called a serious step if
accepted as a new iterate x j+1 and a null step if rejected. To decide whether a step
yk+1 is accepted, we compute the ratio

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
,

which reflects the agreement between f and its model at yk+1. If the model m(·,x j)
is a good approximation of f at yk+1, we expect ρk ≈ 1, so here yk+1 is a good
point and should be accepted. If ρk - 1, yk+1 is bad and we reject it. Step 6 of the
algorithm formalizes this decision.

The proof of the global convergence of the trust-region algorithm for functions
of class C1 in the sense of subsequences can be found in, e.g., [13, Theorem
4.8]. One first proves finiteness of the inner loop and then global convergence of
Algorithm 27.6.

Our issue here is to prove convergence of the sequence, which requires the
Kurdyka–Łojasiewicz condition and the so-called strong descent condition in [1]:

Theorem 27.11. Let Ω = {x ∈ R
n : f (x) ≤ f (x1)} be bounded. Suppose f is of

class C1 and satisfies the Kurdyka–Łojasiewicz condition. Let the Hessian matrices
B j be uniformly bounded. If the sequence x j, j ∈N, of iterates of Algorithm 27.6
satisfies the strong descent condition

f (x j)− f (x j+1)≥ σ‖∇ f (x j)‖‖x j+1− x j‖, (27.16)

then it is either finite and ends with ∇ f (x j) = 0 or it converges to a critical point x̄
of f .

Proof. Let K be the set of the accumulation points of the sequence x j , j ∈ N. As in
the proof of Theorem 27.6 we prove compactness of K and show that f is constant
on K. Then the Kurdyka–Łojasiewicz condition gives

ϕ( f (x j))−ϕ( f (x j+1)) ≥ ϕ ′( f (x j))
(

f (x j)− f (x j+1)
)

≥ ‖∇ f (x j)‖−1
(

f (x j)− f (x j+1)
)
.

Assuming the strong descent condition f (x j)− f (x j+1) ≥ σ‖∇ f (x j)‖‖x j+1− x j‖
as in [1] now yields

ϕ( f (x j))−ϕ( f (x j+1))≥ σ‖x j+1− x j‖.

Using the series argument from Theorem 27.6 proves convergence of the sequence
of iterates x j to some x̄ ∈ K, and then K = {x̄}. �

Now we have to give practical criteria which imply the strong descent condition
(27.16). Several easily verified conditions for the iterates of the trust-region
algorithm are given in [1]. Here we focus on conditions involving the curvature
of the model along the search direction. Let ω(y,x j) denote the curvature of the
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model m(·,x j) between x j and yk+1, namely,

ω(yk+1,x j) =
(yk+1− x j)%B j(yk+1− x j)

‖yk+1− x j‖2 .

Note that the curvature along the Cauchy point direction is

ω(x j+1
C ,x j) =

∇ f (x j)%B j∇ f (x j)

‖∇ f (x j)‖2 .

We propose the following modified tangent program in Algorithm 27.6:

Fix 0 < μ < 1.

5’: Tangent program. Compute an approximate solution yk+1 of

min{m(y,x j) : ‖y− x j‖ ≤ Δk,y ∈ R
n}

in the sense of (27.12), such that in addition

ω(yk+1,x j) ≥ μω(x j+1
C ,x j)≥ 0 (27.17)

as soon as the Cauchy point lies in the interior of the trust-region, i.e., if ‖∇ f (x j)|| ≤
Δkω(x

j+1
C ,x j).

This modified step (5’) in the algorithm has a solution yk+1, because the Cauchy
point satisfies the two conditions (27.12) and (27.17). We have to prove the
convergence of the modified trust-region algorithm, which we will achieve by
proving the strong descent condition. We will need the following preparatory:

Lemma 27.12. When yk+1 is a descent step of the model m(·,x j) away from x j,
then it satisfies

‖∇ f (x j)‖ ≥ 1
2
ω(yk+1,x j)‖yk+1− x j‖.

Each serious step x j+1 generated by Algorithm 27.6 satisfies

‖∇ f (x j)‖ ≥ 1
2ω(x

j+1,x j)‖x j+1− x j‖.

Proof. By definition every descent step yk+1 of the model m(·,x j) at the current
iterate x j has to verify−∇ f (x j)%(yk+1−x j)> 0 and f (x j)−m(yk+1,x j)≥ 0, so that

−∇ f (x j)%(yk+1− x j)≥ 1
2 (y

k+1− x j)%B j(yk+1− x j).
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Using the Cauchy–Schwarz inequality ‖∇ f (x j)‖‖yk+1− x j‖ ≥ −∇ f (x j)%(yk+1−
x j), we obtain

‖∇ f (x j)‖ ≥ 1
2
(yk+1− x j)%B j(yk+1− x j)

‖yk+1− x j‖ =
1
2
ω(yk+1,x j)‖yk+1− x j‖.

According to the acceptance test, any serious step is also a descent step of the model
at the current iterate, which proves the second part of the lemma. �

Note that the previous result is only useful when the curvature is positive.

Proposition 27.13. The iterates x j generated by the Algorithm 27.6 with step 5’

replacing the original step 5 satisfy the strong descent condition (27.16).

Proof. The idea here is to show that the Cauchy step is bounded below by a fraction
of the step, i.e., there exists η ∈ (0,1) such that

‖x j+1
C − x j‖ ≥ η‖x j+1− x j‖. (27.18)

Indeed, the sufficient decrease condition (27.12) together with (27.18) gives strong
descent (see Theorem 4.4 from [1]). By the definition of the Cauchy point we have

‖x j+1
C − x j‖=

⎧⎪⎨
⎪⎩
‖∇ f (x j)‖
ω(x j+1

C ,x j)
if ‖∇ f (x j)|| ≤ Δk jω(x

j+1
C ,x j),

Δk j otherwise.

In the first case, that is, when ‖∇ f (x j)|| ≤ Δk jω(x
j+1
C ,x j), the curvature condition

(27.17) gives

‖x j+1
C − x j‖= ‖∇ f (x j)‖

ω(x j+1
C ,x j)

≥ μ ‖∇ f (x j)‖
ω(x j+1,x j)

≥ μ
2
‖x j+1− x j‖

according to Lemma 27.12. In the second case we have ‖x j+1
C −x j‖= Δk j ≥‖x j+1−

x j‖, since x j+1 has to belong to the trust-region. Thus (27.18) is satisfied in both case
with η = μ

2 . �
In the last part of the paper we present yet another version (5”) of the tangent
program based on condition (27.14) from Conn et al. [8], which allows to prove
convergence and yet is weaker than the sufficient decrease condition. Note that
this condition is at least satisfied by the Cauchy point and the exact solution of
the tangent program.

Now with (5”) each serious step satisfies

f (x j)−m(x j+1,x j) ≥ c‖∇ f (x j)‖min

(
Δk j ,
‖∇ f (x j)‖
‖B j‖

)
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5”: Tangent program. Compute an approximate solution yk+1 of

min{m(y,x j) : ‖y− x j‖ ≤ Δk,y ∈R
n}

in the sense of (27.14), i.e., f (x j)−m(yk+1,x j)≥ c‖∇ f (x j)‖min

(
Δk,
‖∇ f (x j)‖
1+‖B j‖

)
.

≥ c‖∇ f (x j)‖min

(
‖x j+1− x j‖, ‖∇ f (x j)‖

‖B j‖
)

≥ cmin

(
1,

‖∇ f (x j)‖
‖B j‖‖x j+1− x j‖

)
‖∇ f (x j)‖‖x j+1− x j‖.

(27.19)

To infer the strong descent condition (27.16), the question is how to guarantee that
‖∇ f (x j)‖

‖B j‖‖x j+1−x j‖ remains bounded away from 0. Let us first consider the simpler case

when the matrix B j is positive.

Proposition 27.14. Consider the following conditions:

(H1) B j is positive definite and there exists a κ ≥ 1 such that

cond(B j) := ‖B j‖‖B−1
j ‖ ≤ κ (using the matrix 2-norm).

(H2) There exists σ̄ > 0 and σ > 0 such that σ̄ I , B j * σ I , 0.

Then (H2) ⇒ (H1). Moreover condition (H1) in tandem with the acceptance
condition (27.14) used within the modified step (5”) of Algorithm 27.6 guarantees
strong descent.

Proof. Clearly (H2) implies (H1). Now for the second part assume that the matrix
B j is positive definite. Then the curvature of the model m(·,x j) is also positive and
by (27.19) and Lemma 27.12:

f (x j)−m(x j+1,x j) ≥ cmin

(
1,

‖∇ f (x j)‖
‖B j‖‖x j+1− x j‖

)
‖∇ f (x j)‖‖x j+1− x j‖

≥ cmin

(
1,

1
2
ω(x j+1,x j)

‖B j‖
)
‖∇ f (x j)‖‖x j+1− x j‖.

Note that
ω(x j+1,x j)

‖B j‖ ≤ 1; therefore

f (x j)−m(x j+1,x j)≥ c
2
ω(x j+1,x j)

‖B j‖ ‖∇ f (x j)‖‖x j+1− x j‖.
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Condition (H1) clearly guarantees that ω(x j+1,x j)/‖B j‖ stays bounded away from
0; hence we have strong descent (27.16). �

In order to cover also those cases where B j is not positive, we propose to replace
the acceptance test (27.15) by the following. Fix 0 < μ < 1. The trial step yk+1 is
accepted to become x j+1 if it satisfies

ρk =
f (x j)− f (yk+1)

f (x j)−m(yk+1,x j)
≥ γ and ‖∇ f (x j)‖ ≥ μ‖B j‖‖x j+1− x j‖. (27.20)

The following result shows that condition (27.20) is eventually satisfied by the trial
steps yk+1 according to (5”). Convergence of the trust-region algorithm with the
tangent program (5”) follows then with the same method of proof.

Proposition 27.15. Let x ∈ R
n be the current iterate. Suppose f is differentiable

and ∇ f (x) �= 0. Then the inner loop of the trust-region algorithm with condition
(27.14) and acceptance test (27.20), finds a serious iterate after a finite number of
trial steps.

Proof. Suppose on the contrary that the inner loop turns forever. Then Δk → 0 and
yk+1→ x (k→ ∞). Now we expand

ρk =
f (x)− f (yk+1)

f (x)−m(yk+1,x)
= 1− f (yk+1)−m(yk+1,x)

f (x)−m(yk+1,x)
.

By condition (27.14) at each inner iteration k we have

f (x)−m(yk+1,x) ≥ c‖∇ f (x)‖min

(‖∇ f (x)‖
1+ ‖B‖ ,Δk

)
≥ c‖∇ f (x)‖Δk for sufficiently large k.
≥ c‖∇ f (x)‖‖yk+1− x‖ for sufficiently large k.

On the other hand we also have

| f (yk+1)−m(yk+1,x)| ≤ | f (yk+1)− f (x)−∇ f (x)%(yk+1− x)|
+ 1

2 |(yk+1− x)%B(yk+1− x)|
≤ ‖yk+1− x‖εk +

1
2‖B‖‖yk+1− x‖2,

where the existence of εk → 0 follows from Lemma 27.3. Combining the previous
inequalities, we obtain∣∣∣∣ f (yk+1)−m(yk+1,x)

f (x)−m(yk+1,x)

∣∣∣∣ ≤ ‖yk+1− x‖εk +
1
2‖B‖‖yk+1− x‖2

c‖∇ f (x)‖.‖yk+1− x‖
≤ εk +

1
2‖B‖‖yk+1− x‖
c‖∇ f (x)‖ → 0 (k→ ∞),
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which implies ρk → 1 (k → ∞). By our working hypothesis the acceptance test
(27.20) fails. Since it requires two conditions and since the first of these two
conditions, ρk ≥ γ , is satisfied for large k, the second condition must eventually
fail, i.e., there must exist K ∈ N such that

‖∇ f (x)‖ < μ‖B‖‖yk+1− x‖

for all k ≥ K. But from yk+1→ x (k→ ∞) we deduce ∇ f (x) = 0, a contradiction.�
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Chapter 28
Strong Duality in Conic Linear Programming:
Facial Reduction and Extended Duals

Gábor Pataki

Dedicated to Jonathan Borwein on the occasion of his 60th birthday

Abstract The facial reduction algorithm (FRA) of Borwein and Wolkowicz and
the extended dual of Ramana provide a strong dual for the conic linear program

sup{〈c,x〉 |Ax≤K b} (P)

in the absence of any constraint qualification. The FRA solves a sequence of
auxiliary optimization problems to obtain such a dual. Ramana’s dual is applicable
when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana,
Tunçel, and Wolkowicz showed that these approaches are closely related; in
particular, they proved the correctness of Ramana’s dual using certificates from a
facial reduction algorithm. Here we give a simple and self-contained exposition of
facial reduction, of extended duals, and generalize Ramana’s dual:

• We state a simple FRA and prove its correctness.
• Building on this algorithm we construct a family of extended duals when K is a

nice cone. This class of cones includes the semidefinite cone and other important
cones.
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28.1 Introduction

28.1.1 Conic Linear Programs

Conic linear programs generalize ordinary linear programming, as they require
membership in a closed convex cone in place of the usual nonnegativity constraint.
Conic LPs share some of the duality theory of linear optimization: weak duality
always holds in a primal-dual pair, and assuming a suitable constraint qualification
(CQ), their objective values agree and are attained.

When a CQ is lacking and the underlying cone is not polyhedral, pathological
phenomena can occur: nonattainment of the optimal values, positive gaps, and
infeasibility of the dual even when the primal is bounded. All these pathologies
appear in semidefinite programs (SDPs), second-order cone programs, and p-order
conic programs, arguably the most important and useful classes of conic LPs
[1–4, 7, 15, 16, 32, 34].

28.1.2 Facial Reduction and Extended Duals

Here we study two fundamental approaches to duality in conic linear programs that
work without assuming any CQ. The first approach is the facial reduction algorithm
(FRA) of Borwein and Wolkowicz [5,6], which constructs a so-called minimal cone
of a conic linear system. Using this minimal cone one can always ensure strong
duality in a primal-dual pair of conic LPs.

The second approach is Ramana’s extended dual for SDPs [26]. (Ramana named
his dual an extended Lagrange–Slater dual, or ELSD dual. We use the shorter name
for simplicity.) The extended dual is an explicit SDP with a fairly large number of
(but polynomially many) variables and constraints. It has the following desirable
properties: it is feasible if and only if the primal problem is bounded; and when
these equivalent statements hold, it has the same value as the primal and attains it.

Though these approaches at first sight look quite different, Ramana, Tunçel, and
Wolkowicz in [27] showed that they are closely related: in the case of semidefinite
programming, they proved the correctness of Ramana’s dual using certificates from
the algorithm of [5, 6].

The goal of our paper is to give a simple and self-contained exposition of facial
reduction, of extended duals, study their connection, and give simple proofs of
generalizations of Ramana’s dual. We will use ideas from the paper of Ramana,
Tunçel, and Wolkowicz [27], although our development is different. We will state
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an FRA and prove its correctness using only elementary results from the duality
theory of conic LPs and convex analysis. We build on this algorithm and generalize
Ramana’s dual: we construct a family of extended duals for (P) when K is a nice
cone. This class of cones includes the semidefinite cone and other important cones,
as p-order, in particular, second-order cones.

Next we present our framework in more detail. A conic linear program can be
stated as

sup 〈c,x〉
s.t. Ax≤K b,

(P)

where A : X→Y is a linear map between finite dimensional Euclidean spaces X and
Y and c ∈ X , b ∈ Y. The set K ⊆ Y is a closed, convex cone, and we write Ax≤K b
to mean b−Ax ∈ K. We naturally associate a dual program with (P). Letting A∗ be
the adjoint operator of A, and K∗ the dual cone of K, i.e.,

K∗ = {y | 〈y,x〉 ≥ 0∀x ∈ K },
the dual problem is

inf 〈b,y〉
s.t. y≥K∗ 0

A∗y = c.
(D)

When (P) is feasible, we say that strong duality holds between (P) and (D) if the
following conditions are satisfied:

• Problem (P) is bounded, if and only if (D) is feasible.
• When these equivalent conditions hold, the optimal values of (P) and (D) agree

and the latter is attained.

We say that (P) is strictly feasible, or satisfies Slater’s condition, if there is an x ∈ X
such that b−Ax is in the relative interior of K. When (P) is strictly feasible, it is
well known that strong duality holds between (P) and (D).

The facial reduction algorithm of Borwein and Wolkowicz constructs a suitable
face of K, called the minimal cone of (P), which we here denote by Fmin. The
minimal cone has two important properties:

• The feasible set of (P) remains the same if we replace its constraint set by

Ax≤Fmin b.

• The new constraint set satisfies Slater’s condition.

Thus, if we also replace K∗ by F∗min in (D), strong duality holds in the new primal-
dual pair. The algorithm in [5, 6] constructs a decreasing chain of faces starting
with K and ending with Fmin, in each step solving a pair of auxiliary conic linear
programs.
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28.1.3 Contributions of the Paper

We first state a simplified FRA and prove its correctness. Building on this algorithm,
and assuming that cone K is nice, i.e., the set K∗+F⊥ is closed for all F faces of
K, we show that the dual of the minimal cone has a representation

F∗min = {u�+1 + v�+1 :

(u0,v0) = (0,0)

(A,b)∗(ui + vi) = 0, i = 1, . . . , �,

(ui,vi) ∈ K∗ × tan(u0 + · · ·+ ui−1,K
∗), i = 1, . . . , �+ 1}, (28.1)

where tan(u,K∗) denotes the tangent space of the cone K∗ at u ∈ K∗ and � is a
suitable integer. Plugging this expression for F∗min in place of K∗ in (D) we obtain
a dual with the properties of Ramana’s dual. We show the correctness of several
representations of F∗min, each leading to a different extended dual. We note that the
results of [27] already imply that such a representation is possible, but this is not
stated there explicitly.

The cone of positive semidefinite matrices is nice (and also self-dual), so in this
case the representation of (28.1) is valid. In this case we can also translate the
tangent space constraint into an explicit semidefinite constraint and recover variants
of Ramana’s dual.

We attempted to simplify our treatment of the subject as much as possible: as
background we use only the fact that strong duality holds in a primal-dual pair of
conic LPs, when the primal is strictly feasible, and some elementary facts in convex
analysis.

28.1.4 Literature Review

Borwein and Wolkowicz originally presented their FRA in the two papers [5, 6].
Their algorithm works for a potentially nonlinear conic system of the form
{x |g(x) ∈ K }. Luo et al. in [20] studied a so-called conic expansion method which
finds a sequence of increasing sets starting with K∗ and ending with F∗min : thus
their algorithm can be viewed as a dual variant of facial reduction. Their paper
also contains an exposition of facial reduction and Ramana’s dual. Sturm in [33]
introduced an interesting and novel application of facial reduction: deriving error
bounds for semidefinite systems that lack a strictly feasible solution. Luo and Sturm
in [19] generalized this approach to mixed semidefinite and second-order conic
systems. Lewis in [18] used facial reduction to derive duality results without a CQ
assumption in partially finite convex programming. Tunçel in his recent book [35]
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constructed an SDP instance with n by n semidefinite matrices that requires n− 1
iterations of the facial reduction algorithm to find the minimal cone and thus showed
that the theoretical worst case is essentially attainable.

Waki and Muramatsu in [36] also described an FRA, rigorously showed its equiv-
alence to the conic expansion approach of Luo et al, and presented computational
results on SDPs. A preliminary version of this paper appeared in [21]. Pólik and
Terlaky in [25] used the results of [21] to construct strong duals for conic LPs
over homogeneous cones. Wang et al. in [37] presented an FRA for nonsymmetric
semidefinite least squares problems.

Tunçel and Wolkowicz in [30] described a connection between the lack of strict
complementarity in the homogeneous primal and dual systems and positive duality
gaps in SDPs: in particular, they proved that when strict complementarity in the
homogeneous problems fails in a certain minimal sense, one can generate instances
with an arbitrary positive duality gap. Cheung et al. in [8] developed a relaxed
version of an FRA, in which one can allow an error in the solution of the auxiliary
conic LPs, and applied their method to SDPs, in particular, to instances generated
according to the results of [30].

Nice cones appear in other areas of optimization as well. In [22] we studied the
question of when the linear image of a closed convex cone is closed and described
necessary and sufficient conditions. These lead to a particularly simple and exact
characterization when the dual of the cone in question is nice. We call a conic
linear system well behaved if for all objective functions the resulting conic linear
program has strong duality with its dual and badly behaved, otherwise. In related
work, [23], we described characterizations of well- and badly behaved conic linear
systems. These become particularly simple when the underlying cone is nice and
yield combinatorial type characterizations for semidefinite and second-order conic
systems.

Chua and Tunçel in [10] showed that if a cone K is nice, then so is its intersection
with a linear subspace. Thus, all homogeneous cones are nice, since they arise as
the slice of a semidefinite cone with a suitable subspace, as proven independently
by Chua in [9] and by Faybusovich in [11]. In [10] the authors also proved that the
preimage of a nice cone under a linear map is also nice and in [24] we pointed out
that this result implies that the intersection of nice cones is also nice. In [24] we
gave several characterizations of nice cones and proved that they must be facially
exposed; facial exposedness with a mild additional condition implies niceness and
conjectured that facially exposed and nice cones are actually the same class of cones.
However, this conjecture was proven false by Roshchina [31].

Most articles on strong duality deal with instances with a fixed right-hand side.
Schurr et al. in [29] obtained characterizations of universal duality, i.e., of the
situation when strong duality holds for all right-hand sides, and objective functions.

Klep and Schweighofer in [17] derived a strong dual for SDPs that also works
without assuming any constraint qualification. Their dual resembles Ramana’s dual,
but interestingly, it is derived using concepts from algebraic geometry, whereas all
other references known to us use convex analysis.
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Recently Gouveia et al. in [14] studied the following fundamental question: can
a convex set be represented as the projection of an affine slice of a suitable closed,
convex cone? They gave necessary and sufficient conditions for such a lift to exist
and showed that some known lifts from the literature are in the lowest dimension
possible. The representation of (28.1) is related in spirit, as we also represent the set
F∗min as the projection of a conic linear system in a higher dimensional space.

28.1.5 Organization of the Paper and Guide to the Reader

In Sect. 28.2 we fix notation, review preliminaries, and present two motivating
examples. The reader familiar with convex analysis can skip the first part of this
section and go directly to the examples. In Sect. 28.3 we present a simple FRA,
prove its correctness, and show how F∗min can be written as the projection of a
nonlinear conic system in a higher dimensional space.

Assuming that K is nice, in Sect. 28.4 we arrive at the representation in (28.1),
i.e., show that F∗min is the projection of a conic linear system, and derive an extended
dual for conic LPs over nice cones. Here we obtain our first Ramana-type dual for
SDPs which is an explicit SDP itself, but somewhat different from the dual proposed
in [26].

In Sect. 28.5 we describe variants of the representation in (28.1), of extended
duals, and show how we can exactly obtain Ramana’s dual. In Sect. 28.6 we
show that the minimal cone Fmin itself also has a representation similar to the
representation of F∗min in (28.1) and discuss some open questions.

The paper is organized to arrive at an explicit Ramana-type dual for SDP as
quickly as possible. Thus, if a reader is interested in only the derivation of such a
dual, it suffices for him/her to read only Sects. 28.2–28.4.

28.2 Preliminaries

28.2.1 Matrices and Vectors

We denote operators by capital letters and matrices (when they are considered as
elements of a Euclidean space and not as operators) and vectors by lowercase letters.
The ith component of vector x is denoted by xi and the (i, j)th component of matrix
z by zi j. We distinguish vectors and matrices of similar type with lower indices, i.e.,
writing x1,x2, . . . The jth component of vector xi is denoted by xi, j. This notation is
somewhat ambiguous, as xi may denote a vector, or the ith component of the vector
x, but the context will make it clear which one is meant.
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28.2.2 Convex Sets

For a set C we write clC for its closure, linC for its linear span, and C⊥ for the
orthogonal complement of its linear span. For a convex set C we denote its relative
interior by riC. For a one-element set {x} we abbreviate {x}⊥ by x⊥. The open line
segment between points x1 and x2 is denoted by (x1,x2).

For a convex set C, and F, a convex subset of C, we say that F is a face of C if
x1,x2 ∈C and (x1,x2)∩F �= /0 implies that x1 and x2 are both in F. For x ∈C there is
a unique minimal face of C that contains x, i.e., the face that contains x in its relative
interior: we denote this face by face(x,C). For x ∈ C we define the set of feasible
directions and the tangent space at x in C as

dir(x,C) = {y |x+ ty∈C for some t > 0},
tan(x,C) = cldir(x,C)∩−cldir(x,C).

28.2.3 Cones

We say that a set K is a cone, if λx ∈ K holds for all x ∈ K and λ ≥ 0, and define
the dual of cone K as

K∗ = {z | 〈z,x〉 ≥ 0 for all x ∈ K }.

For an F face of a closed convex cone K and x∈ riF the complementary or conjugate
face of F is defined alternatively as (the equivalence is straightforward)

F& = K∗ ∩F⊥ = K∗ ∩ x⊥.

The complementary face of a face G of K∗ is defined analogously and denoted by
G&. A closed convex cone K is facially exposed, i.e., all faces of K arise as the
intersection of K with a supporting hyperplane iff for all F faces of K we have
(F&)& = F. For brevity we write F&∗ for (F&)∗ and F&⊥ for (F&)⊥.

For a closed convex cone K and x ∈ K we have

tan(x,K) = face(x,K)&⊥, (28.2)

as shown in [23, Lemma 1].

28.2.4 The Semidefinite Cone

We denote the space of n by n symmetric and the cone of n by n symmetric, positive
semidefinite matrices by S n, and S n

+, respectively. The space S n is equipped with
the inner product



620 G. Pataki

〈x,z〉 :=
n

∑
i, j=1

xi jzi j,

and S n
+ is self-dual with respect to it. For y ∈S n we write y * 0 to denote that y

is positive semidefinite. Using a rotation vT (.)v by a full-rank matrix v any face of
S n

+ and its conjugate face can be brought to the form

F =

{(
x 0
0 0

)
|x ∈S r

+

}
, F& =

{(
0 0
0 y

)
|y ∈S n−r

+

}
, (28.3)

where r is a nonnegative integer.
For a face of this form and related sets we use the shorthand

F =

(⊕ 0
0 0

)
, F& =

(
0 0
0 ⊕
)
, F&⊥ =

(× ×
× 0

)
, (28.4)

when the sizes of the blocks in the partition are clear from the context. The ⊕ sign
denotes a positive semidefinite submatrix and the sign× stands for a submatrix with
arbitrary elements.

For an x positive semidefinite matrix we collect some expressions for tan(x,S n
+)

below: these play an important role when constructing explicit duals for SDPs. The
second part of Proposition 28.1 is based on Lemma 1 in [27].

Proposition 28.1. The following statements hold.

(1) Suppose x ∈S n
+ is of the form

x =

(
Ir 0
0 0

)
, (28.5)

and F = face(x,S n
+). Then F, F&, and F&⊥ are as displayed in (28.4), with the

upper left block r by r, and

tan(x,S n
+) = F&⊥ =

(× ×
× 0

)
. (28.6)

(2) For an arbitrary x ∈S n
+ we have

tan(x,S n
+) =

{
w+wT

∣∣∣ ( x w
wT β I

)
* 0 for some β ∈R

}
. (28.7)

Proof. Statement (1) is straightforward from the form of x and the expression for
the tangent space given in (28.2) with K = S n

+.
To see (2) first assume that x is of the form as in (28.5); then our claim follows

from part (1).
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Suppose now that x ∈ S n
+ is arbitrary and let q be a matrix of suitably scaled

eigenvectors of x with eigenvectors corresponding to nonzero eigenvalues coming
first. Let us write T (x) for the set on the right-hand side of (28.7). Then one
easily checks tan(qT xq,S n

+)= qT tan(x,S n
+)q and T (qT xq)= qT T (x)q, so this case

reduces to the previous case. �

28.2.5 Conic LPs

An ordinary linear program is clearly a special case of (P). If we choose X =
R

m, Y = S n, and K = S n
+, then problem (P) becomes an SDP. Since K is self-

dual, the dual problem (D) is also an SDP. The operator A and its adjoint are defined
via symmetric matrices a1, . . . ,am as

Ax =
m

∑
i=1

xiai and A∗y = (〈a1,y〉, . . . ,〈am,y〉)T .

