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Abstract The research article gives a comprehensive presentation of the broad
and still developing area of risk-averse decision-making approach to control of
distributed stochastic systems. A distributed stochastic system considered here
consists of the interconnection of two or more stochastic systems with the structural
constraints of linear system dynamics, quadratic cost functionals, and additive
stationary Wiener noises corrupting the system dynamics and measurements. Each
system has an input from its incumbent agent or controller and an output to
its local environment, in addition to links with the other neighboring systems.
The problem of distributed control without communications between incumbent
agents or controllers is formulated as a nonzero-sum stochastic differential game.
Local best responses by each incumbent agents with risk-averse attitudes toward
performance uncertainty are determined by a person-by-person equilibrium and
subject to decentralized output-feedback information structures.
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1 Introduction

The purpose of this research investigation is to introduce to the readers the problem
of control of distributed stochastic systems, to propose risk-averse decision making
towards performance uncertainty, and to indicate emergent approaches for future
research and development. The importance of broad flexibility and adaptability of
the decision and control architectures of distributed control has spurred many large-
scale applications such as military command and control hierarchies, spacecraft
constellations, remotely piloted platform formations, and teams of humans and
autonomous robots. where each member can be in best response to its neighbor
actions and yet has no influence on other members to which it has no communication
supports.

Despite the broad interest in distributed systems, there remain significant hurdles
in applying them to practical problems of interest. Interplay between coalition
objectives and individual member objectives can yield surprises and complex
behaviors. Thus motivated, the main problem of the research herein is control
of distributed systems via the game-theoretic framework with performance risk
aversion. To the best knowledge of the authors, most studies, for instance, [1, 2]
have mainly concentrated on the selection of open and/or closed-loop Nash strategy
equilibria in accordance of expected utilities under the structural constraints of
linear system dynamics, quadratic cost functionals, and additive independent white
Gaussian noises corrupting the system dynamics and measurements. Very little
work, if any, has been published on the subject of higher-order assessment of
performance uncertainty and risks beyond expected performance.

For this reason attention in this research investigation is directed primarily
towards a linear-quadratic class of nonzero-sum differential games which has
linear system dynamics, quadratic cost functionals, and independent white zero-
mean Gaussian noises additively corrupting the system dynamics and output
measurements. Notice that, under these conditions, the quadratic cost functionals or
outcomes associated with the game are random variables with the generalized chi-
squared probability distributions. If a measure of uncertainty such as the variance of
the possible outcome was used in addition to the expected outcome, the incumbent
agents or controllers should be able to correctly order preferences for alternatives.
This claim seems plausible, but it is not always correct. Various investigations
have indicated that any evaluation scheme based on just the expected outcome
and outcome variance would necessarily imply indifference between some courses
of action; therefore, no criterion based solely on the two attributes of means and
variances can correctly represent their preferences. See the works [3, 4] for more
details.

Recent accounts by the first author [5, 6] have addressed risk aversion for
performance uncertainty of cooperative and noncooperative large-scale stochastic
systems, wherein the shape and functional form of an utility function tell a great
deal about the basic attitudes of the agents or controllers toward the uncertain
outcomes or performance risks. In particular, the new utility function or the
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so-called the generalized performance index, which is proposed therein as a linear
manifold defined by a finite number of semi-invariants associated with a random
quadratic cost functional, will provide a convenient allocation representation of
apportioning performance robustness and reliability requirements into the multi-
attribute requirement of qualitative characteristics of expected performance and
performance risks.

The present research contributions are to extend the existing results in [7]
toward some completely unexplored areas as such: (1) the design of decentralized
filtering via constrained filters for self-directed agent subject to the linear-quadratic
class of nonzero-sum stochastic differential games; (2) an efficient and tractable
procedure that calculates exactly all the mathematical statistics associated with
the generalized chi-squared performance measure for each self-directed agent; and
(3) the risk-averse control and decision synthesis that is mostly via a person-by-
person equilibrium for reliable performance.

Given the aforementioned background, the article is organized as follows.
Section 2 contains the problem description in which basic assumptions related to the
state-space model associated with each incumbent decision makers or controllers
residing at distributed systems are discussed. In addition, the development of
mathematical statistics for performance robustness whose the backward-in-time
differential equations are characterized by making use of both compactness from
the logics of the state-space representation and the quantitativity from a-priori
knowledge of the underpinning probabilistic processes is further presented in
detail. Subsequently, Sect. 3 provides the complete problem statements of statis-
tical optimal decision making via the person-by-person equilibrium framework,
unique notations, terminologies, definitions as well as the necessary and sufficient
conditions for the existence of person-by-person equilibrium strategies. With
regards to the theoretical constructs and design principles for distributed stochastic
systems to include the requirements of performance reliability, decision making
with risk consequences and emerging effects within the stochastic environment,
the understanding of performance variations, risk-averse attitudes and the course
correction required for realistic situations is determined and obtained in Sect. 4.
Finally, conclusions pertaining to decisions with risk consequences and output
feedback design for the linear-quadratic class of distributed stochastic linear systems
with quadratic performance appraisals are presented in Sect. 5.

2 Mathematical Statistics for Performance Robustness

Before going into a formal presentation, it is necessary to consider some conceptual
notations in this article. For instance, time t is modeled as continuous and the
notation of the time interval is [t0, t f ]. All random variables are defined on a
probability space (Ω ,F ,P) which is a triple consisting of a set Ω , a σ -algebra
F , and a probability measure P : F �→ [0,1] and is equipped with a filtration
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{Ft : t ∈ [t0, t f ]}. In addition, for a given Hilbert space X with norm || · ||X ,
1 ≤ p ≤ ∞, a Banach space is defined as follows

L p
F (t0, t f ;X)�

{
φ : [t0, t f ]×Ω �→ X is an X-valued Ft -measurable process

with E

{∫ t f

t0
||φ(t,ω)||pX dt

}
< ∞

}
(1)

with norm

||φ(·)||F ,p �
(

E

{∫ t f

t0
||φ(t,ω)||pX dt

})1/p

. (2)

Furthermore, the Banach space of X-valued continuous functionals on [t0, t f ] with
the max-norm induced by || · ||X is denoted by C (t0, t f ;X). The deterministic version
of (1) and its associated norm (2) is written as L p(t0, t f ;X) and || · ||p.

A distributed stochastic system that evolves over [t0, t f ] captures interactions
among a finite number of incumbent systems. Each incumbent system that enters
the distributed system is assigned a unique positive integer-valued index. The set
of indices of incumbent systems is denoted by I � {1,2, . . . ,N} and a typical
element by i. The set of immediate neighbors that have communication paths with
an incumbent system i is denoted by Ni, whereby the cardinality of Ni is notated
as Ni. For concreteness, the heterogeneity of incumbent system i and i ∈ I is
distinguished by an individual state that is governed by the stochastic differential
equation with the known initial condition xi(t0) = x0

i and t ∈ [t0, t f ]

dxi(t) =

(
Aii(t)xi(t)+Bii(t)ui(t)+

Ni

∑
j=1

Bi j(t)ui j(t)

)
dt +Gii(t)dwi(t) , (3)

where the continuous-time coefficients Aii ∈C (t0, t f ;Rni×ni), Bii ∈C (t0, t f ;Rni×mi),
Bi j ∈ C (t0, t f ;Rni×ri) and Gii ∈ C (t0, t f ;Rni×pi) are deterministic matrix-valued
functions. At time t, the recursive state of incumbent system i is denoted by
xi ∈ L 2

Fi
(t0, t f ;Rni) with the initial state x0

i ∈ R
ni known. The control policy from

agent i to that system i is presented by ui ∈ L 2
Fi
(t0, t f ;Rmi).

