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Abstract This research article considers a class of distributed stochastic systems
where interconnected systems closely keep track of reference signals issued by a
coordinator. Much of the existing literature concentrates on conducting decisions
and control synthesis based solely on expected utilities and averaged performance.
However, research in psychology and behavioral decision theory suggests that
performance risk plays an important role in shaping preferences in decisions under
uncertainty. Thus motivated, a new equilibrium concept, called “person-by-person
equilibrium” for local best responses is proposed for analyzing signaling effects and
mutual influences between an incumbent system, its coordinator, and immediate
neighbors. Individual member objectives are defined by the multi-attribute utility
functions that capture both performance expectation and risk measures to model
the satisfaction associated with local best responses with risk-averse attitudes.
The problem class and approach of coordination control of distributed stochastic
systems proposed here are applicable to and exemplified in military organizations
and flexibly autonomous systems.
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1 Introduction

Control and coordination of distributed stochastic systems offers a framework
to analyzing intertemporal strategic interactions between individual agents or
controllers, one for each interconnected systems and based on local observations.
The importance of evaluating approaches in a dynamic setting and the broad
flexibility and adaptability of the decision and control architectures of distributed
control with communications has spurred many large-scale applications such as
military command and control hierarchies, spacecraft constellations, remotely
piloted platform formations, teams of humans and autonomous robots, etc. where
each member can be in best response to its neighbor actions and yet has no influence
on other members to which it has no communication supports.

Despite the broad interest in distributed systems, there remain significant hurdles
in applying them to practical problems of interest. Interplay between common
team objectives and individual member objectives can yield surprises and complex
behaviors. Hence, a form of coordination control that helps balance between
cooperative goals and adversarial behavior in addition to fundamentals for team
and individual decisions, is necessarily required.

Thus motivated, this research article proposes a new framework and analysis
to study risk-averse control of a distributed stochastic system, in particular co-
ordination control with risk-averse attitudes toward performance uncertainty and
robustness. The approach of noncooperative game-theoretic decision making and
optimization is suited to coordination control, where a distributed stochastic system
is distinguished into a coordinator (also known as dominant player) with significant
reference signals and incumbent systems (also known as nondominant players)
with fringe couplings. To account for uncertainty in inherent design problem and
in preference assessment, a multi-attribute utility function that enables incumbent
systems’ decision makers or controllers to select the best risk-averse strategy for
the attribute trade-offs between performance expectation and risks is therefore
considered. Notice that this dominant/nondominant game structure is also prevalent
in both economics [1] and social sciences [2].

The game-theoretic model of mixed player behaviors considered herein is
particularly related to the research [3] that has extended the large population linear-
quadratic-Gaussian games to include a major player and a large number of minor
players. As such, minor players are more sensitive to variations in the behavior
of major player than those of individual minor players. To overcome the curse of
dimensionality, computational concerns have typically resorted the analysis to the
so-called Nash certainty equivalence method, where the key idea is to break the
large population game into a family of limiting two-player games. The synthesis of
decentralized strategies is obtained via a set of aggregate quantities giving the mean
field approximation. In contrast with such existing literature, this appealing research
representing the interplay between stochastics, statistics, and dynamics as well as
the extension of the recent accounts [4, 5] investigates: (1) a stochastic dynamic
game model of behavior where nondominant players not only keep track closely
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of the large impact by the dominant player but also monitor rivals from the peers
in a less detailed way and (2) a tractable paradigm of performance assessment un-
certainty forecast for which sufficient statistics summarize all performance relevant
information and thus are used in the person-by-person equilibrium strategies by
nondominant players.

In summary, the proposed game-theoretic framework is prevalent in distributed
stochastic systems with a dominant/fringe coordination structure, capturing the
attributes that are important to inherent design problem and preference assessment
uncertainties, their trade-off behavior over these attributes and their risk attitude.
The rest of this article is organized as follows. Section 2 introduces a new
computationally tractable model for distributed stochastic systems with state-space
representations of a dominant coordinator and many nondominant systems. In
addition, the preliminary results on sufficient mathematical statistics that summarize
all performance measure or utility relevant history and for which the person-by-
person equilibrium strategies are optimal for nondominant systems are discussed
in great detail. Section 3 contains precise problem statements for coordination
control analysis and decision optimization for the person-by-person equilibrium or
feedback Nash strategy concerned by autonomous agents and incumbent systems.
The construction of person-by-person strategies is established in Sect. 4, while some
conclusions and future research directions are drawn in Sect. 5.

2 Problem Formulation

Before going into a formal presentation, it is necessary to consider some conceptual
notations in this article. For instance, time t is modeled as continuous and the
notation of the time interval is [t0, t f ]. All random variables are defined on a
probability space (Ω ,F ,P) which is a triple consisting of a set Ω , a σ -algebra
F , and a probability measure P : F �→ [0,1] and is equipped with a filtration
{Ft : t ∈ [t0, t f ]}. In addition, for a given Hilbert space X with norm || · ||X ,
1 ≤ p ≤ ∞, a Banach space is defined as follows

L p
F (t0, t f ;X)�

{
φ : [t0, t f ]×Ω �→ X is an X-valued Ft -measurable process

with E

{∫ t f

t0
||φ(t,ω)||pX dt

}
< ∞

}
(1)

with norm

||φ(·)||F ,p �
(

E

{∫ t f

t0
||φ(t,ω)||pX dt

})1/p

. (2)
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Furthermore, the Banach space of X-valued continuous functionals on [t0, t f ] with
the max-norm induced by || · ||X is denoted by C (t0, t f ;X). The deterministic version
of (1) and its associated norm (2) is written as L p(t0, t f ;X) and || · ||p.

A distributed stochastic system that evolves over [t0, t f ] captures interactions
among a coordinator and finite number of incumbent systems. Each incumbent
system that enters the distributed system is assigned a unique positive integer-valued
index. The set of indices of incumbent systems is denoted by I � {1,2, . . . ,N} and a
typical element by i. The set of immediate neighbors associated with an incumbent
system i is denoted by Ni. For concreteness, the heterogeneity of incumbent system
i and i ∈ I is distinguished by an individual state; that is governed by the stochastic
differential equation with the initial-value condition xi(t0) = x0

i

dxi(t)=(Aii(t)xi(t)+Bii(t)ui(t)+Cii(t)zi(t)+
Ni

∑
j=1

Bi j(t)ui j(t))dt +Gi(t)dwi(t) (3)

dyi(t)=Ci(t)xi(t)dt + dvi(t), (4)

where the continuous-time coefficients Aii ∈C (t0, t f ;Rni×ni), Bii ∈C (t0, t f ;Rni×mi),
Cii ∈ C (t0, t f ;Rni×qi), Bi j ∈ C (t0, t f ;Rni×ri), Gi ∈ C (t0, t f ;Rni×pi) as well as Ci ∈
C (t0, t f ;Rri×ni) are deterministic matrix-valued functions. At time t, the recursive
state and output of incumbent system i are denoted by xi ∈ L 2

Fi
(t0, t f ;Rni) and yi ∈

L 2
Fi
(t0, t f ;Rri) with the initial state x0

i ∈R
ni known. The control policies from agent

i to that system i are presented by ui ∈ L 2
Fi
(t0, t f ;Rmi) and zi ∈ L 2

Fi
(t0, t f ;Rqi). In

addition, the interconnection inputs and linkage effects of that incumbent system i
supported by the communication paths from immediate neighbors j and j ∈ Ni are
viewed as the real-valued functions ui j(t)dt of the following random processes

dui j(t)� ui j(t)dt = (Ci j(t)x j(t)+Di j(t)u j(t))dt + dv j(t) , j ∈ Ni (5)

where continuous-time coefficients Ci j ∈C (t0, t f ;Rri×n j) and Di j ∈C (t0, t f ;Rri×mj )
are deterministic matrix-valued functions. As the number of incumbent systems
grows large, it is unrealistic to believe that binding agents i associated with incum-
bent systems i and i ∈ I are capable of monitoring the evolution of their immediate
neighbors. Instead, it is reasonable to assume that incumbent systems only keep
track of actual interactions or signaling references provided by coordinator c and
c∈ Ic, where the set of partaking coordinators is predetermined and does not change
over time.

A challenging task for all multiscale modeling and coordination control is
to transfer the knowledge gained from one resolution to another. As such, in
coordination control there is an ongoing need for a coordinator c issuing reference
signals to two or more incumbent systems i and i ∈ I such that

zic(t)dt = (Aic(t)xc(t)+Bic(t)uc(t))dt +Gic(t)dvc(t) (6)
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but the incumbent systems i do not directly send signals to the coordinator c.
In practice, it is further desirable to have decentralized decision making without
intensive communication overheads. A potential alternative therefore involves the
selection of a crude model of reduced order for the interactions among coordinator
c and binding agents i associated with incumbent systems i. The actual reference
signals imposed by coordinator c are now approximated by an explicit model-
following of the type

dzic(t) = (Aic(t)zic(t)+Bic(t)uc(t))dt +Gic(t)dwic(t) , zic(t0) = 0 (7)

dyic(t) =Cic(t)zic(t)dt + dvic(t) (8)

whereby continuous-time coefficients Aic ∈ C (t0, t f ;Rqi×qi), Bic ∈C (t0, t f ;Rqi×mc),
Gic ∈ C (t0, t f ;Rqi×pic) and Cic ∈ C (t0, t f ;Rric×qi) are deterministic matrix-
valued function and potentially come from a structural decomposition of a
monolithic distributed system with centralized dynamics. In this exposition,
zic ∈ L 2

Fi
(t0, t f ;Rqi×qi) is the coordinator state, uc ∈ L 2

Fi
(t0, t f ;Rmc) is the

coordinator control input and yic ∈ L 2
Fi
(t0, t f ;Rric) is the coordinator output.

In the state-space representations (3)–(4) and (7)–(8) one postulates uncorrelated
Wiener processes wi(t) � wi(t,ωi) : [t0, t f ]×Ωi �→ R

pi , vi(t) � vi(t,ωi) : [t0, t f ]×
Ωi �→R

ri , wic(t)� wic(t,ωic) : [t0, t f ]×Ωic �→R
pic and vic(t)� vic(t,ωic) : [t0, t f ]×

Ωic �→R
ric defined by the underlying filtered probability spaces (Ωi,Fi,{Fi}t ,Pi)

and (Ωic,Fic,{Fic}t ,Pic) with the correlations of independent increments

E
{
[wi(τ1)−wi(τ2)][wi(τ1)−wi(τ2)]

T}=Wi|τ1 − τ2|, Wi > 0; τ1,τ2 ∈ [t0, t f ]

E
{
[vi(τ1)− vi(τ2)][vi(τ1)− vi(τ2)]

T}=Vi|τ1 − τ2|, Vi > 0

E
{
[wic(τ1)−wic(τ2)][wic(τ1)−wic(τ2)]

T}=Wic|τ1 − τ2|, Wic > 0

E
{
[vic(τ1)− vic(τ2)][vic(τ1)− vic(τ2)]

T}=Vic|τ1 − τ2|, Vic > 0

which now approximate the inherent design system uncertainty due to variability
and lack of knowledge.

Furthermore, the model primitives of the state recursion (3) in the absence
of links from the immediate neighbors and environmental disturbances are also
assumed to be uniformly exponentially stable. For instance, there exist positive
constants η1 and η2 such that the pointwise matrix norm of the closed-loop state
transition matrix associated with incumbent system (3) satisfies the inequality

||Φi(t,τ)|| ≤ η1e−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (Aii(t), [Bii(t),Cii(t)]) is pointwise stabilizable if there exist bounded
matrix-valued functions Kxi(t) and Kzi(t) so that the closed-loop system dxi(t) =
(Aii(t)+Bii(t)Kxi(t)+Cii(t)Kzi(t))xi(t)dt is uniformly exponentially stable.
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With the local agent dynamics (3) considered herein, each agent i associated with
incumbent system i only plays a local dynamical game with its immediate neighbors
j ∈ Ni. Mutual influence controlled by the control policies from the immediate
neighbors of agent i is defined by u−i � {ui j : j ∈ Ni}. Assuming its coalition Ni

conveys mutual influence information u−i, agent i selects, at each time instant, a
tuple of control policies to optimize its multi-attribute utility function. The tuple of
control laws is defined by the control processes ui and zi, of which zi is supposed to
follow the prediction process zic for the reference signals from coordinator c. Thus,
the subsequent states of agent i is determined by its current individual states xi and
zic, its chosen action (ui,zi) and the coalition effects u−i. In fact, the selected action
(ui,zi) will depend on agent i’s individual states xi and zic as well as the coalition
effects u−i.