We use the operator Feas() to denote the feasible set of a conic system.

28.2.6 The Minimal Cone

Let us choose x ∈ riFeas(P). We define the minimal cone of (P) as the unique face
of K that contains b−Ax in its relative interior and denote this face by Fmin.

For an arbitrary y ∈ Feas(P) there is z ∈ Feas(P) such that x ∈ (y,z). Hence
b−Ax∈ (b−Ay,b−Az), so b−Ay and b−Az are in Fmin, and (P) is equivalent to

Ax≤Fmin b,

and this constraint system satisfies Slater’s condition.

28.2.7 Nice Cones

We say that a closed convex cone K is nice if

K∗+F⊥ is closed for all F faces of K.

Most cones appearing in the optimization literature, such as polyhedral, semidefi-
nite, p-order, in particular second-order cones, are nice: see, e.g., [5, 6, 22].
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Example 28.2. In the linear inequality system

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
0 −1 1
0 1 0
0 0 −1
0 0 1

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎝x1

x2

x3

⎞
⎠≤

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , (28.8)

all feasible solutions satisfy the last four inequalities at equality, and for, say, x =
(−1,0,0)T the first inequality is strict. So the minimal cone of this system is

Fmin = R
1
+×{0}4.

In linear programs strong duality holds even without strict feasibility, so this
example illustrates only the concept of the minimal cone.

Example 28.3. In the SDP

sup x1

s.t. x1

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠+ x2

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠)

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ ,

(28.9)

a feasible positive semidefinite slack z must have all entries equal to zero, except for
z11, and there is a feasible slack with z11 > 0. So the minimal cone and its dual are

Fmin =

⎛
⎝⊕ 0 0

0 0 0
0 0 0

⎞
⎠ , F∗min =

⎛
⎝⊕ × ×× × ×
× × ×

⎞
⎠ . (28.10)

The optimal value of (28.9) is clearly zero. Writing y for the dual matrix, the dual
program is equivalent to

inf y11

s.t.

⎛
⎝ y11 1/2 −y22/2

1/2 y22 y23

−y22/2 y23 y33

⎞
⎠* 0.

(28.11)

The dual has an unattained 0 minimum: y11 can be an arbitrarily small positive
number, at the cost of making y22 and in turn y33 large; however, y11 cannot be
made 0, as y12 is 1/2.

Suppose that in (28.11) we replace the constraint y* 0 by y∈ F∗min. Then we can
set y11 to zero, so with this modification, the dual attains.

We will return to these examples later to illustrate our FRA and extended duals.
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We assume throughout the paper that (P) is feasible. It is possible to remove this
assumption and modify the facial reduction algorithm of sect. 28.3 either to prove
the infeasibility of (P) or to find the minimal cone in finitely many steps: such an
algorithm was described by Waki and Muramatsu in [36].

28.3 A Simple Facial Reduction Algorithm

We now state a simplified FRA that is applicable when K is an arbitrary closed
convex cone. We prove its correctness and illustrate it on Examples 28.2 and 28.3.

Let us recall that Fmin denotes the minimal cone of (P) and for brevity define the
subspace L as

L = N ((A,b)∗). (28.12)

Lemma 28.4. Suppose that an F face of K satisfies Fmin ⊆ F. Then the following
hold:

(1) For all y ∈ F∗ ∩L we have

Fmin ⊆ F ∩ y⊥ ⊆ F. (28.13)

(2) There exists y ∈ F∗ ∩L such that the second containment in (28.13) is strict, iff
Fmin �= F. We can find such a y or prove F = Fmin by solving a pair of auxiliary
conic linear programs.

Proof. To prove (1) suppose that x is feasible for (P) and let y ∈ F∗ ∩ L. Then
b−Ax ∈ Fmin ⊆ F, hence 〈b−Ax,y〉= 0, which implies the first containment; the
second is obvious.

In statement (2) the “only if” part is obvious. To see the “if” part, let us fix
f ∈ riF and consider the primal-dual pair of conic linear programs that we call
reducing conic LPs below:

sup t inf 〈b,y〉
(R−P) s.t. Ax+ f t ≤F b s.t. y≥F∗ 0 (R−D)

A∗y = 0
〈 f ,y〉= 1.

First let us note

Fmin = F ⇔ ∃x s.t.b−Ax ∈ riF
⇔ ∃x andt > 0s.t.b−Ax− f t ∈ F.

Here in the first equivalence the direction ⇒ is obvious from the definition of the
minimal cone. To see the direction ⇐ assume b−Ax ∈ riF. Then riF ∩Fmin �= /0
and Fmin is a face of K, so Theorem 18.1 in [28] implies F ⊆ Fmin, and the reverse
containment is already given. The second equivalence is obvious.
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FACIAL REDUCTION ALGORITHM

Initialization:
repeat

Let y0 = 0, F0 = K, i = 1.

Choose yi ∈ L ∩ Fi−1.
∗

Let Fi = Fi−1 ∩ yi  .
⊥

Let i = i + 1.
end repeat

Fig. 28.1 The facial
reduction algorithm

Therefore, Fmin �= F iff the optimal value of (R−P) is 0. Note that (R−P) is
strictly feasible, with some x such that b−Ax ∈ F and some t < 0.

Hence Fmin �= F iff (R−D) has optimal value 0 and attains it, i.e., iff there is
y ∈ F∗ ∩L with 〈 f ,y〉 = 1. Such a y clearly must satisfy F ∩ y⊥ � F. �

Based on Lemma 28.4 we now state a simple FRA in Fig. 28.1.
The algorithm of Fig. 28.1 may not terminate in general, as it allows the choice

of a yi in iteration i such that Fi = Fi−1; it even allows yi = 0 for all i. Based on
this general algorithm, however, it will be convenient to construct a representation
of F∗min.

We call an iteration of the FRA reducing if the yi vector found therein satisfies
Fi � Fi−1; we can make sure that an iteration is reducing or that we have found the
minimal cone by solving the pair of conic linear programs (R−P)− (R−D). It is
clear that after a sufficient number of reducing iterations the algorithm terminates.

Let us define the quantities

�K = the length of the longest chain of faces in K,

�= min{�K− 1,dimL}. (28.14)

We prove the correctness of our FRA and an upper bound on the number of reducing
iterations in Theorem 28.5:

Theorem 28.5. Suppose that the FRA finds y0,y1, . . . , and corresponding faces
F0, F1, . . . Then the following hold:

(1) Fmin ⊆ Fi for i = 0,1, . . . .
(2) After a sufficiently large number of reducing iterations the algorithm finds

Fmin = Ft in some iteration t. Furthermore,

Fmin = Fi

holds for all i≥ t.
(3) The number of reducing iterations in the FRA is at most �.

Proof. Let us first note that the face Fi found by the algorithm is of the form

Fi = K ∩ y⊥0 ∩·· ·∩ y⊥i , i = 0,1, . . .

Statement (1) follows from applying repeatedly part (1) of Lemma 28.4.
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In (2) the first part of the claim is straightforward; in particular, the number of
reducing iterations cannot exceed �K− 1. Suppose i≥ t. Since Ft = Fmin, we have

Fmin ⊆ Fi = Ft ∩ y⊥t+1∩·· ·∩ y⊥i ⊆ Fmin, (28.15)

so equality holds throughout in (28.15), which proves Fi = Fmin.
To prove (3) let us denote by k the number of reducing iterations. It remains

to show that k ≤ dimL holds, so assume to the contrary k > dimL. Suppose that
yi1 , . . . ,yik are the vectors found in reducing iterations, where i1 < · · · < ik. Since
they are all in L, they must be linearly dependent, so there is an index r ∈ {1, . . . ,k}
such that

yir ∈ lin{yi1 , . . . ,yir−1} ⊆ lin{y0,y1, . . . ,yir−1}.
For brevity let us write s = ir. Then y⊥0 ∩·· ·∩ y⊥s−1 ⊆ y⊥s , so

Fs = Fs−1,

i.e., the sth step is not reducing, which is a contradiction. �
Next we illustrate our algorithm on the examples of Sect. 28.2.

Examples 28.2 and 28.3 continued Suppose we run our algorithm on the linear
system (28.8). The yi vectors below, with corresponding faces shown, are a possible
output:

y0 = 0, F0 = R
5
+,

y1 = (0, 0, 0, 1, 1)T , F1 = R
3
+×{0}2,

y2 = (0, 1, 1, 0,−1)T , F2 = Fmin = R
1
+×{0}4. (28.16)

The algorithm may also finish in one step, by finding, say, y0 = 0, and

y1 = (0, 1, 1, 2, 1)T . (28.17)

Of course, in linear systems, there is always a reducing certificate that finds the
minimal cone in one step, i.e., Fmin = K∩y⊥1 for some y1 ≥ 0; this is straightforward
from LP duality.

When we run our algorithm on the instance of (28.9), the yi matrices below, with
corresponding Fi faces, are a possible output:

y0 = 0, F0 = S 3
+,

y1 =

⎛
⎜⎝0 0 0

0 0 0

0 0 1

⎞
⎟⎠ , F1 =

⎛
⎜⎝ ⊕ 0

0

0 0 0

⎞
⎟⎠ ,

y2 =

⎛
⎜⎝ 0 0 −1

0 2 0

−1 0 0

⎞
⎟⎠ , F2 = Fmin =

⎛
⎜⎝⊕ 0 0

0 0 0

0 0 0

⎞
⎟⎠ .

(28.18)
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Indeed it is clear that the yi are orthogonal to all the constraint matrices in problem
(28.9) and that yi ∈ F∗i−1 for i = 1,2.

Let us now consider the conic system

y0 = 0
yi ∈ F∗i−1, where

Fi−1 = K ∩ y⊥0 ∩·· ·∩ y⊥i−1, i = 1, . . . , �+ 1
yi ∈ L, i = 1, . . . , �

⎫⎪⎪⎬
⎪⎪⎭ (EXT )

that we call an extended system.
We have the following representation theorem:

Theorem 28.6. F∗min = {y�+1 |(yi)
�+1
i=0 is feasible in (EXT)}.

Before proving Theorem 28.6 we make some remarks. First, the two different
ranges for the i indices in the constraints of (EXT ) are not accidental: the sequence
y0, . . . ,y� is a possible output of our FRA, iff with some y�+1 it is feasible in (EXT ),
and the variable y�+1 represents the dual of the minimal cone. It also becomes clearer
now why we allow nonreducing iterations in our algorithm: in the conic system
(EXT ) some yi correspond to reducing iterations, but others do not.

The extended system (EXT ) is not linear, due to how the yi vectors depend on
the previous y j, and in general we also don’t know how to describe the duals of
faces of K. Hence the representation of Theorem 28.6 is not yet immediately useful.
However, in the next section we state an equivalent conic linear system to represent
F∗min when K is nice and arrive at the representation of (28.1) and at an extended
dual of (P).
Proof of Theorem 28.6. Let us write G for the set on the right-hand side. Suppose
that (yi)

�+1
i=0 is feasible in (EXT ) with corresponding faces F0, . . . ,F�. By part (1) in

Theorem 28.5 we have

Fmin ⊆ F�, henceF∗min ⊇ F∗� . (28.19)

Since y�+1 ∈ F∗� in G, the containment F∗min ⊇ G follows.
By part (2)–(3) in Theorem 28.5 there exists (yi)

�+1
i=0 that is feasible in (EXT ),

with corresponding faces F0, . . . ,F� such that equality holds in (28.19). This proves
the inclusion F∗min ⊆ G. �

28.4 When K Is Nice: An Extended Dual and an Explicit
Extended Dual for Semidefinite Programs

From now on we make the following assumption:

K is nice.

Let us recall the definition of L from (28.12) and consider the conic system
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(u0,v0) = (0,0)
(ui,vi) ∈ K∗ × tan(u0 + · · ·+ ui−1,K∗), i = 1, . . . , �+ 1
ui + vi ∈ L, i = 1, . . . , �

⎫⎬
⎭ . (EXTnice)

This is a conic linear system, since the set

{(u,v) |u ∈ K∗, v ∈ tan(u,K∗)}

is a convex cone, although it may not be closed (e.g., if K∗ = R
2
+, then (ε,1) is in

this set for all ε > 0, but (0,1) is not).

Theorem 28.7. Feas (EXT) = {(ui + vi)
�+1
i=0 : (ui,vi)

�+1
i=0 ∈ Feas (EXTnice)}.

Proof. To see the inclusion ⊆ suppose that (yi)
�+1
i=0 is feasible in (EXT ), with faces

Fi−1 = K ∩ y⊥0 ∩·· ·∩ y⊥i−1, i = 1, . . . , �+ 1. (28.20)

For i = 1, . . . , �+1 we have yi ∈ F∗i−1, and K is nice, so we can write yi = ui + vi for
some ui ∈ K∗ and vi ∈ F⊥i−1. Also, let us set u0 = v0 = 0, then of course y0 = u0+v0.

We show that (ui,vi)
�+1
i=0 is feasible in (EXTnice). To do this, it is enough to verify

F⊥i−1 = tan(u0 + · · ·+ ui−1,K
∗) (28.21)

for i = 1, . . . , �+ 1. Equation (28.21) will follow if we prove

Fi−1 = K∩ (u0 + · · ·+ ui−1)
⊥ (28.22)

for i = 1, . . . , �+ 1; indeed, from (28.22) we directly obtain

Fi−1 = face(u0 + · · ·+ ui−1,K
∗)&,

hence

F⊥i−1 = face(u0 + · · ·+ ui−1,K
∗)&⊥

= tan(u0 + · · ·+ ui−1,K
∗),

where the second equality comes from (28.2).
So it remains to prove (28.22). It is clearly true for i = 1. Let i be a nonnegative

integer at most �+ 1 and assume that (28.22) holds for 1, . . . , i− 1. We then have

Fi−1 = Fi−2∩ y⊥i−1
= Fi−2∩ (ui−1 + vi−1)

⊥

= Fi−2∩u⊥i−1
= K∩ (u0 + · · ·+ ui−2)

⊥ ∩u⊥i−1
= K∩ (u0 + · · ·+ ui−2 + ui−1)

⊥.
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Here the second equation follows from the definition of (ui−1,vi−1), the third from
vi−1 ∈ F⊥i−2, the fourth from the inductive hypothesis, and the last from all u j being
in K∗.

Thus the proof of the containment⊆ is complete.
To prove the opposite inclusion let us choose (ui,vi)

�+1
i=0 to be feasible in (EXTnice)

and define yi = ui + vi for all i and the faces F0, . . . ,F� as in (28.20). Repeating the
previous argument verbatim, (28.21) holds, so we have

yi ∈ K∗+F⊥i−1 = F∗i−1, i = 1, . . . , �+ 1.

Therefore (yi)
�+1
i=0 is feasible in (EXT ) and this completes the proof. �

We now arrive at the representation of F∗min that we previewed in (28.1) and at an
extended dual of (P):

Corollary 28.8. The dual of the minimal cone of (P) has a representation

F∗min = {u�+1 + v�+1 : (ui,vi)
�+1
i=0 is feasible in (EXTnice)}, (28.23)

and the extended dual

inf 〈b,u�+1 + v�+1〉
s.t. A∗(u�+1 + v�+1) = c

(ui,vi)
�+1
i=0 is feasible in (EXTnice)

(Dext)

has strong duality with (P).
In particular, if (P) is an SDP with m variables, independent constraint matrices,

and K = S n
+, then the problem

inf 〈b,u�+1 + v�+1〉
s.t. A∗(u�+1 + v�+1) = c

(A,b)∗(ui + vi) = 0, i = 1, . . . , �
ui * 0, i = 1, . . . , �+ 1

(∗)
(

u0 + · · ·+ ui−1 wi

wT
i βiI

)
* 0, i = 1, . . . , �+ 1

vi = wi +wT
i , i = 1, . . . , �+ 1

wi ∈ R
n×n, i = 1, . . . , �+ 1

βi ∈ R, i = 1, . . . , �+ 1
(u0,v0) = (0,0),

(Dext,SDP)

where

�= min{n,n(n+ 1)/2−m−1}, (28.24)

has strong duality with (P).
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Proof. The representation (28.23) follows from combining Theorems 28.6 and 28.7.
The second statement of the theorem follows, since replacing K∗ by F∗min in (D)
yields a strong dual for (P).

Suppose now that (P) is an SDP with K = S n
+, with m variables, and with

independent constraint matrices. The length of the longest chain of faces in S n
+ is

n+ 1 and the dimension of the subspace N ((A,b)∗) is n(n+ 1)/2−m− 1. Hence
we can choose � as in (28.24) to obtain a correct extended dual.

Let vi ∈S n and u0, . . . ,ui−1 ∈S n
+, where i ∈ {1, . . . , �+1}. The representation

of the tangent space in S n
+ in (28.7) implies that vi ∈ tan(u0 + · · ·+ui−1,K∗) holds,

iff vi,u0, . . . ,ui−1 with some wi (possibly nonsymmetric) matrices and βi scalars
satisfies the ith constraint of (Dext,SDP) marked by (*). This proves the correctness
of the extended dual (Dext,SDP). �

For the reducing certificates found for the linear system (28.8) and displayed in
(28.16) the reader can easily find the decomposition whose existence we showed in
Theorem 28.7.
Example 28.3 continued Recall that when we run our FRA on the SDP instance
(28.9), matrices y0,y1,y2 shown in equation (28.18) are a possible output.

We illustrate their decomposition as proved in Theorem 28.7, in particular, as
yi = ui + vi with ui ∈ K∗ and vi ∈ tan(u0 + · · ·+ ui−1,K∗) for i = 1,2 :

u0 = 0, v0 = 0,

u1 =

⎛
⎜⎝0 0 0

0 0 0

0 0 1

⎞
⎟⎠ , v1 = 0,

u2 =

⎛
⎜⎝0 0 0

0 2 0

0 0 0

⎞
⎟⎠ , v2 =

⎛
⎜⎝ 0 0 −1

0 0 0

−1 0 0

⎞
⎟⎠ .

(28.25)

We can check v2 ∈ tan(u1,S
3
+) by using the tangent space formula (28.6).

To illustrate the correctness of the extended dual (Dext,SDP), we first note that
n = m = 3, so by formula (28.24) we can choose �= 2 to obtain a correct extended
dual. Recall that y ∈ F∗min is an optimal dual solution if and only if it is of the form

y =

⎛
⎝ 0 1/2 −y22/2

1/2 y22 y23

−y22/2 y32 y33

⎞
⎠ . (28.26)

Consider the (ui,vi)
2
i=0 sequence shown in (28.25); we prove that any y optimal

matrix satisfies

y ∈ S 3
++ tan(u0 + u1 + u2,S

3
+). (28.27)
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Indeed, tan(u0 + u1 + u2,S
3
+) is the set of 3 by 3 matrices with the component in

the (1,1) position equal to zero, and the other components arbitrary, and this proves
(28.27).

In fact, considering the expression for F∗min in (28.10), it follows that any y∈ F∗min
satisfies (28.27).

28.5 Variants of Extended Duals

So far we proved the correctness of an extended dual of (P), which is itself an
explicit SDP when (P) is. Ramana’s original dual is somewhat different from
(Dext,SDP) though. Here we describe several variants of extended duals for (P) and
show how to derive Ramana’s dual.

First let us define a simplified extended system

(u0,v0) = (0,0)
(ui,vi) ∈ K∗ × tan(ui−1,K∗), i = 1, . . . , �+ 1
ui + vi ∈ L, i = 1, . . . , �.

⎫⎬
⎭ (EXTnice,simple)

We prove that this system works just as well as (EXTnice) when constructing
extended duals.

Corollary 28.9. The dual of the minimal cone of (P) has a representation

F∗min = {u�+1 + v�+1 : (ui,vi)
�+1
i=0 is feasible in (EXTnice,simple)}, (28.28)

and the extended dual

inf 〈b,u�+1 + v�+1〉
s.t. A∗(u�+1 + v�+1) = c

(ui,vi)
�+1
i=0 is feasible in (EXTnice,simple),

(Dext,simple)

where � is defined in (28.14), has strong duality with (P).
In particular, if (P) is an SDP as described in Corollary 28.8, then the problem

obtained from (Dext,SDP) by replacing the constraint (*) by

(∗∗)
(

ui−1 wi

wT
i βiI

)
* 0, i = 1, . . . , �+ 1,

has strong duality with (P).

Proof. It is enough to prove the representation in equation (28.28); given this, the
rest of the proof is analogous to the proof of the second and third statements in
Corollary 28.8.
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We will use the representation of F∗min in (28.23). Let us denote by G the set on
the right-hand side of equation (28.28); we will prove G = F∗min.

To show G ⊆ F∗min suppose u�+1 + v�+1 ∈ G, where (ui,vi)
�+1
i=0 is feasible in

(EXTnice,simple). Then it is also feasible in (EXTnice), since applying the tangent
space formula (28.2) with K∗ in place of K implies that

tan(ui−1,K
∗) ⊆ tan(u0 + · · ·+ ui−1,K

∗)

holds for i = 1, . . . , �+ 1.
To prove G⊇ F∗min suppose that u�+1 + v�+1 ∈ F∗min, where (ui,vi)

�+1
i=0 is feasible

in (EXTnice). Again, by (28.2), the sets tan(u0,K∗), . . . , tan(u0 + · · ·+ ui−1,K∗) are
all contained in tan(u0 + · · ·+ ui−1,K∗) for i = 1, . . . , �. Hence

v1 + · · ·+ vi ∈ tan(u0 + · · ·+ ui−1,K
∗), i = 1, . . . , � (28.29)

holds, and we also have

v�+1 ∈ tan(u0 + · · ·+ u�,K
∗). (28.30)

Let us define

(u′i,v
′
i) = (u0 + · · ·+ ui,v0 + · · ·+ vi), i = 1, . . . , �.

By (28.29) and (28.30) it follows that (u�+1,v�+1) with (u′i,v′i)�i=0 is feasible for
(EXTnice,simple), so the inclusion follows. �

Let us now consider another extended system

(u0,v0) = (0,0)
(ui,vi) ∈ K∗ × tan’(ui−1,K∗), i = 1, . . . , �+ 1
ui + vi ∈ L, i = 1, . . . , �

⎫⎬
⎭ , (EXT ′nice,simple)

where the set tan’(u,K∗) satisfies the following two requirements for all u ∈ K∗ :

1. tan’(u,K∗)⊆ tan(u,K∗).
2. For all v ∈ tan(u,K∗) there exists λv > 0 such that v ∈ tan’(λvu,K∗).

Corollary 28.10. The dual of the minimal cone of (P) has the representation

F∗min = {u�+1 + v�+1 : (ui,vi)
�+1
i=0 is feasible in (EXT ′nice,simple)}, (28.31)

and the extended dual

inf 〈b,u�+1 + v�+1〉
s.t. A∗(u�+1 + v�+1) = c

(ui,vi)
�+1
i=0 is feasible in (EXT ′nice,simple),

(D′ext,simple)
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where � is defined in (28.14), has strong duality with (P).
In particular, if (P) is an SDP as described in Corollary 28.8, then the problem

obtained from (Dext,SDP) by replacing the constraint (*) by

(∗ ∗ ∗)
(

ui−1 wi

wT
i I

)
* 0, i = 1, . . . , �+ 1,

and dropping the βi variables, has strong duality with (P).

Proof. We use the representation of F∗min in (28.28). Let us denote by G the set on
the right-hand side of equation (28.31). We will prove G = F∗min.

It is clear that G⊆ F∗min, since if (ui,vi)
�+1
i=0 is feasible in (EXT ′nice,simple), then by

the first property of the operator tan’, it is also feasible in (EXTnice,simple).
To show the opposite inclusion, suppose u�+1 + v�+1 ∈ F∗min, where (ui,vi)

�+1
i=0 is

feasible in (EXTnice,simple). Let us choose λ�,λ�−1, . . . ,λ1 positive reals such that

v�+1 ∈ tan’(λ�u�,K∗),
λ�v� ∈ tan’(λ�−1u�−1,K∗),

...
λ2v2 ∈ tan’(λ1u1,K∗),

(28.32)

and for completeness, set λ0 = 0. Then (u�+1,v�+1) with (λiui,λivi)
�
i=0 is feasible in

(EXT ′nice,simple), and this proves F∗min ⊆ G. �
We finally remark that in the extended duals for semidefinite programming it

is possible to eliminate the vi variables and use the wi matrices directly in the
constraints; thus one can exactly obtain Ramana’s dual. We leave the details to the
reader.

28.6 Conclusion

We gave a simple and self-contained exposition of a FRA and of extended duals:
both approaches yield strong duality for a conic linear program, without assuming
any constraint qualification. We generalized Ramana’s dual: we proved that when
K is a nice cone, the set F∗min has an extended formulation, i.e., it is the projection
of the feasible set of a conic linear system in a higher dimensional space. The only
nontrivial constraints in this system are of the form u≥K∗ 0, and v ∈ tan(u,K∗).

This formulation leads to an extended, strong dual of (P), when K is nice.
When K = K∗ is the semidefinite cone, by writing the tangent space constraint as a
semidefinite constraint, we obtain an extended strong dual, which is an SDP itself,
and thus recover variants of Ramana’s dual.
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One may wonder whether there is an extended formulation for Fmin itself.
Suppose that K is an arbitrary closed convex cone. When a fixed s̄ ∈ riFmin is given,
then obviously

Fmin = {s |0≤K s≤K α s̄ for some α ≥ 0}.

The minimal cone can also be represented without such an s̄, since

Fmin = {s |0≤K s≤K αb−Ax for some x, and α ≥ 0}. (28.33)

This representation was obtained by Freund [12], based on the article by himself
and Roundy and Todd [13].

It is also natural to ask whether there are other nice cones, for which the set

{(u,v) |u ∈ K∗, v ∈ tan(u,K∗)}

has a formulation in terms of K∗; e.g., is this true for the second-order cone? Conic
linear programs over such cones would also have Ramana-type (i.e., expressed only
in terms of K∗) extended duals.

Acknowledgements I would like to thank an anonymous referee and Minghui Liu for their helpful
comments.
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Chapter 29
Towards a New Era in Subdifferential Analysis?

Jean-Paul Penot

Dedicated to Jon Borwein on the occasion of his 60th birthday

Abstract We give some new attention to the foundations of nonsmooth analysis.
We endeavour to delineate the common features of usual subdifferentials. In
particular, we stress calculus rules and properties linked with order. Our objective
is to give the possibility of using subdifferentials without dealing with specific
constructions.

Key words: Calculus rules • Nonsmooth analysis • Subdifferential
• Subgradient

Mathematics Subject Classifications (2010): Primary 49J52; Secondary 26A27,
90C56.

29.1 Introduction

During several decades nonsmooth analysis has been viewed by some authors and
most users as a field of disorder, a “ménagerie” to take the expression in the preface
of [1]. On the contrary, it appears to some other authors that nonsmooth analysis
has joint features, in particular the passages from sets to functions via indicator
functions and distance functions and the reverse passage using epigraphs. It is the
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purpose of the present paper to show that many properties are shared by the different
concepts of subdifferential. As a consequence, the user may avoid the specific
constructions and just retain the rules needed for the application in view. That does
not mean that for all problems an abstract subdifferential should be used. We admit
that some problems are best dealt with by using a specific subdifferential.

