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Abstract Radner’s solution of the static team decision problem is revisited.
A careful and complete statement of the static decentralized optimization problem,
also referred to as the team decision problem, is given. Decentralized optimization
is considered in the framework of nonzero-sum game theory, and the impact of the
partial information pattern on the structure of the optimal strategies is analyzed. The
complete solution of the static decentralized multivariate Quadratic Gaussian (QG)
optimization problem is obtained.
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1 Introduction

A static stochastic decentralized optimization problem where a team consisting of
two decision makers/players is at work is considered. The cost function is

J = J(u,v,ζ ) (1)

where u ∈ Rmu and v ∈ Rmv are the two players’ respective decision vari-
ables/controls and the state of nature, ζ ∈ Rn, n ≥ 2, is a random variable whose
p.d.f. f (ζ ) is known to both players. This is the players’ prior information—it is
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public information. The random variable ζ is partitioned

ζ = (ζ1,ζ2)
T

and the information pattern is as follows. At decision time the component ζ1 is
known to the player whose control is u, the u-player, and the component ζ2 is known
to the player whose control is v, the v-player. Thus, both players have imperfect
information. The u-player is oblivious of the ζ2 component of the random variable,
which is the v-player’s private information, and consequently the strategy of the u-
player is u = u(ζ1). The v-player is oblivious of the ζ1 component of the random
variable, which is the u-player’s private information, and consequently his or her
strategy is v = v(ζ2). The players have partial, or incomplete, information.

To obtain the optimal solution/strategies of the team/decentralized optimization
problem, the following optimization problem in Hilbert space must be solved.

J∗ = min
u(ζ1),v(ζ2)

Eζ ( J(u(ζ1),v(ζ2),ζ ))

= min
u(ζ1),v(ζ2)

∫
ζ1

∫
ζ2

J(u(ζ1),v(ζ2),(ζ1,ζ2)) f (ζ1,ζ2)dζ1dζ2 (2)

The instance where the u-player is interested in minimizing the cost function (1)
whereas the v-player strives to maximize the cost (1) calls for the formulation of
a stochastic zero-sum game with incomplete information, where a saddle point in
pure strategies, in Hilbert space, is sought: the value of the game, if it exists, is

J∗ = min
u(ζ1)

max
v(ζ2)

Eζ ( J(u(ζ1),v(ζ2),ζ ) )

= min
u(ζ1)

max
v(ζ2)

∫
ζ1

∫
ζ2

J(u(ζ1),v(ζ2),(ζ1,ζ2)) f (ζ1,ζ2)dζ1dζ2 (3)

This static zero-sum game in Hilbert space is in normal form.
In both the decentralized optimization problem posed in (2) and in the zero-sum

static game formulation (3), the u- and v-players have partial information. And in
both the decentralized optimization problem and in the zero-sum game, the players
decide on their respective strategies u(·) and v(·), knowing the type of information
that will become available to them, but before the information is actually received. In
(2) and (3), the players’ strategies are of prior commitment type. This is the reason
why, although the players have partial information and consequently it stands to
reason that their respective costs are conditional on their private information and
therefore they have different costs, the game (3) is nevertheless zero-sum. And for
the same reason, the solution of the decentralized optimization problem (2) entails
the minimization of just one cost functional.

The decentralized stochastic static optimization problem in Hilbert space (2),
referred to as a team decision problem, was addressed by Radner in his pioneering
paper [1]. The present work could aptly be named “variations on a team by Radner.”
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Since a strong interest in Witsenhausen’s counterexample from 1968 [2] persists to
this day, it is important to revisit Radner’s 1962 paper. Indeed, after the appearance
of Radner’s paper and until the publication of Witsenhausen’s counterexample, it
was widely believed in the controls community that the linear quadratic Gaussian
(LQG) paradigm is a guarantor of the applicability of the separation, or, certainty
equivalence, principle, and, as in LQG optimal control, the state is Gaussian
distributed so that the sufficient statistics are linear in the measurements/information
and are provided by linear Kalman filters. Consequently, the players’ optimal
strategies will be linear in the sufficient statistic, and in particular, the linear state
estimate. However, Radner showed in [1] that in the static Quadratic Gaussian (QG)
optimization problem with incomplete information, although the players’ optimal
strategies are affine in the information, the separation, or, certainty equivalence,
principle does not apply. And in [2] Witsenhausen showed that in the simplest
decentralized dynamic LQG optimal control problem neither does the separation
principle apply, nor are the optimal strategies linear in the measurements. The
bottom line: Radner’s paper [1] relates to Witsenhausen’s paper [2] like the Statics
and Dynamics fields in Mechanical Engineering. Thus, with a view to also obtaining
a better understanding of Witsenhausen’s counterexample, it is instructive to revisit
Radner’s work and closely examine the informational and game theoretic aspects of
the decentralized static QG optimization problem/team decision problem.

The article is organized as follows. In Sect. 2 the decentralized optimization
problem is analyzed using the concept of delayed commitment strategies and
necessary conditions for the existence of a solution are obtained. The necessary
conditions derived in Sect. 2 are used in Sect. 3 to directly obtain the solution of
the decentralized static multivariate QG optimization problem. The applicability of
the separation principle/certainty equivalence is discussed in Sect. 4. The necessary
and sufficient conditions for the existence of a solution of the decentralized static
multivariate QG optimization problem are discussed in Sect. 5. The solution of the
decentralized static multivariate QG optimization problem using the concept of
prior commitment strategies is presented in Sect. 6. It is shown that although in the
static case the delayed commitment and prior commitment strategies are equivalent,
when the concept of prior commitment strategies is used, the strategies are harder
to derive. Finally, in Sect. 7 the decentralized static multivariate QG optimization
problem where the players’ information is asymmetric is solved. The structure of the
optimal solutions for cases of extreme informational asymmetry yields interesting
insights into decentralized optimal control. Conclusions are presented in Sect. 8.

2 Analysis

The solution of the static team/decentralized optimization problem pursued in this
paper is based on the following approach. Rather than tackling the Hilbert space
optimization problem (2) head on, we instead opt for a game theoretic analysis of
the decision problem on hand.
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Consider first the decision problem faced by the u-player after he has received the
information ζ1, but before anyone has acted. His or Her cost is evaluated as follows.

J(u)(u,v(·);ζ1) = Eζ ( J(u,v(ζ2),ζ ) | ζ1 )

= Eζ2
( J(u,v(ζ2),(ζ1,ζ2)) | ζ1 )

=
∫

ζ2

J(u,v(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 → min
u

Similar considerations apply to the v-player: having received the ζ2 information, the
cost which the v-player strives to minimize is

J(v)(u(·),v;ζ2) = Eζ ( J(u(ζ1),v,ζ ) | ζ2 )

= Eζ1
( J(u(ζ1),v,(ζ1,ζ2)) | ζ2 )

=

∫
ζ1

J(u(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 → min
v

Now, the u and v-players’ strategies are of delayed commitment type. Consequently,
although both players strive to minimize the cost function (1), since they have partial
information, their expected costs will be conditional on their private information and
will not be the same—each player minimizes his or her own cost functional. The
static team problem/decentralized optimal control problem (2) has been reformu-
lated as a stochastic nonzero-sum game with incomplete information. Hence, a Nash
equilibrium is sought. Using delayed commitment type strategies has highlighted
informational issues which are apparent in extensive-form games but are suppressed
in normal form games.