In addition, the interconnection inputs of that incumbent system i supported by
the communication paths from immediate neighbors j and j ∈ Ni are viewed as the
real-valued functions ui j(t)dt of the following random processes

ui j(t)dt = (Ci j(t)x j(t)+Di j(t)u j(t))dt +Gi j(t)dwj(t) , j ∈ Ni (4)

where continuous-time coefficients Ci j ∈ C (t0, t f ;Rri×n j), Di j ∈ C (t0, t f ;Rri×mj )
and Gi j ∈ C (t0, t f ;Rri×p j) are deterministic matrix-valued functions.
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In the state-space representation (3) and (4) one postulates independent Wiener
processes wi(t)�wi(t,ωi) : [t0, t f ]×Ωi �→R

pi and wj(t)�wj(t,ω j) : [t0, t f ]×Ω j �→
R

p j defined by the underlying filtered probability spaces (Ωi,Fi,{Fi}t ,Pi) and
(Ω j,F j,{F j}t ,P j) with the correlations of independent increments

E
{
[wi(τ1)−wi(τ2)][wi(τ1)−wi(τ2)]

T}=Wi|τ1 − τ2|, Wi > 0 , τ1,τ2 ∈ [t0, t f ]

E
{
[wj(τ1)−wj(τ2)][wj(τ1)−wj(τ2)]

T}=Wj|τ1 − τ2|, Wj > 0 , τ1,τ2 ∈ [t0, t f ]

approximate the inherent design system uncertainty due to variability and lack of
knowledge.

With the local agent dynamics (3) and the intertemporal interactions (4), the
recursive dynamics of each interconnected systems that evolve over [t0, t f ] and
capture direct interactions among incumbent agent i and its immediate neighbors
j and j ∈ Ni are now given by

dsi(t) =

(
Ai(t)si(t)+Bi(t)ui(t)+

Ni

∑
j=1, j �=i

B j(t)u j(t)

)
dt +Gi(t)dξi(t), (5)

where for each incumbent agent i, the aggregate Wiener process ξi �
[

wT
1 . . . wT

Ni

]T

has the correlations of independent increments

E
{
[ξi(τ1)− ξi(τ2)][ξi(τ1)− ξi(τ2)]

T}= Ξi|τ1 − τ2| , ∀τ1,τ2 ∈ [t0, t f ] , Ξi > 0

whereas for each incumbent agent i, the augmented state variable si, its initial-valued
condition si(t0) = s0

i , the local game coefficients and parameters are defined by

si(t)�

⎡
⎢⎢⎣

x1(t)
...

xNi(t)

⎤
⎥⎥⎦ ; s0

i �

⎡
⎢⎢⎣

x0
1
...

x0
Ni

⎤
⎥⎥⎦ ; Ai �

⎡
⎢⎢⎢⎢⎣

A11 B12C12 . . . B1NiC1Ni

B21C21 A22 . . . B2NiC2Ni

...
...

. . .
...

BNi1CNi1 . . . BNi(Ni−1)CNi(Ni−1) ANiNi

⎤
⎥⎥⎥⎥⎦

B1 �

⎡
⎢⎢⎢⎢⎣

B11

B21D21
...

BNi1DNi1

⎤
⎥⎥⎥⎥⎦ ; B2 �

⎡
⎢⎢⎢⎢⎣

B12D12

B22
...

BNi2DNi2

⎤
⎥⎥⎥⎥⎦ ; BNi �

⎡
⎢⎢⎢⎢⎣

B1Ni D1Ni

...
B(Ni−1)Ni

D(Ni−1)Ni

BNiNi

⎤
⎥⎥⎥⎥⎦

Gi �

⎡
⎢⎢⎢⎢⎣

G11 B12G12 . . . B1Ni G1Ni

B21G21 G22 . . . B2Ni G2Ni

...
...

. . .
...

BNi1GNi1 . . . BNi(Ni−1)GNi(Ni−1) GNiNi

⎤
⎥⎥⎥⎥⎦ ; Ξi �

⎡
⎢⎢⎢⎢⎣

W1 0 . . . 0
0 W2 . . . 0
... 0

. . .
...

0 . . . 0 WNi

⎤
⎥⎥⎥⎥⎦ .
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Practical situations where self-autonomy is possible require that each agent be
able to possess the common knowledge of the parameters associated with potential
noncooperative interactions (5). Viewed from the mutual influence of one agent to
those of others, self-autonomy preferred by incumbent agent i is therefore described
by a surrogate model with the initial value zi(t0) = z0

i = s0
i

dzi(t) =

(
Ai(t)zi(t)+Bi(t)ui(t)+

Ni

∑
j=1, j �=i

B j(t)u j(t)

)
dt +Gi(t)dξi(t) , (6)

whereby each incumbent agent i and i ∈ I can presumably observe all interactions

Ni

∑
j=1, j �=i

B j(t)u j(t)dt

from its immediate neighbors that are in turn corrupted by an uncorrelated stationary
Wiener measurement noise process. Specifically, the following observations are
locally available at incumbent agent i and t ∈ [t0, t f ]

u−i(t)dt =
Ni

∑
j=1, j �=i

B j(t)u j(t)dt + dηi(t) . (7)

For the completely decentralizing information pattern, it is also assumed that the
incomplete information structure available at each incumbent agent i consists of a

linear transformation Ci ∈ C (t0, t f ;Rqi×∑
Ni
j=1 n j ) of the states zi(t) through the local

online data {yi(τ) : τ ∈ [t0, t]}

dyi(t) =Ci(t)zi(t)dt + dvi(t) . (8)

Notice that all incumbent agents operate within the common and local environments
modeled by the filtered probability spaces. Subsequently, they are then defined by
the following uncorrelated stationary Wiener processes adapted for [t0, t f ] together
with the correlations of independent increments for all τ1,τ2 ∈ [t0, t f ]

E
{
[ηi(τ1)−ηi(τ2)][ηi(τ1)−ηi(τ2)]

T}= Ii|τ1 − τ2|
E
{
[vi(τ1)− vi(τ2)][vi(τ1)− vi(τ2)]

T}=Vi|τ1 − τ2|

whose a-priori second-order statistics Ii and Vi > 0 for i = 1, . . . ,N are assumed
known.

At this point, each decentralized filter associated with incumbent agent i and
i ∈ I , whose the output is the conditional mean estimate ẑi(t) of the current state
zi(t) and t ∈ [t0, t f ] has the form with the initial-value condition ẑi(t0) = z0

i

dẑi(t) = (Ai(t)ẑi(t)+Bi(t)ui(t)+ u−i(t))dt +Li(t)[dyi(t)−Ci(t)ẑi(t)dt] , (9)
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whereby the decentralized filter gain Li(t) and i ∈ I is given by

Li(t) = Σi(t)C
T
i (t)V

−1
i (10)

and is supported by the estimate-error covariance differential equation with the
initial-value condition Σi(t0) = 0

Σ̇i(t) = Ai(t)Σi(t)+Σi(t)A
T
i (t)+Gi(t)ΞiG

T
i (t)+ Ii −Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t).

(11)

Using the definition for the estimate errors z̃i(t)� zi(t)− ẑi(t), it can be shown that

dz̃i(t) = (Ai(t)−Li(t)Ci(t))z̃i(t)dt +Gi(t)dξi(t)−Li(t)dvi(t)− dηi(t) (12)

z̃i(t0) = 0

incumbent agent i, however, attempts to make risk-bearing decisions ui from an
admissible feedback policy set Ui ⊂ L2

F i
t
(t0, t f ;Rmi), which is the subset of Hilbert

space of Rmi-valued square integrable processes on [t0, t f ] that are adapted to the
σ -algebra F i

t generated by {yi(τ) : τ ∈ [t0, t]} for reliable attainments of payoffs or
utilities. Associated with each admissible 2-tuple (ui(·),u−i(·)) is the generalized
chi-squared random measure of performance

Ji(ui,u−i) = zT
i (t f )Q

i
f zi(t f )

+

∫ t f

t0
[zT

i (τ)Qi(τ)zi(τ)+ uT
i (τ)Ri(τ)ui(τ)− uT

−i(τ)Mi(τ)u−i(τ)]dτ ,

(13)

whereby the coefficients Qi
f ∈R

∑
Ni
j=1 n j×∑

Ni
j=1 n j , Qi ∈ C (t0, t f ;R∑

Ni
j=1 n j×∑

Ni
j=1 n j), Mi ∈

C (t0, t f ;R∑
Ni
j=1 n j×∑

Ni
j=1 n j ) and Ri ∈C (t0, t f ;Rmi×mi) representing relative weightings

for terminal and transient trade-offs between the regulatory of responses zi, the
effectiveness of the control and/or decision policy ui and observable variations in
the control and/or decision policies of all other neighbors u−i are deterministic and
positive semidefinite with Ri(t) invertible.