To further illustrate the applicability of the coordination control framework as
proposed here, the classes of admissible control policies associated with (3) are
defined by Ui × Zi ⊂ L 2

Fi
(t0, t f ;Rmi)×L 2

Fmi
(t0, t f ;Rqi). For any given coalition

effects u−i, the 3-tuple (xi(·),ui(·),zi(·)) shall be therefore referred to as an admis-
sible 3-tuple if xi(·) ∈ L 2

Fi
(t0, t f ;Rni) is the solution trajectory of the stochastic

differential equation (3) when ui(·) ∈Ui and zi(·) ∈ Zi.
In the subsequent analysis, the problem of observation and/or estimation in the

distributed stochastic system is investigated with a major emphasis on the design
of a set of locally optimal decision and control policies for incumbent agent i and
i ∈ I in a completely decentralized environment with interconnection patterns. More
precisely, since (Aii,Ci) are detectable, it is possible to construct the local observers

dx̂i(t) = (Aii(t)x̂i(t)+Bii(t)ui(t)+Cii(t)zi(t)+
Ni

∑
j=1, j 	=i

Bi j(t)ui j(t))dt

+Li(t)(dyi(t)−Ci(t)x̂i(t)dt) , x̂i(t0) = x0
i (9)

whereby x̂i(t) ∈R
ni is the state estimate of xi(t) for incumbent agent i and i ∈ I and

Li(t) ∈R
ni×ri are the decentralized filtering gains determined by suitably modifying

the dynamics of the local observers; for example

Li(t) = Σi(t)C
T
i (t)V

−1
i (10)

d
dt

Σi(t) = Aii(t)Σi(t)+Σi(t)A
T
ii (t)−Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t)+Gii(t)WiG

T
ii (t)

+
Ni

∑
j=1, j 	=i

Bi j(t)Wj

Ni

∑
j=1, j 	=i

BT
i j(t) , Σi(t0) = 0 . (11)

It is readily evident that the decentralized observation scheme developed in (9)–(11)
incorporates the knowledge of the interconnection functions or the outputs of the
other immediate neighbors of agent i and i ∈ I.
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In similar to the state-regulation case, independent decentralized optimal estima-
tors may be designed hereafter for certain compensating signals from coordinators
c to agent i; e.g.,

dẑic(t) = (Aic(t)ẑic(t)+Bic(t)uc(t))dt +Lic(t)(dyic(t)−Cic(t)ẑic(t)dt) (12)

ẑic(t0) = 0

whereby Lic(t) ∈ R
qi×ric is given by Lic(t) = Σic(t)CT

ic(t)V
−1
ic and Σic(t) ∈ R

qi×qi is
the covariance of the error process z̃ic(t) = zic(t)− ẑic(t), satisfying the forward-in-
time differential equation

d
dt

Σic(t) = Aic(t)Σic(t)+Σic(t)A
T
ic(t)

−Σic(t)C
T
ic(t)V

−1
ic Cic(t)Σic(t)+Gic(t)WicGT

ic(t) , Σic(t0) = 0. (13)

In terms of the observation errors x̃i(t) = xi(t)− x̂i(t) and z̃ic(t) = zic(t)− ẑic(t), it
follows from (3), (4), (7), and (8) that, for x̃i(t0) = 0 and z̃ic(t0) = 0

dx̃i(t) = (Aii(t)−Li(t)Ci(t))x̃i(t)dt +Gii(t)dwi(t)−Li(t)dvi(t) (14)

dz̃ic(t) = (Aic(t)−Lic(t)Cic(t))z̃ic(t)dt +Gic(t)dwic(t)−Lic(t)dvic(t) . (15)

Indeed, the system (14)–(15) will function as observers for the system (3) and (7) if
the design parameters Li(t) and Lic(t) can be selected such that the local observers
(9) and (12) are asymptotically stable.

Next, agent i evaluates its performance and makes control policies that are con-
sistent with its preferences. There are performance trade-offs among the closeness
of locally accessible states x̂i from desired states ζi, the size of local actions ui and
the closeness of interaction enforcements between local efforts zi and local estimates
ẑic of reference signals imposed by coordinator c. Henceforth, agent i must carefully
balance the three in order to achieve its local performance measure. Mathematically,
there assumes existence of an integral-quadratic form (IQF) performance-measure
Ji : Ui ×Zi �→ R+

Ji(ui,zi;u−i) = [x̂i(t f )− ζi(t f )]
T Q f

i [x̂i(t f )− ζi(t f )]

+
∫ t f

t0
{x̂T

i (τ)Qii(τ)x̂i(τ)+ [x̂i(τ)− ζi(τ)]T Qi[x̂i(τ)− ζi(τ)]}dτ

+

∫ t f

t0
{uT

i (τ)Rii(τ)ui(τ)+ [zi(τ)− ẑic(τ)]T Rzi(τ)[zi(τ)− ẑic(τ)]}dτ,

(16)

where the deterministic matrix-valued functions Q f
i ∈R

ni×ni , Qii ∈C (t0, t f ;Rni×ni),
Qi ∈ C (t0, t f ;Rni×ni) Rii ∈ C (t0, t f ;Rmi×mi) and Rzi ∈ C (t0, t f ;Rqi×qi) representing
design parameters for terminal states, transient state estimates for regulation
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and tracking, regulating efforts and coordination effort mismatches are positive
semidefinite with Rii(t) and Rzi(t) invertible.

Control of (collective and aggregated) distributed stochastic systems on coordi-
nation levels is a major challenge and research theme. The approach to handling the
problem with a tuple of two or more control laws is to use the noncooperative game-
theoretic paradigm. Particularly, an N-tuple policy {(u∗1,z∗1),(u∗2,z∗2), . . . ,(u∗N ,z∗N)}
is said to constitute a person-by-person equilibrium solution for the coordination
control problem (3) and performance measure (16) if

J∗i � Ji(u
∗
i ,z

∗
i ;u∗−i)≤ Ji(ui,zi;u∗−i) , ∀i ∈ I . (17)

That is, none of the N agents can deviate unilaterally from the equilibrium policies
and gain from doing so. The justification for the restriction to such an equilibrium
is that the coalition effects u∗−i sent to agent i does not necessarily support its
preference optimization. Therefore, they cannot do better than behave as if they
strive for this equilibrium. It is reasonable to conclude that a person-by-person
equilibrium of distributed control is identical to the concept of a Nash equilibrium
within a noncooperative game-theoretic setting.

Because admissible feedback policy sets for agent i are not discussed, the
determination of a person-by-person equilibrium for the distributed stochastic
system is still not straightforward. Therefore, a further restriction is imposed next.
For the moment, it will suffice to say that in the case of incomplete information,
an admissible 2-tuple feedback policy (ui,zi) for local best responses to all other
immediate neighbors u∗−i must be of the form, for some ði(·, ·) and h̄i(·, ·)

ui(t) = ði(t,yi(τ)) , τ ∈ [t0, t] (18)

zi(t) = h̄i(t,yi(τ)) . (19)

In general, the conditional density pi(xi(t)|F i
t ), which is the density of xi(t)

conditioned on F i
t (i.e., induced by the observation {yi(τ) : τ ∈ [t0, t]}) represents

the sufficient statistics for describing the conditional stochastic effects of future 2-
tuple feedback policies (ui,zi). It is natural that under the Gaussian assumption,
the conditional density pi(xi(t)|F i

t ) is parameterized by the locally available con-
ditional mean x̂i(t)� E{xi(t)|F i

t } and error-estimate covariance Σi(t)� E{[xi(t)−
x̂i(t)][xi(t)− x̂i(t)]T |F i

t } by incumbent agent i. With respect to the linear-Gaussian
conditions, the error-estimate covariances Σi(t) are independent of feedback policies
ui(t) and zi(t) and observations {yi(τ) : τ ∈ [t0, t]}. Hereafter, to look for observer-
based optimal control and/or decision policies ui(t) and zi(t) of the form (18) and
(19), it is only required that

ui(t) = γi(t, x̂i(t)) , t ∈ [t0, t f ]

zi(t) =℘i(t, x̂i(t)) .
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In view of the linear-quadratic properties of the state-space description (3) and
(16), the search for linear time-varying feedback policies generated from the locally
accessible state x̂i(t) is now proceeded to consider

ui(t) = Kxi(t)x̂i(t)+ pxi(t) (20)

zi(t) = Kzi(t)x̂i(t)+ pzi(t) , t ∈ [t0, t f ] (21)

with the feedback policy parameters Kxi ∈ C (t0, t f ;Rmi×ni), Kzi ∈ C (t0, t f ;Rqi×ni),
pxi ∈ C (t0, t f ;Rmi) and pzi ∈ C (t0, t f ;Rqi) admissible feedback policy parameters
whose further defining properties will be stated shortly.

For the given (t0,x0
ai) and subject to the feedback control policies (20)–(21), agent

i forms a local awareness of its state recursion (3) and (7) as follows

dxai(t) = (Aai(t)xai(t)+ lai(t))dt +Gai(t)dwai(t) , xai(t0) = x0
ai (22)

in which the aggregate Wiener process wai has the correlations of independent
increments, for all τ1,τ2 ∈ [t0, t f ] and Wai > 0

E
{
[wai(τ1)−wai(τ2)][wai(τ1)−wai(τ2)]

T}=Wai|τ1 − τ2| ,

whereas the augmented state variable xai, its initial-valued condition x0
ai, the system

coefficients and parameters are defined by

xai �

⎡
⎢⎢⎣

x̂i

x̃i

ẑic

z̃ic

⎤
⎥⎥⎦ ; x0

ai �

⎡
⎢⎢⎣

x0
i

0
0
0

⎤
⎥⎥⎦ ; wai �

⎡
⎢⎢⎣

wi

vi

wic

vic

⎤
⎥⎥⎦ ; Gai �

⎡
⎢⎢⎣

0 Li 0 0
Gi −Li 0 0
0 0 0 Lic

0 0 Gic −Lic

⎤
⎥⎥⎦

Aai �

⎡
⎢⎢⎣

Aii +BiiKxi +CiiKzi LiCi 0 0
0 Aii −LiCi 0 0
0 0 Aic LicCic

0 0 0 Aic −LicCic

⎤
⎥⎥⎦ ; Wai �

⎡
⎢⎢⎣

Wi 0 0 0
0 Vi 0 0
0 0 Wic 0
0 0 0 Vic

⎤
⎥⎥⎦

lai �

⎡
⎢⎢⎢⎣

Bii pxi +Ciipzi +∑Ni
j=1 Bi ju∗i j

0
Bicuc

0

⎤
⎥⎥⎥⎦ .

Moreover, the sample-path function of the random performance measure (16) is now
rewritten as below

Ji(Kxi , pxi ;Kzi , pzi) = xT
ai(t f )Q

f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζ T

i (t f )Q
f
i ζi(t f )

+

∫ t f

t0
[xT

ai(τ)Qai(τ)xai(τ)+ 2xT
ai(τ)Sai(τ)+ ζ T

i (τ)Qi(τ)ζi(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)]dτ (23)



186 K.D. Pham

whereby the corresponding weightings are given by

Q f
ai �

⎡
⎢⎢⎢⎣

Q f
i 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦; S f

ai �

⎡
⎢⎢⎢⎣
−Q f

i ζi(t f )

0
0
0

⎤
⎥⎥⎥⎦; Sai �

⎡
⎢⎢⎢⎣

KT
xi

Rii pxi +KT
zi

Rzi pzi −Qiζi

0
−Rzi pzi

0

⎤
⎥⎥⎥⎦

Qai �

⎡
⎢⎢⎢⎣

Qii +Qi +KT
xi

RiiKxi +KT
zi

RziKzi 0 −2KT
zi

Rzi 0
0 0 0 0
0 0 Rzi 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

In views of the linear-quadratic structure of the problem (22) and (23), the
performance measure (23) is clearly a random variable with chi-squared type.
To account for performance uncertainty, a methodology that enables agent i to
select robust decisions under uncertainty from a Pareto front which is acquired
using envelopes of a finite set of higher-order statistics associated with (23). This
methodology assists the preferences by agent i to be captured perfectly; i.e., what
performance attributes that are important to agent i, their trade-off behavior over
these attributes and their risk attitude. Recently, the research [6, 7] show how
performance uncertainty affects different aspects of risk-averse decision making
which can now serve as a starting point for such a knowledge extraction in terms of
performance-measure statistics hereafter.

Theorem 1 (Performance-Measure Statistics). Let the pairs (Aii,Bii) and
(Aii,Cii) be uniformly stabilizable on [t0, t f ] in the incumbent system i and i ∈ I
governed by (22) and (23). Then for the given initial condition (t0,x0

i ), incumbent
agent i obtains the ki-th cumulant associated with (23)

κ i
ki
= (x0

ai)
T Hi(t0,ki)x

0
ai + 2(x0

ai)
T D̆i(t0,ki)+Di(t0,ki), ki ∈ N (24)

whereby the supporting variables {Hi(s,r)}ki
r=1, {D̆i(s,r)}ki

r=1 and {Di(s,r)}ki
r=1

satisfy the time-backward differential equations (with the dependence of Hi(s,r),
D̆i(s,r) and Di(s,r) upon the admissible Kxi , Kzi , pxi and pzi suppressed)

d
ds

Hi(s,1) =−AT
ai(s)Hi(s,1)−Hi(s,1)Aai(s)−Qai(s) (25)

d
ds

Hi(s,r) =−AT
ai(s)Hi(s,r)−Hi(s,r)Aai(s) (26)

−
r−1

∑
v=1

2r!
v!(r− v)!

Hi(s,v)Gai(s)WaiG
T
ai(s)Hi(s,r− v) , 2 ≤ r ≤ ki

d
ds

D̆i(s,1) =−AT
ai(s)D̆i(s,1)−Hi(s,1)lai(s)− Sai(s) (27)

d
ds

D̆i(s,r) =−AT
ai(s)D̆i(s,r)−Hi(s,r)lai(s) , 2 ≤ r ≤ ki (28)
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d
ds

Di(s,1) =−Tr{Hi(s,1)Gai(s)WaiG
T
ai(s)}− 2D̆T

i (s,1)lai(s)

− pT
xi
(s)Rii(s)pxi(s)− pT

zi
(s)Rzi(s)pzi(s)− ζ T

i (s)Qi(s)ζi(s) (29)

d
ds

Di(s,r) =−Tr{Hi(s,r)Gai(s)WaiG
T
ai(s)}− 2D̆T

i (s,r)lai(s), 2 ≤ r ≤ ki (30)

whereby the terminal-value conditions Hi(t f ,1) = Q f
ai, Hi(t f ,r) = 0 for 2 ≤ r ≤

ki; D̆i(t f ,1) = S f
ai, D̆i(t f ,r) = 0 for 2 ≤ r ≤ ki; and Di(t f ,1) = ζ T

i (t f )Q
f
i ζi(t f ),

Di(t f ,r) = 0 for 2 ≤ r ≤ ki.

Proof. A key challenge of the problem at hand is to come up with a tractable way
to handle performance uncertainty such that its probabilistic nature is manageable.
Therefore, only its statistics can be optimized. Most researchers find it easier to
understand or describe a random variable through both moment and cumulant
generating functions.