If a solution to the team/decentralized control problem in the form of a Nash
equilibrium exists, it can be obtained as follows.

The u-player’s value f unction is

(J(u)(ζ1;v∗(·)))∗ = min
u

∫
ζ2

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 (4)

and his or her optimal strategy is obtained as follows: the u-player calculates the
vector in Rmu

u∗(ζ1) = arg min
u

∫
ζ2

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 ∀ ζ1

The v-player’s value f unction is

(J(v)(ζ2;u∗(·)))∗ = min
v

∫
ζ1

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 (5)
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and his or her optimal strategy is obtained as follows: the v-player calculates the
vector in Rmv

v∗(ζ2) = arg min
v

∫
ζ1

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 ∀ ζ2

Hence, in order to determine the players’ optimal strategies, that is, the functions
u∗(·) and v∗(·), the equation in u ∈ Rmu ,

∫ ∂
∂u

J(u,v∗(ζ2),(ζ1,ζ2)) f (ζ2 | ζ1)dζ2 = 0 ∀ζ1 (6)

must be solved ∀ζ1, and in this way the u-player’s strategy u∗(ζ1) is obtained. At
the same time the equation in v ∈ Rmv

∫ ∂
∂v

J(u∗(ζ1),v,(ζ1,ζ2)) f (ζ1 | ζ2)dζ1 = 0 ∀ζ2 (7)

must be solved ∀ζ2, and in this way the v-player’s strategy v∗(ζ2) is obtained. In
addition, the following second-order conditions/inequalities must hold

∫ ∂ 2

∂u2 J(u,v∗(ζ2),(ζ1,ζ2)) |u∗(ζ1)
f (ζ2 | ζ1)dζ2 > 0 ∀ζ1 (8)

and

∫ ∂ 2

∂v2 J(u∗(ζ1),v,(ζ1,ζ2)) |v∗(ζ2) f (ζ1 | ζ2)dζ1 > 0 ∀ζ2 (9)

A set of two coupled functional equations (6) and (7) has been derived whose
solution, if it exists, yields the u- and v-players’ respective Nash strategies u∗(ζ1)
and v∗(ζ2). Evidently, the solution of static team/decentralized optimization prob-
lems and/or nonzero-sum stochastic games calls for the solution of a somewhat
nonconventional mathematical problem, (6) and (7). The culprit is the partial
information pattern.

At this juncture it is apparent that the solution concept advanced for the original
team/decentralized control problem is a Nash equilibrium in the nonzero-sum
stochastic game (4) and (5). Using delayed commitment strategies, a Person-By-
Person Satisfactory (PBPS) minimization is pursued: the strategy u∗(·) of the
u-player is best, given that the v-player uses the strategy v∗(·), and the strategy
v∗(·) of the v-player must be best, given that the u-player uses the strategy u∗(·).
Thus, the derived strategies (u∗(·),v∗(·)) are person-by-person minimal. This is so
because the players’ outcomes provided by (u∗(·),v∗(·)) cannot be improved by
unilaterally changing, say, u∗(·) alone; and, vice versa, the strategy (u∗(·),v∗(·))
cannot be improved by changing v∗(·) alone—this being the essence of a Nash
equilibrium. Now, in nonzero-sum games, the calculated Nash equilibrium better
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be unique, for the solution to be applicable. However, in the absence of conflict of
interest, as is the case in our original team/decentralized optimization problem (2),
uniqueness of the Nash equilibrium solution is not an issue and the players will
naturally settle on that particular Nash equilibrium (u∗(·),v∗(·)) which yields the
minimal expected cost—we here refer to the calculated expected cost (2), namely

J∗ = J(u∗(·),v∗(·)) = Eζ ( J(u∗(ζ1),v
∗(ζ2),ζ ) )

=

∫
ζ1

∫
ζ2

J(u∗(ζ1),v
∗(ζ2),(ζ1,ζ2))dζ1dζ2 (10)

Uniqueness of the obtained Nash equilibrium follows if the cost function (1) is
convex in u and in v. This is so because the weighted sum of convex functions is
convex—see (4) and (5).

Clearly, the optimal solution of the original team/decentralized optimization
problem (2), if it exists, is PBPS, that is, it is a Nash equilibrium. However, having
found an even unique Nash equilibrium of the nonzero-sum stochastic game (4)
and (5) does not guarantee optimality in the original team/decentralized control
problem, where one is interested in the expected cost (2). To answer the question
of the existence of an optimal solution of the original team/decentralized control
problem, the optimization problem (2) must be considered in a Hilbert space setting,
as in [1], and convexity in (u,v) of the cost function (1) is required.

In summary, if a solution of the team/decentralized optimization problem exists,
the above outlined solution of the attendant nonzero-sum stochastic game (4) and
(5) will yield its optimal solution. However, should the cost function (1) be convex
in u and v, but not in (u,v), then, while a Nash equilibrium in the nonzero-sum
game (4) and (5) might exist, a solution of the decentralized optimization problem
(2) might not exist.

3 Static Quadratic Gaussian Team

Using the theory developed in Sect. 2, the complete solution of the multivariate QG
team decision/decentralized optimization problem is now derived.

The payoff function (1) is quadratic:

J(u,v,ζ ) =−uT R(u)u− vT R(v)v+ 2vTR(u,v)u+ 2(uT ,vT )

(
ζ1

ζ2

)

and the components of the random variable ζ are ζ1 ∈ Rm, ζ2 ∈ Rn−m. The u- and
v-players’ control variables are u ∈ Rm and v ∈ Rn−m and the respective controls’
effort weighing matrices

R(u) > 0, R(v) > 0;

R(u,v) is an (n−m)×m coupling matrix.
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We calculate the v-player’s payoff

J(v)(v,ζ2;u(·)) = 2vT ζ2 − vT R(v)v+ 2vT R(u,v)Eζ1
( u(ζ1) | ζ2 )

+Eζ1
( 2uT (ζ1)ζ1 − uT (ζ1)R

(u)u(ζ1) | ζ2 ) (11)

Differentiation in v yields the unique optimal control response to the u-player’s
strategy u(ζ1),

v∗(ζ2) = (R(v))−1ζ2 +(R(v))−1R(u,v)Eζ1
( u(ζ1) | ζ2 ) ∀ζ2 (12)

The u-player’s payoff is

J(u)(u,ζ1;v(·)) = 2uT ζ1 − uT R(u)u+ 2uT(R(u,v))T Eζ2
( v(ζ2) | ζ1 )

+Eζ2
( 2vT (ζ2)ζ2 − vT (ζ2)R

(v)v(ζ2) | ζ1 ) (13)

and differentiation in u yields the unique optimal control response to the v-player’s
strategy v(ζ2),

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T Eζ2
( v(ζ2) | ζ1 ) ∀ζ1 (14)

Furthermore, the positive definiteness of the controls’ effort weighing matrices
guarantees that the conditions (8) and (9) hold.