Amongst some research issues for distributed control which are currently under
investigation is how incumbent agent i for i ∈ I and its immediate neighbors j for
j ∈Ni carry out optimal control and decision synthesis for controlling of distributed
stochastic systems. The approach to handle the problem with a tuple of two or
more control laws or decision policies is to use the noncooperative game-theoretic
paradigm. Particularly, an Ni-tuple policy {u∗1,u

∗
2, . . . ,u

∗
Ni
} is said to constitute a

person-by-person equilibrium solution for the distributed control problem (6) and
performance measure (13) if

J∗i � Ji(u
∗
i ,u

∗
−i)≤ Ji(ui,u

∗
−i) , ∀i ∈ I . (14)
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That is, none of the Ni agents can deviate unilaterally from the equilibrium policies
and gain from doing so. The justification for the restriction to such an equilibrium
is that the coalition effects u∗−i being observed by incumbent agent i does not
necessarily support its preference optimization. Therefore, they cannot do better
than behave as if they strive for this equilibrium. It is reasonable to conclude that
a person-by-person equilibrium of distributed control for incumbent agent i and its
immediate neighbors j ∈Ni is identical to the concept of a Nash equilibrium within
a noncooperative game-theoretic setting.

Moreover, the Ni-tuple (u∗1, . . . ,u
∗
Ni
) of decision laws for incumbent agent i

and its immediate neighbors j and j ∈ Ni that is satisfying the person-by-person
equilibrium is also a minimal tuple of decision laws. The reasons being are that the
input spaces ui are continuous and criterion Ji are continuous, differentiable, and
convex in the inputs ui. Henceforth, a minimal tuple is obtained if incumbent agents
individually optimize their criteria in a parallel fashion. See [8] for more details.

Next, the notion of admissible feedback policy sets is discussed. In the case of
incomplete information, an admissible feedback policy ui for local best response to
all other immediate neighbors u∗−i must be of the form, for some ði(·, ·)

ui(t) = ði(t,yi(τ)) , τ ∈ [t0, t] . (15)

In general, the conditional density pi(zi(t)|F i
t ), which is the density of zi(t) con-

ditioned on F i
t (i.e., induced by the observation {yi(τ) : τ ∈ [t0, t]}) represents the

sufficient statistics for describing the conditional stochastic effects of future feed-
back policy ui. Under the Gaussian assumption the conditional density pi(zi(t)|F i

t )
is parameterized by the locally available conditional mean ẑi(t)� E{zi(t)|F i

t } and
covariance Σi(t) � E{[zi(t)− ẑi(t)][zi(t)− ẑi(t)]T |F i

t } by incumbent agent i. With
respect to the linear-Gaussian conditions, the covariance Σi(t) is independent of
feedback policy ui(t) and observations {yi(τ) : τ ∈ [t0, t]}. Therefore, to look for an
optimal control and/or decision policy ui(t) of the form (15), it is only required that

ui(t) = γi(t, ẑi(t)) , t ∈ [t0, t f ] .

Given the linear-quadratic properties of the surrogate system description (6)–(13),
the search for an optimal feedback solution may be productively restricted to a linear
time-varying feedback policy generated from the locally accessible state ẑi(t) by

ui(t) = Ki(t)ẑi(t) , t ∈ [t0, t f ] (16)

with Ki ∈ C (t0, t f ;Rmi×∑
Ni
j=1 n j) an admissible feedback form whose further defining

properties will be stated shortly.
Hence, for the admissible pair (t0,z0

i ), the observed knowledge about neighboring
disturbances u∗−i(·) and the admissible feedback policy (16), the aggregation of
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the dynamics (9) and (12) associated with incumbent agent i is described by the
controlled stochastic differential equation

dzi(t) = (Fi(t)zi(t)+Ei(t)u∗−i(t))dt +Gi(t)dwi(t) , zi(t0) = zi
0 (17)

with the performance measure (13) rewritten as follows

Ji(ui,u
∗
−i) = (zi)T (t f )N

i
f zi(t f )

+

∫ t f

t0
[(zi)T (τ)Ni(τ)zi(τ)− (u∗−i)

T (τ)Mi(τ)u∗−i(τ)]dτ , (18)

whereby for each incumbent agent i and i ∈ I , the aggregate system states zi �[
(ẑi)

T (z̃i)
T
]T

, the stationary Wiener process noise wi �
[

ξ T
i ηT

i vT
i

]T
with the

correlation of independent increments defined as

E
{
[wi(τ1)−wi(τ2)][w

i(τ1)−wi(τ2)]
T}=W i|τ1 − τ2| , ∀τ1,τ2 ∈ [t0, t f ] ,W i > 0

and the aggregate system coefficients are given by, for each t ∈ [t0, t f ]

Fi(t)�
[

Ai(t)+Bi(t)Ki(t) Li(t)Ci(t)
0 Ai(t)−Li(t)Ci(t)

]
; Ei(t)�

[
I
∑

Ni
j=1 n j×∑

Ni
j=1 n j

0

]

Gi(t)�
[

0 0 Li(t)
Gi(t) −I

∑
Ni
j=1 n j×∑

Ni
j=1 n j

−Li(t)

]
; Ni

f �
[

Qi
f Qi

f

Qi
f Qi

f

]
; zi

0 �
[

z0
i
0

]

Ni(t)�
[

Qi(t)+KT
i (t)Ri(t)Ki(t) Qi(t)
Qi(t) Qi(t)

]
; W i �

⎡
⎣Ξi 0 0

0 Ii 0
0 0 Vi

⎤
⎦ .

Regarding the linear-quadratic structural constraints (17) and (18), the path-wise
performance-measure (18), with which incumbent agent i is risk averse, is clearly
a random variable of the generalized chi-squared type. Henceforth, the degree of
uncertainty of the path-wise performance-measure (18) must be assessed via a
complete set of higher-order statistics beyond the statistical mean or average. In an
attempt to describe or model performance uncertainty, the essence of information
about these higher-order performance-measure statistics is now considered as a
source of information flow, which will affect perception of the problem and the
environment at the risk-averse incumbent agent i.

Next, the question of how to characterize and influence performance information
is answered by modeling and management of cumulants (also known as semi-
invariants) associated with (18) as shown in the following result.