It is not the first time an axiomatic approach to subdifferentials is adopted. On the
contrary, such attempts abound. However, our aim, as described above, is different
from the ones we are aware of in the literature. In [15] A. Ioffe explores different
possibilities of defining tangent cones and generalized derivatives. In [20] (resp.
[26]) he gives conditions aiming at showing minimality (resp. uniqueness) of his
subdifferential. A similar objective is present in Sect. 2.5.1 of the monograph [31].
D. Aussel et al., A. Ioffe, M. Lassonde, and J. Zhu in [2, 23, 29, 39] consider a
list of axioms as reduced as possible in order to show the equivalence of several
crucial properties of subdifferentials such as sum rules and mean value theorems.
R. Correa et al. [10] adopt conditions (which exclude some subdifferentials) in
order to characterize convexity; see [11,38] for more general conditions including a
sum rule. In [34] a first exploration of conditions ensuring some compatibility with
order is undertaken. It is carried on here with the observation that subdifferential
analysis is much used for optimization problems and such problems involve order.
Thus, order properties should be given more attention than what they received in the
literature.

Of course, the properties we adopt as axioms are suggested by the well-
known properties of differential calculus and by the properties of the main specific
subdifferentials. But we also detect properties linked with order that have not
been exhibited. Since the main applications of subdifferentials concern optimization
questions, it is natural to stress such order properties.

After a presentation of the conditions (or axioms) we select in the next section,
we deduce some consequences of these general properties. Then, in Sect. 29.2.3, we
display some variants because the user may prefer to deal with simple versions or on
the contrary may prefer to dispose of more powerful properties. The definitions of
the most usual subdifferentials are reminded in Sect. 29.2.4 and it is checked that the
conditions we selected are satisfied by them. Section 29.3 is devoted to extension
questions. The main one concerns the extension of subdifferentials from the class L
of locally Lipschitzian functions to the class I of lower semicontinuous functions.
Thus, our main result reduces the proof of the expected properties to the case of
the class L for which the constructions are often simpler. Finally, we turn to some
additional properties which enable to develop a full calculus.

Such a general approach cannot replace the study of specific subdifferentials,
because all the main subdifferentials have particular properties of interest not shared
by the other ones. But it shows that the family of subdifferentials has much in
common and is a genuine family.

The notation we use is the notation of [36], hence is essentially compatible with
the ones of [7,9]. In particular, if X and Y are two normed spaces, L(X ,Y ) stands for
the set of continuous linear maps from X into Y and B(x,r) (resp. B[x,r]) denotes
the open (resp. closed) ball with center x and radius r in X . For a function f on X
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finite at x, B(x,r, f ) is the set of x ∈ B(x,r) such that | f (x)− f (x)| < r. Here, as in
[36], we say that a map g : X→Y between two normed spaces is circa-differentiable
(or strictly differentiable) at x ∈ X if there exists some A ∈ L(X ,Y ) such that for all
ε > 0 there exists some δ > 0 such that g−A is Lipschitzian with rate ε on the ball
B(x,δ ). That is the case when g is of class C1 at (resp. around) x in the sense that g
is differentiable on a neighborhood of x and its derivative g′ is continuous at x (resp.
on a neighborhood of x). We always endow a product X ×Y of normed spaces with
a product norm, i.e., a norm on X ×Y for which the projections are nonexpansive
and the insertions x �→ (x,0) and y �→ (0,y) are continuous.

29.2 General Properties of Subdifferentials

29.2.1 An Axiomatic Approach

Below is a list of essential properties shared by all interesting subdifferentials
besides global subdifferentials that are outside the realm of infinitesimal analysis
(see [33] for instance for subdifferentials adapted to generalized convexity). Taking
these properties as axioms we can devise several other properties. Of course, it
is desirable to dispose of as many properties as possible. On the other hand, it is
convenient to make this list as short as possible, while keeping these properties. We
do not look for independence of these conditions, but for a list which is natural
enough and as efficient as possible for its uses. Several properties have some
variants. The strongest ones are more difficult to check for a specific subdifferential.
The coarsest ones may not reflect the full power of subdifferentials. Thus, in general
we choose the one whose expression is the simplest one while being general enough,
and we mention possible variants. We observe that it is possible to rule out all
subdifferentials but one by requiring some particular conditions. Again, on the
contrary, we want to encompass all usual subdifferentials. Thus, the list we give
is the result of a compromise. Depending on the problem at hand or the needs one
may have, it can be shortened or completed. In the course of the paper we will
examine some additional properties which may be of great importance.

Some versatility is obtained by restricting the attention to some particular class
of spaces X or some particular class of functions F , as it is known that important
properties of some subdifferentials are valid only in finite dimensional spaces or
Asplund spaces. We assume X is stable by products and contains R. By a class
of functions, we mean that for all X in X we are given a set F (X) of extended
real-valued lower semicontinuous functions on X . The main classes of functions
we consider are the class L of locally Lipschitzian functions and the class I
of (extended real-valued proper) lower semicontinuous functions. For instance, we
can take the class of functions which are sums of a lower semicontinuous convex
function and a function of class C1. Here we assume that the class of functions
contains at least the class L . Of course, the conditions we impose require that the
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subdifferential ∂ is local and coincides with the Fenchel–Moreau subdifferential
∂FM when applied to a convex function f , where

∂FM f (x) = {x∗ : 〈x∗,w〉 ≤ f (x+w)− f (x), ∀ w ∈ X}.

Definition 29.1. Given a class X of Banach spaces and a class F of functions,
by subdifferential or subdifferential of classical type, we mean a mapping which
associates with any X ∈X , any f ∈F (X), and any x ∈ dom f = {x : | f (x)| < ∞}
a set ∂ f (x)⊂ X∗ in such a way that the following properties are satisfied whenever
V , W , X , Y , Z are members of X , x ∈ X , y ∈Y :
– Localizability:

(S1) If f ,g ∈F (X) coincide in a neighborhood of x, then ∂ f (x) = ∂g(x).
– Contiguity:

(S2) If f ∈F (X) is convex, then ∂ f (x) = ∂FM f (x).
– Optimality:

(S3) If f ∈F (X) attains a local minimum at x ∈ dom f , then 0 ∈ ∂ f (x).
– Calculability:

(S4) If for some g : X → Y of class C1 at x ∈ X with A(X) = Y for A := g′(x),
λ > 0, � ∈ X∗, c ∈ R, and h ∈ F (Y ), one has f (x) = λh(g(x))+ 〈�,x〉+ c, then
∂ f (x) = λAT∂h(g(x))+ �.

(S4b) For m ∈ N\{0}, g1 ∈ F (X1), . . . ,gm ∈ F (Xm), X := X1 × ·· · × Xm,
g := g1 × ·· · × gm : X → R

m, j : Rm→R of class C1 around r := g(x) :=
(g1(x1), . . . ,gm(xm)) and nondecreasing in each of its m arguments, with Di j(r) �= 0
for i = 1, . . . ,m, if f := j ◦ g, then ∂ f (x)⊂ j′(r)◦ (∂g1(x1)×·· ·× ∂gm(xm)).
– Consistency:

(S5) If f (x,y) := max(g(x),h(y)), (x∗,y∗)∈ ∂ f (x,y) with g∈F (X), continuous
h ∈ F (Y ) of class C1 around y, g(x) = h(y), y∗ �= h′(y) �= 0, then (x∗,y∗) ∈
{λ∂g(x)× (1−λ ){h′(y)} : λ ∈]0,1]}.
– Pseudo-homotonicity (or order compatibility):

(S6a) If A ∈ L(V,W ) with W = A(V ), w ∈W , M ⊂ A−1(w), ϕ ∈ F (V ), p ∈
F (W ) are such that p ◦A≤ ϕ and that for every sequences (αn)→ 0+, (wn)→ w
with (p(wn))→ p(w) ∈ R, wn ∈ A(domϕ) for all n, one can find v ∈M, an infinite
subset N of N, a sequence (vn)n∈N→ v such that A(vn)=wn and ϕ(vn)≤ p(wn)+αn

for all n ∈ N, then one has

AT (∂ p(w))⊂
⋃

v∈M

∂ϕ(v). (29.1)

(S6b) If A ∈ L(V,W ) with W = A(V ), if E is a closed subset of W , w ∈ E , ϕ ∈
F (V ), p := dE , the distance function to E , M ⊂ A−1(w) are such that p ◦A ≤ ϕ ,
and if for every sequences (αn)→ 0+, (wn)→ w with wn ∈ E for all n, one can find
v ∈M, an infinite subset N of N, and a sequence (vn)n∈N → v such that A(vn) = wn

and ϕ(vn)≤ αn for all n ∈ N, then relation (29.1) holds.
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If necessary, we make clearer the definition of ∂ by writing (∂ ,X ,F ). It may
be convenient to extend the definition of ∂ to any triple (X , f ,x) with X in X ,
f ∈F (X), x ∈ X by requiring the following condition:
– Substantiality:

(S0) ∂ f (x) =∅ if x ∈ X\dom f .
The terminology we use is mostly due to A. Ioffe. It is clear, but for condition

(S5), “consistency” can be explained by the fact that (S5) serves to show the
agreement of a geometrical device with the present analytical approach, as proved
in Proposition 29.23.

The preceding set of properties can be supplemented by two other sets: one less
demanding and one slightly more exacting. Both versions are close to the classical
one above.

Definition 29.2. Given a class X of Banach spaces and a class F of functions, by
subdifferential of alleviated type we mean a mapping ∂ : (X , f ,x) �→ ∂ f (x) satisfying
the conditions of the preceding definition but (S4c) and (S5c) replaced with:

(S4a) If for some A ∈ L(X ,Y ) with A(X) = Y , λ > 0, b ∈ Y , � ∈ X∗, c ∈ R h ∈
F (Y ), one has f (x) = λh(A(x)+b)+〈�,x〉+c, then ∂ f (x) = λAT∂h(A(x)+b)+�.

(S5a) If f (x,y) := max(g(x),h(y)) with g ∈ F (X), h ∈ Y ∗\{0}, g(x) = h(y),
(x∗,y∗) ∈ ∂ f (x,y), y∗ �= h, then (x∗,y∗) ∈ {λ∂g(x)× (1−λ ){h′(y)} : λ ∈]0,1]}.
Definition 29.3. Given a class X of Banach spaces and a class F of functions,
by subdifferential of deepened type, we mean a mapping ∂ : (X , f ,x) �→ ∂ f (x)
satisfying the conditions of Definition but (S4c) and (S5c) replaced with:

(S4d) If for some g : X → Y circa-differentiable at x ∈ X with A(X) =Y for A :=
g′(x), λ > 0, b∈Y , �∈X∗, c∈R, h∈F (Y ) one has f (x) =λh(g(x)+b)+〈�,x〉+c,
then ∂ f (x) = λAT∂h(g(x)+ b)+ �.

(S5d) If f (x,y) :=max(g(x),h(y)), (x∗,y∗)∈ ∂ f (x,y) with g∈F (X), h∈F (Y )
circa-differentiable at y, g(x) = h(y), y∗ �= h′(y) �= 0, then (x∗,y∗) ∈ {λ∂g(x)× (1−
λ ){h′(y)} : λ ∈]0,1]}.

In the sequel (S4) and (S5) are sometimes relabelled (S4c) and (S5c), respec-
tively, in order to put in light the analogies with the other conditions of the same
type; (S6) stands for the conjunction of (S6a) and (S6b).

Simple consequences of the preceding conditions are displayed in the next
subsection.

29.2.2 Some Simple Consequences

We shall show that the conditions expounded above have some interesting direct
consequences and are a starting point for a rich set of nontrivial calculus rules
provided some further properties are added. They will be introduced in the last
section.
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Clearly, condition (S4a) ensures invariance by isomorphisms; in particular ∂
is independent of the choice of a compatible norm. Correspondingly, (S4c) (or
(S4d)) implies invariance under diffeomorphisms: if f = h ◦ G, where G is a
diffeomorphism, then ∂ f (x) =G′(x)T ∂h(G(x)), so that subdifferentials of functions
on differential manifolds can be introduced. Conversely, if this invariance property
holds, then a weaken version of (S4c) is satisfied, as shown by the submersion
theorem: given f = h ◦G with h ∈ F (Y ), G : X → Y of class C1 around x ∈ X ,
then ∂ f (x) = AT∂h(G(x)) provided the kernel Z of A := G′(x) has a topological
supplement. Moreover, invariance by diffeomorphism implies that in (S6a), (S6b) A
can be replaced with a submersion.

A tight contiguity property follows from conditions (S4c) and (S4d).

Proposition 29.4

(a) Under conditions (S2) and (S4c) (resp. (S4d)), if f is of class C1 at x (resp.
circa-differentiable at x), then ∂ f (x) = { f ′(x)}.

(b) If f (x,y) := g(x)+h(y), where g ∈F (X), h ∈F (Y ) being circa-differentiable
at y, then ∂ f (x,y)⊂ ∂g(x)×{h′(y)}.

A special case of condition (S4b) concerns the sum of m functions of independent
variables. It is obtained by taking j : Rm→R given by j(r1, . . . ,rm) = r1 + · · ·+ rm.
In view of its importance, we state it for m = 2 in the following form.

(S4s) If f (x,y) = g(x)+ h(y) with f ∈F (X ×Y ), g ∈F (X), h ∈F (Y ), then
∂ f (x,y)⊂ ∂g(x)× ∂h(y).

The general case follows from an easy induction on m.
A particular case of (S5a) is the following condition that has interesting

consequences:
(S5o) If f (x,y) := max(g(x),h(y)), (x∗,0) ∈ ∂ f (x,y) with g ∈ L (X), h ∈

Y ∗\{0}, g(x) = h(y), then x∗ ∈ ∂g(x).
A simplified form of condition (S6a) consists in taking for M a singleton:
(S6s) If A ∈ L(V,W ) with W = A(V ), v ∈ V , w := Av, ϕ ∈ F(V ), p ∈ F(W ) are

such that p◦A≤ϕ , ϕ(v) = p(w) and that for every sequences (αn)→ 0+, (wn)→w
with (p(wn))→ p(w) one can find a sequence (vn)→ v such that A(vn) = wn and
ϕ(vn)≤ p(wn)+αn for all n ∈ N large enough, then one has AT (∂ p(w))⊂ ∂ϕ(v).

A similar simplification of (S6b) can be given.
Conditions (S6a) and (S6b) entail exact forms that are often convenient. In order

to formulate them we recall that a multimap S : W ⇒ V between two Banach (or
metric) spaces is lower semicontinuous at w ∈W if S(w) is nonempty and if for all
v ∈ S(w) one has d(v,S(w))→ 0 as w→ w.

(S6e) If A ∈ L(V,W ), ϕ ∈F (V ), p ∈ F (W ), w ∈W are such that p ◦A ≤ ϕ ,
W = A(V ) and for some neighborhood W0 of w and some lower semicontinuous
multimap S : W0 ⇒V satisfying A(S(w)) = w, ϕ(v) = p(w) for all w∈W0, v∈ S(w),
then, for all v ∈ S(w), one has AT (∂ p(w))⊂ ∂ϕ(v).

(S6f) If A ∈ L(V,W ), ϕ ∈F (V ), E is a closed subset of W , p = dE , w ∈ E are
such that p◦A≤ ϕ , W = A(V ) and for some neighborhood W0 of w and some lower
semicontinuous multimap S : W0∩E ⇒V satisfying A(v) = w, ϕ(v) = p(w) for all
w ∈W0∩E , v ∈ S(w), then, for all v ∈ S(w), one has AT (∂ p(w))⊂ ∂ϕ(v).
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A number of other direct consequences can be drawn from the axioms presented
above. An immediate one concerns the case that a function is independent of one of
its variables. A second one deals with an intertwined sum.

Proposition 29.5. Let X , Y in X , g ∈F (X) be such that the function f given by
f (x,y) = g(x) belongs to F (X ×Y). Then ∂ f (x,y) = ∂g(x)×{0}.
Proof. The assertion derives from (S4a) by taking for A the canonical projection
and � := 0. �

Let us note that since g(·)= inf{ f (·,y) : y∈Y} and since for any sequence (xn)→
x one has f (xn,y) = g(xn), condition (S6a) (or (S6e) with S(·) := {(·,y)} or S(x) :=
{x}×Y ) implies that for all (x,y) ∈ X ×Y one has ∂g(x)×{0} ⊂ ∂ f (x,y). More
generally (S6a) implies the inclusion AT (∂h(Ax)) ⊂ ∂ f (x) when f := h ◦A as in
condition (S4a). Although (S4a) and (S6a) could be merged into a single statement
adding to the conclusion of (S6) the equality AT (∂ p(w)) = ∂ϕ(v) when p = ϕ ◦A,
we prefer to state them separately.

Proposition 29.6. Let ∂ be a subdifferential of alleviated type. Let W, X in X ,
g∈F (W ), h∈F (X), B∈ L(W,X) such that f given by f (w,x) := g(w)+h(Bw+x)
belongs to F (W×X). Then for any (w∗,x∗)∈ ∂ f (w,x) one has w∗−BT x∗ ∈ ∂g(w),
x∗ ∈ ∂h(Bw+ x), i.e., (w∗,x∗) = (u∗+BT x∗,x∗) for some u∗ ∈ ∂g(w), while x∗ ∈
∂h(Bw+ x).

If ∂ is a classical subdifferential and if for some map j : W → X of class C1

one has f (w,x) := g(w) + h( j(w) + x), then, for any (w∗,x∗) ∈ ∂ f (w,x), setting
B := D j(w) one has w∗ −BT x∗ ∈ ∂g(w), x∗ ∈ ∂h( j(w)+ x).

Proof. For the second assertion, setting G(w′,x′) := (w′, j(w′)+x′), observing that
G is a C1-diffeomorphism, that f = k◦G, where k(u,v) := g(u)+h(v), and applying
(S4c) and (S4s), for (w∗,x∗) ∈ ∂ f (w,x), one has (w∗,x∗) = AT (u∗,v∗) for A :=
DG(w,x), some (u∗,v∗) ∈ ∂k(w, j(w)+ x), so that u∗ ∈ ∂g(w), v∗ ∈ ∂h( j(w)+ x).
Since AT (u∗,v∗) = (u∗+ BT v∗,v∗), one gets v∗ = x∗, u∗ = w∗ − BT x∗. The first
assertion is obtained similarly, using (S4a) instead of (S4c). �

A boundedness property can be easily derived from the above conditions.

Proposition 29.7. If f ∈F (X) is Lipschitzian with rate r near x ∈ X, then for any
subdifferential ∂ , one has ∂ f (x)⊂ rBX∗ .

Proof. By (S1), we may suppose f is globally Lipschitzian with rate r. Then, for all
w ∈ X we have

f (w) = inf{ϕ(w,u) : u ∈ X} for ϕ(w,u) := f (u)+ r‖u−w‖ .

Moreover, one has f = ϕ ◦ S with S(w) := {(w,w)}. Then (S6), or even (S6e),
ensures that for all x∗ ∈ ∂ f (x) one has (x∗,0)∈ ∂ϕ(x,x). Using Proposition 29.6 and
(S2), we get some u∗ ∈ ∂ f (x) such that (x∗,0) = (x∗,u∗−x∗), with u∗ ∈ r∂ ‖·‖(0) =
rBX∗ . Thus x∗ ∈ rBX∗ . �
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Corollary 29.8. If f ∈F (X) is circa-differentiable at x and if ∂ is a subdifferential
of alleviated type, then ∂ f (x)⊂ { f ′(x)}.
Proof. If f ∈F (X) is circa-differentiable at x with derivative �, setting g := f − �,
for every ε > 0 one can find a neighborhood of x on which g is Lipschitzian with
rate less than ε. By (S4a) and the preceding proposition one gets

∂ f (x)− �= ∂g(x)⊂ εBX∗ .

It follows that ∂ f (x)⊂ {�}. �
The case m = 1, h : r �→ rp and r �→ r1/p of condition (S4b) yields the following

special case of Leibniz rule.

Proposition 29.9. If f , g∈F (X) are positive and such that, for some p> 0, f = gp

around some x satisfying g(x)> 0, then ∂ f (x) = pg(x)p−1∂g(x).

The usual Leibniz rule stems from the case m = 2 in (S4b), using the product
(r,s) �→ rs.

Proposition 29.10. If g,h∈L (X), f := gh satisfy g(x)> 0, h(x)> 0 then ∂ f (x)⊂
g(x)∂h(x)+ h(x)∂g(x).

29.2.3 Some Variants

It may be useful to detect some variants of the preceding set of conditions and to
make some comments. First, one has to note that making a slight modification of the
previous axioms one can eliminate any of the usual subdifferentials. For instance, it
has been observed by M. Lassonde that changing the inclusion ∂ f (x,y) ⊂ ∂g(x)×
∂h(y) of condition (S4s) for f (x,y) := g(x) + h(y) into an equality excludes the
Clarke subdifferential. Other variants considered in the present subsection exclude
the limiting subdifferential or the Fréchet or the (Dini-) Hadamard subdifferentials.

There are no serious reasons to change conditions (S0)–(S3).
One may prefer to (S5c) or (S5d) the more intrinsic condition:
(S5i) If g ∈F (X), h ∈F (Y ), f (x,y) := max(g(x),h(y)), g(x) = h(y), with 0 /∈

∂g(x), 0 /∈ ∂h(y), then ∂ f (x,y)⊂ {(1− t)∂g(x)× t∂h(y) : t ∈ [0,1]}.
An easy induction enables to reformulate this condition for m functions:

If m∈N\{0,1}, f (x1, . . .,xm) : =max(g1(x1), . . .,gm(xm)) with g1∈
F (X1), . . .,gm∈F (Xm), g1(x1) = · · ·= gm(xm), with 0 /∈ ∂gi(xi), i = 1, . . . ,m, then
∂ f (x)⊂ {r∗1∂g1(x)×·· ·× r∗m∂ fm(x) : r∗1, . . . ,r

∗
m ∈ R+, r∗1 + · · ·+ r∗m = 1}.

However, it is not clear whether (S5i) is satisfied by the firm (or Fréchet)
subdifferential or the directional (or Dini–Hadamard) subdifferential.

On the other hand, (S4b) and (S5i) are special cases of the following chain
rule in which pi : X := X1 × ·· · × Xm → Xi denotes the canonical projection,
x := (x1, . . . ,xm) ∈ X , r := (g1(x1), . . . ,gm(xm)):
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(C) If f := j ◦ (g1 ◦ p1, . . . ,gm ◦ pm) with g1 ∈ L (X1), . . . ,gm ∈ L (Xm), j ∈
L (Rm) nondecreasing, then ∂ f (x)⊂ {r∗1∂g1(x1)×·· ·× r∗m∂gm(xm) : (r∗1 , . . . ,r

∗
m)∈

∂ j(r)}.
For (S4b) that follows from the choice j(r1, . . . ,rm) = r1 + · · ·+ rm and for (S5i)

that stems from the choice j(r1, . . . ,rm) = max(r1, . . . ,rm) for (r1, . . . ,rm) ∈ R
m, j

being convex with ∂ j(r, . . . ,r) = {(r∗1, . . . ,r∗m) ∈R
m
+ : r∗1 + · · ·+ r∗m = 1}.

Obviously, (S5) or (S5o) entails the following special case in which h = IR:
(S5m) If g ∈L (X), if k(x,r) := g(x)∨ r := max(g(x),r) for (x,r) ∈ X ×R, and

if (x∗,0) ∈ ∂k(x,r) with r := g(x), then x∗ ∈ ∂g(x).
Now, setting m(x,r) := max(g(x)− r,0) = k(x,r)− r, condition (S4) ensures that

(x∗,−1) ∈ ∂m(x,r)⇐⇒ (x∗,0) ∈ ∂k(x,r). (29.2)

Thus, condition (S5m) is seen to be equivalent to x∗ ∈ ∂g(x) whenever (x∗,−1) ∈
∂m(x,r) and r := g(x). Now, m(x,r) = d((x,r),epig) for (x,r) close to (x,r) with
r = g(x) when X×R is endowed with an appropriate norm. This fact and Definition
29.24 below justify our terminology.

Let us note that in fact (S5m) is equivalent to (S5o) in view of (S4): given
g ∈L (X), h ∈ Y ∗\{0}, f with f (x,y) := max(g(x),h(y)), (x,y) ∈ X ×Y with r :=
h(y) = g(x) as in (S5), introducing A := IX×h∈ L(X×Y,X×R) which is surjective,
one has AT (u∗,r∗) = (u∗,r∗h), f = k ◦ A, hence ∂ f (x,y) = AT (∂k(x,h(y))) and
(x∗,0) ∈ ∂ f (x,y) if and only if (x∗,0) ∈ ∂k(x,r), so that x∗ ∈ ∂g(x) when (S5m)
holds.

In view of the equivalence (29.2), (S5m) is a consequence of the inclusion
∂m(x,r) ⊂ [0,1](∂g(x)×{−1}). In turn, this inclusion is a consequence of (S4)
and of the inclusion ∂k+(z)⊂ [0,1]∂k(z) for k ∈L (X ×R), with k+ := max(k,0).
That inclusion motivates some other variants below. However, it is not satisfied by
the directional (or Dini–Hadamard) or the firm (or Fréchet) subdifferential (take
k : R→ R given by k(x) = min(x,0)). Thus, we do not retain this inclusion.

If one adopts condition (S4c), condition (S5a) is equivalent to condition (S5). In
fact, if f , g, h, x, y, x∗ are as in (S5c), the submersion theorem ensures that there exist
open neighborhoods U, V , W of r := h(y), 0, y in R, Z, Y, where Z := h′(y)−1(0)
and a bijection ϕ : W → U ×V of class C1 at y such that h(ϕ−1(r,v)) = r for all
(r,v) ∈ U ×V. Then, k(x,r,v) := f (x,ϕ−1(r,v)) = max(g(x),r). Since (x,r,v) �→
(x,ϕ−1(r,v)) is a bijection of class C1 at (x,r,0), condition (S4c) ensures that
(x∗,0,0) ∈ ∂k(x,r,0). Then, using the linear form (r,v) �→ r on R×Z and (S5a),
we get x∗ ∈ ∂g(x), so that (S5c) is satisfied.

Condition (S6) is a weakening of the homotonicity property:
(H) If f ,g ∈F (X) are such that f ≥ g and f (x) = g(x) for some x ∈ X , then

∂g(x)⊂ ∂ f (x).
Note that when (S4a) holds, condition (H) is equivalent to the following condition:

(S6h) If A ∈ L(V,W ) with W = A(V ), v ∈V , w := Av, ϕ ∈F (V ), p ∈F (W ) are
such that p ◦A≤ ϕ and ϕ(v) = p(w), then one has AT (∂ p(w))⊂ ∂ϕ(v).
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Condition (H) is satisfied by the elementary subdifferentials and the viscosity sub-
differentials, but not by the Clarke subdifferential nor the limiting subdifferential,
so that we eschew it but we retain the weaker condition (S6a) or one of its variants
below.

Note that condition (S6a) can be reformulated as follows, denoting by epis f the
strict epigraph of a function f : epis f := {(v,r) ∈V ×R : r > f (v)}:

(S6o) If A ∈ L(V,W ) with W = A(V ), v ∈V , w := Av, ϕ ∈F (V ), p ∈F (W ) are
such that p ◦A≤ ϕ and that the map A× IR : (v,r) �→ (A(v),r) is open at (v,ϕ(v))
from episϕ∪{(v,ϕ(v))} to epis p∪{(w, p(w))}, then one has AT (∂ p(w))⊂ ∂ϕ(v).