At this point we assume that the p.d.f. f of the random variable ζ is a multivariate
normal distribution, that is,

f (ζ ) =
1√

(2π)n | det(P) | exp−
1
2 (ζ−ζ )T P−1(ζ−ζ )

and the covariance matrix P is real, symmetric, and positive definite. In other words,
the random variable

ζ =

(
ζ1

ζ2

)
∼ N

((
ζ 1

ζ 2

)
,

[
P1,1 P1,2

PT
1,2 P2,2

])
(15)

In the special case of a bivariate normal distribution with ζ1,ζ2 ∈ R1,

ζ ∼ N

((
ζ 1

ζ 2

)
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
(16)

and −1 < ρ < 1.
The following is well known.
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Lemma 1. Consider the multivariate normal distribution (15). The distribution of
ζ1 conditional on ζ2 is

ζ1 ∼ N (ζ 1 +P1,2P−1
2,2 (ζ2 − ζ 2),P1,1 −P1,2P−1

2,2 PT
1,2) (17)

and the distribution of ζ2 conditional on ζ1 is

ζ2 ∼ N (ζ 2 +PT
1,2P−1

1,1 (ζ1 − ζ 1),P2,2 −PT
1,2P−1

1,1 P1,2) (18)

The marginal p.d.f.s f1(ζ1) and f2(ζ2) are also Gaussian, that is,

ζ1 ∼ N (ζ 1,P1,1) (19)

and

ζ2 ∼ N (ζ 2,P2,2) (20)

In the special case of a bivariate normal distribution (16), the distribution of ζ1

conditional on ζ2 is

ζ1 ∼ N
(

ζ 1 +ρ
σ1

σ2
(ζ2 − ζ 2),(1−ρ2)σ2

1

)
(21)

and the distribution of ζ2 conditional on ζ1 is

ζ2 ∼ N
(

ζ 2 +ρ
σ2

σ1
(ζ1 − ζ 1),(1−ρ2)σ2

2

)
(22)

The marginal p.d.f.s f1(ζ1) and f2(ζ2) are

ζ1 ∼ N (ζ 1,σ
2
1 ) (23)

and

ζ2 ∼ N (ζ 2,σ
2
2 ) (24)

Inserting (18) into (14) yields

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T Ew1( v(ζ 2 +PT
1,2P−1

1,1 (ζ1 − ζ 1)+w1) )

where

w1 ∼ N (0,P2,2 −PT
1,2P−1

1,1 P1,2)
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and inserting (17) into (12) yields

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)Ew2( u(ζ 1 +P1,2P−1
2,2 (ζ2 − ζ 2)+w2) )

where

w2 ∼ N (0,P1,1 −P1,2P−1
2,2 PT

1,2)

Using the convolution notation we obtain

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T GP2,2−PT
1,2P−1

1,1 P1,2
∗ v(PT

1,2P−1
1,1 ζ1 + ζ2 −PT

1,2P−1
1,1 ζ 1)

where the function GP2,2−PT
1,2P−1

1,1 P1,2
is the p.d.f. of the Gaussian random variable w1.

Similarly

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)GP1,1−P1,2P−1
2,2 PT

1,2
∗ u(P1,2P−1

2,2 ζ2 + ζ1 −P1,2P−1
2,2 ζ 2)

where the function GP1,1−P1,2P−1
2,2 PT

1,2
is the p.d.f. of the Gaussian random variable w2.

Hence, the optimal strategies satisfy the equations

u∗(ζ1) = (R(u))−1ζ1

+(R(u))−1(R(u,v))T GP2,2−PT
1,2P−1

1,1 P1,2
∗ v∗(PT

1,2P−1
1,1 ζ1 + ζ 2 −PT

1,2P−1
1,1 ζ 1)

(25)

and

v∗(ζ2) = (R(v))−1ζ2

+(R(v))−1R(u,v)GP1,1−P1,2P−1
2,2 PT

1,2
∗ u∗(P1,2P−1

2,2 ζ2+ζ 1−P1,2P−1
2,2 ζ 2) (26)

Equations (25) and (26) constitute a linear system of two convolution-type Fredholm
integral equations of the second kind with Gaussian kernels, in the unknown
functions/optimal strategies u∗(·) and v∗(·). Moreover, the forcing functions are
linear in their arguments. In view of these observations, we apply

Ansatz 2. The u- and v-players’ optimal strategies are affine, that is,

u∗(ζ1) = K(u)ζ1 + c(u) (27)
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and

v∗(ζ2) = K(v)ζ2 + c(v) (28)

�	
Inserting the strategies (27) and (28) into the respective (25) and (26), we

calculate

K(v)ζ2 + c(v) = (R(v))−1ζ2 +(R(v))−1R(u,v)K(u)(P1,2P−1
2,2 ζ2 + ζ 1 −P1,2P−1

2,2 ζ 2)

+(R(v))−1R(u,v)c(u) ∀ ζ2

and

K(u)ζ1 + c(u) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T K(v)(PT
1,2P−1

1,1 ζ1 + ζ2 −PT
1,2P−1

1,1 ζ 1)

+(R(u))−1(R(u,v))T c(v) ∀ ζ1

We conclude that the following four linear equations in the four unknowns K(u)
m×m,

K(v)
(n−m)×(n−m)

, c(u) ∈ Rm and c(v) ∈ Rn−m hold:

K(v) = (R(v))−1(I +R(u,v)K(u)P1,2P−1
2,2 ) , (29)

K(u) = (R(u))−1(I +(R(u,v))T K(v)PT
1,2P−1

1,1 ) , (30)

c(v) = (R(v))−1R(u,v)K(u)(ζ 1 −P1,2P−1
2,2 ζ 2)+ (R(v))−1R(u,v)c(u) , (31)

and

c(u) = (R(u))−1(R(u,v))T K(v)(ζ 2 −PT
1,2P−1

1,1 ζ 1)+ (R(u))−1(R(u,v))T c(v) (32)

Combining (29) and (30) yields the respective linear, Lyapunov type, matrix
equations for K(u) and K(v),

R(u)K(u)P1,1 − (R(u,v))T (R(v))−1R(u,v)K(u)P1,2P−1
2,2 PT

1,2

= P1,1 +(R(u,v))T (R(v))−1PT
1,2 (33)

and

R(v)K(v)P2,2 −R(u,v)(R(u))−1(R(u,v))T K(v)PT
1,2P−1

1,1 P1,2 = P2,2 +R(u,v)(R(u))−1P1,2

(34)
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Solving the linear Lyapunov-type matrix equations (33) and (34) yields the optimal
gains K(u) and K(v), whereupon the constant vectors c(u) ∈ Rmu and c(v) ∈ Rmv are

(
c(u)

c(v)

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1
(
(R(u,v))T K(v)(ζ 2 −PT

1,2P−1
1,1 ζ 1)

R(u,v)K(u)(ζ 1 −P1,2P−1
2,2 ζ 2)

)

Concerning the calculation of the intercepts c(u) and c(v), the following holds.
A necessary condition for the existence of a solution to the multivariate

decentralized QG optimization problem is that the Schur complements R(u) −
(R(u,v))T (R(v))−1R(u,v) and R(v)−R(u,v)(R(u))−1(R(u,v))T are nonsingular.