Theorem 1 (Cumulant-Generating Function). Let each incumbent agent i and
i ∈I be associated with the state variable zi(·) of the stochastic dynamics (17) and
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subject to the performance measure (18). Further, let initial states zi(τ) ≡ zi
τ and

τ ∈ [t0, t f ] and the moment-generating function be denoted by

ϕ i (τ,zi
τ ,θ

)
= ρ i (τ,θ )exp

{
(zi

τ)
Tϒ i(τ,θ )zi

τ + 2(zi
τ)

T �i(τ,θ )
}

(19)

υ i (τ,θ ) = ln{ρ i (τ,θ )} , θ ∈ R
+ . (20)

Then, the cumulant-generating function has the form of quadratic affine

ψ i (τ,zi
τ ,θ

)
= (zi

τ )
Tϒ i(τ,θ )zi

τ + 2(zi
τ)

T �i(τ,θ )+υ i (τ,θ ) , (21)

where the scalar solution υ i (τ,θ ) solves the scalar-valued backward-in-time
differential equation with the terminal-value condition υ i

(
t f ,θ

)
= 0

d
dτ

υ i (τ,θ ) =−Tr
{

ϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)
}
+θ (u∗−i)

T (τ)Mi(τ)u∗−i(τ) (22)

whereas the matrix ϒ i(τ,θ ) and vector �i(τ,θ ) solutions satisfy the matrix and
vector-valued backward-in-time differential equations

d
dτ

ϒ i(τ,θ ) =−(Fi)T (τ)ϒ i(τ,θ )−ϒ i(τ,θ )Fi(τ)

− 2ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)ϒ i(τ,θ )−θNi(τ) , ϒ i(t f ,θ ) = θNi
f

(23)

d
dτ

�i(τ,θ ) =−ϒ i(τ,θ )Ei(τ)u∗−i(τ) , �i(t f ,θ ) = 0 . (24)

Meanwhile, the scalar solution ρ i(τ,θ ) satisfies the scalar-valued backward-in-time
differential equation

d
dτ

ρ i (τ,θ ) =−ρ i (τ,θ ) [Tr
{

ϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)
}

−θ (u∗−i)
T (τ)Mi(τ)u∗−i(τ)] , ρ i (t f ,θ

)
= 1 . (25)

Proof. For notional simplicity, it is convenient to have, for each i ∈ I

ϖ i (τ,zi
τ ,θ

)
� exp

{
θJi

(
τ,zi

τ
)}

,

in which the performance measure (18) is rewritten as the cost-to-go function from
an arbitrary state zi

τ at a running time τ ∈ [t0, t f ], that is,

Ji(τ,zi
τ ) = (zi)T (t f )N

i
f zi(t f )

+

∫ t f

τ
[(zi)T (t)Ni(t)zi(t)− (u∗−i)

T (t)Mi(t)u
∗
−i(t)]dt (26)
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subject to

dzi(t) = (Fi(t)zi(t)+Ei(t)u∗−i(t))dt +Gi(t)dwi(t) , zi(τ) = zi
τ . (27)

By definition, the moment-generating function is

ϕ i(τ,zi
τ ,θ )� E

{
ϖ i (τ,zi

τ ,θ
)}

.

Thus, the total time derivative of ϕ i(τ,zi
τ ,θ ) is obtained as

d
dτ

ϕ i (τ,zi
τ ,θ

)
=−θ [(zi

τ)
T Ni(τ)zi

τ − (u∗−i)
T (τ)Mi(τ)u∗−i(τ)]ϕ

i (τ,zi
τ ,θ

)
.

Using the standard Ito’s formula, it follows

dϕ i (τ,zi
τ ,θ

)
= E

{
dϖ i (τ,zi

τ ,θ
)}

= E
{

ϖ i
τ (τ,z

i
τ ,θ )dτ +ϖ i

zi
τ
(τ,zi

τ ,θ )dzi
τ

+
1
2

Tr
{

ϖ i
zi
τ zi

τ
(τ,zi

τ ,θ )G
i(τ)W i(Gi)T (τ)

}
dτ

}
= ϕ i

τ (τ,z
i
τ ,θ )dτ +ϕ i

zi
τ
(τ,zi

τ ,θ )(F
i(τ)zi

τ +Ei(τ)u∗−i(τ))dτ

+
1
2

Tr
{

ϕ i
zi
τ zi

τ
(τ,zi

τ ,θ )G
i(τ)W i(Gi)T (τ)

}
dτ ,

which under the definition of the moment-generating function; e.g.,

ϕ i (τ,zi
τ ,θ

)
= ρ i (τ,θ )exp

{
(zi

τ)
Tϒ i(τ,θ )zi

τ + 2(zi
τ)

T �i(τ,θ )
}

and its partial derivatives lead to the result

−θ [(zi
τ)

T Ni(τ)zi
τ − (u∗−i)

T (τ)Mi(τ)u∗−i(τ)]ϕ
i (τ,zτ ,θ )

=
{ d

dτ ρ i (τ,θ )
ρ i (τ,θ )

+ (zi
τ)

T d
dτ

ϒ i(τ,θ )zi
τ + 2(zi

τ)
T d

dτ
�i(τ,θ )

+ (zi
τ)

T [
(Fi)T (τ)ϒ i(τ,θ )+ϒ i(τ,θ )Fi (τ)

]
zi

τ + 2(zi
τ)

Tϒ i(τ,θ )Ei(τ)u∗−i(τ)

+ 2(zi
τ)

Tϒ i(τ,θ )Gi (τ)W i(Gi)T (τ)ϒ i(τ,θ )zi
τ

+Tr
{

ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)
}}

ϕ i (τ,zi
τ ,θ

)
.
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To have constant and quadratic terms be independent of arbitrary zi
τ , it requires

d
dτ

ϒ i(τ,θ ) =−(Fi)T (τ)ϒ i(τ,θ )−ϒ i(τ,θ )Fi(τ)−θNi(τ)

− 2ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)ϒ i(τ,θ )

d
dτ

�i(τ,θ ) =−ϒ i(τ,θ )Ei(τ)u∗−i(τ)

d
dτ

ρ i(τ,θ ) =−ρ i (τ,θ ) [Tr
{

ϒ i(τ,θ )Gi(τ)W i(Gi)T(τ)
}−θ (u∗−i)

T(τ)Mi(τ)u∗−i(τ)]

with the terminal-value conditions ϒ i(t f ,θ ) = θNi
f and ρ i(t f ,θ ) = 1. ��

Finally, the backward-in-time differential equation satisfied by the scalar-valued
solution υ i(τ,θ ) is obtained with the terminal-value condition υ i(t f ,θ ) = 0

d
dτ

υ i(τ,θ ) =−Tr
{

ϒ i(τ,θ )Gi(τ)W i(Gi)T (τ)
}
+θ (u∗−i)

T (τ)Mi(τ)u∗−i(τ) ,

which completes the proof.
As it turns out, all the higher-order characteristic distributions associated with

performance uncertainty and risk are captured in the higher-order performance-
measure statistics associated with (18). Subsequently, higher-order statistics that
encapsulate the uncertain nature of (18) can now be generated via a MacLaurin
series of the cumulant-generating function or the second characteristic function (21)

ψ i (τ,zi
τ ,θ

)
=

∞

∑
r=1

∂ (r)

∂θ (r)
ψ i(τ,zi

τ ,θ )

∣∣∣∣∣
θ=0

θ r

r!
, (28)

from which all κ i
r � ∂ (r)

∂θ (r) ψ i(τ,zi
τ ,θ )

∣∣∣
θ=0

are defined as performance-measure

statistics associated with incumbent agent i and i ∈ I . In fact, the rth performance-
measure statistic is determined by the series expansion coefficients; that is, it is
obtained from the cumulant-generating function (21)

κ i
r =

∂ (r)

∂θ (r)
ψ i(τ,zi

τ ,θ )

∣∣∣∣∣
θ=0

= (zi)T
τ

∂ (r)

∂θ (r)
ϒ i(τ,θ )

∣∣∣∣∣
θ=0

zi
τ

+ 2(zi
τ)

T ∂ (r)

∂θ (r)
�i(τ,θ )

∣∣∣∣∣
θ=0

+
∂ (r)

∂θ (r)
υ i(τ,θ )

∣∣∣∣∣
θ=0

. (29)

For notational convenience, the change of variables corresponding to each incum-
bent agent i and i ∈ I

Hi
r(τ)�

∂ (r)ϒ i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

, τ ∈ [t0, t f ] (30)
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D̆i
r(τ)�

∂ (r)�i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

; Di
r(τ)�

∂ (r)υ i(τ,θ )
∂θ (r)

∣∣∣∣∣
θ=0

(31)

is introduced so that the next theorem provides an effective and accurate capability
for forecasting all the higher-order characteristics associated with performance
uncertainty.