Precisely stated, it is necessary to parameterize the initial condition (t0,x0
ai) as

any arbitrary pair (s,xs
ai). Then, for the given admissible affine inputs pxi and pzi

in addition with admissible feedback gains Kxi and Kzi , the “running” version of
performance measure (23) is introduced as follows

Ji(s,x
s
ai) = xT

ai(t f )Q
f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζ T

i (t f )Q
f
i ζi(t f )

+
∫ t f

s
[xT

ai(τ)Qai(τ)xai(τ)+ 2xT
ai(τ)Sai(τ)+ ζ T

i (τ)Qi(τ)ζi(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)]dτ , i ∈ I . (31)

The moment-generating function associated with agent i of (31) is defined by

ϕi(s,x
s
ai;θi)� E {exp(θiJi (s,x

s
ai))} , (32)

for some small parameters θi in an open interval about 0. Thus, the cumulant-
generating function immediately follows

ψi (s,x
s
ai;θi)� ln{ϕi (s,x

s
ai;θi)} , (33)

for some θi in some (possibly smaller) open interval about 0 while ln{·} denotes the
natural logarithmic transformation.

For notational simplicity, it is convenient to define ϖi (s,xs
ai;θi) �

exp{θiJi (s,xs
ai)} and ϕi (s,xs

ai;θi) � E {ϖi (s,xs
ai;θi)} together with the time

derivative of

d
ds

ϕi (s,x
s
ai;θi) =−θi

{
(xs

ai)
T Qai(s)x

s
ai + 2(xs

ai)
T Sai(s)

+ ζ T
i (s)Qi(s)ζi(s)+ pT

xi
(s)Rii(s)pxi(s)+ pT

zi
(s)Rzi(s)pzi(s)

}
ϕi (s,x

s
ai;θi) . (34)
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Using the standard Ito’s formula, it yields

dϕi (s,x
s
ai;θi) = E {dϖi (s,x

s
ai;θi)} ,

= ϕi,s (s,x
s
ai;θi)ds+ϕi,xs

ai
(s,xs

ai;θi) [Aai(s)x
s
ai + lai(s)]ds

+
1
2

Tr{ϕi,xs
aix

s
ai
(s,xs

ai;θi)Gai (s)WaiG
T
ai (s)}ds .

Furthermore, the moment-generating function of (31) can also be expressed by

ϕi (s,x
s
ai;θi)� ρi (s;θi)exp

{
(xs

ai)
Tϒi(s;θi)x

s
ai + 2(xs

ai)
T ηi(s;θi)

}
(35)

whereby all the supporting entities are going to be determined in the sequel. In
particular, the partial derivatives of (35) results in

d
ds

ϕi (s,x
s
ai;θi) =

{
d
ds ρi(s;θi)

ρi(s,θi)
+ (xs

ai)
T d

ds
ϒi(s;θi)x

s
ai

+ 2(xs
ai)

T d
ds

ηi(s;θi)

+ (xs
ai)

T AT
ai(s)ϒi(s;θi)x

s
ai +(xs

ai)
Tϒi(s;θi)Aai(s)x

s
ai

+ 2(xs
ai)

T AT
ai(s)ηi(s;θi)

+ 2(xs
ai)

Tϒi(s;θi)lai(s)+ 2ηT
i (s;θi)lai(s)

+Tr{ϒi(s;θi)Gai(s)WaiG
T
ai(s)}

+ 2(xs
ai)

Tϒi(s;θi)Gai(s)WaiG
T
ai(s)ϒi(s;θi)x

s
ai

}
ϕi (s,x

s
ai;θi) . (36)

Equating the expression (34) with that of (36) and having both linear and quadratic
terms independent of xs

ai yield the following results

d
ds

ϒi(s;θi) =−AT
ai(s)ϒi(s;θi)−ϒi(s;θi)Aai(s)

− 2ϒi(s;θi)Gai(s)WaiG
T
ai(s)ϒi(s;θi)−θiQai(s) (37)

d
ds

ηi (s;θi) =−AT
ai(s)ηi(s;θi)−ϒi(s;θi)lai(s)−θiSai(s) (38)

d
ds

υi (s;θi) =−Tr
{

ϒi(s;θi)Gai (s)WaiG
T
ai (s)

}−2ηT
i (s;θi)lai(s)−θiζ T

i (s)Qi(s)ζi(s)

−θi p
T
xi
(s)Rii(s)pxi(s)−θi p

T
zi
(s)Rzi(s)pzi(s) (39)

wherein υi(s;θi)� ln{ρi(s;θi)}. At the final time s = t f , it follows that
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ϕi(t f ,xai(t f );θi) = ρi(t f ;θi)exp
{

xT
ai(t f )ϒi(t f ;θi)xai(t f )+ 2xT

ai(t f )ηi(t f ;θi)
}

= E
{

exp
{

θi[x
T
ai(t f )Q

f
aixai(t f )+ 2xT

ai(t f )S
f
ai + ζ T

i (t f )Q
f
i ζi(t f )]

}}

which in turn yields the terminal-value conditions as ϒi(t f ;θi) = θiQ
f
ai; ηi(t f ;θi) =

θiS
f
ai; and υi(t f ;θi) = θiζ T

i (t f )Q
f
i ζi(t f ).

Hereafter, all the higher-order performance-measure statistics associated with the
chi-squared random performance measure (31) will be utilized to generate a Pareto
front with which incumbent agent i and i ∈ I is enabled to choose one or more
trade-offs between multiple performance attributes and risk attitude. In views of
the expression (35) and the definition of (33), the cumulant-generating function or
second-order characteristic function of (31) is rewritten as follows

ψi (s,x
s
ai;θi) = (xs

ai)
Tϒi(s;θi)x

s
ai + 2(xs

ai)
T ηi(s;θi)+υi(s;θi) . (40)

Subsequently, higher-order statistics of the random performance measure (31) that
depict the performance uncertainty can now be determined by a Maclaurin series
expansion of the cumulant-generating function (40); e.g.,

ψi (s,x
s
ai;θi) =

∞

∑
r=1

∂ (r)

∂θ (r)
i

ψi(s,x
s
ai;θi)

∣∣∣∣∣
θi=0

θ r
i

r!
, (41)

from which all κr � ∂ (r)

∂θ (r)
i

ψi(s,xs
ai;θi)

∣∣∣∣
θi=0

are known as the mathematical statistics

or cumulants of the performance measure (31).
Moreover, the series expansion coefficients are computed by using the cumulant-

generating function (40)

∂ (r)

∂θ (r)
i

ψi(s,x
s
ai;θi)

∣∣∣∣∣
θi=0

= (xs
ai)

T ∂ (r)

∂θ (r)
i

ϒi(s;θi)

∣∣∣∣∣
θi=0

xs
ai

+ 2(xs
ai)

T ∂ (r)

∂θ (r)
i

ηi(s;θi)

∣∣∣∣∣
θi=0

+
∂ (r)

∂θ (r)
i

υi(s;θi)

∣∣∣∣∣
θi=0

.

(42)

In view of the definition (41), the rth performance-measure statistic is given by

κr = (xs
ai)

T ∂ (r)

∂θ (r)
i

ϒi(s;θi)

∣∣∣∣∣
θi=0

xs
ai

+ 2(xs
ai)

T ∂ (r)

∂θ (r)
i

ηi(s;θi)

∣∣∣∣∣
θi=0

+
∂ (r)

∂θ (r)
i

υi(s;θi)

∣∣∣∣∣
θi=0

(43)



190 K.D. Pham

for any finite 1 ≤ r < ∞. For notational convenience, the change of notations

Hi(s,r)�
∂ (r)ϒi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

;D̆i(s,r)�
∂ (r)ηi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

;Di(s,r)�
∂ (r)υi(s;θi)

∂θ (r)
i

∣∣∣∣∣
θi=0

is introduced. What remains is to show that the solutions Hi(s,r), D̆i(s,r), and
Di(s,r) for 1 ≤ r ≤ ki and ki ∈ N indeed satisfy the time-backward matrix, vector,
and scalar-valued differential equations (25)–(30). Notice that these differential
equations (25)–(30) are readily obtained by successively taking derivatives with
respect to θi of the cumulant-supporting equations (37)–(39) under the assumption
of (Aii,Bii) and (Aii,Cii) uniformly stabilizable on the interval [t0, t f ]. ��
Furthermore, some attractive properties of the solutions to the cumulant-generating
equations (25)–(30), for which the problem of coordination control with risk-
averse performance of the class of distributed stochastic systems considered here
is therefore well posed, are presented as follows.

Theorem 2 (Existence of Solutions for Performance-Measure Statistics). Let
the pairs (Aii(·),Bii(·)) and (Aii(·),Cii(·)) be uniformly stabilizable. Then, for
any given ki ∈ N, the cumulant-generating equations (25)–(30) admit unique and

bounded solutions {Hi(·,r)}ki
r=1,

{
D̆i(·,r)

}ki

r=1 and {Di(·,r)}ki
r=1 on [t0, t f ].

Proof. Under the assumption of stabilizability, there always exist some feedback
parameters Kxi(·) and Kzi(·) such that the continuous-time aggregate state matrix
Aai(·) is exponentially stable on [t0, t f ]. According to the results in [8], the state
transition matrix Φai(t, t0), associated with the continuous-time composite state
matrix Aai(·), has the following properties

d
dt

Φai(t, t0) = Aai(t)Φai(t, t0) , Φai(t0, t0) = I ,

lim
t f →∞

||Φai(t f ,τ)||= 0 , lim
t f →∞

∫ t f

t0
||Φai(t f ,τ)||2dτ < ∞ .

By the matrix variation of constant formula, the unique solutions to the time-
backward matrix differential equations (25)–(30) together with the terminal-value
conditions are then written as follows

Hi(s,1) = ΦT
ai(t f ,s)Q

f
aiΦai(t f ,s)+

∫ t f

s
ΦT

ai(τ,s)Qai(τ)Φai(τ,s)dτ

Hi(s,r) =
∫ t f

s
ΦT

ai(τ,s)
r−1

∑
v=1

2r!
v!(r− v)!

Hi(τ,v)Gai(τ)WaiG
T
ai(τ)Hi(τ,r−v)Φai(τ,s)dτ

D̆i(s,1) =−ΦT
ai(t f ,s)Q

f
i ζi(t f )+

∫ t f

s
ΦT

ai(τ,s){Hi(τ,1)lai(τ)+ Sai(τ)}dτ
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D̆i(s,r) =
∫ t f

s
ΦT

ai(τ,s)Hi(τ,r)lai(τ)dτ , 2 ≤ r ≤ ki

Di(s,1) = ζ T
i (t f )Q

f
i ζi(t f )+

∫ t f

s
{Tr{Hi(τ,1)Gai(τ)WaiG

T
ai(τ)}+ 2D̆T

i (τ,1)lai(τ)

+ pT
xi
(τ)Rii(τ)pxi(τ)+ pT

zi
(τ)Rzi(τ)pzi(τ)+ ζ T

i (τ)Qi(τ)ζi(τ)}dτ

Di(s,r) =
∫ t f

s
{Tr{Hi(τ,r)Gai(τ)WaiG

T
ai(τ)}+ 2D̆T

i (τ,r)lai(τ)}dτ, 2 ≤ r ≤ ki .

As long as the growth rates of the integrals are not faster than those of exponentially
decreasing Φai(·, ·) and ΦT

ai(·, ·) factors, it is therefore concluded that there exist
upper bounds on the nonnegative and monotically increasing solutions Hi(·,r),
D̆i(·,r) and Di(·,r) for any time interval [t0, t f ]. ��

3 Problem Statements

The problem of adapting to performance uncertainty is now addressed by leveraging
increased insight into the roles played by performance-measure statistics (24). It
is interesting to note that all the performance-measure statistics (24) are functions
of time-backward evolutions and do not depend on intermediate recursive state
values xai(t) governed by the state-space representation (22)–(23) for incumbent
agent i at each point of time t ∈ [t0, t f ]. Henceforth, these time-backward evolutions
(25)–(30) of which the admissible decision variables Kxi , Kzi , pxi , and pzi from the 2-
tuple person-by-person equilibrium strategy (20)–(21) are embedded, are therefore
considered as the new dynamical equations with the associated state variables
Hi(·,r), D̆i(·,r) and Di(·,r), not the traditional system states xai(·).

To properly develop the problem statements within the concept of the person-by-
person equilibrium strategy for agent i and i ∈ I, the new dynamics (25)–(30) based
upon the performance-measure statistics of (24) is rewritten in accordance with the
following matrix partitions, for 1 ≤ r ≤ ki and ki ∈ N

Hi(·,r) �

⎡
⎢⎢⎣
(Hr

i )11(·) (Hr
i )12(·) (Hr

i )13(·) (Hr
i )14(·)

(Hr
i )21(·) (Hr

i )22(·) (Hr
i )23(·) (Hr

i )24(·)
(Hr

i )31(·) (Hr
i )32(·) (Hr

i )33(·) (Hr
i )34(·)

(Hr
i )41(·) (Hr

i )42(·) (Hr
i )43(·) (Hr

i )44(·)

⎤
⎥⎥⎦ , D̆i(·,r)�

⎡
⎢⎢⎣
(D̆r

i )11(·)
(D̆r

i )21(·)
(D̆r

i )31(·)
(D̆r

i )41(·)

⎤
⎥⎥⎦ .