In the special case where the controls are scalars and the p.d.f. of the random
variable ζ is the bivariate normal distribution (16), the optimal gains are

K(u) =
R(v) +ρ σ2

σ1
R(u,v)

R(u)R(v)−ρ2(R(u,v))2
(35)

and

K(v) =
R(u) +ρ σ1

σ2
R(u,v)

R(u)R(v)−ρ2(R(u,v))2
(36)

The intercepts are the solution of the linear system

[
R(u) −R(u,v)

R(u,v) −R(v)

](
c(u)

c(v)

)
= R(u,v)

(
(ζ 2 −ρ σ2

σ1
ζ 1)K

(v)

−(ζ 1 −ρ σ1
σ2

ζ 2)K
(u)

)

=
R(u,v)

R(u)R(v)−ρ2(R(u,v))2

(
(ζ 2 −ρ σ2

σ1
ζ 1)(R

(u) +ρ σ1
σ2

R(u,v))

−(ζ 1 −ρ σ1
σ2

ζ 2)(R
(v) +ρ σ2

σ1
R(u,v))

)

so that

c(u) =
R(u,v)

(R(u)R(v)−ρ2(R(u,v))2)((R(u,v))2 −R(u)R(v)){[
(ρ2 − 1)R(u,v)R(v)−ρ

σ2

σ1
((R(u,v))2

−R(u)R(v))
]
ζ 1 +[ρ2(R(u,v))2 −R(u)R(v)]ζ 2

}
(37)
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and

c(v) =
R(u,v)

(R(u)R(v)−ρ2(R(u,v))2)((R(u,v))2 −R(u)R(v)){[
(ρ2 − 1)R(u,v)R(u)−ρ

σ1

σ2
((R(u,v))2

−R(u)R(v))
]
ζ 2 +[ρ2(R(u,v))2 −R(u)R(v)]ζ 1

}
(38)

The following holds.

Proposition 3. The necessary and sufficient conditions for the existence of a solu-
tion of the scalar decentralized QG optimization problem using delayed commitment
strategies are

R(u) > 0,

R(v) > 0,

R(u)R(v) 
= (R(u,v))2,

and

R(u)R(v) 
= ρ2(R(u,v))2

The u- and v-players’ optimal strategies are specified in (35)–(38) and are deter-
mined by the scalar problem parameters R(u), R(v), R(u,v), ζ 1, ζ 2, σ1, σ2, and ρ .
The optimal solution (35)–(38) is symmetric. �

Corollary 4. In the special scalar case where the random variable’s components
ζ1 and ζ2 are uncorrelated and ρ = 0, the optimal strategies are

u∗(ζ1) =
1

R(u)
ζ1 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(u)
ζ 1 + ζ 2

)

and

v∗(ζ2) =
1

R(v)
ζ2 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(v)
ζ 2 + ζ1

)

Also, in the special case where in the quadratic cost function there is no coupling
and R(u,v) = 0, the optimal strategies are linear:

u∗(ζ1) =
1

R(u)
ζ1 (39)
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and

v∗(ζ2) =
1

R(v)
ζ2 (40)

�

4 Certainty Equivalence

We briefly digress and first examine the centralized static QG optimization problem.

4.1 Centralized QG Optimization Problem

In the centralized static QG optimization problem where both players have complete
knowledge of the state of nature (ζ1,ζ2)

T , a necessary and sufficient condition for
the existence of an optimal solution is

M ≡
[

R(u) −(R(u,v))T

−R(u,v) R(v)

]
> 0

and the optimal controls (u∗,v∗)T are

(
u∗

v∗

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1(ζ1

ζ2

)

We shall require the following.

Lemma 5. Consider the blocked symmetric matrix

M =

[
M1,1 M1,2

MT
1,2 M2,2

]

and let

N ≡ M−1

Assuming the required matrix inverses exit, the inverse matrix

N =

[
N1,1 N1,2

NT
1,2 N2,2

]



160 M. Pachter and K. Pham

where the blocks

N1,1 = M−1
1,1 [I+M1,2(M2,2 −MT

1,2M−1
1,1 M1,2)

−1MT
1,2M−1

1,1 ]

N1,2 = M−1
1,1 M1,2(M

T
1,2M−1

1,1 M1,2 −M2,2)
−1

N2,2 = −(MT
1,2M−1

1,1 M1,2 −M2,2)
−1

An alternative representation in blocked form of the inverse matrix N is

N1,1 = (M1,1 −M1,2M−1
2,2 MT

1,2)
−1

N1,2 = (M1,2M−1
2,2 MT

1,2 −M1,1)
−1M1,2M−1

2,2

N2,2 = M−1
2,2 +M−1

2,2MT
1,2(M1,1 −M1,2M−1

2,2 MT
1,2)

−1M1,2M−1
2,2

Proof. By inspection, and the application of the Matrix Inversion Lemma. �	
We shall also require

Lemma 6. The real symmetric matrix

M =

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]

is positive definite i f f the matrices R(v) > 0, R(u) > 0 and their respective Schur
complements are positive definite, that is,

R(u)− (R(u,v))T (R(v))−1R(u,v) > 0

R(v)−R(u,v)(R(u))−1(R(u,v))T > 0 �	
In view of Lemmas 5 and 6, the following holds.

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1

=

[
N1,1 N1,2

NT
1,2 N2,2

]

where

N1,1 = (R(u))−1[I+(R(u,v))T (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1R(u,v)(R(u))−1]

N1,2 = (R(u))−1(R(u,v))T (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1

N2,2 = (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1
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or, alternatively,

N1,1 = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1

N1,2 = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

N2,2 = (R(v))−1 +(R(v))−1R(u,v)(R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

Hence, in the centralized scenario the explicit formulae for the optimal controls
are

u∗(ζ1,ζ2) = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1(ζ1 +(R(u,v))T (R(v))−1ζ2) (41)

and

v∗(ζ1,ζ2) = (R(v)−R(u,v)(R(u))−1(R(u,v))T )−1(R(u,v)(R(u))−1ζ1 + ζ2) (42)

Corollary 7. In the special case where the controls are scalars, the necessary and
sufficient conditions for the existence of an optimal solution are

R(u) > 0,

R(v) > 0,

and

R(u)R(v) > (R(u,v))2

The optimal controls are linear and the solution is symmetric:

u∗(ζ1,ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ1 +R(u,v)ζ2) (43)

v∗(ζ1,ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ1 +R(u)ζ2) (44)

�	

4.2 Separation Principle

We now return to the decentralized QG optimization problem and ascertain the
applicability of certainty equivalence, a.k.a., the separation principle. We confine
our attention to the scalar case and a bivariate Gaussian random variable (16).