For most purposes it suffices to consider the case V is a product V := W ×X
and A is the canonical projection from W × X onto W . Note that in such a case
the conclusion is ∂ p(w)×{0} ⊂ ∂ϕ(w,x). A basic variant of (S6b) called quasi-
homotonicity in [34] has some interest for the constructions we shall devise, besides
its analogy with condition (H):

(QH) If E is a subset of X and if f ∈F (X) is such that dE ≤ f and f = 0 on E,
then ∂dE(x)⊂ ∂ f (x) for all x ∈ E.

The list of conditions we have given is not minimal: the pseudo-homotonicity
condition (S6a) entails the optimality condition (S3): if f ∈ F (X) attains its
minimum at x, setting V := X , W := {0}, p(0) := f (x), ϕ := f , the assumption
of (S6a) is clearly satisfied and we get 0 ∈ ∂ f (x). Also, there is an analogy between
conditions (S6a) and (S4a) obtained by taking ϕ := f , p := h when f := h ◦A as
in (S4a); however (S6) only yields the inclusion AT∂h(Ax) ⊂ ∂ (h ◦A)(x) and not
the equality. But equality could be added in (S6a) in the case ϕ = p ◦A and then it
would be redundant to state (S4a).

29.2.4 Checking the Conditions

For the sake of brevity, we just take a sample of subdifferentials, recalling briefly
their definitions. We refer to [26, 36] for other subdifferentials.

We first define the tangent cone (or directional tangent cone or contingent cone)
to a subset E of a normed space X at a ∈ E as the set T D(E,a) of v ∈ X such that
there exist sequences (tn)→ 0+, (vn)→ v satisfying a+ tnvn ∈ E for all n ∈ N. The
circa (or Clarke) tangent cone to E at a is the set TC(E,a) of v ∈ X such that for
any sequences (tn)→ 0+, (en)→ a in E there exists a sequence (vn)→ v satisfying
en + tnvn ∈ E for all n ∈N [8]. Given a function f : X → R := R∪{−∞,+∞} finite
at x ∈ X we define the subderivates of f at x in the direction u ∈ X as

f D(x,u) := inf{s ∈ R : (u,s) ∈ T D(E,a)},
fC(x,u) := inf{s ∈ R : (u,s) ∈ TC(E,a)}

with a := (x, f (x)), E := epi f := {(x,r) ∈ X ×R : r ≥ f (x)}. Then the directional
(or Dini–Hadamard, or contingent) subdifferential and the circa (or Clarke) subdif-
ferential of f at x are given, respectively, by

∂D f (x) := {x∗ ∈ X∗ : x∗(·)≤ f D(x, ·)},
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∂C f (x) := {x∗ ∈ X∗ : x∗(·)≤ fC(x, ·)}.
The firm or Fréchet subdifferential of f at x is the set ∂F f (x) of x∗ ∈ X∗ such that for
some remainder r (i.e., a function r : X → R such that r(0) = 0 and r(x)/‖x‖ → 0
as x→ 0, x �= 0) one has

∀x ∈ X f (x+ x)− f (x)−〈x∗,x〉 ≥ −r(x).

The limiting (firm) subdifferential of f at x is the set ∂L f (x) of x∗ ∈ X∗ such that
there exist sequences (εn)→ 0+, (xn)→ x, (x∗n)

∗→ x∗ (i.e., (x∗n)→ x∗ for the weak∗
topology) satisfying ( f (xn))→ f (x), x∗n ∈ ∂εn f (xn) for all n ∈ N, where for x ∈
f−1(R), ε > 0 one sets

∂ε f (x) :=

{
x∗ ∈ X∗ : liminf

w→0, w �=0

1
‖w‖ ( f (x+w)− f (x)−〈x∗,w〉)≥−ε

}
.

It can be shown that conditions (S0)–(S3) are satisfied by the firm (or Fréchet)
and directional (or Dini–Hadamard) subdifferentials, the viscosity subdifferentials,
the limiting subdifferential, and the Clarke subdifferential and its variants (see [36]
for instance). In order to check (S4a) and its variants we need the Lyusternik–Graves
Theorem (see [36, Theorem 2.67] for instance).

Lemma 29.11. Let X and Y be Banach spaces, let W be an open subset of X, and
let g : W → Y be circa-differentiable at x ∈W with a surjective derivative. Then
there exist ρ , σ , κ > 0 such that B(x,ρ)⊂W and for all w ∈ B(x,ρ), y∈ B(g(x),σ)
there exists x ∈W satisfying g(x) = y and ‖x−w‖ ≤ κ ‖g(w)− y‖.
Proposition 29.12. The directional subdifferential, the firm subdifferential, and the
Clarke subdifferential satisfy (S4d), hence (S4a) and (S4c) for the class I of lower
semicontinuous functions. The limiting subdifferential satisfies (S4c).

Proof. Let us first consider the case of the Clarke subdifferential. The case of
(S4c) for Lipschitzian functions is given in [9, Theorem 3.2, p. 79]. Using the
definition of ∂C f in terms of the normal cone to the epigraph of f , (S4d) for lower
semicontinuous functions is equivalent to the assertion:

if X and Y are Banach spaces, if W is an open subset of X and g : W → Y is
circa-differentiable at x ∈W with g′(x)(X) = Y , then for a closed subset H of Y
containing y := g(x) and F := g−1(H) one has TC(F,x) = g′(x)−1(TC(H,y)) or
equivalently NC(F,x) = g′(x)T (NC(H,y)).

Given u ∈ TC(F,x), let (tn)→ 0+, (yn)→ y in H. Since g is open at x by the
preceding lemma, one can find a sequence (xn)→ x such that g(xn) = yn for all n
large enough. Then xn ∈ F and for some sequence (un)→ u one has xn + tnun ∈
F. Since g is circa-differentiable at x and since A := g′(x) is open, one can find
sequences (zn)→ 0 in Y , (wn)→ 0 in X such that g(xn + tnun) = g(xn)+ tnA(un)+
tnzn and A(wn) = zn for all n. Then, since g(xn + tnun) ∈ H and (un +wn)→ u, one
gets A(u) ∈ TC(H,y).
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Conversely, let u ∈ A−1(TC(H,y)). Let v := A(u) and let (tn)→ 0+, (xn)→ x in
F . Then (yn) := (g(xn))→ y in H, so that there exists a sequence (vn)→ v satisfying
yn + tnvn ∈H for all n. The preceding lemma yields some κ > 0 and some sequence
(wn) such that g(wn) = g(xn)+ tnvn and for n large enough one has

‖xn + tnun−wn‖ ≤ κ ‖g(xn)+ tnvn− g(xn + tnun)‖ .
Then, setting u′n := t−1

n (wn− xn), g(xn + tnun) = g(xn) + tnA(un) + tnzn, one gets
‖u′n− un‖ ≤ κ ‖A(un)+ zn− vn‖, hence (u′n − un) → 0 and xn + tnu′n = wn ∈
g−1(g(xn)+ tnvn)⊂ g−1(H) = F. Thus u ∈ TC(F,x).

A similar result holds for the directional normal cone and the firm normal cone
(see [36, Theorem 2.111]). Assertion (S4c) for ∂L follows from a passage to the
limit. �
Proposition 29.13. The directional subdifferential, the firm subdifferential, and the
Clarke subdifferential satisfy (S4b) for the class F =I . The limiting subdifferential
satisfies (S4b) for the class F = L .

Proof. For the sake of simplicity, we suppose m = 2 and f = j ◦ (g×h), where g ∈
F (X), h ∈F (Y ), j : R2→R is Lipschitzian, nondecreasing, of class C1 near (q,r)
with a := D1 j(q,r) > 0, b := D2 j(q,r) > 0, q := g(x), r := h(y). Given (x∗,y∗) ∈
∂ f (x,y) let us show that x∗/a∈ ∂g(x), the inclusion y∗/b∈ ∂h(y) being similar. Let
F (resp. G) be the epigraph of f (resp. g) and let p := f (x,y). Let us first suppose
∂ is the Clarke subdifferential ∂C. Let us show that for all (u,s) ∈ TC(G,(x,q)), the
Clarke tangent cone to G at (x,q), one has (u/a,0,s) ∈ TC(F,(x,y, p)). That will
prove that x∗/a∈ ∂g(x) since then 〈x∗/a,u〉− s = 〈(x∗,y∗,−1),(u/a,0,s)〉 ≤ 0. Let
(tn)→ 0+, ((xn,yn, pn))→ (x,y, p) in F . Since liminfn g(xn)≥ g(x), liminfn h(yn)≥
h(y), since j is continuous, nondecreasing in each of its arguments and increasing
near q, r, respectively, and since pn≥ j(g(xn),h(yn)), we see that (qn) := (g(xn))→
q := g(x). By definition of TC(G,(x,q)), we can find a sequence ((un,sn))→ (u,s)
such that (xn,qn)+tn(un,sn)∈G, i.e., g(xn+tnun)≤ qn+tnsn for all n and, for some
sequence (an)→ a,

f (xn + tnun,yn)≤ j(g(xn)+ tnsn,h(yn)) = j(g(xn),h(yn))+ tnansn ≤ pn + tnansn.

Thus (u,0,as) ∈ TC(F,(x,y, p)) and (u/a,0,s) ∈ TC(F,(x,y, p)).
A similar (but simpler) proof holds for the directional subdifferential ∂D since for

every (u,s) ∈ T (G,(x,q)), the usual tangent cone to G at (x,q), one has (u/a,0,s)∈
T (F,(x,y, p)).

Let us consider the case of the firm subdifferential ∂F . Without loss of generality,
we suppose g(x) = 0, h(y) = 0. Suppose x∗/a /∈ ∂F g(x): there exist ε ∈]0,1] and a
sequence (xn)→ 0 such that g(x+ xn) < 〈x∗/a,xn〉− ε ‖xn‖ for all n. Then, given
α > 0, for n large enough, one has

f (x+ xn,y)≤ j(〈x∗/a,xn〉− ε ‖xn‖ ,r)
≤ D1 j(q,r)(〈x∗/a,xn〉− ε ‖xn‖)+α(‖x∗/a‖+ ε)‖xn‖
≤ 〈x∗,xn〉+(−aε+α ‖x∗/a‖+αε)‖xn‖ .
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Taking α such that α(‖x∗/a‖+ ε) < aε, we get a contradiction with (x∗,y∗) ∈
∂F f (x,y).

The case of the limiting firm subdifferential is obtained by using compactness
and a passage to the limit. �

Now let us consider condition (S5) and its variants.

Proposition 29.14. Condition (C) (hence conditions (S5), (S5d)) is satisfied by the
Clarke subdifferential ∂C in the class of all Banach spaces and by the limiting
subdifferential ∂L in the class of Asplund spaces for F = L .

Proof. For ∂ := ∂L see [31, Theorem 3.41]. Let us consider the case ∂ := ∂C.
The Chain Rule ([9, Theorem 2.5 p. 76]) for f := j ◦ (g1 ◦ p1, . . . ,gm ◦ pm), r :=
(g1(x1), . . . ,gm(xm)) :

∂ f (x)⊂ co∗{∂ (r∗1g1 ◦ p1 + · · ·+ r∗mgm ◦ pm)(x) : (r∗1 , . . . ,r
∗
m) ∈ ∂ j(r)},

the Sum Rule, and the relations ∂ (r∗i gi ◦ pi)(x) = r∗i pT
i (∂gi(xi)) for i ∈ Nm :=

{1, . . .m}, r∗i ∈ R+ show that ∂ f (x)⊂ co∗(A), where

A := {r∗1∂g1(x1)×·· ·× r∗m∂gm(xm) : (r∗1, . . . ,r
∗
m) ∈ ∂ j(r)}.

Now, since ∂gi(x) and ∂ j(r) are weak∗ compact and since the map

(x∗1, . . . ,x
∗
m,r
∗
1 , . . . ,r

∗
m) �→ r∗1x∗1 + · · ·+ r∗mx∗m

is continuous for the weak∗ topologies, A is weak∗ compact. Let us show that A
is convex. Let t ∈]0,1[, a∗ := (r∗1u∗1, . . . ,r

∗
mu∗m) ∈ A, b∗ := (s∗1v∗1, . . . ,s

∗
mv∗m) with u∗i ,

v∗i ∈ ∂gi(xi) for i ∈ Nm r∗ := (r∗1, . . . ,r
∗
m) ∈ ∂ j(r), s∗ := (s∗1, . . . ,s

∗
m) ∈ ∂ j(r). Let

t∗ := (1− t)r∗+ ts∗ ∈ ∂ j(r), t∗ := (t∗1 , . . . , t
∗
m). If t∗i := (1− t)r∗i + ts∗i > 0, let x∗i :=

(1/t∗i )((1− t)r∗i u∗i + ts∗i v∗i ) ∈ ∂gi(xi); if t∗i = 0, let us pick x∗i ∈ ∂gi(xi) arbitrary and
note that r∗i = 0, s∗i = 0, so that (1− t)r∗i u∗i + ts∗i v∗i = t∗i x∗i for all i ∈Nm. Then, in all
cases

(1− t)a∗+ tb∗ := (t∗1 x∗1, . . . , t
∗
mx∗m) ∈ A.

�
Remark 29.15. A direct proof of condition (S5) can be given for ∂C. Using support
functions, it suffices to show that for all (u,v) ∈ X×Y one has

fC((x,y),(u,v)) ≤max(gC(x,u),hC(y,v))

where gC(x,u) is the Clarke derivative of g at x given by

gC(x,u) := inf{r ∈ R : (u,r) ∈ TC(epig,(x,g(x)))},
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TC(epig,e) being the Clarke tangent cone to the set G := epig at e := (x,g(x)) ∈
epig. By definition of this cone, given s≥max(gC(x,u),hC(y,v)), we have to prove
that for any sequence (tn)→ 0+ and any sequence ((xn,yn, pn)) in epi f with limit
(x,y, f (x,y) one can find a sequence ((un,vn,sn))→ (u,v,s) such that (xn,yn, pn)+
tn(un,vn,sn) ∈ epi f for all n. Since ((xn, pn))→ (x,g(x) in epig,) we can find a
sequence ((un,qn))→ (u,s) such that (xn, pn)+tn(un,qn)∈ epig for all n. Similarly,
one can find a sequence ((vn,rn))→ (v,s) such that (yn, pn)+ tn(vn,rn) ∈ epih for
all n. Then, taking sn := max(qn,rn), we get the required sequence.

Proposition 29.16. Condition (S5d) (hence condition (S5)) is satisfied by the
directional subdifferential ∂D and the firm subdifferential ∂F on the class of lower
semicontinuous functions.

Proof. Let f , g, h, x, y be as in (S5d) and let (x∗,y∗) ∈ ∂ f (x,y) with g(x) = h(y),
y∗ �= h′(y) �= 0, assuming without loss of generality that x= 0, y= 0, g(x)= h(y)= 0.
Let v ∈Y be such that h′(y)v = 1. Let us first consider the case ∂ = ∂D. For t > 0 we
have f (0, tv) = h(tv), hence 1 = h′(y)v = limt→0+(1/t) f (0, tv)≥ 〈y∗,v〉. Similarly,
for all w ∈ Y such that h′(y)w > 0, we have h′(y)w ≥ 〈y∗,w〉. The same is true if
h′(y)w ≥ 0 as follows by taking a sequence (wn)→ w such that h′(y)wn > 0 for
all n. Thus there exists λ ≥ 0 such that v∗ − y∗ = λv∗ for v∗ := h′(y) and y∗ =
(1− λ )v∗. The assumption y∗ �= h′(y) yields λ > 0. Observing that f (0,−tv) ≤ 0
for t small enough, we get 〈y∗,−v〉 ≤ 0, hence 1−λ = (1−λ )〈v∗,v〉= 〈y∗,v〉 ≥ 0.
Now, given u ∈ X , s ≥ gD(x,u), let us show that λ s ≥ 〈x∗,u〉. Taking a sequence
((sn, tn,un))→ (s,0+,u) such that tnsn ≥ g(tnun), setting s′n := t−1

n h(tnsv), we note
that (s′n)→ s and (s′′n)→ s for s′′n := max(sn,s′n). Since f (tnun, tnsv)≤ tns′′n for all n,
we get 〈x∗,u〉+ 〈y∗,sv〉 ≤ s or 〈x∗,u〉 ≤ λ s. Then x∗ = 0, hence λ = 0 cannot occur.
Thus one gets u∗ := x∗/λ ∈ ∂g(x),

(x∗,y∗) = (λu∗,(1−λ )v∗) ∈ λ∂g(x)× (1−λ )h′(y). (29.3)

Now let us consider the case of the Fréchet subdifferential ∂F , assuming again
that x = 0, y = 0, g(x) = h(y) = 0. As above, we have y∗ = (1− λ )v∗ for v∗ :=
h′(y), λ ∈ [0,1] and we cannot have λ = 0. Suppose x∗/λ /∈ ∂F g(x) : there exist
α > 0 and a sequence (un)→ 0 such that g(un)< sn := 〈x∗/λ ,un〉−α ‖un‖ . Since
(h(snv)/sn)→ 1, there exists a sequence (σn)→ 0 in R such that f (un,snv)≤ (1+
σn)sn. Then, for some sequence (εn)→ 0+, one gets

(1+σn)sn ≥ 〈x∗,un〉+ 〈y∗,snv〉− εn(‖un‖+ sn ‖v‖)
≥ λ sn +αλ ‖un‖+(1−λ )sn− εn(‖un‖+ sn‖v‖).

Then one has

(|σn|+ εn ‖v‖) |sn| ≥ (σn + εn ‖v‖)sn ≥ (αλ − εn)‖un‖

and |sn| ≤ (‖x∗‖/λ +α)‖un‖, a contradiction since (|σn|+ εn ‖v‖)→ 0. �
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Remark 29.17. When F is the class L of locally Lipschitzian functions, for all
u ∈ X , there exists some s ∈ R such that s ≥ gD(x,u), so that the preceding proof
shows that x∗ = 0 if λ = 0. Thus the following slightly more general condition is
satisfied:

(S5’) If f (x,y) := max(g(x),h(y)), (x∗,y∗) ∈ ∂ f (x,y) with g∈F (X), h∈F (Y )
of class C1 around y, g(x) = h(y), (x∗,y∗) �= (0,h′(y)), h′(y) �= 0, then (x∗,y∗) ∈
{λ∂g(x)× (1−λ ){h′(y)} : λ ∈]0,1]}.
Remark 29.18. The conclusion x∗ ∈ [0,1]∂g(x) cannot hold in general when y∗ =
h′(y), 0 /∈ ∂g(x) since we may have ∂g(x) =∅ and (0,h′(y)) ∈ ∂ f (x,y) as f (x,y)≥
h(y) for all (x,y) ∈ X×Y and f (x,y) = h(y).

Proposition 29.19. Conditions (S6a) and (S6b) are satisfied by the directional
subdifferential ∂D, the firm subdifferential ∂F , the viscosity subdifferentials, the
Clarke subdifferential on the class of all Banach spaces, and by the limiting
subdifferential ∂L on the class of Asplund spaces.

Proof. In fact, one has AT (∂ p(w)) ⊂ ∂ϕ(v) for any v ∈ A−1(w) satisfying ϕ(v) =
p(w), and one can find such a v in M since ϕ is lower semicontinuous. In the case
M is a singleton, it is proved in [34, 36] that the Clarke subdifferential ∂C satisfies
(S6a), (S6b) on the class of all Banach spaces; the general case is similar. The proof
for the limiting subdifferential ∂L on the class of Asplund spaces is given in [36,
Proposition 6.21]. �

29.2.5 Normal Cones

The notion of subdifferential has a bearing on geometrical concepts. Two situations
may occur: either F (X) coincides with the class I (X) of lower semicontinuous
functions or F (X) just contains the class L (X) of locally Lipschitzian functions.

Definition 29.20. When F (X) contains I (X), the normal cone to a closed subset
E of a member X of X at x ∈ E is the set

N(E,x) = ∂ιE(x),

where ιE is the indicator function of E (given by ιE(x) = 0 for x ∈ E, ιE(x) = +∞
for x ∈ X\E).

Assuming F (X) contains the space L (X) of locally Lipschitzian functions on
X , the metric normal cone to a subset E of X at x∈ E is the cone Nm(E,x) generated
by ∂dE(x) :

Nm(E,x) := R+∂dE(x).

By (S6m), one always has Nm(E,x)⊂ N(E,x) for all x ∈ E. Moreover, Nm(E,x)
is independent of the choice of the norm among the norms inducing the topology of
X . By (S0) N(E,x) is nonempty only if x ∈ E .
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Proposition 29.21. For every x ∈ E, N(E,x) is a cone containing 0. If x is an
interior point of E, then Nm(E,x) = N(E,x) = {0}.
Proof. We have 0 ∈ Nm(E,x) for every x ∈ E by (S3). Since rιE = ιE for all r > 0,
N(E,x) is a cone. Let x ∈ int E and let r > 0 be such that B[x,r] ⊂ E and let g be
the indicator of this closed ball. This is a convex function and ∂g(x) = {0} by (S2).
Now (S1) with f = ιE implies the statement. �

Of course, it does not follow from the proposition that N(E,x) contains nonzero
elements if x is a boundary point of E . This is not always the case even if E is
convex.

Some properties of normal cones can be derived from conditions (S1)–(S6). Let
us prove one of them which will be used soon.

Proposition 29.22. Let V , W in X , A ∈ L(V,W ) and let v ∈ F ⊂ V, G ⊂W be

such that A(F) ⊂ G. Suppose that for every sequence (wn)
G→ w := Av there exists

a sequence (vn)
F→ v such that Avn = wn for all n ∈N large enough. Then

AT (N(G,w))⊂ N(F,v) (29.4)

AT (Nm(G,w))⊂ Nm(F,v). (29.5)

In particular, these relations hold when F = A−1(G) and W = A(V ).
These relations are equalities when A is an isomorphism. Thus the metric normal

cone does not depend on the choice of the norm in an equivalence class.

Proof. Let ιF and ιG be the indicator functions of F and G, respectively. Since
A(F)⊂ G, one has ιG ◦A≤ ιF . Our assumption allows to apply (S6e) which yields
(29.4). In order to prove (29.5), setting ϕ := ‖A‖dF , p := dG, let us observe that,
for all v ∈V, we have

dG(Av)≤ inf
u∈V

(‖Av−Au‖+ ιF(u))≤ inf
u∈V

(‖A‖‖u− v‖+ ιF(u)) = ϕ(v).

Under our assumption condition (S6m) ensures that for all w∗ ∈ ∂dG(w) one has
AT (w∗) ∈ ‖A‖∂dF(v). Inclusion (29.5) ensues.

The last but one assertion is obtained by interchanging F and G and changing
A into A−1. Taking for A the identity map from X endowed with some norm to X
endowed with another norm, the last assertion ensues. �

The next proposition explains in details the choice of the term “consistency” we
gave to (S5).

Proposition 29.23. For every subdifferential (∂ ,X ,F ) and every X in X , f ∈
L (X), x ∈ X one has

∂ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nm(epi f ,(x, f (x)))}.
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Proof. Let f ∈L (X) with X in X , x ∈ X and let E be the epigraph of f . Without
loss of generality we may assume f is globally Lipschitzian with rate c > 0 and
even that c = 1 (since we can change the norm of X to the norm c‖·‖ and the metric
normal cone to epi f will remain unchanged). Then, endowing X ×R with the sum
norm, we have dE(x,r) = ( f (x)−r)+ for all (x,r) ∈ X×R, as easily checked. Thus,

∀(x,r) ∈ X×R f (x) ≤ ϕ(x,r) := dE(x,r)+ r

and the map S : X → X ×R given by S(x) := (x, f (x)) is continuous and satisfies
S(x) = (x, f (x)). Thus, by (S6e) and (S4a) in which we take the linear form � :
(x,r) �→ r, for all x∗ ∈ ∂ f (x), one has (x∗,0) ∈ ∂ϕ(x, f (x)) = ∂dE(x, f (x))+(0,1),
or (x∗,−1) ∈ ∂dE(x, f (x)). As noted above, the converse is ensured by condition
(S5) in view of the relation dE(x,r) = ( f (x)− r)+. �

29.3 Extension of Subdifferentials

29.3.1 The Metric Extension

Quite often a subdifferential ∂ is easy to define on the space L (X) of locally
Lipschitzian functions on X . Then it is of interest to extend ∂ to a larger set, for
instance, the whole set I (X) of l.s.c. functions on X . That can be done by setting
∂ f (x) := ∂m f (x) for f ∈I (X) and x ∈ dom f , where

∂m f (x) := {x∗ ∈ X∗ : (x∗,−1) ∈ Nm(E,x f )}, (29.6)

E := E f being the epigraph of f and x f := (x, f (x)). Of course, for x∈ X\dom f , we
set ∂ f (x) = ∅. Proposition 29.23 shows that this definition is coherent when f ∈
L (X), so that the terminology “consistency” for (S5) is justified. More is required
in the next definition.

Definition 29.24. A subdifferential ∂ := (∂ ,X ,F ) is said to be geometrically
consistent if the equality ∂ f (x) = ∂m f (x) holds for all f ∈F (X), x ∈ dom f .

Proposition 29.23 ensures that every subdifferential ∂ := (∂ ,X ,F ) with F =
L is geometrically consistent. Moreover, let us note that, by construction, when ∂
is defined on L (X), its extension to I (X) we have just defined is geometrically
consistent. It is easy to show that the Fréchet subdifferential and the Clarke
subdifferential are geometrically consistent. Of course, geometric consistency is
desirable in order to avoid confusions. When it is not satisfied, one has to be careful
when using ∂ on I (X)\L (X).

For the moment, we note an easy consequence of geometric consistency.

Proposition 29.25. Suppose ∂ is geometrically consistent on the class I of lower
semicontinuous functions. Let E be a closed subset of X and let the normal cone
N(E,x) to E at x ∈ E be defined as above: N(E,x) := ∂ιE(x). Then one has

N(E,x) = [1,+∞)∂dE(x) = Nm(E,x).
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Moreover, for every f ∈I (X) and every x ∈ dom f , one has

∂ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N(epi f ,x f )}.

Proof. Since R+∂dE(x) =: Nm(E,x) ⊂ N(E,x) := ∂ιE(x), to prove the first asser-
tion, it suffices to show the inclusion ∂ιE(x)⊂ [1,+∞)∂dE(x). Since the epigraph F
of ιE is just E×R+, taking the sum norm on X×R, one has dF(u,r) = dE(u)+ r−,
where r− := max(−r,0). By (S4s) and (S2) one gets

∂dF(x,0)⊂ ∂dE(x)× [−1,0].

Since by Definition 29.24, for all x∗ ∈ ∂ιE(x), one has (x∗,−1) ∈R+∂dF(x,0), one
can find c∈R+, w∗ ∈ ∂dE(x), r ∈ [−1,0] such that (x∗,−1)= (cw∗,cr), hence c≥ 1
and x∗ = cw∗ ∈ c∂dE(x).

The last assertion follows from the relations ∂ f (x) = ∂m f (x) and N(epi f ,x f ) =
Nm(epi f ,x f ). �
Theorem 29.26. Let ∂ = (∂ ,X ,L ) be a subdifferential of alleviated type on the
class L of locally Lipschitzian functions. Then the extension ∂m of ∂ to the class
I of lower semicontinuous functions is a subdifferential of alleviated type.

Proof. For the sake of brevity, for f ∈I (X) and x ∈ dom f , we set x f := (x, f (x)).
Given functions f , g, and h, we denote by F , G, and H, respectively, their epigraphs.