For notational simplicity, it is now useful to denote the right members of the
dynamics (25)–(30) as the mappings

(F r
i )11 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )12 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )13 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni
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(F r
i )14 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )21 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )22 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )23 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )24 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )31 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )32 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )33 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )34 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )41 :

[
t0, t f

]× (R4ni×4ni)ki ×R
mi×ni ×R

qi×ni �→ R
ni×ni

(F r
i )42 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )43 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(F r
i )44 :

[
t0, t f

]× (R4ni×4ni)ki �→R
ni×ni

(Ğ r
i )11 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi×ni ×R

qi×ni ×R
mi ×R

qi �→R
ni

(Ğ r
i )21 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi ×R

qi �→ R
ni

(Ğ r
i )31 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi ×R

qi �→ R
ni

(Ğ r
i )41 :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi ×R

qi �→ R
ni

G r
i :

[
t0, t f

]× (R4ni×4ni)ki × (R4ni)ki ×R
mi ×R

qi �→ R

with the rules of action

(F 1
i )11(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H 1
i )11(s)

− (H 1
i )11(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi (s)]

−Qii(s)−Qi(s)−KT
xi
(s)Rii(s)Kxi (s)−KT

zi
(s)Rzi(s)Kzi (s)

(F r
i )11(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )11(s)

− (H r
i )11(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi (s)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)
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+(H v
i )12(s)Gi(s)WiG

T
i (s)H

r−v
i )21(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )14(s)Lic(s)LicLT

ic(s)(H
r−v

i )41(s)
}
, 2 ≤ r ≤ ki

(F 1
i )12(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )12(s)

− (H 1
i )11(s)Li(s)Ci(s)− (H 1

i )12(s)(Aii(s)−Li(s)Ci(s))

(F r
i )12(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )12(s)

− (H r
i )11(s)Li(s)Ci(s)− (H r

i )12(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−s
i )22(s)+ (H v

i )12(s)Li(s)WiL
T
i (s)(H

r−s
i )22(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2 ≤ r ≤ ki

(F 1
i )13(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )13(s)

− (H 1
i )13(s)Aic(s)+ 2KT

zi
(s)Rzi(s)

(F r
i )13(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )13(s)

− (H r
i )13(s)Aic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)
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+(H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2 ≤ r ≤ ki

(F 1
i )14(s,Hi,Kxi ,Kzi)�−[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

T (H 1
i )14(s)

− (H 1
i )13(s)Li(s)Ci(s)− (H 1

i )14(s)(Aic(s)−Lic(s)Cic(s))

(F r
i )14(s,Hi,Kxi ,Kzi)� −[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

T (H r
i )14(s)

− (H r
i )13(s)Li(s)Ci(s)− (H r

i )14(s)(Aic(s)−Lic(s)Cic(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )12(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )11(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )12(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )12(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )13(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )14(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )14(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2 ≤ r ≤ ki

(F 1
i )21(s,Hi,Kxi ,Kzi)�−(H 1

i )21(s)[Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]

− (Li(s)Ci(s))
T (H 1

i )11(s)− (Aii(s)−Li(s)Ci(s))
T (H 1

i )21(s)

(F r
i )21(s,Hi,Kxi ,Kzi)� −(H r

i )21(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

− (Li(s)Ci(s))
T (H r

i )11(s)− (Aii(s)−Li(s)Ci(s))
T (H r

i )21(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)
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+(H v
i )23(s)Li(s)ViL

T
i (s)(H

r−v
i )31(s)− (H v

i )24(s)Lic(s)VicLT
ic(s)(H

r−v
i )31(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2 ≤ r ≤ ki

(F 1
i )22(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )22(s)− (Li(s)Ci(s))

T (H 1
i )12(s)

− (H 1
i )22(s)(Aii(s)−Li(s)Ci(s))− (H 1

i )21(s)Li(s)Ci(s)

(F r
i )22(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )22(s)− (Li(s)Ci(s))

T (H r
i )12(s)

− (H r
i )22(s)(Aii(s)−Li(s)Ci(s))− (H r

i )21(s)Li(s)Ci(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2 ≤ r ≤ ki

(F 1
i )23(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )23(s)− (H 1

i )23(s)Aic(s)

− (Li(s)Ci(s))
T (H 1

i )13(s)

(F r
i )23(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )23(s)− (H r

i )23(s)Aic(s)

− (Li(s)Ci(s))
T (H r

i )13(s)−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)
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− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2 ≤ r ≤ ki

(F 1
i )24(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )24(s)− (H 1

i )23(s)Lic(s)Cic(s)

− (Lic(s)Cic(s))
T (H 1

i )14(s)− (H 1
i )24(s)(Aii(s)−Li(s)Ci(s))

(F r
i )24(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )24(s)− (H r

i )23(s)Lic(s)Cic(s)

− (Lic(s)Cic(s))
T (H r

i )14(s)− (H r
i )24(s)(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )22(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )21(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )22(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )22(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )23(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )24(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )24(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2 ≤ r ≤ ki

(F 1
i )31(s,Hi,Kxi ,Kzi)�−AT

ic(s)(H
1

i )31(s)

− (H 1
i )31(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

(F r
i )31(s,Hi,Kxi ,Kzi)� −(H r

i )31(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

−AT
ic(s)(H

r
i )31(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2 ≤ r ≤ ki
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(F 1
i )32(s,Hi)�−AT

ic(s)(H
1

i )32(s)

− (H 1
i )31(s)Li(s)Ci(s)− (H 1

i )32(s)(Aii(s)−Li(s)Ci(s))

(F r
i )32(s,Hi)�−AT

ic(s)(H
r

i )32(s)− (H r
i )32(s)(Aii(s)−Li(s)Ci(s))

− (H r
i )31(s)Li(s)Ci(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2 ≤ r ≤ ki

(F 1
i )33(s,Hi)�−AT

ic(s)(H
1

i )33(s)− (H 1
i )33(s)Aic(s)−Rzi(s)

(F r
i )33(s,Hi)�−AT

ic(s)(H
r

i )33(s)− (H r
i )33(s)Aic(s)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2 ≤ r ≤ ki

(F 1
i )34(s,Hi)�−AT

ic(s)(H
1

i )34(s)− (H 1
i )34(s)(Aic(s)−Lic(s)Cic(s))

− (H 1
i )33(s)Lic(s)Cic(s)
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(F r
i )34(s,Hi)�−AT

ic(s)(H
r

i )34(s)− (H r
i )34(s)(Aic(s)−Lic(s)Cic(s))

− (H r
i )33(s)Lic(s)Cic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )32(s)Li(s)ViL

T
i (s)(H

r−v
i )14(s)− (H v

i )31(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )32(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )32(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )33(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )34(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )34(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2 ≤ r ≤ ki

(F 1
i )41(s,Hi,Kxi ,Kzi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )41(s)

− (Li(s)Ci(s))
T (H 1

i )31(s)− (H 1
i )41(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

(F r
i )41(s,Hi,Kxi ,Kzi)� −(Aic(s)−Lic(s)Cic(s))

T (H r
i )41(s)

− (Lic(s)Cic(s))
T (H r

i )31(s)− (H r
i )41(s)[Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )11(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )11(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )21(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )21(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )31(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )41(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )41(s)
}
, 2 ≤ r ≤ ki

(F 1
i )42(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )42(s)− (Li(s)Ci(s))

T (H 1
i )32(s)

− (H 1
i )41(s)Li(s)Ci(s)− (H 1

i )42(s)(Aii(s)−Li(s)Ci(s))
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(F r
i )42(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )42(s)− (Li(s)Ci(s))

T (H r
i )32(s)

− (H r
i )41(s)Li(s)Ci(s)− (H r

i )42(s)(Aii(s)−Li(s)Ci(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )12(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )12(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )22(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )22(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )32(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )42(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )42(s)
}
, 2 ≤ r ≤ ki

(F 1
i )43(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )43(s)− (Li(s)Ci(s))

T (H 1
i )33(s)

− (H 1
i )43(s)Aic(s)

(F r
i )43(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )43(s)− (Li(s)Ci(s))

T (H r
i )33(s)

− (H r
i )43(s)Aic(s)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )13(s)

− (H v
i )42(s)Li(s)ViL

T
i (s)(H

r−v
i )13(s)− (H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )23(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )23(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )33(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )43(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )43(s)
}
, 2 ≤ r ≤ ki

(F 1
i )44(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H 1
i )44(s)− (Li(s)Ci(s))

T (H 1
i )34(s)

− (H 1
i )43(s)Lic(s)Cic(s)− (H 1

i )44(s)(Aic(s)−Lic(s)Cic(s))
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(F r
i )44(s,Hi)�−(Aii(s)−Li(s)Ci(s))

T (H r
i )44(s)− (Li(s)Ci(s))

T (H r
i )34(s)

− (H r
i )43(s)Lic(s)Cic(s)− (H r

i )44(s)(Aic(s)−Lic(s)Cic(s))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )41(s)Li(s)ViL
T
i (s)(H

r−v
i )14(s)

− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )14(s)− (H v
i )41(s)Li(s)ViL

T
i (s)(H

r−v
i )24(s)

+ (H v
i )42(s)Gi(s)WiG

T
i (s)(H

r−v
i )24(s)+ (H v

i )42(s)Li(s)ViL
T
i (s)(H

r−v
i )24(s)

+ (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)− (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )34(s)

− (H v
i )43(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)+(H v
i )44(s)Gic(s)WicGT

ic(s)(H
r−v

i )44(s)

+ (H v
i )44(s)Lic(s)VicLT

ic(s)(H
r−v

i )44(s)
}
, 2 ≤ r ≤ ki

(Ğ 1
i )11(s,Hi,D̆i,Kxi ,Kzi , pxi , pzi)�−(H 1

i )13(s)Bic(s)uc(s)−KT
xi
(s)Rii(s)pxi(s)

−KT
zi

Rzi(s)pzi(s)− [Aii(s)+Bii(s)Kxi (s)+Cii(s)Kzi(s)]
T (D̆1

i )11(s)

− (H 1
i )11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
+Qi(s)ζi(s)

(Ğ r
i )11(s,Hi,D̆i,Kxi ,Kzi , pxi , pzi)�−(H r

i )13(s)Bic(s)uc(s)

− [Aii(s)+Bii(s)Kxi(s)+Cii(s)Kzi(s)]
T (D̆ r

i )11(s)

− (H r
i )11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]

(Ğ r
i )21(s,Hi,D̆i, pxi , pzi)�−(Aii(s)−Li(s)Ci(s))

T (D̆ r
i )21(s)

− (Li(s)Ci(s))
T (s)(D̆ r

i )11(s)− (H r
i )23(s)Bic(s)uc(s)

− (H r
i )21(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 1 ≤ r ≤ ki
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(Ğ 1
i )31(s,Hi,D̆i, pxi , pzi)�−AT

ic(s)(D̆
1
i )31(s)+Rzi(s)pzi(s)

−(H 1
i )33(s)Bic(s)uc(s)−(H 1

i )31(s)
[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]

(Ğ r
i )31(s,Hi,D̆i, pxi , pzi)�−AT

ic(s)(D̆
r
i )31(s)− (H r

i )33(s)Bic(s)uc(s)

− (H r
i )31(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 2 ≤ r ≤ ki

(Ğ r
i )41(s,Hi,D̆i, pxi , pzi)�−(Lic(s)Cic(s))

T (D̆ r
i )31(s)

− (Aic(s)−Lic(s)Cic(s))
T (D̆ r

i )41(s)− (H r
i )43(s)Bic(s)uc(s)

− (H r
i )41(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
, 1 ≤ r ≤ ki

G 1
i (s,Hi,D̆i, pxi , pzi)�−Tr{(H 1

i )11(s)Li(s)ViL
T
i (s)− (H 1

i )12(s)Li(s)ViL
T
i (s)}

−Tr{−(H 1
i )21(s)Li(s)ViL

T
i (s)+ (H 1

i )22(s)(Gi(s)WiG
T
i (s)+Li(s)ViL

T
i (s))}

−Tr{(H 1
i )33(s)Lic(s)VicLT

ic(s)− (H 1
i )34(s)Lic(s)VicLT

ic(s)}
−Tr{−(H 1

i )43(s)Lic(s)VicLT
ic(s)+ (H 1

i )44(s)(GicWicGT
ic(s)+Lic(s)VicLT

ic(s))}

−2(D̆1
i )

T
11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
−2(D̆1

i )
T
31(s)Bic(s)uc(s)

− ζ T
i (s)Qi(s)ζi(s)− pT

xi
(s)Rii(s)pxi(s)− pT

zi
(s)Rzi(s)pzi(s)

G r
i (s,Hi,D̆i, pxi , pzi)�−Tr{(H r

i )11(s)Li(s)ViL
T
i (s)− (H r

i )12(s)Li(s)ViL
T
i (s)}

−Tr{−(H r
i )21(s)Li(s)ViL

T
i (s)+ (H r

i )22(s)(Gi(s)WiG
T
i (s)+Li(s)ViL

T
i (s))}

−Tr{(H r
i )33(s)Lic(s)VicLT

ic(s)− (H r
i )34(s)Lic(s)VicLT

ic(s)}
−Tr{−(H r

i )43(s)Lic(s)VicLT
ic(s)+ (H r

i )44(s)(GicWicGT
ic(s)+Lic(s)VicLT

ic(s))}

−2(D̆ r
i )

T
11(s)

[
Bii(s)pxi(s)+Cii(s)pzi(s)+

Ni

∑
j=1

Bi j(s)u
∗
i j(s)

]
−2(D̆ r

i )
T
31(s)Bic(s)uc(s)
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whereby the ki-tuple Hi, ki-tuple D̆i, and ki-tuple Di variables are defined by

Hi � ((H 1
i )11, . . . ,(H

ki
i )11,(H

1
i )12, . . . ,(H

ki
i )12,(H

1
i )13, . . . ,(H

ki
i )13,

(H 1
i )14, . . . ,(H

ki
i )14,(H

1
i )21, . . . ,(H

ki
i )21,(H

1
i )22, . . . ,(H

ki
i )22,

(H 1
i )23, . . . ,(H

ki
i )23,(H

1
i )24, . . . ,(H

ki
i )24,(H

1
i )31, . . . ,(H

ki
i )31,

(H 1
i )32, . . . ,(H

ki
i )32,(H

1
i )33, . . . ,(H

ki
i )33,(H

1
i )34, . . . ,(H

ki
i )34,

(H 1
i )41, . . . ,(H

ki
i )41,(H

1
i )42, . . . ,(H

ki
i )42,(H

1
i )43, . . . ,(H

ki
i )43,

(H 1
i )44, . . . ,(H

ki
i )44)

≡ ((H1
i )11, . . . ,(H

ki
i )11,(H

1
i )12, . . . ,(H

ki
i )12,(H

1
i )13, . . . ,(H

ki
i )13,

(H1
i )14, . . . ,(H

ki
i )14,(H

1
i )21, . . . ,(H

ki
i )21,(H

1
i )22, . . . ,(H

ki
i )22,

(H1
i )23, . . . ,(H

ki
i )23,(H

1
i )24, . . . ,(H

ki
i )24,(H

1
i )31, . . . ,(H

ki
i )31,

(H1
i )32, . . . ,(H

ki
i )32,(H

1
i )33, . . . ,(H

ki
i )33,(H

1
i )34, . . . ,(H

ki
i )34,

(H1
i )41, . . . ,(H

ki
i )41,(H

1
i )42, . . . ,(H

ki
i )42,(H

1
i )43, . . . ,(H

ki
i )43,

(H1
i )44, . . . ,(H

ki
i )44)

D̆i � ((D̆1
i )11, . . . ,(D̆

ki
i )11,(D̆

1
i )21, . . . ,(D̆

ki
i )21,(D̆

1
i )31, . . . ,(D̆

ki
i )31,

(D̆1
i )41, . . . ,(D̆

ki
i )41)

≡ ((D̆1
i )11, . . . , D̆

ki
i )11,(D̆

1
i )21, . . . , D̆

ki
i )21,(D̆

1
i )31, . . . , D̆

ki
i )31,

(D̆1
i )41, . . . , D̆

ki
i )41)

Di � (D1
i , . . . ,D

ki
i )≡ (D1

i , . . . ,D
ki
i ) .