When the information available to the u-player is restricted to the ζ1 component
of the state of nature, then, according to Lemma 1, his or her Maximum Likelihood
(ML) estimate of the ζ2 component of the state of nature will be
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ζ̂2 = ζ 2 +ρ
σ2

σ1
(ζ1 − ζ1)

Similarly, when the information available to the v-player is restricted to the ζ2

component of the state of nature, then, according to Lemma 1, his or her ML
estimate of the ζ1 component of the state of nature will be

ζ̂1 = ζ 1 +ρ
σ1

σ2
(ζ2 − ζ2)

Replacing ζ2 in the centralized solution given by Corollary 7, (43), by the u-player’s
ML estimate ζ̂2 of ζ2 yields the u-player’s certainty equivalence-based affine
strategy

u∗(ζ1) =
1

R(u)R(v)− (R(u,v))2

{
R(v)ζ1 +R(u,v)

[
ζ 2 +ρ

σ2

σ1
(ζ1 − ζ 1)

]}

=
1

R(u)R(v)− (R(u,v))2

[(
R(v) +ρ

σ2

σ1
R(u,v)

)
ζ1 +R(u,v)

(
ζ 2 −ρ

σ2

σ1
ζ 1

)]

(45)

and replacing ζ1 in the centralized solution given by Corollary 7, (44), by the
v-player’s ML estimate ζ̂1 of ζ1 yields the v-player’s affine strategy

v∗(ζ2) =
1

R(u)R(v)− (R(u,v))2

{
R(u,v)

[
ζ 1 +ρ

σ1

σ2
(ζ2 − ζ2)

]
+R(u)ζ2

}

=
1

R(u)R(v)− (R(u,v))2

[(
R(u) +ρ

σ1

σ2
R(u,v)

)
ζ2 +R(u,v)

(
ζ 1 −ρ

σ1

σ2
ζ 2

)]

(46)

In the special case where the random variable’s components ζ1 and ζ2 are not
correlated, that is, ρ = 0, the players’ certainty equivalence-based affine strategies
are

u(ζ1) =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ1 +R(u,v)ζ 2)

and

v(ζ2) =
1

R(u)R(v)− (R(u,v))2
(R(u)ζ2 +R(u,v)ζ 1)

In the special case where there is no coupling in the quadratic payoff function and
R(u,v) = 0, the players’ certainty equivalence-based strategies are (39) and (40).
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5 Discussion

Similar to the optimal strategies in the decentralized control problem, also the
certainty equivalence-based strategies (45) and (46) are affine and symmetric.
However, a comparison of the u-player’s optimal strategy which is specified in (35)
and (37), and his or her certainty equivalence-based strategy (45), and similarly, a
comparison of the v-player’s optimal strategy which is specified in (36) and (38),
and his or her certainty equivalence-based strategy (46), leads one to conclude that
certainty equivalence does not hold. This is so even when there is no correlation
and the parameter ρ = 0. Certainty equivalence holds only in the special case where
there is no coupling in the quadratic payoff function and R(u,v) = 0. This state of
affairs is attributable to the partial information pattern.

It is also interesting to contrast the conditions for the existence of a solution of
the centralized QG optimization problem and the conditions for the existence of a
solution of the decentralized QG optimization problem. We note that the solution
(41) and (42) of the centralized optimization problem can be formally derived using
the PBPS solution concept. For this we need

R(u) > 0

R(v) > 0

and the Schur complements must be nonsingular, that is,

det(R(u)− (R(u,v))T (R(v))−1R(u,v)) 
= 0

and

det(R(v)−R(u,v)(R(u))−1(R(u,v))T ) 
= 0

At the same time, we know that an optimal solution of the centralized optimization
problem exists iff the matrix M is positive definite. Hence, in view of Lemma 6, we
conclude that the positive definiteness of the Schur complements of the positive
definite matrices R(u) and R(v) is a necessary condition for the existence of
an optimal solution of the centralized optimization problem. At the same time,
the invertibility of the Schur complements, while not sufficient to guarantee the
existence of a solution of the centralized optimal control problem, is sufficient to
allow a solution which conforms to the PBPS solution concept-based decentralized
optimization problem—we have obtained a unique Nash solution and in the scalar
case the respective u and v-players’ Nash strategies are determined by (35), (37),
and (36), (38), respectively.

Now, in view of [1], the positive definiteness of M is sufficient for the
existence of an optimal solution of the decentralized optimization problem (2): the
necessary and sufficient condition for the existence of a solution of the centralized
optimization problem is a sufficient condition for the existence of an optimal
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solution of the decentralized problem, and moreover, the u- and v-players’ Nash
strategies determined by (35), (37), and (36), (38), respectively, are then optimal.
However, if the matrix M is not positive definite but the matrices R(u) and R(v) are
positive definite and their Schur complements are nonsingular, then while an optimal
solution to the centralized optimization problem does not exist, in the decentralized
control problem a PBPS solution concept-based unique Nash equilibrium exists.

6 Decentralized Static Quadratic Gaussian Optimization
Problem

The original formulation of the decentralized optimization problem with a quadratic
payoff functional, as formulated by Radner, (2), is considered in the special context
of the multivariate QG optimization problem:

J(u(ζ1),v(ζ2),ζ ) =
∫

ζ1

∫
ζ2

[
− uT (ζ1)R

(u)u(ζ1)− vT (ζ2)R
(v)v(ζ2)

+2vT (ζ2)R
(u,v)u(ζ1)

+2(uT (ζ1),v
T (ζ2))

(
ζ1

ζ2

)]
f (ζ1,ζ2)dζ1dζ2

=

∫
ζ1

[−uT (ζ1)R
(u)u(ζ1)+ 2uT (ζ1)ζ1] f1(ζ1)dζ1

+

∫
ζ2

[−vT (ζ2)R
(v)v(ζ2)+ 2vT (ζ2)ζ2] f2(ζ2)dζ2

+2
∫

ζ1

∫
ζ2

vT (ζ2)R
(u,v)u(ζ1) f (ζ1,ζ2)dζ1dζ2 (47)

From [1] we know that optimal prior commitment strategies u∗(·) and v∗(·) exist
and they are affine, provided the quadratic cost function is convex, that is, the matrix
M is positive definite. Thus, the u- and v-players’ strategies are parameterized as
follows:

u(ζ1) = K(u)
p ζ1 + c(u)p (48)

and

v(ζ2) = K(v)
p ζ2 + c(v)p (49)

The subscript p indicates that now the strategies are of the prior commitment type.
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Inserting the expressions (48) and (49) into (47) yields

J(K(u)
p ,K(v)

p ,c(u)p ,c(v)p ) = −Eζ1
( (K(u)

p ζ1 + c(u)p )T R(u)(K(u)
p ζ1 + c(u)p )

+2(K(u)
p ζ1 + c(u)p )T ζ1 )

−Eζ2
( (K(v)

p ζ2 + c(v)p )T R(v)(K(v)
p ζ2 + c(v)p )

+2(K(v)
p ζ2 + c(v)p )T ζ2 )

+2Eζ ( (K
(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) (50)

The payoff (50) is a function of the parameters K(u)
p , K(v)

p , c(u)p , and c(v)p .
The payoff function is differentiated in the parameters and the derivatives are set

equal to zero. We can interchange the order of integration and differentiation. We
shall use the notation.

ei is the unit vector in the Euclidian spaces Rm or Rn−m, all of whose entries are
zeroes except entry number i.