(S0) is obtained by construction
(S1) follows from the fact that if f and g coincide on a ball B(x,ε), then their

epigraphs F and G are such that F ∩B(e,ε) = G∩B(e,ε), where e = x f = xg =
(x, f (x)). Then dF = dG on B(e,ε/2) and ∂dF(e) = ∂dG(e), so that ∂m f (x) =
∂mg(x).

(S2) If f is convex, then its epigraph F is convex; hence dF := d(·,F) is convex.
Since dF is Lipschitzian, ∂dF = ∂FMdF , where ∂FM is the subdifferential in the
sense of convex analysis. Now R+∂FMdF(x f ) is the normal cone NFM(F,x f ) to F at
x f in the sense of convex analysis. Thus, (S2) for ∂m follows from the equivalence
x∗ ∈ ∂FM f (x) iff (x∗,−1) ∈ R+∂FMdF(x f ).

(S3) If f attains a local minimum at x, modifying f outside some closed ball and
subtracting f (x), we may assume that x is a global minimizer of f and f (x) = 0.
Then the epigraph F of f is contained in X×R+, so that for all (w,r) ∈ X×R, one
has

ϕ(w,r) := d((w,r),F)+ r≥ d((w,r),X ×R+)+ r = (−r)++ r ≥ f (x),

and ϕ(x, f (x)) = f (x) : ϕ attains its minimum at x f := (x, f (x)). By (S3) and (S4a)
we get (0,0) ∈ ∂dF(x f )+ (0,1) or (0,−1) ∈ ∂dF(x f ); hence 0 ∈ ∂m f (x).

(S4a) Let us check this condition step by step. Suppose first that f := h◦A, where
A∈ L(X ,Y ) is surjective. Without loss of generality we may suppose ‖y‖= inf{‖x‖ :
x ∈ A−1(y)} for all y ∈Y . Then (z,s) ∈H if and only if there exists u ∈ A−1(z) such
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that (u,s) ∈ F; hence for all (x,r) ∈ X×R

dH(Ax,r) = inf
(z,s)∈H

(‖Ax− z‖+ |r− s|) = inf
(u,s)∈F

(‖x− u‖+ |r− s|) = dF(x,r)

or dF = dH ◦ (A× I).Thus, by (S4a) for ∂ , x∗ ∈ X∗ is in ∂m f (x), i.e., (x∗,−1) ∈
t∂dF(x, f (x)) for some t > 0, if and only if one has x∗ = AT y∗ for some y∗ ∈ Y ∗
such that (y∗,−1) ∈ t∂dH(y,h(y)) for some t > 0, if and only if x∗ = AT y∗ for some
y∗ ∈ ∂mh(y).

When f = g+c with c∈R, we have F =G+(0,c), so that dF(x,r) = dG(x,r−c)
and ∂m f (x) = ∂mg(x) by (S4a) for ∂ . Similarly, when f (x) := g(x+ b), one has
F = G− (b,0), so that dF(x,r) = dG(x+ b,r) and ∂m f (x) = ∂mg(x).

Suppose f = λg with λ > 0. The proof that ∂m f (x) = λ∂mg(x) is given in [34,
Proposition 7] and in [26]. For the sake of completeness we present a proof using
the fact that ∂m satisfies the composition (S4a). Let h : x �→ g(λx) and let F, G, H
be the epigraphs of f , g, h, respectively. For (x,r) ∈ X×R one has

dF(x,r) = λ inf{‖x/λ −w/λ‖+ |r/λ − s| : (w,s) ∈ G}= λdH(x/λ ,r/λ ),

or dF = λdH ◦A with A(x,r) := (x/λ ,r/λ ). By (S4a) for ∂ we get ∂dF(x, f (x)) =
λ∂ (dH ◦ A)(x,λg(x)) = ∂dH(x/λ ,g(x)) = ∂dH(x/λ ,h(x/λ )). Thus, given x∗ ∈
∂m f (x), one has x∗ ∈ ∂mh(x/λ ). Since ∂m satisfies the above composition rule,
noting that h = g ◦ B with B(x) := λx, we get x∗ ∈ λ∂mg(x). Observing that
g = λ−1 f , we obtain ∂ f (x) = λ∂g(x).

Now suppose that f := g+�, where � is linear and continuous. For (x,r)∈ X×R,
since h := hx,r : (u,q) �→ ‖u− x‖+ |q+ �(u)− r| is Lipschitzian with rate c := 1+
‖�‖, the Penalization Lemma [9, Proposition 6.3, p. 50], [36, Proposition 1.120]
yields that

dF(x,r) = inf
(u,q)∈G

{‖u− x‖+(q+ �(u)− r)+}

= inf
(u,q)∈X×R

{‖u− x‖+(q+ �(u)− r)++ cdG(u,q)}.

For (x,r,u,q)∈ (X×R)2, setting ϕ(x,r,u,q) := ‖u− x‖+(q+�(u)−r)++cdG(u,q)
and T (x,r) := (x,r−�(x)), we have T (x,r) ∈G when (x,r) ∈ F; hence ϕ(S(x,r)) =
0 for S(x,r) := (x,r,T (x,r)). Thus, using (S6e) and Proposition 29.6 with B(u,q) =
(−u,−q− �(u)), for every x∗ ∈ ∂m f (x), t > 0 such that (x∗,−1) ∈ t∂dF(x, f (x)),
we can find u∗ ∈ ∂ ‖·‖(0), s∗ ∈ ∂ |·|(0), (w∗,q∗) ∈ c∂dG(x,g(x)) satisfying

(t−1x∗,−t−1,0,0) = (u∗,s∗,w∗ − u∗− s∗�,q∗ − s∗),

i.e., x∗= tu∗, q∗= s∗=−t−1, w∗= t−1x∗+s∗�.Then tw∗ ∈ ∂mg(x) and x∗= tw∗+�.
Let us note that we may also apply (S6b), since for any sequences (αn)→ 0+,
((xn,rn)) → (x, f (x)), we can pick (un,sn) ∈ F such that ‖(un,sn)− (xn,rn)‖ ≤
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dF(xn,rn) + αn. Then, setting qn := sn − �(un), we have (un,qn) ∈ G,; hence
‖un− xn‖+ |qn + �(un)− rn|+ cdG(un,qn)≤ dF(xn,rn)+αn.

In order to check (S4b), we first present a proof of (S4s), as it is more intuitive.
Let f ∈ I (X ×Y ), g ∈ I (X), h ∈ I (Y ) be such that f (x,y) = g(x) + h(y) for
(x,y) ∈ X ×Y and let (x∗,y∗) ∈ ∂m f (x,y) for some (x,y) ∈ dom f . Let G, H, F be
the epigraphs of g, h, f , respectively. Observing that for a, b, r ∈ R one has

inf{|s+ t− r| : s≥ a, t ≥ b}= (a+ b− r)+

= min
s,t∈R
{(a− s)++(b− t)+ : s+ t = r},

the minimum being attained for s := a− (1/2)(a+ b− r)+, t := b− (1/2)(a+ b−
r)+, we get, for (x,y,r) ∈ X×Y ×R,

dF(x,y,r) = inf{‖x− u‖+ ‖y− v‖+ |s+ t− r| : u ∈ X , v ∈ Y, s≥ g(u), t ≥ h(v)}
= inf{‖x− u‖+ ‖y− v‖+(g(u)− s)++(h(v)− t)+ : u ∈ X , v ∈ Y, s+ t = r}
= inf{dG(x,s)+ dH(y, t) : s, t ∈ R, s+ t = r}.

Thus, setting A(x,y,s, t) := (x,y,s+ t), ϕ(x,y,s, t) := dG(x,s)+ dH(y, t), one has

dF(x,y,r) = inf{ϕ(x,y,s, t) : A(x,y,s, t) := (x,y,r)}.

Moreover, given sequences (αn) → 0+, ((xn,yn,rn)) → (x,y,r) := (x,y, f (x,y)),
picking (un,vn,qn) ∈ F such that ‖(un,vn,qn)− (xn,yn,rn)‖ ≤ dF(xn,yn,rn) +αn,
setting

sn := (1/2)(g(un)− h(vn)+ rn), tn := (1/2)(−g(un)+ h(vn)+ rn),

s′n := sn +(1/2)(qn− rn), t ′n := tn +(1/2)(qn− rn),

one has sn + tn = rn, (sn)→ g(x), (tn)→ h(y) since (un)→ x, (vn)→ y, (qn)→ r, g
and h are l.s.c., and (un,s′n) ∈ G, (vn, t ′n) ∈ H, hence

ϕ(xn,yn,sn, tn)≤ ‖xn− un‖+ ‖yn− vn‖+ |rn− qn| ≤ dF(xn,yn,rn)+αn

for all n. Thus, the assumption of (S6s) is satisfied. Let us note that when
(xn,yn,rn)∈F for all n we can take (un,vn,qn)= (xn,yn,rn) and getϕ(xn,yn,sn, tn)=
0 with (sn, tn) ∈ T (xn,yn,rn) where

T (x,y,r) := {(s, t) ∈ R
2 : s≥ g(x), t ≥ h(y), s+ t = r}

so that T has nonempty values on F and is lower semicontinuous at ((x,y,r),
(g(x),h(y))): the assumption of (S6b) is satisfied. Thus, taking c > 0 such that
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(x∗,y∗,−1) ∈ c∂dF(x,y,r), using (S6a) or (S6b) and the relation AT (x∗,y∗,r∗) =
(x∗,y∗,r∗,r∗), one gets

(c−1x∗,c−1y∗,−c−1,−c−1) ∈ ∂ϕ(x,y,g(x),h(y)),

and since (x,s) �→ dG(x,s) and (y, t) �→ dH(y, t) are Lipschitzian with independent
variables, (x∗,−1) ∈ c∂dG(x,g(x)), (y∗,−1) ∈ c∂dH(y,h(y)) by (S4s), so that
(x∗,y∗) ∈ ∂mg(x)× ∂mh(y).

We are ready to check (S4b). For the sake of simplicity of notation, we just
present the case m = 2, the general case being similar. We adopt a notation close to
the case (S4s), replacing the addition with a Lipschitzian map j : R2→ R of class
C1 with D1 j(g(x),h(y)) > 0, D2 j(g(x),h(y)) > 0 and setting (s, t) := (g(x),h(y)),
r := j(s, t), f (x,y) := j(g(x),h(y)),

ϕ(x,y,r,u,v,s, t) := ‖x− u‖+ ‖y− v‖+( j(s, t)− r)++λdG(u,s)+λdH(v, t),

where λ is the Lipschitz rate of (u,v,s, t) �→ ‖x− u‖+ ‖y− v‖+( j(s, t)− r)+ and
F, G, H are again the epigraphs of f , g, h. Since j is continuous and increasing
in its two variables around (s, t) := (g(x),h(y)) (modifying j off a neighborhood
of (g(x),h(y)), alternatively, one may suppose j is increasing and such that j(s+
s, t)→ +∞ as s→ +∞), for some neighborhood U of (x,y,r), one has F ∩U =
{(u,v, j(s, t)) : (u,s) ∈ G, (v, t) ∈H}∩U, so that, for (x,y,r) near (x,y,r),

dF(x,y,r) = inf{‖x− u‖+ ‖y− v‖+( j(s, t)− r)+ : (u,s) ∈ G, (v, t) ∈ H}
= inf{ϕ(x,y,r,u,v,s, t) : (u,v,s, t) ∈ X×Y ×R

2}

in view of the Penalization Lemma. Let us define the multimap T : F ⇒ R
2 by

T (x,y,r) := {(s, t) : s≥ g(x), t ≥ h(y), j(s, t) ≤ r}.

It has nonempty values on F since for all (x,y,r) ∈ F one has (g(x),h(y)) ∈
T (x,y, f (x,y)) ⊂ T (x,y,r). Moreover, for all (x,y,r) ∈ F and (s, t) ∈ T (x,y,r),
one has ϕ(x,y,r,x,y,s, t) = 0. Let us show that T is lower semicontinuous at
((x,y,r),(s, t)) on F . Let ((xn,yn,rn)) be a sequence in F with limit (x,y,r). Since
rn ≥ j(g(xn),h(yn)) for all n, since g and h are lower semicontinuous and for every
ε > 0 one has min( j(s+ ε, t), j(s, t + ε)> r = limrn, the set

Nε := {n ∈ N : g(xn)≥ g(x)+ ε}∪{n∈ N : h(yn)≥ h(y)+ ε}

is finite. Thus, by lower semicontinuity of g and h, we have (sn) := (g(xn))→ g(x),
(tn) := (h(yn))→ h(y). Since rn ≥ j(g(xn),h(yn)), we have (sn, tn) ∈ T (xn,yn,rn)
for all n. Thus T is lower semicontinuous at ((x,y,r),(s, t)) on F . Given (x∗,y∗) ∈
∂m f (x,y), s := g(x), t := h(y) and c > 0 such that (x∗,y∗,−1) ∈ c∂dF(x,y,r),
r := f (x,y), applying (S6f), we get that (x∗,y∗,−1,0,0,0,0) ∈ c∂ϕ(x,y,r,x,y,s, t).
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Using Proposition 29.6 and (S4b) we can find (u∗,s∗) ∈ λ∂dG(x,s), (v∗, t∗) ∈
λ∂dH(y, t), w∗ ∈ BX∗ , z∗ ∈ BY∗ , r∗ ∈ [−1,1] such that

(x∗,y∗,−1,0,0,0,0)= c(w∗,z∗,r∗,u∗−w∗,v∗−z∗,s∗−r∗D1 j(s, t), t∗−r∗D2 j(s, t)).

Thus r∗ = −1/c, s∗ = −(1/c)D1 j(s, t), t∗ = −(1/c)D2 j(s, t), x∗ = cw∗ = cu∗ =
D1 j(s, t)(−u∗/s∗), with−u∗/s∗ ∈ ∂mg(x), y∗= cz∗= cv∗=D2 j(s, t)(−v∗/t∗), with
−v∗/t∗ ∈ ∂mh(y); hence (x∗,y∗) ∈ D j(s, t)◦ (∂mg(x)× ∂mh(y)), as expected.

Let us turn to condition (S5). Let g ∈F (X), h of class C1 around y, f (x,y) :=
max(g(x),h(y)), (x,y) ∈ X×Y with r := g(x) = h(y), (x∗,y∗)∈ ∂m f (x,y) with x∗ �=
0 or y∗ �= h′(y). Let c > 0 be such that (x∗,y∗,−1) ∈ c∂dF(x,y,r). Let us first check
that for all (x,y,r) ∈ X×Y ×R we have

dF(x,y,r) ≤ 2(dG(x,r)∨dH(y,r)). (29.7)

Given m > dG(x,r)∨dH(y,r) we can find (u,s) ∈ G, (v, t) ∈ H such that ‖u− x‖+
(s− r)+ < m, ‖v− y‖+(t− r)+ < m, so that (u,v,s∨ t) ∈ F

dF(x,y,r)≤ ‖u− x‖+ ‖v− y‖+(s∨ t− r)+ < 2m

and inequality (29.7) holds. Since ϕ given by ϕ(x,y,r) := dG(x,r)∨dH(y,r) is null
on F, condition (S6b) ensures that (x∗,y∗,−1) ∈ 2c∂ϕ(x,y,r). Now, since there is
no loss of generality in assuming that h is Lipschitzian with rate 1, we have

ϕ(x,y,r) = dG(x,r)∨ (h(y)− r)+ = dG(x,r)∨ (h(y)− r) = (dG(x,r)+ r)∨h(y)− r.

Let ψ((x,r),y) := ϕ(x,y,r) + r, so that (x∗/2c,1− 1/2c,y∗/2c) ∈ ∂ψ(x,r,y) and
one cannot have (x∗/2c,1− 1/2c) = (0,0) and y∗/2c = h′(y) as these relations
imply 2c = 1, x∗ = 0, y∗/2c = h′(y). Conditions (S4a) and (S5) for ∂ yield
some λ ∈]0,1] such that (x∗/2c,1− 1/2c) ∈ λ (∂dG(x,r) + (0,1)) and y∗/2c =
(1−λ )h′(y) or (x∗,−μ)∈ 2λc∂dG(x,r) for μ := 1−2c(1−λ )∈]0,1] since λ ≤ 1,
∂dG(x,r) ⊂ X∗ ×R− and since μ = 0 implies y∗ = h′(y). Thus x∗/μ ∈ ∂mg(x),
(x∗,y∗) ∈ μ∂mg(x)× (1− μ)h′(y) : (S5) is satisfied.

Now, let us check condition (S6a). Let A : V →W be a surjective continuous
linear map between two members of X ; let ϕ ∈I (V ) and p ∈I (W ) be such that
ϕ ≥ p◦A. Suppose that for some w ∈W, M ⊂ A−1(w) and every sequences (αn)→
0+, (wn)→ w with (p(wn))→ r := p(w) one can find v ∈M, an infinite subset N
of N, a sequence (vn)n∈N → v such that A(vn) = wn and ϕ(vn)≤ p(wn)+αn for all
n∈N. Denoting by P (resp. F) the epigraph of p (resp. ϕ), let us prove that a similar
property holds with V ×R, W ×R, B := A× IR, dF , dP, (w,r), M×{r} substituted
to V , W, A, ϕ , p, w, M, respectively. Since A is open, we may endow W with the
norm given by ‖w‖ := inf{‖v‖ : Av = w}. Then ‖A‖ ≤ 1. We have dP ◦B ≤ dF :
given (u,r) ∈V ×R, since (Av,s) ∈ P whenever (v,s) ∈ F, we obtain
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dP(B(u,r)) = inf{‖Au−w‖+ |r− s| : (w,s) ∈ P}
≤ inf{‖A‖‖u− v‖+ |r− s| : (v,s) ∈ F} ≤ dF(u,r).

Let ((wn,sn))→ (w,r), (αn)→ 0+ and let (δn) := (dP(wn,sn))→ dP(w, p(w)) = 0.
There exists a sequence ((w′n,s′n)) in P such that ‖(w′n,s′n)− (wn,sn)‖ ≤ (1+αn)δn.
Then (w′n)→ w, (s′n)→ p(w), so that

p(w)≤ liminf
n

p(w′n)≤ limsup
n

p(w′n)≤ lim
n

s′n = p(w),

and (p(w′n))→ p(w). By our assumption, there exist v ∈M, an infinite subset N of
N, a sequence (v′n)→ v such that A(v′n) =w′n and ϕ(v′n)≤ p(w′n)+αn/2≤ s′n+αn/2
for all n∈ N. By the choice of the norm on W , there exists a sequence (vn) such that
‖vn− v′n‖≤ (1+αn)‖wn−w′n‖ and A(vn) =wn. Thus the sequence ((vn,sn)) is such
that ((vn,sn))→ (v,r), B(vn,sn) = (wn,sn), and

dF(vn,sn)≤
∥∥(v′n,s′n +αn/2)− (vn,sn)

∥∥= ∥∥v′n− vn
∥∥+ ∣∣s′n +αn/2− sn

∣∣
≤ (1+αn)

∥∥wn−w′n
∥∥+ ∣∣s′n− sn

∣∣+αn/2≤ (1+αn)
2δn +αn/2,

since ‖wn−w′n‖≤ (1+αn)δn. Then, since we may suppose αn(2+αn)δn ≤αn/2+
δn for all n ∈ N, we get dF(vn,sn) ≤ dP(wn,sn) + αn + δn for all n ∈ N. Given
w∗ ∈ ∂m p(w), let t ∈ R+ be such that (w∗,−1) ∈ t∂dP(w, p(w)). Applying (S6a)
to the Lipschitzian functions dF ,dP we get that t−1(AT w∗,−1) = t−1BT (w∗,−1) ∈
∂dF(v,ϕ(v)) and AT w∗ ∈ ∂mϕ(v), as required.

The proof of (S6b) is similar. Keeping the preceding notation, with p := dE ,
we just observe that for any sequences (αn) → 0+, (wn) → (w) in E , we have
((wn,0))→ (w,0) with (wn,0) ∈ P and if N ⊂ N, v ∈M, (vn)n∈N → v are such that
A(vn) =wn, ϕ(vn)≤αn for all n∈N, we have B(vn,0) = (wn,0) and dF(vn,0)≤αn,
so that we can use (S6b) for dP and dF instead of p and ϕ and we get the inclusion
AT (∂mdE(w)) ∈ ∂mϕ(v) as above. �
Remark 29.27. Another proof of the relation ∂m(λg) = λ∂mg uses (S6b). Keeping
the same notation, using the Penalization Lemma and the fact that hx,r : (u,q) �→
‖x− u‖+ |r−λq| is Lipschitzian with rate μ := max(λ ,1), we have

dF(x,r) = inf{hx,r(u,q) : (u,q) ∈G}= inf{hx,r(u,q)+μdG(u,q) : (u,q) ∈ X×R}.

Setting ϕ(x,r,u,q) := hx,r(u,q)+μdG(u,q), S(x,r) := (x,r/λ ) for (x,r,u,q)∈ (X×
R)2, we have ϕ(x,r,S(x,r)) = 0 = dF(x,r) when (x,r) ∈ F. Applying (S6b) and
Proposition 29.6, for every x∗ ∈ ∂m f (x), t > 0 such that (x∗,−1) ∈ t∂dF(x, f (x)),
we can find u∗ ∈ ∂ ‖·‖(0), s∗ ∈ ∂ |·|(0), (w∗,q∗) ∈ μ∂dG(x,g(x)) satisfying

(t−1x∗,−t−1,0,0) = (u∗,s∗,u∗ −w∗,q∗ −λ s∗),
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i.e., x∗ = tu∗ = tw∗, s∗ = −t−1, q∗ = −λ t−1. Setting y∗ := λ−1tw∗, we get
(y∗,−1) ∈ λ−1tμ∂dG(x,g(x)) or y∗ ∈ ∂mg(x) and x∗ = λy∗. We can get the same
conclusion by showing that the assumption of (S6a) is satisfied. For every sequences
(αn)→ 0+, ((xn,rn))→ (x, f (x)), let (un,sn)∈F be such that ‖(un,sn)− (xn,rn)‖≤
dF(xn,rn)+αn. Then, setting qn := λ−1sn, we have (un,qn) ∈G; hence ‖xn− un‖+
|rn−λqn|+ μdG(un,qn)≤ dF(xn,rn)+αn.

29.3.2 Limiting Subdifferentials

In order to make a multimap M : X ⇒ X∗ from a Banach space to its dual X∗ more
robust, a general procedure is available, setting

M(x) :=
⋃
r>0

w∗- limsup
x′→x

(M(x′)∩ rBX∗).

A variant consists in taking the sequential limsup, the symbol
∗→ denoting weak∗

convergence:

M
s
(x) := {x∗ : ∃(xn)→ x, (x∗n)

∗→ x∗, ∀n ∈N x∗n ∈M(xn)}.

When ∂ is a subdifferential and f ∈F (X), we set ∂ f (x) :=M(x), ∂ s
f (x) := M

s
(x),

with M := ∂ f , replacing the convergence x′ → x (resp. (xn)→ x) by the convergence
x′ → f x, i.e., (x′, f (x′))→ (x, f (x)) (resp. (xn)→ f x). Here we take x ∈ dom f and

we set ∂ f (x) = ∂
s
f (x) =∅ for x ∈ X\dom f .

Theorem 29.28. Let ∂ := (X ,F ,∂ ) be a subdifferential satisfying (S6e) rather
than (S6a), (S6b) . Then ∂ := (X ,F ,∂ ) is a subdifferential satisfying (S6e) rather
than (S6a), (S6b). If the spaces in X are such that their dual unit balls are weak∗
sequentially compact, the same assertion holds for ∂

s
:= (X ,F ,∂

s
).

Proof. Conditions (S1) and (S2) are obviously satisfied by ∂ and ∂
s

since for every
bounded subset B∗ of the dual of a Banach space X the coupling function 〈·, ·〉 is
continuous on X×B∗ when B∗ is endowed with the weak∗ convergence. Condition
(S3) is a consequence of the inclusions ∂ f ⊂ ∂ s

f ⊂ ∂ f . Let us show that property
(S4c) is obtained by a passage to the limit. Let g : X → Y be of class C1 around
x and f = h ◦ g with h ∈ F (Y ). For y∗ ∈ ∂h(y) with y := g(x), one can find a
net ((yi,y∗i ))i∈I in the graph of ∂h with (yi)→h y, (y∗i )

∗→ y∗, (y∗i ) being bounded.
Since g is open at x, there exists a net (xi)i∈I → x such that yi = A(xi) for all i ∈ I.
Then ( f (xi))i∈I = (h(yi))i∈I → h(y) = f (x), (x∗i ) := (g′(xi)

T y∗i )
∗→ g′(x)T y∗, the

mapping (�,y∗) �→ �T (y∗) := y∗ ◦ � being continuous on bounded sets when L(X ,Y )
is endowed with the norm topology and Y ∗ is provided with the weak∗ topology.
Since g′(xi)

T y∗i ∈ ∂ f (xi) one gets g′(x)T y∗ ∈ ∂ f (x). The reverse inclusion ∂ f (x)⊂
g′(x)T (∂h(y)) uses the same continuity argument and the fact that there exists some
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c > 0 and a neighborhood U of x such that inf{‖x‖ : x ∈ g′(u)−1(y)} ≤ c‖y‖ for all
u ∈U, y ∈ Y , so that if (x∗i ) = (y∗i ◦ g′(xi)) is bounded, with (xi)→ x, then (y∗i ) is
bounded, hence has a weak∗ converging subnet.

In order to check (S5), i.e., consistency of ∂ , let g∈F (X), h∈F (Y ) of class C1

around y, g(x) = h(y), (x∗,y∗) ∈ ∂ f (x,y) for f given by f (x,y) := max(g(x),h(y)).
Suppose y∗ �= h′(y) �= 0 and let ((xi,yi,x∗i ,y∗i ))i∈I be in the graph of ∂ f , with

((xi,yi))→ f (x,y), ((x∗i ,y∗i ))
∗→ (x∗,y∗) and bounded. We cannot have g(xi)< h(yi)

for all i in a cofinal subset J of I because otherwise we would have f (x,y) = h(y)
for (x,y) near (xi,yi) with i ∈ J; hence (x∗i ,y∗i ) = (0,h′(yi)) and, passing to the
limit, y∗ = h′(y), a contradiction with our assumption. If g(xi) > h(yi) for all i in a
cofinal subset K of I we have f (x,y) = g(x) for (x,y) near (xi,yi) with i ∈ K; hence
x∗i ∈ ∂g(xi), y∗i = 0 by (S4a) and x∗ ∈ ∂g(x), y∗ = 0. If for some cofinal subset L of
I we have g(xi) = h(yi) for all i ∈ L, then, since (x∗i ,y∗i ) ∈ ∂ f (xi,yi) and for i ∈ L
large enough y∗i �= h′(yi) �= 0, by consistency of ∂ we get some λi ∈]0,1], u∗i ∈ ∂g(xi)
such that (x∗i ,y∗i ) = (λiu∗i ,(1− λi)h′(yi)). Taking λ ∈ [0,1] and a subnet such that
(λi)→ λ , we cannot have λ = 0 since y∗ �= h′(y); hence (u∗i )→ u∗ := λ−1x∗ and
u∗ ∈ ∂g(x), so that (x∗,y∗) = (λu∗,(1−λ )h′(y)) with λ ∈]0,1].