Hence, the product system of dynamical equations in coordination control of the
problem class with performance risk aversion becomes

d
ds

Hi(s) = Fi(s,Hi(s),Kxi (s),Kzi(s)) , Hi(t f ) = H f
i , (44)

d
ds

D̆i(s) = Ği(s,Hi(s),D̆i(s),Kxi (s),Kzi(s), pxi(s), pzi(s)) , D̆i(t f ) = D̆ f
i , (45)

d
ds

D̆i(s) = Ği(s,Hi(s),D̆i(s), pxi(s), pzi(s)) , D̆i(t f ) = D̆ f
i , (46)
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whereby

Fi � (F 1
i )11 ×·· ·× (F ki

i )11 ×·· ·× (F 1
i )44 ×·· ·× (F ki

i )44

Ği � (Ğ 1
i )11 ×·· ·× (Ğ ki

i )11 ×·· ·× (Ğ 1
i )41 ×·· ·× (Ğ ki

i )41

Gi � G 1
i ×·· ·×G ki

i

in addition to the product system of the terminal-value conditions

H f
i � Q f

i × 0×·· ·× 0︸ ︷︷ ︸
(16ki− 1)-times

; D̆ f
i �−Q f

i ζi(t f )× 0×·· ·× 0︸ ︷︷ ︸
(4ki − 1)-times

D f
i � ζ T

i (t f )Q
f
i ζi(t f )× 0×·· ·× 0︸ ︷︷ ︸

(ki − 1)-times

; i ∈ I .

Once immediate neighbors j ∈ Ni of agent i fix the corresponding person-by-person
equilibrium strategies u∗j and thus the signaling or coordination effects u∗−i, agent
i then obtains an optimal stochastic control problem with risk-averse performance
considerations. The construction of agent i’s person-by-person policy now involves
the 4-tuple (Kxi , Kzi , pxi , pzi). Furthermore, the solutions of the equations (44)–(46)
also depend on the admissible feedback gains Kxi and Kzi , in addition to the affine
inputs pxi and pzi . In the sequel and elsewhere, when this dependence is needed
to be clear, then the notations Hi(s,Kxi ,Kzi ;u∗−i), D̆i(s,Kxi ,Kzi , pxi , pzi ;u∗−i) and
Di(s,Kxi ,Kzi , pxi , pzi ;u∗−i) should be used to denote the solution trajectories of the
dynamics (44)–(46) with the admissible 5-tuple (Kxi , Kzi , pxi , pzi ;u∗−i).

For the given terminal data (t f ,H
f

i ,D̆ f
i ,D

f
i ), the theoretical framework for risk-

averse control of the distributed stochastic system with possibly noncooperative u∗−i,
is then analyzed by a class of admissible feedback policies employed by agent i.

Definition 1 (Admissible Feedback Policies). Let compact subsets K
xi ⊂ R

mi×ni ,
K

zi ⊂ R
qi×ni , P

xi ⊂ R
mi , and P

zi ⊂ R
qi be the sets of allowable feedback

form values available at agent i and i ∈ I. For the given ki ∈ N and sequence
μi = {μ i

r ≥ 0}ki
r=1 with μ i

1 > 0, the set of feedback gains K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

,

K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, Pxi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

and Pzi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

are assumed to be the classes

of C (t0, t f ;Rmi×ni), C (t0, t f ;Rqi×ni), C (t0, t f ;Rmi) and C (t0, t f ;Rqi) with values
Kxi(·) ∈ K

xi , Kzi(·) ∈ K
zi , pxi(·) ∈ P

xi and pzi(·) ∈ P
zi , for which the solutions to

the dynamic equations (44)–(46) with the terminal-value conditions Hi(t f ) = H f
i ,

D̆i(t f ) = D̆ f
i and Di(t f ) = D f

i exist on the interval of optimization [t0, t f ].

To determine agent i’s the person-by-person equilibrium strategy with risk bearing
so as to minimize its performance vulnerability of (23) against all the sample-path
realizations from uncertain environments wai and noncooperative coordination u∗−i
from immediate neighbors j and j ∈Ni, performance risks are henceforth interpreted
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as worries and fears about certain undesirable characteristics of performance
distributions of (23) and thus are proposed to manage through a finite set of selective
weights. This custom set of design freedoms representing particular uncertainty
aversions is hence different from the ones with aversion to risk captured in risk-
sensitive optimal control [9, 10].

On K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, the

performance index with risk-value considerations in risk-averse decision making is
subsequently defined as follows.

Definition 2 (Risk-Value Aware Performance Index). Let incumbent agent i and
i ∈ I select ki ∈ N and the sequence of scalar coefficients μi = {μ i

r ≥ 0}ki
r=1 with

μ i
1 > 0. Then for the given initial condition (t0,x0

i ), the risk-value aware performance
index, φ0

i : {t0}× (Rni×ni)ki × (Rni)ki ×R
ki �→R

+ pertaining to risk-averse decision
making of agent i over [t0, t f ] is defined by

φ0
i (t0,Hi(t0),D̆i(t0),Di(t0))� μ i

1κ i
1︸︷︷︸

Value Measure

+μ i
2κ i

2 + · · ·+ μ i
ki

κ i
ki︸ ︷︷ ︸

Risk Measures

=
ki

∑
r=1

μ i
r[(x

0
i )

T H r
i (t0)x

0
i + 2(x0

i )
T D̆ r

i (t0)+D r
i (t0)] ,

(47)

wherein the additional design freedom by means of μ i
r’s utilized by agent i

with risk-averse attitudes are sufficient to meet and exceed different levels of
performance-based reliability requirements, for instance, mean (i.e., the average
of performance measure), variance (i.e., the dispersion of values of performance
measure around its mean), skewness (i.e., the anti-symmetry of the density of per-
formance measure), kurtosis (i.e., the heaviness in the density tails of performance
measure), etc., pertaining to closed-loop performance variations and uncertainties
while the supporting solutions {H r

i (s)}ki
r=1, {D̆ r

i (s)}ki
r=1 and {D r

i (s)}ki
r=1 evaluated

at s = t0 satisfy the dynamical equations (44)–(46).

To specifically indicate the dependence of the risk-value aware performance
index (47) expressed in Mayer form on (Kxi ,Kzi , pxi , pzi) and the signaling ef-
fects u∗−i issued by all immediate neighbors j from Ni, the multi-attribute utility
function or performance index (47) for agent i is now rewritten explicitly as
φ0

i (Kxi ,Kzi , pxi , pzi ;u∗−i).

Definition 3 (Nash Equilibrium Solution). An N-tuple of policies {(K∗
x1
,K∗

z1
, p∗x1

,
p∗z1

), . . . ,(K∗
xN
,K∗

zN
, p∗xN

, p∗zN
)} is said to constitute a Nash equilibrium solution for

the distributed N-agent stochastic game if, for all i ∈ N, the Nash inequality
condition holds

φ0
i (K

∗
x1
,K∗

z1
, p∗x1

, p∗z1
;u∗−i)≤ φ0

i (Kx1 ,Kz1 , px1 , pz1 ;u∗−i) . (48)
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For the sake of time consistency and subgame perfection, a Nash equilibrium
solution is required to have an additional property that its restriction on the interval
[t0,τ] is also a Nash solution to the truncated version of the original problem,
defined on [t0,τ]. With such a restriction so defined, the Nash equilibrium solution
is now termed as a feedback Nash equilibrium solution, which is now free of
any informational nonuniqueness, and thus whose derivation allows a dynamic
programming type argument.

Definition 4 (Feedback Nash Equilibrium). Let (K∗
xi
,K∗

zi
, p∗xi

, p∗zi
) constitute a

feedback Nash strategy for agent i such that

φ0
i (K

∗
xi
,K∗

zi
, p∗xi

, p∗zi
;u∗−i)≤ φ0

i (Kxi ,Kzi , pxi , pzi ;u∗−i) , i ∈ I (49)

for admissible Kxi ∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ∈ K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ∈ Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi

and pzi ∈Pzi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, upon which the solutions to the dynamical systems (44)–

(46) exist on [t0, t f ].
Then, {(K∗

x1
,K∗

z1
, p∗x1

, p∗z1
), . . . ,(K∗

xN
,K∗

zN
, p∗xN

, p∗zN
)} when restricted to the in-

terval [t0,τ] is still an N-tuple feedback Nash equilibrium solution for the mul-
tiperson Nash decision problem with the appropriate terminal-value condition
(τ,H ∗

i (τ),D̆∗
i (τ),D∗

i (τ)) for all τ ∈ [t0, t f ].

In conformity with the rigorous formulation of dynamic programming, the following
development is important. Let the terminal time t f and 3-tuple states (H f

i ,D̆ f
i ,D

f
i ),

the other end condition involved the initial time t0 and 3-tuple states (H 0
i ,D̆0

i ,D
0
i )

be specified by a target set requirement.

Definition 5 (Target Sets). (t0,H 0
i ,D̆0

i ,D
0
i ) ∈ Mi, where the target set Mi is a

closed subset of [t0, t f ]× (Rni×ni)ki × (Rni)ki ×R
ki .

Now, the decision optimization residing at incumbent agent i is to minimize the risk-
value aware performance index (47) over admissible feedback strategies composed
by Kxi ≡ Kxi(·) ∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ≡ Kzi(·) ∈ K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ≡ pxi(·) ∈

Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and pzi ≡ pzi(·)∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
while subject to interconnection

links from all immediate neighbors with corresponding feedback Nash policies u∗−i.

Definition 6 (Optimization of Mayer Problem). Given the sequence of scalars
μi = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0, the decision optimization over [t0, t f ] is given by

min
Kxi ,Kzi ,pxi ,pzi

φ0
i (Kxi ,Kzi , pxi , pzi ;u∗−i) (50)

subject to the dynamical equations (44)–(46) on [t0, t f ].

Notice that the optimization considered here is in Mayer form and can be solved
by applying an adaptation of the Mayer form verification results as given in [11].



206 K.D. Pham

To embed this optimization facing agent i into a larger problem, the terminal time
and states (t f ,H

f
i ,D̆ f

i ,D
f

i ) are parameterized as (ε,Yi,Z̆i,Zi), whereby Yi �
Hi(ε), Z̆i � D̆i(ε) and Zi � Di(ε). Thus, the value function for this optimization
problem is now depending on the parameterization of terminal-value conditions.

Definition 7 (Value Function). Suppose (ε,Yi,Z̆i,Zi) ∈ [t0, t f ] × (Rni×ni)ki ×
(Rni)ki × R

ki is given and fixed. Then, the value function Vi(ε,Yi,Z̆i,Zi) is
defined by

Vi(ε,Yi,Z̆i,Zi)� inf
Kxi ,Kzi ,pxi ,pzi

φ0
i (Kxi ,Kzi , pxi , pzi ;u∗−i) .

For convention, Vi(ε,Yi,Z̆i,Zi) � ∞ when K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

×K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

×
Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
is empty. Next, some candidates for the value

function are constructed with the help of the concept of reachable set.

Definition 8 (Reachable Sets). Let a reachable set be defined by Qi �{
(ε,Yi,Z̆i,Zi) ∈ [t0, t f ]× (Rni×ni)ki × (Rni)ki ×R

ki such that the Cartesian product

K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
	= /0

}
.

Moreover, it can be shown that the value function associated with agent i is
satisfying a partial differential equation at interior points of Qi, at which it is
differentiable.

Theorem 3 (Hamilton–Jacobi–Bellman Equation–Mayer Problem). Let
(ε,Yi,Z̆i,Zi) be any interior point of the reachable set Qi, at which the
value function Vi(ε,Yi,Z̆i,Zi) is differentiable. If there exists a feedback Nash
strategy which is supported by K∗

xi
(·) ∈ K xi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

, K∗
zi
(·) ∈ K zi

t f ,H
f

i ,D̆ f
i ,D

f
i ;μi

,

p∗xi
(·)∈Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and p∗zi

(·)∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, then the differential equation

0 = min
Kxi∈Kxi ,Kzi∈Kzi ,pxi∈Pxi ,pzi∈Pzi

{
∂
∂ε

Vi(ε,Yi,Z̆i,Zi)

+
∂

∂ vec(Yi)
Vi(ε,Yi,Z̆i,Zi)vec(Fi(ε,Yi,Kxi ,Kzi))

+
∂

∂ vec(Z̆i)
Vi(ε,Yi,Z̆i,Zi)vec(Ği(ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)

+
∂

∂ vec(Zi)
Vi(ε,Yi,Z̆i,Zi)vec(Gi(ε,Yi,Z̆i, pxi , pzi)

}
(51)

is satisfied whereby Vi(t0,Yi(t0),Z̆i(t0),Zi(t0)) = φ0
i (Hi(t0),D̆i(t0),Di(t0)).