Theorem 2 (Performance-Measure Statistics). Associate with each incumbent
agent i and i ∈ I the decentralized stochastic system governed by (17) and (18),
wherein the pairs (Ai,Bi) and (Ai,Ci) are uniformly stabilizable and detectable. For
ki ∈N fixed, the kith cumulant of performance measure (18) concerned by incumbent
agent i is given by

κ i
k = (zi

0)
T Hi

ki(t0)z
i
0 + 2(zi

0)
T D̆i

ki(t0)+Di
ki(t0) , (32)

where the supporting variables {Hi
r(τ)}ki

r=1, {D̆i
r(τ)}ki

r=1 and {Di
r(τ)}ki

r=1 evaluated
at τ = t0 satisfy the differential equations (with the dependence of Hi

r(τ), D̆i
r(τ) and

Dr(τ) upon the admissible feedback policy gain Ki(τ) and u∗−i(τ) suppressed)

d
dτ

Hi
1(τ) =−(Fi)T (τ)Hi

1(τ)−Hi
1(τ)F

i(τ)−Ni(τ) (33)

d
dτ

Hi
r(τ) =−(Fi)T (τ)Hi

r(τ)−Hi
r(τ)F

i(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

Hi
s(τ)G

i(τ)W i(Gi)T (τ)Hi
r−s(τ) , 2 ≤ r ≤ ki (34)

and

d
dτ

D̆i
r(τ) =−Hi

r(τ)E
i(τ)u∗−i(τ) , 1 ≤ r ≤ ki (35)

and, finally,

d
dτ

Di
1(τ) =−Tr

{
Hi

1(τ)G
i(τ)W i(Gi)T (τ)

}
+(u∗−i)

T (τ)Mi(τ)u∗−i(τ) (36)

d
dτ

Di
r(τ) =−Tr

{
Hi

r(τ)Gi(τ)W i(Gi)T (τ)
}
, 2 ≤ r ≤ ki (37)

whereby the terminal-value conditions Hi
1(t f ) = Ni

f , Hi
r(t f ) = 0 for 2 ≤ r ≤ ki,

D̆i
r(t f ) = 0 for 1 ≤ r ≤ ki and Di

r(t f ) = 0 for 1 ≤ r ≤ ki.

Proof. The expression of performance-measure statistics described in (32) is readily
justified by using result (29) and definition (30)–(31). What remains is to show
that the solutions Hi

r(τ), D̆i
r(τ) and Di

r(τ) for 1 ≤ r ≤ ki indeed satisfy the
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dynamical equations (33)–(37). Notice that these backward-in-time equations (33)–
(37) satisfied by the matrix-valued Hi

r(τ), vector-valued D̆i
r(τ), and scalar-valued

Di
r(τ) solutions are then obtained by successively taking derivatives with respect to

θ of the supporting equations (22)–(24) and subject to the assumptions of (Ai,Bi)
and (Ai,Ci) being uniformly stabilizable and detectable on [t0, t f ]. ��

3 Problem Statements

The purpose of this section is to make use of increased insight into the roles played
by performance-measure statistics on the generalized chi-squared performance
measure (18) for risk-averse Nash feedback strategies. The distributed optimization
with Nash feedback policy here is distinguished by the fact that the evolution in
time of all mathematical statistics (32) associated with the random performance
measure (18) of the generalized chi-squared type is described by means of the
matrix/vector/scalar-valued backward-in-time differential equations (33)–(37).

For such problems it is important to have a compact statement of the risk-
averse decision and control optimization so as to aid mathematical manipulation.
To make this more precise, one may think of the ki-tuple state variables H i(·) �
(H i

1 (·), . . . ,H i
ki(·)), D̆ i(·) � (D̆ i

1(·), . . . ,D̆ i
ki(·)) and D i(·) � (D i

1(·), . . . ,D i
ki(·))

whose continuously differentiable states H i
r ∈ C 1(t0, t f ;R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j ), D̆ i

r ∈
C 1(t0, t f ;R2∑

Ni
j=1 n j ) and D i

r ∈ C 1(t0, t f ;R) having the representations H i
r (·) �

Hi
r(·), D̆ i

r(·) � D̆i
r(·) and D i

r(·) � Di
r(·) with the right members satisfying the

dynamics (33)–(37) are defined on [t0, t f ]. In the remainder of the development, the
convenient mappings associated with incumbent agent i and i ∈ I are introduced
as follows

F i
r : [t0, t f ]× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki ×R

mi×∑
Ni
j=1 n j �→ R

2∑
Ni
j=1 n j×2∑

Ni
j=1 n j

Ğ i
r : [t0, t f ]× (R

2∑
Ni
j=1 n j )ki �→ R

2∑
Ni
j=1 n j

G i
r : [t0, t f ]× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki �→ R ,

where the rules of action are given by

F i
1(τ,H

i,Ki)�−(Fi)T (τ)H i
1 (τ)−H i

1 (τ)F
i(τ)−Ni(τ)

F i
r(τ,H i,Ki)�−(Fi)T (τ)H i

r (τ)−H i
r (τ)Fi(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

H i
s (τ)G

i(τ)W i(Gi)T (τ)H i
r−s(τ) , 2 ≤ r ≤ ki

Ğ i
r (τ,H i)�−H i

r (τ)Ei(τ)u∗−i(τ) , 1 ≤ r ≤ ki
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G i
1(τ,H

i)�−Tr
{
H 1

r (τ)Gi(τ)W i(Gi)T (τ)
}
+(u∗−i)

T (τ)Mi(τ)u∗−i(τ)

G i
r (τ,H

i)�−Tr
{
H i

r (τ)G
i(τ)W i(Gi)T (τ)

}
, 2 ≤ r ≤ ki.

The product mappings that follow are necessary for a compact formulation; e.g.,

F i
1 ×·· ·×F i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki×R

mi×∑
Ni
j=1 n j �→ (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki

Ğ i
1 ×·· ·× Ğ i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j )ki �→ (R2∑

Ni
j=1 n j )ki

G i
1 ×·· ·×G i

ki : [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki �→ R

ki

whereby the corresponding notations

F i � F i
1 ×·· ·×F i

ki

Ğ i � Ğ i
1 ×·· ·× Ğ i

ki

G i � G i
1 ×·· ·×G i

ki

are used. Thus, the dynamical equations (33)–(37) can be rewritten as follows

d
dτ

H i(τ) = F i(τ,H i(τ),Ki(τ)), H i(t f )≡ H i
f (38)

d
dτ

D̆ i(τ) = Ğ i (τ,H i(τ)
)
, D̆ i(t f )≡ D̆ i

f (39)

d
dτ

D i(τ) = G i (τ,H i(τ)
)
, D i(t f )≡ D i

f (40)

whereby the ki-tuple terminal-value conditions H i
f � (Ni

f ,0, . . . ,0), D̆
i
f � (0, . . . ,0)

and D i
f � (0, . . . ,0).

Once immediate neighbors j ∈ Ni of incumbent agent i fix the control and deci-
sion parameters K∗

j of the person-by-person equilibrium strategies u∗j and thus the
interconnection effects u∗−i underpinned by K∗−i, incumbent agent i therefore obtains
an optimal stochastic control problem with risk-averse performance considerations.
The construction of agent i’s person-by-person policy also involves the control and
decision parameter Ki. In the sequel and elsewhere, when the dependence on Ki and
K∗−i is needed to be clear, then the notations

H i ≡ H i(·,Ki,K
∗
−i)

D̆ i ≡ D̆ i(·,Ki,K
∗
−i)

D i ≡ D i(·,Ki,K
∗
−i)
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should be used to denote the solution trajectories of the dynamics (38)–(40) with
the admissible 2-tuple (Ki,K∗−i).