Now, let V , W , A, p, ϕ , w, S be as in (S6e) and let w∗ ∈ ∂ p(w). Let ((wi,w∗i ,
p(wi)))i∈I be a net such that ((wi, p(wi)))→ (w, p(w)), (w∗i )

∗→ w∗, (w∗i ) being
bounded with w∗i ∈ ∂ p(wi) for all i ∈ I. By assumption, given v ∈ S(w), there exist
i ∈ I and a net (v j) j∈J → v for J := {i ∈ I : i ≥ i} such that v j ∈ S(wj) for all
j ∈ J. Since ∂ satisfies (S6e), and since we may suppose S is lower semicontinuous
at wj for all j ∈ J, we have AT (w∗j) ∈ ∂ϕ(v j) for all j ∈ J. Since AT is weak∗
continuous and bounding (i.e., maps bounded sets into bounded sets) and since
(ϕ(v j)) = (p(wj))→ p(w) = ϕ(v), we get AT (w∗) ∈ ∂ϕ(v). The sequential case
is similar. �

29.4 Further Properties of Subdifferentials

Now let us deal with properties subdifferentials may have or may not have.

29.4.1 Subdifferentiability Spaces and Variational
Subdifferentials

The following notion reflects the fact that it is natural to deal with subdifferentials
that have sufficiently many points of nonemptiness.

Definition 29.29 ([13, 14]). Given a subdifferential ∂ := (X ,F ,∂ ), a Banach
space X in X is called a ∂ -subdifferentiability space (or just a subdifferentiability
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space if there is no risk of confusion) if for any f ∈F (X) the set {(x, f (x)) : x ∈
X , ∂ f (x) �=∅} is dense in the graph of f .

Then, for any f ∈ F (X), the domain of ∂ f is dense in the domain of f . In
fact, for every x ∈ dom f and every ε > 0, there exists x ∈ dom∂ f ∩B(x,ε, f ). A
criterion for such a property appears with the next definition inspired by variational
principles.

Definition 29.30. A subdifferential ∂ := (X ,F ,∂ ) is variational if for any X in
X , f ∈F (X), x ∈ dom f , ε > 0 such that f (x) < inf f (X)+ ε and for any γ , δ >
0 satisfying γδ ≥ ε , there exist y ∈ B(x,δ ) and y∗ ∈ ∂ f (y) such that ‖y∗‖ < γ,
| f (y)− f (x)|< ε.

In [24] the term “β -variational subdifferential” is used for the viscosity subdif-
ferential associated with a bornology β . Since no bornology is present here, the risk
of confusion is low. Variational subdifferentials provide nontrivial concepts.

Proposition 29.31. Let ∂ be a variational subdifferential on the class I of lower
semicontinuous functions. Then all X in X are ∂ -subdifferentiability spaces.

Proof. Let f ∈ I (X), x ∈ dom f , and ε > 0 be given. Let ρ ∈ (0,ε] be such that
f (x) ≥ f (x)− ε for all x ∈ B := B(x,ρ). Then ( f + ιB)(x) ≤ inf( f + ιB)(X) + ε
where ιB is the indicator function of B given by ιB(x) = 0 if x ∈ B, +∞ else.
Let δ ∈]0,ρ [. Since ∂ is variational, there exist y ∈ B(x,δ ) and y∗ ∈ ∂ ( f + ιB)(y)
such that | f (y)− f (x)| < ε . Since y ∈ intB, f and f + ιB coincide around y; hence
y∗ ∈ ∂ f (y). �

Not all subdifferentials are variational. For any Banach space X that is not
an Asplund space the Fréchet subdifferential is not variational since there is a
concave continuous function whose points of subdifferentiability are not dense in X .
In particular, if S is a connected compact topological space not reduced to a
singleton and X := C(S) is the space of continuous functions on S endowed with
the supremum norm ‖·‖∞ the function f given by f (x) := −sups∈S x(s) is such that
for every x ∈ X one has ∂F f (x) =∅.

In spaces whose powers are ∂ -subdifferentiability spaces, one can give a (weak)
approximate rule for finite sums of lower semicontinuous functions at points where
they attain their infima. A stronger rule is considered in the next subsection.

29.4.2 Reliable and Trustworthy Subdifferentials

Let us introduce a class of subdifferentials useful for optimization theory. We shall
see that the two properties of the following definition are in fact equivalent. They
lead to fuzzy calculus rules of utmost importance [12, 13, 31, 37]. Moreover, they
are the basis of the equivalences established in [23, 29, 39] including a Mean Value
Theorem.
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Definition 29.32 ([32]). A subdifferential ∂ := (X ,F ,∂ ) is said to be reliable if
for any ε > 0, for any X in X , f ∈F (X), g convex Lipschitzian on X such that
f +g attains a local minimum at some x∈ dom f there exist (y,y∗)∈ ∂ f , (z,z∗)∈ ∂g
with y,z ∈ B(x,ε), | f (y)− f (x)|< ε and ‖y∗+ z∗‖< ε.

If such a property holds whenever g ∈L (X), then ∂ is said to be trustworthy.

Taking for F the class I of l.s.c. functions, the Clarke subdifferential ∂C and the
Ioffe subdifferential ∂G are trustworthy on the class of all Banach spaces; the Fréchet
subdifferential and the limiting subdifferential are reliable on the class of Asplund
spaces. Reliability is a property stronger than the ones studied in the preceding
section as the next proposition shows.

Proposition 29.33. A reliable subdifferential is variational.

Proof. Let ∂ := (X ,F ,∂ ) be a reliable subdifferential. Let X in X , f ∈F (X),
x ∈ dom f be such that f (x) < inf f (X)+ ε and let γ , δ > 0 satisfying γδ ≥ ε. Let
β ∈]0,1[ be such that f (x) < inf f (X) + εβ . The Ekeland’s variational principle
yields some w ∈ B(x,δ ) such that f (w) ≤ f (x) and

∀x ∈ X f (w) ≤ f (x)+βγ ‖x−w‖ .
Since ∂ is reliable, and since w is a minimizer of f + g for g given by g(x) :=
βγ ‖x−w‖ , setting ε ′ := min(δ − d(w,x),(1− β )γ,ε), we get y,z ∈ B(w,ε ′) ⊂
B(x,δ ), y∗ ∈ ∂ f (y), z∗ ∈ ∂g(z)⊂ βγBX∗ such that ‖y∗+ z∗‖< (1−β )γ , ‖ f (y)−
f (w)‖ < ε ′. Then ‖y∗‖< γ and f (x)− ε < f (y)< f (w)+ ε ′ ≤ f (x)+ ε . �
Theorem 29.34. Any reliable subdifferential ∂ := (X ,F ,∂ ) is trustworthy if for
any member X of X and any m ∈ N\{0}, Xm is a member of X .

Proof. That follows from the implication (R1)⇒(R5) in [29, Theorem 3.1], observ-
ing that if ∂ is reliable, then for all X in X , condition (R1) in [29, Theorem 3.1] is
satisfied. �

Reliable subdifferentials provide nontrivial geometric concepts as well as ana-
lytic concepts.

Proposition 29.35. Let ∂ be a reliable subdifferential on I (X). If E is a closed
subset of X and if x ∈ E is a boundary point of E, then for any ε > 0 there is some
x ∈ E with ‖x− x‖< ε such that N(E,x) contains a nonzero element.

Proof. Since x is a boundary point of E , given ε ∈]0,1/2[, we can find w ∈ X\E
such that ‖w−x‖< ε2/2. By the Ekeland’s variational principle there is some z∈ E
with ‖z− x‖< ε/2 such that the function g given by

g(x) := ‖w− x‖+ ιE(x)+ ε‖x− z‖
attains its minimum at z. Since ∂ is reliable, there are x ∈ E and u ∈ X such that
‖x− z‖ < ε/2, ‖u− z‖ < ‖w− z‖ and some x∗ ∈ N(E,x), u∗ ∈ ∂ (‖w− ·‖+ ε‖ ·
−z‖)(u) such that ‖u∗+ x∗‖ < ε . As u �= w, we conclude that ‖u∗‖ > 1− ε and
‖x∗‖> 1− 2ε > 0. �
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Let us provide a criterion for reliability. For such a purpose, we recall from [2,4]
the notion of ∂ -differentiability: a function f ∈F (X)∩ (−F (X)) is said to be ∂ -
differentiable at x ∈ dom f ∩dom(− f ) if ∂ f (x) and ∂ (− f )(x) are nonempty. As in
[36], a function f on X is said to be of class D1 if it is directionally differentiable
and if the map (x,u) �→ f ′(x)u is continuous. A function k on X is said to be forcing
if (xn)→ 0 whenever (k(xn))→ 0. A space X in X is said to be ∂ -smooth if there
exists a Banach space W ⊂F (X) containing the set of Lipschitzian ∂ -differentiable
convex functions and a ∂ -differentiable forcing function such that for all f ∈F (X),
g ∈W, x ∈ X , one has

sup
x∈X

sup{‖x∗‖ : x∗ ∈ ∂g(x)∪∂ (−g)(x)} ≤ ‖g‖W ,

∂ ( f + g)(x)⊂ ∂ f (x)+ ∂g(x).

Any Banach space X is ∂C-smooth as one can take for W the space of Lips-
chitzian functions on X with the norm given by ‖k‖W = |k(0)|+ supx�=x′∈X |k(x)−
k(x′)|/‖x− x′‖ . If X has a Lipschitzian forcing function of class C1 (resp. of class
D1), then it is ∂F -smooth (resp. ∂D-smooth) as one can take for W the space
of Lipschitzian functions k of class C1 (resp. D1) with the norm ‖·‖W given by
‖k‖W = |k(0)|+ supx∈X ‖k′(x)‖ .
Proposition 29.36. Let ∂ := (∂ ,X ,F ) be a subdifferential. If X is ∂ -smooth, then
∂ is reliable on F (X).

Proof. It is an adaptation of the classical decoupling method for the minimization
of the sum of two functions using the Deville–Godefroy–Zizler Variational Princi-
ple. �

Another criterion follows the line of [29]. It uses the following concept.

Definition 29.37. A subdifferential ∂ is said to be ∂ -reliable if for any X in X ,
any f ∈ F (X), g convex, continuous and ∂ -differentiable at x ∈ X , one has 0 ∈
∂ f (x)+ ∂g(x) whenever x is a minimizer of f + g.

As in [2, 3, 29] we say that the norm of a Banach space (X ,‖·‖) is ∂ -smooth if
for any converging sequence (xn) of X and any sequence (tn) of R+ with sum 1, the
function x �→ ∑n≥0 tn ‖x− xn‖2 is ∂ -differentiable on X .

Proposition 29.38. Let ∂ be a ∂ -reliable subdifferential on a class X . Suppose
that for all X in X and all convex continuous functions g, h on X that are ∂ -
differentiable on X the function h+ g is ∂ -differentiable on X . If for some X in X
the norm of X is ∂ -smooth, then ∂ is reliable on X.

We note that the assumption on the sum of two ∂ -differentiable functions
is satisfied by the directional subdifferential, the firm subdifferential, the Clarke
subdifferential, the Ioffe subdifferential, and the limiting subdifferential.
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Let us sketch the proof, following the arguments of [29, Theorem 4.4]. In view of
the equivalence of conditions (R2) and (R3) in [29], it suffices to prove the following
assertion.

Given X in X , f ∈F (X), a closed linear subspace W of X such that f attains a
robust minimum at some x∈W ∩dom f , we have to prove that there exist sequences
(xn)→ x, (x∗n), such that (x∗n |W )→ 0, ( f (xn))→ f (x), x∗n ∈ ∂ f (xn) for all n ∈N.

Here x is a robust (or uniform) minimizer of f on W if f (x) = supδ→0 inf f (B[W,
δ ]), where B[W,δ ] := {x ∈ X : dW (x) ≤ δ}, with dW (x) := infw∈W ‖w− x‖ . More-
over, using the arguments of [29, Theorem 4.4], we may assume W is proximinal
and that d2

W is ∂ -differentiable. Let ε ∈]0,1[ be given; we may suppose that ε is so
small that mε := inf f (B[x,ε])>−∞. Let δ > 0 be such that

inf f (B[W,δ ]) > f (x)− ε2/2.

We chose c > 0 such that cδ 2 > f (x)− ε2/2−mε ; hence

∀x ∈ B[x,ε]\B[W,δ ] f (x)+ cd2
W (x)> f (x)− ε2/2.

Then x is an ε2/2 approximate minimizer of f + cd2
W on B[x,ε] :

∀x ∈ B[x,ε] f (x)+ cd2
W (x)> f (x)− ε2/2.

The Borwein–Preiss’ variational principle [7, 2.5.2] yields some xε ∈ X and some
∂ -differentiable function g on X such that ‖xε − x‖2 < ε2, f (xε ) + cd2

W (xε) +
g(xε) ≤ f (x) and xε is a minimizer of f + cd2

W + g on B[x,ε], g being given by
g(x) := ∑n≥0 tn ‖x− xn‖2 with t0 = 1/2, ∑n≥0 tn = 1, xn ∈ B[x,ε] for all n. Then g
is Lipschitzian with rate 2ε on B[x,ε] and since cd2

W + g is ∂ -differentiable and ∂
is ∂ -reliable, we have 0 ∈ ∂ f (xε )+ ∂ (cd2

W + g)(xε). Using the sum rule for convex
continuous functions we can find x∗ε ∈ ∂ f (xε ), y∗ε ∈ c∂d2

W (xε), z∗ε ∈ ∂g(xε) such that
x∗ε + y∗ε + z∗ε = 0. Then we have ‖z∗ε‖ ≤ 2ε , y∗ε |W= 0 and f (xε ) ≤ f (x). Since f is
lower semicontinuous at x, replacing ε with the general term εn of a sequence with
limit 0+ and observing that

∥∥x∗εn
|W
∥∥≤ 2εn, we get the announced claim.

As a conclusion, let us give a nonconvex approximate separation theorem.

Theorem 29.39. Let ∂ := (∂ ,X ,F ) be a reliable subdifferential and let C, D be
two closed subsets of a member X of X . Suppose C is convex with a nonempty
interior, D ∩ intC = ∅ and a ∈ C ∩D. Then, for every ε > 0, there exists x ∈
C ∩ B(a,ε), y ∈ D∩ B(a,ε), x∗ ∈ N(C,x), y∗ ∈ N(D,y) such that ‖x∗‖ ≥ 1 and
‖x∗+ y∗‖ ≤ ε.
Proof. Given ε ∈]0,1/2[, without loss of generality, using a translation and a
dilation if necessary, we may suppose 0 ∈ intC and ‖a‖ ≤ 1− 2ε. Let ρ ∈]0,1[
be such that ρBX ⊂C and let j be the Minkowki gauge of C, so that C = j−1([0,1]),
intC = j−1([0,1[), and j is continuous and sublinear, hence Lipschitzian. Since
D∩ intC = ∅, a is a minimizer of j on D. Thus, there exists x ∈ C ∩ B(a,ερ),
y ∈ D∩ B(a,ε), x∗ ∈ ∂ j(x), y∗ ∈ N(D,y) such that ‖x∗+ y∗‖ ≤ ε. Taking w :=
x− a∈ ερBX ⊂ εC we have
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〈x∗,−a〉= 〈x∗,w− x〉 ≤ j(w)− j(x)≤ ε− ( j(a)− j(a− x))≤ 2ε− 1,

and ‖x∗‖(1− 2ε)≥ ‖x∗‖ .‖a‖ ≥ 〈x∗,a〉 ≥ 1− 2ε, hence ‖x∗‖ ≥ 1. �
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Chapter 30
Modular Equations and Lattice Sums

Mathew Rogers and Boonrod Yuttanan

Abstract We highlight modular equations due to Ramanujan and Somos and use
them to prove new relations between lattice sums and hypergeometric functions. We
also discuss progress towards solving Boyd’s Mahler measure conjectures. Finally,
we conjecture a new formula for L(E,2) of conductor 17 elliptic curves.

Key words: Hypergeometric series • Lattice sums • Mahler measure • Modular
equations.
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30.1 Introduction

Modular equations appear in a variety of number-theoretic contexts. Their connec-
tion to formulas for 1/π [15], Ramanujan constants such as eπ

√
163 [22], and elliptic

curve cryptography is well established. In the classical theory of modular forms, an
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nth-degree modular equation is an algebraic relation between j(τ) and j(nτ), where
j(τ) is the j-invariant. For our purposes a modular equation is simply a nontrivial
algebraic relation between theta or eta functions. In this paper we use modular
equations to study four-dimensional lattice sums. The lattice sums are interesting
because they arise in the study of Mahler measures of elliptic curves.

There are many hypothetical relations between special values of L-series of
elliptic curves and Mahler measures of two-variable polynomials. The Mahler
measures m(α), n(α), and g(α) are defined by

m(α) :=
∫ 1

0

∫ 1

0
log
∣∣y+ y−1 + z+ z−1+α

∣∣dθ1dθ2, (30.1)

n(α) :=
∫ 1

0

∫ 1

0
log
∣∣y3 + z3 + 1−αyz

∣∣dθ1dθ2, (30.2)

g(α) :=
∫ 1

0

∫ 1

0
log |(y+ 1)(z+ 1)(y+ z)−αyz|dθ1dθ2, (30.3)

where y= e2π iθ1 and z= e2π iθ2 . Boyd conjectured that for all integral values of k �= 4
[6]:

m(k)
?
=

q
π2 L(E,2),

where E is an elliptic curve, q is rational, and both E and q depend on k. He also
discovered many formulas involving g(α) and n(α). In cases where E has a small
conductor, it is frequently possible to express L(E,2) in terms of four-dimensional
lattice sums. Thus many of Boyd’s identities can be regarded as series acceleration
formulas. The main goal of this paper is to prove new formulas for the lattice sum
F(b,c), defined in (30.13). There are at least 18 instances where F(b,c) is known (or
conjectured) to reduce to integrals of elementary functions. The modular equations
of Ramanujan and Somos are the main tools in our analysis.

30.2 Eta Function Product Identities

Somos discovered thousands of new modular equations by searching for linear
relations between products of Dedekind eta functions. Somos refers to these
formulas as eta function product identities. The existence of eta function product
identities follows from the fact that j(τ) equals a rational expression involving eta
functions. One can transform classical modular equations into eta function product
identities by simply clearing denominators. Somos’s experimental approach turned
up many surprisingly simple identities. In order to give an example, first consider
the eta function with respect to q:

η(q) = q1/24
∞

∏
n=1

(1− qn) =
∞

∑
n=−∞

(−1)nq(6n+1)2/24,
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and adopt the shorthand notation

e j = η(q j).

Formula (30.4) is the smallest eta function product identity in Somos’s list [20]:

e2e6e10e30 = e1e12e15e20 + e3e4e5e60. (30.4)

Notice that all three monomials are products of four eta functions and are essentially
weight-two modular forms. No identities are known if the eta products have weight
less than two, and (30.4) appears to be the only three-term linear relation between
products of four eta functions. Many additional identities are known if the number
of terms is allowed to increase or if eta products of higher weight are considered.
For additional examples see formulas (30.16), (30.24), (30.25), (30.28), and (30.31)
below.

Identities such as (30.4) can be proved almost effortlessly with the theory
of modular forms. A typical proof involves checking that the first few Fourier
coefficients of an identity vanish. Sturm’s Theorem furnishes an upper bound on
the number of coefficients that need to be examined [14]. We note that it is often
possible, but usually more difficult, to prove such identities via q-series methods.
Ramanujan derived hundreds of modular equations with q-series techniques. We
conclude this section by proving (30.4). This proof fills in a gap in the literature of
Ramanujan–Berndt-style proofs.

Theorem 30.1. The identity (30.4) is true.

Proof. Let us denote the usual theta functions by

ϕ(q) :=
∞

∑
n=−∞

qn2
, ψ(q) :=

∞

∑
n=0

qn(n+1)/2. (30.5)

Furthermore define u j and z j by

u j :=1− ϕ
4(−q j)

ϕ4(q j)
, z j := ϕ2(q j).

Ramanujan uses a slightly different notation [2]. He typically sets α = u1 and says
that “β has degree j over α” when β = u j. Certain values of the eta function can be
expressed in terms of u1 and z1 [2, p. 124]. We have

η(q) =2−1/6u1/24
1 (1− u1)

1/6√z1, (30.6)

η(q2) =2−1/3{u1(1− u1)}1/12√z1, (30.7)

η(q4) =2−2/3u1/6
1 (1− u1)

1/24√z1. (30.8)
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Now we prove (30.4). By (30.7) the left-hand side of the identity becomes

e2e6e10e30 = 2−4/3{u1u3u5u15(1− u1)(1− u3)(1− u5)(1− u15)}1/12√z1z3z5z15.

By (30.6) and (30.8), the right-hand side of the identity becomes

e1e12e15e20 + e3e4e5e60

=2−5/3
(
{u3u5(1− u1)(1− u15)}1/6{u1u15(1− u3)(1− u5)}1/24

+ {u1u15(1− u3)(1− u5)}1/6{u3u5(1− u1)(1− u15)}1/24
)√

z1z3z5z15.

Combining the last two formulas shows that (30.4) is equivalent to

21/3{u1u3u5u15(1− u1)(1− u3)(1− u5)(1− u15)}1/24

= {u3u5(1− u1)(1− u15)}1/8 + {u1u15(1− u3)(1− u5)}1/8 .
(30.9)

It is sufficient to show that (30.9) can be deduced from Ramanujan’s modular
equations.

The first modular equation we require can be recovered by multiplying entries
11.1 and 11.2 in [2, p. 383]:

(
(u1u15)

1/8 + {(1− u1)(1− u15)}1/8
)(

(u3u5)
1/8 + {(1− u3)(1− u5)}1/8

)
= 1.

Rearranging yields an identity for the right-hand side of (30.9):

{u3u5(1− u1)(1− u15)}1/8 + {u1u15(1− u3)(1− u5)}1/8

= 1−{u1u3u5u15}1/8−{(1− u1)(1− u3)(1− u5)(1− u15)}1/8.
(30.10)

By [2, p. 385, Entry 11.14], it is clear that

1−{u1u3u5u15}1/8−{(1− u1)(1− u3)(1− u5)(1− u15)}1/8

= 21/3{u1u3u5u15(1− u1)(1− u3)(1− u5)(1− u15)}1/24.
(30.11)

The theorem follows from combining (30.10) and (30.11) to recover (30.9). �
We find it slightly surprising that Ramanujan overlooked (30.4). He possessed

a tremendous ability to derive modular equations, and he discovered all of the
necessary intermediate results. Perhaps it is simply not obvious why identities such
as (30.4) exist. We are unable to offer much insight, beyond pointing out that there
are many additional formulas in Somos’s tables. A conceptual proof of (30.4) might
lead to a systematic method for generating more identities. In the next section, we
demonstrate that this is an important topic in the study of lattice sums.
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30.3 Lattice Sums

In this section we investigate four-dimensional lattice sums. Many of these sums are
related to L-functions of elliptic curves. Let us define

F(a,b,c,d) :=(a+ b+ c+ d)2

×
∞

∑
ni=−∞

(−1)n1+n2+n3+n4

(a(6n1 + 1)2 + b(6n2+ 1)2 + c(6n3 + 1)2 + d(6n4 + 1)2)2 .

The four-dimensional series is not absolutely convergent, so it is necessary to
employ summation by cubes [5]. Notice that Euler’s pentagonal number theorem
can be used to represent F(a,b,c,d) as an integral

F(a,b,c,d) =− (a+ b+ c+ d)2

242

∫ 1

0
η(qa)η(qb)η(qc)η(qd) logq

dq
q
. (30.12)

We also use the shorthand notation

F(b,c) := F(1,b,c,bc), (30.13)

since we are primarily interested in cases where a = 1, d = bc, and b and c are
rational.

The interplay between values of F(b,c), Boyd’s Mahler measure conjectures,
and the Beilinson conjectures is outlined in [17]. If (b,c) ∈ N

2 and (1+ b)(1+ c)
divides 24, then F(b,c) = L(E,2) for an elliptic curve E . Formulas are now proved
relating each of those eight L-values to Mahler measures [23]. Mahler measures
often reduce to generalized hypergeometric functions, so many of Boyd’s identities
can be regarded as series transformations [13, 16]. It is known that

m(α) = Re

[
log(α)− 2

α2 4F3

(
3
2 ,

3
2 ,1,1

2,2,2
;

16
α2

)]
, if α �= 0,

n(α) = Re

[
log(α)− 2

α3 4F3

(
4
3 ,

5
3 ,1,1

2,2,2
;

27
α3

)]
, if |α| is sufficiently large,

3g(α) =n

(
α+ 4

α2/3

)
+ 4n

(
α− 2

α1/3

)
, if |α| is sufficiently large.

The function m(α) also reduces to a 3F2 function if α ∈ R [12, 17]. Rogers and
Zudilin [18] recently proved that

F(3,5) =
4π2

15
m(1) =

π2

15 3F2

(
1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣ 1
16

)
. (30.14)
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Equation (30.14) is equivalent to a formula that Deninger conjectured [9]. The same
formula helped motivate Boyd’s seminal paper [6]. It is also possible to prove
formulas for values such as F(1,4) and F(2,2) [17]. These lattice sums are not
related to elliptic curve L-values in an obvious way, so it was conjectured that it
should be possible to “sum up” F(b,c) for arbitrary values of b and c.

30.3.1 Lacunary Cases

In general, the difficulty of dealing with a lattice sum depends on whether it is
lacunary or non-lacunary. Lacunary examples are usually much easier to work
with. We say that a lattice sum is lacunary if it equals the Mellin transform of a
lacunary modular form. Modular forms are called lacunary whenever their Fourier
series coefficients have zero arithmetic density. To detect lacunary eta products, first
expand the eta product in a series

η(qa)η(qb)η(qc)η(qd) = q(a+b+c+d)/24(a0 + a1q+ a2q2 + · · ·) , (30.15)

and then check that an = 0 for almost all n. It seems to be an open problem to classify
quadruples (a,b,c,d) which make (30.15) lacunary. While cusp forms associated
with CM elliptic curves are always lacunary, only three of those cusp forms actually
equal products of four eta functions [14]. Less is known if an eta product is not
obviously related to an elliptic curve. Empirically, it appears that many values
of eaebeced can be expressed as linear combinations of two-dimensional theta
functions. Expansions such as

η2(q)η2(q2) =
∞

∑
k=−∞
n≥0

(−1)k+n(2n+ 1)q
(2k)2+(2n+1)2

4

imply an eta product is lacunary, because subsequences of integers generated by
quadratic forms have zero density. Unfortunately, it is not clear if every lacunary
value of eaebeced possesses such an expansion. There is also insufficient evidence to
conjecture how often eaebeced is lacunary. This stems from the fact that it is difficult
to detect the property numerically. It requires thousands of q-series coefficients to
convincingly demonstrate that (easy) cases like e4

1 are lacunary. The calculations
become much worse for more complicated examples.

The lattice sums F(1,1), F(1,2), and F(1,3) equal L-values of CM elliptic
curves. Therefore they are lacunary. These examples, and additional values such
as F(1,4) and F(2,2), reduce to two-dimensional sums via classical theta series
results. Less obvious lacunary sums include F(2,9) and F(4,7,7,28). These cases
require eta function product identities. A result of Ramanujan [3, p. 210, Entry 56],
shows that

3e1e2e9e18 =−e2
1e2

2 + e3
1

e2
18

e9
+ e3

2
e2

9

e18
. (30.16)
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Substituting classical theta expansions for e3
1, e2

2/e1, and e2
1/e2 [11, pp. 114–117]

leads to

3η(q)η(q2)η(q9)η(q18) =−
∞

∑
n=0
k=0

(−1)n(2n+ 1)q
(2n+1)2+(2k+1)2

8

+
∞

∑
n=0
k=0

(−1)n(2n+ 1)q
(2n+1)2+9(2k+1)2

8

+
∞

∑
n=0

k=−∞

(−1)n+k(2n+ 1)q
(2n+1)2+9(2k)2

4 .

(30.17)

The eta product equals a finite linear combination of two-dimensional theta
functions. Therefore it is lacunary. Formula (30.17) is the main ingredient needed
to relate F(2,9) to hypergeometric functions and Mahler measures.