The following calculations are needed.

Lemma 8.

∂
∂ (K(u)

p )i, j

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

= 2ζ T
1 e je

T
i R(u)K(u)

p ζ1 + 2ζ T
1 e je

T
i R(u)c(u)p

and consequently, using the properties of the Trace operator and the fact that the
marginal p.d.f. of ζ1 is Gaussian with expectation ζ 1 and covariance P1,1, we
calculate

Eζ1

(
∂

∂ (K(u)
p )i, j

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

)
= 2eT

i R(u)K(u)
p P1,1e j

+2ζ
T
1 e je

T
i R(u)K(u)

p ζ 1

+2ζ
T
1 e je

T
i R(u)c(u)p

= 2eT
i R(u)K(u)

p P1,1e j

+2eT
j ζ 1 · eT

i R(u)K(u)
p ζ 1

+2eT
j ζ 1 · eT

i R(u)c(u)p ,

i = 1, . . . ,m, j = 1, . . . ,m
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Similarly,

∂
∂ (K(v)

p )i, j

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p ))

= 2ζ T
2 e je

T
i R(v)K(v)

p ζ2 + 2ζ T
2 e je

T
i R(v)c(v)p

and consequently

Eζ2

(
∂

∂ (K(v)
p )i, j

(K(v)
p ζ2 +c(v)p )T R(v)(K(v)

p ζ2 +c(v)p )

)
= 2eT

i R(v)K(v)
p P2,2e j

+2ζ T
2 e je

T
i R(v)K(v)

p ζ 2

+2ζ T
2 e je

T
i R(v)c(v)p

= 2eT
i R(v)K(v)

p P2,2e j

+2eT
j ζ 2 · eT

i R(v)K(v)
p ζ 2

+2eT
j ζ 2 · eT

i R(v)c(v)p ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m

In addition

∂
∂ (K(u)

p )i, j

(ζ T
1 (K(u)

p ζ1 + c(u)p )) = ζ T
1 eie

T
j ζ1

and consequently

Eζ1

(
∂

∂ (K(u)
p )i, j

(ζ T
1 (K(u)

p ζ1 + c(u)p ))

)
= eT

j P1,1ei + eT
i ζ 1 · eT

j ζ 1 ,

i = 1, . . . ,m, j = 1, . . . ,m

Similarly,

∂
∂ (K(v)

p )i, j

(ζ T
2 (K(v)

p ζ2 + c(v)p )) = eT
i ζ2 · eT

j ζ2

and consequently

Eζ2

(
∂

∂ (K(v)
p )i, j

(ζ T
2 (K(v)

p ζ2 + c(v)p ))

)
= eT

j P2,2ei + eT
i ζ 2 · eT

j ζ 2 ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m
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Also,

∂

∂ (K(u)
p )i, j

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (K(v)
p ζ2 + c(v)p )T R(u,v)ei · eT

j ζ1

and consequently

Eζ

(
∂

∂ (K(u)
p )i, j

((K(v)
p ζ2 +c(v)p )T R(u,v)(K(u)

p ζ1 +c(u)p ))

)
= eT

j ζ 1 · eT
i (R

(u,v))T c(v)p

+eT
j ζ 1 · eT

i (R
(u,v))T K(v)

p ζ 2

+eT
i (R

(u,v))T K(v)
p P2,1e j ,

i = 1, . . . ,m, j = 1, . . . ,m

Similarly,

∂
∂ (K(v)

p )i, j

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (K(u)
p ζ1 + c(u)p )T R(u,v)eie

T
j ζ2

and consequently

Eζ

(
∂

∂ (K(v)
p )i, j

((K(v)
p ζ2 +c(v)p )T R(u,v)(K(u)

p ζ1 +c(u)p ))

)
= ζ T

2 e je
T
i (R

(u,v))T c(u)p

+ζ T
2 e je

T
i (R

(u,v))T K(u)
p ζ 1

+eT
i (R

(u,v))T K(u)
p P1,2e j

= eT
j ζ 2 · eT

i (R
(u,v))T c(u)p

+eT
j ζ 2 · eT

i (R
(u,v))T K(u)

p ζ 1

+eT
i (R

(u,v))T K(u)
p P1,2e j ,

i = 1, . . . ,n−m, j = 1, . . . ,n−m

Furthermore,

∂
∂ (c(u)p )

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p )) = 2R(u)c(u)p + 2R(u)K(u)
p ζ1

and consequently

Eζ1

(
∂

∂c(u)p

((K(u)
p ζ1 + c(u)p )T R(u)(K(u)

p ζ1 + c(u)p ))

)
= 2R(u)c(u)p + 2R(u)K(u)

p ζ 1
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Similarly,

∂
∂ (c(v)p

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p )) = 2R(v)c(v)p + 2R(v)K(v)
p ζ2

and consequently

Eζ2

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(v)(K(v)

p ζ2 + c(v)p ))

)
= 2R(v)c(v)p + 2R(v)K(v)

p ζ 2

In addition,

∂
∂c(u)p

((K(u)
p ζ1 + c(u)p )T ζ1) = ζ1

and consequently

Eζ1

(
∂c(u)p

∂
((K(u)

p ζ1 + c(u)p )T ζ1)

)
= ζ 1

Similarly,

∂
∂c(v)p

((K(v)
p ζ2 + c(v)p )T ζ2) = ζ2

and consequently

Eζ2

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )T ζ2)

)
= ζ 2

Finally,

∂
∂c(u)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = (R(u,v))T (K(v)
p ζ2 + c(v)p )

and consequently

Eζ

(
∂

∂ c(u)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p ))

)
= (R(u,v))T K(v)

p ζ 2 +(R(u,v))T c(v)p



Static Teams and Stochastic Games 169

Similarly,

∂
∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p )) = R(u,v)(K(u)
p ζ1 + c(u)p )

and consequently

Eζ

(
∂

∂c(v)p

((K(v)
p ζ2 + c(v)p )T R(u,v)(K(u)

p ζ1 + c(u)p ))