A Framework for Coordination in Distributed Systems 207

Proof. By what have been shown in the recent results by the author [7], the proof
for the result herein is readily proven. ��
Finally, the following result gives the sufficient condition used to verify a feedback
Nash strategy for incumbent agent i and i ∈ I.

Theorem 4 (Verification Theorem). Let Wi(ε,Yi,Z̆i,Zi) be continuously differ-
entiable solution of the Hamilton–Jacobi–Bellman (HJB) equation (51), which
satisfies the boundary condition

Wi(t0,Hi(t0),D̆i(t0),Di(t0)) = φ0
i (t0,Hi(t0),D̆i(t0),Di(t0)) . (52)

Let (t f ,H
f

i ,D̆ f
i ,D

f
i ) be a 4-tuple point in Qi; let Kxi ∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, Kzi ∈

K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pxi ∈ Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, pzi ∈Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
; and let Hi(·), D̆i(·)

and Di(·) be the corresponding solutions of the equations of motion (44)–(46). Then,
Wi(s,Hi(s),D̆i(s),Di(s)) is time-backward increasing function of s.

If K∗
xi
∈ K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, K∗

zi
∈ K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
, p∗xi

∈ Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
and p∗zi

∈
Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
defining a person-by-person equilibrium or feedback Nash strategy

for agent i with the corresponding solutions H ∗
i (·), D̆∗

i (·) and D∗
i (·) of the

dynamical equations (44)–(46) such that, for s ∈ [t0, t f ]

0 =
∂
∂ε

Wi(s,H
∗

i (s),D̆∗
i (s),D

∗
i (s))+

∂
∂ vec(Yi)

Wi(s,H
∗

i (s),D̆∗
i (s),D

∗
i (s))

·vec(Fi(s,Y
∗

i (s),K∗
xi
(s),K∗

zi
(s)))+

∂
∂ vec(Z̆i)

Wi(s,H
∗

i (s),D̆∗
i (s),D

∗
i (s))

·vec(Ği(s,H
∗

i (s),D̆∗
i (s),K

∗
xi
(s),K∗

zi
(s), p∗xi

(s), p∗zi
(s))

+
∂

∂ vec(Zi)
Wi(s,H

∗
i (s),D̆∗

i (s),D
∗
i (s))vec(Gi(s,H

∗
i (s),D̆∗

i (s), p∗xi
(s), p∗zi

(s))

(53)

then (K∗
xi
,K∗

zi
, p∗xi

, p∗zi
) results in a feedback Nash strategy or person-by-person

equilibrium for agent i in K xi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×K zi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×Pxi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
×

Pzi

t f ,H
f

i ,D̆
f

i ,D
f

i ;μi
. Furthermore, it follows that

Wi(ε,Yi,Z̆i,Zi) = Vi(ε,Yi,Z̆i,Zi) , (54)

whereby Vi(ε,Yi,Z̆i,Zi) is the value function associated with incumbent agent i.
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Proof. With the aid of the recent development [7], the proof then follows for the
verification theorem herein. ��

4 Distributed Person-by-Person Equilibrium Strategies

Reflecting on the Mayer-form optimization problem of the person-by-person equi-
librium strategy concerned by incumbent agent i and i ∈ I, the technical approach
is to apply an adaptation of the Mayer-form verification theorem of dynamic
programming as given in [11]. In the framework of dynamic programming, it is
often required to denote the terminal time and states of a family of optimization
problems as (ε,Yi,Z̆i,Zi) rather than (t f ,H

f
i ,D̆ f

i ,D
f

i ). Stating precisely, for
ε ∈ [t0, t f ] and 1≤ r ≤ ki, the states of the performance robustness (44)–(46) defined
on the interval [t0,ε] have the terminal values denoted by Hi(ε) ≡ Yi, D̆i(ε) ≡ Z̆i

and Di(ε)≡ Zi.
Since the performance index (47) is quadratic affine in terms of arbitrarily

fixed x0
i , the resulting insight suggests a solution to the adapted Hamilton–Jacobi–

Bellman equation (51) is of the form as follows. It is assumed that (ε,Yi,Z̆i,Zi) is
any interior point of the reachable set Qi at which the real-valued function

Wi(ε,Yi,Z̆i,Zi) = (x0
i )

T
ki

∑
r=1

μ i
r(Y

r
i +E r

i (ε))x0
i

+ 2(x0
i )

T
ki

∑
r=1

μ i
r(Z̆

r
i + T̆ r

i (ε))+
ki

∑
r=1

μ i
r(Z

r
i +T r

i (ε)) (55)

is differentiable. The parametric functions of time E r
i ∈ C 1(t0, t f ;Rni×ni), T̆ r

i ∈
C 1(t0, t f ;Rn

i ) and T r
i ∈ C 1(t0, t f ;R) are yet to be determined. Furthermore, the

time derivative of Wi(ε,Yi,Z̆i,Zi) can be shown to be

d
dε

Wi(ε,Yi,Z̆i,Zi) = (x0
i )

T
ki

∑
r=1

μ i
r(F

r
i (ε,Yi,Kxi ,Kzi)+

d
dε

E r
i (ε))x

0
i

+ 2(x0
i )

T
ki

∑
r=1

μ i
r(Ğ

r
i (ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)+

d
dε

T̆ r
i (ε))

+
ki

∑
r=1

μ i
r(G

r
i (ε,Yi,Z̆i, pxi , pzi)+

d
dε

T r
i (ε)) . (56)

The substitution of this hypothesized solution (55) into the HJB equation (51) and
making use of (56) results in
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0≡ min
Kxi∈Kxi ,Kzi∈Kzi ,pxi∈Pxi ,pzi∈Pzi

{
(x0

i )
T

ki

∑
r=1

μ i
r

d
dε

E r
i (ε)x

0
i +2(x0

i )
T

ki

∑
r=1

μ i
r

d
dε

T̆ r
i (ε)

+
ki

∑
r=1

μ i
r

d
dε

T r
i (ε)+ 2(x0

i )
T

ki

∑
r=1

μ i
rĞ

r
i (ε,Yi,Z̆i,Kxi ,Kzi , pxi , pzi)

+ (x0
i )

T
ki

∑
r=1

μ i
rF

r
i (ε,Yi,Kxi ,Kzi)x

0
i +

ki

∑
r=1

μ i
rG

r
i (ε,Yi,Z̆i, pxi , pzi)

}
. (57)

Differentiating the expression within the bracket of (57) with respect to Kxi , Kzi , pxi

and pzi yields the necessary conditions for an extremum of (51) on [t0,ε],

0 ≡
[
BT

ii (ε)
ki

∑
r=1

μ i
rY

r
i +μ1

i Rii(ε)Kxi

]
x0

i (x
0
i )

T +
[
BT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rii(ε)pxi

]
(x0

i )
T

0 ≡
[
CT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rzi(ε)Kzi

]
x0

i (x
0
i )

T +
[
CT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rzi(ε)pzi

]
(x0

i )
T

0 ≡
[
BT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rii(ε)Kxi

]
x0

i +
[
BT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rii(ε)pxi

]

0 ≡
[
CT

ii (ε)
ki

∑
r=1

μr
i Y

r
i +μ1

i Rzi(ε)Kzi

]
x0

i +
[
CT

ii (ε)
ki

∑
r=1

μr
i Z̆

r
i +μ1

i Rzi(ε)pzi

]
.

Because all x0
i (x

0
i )

T , (x0
i )

T and x0
i have arbitrary ranks of one, it must be true that

Kxi =−(μ1
i Rii(ε))−1BT

ii (ε)
ki

∑
r=1

μ r
i Y

r
i , (58)

Kzi =−(μ1
i Rzi(ε))−1CT

ii (ε)
ki

∑
r=1

μ r
i Y

r
i , (59)

pxi =−(μ1
i Rii(ε))−1BT

ii (ε)
ki

∑
r=1

μ r
i Z̆

r
i , (60)

pzi =−(μ1
i Rzi(ε))−1CT

ii (ε)
ki

∑
r=1

μ r
i Z̆

r
i . (61)

Replacing these results (58)–(61) into the right member of the HJB equation (51)
yields the value of the minimum whose mathematical details are omitted herein for
the purpose of brevity.

For each agent i and i ∈ I, it is necessary to exhibit {E r
i (·)}ki

r=1, {T̆ r
i (·)}ki

r=1 and

{T r
i (·)}ki

r=1 which render the left side of the HJB equation (51) equal to zero for
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ε ∈ [t0, t f ], when {Y r
i }ki

r=1, {Z̆ r
i }ki

r=1 and {Z r
i }ki

r=1 are evaluated along the solution
trajectories of the dynamical equations (44)–(46). With a careful examination of the
expression (57), it reveals that

d
dε

E 1
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(H 1

i )11(ε)

+ (H 1
i )11(ε)

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

H s
i (ε)

]
+Qii(ε)+Qi(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε) (62)

d
dε

E r
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]T
(H r

i )11(ε)+(H r
i )11(ε)

[
Aii(ε)

−Bii(ε)R−1
ii (ε)BT

ii (ε)
ki

∑
s=1

μs
i

μ1
i
(H s

i )11(ε)−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i
(H s

i )11(ε)
]

+
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i )11(ε)Li(ε)ViL
T
i (ε)(H r−v

i )11(ε)

− (H v
i )12(ε)Li(ε)ViL

T
i (ε)(H r−v

i )11(ε)− (H v
i )11(ε)Li(ε)ViL

T
i (ε)(H r−v

i )21(ε)

+(H v
i )12(ε)Gi(ε)WiG

T
i (ε)H r−v

i )21(ε)+(H v
i )12(ε)Li(ε)ViL

T
i (ε)(H r−v

i )21(ε)

+(H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )31(ε)− (H v

i )14(ε)Lic(ε)VicLT
ic(ε)(H r−v

i )31(ε)

− (H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )41(ε)+(H v

i )14(ε)Gic(ε)WicGT
ic(ε)(H r−v

i )41(ε)

+(H v
i )14(ε)Lic(ε)LicLT

ic(ε)(H r−v
i )41(ε)

}
, 2 ≤ r ≤ ki (63)
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d
dε

T̆ 1
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D1

i )11(ε)

+ (H 1
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
+(H 1

i )13(ε)Bic(ε)uc(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)

+
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)−Qi(ε)ζi(ε) (64)

d
dε

T̆ r
i (ε) =

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D r

i )11(ε)+ (H r
i )13(ε)Bic(ε)uc(ε)

+ (H r
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2 ≤ r ≤ ki (65)

d
dε

T 1
i (ε) = Tr{(H 1

i )11(ε)Li(ε)ViL
T
i (ε)− (H 1

i )12(ε)Li(ε)ViL
T
i (ε)}

+Tr{−(H 1
i )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

+Tr{(H 1
i )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i )34(ε)Lic(ε)VicLT

ic(ε)}
+Tr{(H 1

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H 1
i )43(ε)Lic(ε)VicLT

ic(ε)}

+ 2(D̆1
i )

T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)
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−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
+2(D̆1

i )
T
13(ε)Bic(ε)uc(ε)

+ ζ T
i (ε)Qi(ε)ζi(ε)+

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

+
ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε) (66)

d
dε

T r
i (ε) = Tr{(H r

i )11(ε)Li(ε)ViL
T
i (ε)− (H r

i )12(ε)Li(ε)ViL
T
i (ε)}

+Tr{−(H r
i )21(ε)Li(ε)ViL

T
i (ε)+ (H r

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

+Tr{(H r
i )33(ε)Lic(ε)VicLT

ic(ε)− (H r
i )34(ε)Lic(ε)VicLT

ic(ε)}
+Tr{(H r

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H r
i )43(ε)Lic(ε)VicLT

ic(ε)}

+ 2(D̆ r
i )

T
13(ε)Bic(ε)uc(ε)+ 2(D̆ r

i )
T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2 ≤ r ≤ ki (67)

will work. Furthermore, the boundary condition associated with the verification
theorem requires that

(x0
i )

T
ki

∑
r=1

μ r
i ((H

r
i )11(t0)+E r

i (t0))x
0
i + 2(x0

i )
T

ki

∑
r=1

μ r
i ((D̆

r
i )11(t0)+ T̆ r

i (t0))

+
ki

∑
r=1

μ r
i (D

r
i (t0)+T r

i (t0))

= (x0
i )

T
ki

∑
r=1

μ r
i (H

r
i )11(t0)x0

i + 2(x0
i )

T
ki

∑
r=1

μ r
i (D̆

r
i )11(t0)+

ki

∑
r=1

μ r
i D

r
i (t0) .

Thus, matching the boundary condition yields the initial value conditions
E r

i (t0) = 0, T̆ r
i (t0) = 0 and T r

i (t0) = 0 for the forward-in-time differential
equations (62)–(67).