Theorem 30.2. Let t = 4
√

12, then the following identity is true:

144
25π2 F(2,9) =− 3m(4i)+ 2m

(
1√
2

(
4− 2t− 2t2+ t3))

+m
(
4i
(
7+ 4t+ 2t2 + t3)) .

(30.18)

Proof. The most difficult portion of the calculation is to find a two-dimensional
theta series for e1e2e9e18. This task has been accomplished via an eta function
product identity. The remaining calculations parallel those carried out in [17].
Integrating (30.17) leads to

3
25

F(2,9)+F(1,2) =4
∞

∑
n=0
k=0

(−1)n(2n+ 1)

((2n+ 1)2+ 9(2k+ 1)2)2

+
∞

∑
n=0

k=−∞

(−1)n+k(2n+ 1)

((2n+ 1)2+ 9(2k)2)
2 .

(30.19)

There are two possible formulas for F(1,2) [16]:

F(1,2) =
π2

8
m
(

2
√

2
)
=
π2

16
m(4i) . (30.20)

By the formula for F(1,2)(3) in [17, Eq. 115], we also have

∞

∑
n=0

k=−∞

(−1)n+k(2n+ 1)

((2n+ 1)2+ 9(2k)2)2 =
π2

48
m
(
4i
(
7+ 4t+ 2t2 + t3)) , (30.21)
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where t = 4
√

12. Next we evaluate the remaining term in (30.19). Notice that for
x > 0

∞

∑
n=0
k=0

(−1)n(2n+ 1)

((2n+ 1)2+ x(2k+ 1)2)2

=
π2

16

∫ ∞

0
u

(
∞

∑
n=0

(−1)n(2n+ 1)e−π(n+1/2)2u

)(
∞

∑
k=0

e−πx(k+1/2)2u

)
du.

By the involution for the weight-3/2 theta function

∞

∑
n=0

(−1)n(2n+ 1)e−π(n+1/2)2u =
1

u3/2

∞

∑
n=0

(−1)n(2n+ 1)e−π(n+1/2)2 1
u ,

this becomes

∞

∑
n=0
k=0

(−1)n(2n+ 1)

((2n+ 1)2+ x(2k+ 1)2)
2

=
π2

16

∞

∑
n=0
k=0

(−1)n(2n+ 1)
∫ ∞

0
u−1/2e−π((n+1/2)2 1

u+x(k+1/2)2u)du

=
π2

16
√

x

∞

∑
n=0
k=0

(−1)n (2n+ 1)
(2k+ 1)

e−
π
√

x
2 (2n+1)(2k+1)

=
π2

16
√

x

∞

∑
n=0

(−1)n(2n+ 1) log

(
1+ e−π

√
x(n+1/2)

1− e−π
√

x(n+1/2)

)
.

Applying formulas (1.6), (1.7), and (2.9) in [13], we have

=
π2

32
√

x

(
m

(
4√αx/4

)
−m

(
4i
√

1−αx/4√αx/4

))

=
π2

32
√

x
m

(
4

(
1−√1−αx/4

1+
√

1−αx/4

))
,

where αx is the singular modulus (recall that αx = 1−ϕ4(−e−π
√

x)/ϕ4(e−π
√

x)).
The second-degree modular equation shows that

1−√1−αx/4

1+
√

1−αx/4
=
√
αx,
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and hence we obtain

∞

∑
n=0
k=0

(−1)n(2n+ 1)

((2n+ 1)2+ x(2k+ 1)2)2 =
π2

32
√

x
m(4
√
αx) . (30.22)

It is well known that αn can be expressed in terms of class invariants if n ∈ Z:

αn =
1
2

(
1−
√

1− 1/G24
n

)
.

The values of Gn have been extensively tabulated [4, p. 188]. Setting n = 9 yields

α9 =
1
2

⎛
⎜⎝1−

√√√√1−
( √

2√
3+ 1

)8
⎞
⎟⎠

=
1
2

(
1− 4t+ t3)

=

(
4− 2t− 2t2+ t3

)2

32
,

where t = 4
√

12. Formula (30.22) reduces to

∞

∑
n=0
k=0

(−1)n(2n+ 1)

((2n+ 1)2+ 9(2k+ 1)2)2 =
π2

96
m

(
1√
2

(
4− 2t− 2t2 + t3)) . (30.23)

The proof of (30.18) follows from combining (30.19), (30.20), (30.21),
and (30.23). �

We have chosen to exclude the explicit formula for F(4,7,7,28) from this
paper.1 It suffices to say that the sum reduces to an extremely unpleasant expression
involving hypergeometric functions and Meijer G-functions. The key modular
equation is due to Somos [21, Entry q28,9,35]:

28e4e2
7e28 =−7e1e3

7−
e5

1

e2
2

e2
14

e7
+ 8

e5
2

e2
1

e14. (30.24)

By classical theta expansions [11, p. 114–117], the eta product becomes

1The formula is available upon request.
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28η(q4)η2(q7)η(q28) =− 7
∞

∑
n=−∞

k=0

(−1)n+k(2k+ 1)q
(6n+1)2+21(2k+1)2

24

−
∞

∑
n=−∞

k=0

(6n+ 1)q
(6n+1)2+21(2k+1)2

24

+ 8
∞

∑
n,k=−∞

(−1)n+k(3n+ 1)q
4(3n+1)2+7(6k+1)2

12 .

As a result it is easy to see that e4e2
7e28 is lacunary.

We believe that there are additional lacunary values of F(a,b,c,d). It might be
interesting to try to detect them numerically. Another possible extension of this
research involves looking at linear combinations of lattice sums. One can prove
that certain linear combinations of lattice sums reduce to Mahler measures. As an
example, briefly consider the following modular equation [21, Entry x50,6,81]:

5e1e2e25e50 + 2e2
1e2e50 + 2e1e2

2e25 =−e2
1e2

2 + e3
1

e2
50

e25
+ e3

2
e2

25

e50
. (30.25)

All three eta quotients on the right-hand side of (30.25) have two-dimensional theta
series expansions. As a result we can prove that

5
132 F(2,25)+

2
92 F(1,1,2,50)+

2
52 F (1,2,2,25)

=
π2

80

(
−5m(4i)+ 2m(4

√
α25)+m

(
4i

√
1−α25

α25

))
,

(30.26)

where α25 = 1
213

(√
5− 1

)8(
4
√

5− 1
)8

. There are many additional results like

(30.26), which we will not discuss here.

30.3.2 Non-lacunary Cases

The calculations become far more difficult when F(a,b,c,d) does not reduce to
a two-dimensional sum. The recent proofs of formulas for F(1,5), F(2,3), and
F(3,5) are all based upon new types of q-integral transformations [18, 19]. The
fundamental transformation for F(2,3) is

∫ 1

0
q1/2ψ(q)ψ(q3)ϕ(−qx)ϕ(−q3x) logq

dq
q

=
2π
3x

Im
∫ 1

0
ωqψ4 (ω2q2) log

(
4q3xψ4(q12x)

ψ4(q6x)

)
dq
q
,
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where ω = e2π i/3. When x = 1 the left-hand side equals −4F(2,3) (to see this
use q1/8ψ(q) = η2(q2)/η(q) and ϕ(−q) = η2(q)/η(q2)), and the right-hand side
becomes an extremely complicated elementary integral. The most difficult portion
of the calculation is to reduce the elementary integral to hypergeometric functions,

F(2,3) =
π2

6
m(2) =

π2

12 3F2

(
1
2 ,

1
2 ,

1
2

1, 3
2

;
1
4

)
.

Boyd’s numerical work was instrumental in the calculation, because it allowed the
final formula to be anticipated in advance.

Non-lacunary lattice sums reduce to intractable integrals quite frequently. We
recently used the method from [18] to find a formula for F(1,8):

F(1,8) =
9π 4
√

2
128

∫ 1

0

(1− k)2 + 2
√

2(k+ k3)

(1+ k)(k+ k3)3/4
log

(
1+ 2k− k2+ 2

√
k− k3

1+ k2

)
dk.

(30.27)

The proof of (30.27) is long and complicated, so we verified this monstrous identity
to 100 decimal places by calculating F(1,8) with (30.12). We speculate that the
integral should reduce to something along the lines of (30.18).

Eta function identities occasionally provide shortcuts for avoiding integrals like
(30.27). We have already demonstrated that linear dependencies exist between
lattice sums [see (30.26)]. In certain cases it is possible to relate new lattice sums to
well-known examples. Consider a forty-fifth-degree modular equation due to Somos
[21, Entry x45,4,12]:

6e1e5e9e45 =−e2
1e2

5− 2e2
3e2

15− 9e2
9e2

45 + e4
3 + 5e4

15. (30.28)

We were unable to prove (30.28) by elementary methods. Integrating (30.28) leads
to a linear dependency between three lattice sums. We have

9F(5,9) = 45F(1,1)− 50F(1,5). (30.29)

Both F(1,1) and F(1,5) equal values of hypergeometric functions [16, 18], so we
easily obtain the following theorem.

Theorem 30.3. Recall that n(α) is defined in (30.2). We have

108
5π2 F(5,9) = 8n

(
3 3
√

2
)
− 9n

(
2 3
√

4
)
. (30.30)

Boyd’s Mahler measure conjectures imply various additional formulas. A proof
of Boyd’s conductor 30 conjectures would lead to closed forms for both F(2,15)
and F(2,5/3). To make this explicit we use two relations. First consider a four-term
modular equation due to Somos [20]:

e1e3e5e15 + 2e2e6e10e30 = e1e2e15e30 + e3e5e6e10. (30.31)
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Integrating (30.31), and then using the evaluation F(3,5) = 4π2m(1)/15 from [19],
leads to

F(2,15)+ 4F

(
2,

5
3

)
=

8π2

5
m(1). (30.32)

Next we require an unproven relation. Boyd conjectured2 that for a conductor 30
elliptic curve

L(E30,2)
?
=

2π2

15
g(3),

where g(α) is defined in (30.3). The modularity theorem guarantees that L(E30,2) =
L( f30,2), where f30(e2π iτ) is a weight-two cusp form on Γ0(30). Somos has
calculated a basis for the space of cusp forms on Γ0(30). It follows that the cusp
form associated with conductor 30 elliptic curves is

f30(q) = η(q3)η(q5)η(q6)η(q10)−η(q)η(q2)η(q15)η(q30).

Upon integrating f30(q), Boyd’s conjecture becomes

F

(
2,

5
3

)
− 1

4
F(2,15)

?
=

2π2

15
g(3). (30.33)

Combining (30.32) and (30.33) leads to a pair of conjectural evaluations.

Conjecture 30.4. Recall that m(α) and g(α) are defined in (30.1) and (30.3). The
following equivalent formulas are numerically true:

15
4π2 F(2,15)

?
= 3m(1)− g(3), (30.34)

15
π2 F

(
2,

5
3

)
?
= 3m(1)+ g(3). (30.35)

Tracking backwards shows that a proof of either (30.34) or (30.35) would settle
Boyd’s conductor 30 Mahler measure conjectures. Eisenstein series identities due
to Berkovich and Yesilyurt could be of use here [1].

2See Table 2 in [6]. In our notation, Boyd’s entries correspond to values of g(2− k).
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30.4 Conclusion: Conductor 17 Elliptic Curves

An important connection exists between lattice sums and Mahler measures; however
this relationship has limitations. Even if we could “sum up” F(b,c) for arbitrary
values of b and c, this would only settle a few of Boyd’s conjectures [6]. Conductor
17 curves are the first cases in Cremona’s list [8], where L(E,2) probably does not
reduce to values of F(b,c). If we let E17 denote a conductor 17 curve (we used
y2 + xy+ y = x3− x2− x), then

17
2π2 L(E17,2)

?
= m

(
(1+
√

17)2

4

)
−m

(√
17
)
. (30.36)

We discovered (30.36) via numerical experiments involving elliptic dilogarithms.3

The cusp form associated with conductor 17 curves is stated in [10]. We have

f17(q) =
η(q)η2(q4)η5(q34)

η(q2)η(q17)η2(q68)
− η

5(q2)η(q17)η2(q68)

η(q)η2(q4)η(q34)
. (30.37)

Since L(E17,2) = L( f17,2), formula (30.36) can be changed into a complicated
elementary identity. There does not seem to be an easy way to relate L(E17,2) to
Mahler measures of rational polynomials. This probably explains why conductor 17
curves never appear in Boyd’s paper [6]. After examining f17(q) in detail, we feel
reasonably confident that L(E17,2) is linearly independent from values of F(b,c)
over Q.
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Chapter 31
An Epigraph-Based Approach to Sensitivity
Analysis in Set-Valued Optimization

Douglas E. Ward and Stephen E. Wright

Abstract In this paper, we obtain estimates for the contingent and adjacent
derivatives of the epigraph of the marginal multifunction in parametric set-valued
optimization. These estimates generalize some sensitivity results from scalar-valued
optimization and provide new information in the setting of multiobjective nonlinear
programming.

Key words: Adjacent derivative • Basic normal cone • Contingent derivative •
Sensitivity analysis • Set-valued optimization • Tangent cone.

Mathematics Subject Classifications (2010): Primary 49J53; Secondary 90C31.

31.1 Introduction

Let W , X , and Y be real normed spaces, and let P⊂Y be a nonempty cone; i.e., λ p∈
P for each scalar λ ≥ 0 and each p ∈ P. Let H : W ⇒ X and G : W ×X ⇒ Y be set-
valued mappings. We consider the parametrized family of set-valued optimization
problems defined by

Q(w) := MinP F(w), (31.1)
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where

F(w) := {y ∈G(w,x) | x ∈ H(w)} (31.2)

and

MinP F(w) := {y ∈ F(w) |({y}−P)∩F(w) ⊂ {y}+P}.

Here we interpret W as the parameter space, X as the decision space, and Y as
the objective space, with the cone P defining an ordering on objective values in
Y . For each value of the parameter w, H(w) defines a feasible set in X , while
G(w,x) gives a set of objective values in Y . The set F(w) comprises the graph of
the objective values over the entire feasible region of the optimization problem,
whereas Q(w) selects those objective values that cannot be improved relative to the
P-ordering. (The elements of Q(w) are known as “efficient points” of F(w).) Note
that this model generalizes parametric vector optimization—the case where G is
single-valued—and parametric scalar optimization, where in addition Y = R and
P = R+ := {y ∈ R |y≥ 0}.

The theory of set-valued optimization is a subject that is attracting increasing
interest (see [13] and its references). In particular, there is a growing body of work
on sensitivity analysis in parametric multiobjective optimization, where generalized
derivative concepts are employed to estimate how the sets F(w) and Q(w) vary
with changes in w. The generalized derivatives used for this purpose include both
“primal” constructions based on tangent cones [1, 2, 5, 11, 15–19, 21, 25, 26, 28–31]
and “dual” constructions based on normal cones [4, 12, 20].

One major branch of this sensitivity analysis literature, beginning with the
seminal papers of Tanino [28, 29], makes extensive use of the contingent derivative
[1, 2], which is defined in terms of the contingent cone. In these studies [11, 15–
18, 25, 26, 28, 29], epigraphs of set-valued maps play an important role.

Definition 31.1. Let M : X ⇒ Y be a set-valued mapping.

(a) The graph of M is the set gphM := {(x,y) |y ∈M(x)}.
(b) For a cone P ⊂ Y , the epigraph mapping (or profile map) (M + P) : X ⇒ Y

is defined by (M +P)(x) = M(x) + P. The epigraph of M is the set epiM =
gph(M+P).

These studies include detailed investigation of the relationship between the
contingent derivative of M + P and the epigraph of the contingent derivative of
M, two quantities that coincide for scalar-valued functions but may differ more
generally. Also considered are relationships among the contingent derivatives of
F , F +P, Q, Q+P for various concepts of minimization with respect to P, with the
goal of estimating the contingent derivatives of F and Q. These discussions make
significant progress in clarifying relationships that are easily verified for scalar-
valued functions but can be much more problematic in a multiobjective setting.
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Notably absent from this analysis, however, are results relating generalized
derivatives of F +P and G+P. We would argue that such results merit a prominent
position in this theory, based on what is known about sensitivity analysis in
scalar-valued optimization. In the scalar-valued case, one key type of sensitivity
estimate gives bounds on directional derivatives of the marginal function Q in terms
of directional derivatives of G and local approximations to the graph of H (see
[3,6,8–10,21,32,34,35] and their references). Since directional derivatives of scalar-
valued functions can be defined via tangent cones to epigraphs, these estimates relate
generalized derivatives of Q+P and G+P (and generalized derivatives of F+P and
G+P, since Q+P and F +P coincide in the scalar-valued case). One advantage of
these estimates is that they are valid under rather mild hypotheses on the problem
data—in particular, milder hypotheses than those required to guarantee that tangent
cone approximations to the graphs of Q and F are well behaved.

In the present paper, we apply the techniques developed in [34] to produce
estimates for the contingent and adjacent derivatives of F +P in terms of those for
G+P and H. Our estimates, which generalize some known results for contingent
derivatives of F , give sensitivity information for a number of problems in which
these earlier results are not applicable (see Example 31.27).

To set the stage for these developments, we review relevant aspects of tangent
and normal cone calculus in Sect. 31.2. We present our main theorems in Sect. 31.3,
giving inclusions for contingent and adjacent derivatives of F +P that generalize
inequalities from [34]. Then in Sect. 31.4, we focus on the case where G is single-
valued and strictly differentiable and derive an extension of [28, Theorem 4.1].

We conclude this section by setting the basic terminology and notation. Through-
out, P ⊂ Y denotes a general cone—any further hypotheses on P are given in
the statements of results requiring them. The cone P is said to be pointed if
P∩−P = {0}. The recession cone P̂ := ∩y∈P(P− y) is a convex cone for which
P̂⊂ P = P+ P̂. Note that P = P̂ if and only if the cone P is convex.

For ε > 0 and x ∈ X , we define open and closed balls, respectively, as

B(x,ε) := {z ∈ X |‖z− x‖< ε} and B̄(x,ε) := {z ∈ X |‖z− x‖ ≤ ε}.
We say that S ⊂ X is locally closed around x̄ ∈ S if there exists ε > 0 such that
S∩ B̄(x̄,ε) is closed. By u→S x, we mean u→ x with u ∈ S. We denote the closure
of S by clS and the interior of S by intS. The cone generated by S is the set coneS :=
{ts | t ≥ 0, s ∈ S}.

31.2 Tangent Cones and Intersection Theorems

In this paper we work with generalized derivatives of multifunctions defined via
tangent cones to their graphs. Intuitively, we can think of a tangent cone R as a
multifunction that assigns, to each set S and point x ∈ S, a cone R(S,x) giving a
local approximation to S near x. For our purposes, two tangent cones are particularly
useful:
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Definition 31.2. Let S be a subset of X and x ∈ S.

(a) The contingent cone to S at x is defined by

T (S,x) :=
{

z ∈ X
∣∣∣ ∃{(t j,z

j)}→ (0+,z) such that x+ t jz
j ∈ S

}
.

(b) The adjacent cone to S at x is defined by

A(S,x) :=
{

z ∈ X
∣∣∣ ∀{t j}→ 0+,∃{z j}→ z such that x+ t jz

j ∈ S
}
.

Basic properties of the contingent and adjacent cones are listed in [2, Chap. 4].
In particular, both are always closed cones containing the origin, and the inclusion
A(S,x) ⊂ T (S,x) is always satisfied. One important class of sets for which the
contingent and adjacent cones coincide is the class of convex sets. Specifically, if S
is convex and x̄ ∈ S, then

T (S, x̄) = A(S, x̄) = clcone(S− x̄).

Given a concept of tangent cone, we define an associated generalized derivative
as follows:

Definition 31.3. Let M : X ⇒ Y be a set-valued mapping, and let R be a tangent
cone. For ȳ ∈M(x̄), define

R(M,(x̄, ȳ)) := R(gphM,(x̄, ȳ)).

The R-derivative of M at (x̄, ȳ) is the mapping DRM : X ⇒ Y defined by

DRM(x̄, ȳ)(x) := {y |(x,y) ∈ R(M,(x̄, ȳ))}.

In particular, the T -derivative and A-derivative are known, respectively, as the
contingent and adjacent derivatives.

To give an idea of how the generalized derivatives in Definition 31.3 “generalize
the derivative,” we mention an important special case. Let f : X → Y and x̄ ∈ X be
such that the Hadamard directional derivative

f ′(x̄;x) := lim
t↓0,v→x

f (x̄+ tv)− f (x̄)
t

exists. Then it is easy to show that

DT f (x̄, f (x̄))(x) = DA f (x̄, f (x̄))(x) = { f ′(x̄;x)}.
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In particular, when f is Fréchet differentiable at x̄ with derivative ∇ f (x̄), we have

DT f (x̄, f (x̄))(x) = DA f (x̄, f (x̄))(x) = {∇ f (x̄)x}, ∀x ∈ X . (31.3)

Properties of tangent cones can be used to develop the calculus of generalized
derivatives [2, 22–24, 33]. Especially important for us is the question of when an
intersection of tangent cones of sets is contained in a tangent cone of the intersection
of those sets. One type of assumption under which “intersection theorems” can be
established involves the Clarke tangent cone and interior Clarke tangent cone.

Definition 31.4. Let S ⊂ X and x ∈ S.

(a) The Clarke tangent cone to S at x is defined by

C(S,x) := {z ∈ X |∀x j →S x,∀t j → 0+,∃{z j}→ z with x j + t jz
j ∈ S}.

(b) The interior Clarke tangent cone to S at x is defined by

IC(S,x) := {z ∈ X |∃ε > 0 with (B(x,ε)∩S)+ (0,ε)B(z,ε)⊂ S}.

Remark 31.5

(a) Sets S such that IC(S,x) �= /0 are said to be epi-Lipschitzian at x (see [7, 22–24]
for further discussion).

(b) It follows easily from Definition 31.4 that both the Clarke tangent cone and
interior Clarke tangent cone preserve Cartesian products of sets. Specifically, if
S1 ⊂ X1, S2 ⊂ X2, and (x1,x2) ∈ S1× S2, then

C(S1× S2,(x1,x2)) =C(S1,x1)×C(S2,x2) (31.4)

and

IC(S1× S2,(x1,x2)) = IC(S1,x1)× IC(S2,x2). (31.5)

With hypotheses involving the Clarke and interior Clarke tangent cones, the
following intersection theorem can be obtained (see [33, Proposition 2.6]):

Proposition 31.6. Let Si ⊂ X, i = 1, . . . ,n, and consider x ∈ ∩n
i=1Si. If

C(S1,x)∩
[

n⋂
i=2

IC(Si,x)

]
�= /0, (31.6)

then

T (S1,x)∩
[

n⋂
i=2

A(Si,x)

]
⊂ T

(
n⋂

i=1

Si,x

)
(31.7)
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and

n⋂
i=1

A(Si,x) = A

(
n⋂

i=1

Si,x

)
. (31.8)

When X is finite-dimensional and each Si is (locally) closed, (31.7) and (31.8) are
satisfied under assumptions involving the basic normal cone that are less demanding
than (31.6). We state this finite-dimensional intersection theorem after reviewing the
definition of the basic normal cone [20].

Definition 31.7. Let X be finite-dimensional and S a nonempty subset of X . Let
< ·, ·> denote the Euclidean inner product on X .

(a) For x ∈ S and ε ≥ 0, the set of ε-normals to S at x is defined by

N̂ε (S,x) :=

{
z ∈ X

∣∣∣∣ limsup
u→Sx

< z,u− x >
‖u− x‖ ≤ ε

}
.

(b) The basic normal cone to S at x̄ ∈ S is defined by

N(S, x̄) :=
{

z ∈ X
∣∣∃{z j}→ z,∃{ε j}→ 0+,∃{x j}→S x̄ with z j ∈ N̂ε j (S,x

j)
}
.

(c) For set-valued mappings M : X ⇒ Y with ȳ ∈M(x̄), we set

N(M,(x̄, ȳ)) := N(gphM,(x̄, ȳ)).

The normal cone, like the Clarke and interior Clarke tangent cones, preserves
Cartesian products [20, Proposition 1.2]. For S1⊂X1, S2⊂X2, and (x1,x2)∈ S1×S2,
we have

N(S1× S2,(x1,x2)) = N(S1,x1)×N(S2,x2). (31.9)

Moreover, the following intersection theorem is valid:

Theorem 31.8 ([20, 34]). Let X be finite-dimensional and Si ⊂ X, i = 1, . . . ,n be
locally closed around x ∈ ∩n

i=1Si. Suppose that

n

∑
i=1

zi = 0, zi ∈ N(Si,x) implies z1 = z2 = · · ·= zn = 0. (31.10)

Then (31.7) and (31.8) are satisfied, along with

N

(
n⋂

i=1

Si,x

)
⊂

n

∑
i=1

N(Si,x). (31.11)
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Remark 31.9. In the finite-dimensional setting of Theorem 31.8, condition (31.6)
implies, but is not implied by, condition (31.10). Condition (31.10) is also a less
demanding condition than

∀v1, . . . ,vn,
n⋂

i=1

(C(Si,x)− vi) �= /0,

the hypothesis under which (31.7) and (31.8) are derived in Corollaries 4.3.5 and
4.3.6 of [2].

For example, let X = R
2, S1 := {(x1,x2) |x2 = |x1|}, and S2 := {0}×R. Then

N(S1,(0,0)) = S1 ∪ {(x1,x2) |x2 ≤ −|x1|} and N(S2,(0,0)) = R× {0}, so that
(31.10) holds. However, IC(S1,(0,0)) = IC(S2,(0,0)) = /0, implying that both
C(S1,(0,0))∩ IC(S2,(0,0)) and IC(S1,(0,0))∩C(S2,(0,0)) are empty. Moreover,
C(S1,(0,0)) = {(0,0)} and C(S2,(0,0)) = S2, so that

(C(S1,(0,0))− (1,0))∩ (C(S2,(0,0))− (0,0)) = /0.

Since (31.10) is less stringent than these other conditions, we will we able to
deduce stronger results with the help of Theorem 31.8 than are obtainable via the
theory developed in [2].

31.3 Generalized Derivatives of the Epigraph
of the Objective Multifunction

In this section, we apply Proposition 31.6 and Theorem 31.8 to derive inclusions
relating the contingent and adjacent derivatives of the epigraphs of G and F . These
inclusions are valid in some fairly general circumstances, in particular the case when
G is single-valued and locally Lipschitzian. We also identify some situations where
the inclusions are satisfied as equations.

Theorem 31.10. In (31.2), let x̄ ∈H(w̄) and ȳ ∈ G(w̄, x̄).

(a) If

IC(G+P,(w̄, x̄, ȳ))∩ (C(H,(w̄, x̄))×Y ) �= /0, (31.12)

then for all w ∈W

⋃
{x |(w,x)∈T (H,(w̄,x̄))}

DA(G+P)(w̄, x̄, ȳ)(w,x)⊂ DT (F +P)(w̄, ȳ)(w) (31.13)
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and

⋃
{x |(w,x)∈A(H,(w̄,x̄))}

DA(G+P)(w̄, x̄, ȳ)(w,x) ⊂ DA(F +P)(w̄, ȳ)(w). (31.14)

Similarly, if

C(G+P,(w̄, x̄, ȳ))∩ (IC(H,(w̄, x̄))×Y ) �= /0, (31.15)

then (31.14) holds for all w ∈W, as does

⋃
{x |(w,x)∈A(H,(w̄,x̄))}

DT (G+P)(w̄, x̄, ȳ)(w,x) ⊂ DT (F +P)(w̄, ȳ)(w). (31.16)

(b) Suppose that W, X, Y are finite-dimensional, gphH is locally closed near (w̄, x̄),
and epiG is locally closed near (w̄, x̄, ȳ). If

−N(H,(w̄, x̄))∩{(w∗,x∗) |(w∗,x∗,0) ∈ N(G+P,(w̄, x̄, ȳ))}= {(0,0)},
(31.17)

then (31.13), (31.14), and (31.16) are satisfied.