)
= R(u,v)K(u)

p ζ 1 +R(u,v)c(u)p

�

The optimality conditions and Lemma 8 yield the system of n(n+1)−2m(n−m)
linear equations

eT
i R(u)K(u)

p P1,1e j +(eT
j ζ 1) · eT

i R(u)K(u)
p ζ 1

+(eT
j ζ 1) · eT

i R(u)c(u)p − (eT
j ζ 1) · eT

i (R
(u,v))T c(v)p

−(eT
j ζ 1) · eT

i (R
(u,v))T K(v)

p ζ 2 − eT
i (R

(u,v))T K(v)
p P2,1e j

= eT
j P1,1ei +(eT

i ζ 1) · (eT
j ζ 1) (51)

where ei,e j ∈ Rm and i = 1, . . . ,m, j = 1, . . . ,m,

eT
i R(v)K(v)

p P2,2e j +(eT
j ζ 2) · eT

i R(v)K(v)
p ζ 2

+(eT
j ζ 2) · eT

i R(v)c(v)p − (eT
j ζ 2) · eT

i R(u,v)c(u)p

−(eT
j ζ 2) · eT

i R(u,v)K(u)
p ζ 1 − eT

i R(u,v)K(u)
p P1,2e j

= eT
j P2,2ei +(eT

i ζ 2) · (eT
j ζ 2) (52)

where ei,e j ∈ Rn−m and i = 1, . . . ,n−m, j = 1, . . . ,n−m,

(R(u,v))T K(v)
p ζ 2 +(R(u,v))T c(v)p + ζ1 = R(u)c(u)p +R(u)K(u)

p ζ 1, (53)

and

R(u,v)K(u)
p ζ 1 +R(u,v)c(u)p + ζ2 = R(v)c(v)p +R(v)K(v)

p ζ 2 (54)

The unknowns are K(u)
p , an m × m matrix, K(v)

p , an (n − m)× (n − m) matrix,

c(u)p ∈ Rm and c(v)p ∈ Rn−m, a total of n(n+ 1)− 2m(n−m) unknowns.
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Using (53) and (54) we express the intercepts c(u)p and c(v)p as linear functions of

K(u)
p and K(v)

p :

(
c(u)p

c(v)p

)
=

[
R(u) −(R(u,v))T

−R(u,v) R(v)

]−1
(

ζ 1 +(R(u,v))T K(v)
p ζ 2 −R(u)K(u)

p ζ 1

ζ 2 +R(u,v)K(u)
p ζ 1 −R(v)K(v)

p ζ 2

)

Hence,

c(u)p = (R(u)− (R(u,v))T (R(v))−1R(u,v))−1[ζ 1 +(R(u,v))T K(v)
p ζ 2 −R(u)K(u)

p ζ 1]

+(R(u)− (R(u,v))T (R(v))−1R(u,v))−1(R(u,v))T (R(v))−1

[ζ 2 +R(u,v)K(u)
p ζ 1 −R(v)K(v)

p ζ 2] ,

c(v)p = (R(v))−1R(u,v)(R(u)− (R(u,v))T (R(v))−1R(u,v))−1

[ζ 1 +(R(u,v))T K(v)
p ζ 2 −R(u)K(u)

p ζ 1]

+(R(v)−R(u,v)(R(u))−1(R(u,v))T )−1[ζ 2 +R(u,v)K(u)
p ζ 1 −R(v)K(v)

p ζ 2]

Substituting these expressions into (51) and (52) yields a reduced linear system
of n2 − 2m(n−m) equations in the n2 − 2m(n−m) unknowns which populate the

matrices K(u)
p and K(v)

p . Note that if ζ 1 = 0 and ζ 2 = 0, c(u)p = 0, c(v)p = 0 and the

equations for K(u)
p and K(v)

p are

eT
i R(u)K(u)

p P1,1e j +(eT
j ζ 1) · eT

i R(u)K(u)
p ζ 1 − (eT

j ζ 1) · eT
i (R

(u,v))T K(v)
p ζ 2

−eT
i (R

(u,v))T K(v)
p P2,1e j = eT

j P1,1ei +(eT
i ζ 1) · (eT

j ζ 1)

eT
i R(v)K(v)

p P2,2e j +(eT
j ζ 2) · eT

i R(v)K(v)
p ζ 2 − (eT

j ζ 2) · eT
i R(u,v)K(u)

p ζ 1

−eT
i R(u,v)K(u)

p P1,2e j = eT
j P2,2ei +(eT

i ζ 2) · (eT
j ζ 2)

Example. In the special case of scalar controls and a bivariate normal distribution

we obtain a system of four linear equations for the four scalar unknowns K(u)
p , K(v)

p ,

c(u)p , and c(v)p :

(σ2
1 + ζ

2
1)R

(u)K(u)
p − (ρσ1σ2 + ζ 1ζ 2)R

(u,v)K(v)
p

+ ζ 1R(u)c(u)p − ζ1R(u,v)c(v)p = σ2
1 + ζ

2
1 (55)

(σ2
2 + ζ

2
2)R

(v)K(v)
p − (ρσ1σ2 + ζ1ζ 2)R

(u,v)K(u)
p

+ ζ 2R(v)c(v)p − ζ 2R(u,v)c(u)p = σ2
2 + ζ

2
2 (56)
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c(u)p =
1

R(u)R(v)− (R(u,v))2
(R(v)ζ 1 +R(u,v)ζ 2)− ζ1K(u)

p (57)

c(v)p =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ 1 +R(u)ζ 2)− ζ2K(v)

p (58)

Compare the optimal prior commitment strategies specified in (55)–(58) and the
delayed commitment strategies explicitly specified in (35)–(38). The optimization
problem is static and therefore the prior commitment and delayed commitment
strategies are all the same:

K(u)
p = K(u), K(v)

p = K(v), c(u)p = c(u), c(v)p = c(v)

So the two sets of formulae (35)–(38) and (55)–(58) give rise to interesting
identities. In particular, in the multivariate case new matrix identities will be
obtained.

Taking a game theoretic approach naturally leads to the concept of delayed
commitment strategies. Although the prior commitment strategies and delayed
commitment strategies are equivalent, the above example illustrates that it is much
easier to calculate the latter.

7 Asymmetric Players

Scenarios where one team member is strongly informationally disadvantaged
relative to the second team member are investigated.

7.1 Asymmetric Players: Case 1

Assume the u-player has perfect information, that is, he is privy to the state of nature
ζ = (ζ1,ζ2), whereas the v-player has access to ζ2 only. At the same time, the
u-player knows that the v-player has the prior information ζ 1, ζ 2, ρ , σ1, and σ2;
in fact, and in the best tradition of Bayesian games, it is tacitly assumed that both
players are simultaneously presented the prior information before the game starts—
the prior information is public information.

In this case the u-player’s payoff is

J(u)(u,v(·);ζ ) = Eζ (J(u,v(ζ2);ζ ) | ζ )

= J(u,v(ζ2);ζ ),
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that is, in the case of perfect information the u-player need not calculate an
expectation; v(ζ2) is the unknown input of the v-player.