For the given terminal data (t f ,H
i

f ,D̆
i
f ,D

i
f ), the class of admissible feedback

gains employed by incumbent agent i and i ∈ I is next defined.

Definition 1 (Admissible Feedback Policy Gains). Let compact subset K
i ⊂

R
mi×n be the set of allowable feedback form values. For the given ki ∈ N and

sequence μ i = {μ i
r ≥ 0}ki

r=1 with μ i
1 > 0, the set of feedback gains K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i is

assumed to be the class of C (t0, t f ;Rmi×∑
Ni
j=1 n j) with values Ki(·)∈ K

i
, for which the

solutions to the dynamical equations (38)–(40) with the terminal-value conditions
H i(t f ) = H i

f , D̆ i(t f ) = D̆ i
f and D i(t f ) = D i

f exist on the interval of optimization
[t0, t f ].

One way to make sense of risk bearing existing at incumbent agent i is to identify
performance vulnerability of (18) against all the sample-path realizations from
the local environment and potential noncooperative influences u∗−i from immediate
neighbors j and j ∈ Ni. The mechanism identified here that is under a finite set
of selective weights associated with the mathematical statistics of (18) helps to
unfold the complexity behind observed performance values and risks of person-
by-person strategy dependence in the following formulation of a risk-value aware
performance index. Notice that this custom set of design freedoms representing
particular uncertainty aversions is hence different from the ones with aversion to
risk captured in risk-sensitive optimal control [9, 10].

On K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i the performance index with risk-value considerations in risk-

averse decision making is subsequently defined as follows.

Definition 2 (Risk-Value Aware Performance Index). Let incumbent agent i and
i ∈ I select ki ∈ N and the sequence of scalar coefficients μ i = {μ i

r ≥ 0}ki

r=1 with
μ i

1 > 0. Then, the risk-value aware performance index

φ i
0 : {t0}× (R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j)ki × (R2∑

Ni
j=1 n j )ki ×R

ki �→ R
+

pertaining to risk-averse decision making of the stochastic Nash game over [t0, t f ] is
defined by

φ i
0(t0,H

i(t0),D̆
i(t0),D

i(t0))� μ i
1κ i

1︸︷︷︸
Value Measure

+μ i
2κ i

2 + · · ·+ μ i
kiκ i

ki︸ ︷︷ ︸
Risk Measures

=
ki

∑
r=1

μ i
r[(z

i
0)

T H i
r (t0)z

i
0 + 2(zi

0)
T D̆ i

r(t0)+D i
r(t0)] ,

(41)
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where additional design freedom by means of μ i
r’s utilized by incumbent agent

i with risk-averse attitudes are sufficient to meet and exceed different levels of
performance-based reliability requirements, for instance, mean (i.e., the average
of performance measure), variance (i.e., the dispersion of values of performance
measure around its mean), skewness (i.e., the anti-symmetry of the density of per-
formance measure), kurtosis (i.e., the heaviness in the density tails of performance
measure), etc., pertaining to closed-loop performance variations and uncertainties
while the supporting solutions {H i

r (τ)}ki

r=1, {D̆ i
r(τ)}ki

r=1 and {D i
r(τ)}ki

r=1 evaluated
at τ = t0 satisfy the dynamical equations (38)–(40).

To specifically indicate the dependence of the risk-value aware performance
index (41) expressed in Mayer form on Ki and the signaling effects u∗−i or K∗−i
issued by all immediate neighbors j from Ni, the multi-attribute utility function
or performance index (41) for incumbent agent i is now rewritten explicitly as
φ i

0(Ki,K∗−i).

Definition 3 (Nash Equilibrium Solution). An admissible set of feedback strate-
gies (K∗

i , . . . ,K
∗
Ni
) is a Nash equilibrium for the local Ni-person game, where each

incumbent agent i and i ∈ I has the performance index φ i
0(Ki,K∗

−i) of Mayer type,
if for all admissible feedback strategies (K1, . . . ,KNi) the inequalities hold

φ i
0(K

∗
i ,K

∗
−i)≤ φ i

0(Ki,K
∗
−i) .

For the sake of time consistency and subgame perfection, a Nash equilibrium
solution is required to have an additional property that its restriction on the interval
[t0,τ] is also a Nash solution to the truncated version of the original problem,
defined on [t0,τ]. With such a restriction so defined, the Nash equilibrium solution
is now termed as a feedback Nash equilibrium solution, which is now free of
any informational nonuniqueness, and thus whose derivation allows a dynamic
programming type argument.

Definition 4 (Feedback Nash Equilibrium). Let K∗
i constitute a feedback Nash

strategy which will be implemented by incumbent agent i such that

φ i
0(K

∗
i ,K

∗
−i)≤ φ i

0(Ki,K
∗
−i) , i ∈ I (42)

for all admissible Ki ∈ K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i , upon which the solutions to the dynamical

systems (38)–(40) exist on [t0, t f ].

Then,
(

K∗
1 , . . . ,K

∗
Ni

)
when restricted to the interval [t0,τ] is still an Ni-tuple

feedback Nash equilibrium solution for the multiperson Nash decision problem with
the appropriate terminal-value condition (τ,H i∗ (τ),D̆ i∗(τ),D i∗(τ)) for all τ ∈ [t0, t f ].

In conformity with the rigorous formulation of dynamic programming, the
following development is important. Let the terminal time t f and 3-tuple states
(H i

f ,D̆
i
f ,D

i
f ), the other end condition involved the initial time t0 and 3-tuple states

(H i
0 ,D̆

i
0,D

i
0) be specified by a target set requirement.
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Definition 5 (Target Sets). (t0,H i
0 ,D̆

i
0,D

i
0) ∈ M̂ i, where the target set M̂ i

residing at incumbent agent i and i ∈ I is a closed subset of [t0, t f ] ×
(R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j )ki × (R2∑

Ni
j=1 n j)ki ×R

ki
.

Now, the decision optimization residing at incumbent agent i and i ∈ I is to
minimize the risk-value aware performance index (41) over all admissible feedback
strategies Ki = Ki(·) in K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i while subject to potential interferences from

all immediate neighbors with the feedback Nash policies K∗−i.

Definition 6 (Optimization of Mayer Problem). Given the sequence of scalars
μ i = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0, the decision optimization on [t0, t f ] associated with

incumbent agent i and i ∈ I is given by

min
Ki(·)∈K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i

φ i
0(Ki,K

∗
−i) , (43)

subject to the dynamical equations (38)–(40) on [t0, t f ].

Notice that the optimization considered here is in Mayer form and can be solved
by applying an adaptation of the Mayer form verification results as given in [11].
To embed this optimization facing incumbent agent i into a larger problem, the
terminal time and states (t f ,H

i
f ,D̆

i
f ,D

i
f ) are parameterized as (ε,Y i,Z̆ i,Z i),

whereby Y i � H i(ε), Z̆ i � D̆ i(ε) and Z i � D i(ε). Thus, the value function for
this optimization problem is now depending on the parameterization of terminal-
value conditions.

Definition 7 (Value Function). Suppose (ε,Y i,Z̆ i,Z i) ∈ [t0, t f ]× (R2∑ j=1 Nin j

×2∑Ni
j=1 n j)

ki × (R2∑
Ni
j=1 n j )ki × R

ki
is given and fixed. Then, the value function

V i(ε,Y i,Z̆ i,Z i) and i ∈ I is defined by

V i(ε,Y i,Z̆ i,Z i)� inf
Ki(·) ∈ K i

ε,Y i,Z̆ i,Z i;μ i
φ i

0(Ki,K
∗
−i) .

For convention, V i(ε,Y i,Z̆ i,Z i)� ∞ when K i
ε,Y i,Z̆ i,Z i;μ i is empty. Next, some

candidates for the value function are constructed with the help of the concept of
reachable set.