Applying the 4-tuple (Kxi ,Kzi , pxi , pzi) in (58)–(61) that is defining the person-
by-person equilibrium for each agent i and i ∈ I along the solution trajectories of
the backward-in-time differential equations (44)–(46), these equations become the
backward-in-time Riccati-type differential equations
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d
dε

(H 1
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(H 1

i )11(ε)

− (H 1
i )11(ε)

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

H s
i (ε)

]
−Qii(ε)−Qi(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(H r
i )11(ε) (68)

d
dε

(H r
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]T
(H r

i )11(ε)− (H r
i )11(ε)

[
Aii(ε)

−Bii(ε)R−1
ii (ε)BT

ii (ε)
ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)−Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μs
i

μ1
i

(H s
i )11(ε)

]

−
r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i )11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )11(ε)

− (H v
i )12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i )11(ε)− (H v

i )11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )21(ε)

+(H v
i )12(ε)Gi(ε)WiG

T
i (ε)H

r−v
i )21(ε)+(H v

i )12(ε)Li(ε)ViL
T
i (ε)(H

r−v
i )21(ε)

+(H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i )31(ε)− (H v
i )14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i )31(ε)

− (H v
i )13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i )41(ε)+(H v

i )14(ε)GicWicGT
ic(ε)(H r−v

i )41(ε)

+(H v
i )14(ε)Lic(ε)LicLT

ic(ε)(H
r−v

i )41(ε)
}
, 2 ≤ r ≤ ki (69)
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d
dε

(D̆1
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D1

i )11(ε)

− (H 1
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
−(H 1

i )13(ε)Bic(ε)uc(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)

−
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )11(ε)+Qi(ε)ζi(ε) (70)

d
dε

(D̆ r
i )11(ε) =−

[
Aii(ε)−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(H s
i )11(ε)

]T
(D r

i )11(ε)− (H r
i )13(ε)Bic(ε)uc(ε)

− (H r
i )11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2 ≤ r ≤ ki (71)

d
dε

D1
i (ε) =−Tr{(H 1

i )11(ε)Li(ε)ViL
T
i (ε)− (H 1

i )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H 1
i )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H 1
i )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i )34(ε)Lic(ε)VicLT

ic(ε)}
−Tr{(H 1

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H 1
i )43(ε)Lic(ε)VicLT

ic(ε)}

− 2(D̆1
i )

T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)
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−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
−2(D̆1

i )
T
13(ε)Bic(ε)uc(ε)

− ζ T
i (ε)Qi(ε)ζi(ε)−

ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−
ki

∑
r=1

μ r
i

μ1
i

(D̆ r
i )

T
11(ε)Cii(ε)R−1

zi (ε)CT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε) (72)

d
dε

D r
i (ε) =−Tr{(H r

i )11(ε)Li(ε)ViL
T
i (ε)− (H r

i )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H r
i )21(ε)Li(ε)ViL

T
i (ε)+ (H r

i )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H r
i )33(ε)Lic(ε)VicLT

ic(ε)− (H r
i )34(ε)Lic(ε)VicLT

ic(ε)}
−Tr{(H r

i )44(ε)(Gic(ε)WicGT
ic(ε)+Lic(ε)VicLT

ic(ε))− (H r
i )43(ε)Lic(ε)VicLT

ic(ε)}

− 2(D̆ r
i )

T
13(ε)Bic(ε)uc(ε)− 2(D̆ r

i )
T
11(ε)

[
−Bii(ε)R−1

ii (ε)BT
ii (ε)

ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)

−Cii(ε)R−1
zi (ε)CT

ii (ε)
ki

∑
s=1

μ s
i

μ1
i

(D̆ s
i )11(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)
]
, 2 ≤ r ≤ ki (73)

where the terminal-value conditions (H 1
i )11(t f ) = Q f

i , (H r
i )11(t f ) = 0 for 2 ≤

r ≤ ki; (D̆ r
i )11(t f ) = −Q f

i ζi(t f ), (D̆ r
i )11(t f ) = 0 for 2 ≤ r ≤ ki; and D r

i (t f ) =

ζi(t f )Q
f
i ζi(t f ), D r

i (t f ) for 2≤ r ≤ ki. Thus, whenever the coupled backward-in-time

differential equations (68)–(73) admit the matrix-valued solutions {(H r
i )11(·)}ki

r=1,

vector-valued solutions
{
(D̆ r

i )11(·)
}ki

r=1, and scalar-valued solutions {D r
i (·)}ki

r=1,

then the existence of the matrix-valued solutions {E r
i (·)}ki

r=1, vector-valued solu-

tions
{
T̆ r

i (·)
}ki

r=1, and scalar-valued solutions {T r
i (·)}ki

r=1 satisfying the coupled
forward-in-time differential equations (62)–(67) are assured.

By comparing the time-forward differential equations (62)–(67) to those of time-
backward differential equations (68)–(73), one may recognize that these sets of
differential equations are related to one another by

d
dε

E r
i (ε) =− d

dε
(H r

i )11(ε);
d

dε
T̆ r

i (ε) =− d
dε

(D̆ r
i )11(ε)

d
dε

T r
i (ε) =− d

dε
D r

i (ε) , ε ∈ [t0, t f ] .
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Enforcing the initial-value conditions of E r
i (t0) = 0, T̆ r

i (t0) = 0 and T r
i (t0) = 0

uniquely implies the following results

E r
i (ε) = (H r

i )11(t0)− (H r
i )11(ε); T̆ r

i (ε) = (D̆ r
i )11(t0)− (D̆ r

i )11(ε)

T r
i (ε) = D r

i (t0)−D r
i (ε)

for all ε ∈ [t0, t f ] and yields a value function

Wi(ε,Yi,Z̆i,Zi) =
ki

∑
r=1

μ r
i

[
(x0

i )
T (H r

i )11(t0)x0
i + 2(x0

i )
T (D̆ r

i )11(t0)+D r
i (t0)

]

for which the sufficient condition (53) of the verification theorem is satisfied.
Therefore, the extremal person-by-person equilibrium policy (58)–(61) minimizing
(47) become optimal

K∗
xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (74)

K∗
zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (75)

p∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (76)

p∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , μ̂ r
i =

μ r
i

μ1
i

(77)

The goals in this research investigation have been methodological. A noncooperative
game-theoretic methodology for coordination control of distributed stochastic sys-
tems is successfully sought for theory building in contexts in which signaling effects
are issued by a coordinator and distributed person-by-person equilibrium strategies
by autonomous agents i and i ∈ I are placed toward performance robustness. At this
point, it makes sense to integrate all of the contending results into the following
unified theorem.

Theorem 5 (Person-by-Person Equilibrium Strategies). Consider a distributed
stochastic system governed by (3)–(16) whose pairs (Aii,Bii) and (Aii,Cii) are
uniformly stabilizable on [t0, t f ]. An N-tuple {(u∗1,z∗1), . . . ,(u∗N ,z∗N)} of control poli-
cies constitutes a feedback Nash equilibrium for the class of distributed stochastic
system considered here. Furthermore, 2-tuple (u∗i ,z∗i ) imposing a person-by-person
equilibrium strategy for the corresponding agent i and i ∈ I is implemented
forwardly in time by
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u∗i (t) = K∗
xi
(t)xi(t)+ p∗xi

(t) (78)

z∗i (t) = K∗
zi
(t)xi(t)+ p∗zi

(t) , t = t f + t0 − ε, ε ∈ [t0, t f ] , (79)

which strives to optimize the risk-value aware performance index (47) composed
by a preferential set of mathematical statistics of the chi-squared cost random
variable (16). The construction of the person-by-person equilibrium for each agent
i is determined backwardly in time; e.g.,

K∗
xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (80)

K∗
zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rH r

i∗(ε) , (81)

p∗xi
(ε) =−R−1

ii (ε)BT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (82)

p∗zi
(ε) =−R−1

zi (ε)CT
ii (ε)

ki

∑
r=1

μ̂i
rD̆ r

i∗(ε) , (83)

wherein the normalized preferences μ̂ r
i � μ r

i /μ1
i ’s are mutually chosen by each

incumbent agent i for risk-averse coordinations toward co-design of individual
performance robustness. The optimal set of supporting solutions satisfies the time-
backward, matrix, vector, and scalar-valued differential equations

d
dε

(H 1
i∗ )11(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H 1

i∗ )11(ε)

− (H 1
i∗ )11(ε)[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]−Qii(ε)−Qi(ε)

−K∗T
xi
(ε)Rii(ε)K∗

xi
(ε)−K∗T

zi
(ε)Rzi(ε)K∗

zi
(ε) , (H 1

i∗ )11(t f ) = Q f
i (84)

d
dε

(H r
i∗)11(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H r

i∗)11(ε)

− (H r
i∗)11(ε)[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)H r−v

i∗ )21(ε)+ (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )21(ε)
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+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i )41(ε)

+ (H v
i∗)14(ε)Lic(ε)LicLT

ic(ε)(H r−v
i∗ )41(ε)

}
, (H r

i∗)11(t f ) = 0; 2 ≤ r ≤ ki (85)

d
dε

(H 1
i∗ )12(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H 1

i∗ )12(ε)

− (H 1
i∗ )11(ε)Li(ε)Ci(ε)− (H 1

i∗ )12(Aii(ε)−Li(ε)Ci(ε)) , (H 1
i∗ )12(t f ) = 0 (86)

d
dε

(H r
i∗)12(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H r

i∗)12(ε)

− (H r
i∗)11(ε)Li(ε)Ci(ε)− (H r

i∗)12(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H

r−s
i∗ )22(ε)+(H v

i∗)12(ε)Li(ε)WiL
T
i (ε)(H

r−s
i∗ )22(ε)

+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )32(ε)−(H v

i∗)14(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )32(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )42(ε)+(H v

i∗)14(ε)GicWicGT
ic(ε)(H r−v

i∗ )42(ε)

+(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)12(t f ) = 0; 2 ≤ r ≤ ki (87)

d
dε

(H 1
i∗ )13(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H 1

i∗ )13(ε)

− (H 1
i∗ )13(ε)Aic(ε)+ 2K∗T

zi
(ε)Rzi(ε) , (H 1

i∗ )13(t f ) = 0 (88)

d
dε

(H r
i∗)13(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H r

i∗)13(ε)

− (H r
i∗)13(ε)Aic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )13(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)12(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)
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+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i∗ )43(ε)

+ (H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)

}
, (H r

i∗)13(t f ) = 0; 2 ≤ r ≤ ki (89)

d
dε

(H 1
i∗ )14(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H 1

i∗ )14(ε)

− (H 1
i∗ )14(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )13(ε)Li(ε)Ci(ε) , (H 1

i∗ )14(t f ) = 0 (90)

d
dε

(H r
i∗)14(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (H r

i∗)14(ε)

− (H r
i∗)13(ε)Li(ε)Ci(ε)− (H r

i∗)14(ε)(Aic(ε)−Lic(ε)Cic(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)11(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)12(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )24(ε)+ (H v
i∗)12(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)−(H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)

− (H v
i∗)13(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)14(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)14(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)
}
, (H r

i∗)14(t f ) = 0; 2 ≤ r ≤ ki (91)

d
dε

(H 1
i∗ )21(ε) =−(H 1

i∗ )21(ε)[Aii(ε)+Bii(ε)K∗
xi
(ε)+Cii(ε)K∗

zi
(ε)]

− (Aii(ε)−Li(ε)Ci(ε))T (H 1
i∗ )21(ε)

− (Li(ε)Ci(ε))T (H 1
i∗ )11(ε) , (H 1

i∗ )21(t f ) = 0 (92)



220 K.D. Pham

d
dε

(H r
i∗)21(ε) =−(H r

i∗)21(ε)[Aii(ε)+Bii(ε)K∗
xi
(ε)+Cii(ε)K∗

zi
(ε)]

− (Li(ε)Ci(ε))T (H r
i∗)11(ε)− (Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)21(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )21(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)23(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )31(ε)− (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )31(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)24(ε)GicWicGT

ic(ε)(H
r−v

i∗ )41(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)
}
, (H r

i∗)21(t f ) = 0; 2 ≤ r ≤ ki (93)

d
dε

(H 1
i∗ )22(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )22(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )12(ε)

− (H 1
i∗ )22(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H 1
i∗ )21(ε)Li(ε)Ci(ε) , (H 1

i∗ )22(t f ) = 0 (94)

d
dε

(H r
i∗)22(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)22(ε)− (Li(ε)Ci(ε))T (H r
i∗)12(ε)

− (H r
i∗)22(ε)(Aii(ε)−Li(ε)Ci(ε))− (H r

i∗)21(ε)Li(ε)Ci(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )12(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )12(ε)− (H v
i∗)21(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )22(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )22(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )42(ε)+ (H v

i∗)24(ε)GicWicGT
ic(ε)(H r−v

i∗ )42(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)22(t f ) = 0; 2 ≤ r ≤ ki (95)

d
dε

(H 1
i∗ )23(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )23(ε)− (H 1
i∗ )23(ε)Aic(ε)

− (Li(ε)Ci(ε))T (H 1
i∗ )13(ε) , (H 1

i∗ )23(t f ) = 0 (96)



A Framework for Coordination in Distributed Systems 221

d
dε

(H r
i∗)23(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)23(ε)− (H r
i∗)23(ε)Aic(ε)

− (Li(ε)Ci(ε))T (H r
i∗)13(ε)−

r−1

∑
v=1

2r!
v!(r−v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )13(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)+ (H v

i∗)24(ε)GicWicGT
ic(ε)(H r−v

i∗ )43(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)23(t f ) = 0; 2 ≤ r ≤ ki (97)

d
dε

(H 1
i∗ )24(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )24(ε)− (H 1
i∗ )23(ε)Lic(ε)Cic(ε)

− (H 1
i∗ )24(ε)(Aii(ε)−Li(ε)Ci(ε))

− (Lic(ε)Cic(ε))T (H 1
i∗ )14(ε) , (H 1

i∗ )24(t f ) = 0 (98)

d
dε

(H r
i∗)24(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)24(ε)− (H r
i∗)23(ε)Lic(ε)Cic(ε)

− (Lic(ε)Cic(ε))T (H r
i∗)14(ε)− (H r

i∗)24(ε)(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)22(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)21(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)22(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )24(ε)+ (H v

i∗)22(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+(H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )34(ε)−(H v

i∗)24(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )34(ε)

− (H v
i∗)23(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)24(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)24(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)
}
, (H r

i∗)24(t f ) = 0; 2 ≤ r ≤ ki (99)

d
dε

(H 1
i∗ )31(ε) =−AT

ic(ε)(H
1

i∗ )31(ε)

− (H 1
i∗ )31(ε)[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)] , (H 1

i∗ )31(t f ) = 0 (100)