If the payoff function J is quadratic,

J(u)(u,v(·);ζ ) =−uT R(u)u− vT (ζ2)R
(v)v(ζ2)+2vT (ζ2)R

(u,v)u+2uT ζ1 +2vT (ζ2)ζ2

and differentiation in u yields the relationship

u∗(ζ1,ζ2) = (R(u))−1[(R(u,v))T v∗(ζ2)+ ζ1]

The v-player’s payoff function is

J(v)(u(·),v;ζ ) = −vT R(v)v+ 2vT ζ2 +Eζ (−uT (ζ )R(u)u(ζ )

+2vT R(u,v)u(ζ2)+ 2uT ζ1 | ζ2)

and differentiating it in v yields the relationship

R(v)v∗(ζ2) = ζ2 +R(u,v)Eζ (u
∗(ζ ) | ζ2)

= ζ2 +R(u,v)Eζ ((R
(u))−1[(R(u,v))T v∗(ζ2)+ ζ1] | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1Eζ (ζ1 | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1Eζ1
(ζ1 | ζ2)

= ζ2 +R(u,v)(R(u))−1(R(u,v))T v∗(ζ2)+R(u,v)(R(u))−1

(ζ 1 +P1,2P−1
2,2 (ζ2 − ζ 2))

Hence,

v∗(ζ2) = [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1[I +P1,2P−1
2,2 R(u,v)(R(u))−1]ζ2

+[R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1R(u,v)(R(u))−1
(

ζ 1 −P1,2P−1
2,2 ζ 2

)

In the special case of scalar inputs and a bivariate normal distribution (16), the
optimal strategy of the v-player is

v∗(ζ2) =
R(u) +ρ σ1

σ2
R(u,v)

R(u)R(v)− (R(u,v))2
ζ2 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
ζ 1 −ρ

σ1

σ2
ζ 2

)
,

provided that R(u,v) is not the geometric mean of R(u) and R(v)—which is the case
if the quadratic payoff function is concave in the control variable (u,v), whereupon
R(u)R(v)− (R(u,v))2 > 0. The optimal strategy of the u-player is
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u∗(ζ1,ζ2) =
1

R(u)
ζ1 +R(u,v)

1+ρ σ1
σ2

R(u,v)

R(u)

R(u)R(v)− (R(u,v))2
ζ2

+

(R(u,v))2

R(u)

R(u)R(v)− (R(u,v))2

(
ζ 1 −ρ

σ1

σ2
ζ 2

)

Interestingly, although the u-player has complete state of nature information,
his or her optimal strategy is affine and he also uses the public prior information.
Concerning the strategy of the informationally disadvantaged v-player: certainty
equivalence holds.

7.2 Asymmetric Players: Case 2

As in Sects. 1–6, the private information of the u-player is the ζ1 component of
the state of nature vector ζ . However, we now assume the v-player has no private
information and he is totally dependent on the public prior information. As in
Sect. 7.1, the u-player is aware that the public information is available to the v-player
and he also knows that the v-player is “blind.”

The v-player’s payoff is

J(v)(u(·),v) = 2vT Eζ (ζ2)− vT R(v)v+ 2vT R(u,v)Eζ (u(ζ1))

+Eζ1
(2uT (ζ1)ζ1 − uT (ζ1)R

(u)u(ζ1))

and differentiation in v yields the unique optimal control response to the u-player’s
strategy u(ζ1),

v∗ = (R(v))−1Eζ (ζ2)+ (R(v))−1R(u,v)Eζ (u(ζ1)) (59)

The expectation Eζ (ζ2) in (59) is calculated as follows.

Eζ (ζ2) =

∫ ∞

−∞

∫ ∞

−∞
ζ2 f (ζ1,ζ2)dζ1dζ2

=

∫ ∞

−∞
ζ2

(∫ ∞

−∞
f (ζ1,ζ2)dζ1

)
dζ2

=

∫ ∞

−∞
ζ2 fm(ζ2)dζ2

= ζ 2,

where f (ζ1,ζ2) is the p.d.f. of the state of nature Gaussian random variable ζ and
fm(ζ2) is a marginal Gaussian p.d.f. of f (ζ1,ζ2). Recall that to obtain the marginal
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distribution over a subset of the components of a multivariate normal random
variable, one only needs to drop the irrelevant variables (the variables that one wants
to marginalize out) from the mean vector and the covariance matrix. For example,
in the bivariate normal case the (Gaussian) marginal p.d.f. fm(ζ1) is characterized
by the parameters (ζ 1,σ1) and the marginal p.d.f. fm(ζ2) is characterized by the
parameters (ζ 2,σ2). Similarly,

Eζ (u(ζ1)) =
∫ ∞

−∞
u(ζ1) fm(ζ1)dζ1

Thus,

v∗ = (R(v))−1ζ 2 +(R(v))−1R(u,v)
∫ ∞

−∞
u(ζ1) fm(ζ1)dζ1 (60)

The u-player’s payoff is

J(u)(u,v;ζ1) = 2uT ζ1 − uT R(u)u+ 2uT(R(u,v))T v− vT R(v)v+ 2vT Eζ2
(ζ2 | ζ1)

Note: Now, as far as the u-player is concerned, the v-player does not employ a
strategy, therefore the v-player’s input v is no longer a random variable and one
need not compute an expectation: the u-player knows that the v-player is “blind.”

Differentiation in u yields the unique optimal control response to the v-player’s
input v

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T v (61)

Combining (60) and (61) yields the relationship

v∗ = (R(v))−1ζ 2 +(R(v))−1R(u,v)[(R(u))−1ζ 1 +(R(u))−1(R(u,v))T v∗],

that is, the v-player’s optimal control is

v∗ = [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1[R(u,v)(R(u))−1ζ 1 + ζ 2]

and the u-player’s optimal strategy is

u∗(ζ1) = (R(u))−1ζ1 +(R(u))−1(R(u,v))T [R(v)−R(u,v)(R(u))−1(R(u,v))T ]−1

[R(u,v)(R(u))−1ζ 1 + ζ2]

If the controls are scalars,

u∗(ζ1) =
1

R(u)
ζ1 +

R(u,v)

R(u)R(v)− (R(u,v))2

(
R(u,v)

R(u)
ζ 1 + ζ 2

)
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and

v∗ =
1

R(u)R(v)− (R(u,v))2
(R(u,v)ζ 1 +R(u)ζ 2)

In conclusion, in the case where the v-player is “blind,” the strategy of the
u-player is as if there would be no correlation, that is, the parameter ρ = 0—as
in Corollary 4. As far as the v-player is concerned, certainty equivalence holds. A
little bit of thought will convince the reader that these results are expected.

8 Conclusion

The static decentralized decision problem has been analyzed. Special attention is
given to the multivariate Quadratic Gaussian (QG) payoff function. The optimiza-
tion problem is static, yet the players have partial information and as such, this
is a small step away from the celebrated LQG paradigm. Informational issues,
prior commitment strategies vs. delayed commitment strategies, as well as Nash
equilibria solution concepts, are discussed. Necessary and sufficient conditions for
the existence of a solution are provided and the optimal strategies are calculated.
Extreme cases of informational asymmetry are also explored. This work lays the
groundwork for gaining a better understanding of optimization problems with partial
information where also dynamics are at play.
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