Proof. Suppose that (31.12) holds. To prove (31.13), let

y ∈DA(G+P)(w̄, x̄, ȳ)(w,x) with (w,x) ∈ T (H,(w̄, x̄)).

Then

(w,x,y) ∈ A(epiG,(w̄, x̄, ȳ))∩T (gphH×Y,(w̄, x̄, ȳ)).

Since C(Y, ȳ) = Y , (31.4) and (31.12) guarantee that (31.6) holds with n = 2, S1 :=
gphH×Y , and S2 := epiG. Applying Proposition 31.6, we obtain

(w,x,y) ∈ T (epiG∩ (gphH×Y ),(w̄, x̄, ȳ)).

By the definition of the contingent cone, there then exist sequences {t j} → 0+ and
{(wj,x j,y j)}→ (w,x,y) such that

(w̄, x̄, ȳ)+ t j(w
j,x j ,y j) ∈ epiG∩ (gphH×Y ).

In other words,

(w̄+ t jw
j, x̄+ t jx

j) ∈ gphH

and

(w̄+ t jw
j , x̄+ t jx

j, ȳ+ t jy
j) ∈ epiG,
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which implies that

(w̄+ t jw
j, ȳ+ t jy

j) ∈ epiF.

Hence y ∈ DT (F + P)(w̄, ȳ)(w), establishing (31.13). The proof of (31.14) under
assumption (31.12) is analogous to this one, as are the proofs of (31.14) and (31.16)
under assumption (31.15).

Now suppose that W , X , Y are finite-dimensional, gphH is locally closed near
(w̄, x̄), epiG is locally closed near (w̄, x̄, ȳ), and (31.17) holds. By (31.9) and the fact
that N(Y, ȳ) = {0}, (31.17) implies that

−N(gphH×Y,(w̄, x̄, ȳ))∩N(G+P,(w̄, x̄, ȳ)) = {0}.

We can then prove (31.13), (31.14), and (31.16) exactly as above, applying
Theorem 31.8 instead of Proposition 31.6. �
Example 31.11. The hypotheses of Theorem 31.10 are satisfied for a wide variety
of problems, including many situations where the data are non-Lipschitzian. For
example, suppose X = Y = W = R, P = R+, and let G(w,x) := {|x|1/2}, H(w) :=
[w,+∞), and w̄ = x̄ = ȳ = 0. In this example

N(H,(0,0)) = {(w,x) |w ≥ 0, x =−w}

and N(G+P,(0,0,0)) = {0}×R×(−∞,0], so that (31.17) holds. Condition (31.15)
is also satisfied, since

C(G+P,(0,0,0)) = R×{0}×R+

and IC(H,(0,0)) = {(w,x) |x > w}. By Theorem 31.10, (31.13), (31.14), and
(31.16) hold. Indeed, one can verify that both the left-hand side and right-hand side
of these inclusions give R+ when w≤ 0 and /0 when w > 0.

In the scalar-valued case (Y := R, P := R+), one situation in which (31.12),
(31.15), and (31.17) are all satisfied is that in which G is a locally Lipschitzian
function. If G : W ×X →R is Lipschitzian near (w̄, x̄), then

{(w∗,x∗) |(w∗,x∗,0) ∈ N(G+P,(w̄, x̄, ȳ))}= {(0,0)} (31.18)

(see [20, Corollary 1.81]), so that (31.17) holds. More generally, Bao and Mor-
dukhovich [4, Proposition 1] have shown that (31.18) holds when G : W ×X ⇒ Y
is an epi-Lipschitz-like set-valued mapping, a class of mappings that includes the
graphs of locally Lipschitzian functions.

When G : W ×X → R is Lipschitzian near (w̄, x̄), it is also true that

{(w,x) |∃y such that (w,x,y) ∈ IC(epiG,(w̄, x̄,G(w̄, x̄)))}=W ×X , (31.19)
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which implies (31.12). Equation (31.19) can be extended to vector-valued functions
if the recession portion of the ordering cone P has nonempty interior or, equivalently,
if P can be expressed as the sum of a general cone and a convex cone with nonempty
interior. To demonstrate such an extension, we first need the following fact.

Lemma 31.12. Let Y be a real normed space with unit ball B := B̄(0,1). Consider
a cone P ⊂ Y with nonempty interior and a bounded set S ⊂ Y. Then there exists a
point y ∈Y and a scalar ε > 0 such that B(y,ε) ⊂ z+P for every z ∈ S.

Proof. By hypothesis, there exists a point v ∈ Y along with scalars r > 0 and ε > 0
such that v+ εB⊂ P and S⊂ rB. Define u := (r/ε)v, y := u+ v, and K := cone(v+
εB)⊂ P. Now consider any z ∈ S. First, we observe that

u− z =
r
ε

v− z ∈ r
ε

v− S⊂ r
ε
(v+ εB)⊂ r

ε
K ⊂ K.

Hence we have u ∈ z+K. By the convexity (hence additivity) of the cone K, this
yields

u+K ⊂ z+K ⊂ z+P.

In particular, we see that

B(y,ε) = y+ εB = u+ v+ εB⊂ u+K ⊂ z+P.

This holds for any z ∈ S, verifying our assertion. �
Making use of Lemma 31.12, we can now derive an extension of (31.19).

Proposition 31.13. Let f : X→Y be Lipschitzian near x̄∈ X. Suppose Y is ordered
by a cone P for which P̂ has nonempty interior. Then

{x |∃y such that (x,y) ∈ IC(epi f ,(x̄, f (x̄)))} = X .

Proof. Let x ∈ X . Since f is Lipschitzian near x̄, there exist L > 0 and ε > 0 such
that

‖ f (u)− f (u′)‖ ≤ L‖u− u′‖ ∀u,u′ ∈ B(x̄,ε).

Let ε0 ∈ (0,ε) such that

B(x̄,ε0)+ (0,ε0)B(x,ε0)⊂ B(x̄,ε).

Then for all u ∈ B(x̄,ε0), t ∈ (0,ε0), and x′ ∈ B(x,ε0),

‖ f (u+ tx′)− f (u)‖
t

≤ L‖x′‖ ≤ L(‖x‖+ ε0).
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Since P̂ has nonempty interior, by Lemma 31.12 there exist y ∈ Y and ε1 ∈ (0,ε0)
such that for each y′ ∈ B(y,ε1) and each z in the bounded set

S :=

{
f (u+ tx′)− f (u)

t

∣∣∣∣ u ∈ B(x̄,ε1), t ∈ (0,ε1),x
′ ∈ B(x,ε1)

}
,

we have y′ ∈ z+ P̂.
We now show that (x,y) ∈ IC(epi f ,(x̄, f (x̄))). Let (u,w) ∈ B((x̄, f (x̄)),ε1) ∩

epi f , t ∈ (0,ε1), (x′,y′) ∈ B((x,y),ε1). Then w = f (u)+ p1 for some p1 ∈ P and

y′ =
f (u+ tx′)− f (u)

t
+ p2

for some p2 ∈ P̂. It follows that

f (u+ tx′) = ty′+ f (u)− t p2 = ty′+w− t p2− p1.

Because P+ P̂ = P, we have ty′+w ∈ f (u+ tx′)+P, or (u,w)+ t(x′,y′) ∈ epi f .
Hence (x,y) ∈ IC(epi f ,(x̄, f (x̄))), as asserted. �

Proposition 31.13 shows that condition (31.12) in Theorem 31.10 is satisfied if
int P̂ �= /0 and G is single-valued and locally Lipschitzian near (w̄, x̄). To see this, note
that (0,0) ∈ C(gphH,(w̄, x̄)). By Proposition 31.13, there exists y with (0,0,y) ∈
IC(epiG,(w̄, x̄, ȳ)), so the intersection of sets in (31.12) must be nonempty. If W ,
X , and Y are finite-dimensional, this means that (31.17) also holds, since (31.12)
implies (31.17) as mentioned in Remark 31.9.

In order to guarantee equality in the inclusions of Theorem 31.10, some
additional condition must be satisfied. We next consider one such condition.

Definition 31.14 ([5]). Let M : X ⇒ Y with ȳ ∈M(x̄). M is said to be directionally
compact at (x̄, ȳ) in the direction x ∈ X if for all sequences {t j}→ 0+ and {x j}→ x,
every sequence {y j} with ȳ+ t jy j ∈M(x̄+ t jx j) has a convergent subsequence.

Remark 31.15. Directional compactness holds, in particular, when M is single-
valued and M′(x̄;x) exists. In this case, M is directionally compact at (x̄,M(x̄)) in
the direction x. To see this, suppose that t j ↓ 0, x j→ x and M(x̄)+ t jy j ∈M(x̄+ t jx j).
Then

y j =
M(x̄+ t jx j)−M(x̄)

t j
,

so that y j→M′(x̄;x).

Proposition 31.16. In (31.2), let x̄ ∈ H(w̄) and ȳ ∈ G(w̄, x̄). Suppose that the
mapping M : W ×Y ⇒ X defined by
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M(u,v) := {d |d ∈ H(u),v ∈ (G+P)(u,d)} (31.20)

is directionally compact at (w̄, ȳ, x̄) in the direction (w,y), and assume that y ∈
DT (F +P)(w̄, ȳ)(w). Then there exists x ∈ X such that

y ∈ DT (G+P)(w̄, x̄, ȳ)(w,x) with (w,x) ∈ T (H,(w̄, x̄)).

Proof. By our assumption that y ∈ DT (F + P)(w̄, ȳ)(w), there exist sequences
{(wj,y j)}→ (w,y) and {t j}→ 0+ such that

ȳ+ t jy
j ∈ (F +P)(w̄+ t jw

j).

It follows from (31.2) that there exists a sequence {d j} with

d j ∈ H(w̄+ t jw
j) and ȳ+ t jy

j ∈ (G+P)(w̄+ t jw
j,d j).

Define x j := (d j− x̄)/t j. Then d j = x̄+ t jx j and

x̄+ t jx
j ∈M(w̄+ t jw

j, ȳ+ t jy
j).

Since M is directionally compact at (w̄, ȳ, x̄) in the direction (w,y), we may assume,
taking a subsequence if necessary, that x j→ x for some x ∈ X . Therefore

y ∈DT (G+P)(w̄, x̄, ȳ)(w,x) with (w,x) ∈ T (H,(w̄, x̄)),

as asserted. �
The following example illustrates Theorem 31.10 and Proposition 31.16.

Example 31.17. Let W =R, X = Y = R
2, and P = R

2
+. Define

H(w) := {(x1,x2) ∈R
2
+ | x1x2 = w}

and G(w,x1,x2) := {(x1,x2)}. Let w̄ = 1, x̄ = (1,1), and ȳ = (1,1). Then

M(u,v1,v2) = {(d1,d2) | d1d2 = u,v1 ≥ d1,v2 ≥ d2},

and one can verify that for any (w,y1,y2) ∈ R
3 with w≤ y1 + y2, M is directionally

compact at (w̄, ȳ, x̄) in the direction (w,y). To see this, suppose that sequences t j →
0+, wj → w, (y j

1,y
j
2)→ (y1,y2), and (x j

1,x
j
2) satisfy

(1,1)+ t j(x
j
1,x

j
2) ∈M((1,1,1)+ t j(w

j,y j
1,y

j
2)).

Then x j
1 + x j

2 → w, x j
1 ≤ y j

1, and x j
2 ≤ y j

2, which together imply that {(x j
1,x

j
2)} is

bounded and therefore has a convergent subsequence.
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We note that G is Lipschitzian, so that (31.12) and (31.17) hold, and we may
apply Theorem 31.10. Moreover, one can calculate that

T (H,(w̄, x̄)) = A(H,(w̄, x̄)) = {(w,x1,x2) | x1 + x2 = w}.

It follows from (31.16) and Proposition 31.16 that for all w ∈ R

⋃
{x |(w,x)∈T (H,(w̄,x̄))}

DT (G+P)(w̄, x̄, ȳ)(w,x) = DT (F +P)(w̄, ȳ)(w).

Indeed, one can check that both sides of this equation reduce to the set

{(w,y1,y2) | y1 + y2 ≥ w}.

Remark 31.15 mentions one instance in which directional compactness is
satisfied. We next identify another class of mappings with this property.

Definition 31.18 (see [1,28]). A set-valued mapping M : X ⇒Y is said to be upper
locally Lipschitz at x̄ ∈ X if there exist ε > 0 and L > 0 such that

M(x)⊂M(x̄)+L‖x− x̄‖B̄(0,1) for all x ∈ B(x̄,ε).

Theorem 31.19. In (31.2), suppose that X is finite-dimensional, and let x̄ ∈ H(w̄)
and ȳ ∈ G(w̄, x̄). Suppose that the mapping M : W ×Y ⇒ X defined in (31.20) is
upper locally Lipschitz at (w̄, ȳ) and M(w̄, ȳ) = {x̄}. Then for all w ∈W ,

DT (F +P)(w̄, x̄)(w) ⊂
⋃

{x |(w,x)∈T (H,(w̄,x̄))}
DT (G+P)(w̄, x̄, ȳ)(w,x). (31.21)

Proof. Let w ∈W and y ∈ DT (F +P)(w̄, x̄)(w). By Proposition 31.16, it suffices to
show that the mapping M defined in (31.20) is directionally compact at (w̄, ȳ, x̄) in
the direction (w,y). To that end, suppose that {(wj,y j)} → (w,y), {t j} → 0+, and
{x j} ⊂ X satisfy

x̄+ t jx
j ∈M(w̄+ t jw

j, ȳ+ t jy
j).

Since M is upper locally Lipschitz at (w̄, ȳ) and M(w̄, ȳ) = {x̄}, there exists L > 0
such that for all j large enough

‖x̄+ t jx
j− x̄‖ ≤ L‖(w̄+ t jw

j , ȳ+ t jy
j)− (w̄, ȳ)‖,

so that

‖x j‖ ≤ L‖(wj,y j)‖.
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Hence {x j} is bounded. Since X is finite-dimensional, it follows that {x j} has a
convergent subsequence, establishing the fact that M is directionally compact at
(w̄, ȳ, x̄) in the direction (w,y). By Proposition 31.16, there exists x ∈ X such that

y ∈DT (G+P)(w̄, x̄, ȳ)(w,x) with (w,x) ∈ T (H,(w̄, x̄)).

Therefore (31.21) holds. �
In the scalar-valued case (Y = R,P = R+) of problem (31.1), we have

F(w)+P = Q(w)+P (31.22)

for all w such that Q(w) is nonempty. More generally, Eq. (31.22) does not always
hold (see [28, Example 3.1]). But when (31.22) does hold for all w in some
neighborhood of w̄, Theorem 31.10 gives information about contingent and adjacent
derivatives of the epigraph of Q.

Theorem 31.20. In (31.1) and (31.2), let x̄ ∈H(w̄) and ȳ ∈G(w̄, x̄) with ȳ ∈Q(w̄),
and suppose that (31.22) holds for all w in some neighborhood of w̄.

(a) If (31.12) is satisfied, then for all w ∈W,

⋃
{x |(w,x)∈T (H,(w̄,x̄))}

DA(G+P)(w̄, x̄, ȳ)(w,x)⊂ DT (Q+P)(w̄, ȳ)(w) (31.23)

and

⋃
{x |(w,x)∈A(H,(w̄,x̄))}

DA(G+P)(w̄, x̄, ȳ)(w,x) ⊂ DA(Q+P)(w̄, ȳ)(w). (31.24)

Similarly, if (31.15) is satisfied, then (31.24) holds for all w ∈W, as does

⋃
{x |(w,x)∈A(H,(w̄,x̄))}

DT (G+P)(w̄, x̄, ȳ)(w,x) ⊂ DT (Q+P)(w̄, ȳ)(w). (31.25)

(b) Suppose that W, X, Y are finite-dimensional, gphH is locally closed near (w̄, x̄),
and epiG is locally closed near (w̄, x̄, ȳ). If (31.17) holds, then (31.23)–(31.25)
are satisfied.

Proof. Since (31.22) holds for all w in a neighborhood of w̄, we have

DR(Q+P)(w̄, ȳ) = DR(F +P)(w̄, ȳ)

for R := T,A. The assertions then follow immediately from Theorem 31.10. �
Remark 31.21. Equation (31.22) holds, in particular, when P is convex and
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F(w)⊂ Q(w)+P. (31.26)

To see this, note that Q(w) ⊂ F(w) by definition, so that by (31.26),

Q(w)+P⊂ F(w)+P⊂ Q(w)+P+P = Q(w)+P.

When (31.26) is true for all w in some neighborhood of w̄, F is said to be
dominated by Q near w̄. This domination property is known to be satisfied for some
large classes of problems [27]. We note in particular two cases mentioned in [14,
Lemma 3.1]:

• If P is convex with compact base, (F+P)(w) is closed and convex, and Q(w) �= /0,
then (31.26) holds.

• The cone P is said to be regular if every sequence in Y that is P-decreasing and
P-lower bounded converges to an element of P. (A P-decreasing sequence {y j}
satisfies ym− yn ∈ P whenever m≤ n. The sequence {y j} is P-lower bounded if
there exists ȳ ∈Y with ym− ȳ ∈ P for all m.) If P is convex and regular and F(w)
is closed and P-lower bounded, then Q(w) �= /0 and (31.26) holds.

Remark 31.22. For f : X → R and a tangent cone R, the R-epiderivative of f at
x ∈ X in the direction y ∈ X is defined by

f R(x;y) := inf{r |(y,r) ∈ R(epi f ,(x, f (x)))}.

For R := T,A, this definition implies that

epi f R(x; ·) = R(epi f ,(x, f (x))).

In the case where Y := R, P := R+, Theorem 31.20(b) essentially reduces to [34,
Theorem 3.1], a result on epiderivatives of Q. In this scalar-valued setting, inclusion
(31.23), for example, gives the inequality

QT (w̄;w) ≤ inf
x
{GA((w̄, x̄);(w,x)) |(w,x) ∈ T (H,(w̄, x̄))}.

31.4 Applications to Multiobjective Nonlinear Programming

In this section we explore the implications of the results in Sect. 31.3 for the case in
which G is single-valued and smooth. In this case contingent and adjacent cones to
graphs and epigraphs often coincide, as was mentioned in Sect. 31.2. In particular,
the following fact is useful in interpreting Theorems 31.10 and 31.20.

Lemma 31.23. Suppose P is closed and f : X → Y is Hadamard directionally
differentiable at x̄ in the direction x; i.e., f ′(x̄;x) exists. Then
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DT ( f +P)(x̄, f (x̄))(x) = DA( f +P)(x̄, f (x̄))(x) = f ′(x̄;x)+P. (31.27)

Proof. As was shown in Remark 31.15, f is directionally compact at (x̄, f (x̄)) in the
direction x. It follows from [5, Proposition 5] that

DT ( f +P)(x̄, f (x̄))(x) = DT f (x̄, f (x̄))(x)+P. (31.28)

We next observe that

DA f (x̄, f (x̄))(x)+P⊂ DA( f +P)(x̄, f (x̄))(x). (31.29)

Indeed, suppose y ∈ DA f (x̄, f (x̄))(x) and p ∈ P. Let {t j} → 0+. There exists
{(x j,y j)}→ (x,y) such that f (x̄)+ t jy j = f (x̄+ t jx j), which implies that

f (x̄)+ t j(y
j + p) ∈ ( f +P)(x̄+ t jx

j).

Therefore y+ p ∈ DA( f +P)(x̄, f (x̄))(x), establishing (31.29). Combining (31.28)
and (31.29), we conclude that

DT ( f +P)(x̄, f (x̄))(x) = DT f (x̄, f (x̄))(x)+P

= f ′(x̄;x)+P

= DA f (x̄, f (x̄))(x)+P

⊂ DA( f +P)(x̄, f (x̄))(x)

⊂ DT ( f +P)(x̄, f (x̄))(x).

Therefore (31.27) holds. �
In the remainder of this section, we are primarily concerned with the case where

G : W ×X → Y is strictly differentiable at (w̄, x̄).

Definition 31.24 ([7]). The function f : X → Y is said to be strictly differentiable
at x ∈ X if there exists a linear mapping ∇ f (x) : X → Y such that for all y ∈ X ,

∇ f (x)y = lim
(w,v,t)→(x,y,0+)

f (w+ tv)− f (w)
t

.

In finite dimensions, under the assumption that G is strictly differentiable,
Theorem 31.20 and Proposition 31.16 yield the following result:

Theorem 31.25. In (31.1), suppose that W, X, and Y are finite-dimensional and
G : W ×X→Y is strictly differentiable at (w̄, x̄), where x̄∈H(w̄) and ȳ = G(w̄, x̄)∈
Q(w̄). Assume that P is closed and that P̂ has nonempty interior. If (31.22) holds for
all w in some neighborhood of w̄, then
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{∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ T (H,(w̄, x̄))}+P

⊂ DT (Q+P)(w̄, ȳ)(w)
(31.30)

and

{∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ A(H,(w̄, x̄))}+P

⊂ DA(Q+P)(w̄, ȳ)(w).
(31.31)

If, in addition, the mapping M defined in (31.20) is directionally compact at (w̄, ȳ, x̄)
in the direction (w,y) for each y ∈DT (Q+P)(w̄, ȳ)(w), then

{∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ T (H,(w̄, x̄))}+P

= DT (Q+P)(w̄, ȳ)(w).
(31.32)

Moreover, if (31.32) holds and P is pointed, then

MinP {∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ T (H,(w̄, x̄))}
⊂ DT Q(w̄, ȳ)(w).

(31.33)

Proof. Since G is strictly differentiable at (w̄, x̄), G is also Lipschitzian near (w̄, x̄)
[7, Proposition 2.2.1]. By Proposition 31.13, (31.12) is satisfied, and thus (31.17)
holds as well. We can then apply Theorem 31.20. By Lemma 31.23,

DA(G+P)(w̄, x̄, ȳ)(w,x) = DT (G+P)(w̄, x̄, ȳ)(w,x)

= ∇wG(w̄, x̄)w+∇xG(w̄, x̄)x+P,

and so (31.23) and (31.24) imply (31.30) and (31.31). Equation (31.32) follows from
(31.30) and Proposition 31.16. Finally, to obtain (31.33) from (31.32), note that

MinP {∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ T (H,(w̄, x̄))}+P

= MinP {∇wG(w̄, x̄)w+∇xG(w̄, x̄)x |(w,x) ∈ T (H,(w̄, x̄))}

by [13, Lemma 4.7] and that

MinP DT (Q+P)(w̄, ȳ)(w)⊂ DT Q(w̄, ȳ)(w)

by [28, Theorem 2.1]. �
It is instructive to compare Theorem 31.25 with a previous result from [28]:

Theorem 31.26. ([28, Theorem 4.1]) In (31.1) and (31.2), suppose that W , X, and
Y are finite-dimensional, P is convex, closed, and pointed with nonempty interior,
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and G : W×X→Y is continuously differentiable. Let x̄∈H(w̄) be such that G(w̄, x̄)
is a Benson properly minimal point of F(w̄); i.e., clcone(F(w̄)−G(w̄, x̄))∩−P =
{0}. In addition, assume that

(a) H is upper locally Lipschitz at w̄.
(b) H(w) is compact for each w in some neighborhood of w̄.
(c) The mapping M̃(u,v) := {d ∈ H(u) |v = G(u,d)} is upper locally Lipschitz at

(w̄,G(w̄, x̄)).
(d) M̃(w̄,G(w̄, x̄)) = {x̄}.
Then (31.33) holds.

In comparing Theorems 31.25 and 31.26, it is helpful to keep in mind that
assumption (b) in Theorem 31.26 is made solely in order to guarantee that F is
dominated by Q near w̄. Assumption (b) may in fact be replaced by

(b̂) F is dominated by Q near w̄.

It is also worth noting that since G(w̄, x̄)∈Q(w̄), M̃(w̄,G(w̄, x̄)) =M(w̄,G(w̄, x̄)) for
M defined in (31.20), so that assumption (d) in Theorem 31.26 may be replaced by

(d̂) M(w̄,G(w̄, x̄)) = {x̄}.
Remembering these observations along with Theorem 31.19, we see that Theo-
rems 31.25 and 31.26 both give (31.33) under rather similar assumptions. However,
Theorem 31.25 also yields (31.30) and (31.31), inclusions that hold under mild
assumptions and reduce to inequalities for the contingent and adjacent epiderivatives
of Q in the scalar-valued case (as noted in Remark 31.22). It is easy to find examples
in which Theorem 31.26 is not applicable but for which Theorem 31.25 provides
sensitivity information.

Example 31.27 ([9]). Let W = X =R
2, Y =R, and P =R+. Take G(w1,w2,x1,x2)

=−x2, and let

H(w1,w2) = {(x1,x2) |x1
2 + x2 ≤ w1, −x1

2 + x2 ≤ w2}

and w̄ = (0,0). Here Q(w̄) = {0}, P has nonempty interior, and (31.22) is satisfied,
so (31.30) and (31.31) hold in this example. Since

H(w1,w2) = {(x1,x2) |g1(x1,x2)≤ w1, g2(x1,x2)≤ w2}

for g1(x1,x2) := x1
2 + x2 and g2(x1,x2) := −x1

2 + x2, and g1
′((0,0);(x1,x2)) and

g2
′((0,0);(x1,x2)) exist, one can calculate (as in [34, Theorem 4.1]) that

T (H,(w̄, x̄)) = A(H,(w̄, x̄)) = {(w1,w2,x1,x2) |x2 ≤ w1, x2 ≤ w2}.

Inclusions (31.30) and (31.31) thus reduce to
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[max(−w1,−w2),+∞)⊂ DR(Q+P)(0,0)(w1,w2) (31.34)

for R := T,A. One can readily verify that

Q(w1,w2) =

{
−w1 if w2 ≥ w1,

−(w1 +w2)/2 if w2 < w1,

which means that

DR(Q+P)(0,0)(w1,w2) =

{
[−w1,+∞) if w2 ≥ w1,

[−(w1 +w2)/2,+∞) if w2 < w1,

consistent with (31.34). Note, however, that (31.32) does not hold in this example.
For the mapping M in (31.20), we have M((0,0),0) = {(0,0)}, so it must be that M
is not upper locally Lipschitz at ((0,0),0). Indeed, it turns out that for all w > 0

M̃((w,w),0) = [−√w,
√

w]×{0} ⊂M((w,w),0),

so that neither M nor M̃ is upper locally Lipschitz at ((0,0),0). This means that
hypothesis (c) of Theorem 31.26 is not satisfied, and therefore Theorem 31.26 gives
no information for this example. In fact, inclusion (31.33) is not always satisfied,
since the left-hand side of (31.33) is equal to max(−w1,−w2), while

DT Q((0,0),0)(w1,w2) =

{
−w1 if w2 ≥ w1,

−(w1 +w2)/2 if w2 < w1.

31.5 Conclusion

In this paper, we have established inclusions that relate the contingent and adjacent
derivatives of the epigraph of the marginal multifunction Q to those of the epigraph
of the objective mapping G. These inclusions, which are derived via the calculus of
contingent and adjacent cones, are valid for a large class of nonsmooth optimization
problems and give new information even in the case where G is single-valued.

Since our analysis is based on tangent cone intersection theorems that are special
cases of more general intersection theorems for second-order tangent sets ([33,
Proposition 2.6], [34, Theorem 2.4]), the methods of this paper can also be used
to build a theory of second-order sensitivity analysis for parametric set-valued
optimization. We hope to pursue this topic in future work.
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