222 K.D. Pham

d
dε

(H r
i∗)31(ε) =−(H r

i∗)31(ε)[Aii(ε)+Bii(ε)K∗
xi
(ε)+Cii(ε)K∗

zi
(ε)]

−AT
ic(ε)(H r

i∗)31(ε)−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )11(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )21(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )41(ε)+ (H v

i∗)34(ε)GicWicGT
ic(ε)(H r−v

i∗ )41(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H
r−v

i∗ )41(ε)
}
, (H r

i∗)31(t f ) = 0; 2 ≤ r ≤ ki (101)

d
dε

(H 1
i∗ )32(ε) =−AT

ic(ε)(H
1

i∗ )32(ε)− (H 1
i∗ )31(ε)Li(ε)Ci(ε)

− (H 1
i∗ )32(ε)(Aii(ε)−Li(ε)Ci(ε)) , (H 1

i∗ )32(t f ) = 0 (102)

d
dε

(H r
i∗)32(ε) =−AT

ic(ε)(H
r

i∗)32(ε)− (H r
i∗)32(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H r
i∗)31(ε)Li(ε)Ci(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )22(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)+ (H v
i∗)34(ε)GicWicGT

ic(ε)(H
r−v

i∗ )42(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H r−v
i∗ )42(ε)

}
, (H r

i∗)32(t f ) = 0; 2 ≤ r ≤ ki (103)

d
dε

(H 1
i∗ )33(ε) =−AT

ic(ε)(H
1

i∗ )33(ε)− (H 1
i∗ )33(ε)Aic(ε)

−Rzi(ε) , (H 1
i∗ )33(t f ) = 0 (104)
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d
dε

(H r
i∗)33(ε) =−AT

ic(ε)(H
r

i∗)33(ε)− (H r
i∗)33(ε)Aic(ε)

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )13(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )23(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )43(ε)+ (H v

i∗)34(ε)GicWicGT
ic(ε)(H r−v

i∗ )43(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)33(t f ) = 0; 2 ≤ r ≤ ki (105)

d
dε

(H 1
i∗ )34(ε) =−AT

ic(ε)(H
1

i∗ )34(ε)− (H 1
i∗ )34(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )33(ε)Lic(ε)Cic(ε) , (H 1

i∗ )34(t f ) = 0 (106)

d
dε

(H r
i∗)34(ε) =−AT

ic(ε)(H
r

i∗)34(ε)− (H r
i∗)34(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H r
i∗)33(ε)Lic(ε)Cic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )14(ε)

− (H v
i∗)32(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )14(ε)− (H v

i∗)31(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+ (H v
i∗)32(ε)Gi(ε)WiG

T
i (ε)(H

r−v
i∗ )24(ε)+ (H v

i∗)32(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )24(ε)

+(H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)−(H v
i∗)34(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )34(ε)

− (H v
i∗)33(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )44(ε)+ (H v
i∗)34(ε)GicWicGT

ic(ε)(H
r−v

i∗ )44(ε)

+ (H v
i∗)34(ε)LicVicLT

ic(ε)(H r−v
i∗ )44(ε)

}
, (H r

i∗)34(t f ) = 0; 2 ≤ r ≤ ki (107)

d
dε

(H 1
i∗ )41(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )41(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )31(ε)

− (H 1
i∗ )41(ε)[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)] , (H 1

i∗ )41(t f ) = 0 (108)
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d
dε

(H r
i∗)41(ε) =−(Aic(ε)−Lic(ε)Cic(ε))T (H r

i∗)41(ε)

− (Lic(ε)Cic(ε))T (H r
i∗)31(ε)− (H r

i∗)41(ε)[Aii(ε)+Bii(ε)K∗
xi
(ε)+Cii(ε)K∗

zi
(ε)]

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )11(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )11(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )21(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )21(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )21(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )31(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )41(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )41(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H r−v
i∗ )41(ε)

}
, (H r

i∗)41(t f ) = 0; 2 ≤ r ≤ ki (109)

d
dε

(H 1
i∗ )42(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )42(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )32(ε)

− (H 1
i∗ )42(ε)(Aii(ε)−Li(ε)Ci(ε))

− (H 1
i∗ )41(ε)Li(ε)Ci(ε) , (H 1

i∗ )42(t f ) = 0 (110)

d
dε

(H r
i∗)42(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)42(ε)− (Li(ε)Ci(ε))T (H r
i∗)32(ε)

− (H r
i∗)41(ε)Li(ε)Ci(ε)− (H r

i∗)42(ε)(Aii(ε)−Li(ε)Ci(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )12(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )12(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )22(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )22(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )22(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )32(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )42(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )42(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H
r−v

i∗ )42(ε)
}
, (H r

i∗)42(t f ) = 0; 2 ≤ r ≤ ki (111)
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d
dε

(H 1
i∗ )43(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )43(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )33(ε)

− (H 1
i∗ )43(ε)Aic(ε) , (H 1

i∗ )43(t f ) = 0 (112)

d
dε

(H r
i∗)43(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)43(ε)− (Li(ε)Ci(ε))T (H r
i∗)33(ε)

− (H r
i∗)43(ε)Aic(ε)−

r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )13(ε)

− (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H

r−v
i∗ )13(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H

r−v
i∗ )23(ε)

+ (H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )23(ε)+ (H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )23(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)−(H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )33(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H
r−v

i∗ )43(ε)+ (H v
i∗)44(ε)GicWicGT

ic(ε)(H
r−v

i∗ )43(ε)

+ (H v
i∗)44(ε)LicVicLT

ic(ε)(H
r−v

i∗ )43(ε)
}
, (H r

i∗)43(t f ) = 0; 2 ≤ r ≤ ki (113)

d
dε

(H 1
i∗ )44(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H 1

i∗ )44(ε)−(Li(ε)Ci(ε))T (H 1
i∗ )34(ε)

− (H 1
i∗ )44(ε)(Aic(ε)−Lic(ε)Cic(ε))

− (H 1
i∗ )43(ε)Lic(ε)Cic(ε) , (H 1

i∗ )44(t f ) = 0 (114)

d
dε

(H r
i∗)44(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (H r

i∗)44(ε)− (Li(ε)Ci(ε))T (H r
i∗)34(ε)

− (H r
i∗)43(ε)Lic(ε)Cic(ε)− (H r

i∗)44(ε)(Aic(ε)−Lic(ε)Cic(ε))

−
r−1

∑
v=1

2r!
v!(r− v)!

{
(H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )14(ε)

− (H v
i∗)44(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )14(ε)− (H v

i∗)41(ε)Li(ε)ViL
T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)42(ε)Gi(ε)WiG

T
i (ε)(H r−v

i∗ )24(ε)+(H v
i∗)42(ε)Li(ε)ViL

T
i (ε)(H r−v

i∗ )24(ε)

+(H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )34(ε)− (H v

i∗)44(ε)Lic(ε)VicLT
ic(ε)(H r−v

i∗ )34(ε)

− (H v
i∗)43(ε)Lic(ε)VicLT

ic(ε)(H r−v
i∗ )44(ε)+(H v

i∗)44(ε)GicWicGT
ic(ε)(H r−v

i∗ )44(ε)

+(H v
i∗)44(ε)LicVicLT

ic(ε)(H r−v
i∗ )44(ε)

}
, (H r

i∗)44(t f ) = 0; 2 ≤ r ≤ ki (115)
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d
dε

(D̆1
i∗)11(ε) =−(H 1

i∗ )13(ε)Bic(ε)uc(ε)−K∗T
xi

(ε)Rii(ε)p∗xi
(ε)

− [Aii(ε)+Bii(ε)K∗
xi
(ε)+Cii(ε)K∗

zi
(ε)]T (D̆1

i∗)11(ε)

− (H 1
i∗ )11(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

−K∗T
zi

Rzi(ε)p∗zi
(ε)+Qi(ε)ζi(ε) , (D̆1

i∗)11(t f ) =−Q f
i ζi(t f ) (116)

d
dε

(D̆ r
i∗)11(ε) =−[Aii(ε)+Bii(ε)K∗

xi
(ε)+Cii(ε)K∗

zi
(ε)]T (D̆ r

i∗)11(ε)

− (H r
i∗)11(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H r
i∗)13(ε)Bic(ε)uc(ε) , (D̆ r

i∗)11(t f ) = 0 , 2 ≤ r ≤ ki (117)

d
dε

(D̆ r
i∗)21(ε) =−(Aii(ε)−Li(ε)Ci(ε))T (D̆ r

i∗)21(ε)− (Li(ε)Ci(ε))T (D̆ r
i∗)11(ε)

− (H r
i∗)21(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H r
i∗)23(ε)Bic(ε)uc(ε) , (D̆ r

i∗)21(t f ) = 0 , 1 ≤ r ≤ ki (118)

d
dε

(D̆1
i∗)31(ε) =−AT

ic(ε)(D̆
1
i∗)31(ε)+Rzi(ε)pzi(ε)

− (H 1
i∗ )31(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H 1
i∗ )33(ε)Bic(ε)uc(ε) , (D̆1

i∗)31(t f ) = 0 (119)

d
dε

(D̆ r
i∗)31(ε) =−AT

ic(ε)(D̆ r
i∗)31(ε)

− (H r
i∗)31(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (H r
i∗)33(ε)Bic(ε)uc(ε) , (D̆ r

i∗)31(t f ) = 0 , 2 ≤ r ≤ ki (120)
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d
dε

(D̆ r
i∗)41(ε) =−(Lic(ε)Cic(ε))T (ε)(D̆ r

i∗)31(ε)− (H r
i∗)43(ε)Bic(ε)uc(ε)

− (H r
i∗)41(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− (Aic(ε)−Lic(ε)Cic(ε))T (D̆ r
i∗)41(ε) , (D̆ r

i∗)41(t f ) = 0 , 1 ≤ r ≤ ki (121)

d
dε

D1
i∗(ε) =−Tr{(H 1

i∗ )11(ε)Li(ε)ViL
T
i (ε)− (H 1

i∗ )12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H 1
i∗ )21(ε)Li(ε)ViL

T
i (ε)+ (H 1

i∗ )22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H 1
i∗ )33(ε)Lic(ε)VicLT

ic(ε)− (H 1
i∗ )34(ε)Lic(ε)VicLT

ic(ε)}− ζ T
i (ε)Qi(ε)ζi(ε)

−Tr{−(H 1
i∗ )43(ε)Lic(ε)VicLT

ic(ε)+ (H 1
i∗ )44(ε)(GicWicGT

ic(ε)+Lic(ε)VicLT
ic(ε))}

− 2(D̆1
i∗)

T
11(ε)[Bii(ε)pxi(ε)+Cii(ε)pzi(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]− p∗T
xi
(ε)Rii(ε)p∗xi

(ε)

− 2(D̆1
i∗)

T
31(ε)Bic(ε)uc(ε)− p∗T

zi
(ε)Rzi(ε)p∗zi

(ε) , D1
i∗(t f ) = 0 (122)

d
dε

D r
i∗(ε)−Tr{(H r

i∗)11(ε)Li(ε)ViL
T
i (ε)− (H r

i∗)12(ε)Li(ε)ViL
T
i (ε)}

−Tr{−(H r
i∗)21(ε)Li(ε)ViL

T
i (ε)+ (H r

i∗)22(ε)(Gi(ε)WiG
T
i (ε)+Li(ε)ViL

T
i (ε))}

−Tr{(H r
i∗)33(ε)Lic(ε)VicLT

ic(ε)− (H r
i∗)34(ε)Lic(ε)VicLT

ic(ε)}
−Tr{−(H r

i∗)43(ε)Lic(ε)VicLT
ic(ε)+ (H r

i∗)44(ε)(GicWicGT
ic(ε)+Lic(ε)VicLT

ic(ε))}

− 2(D̆ r
i∗)

T
11(ε)[Bii(ε)p∗xi

(ε)+Cii(ε)p∗zi
(ε)+

Ni

∑
j=1

Bi j(ε)u∗i j(ε)]

− 2(D̆ r
i∗)

T
31(ε)Bic(ε)uc(ε) , D r

i∗(t f ) = 0 , 2 ≤ r ≤ ki . (123)

Notice that as for comparison with other state-of-the-art research, the principal
distinguishing feature of the research investigation herein is the pervasive use
of noncooperative game theory and person-by-person equilibrium strategies (78)
and (79) across the hierarchy for coordinated control of distributed systems. The
emphasis is the recognition of the presence of a coordinator and incumbent systems
and thus, addressing an important challenge in performance analysis supported by
(84)–(123) for intra- and inter-interactions considered at the outset to achieve the
attributes of “desired effects” and “tailored performance.”
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5 Conclusions

The present research investigation results in significant contributions to coordination
control science’s existing portfolio of methodologies. This portfolio contains a
coordinator which directs two or more interconnected stochastic systems. Thinking
about risk-averse attitudes toward performance uncertainty suggests new ideas for
extending existing theories of distributed control and multiperson decision analysis.
In this sense, the present research article suggested that making decisions using the
proposed method protects decision makers and/or controller designers from overly
optimistic design decisions that may not be the best under uncertainty. To account
for mutual influence from immediate neighbors that give rise to interaction com-
plexity such as potential noncooperation, each incumbent system or self-directed
agent autonomously focuses on the search for a person-by-person equilibrium
which is in turn remotely supported by local observers. Further discussions showed
that the person-by-person equilibrium is equivalent to the concept of feedback
Nash strategy. Another research issue discussed includes adjusting risk-averse
attitudes via risk-value aware performance indices. The process of adjustment for
performance risk aversion imposes some computational requirements as needed by
the construction of the states of the person-by-person equilibrium.

Future work will focus on distributed multiscale modeling and control with
explicit communications and partial information patterns, wherein research issues
are: (a) how the feedback of incumbent systems would affect macroscales and
macrostates of dominant coordinators? (b) how fast, small-scale behavior of
incumbent systems could potentially trigger conformation changes of dominant
coordinators? and (c) reliable and effective pathways for transferring information
and knowledge from dominant players to fringe players and vice versa?
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