Definition 8 (Reachable Sets). Let reachable set associated with incumbent agent

i be Qi � {(ε,Y i,Z̆ i,Z i) ∈ [t0, t f ]× (R2∑
Ni
j=1 n j×2∑

Ni
j=1 n j )ki × (R2∑

Ni
j=1 n j )ki ×R

ki

such that K i
ε,Y i,Z̆ i,Z i;μ i �= /0}.

Moreover, it can be shown that the value function associated with incumbent
agent i is satisfying a partial differential equation at interior points of Qi, at which
it is differentiable.
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Theorem 3 (Hamilton–Jacobi–Bellman (HJB) Equation-Mayer Problem). Let
(ε,Y i,Z̆ i,Z i) be any interior point of the reachable set Qi and i∈I , at which the
value function V i(ε,Y i,Z̆ i,Z i) is differentiable. If there exists a feedback Nash
strategy K∗

i ∈ K i
t f ,H

i
f ,D̆

i
f ,D

i
f ;μ i , then the differential equation

0 = min
Ki∈Ki

{
∂
∂ε

V i(ε,Y i,Z̆ i,Z i)

+
∂

∂ vec(Y i)
V i(ε,Y i,Z̆ i,Z i)vec(F i(ε,Y i,Ki))

+
∂

∂ vec(Z̆ i)
V i(ε,Y i,Z̆ i,Z i)vec(Ğ i(ε,Y i)

+
∂

∂ vec(Z i)
V i(ε,Y i,Z̆ i,Z i)vec(G i(ε,Y i)

}
(44)

is satisfied whereby V i(t0,Y i(t0),Z̆ i(t0),Z i(t0)) = φ i
0(H

i(t0),D̆ i(t0),D i(t0)).

Proof. By what have been shown in the recent results by the first author [12], the
proof for the result herein is readily proven.

Finally, the following result gives the sufficient condition used to verify a
feedback Nash strategy for incumbent agent i and i ∈ I . ��
Theorem 4 (Verification Theorem). Let W i(ε,Y i,Z̆ i,Z i) associated with in-
cumbent agent i and i ∈ I be continuously differentiable solution of the HJB
equation (44), which satisfies the following boundary condition

W i(t0,H
i(t0),D̆

i(t0),D
i(t0)) = φ i

0(t0,H
i(t0),D̆

i(t0),D
i(t0)) .

Let (t f ,H
i

f ,D̆
i
f ,D

i
f ) ∈ Qi; let Ki ∈ K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i ; and let (H i(·),D̆ i(·),D i(·))

be the trajectory solutions of the dynamical equations (38)–(40). Then, the scalar-
valued function W i(τ,H i(τ),D̆ i(τ),D i(τ)) is time-backward increasing function
of τ and τ ∈ [t0, t f ].

If K∗
i is in K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i with the corresponding solutions (H i∗ (·),D̆ i∗(·),D i∗(·))

of the dynamical equations (38)–(40) such that, for τ ∈ [t0, t f ]

0 =
∂
∂ε

W i(τ,H i
∗ (τ),D̆

i
∗(τ),D

i
∗(τ))

+
∂

∂ vec(Y i)
W i(τ,H i

∗ (τ),D̆
i
∗(τ),D

i
∗(τ))vec(F i(τ,H i

∗ (τ),K
∗
i (τ)))

+
∂

∂ vec(Z̆ i)
W i(τ,H i

∗ (τ),D̆ i
∗(τ),D i

∗(τ))vec(Ğ i(τ,H i
∗ (τ)))

+
∂

∂ vec(Z i)
W i(τ,H i

∗ (τ),D̆
i
∗(τ),D

i
∗(τ))vec(G i(τ,H i

∗ (τ))) (45)
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then, K∗
i is a feedback Nash strategy in K i

t f ,H
i
f ,D̆

i
f ,D

i
f ;μ i ,

W i(ε,Y i,Z̆ i,Z i) = V i(ε,Y i,Z̆ i,Z i) , (46)

where V i(ε,Y i,Z̆ i,Z i) is the value function associated with incumbent agent i.

Proof. With the aid of the recent development in [12], the proof then follows for
the verification theorem herein. ��

4 Person-by-Person Equilibrium Strategies

The aim of the present section is to recognize the optimization problem of Mayer
form existing at incumbent agent i and i ∈ I , which can therefore be solved by an
adaptation of the Mayer-form verification theorem. To this end the terminal time
and states (ε,H i

f ,D̆
i
f ,D

i
f ) of the dynamics (38)–(40) are now parameterized as

(ε,Y i,Z̆ i,Z i) for a broader family of optimization problems.
To apply properly the dynamic programming approach based on the HJB

mechanism, together with the verification result, the solution procedure should be
formulated as follows. For any given interior point (ε,Y i,Z̆ i,Z i) of the reachable
set Qi and i ∈ I , at which the following real-valued function is considered as a
candidate solution W i(ε,Y i,Z̆ i,Z i) to the HJB equation (44). Because the initial
state zi

0, which is arbitrarily fixed represents both quadratic and linear contributions
to the performance index (41) of Mayer type, it is therefore concluded that the value
function is linear and quadratic in zi

0. Thus, a candidate function W i ∈ C 1(t0, t f ;R)
for the value function is of the form

W i(ε,Y i,Z̆ i,Z i) = (zi
0)

T
ki

∑
r=1

μ i
r(Y

i
r +E i

r (ε))zi
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r(Z̆

i
r + T̆ i

r (ε))+
ki

∑
r=1

μ i
r(Z

i
r +T i

r (ε)) (47)

whereby the parametric functions of time E i
r ∈ C 1(t0, t f ;R2∑

Ni
j=1 n j×2∑

Ni
j=1 n j ), T̆ i

r ∈
C 1(t0, t f ;R2∑

Ni
j=1 n j ), and T i

r ∈ C 1([t0, t f ];R) are yet to be determined.
Moreover, it can be shown that the derivative of W i(ε,Y i,Z̆ i,Z i) with respect

to time ε is
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d
dε

W i(ε,Y i,Z̆ i,Z i) = (zi
0)

T
ki

∑
r=1

μ i
r[F

i
r(ε,Y

i,Ki)+
d

dε
E i

r (ε)]z
i
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r[Ğ

i
r (ε,Y

i)+ d
dε

T̆ i
r (ε)]

+
ki

∑
r=1

μ i
r[G

i
r (ε,Y

i)+
d

dε
T i

r (ε)] . (48)

The substitution of this candidate (47) for the value function into the HJB equa-
tion (44) and making use of (48) yield

0 = min
Ki∈Ki

{
(zi

0)
T

ki

∑
r=1

μ i
r[F

i
r(ε,Y

i,Ki)+
d

dε
E i

r (ε)]z
i
0

+ 2(zi
0)

T
ki

∑
r=1

μ i
r[Ğ

i
r (ε,Y i)+ d

dε
T̆ i

r (ε)]+
ki

∑
r=1

μ i
r[G

i
r (ε,Y i)+

d
dε

T i
r (ε)]

}
.

(49)

Now the aggregate matrix coefficients Fi(·) and Ni(·) of the aggregate dynamics
(17) are partitioned to conform with the n-dimensional structure of (6) by means of

IT
0 �

[
I 0

]
, IT

1 �
[

0 I
]
,

where I is an ∑Ni
j=1 n j ×∑Ni

j=1 n j identity matrix and

Fi(·) = I0(Ai(·)+Bi(·)Ki(·))IT
0 + I0Li(·)Ci(·)IT

1 + I1(Ai(·)−Li(·)Ci(·))IT
1 (50)

Ni(·) = I0(Qi(·)+KT
i (·)Ri(·)Ki(·))IT

0 + I0Qi(·)IT
1 + I1Qi(·)IT

0 + I1Qi(·)IT
1 . (51)

Taking the gradient with respect to Ki of the expression within the bracket of (49)
yield the necessary conditions for an extremum of risk-value performance index
(41) on the time interval [t0,ε]

Ki =−R−1
i (ε)BT

i (ε)I
T
0

ki

∑
r=1

μ̂ i
rY

i
r I0((I

T
0 I0)

−1)T , i ∈ I (52)

where μ̂ i
r � μ i

r/μ i
1 for μ i

1 > 0. With the feedback Nash strategy (52) replaced in

the expression of the bracket (49) and having
{
Y i

r

}ki

r=1 evaluated on the optimal

solution trajectories (38)–(40), the time-dependent functions E i
r (ε), T̆ i

r (ε) and
T i

r (ε) are therefore chosen such that the sufficient condition (45) in the verification
theorem is satisfied in the presence of the arbitrary value of zi

0; for example,
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d
dε

E i
1(ε) = (Fi

∗)
T (ε)H i

1∗(ε)+H i
1∗(ε)F

i
∗(ε)+Ni

∗(ε)

d
dε

E i
r (ε) = (Fi

∗)
T (ε)H i

r∗(ε)+H i
r∗(ε)F

i
∗(ε)

+
r−1

∑
s=1

2r!
s!(r− s)!

H i
s∗(ε)G

i(ε)W i(Gi)T (ε)H i
r−s∗(ε), 2 ≤ r ≤ ki

and

d
dε

T̆ i
r (ε) = H i

r∗(ε)E
i(ε)u∗−i(ε) , 1 ≤ r ≤ ki

and, finally

d
dε

T i
1 (ε) = Tr

{
H i

1∗(ε)G
i(ε)W i(Gi)T (ε)

}− (u∗−i)
T (ε)Mi(ε)u∗−i(ε)

d
dε

T i
r (ε) = Tr

{
H i

r∗(ε)G
i(ε)W i(Gi)T (ε)

}
, 2 ≤ r ≤ ki

with the initial-value conditions E i
r (t0) = 0, T̆ i

r (t0) = 0 and T i
r (t0) = 0 for

1 ≤ r ≤ ki. Therefore, the sufficient condition (45) of the verification theorem is
satisfied so that the extremizing feedback strategy (52) becomes optimal.

Therefore, the subsequent result for risk-bearing decisions is already proved
and thus summarized for each incumbent agent i and i ∈ I ; who autonomously
selects K∗

i for its person-by-person equilibrium (or equivalently, feedback Nash
decision policy) strategy in presence of its immediate neighbors’ feedback Nash
policy parameters K∗−i, as in Fig. 1.

Theorem 5 (Person-by-Person Equilibrium Policies for Distributed Control).
Consider the linear-quadratic class of distributed stochastic systems whose descrip-
tions are governed by (6)–(13) and subject to the assumption of (Ai,Bi) and (Ai,Ci)
for i ∈ I uniformly stablizable and detectable. Assume that incumbent systems
or agents are constrained to admissible decision laws ui(·) = Ki(·)ẑi(·), where the
conditional mean estimates ẑi(·) are governed by the decentralized state-estimation
dynamics (9). Further let incumbent agents i select ki ∈ N and the sequence
of nonnegative coefficients μ i = {μ i

r ≥ 0}ki

r=1 with μ i
1 > 0. Then, there exists a

person-by-person equilibrium which strives to optimize the risk-value awareness
performance indices (41); e.g.,

ui
∗(t) = K∗

i (t)ẑ
∗
i (t), t � t0 + t f − τ (53)

K∗
i (τ) =−R−1

i (τ)BT
i (τ)I

T
0

ki

∑
r=1

μ̂ i
rH

i
r∗(τ) I0((I

T
0 I0)

−1)T , i ∈ I (54)
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Fig. 1 Unified framework of measuring risk judgments and modeling choices and decisions

wherein the parametric design freedom through μ̂ i
r represent the preferences toward

specific summary statistical measures; e.g., mean, variance, skewness, etc. are
chosen by incumbent agent i for performance reliability; whereas the optimal
solutions H i

r∗(·) satisfy the backward-in-time matrix-valued differential equations

d
dτ

H i
1∗(τ) =−(Fi

∗)
T (τ)H i

1∗(τ)−H i
1∗(τ)F

i
∗(τ)−Ni

∗(τ) , H i
1∗(t f ) = Ni

f (55)

d
dτ

H i
r∗(τ) =−(Fi

∗)
T (τ)H i

r∗(τ)−H i
r∗(τ)F

i
∗(τ)

−
r−1

∑
s=1

2r!
s!(r− s)!

H i
s∗(τ)G

i(τ)W i(Gi)T (τ)H i
r−s∗(τ), H

i
r∗(t f )

= 0, 2 ≤ r ≤ ki . (56)
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In addition, the decentralized state estimates ẑ∗i (t) associated with incumbent agent
i and i ∈ I when the person-by-person equilibrium policy (53) are applied, are
satisfying the forward-in-time vector-valued differential equation with ẑ∗i (t0) = z0

i

dẑ∗i (t) = (Ai(t)ẑ
∗
i (t)+Bi(t)u

∗
i (t)+ u∗−i(t))dt +Li(t)[dy∗i (t)−Ci(t)ẑ

∗
i (t)dt] (57)

and

dz∗i (t) = (Ai(t)z
∗
i (t)+Bi(t)u

∗
i (t)+ u∗−i(t)dt)dt +Gi(t)dξi(t), z∗i (t0) = z0

i (58)

u∗−i(t)dt =
Ni

∑
j=1, j �=i

B j(t)u
∗
j(t)dt + dηi(t) (59)

dy∗i (t) =Ci(t)z
∗
i (t)dt + dvi(t) (60)

whereby the decentralized filter gain Li(t) = Σi(t)CT
i (t)V

−1
i and the state-estimate

error covariance Σi(t) is determined by the forward-in-time matrix-valued differen-
tial equation with initial-value condition Σi(t0) = 0

d
dt

Σi(t) = Ai(t)Σi(t)+Σi(t)A
T
i (t)+Gi(t)ΞiG

T
i (t)+ Ii−Σi(t)C

T
i (t)V

−1
i Ci(t)Σi(t) .

Notice that to have the person-by-person equilibrium policy (53) of incumbent
agent i be defined and continuous for all τ ∈ [t0, t f ], the solutions H i

r∗(τ) to the
equations (55)–(56) when evaluated at τ = t0 must also exist. Thus, it is necessary
that H i

r∗(τ) are finite for all τ ∈ [t0, t f ). Moreover, the solutions of (55)–(56)
exist and are continuously differentiable in a neighborhood of t f . Applying the
result from [13], these solutions can further be extended to the left of t f as
long as H i

r∗(τ) remain finite. Hence, the existence of unique and continuously
differentiable solutions to (55)–(56) is certain if H i

r∗(τ) are bounded for all
τ ∈ [t0, t f ). Subsequently, the candidate value functions W i(τ,H i,D̆ i,D i) are
continuously differentiable.

5 Conclusions

The present research offers a theoretic lens and a novel approach that direct attention
towards mathematical statistics of the chi-squared random performance measures
concerned by incumbent agents of the class of distributed stochastic systems herein
and thus provide new insights into complex dynamics of performance robustness
and reliability. To account for mutual influence from immediate neighbors that give
rise to interaction complexity such as potential noncooperation, each incumbent
system or self-directed agent autonomously focuses on the search for a person-by-
person equilibrium which is in turn locally supported by noisy state observations.
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In views of performance risks, a new paradigm shift for understanding and
building decentralized person-by-person equilibrium policies for the emergence of
flexibly autonomous systems is obtained, with which the self-directed agents of
incumbent systems, who are constrained to decentralized information processing
and distributed decision making, are fully capable of implementing risk-bearing
actions and local best responses in the furtherance of their own goals.
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